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Abstract 

Spatial Modeling of Decentralized Wastewater Infrastructure: 

The Case for Water Reuse and Nitrogen Recovery 

by 

Olga Kavvada 

Doctor of Philosophy in Engineering - Civil and Environmental Engineering 

University of California, Berkeley 

Professor Arpad Horvath, Co-Chair 

Professor Kara L. Nelson, Co-Chair 

 
Climate change and increasing patterns of drought throughout the world are challenging the 
effectiveness of conventional water systems. A growing population in conjunction with more 
extreme weather events, threatens water supply infrastructure and increases uncertainty about 
how utilities will meet demand without sacrificing water quality. This issue has recently manifested 
in California, prompting utilities to invest in alternative water sources as a means of ensuring that 
water infrastructure is resilient to climate change scenarios. 

Decentralized wastewater treatment is a promising option for increasing the sustainability of water 
infrastructure as it spatially merges supply and demand, minimizing large conveyance 
requirements. Decentralization can also promote nutrient management and recovery as it enables 
the source separation of the different wastewater sources. Specifically closing the nitrogen loop, by 
capturing it and reusing it to generate valuable high-end products can potentially improve the 
efficiency of the system and create revenue streams.  

However, smaller decentralized water treatment units are potentially more energy intensive and 
costly than their centralized alternatives per unit of water treated. Due to these efficiency tradeoffs, 
planning tools and frameworks for holistically assessing decentralized water treatment systems 
need to be developed to optimally manage the new urban water supply paradigm. Better data 
management and data-driven decision support tools can provide valuable insight on the benefits 
and impacts of implementing future water systems. 

This research assesses the technical performance of emerging decentralized technologies and 
implementation scenarios for residential uses, by assessing the feasibility of integrating 
decentralized facilities in cities with existing wastewater infrastructure. This work aims to create 
algorithmic models that integrate the spatial design of a wastewater treatment and distribution 
network with a life-cycle assessment to determine the associated environmental impacts. This 
dissertation utilizes spatial modeling to contextually evaluate the implementation and distribution 
potential and uses a life-cycle assessment approach to provide an extensive analysis of all the life-
cycle impacts. By incorporating environmental indicators and metrics, a planning support 
framework can be created to help guide the water industry towards smart investments for a less 
energy-intensive future. Specifically, this work will 1) investigate how spatial terrain variability, 
demographics and distribution affect the performance of decentralized water treatment systems, 
2) analyze the major parameters that affect the energy intensity, cost and greenhouse gas emissions 
of these systems, 3) quantify the unit processes that mostly impact the prementioned metrics and 
4) identify the optimal system scale for decentralized infrastructure implementation under various 
spatial and demographic conditions. 
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The insights from this dissertation can help wastewater researchers and practitioners understand 
the complex relationships between the system scale and system performance. By evaluating the 
potential benefits and tradeoffs, this work can lead to management tools that will help transition 
away from traditional water management and create a water supply that (1) is resilient to changes 
in climate, (2) uses local water sources, and (3) leaves more water in natural ecosystems. This 
dissertation further adds to the growing body of literature on decentralized wastewater treatment 
assessing optimal scales, reuse potential, resource recovery and sewerage connections to investigate 
key factors affecting future implementation. 
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Chapter 1.  
 
Introduction 

1.1 Motivation 

Climate change, population growth, and rapid urbanization are increasing the stress on and 
unreliability of the water supply in many areas around the world.1 In most developed countries, 
there exists an inherent expectation of sufficient water quantity and quality at all times. This 
expectation, however, comes with a large cost as water and wastewater are inherently energy 
intensive services. In the United States (U.S.), the energy for treatment and delivery of water 
emits more than 45 million tons of greenhouse gases (GHG) annually.2 This is equivalent to 10% 
of all the annual GHG emissions occurring in California per year3. In California, 7.7% of electricity 
consumption is dedicated to energy for pumping and treatment of water, not accounting for the 
electricity used inside the households.4 

Understanding the relationship between water, energy and GHG emissions is important for 
decision-making, especially when in the context of managing our limited water sources. Energy is 
used throughout the water sector, for collection, treatment and conveyance and it leads to 
production of GHG emissions. Several authorities have created initiatives to reimagine how water 
infrastructure might comply with GHG mitigation strategies.5 For example, the California Water 
Plan promotes maximum efficiency in water management through identifying, developing and 
researching new technologies and implementation potentials.6 Efficiency can be further improved 
though better data management and decision support tools that provide valuable insight on the 
benefits and impacts of implementing future redesigned systems.  

The water scarcity threat, particularly in drought-prone regions, increases uncertainty around how 
utilities will meet demand without sacrificing water quality. The need to reinvent the water 
infrastructure paradigm becomes even more apparent with the realization that the conventional 
approach of large centralized infrastructure is failing to meet the growing water demands. This 
issue has revealed itself recently in California where more than 18% of all urban uses as well as a 
significant volume for agriculture and environmental uses is supplied by the State Water Project 
and Colorado River Aqueduct and could be significantly impacted by climate change.7 The 
unsustainable practice of groundwater overdrafting along with the failure of these large projects 
to satisfy demands, has led to a critical assessment of the sustainability of the current water 
system.8 As dry years magnify disagreements in the allocation distribution of the limited water 
supply, local utilities have been investing in alternative water sources to make sure that their new 
water infrastructure is resilient to climate change scenarios.  

Closing the loop in the water systems can increase the system reliability by providing efficient and 
cost-effective solutions to the increasing water challenge. Closed-loop systems refer to systems that 
identify opportunities for generating value out of the generated waste products. In the water world, 
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the major waste product is the wastewater. Water reuse, nutrient management, and other forms 
of resource recovery, promote efficient resource utilization and can help mitigate the environmental 
and energy impacts associated with water and wastewater treatment facilities. 

New technological advances in decentralized wastewater treatment systems provide feasible 
alternatives to centralized infrastructure. Economies of scale do exist in the treatment of water9,10, 
making small units more energy intensive than their centralized alternatives. However, the spatial 
setting in which the water treatment system exists can affect the overall system efficiency. As 
innovative technologies emerge the ability to understand the tradeoffs between system scale and 
performance become significant in order to minimize the systems economic and environmental 
impacts. Two new paradigms of water treatment are considered within this work, water reuse and 
nitrogen recovery. For both, decentralization can offer efficiency benefits as it merges supply and 
demand by having the systems be closer to the point of use and the large conveyance costs and 
environmental impacts can be avoided. Due to these efficiency tradeoffs, planning tools and 
frameworks for holistically assessing decentralized systems and their distribution networks need to 
be developed to optimally manage the urban water supply and help minimize the climate change 
effect of the water sector. 

 

 

1.2 Research Overview and Questions 

This dissertation assesses the technical performance of emerging decentralized technologies and 
their implementation in a variety of scenarios for residential uses. It evaluates the feasibility of 
integrating decentralized facilities in cities with existing wastewater infrastructure and identifies 
opportunities for economic and environmental gains. The main objective of this research is to 
assess different options of utilizing wastewater as a resource in various settings and scales. This 
work aims to create algorithmic models that integrate the spatial design of a wastewater treatment 
and distribution network with a life-cycle assessment to determine the associated economic and 
environmental impacts. It utilizes spatial modeling techniques and algorithms to holistically 
evaluate the implementation and distribution potential and uses a life-cycle assessment approach 
to provide an extensive analysis of all the life-cycle impacts. By incorporating environmental 
indicators and metrics, a planning support framework is created to help push the water industry 
towards smart investments for a less energy intensive future. 

This dissertation aims to assess two decentralized resource recovery options, namely water reuse 
and nitrogen recovery. The first part focuses on non-potable water reuse and provides a framework 
and a modeling process for optimally integrating the decentralized infrastructure to achieve 
maximum water savings with the minimum economic and environmental impacts. It aims to create 
a planning support tool for optimizing level of decentralization and implementation of residential 
non-potable water reuse facilities in an urban setting. The study assesses a wide range of possible 
system scales to estimate the threshold where decentralization would be the best choice in specific 
spatial conditions. Some of the key questions that are addressed in the first part include: 

• How does spatial variability affect the performance of water reuse? 

• What are the major contributors to the economic cost, energy intensity and GHG 
emissions of water reuse systems? 

• Which are the most important unit processes in treatment that drive the energy 
intensity and GHG emissions from a life-cycle perspective? 
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• What is the optimal scale for infrastructure planning that would minimize the economic 
and environmental impacts? 

• Can decentralized water reuse provide environmental benefits to justify the redesign of 
the water infrastructure under a GHG emissions constrained future? 

• Can decision-making be assisted by generalizable model development that enables 
scenario planning in various settings? 

The second part, concerning nitrogen recovery, aims to assess an emerging decentralized 
technology for recovering nitrogen from wastewater (ion exchange and electrochemical stripping) 
to minimize the economic and environmental impacts of effluent discharge in the receiving bodies. 
This technology is still under development in the laboratory, so this research can provide valuable 
preliminary insight on which parameters are the most impactful to cost, energy and GHG that 
need further research. This part plans to also address the question of optimal scale of decentralized 
nitrogen recovery technologies via process modeling and assess the spatial parameters that affect 
the implementation potential in an urban setting. The key questions addressed here include: 

• How would nitrogen recovery technology perform in a real setting? 

• Which are the key factors that affect the systems’ cost, energy intensity and GHG 
emissions that could benefit from further research? 

• How do spatial and distribution parameters (logistics) affect the overall system’s cost, 
energy intensity and GHG emissions? 

• What is the optimal scale for implementing nitrogen recovery given certain demographic 
and topographical conditions? 

• Can we offset the cost and energy of centralized wastewater treatment to meet stringent 
nutrient discharge regulations, and does decentralization provide any benefits? 

 

 

1.3 Research Challenges 

Assessing decentralization as an approach for optimal water management to promote resource 
recovery is a complex endeavor for multiple reasons: 

• The major friction between closing the loop for water is the disconnect between the water 
and wastewater industries. In many locations, the two industries are not in close proximity 
and are operated separately. Each has its own complexities and interests to prioritize. 
Achieving a high adoption of closed-loop systems requires the two industries to coordinate, 
cooperate and have mutual goals in place. That is hardly the case at the present. Even in 
cases where the same utility is responsible for both water and wastewater services, they 
are considered separately with minimal resource sharing and separate management 
systems. This is a major drawback, as the two industries share their most valuable resource, 
water. By combining the goals of the two industries, the dynamics of the system can change 
as the output of one system can be the input of the other. However, to make this process 
efficient and economically acceptable, it requires careful planning and change in the 
approach that service providers have utilized in the last decades. 
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• Factors that currently determine water system management are primarily related to 
economic cost. However, successful implementation of a new system should consider 
environmental impacts along with the long-term sustainability of the project. 
Understanding all of the factors and their contribution to economic and environmental 
impacts requires complex and multivariable analyses that are not always in the interest of 
the stakeholders. Making these analyses accessible to decision-makers and emphasize their 
importance is a non-trivial task. 

• Similarly, determining the optimal system size or trying to minimize the economic and 
environmental impacts may not be the key driver to decision-making. Sometimes decisions 
around how the systems are implemented or where they are placed are based on 
externalities and site-specific conditions that cannot be modeled by engineering approaches. 
There is a disconnect between the context specific, political considerations and decision-
makers needs and engineers that aim for optimal planning. 

• Finally, developing frameworks that accurately assess and estimate metrics of interest is 
not trivial. Water infrastructure is highly site specific, involves a lot of moving parts and 
the infrastructure sizing can be challenging. Trying to develop generalizable models that 
can be applied in different settings with minimal customization is a complicated task that 
requires interaction between engineering principles and empirical approaches. 

 

 

Research Contributions 

This research aims to address the major challenges identified above to promote the sustainable 
implementation of water reuse and nitrogen recovery systems. By identifying the major parameters 
that affect the economic and environmental impacts of water reuse and nitrogen recovery this 
research intends to promote solutions that try to close the loop in our water systems and their 
nitrogen management. Closed-loop systems tend to be more sustainable and efficient and this 
research tries to bridge the gap between the water and wastewater industries by proposing 
solutions that could potentially benefit both. By identifying the key parameters that lead to 
economic and environmental impacts of the proposed closed-loop systems, this work intends to 
educate future research by highlighting the areas that need to be improved upon to increase the 

systems’ efficiency and their implementation potential.  

Secondly, this research quantifies the environmental impacts of the water reuse and nitrogen 
recovery systems along with their economic requirements. Economic cost is usually the primary 
factor that influences development decisions. However, the energy and GHG emissions impacts 
are equally important from a societal and environmental point of view and should be prioritized 
as decision metrics. Moreover, by quantifying both economic and environmental metrics, this 
research enables decision makers to reach optimal decisions by considering the tradeoffs between 
the various metrics in a comprehensive, holistic and consistent way. 

A major challenge that was identified in the previous paragraph is the issue of implementation 
scale when considering decentralized solutions. This research tries to address this issue by 
identifying the effect of scale between treatment and distribution systems. These non-linear 
relationships are crucial and significantly affect the overall economic and environmental 
performance of the systems. Water reuse systems tend to also be highly location specific as the 
impacts of technology and distribution scaling will significantly differ with location and technology 
selection. This research addresses this challenge by developing generalizable models with the ability 
to assess the systems implementation in local conditions. This is a critical component for the 
realistic and holistic assessment of water reuse systems. 
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1.4 Organization 

The analyses presented in this dissertation include multiple applications of advanced spatial 
analysis to address issues of optimal system implementation for water reuse and nitrogen recovery. 
These applications illustrate the importance of detailed spatial modeling for the holistic assessment 
of the economic and environmental costs of systems implementation. 

Chapter 2 includes background information on the two main subjects studied here, namely water 
reuse and nitrogen recovery. This chapter will motivate the subject area and provide the basic 
knowledge for understanding the chapters to follow. It also provides background information on 
the main methods used in this research, specifically spatial analysis and life-cycle assessment.  

Chapter 3 analyzes water reuse implementation potential in a city-scale application. It describes 
a high-level decision methodology that assesses various scales of water reuse implementations and 
compares their environmental performance. It explores the difference between centralized and 
decentralized non-potable water reuse, from a life-cycle perspective. Decentralized and centralized 
options are assessed for the same context area to identify at which locations decentralized systems 
would achieve environmental advantages over centralized alternatives.  

Chapter 4 extends the previous chapter to a finer-scale resolution of decentralization for non-
potable water reuse. The goal of this chapter is to model water reuse implementation down to the 
building scale. It assesses the economic and environmental impacts of decentralization by 
identifying the tradeoffs between various levels of decentralization. The development of a decision 
support software is described to enable optimal decision-making for water reuse applications. The 
development and implementation of the decision support software involves locating wastewater 
facilities, calculating water balances and infrastructure design and estimation of the environmental 
and economic impacts. 

Chapter 5 moves towards the subject of resource recovery, specifically for nitrogen. This chapter 
aims to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen 
recovery: ion exchange of source-separated urine. To provide insight into how this decentralized 
technology would be implemented, an enhanced economic and environmental assessment approach 
is developed by combining spatial analysis, system-scale evaluation and detailed last-mile logistics 
modeling. 

The overall major findings are summarized in Chapter 6 along with the major research 
contributions to the academic and professional field. Future research and extensions of this study 
are also included in the concluding chapter. 
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Chapter 2.  
 
Background 

2.1 Water Reuse 

2.1.1 Why water reuse? 

Today’s world is characterized by an uneven distribution of the population which is increasingly 

tending towards urbanization.11 Over 54% of the world’s population live in urban regions. In North 
America, this percentage rises to 80%.12 This tendency leads cities to face significant pressures to 
respond and fulfill all of the needs of the continuously increasing populations. Drinking water 
infrastructure is one of them. Historically, the location of the cities was strongly connected to the 
water availability. Water constraints have been significant friction factors to growth. Technological 
advances have enabled large water transport projects, which has disentangled growth from local 
water availability. However, this leads to inadequate supply and compromises the ability of the 
system to meet the quantity and quality expected by its users when considering aging 
infrastructure, climate change and competition over the available water sources. 

Worldwide, water suppliers are investigating alternative water sources and efficient distribution 
designs that increase self-sufficiency and supply reliability of systems.13 Self-sufficiency is defined 
as enabling water use in cities or regions that is sourced from within each city or region.14 
Currently, the most common water sources, particularly within urban metropolitan areas, are 
surface water and groundwater. Alternative water sources, such as stormwater capture and water 
reuse, have the potential to be promising solutions. Conventional approaches to manage 
wastewater involve collection via centralized sewerage networks and treatment in large wastewater 
treatment plants (WWTPs) prior to discharge. Wastewater treatment plants can provide a 
sustainable supply of recycled water and have the potential to address the stressors on traditional 
water sources. Water reuse, especially in water-limited regions, could directly augment available 

water resources and therefore offers the potential to significantly increase the nation’s total 
available water resources. Recycled water is highly-treated wastewater that has been purified 
through multiple levels of treatment to meet quality and safety standards and can be reused for 
non-potable or potable applications.  

Many utilities are currently deciding to implement or expand water reuse systems as extended 
drought conditions and water supply stressors are becoming more prevalent under climate change 
scenarios. For example, the California Water Plan requires maximum efficiency in water 
management through identifying, developing and researching new technologies and 
implementation potentials6 and the California State Water Board has set an ambitious goal to 
increase the water reuse by 30% by 2020.15 Water reuse can help reduce the environmental impact 
associated with wastewater treatment and increase the resiliency in water management. However, 
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the economic and environmental benefits depend on various factors such as treatment technology, 
resource recovery strategy, and system size.16 

 
 

2.1.2 Energy in water 

Understanding the relationship between water, energy and GHG emissions is important for 

decision-making, especially when it’s connected to managing the limited water sources. Energy is 
used throughout the water sector leading to production of GHG emissions. This relationship can 

support actions to reduce such emissions and to be compatible with the state’s GHG mitigation 
strategies.5 

Energy and water infrastructure are inherently connected. Water is an important component of 
energy production and water infrastructure requires energy inputs to be constructed and operate. 
As energy is directly related to GHG emissions, planning around water infrastructure should have 
an environmental focus as well. The internationally accepted goal of limiting global temperature 
increases to two degrees Celsius over pre-industrial levels will involve reducing GHG emissions by 
40-70 % below 2010 levels by 205017, requiring water and wastewater infrastructure to substantially 
reduce their GHG footprints along with many other components of modern economies. It is 
essential that future water planning scenarios maximize water efficiency, minimize energy intensity 
and provide the same level of service to consumers, even as water demand increases.18 

Water and wastewater are energy-intensive services. A study by Goldstein and Smith reports that 
4% of total electricity use in the United States goes to the conveying and treating of water and 
wastewater.19 In the U.S., the energy for treatment and delivery of water emits more than 45 
million tons of greenhouse gases (GHG) annually.2 This is equivalent of 10% of all the annual 
GHG emissions occurring in California.3 In California, 7.7% of electricity consumption is dedicated 
to energy for pumping and treatment of water not accounting for the electricity used at the end 
use.4 The California State Water Project is the largest single user of energy in California accounting 
for about 2-3% of all electricity consumed in the state.20  

Energy requirements in water infrastructure are strongly site-specific. The energy required for the 
production and distribution of water can depend significantly on the technology, topographical 

characteristics and population density. For treatment, the “economies-of-scale” tend to benefit 
larger systems.9,10 However, large systems tend to require large distribution networks and more 
uphill pumping that significantly affects energy requirements (Figure 1). Localization of water 
cycles can eliminate the distribution requirements as it spatially merges supply and demand, thus 
closing a loop within the water system. Decentralized systems can service a variety of scales 
ranging from individual homes to communities and usually function independently of a centralized 
system.21,22 New technological advances in decentralized wastewater treatment systems challenge 
the strong dependency on the centralized infrastructure. Especially when considering water reuse, 
where the connection between supply and demand is significant, decentralization can offer 
efficiency benefits as the systems are closer to the point of use and large conveyance costs are 
avoided. 
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Figure 1: Optimization tradeoffs between treatment “economies-of-scale” and conveyance 
“diseconomies-of-scale” 

 
 

2.1.3 Types of reuse 

Water reuse can come in several different forms depending on the reused water application, the 
wastewater treatment plant technology, the location, water quality requirements and public policy. 
The different types of reuse can vary significantly in the output water quality, energy intensity, 
cost, volume, and discharge limits. An important benefit of flexibility inherent to water reuse 

technology is that water reuse projects can be “fit-for-purpose”, meaning that the water quality 
can satisfy the standards for the required application and no more. This is a significant benefit 
when considering cost or energy intensity as the water is only treated to its appropriate standard, 
which can be achieved with significantly less economic and environmental impacts. There are two 
main types of water reuse, potable and non-potable water reuse which differ from each other at 
the required level of treatment. Water reuse can be performed as a direct process, which involves 
the introduction of the recycled water directly into the water system, or as an indirect process, 
where the recycled water is passed through an environmental buffer before it can be mixed with 
the water supply. Table 1 provides a breakdown of the different types of water reuse. 
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Table 1: Types of water reuse  

Type of reuse Description 

De facto reuse 

 

De facto reuse is the simplest type of reuse and it can be 
referred to as the conventional process. Fresh surface or 
groundwater is extracted, treated and used as the water 
source, wastewater is generated, treated appropriately for 
discharge, discharged into a water body and used as input 
from downstream users where it would be treated again. 

Indirect potable reuse 

 

Indirect potable reuse occurs when the discharged 
wastewater is returned to its original natural source so it can 
be reused by the same user. This is a type of potable reuse as 
the water quality level is not distinguished by application, 
but it is treated by a water treatment plant to a potable 
standard after it was gone through an environmental buffer. 

Direct potable reuse 

 

Direct potable reuse is similar to the indirect potable reuse 
but there exists no environmental buffer between the 
wastewater and the water source. In this case the wastewater 
is treated to a potable level by the wastewater treatment 
plant and it is introduced directly to the water system or 
upstream of a water treatment plant for reuse. 

Non-potable reuse 

 

Non-potable reuse is a separate type of reuse as it differs in 
its water quality level. In this case the wastewater is treated 
to an appropriate level for applications other than drinking, 
such as industrial uses, agriculture, landscape irrigation or 
other residential non-potable uses (e.g. toilet flushing). 

 

 

Non-potable water volume, the main focus of this work, is a significant percentage of the overall 
water demand for residential and commercial uses. As illustrated in Figure 2, non-potable water 
can encompass up to 50% of the residential uses and up to 95% of the commercial water uses.23 
Non-potable water reuse can satisfy most water demands as long as it has been appropriately 
treated for that purpose. Non-potable water systems typically have lower water quality standards 
but their level of treatment reflects the type of application they are used for. These systems, 

require a separate distribution network (“purple pipe” network) as it cannot be mixed with the 
conventional water supply. 

Incorporating multiple end-uses in the non-potable water reuse portfolio, can result in a more 
complex distribution structure but potentially more widespread application of the wastewater. For 
example, allowing for recycled water to be used indoors for toilet flushing and outdoors for 
landscape irrigation, increases the infrastructure complexity as more pipes are needed but at the 
same time achieves a much higher percentage in the offset of fresh water supply. In addition, 
allowing for more water sources to be treated and reused, such as greywater (wastewater 
originating from showers, bathroom and kitchen taps and washing machines) and blackwater 
(wastewater originating from toilets) can increase the available water for other uses. Depending 
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on the extent of it application, the distribution network can have a significant impact on the 
overall systems cost and energy requirements. 

 
Figure 2: Breakdown of water uses for residential and commercial customers . (Adapted from San 

Francisco Public Utilities Commission 2 4) 

 

 

2.2 Nitrogen Recovery 

2.2.1 Nitrogen cycle 

Wastewater is a source of other elements, such as nutrients, metals and heat. This work focuses 
on the nitrogen aspect of wastewater. Understanding the connections between a waste product, 
such as wastewater, and its constituents that can be recovered to generate high value products is 
of major significance. Figure 3 presents the main nitrogen cycle in wastewater treatment along 
with the Haber-Bosch process for fertilizer production. 

Nitrogen is considered a pollutant when its located in the discharged wastewater, as it can cause 
eutrophication and damage aquatic ecosystems. The San Francisco Bay in the recent years has an 
increasing concern of nutrient loading. The WWTPs discharging in the Bay are responsible for 
about 50% of the nitrogen loading in wet periods rising up to 80% in dry years.25 For this reason, 
wastewater treatment plants use an energy intensive process to remove nitrogen out of the 
wastewater before they discharge in sensitive ecosystems. Technologies for nitrogen reduction at 
the treatment plant do exist and usually involve biological processes to enhance nitrification and 
denitrification processes that convert ammonia to dinitrogen gas and allow it to escape in the 
atmosphere. However, these processes are costly and include high energy requirements that make 
them unattractive for the plant operators26.  

Besides the impact of nitrogen on the ecosystems and its energy intensive removal process, it can 
also be identified as a potential nutrient in agriculture processes. Nitrogen is a major constituent 
of most conventional fertilizers. Capturing the nitrogen from the atmosphere and incorporating it 
into the fertilizer products is also an energy intensive process, called Haber-Bosch, which consumes 
about 1% of global energy.27 By creating a process that can eliminate the Haber-Bosch process and 
instead use the nitrogen present in the wastewater as a potential fertilizer can potentially lead to 
economic and environmental benefits. The removal of nitrogen from wastewater at the wastewater 
treatment plants and the capturing of the nitrogen from the atmosphere during fertilizer 
production are processes that essentially reverse each other as the wastewater treatment converts 
the NH4

+ to N2 gas and the fertilizer production industry converts N2 gas back to NH4. Closing 
the loop between the nitrogen present in conventional fertilizers and the nitrogen in the waste 
stream of wastewater treatment can not only generate a revenue source but it can also prevent 
potential environmental impacts caused by uncontrolled nitrogen discharge in aquatic bodies. 
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Figure 3: Schematic illustrating connecting the relationships between ammonia from urine and 
production of fertilizer 

 

2.2.2 Source separation 

Nitrogen is a main constituent of the wastewater but it is mostly present in urine (80% of the 
nitrogen in wastewater (Figure 4))28 while, urine only represents 1% of the total wastewater 
volume.29 Separating the urine from the rest of the wastewater, source separation, can significantly 
increase the ability to remove and recover key compounds such as nitrogen. Source separation 
generates a highly concentrated stream of nitrogen, enabling recovery. Separate collection and 
treatment of urine can potentially reduce treatment costs at the wastewater treatment plants, 
environmental pollution due to nutrient discharges, and can potentially substitute energy intensive 
processes for synthetic fertilizer production. Source separation though requires specific 
infrastructure, such as special toilet fixtures, so the urine can be successfully separated from the 
rest of the wastewater before it gets diluted. 

Nutrient removal standards for wastewater discharge in aquatic bodies are becoming more 
stringent and require wastewater treatment plants to reduce the nitrogen concentration in their 
effluent. There are currently few restrictions for nutrient discharge in the San Francisco Bay but 

it is projected that the state’s officials will start regulating nitrogen flows heavily and specify the 
allowable limits for discharge.30 The conventional approach is to upgrade treatment by adding a 
nitrification/denitrification process, which is energy intensive and costly. A promising alternative 
is source separation and nitrogen removal from urine with the potential for recovery to produce 
fertilizer. Distributed nutrient treatment and nitrogen extraction at the source can reduce nutrient 
flows in the receiving bodies by diverting it before it reaches the wastewater treatment plant. This 
process can have significant benefits as it reduces the need for nitrogen treatment at the treatment 
plant. Compared to the conventional approach, extracting the nitrogen at the source can create 
high value products and can potentially have lower energy and greenhouse gas emissions compared 
to centralized nitrogen removal. 
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Figure 4: Wastewater stream composition by nutrient.28 

 

2.2.3 Ion exchange 

Ion exchange is a well-established technology for removing impurities from water. Recently its 
application has been extended to remove nitrogen from urine to promote nitrogen recovery.31 Ion 
exchange is a promising alternative to the centralized biological nitrogen removal as it is modular, 
compact and can be installed in a decentralized fashion. 

The main process behind the operation of ion exchange resins to remove nitrogen from a highly-
concentrated source is illustrated in Figure 5. The ion exchange cartridges can be installed at the 
source, where urine can be selected as a highly concentrated source of nitrogen. As the urine flows 
through the cartridge, the nitrogen in the ammonium is adsorbed by the resin. To revert the 
process and recover the nitrogen for other applications, a strong acid can flow through the nitrogen 
rich cartridge. This way, the nitrogen is released from the resin and ends up in the output product. 
In this case the output ammonium sulfate ((NH4)2SO4) can be used as an alternative fertilizer 
product to satisfy the plants needs on nitrogen. This process is referred to as regeneration. 

 

Figure 5: Using ion exchange resin for nitrogen capture and regeneration 
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2.3 Economic and Environmental Assessment 

Life cycle assessment (LCA) provides a framework for holistically quantifying the environmental 
impact of a process or product over its lifetime, including raw material extraction, construction, 
operation and end-of-life. LCA enables us to quantify the complex relationship between activities 

and their environmental impacts using a “cradle to grave” approach. By including the whole life-
cycle in the analysis, the results are more comprehensive as they include the impacts of all stages 
from material production and delivery to operation and maintenance. The framework is composed 
of the inventory phase (LCI) which identifies and quantifies the energy use and emissions of all 
the stages of a process or product, the impact assessment phase (LCIA) where the environmental 
effects are converted to environmental or health related impacts based on the outputs of the LCI 
and finally the interpretation stage, where the impacts are interpreted and evaluated.32 This stage 
involves the uncertainty estimation of the previous methods and re-evaluates and improves the 
processes. Decision makers use LCA to quantify the breakdown of impacts through the different 
processes that occur in a system, and identify opportunities for improvement and efficiency gains. 

Life-cycle cost assessment (LCCA) provides a methodology for assessing different options regarding 
their overall economic cost performance. LCCA includes all aspects that could potentially 
contribute to economic costs including purchasing, owning, operating, maintaining and disposing 
costs and can refer to any type of material, product or system. LCCA follows a similar methodology 
as LCA but instead or environmental impacts it refers to economic costs.33 LCCA combined with 
LCA can provide valuable insight on the tradeoffs that may occur regarding more environmentally 
friendly solutions and associated economic cost. It can also elucidate the challenges associated with 
promoting sustainable solutions and multiobjective optimizations. 

LCA and LCCA has been widely used to evaluate water and wastewater systems and can offer 

valuable insights into the energy intensity and cost of the system holistically.34–38 This study 
incorporates the LCA and LCCA methodologies to holistically assess the impacts of water reuse 
and nitrogen recovery. The system boundary includes material extraction, component 
manufacturing, distribution and operation. The end-of-life phase is omitted as previous research 
has shown it does not significantly affect the total energy, GHGs and cost of these systems.36,39,40 
The outcomes of this research focus only on the first part of the LCA methodology, specifically 
the LCI and the quantification of energy intensity and GHG emissions of the systems as well as 
the uncertainty and sensitivity of the systems. The functional unit used to characterize the energy 
intensity, GHG emissions and cost in this industry is a m3 of water treated, or in the case of 
nitrogen recovery a m3 of urine treated. This allows for a direct comparison between various 
alternatives and different scales. 

This study used both process-based and economic input-output (EIO-LCA) emission factors to 
minimize uncertainty. Process-based LCA refers to a bottom-up approach in which the processes 
that fall inside the system boundary are assessed.41 This method characterizes the life-cycle 
inventory by assessing each unit process including their corresponding up-stream impacts. In 
contrast, input-output LCA takes a top-down approach and relies on aggregate data that models 
the entire system but lacks detail on specific processes.42 This method tries to map the interactions 
of each process with the entire economic sector to produce an inventory that would include all the 
impacts of the supply chain. A hybrid approach, as used in this study, utilizes the benefits of the 
previously mentioned methods to quantify impacts in a comprehensive manner.43 

The major components of the wastewater infrastructure that are assessed in this work to identify 
the impacts of the systems are treatment infrastructure, piping and pumping infrastructure for 
water collection and distribution and storage options.  All these system components need to be 
assessed for their material requirements for construction as well as for their operational impacts. 
The component assessment model part of the LCA and LCCA evaluates the material inputs, 
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operation requirements and maintenance and evaluates their life-cycle performance. Identifying 
and assessing all the unit processes and components, the overall energy, GHG emissions and cost 
can be calculated for all system stages given specific energy intensity requirements, emission factors 
and unit costs [Eq.  1]. 

  [Eq. 1] 

where: 

Tx is the total energy/emission/cost of the system of scale x,  

i is the system component, ∀ i = 1, 2, … N,  

ma,i is the mass of material a used in component i, ∀ a = 1, 2, … M,  

efa,i is the energy/emission/cost factor of material a used in component i,  

La,i is the lifetime of material a used in component i, 

Pp,i is the power requirement of process p used in component i, ∀ p = 1, 2, … K,  

efp,i is the energy/emission/cost factor of process p used in component i,  

Qx is the total input processed in the system of scale x. 

 

 

2.4 Spatial Analysis 

Water and wastewater systems are inherently site-specific and sensitive to location and 
topographic characteristics. Geographic Information Systems (GIS) have the potential to improve 
and enhance the decision-making process regarding the management of water and wastewater 
services. One of the biggest challenges in water and wastewater infrastructure modeling is the 
strong connection to demographic and street network characteristics along with the topography 
of an area. To accurately model these systems and make informed infrastructure improvement 
decision, a deep understanding of the underlying urban data is required, as is access to large 
amounts of diverse information.  

A GIS system offers the combined power of both geography and information systems making it 
possible to address water and wastewater infrastructure issues accurately and in detail. A major 
advantage of using GIS is the increased productivity and the ability to generate and assess 
scenarios in a timely manner. By organizing information in a geographically aware way it is 
possible to combine layers of information to generate data, assess individual infrastructure aspects 
separately and design hypothetical systems for scenario development. 

The performance of a water distribution system depends on variations in ground surface elevation. 
An important application of spatial modeling in this research is identifying the Digital Elevation 
Model (DEM) of an area of interest, which enables the assessment of water and wastewater 
infrastructure design and assessing pumping and piping needs. Figure 6 illustrates the development 
of a DEM which contains information that continuously varies over space, allowing for an 
understanding of the ground elevation values, slopes and trends of all the overlaying infrastructure. 
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Figure 6: Constructing the digital elevation model  from contours 

 

Spatial analysis promotes realistic water infrastructure modeling as it allows for detailed piping 
design. Pipe infrastructure is complicated to accurately model as it is usually installed along the 
street networks for easier access rather than straight lines across the topography. Using spatial 
analysis this complexity can be parameterized in the models and piping network can be designed 
based on a predefined street network (Figure 7). This added complexity allows for accurate 
estimation of the required piping length, slope and location according to the specific inputs of the 
area of interest. Piping infrastructure can be modeled using a shortest path algorithm between the 
water source and the water end users. This approach minimizes the required pipe length between 
supply and demand selecting the appropriate path along the street networks. Additional 
complexity can be added by using the elevation information described before, which would penalize 
the shortest path algorithm for increases in elevation which would require additional pumping. In 
this work, the elevation was accounted for when designing piping networks as will be described in 
detail in Chapter 3. 

            
Figure 7: Example of designing and estimating piping infrastructure according to the road 

network 

 

Population density and population distribution is another important aspect that can be effectively 
modeled using spatial analysis. Population values usually come from the Census Bureau and they 
correspond to large geometries, covering a couple of city blocks at best. Getting finer resolution of 
population distribution and population density requires some spatial analysis and combinations of 
various forms of data. For example, landuse information can be used to eliminate areas of blocks 
that are vacant. Building locations and their characteristics (type, number of floors, footprint area, 
etc.) can also be used as inputs to achieve a finer grain understanding about where people live. 
Combining various levels of information, using spatial analysis, we can better estimate higher 
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resolution population distributions and more precise population density values (Figure 8). Several 

other “tricks” can be used to identify higher resolution population values, as more complex models 
are designed, e.g. population synthesizer tools, that are developed to imitate and model population 
characteristics and create virtual communities with detailed descriptions of the people living in 
them.44 

 
Figure 8: Disaggregation of population from census tract to grid cell size  

 

Additionally, spatial algorithms can enhance our understanding of “connection” and lead to 
optimal planning. In this work, mathematical algorithms have been used to estimate and 
accurately model logistics impacts as well as facility location planning. The ability to understand 
connection between similar objects, their spatial distribution and optimal routing strategies, can 
increase the precision of infrastructure models, as they become more site-specific. This can address 
an important limitation of most infrastructure models that are based on generic data that is not 
representative of the conditions of the point of interest. Figure 9 illustrates some examples of 
computer science algorithms that were used in this research to better understand the impact of 
infrastructure planning and the impacts of logistics given certain site-specific conditions. 

 
Figure 9: Examples of computer science algorithms that were used in this research to estimate (a) 

facility allocation and (b) transport distances
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Chapter 3.  
 
Urban Non-Potable Water Reuse: Location Variability 
Analysis 

The following chapter is adapted from Kavvada et al. (2016) Assessing Location and Scale of 
Urban Nonpotable Water Reuse Systems for Life-Cycle Energy Consumption and Greenhouse Gas 
Emissions. Environmental Science & Technology, (50)24, 13184-13194, with permission from 
Arpad Horvath, Jennifer R. Stokes-Draut, Thomas P. Hendrickson, William A. Eisenstein and 
Kara L. Nelson. Copyright 2016, ACS Publications. 

3.1 Introduction 

Climate change, population growth, and competition over available water resources threaten the 
viability of conventional water sources globally. Drought conditions in many parts of the world 
are increasing in duration, severity, and frequency.17 Proactive cities are moving to increase water 
supply resiliency and security by investing in conservation policies and diversifying water supply 
portfolios to include water reuse, stormwater harvesting, and desalination.45  

Simultaneously, the world faces the need to reduce greenhouse gas (GHG) emissions. Urban water 
and wastewater services have significant GHG emissions associated with their energy use and 
direct emissions from the treatment processes. For example, in California, 7.7% of electricity 
consumption is dedicated to pumping and treatment of water.4 Given the large energy 
requirements of water services, it is important to assess these environmental implications of 
infrastructure when diversifying a water supply portfolio. The internationally accepted goal of 
constraining global temperature increases to two degrees Celsius over pre-industrial levels will 
involve reducing GHG emissions by 40-70% below 2010 levels by 2050.17 Meeting this goal will 
require water and wastewater utilities, along with other economic sectors, to substantially reduce 
their operational and embedded GHG footprints. In California, bill SB32 calls for GHG emissions 
statewide to be reduced by 40% relative to 1990 levels by 2030.46 

Conventional approaches to managing wastewater involve collection via centralized sewerage 
networks and treatment in large wastewater treatment plants (WWTP) prior to discharge. 
Approximately 120 million m3 (32 billion gallons) of treated wastewater are discharged into the 
environment in the United States every day.47 Reusing some of that water could reduce demand 
on fresh water sources and alleviate the effects of drought. Non-potable reuse (NPR) involves using 
recycled water for toilet flushing, irrigation, and similar uses. Potable reuse requires more advanced 
wastewater treatment to ensure the water is safe for human consumption. NPR can increase per-
capita water use efficiency with lower treatment requirements, fewer regulatory hurdles than 
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potable reuse, and potentially lower cost.48  However, because NPR requires separate distribution 
from potable water, dual plumbing systems are required.  

Water reuse has been identified as the most efficient form of resource recovery for urban water 
systems.49 However, centralized WWTPs are often located at low elevations within their collection 
areas to enable wastewater collection by gravity over large service areas to benefit from economies 
of scale in treatment (i.e., decreasing cost, energy use and GHG emissions with increasing system 
capacity). Centralized WWTPs are therefore often far from reuse customers, requiring large 
conveyance distances for a separate non-potable distribution network and, depending on 
topography, significant pumping requirements for NPR distribution.50 Thus, it has been suggested 
that decentralized approaches may be preferable to centralized NPR water production in some 
cases51 as it spatially matches supply and demand, decreases conveyance needs,22 offers a fit-for-
purpose approach, and potentially reduces the economic and environmental costs of water supply.52  

Previous studies have assessed the costs associated with alternative water supply options (water 
recycling, stormwater capture and rainwater harvesting) and their corresponding environmental 
benefits (resiliency, reliability, health, energy, flood mitigation, ecosystem impact).53 These factors 
are extremely dependent on site-specific criteria. No one-size-fits-all solutions are possible. Spatial 
modeling and site-specific information must be used to estimate the associated energy use, GHG 
emissions, and costs. Recently, a method was presented to assess the cost-optimal degree of 
centralization in wastewater infrastructure accounting for spatial and demographic parameters, 
but this study did not consider reuse.54 Another study performed a location-specific multivariable 
analysis to assess the cost and resource recovery potential (non-potable water and biogas) for 
satellite wastewater treatment systems and identified hybrid solutions that involve a mixture of 
centralized and satellite treatment systems as having the best performance.55  

The effect of scale can be a driving factor for treatment system efficiency. Several authors have 
tackled the mathematical relationship defining economies of scale for cost of treatment processes9 
as well as for cost and GHG emissions of alternative water sources.10,49 One study assessed the cost 
of direct potable reuse with respect to system size by performing hypothetical modeling studies for 
retrofits of residence halls, and concluded that direct potable reuse in an urban area would only 
be cost competitive in medium-size facilities (about 10,000 residences per reuse facility).56  Several 
previous studies have assessed the life-cycle implications of water and wastewater systems34,57 and 
a few have focused on decentralized systems, producing varied results depending on specific 

technologies and locations assessed.58–60 These prior studies provide context and lay important 
groundwork. Nonetheless, optimization of NPR systems has not yet been researched thoroughly, 
especially considering the effect of site-specific conditions and system scale.  

The goal of this study was to assess residential NPR and create a planning support framework for 
recycling water with the lowest energy requirement and GHG emissions. The two reuse scenarios 
evaluated were centralized water reuse through the existing large WWTPs (which requires the 
addition of tertiary treatment and new pipelines to deliver the recycled water) and decentralized 
water reuse (new treatment facilities and short pipelines built inside or directly adjacent to the 
building(s)). For the purposes of this paper, decentralized reuse refers to systems that recycle 
wastewater for between 100 and 10,000 people. The size at which the decentralized facility has 
lower energy use and GHG emissions was identified for specific population density and topographic 
conditions (Figure 10). 

We created a methodology that integrates the spatial design of an NPR treatment and distribution 
network with a life-cycle perspective to determine the associated energy intensity and GHG 
emissions. The study considered different options for NPR (centralized vs. decentralized) and 
assesses the level of decentralization given specific spatial and demographic conditions. The method 
described is generic and the input parameters (e.g., topography, population density, types of NPR) 
can be adjusted for analysis of any city or urban water system. We applied this methodology to 
the demographics, spatial parameters, and existing infrastructure of San Francisco, a city 
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positioned as an innovation leader in the area of decentralized urban water reuse due to policies 
and incentives implemented to promote alternative water supply.61 The specific conditions 
evaluated for San Francisco are described later in the text.  

 
Figure 10: System options assessed for residential NPR in the San Francisco case study region 

(the contours used to generate the Digital Elevation Model from 62).  

 

 

3.2 Methods 

The modeling approach is illustrated in Figure 10.  For each grid cell (representing a neighborhood 
of a city), we assessed centralized and decentralized NPR.  For centralized reuse, it was assumed 
that the recycled water was piped from an existing centralized WWTP (located outside of the 
cell) to the cell.  For decentralized reuse, the WWTP was located within the cell and a range of 
realistic system scales are evaluated.   

 

3.2.1 Overview of the Modeling Approach 

The modeling process was partitioned into two functional models: the spatial analysis model and 
the life-cycle model. Figure 11 illustrates these two models and their integration. The spatial 
analysis model uses a digital elevation model (DEM) (see Figure 10), to estimate the piping length 
and pumping head required for the distribution of recycled water from either the decentralized or 
centralized treatment facility, taking into account the population density, grade profile and road 
network of the area of interest using network analysis. Based on these inputs the spatial analysis 
model estimates the system component sizes needed for distribution of the recycled water in the 
decentralized and centralized reuse scenarios (see Appendix 1 for more details).  
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Figure 11: Modeling framework presented in this study  

 

The life-cycle model utilizes the output of the spatial analysis model to evaluate the environmental 
impacts of all the required infrastructure components described in the next section. We quantified 
the life-cycle energy use and GHG emissions for material production and delivery, system 
construction, operation, and maintenance. End-of-life was not considered as previous research has 
shown that it does not significantly affect the total energy consumption and GHG emissions.36,39,40 
The system components evaluated are described in the next section and presented in Figure 12. 
The integrated spatial and life cycle modules provided estimates of the site-specific energy and 
GHG intensity of NPR systems. 

To test the robustness of the model and the results, uncertainty and sensitivity analyses were 
performed using the Monte Carlo method programmed in Python. The uncertainty analysis 
generated a probability distribution for the energy use and GHG emissions given a range of realistic 
values for the model parameters. The uncertainty analysis aims to quantify the confidence intervals 
of the model output by assessing the uncertainties in the inputs. The parameters, ranges, 
probability distributions, and data sources can be found in the Appendix 1 (Table S - 5). We 
performed 25,000 simulations to get an accurate representation of the uncertainty.  

A sensitivity analysis was used to estimate the effect of each parameter’s value independently on 

the result to identify the relationship between the model’s input and outputs. The sensitivity 
analysis was performed using a variance-based global sensitivity analysis method to estimate each 

parameter’s effect on the variance of the energy use and GHG emission results. Sensitivity analysis 
was performed to estimate the effect of perturbing each parameter on the final results to explore 
the relationships between the input and outputs of our model. A perturbation of 10% of the original 
value was assumed for all the parameters. We simulate the perturbation effect by taking the 
derivative of the output model with respect to each normalized parameter. A mathematical 

formulation is presented below (Eq. 2 - Eq. 5).  

     , where       [Eq. 2] 

    [Eq. 3] 

   [Eq. 4] 
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      [Eq. 5] 

 

 
Figure 12: System components assessed and data sources 1 0 ,3 4–36 ,55 ,60 ,63 –74 

 
3.2.2 Case Study Description 

The NPR model was applied and tested using a scenario based on the city of San Francisco. San 
Francisco obtains high-purity fresh water from the Hetch Hetchy Reservoir in the Sierra Nevada 
Mountains, which is transported to San Francisco by gravity (the energy intensity is 1.7 
kWh/m3).60 California has recently experienced one of the most severe droughts on record and 
policymakers are currently diversifying the water portfolio to increase drought resiliency.6 In 2013, 
San Francisco passed an ordinance to allow district-scale sharing of NPR water (i.e., between 
buildings in close proximity) and require installation of purple (non-potable) pipe within certain 
new construction. In July 2015, the ordinance was amended to require new buildings of 23,000 m2 
(250,000 sq. feet) or more to provide alternative water sources.61 This ordinance lays the 
groundwork for expanded implementation of NPR, making San Francisco an early adopter in this 

field. NPR anticipated common end-uses are irrigation (representing only 2 – 5 % of total water 
use) and toilet flushing (which can vary between 25% - 50% of total water use in a residential 
building and up to 75% - 95% in a commercial building).24 

San Francisco is a densely populated city with substantial elevation changes over a compact 
surface area, an interesting topography for a case study. Though building a centralized NPR 
distribution network would cause major construction disturbances and is unlikely to be 
implemented for small flows, a wide range of flows are included in our analysis for comparison (20 
m3/day to 2,000 m3/day per grid cell). Wastewater generation for sizing facilities was assumed to 
equal 0.2 m3/person-day.75 Residential water use was also assumed to equal 0.2 m3/person-day 
given that outdoor water use and irrigation are low in San Francisco.24,76 NPR water demand was 
assumed to be 50% of residential water use24 a realistic assumption for an urban mixed use setting. 
The electricity used by the local water utility, the San Francisco Public Utilities Commission 
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(SFPUC), is 100% hydropower (a low carbon electricity source). The carbon intensity of SFPUC’s 
electricity mix was assumed to be 83 gCO2/kWh.60 

We compared the decentralized approach to a hypothetical centralized water reuse scenario that 
would provide the same quantity and similar quality of water to locations throughout San 
Francisco. We estimated elevation, population density, and scale using spatial GIS analysis for 
San Francisco (Figure 10). We divided the city into 766 grid cells with dimensions of 500x500 m 
each and applied the model to each grid cell independently. The grid cell size was selected using 
heuristics, to provide granularity in the assessment while at the same time being large enough to 
illustrate realistic district-scale decentralized systems. The optimal grid cell size for analysis may 

vary for other locations, based on the area’s topography and population density. The maximum 
number of people served by a single decentralized facility was a function of the grid cell size and 
the actual population density of that cell. The number of people served represents people whose 
wastewater is treated; the population that uses the NPR water is double that number, given our 
assumption that 50% of water demand can be met with the recycled water. The other 50% of the 
recycled water is used by the closest neighbors. For each grid cell, the digital elevation model 
(DEM) was calculated based on the elevation contours of San Francisco.62 Using the DEM, we 

located the lowest elevation point as the assumed location of the cell’s decentralized WWTP to 
obtain gravity-fed wastewater collection. Population density of each cell was estimated using a 
weighted average approach from census tract data62 to estimate the piping distances required to 
serve a specific demand in each grid cell. Since this project focused on residential NPR, areas that 

were described as “public” or “commercial” in the zoning maps of San Francisco were excluded.62  

 

3.2.3 Water Reuse Infrastructure Modeling 

We used a life-cycle approach to evaluate the embodied and operational energy and GHG emissions 
for the infrastructure components described below. Our assessment included impacts associated 
with the construction, operation and maintenance35 of NPR pipes (including excavation and 
backfilling for average trench depths for the selected pipe diameter37), storage tanks, treatment 
facilities and pumps for sewage collection and NPR distribution, and production and 
transportation of materials.66 The impacts of sewer construction were not included in the 
assessment as we evaluated infill development assuming the wastewater network already exists 
and will continue to be operational. 

For the centralized scenario, the SFPUC’s two WWTPs, the Southeast and the Oceanside plants, 
were assumed to be the source of NPR water. Their locations are shown in Figure 10. For the 
treatment phase, the actual operational energy use was based on existing secondary treatment at 
the WWTP,60 augmented with hypothetical typical tertiary treatment processes to achieve 
adequate water quality for NPR. Additional treatment processes included coagulation and 
flocculation with appropriate alum doses,70 using rapid sand filtration and chlorination, which were 
each modeled independently (Figure 13). It was assumed that tertiary treatment was constructed 
at the equivalent scale of the existing plant (241,000 m3/day) and that it was not necessary to size 
for peak flows, as they would receive only secondary treatment water and not be recycled. For the 
decentralized facilities, it is also appropriate to design based on average flows, because the 
equalization tank at the beginning of the treatment train is sized sufficiently to buffer the daily 
variations in flow rate.  It is not necessary to accommodate increases in flow due to storm events, 
because infiltration/inflow does not occur in building systems. The biosolids resulting from 
anaerobic digestion at the centralized WWTP were assumed to be disposed in equal parts (by 
mass) via land application and daily cover at a landfill, with transportation requirements and 
landfill emissions estimated.34 In reality, the planned treatment process for centralized NPR in San 
Francisco is more complex and energy intensive because saltwater intrusion in the sewer system 
requires reverse osmosis to be implemented for water used to irrigate parks.  
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For the decentralized treatment process, we evaluated a hypothetical treatment train with a 
membrane bioreactor (MBR), shown in Figure 13. Raw wastewater goes through pre-treatment 
(screen filter and a grinder pump to remove solids), a grit chamber, a flow equalization tank, and 
an MBR for primary and secondary treatment. The effluent is disinfected with UV (primary 
disinfectant) and chlorine (disinfectant residual) and then stored until needed. The sludge 
generated from primary and secondary treatment is stored onsite and periodically transported by 
truck to the closest centralized WWTP for further processing. 

 
Figure 13: Treatment train for the decentralized and centralized scenarios  

 

For the MBR, the operational energy was estimated from literature data and scaled to a range of 
possible flow conditions using a regression analysis based on literature data for installed small-

scale MBRs as shown in Figure 14.77–80 The embodied energy of the MBR was estimated based on 
the materials used and the associated emission factors.68 The MBR data were benchmarked with 

other technology data and larger MBR systems for comparison.60,80–82 Regression analysis details 
can be found in the SI. The energy use and GHG emissions for sludge handling were calculated 
based on the contribution of the decentralized plant to overall sludge production at the WWTP. 

Small scale MBR technologies are not yet mature and have a large potential for improved 
operational efficiencies.83 To simulate potential future conditions, we also evaluated a scenario in 
which the operation of the MBR treatment is 20% more energy efficient than that shown in Figure 
14. This analysis illustrates how decentralized technologies with improved performance would 
compete against the already-efficient centralized treatment. 
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Figure 14: MBR Operational Energy Regression Analysis 6 0 ,7 7–80 ,81 ,82 .  Data points shown in red were 

used in the regression; other data points are shown for context.  

 

The direct GHG emissions released as CO2 from wastewater systems are considered biogenic and, 
per IPCC protocols, were not accounted for.84 For the centralized treatment scenario, the direct 
emissions of methane reported by the utility were minimal, as emissions in the form of CH4 and 
N2O are avoided through oxidation in cogeneration, boilers or flares. The direct emissions of CH4 
and N2O from the biological treatment processes of both systems are sensitive to the treatment 
design, operation, and specific microbial processes.85 Therefore, they are highly uncertain and likely 
vary depending on level of nitrification/denitrification occurring. Due to this uncertainty, they 
were not included in the analysis for either of the two systems, though they may potentially 
represent a significant portion of total GHG emissions. More research and data are needed to 
accurately estimate these emissions and identify strategies to reduce them. 

For reuse distribution, the conveyance phase accounts for the distance and elevation change from 
the centralized or decentralized WWTP to the demand location and scales based on the modeled 
demand. For the decentralized scenario, the distribution network was modeled based on average 
city block sizes and the specific population density of the area with the WWTP modeled at the 
lowest elevation point. For the centralized scenario, each grid cell was connected to one of the two 
WWTPs based on a shortest path algorithm for the road network of San Francisco.86 Selected 

routing results are illustrated in Figure 10. The shortest path algorithm (Dijkstra’s algorithm) 
accounted for distance and elevation change between the WWTP and the target grid cell to 
minimize both piping and pumping needs (more information can be found in the next section). 
Therefore, the pipeline optimal route between the grid cell and the WWTP was not always the 
minimum distance, but the one that minimized the total cost for conveyance along the road 
network. Using the optimal route, the maximum elevation point along the route was identified 
and used to estimate the hydrostatic pressure for the pumping energy calculations. The total 
distance was used to estimate the head losses and piping construction and installation needs.  

While modeling a hypothetical NPR distribution network, we generated two scenarios to evaluate 

the piping needs for each grid cell. The first scenario was called the “completely dispersed” scenario, 
where each grid cell is independently connected to the centralized WWTP (i.e., no pipe sharing 
between grid cells). This extreme scenario was used as the upper bound of the analysis. For the 

second, the “completely connected” scenario, piping was shared between cells such that the 
construction and installation of the pipes and pumps were allocated among grid cells served by 
the same infrastructure based on the network layout. In this case, the allocation of embodied 
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energy and GHG emissions for pipe manufacture, construction, and maintenance was much smaller 
for each grid cell, giving the lower bound of the analysis. Realistically, the network would perform 
in a state between the two scenarios, which cannot be modeled accurately without knowing the 
actual network design. More details can be found in the next section (3.2.3.1 - Detailed spatial 
modeling description).  

Pumping was included in the analysis both for the wastewater collection system and for the NPR 
system when there is not enough pressure to satisfy the total head requirement for pressurized 
distribution. For each network condition, we modeled a single pump with specifications to meet 
the overall head requirement; this simplifying assumption increases the uncertainty of our results 
but makes it possible to assess the network in a generalized way. Pump sizes for collection and 
distribution were estimated to minimize cost and head losses based on the elevation grade and 
flowrate. Embodied energy and GHG emission values for each pump were calculated for 

manufacturing and transportation.65 Operational energy was calculated using Bernoulli’s equation 

for total head. Wastewater collection pumping needs were estimated using the utility’s pump sizes 
and flows for each area.87 In water reuse, supply and demand are not necessarily synchronized. 
Storage is required for pre-treatment flow equalization as well as for treated wastewater until it is 
distributed for NPR. Above-ground water tanks located adjacent to the WWTP were assumed for 
storage. More details can be found in the following section (3.2.3.2 - Detailed LCA Description). 

 

3.2.3.1 Detailed spatial modeling description 

• Landscape 

The model uses topographical elevations generated from contour data of San Francisco62. Each 
landscape is generated by performing an iterative finite difference interpolation method on the 
elevation values of the contours to produce a raster dataset. This raster, the digital elevation 
model, consists of pixels with the corresponding elevation values that describe the topography of 
the area. The digital elevation model is used during the system design, the piping distribution and 
to account for the pumping requirements in the area.  

 

• Street network  

The piping infrastructure layout is modeled over the street network of San Francisco86. To generate 
the street network for the model the road segments are connected with nodes to establish 
connectivity. The road segments represent the edges of the network and the intersections the 
junctions. These network attributes control the ability to traverse the network. The length of the 
road segments (in 3D) is calculated and the junctions are assigned an elevation value when overlaid 
on the digital elevation model. The road segment is then assigned an elevation value which 
corresponds to the difference of the elevation between the two junctions that characterize it. These 
elevations are used later to analyze the piping path, described below. 

 

• Grid cells 

To assess the water reuse scenarios and get better resolution on the results, the model divides the 
area of interest into small cells with a size of 500x500 m. Individual grid cells focus the analysis 
into smaller areas of interest to estimate the energy and GHG emissions for the water reuse 
scenario occurring in each individual grid cell. The grid cell size was selected to allow sufficient 
demand of water given the range of population densities in the study. 
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• Population resolution 

Since the resolution of the analysis is at the grid cell level, we allocated population to each grid 
cell. However, population density data are given by a census tract which usually covers multiple 
grid cells, and/or multiple tracts cross grid cell boundaries. We disaggregated the population 
density from the tract area to the grid cell using a weighted average approach based on the area 
which the different census tracts overlapped in each affected grid cell. Using zoning data for San 
Francisco62, we excluded areas that were characterized as public spaces or industrial and 
commercial areas when disaggregating the population values. Figure 15 illustrates the process and 
shows the estimated total population of each grid cell. 

 

Figure 15: Disaggregation of population from census tract to grid cell size  

 

• Piping networks 

In each individual grid cell, a piping network is modeled to satisfy the required non-potable water 
demand. The piping network is modeled around the residential blocks. The assumed size of the 
residential blocks is 80x80 m. According to the estimated population density in each grid cell, the 
required area to fit the selected population, and the piping length needed to serve them, is 
calculated. The required piping length is calculated for each grid cell given the calculated 
population to be served (Figure 16). This means that by estimating the area covered by the 
population served (a function of population density for each grid cell), the piping infrastructure 
length corresponds to the circumference of the number of city blocks occupied. Low population 
density grid cells would require more piping to serve the equivalent population (population more 
dispersed) than high density areas as illustrated in Figure 16.  
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Figure 16: Example of estimating piping length for the same population served for different 
population densities and system scales  

 

For the centralized scenario only, in addition to the in-cell piping requirements, NPR piping length 
is calculated to connect each grid cell with the closest centralized treatment plant based on 

Dijkstra’s shortest path algorithm using the street network as the connection path (Figure 17). 
Using this algorithm, a path is created between the centralized treatment plant and the minimum 
elevation point of each grid cell based on the street network of the area. The algorithm ensures all 
possible paths are evaluated and the shortest path is found recursively by minimizing the overall 
distance between of all the possible road segments. The lowest elevation point of the grid cell is 
found using the digital elevation model and accounting for the elevation of every pixel that falls 
inside the grid cell. This is the starting point of the grid cell that connects to the centralized 
treatment plant. The cost function for the shortest path algorithm is to minimize costs for piping 
distance and pumping requirements. Thus, this algorithm minimizes the network distance between 
origin and destination and considers the topography. Examples of selected routes are presented in 
Figure 18. 

The pumping requirements at every road segment are estimated based on the elevation difference 
of two junctions that characterize it. They are calculated for each road segment and input into 
the cost function. Pumping calculations are further discussed in the following section. For the 
piping costs, an estimation of pipe cost per length is used and added to the cost function of each 
road segment. 

To analyze the infrastructure that corresponds to each grid cell, two scenarios were considered. 
The dispersed scenario and the completely connected scenario. For the completely dispersed 
scenario, an individual pipe was assumed from every grid cell connecting it to the corresponding 
centralized treatment plant, based on the shortest path algorithm. This scenario would model an 
independent development scenario where the NPR network is not yet established and only a few 
areas have access to NPR water. The completely connected scenario assumes that the NPR 
infrastructure is shared by multiple grid cells in an optimal way, reflecting a system where the 
NPR network is highly integrated in the city and all grid cells have access to NPR water. To 
model this from the optimized pipe network generated from the shortest path algorithm, each pipe 
segment was allocated to the corresponding number of grid cells that it serves. Every grid cell was 
then allocated only a fraction of the total piping infrastructure that was required to serve it based 
on the total water demand of all cells served by the same pipe. The number of cells served by an 
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individual pipe segment was estimated based on the network connectivity. The main pipes would 
serve more grid cells than the branches off the main pipes. Intuitively, in this scenario, the 
infrastructure impacts were smaller for every grid cell compared to the dispersed scenario. Because 
NPR supply exceeds demand in San Francisco, and most urban areas, a fully built-out completely 
connected network is not possible. These two scenarios, therefore, correspond to the upper and 
lower bounds of what a realistic situation would look like. 

The sewer piping construction was not included in the assessment as we are considering infill 
development where the sewage piping already exists and will be maintained regardless of the 
presence of decentralized systems. If this is not the case, the sewer piping construction, installation, 
and maintenance would have to be considered in the analysis. However, as the city requires some 
pumping for the collection of the sewage, this impact was evaluated appropriately for the 
centralized scenario. 

 

Figure 17: Shortest path algorithm 

 

3.2.3.2 Detailed LCA Description 

The study’s scope includes all the supply chain elements of the materials considered, except the 
end of life, which has been shown in the past to not significantly affect the results.36,39,40 
Transportation of materials was individually calculated for all materials assessed in this study, 
and Class 8b trucks (tractor trailers) were assumed for the calculations. Transportation energy 
use and associated emission factors were sourced from 66 and the associated distance was estimated 
for San Francisco based on literature values.88 

Our study’s LCA focused on the treatment technologies for NPR and the distribution which 
includes piping, pumping and storage infrastructure. This study used both process-based and 
economic input-output (EIO-LCA) emission factors to minimize uncertainty. Process-based LCA 
refers to a bottom-up approach in which the processes that fall inside the system boundary are 
assessed.41 In contrast, EIO-LCA takes a top-down approach and relies on aggregate data that 
models the entire system but lacks detail on specific processes.42 A hybrid approach, as used in 
this study, utilizes the benefits of both the previously mentioned methods to quantify impacts in 
a comprehensive manner.43 Figure 12 presents the specific components assessed and the 
corresponding literature citations. The specific processes are analyzed in detail below. Process-
based LCA methods were used to assess each stage of the life-cycle where data were available, 
while EIO-LCA, which tracks the interactions of 400 U.S. economic sectors65 for the rest. The 
GHG emissions associated with the operational electricity used were assumed to be from the San 
Francisco electricity provider which uses hydropower and has the relatively low emission factor of 
83 kgCO2(eq)/kWh.60 

 

 

 

Where wi is the cost of each segment, di is 
the distance between nodes, cd is the piping 
cost, ei is the elevation difference between 
nodes and ce the pumping cost 
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• Piping 

Water distribution networks were designed to satisfy network requirements and design constraints. 
The pipes were sized according to the Manning –  Strickler design equations to minimize cost 
(minimum possible diameter) that would provide a minimum velocity of 2 m/s and minimize 
headlosses. If the constraints were not satisfied, a larger diameter pipe was selected based on 
commercially available sizes. The friction factor for the pipes was evaluated with a standard 
engineering approach using the Reynolds number and the relative roughness of the pipes based on 
their material. We used the Moody diagram to approximate the friction factor. 

The pipe network was assessed using life-cycle energy and emissions numbers based on previous 
studies.35,36 High density polyethylene (HDPE) was assumed for the pipes as it has been assessed 
to have small environmental impacts associated with its construction, moderate costs, and wide 
range of available diameters.36 It also satisfies local requirements for distributing NPR water as 
PVC use is discouraged in San Francisco and is being regulated.89 Only commercially available 
pipe diameters were considered. A lifetime of 50 years was conservatively assumed for all the 
piping infrastructure. Table S - 1 in the Appendix 1 presents the data that were used to assess 
each pipe diameter size. 

For piping installation, excavation and backfilling were also considered. The excavation volume 
was calculated for each pipe diameter following the dimensions described in 37 and the trench depth 
requirements for water reuse.90 The trench depths were considered constant along the terrain. The 
energy and GHG emissions for installation were calculated based on the speed of excavation in 
medium soil (0.2 h/m3) and the volume of diesel required for an excavator (20 L/h).10 For the 
excavation and backfilling, diesel fuel was assumed with a specific energy of 42.8MJ/kg, a density 
of ρ =0.84 kg/L and carbon fraction fc=0.86. Piping maintenance was also included in the scope 
with a break rate given by equation [Eq. 6]:35 

     [Eq. 6] 

where N(t) is the expected number of breaks per unit length in year t, N(t0) the number of breaks 
in the installation year and A growth rate factor appropriate to HDPE pipes equal to 0.08 y-1.36 
An average break length of 0.6 m was used36 and energy and GHG replacements of 393 kWh/m 
and 287 kgCO2(eq)/m, respectively.35 

 

• Pumping 

To calculate the energy and GHG emissions from pumping, the dynamic, static and hydrostatic 
pressures are estimated along with the head losses. The dynamic pressure corresponds to the 
velocity head [Eq. 7]. The static pressure is associated with the minimum pressure for consumption 
at the endpoint and was assumed equal to 20 m. The hydrostatic pressure [Eq. 9] corresponds to 
the elevation head (z) (maximum point along route) and the pressure losses (hf) can be calculated 

from Darcy’s equation [Eq. 8]. The total head (htot) to estimate the pumping requirements was 

given using Bernoulli’s equation [Eq. 10]. The main contributor to pumping needs is the elevation 
head which accounts for about 50-90% of the total energy needed and the static pressure needs 
that are required for minimum pressure at the point of consumption. Head losses account for about 
10% of the total pumping needs.  

      [Eq. 7] 

      [Eq. 8] 
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     [Eq. 9] 

    [Eq. 10] 

where f is the friction factor, ρ  is the water density, v is the water velocity in the pipe, L is the 
pipe length, D is the pipe diameter and g is the gravitational acceleration.  Given the total head 
and the volume of water required the pumps were sized appropriately. The required energy to 
satisfy the pressure head is estimated using the following equation [Eq. 11]:63  

     [Eq. 11] 

where γ  is the specific weight of water, Qavg the average flow, d the pumping duration and npump 
and nmotor the efficiency for the pump10 and motor63, respectively, based on size. 

For the decentralized system, the pumping head was estimated by calculating the slope index of 
each cell based on the digital elevation model. Given the population density and the existing 
demand, we estimated the required area of the cell and, using the specific slope index, we calculated 
the maximum elevation head between the highest point to be served and the treatment plant. For 
the centralized scenario, the same calculated elevation head was used for pumping within each 
cell, plus the maximum elevation and pipe length along the pipeline route that connects each cell 
to the centralized treatment plant.  

The energy and GHG emissions for the pump construction and transportation were also considered 
(Table S - 2 in the Appendix 1). A lifetime of 25 years was assumed for the pumping components 
given in Table S - 2 to get the annualized values. 

 

• Storage 

Tanks were designed to store the treated wastewater before treatment or use. Tanks are assumed 
to be reinforced concrete (98% concrete, 2% steel rebar) with a retention time of 3 days.55 The 
storage tanks were assessed using life-cycle energy and emissions for manufacturing and 
transporting the concrete material.88 The tanks were considered to be built adjacent to the 
WWTP.  

 

• Decentralized Treatment 

For the decentralized treatment scenario, a WWTP of the required size was modeled at the point 
of lowest elevation in each grid cell. The plant receives raw wastewater by gravity and includes a 
screen filtering process before the wastewater is treated. The bar screen is selected from 
commercially available sizes. EIO-LCA was used to account for the embodied energy of and GHG 
emissions from materials manufacturing. The operational energy of pumps was estimated based 
on published data.67 The coarse solids are then pumped out of the system using a grinder pump 
modeled as a 2-hp pump operating approximately 4 h per day. Wastewater overflows to the 
concrete grit chamber for particle settling and into the concrete flow equalization tank. Sizing for 
these two tanks was based on the retention times of each, taken from published data.67 The 
wastewater then enters the main treatment process, a membrane bioreactor (MBR) system. The 
materials for manufacturing the MBR were based on a previous LCA study done of MBRs68 and 
assessed for energy and GHGs using EIO-LCA. The lifetime for the membranes was assumed to 
be 10 years.70 The operational energy for the different scales of MBRs assessed was based on an 
ordinary least squares regression algorithm described below. The literature data for MBR 
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technologies used in this study is shown in Table S - 3 in the Appendix 1. Published lab- and 
pilot-scale MBR results were not included in the analysis. 

We fit a power curve to represent the data shown in Table S - 3. The power regression curve will 

be of a form 𝑦 = 𝑎𝑥𝛽 which we can bring into a linear form,  

    [Eq. 12] 

where x is the scale of the system and y the energy intensity. 

We can transform this system to a matrix form: 

    [Eq. 13] 

For ordinary least squares regression, we want to minimize the squared error, 

  [Eq. 14] 

which is a quadratic program with a solution 

     [Eq. 15] 

By applying the values of Table S - 3, we get an output for the coefficients of ln(a) = 2.26 (standard 
deviation of 0.24) and β  = -0.30 (standard deviation of 0.05). This gives the power regression 
equation [Eq. 16] to fit the data with an R2 =0.76.  

     [Eq. 16] 

Figure 14 presents the regression curve. 

The sludge generated on site is assumed to be transported by truck to the nearest centralized 
WWTP. The distance between the grid cell and the centralized plant was estimated by the shortest 
path algorithm using the road network. The study also included the energy and emissions from 
transporting the dry sludge to either a landfill for daily cover or land applications as well as the 
direct emissions from the landfill.34 

After the MBR, the wastewater is disinfected using low-pressure mercury UV lamps rated 9.5 
W/m3-day which are used for 12 h/day.60 The embodied energy and GHG for the UV lamps were 
estimated using EIO-LCA and the operational energy and GHG from the onsite electricity 
consumption. The UV lamps were assumed to have a lifetime of 4 years.70 Chlorination follows the 
UV disinfection for NPR residential uses. A loading factor of 15 mg/L was assumed of 
hypochlorous acid (HOCl).67 To estimate the amount of calcium hypochlorite Ca(OCl)2 used, a 
simple reaction was assumed: 

   [Eq. 17] 

The corresponding embodied energy and GHG is from EIO-LCA. The treated water is then stored 
in a concrete storage tank with a storage capacity of 3 days.55 
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• Centralized Treatment 

For the centralized reuse scenario, existing secondary-treatment plants were assumed to remain 
the same and additional treatment added to reach the water quality provided by the MBR system 
for NPR (shown in Figure 13). After the existing secondary treatment, the wastewater undergoes 
coagulation with the addition of alum in a dose of 10 mg/L.67 Flocculation follows for particle 
settling and the water enters a multilayer rapid sand filtration system which consists of anthracite 
and sand for complete removal of solids. The filtration system is assumed to be enclosed in a steel 
casing with parameters described in Table S - 4 in the Appendix 1. Chlorination is assumed for 
disinfection purposes, as described in the previous section. The treated water enters a concrete 
storage tank until it is distributed for NPR. 

 

 

3.3 Results 

For each grid cell in San Francisco, we determined the corresponding energy intensity and GHG 
emissions for NPR under the decentralized and centralized scenarios. By comparing the results 

over a range of facility sizes (20 m3/day – 2,000 m3/day to serve approximately 100 – 10,000 
people), we identified areas of the city where decentralized reuse would have lower energy intensity 
and GHG emissions compared to centralized reuse, as well as the minimum treatment scale for 
this to occur. 

Figure 19 presents the comparative results for energy intensity and GHG emissions for the two 
water reuse scenarios (decentralized and centralized) for four example conditions modeled in the 
case study, which were chosen to illustrate the most extreme conditions (greatest differences in 
scale and elevation). Low demand and high demand values correspond to facility sizes of 20 m3/d 
and 2,000 m3/d, respectively. For the centralized reuse scenario, the low elevation values 
correspond to a grid cell that is relatively close to the centralized WWTP and the elevation 
difference between them is low (elevation = 32 m, distance = 2.4 km). The high elevation values 
correspond to a grid cell with high elevation difference from the WWTP and maximum distance 
(elevation = 205 m, distance = 11.5 km). The locations of the selected grid cells (#149 and # 
375) are shown in Figure 18. 
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Figure 18: Case study elevation map with specific grid cell locations  

 

Figure 19 reports the contribution of each component of the energy intensity and GHG emissions 

for the two systems in the “completely dispersed” pipe configuration. In the decentralized reuse 
scenario, most of the impacts are due to the operation of the MBR. The major contributors to 
energy use in the centralized reuse scenario are the construction and installation of the piping 
infrastructure (including the embedded energy of the pipe materials), the pumping energy for 
water distribution, and the primary and secondary treatment operation. The high elevation 
scenario is also far from the centralized WWTP (high elevations in San Francisco are inland but 
the WWTPs are located near the coasts), so the piping infrastructure for conveyance is significant. 

Similar results for the “completely connected” pipe configuration, with much lower pipe embodied 
energy, are shown in Figure 20. 
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1 Other includes: 
Pipe maintenance, pump construction, tank construction, filter construction and operation, grinder pump construction and operation, grit chamber construction, 
UV construction, sludge management, transport and disposal 

2 Other includes:  
Pipe maintenance, pump construction, tank construction, coagulation/flocculation construction, rapid sand filter construction & operation, sludge management, 
transport and disposal 

Figure 19: Energy intensity and GHG emissions by process for representative scenarios for ranges 
of demand (low: 20 m 3/day, high: 2,000 m 3/day) and elevation difference (low: elevation=32 m  
and distance=2.4 km, high: elevation=140 m and distance=12 km) in (a) the decentralized and 

(b) the centralized alternatives, for a “completely dispersed” recycled water pipe network 

 

 
1 Other includes: Pipe maintenance, pump construction, tank construction, filter construction and operation, grinder pump construction and operation, grit chamber 
construction, UV construction, sludge management, transport and disposal 
 
2 Other includes: Pipe maintenance, pump construction, tank construction, coagulation/flocculation construction, rapid sand filter construction & operation, sludge 
management, transport and disposal 

Figure 20: Energy intensity and GHG emissions by process for representative scenarios for ranges 
of demand (low: 20 m3/day, high: 2,000 m 3/day) and elevation difference (low: elevation=32 m 
and distance=2.4 km, high: elevation=140 m and distance=12 km) in (a) the decentralized and 

(b) the centralized alternatives, for a completely connected scenario  

 



3.3 Results  35 

 
 

 

Figure 21 presents the minimum facility size for residential areas in each grid cell for which the 
decentralized reuse scenario is preferable to a centralized scenario for lifecycle energy use (Figure 

21) for both the “completely dispersed” (a1) and “completely connected” (a2) pipe configurations 
(recall that an actual centralized NPR project would likely fall between these bounding scenarios). 
In other words, when meeting equivalent reuse demand equal to or greater than the minimum 
decentralized facility size the decentralized approach is more energy efficient than the centralized 
approach. For each grid cell, the intersection point at which decentralized reuse becomes more 
efficient than the centralized alternative was calculated and illustrated in the graphs in Figure 21. 
The results for lifecycle GHG emissions can be found in Figure 22a. Another key result is that the 
economies of scale in the decentralized treatment process are significant in terms of energy use 

and GHG emissions; larger facilities can provide energy savings of up to 1.5 – 2.4 kWh/m3 (i.e., if 
the system is built for a demand of 2,000 m3/d instead of 20 m3/d) and avoided GHG emissions 

of 0.2 – 0.4 kgCO2(eq)/m3 depending on the grid cell location. This relationship is not explicitly 
addressed in this paper, but optimizing the scale of decentralization can provide significant energy 
and GHG savings.  

Overall, the results indicate that spatial characteristics (i.e., elevation and distance) often outweigh 
treatment economies of scale that would otherwise favor centralized solutions. Figure 21a shows 
that as the elevation difference increases between the reuse location and the centralized WWTP, 
smaller and smaller decentralized systems become more optimal than centralized reuse, even 
though they require more energy per unit of wastewater treated. The best-case scenario for 
decentralization is implementing a large facility (2,000 m3/day) in a high elevation area.  In this 
scenario, we identified savings of up to 0.7 kWh/m3 and 0.07 kgCO2(eq)/m3 in lifecycle energy and 

GHG emissions relative to the centralized system, respectively for the “completely dispersed” and 

0.5 kWh/m3 and 0.06 kgCO2(eq)/m3 for the “completely connected” pipe scenarios. These results 
correspond to up to 29% lower energy consumption and 28% lower GHG emissions in the higher 
elevation areas of the city.  
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Figure 21: Minimum facil ity size for each grid cell for decentralized reuse to be more efficient 

than a centralized reuse scenario for (1) “completely dispersed” and (2) “completely connected” 
recycled water pipe networks.  Lifecycle energy intensity for (a) curren t MBR performance and 

(b) future scenario in which the MBR treatment has gained 20% operational efficiency. 
Uncertainty bounds correspond to the 15th and 85th percentile probability according to the 

Monte Carlo method.  
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Figure 22: Minimum facil ity size for each grid cell for decentralization to be more efficient than a 

centralized reuse scenario for (1) “completely dispersed” and (2) “completely connected” scenario, 
(a) current GHG intensity and (b) GHG intensity for a future scenario  in which the MBR 

treatment has gained 20% operational efficiency. Uncertainty bounds correspond to the 15th and 
85th percentile probability according to the Monte Carlo method.  

 

On the other hand, in the worst-case scenario, implementing a small facility (20 m3/day) at low 
elevation near a centralized WWTP, the results indicate that decentralized systems would have 
higher energy intensity and GHG emissions than a centralized system by 1 kWh/m3 (61%) and 

0.08 kgCO2(eq)/m3 (37%) for the “completely dispersed” and 1.2 kWh/m3 (85%) and 0.09 

kgCO2(eq)/m3 (49%) for the “completely connected” scenarios. The energy and GHG emissions 
ranges do not track each other in the different scenarios as the GHG emissions also reflect life-
cycle embodied emissions unrelated to electricity consumption. These results refer to the extreme 
cases of elevation difference and facility size and therefore reflect the maximum difference between 
the decentralized and centralized approaches. The detailed map and location-specific results for 
energy are shown in Figure 23 and for GHG savings in Figure 24. 

It is likely that decentralized systems can be more competitive if the energy efficiency of MBRs 
and other emerging decentralized treatment technologies are improved.82,83 To simulate potential 
future conditions, we evaluated scenarios in which the operation of the MBR treatment is 20% 
more energy efficient than current technology. Applying a similar methodology to compare 
decentralized and centralized scenarios, the decentralized system was found to be more efficient 
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than the centralized system with up to 34% lower lifecycle energy consumption and up to 31% 
lower GHG emissions in the best-case scenario. Implementing small-scale facilities (20 m3/day) in 
the low elevation areas results in losses in energy and GHG of up to 46% in energy consumption 
and up to 27% in GHG emissions compared to the centralized alternative at an equivalent scale. 
As shown in Figure 21, the decentralized treatment efficiency makes small systems even more 
competitive in most areas of the city, expanding areas where decentralized systems could prove 
more efficient. The 20% efficiency assumption is a reasonable, even conservative, estimate for 
future efficiency improvements given the progress that has already been made.91 These results for 

the futuristic scenarios are shown in Figure 21 for both the “completely dispersed” (b1) and 

“completely connected” (b2) scenarios for lifecycle energy and Figure 22b for the GHG emissions. 

 

Figure 23: Energy savings if implementing a decentralized facility in the (1) “completely 

dispersed” and (2) “completely connected” scenario, at each grid cell of size (a) 2,000 m 3/day and 
(b) 20 m 3/day, instead of performing centralized reuse at the equivalent scale. Positive numbers 

indicate savings and negative numbers indicate losses of the decentralized system compared to the 
centralized alternative.  
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Figure 24: GHG savings i f implementing a decentralized facility in the (1) “completely dispersed” 

and (2) “completely connected” scenario, at each grid cell of size (a) 2,000 m 3/day and (b) 20 
m3/day instead of performing centralized reuse at the equivalent scale. Positive numbers indicate 

savings and negative numbers indicate losses of the decentralized system compared to the 
centralized alternative.  

 

As noted earlier, real-world centralized NPR in San Francisco will necessitate the use of reverse 
osmosis, significantly increasing the energy intensity associated with the centralized reuse scenario. 

If the treatment train planned for SFPUC’s Oceanside plant were analyzed, rather than the more 
typical treatment processes selected, the energy and GHG benefits of decentralized systems would 
be more widespread throughout the city, even using current MBR technology. 

To test the robustness of the model and results, an uncertainty and sensitivity analysis was 
performed using the Monte Carlo method (described in the 3.2 - Methods section). The model 
results were most sensitive to the parameters representing the scale of the system (NPR demand), 
the treatment operations, and the elevation head between the centralized plant and the point of 
use. Table 2 presents the sensitivity of the key parameters on the output results for the 
decentralized and centralized model, respectively. A plus sign indicates that an increase in the 
parameter value would lead to an increase in the end results. Parameters are presented in ranked 
order depending on the magnitude of the sensitivity on the results. 
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Table 2: Sensitivity Analysis Results. A plus sign indicates that an increase on the parameter 
value results in an increase on the overall ene rgy intensity and GHG emissions and a minus sign 

indicates that an increase on the parameter values would result in a decrease on the overall 
energy intensity and GHG emissions.  

PARAMETER 
DECENTRALIZE

D SCENARIO 
CENTRALIZE
D SCENARIO 

DESIGN VOLUME + + 

MBR OPERATION + + 

ROUTE ELEVATION N/A + 

CENTR. TREATMENT 
OPERATION N/A + 

CENTR. TREATMENT 
CAPITAL N/A + 

PIPE DIAMETER + + 

SLOPE INDEX + + 

UV OPERATION TIME + N/A 

INFRASTRUCTURE 
LIFETIME  - - 

TREATMENT LIFETIME  - - 

UV LIFETIME - N/A 

COAGULATION & 
FLOCCULATION MIXING + + 

 

 

 

3.4 Discussion 

Typically, decisions about where and when to implement water reuse are based primarily on 
economic costs. Although cost-effectiveness is critical, energy use and GHG emissions must be 
considered in decision making. Infrastructure planners, especially in areas where water supplies are 
constrained, should seek opportunities to maximize overall system resiliency while minimizing 

adverse environmental impacts. To achieve California’s climate change objective of reducing GHG 
by 40% by 2030 while meeting water demand with constrained supplies,46 energy- and GHG-
efficient planning and investments in the water and wastewater sector are necessary.  

Water infrastructure is spatially sensitive; optimal solutions will vary depending on location, scale, 
number of treatment facilities, and topography. The results for the centralized systems indicate 
that distribution pumping dominates energy and GHG effects while treatment requirements are 
key for the decentralized systems. For the centralized scenarios, the distribution systems can 
correspond to up to 60% of the total energy consumption which gives a significant advantage to 
the decentralized systems when the point of use is far away or at a significant elevation from the 
centralized plant. The treatment phase for the decentralized scenarios can reach up to 85% of the 
total energy, making the centralized approach more advantageous in the low elevation areas and 
closer to the centralized plant due to the economies of scale in treatment.  
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As presented in this paper, system scale should be coupled with the specific spatial parameters to 
identify optimal system designs. Not surprisingly, even relatively small decentralized systems have 
lower energy and GHG footprints in the areas of San Francisco that are far, in distance and 
elevation, from the centralized WWTPs, where energy requirements can be as much as 20% lower 

than centralized reuse for the “completely dispersed” scenario. Near the centralized WWTPs, the 

difference between decentralized and centralized reuse (for “completely dispersed”) is smaller for 
the largest scale considered in our analysis (2,000 m3/day system), with a decentralized system 

requiring about 8% more energy. On the other hand, small systems (≤ 100 m3/day) near the 

centralized treatment plant would require substantially more energy than for “completely 

dispersed” centralized systems (61% more energy). This can be translated to other geographical 
areas as the topography of the system can provide insight on which system is more likely to have 
lower environmental impacts.  

Centralized infrastructure, though perceived as more reliable and with benefits of economies of 
scale, presents barriers for NPR as large scale dual-distribution systems can be costly and 
disruptive to implement in dense urban areas like San Francisco.92 Decentralized infrastructure 
allows for a flexible, incremental approach for system expansion with uncertain growth patterns. 
Although important, these societal impacts were not considered in comparing the two systems and 
we did not make assumptions about future population dynamics. In either case, it should be noted 

that there is not enough demand for NPR to recycle all of San Francisco’s wastewater, making 
complete build-out of either system unlikely. In less compact cities with significant irrigation, the 
demand for NPR would be higher. 

More research is needed to reduce uncertainties in the analysis, particularly related to treatment 
process energy use at various scales- and how it may change over time with advances in treatment 
technology and direct GHG emissions. Few empirical performance data are available on 
wastewater reuse technologies over the range of small scales that captures decentralized systems. 
The results of this study are based on several assumptions for the treatment performance that 
could be improved if monitoring data were available for actual installations of small-scale 
treatment technologies. Another aspect that deserves further analysis is managing sludge from 
decentralized systems.  Our study assumed that sludge was transported periodically by truck to a 
centralized WWTP.  However, some projects may involve discharging solids to the existing sewer 
network, which could have the unintended consequence of increasing corrosion if flows are 
insufficient to flush them.  

In addition, there is potential for new innovations, such as anaerobic MBRs, to have significantly 
lower energy requirements or even be energy positive.82,93 Although research on lab and pilot scale 
systems is promising, more work is needed to characterize how these technologies will perform 
when integrated into complete treatment trains and deployed in actual installations.82,94,95 Tracking 
and releasing measured performance data for a wide variety of technologies and scales will be 
crucial in developing and improving future systems. Increasing treatment energy and resource 

efficiency as well as optimizing the system’s operating scale could improve the performance of 
decentralized systems.  For example, rather than designing decentralized systems that receive 
wastewater from individual or groups of buildings, mining interceptor sewers can be practiced at 
the larger scales shown to be more energy and GHG efficient in our analysis and may also have 
operational advantages such as ability to treat a constant, continuous flow rate. However, 
operating at larger scales, whether in buildings or via sewer mining, will also require a larger 
distribution network, triggering similar spatial tradeoffs as analyzed in this paper. System 

resiliency could be improved using “looped networks” to avoid interrupted service and other 
problems when there are system failures or maintenance issues. This level of detail was not included 
in the analysis but, based on the sensitivity assessment, the added infrastructure would not likely 
change the results. 
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Energy use and GHG emissions are largely coupled through electricity consumption, but some 
GHG emissions are not directly tied to electricity- for example, equipment fuel use. Direct GHG 
emissions from the biological treatment processes at the centralized and decentralized facilities 
were assumed to be zero. This assumption is a major source of uncertainty in our analysis. The 
main source of GHGs are the microbiological processes involved in nitrogen conversions (ranging 
from negligible to several percent of influent N96,97). EPA has estimated that emissions from 
wastewater treatment may contribute as much as 3% of annual N2O emissions in the U.S.98 
Ongoing research aims to develop improved approaches to model emissions based on parameters 
that describe the specific treatment processes.99,100 The two centralized treatment plants operated 
by SFPUC do not practice nitrification, and likely have low N2O emissions; however, direct 
measurements of emissions were not available. Although there is research to estimate GHG 
emissions from MBRs,101 it is not known what configurations might be built in San Francisco, nor 
are scale effects well understood. Thus, because the uncertainty is so high, the most appropriate 
assumption for our analysis was to not include direct GHG emissions.   

However, the impact of technology choices on N2O emissions at the centralized and decentralized 
plants should be a priority for future research. For example, if biological nutrient removal is used 
and the N2O emissions rate is 1.8% g N2O per g influent N (high end value),97 the GHG emissions 
for decentralized or centralized approach could increase by approximately 0.27 kgCO2(eq) /m3 over 

our current estimates (i.e., increase our current GHG emission estimates by 60 – 100%).  Clearly, 
if the emissions rates are higher for centralized than decentralized (or vice versa), it could impact 
our findings on the conditions under which decentralized has a lower carbon footprint.  

Novel approaches and technologies for decentralized reuse are emerging. However, to become 
consistently competitive with mature, energy-efficient, large-scale treatment systems, small-scale 
systems will benefit from additional optimization of energy use and GHG emissions. The 
framework described here can be applicable to other geographic settings, enabling infrastructure 
planners to evaluate the role and scale of NPR, and to compare NPR with other emerging options 
for diversifying water supply portfolios, such as direct potable reuse, while minimizing energy use 
and climate change impacts. 
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Chapter 4.  
 
Urban Non-Potable Water Reuse: Spatial Optimization 
and Data-Driven Decision-Making 

 

4.1 Introduction 

As the world is facing frequent water shortages while at the same time water demands are 
increasing due to population growth and affluence, identifying energy-efficient and cost-effective 
alternative water supplies seems inevitable45. Wastewater is a sustainable water source that exists 
as long as water is used, and by treating it to an appropriate standard and reusing it, significant 
fresh water sources can be conserved. Non-potable water reuse (NPR) is one option for reusing 
water that promotes resilience and has the potential to lower economic and environmental impacts 
of the water infrastructure48,102. Non-potable uses of recycled water include toilet flushing, 
landscape and agricultural irrigation, and cooling systems, thus allowing fit-for-purpose approaches 
that minimize the energy and costs for water treatment compared to a potable stream of water 
for all uses. 

A key factor for sustainable NPR implementation is the issue of system scale. Urban wastewater 
infrastructure usually consists of centralized systems to take advantage of economies of scale in 
treatment as larger facilities are more efficient102,103. However, by implementing water reuse, a 
tradeoff occurs: in a centralized system non-potable reuse requires delivering the recycled water 
back to the where demand exists, which may require substantial piping and upgradient 
conveyance50,104. Decentralized water reuse, on the other hand, produces recycled water close to its 
point of use51,105. New technological advances in small scale wastewater treatment challenge the 
reliance on centralized infrastructure and allow decentralized technologies and hybrid systems to 

be perceived as functional and comparable infrastructure options106–108. An important consideration 
is determining the optimal degree of decentralization, which can range from a single household to 
a cluster of buildings or an entire neighborhood. This work aims to add to the growing literature 
on the optimal scale of wastewater treatment and reuse to improve the sustainability of wastewater 
management by minimizing either the energy intensity, the greenhouse gas (GHG) emissions, or 
the financial cost of the system.  

Experience with urban decentralized water reuse systems is still limited, but a few systems have 
been established using commercially-available technologies. To support data-driven water 
management, we aim to provide quantitative information of the impacts of scale and spatial 
conditions on decentralized NPR systems and expand the understanding of their environmental 
and economic performance. Previous studies have pointed out the importance of data-driven 
approaches in urban water management, which use optimization tools and novel methods for a 
deeper understanding of system performance109. An algorithm has been proposed in previous 
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research to address the optimal scale for wastewater collection, which confirmed and quantified 
the expected result that the optimal scale of centralization decreases with topographic complexity 
and a more disperse population54. The same authors in a newer study reported that low population 
densities increase the costs of both decentralized and centralized systems, but they scale differently 
as they require different management approaches that should be modeled in detail for an accurate 
comparison110. 

Treatment technology selection is an important aspect of assessing decentralized systems. The 
performance of different technologies may scale differently, which authors have tried to 
characterize with respect to cost9,10,111, energy intensity104, and GHG emissions10,104. This 
characterization is especially useful in decentralized systems whose performance is highly sensitive 
to system size.  

Combining the treatment performance with the distribution impacts under various topographic 
conditions is a necessary step for holistically assessing the overall system to promote optimal 
planning. Resource recovery has been getting increased attention. For example, multivariable 
analysis was conducted to understand the effect of location on recovery potential and economic 
cost, pointing out the need for hybrid solutions55. Another study assessed the cost performance of 
a real-world case study to model direct potable reuse and identify the optimal scale with respect 
to cost56. These authors determined that direct potable reuse is too expensive for low-density 
populations, and is more appropriate for urban settings serving more than 10,000 residences.  

To our knowledge, spatial models and algorithms for identifying optimal decentralization scale for 
NPR with respect to energy intensity, GHG emissions, and economic cost do not yet exist. Case 
study focused work does not offer the potential to generalize to other settings, which is a major 
shortcoming identified in the current literature. This study aims to develop a generalizable 
modeling framework applicable to any location, given that appropriate data are available to enable 
the assessment of decentralized non-potable water reuse under local conditions. The model can 
assist decision makers and researchers in understanding the performance of different NPR system 
designs using economic and environmental metrics and their optimal implementation scale 
accounting for actual conditions.  

The objective of this study was to develop a generalizable model to identify the decentralization 
scale for NPR for toilet-flushing that minimizes energy intensity, GHG emissions, or economic cost 
given certain topography, population density, building area and number of floors. Treatment 
technology design is important due to the effects of economies of scale9. We include treatment 
technology performance as a variable in the assessment so different realistic and hypothetical 
technology designs can be combined to estimate the optimal water reuse scale. Also, we perform 
a detailed spatial analysis for estimating distribution requirements for the recycled water. We 
incorporate the algorithmic model into a web-based decision-support platform that allows users to 
provide custom treatment technology and conveyance system design data to explore the impact 
of local conditions (topography and population density) and different scenarios. To illustrate uses 
of the platform, we apply it to a real-world case study to quantify how scale changes the impacts 
of decentralized NPR based on local conditions.  We also model an optimal implementation plan 
for NPR under a constrained GHG emissions scenario. 

 

 

4.2 Methods 

The algorithmic process developed for this research aims to identify the optimal NPR system scale 
that minimizes the metric of interest by considering the relevant site-specific conditions. It is based 
on treatment technology performance and network design assumptions to deliver the recycled 
water to buildings for toilet flushing. The algorithm is divided into two main components: (1) the 
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impact module, including the treatment submodule and spatial conveyance submodule; and (2) 
the spatial expansion module for identifying the optimal scale. The impact module considers the 
impact of treatment and distribution (piping and pumping) by determining the treatment 
performance and sewer and distribution requirements. The spatial expansion module accounts for 
the impact of expanding the system size one building at a time until the optimal scale is reached. 
A detailed description of the two modules is presented in the next sections.  

We define the scale of the system as the population served by the recycled water (non-potable 
reuse for toilet flushing). We assume this demand is 50% of the total wastewater produced by that 
population24, a realistic assumption for an urban mixed use setting. Thus, the population whose 
wastewater is collected and treated is only half that of the population served by recycled water. 
We assume that buildings that do not provide wastewater for recycling are served by an existing 
centralized sewer system and do not consider that infrastructure in our analysis.  

 

4.2.1 Impact module 

The impact module quantifies the total impact of each metric for NPR of a certain scale. Given 
building locations and characteristics and the population served in those buildings, the impact 
module is responsible for identifying the requirements for treating the NPR water and distributing 
it to buildings for toilet flushing. The impact module has two submodules, the treatment 
submodule and the spatial conveyance submodule. By combining the two submodules, the total 
impact for both treatment and distribution of the specific scale is calculated. The objective function 
of the algorithmic process [Eq. 18] is the minimization of the metric of interest, which can be 
economic cost, energy intensity, or GHG emissions. The objective function is solved numerically 
to identify the system scale that minimizes the treatment and conveyance requirements (Figure 
25). 

Min C (QWWTP, L, QPUMP,  H)    [Eq. 18] 

where C is the total metric of interest (energy intensity, GHG emissions or economic cost), QWWTP 
is the flow rate of the wastewater treatment plant (WWTP), L is the collection and distribution 
piping length, QPUMP is the pumped flow rate of water, and H is the pumping head. In this work 
QWWTP and QPUMP are considered equal, but that is not the case if the entire treated volume cannot 
be reused. 

 
Figure 25: Optimization tradeoffs between treatment economies of scale and conveyance 

diseconomies of scale 
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4.2.1.1 Treatment submodule 

The treatment submodule quantifies each of the metrics (economic cost, energy intensity, GHG 

emissions) for treating wastewater to an appropriate NPR standard. It takes as an input the 
system scale (residential and commercial people to be served) and calculates the operating 
requirement for treatment and the capital requirement for the manufacturing the treatment unit 
for that system scale. The impacts are based on published data that describe wastewater treatment 
capital and operation requirements at different scales and are expressed by a polynomial equation 
based on the treatment size for economic costs for membrane bioreactor (MBR) technologies [Eq. 
19 - Eq. 20]112. These cost functions are based on a regression analysis of several wastewater 
treatment installations in Europe for full-scale MBRs. 

Capital expenditure : 𝐶 [
$

𝑝𝑒𝑟𝑠𝑜𝑛
] = 82147 × 𝑄−0.495 × 1.18   [Eq. 19] 

Operational expenditure : 𝐶 [
$

𝑝𝑒𝑟𝑠𝑜𝑛−𝑦𝑒𝑎𝑟
] = 4.5 × 𝑄−0.34 × 1.18  [Eq. 20] 

where Q is system capacity in (m3/day). 

The operational treatment energy is calculated based on the polynomial equation104 [Eq. 21]. 

𝑇𝐸  [
𝑘𝑊ℎ

𝑚3 ] = 𝑎 × 𝑄𝑏 + 𝑐 × 𝑄 + 𝑑      [Eq. 21] 

where the energy intensity TE is estimated by defining Q as the plant capacity in average flow per 
day and factoring in the user-defined coefficients a, b, c, d. As the default, the impact module uses 
the estimated equation [Eq. 22] for treatment energy for membrane bioreactors from previous work 
by the authors:104 

𝑇𝐸  [
𝑘𝑊ℎ

𝑚3 ] = 9.5 × 𝑄−0.3      [Eq. 22] 

The embodied energy and GHG emissions refer to the energy and GHG impacts of system 
manufacturing (material inputs and transportation). The embodied energy for treatment is 
estimated based on previous work of the authors as a function of the system size as 0.3 kWh/m3 

of water treated104. The economies of scale for the embodied energy for treatment has been found 
to be negligible, thus it was not accounted for in this work. The GHG emissions for the operation 

are estimated based on the treatment’s energy performance curve (assuming all energy use is in 
the form of electricity). The embodied GHG (calculated by the authors in previous work based on 
system size) is 0.06 kgCO2/m3 of water treated104. No direct GHG emissions from the treatment 
process are accounted for, but this input can also be changed by the user if better information is 
available. 

 

4.2.1.2 Spatial conveyance submodule  

The spatial conveyance submodule calculates the cost of delivering the NPR water to the 
customers. It considers the locations of buildings and the building demographic and size 
characteristics to estimate the amount of piping that would be required, along with the ground 
elevation and number of floors in the buildings, to estimate the pumping needs to deliver water to 
the bathrooms. The piping lengths to be installed are simulated as a minimum spanning tree 
(MST) algorithm based on the buildings locations. The MST represents the minimum length path 
to connect all buildings (nodes) without any line segments overlapping. This approximates what 
the actual pipe network would look like in a real implementation54,113,114. The wastewater collection 
piping was not explicitly modeled or optimized in this study. It was, however, included in the 
analysis with the simple assumption that the sewer collection pipes would be half the length of 



4.2 Methods  47 

 
 

the NPR pipes given that the NPR demand (for toilet flushing) is assumed to be 50% of the total 
water demand.  

The in-building piping is calculated based on the area of the buildings and the number of floors 
with a constant factor of average piping per area. The average piping length per building area was 
based on measurements of an existing building with water reuse infrastructure115. The piping costs 
are calculated as directly related to the piping length for economic cost 116 and energy intensity 
and GHG emissions35 and are reported in Table S - 6 in Appendix 2. Piping costs include only 
material costs; note that installation costs may be significant and could be substantially higher for 
retrofits compared to new construction. The pumping needs for water conveyance between 
buildings are estimated based on the pumping head, using the ground elevation, assuming that 
the treatment technology would be installed in the building with the lowest elevation, and for the 
in-building pumping needs directly related to the building height (number of floors, enough to 
deliver water to the top floor). The pumping needs are calculated based on the standard 
engineering calculation for sewer pumping [Eq. 23]: 

𝐸𝑝𝑢𝑚𝑝 =
𝛾𝑤×𝑄×ℎ𝑡𝑜𝑡×𝑑𝑡

𝑛𝑝𝑢𝑚𝑝
     [Eq. 23] 

where Epump is the energy applied by the pump, γ w is the specific weight of water, Q is the pumped 
flow, dt is the pumping duration, and npump is the efficiency for the pump. The pumps were 
conservatively sized to handle twice the average flow, so the pumping duration was 12 hours per 
day for the average daily flow. A smaller pump with a duration of 24 hours per day could have 
been modeled instead, but that would not give any flexibility for peak hour demand flows. The 
pumps were assumed to be in the small to medium range with an efficiency of 45%10. 

 

4.2.2 System expansion module 

To account for the site-specific conditions and to assess multiple levels of decentralization, the 
developed algorithmic model expands system size through an iterative process with an input of 
the existing buildings as illustrated in Figure 26. The system expansion part is solved using a 
heuristic approach where in each iteration step i the values of the variables are changed and the 
updated objective function Ci+1 is generated and compared to the previous Ci. A heuristic approach 
to spatial optimization has been similarly applied to assess the impact of geography on power 
distribution networks117,118. To make the assessment realistic, the algorithm considers the existing 

topographic and demographic conditions of the area of interest by taking as an input the buildings’ 
locations and characteristics (number of residents/employees, number of floors, square footage and 
ground elevation). At the end of the iterations, the minimum impact and thus the optimal system 
size is identified (Figure 25).  

In the first step, the algorithm takes the building of interest as a starting point and runs the 
impact module for the specific building (as described in the previous section) for the specified 
metric in question. The result is the system total impact as of this point. Next, it identifies the 
closest building to the one before and clusters them to one system. The closest building in each 
iteration is identified by a k-d tree algorithm. A k-d tree is a data structure that allows for the 
organization of points in such a way that nearest neighbor searches are optimized. For this new 
cluster, the algorithm calculates the updated impact module and compares it to the previous one. 
If the updated total impact is lower than the previous one, the cluster of two buildings stays as is 
and the total impact is updated to match the newest one. If the new total impact is higher than 
the previous one, the newest added building is dropped from the cluster and the system total 

impact is not updated. This could happen if the building’s population is low, such that the 
efficiency gains from a larger treatment system are smaller than the increase in the other per capita 
infrastructure requirements (pipes and pumping to distribute the recycled water to that building). 
This process iterates through all the buildings in a certain radius and terminates when all the 
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buildings are assessed. The final buildings in the cluster along with the final total impact are the 
outputs of the model that illustrate the optimal system size and the systems impact for the specific 
area and metric.  

A greedy algorithm is used to reach the final optimal result, which means that in each iteration 
the best option is selected. The disadvantage with this approach is that it does not guarantee a 

globally optimal solution119, but given the problem’s complexity, this reasonably approximate 
solution is the only possible outcome. To identify a globally optimal solution, all possible building 
combinations must be examined which exceeds the restrictions of computational intensity120. To 
enhance the performance of the algorithm and its runtime, the algorithm is programmed to 
terminate the system expansion if it has discarded 50 buildings consecutively. This avoids large 
gaps in the selected buildings and enables the algorithm to still identify the optimal system scale 
without searching for buildings that would be too far away to make a practical implementation 
possible. The buildings that remained unassessed after the termination of the algorithm are 
visualized with a light blue circle (Figure 27). 

  

Figure 26: Algorithmic process for identifying the optimal system scale  for non-potable water 
reuse 

 
 

4.2.3 Web-based decision-support platform 

To make the algorithm useful for scenario assessment, we developed a web-based platform that 
allows the user to select the location of interest and the algorithm runs in the background to 
estimate the optimal system scale at the point of interest. The web-based platform is still in beta 
version, but we anticipate a public release in the future. A snapshot of the developed web-based 
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platform is shown in Figure 27. The platform allows the user to have flexibility to input different 
treatment technology criteria, as it is an important determinant of the optimal scale. The users 
can describe the treatment performance curve of the specific NPR technology they wish to test 
along with potential direct GHG emissions from the treatment that are not accounted for in the 
default model. Also, it allows selection of the desired metric the algorithm minimizes. By clicking 
on the desired location on the map, the user initiates the algorithm with the corresponding building 
location. The results illustrate which buildings should be clustered together to minimize the metric 
of interest. A summary table is also generated to present the number of clustered buildings and 
the final population served at the optimal scale. 

 

Figure 27: Web-based platform snapshot highlighting the inputs and outputs of the model. The 
darker colored dots result from overlapping buildings.  

 

4.2.4 Case study 

To test the algorithm under varying system conditions and show the benefits of the optimization 
framework and how it can be used to drive optimal decisions with real-world data, we applied it 
to the case of San Francisco, a medium-sized U.S. city (865,000 citizens) with high population 
density (6,700 people/km2) and an innovation leader in decentralized urban water reuse due to 
policies and incentives implemented to promote alternative water supplies104. San Francisco is very 
diverse in topography as well as in building sizes and population distribution, which make it an 
interesting example for exploration of the decentralization scales under various conditions.  

To make our assessment realistic, we needed information on the locations and occupancy of all 
buildings in San Francisco. Building locations, footprints and number of floors were gathered from 
the City and County of San Francisco62. We then allocated residential and commercial population 
occupancy to each building. Residential population estimates were sourced from the Census 
Bureau121 at a census block resolution (i.e., a few city blocks resolution). The population from the 

census tracts were allocated to each building proportionally to the building’s total floor area. 
Commercial employment data were sourced from the ESRI Business Analyst database122. This 
framework has been described in previous work123. 
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Apart from the building occupancy, to estimate water reuse impacts from distribution, we needed 
to estimate pumping and piping needs. Thus, the number of floors for each building was required 
to estimate the in-building piping and pumping along with the ground elevation to estimate 
pumping between buildings. The number of floors for all buildings in San Francisco were sourced 
from the City and County of San Francisco62. The ground elevation was sourced from the Digital 
Elevation Model of San Francisco that was extracted from the contours sourced from the City and 
County of San Francisco62. Specific parameter values used in the modeling process can be found 
in the Appendix 2 (Table S - 6). 

 

 

4.3 Results 

4.3.1 Location analysis 

We used the web-based platform to explore the effect of location and population distribution on 
the optimal decentralization scale. To explore this, we developed an automated script that would 
iteratively make clicks on the map and store the result of the optimal scale and metric output. 
We ran the script for all three metrics and for 170 points equally distributed throughout the entire 
area of San Francisco. Every location is unique and the model results are a function of the local 
topography, population distribution, and building characteristics.  

The platform is designed to be highly sensitive to local characteristics. This imposed a drawback 
when we used it for a city-wide assessment as even in the same neighborhood building 
characteristics can differ significantly (e.g., a high-rise apartment building next to a single-family 
home). To mitigate these locally-unique aspects, we increased the sampling by a factor of five to 
get a more accurate representation of the local conditions. Each of the 170 sampling points was 
surrounded with four other points in its vicinity for a total of 850 points. This allowed for a better 
understanding of the local conditions and eliminated errors based on extreme and outlier building 
characteristics. If the model results from one of the five points was significantly different (we used 
the 10th and 90th percentile to define dissimilarities), then it was discarded as a locality exemption. 
The included points were then averaged to get a smoother interpolation of the local conditions. 
The interpolation method used was nearest neighbor interpolation, which is a method for 
approximating the value of a function in a non-given point by using the value of the closest point 
around it. A more detailed outcome could be achieved by adding more points, but we were limited 
by computational intensity. 

The location-specific results for running the analysis in the 850 points distributed throughout the 
city are presented in Figure 28. For each metric, we identified the optimal system scale, which is 
the system capacity (people served) to minimize the metric of interest, including both treatment 
requirements and distribution of the recycled water, as described earlier. We also present the value 
of each metric at the optimal scale, which represents the minimum value of the metric at that 
location. 
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Figure 28: Location-specif ic results for San Francisco for (a) energy intensity, (b) GHG emissions 
and (c) cost. The results represent the optimal system scale for minimizing the metric of interest 

along with the metric ’s value at the optimal scale in space. The white dots labeled A, B, C, D 
illustrate the location of representative points for further analysis, shown in Figure 29. 

 

As the results presented in Figure 28 are generated from a point estimation analysis and 
interpolating in between, there exist discontinuities that are an approximation of the existing 
conditions. Each point corresponds to a discrete system scale and an independent analysis area. 
By sampling enough points distributed throughout the entire city, we approximated each 
independent system. The optimal scale spans a large range, from less than 200 people served to 
more than 10,000 people served.  In the areas with the largest population density and high-rise 
buildings (north east), the optimal system scale is larger because larger systems benefit from the 
treatment scale economies. In low population density areas where the buildings are more spread 
out, and significant pumping and piping needs are required to increase the system size, the optimal 
system scales are smaller. However, the value of each impact metric at the optimal scale is higher. 

Figure 29 shows the sensitivity of the energy intensity to the system scale in various locations with 
different building types, elevation profiles and population densities. In Figure 29a, the magnitude 
of the economies of scale on the system energy intensity is shown for four different locations. The 
lowest point of the curve is the one identified by the algorithm as the optimal scale for that metric; 
after that point the energy increases with system scale. The shape of the curve provides valuable 
insight on the actual range of optimal scales. If some variance were allowed in the system output, 
the minimum optimal scale might range significantly in some locations. For example, if we allow 
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for a 25% increase in the output energy intensity, we estimate that the optimal scale could decrease 
by 60-65% in the Locations A and B (where the optimal scale was larger) and about 45-55% in 
the Locations C and D. For example, at location A, the 25% variance corresponds to the population 
served ranging from about 500 to 1300.  Due to other factors influencing the planning process, it 
may be preferable to design the system to serve 500 people, which may be acceptable even though 
the predicted energy or cost is 25% higher than the optimal value. By understanding the system 
performance at all scales, the tradeoffs between scale and the metric of interest can be quantified 
to assist with decision making.  

Figure 29b illustrates the contribution of the main infrastructure components to the energy 
intensity of the system at each location. Treatment operation is responsible for the majority of the 
energy impacts while pumping is significant in the dense urban area with high rise buildings (10% 
of total energy). Treatment operation is characterized by large economies of scale (modeled as 
MBRs in this study), which can significantly affect the system performance at various scales. 
Piping infrastructure has a more prominent impact in low density areas where the required piping 
length is larger per person served. From Figure 29b it is also evident that optimizing scale for a 
particular location could have less impact than the location itself.  For example, any scale of NPR 
at location B has lower energy impacts than the optimal scale NPR project at location D. 

Related results for economic cost and GHG emissions are shown in Figure 30 and Figure 31. The 
component breakdown for GHG emissions follows a similar trend as the energy breakdown in all 
locations with a higher impact of piping construction as the embodied GHG emissions from that 
process are higher than the San Francisco electricity emissions which is 100% hydropower (a low 
carbon electricity source)60. The breakdown for cost reveals the high impact of the treatment 
capital costs and the piping infrastructure. This insight is useful because it illustrates that further 
improvements in small-scale treatment technologies that reduce the difference in unit cost for small 
versus larger systems have the potential to make smaller systems more viable financially. Most of 
the treatment operating costs are for energy, so reducing the scale effects of energy consumption 
will also help. 
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Figure 29: Location-specif ic scaling for San Francisco for energy intensity, (a) total energy at 
various system scales , and (b) infrastructure contributions at the initial and optimal scale for 

each location. The location of the points A, B, C and D is also shown in Figure 28. 

 

 

(b) 
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Figure 30: Location-specif ic scaling for San Francisco for economic cost,  (a) total cost at various 
system scales, and (b) infrastructure contributions at the initial and optimal scale for each 

location. The location of the points A, B, C and D is also shown in  Figure 28. 

 

 

(b) 
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Figure 31: Location-specif ic scaling for San Francisco for GHG emissions,  (a) total GHG emissions 
at various system scales , and (b) infrastructure contributions at the initial and optimal scale for 

each location. The location of the points A, B, C and D is also shown in  Figure 28. 

 

 

4.3.2 Treatment selection analysis 

One of the largest contributors to energy, GHG, and cost metrics of decentralized reuse is 
treatment selection and performance. To understand the effects of treatment performance, we ran 
the model for different technology performance curves at the same location (the conveyance needs 
are the same). The unit energy and the scaling of the treatment performance could vary 
significantly for different technologies or with design improvements; the platform allows for 
exploration of different technology performance curves as it allows the user to set the polynomial 
coefficients and generate a custom curve. It also allows for flexibility in setting direct GHG 
emissions from the treatment process. We illustrate the potential impacts with three examples of 
treatment performance, one with exponential economies of scale, one flat, and one in between the 
two extreme cases.  

Figure 32 presents the results for the three treatment options. As expected, once the economies of 
scale for treatment do not exist in the system, there is no motivation to generate larger systems 
by clustering buildings together (Figure 32 c), so building-level water reuse systems are preferred. 
On the other hand, if economies of scale exist, larger systems are preferable despite larger 
conveyance cost, as shown in Figure 32 a and Figure 32 b. From the difference in Figure 32 a and 
Figure 32b, we can identify that the more prominent the economies of scale in treatment are, the 
larger the preferred systems would be. 

(b) 
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Figure 32: Assessing the optimal scale under different treatment options  

 

4.3.3 Optimization analysis 

To illustrate other potential applications of the web-based platform, we performed an optimization 
to identify the optimal areas for implementing water reuse under an emissions budget. To meet 
the climate goals of staying below a 2oC increase, it has been estimated that the maximum GHG 
emissions allowance would be 1 kgC/person-day124. As a reference, the GHG emissions for 
California in 2013 were about 7 kgC/person-day125.  This emissions allowance accounts for all the 
activities of a person in a given day. To make our analysis realistic, we assumed that 10% of the 
emissions allowance can be attributed to water services as about 10% of the total energy in 
California is used for water related activities126. Further, water reuse is only a portion of the total 
water demand, so we assumed that 50% of the water emissions budget can be allocated to non-
potable water reuse strategies24. This allocation ends up allowing 18 gCO2/person-day (1 
kgC/person-day * 10% * 50% * 12 gC/mol / 44 gCO2/mol) to be emitted from NPR.  

Having identified the optimal scale for decentralized reuse under different spatial conditions in San 
Francisco, we optimized the implementation of water reuse in space to serve the maximum amount 
of recycled water, i.e., save the maximum amount of fresh water sources while staying below the 
GHG emissions allowance. This problem can be described by a linear constraint optimization 
where the objective function is to maximize the implemented systems capacity. The optimization 
cannot be performed in continuous space, so we approximate space by dividing San Francisco into 

170 grid cells in which we assume that the spatial characteristics remain constant. Each grid cell’s 
center location is one of the 170 points described previously in the location analysis. Also, each 
grid cell is limited by the number of people that occupy that cell as that is the maximum number 
of people that can be served. To perform the optimization, we chose a realistic grid cell size 

(1000x800 m) and calculated the number of occupants in each by using the buildings’ population, 
as estimated before. A mathematical formulation of the optimization model is given below. 
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Objective function: 

max (𝑋1 ∗ 𝐶1 + 𝑋2 ∗ 𝐶2 + 𝑋3 ∗ 𝐶3 + ⋯ + 𝑋𝑁 ∗ 𝐶𝑁)     [Eq. 24] 

where Xi number of systems installed in each grid cell and Ci optimal capacity of system  

subject to:  

∑ 𝑋𝑖 × 𝐶𝑖 × 𝑒𝑓𝑖 ≤ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒𝑁
1       [Eq. 25] 

where efi denotes the GHG emissions at the optimal scale of the system 

𝑋𝑖×𝐶𝑖

𝑎
≤ 𝑇𝑃𝑖       [Eq. 26] 

where TPi enumerates the total people in grid cell and α  is a coefficient representing the per 
person daily non-potable water consumption 

 

By solving the linear constraint optimization, the grid cells that would maximize reuse capacity 
were identified. The result of the optimization is presented in Figure 33. To implement water reuse 
most successfully, by saving the most fresh water sources while at the same time remaining under 
the sustainable GHG emissions threshold, Figure 33 illustrates the areas that should be targeted. 
The gross water consumption in San Francisco is about 238,000 m3/day (63 million gallons per 
day (MGD)), of which 155,000 m3/day (41 MGD) are residential uses and 83,000 m3/day (22 
MGD) are commercial/municipal water uses127. We are not accounting for irrigation uses in this 
calculation since our model only accounts for in-building NPR. According to the San Francisco 
Public Utilities Commission (SFPUC), non-potable water accounts for 25-50% of the total water 
use for residential customers and about 75 - 95% for commercial customers24. Given these 
assumptions, the total non-potable water used in San Francisco is roughly 128,500 m3/day (34 
MGD). If decentralized reuse is implemented under this optimal scenario at maximum capacity in 
the illustrated region, there is potential to save 73,000 m3/day, equal to about 56% of the total 
daily non-potable water use of San Francisco. 

 

Figure 33: Implementation locations for maximizing adoption with constraint GHG emissions  
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By defining the optimization as a linear program, we can understand the relationships between 
the outcome (fresh water saved) and the problem constraint (GHG emissions). The GHG emissions 
constraint, the total allowable GHG emissions per day for reused water, is a binding constraint in 
our optimization problem, which means that it is the limiting factor. By relaxing the constraint, 
we can identify the additional potential for saved water. The linear optimization result allows us 
to extract that information. The percent increase in total saved water with respect to percent 
increase in per-capita GHG emissions allowance is shown in Figure 34. The curve presents a linear 
increase in saved water (as a percentage of total non-potable water calculated previously), and it 
flattens out when the maximum potential for the area is reached, meaning that the water reuse 
has served all potential customers in the area. (This assessment does not account for outdoor 
irrigation as it is highly variable and thus uncertain to model). Therefore, to be able to replace all 
toilet flushing water consumption with reused water, we would have to increase the GHG emissions 
allowance by 150% to 45 gCO2/person-day. 

 

Figure 34: GHG emissions constraint sensitivity to fresh water saved  

 

 

4.4 Discussion 

This research aims to address the challenges of implementing decentralized NPR systems efficiently 
with respect to energy, GHG emissions, and cost. There are many drivers for implementing NPR. 

Decentralization is an intuitive approach to address the “purple pipe dilemma”128, but because of 
the economies of scale in treatment, it is not trivial to estimate the implications of system size. As 
water reuse spatially merges the supply and demand of water, it requires careful planning with 
respect to treatment performance and distribution size. While energy, GHG, and cost may not 
always be the principle drivers for decision making, it is important to consider these effects in 
planning and policies. By developing a generalized algorithm that considers the specific local 
conditions, it enables decision makers to understand the implications of NPR and identify the 
optimal decentralization scale at the point of interest.  

The algorithm developed in this research is generic and thus it is easily transferable to other 
locations and treatment technologies. The required data input file consists of a list of all the 
buildings, their floor area and number of floors, their occupancy (residents or employees), location, 
and elevation.  This file can be modified to represent the existing or planned building infrastructure 
of any city. From the web interface, the user can also modify the equations describing the 
economies of scale for the treatment performance in terms of energy or cost. The sensitivity of the 
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model to location-specific data demonstrates the importance of spatial analysis and promotes the 
need of detailed modeling in planning approaches.  

An important aspect of the model is that it is based on multiple decision metrics that allows 
decision makers to understand the tradeoffs and make optimal decisions based on their priorities, 
not just economic efficiency. Cost is usually considered the most important factor when 
developments are proposed, however, that might not be the case for NPR systems as it is highly 
dependent on who bares that cost (utilities, developers, etc.) and how that cost would compare to 
the overall costs of a project. Optimizing for the lowest energy and GHG is important to consider 
in the context of city-wide or broader efforts to make our cities more sustainable. 

One current limitation of the modeling approach is the lack of accurate and detailed treatment 
performance data for various technologies and multiple scales. This limitation is especially true for 
the MBR treatment requirements, which is a large contributor to energy, GHG emissions, and 
costs, and is based on literature values; as modeled, the curves highly penalize small systems due 
to lack of available data. This research seeks to drive innovation in decentralized treatment 
technologies and increase awareness on the significance of energy efficiency in small scale systems. 
The accuracy and relevance of the model results will improve if more data are collected on the 
energy demands and GHG emissions of actual installations, and for a wider range of technologies. 
Environmental performance and pressing climate change issues should influence behavior in 
optimal planning, especially in places like California where GHG reduction targets are set46. 

The development of a platform for a fast, relatively easy, and location-specific characterization of 
the optimal decentralization scale can be especially useful in the current context of changing 
infrastructure paradigms. The platform offers valuable insight regarding the implementation of 
water reuse systems as it accounts for specific local conditions and user-defined treatment 
processes. Our results illustrate that the unit values can vary by a factor of five depending on 
location, which illustrates the importance of careful master planning to inform decisions about 
where decentralized NPR systems are most appropriate. Although these ranges are high, they need 
to be assessed in comparison to the impacts of other alternatives or the conventional water supply. 
To capture the complexity of sustainable water management, holistic consideration based on 
multiple criteria is required to make optimal infrastructure decisions. Our platform can potentially 
be expanded to perform multicriteria analysis by assigning importance weights to the different 
metrics currently assessed.  

An important aspect of the algorithm is the local-optimum approach. The algorithm does not try 
to converge on an overall system-optimal solution, rather it identifies a solution that would satisfy 
the local conditions. Thus, the platform identifies the optimal scale locally, and does not perform 
a global optimization for the entire city. This aspect is intentional as it is purposed for site-specific 
implementation of water reuse systems. System implementations are likely to occur in a step-by-
step, modular fashion. As such, the model can be used to evaluate a specific proposed development 
and to explore the impact of a new technology or efficiency improvement. It can provide decision-
makers with insight about the location-specific optimal system scale to assist with the planning 
process of implementing NPR while quantifying the expected energy, cost and GHG emissions. 

More broadly, it can be used in master planning of a city’s  water portfolio or water reuse program 
by identifying the areas that would benefit from more decentralized developments. 

Based on our analysis, decentralized systems are generally more efficient at larger size because 

they benefit from the economies of scale for treatment. This finding is supportive of San Francisco’s 
current policies to promote on-site water reuse, which focus on larger buildings (all new buildings 
larger than 250,000 ft2 must identify alternate water sources to meet toilet flushing and irrigation 
demand)61. San Francisco has also put into place regulations to allow the installation of district 
scale systems, which is necessary for sharing of recycled water between buildings.  
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This research adds to the growing literature on optimal scale and system performance for various 
spatial conditions. It provides an understanding of how water reuse systems would perform in 
space given realistic topographic conditions, building structures, and population densities. The 
algorithm is generalizable and applicable to any building scale, which allows for the model to be 
valid in different locations with various spatial and population densities. The algorithmic process 
is modular to take as input the specific conditions of the location of interest and it does not have 
any information that ties it to a certain location. The web-based decision-support platform 
developed for the purposes of this research can be used as a decision-support tool for identifying 
optimal water reuse designs given specific local conditions. 
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Chapter 5.  
 
Feasibility Assessment of Decentralized Nitrogen 
Recovery from Source-Separated Urine 

The following chapter is adapted from Kavvada et al. (2017) Life-cycle cost and environmental 
assessment of decentralized nitrogen recovery using ion exchange from source-separated urine 
through spatial modeling. Environmental Science & Technology, 51(21), 12061-12071, with 
permission from William A. Tarpeh, Arpad Horvath, and Kara L. Nelson. Copyright 2017, ACS 
Publications. 

 

5.1 Introduction 

Nitrogen has become a contaminant of concern in surface waters because of its contribution to 
eutrophication, which deteriorates water quality, aquatic ecosystems, and aesthetic value.129 A 
growing number of cities around the world are enacting nitrogen effluent controls to preserve 

receiving waters’ quality.130,131 In San Francisco, wastewater treatment plants (WWTPs) 
contribute 50-80% of nitrogen discharges.132 Although nitrogen discharges to San Francisco Bay 
are not currently regulated, discharge limits are under discussion. On a global scale, about 90% of 
nitrogen in wastewater is discharged to receiving waters.29 

Biological nitrogen removal has been successfully implemented at many WWTPs to control 
wastewater effluent nitrogen discharges133. Upgrading an existing treatment plant to convert 
ammonium (NH4

+) to dinitrogen gas (N2) via nitrification-denitrification requires additional costs 
and energy inputs. Paradoxically, N2 is converted to NH4

+ fertilizers in the Haber-Bosch process, 
which consumes about 1% of global energy.27 In addition, nitrification-denitrification operates best 
in centralized treatment processes;134 however, 25% of the United States population135 and most 
people with sanitation access in developing regions136 use on-site sanitation systems.  

In contrast to biological nitrogen removal, separate urine collection facilitates recovery of nitrogen 
as valuable byproducts such as fertilizer. Urine is only 1% of municipal wastewater volume but 
contains the majority of excreted macronutrients, making it an ideal stream for nitrogen recovery.29 
A well-informed comparison between conventional nitrogen management and source separation 
with resource recovery requires improved understanding of life-cycle impacts and costs. Thus far, 
most research on nitrogen recovery from urine has focused on bench-scale studies of technologies 
such as ammonia stripping,137 electrodialysis,138 and nitrification-distillation.139 Other nitrogen 
removal processes for wastewater include anammox140 and the coupled anaerobic-anoxic nitrous 
decomposition operation (CANDO), which could also potentially be applied to urine.141 In this 
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study we focus on ion exchange, as it appears promising based on laboratory studies and can be 
implemented at a range of scales. 

Ion exchange is a well-established technology for removing charged impurities from drinking water, 
wastewater, and landfill leachate. Removal of nitrogen from urine was first explored using 
zeolites,142 with recent research demonstrating that synthetic resins have higher adsorption density 
and regeneration potential.31 In fresh urine, nitrogen is present primarily as urea; during storage, 
the enzyme urease hydrolyzes urea to ammonium (NH4

+), which can be adsorbed onto negatively 
charged adsorbents. Recovery requires a regeneration or elution step to create a concentrated 
product stream of nitrogen. In the proposed model (Figure 35, see Methods), NH4

+ from urine is 
concentrated in cation exchange columns at the toilets; then the cartridges are trucked to facilities 
where the cation exchange resin is regenerated and ammonium sulfate fertilizer is produced. The 
regenerated cartridges are trucked back to the buildings and the fertilizer is trucked to a fertilizer 
distribution center. Although the use of ion exchange to recover ammonium from urine is still 
undergoing evaluation in the laboratory, an early assessment of its implementation at scale can 
provide valuable insight into the feasibility of the overall approach, as well as technical factors 
that require further research and development. In this study, we used three major tools to perform 
such an assessment: economic and environmental assessment, last-mile logistics modeling, and 
geospatial modeling.  

Previous studies have reported several potential benefits of urine separation over centralized 
biological nitrogen removal.143 Compared to biological nitrogen removal, separate collection of urine 
and application as fertilizer was reported to reduce treatment energy by 200 MJ/person/year 144 
and to reduce greenhouse gas (GHG) emissions.145 In another study, collecting urine in 
decentralized tanks had lower treatment costs than conventional treatment and similar capital 
costs, but dual plumbing from every building to the WWTP made total capital costs higher than 
conventional treatment.146 Another potential benefit of urine separation could be avoidance of N2O 
emissions (a potent greenhouse gas) during biological treatment due to incomplete nitrification.147 
Moreover, the trucking impacts can be significantly decreased with ion exchange by transporting 
and storing highly concentrated nitrogen rather than urine itself, which is 96% water.148 

Implementing decentralized nitrogen recovery requires planning of the last-mile logistics for the 
system management between buildings and fertilizer distribution facilities. Last-mile logistics is a 
term used in supply chain management and refers to the transportation involved in the last step 

of the process, usually from a hub to people’s homes.149 Optimizing this aspect of the logistics could 
be particularly important for decentralized processes, but it has not been thoroughly explored in 
the development of alternative wastewater management and resource recovery strategies. One 
example of the significance of transportation modeling was illustrated for decentralized sludge 
management, showing the impact of population density on the overall system costs.110 To provide 
a fair comparison of centralized and decentralized processes, it is also critical that these last-mile 
logistics are modeled in detail.  

Evaluating the last-mile logistics in detail requires geospatial modeling to accurately estimate the 
required transportation distances and facility locations for different alternatives (Figure 35). 
Without this detailed assessment, general assumptions would need to be made that could introduce 
significant uncertainty and bias, limiting the ability to make well-informed planning decisions for 
decentralized infrastructure. Similar integrated models have been used to analyze the supply chains 
of recycling processes from the consumer source to the recycling terminal150 and to optimize facility 

location for enhancing biofuel supply potential.151–153 Advanced spatial modeling and last-mile 
logistics models have also been used to assess the economic impacts of electric vehicle battery 
recycling, illustrating the importance of quantifying the logistics impacts at a state-wide scale.154,155  

The specific objectives of this study were to: (1) evaluate the life-cycle energy, GHG emissions and 
cost of ion exchange for recovery of nitrogen from source-separated urine, (2) develop geospatial 
models to analyze the last-mile logistics and identify the optimal scale for implementing this 
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approach for a city, and (3) apply the framework to San Francisco as an illustrative case study. 
The results provide insights into the overall system performance and are benchmarked against 
centralized nitrogen removal. Conducting systems-level analysis while the development of novel 
unit processes is still at bench-scale helps identify research priorities, evaluate potential tradeoffs 
early in the technology development process, quantify potential benefits before scaling up, and 
improve the likelihood of progression to full-scale implementation. As more urban centers face 
restrictions on nitrogen discharges, the results of this study can provide decision makers with 
better information about the potential for source separation and resource recovery.  

 

 

5.2 Methods 

5.2.1 System Description 

A schematic of the hypothetical process for decentralized nitrogen recovery via ion exchange is 
shown in Figure 35. At the building level, ion exchange cartridges are installed on urine-separating 
toilets. The effluent of the ion exchange cartridges is recombined with building wastewater and 
delivered to the wastewater treatment plant through the existing sewer network. A flow 

equalization tank, able to contain one day’s worth of urine (volume based on our assumptions for 
daily urine production 1.4 L/d * 2.5 people per household), is installed prior to the ion exchange 
cartridge to regulate flow and achieve urea hydrolysis. Urea hydrolysis is necessary to produce 
ammonium prior to the ion exchange cartridge; a one-day residence time was considered a 
reasonable assumption, but further work is needed to develop effective designs that accelerate 
hydrolysis. Nitrogen loaded cartridges are collected from each household by a weekly truck 
collection service and replaced with a clean cartridge. The cartridges are sized such that the resin 
becomes saturated after one week, given the specific adsorption density measured in the laboratory 
(3.7 L volume, 12 cm diameter, 33 cm length). The collected cartridges are trucked to a 
regeneration facility where sulfuric acid is pumped through to regenerate the resin, and the 
cartridges are returned to buildings for reuse. The output liquid, ammonium sulfate (a common 
liquid fertilizer), is bottled on site and transported by trucks to a centralized fertilizer distribution 
facility where it can be sold.  

 
Figure 35: Process schematic  
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5.2.2 Description of Ion Exchange 

In a previous study we evaluated several adsorbents for their ability to recover nitrogen from 
source-separated urine.31 In this study, we focused exclusively on Dowex Mac 3, a synthetic resin 
that was determined to have high adsorption capacity (4.9 mmol N/g resin).31 However, the life-
cycle, geospatial, and logistics analysis could be applied to any adsorbent if the necessary 
parameters are defined (adsorption capacity, material density, hydraulic conductivity, cost, 
embodied energy and GHG emissions). Cation exchange cartridges reduce urine cation 
concentrations but leave anion concentrations unchanged. Protons desorb from Dowex Mac 3 into 
urine, consuming the alkalinity produced by urea hydrolysis (eq. S - 1 and eq. S - 2 in the Appendix 
3). pH does not change with the use of ion exchange because of carbonate buffering in urine. The 
amount of sulfuric acid required for regeneration was calculated assuming stoichiometric exchange 
of protons and ammonium and commonly available stock concentrations (Table 3). The pumping 
requirements for resin regeneration with acid were calculated as the head loss through the 
cartridges; resin hydraulic conductivity was measured using the falling head method.156  

Key parameters derived from laboratory experiments included resin density, adsorption density, 
time for regeneration, hydraulic conductivity, column headloss, regenerant volume required and 
cartridge sizing. All parameter values are presented in detail in Table S - 8. 

 

5.2.3 Description of Economic and Environmental Assessment 

To perform the economic and environmental analysis of the technology, the laboratory results 
were scaled and connected to the logistics methodology to estimate the performance of the entire 
system. The functional unit chosen for the analysis was 1 m3 of urine treated (equal to 7.5 kg N 
treated). The system boundaries include the urine source at the toilet up to the fertilizer 
distribution center as shown in Figure 36.  

The data inventory for this analysis involved all processes that contribute to the energy intensity, 
GHG emissions, and cost. The key components investigated were the ion exchange resin, the 
fiberglass cartridge, a plastic flow equalization tank to stabilize flow of urine through the cartridge 
and achieve urea hydrolysis, pumps at the regeneration facility, liquid sulfuric acid used for 
regeneration, rental space for the regeneration facility, bottling of the fertilizer (plastic bottles) 
and trucks used for the cartridge and fertilizer transport. The source-separating toilets were not 
included in the analysis, as it is assumed that they would be installed in new construction or 
during planned replacement of old toilets, and that they have comparable footprints to regular 
low-flow flush toilets. Material impacts were determined using either economic input-output life-
cycle assessment (EIO-LCA)65 or process-based life-cycle assessment (LCA) for specific inputs, a 
method called hybrid LCA.157 Fertilizer offsets were determined on a mass nitrogen basis. The 
labor costs include truck driving (one driver per truck) and employees of the regeneration facilities 
(assuming each operator could handle 30 cartridges per hour and works an 8-hour workday). Labor 
requirements are quite speculative, and could likely be significantly reduced if automated processes 
are introduced. The wages were estimated based on the type of occupation.158  
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Figure 36: Process Diagram and system boundaries  

 

5.2.4 Last-mile Logistics Modeling 

Logistics modeling involved identifying the number and locations for the decentralized regeneration 
and fertilizer distribution facilities to identify the optimal level of decentralization to minimize the 
energy, GHG emissions and cost. Cartridge collection from buildings was assumed to be weekly, 
just as recycling and solid waste is collected in many urban settings. This interval was used to 
estimate the amount of urine produced by an average person and thus the dimensions of the toilet-
level cartridge (resin mass and column volume). We assumed a per person urine production rate 
of 1.4 L/(person/day)159 and 2.5 people per cartridge160). The total number of cartridges was 
increased by 2.5 times, as one cartridge would be installed in the household, one being regenerated, 
plus 50% more cartridges to account for households with more than one toilet or inefficiencies in 
logistics management. The estimates for urine diversion to eliminate the need for biological 
nutrient removal at the centralized plants vary from 50%161,162 to 90%,163 and depend on the 
centralized treatment processes and discharge limits. In this analysis, a urine diversion of 50% was 
assumed (i.e., decentralized nitrogen recovery was modeled to cover 50% of the population). 

For the logistics modeling, we investigated the effect of the number of regeneration facilities along 
with the effect of facility location. Travel distances for collection of nitrogen recovery cartridges 
were modeled as a Traveling Salesman Problem (TSP). The TSP problem identifies the shortest 
possible route to visit a certain number of locations exactly once and return to the location of 
origin. By modeling transportation as a TSP given the location of the regeneration facilities, we 
could model the impacts of transportation with high resolution.  
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The effect of the number of regeneration facilities was identified by running multiple scenarios 
with different numbers of facilities in each iteration and allocating the buildings to the closest 
facility. We assessed scenarios ranging from one regeneration facility serving the entire city up to 
100 smaller facilities being distributed throughout (Figure 41). The capacity of each facility in 
each run was calculated based on the number of people it would serve. To understand the effect 
of the location of the facilities, three scenarios were modeled.  

The first scenario considers a custom-made facility location problem for identifying optimal 
locations for the nitrogen recovery facilities. In this scenario, the city is divided such that each 
facility would have an equal size service area to minimize the transportation distances for cartridge 
collection (iso-distant scenario). It was modeled by applying a clustering algorithm to all the 
building locations and the regeneration facility was placed in the cluster center (Figure 39a). The 
clustering algorithm used was K-Means clustering which partitions the buildings into k clusters, 
with each building being allocated to the cluster with the nearest mean (center).  

In the second scenario, facilities are equidistant from each other and placed on a hypothetical grid 
overlaid on the city. In this scenario, the facilities were equally spaced throughout the city and 
each building was allocated to its closest facility using a Euclidean distance (grid scenario). The 
transportation distances were potentially higher, as the building locations are not considered for 
optimally placing the regeneration facilities and thus some trucks would have to travel long 
distances for cartridge collection.  

In the third scenario, the facilities are placed randomly throughout the city (using a random 
number generator for their coordinates) and each building was allocated to its closest facility using 
a Euclidean distance (random scenario). This scenario is the one that most probably reflects 
reality, as facility locations would be based on location availability rather than transportation 
optimality. 

 

5.2.5 Case Study 

San Francisco, a medium-sized city with high population density (6,700 people/km2)164, was used 
as an illustrative case study to assess the implementation potential of decentralized nitrogen 
recovery. San Francisco was selected as it is located on the San Francisco Bay, an estuary in which 
wastewater agencies are required to evaluate treatment options and costs (financial, energy 
demand, and GHG emissions) for reducing nutrient discharges.165 Also, geospatial data were 
available on building locations, size and number of floors, which made the logistics analysis feasible. 

We modeled the entire city of San Francisco at building-scale resolution. The first step involved 
identifying the locations of all residential and commercial buildings in San Francisco, as well as 
their corresponding population. Building locations, footprints and number of floors were gathered 
from the City and County of San Francisco.62 Residential population estimates were sourced from 
the Census Bureau121 at a census block resolution. To allocate the population to the buildings in 
each census block, we first identified all the residential buildings by overlaying the city landuse 
mapping areas.62 After calculating the entire area of the building (building footprint times number 
of floors), we allocated the population of each census block proportionally to the building area (see 
Section 5.2.6). For commercial buildings, we used commercial employment data from the ESRI 
Business Analyst database.122 This dataset identifies the location of all businesses and their number 
of employees, and was used to estimate the number of people in each commercial building in San 
Francisco. 

To model the logistics management scenarios for cartridge collection and regeneration, the three 
logistics scenarios (iso-distant, grid, and random) were modeled for San Francisco (Figure 37). 
Given the location of the facility and the number of buildings served by it in each scenario, logistic 
components (e.g. amount of resin, number of trucks, number of cartridges, size of facility, distances 
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travelled) were sized appropriately and their impacts quantified. For the facility space cost, actual 
market data were used to estimate the cost for renting the space of a certain size and a regression 
line was calculated to estimate the average rent given the available commercial space (see Section 
5.2.8). 

The next step was to calculate the transportation distances for each scenario and for each number 
of regeneration facilities. From each regeneration facility, the overall transportation distance to 
visit all points was estimated using the TSP algorithm (as described in the previous section). A 
time constraint of 8-hour working days and pick-up occurring at the curb (similar to trash 
collection) were assumed, to estimate the number of trucks needed for the collection. To estimate 
the transportation distance for trucking the fertilizer to a centralized collection facility, 
regeneration facility locations were clustered with the fertilizer collection facility as the cluster 
center. To estimate the transportation impacts of this second step, the fertilizer collection, another 
TSP algorithm was solved with the predefined regeneration facilities as start points and the 
fertilizer collection facility as the end point. 

 

Figure 37: Locations for regeneration faci l ities and their corresponding service areas for (a) 6 
regeneration facilities and (b) 30 regeneration faci lities for the (1) iso -distant allocation scenario, 

(2) grid allocation scenario and (3) random allocation scenario.  

 

5.2.6 Logistics Modeling 

To perform the logistics modeling the building locations in San Francisco needed to be identified. 
SF Open data was used to acquire the building latitude and longitude information for all buildings 
in San Francisco, along with their footprint and number of floors. The building footprints were 
converted to point data using the polygon centroid as a target. A subset of the San Francisco 
buildings is shown in Figure 38a.62 Population data was gathered from the Census Bureau in a 
block resolution as illustrated in Figure 38b.121 By combining the previous datasets, the population 
of each block was allocated to the overlapping residential buildings equivalently to their area 
(Figure 38c). 
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Figure 38: Population allocation to buildings  

 

After the regeneration facilities were placed on the map (given the assumptions of each logistics 
scenario described in the main text), a building allocation had to occur where each building was 
allocated to its closest facility by using a clustering algorithm as illustrated in Figure 39a. Given 
the facility allocation a traveling distance was calculated using a Traveling Salesman Problem 
solution (Figure 39b). 

 
Figure 39: Facility allocation and transport distance  

 

For the traveling salesman problem, an approximation method of using Euclidean distances 
between all buildings was used instead of the actual street network. This approximation error 
converges to zero with more buildings added to the analysis (such as in a dense urban area as San 
Francisco). The model performance and speed of computation gets significantly lower when the 
real network is taken into account as advanced spatial operations also need to occur, such as 
snapping buildings to the road network and complex network operations. The approximation error 
is not significant enough to justify the significant decrease in computational efficiency. 

By applying the same methodology to all facilities, we could identify which buildings are served 
by each facility, how many people are served and the total distances the cartridges need to be 
transported for the collection system of each regeneration facility, illustrated in Figure 40. Different 
number of buildings can be allocated to each facility which will indicate the facility size and the 
required trucking (Figure 41). 
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Figure 40: Illustration facility and building allocation for an example iso-distant scenario.  

 

 

 

Figure 41: Different decentralization options for the regeneration facilities  

 

5.2.7 Regenerant Comparison 

Sulfuric acid was used in this model for the resin regeneration process. We considered using other 
regenerants as well and their corresponding performance for energy, GHG and cost (Figure 42). 
Sulfuric acid had the second lowest energy and GHG impact and a higher cost compared to the 
other regenerants. The acids are compared using the required amounts used based on the same 
molar concentrations for regenerating the same amount of resin (Table 3: Regenerant comparison). 
The amount of stock solution required was calculated based on commonly available stock 
concentrations and stoichiometric exchange. As an example, the amount of sulfuric acid required 
per gram resin was calculated as follows:  

4.9 mmol NH4
+-N/g resin* 1 mmol H+/mmol NH4+-N * 1 mmol H2SO4/2 mmol H+ * 1 mL/18.21 

mmol H2SO4= 0.135 mL 98% sulfuric acid solution/g resin.  
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Table 3: Regenerant comparison 

Regenerant * 
Volume of regenerant per mass 

of resin (mL/g) 
Cost of regenerant (USD/L) 

H2SO4 (98% stock solution) 0.135 0.50 166 

HCl (65% stock solution) 0.402 0.28 166 

HNO3 (32% stock solution) 0.312 0.43 166 

NaCl (17% stock solution) 0.797 0.02 166 

* Values in parenthesis indicate commonly available stock concentrations  

Different acids have different impacts associated with their manufacturing which is illustrated in 
their embodied energy and GHG emissions and cost. The embodied energy and GHG emissions 
for the different acids were calculated using Gabi software.  

 
Figure 42: Regenerant performance comparison for energy, GHG and cost.  

 

For sodium chloride, we estimated the increase in total dissolved solids (TDS) associated with 
sodium desorbing from regenerated resin as ammonium from urine adsorbed:  

7.5 g N/L urine* 1 L urine/100 L wastewater * 1 mol N/14 g N* 1 mol Na+/mol NH4+-N * 23 g 
Na/mol Na * 1 g TDS/g Na * 1000 mg TDS/g TDS = 123 mg TDS/L.  

According to Metcalf & Eddy 2007, TDS in untreated domestic wastewater ranges from 270-860 
mg/L, with a medium strength wastewater containing approximately 500 mg/L TDS.167 Adding 
123 mg TDS/L is a 24.6% increase, which we rounded to 25%. 

 

5.2.8 Commercial Facility space cost 

For the purposes of this study we assumed that the space for regeneration facilities would be 
rented as commercial space in San Francisco. We assumed that facility area would be proportional 
to the number of cartridges regenerated and the amount of fertilizer stored. We calculated the 
area of each facility based on the number of cartridges regenerated per week, the volume of fertilizer 
produced and a fixed area of 20 m2 as working space. The storage space for cartridges and fertilizer 
was estimated based on their total volume if they could be stacked at 2 m high. 
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For commercial space rent prices, we used actual data for San Francisco using Craigslist 
database168. We performed a regression analysis on the Craigslist data to derive a relationship 
between required commercial area to rent and the total renting price (Figure 43). 

 
Figure 43: Regression analysis for cost prediction of facilities of different sizes  

 

 

5.3 Results 

5.3.1 Component Breakdown 

For each logistics scenario in San Francisco we calculated the life-cycle energy, GHG emissions 
and cost for building-scale nitrogen recovery. We analyzed each scenario separately and for the 
entire range of number of regeneration facilities (1 to 100). The contribution of each process 
component is shown in Figure 44. For energy and GHG emissions, acid manufacturing was found 
to have the most significant impact (about 75%), followed by resin manufacturing and 
transportation impacts. The cost is mainly driven by the space rental cost for the regeneration 
facility (65 - 78% of total cost). This high contribution of facility space can be attributed to the 
site-specific location costs, as San Francisco is ranked the 3rd most expensive region in the real 
estate market in the United States.169 Labor costs can increase the total cost from 70 - 160% 
depending on the number of regeneration facilities. The presented impacts also include traditional 
fertilizer offsets in the form of ammonium nitrate on a mass of nitrogen basis, as one kg of nitrogen 
from urine would offset the equivalent kg of nitrogen in the form of ammonium nitrate. Accounting 
for fertilizer offsets reduced energy intensity (100% reduction), GHG emissions (200% reduction) 
and cost (48-90% reduction, Figure 44).  

Comparing the results for 1 versus 100 regeneration facilities (Figure 44), it is evident that there 
were slight diseconomies of scale for energy and GHG emissions, and large economies of scale for 
cost. Energy and GHG emissions were dominated by factors that are independent of scale, such 
as acid, resin, and cartridge manufacturing. Transportation impacts decreased by about 35% for 
100 facilities versus 1 facility; however, the overall impact of transportation is minimal (Figure 
44). It should be noted that we accounted for no fugitive GHG emissions from the urine or ion 
exchange column itself; however, this assumption needs to be confirmed under realistic use 
conditions, as biological transformation of ammonia could occur during urine storage. If this 
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assumption is correct, it is an advantage over biological nutrient removal practices, which can 
potentially emit significant quantities of N2O.97,147  

To put the system performance in perspective, we compared the decentralized source separation 
to conventional nitrification-denitrification at a centralized plant (full description of values in 
Table S - 9). From performing a thorough literature review on nitrification-denitrification, we 
compiled several literature values, and calculated average unit energy values of 18 for aeration 
only (wastewater as carbon source) and 34 kWh/m3

urine (aeration plus carbon substrate addition 

).170–173 These values are similar to our results for source-separation, not including the fertilizer 
offset. We found average GHG emissions of 16 and 30 kg CO2(eq)/m3

urine,
171,173 which are 2-5 times 

higher than for source-separation (not including fertilizer offset). It is possible that anammox 
processes, which are still under development, will prove to be more efficient than nitrification-
denitrification; if so, these energy and GHG values could potentially decrease by a factor of two, 
primarily due to the lower aeration requirements.172 However, direct N2O emissions from anammox 

remain highly uncertain.174–177 We found average direct costs for nitrification-denitrification 
reported to be 19 USD/m3

urine,
173,178,179 which is also similar to those estimated for source-separation. 

 

*other includes: pump and equalization tank manufacturing, pump operation and all material transportation for infrastructure construction and 

transportation of bottled fertilizer to the distribution facility. 

Figure 44: (a) Life-cycle energy, (b) life -cycle GHG emissions and (c) life -cycle costs if the entire 
city is served by 1 regeneration facility versus 100 regeneration facilities. Error bars represent 

+/- one standard deviation, based on the uncertainty analysis.  

 

 

5.3.2 Effect of Decentralization 

A closer look at economies and diseconomies of scale is provided in Figure 45. For energy and 
GHG emissions, we found lower impacts as the number of regeneration facilities increased, but the 
change was quite small (3 - 4%). The opposite occurred for cost, as the unit cost increased by 
about 87% as the number of regeneration facilities increased from 1 to 100. Interestingly, the effect 
of facility location was minimal, as we identified only small benefits from increasing the uniformity 
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of facility distribution (comparing random versus iso-distant). This is a positive finding, indicating 
that under the high population density conditions represented by San Francisco, there are minimal 
benefits to optimizing the location of regeneration facilities, which would be difficult from a 
planning perspective.  

The non-linear diseconomies of scale for energy and GHG emissions are due to the effect of 
transportation distances for cartridge collection (Figure 45a and b). The distances decrease 
exponentially with increasing facility number. Other non-linearity occurs from the pumping 
operation, because larger pumps can be used which are more efficient in their operation; however, 

as facility size increased, the overall effect was minimal (pumping is included in “other” in Figure 
44). In terms of cost (Figure 45c), the major impact for the linear increase with respect to 
regeneration facility numbers is the cost of renting the facility. Smaller facilities tend to have a 
higher cost per square foot and more facilities need to be acquired, which drives the cost up.  

 
Figure 45: Economies/diseconomies of scale for life -cycle (a) unit energy and (b) unit GHG 

emissions and (c) unit costs for all 3 logistics scenarios  

 

5.3.3 System Tradeoffs 

As energy and GHG emissions decreased with the number of regeneration facilities, whereas costs 
increased, a globally optimal solution for all three parameters does not exist. However, we can 
identify tradeoffs for different levels of decentralization (Figure 46). The curve represents the 
frontier for which it is impossible to decrease one parameter without increasing the other, either 
energy and cost (Figure 46 a) or GHG and cost (Figure 46 b). By evaluating these frontiers, we 
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can identify at which level of decentralization the marginal benefits of increasing cost to minimize 
energy intensity become insignificant and thus there is little benefit in continuing to increase the 
system cost. 

Due to the shape of the curve for low levels of decentralization, more regeneration facilities increase 
the unit cost but enable the energy/GHG intensity to decrease at a higher rate. On the other 
hand, at high levels of decentralization the same increase in cost results in a lower unit decrease 
of the energy/GHG intensity. By increasing the number of facilities from 1 to 40 we identified the 
greatest energy (2% decrease) and GHG (3% decrease) benefits with a cost increase of 37%. 
Further increasing the facilities number to 100 only led to additional gains of 0.5% for energy and 
0.7% for GHG with an added cost increase of 37%. In both cases, the changes in energy and GHG 
intensity are small and within the uncertainty of our analysis; thus, it is appropriate to make 
decisions on the number and location of regeneration facilities based on cost alone. However, we 
note that the influence of the level of decentralization on energy and GHGs could be larger if the 
acid and resin impacts are further reduced by future technology development. The analysis 

demonstrates how, depending on stakeholders’ motivations and goals, Figure 46 can provide insight 
to the best local planning scenario by evaluating the tradeoffs between energy, GHG and cost 
based on weighted importance by decision makers. 

 
Figure 46: Tradeoff analysis for (a) energy - cost and (b) GHG-cost for different number of 

regeneration facilities.  

 

 

5.3.4 Uncertainty 

To estimate the uncertainty of the analysis we performed a Monte Carlo simulation to identify 
the margins of error due to the uncertainty in all the parameter values. We estimated the possible 
ranges of parameter values and ran 10,000 simulations to calculate the distribution of the results 
for energy, GHG emissions and cost, shown in Figure 47. The uncertainty of the model parameters 
was modeled as a uniform probability distribution. The results of the Monte Carlo simulation 
present a normal distribution of the probability density function of the potential results. We 
included the standard deviation as error bars in our analysis to show the potential uncertainty 
ranges (Figure 44). 
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Figure 47: Uncertainty results of the Monte Carlo simulation (averaged across all decentralization 

scenarios) 

 

Common factors between all metrics that affect the overall uncertainty are the urine production 
rate and the resin adsorption density. Urine production is highly uncertain and can be correlated 
with dietary habits and local conditions while the adsorption density had a high experimental 
uncertainty because it varied with urine composition, which differs among individuals and regions. 
Uncertainty in the acid manufacturing is an important aspect of the overall uncertainty which can 
be attributed to the limited information in the literature. Better estimation of the overall energy 
and GHG emissions occurring from the sulfuric acid production could limit the uncertainty range 
in these metrics significantly. As for cost, most of the uncertainty occurs due to the uncertain 
rental cost values. Table 4 presents the ranking of the most important parameters out of the 59 
total parameters with respect to its contribution to the model variability. Each parameter was 
perturbed independently inside the bounds of its uncertainty ranges presented in Table S - 8 in 
the Appendix 3. Table 4 presents the relative impact of each parameter to the model output, 
which characterizes its economic and environmental importance. The higher the impact of the 
parameter on the output it demonstrates a larger influence on the model variability. 

Table 4: Parameter contribution to variance  

Parameter  Energy / GHG Cost 

Urine production 30 % 45 % 

Sulfuric acid manufacturing 29 % 8.5 % 

Adsorption density 27 % 23 % 

Resin lifetime  5 % 4 % 

Facility cost  - 30 % 
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5.4 Discussion 

Adoption of new technologies requires a holistic assessment of their economic and environmental 
implications and careful planning during their implementation. For decentralized technologies, 
supply chain management impacts can be significant and should be modeled in detail. Although 
decisions are usually based on economic efficiency, pressing climate change issues have increased 
the importance of planning to minimize energy use and GHG emissions to meet GHG reduction 
targets, such as the California emissions target of 40% GHG emissions reduction relative to 1990 
levels by 2030.46 This work identified opportunities to minimize the economic and environmental 
impacts by seeking multi-objective optimal solutions and identifying the most important process 
steps that contribute to energy, GHG and system cost.  

 

5.4.1 Optimization 

The supply chain impacts of decentralized nitrogen management are spatially sensitive and can 
only be captured with detailed spatial modeling. As presented in this work, in dense urban settings 
such as San Francisco, the facility location did not have a significant impact on the economic and 
environmental metrics assessed as the different location scenarios only altered the results by ~1.5%. 
Another important finding was that the level of decentralization did not have a large impact on 
the energy intensity (up to 3% change) or GHG emissions (up 4% change), but had a large impact 
on cost (up to 45% change). Thus, in this specific case study, we learned that planning decisions 
based on cost are unlikely to significantly increase energy or GHG emissions; this is a very useful 
outcome for decision makers. The analysis approach we used demonstrates how optimal decisions 
can be made through multi-objective analysis to identify trade-offs.  

Based on the contributions of each process step to key metrics (Figure 44), several opportunities 
for further optimization remain. For example, sulfuric acid manufacturing was a significant source 
of energy demand and GHG emissions; alternative regenerants could decrease the impacts of the 
household ion exchange process, especially a waste product from another industrial process. For 
comparison, we analyzed nitric acid, hydrochloric acid and sodium chloride to investigate their 
performance with respect to energy, GHG and cost. Only sodium chloride was found to have lower 
impacts; the reductions in unit energy, GHG emissions, and cost were found to be 50%, 40%, and 
17%, compared to sulfuric acid, respectively (see Section 5.2.7). We estimate that the use of sodium 
chloride would increase the total dissolved solids (TDS) of municipal wastewater by around 25% 
(see Section 5.2.7). If the treated wastewater effluent is discharged to an estuary or ocean, the 
TDS increase may be acceptable. However, if the water is reused and the treatment train does not 
involve salt removal (e.g. reverse osmosis), the TDS increase is likely to be undesirable. The use 
of nitric acid appears attractive because the nitrate is more beneficial than sulfate in the fertilizer 
product; however, the life-cycle unit energy and GHG emissions for nitric acid are several times 
larger than sulfuric acid.  

Operating trucks at full capacity is another consideration for optimization. Given our calculations, 
the truck collection system in this study was time constrained (assuming 8 h days) and not 
capacity constrained. This implies that trucks were not operating at full capacity; load-sharing 
with other industries could further reduce life-cycle impacts.66 It is also important to point out 
that the reason that the facility location had minimal impact on the energy, GHG emissions and 
cost is because the collection management assumption was a TSP problem, with trucks following 
an optimal route to collect the cartridges. If the problem was set up such that every building 
transported its own cartridge to the regeneration facility, then the impact of facility location would 
have been much more significant.  
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5.4.2 Comparison with urine transport 

The premise of utilizing ion exchange to concentrate nitrogen at toilets was to reduce the volume 
for trucking and storage of the urine itself. For comparison, we also evaluated collection of 
untreated urine for application as fertilizer to determine the impact on the metrics of interest 
(energy, GHG emissions, and cost). These scenarios have the benefit of avoiding any impacts due 
to the materials for concentrating the nitrogen but involves challenges for handling large volumes 
of urine both at the household level as well as the collection facility level.  

In the first scenario, we assumed that urine from households was collected once a week and trucked 
to a centralized urine collection facility where it could be distributed to farmers. This scenario had 
minimal energy and GHG impacts but involved significant costs for renting a facility large enough 

to store a week’s worth of urine before it gets collected for reuse (Figure 48a). The facilities needed 

to be large enough to store a week’s worth of urine as it would be extremely optimistic to think 
that the urine would be so efficiently managed that it could be transported to the farmers right 
away. In the second scenario, we evaluated collecting the urine daily from households, which would 
require the same volume as the resin cartridges and not burden the households with storing large 
amounts of urine. The transportation impacts of this scenario are significantly larger for all metrics 
assessed (Figure 48b). 

Although urine collection would involve minimal processing and would not have significant 
material impacts, the challenge presented is the storage and transportation of the large volume of 
urine for the same mass of nitrogen. With ion exchange, the nitrogen from the urine produced in 
one week is captured in a single cartridge, which results in a volume reduction of approximately 
88%. As a result, the volume of material that needs to be transported is reduced, as well as the 

frequency of collection. In addition, the cost for renting a facility large enough to store a week’s 

worth of urine is significantly larger. Because storing a week’s worth of urine at the building level 
before collection may be socially untenable, we also modeled a scenario in which the urine is 
collected every day. In this scenario, the transportation impacts were significantly larger than the 
overall impacts of ion exchange (Figure 48). Our analysis did not consider the impacts of trucking 
the fertilizer product or urine from the central facility in the city to the farms where it would 
actually be used. If this distance is significant, the impacts from trucking urine would be much 
greater than the fertilizer product. 

 

Figure 48: Urine collection scenario – (a) Once a week (b) Everyday 
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5.4.3 Further Research 

In addition to demonstrating the promise of household ion exchange for nitrogen recovery from 
urine, the environmental and economic assessment in this study has spurred additional 
fundamental research questions. Given the dominant influence of acid and resin manufacturing on 
all performance metrics, more research is needed to reduce the uncertainty associated with these 
steps. It needs to be confirmed that stoichiometric exchange is possible, as well as the number of 
times the resin can be regenerated without losing adsorption capacity. Also, new technological 
approaches should be explored that could improve performance beyond the ranges evaluated in 
our analysis. For example, as mentioned above, perhaps an acidic waste stream from another 
process could be utilized for regeneration. Alternative technologies that would not require a 
chemical regenerant at all could be explored, such as electrically regenerated ion exchange. We 
also assumed that urea hydrolysis could occur to an appreciable extent within one day of storage 
in an equalization tank. Although this rate of conversion of urea to ammonium has been observed 
in several real-world systems, more research is needed to identify approaches that consistently 
achieve rapid urea hydrolysis in urine diversion systems. 

Another source of uncertainty in the GHG emissions that was not addressed is the potential for 
biological nitrification facilitated by the high ammonium concentrations on the adsorbent, 
especially with a storage period of one week between collection and regeneration. Incomplete 
nitrification or denitrification could lead to emissions of N2O and loss of the ammonia product. 
This biological mechanism has been observed and optimized for removal of nitrogen from 
wastewater using zeolite columns;180 further research is needed to determine if it spontaneously 
occurs under the conditions outlined in this study. Based on the inhibition of nitrification due to 
high total ammonia concentrations in urine,181 and the weekly regeneration with strong acid, we 
do not expect significant biological nitrification in the cartridges. Other potential questions for 
future work include the fate of other urine constituents during ion exchange (e.g., trace organic 
contaminants, metals) and the effects of urine-derived fertilizers on plant growth.  

More research is needed to investigate the feasibility of decentralized nitrogen management in 
high-rise buildings. This study assumed that the nitrogen recovery technology would be 
implemented at the toilet level. However, in a multi-story building it may make more sense to 
collect urine in the basement of each building, with a single large ion exchange column and onsite 
regeneration. Although this configuration would reduce transportation impacts, it raises other 
challenges, including extra premise piping for the source-separated urine and more decentralized 
monitoring and management to provide all the required inputs for the recovery process at the 
building level. This approach also has practical challenges, such as passive ammonia stripping in 
pipes with intermittent flows.182   

Although outside of the scope of this work, social acceptance is key for the successful introduction 
of a new management system like that proposed herein. People may be unwilling or unable to 
correctly remove and install replacement cartridges. Alternatively, using trained personnel to 

perform this task would require them to enter peoples’ homes to collect the cartridges, which would 
raise privacy concerns. These are only a few examples of the complex issue of social acceptance 
that need to be investigated now that we have identified that nitrogen recovery via household ion 
exchange is a promising alternative to centralized nitrogen management. 

We used San Francisco as a case study because different options for reducing nutrient discharges 
from wastewater are currently being evaluated there, and because we could find the data required 
for characterizing the household ion exchange process (e.g. population density, building locations, 
geospatial data). The results are broadly relevant to other similar urban settings. Alternatively, 
the analysis can be conducted for other locations using site-specific data on population density and 
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distribution, rental costs, urine volumes, and composition. The modeling approach could also be 
used to explore other scenarios, such as higher or lower adoption rates than the 50% assumed for 
this study (40-80% in the uncertainty analysis). Future work could adapt our analysis to non-
sewered areas, such as individual septic tanks facing effluent nitrogen limits or urban slums that 
rely on container-based sanitation. Also, the last-mile logistics modeling and use of geospatial data 
could be adapted to model the life-cycle impacts for other decentralized nutrient recovery 
technologies, implementation schemes, and for the collection and treatment of septage or fecal 
sludge.  

This work adds to the growing literature on resource recovery from wastewater and the potential 
for source-separation and decentralized approaches to improve the sustainability of wastewater 
management. While there is still much uncertainty surrounding the technical and social feasibility 
of the approach presented herein, our results suggest that further development is warranted. The 
findings can be used to encourage consideration of alternate strategies by policymakers and 
wastewater agencies responding to stricter nitrogen effluent controls. 
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Chapter 6.  
 
Conclusions 

6.1 Summary of Outcomes 

The goal of this study was to adopt a systems approach when assessing non-potable water reuse 
and nitrogen recovery and to propose generalizable frameworks for decision-making support. The 
central hypothesis guiding this research was that context and scale impact the economic and 
environmental sustainability of water and wastewater systems and optimal decisions should be 
based on advanced spatial planning to holistically assess the implementation potential. Previous 
research focused on technology development and site-specific assessments of one possible scale. 
This research examined the optimal system scale and applied advanced spatial modeling and life-
cycle assessment to provide a methodology for assessing the economic and environmental 
implications of resource recovery, focused on water reuse and nitrogen recovery. Understanding 
the site-specific characteristics and identifying the infrastructure impacts of a specific setting is of 
high importance and significantly increases the accuracy of the assessments rather than using 
average values that do not apply to the actual conditions. 

Chapter 3 explored the difference between centralized and decentralized non-potable water reuse, 
from a life-cycle perspective. It identified the critical parameters that affect the energy intensity 
and GHG emissions of both types of reuse. Decentralized and centralized options were explored 
for the same context area and various options were assessed to identify at which locations 
decentralized systems would achieve environmental advantages over centralized alternatives. This 
chapter illustrates the significance of the water distribution effects and highlights the importance 
of detailed modeling of the site specific spatial conditions on the environmental metrics. Treatment 
operational energy was found to have the largest environmental footprint in decentralized systems 
but is also characterized by huge economies of scale (modeled after MBRs). This illustrates the 
importance of investing effort in increasing the energy efficiency of these systems to make small 
scale treatment systems competitive. Technologies that are energy efficient in their operation in 
decentralized systems can push the industry to more decentralized approaches that promote the 
use of local sources and decrease the conveyance requirements. Piping and pumping infrastructure 
have lower environmental impacts than the treatment operation but can become significant in 
centralized infrastructure options where the wastewater treatment plant is located miles from the 
point of demand and with steep inclines. 

Chapter 4 introduced a deeper dive into decentralization for non-potable water reuse with a strong 
focus on system scale. The goal of this chapter was to increase the resolution of water reuse 
implementation down to the building scale. It assessed the economic and environmental impacts 
of decentralized water reuse by identifying the tradeoffs between various levels of connected 
buildings. The framework developed in this chapter was based on a heuristic modeling using 
geospatial algorithms to determine the optimal degree of decentralization. A decision support tool 



6.2 Research Contributions  81 

 
 

was developed to assess and visualize alternative non-potable water reuse system designs 
considering topography, economies of scale and building size. This chapter highlights the 
significance of site-specific modeling and the impact of location specific characteristics. 
Decentralized water reuse is highly sensitive to local characteristics and its impacts can only be 
realistically assessed if high resolution local data are used. Building characteristics such as number 
of floors and population can significantly affect the impacts of water reuse infrastructure. By 
developing a high-resolution assessment tool, the location specific optimal decentralization scale 
could be identified. 

Chapter 5 addresses the practice of resource recovery, specifically for nitrogen. As nitrogen 
standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, 
treatment plants are required to reduce effluent nitrogen concentrations. This chapter assessed, 
from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion 
exchange of source-separated urine. To provide insight into how this decentralized technology 
would be implemented, the traditional economic and environmental assessment approach was 
enhanced by combining spatial analysis, system-scale evaluation and detailed last-mile logistics 
modeling. This work illustrated that in dense urban areas the facility location is not an important 
parameter and does significantly affect the system performance. The level of decentralization of 
the nitrogen recovery system also did not have a significant effect on the environmental impacts. 
However, it was an important parameter of the economic cost, as cost increased with increases in 
decentralization because of the added rental costs for the facility spaces. This work highlighted 
the importance of identifying the tradeoffs between technology requirements and system logistics, 
to minimize economic and environmental impacts. 

 

 

6.2 Research Contributions 

Leveraging the current trend of data-driven development, water and wastewater utilities are 
becoming better at measuring, estimating and predicting water demands and patterns. This is a 
significant first step to reaching a closed-loop management system, where resources can be reused 
in an efficient and effective way through improved estimation and planning tools. This research 
contributes towards a practical implementation of water reuse and nitrogen recovery by developing 
frameworks and tools for effectively assessing these options in real-world settings. The main 
contributions of this work include: 

• Identifying the parameters that affect the economic and environmental impacts of water 
reuse and nitrogen recovery. This is an important contribution towards the academic and 
professional world as it identifies the key factors that should be taken into consideration 
when investigating different options. It also educates future research by highlighting the 
parameters that should be investigated in depth to increase the efficiency of the systems. 

• Quantifying economies of scale for non-potable water reuse treatment. This research 
quantified the operating performance of MBR technology for water reuse systems which 
enables the understanding of the effect of scale in practical implementations. It identified 
the non-linear relationship between system scale and treatment energy consumption which 
affects the overall economic and environmental impacts of water reuse systems. This 
information is rarely collected and published. By quantifying its importance through this 
research, maybe others will be motivated to collect this data and push the entire sector 
towards more energy efficient approaches. 

• Quantifying site-specific factors for water distribution in non-potable water reuse. Water 
reuse is highly influenced by spatial and topographical characteristics of an area. This 



6.3 Future Work  82 

 
 

research managed to develop a framework for quantifying the impact of topography, 
population density and building characteristics to accurately assess the impacts of water 
reuse implementation. It showed the importance of combining advanced spatial modeling 
in holistically assessing the economic and environmental impacts of water reuse given a 
specific setting rather than using average values that most likely do not apply to the 
conditions in question. 

• Designing generalizable frameworks and models for decision support. This research 
designed and developed generalizable methods for assessing the tradeoffs between the 
treatment scale and distribution effects. The frameworks and models developed are 
agnostic to a specific setting but can be applied anywhere to assess the location specific 
parameters and identify optimal implementation strategies. This is critical to ensure 
applicability of the described methods and to enable scenario development and consistent 
assessment approaches. 

• Integrating technical, economic and environmental assessment of water reuse and nitrogen 
recovery. The work presented here characterizes the economic and environmental impacts 
associated with water reuse and decentralized nitrogen management. These quantitative 
assessments enable decision makers to realize the holistic effects of implementation of these 
strategies. By identifying the percent contributions of each parameter to the overall impact, 
it provides academics and technologists with an insight on the aspects that should be 
researched more in-depth to achieve better overall efficiencies.  

• Assessing technology diffusion for nitrogen recovery. A major contribution of this research 
is unpacking the real-world issues that influence implementation and developing methods 
for assessing the impacts of a full-scale technology. It starts from understanding the theory 
behind a technology and then extending this knowledge to understand the implementation 
impacts. Such information can then be used to think through the real-world 
implementation challenges. This concerns translating laboratory results from lab-scale 
technologies to field applications and modeling of the logistics that are required in an 
implemented system. Unfortunately, building the technology is insufficient, a more holistic 
assessment way on how it would be implemented and managed in a real-world situation. 
This research tries to combine operations research methods and logistics to understand the 
impacts of a system management and assess the economic and environmental issues more 
comprehensively.  

The specific applications that are presented in this research in Chapter 3 and 4 for water reuse 

and Chapter 5 for nitrogen recovery serve as a “proof-of-concept.” Similar analyses are possible, 
and the assessment frameworks developed are readily implementable with the appropriate data 
available. But most importantly the work shows that these examples are developed based on a 
general framework which is agnostic to the specific conditions modeled and can be implemented 
in various settings. It is the hope of the author that data-driven development and planning support 
tools for optimal implementation will continue to be studied and adopted in practice. 

 

 

6.3 Future Work 

While this research made a lot of progress in exploring the importance of data driven development 
in planning and decision-making, there are aspects that need further research and more modeling 
techniques to be explored.  
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This researched focused on developing algorithmic models for scenario development to assess the 
impacts of decentralization for the water/wastewater industry. Centralized infrastructure, though 
perceived as more reliable and with benefits of economies of scale, presents barriers for some 
applications such as non-potable water reuse and source separation as large scale dual-distribution 
systems can be costly and disruptive to implement in dense urban areas.92 Decentralized 
infrastructure allows for a flexible, incremental approach for system expansion with uncertain 
growth patterns. Although important, these societal impacts were not considered in comparing 
the two systems. There are several metrics that are hard to quantify but could benefit decentralized 
infrastructure ranging from community engagement to societal, behavioral and aesthetical. On the 
other hand, even though decentralized systems could potentially be proven economical and 
environmentally beneficial, there are societal impacts that might provide friction in their 
implementation. Social acceptance is a major issue in integrating decentralized systems into 

people’s lives and a barrier that needs to be overcome. Identifying ways to include these 
unquantifiable metrics into the assessment could potentially tip the cost-benefit scale towards 
different planning alternatives. 

More research is required in the technology side. There exist large potential for new innovations 
to enable lower energy requirements or even be energy positive.82,93 Although research on lab and 
pilot scale systems is promising, more work is needed to characterize how the technologies 
performance once integrated into complete treatment trains and deployed in actual installations. 
Tracking and releasing measured performance data for a wide variety of technologies and scales 
will be crucial in developing and improving future systems. Understanding the parameters behind 
treatment scale performance and how to accurately assess the same technology in different scales 
is critical to optimal planning. Increasing treatment energy and resource efficiency as well as 

optimizing the system’s operating scale could improve the performance of decentralized systems. 

Uncertainty in these types of analysis is a critical part. More research is needed to reduce 
uncertainties in the analysis, particularly related to treatment process energy use at various scales- 
and how it may change over time with advances in treatment technology and direct GHG 
emissions. Empirical performance data on how wastewater reuse technologies perform in full scale 
implementations are rare and difficult to find. Especially focusing on decentralized systems, where 

the systems’ scale is small, performance metrics are even more dispersed in the literature. The 
results of this study are based on several assumptions for the treatment performance that could 
be improved if monitoring data were available for actual installations of small-scale treatment 
technologies. 

On a similar note, this research made considerable progress in identifying important parameters 
in the economic and environmental assessment of different systems. This knowledge needs to be 
disseminated and applied towards educating future research on which areas are low hanging fruit 
for increased performance. By focusing on the aspects of the system that contribute the most to 
energy, GHG emissions or cost, more efficient and effective technologies can be developed to serve 
the purpose of decentralized systems. 

An interesting extension to this work would be to investigate the connections between urban form 
and water reuse systems design performance. This research focused on assessing the current urban 
form and the distribution system that would be required to serve it. However, we can imagine a 
future where the urban form could inform future research directions of the energy use of water 
supply.183 Changing the urban form and developing different distribution network configurations 
could potentially increase the attractiveness of water reuse systems and lead to more sustainable 
cities. A future assessment could examine the links between the population distribution, street 
network design and water reuse systems and identify options that would benefit the overall system 
performance. 

Finally, this research focused on quantifying decentralized systems performance on several metrics, 
namely economic cost, energy intensity and GHG emissions. Integrating different metrics and 
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understanding their interconnections and interactions can be extremely valuable to optimal 
decision-making. Multiparameter assessments multicriterial decision making should be prioritized. 
An example could be using marginal abatement curves. Using the GHG savings one can produce 
GHG marginal abatement curves, which can be used to make comparisons between different 
options and technologies. GHG marginal abatement curves plot the marginal unit cost of 

producing output against the system’s ability to abate GHGs. When ranked based on cost, these 
curves can show which strategies offer low hanging fruit for saving GHG emissions in the most 
cost-effective way. This analysis can provide an extra dimension to this research and help assess 
the different alternatives in a systematic way. 
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Appendix 1: Centralized vs Decentralized Water Reuse  

Table S - 1: HDPE Pipe Parameters  

Size (mm) 
Weight 
(kg/m)35  

Cost  

($ 2012/m)35  
Embodied energy 

(mj/kg)35  
Excavation volume  

(m3/m)37,90  

25 6.8 8.28 25.31 0.19 

50 7.6 9.21 25.31 0.22 

100 9.5 11.54 25.31 0.30 

160 11.9 14.45 25.31 0.41 

200 15 18.1 25.31 0.49 

350 39.5 47.69 25.31 0.86 

375 43.5 52.5 25.31 0.9 

450 65.3 78.55 25.31 1.17 

 

 

Table S - 2: Pump Parameters  

Size (hp) 
Cost  

($ 2012)64  
Embodied 

energy (mj)65  
Ghg emissions 

(kgco2(eq))65  
Weight 
(kg)39  

0.1 183.3 1215.6 80.6 14 

0.15 237.7 1576.7 104.5 14 

0.2 276.3 1832.8 121.5 14 

0.25 751.0 4980.9 330.3 14 

0.3 881.0 5842.8 387.5 14 

0.35 1010.9 6704.8 444.6 14 

0.4 1090.2 7231.1 479.5 14 

0.45 1169.6 7757.4 514.4 14 

0.5 1248.9 8283.7 549.3 14 

1 2009.1 13325.7 883.7 14 

2 2300 15255.5 1011.6 22.5 

3 2300 15255.5 1011.6 25 

4 2300 15255.5 1011.6 30.4 

5 2300 15255.5 1011.6 35 
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6 2875 19069.3 1264.5 45 

7 3220 21357.7 1416.3 45 

8 3450 22883.2 1517.5 63.5 

9 4140 27459.8 1820.9 63.5 

10 4830 32036.5 2124.4 77 

20 5405 35850.35 2377.4 77 

30 6325 41952.5 2782.0 94 

40 6555 43478.1 2883.2 120 

50 9315 61784.7 4097.1 143 

60 9890 65598.5 4350.1 164 

70 6440 42715.3 2832.6 183 

80 11500 76277.3 5058.2 210 

90 12592.5 83523.7 5538.7 210 

100 13685 90770.0 6019.3 230 

150 21505 142638.6 9458.8 250 

200 21620 143401.4 9509.4 318 

250 22195 147215.3 9762.3 378 

300 22425 148740.8 9863.5 400 
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Table S - 3: MBR Operational performance data 

Scale (m3/day) Energy (kWh/m3) Type Reference 

1.2 4.9 
Multi-tube sidestream MBR 

(pumped) 
77 

1.9 6.2 
Vacuum MBR with anoxic and 

aerated zones 
78 

4 4.9 
Multi-tube sidestream MBR 

(pumped) 
77 

10 7.2 
Multi-tube sidestream MBR 

(pumped) 
77 

20 7.2 Pumped MBR with 0.5mm screen 77 

20 4 Anoxic and aerobic submerged MBR 184 

27 5 Hollow fiber ultrafiltration MBR. 79 

40 7.2 
Multi-tube sidestream MBR 

(pumped) 
77 

100 3 Pumped and airlift MBR 80 

100 1.4 Vacuum rotating time MBR system. 80 

113 1.3 Vacuum rotating time MBR system. 80 

600 2.9 Aerobic MBR 80 

610 1.1 Anoxic and aerobic MBR 80 

1700 0.64 Anoxic and aerobic MBR 80 

3500 0.72 Anoxic and aerobic MBR 80 

5670 0.66 Anoxic and aerobic MBR 80 

 

 
Table S - 4: Steel Sheet Parameters 69 

Type 
Density 
(kg/m3) 

Length (m) Height (m) 
Thickness 

(m) 
Volume (m3) Mass (kg) 

Area 
(m2) 

STEEL 
SHEET 

7850 1.2 3.1 0.0064 0.02 186.9 3.72 
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Table S - 5: Model Parameters  

 
Parameter Units 

Typical 
value 

Uncertainty 
range 

Probability 
type 

Data source 

G
E

N
E

R
A

L
 P

A
R

A
M

E
T

E
R

S
 

design volume 
m3/person-

day 
0.2 0.1-0.4 triangular 75 

slope % estimated +/- 10% uniform 
Estimated. 
Elevation 

contours. 62 

population 
density 

#/km2 estimated +/- 10% uniform Census data. 62 

infrastructure 
lifetime 

years 50 +/- 30% triangular 36,185 

treatment 
infrastructure 

lifetime 
years 25 +/- 30% triangular 34 

reinforced 
concrete energy 

MJ/m3 2869 +/- 20% uniform WEST tool 39,88 

reinforced 
concrete GHG 

kgCO2(eq)/m3 270.8 +/- 20% uniform WEST tool  39,88 

steel energy MJ/kg 17.5 +/- 20% uniform 69 

steel GHG kgCO2(eq)/kg 1.3 +/- -20% uniform 69 

transport 
energy 

MJ/ton-mile 8.16 +/- 20% uniform 66 

transport GHG 
kgCO2(eq)/to

n-mile 
0.656 0.16-2.9 uniform 66 

material 
transport 

miles 50 20-80 triangular 
Estimated for 
San Francisco 

 electricity 
emission factor 

kgCO2(eq)/k
Wh 

0.4 +/- 30% uniform 72 

 SFPUC 
Electricity 

emission factor 

kgCO2(eq)/k
Wh 

0.083 +/- 30% uniform 60 
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 Parameter Units 
Typical 
value 

Uncertainty 
range 

Probability 
type 

Data source 
C

O
N

V
E

Y
A

N
C

E
 P

A
R

A
M

E
T

E
R

S
 

distance from 
centralized 

m estimated +/- 10% uniform 
Estimated 
(Dijkstra's 
algorithm) 

piping density m/km2 8000 4000-15,000 triangular 

Estimated: 
Assumed grid 
with 80x80 m 

residential blocks 

pipe diameter mm evaluated +/- 1 size uniform 
Estimated based 

on volume 

excavation 
energy 

MJ/m3 153 +/- 20% uniform 
dimensions:63,90; 

energy: 10 

excavation 
GHG 

kgCO2(eq)/m3 12 +/- 20% uniform 10 

pipe 
construction 

energy 
MJ/m estimated +/- 20% uniform 36 

pipe 
construction 

GHG 
kgCO2(eq)/m estimated +/- 20% uniform 35 

pipe 
maintenance 

energy 
MJ/m estimated +/- 10% uniform 35 

pump 
operating time 

fraction 
- 0.8   71 

pump power hp evaluated +/- 1 size uniform 
Estimated based 
on volume and 

head 

pump 
efficiency 

- estimated +/- 10% uniform 10 

pump motor 
efficiency 

- 0.95 0.80-1 normal 63 

pump 
construction 

energy 
MJ/pump estimated +/- 20% uniform cost: 64; energy: 65 

reuse water 
storage size 
(concrete) 

days 3 2-10 uniform 55 
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Parameter Units Typical value Uncertainty range 

Probability 
type 

Data source 

T
R

E
A

T
M

E
N

T
 P

A
R

A
M

E
T

E
R

S
 

screen filter (SF) 
manufacturing 

energy 
MJ/unit 23,800 +/- 10% uniform 

cost:186 , 
energy: 65 

SF manufacturing 
GHG 

kgCO2(eq)/uni
t 

1,632 +/- 10% uniform 
cost:186, 
GHG: 65 

SF operational 
energy 

kWh/m3 0.008 0.001-0.0013 uniform 67 

grinder pump 
usage 

h/day 0.2 0.1-2 triangular 60 

grinder pump hp hp 1.5 0.5-2 triangular 67 

grit chamber 
retention time 

(concrete) 
s 60 45-90 uniform 67 

equalization tank 
retention time 

(concrete) 
h 6 3-12 uniform 67 

MBR membrane 
lifetime 

y 10 +/- 20% uniform 70 

MBR capital 
energy 

MJ/m3 estimated +/- 50% triangular 
materials: 68, 
energy: 65,187 

MBR 
manufacturing 

GHG 
kgCO2(eq)/m3 estimated +/- 50% triangular 

materials: 68, 
energy: 65,187 

MBR operational 
GHG 

kgCO2(eq)/m3 estimated +/- 50% triangular 
Electricity 
mix: 60,72 

MBR operational 
energy 

MJ/m3 estimated +/- 50% triangular Regression 

UV lifetime y 3 2-5 triangular 70 

UV capital energy MJ/W 34 +/- 20% triangular 
cost:188, 

energy: 65 

UV capital GHG kgCO2(eq)/W 2.2 +/- 20% triangular 
cost:188, 
GHG: 65 

UV rating W/m3-day 9.5 8-12 triangular 60 

UV usage h/day 12 8-20 triangular 60 

chlorine mass 
added (HOCl) 

mg/L 10 6-20 uniform 67 

chlorine concrete 
tank retention 

time 
min 60 30-120 uniform 70 

chlorine energy 
(HOCl) 

MJ/kg 30 +/- 20% uniform 187 

chlorine GHG 
(HOCl) 

kgCO2(eq)/kg 0.74 +/- 20% uniform 189 
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centr. treatment 
capital energy 

MJ/m3 0.5 +/- 30% uniform 60 

centr. treatment 
operational energy 

MJ/m3 2.4 +/- 30% uniform 60 

centr. treatment 
operational GHG 

kgCO2(eq)/m3 0.06 +/- 30% uniform 60 

centr. treatment 
capital GHG 

kgCO2(eq)/m3 0.07 +/- 30% uniform 60 

coagulation time s 1 0.5-5 uniform 67 

flocculation time min 20 10-30 uniform 67 

flocculation energy kWh/m3 0.05 +/- 20% uniform 74 

alum mass added mg/L 150 25-225 uniform 70 

alum energy MJ/kg 0.91 +/- 20% uniform 187 

alum GHG kgCO2(eq)/kg 0.07 +/- 20% uniform 187 

rapid sand 
filtration (RSF) 

rate 
L/m2-min 150 80-240 uniform 70 

RSF sand depth mm 600 500-750 uniform 70 

RSF anthracite 
depth 

mm 750 600-900 uniform 70 

RSF sand energy MJ/kg 0.147 +/- 20% uniform 
cost: 64; 

energy: 65 

RSF anthracite 
energy 

MJ/kg 0.231 +/- 20% uniform 
cost:190; 

energy: 65  

RSF operational 
energy 

kWh/m3 0.05 0.03-0.08 uniform 67 

RSF sand GHG kgCO2(eq)/kg 0.0104 +/- 20% uniform 
cost: 64;  
GHG: 65 

RSF anthracite 
GHG 

kgCO2(eq)/kg 0.06 +/- 20% uniform 
cost:190;  
GHG: 65 

sludge mass kg/m3 water 0.1 +/- 20% uniform 67 

fraction of sludge 
to landfill 

- 0.5 0-1 triangular 34 

miles to disposal 
(sludge) 

miles 30 10-50 triangular 34 

 
landfill GHG 

kgCO2(eq)/kg 
sludge 

0.04 +/- 30% triangular 34 
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Appendix 2: Decentralized Optimization of Water Reuse 

Table S - 6: Model Parameters  

Parameter Units Value Reference 

Residential water demand m3/person-day 0.19 191 

Commercial water demand m3/person-day 0.12 191 

NPR water demand 
percentage (residential) % 0.5 23 

NPR water demand 
percentage (commercial) % 0.95 23 

infrastructure lifetime years 50  

treatment infrastructure 
lifetime years 25  

Piping embodied energy MJ/m 240 35 

Piping cost USD/m 1500 116 

In-building piping length m/m2 0.05 115 

MBR treatment embodied 
energy kWh/ m3 0.3 192 

MBR treatment embodied 
GHG kgCO2(eq)/ m3 0.06 192 

Electricity cost USD/kWh 0.12 193 

electricity emission factor kgCO2(eq)/kWh 0.4 7 

SFPUC Electricity emission 
factor kgCO2(eq)/kWh 0.083 60 
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Appendix 3: Nitrogen Recovery 

Urea hydrolysis: (𝑁𝐻2)2𝐶𝑂 + 3 𝐻2𝑂 → 2𝑁𝐻4
+ + 𝐻𝐶𝑂3

− + 𝑂𝐻−          [eq. S - 1] 

Ion-exchange: 2(𝑁𝐻4
++ ≡ 𝐻+ →  ≡ 𝑁𝐻4

+ + 𝐻+)          [eq. S - 2] 

Nitrification: 𝑁𝐻4
+ + 𝑂2 + 𝐶𝑂2 →  𝑁𝑂3

− + (𝐶𝐻2𝑂)𝐵 + 2𝐻+        [eq. S - 3] 

Denitrification: 2𝑁𝑂3
− + 𝐶6𝐻12𝑂2 + 𝐻+ → 𝑁2 + 3(𝐶𝐻2𝑂)𝐵 + 3𝐶𝑂2 + 𝐻2𝑂      [eq. S - 4] 

 

Table S - 7: Component material selection 

Parameter Material 

Ion –  exchange resin Dow Max 3 194  

Cartridge Fiberglass cylinder 143 

Urine flow equalization tank HDPE 143 

Fertilizer bottling Plastic bottle 

Collection and distribution trucks Class 4 conventional van 66 

 

 

Table S - 8: Model Parameters 

Parameter Units Value 
Uncertainty 

Range 
Reference 

Percent served % 50 40-80 this study 

Household size people/household 2.54 2.53 - 4 195 

Number of 
cartridges 

Cartridges/ 
household 

1.5 +/- 20% estimated 

Nitrogen in urine gN/L 7.5 4 - 9 159 

Urine density kg/L 1   

Nitrogen molar 
mass 

g/mol 14.0067   

Urine production L/person-day 1.42 0.6 - 2.6 159 

Resin density g/L 750  194 

Resin cost $/kg 2 +/- 20% 166 
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Parameter Units Value 
Uncertainty 

Range 
Reference 

Resin hydraulic 
conductivity 

m/s 0.00253 +/- 20% experimental 

Resin lifetime years 5 +/- 20% estimated 

Adsorption 
density 

mmolN/g resin 4.9 3.5 - 5.2 31 

Cartridge 
diameter 

cm 12 +/- 20% experimental 

Fiberglass cost $/m3 1,955 +/- 20% 143 

Fiberglass 
density 

kg/L 1.5 +/- 10%  

Time between 
cartridge 

regeneration 
days 7 6 - 8 estimated 

Time for 
regeneration 

h/day 1.5 1.16 - 1.83 experimental 

Flow 
equalization 

retention time 
days 1 +/- 20% estimated 

Plastic embodied 
energy 

MJ/$ 14.8 +/- 20% “Piping manufacturing” 
65 

Plastic embodied 
GHG 

kgCO2/$ 0.904 +/- 20% “Piping manufacturing” 
65 

Plastic cost $/m3 300 +/- 20% 166 

Plastic density kg/m3 20 +/- 20%  

Plastic lifetime years 50 +/- 20% 185,196 

Transportation 
GHG 

kgCO2/ton-km 0. 85 +/- 20% 66 

Diesel carbon 
content 

kg CO2/gal 10  193 

Diesel energy 
content 

MJ/kg fuel 46.8  193 

Diesel cost $/gal 2.3 +/- 20% 193 
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Parameter Units Value 
Uncertainty 

Range 
Reference 

Truck embodied 
energy 

MJ/$ 0.89 +/- 20% 
“Light truck and vehicle 

manufacturing” 65 

Truck embodied 
GHG 

kgCO2/$ 0.06 +/- 20% 
“Light truck and vehicle 

manufacturing” 65 

Electricity GHG 
emissions 

kgCO2/kWh 0.083 +/- 20% 60 

Electricity cost $/kWh 0.1 +/- 20% 193 

Pump lifetime years 10 +/- 20% 34 

Pump motor 
efficiency 

% 95 +/- 20% 63 

Pump 
manufacturing 

MJ/unit 
Estimated 

based on size 
+/- 20% 

Pump and pumping 
equipment 

manufacturing65 

Sulfuric acid cost $/kg 0.27 +/- 20% 166 

Sulfuric acid 
density 

g/L 1840 +/- 10% 197 

Sulfuric acid 
volume 

L(acid)/L(resin) 0.1 +/- 20% experimental 

Nitric acid cost $/kg 0.287 +/- 20% 166 

Nitric acid 
density 

g/L 1510 +/- 10% 197 

Nitric acid 
volume 

L(acid)/L(resin) 0.23 +/- 20% experimental 

Hydrochloric 
acid cost 

$/kg 0.285 +/- 20% 166 

Hydrochloric 
acid density 

g/L 1003 +/- 10% 197 

Hydrochloric 
acid volume 

L(acid)/L(resin) 0.3 +/- 20% experimental 

Sodium Chloride 
cost 

$/kg 0.06 +/- 20% 166 
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Parameter Units Value 
Uncertainty 

Range 
Reference 

Ammonium 
nitrate cost 

$/kgN 1.7 +/- 20% 198 

Fertilizer 
collection 
frequency 

times/week 1 +/- 20% estimated 

Facility space 
lifetime 

years 50 +/- 20% estimated 

Facility rental 
cost 

$/year based on size based on size See Figure 43 

Cartridge per 
facility employee 

Cartridge / hour 30 +/- 20% estimated 

Labor cost (truck 
driver) 

$ / hour 16.4 +/- 20% 158 

Labor cost 
(chemist at 

facility) 
$ / hour 37.4 +/- 20% 158 

 

 

 

Table S - 9: Nitrification/Denitrification metrics 

Metric Value Reference Mean value 

E
n
er

g
y
 

(a
er

a
ti
o
n
 o

n
ly

) 

2.3 (kWh/kgN) 170 

18.3 (kWh/m3 urine) 
3.9 (kWh/kgN) 199 

4 (kWh/kgN) 172* 

1.6 (kWh/kgN) 173 

E
n
er

g
y
 

(a
er

a
ti
o
n
 

+
 

su
b
st

ra
te

) 9.4 (kWh/kgN) 172* 

34.4 (kWh/m3 urine) 

2.9 (kWh/kgN) 173 

C
o
st

 5.35 (USD/kgN) 173 
19 (USD/m3 urine) 

1.07 (USD/kgN) 178 
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3.21- 4.28 

(USD/kgN) 
179 

G
H

G
 

(d
ir
ec

t 
+

 

a
er

a
ti
o
n
) 4.2 (kgCO2/kgN) 171¥ 

16 (kgCO2/m3 urine) 

3 (kgCO2/kgN) 173 

G
H

G
 

(d
ir
ec

t 
+

 

a
er

a
ti
o
n
 

+
 

su
b
st

ra
te

 

a
d
d
it
io

n
) 8.8 (kgCO2/kgN) 199¥ 

30 (kgCO2/m3 urine) 

5 (kgCO2/kgN) 173 

*Includes conversion from primary energy to electricity using 0.31 conversion efficiency 
¥ Life-cycle assessment values 

 Calculated from median nitrification/denitrification upgrade cost and wastewater loading rate for WWTPs in 
Chesapeake Bay region ($787/(gal ww/day)). Converted to USD/kg N assuming 27 mg/L N removed and 30 year 
lifetime.  

 

Calculations for nitrification/denitrification are shown below:  

Mass nitrogen removed in conventional nitrification/denitrification: 75% 170 

Urine in wastewater: 1% 200 

Nitrogen in urine: 7.5 gN/Lurine 

Nitrogen removed per volume wastewater treated (ww): 75
𝑔𝑁𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

𝑚𝑤𝑤
3 × 0.75

𝑔𝑁𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝑔𝑁𝑖𝑛𝑓𝑙𝑢𝑒 𝑛𝑡
=

56
𝑔𝑁𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝑚𝑤𝑤
3   

Nitrogen removed per volume wastewater treated (ww)171: 

 49.7
𝑔𝑁𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

𝑚𝑤𝑤
3 − 13.2

𝑔𝑁𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

𝑚𝑤𝑤
3 = 36.5

𝑔𝑁𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝑚𝑤𝑤
3  

Energy 

Energy (aeration only – average 170,172,173,199): 2.9
𝑘𝑊ℎ

𝑘𝑔𝑁
× 0.056

𝑘𝑔𝑁

𝑚𝑤𝑤
3 × 100

𝑚𝑤𝑤
3

𝑚𝑢𝑟𝑖𝑛𝑒
3 =  14.6

𝑘𝑊ℎ

𝑚𝑢𝑟𝑖𝑛𝑒
3  

Energy (aeration only): 
(14.6

𝑘𝑊ℎ

𝑚𝑢𝑟𝑖𝑛𝑒
3 +22

𝑘𝑊ℎ

𝑚𝑢𝑟𝑖𝑛𝑒
3 )

2
=  𝟏𝟖. 𝟑

𝒌𝑾𝒉

𝒎𝒖𝒓𝒊𝒏𝒆
𝟑  

Energy (aeration + substrate): 6.2
𝑘𝑊ℎ

𝑘𝑔𝑁
× 0.056

𝑘𝑔𝑁

𝑚𝑤𝑤
3 × 100

𝑚𝑤𝑤
3

𝑚𝑢𝑟𝑖𝑛𝑒
3 = 𝟑𝟒. 𝟒

𝒌𝑾𝒉

𝒎𝒖𝒓𝒊𝒏𝒆
𝟑   

 

Cost: 3.4
𝑈𝑆𝐷

𝑘𝑔𝑁
× 0.056

𝑘𝑔𝑁

𝑚𝑤𝑤
3 × 100

𝑚𝑤𝑤
3

𝑚𝑢𝑟𝑖𝑛𝑒
3 = 𝟏𝟗

𝑼𝑺𝑫

𝒎𝒖𝒓𝒊𝒏𝒆
𝟑  
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GHG emissions 

Direct +aeration emissions 173: 3
𝑘𝑔 𝐶𝑂 2

𝑘𝑔𝑁
× 0.056

𝑘𝑔𝑁

𝑚𝑤𝑤
3 × 100

𝑚𝑤𝑤
3

𝑚𝑢𝑟𝑖𝑛𝑒
3 = 16.8

𝑘𝑔 𝐶𝑂 2

𝑚𝑢𝑟𝑖𝑛𝑒
3   

Direct +aeration emissions 171: 0.15
𝑘𝑔 𝐶𝑂 2

𝑚𝑤𝑤
3 × 100

𝑚𝑤𝑤
3

𝑚𝑢𝑟𝑖𝑛𝑒
3 = 15

𝑘𝑔 𝐶𝑂 2

𝑚𝑢𝑟𝑖𝑛𝑒
3   

Direct +aeration emissions: 
(16.8

𝑘𝑔 𝐶𝑂 2

𝑚𝑢𝑟𝑖𝑛𝑒
3 +15

𝑘𝑔 𝐶𝑂 2

𝑚𝑢𝑟𝑖𝑛𝑒
3 )

2
=  𝟏𝟔

𝒌𝒈 𝑪𝑶 𝟐

𝒎𝒖𝒓𝒊𝒏𝒆
𝟑  

Direct + aeration + substrate emissions 173: 5
𝑘𝑔 𝐶𝑂 2

𝑘𝑔𝑁
× 0.056

𝑘𝑔𝑁

𝑚𝑤𝑤
3 × 100

𝑚𝑤𝑤
3

𝑚𝑢𝑟𝑖𝑛𝑒
3 = 28

𝑘𝑔 𝐶𝑂 2

𝑚𝑢𝑟𝑖𝑛𝑒
3  

Direct + aeration + substrate emissions 171: 0.32
𝑘𝑔 𝐶𝑂 2

𝑚𝑤𝑤
3 × 100

𝑚𝑤𝑤
3

𝑚𝑢𝑟𝑖𝑛𝑒
3 = 32

𝑘𝑔 𝐶𝑂 2

𝑚𝑢𝑟𝑖𝑛𝑒
3  

Direct +aeration emissions+substrate emissions: 
(28

𝑘𝑔 𝐶𝑂 2

𝑚𝑢𝑟𝑖𝑛𝑒
3 +32

𝑘𝑔 𝐶𝑂 2

𝑚𝑢𝑟𝑖𝑛𝑒
3 )

2
=  𝟑𝟎

𝒌𝒈 𝑪𝑶 𝟐

𝒎𝒖𝒓𝒊𝒏𝒆
𝟑  

 

 

 




