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Abstract

Robust Hybrid Systems for Control, Learning, and Optimization in Networked
Dynamical Systems

by

Jorge Ivan Poveda Fonseca

The deployment of advanced real-time control and optimization strategies in socially-

integrated engineering systems could significantly improve our quality of life while

creating jobs and economic opportunity. However, in cyber-physical systems such as

smart grids, transportation networks, healthcare, and robotic systems, there still ex-

ist several challenges that prevent the implementation of intelligent control strategies.

These challenges include the existence of limited communication networks, dynamic

and stochastic environments, multiple decision makers interacting with the system,

and complex hybrid dynamics emerging from the feedback interconnection of physical

processes and computational devices.

In this dissertation, we study the problem of designing robust control and optimiza-

tion algorithms for cyber-physical systems using the framework of hybrid dynamical

systems. We propose different theoretical frameworks for the design and analysis of

feedback mechanisms that optimize the performance of dynamical systems without re-

quiring an explicit characterization of their mathematical model, i.e., in a model-free

way. The closed-loop system that emerges of the interconnection of the plant with

the feedback mechanism describes, in general, a set-valued hybrid dynamical system.

These types of systems combine continuous-time and discrete-time dynamics, and they

usually lack the uniqueness of solutions property. The framework of set-valued hybrid

dynamical systems allows us to study many complex dynamical systems that emerge in

different engineering applications, such as networked multi-agent systems with switch-
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ing graphs, non-smooth mechanical systems, dynamic pricing mechanisms in trans-

portation systems, autonomous robots with logic-based controllers, etc. We propose

a step-by-step approach to the design of different types of discrete-time, continuous-

time, hybrid, and stochastic controllers for different types of applications, extending

and generalizing different results in the literature in the area of extremum seeking con-

trol, sampled-data extremization, robust synchronization, and stochastic learning in

networked systems. Our theoretical results are illustrated via different simulations and

numerical examples.
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Notation

• The set of (positive) integers is denoted as (Z>0) Z.

• The set of (nonnegative) real numbers is denoted as (R≥0) R.

• The cartesian product of n ∈ Z>0 identical sets M is denoted by Mn.

• S1 denotes the unit circle in R2.

• Given a compact set A ⊂ Rn, and a column vector x ∈ Rn, we define |x|A :=
miny∈A |x− y|.

• B denotes a closed unit ball of appropriate dimension, ρB denotes a closed ball
of radius ρ > 0, and X + ρB denotes the union of all sets obtained by taking a
closed ball of radius ρ around each point in the set X .

• A set-valued mapping M : Rm ⇒ Rn is outer semi-continuous (OSC) at x ∈ Rm if
for all sequences xi → x and yi ∈M(xi) such that yi → y we have that y ∈M(x).

• A set-valued mapping M : Rm ⇒ Rn is locally bounded (LB) at x ∈ Rm if there
exists a neighborhood Ux of x such that M(Ux) ⊂ Rn is bounded.

• Given a set X ⊂ Rm the mapping M is said to be OSC and LB relative to X
if the set-valued mapping from Rm to Rn defined by M(x) for x ∈ X and ∅ for
x /∈ X is OSC and LB at each x ∈ X .

• co X denotes the closed convex hull of X , X denotes its closure, int(X ) denotes
its interior, and bd(X ) denotes its boundary. If X is finite we use card(X ) to
denote its cardinality.

• A function σL : R≥0 → R≥0 is of class L, i.e., σL ∈ L, if: (i) it is continuous, (ii)
non-increasing, and (iii) converging to zero as its argument grows unbounded.

• A function α : R≥0 → R≥0 is of class K, i.e., α ∈ K, if: (i) it is continuous, (ii)
zero at zero, and (iii) strictly increasing.
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Chapter 1

Introduction

The development of feedback controllers that are able to achieve adaption and learning

by using information from the environment has been motivated by the uncertain and

complex nature of real-life engineering systems deployed in unpredictable and dynamic

environments where external disturbances, aging of components, and time-varying op-

erating conditions may significantly deteriorate the performance of the system. In such

situations, control systems that are able to adjust their behavior under changes in the

environment emerge as a suitable control methodology to maintain a good performance

of the system. During the last 60 years, the concepts of learning and adaptation have

played a key role in the area of feedback control systems. Classic textbooks on control

systems that incorporate adaptation and learning include [1], [2], [3], [4], [5], [6], [7],

[8], [9], [10], [11], [12] and [13] for example. A recent survey on adaptive control for

multivariable systems was presented in [14].

One of the fields where control systems with learning and adaptation have recently

seen increased attention is in the area of networked multi-agent systems (MAS) [15],

[16], that is, systems comprised of multiple interacting subsystems, each subsystem

having individual dynamics and computational capabilities, as well as limited sensing,

1



Introduction Chapter 1

Figure 1.1: Networked Multi-Agent System with a centralized agent (left), full
information (center), and local information (right).

communication, and actuation. Depending on the structure of the underlying commu-

nication graph between the agents of the system, MAS can be centralized or decentral-

ized. In a centralized MAS there exists one central agent who has access to the state

information of all other agents, and who is able to compute the control action for all

agents of the network. On the other hand, in a decentralized or distributed MAS, agents

individually compute their own control signals, which are shared with a subset of the

other agents characterized by a communication graph. Figure 1.1 illustrates three MAS

with different communication graphs. Centralized MAS are typically not scalable, and

they possess the disadvantage of having a single point of failure that could potentially

shut down the complete system [15]. Decentralized and distributed systems, on the

other hand, are scalable, more robust, and in non-stationary environments they allow

for adaptation and self-organization of the system [17]. Recent technological advances

in communication and computation have made MAS ubiquitous, and today they can

be found in several engineering and societal systems such as in power generation and

distribution systems [18], [19], [20], groups of robots [21],[22],[23], water-distribution

systems [24], [25], urban traffic networks [26], [27], [28], swarms of UAVs [29], [30],

networks of sensors [31],[32],[33], and social networks [34],[35].

In this dissertation, we study robust learning and adaptive feedback mechanisms

for complex multi-agent dynamical systems. In particular, we study control algorithms

that improve the performance of dynamical systems in real time, without requiring an

accurate model of the plant under control, and with provable convergence, stability,

2



Introduction Chapter 1

and robustness properties. Feedback mechanisms of this kind have been historically

studied in the context of iterative learning control [36] , [37], extremum seeking con-

trol [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], model predictive control with

learning [48], [49], neuroadaptive control [50], [51], [52], [53], [54], [55], robust adaptive

dynamic programming [56], adaptive control with reinforcement learning [57], [58],

[59], adaptive control with policy iteration [60], [56], fuzzy-based control [61], [58],

and virtual reference and iterative feedback tuning [62], [63], [64]. However, although

these types of control systems have been studied since almost 70 years ago, it is only

recently that they have received significant attention in the context of MAS. This in-

terest has been motivated mainly by three facts: a) large amounts of data are now

available in engineering and societal systems, as well as advanced sensing algorithms,

communication technologies, and cheap massive computational power, b) distributed

coordination techniques for consensus [65], [66], synchronization [67], [68], formation

control [69],[70], and flocking [71], [72] have reached a certain level of maturity that

has lead to well established analysis and design tools based on graph theory [73], and

c) in MAS each agent can use information from the other agents to achieve coopera-

tive learning. This strategic interaction between agents has also motivated the study

of game-theoretic models and algorithms in multi-agent dynamical systems, e.g, [74],

[75], [76].

In the literature, learning control methods are also usually classified as “intelligent

control” systems [77], in which standard continuous-time feedback mechanisms interact

with discrete-event systems, automata mechanisms, supervisory control, etc. The com-

plex interactions between continuous-time dynamics and discrete-time dynamics that

emerge in these intelligent control systems generate a class of systems called hybrid

dynamical systems [78, 79, 80]. Indeed, as noted in [77] and [81], hybrid dynamical

systems (HDS) offer a powerful framework to model and analyze the qualitative proper-

3
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ties of learning and intelligent control mechanisms [82]. Nevertheless, although several

theoretical results for modeling and stability analysis of HDS have been obtained dur-

ing the last years, e.g., [78, 79, 80], their application to the development of intelligent

learning control methods with provable stability and robustness guarantees is still at

its infancy stage, especially in the multi-agent setting.

1.1 Hybrid Dynamical Systems

In this thesis we consider dynamical systems that incorporate continuous-time dy-

namics and discrete-time dynamics. These systems are called hybrid dynamical sys-

tems. While usually continuous-time dynamical systems are modeled as ordinary dif-

ferential and difference equations of the form

ẋ = f(x) and x+ = g(x), (1.1)

we will also consider set-valued dynamical systems of the form

ẋ ∈ F (x) and x+ ∈ G(x), (1.2)

where the mappings F (·) and G(·) are set-valued. Working with systems of the form

1.2 allows us to consider (1.1) as a particular case, as well as to analyze the robustness

properties of dynamical systems with possible discontinuous mappings f(·) and g(·).

In order to characterize the points in the space where the hybrid system is allowed to

evolve according to the differential or difference inclusion (1.2), we introduce the flow
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set C and the jump set D. The complete hybrid system can then be written as

ẋ ∈ F (x), x ∈ C (1.3a)

x+ ∈ G(x), x ∈ D. (1.3b)

A precise mathematical characterization of the properties of system (1.3), including

definitions of solutions, stability notions, and generic robustness principles, is presented

in Appendix A. This modeling framework will be used throughout this dissertation to

model and analyze the convergence and robustness properties induced by the feedback

mechanisms that we consider in this work.

1.2 Hybrid Extremum Seeking Control

The second chapter of this thesis introduces the paradigm of hybrid extremum

seeking control in hybrid dynamical systems. Extremum seeking control (ESC) is a type

of feedback adaptive control designed to achieve real-time optimization of dynamical

systems that have a well-defined steady state input-to-output mapping, also called

response map, which is only accessible by measurements. This type of feedback control

for black-box optimization of dynamical systems has been considered since the early

1920’s [83], and further developed in the 1950’s and 1960s in [84], [85]. Different

types of ESCs have been designed during the last years [86], [45], [87], being the

periodic perturbation approach presented in [88] one of the most populars due to its

simplicity and adaptability to different types of applications. The analysis of this

periodic perturbation approach relies on averaging and singular perturbation theory

for Lipschitz differential equations [89], which allowed the authors in [88] to establish a

local exponential stability result for the optimal point of the closed-loop system. This
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result was later extended in [90] to obtain a semi-global practical stability result, whose

foundation exploits the “two-time scale averaging” setting analyzed in [91]. In general,

these methods of analysis have proven to be instrumental for the design of several

different extremum seeking controllers during the last years, e.g., [92], [93], [94], [95],

[96], [97], [98], [99], [100], [101], [102], with applications in ABS break control [103],

formation flight optimization, [104], learning in non-cooperative games [105], [106],

dynamic resource allocation [107], [108], [109], robot source seeking [110], optimization

of wind turbines [111], and human exercise machine control [112], for example.

Deterministic ESCs have been historically designed and analyzed based on dynam-

ical systems theory for ordinary differential equations (ODEs) or difference equations

(i.e., recursions). However, the study of ESCs in systems with hybrid dynamics in

the plant and in the feedback loop remains unexplored. This type of hybrid dynam-

ics emerge frequently in real-world control and optimization algorithms that have the

form of switched systems, logic and event-based controllers, continuous-time systems

with weakly jumping parameters, supervisory-based control systems, multi-agent sys-

tems with switching communication topologies, etc. Moreover, the standard ESCs

developed for continuous-time systems preclude the implementation of discontinuous

dynamics commonly used in optimization to achieve finite-time convergence, as well

as set-valued optimization dynamics that arise in some learning and parametric opti-

mization problems.

Motivated by this background, we study in Chapter 2 a new class of ESCs that

allows us to implement continuous-time and discrete-time dynamics during the learning

process, guaranteeing a robust convergence to a neighborhood of the optimal solution

of the extremum seeking problem. We study ESCs based on averaging theory, as well

as some recent neuro-adaptive architectures that implement neural networks in the

feedback loop. In both cases, we developed a comprehensive theoretical framework for

6
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the design and analysis of ESCs, as well a representative examples and applications

where hybrid or/and non-smooth dynamics emerge in a natural way.

1.3 Online Learning for Dynamic Pricing in Soci-

etal Systems

Many of today’s engineered systems are tightly interconnected with their users, and

in many cases system performance depends greatly on user behavior [113]. Because

of this, game theory is playing a bigger a role in the analysis and design of many en-

gineering systems that interact with a large population of users making decisions in

real time. This type of socially integrated engineering systems, also called societal sys-

tems, appear in a variety of contexts in theory and practice; transportation networks

[114], ride-sharing applications [115], supply-chain management [116], water distribu-

tion networks [117], and electric power grids [117] are immediate examples. Since the

performance of societal systems depends heavily on the behavior of the users, a social

planner interested in optimizing the performance of the overall system will need to

consider methods to influence the behavior of the users in order to induce a positive

change on aggregate system performance [113]. Because of this, the problem of design-

ing “smart” pricing mechanisms for societal systems has been extensively studied in

the literature during the last years [118], [114], [119], [120], [113]. In [118] and [121]

the authors presented a class of marginal-based pricing mechanisms corresponding to

a static mapping that is implemented for a class of social dynamics. In these works, it

was shown via Lyapunov arguments that if the population dynamics satisfy a positive

correlation property, convergence towards the socially optimal Nash flow is obtained.

Flow-varying tolls were also considered in [122] and [123]. However, even though flow-
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varying tolls based on marginal cost can successfully influence the population towards

the socially optimal Nash equilibrium, some limitations prevent their application in

practical environments. In particular, as noted in [114], in practical applications users

dislike fast-changing tolls, and would prefer prior information of the tolls before making

a decision. Because of this, fixed tolls that stay constant for a fixed number of days

were considered in [114], and some interaction between a class of social dynamics and

the toll mechanism was allowed. It is well known that fixed tolls can be designed to

incentivize any feasible Nash equilibria in congestion games [124], [125].

One of the challenges of designing real-time pricing mechanisms for tolls in societal

systems comes from the complex nature of large-scale interconnected systems operating

under uncertain time-varying conditions. Because of this, social planners are also

faced with the challenge of characterizing or learning the model of the system by

using real-time data [126]. For instance, in transportation systems, where the delay

associated to a path or road may depend heavily on external factors such as time and

weather conditions, it is in general difficult to have a precise characterization of the

gradient of the cost function representing the delay. Nevertheless, the delay experienced

by drivers using a particular road can actually be measured by current technology

[114]. This suggest that designing distributed data-driven pricing mechanisms that

are agnostic with respect to the exact mathematical model of the game is a desirable

objective. This idea has been studied in some settings where one is interested in

achieving a particular target known equilibria [123]. Nevertheless, the case where one

is interested in converging to the set of unknown tolls that induce a socially optimal

Nash equilibrium in congestion games seems to be mostly unexplored.

Motivated by this background, we presented in Chapter 3 a novel class of algorithms

that achieve model-free distributed pricing in a class of societal systems describing

congestion games with affine cost functions and a finite number of available resources.
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The distributed dynamic pricing mechanisms are based on the observation that welfare-

gradient dynamics in affine congestion games with full utilization of resources can be

seen as a type of full-information linear Laplacian flow with respect to a vector of

induced cost functions with marginal tolls. We consider the case when the dynamics

of the society are instantaneous, as well as the case where the social dynamics cannot

be omitted by the pricing mechanism. Using some of the analytical tools developed

in Chapter 2 we establish a convergence result for the complete closed-loop system

involving the dynamic society and the dynamic pricing mechanism.

1.4 Event-Triggered Sampled-Data Extremization

The concept of event-triggered control [127], [128], has emerged as an interesting

control paradigm that can significantly improve the efficiency of a closed-loop system by

mitigating unnecessary waste of communication, computational, or physical resources.

In an event-triggered setting, the control algorithm is not periodically updated based on

a fixed sampling-time or step size, but rather based on the occurrence of an event. One

of the areas where event-triggered control methods have recently received significant

attention is in the area of learning and optimization in dynamical systems. Applications

of event-triggered methods in learning and optimization have been presented in the

context of distributed optimization of static maps [129], model-free learning in optimal

control settings [130], self-triggered learning in games [131], and event-triggered control

with neural networks [132], for example.

On the other hand, extremum seeking architectures that use discrete-time optimiza-

tion algorithms have historically been studied using a periodic sampled-data approach,

e.g., [133], [134], [135], [136]. In this sampled-data setting, a stable multiple-input-

single-output (MISO) nonlinear plant, having an unknown model, is interconnected
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with a discrete-time optimizer by means of a sampler/zero-order hold with a fixed

large sampling period T . Using a sequence of dither signals the plant is sequentially

perturbed at a given operational point, such that, by designing T to be sufficiently

large, a corresponding sequence of measurements of the output can be collected at an

approximated quasi-steady state condition. By using this sequence of measurements

the optimizer generates the new input signal, and the process is then repeated. This

approach was studied from a Lyapunov perspective in [133] and [87], and from a tra-

jectory based perspective in [135, Sect. 5]. Related works have been pursued in [134],

[137], and [138].

One of the major drawbacks of existing sampled-data approaches is that although

a fixed large sampling time T simplifies the stability analysis of the closed-loop system

by decoupling the dynamics of the plant and the controller, it also imposes a direct

limitation on the convergence rate of the closed-loop system. This limitation has been

extensively documented and discussed in [133, Chap. 2], [134, Remark 10], and [135,

Sec. 6.3]. In particular [134, Remark 10] shows that the rate of convergence of the

output of the plant to a neighborhood of its optimal value is proportional to T . In

fact, since the plant under control is assumed to be a black box, the selection of such T

must be performed based on a worst-case scenario, guaranteeing a quasi-steady state

condition of the plant for all times that a measurement of the output y is gathered,

and for all solutions generated by the closed-loop system from a given compact set of

initial conditions. Naturally, in most of the cases, for each given solution generated

by the closed-loop system, a worst-case selection of T leads to a sampling period that,

during most of the learning process, overestimates the waiting time required by the

plant to settle to a neighborhood of its steady-state condition. This overestimation is

particularly noticeable as the input signal approaches the optimal operational value,

and generates smaller variations in the states of the plant, which generally translates
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into smaller settling times for the continuous-time dynamics.

On the other hand, for a given continuous-time dynamical system, the worst-case

waiting time T generated by two different solutions with the same initial conditions can

significantly differ. This observation is important since systems generating non-unique

solutions include those with a right-hand side that is continuous but not Lipschitz

continuous, discontinuous systems whose analysis is based on a related differential in-

clusion, systems arbitrarily switching between a finite number of vector fields, and

plants with parameters that are known to only lie on compact and convex sets, for

example. In this case, in order to apply existing results in sampled-data based opti-

mization and extremum seeking, a fixed sampling time T would need to be selected as

the largest waiting time among all the worst-case waiting times generated by all solu-

tions of the plant from a given compact set of initial conditions, a selection that would

clearly further deteriorate the convergence time of the closed-loop system, irrespective

of the discrete-time controller or optimization algorithm being used.

Motivated by these challenges, Chapter 4 presents a theoretical framework to de-

sign and analyze a class of novel efficient and model-free event-triggered sampled-data

based controllers for set-valued nonlinear systems with well-defined response maps. The

type of systems presented in this chapter have three main features: First, in contrast

to existing approaches, the update frequency of the discrete-time control dynamics

is not constant, but ruled by the occurrence of an event, namely the detection of a

quasi-steady state condition in a monitored triggering signal. Second, by introducing

the concept of target optimizing dynamical system (TODS) we reformulate and char-

acterize the class of well-posed set-valued discrete-time learning dynamics that can be

used to solve the model-free extremization problem. Third and finally, in contrast to

existing results in the literature, the class of controllers presented in this chapter is not

restricted to solve only standard smooth and nonsmooth maximization problems, but
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also learning problems in game-theoretic settings. We provide a complete stability and

robustness characterization of the closed-loop even-triggered system, and we illustrate

the fast convergence properties of the algorithm via simulations.

1.5 Robust Coordination of Sampled-Data Systems

The development of analytical tools for the coordination and control of networked

cyber-physical systems (CPS) has received significant attention during the last years

[139], [140], [141]. This interest has been motivated by a dramatic increase in compu-

tational power and information exchange in large scale networked systems. In CPS,

the complex interactions between physical dynamics and digital dynamics require the

implementation of additional protocols and coordination mechanisms that guarantee

a desirable performance of the system. An example of this, emerges in the context of

networked multi-agent sampled-data systems, where decentralized digital controllers

are designed to coordinate a large number of plants. These plants may represent in-

dustrial processes [142], autonomous vehicles [143], [144], or biological systems [145],

for example. For a recent survey in the area of networked multi-agent hybrid systems

see [146].

Analytical and constructive tools for networked sampled-data systems have been

studied in [147], [148], [149], and [150], for example. For this type of systems, a popu-

lar approach to design control mechanisms is the so called emulation approach, where

the control architecture is first assumed to be designed for an ideal simplified nominal

system that ignores delays, quantization, asynchrony, etc, and where the controller is

later modified to cope with the nonideal nature of the original system. While this

approach is well established for networked systems with a unique sampling mechanism

that grants access to the network, the case where multi-agents implement multiple
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asynchronous sampling mechanisms needs to be treated with care. In particular, as

noted in [141, Remarks 5 and 7], when multiple clocks trigger the control dynamics of

the MAS, arbitrarily small perturbations can dramatically change the sampling and

updating times in the closed-loop system, leading to potentially unstable behaviors.

This situation does not emerge in settings such as those considered in [151], [152], [149],

where a minimum inter-event time is guaranteed between samplings. However, in MAS

with local triggering mechanisms, it is possible to have situations where multiple fi-

nite samplings and updates occur simultaneously in the network. For the case when

the control dynamics are designed to emulate a nominal stable system, the simulta-

neous updates in the MAS may induce closed-loop systems that have zero margins of

robustness under arbitrarily small perturbations.

Motivated by this background, we present in Chapter 5 a novel framework to design

robust decentralized feedback mechanisms for networked multi-agent CPS, where each

agent corresponds to a sampled-data system with individual sampling mechanisms and

set-valued periodic nonlinear dynamics, and where the goal is to stabilize a pre-defined

compact set. In order to achieve this goal, we study the robustness issues that emerge

in multi-agent sampled-data systems with sampling mechanisms triggered by individ-

ual agent’s clocks. To address the potentially unstable behavior that emerges due to

sequential updates in the MAS, and inspired by [140], we introduce the idea of “pre-

jump sampling control”, which allows agents to coordinate their sampling and update

times, such that the emergent behavior in the asynchronous networked system emu-

lates the behavior of a synchronous networked nominal MAS designed a priori. Unlike

existing results for networked sampled-data systems with single triggering mechanisms

[147], [148], [149], and multiple triggering mechanisms [141], [140], [139], we developed

our results for well-posed sampled-data systems with general plants characterized by

difference inclusions, and general controllers characterized by periodic difference in-
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clusions parameterized by logic states. This allows us to cover the special cases of

plants modeled by differential equations and controllers modeled by non-periodic dif-

ference equations. Moreover, control systems with integer or logic states are common

in switched control systems with hysteresis [153], coordinated learning mechanisms in

games [154], event-triggered control [155], robust moving horizon controllers [156], and

discrete-time periodic systems [142], for example. In fact, as shown in [157], logic

states are indeed necessary to achieve global and robust asymptotic stability in dynam-

ical systems under some topological or discontinuous obstructions.

The idea of pre-jump sampling control requires the implementation of synchro-

nized clocks in the networked system. Therefore, the second main contribution of this

chapter corresponds to a novel decentralized robust synchronization algorithm for a

network of periodic resetting clocks and logic states. Unlike existing results in the

literature of clock synchronization and pulse-coupled oscillators [158], [159], [160], our

results guarantee global and robust synchronization, i.e., there is no problematic set

of measure zero of initial conditions from which synchronization cannot be achieved.

To achieve this, we use a set-valued resetting rule that implements a small individual

parameter ri ∈ (0, N−1), where N is the number of agents in the network. The com-

plete closed-loop system is studied using the formalism of HDS presented in [78]. This

allows us to employ Lyapunov tools, invariance principles, and robustness corollaries

for HDS, such that a semi-global practical asymptotic stability result can be estab-

lished for the closed-loop system. For the clock synchronization problem we formulate

our results for general directed time-varying graphs that are strongly connected only

“sufficiently often”. The results of this chapter are instrumental for the design and

coordination of classic stabilizing controllers in multi-agent sampled-data systems, as

well as distributed learning algorithms for sampled-data systems [154], multi-agent

sampled-data extremum seeking controllers [161], decentralized estimation algorithms
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[162], and in general multi-agent discrete-time systems with local clocks designed under

the assumption of a single clock.

1.6 Stochastic Learning in Sampled-Data Systems

Chapter 6 studies the problem of robust Nash seeking in sampled-data Nash games,

which are non-cooperative games where the players correspond to sampled-data sys-

tems sharing information via a directed communication graph, and who aim to selfishly

maximize their own individual payoff function by controlling their own action. This

type of games models some applications in engineering and networked control systems

where different agents with conflicting interests interact [163], [164], [165], [166], [167].

One of the main challenges for the implementation of classic learning dynamics in prac-

tical applications comes from the model-based nature of most of the existing algorithms.

In this way, assuming a full communication structure between players, full knowledge

of their mathematical models, as well as a synchronous behavior may not be realistic

in many scenarios [168], [107]. In fact, in practical settings where a perfect model of

the system is not available, it may be necessary to implement learning dynamics that

do not explicitly depend on the mathematical model of the agents, and which still can

guarantee convergence to the Nash equilibrium of the game. Motivated by the unde-

sirable predictable behavior of deterministic systems, stochastic learning dynamics for

discrete-time systems were considered in [169] and [170]. Stochastic continuous-time

learning dynamics were also recently studied in [171].

On the other hand, the area of security has been one of the most active research

areas in the control community during the last years [172], [173], [174], [175]. Indeed,

given the increasing size and exposure of automated systems, it is desirable to design

control and optimization algorithms that are robust under multiple types of adversarial
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attacks. In the setting of sampled-data systems, this problem has been studied in [176],

[177], and [178], for example. However, in the setting of model-free stochastic learning

dynamics under persistent attacks in sampled-data systems, few results have been

developed in the literature.

Motivated by this background, we developed in Chapter 6 a class of model-free

stochastic learning dynamics for sampled-data Nash games, where each player is a

sampled-data system with a periodic sampler/zero-order hold mechanism, and set-

valued continuous-time dynamics that are assumed to be unknown for the agents.

For this system, we first show that convergence towards a neighborhood of the Nash

equilibrium of the game can be achieved, even though the control systems of the agents

are subject to attacks that persistently deactivate the control dynamics. This result is

established by characterizing an upper bound on the amount of attacks that the control

systems can withstand during a given period of time, and by imposing a causality

condition on the nature of the attacks. Namely, in order to preserve the stability

conditions of the system, the attacker must not be able to anticipate the value of the

random variables used by the stochastic control system. Once a stability result has

been established for the network of sampled-data systems under persistent attacks,

we consider the case when a subset of the agents have control systems that have

been permanently incapacitated, i.e., agents that are not able to learn. For MAS

with stubborn agents, we characterize the stability properties of the closed-loop system

in terms of input-to-state stability notions in the mean-square sense. We finish by

illustrating how non-causal attacks can systematically induce false Nash equilibria in

the game by interfering the learning of the gradient of the response map associated to

each agent.
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Chapter 2

Hybrid Extremum Seeking Control

In this chapter, we will present a general framework to design and analyze a class

of time-invariant set-valued hybrid extremum seeking controllers (HESCs) with con-

tinuous and discrete-time dynamics expressed as dynamic inclusions, and with states

constrained to evolve on specific closed sets characterizing potential constraints on the

optimization problem. These HESCs are suitable to control/optimize not only plants

described by differential equations with a Lipschitz right-hand side, but also plants

described by well-posed differential inclusions or/and hybrid systems, commonly used

to analyze discontinuous and switched systems. Since dynamical systems described by

set-valued mappings usually lack of the uniqueness of solutions property, we do not in-

sist on it, but rather we analyze all the possible solutions that may emerge from a given

compact set of initial conditions. We consider two types of HESCs: Averaging-based

HESC, which are analyzed based on averaging theory for hybrid systems; and neuro-

adaptive HESCs, which rely on the approximation properties of neural networks. In

both scenarios we establish a semi-global practical result for the emerging closed-loop

system. Different applications of our theoretical results are presented for single-agent

and multi-agent systems .
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2.1 Averaging-Based Hybrid Extremum Seeking for

Differential Inclusions

We start this chapter by considering averaging-based HESCs applied to plants

described by differential inclusions.

2.1.1 Model of the Plant

Consider a dynamical system with state θ ∈ Rm, input u ∈ Rn, and output y ∈ R,

modeled by the constrained differential inclusion

θ̇ ∈ P (θ, u), (θ, u) ∈ Λθ × U, y = ϕ(θ, u), (2.1)

where P : Rm × Rn ⇒ Rm is a set-valued mapping, ϕ : Rm × Rn → R is an output

function, θ evolves in the compact set Λθ := λθB ⊂ Rm, λθ ∈ R>0, and u evolves in the

closed set U := Û + B, where Û ⊂ Rn. Systems of the form (2.1) with θ evolving on

Rm can be considered by taking λθ to be sufficiently large to encompass all complete

solutions of practical interest. The unitary inflation on Û is motivated by the fact that

we will design the control system such that the state u will satisfy u(t, j) ∈ Û+aB ⊂ U

for all (t, j) in the domain of the solutions, where a ∈ (0, 1) is a tunable parameter.

We make the following regularity assumption on system (2.1).

Assumption 1 The set Û is closed. The set-valued mapping P (·, ·) is OSC, LB, and

convex-valued relative to Rm × U, and the mapping ϕ(·, ·) is continuous.

Remark 1 The mathematical model given by (2.1) is quite general in the sense that it

captures differential equations with a continuous right-hand side, as well as discontin-

uous plants modeled by their corresponding Krasovskii regularizations [78, Def. 4.13].

18



Hybrid Extremum Seeking Control Chapter 2

In the former case, a differential equation with a continuous right-hand side p(θ, u) can

be represented as (2.1) by means of the set-valued mapping

P (θ, u) :=

 p(θ, u) (θ, u) ∈ Λθ × U

∅ (θ, u) /∈ Λθ × U,

which satisfies Assumption 1, while in the later case the Krasovskii regularization of a

discontinuous vector field p(θ, u), which is defined as

P (θ, u) :=
⋂
δ>0

co p
(
(θ + δB) ∩ Λθ, (u+ δB) ∩ U

)
, (2.2)

also satisfies Assumption 1, see [78, Lemma 5.16].

Common examples of plants with a discontinuous right-hand side include mechanical

systems with Coulomb friction [179, Chapter 12], systems arbitrarily switching between

a finite number of continuous vector fields [78, Example 2.14], and plants with uncertain

models and internal discontinuous feedback controllers [89].

The differential inclusion (2.1), together with the auxiliary dynamics u̇ = 0, can

be modeled as an open-loop HDS (1.3) with state (x, u) and with no jumps, i.e., with

D := ∅ and G := ∅, given by HP := {Λθ × U, P × {0}, ∅, ∅}. We make the following

assumption on this HDS.

Assumption 2 There exists a set-valued mapping H : Rn ⇒ Rm that is OSC and LB

relative to U, such that for each ρ > 0 the compact set Mρ := {(θ, u) : θ ∈ H(u), u ∈

U ∩ ρB} is UGAS for the restricted HDS HPρ := {Λθ × (U ∩ ρB), P × {0}, ∅, ∅} with

state [θ>, u>]>.

Assumption 2 generalizes the classic assumptions made for ESC, e.g., [90, Assumptions

1 and 2], for the case that the plant under control is given by a constrained set-valued
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dynamical system. Note that we do not assume that H(u) ⊂ Λθ for all u ∈ U, since

for the closed-loop system we will always restrict u to lie on a compact set that can

be selected arbitrarily large to encompass all complete solutions of interest. Once u

has been restricted to a compact set, the constant λθ can be selected large enough to

guarantee the containment H(u) ⊂ Λθ.

Example 1 Consider a simple harmonic oscillator with Coulomb friction and control-

lable velocity offset, given in open-loop by the discontinuous dynamics

εθ̇1 = θ2 − u, εθ̇2 = − B
M

sgn(θ2 − u)− K

M
θ1, u̇ = 0, (2.3)

with Λθ = λθB ⊂ R2, U = R, (ε, B,K,M) ∈ R4
>0, and λθ >

B
K
> 0 selected sufficiently

large to characterize all the complete solutions of interest. The Krasovskii regularization

of this system affects only the dynamics of θ2, and is given by

θ̇2 ∈ P2(θ, u) =


− B
M
− K

M
θ1 if θ2 > u[

− B
M
, B
M

]
− K

M
θ1 if θ2 = u

B
M
− K

M
θ1 if θ2 < u.

(2.4)

In this case, for each ρ > 0 the constrained system HPρ renders the set Mρ := {(θ, u) :

θ ∈ [−B
K
, B
K

]×{u}, u ∈ R∩ ρB} UGAS [180, Section 3], thus satisfying Assumption 2.

Example 2 Consider an open-loop switched linear system given by εθ̇ = pq(θ, u) :=

Aqθ +Bqu, u̇ = 0, U := R, (ε, λθ) ∈ R2
>0, with matrices

Aq =

 −1 3
2
− 5

4
q

−9
4

+ 5
4
q −1

 , Bq =

 1

9
4
− 5

4
q

 , (2.5)

where q ∈ {1, 2}. Under arbitrary switching this system is conveniently modeled by
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the differential inclusion εθ̇ ∈ {αp1(θ, u) + (1 − α)p2(θ, u), α ∈ [0, 1]}, u̇ = 0, which

satisfies Assumption 1. Moreover, for each ρ > 0 the system HPρ renders the set

Mρ := {(θ, u) : θ ∈ {u}×{0}, u ∈ R∩ ρB} UGAS. This can be established by using the

common Lyapunov function V = (θ1 − u)2 + θ2
2, thus satisfying Assumption 2.

To guarantee a well defined extremum seeking problem in set-valued dynamical systems

of the form (2.1), the following assumption is needed.

Assumption 3 For each u ∈ U and each pair θ, θ′ ∈ H(u) we have that ϕ (θ, u) =

ϕ (θ′, u).

Note that for Example 1 any output function ϕ(·, ·) whose first argument depends

only on θ2 will satisfy Assumption 3. On the other hand, for Example 2 we have that

Assumption 3 holds for any output function depending on the overall state θ.

2.1.2 Problem Statement

Based on Assumptions 1, 2, and 3, the steady-state input-to-output mapping asso-

ciated to the dynamical system (2.1), also known as the response map, is well-defined

in U, and given by

J(u) := {ϕ(θ, u) : θ ∈ H(u)}. (2.6)

The main goal in an extremum seeking problem is to control in real-time the input u

of system (2.1) by using only measurements of the output y, i.e., in a data-driven way,

such that an application-dependent optimization problem of the form

optimize f(J(u)), s.t. u ∈ Û, (2.7)

is solved. In equation (2.7), the mapping f(·) captures the control objective associated

to the plant (2.1). In general, this objective is formulated based on the particular
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application. We make the following assumption on (2.7).

Assumption 4 The response map J : Rn → R is smooth, and the set of solutions of

problem (2.7), denoted by O ⊂ Rn, is nonempty and compact.

Remark 2 Systems of the form (2.1) can also be used to study networked systems,

i.e., multi-agent systems (MAS) with individual outputs ϕi, for all i ∈ {1, . . . , N}, be-

ing N the number of subsystems. In this case, Assumptions 3 and 4 should be satisfied

for each response map Ji(u) := {ϕi (θ, u) : θ ∈ H(u)} associated to each subsystem

i ∈ {1, . . . , N}, where the characterization of the set O will depend on the particu-

lar application, and where the response map of each subsystem may depend only on

the actions of a subset of the other subsystems. This case is relevant for distributed

optimization problems in multi-agent systems, as well as for Nash equilibrium seeking

problems in game theoretic scenarios where the set O corresponds to the set of Nash

equilibria. See for instance [105], [106], [169], and [101], for different examples of

Lipschitz continuous ESCs studied in these settings.

2.1.3 Extremum Seeking Controllers with Hybrid Learning

Dynamics

We now consider a class of time-invariant gradient-based HESCs comprised by

a dynamic gradient estimator with states (ξ, µ) ∈ Rn × R2n, and a hybrid learning

mechanism with overall state xu,z := (û, ẑ) ∈ Rn×Rr. Together, the gradient estimator

and the learning mechanism regulate the input of the plant (2.1) towards the optimal

set O by using only measurements of the output of the plant (2.1). This idea is

illustrated in the conceptual scheme presented in Figure 2.1.
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Figure 2.1: Conceptual Scheme of HESC for set-valued plants.

Continuous-Time Gradient Estimator

The gradient estimator for the response map J is characterized by a system with

states (ξ, µ) ∈ Rn × R2n, input y given by the output of (2.1), and continuous-time

dynamics  ξ̇

µ̇

 =

 −ωL · (ξ − 2
a
y · D µ

)
Φ(ω) µ

 , (ξ, µ) ∈ Λξ × Sn, (2.8)

where µ := [µ1, . . . , µn]> ∈ Sn, µi = (µi,1, µi,2)> ∈ S1, for all i ∈ {1, . . . , n}, ξ evolves

in a compact set Λξ := λξB ⊂ Rn, where λξ ∈ R>0 is selected sufficiently large to

encompass all the complete solutions of interest, D := [e1,0, e2,0, . . . , ei, . . . ,0, en,0]

is a block matrix where 0 ∈ Rn corresponds to a column vector of zeros, and ei ∈ Rn

corresponds to the unitary vector with the ith entry equal to 1. The ω-parameterized

23



Hybrid Extremum Seeking Control Chapter 2

block matrix Φω : R2n → R2n is given by

Φω :=



Ωω1 0 . . . 0

0 Ωω2 . . . 0

...
...

. . .
...

0 0 . . . Ωωn


, (2.9)

where the block components Ωωi are given by

Ωωi :=

 0 ωi

−ωi 0

 , ∀ i ∈ {1, . . . , n}, (2.10)

ω = [ω1, . . . , ωn]>, ωi = εκi, ωL = εω, (ε, ω̄) ∈ R2
>0, κi is a rational number that

satisfies κi 6= κj for i 6= j and (i, j) ∈ {1, . . . , n}, u = û + a Dµ, where a ∈ (0, 1) is

a small tunable parameter, and û ∈ Rn is an auxiliary state with dynamics that will

be characterized in the next section. The continuous-time dynamics associated to the

linear oscillator µ̇ = Φ(ω)µ in (2.8) generates a vector of periodic signals with odd

components given by µi,1(t) = cos(ωit)µ2i−1(0) + sin(ωit)µ2i(0), for each i ∈ {1, . . . , n}.

These signals can then be injected into the closed-loop system in order to estimate, on

average, the derivatives of J .

Remark 3 A linear oscillator of the form (2.9) is not the only dynamical system that

can be used to generate the dither signals µ. For example, well-posed nonlinear systems

having an asymptotically stable limit cycle could also be used to generate the dither

signals.

Apart from the compactness assumption on the set Λξ, system (2.8) essentially

mirrors the behavior generated by the standard gradient estimators used in Lipschitz

continuous extremum seeking controllers for standard optimization [96], [95], and for
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learning in games [106], [101]. However, constraining the state ξ to lie in a compact

set is required in our case in order to apply averaging and singular perturbation results

for hybrid systems.

Remark 4 Dynamic Hessian estimators for the implementation of Newton-based al-

gorithms could also be considered in (2.8). This is a relevant case since switching

between gradient and Newton-based algorithms is a common approach to improve the

convergence rate during the optimization process. However, since we pursue non-local

stability results, we restrict our attention to gradient-based learning dynamics.

Remark 5 In the multi-agent systems case (see also Remark 2), the output y in (2.8)

will correspond to a vector with entries given by the outputs of each of the individual

subsystems, and the product y · Dµ will correspond to the Hadamard product. In this

case every agent will implement its own individual oscillator with matrix (2.10).

Hybrid Learning/Optimization Dynamics

The hybrid learning dynamics are characterized by an auxiliary state xu,z :=

[û>, ẑ>]> ∈ R`, where z ∈ Rr can be used to model states that act as timers, monitors,

logic modes, etc, r ∈ Z≥0, and n+ r = `. The evolution of the hybrid learning dynam-

ics is characterized by a HDS Ĥδ :=
{
Cu × Cz, F̂δ, Du ×Dz, Ĝδ

}
, with Cu, Du ⊂ Rn,

Cz, Dz ⊂ Rr, and where δ ∈ R>0 is a small tunable parameter that gives additional

flexibility for the design of Ĥδ. In the closed-loop system the hybrid learning dynamics

Ĥδ receive as input the state ξ generated by the dynamics (2.8), and the evolution of

the state xu,z is ruled by the equations

ẋu,z ∈ F̂δ
(
xu,z, ξ

)
, xu,z ∈ Cu × Cz, (2.11a)

x+
u,z ∈ Ĝδ

(
xu,z
)
, xu,z ∈ Du ×Dz, (2.11b)
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where F̂δ : R` × Rn ⇒ R` and Ĝδ : R` ⇒ R` are set-valued mappings. In order to

design the data of system Ĥδ we assume that ξ := ∇J(û), being ∇J : Rn → Rn the

gradient of the response map J . The following regularity and stability assumptions

characterize the data (2.11) of Ĥδ.

Assumption 5 There exists a δ∗ ∈ R>0 such that for all δ ∈ (0, δ∗] the following

holds:

(a) Cu × Cz and Du ×Dz are closed.

(b) F̂δ(·, ·) is OSC, LB, and convex-valued relative to (Cu × Cz) × Rn, and Ĝδ(·) is

OSC and LB relative to Du ×Dz.

(c) For each compact set K ⊂ (Cu × Cz) ∪ (Du × Dz) there exists ε∗ ∈ R>0 such

that for each xu,z(0, 0) ∈ K and measurable e(·) with unbounded time domain and

supt≥0 |e(t)| ≤ ε∗, the HDS (2.11) with perturbed flow map F̂δ(xu,z,∇J(û) + e)

generates at least one complete solution.

Assumption 6 The sets Cu and Du satisfy Cu ∪Du = Û, and there exists a compact

set Ψ ⊂ Cz×Dz, such that the set A := O×Ψ is semiglobally practically asymptotically

stable1 (SGP-AS) as δ → 0+ for the HDS (2.11) with ξ := ∇J(û), where O is given

by Assumption 4.

Items (a) and (b) in Assumption 5 are needed in order to obtain a well-posed closed-

loop HDS with good robustness properties. Item (c), on the other hand, is mainly

needed to guarantee that arbitrarily small perturbations on ∇J do not preclude the

existence of complete solutions for system (2.11). This last property is relevant to

achieve constrained extremum seeking on bounded sets.

1See Definition 9 in Appendix A.
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Remark 6 For gradient-based Nash seeking schemes for MAS, Assumptions 5-6 must

hold replacing ∇J by the vector of individual partial derivatives
[
∂J1(û)
∂û1

, . . . , ∂JN (û)
∂ûN

]>
.

The class of learning dynamics described by the HDS (2.11) is quite general in the sense

that it requires only a well-posed HDS rendering the optimal compact set A SGP-AS

with respect to a tunable parameter δ. In the case that the mappings F̂δ and Ĝδ do

not depend on any parameter δ, Assumption 6 is just a UGAS requirement on A. If,

additionally, the dynamics (2.11) do not depend on any auxiliary state ẑ ∈ Rr, the sets

Ψ, Cz, and Dz, can be neglected. We will use the convention r = 0 to specify this case.

Finally, note that if in addition we have that Du = ∅, Cu = Rn, and F̂δ is a Lipchitz

continuous function, Assumptions 5 and 6 reduce to the classic standing assumptions

for purely continuous-time unconstrained extremum seeking controllers found in the

literature.

Different examples of hybrid learning dynamics that can be modeled as (2.11) will

be presented in Sections 2.1.4 and 2.1.5.

Closed-loop System

The complete closed-loop HESC is obtained by interconnecting the plant (2.1), the

gradient estimator dynamics (2.8), and the hybrid learning dynamics (2.11), leading to

a system with overall state x := [x>u,z, ξ
>, µ>, θ>]> ∈ R`+3n+m. This system is a HDS
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represented by H := {C,F,D,G}, with data given by

C : = (Cu × Cz)× Λξ × Sn × Λθ, (2.12a)

ẋ ∈ F (x) : =



k F̂δ(xu,z, ξ)

−ωL
(
ξ − 2

a
ϕ(θ, u) · D µ

)
Φ(ω) µ

P (θ, û+ a D µ)


, (2.12b)

D : = (Du ×Dz)× Λξ × Sn × Λθ, (2.12c)

x+ ∈ G(x) : =



Ĝδ(xu,z)

ξ

µ

θ


, (2.12d)

where k = ωLσ, and σ ∈ R>0. The following theorem characterizes the stability and

convergence properties of the closed-loop HDS (2.12). The proof is presented in the

Appendix.

Theorem 1 Suppose that Assumptions 1-6 hold. Then for each compact set K̃ satis-

fying O × Ψ ⊂ int (K̃) and each ε > 0, there exists a pair (λ∗ξ , λ
∗
θ) ∈ R2

>0 such that

for each λξ ≥ λ∗ξ and each λθ ≥ λ∗θ there exists δ∗ ∈ R>0 such that for each δ ∈ (0, δ∗)

there exists a∗ ∈ R>0 such that for each a ∈ (0, a∗) there exists σ∗ ∈ R>0 such that for

each σ ∈ (0, σ∗) there exists ω̄∗ ∈ R>0 such that for each ω̄ ∈ (0, ω̄∗) there exists ε∗

such that for each ε ∈ (0, ε∗) there exists a compact set Aε satisfying

Aε ⊂ ((O ×Ψ) + εB)× λξB× Sn × λθB, (2.13)

which is UGAS for the closed-loop system (2.12) with restricted flow set Ĉ∩K̃×λξB×
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Sn × λθB and restricted jump set D̂ ∩ K̃ × λξB× Sn × λθB.

The next corollary is a direct consequence of Theorem 1 and Remark 31.

Corollary 1 Consider the HDS (2.12) and suppose that Assumptions 1-6 hold. Sup-

pose also that the sets Cu, Du, Cz and Dz are bounded. Then, the result of Theorem 1

holds with the original flow and jump set given by (2.12a) and (2.12c).

Theorem 2.12a is a type of “semi-global” practical stability result, similar in spirit

to those in [90], [95], [96], for purely continuous-time systems. However, some subtle

differences emerge for the hybrid case. In particular, for the case that the hybrid ex-

tremum seeking is performed in unbounded sets, e.g., when Cu = Du = Rn, Theorem

2.12a establishes GP-AS of the optimal set A for initial conditions and trajectories of

the state component xu,z defined in the set (Rn × (Cz ∪Dz)) ∩ K̃, where the compact

set K̃ can be selected arbitrarily large. Note that although this implies that certain

solutions of the system might not be complete, they will always be bounded, and the

existence of complete solutions will always be guaranteed by selecting λξ and λθ suf-

ficiently large. Indeed, any solution of interest of system (2.12) can be guaranteed to

be complete by taking the compact sets K̃, Λξ, and Λθ sufficiently large, or alterna-

tively, by defining these sets as the positively invariant level sets of Lyapunov functions

obtained via converse Lyapunov theorems [181]. Note that Theorem 1 does not ex-

plicitly relate in any way the rate of convergence of the learning dynamics (2.11) with

the rate of convergence of the closed-loop system, i.e., in general, the KL function

characterizing the convergence towards the set Aε depends on the parameters of the

controller.

Similarly, Corollary 1 says that if the hybrid extremum seeking is performed on

bounded sets, i.e., if Cu, Du, Cz, and Dz are compact, the stability result holds for sys-

tem (2.12) with the original flow and jump sets given by (2.12a) and (2.12c). Note that
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Theorem 1 does not specify the type of hybrid time domains related to the solutions

of system (2.12), which means that the hybrid system could generate solutions that

are purely continuous, eventually continuous, eventually discrete, etc. However, since

the mapping Ĝδ is independent of J and ∇J , systems generating purely or eventually

discrete solutions will most likely be ruled out by Assumption 6.

Remark 7 When Du := ∅, no solutions with jumps exist, and the HESC reduces to a

constrained continuous-time set-valued extremum seeking control. If additionally F̂δ is

a Lipschitz continuous function, and Cu = Rn, we recover the standard gradient-based

extremum seeking control for black-box optimization of [90], [95], or [96].

For the HESC (2.12) no prominent role is given to the discrete-time dynamics of the

states (ξ, µ, θ) in (2.12d). HESCs with active jumps in the plant, dither signal, filter,

and optimizer, require a different set of analytical tools, and will be considered later

in Section 2.2.

2.1.4 Examples of Hybrid Learning Dynamics

We now present some simple examples of classes of hybrid learning dynamics that

satisfy Assumptions 5 and 6, and that emerge frequently in optimization, learning, and

adaptive control. These dynamics are related to the hybrid system

˙̂u ∈ fq (û,∇J(û)) , q̇ = 0, (û, q) ∈ Û×Q, (2.14a)

û+ = û, q+ ∈ Q, (û, q) ∈ Û×Q, (2.14b)

where fq : Rn × Rn ⇒ Rn is OSC, LB, and convex-valued relative to Û × Rn, q ∈ R,

Cu = Du = Û ⊂ Rn is a closed set, and Q ⊂ R is a compact set.
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Arbitrary Switching Learning Differential Inclusions with a Common Lya-

punov Function

Let Q := {1, . . . , qmax}, where qmax ∈ Z≥1 and consider a collection of learning

modes fq with state û ∈ Rn, and dynamics given by (2.14a). For this dynamics the

state q represents a switching signal jumping according to (2.14b), indicating which

learning mode q ∈ Q is active at every time t. The following proposition is a simple

consequence of the fact that a continuous common Lyapunov function for a set of finite

well-posed differential inclusions is also a Lyapunov function for the closure of their

convex combination.

Proposition 1 Suppose that for each q ∈ Q the mapping fq in (2.14a) satisfies item

(c) in Assumption 5. Suppose also that there exists α1, α2 ∈ K∞, a continuous positive

definite function W : R≥0 → R≥0, and a continuous function V : dom(V ) → R≥0,

with Û ⊂ dom(V ) that is continuously differentiable on an open neighborhood of Û

and satisfies: a) α1(|û|O) ≤ V (û) ≤ α2(|û|O), and b) 〈∇V (û), f̃〉 ≤ −W (|û|O), for all

û ∈ Û, f̃ ∈ fq, and q ∈ Q. Then, the system

˙̂u ∈ F̂ := co
⋃
q∈Q

fq(û,∇J(u)), û ∈ Û, (2.15)

has the structure of (2.11) with state xuz = û, r = 0, ξ = ∇J , and sets Cu = Û,

Du = ∅, Cz = Dz = Ψ = Ĝδ = ∅. Moreover, system (2.15) satisfies Assumptions 5

and 6, and for each (û,q) that is a solution of the switching system (2.14), û is also a

solution of (2.15).

Common Lyapunov functions satisfying the conditions of Proposition 1 emerge fre-

quently in optimization algorithms since the same payoff function J is generally used

to construct a candidate Lyapunov function. For example, this is the case in the
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standard gradient ascent and Newton methods, as well as related discontinuous dy-

namics such as the Newton variable structure algorithm or the continuous Jacobian

matrix transpose algorithm, for quadratic cost functions (see [182, Ch. 2]). A common

Lyapunov function also emerges frequently in algorithms for distributed optimization,

and learning in multi-agent systems with switching communication topologies [65]. It

also emerges frequently in many learning dynamics for unconstrained and constrained

potential games [183, Ch. 7.1].

Switched Learning Differential Inclusions with Dwell-time and Average

Dwell-time Constraints

A common Lyapunov function may not exist for some classes of seeking dynam-

ics. This applies, for instance, to some learning dynamics in game theoretic problems

where a potential function does not exist [183, Chapter 7.2]. Since it is well known that

switched systems do not necessarily inherit the stability properties of the individual dy-

namics, a standard approach consists on regulating the jumps of q ∈ Q := {1, . . . , qmax}

in system (2.14), aiming to satisfy a dwell-time or an average dwell-time constraint.

These types of constraints on the jumps can be induced by using an automaton with

state τ1 ∈ R≥0, and hybrid dynamics given by

τ̇1 ∈ [0, η1], τ1 ∈ [0, N0], (2.16a)

τ+
1 = τ1 − 1, τ1 ∈ [1, N0], (2.16b)

where η1 ∈ R>0 and N0 ∈ R≥1. It is well known [181, Proposition 1.1] that for each

solution of the HDS (2.16) corresponds a hybrid time domain E such that, for each of

its elements (s, i), (t, j) ∈ E with s+ i ≤ t+j, and signal q : E 7→ Q, the average dwell-

time constraint N(t, s) := j−i ≤ η1(t−s)+N0 holds, where N(t, s) denotes the number

32



Hybrid Extremum Seeking Control Chapter 2

of switching times in the interval [s, t] [184]. In fact, each hybrid time domain E with

elements (s, i), (t, j) ∈ E, s + i ≤ t + j, satisfying this average dwell-time constraint

can be generated by system (2.16). When N0 = 1 the switching times generated by

system (2.16) satisfy a standard dwell-time constraint [185]. The following proposition

is a direct consequence of [78, Corollary 7.28].

Proposition 2 Suppose that for each q ∈ Q the mapping fq in (2.14a) satisfies item

(c) in Assumption 5, and renders the set O UGAS. Then, the HDS generated by Equa-

tions (2.14) and (2.16) has the structure of (2.11) with r = 2, δ = η1, ẑ := [q, τ ]>,

Cz := Q × [0, N0], Dz := Q × [1, N0], Ψ := Q × [0, N0], F̂δ := fq × {0} × [0, η1], and

Ĝδ := {û} ×Q× {τ1 − 1}. Moreover, this HDS satisfies Assumptions 5 and 6.

Switched Learning Inclusions with Unstable Modes.

A HDS can be use to model the evolution of learning dynamics under persistent

failures in communication or sensing, jamming signals, adversarial agents, and, in

general, different adversarial scenarios that may cause instability in the closed-loop

system. To address this case, the compact set Q := {1, . . . , qmax} is partitioned as

Q = Qu ∪ Qs, where the modes q ∈ Qs characterize the stable dynamics, while the

modes q ∈ Qu characterize the unstable dynamics. For this type of systems, good

behavior of the solutions can be guaranteed as long as the amount of activation time of

the unstable modes Qu is bounded by a time-ratio constraint [186], [187], which usually

has the form T (s, t) ≤ T0 + η2(t − s), where η2 ∈ [0, 1), T0 ∈ R≥0, and where T (s, t)

denotes the total activation time of modes qu ∈ Qu between times s and t. This type

of time-ratio constraint can be induced by using a time-ratio monitor with an auxiliary
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state τ2 ∈ R≥0 evolving according to the hybrid dynamics

τ̇2 ∈ [0, η2]− IQu(q), τ2 ∈ [0, T0], (2.17a)

τ+
2 = τ2, τ2 ∈ [0, T0], (2.17b)

where IQu(·) corresponds to the indicator function. The following Lemma shows that

for each solution of the HDS (2.17), corresponds a hybrid time domain E, such that

for each of its elements (s, i), (t, j) ∈ E with s + i ≤ t + j and signal q : E → Q we

have that the time-ratio constraint holds. In fact, each hybrid time domain E with

elements (s, i), (t, j) ∈ E with s+ i ≤ t+ j, satisfying the time-ratio constraint can be

generated by system (2.17).

Lemma 1 For each solution of the HDS (2.17), corresponds a hybrid time domain

E, such that for each of its elements (s, i), (t, j) ∈ E with s + i ≤ t + j and signal

q : E → Q, with Qu ⊂ Q, we have that

T (s, t) :=

∫ t

s

IQu(q(r, j(r)))dr ≤ T0 + η2(t− s), (2.18)

where T (s, t) denotes the total activation time of modes q ∈ Qu between times (s, t),

and where j(r) is the minimum j such that (r, j) ∈ E. Moreover, each hybrid time

domain E with elements (s, i), (t, j) ∈ E with s+ i ≤ t+ j satisfying the bound (2.18),

can be generated by (2.17).

The following proposition is a straightforward extension of the results in [186, Theorem

2] and [187, Theorem 1], for well-posed differential inclusions without inputs.

Proposition 3 Suppose that for each q ∈ Q the mapping fq in (2.14a) satisfies item

(c) in Assumption 5. Consider the HDS composed by equations (2.14), (2.16), and
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(2.17). Suppose also that there exist µ ∈ R≥1, α1,q, α2,q ∈ K∞, λs ∈ R>0, λu ∈ R>0,

and continuously differentiable functions Vq : Û→ R≥0, such that

α1,q(|û|O) ≤Vq(û) ≤ α2,q(|û|O), ∀ (q, û) ∈ Q× Û, (2.19a)

〈∇Vqs , f̃〉 ≤ − λsVqs(û), ∀ (qs, û, f) ∈ Qs × Û× fq, (2.19b)

〈∇Vqu , f̃〉 ≤λuVqu(û), ∀ (qu, û, f) ∈ Qu × Û× fq. (2.19c)

Vp(û) ≤µVq(û), ∀ (q, p), û ∈ Q× Û. (2.19d)

Then, if λs > η1 log(µ) + η2(λs + λu), the HDS composed by equations (2.14), (2.16),

and (2.17), has the structure of (2.11) with r = 3 z := [q, τ1, τ2]>, Cu = Du = Û,

Cz = Q × [0, N0] × [0, T0], Dz = Q × [1, N0] × [0, T0], and Ψ := Q × [0, N0] × [0, T0].

Moreover, this HDS satisfies Assumptions 5 and 6.

Remark 8 The continuous differentiability of V in Propositions 1 and 3, can be re-

laxed to Lipschitz continuity by making use of generalized gradients and invariance

principles for HDS, see [188] for further details.

The verification of the assumptions in Proposition 3 is straightforward for some classes

of learning dynamics, specially linear dynamics that arise when the response map J is

quadratic. This is possible even if the parameters of the response map are unknown.

In fact, conditions (2.19a) and (2.19b) simply ask for UGAS of O for each mode fq,

where q ∈ Qs. Similarly, condition (2.19c) simply asks that solutions of the differential

inclusions associated to the unstable modes q ∈ Qu have no finite escape times. Ad-

ditionally, condition (2.19d) is easily satisfied if the Lyapunov functions are quadratic.

In this case conservative estimates of the parameters λs, λu, and µ, can be used to

design the parameters η1 and η2.
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Learning Inclusions with Time-varying Parameters

In some learning and optimization problems the parameters associated to the sys-

tem vary slowly in time. For example, this is the case when the amplitude of the dither

signals decays in time, or when the response map J has slow-varying weakly-jumping

parameters. This situation can be studied by taking Q as a compact but not necessarily

finite set, and by allowing the flow dynamics in the HDS (2.14) to depend explicitly

on the parameter q as ˙̂u ∈ f(û,∇J(û), q). The slow-varying weakly-jumping dynamics

of q are modeled as

q̇ ∈ η3B, q+ ∈ q + η3B, q ∈ Q, η3 ∈ R>0, (2.20)

which replaces the q-dynamics in (2.14). For this scenario we assume that for each

q ∈ Q there exists an optimal compact set Oq ⊂ Û, and we use a simple average

dwell-time automaton of the form (2.16) to eliminate purely discrete-time solutions.

The following proposition is a direct consequence of [78, Corollary 7.27].

Proposition 4 Let Oq ⊂ Û satisfy Assumption 4 for each q ∈ Q. Suppose that for

each q ∈ Q the mapping fq in (2.14a) satisfies item (c) in Assumption 5 with flow

map given by f(û,∇J(û), q), and q-dynamics given by (2.14). Suppose also that for

each q ∈ Q the dynamics ˙̂u ∈ f(û,∇J(û), q) render the set Oq UGAS. Then, this HDS

combined with the dynamics (2.16) has the structure of (2.11) with r = 2, δ = η3,

z := [q, τ1]>, Cu = Du = Û, Cz = Q × [0, N0], Dz := Q × [1, N0], O := {(û, q) : û ∈

Oq, q ∈ Q}, and Ψ := Q× [0, N0]. Moreover, this HDS satisfies Assumptions 5 and 6.

36



Hybrid Extremum Seeking Control Chapter 2

Hybrid Systems for Learning on Smooth Manifolds

Since any smooth compact manifold without boundary is not contractible [189,

Def. B.13. and Lemma 2.1.9], and since the basin of attraction of an asymptotically

stable equilibrium point of any differential equation with a continuous right-hand side

is contractible [189, Thm. 2.1.8], it is impossible to achieve global asymptotic stability

of an equilibrium in compact manifolds without boundary using smooth feedback.

A natural example where this situation emerges is in the solution of learning and

optimization problems on manifolds like the unit circle S1. In fact, let û ∈ S1 be a

state evolving according to the dynamics

˙̂u = αSû, where S =

 0 −1

1 0

 , (2.21)

which describes the evolution of a point û on the unit circle. Let J : S1 → [a, b] be

a smooth and surjective function having exactly two critical points in S1, given by û∗

and û′, which satisfy the conditions

〈∇J(û∗), Sû∗〉 = 0, 〈∇J(û′), Sû′〉 = 0, J(û∗) = a, J(û′) = b. (2.22)

where 〈·, ·〉 is the standard inner product. Then, by defining α in (2.21) as a feedback

function of the form

α := κ(û) = −〈∇J(û), Sû〉, (2.23)

it follows that

J̇ = ∇J(û)> ˙̂u = −∇J(û)> (〈∇J(û), Sû〉)Sû = −〈∇J(û), Sû〉2 ≤ 0, ∀ û ∈ S1,
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Figure 2.2: Objective function J(û) = −û1, and skewed potentials V1(θ1), V2(θ2)
with the position û ∈ S1 expressed as the angle θ(û) ∈ [0, 2π).

and J̇ = 0 if and only if 〈∇J(û), Sû〉 = 0, which, by construction, can only happen at

the critical points. Therefore, with α defined as in (2.23), we obtain that system (2.21)

is a gradient descent system on S1 with respect to the function J , rendering locally

asymptotically stable the point û∗, with basin of attraction S1\{û′}.

In order to be able to obtain a global asymptotic stability result instead of a local

result, we can implement a hybrid learning mechanism that switches between two

different potential functions generated from J by means of a couple of diffeomorphisms

Tq : S1 → S1, q ∈ {1, 2}. These diffeomorphisms shift the points û ∈ S1, except û∗, such

that when the potential function J is evaluated at the shifted points, we end up with

two different potentials V1 and V2 with a common minimum point, but different peaks.

Figure 2.2 illustrates this idea. Using these two potential functions, one can design a

Vq-gradient-based descent mechanism that switches to the function Vq whenever the

point û is too close to the maximizer of V3−q. This idea can be implemented by means
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of the hybrid learning dynamics

˙̂u = κTq(û)Sû

q̇ = 0

 , (û, q) ∈ Cu,q :=

{
(û, q) ∈ S1 × {1, 2} : min

q∈{1,2}
Vq(û)− Vq(û) ≥ −δ

}

(2.24a)

û+ = û

q+ ∈ Q(û, q)

 , (û, q) ∈ Du,q :=

{
(û, q) ∈ S1 × {1, 2} : min

q∈{1,2}
Vq(û)− Vq(û) ≤ −δ

}
,

(2.24b)

where the mapping Q(û, q) is defined as

Q(û, q) :=

{
q ∈ {1, 2} : Vq(û) = min

q∈{1,2}
Vq(û)

}
,

and the feedback law α = κTq(·) is defined as

κTq(û) =
κ(Tq(û))

`q(û)
, `q(û) :=

 1 if J(û) ≤ γ

1 + kq(J(û)− γ)〈∇J(û), Sû〉, if J(û) ≥ γ
,

where the gain kq must be selected sufficiently small, and the constant γ satisfies

γ ∈ [a, b) and it is assumed to be known, i.e., it is assumed that we know that the

smallest value of J in S is smaller than γ, and its biggest value in S is bigger than

γ. When the state (û, q) is in the flow set Cu,q, the control dynamics guides the

state to the minimum of the warped potential function Vq(x). Because the warping

process produces maximum separation between the values of the warped functions

at their respective peaks, the jump set Du,q is designed to trigger jumps whenever the

function in use has a significantly higher value than its counterpart. Continuity ensures

that the jump set extends to a neighborhood around each peak, creating hysteresis
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in switching that confers robustness. In fact, under an appropriate construction of

the family of diffeomorphisms required by the learning dynamics (2.24), the closed-

loop system guarantees robust UGAS of the point û∗ that minimizes J , satisfying

Assumption 5. In order to construct the family of diffeomorphisms required by the

hybrid system (2.24), we define the mappings exp(ω(·)) and Φkq(·) as

exp(ωS) :=

cos(ω), − sin(ω)

sin(ω), cos(ω)

 , (2.25)

Φkq(û) :=


I, J(û) ≤ γ

exp(0.5kq(J(û)− γ)S)2, J(û) > γ.

(2.26)

Then, we define Tq : S1 → S1 as

Tkq(û) := Φkq(û)û. (2.27)

If the parameter kq satisfies the bound

|kq| <
1

max {|α′(J − γ)〈∇J, Sû〉| : û ∈ S1, J > γ}
, (2.28)

for all q ∈ {1, 2}, we have that (2.27) is a valid diffeomorphism that leaves unchanged

the minimum point û∗, see [190] for details. Then, it is easy to see that system (2.24)

has the form of (2.14).
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Hybrid Learning Dynamics for Non-Convex Optimization

In general, constrained optimization problems of the form 2.7 cannot be robustly

solved by a standard gradient descent dynamical system of the form

˙̂u = −∇J(û), (2.29)

even when barrier functions are added to J to “push” the state away from the boundary

of the feasible set. For instance, consider the scenario in R2 presented in Figure 2.3,

where the state space has been divided in three sets M1, M2, and K, and where the

feasible set corresponds to R2\N , being N an “obstacle” that needs to be avoided

by the trajectories of the system. Consider an optimization algorithm given by a

dynamical system with state z̃, dynamics ˙̃z = f(z̃), and initial condition z̃(0) = z0,

where f(·) is assumed to be locally bounded, and where it is assumed that for all z0 ∈ R2

there exists at least one Carathéodory complete solution2. Due to the topological

structure of the problem, there exists a boundary M such that for initial conditions

on each side of M, i.e., M1 and M2, the trajectories of the system approach the set

K either from above the set N or from below. Because of this, it is possible to find

arbitrarily small signals e(t) acting on the states of the system (or on the vector field),

such that some of the solutions of the dynamical system will remain in a neighborhood

of the lineM, and will not converge to the set K, where the minimizer of J is located.

The following assumption and proposition, corresponding to [191, Assump 6.4 and

Thm. 6.5], establish this fact.

Assumption 7 There exists a T > 0 such that for each z̃0 ∈M and each ρ > 0 there

exist points z̃1(0), z̃2(0) ∈ {z̃0}+ ρB, for which there exist (Carathéodory) solutions z̃1

2A Caratheodory solution to the system ˙̃z = f(z̃) on an interval I ⊂ R≥0 is an absolutely continuous
function z̃ : I → Rn that satisfies ˙̃z(t) = f(z̃(t)) almost everywhere on I. A Carathéodory solution is
complete if I = [0,∞).
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Figure 2.3: Feasible set, obstacle N , and minimizer of J .

and z̃2, respectively, satisfying z̃1(t) ∈M1\M and z̃2(t) ∈M2\M for all t ∈ [0, T ]. �

Proposition 5 [191, Thm 6.5] Suppose that Assumption 7 holds. Then for every

positive constants ε, ρ′, ρ′′, and every z̃0 ∈ M + εB such that z̃0 + ρ′B ⊂ R2\N and

z̃0 + ρ′′B ⊂ (M1 ∪M2) there exist a piecewise constant function e : dom(e)→ εB and

a (Carathéodory) solution z : dom(z) → R2\N to ˙̃z = f(z̃ + e(t)) such that z̃(t) ∈

(M + εB) ∩ (M1 ∪M2) ∩ (z0 + ρ′B) for all t ∈ [0, T ′) for some T ′ ∈ (T ∗,∞], where

dom z̃ = dom ẽ, T ∗ = min{ρ′, ρ′′}m−1, and m = sup{1+|f(η)| : η ∈ z0+max{ρ′, ρ′′}B}.

In order to avoid that the stability properties of the optimization dynamics are

lost under arbitrarily small adversarial signals e(t) acting on (2.29), we can instead

implement a hybrid gradient mechanism. Following the ideas of [192], we can divided

the feasible set in two parts. The division is indexed by a logic state q ∈ {1, 2}, which

generates two different partitions for the control system. The resulting dynamical

system is a switched system based on a mode-dependent localization function Jq defined

as

Jq(û) := −J(û) +B (dq(û)) , (2.30)

where dq(û) =
∣∣û∣∣2R2\Oq

. The function | · |2R2\Oq maps a position û ∈ R2 to the squared

valued of its distance to the set R2\Oq, and B(·) is a barrier function defined as follows
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B(z) =

 (z − ρ)2 log
(

1
z

)
, if z ∈ [0, ρ]

0, if z > ρ,
(2.31)

with ρ ∈ (0, 1] being a tunable parameter to be selected sufficiently small. The sets O1

and O2 are constructed as shown in Figures 2.4 and 2.5. Namely, we construct a box

centered around the obstacle N , with tunable height h, and we project the adjacent

sides of the box to divide the space in two parts. Note that O1 ∪ O2 covers R2 except

for the box that includes the obstacle. Also, note that under this construction the

function (2.30) is smooth for each q.

To define the flow and jump sets, let µ > 1, and λ ∈ (0, µ−1). Using the localization

function Jq (2.30), we define the sets

Cu,q : =
{

(û, q) ∈ R2 × {1, 2} : Jq(û) ≤ µJ3−q(û)
}
, (2.32a)

Du,q : =
{

(û, q) ∈ R2 × {1, 2} : Jq(û) ≥ (µ− λ)J3−q(û)
}
. (2.32b)

The blue line and blue arrows in Figures 2.4 and 2.5 indicate the points in Oq that also

belong to the flow set Cu,q, while the red line and the red arrows indicate the points

in Oq that also belong to the jump set Du,q. Note that since (µ− λ) > 1 the sets Cu,q

and Du,q always overlap. The switching rule for q is then given by the mapping

q+ = Q(q) := 3− q, (û, q) ∈ Du,q, (2.33)

and the learning dynamics of û are given by,

˙̂u = −∇Jq(û), (û, q) ∈ Cu,q, (2.34)

By [192, Thm. 4.4], this hybrid learning mechanism guarantees robust global conver-
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Figure 2.4: Partition of the feasible set, corresponding to q = 1.

MINIMIZER

N

O2

Figure 2.5: Partition of the feasible set, corresponding to q = 2.

gence to the minimizer of J , provided Jq is continuously differentiable on Oq, positive

definite with respect to the minimizer u∗, and radially unbounded in Oq. Therefore,

the learning dynamics (2.33)-(2.34) satisfy Assumption 5.

2.1.5 Numerical Examples of Averaging-Based HESC

We now present some numerical examples illustrating the application of the hybrid

extremum seeking controllers described in the previous section.

“Finite-time”-constant rate ESC

Consider a simple SISO system with internal dynamics given by (2.3) in Example

1, with ε = 0.1, B = K = M = 1, and output function given by ϕ := −(θ2 − 5)2. This

plant generates a response map given by J = −(u2 − 5)2. For this system consider an
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Figure 2.6: Evolution of θ using discontinuous ESC.

unconstrained HESC of the form (2.12), with learning dynamics (2.11) given by

˙̂u ∈ F̂ (ξ) :=


k if ξ > 0

[−k, k] if ξ = 0

− k if ξ < 0,

(2.35)

which corresponds to the Krasovskii regularization (2.2) of the discontinuous system

˙̂u = k sgn(ξ). In this case we select λθ = λξ = 50. It is easy to see that this dynamics

satisfy Assumption 5 with r = 0, Du = Cz = Dz = ∅, and Cu = Rn. Moreover, it

was shown in [193, Proposition 7] that this learning dynamics satisfy Assumption 6

for the given type of J . Figures 2.6 and 2.7 show the evolution in time of the states

θ and û converging to a neighborhood of the optimal operation point û∗ = 5. It is

worth noting that in this case the notion of “finite-time” convergence is redundant,

since the definition of practical asymptotic stability is per se a notion of finite-time

stability. Nevertheless, it can be seen that the trajectories of û approximately inherit

the constant evolution rate of the original discontinuous learning dynamics (2.35). The

parameters in (2.12) are selected as k = 0.1, a = 0.1, ωL = 0.5, and ω = 25.
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ESC for Non-Strictly Contractive Games

Consider a MAS with 3 agents having simple first-order linear dynamics given by

εθ̇i = −θi + ui, with ε = 0.1 for all i ∈ {1, 2, 3}, aiming to maximize their individual

output functions given by ϕ1 = θ1(−θ2 + θ3), ϕ2 = θ2(−θ1+θ3), ϕ3 = θ3(−θ1 + θ2),

subject to the constraint that their actions belong to an O(a)-inflation of the compact

set Û := {u ∈ Rn
≥0, u

>1 = 1} for all time. The output functions ϕi are available only

by measurements. This problem corresponds to the one discussed in Remarks 2, 5, and

6, and it can be characterized based on the vector of partial derivatives of the response

maps Ji as a contractive (also called stable) anti-potential rock-paper-scissors game

[183, Chapter 3], with unique Nash equilibrium given by u∗ = [1/3, 1/3, 1/3]>. Since

the game characterized by the vector [∂J1

∂u1
, ∂J2

∂u2
, ∂J3

∂u3
]> is not strictly contractive [183,

Def. 3.3.1], existing gradient-based ESCs, such as those in [101], cannot guarantee

convergence to u∗ subject to the constraints of Û. To solve this Nash seeking problem

consider a HESC of the form (2.12), with Du = Dz = Cz = ∅, Cu = Û, and set-valued

learning dynamics given by

˙̂u ∈ −û+

{
w ∈ Cu : w>ξ = min

û∈Cu
û>ξ

}
, (2.36)
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Figure 2.8: Three different solutions of the Best-response ESC from different initial
conditions on the vertices of Cu.

which correspond to the well-known best response dynamics [183]. Since Cu is nonempty,

convex, and compact, the set-valued mapping (2.36) is LB, OSC, and convex for

each (û, ξ) ∈ Cu × Rn, satisfying Assumption 5. Moreover, using the Lyapunov

function V (û) = maxi∈{1,2,3} ξi − û>ξ it was shown in [183, Theorem 7.2.7], that if

ξ = [∂J1

∂u1
, ∂J2

∂u2
, ∂J3

∂u3
]>, this dynamics render the point u∗ UGAS in Cu, thus satisfying

Assumption 6. Figure 2.8 shows the evolution of three different trajectories of the

state û generated by system (2.12), evolving on Cu, with initial conditions located in

each of the three vertices of the simplex, and converging to a neighborhood of u∗. The

parameters were selected as k = 5 × 10−4, a = 0.1, ωL = 0.5, ω = 25. In this case it

was used λθ = λξ := 250.

Nash Seeking with Adversarial Agents

Consider two switched linear dynamical systems of the form (2.5), with states

θ1 := [θ1,1, θ1,2]>, θ2 := [θ2,1, θ2,2]>, and individual inputs [u1, u2] ∈ R2. Each agent

i seeks to maximize its individual output yi = ϕi(θ1,1, θ2,1) at steady-state, for all

i ∈ {1, 2}, by controlling its own individual action ui, using only measurements of

yi. Since the action of each agent affects the payoff function of the other agent, this
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problem describes a standard noncooperative game. The output functions of the players

are given by ϕi = [θ1,1, θ2,1]Qi[θ1,1, θ2,1]> + [θ1,1, θ2,1]Bi + Ci, with C1 := 600, C2 := 0,

and matrices Q1 := [−1, 0.5; 0.5, 0] , Q2 := [0, 0.5; 0.5,−1] , B1 := [50,−30]>, B2 :=

[−30, 30]>, which correspond to the quadratic cost functions presented in the duopoly

market example considered in [105, Section 2]. At steady state the switching plant

(2.5) generates the condition θi,1 = ui, such that the response maps are described

by quadratic payoffs with unique Nash equilibrium u∗ = [130/3, 110/3]>. To achieve

convergence to a neighborhood of u∗ each player implements a Nash seeking scheme,

similar as the one considered in [105], where the learning dynamics (2.11) are given by

˙̂ui = qi
∂Ji(û)
∂ûi

, which for the case that qi = 1 guarantees global convergence to u∗ under

strict concavity-convexity assumptions on Ji [194, Theorem 9]. However, we assume

that during the learning process each player can also behave in an adversarial unstable

way with qi = −1, where this adversarial behavior may emerge either by an individual

decision, or induced by an external action, jamming signal, or hardware failure. Then,

the behavior of each player is modeled by a state qi ∈ {−1, 1}, where qi = −1 (resp.

qi = 1) corresponds to the player i being (resp. not being) adversarial, for i ∈ {1, 2}.

Since qi is an individual decision state, its update rule is modeled by the difference

inclusion q+
i ∈ {−1, 1}, for all i ∈ {1, 2}. Therefore, the hybrid learning dynamics have

the form of (2.14), with continuous map fq :=
[
q1

∂J1(û)
∂û1

, q2
∂J2(û)
∂û2

]>
, and sets Û = R2,

and Q =
⋃4
i=1Mi, where M1 := {1}2 (no adversarial players); M2 := {−1} × {1}

(player 1 adversarial); M3 := {1} × {−1} (player 2 adversarial); M4 := {−1}2 (both

players adversarial). To guarantee convergence to u∗ we rely on a HESC of the form

(2.12), and Proposition 3, where a dwell-time automaton and a time-ratio monitor

are used to bound the frequency and the activation time of the adversarial modes

Qu := M2 ∪M3 ∪M4, guaranteeing a good behavior of the system via the stable mode

Qs := M1. The conditions of Proposition 3 can be easily verified by defining ũ = û−û∗,
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Figure 2.9: Trajectories of û, and active modes.

and considering the Lyapunov function V = ũ>Aũ, with matrix A = [1,−0.5;−0.5, 1],

which satisfies (2.19a) with α1(s) = 1
2
s2, and α2(s) = 3

2
s2. Condition (2.19b) is satisfied

for all λs ∈ (0, 2
3
], condition (2.19b) is satisfied with λu = 18, and condition (2.19d)

is satisfied with µ = 1. Then, Proposition 3 is satisfied with η1 = 1 and η2 = 0.03.

Figure 2.9 shows a simulation of û, converging to the Nash equilibrium u∗. We used

T0 = N0 = 1 and simulated a solution that during mode 1 (no adversarial actions)

evolves at constant rate η̇2 = η̇1 = 0.03 until τ1 and τ2 hit 1, time at which a jamming

mode, selected randomly, turns active, and the timer τ1 is reset to 0. During a jamming

mode the states (τ1, τ2) flow with the dynamics τ̇2 = −0.97 and τ̇1 = 0.97, until τ1 hits

1 and τ2 hits 0, time at which τ1 is reset to zero and mode 1 turns active again. The

internal linear switched dynamics (2.5) switch periodically every 0.1 seconds. The

inset shows which of the modes Mi is active at every time. Figure 2.10, on the other

hand, shows the behavior generated by selecting the parameter η2 = 0.6, violating the

conditions of Proposition 3, and using only M4 as adversarial mode. In this case, by

not constraining enough the time that players can be adversarial, instability in the

system emerges. The other parameters are selected as a = 0.2, k = 1.5, ωL = 0.03,

ω1 = 3.4, ω2 = 3.
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Figure 2.10: Instability generated by persistent adversarial actions.

Real-Time Optimization on the Unit Circle S1

Consider the C1 function J : R2 → R, defined as

J(û) = −û1, (2.37)

where û := [û1, û2]>. Restricted to S1, this function is surjective, and its critical

points in S1 occur at û∗ = [1, 0] and û′ = [−1, 0]. In order to minimize J in S1

we make use of the learning dynamics presented in Section 2.1.4. A couple of valid

picewise diffeomorphisms for this function can be obtained by selecting α∗ = t2, γ∗ = 0,

k1 = −k2 = 0.5. Fig. 2.11 shows the implementation of the HESC using the hybrid

learning dynamics 2.24. The amplitude of the dither is selected as a = 0.01, which

induces small excursions in a neighborhood of S1. We also used ωL = 1, and ω = 40.

Note that the hybrid extremum seeker emulates the behavior of the nominal hybrid

system, this time obtaining convergence to a neighborhood of û∗.
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Figure 2.11: Global optimization on S1 using HESC.

Robust Source Seeking with Obstacle Avoidance

Consider a group of 6 autonomous vehicles aiming to locate the source of a signal

J while simultaneously they achieve a particular formation. We assume that only one

of the vehicles, termed the leader vehicle, can sense the intensity of the signal J , which

is maximal at the location of the source. Agents should also avoid a small obstacle

located at the point [1, 0]>. For the purpose of simulation we assume that this signal

has a quadratic form J = 1
2
(x1 − 3)2 + 1

2
y2

1. We emulate the situation where the 6

vehicles are initially located at the entrance of a room, and where the source of the

signal J is only know to be located at the other side of the room, with the obstacle N

located between the entrance of the room and the source of the signal J . The dynamics

of the vehicles are assumed to be of the form

˙̂ux,i = vx,i (2.38a)

˙̂uy,i = vy,i (2.38b)

where ûx,i and ûy,i are the positions in the x-coordinate and y-coordinate, respectively,

of the ith vehicle. Without loss of generality we assume that the leader vehicle is

characterized by the index i = 1. The other vehicles, characterized by the indices
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i ∈ {2, 3, 4, 5, 6}, are followers that can sense only the position of the leader vehicle

and the position of neighboring vehicles defined in terms of a communication graph G.

In order to achieve robust source seeking with obstacle avoidance, the leader vehicle

can implement a HESC with learning dynamics given by (2.32)-(2.34), which implement

a switched learning mechanism based on the localization function (2.30). Nevertheless,

since the dynamics of the position of the vehicles are given by (2.38), and it is possible

to control only the velocities vx,i and vy,i, we cannot directly implement the switched

gradient descent dynamics (2.34). Therefore, inspired by the ideas of [195], we consider

a modified HESC where the velocities vx,1 and vy,2 of the leader are defined as

vx,1 = aωµ2 − kξx (2.39a)

vy,2 = −awµ1 − kξy, (2.39b)

and where the signals µ(t) = [µ1(t), µ2(t)]> are generated by the oscillator µ̇1 = ωµ2,

µ̇2 = −ωµ1, with µ(0) constrained to S1. The signals ξx and ξy are generated by the

dynamics

ξ̇x = −ω̄(ξx − 2a−1Jq(û1)µ1) (2.40a)

ξ̇y = −ω̄(ξy − 2a−1Jq(û1)µ2). (2.40b)

Using the change of variables ũx,1 = ûx,1 − aµ1 and ũy,1 = ûy,1 − aµ2, it can be shown

(see [196] for details) that the feedback law (2.39) applied to (2.38) generates dynamics

of the form

˙̃ux,i = kξx, (2.41a)

˙̃uy,i = kξy (2.41b)
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and

ξ̇x = −ω̄(ξx − 2a−1Jq(ũ1 + aµ1)µ1) (2.42a)

ξ̇y = −ω̄(ξy − 2a−1Jq(ũ1 + aµ2)µ2), (2.42b)

which have the form of (2.12b). To control the position of the followers we consider

cooperative feedback laws of the form

vx,i = −β
∑
jNi

(ûx,i − ûx,j − ûfx,i + ûfx,j) (2.43)

vy,i = −β
∑
jNi

(ûy,i − ûy,j − ûfy,i + ûfy,j), (2.44)

where β > 0 is a tunable parameter. Assuming that the leader vehicle is a globally

reachable node for the communication graph G with fixed position (û1,x, û1,y), if the

followers implement the feedback law (2.43), their positions will converge to the point

p∗x = ûfx + 1N(û1,x(0) − ûf ), p∗y = ûfy + 1N(û1(0) − ûf1). Thus, as long as the leader

moves sufficiently slow compared to the followers, the formation will be maintained.

The parameters of the controller are selected as h = 0.5, ρ = 0.4, λ = 0.09, µ = 1.1,

a = 0.01, ω̄ = 1, k = 1, and β = 4. The desired formation is characterized by the pairs

(ûx,i, ûy,i) in set Ξ = {(−2, 0.5), (−2,−0.5), (−1.13, 0), (0, 0), (−2.86, 1), (−1.13,−1)},

which assigns translationally invariant coordinates to the vehicles, fixing a formation.

Using the hybrid extremum seeking control we obtain Figure 2.12 which shows the

position of the vehicles at 7 different time instants, over the virtual level sets of Jq,

for q ∈ {1, 2}. After approximately 5 seconds the follower agents have achieved the

desired formation behind the leader agent (represented by the black dot). The leader

implements the hybrid feedback law using q(0) = 2, and at approximately 9 seconds

the leader enters the jump set and updates its logic state as q+ = 1, flowing now -on
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Figure 2.12: Evolution of the vehicles over the level sets of J1.

average- over the level sets shown in Figure 2.12, until convergence to the source of

the signal is achieved. Since the box around the obstacle is constructed sufficiently

large compared to the size of the formation, the followers also avoid the obstacle by

achieving the formation around the leader in a faster time scale and by maintaining

the required formation while the leader slowly moves toward the unknown source of

the signal.

Distributed Optimization of HVAC Systems with Switching Communication

Graphs

Consider a multi-agent networked system characterizing an electricity market where

5 users share information and control their own individual loads in order to coopera-

tively optimize the energy consumption of the network. This problem is similar to the

one considered in [197, Section VII]. However, in contrast to the results of [197, Section

VII], we consider the case where the communication graph of the network is not time

invariant, but rather characterized by a time-varying undirected graph G(t) that can
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Figure 2.13: Three communication graphs for the users of the network.

take any of the three configurations shown in Figure 2.13. For simplicity, we consider

that the users have no internal physical dynamics, such that the response maps Ji are

static maps defined as

Ji(ui) := ρi(uii − ūii)2 + ui

(
1

2

(
n∑
j=1

uij − 640

)
+ 10

)
, (2.45)

which is accessible only to the ith agent via measurements, and where the parameters

ūii are defined as ū := [120, 140, 160, 180, 200]>, and ρ := [5.2, 5.4, 5.6, 5.8, 6]>. We

refer the reader to [198] for a justification of the structure and parameter values of the

cost functions (2.45). By using the communication graph GC(t), and measuring their

individual cost function (2.45), the agents aim to cooperatively find the optimal energy

consumption u∗ ∈ Rn that minimizes the social cost J =
∑N

i=1 Ji, i.e., agents aim to

agree in a common optimal point u∗ such that u∗i = u1i = u2i = . . . = uNi, for all

i ∈ {1, . . . , n}. If one had knowledge of the mathematical form of (2.45) one has that

the theoretical optimal solution to this problem is

u∗ = [82.23, 103.63, 124.93, 146.14, 167.27]>.

However, in order to converge to u∗ in a model-free way, we consider a HESC of the
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form (2.12), where the learning dynamics of the ith agent are defined as

˙̂u ∈ F̂δ,i(û, ξi) :=
1

δ
·
∑

j∈NC,i(t)

sign(ûj − ûi)− γ · ∇Ji(û), (2.46)

which is based on the optimization dynamics presented in [199], and where sign : Rn ⇒

Rn maps each entry zi ∈ R of a vector z ∈ Rn to a set sign(zi) ⊂ R defined as

sign(zi) :=


{1}, if zi > 0

[−1, 1] , if zi = 0

{−1}, if zi < 0

, (2.47)

which again corresponds to the Krasovskii regularization of the standard scalar function

sign(·). To analyze the learning dynamics (2.46) under time-varying graphs, we denote

by Q = {1, 2, . . . , q̄} the set of indices characterizing every possible connected and

undirected communication graph realizable with n nodes, and by c : R≥0 → Q as the

switching signal that characterizes the current configuration of the graph. Then, the

solutions of (2.46) are also solutions of the time-invariant differential inclusion

˙̂u ∈ F̂δ(û, ξ) := co
⋃
c∈Q

F̂ c
δ (û, ξ), û ∈ RnN , (2.48)

where F̂ c
δ := F̂ c

δ,1 × . . . × F̂ c
δ,N , û = [û1, . . . , ûN ]>, and ξ := [ξ1, . . . , ξN ]>. Since, by

[199, Thm. 1], for δ > 0 sufficiently small there exists a common Lyapunov function

for the switched system (2.46), this Lyapunov function is also valid for system (2.48),

thus establishing UGAS for the dynamics (2.48) and (2.46) [200]. Hence, Assumption

5 is satisfied.

Figures 2.14-2.19 show the evolution in time of each component j of the state ûij

of each agent i, where it can be seen that the estimate of each agent of the optimal
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Figure 2.14: Evolution in time of û1 for each agent i ∈ V.
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Figure 2.15: Evolution in time of û2 for each agent i ∈ V.
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Figure 2.16: Evolution in time of û3 for each agent i ∈ V.

value of u∗i converges to a neighborhood of u∗i . For this simulation the parameters used

were a = 0.2, ω = [30, 25, 35, 40, 37.5]>, ωL = 1, δ = 0.1, γ = 0.1, and k = 1.2. The

communication graph of the control system switches every 0.1 seconds between the

three configurations shown in Figure 2.13.
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Figure 2.17: Evolution in time of û4 for each agent i ∈ V.
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Figure 2.18: Evolution in time of û5 for each agent i ∈ V.
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Figure 2.19: Evolution in time of the switching signal associated to the configuration
of the communication graph.

2.2 Averaging-Based Hybrid Extremum Seeking for

Hybrid Inclusions

Having established a ES framework for plants modeled as differential inclusions,

we proceed to extend the results for the case when the plant is characterized by a

hybrid system. In order to address this type of plants we rely on the results presented
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in Appendix D, which allow us to consider singularly perturbed HDS with hybrid

boundary layer dynamics.

2.2.1 Model of the Plant

We consider now a nonlinear hybrid plant with input u ∈ Rn, output yθ ∈ Rm,

state θ ∈ Rp, dynamics of the form

θ̇ ∈ Fθ(θ, u), θ ∈ ΨC,θ(u), (2.49a)

θ+ ∈ Gθ(θ, u), θ ∈ ΨD,θ(u), (2.49b)

and output function given by

yθ = hθ(θ, u). (2.50)

The set-valued mappings Fθ : Rp×Rn ⇒ Rp, ΨC,θ : Rn ⇒ Rp, Gθ : Rp×Rn ⇒ Rp, and

ΨD,θ : Rn ⇒ Rp are assumed to be nonempty, OSC and LB. The mapping Fθ is also

assumed to be convex valued. The input u is assumed to be constrained to evolve in the

set U = Û +cB, where c ∈ R>0, and Û ⊂ Rn is a nonempty closed set. For the purpose

of generality, the output mapping hθ : Rp × Rn → Rm is assumed to be vector-valued,

and we define the mapping Ψθ(u) := ΨC,θ(u) ∪ΨD,θ(u). Systems that can be modeled

by a HDS of the form (2.49) include traffic light control systems [201], switched systems

with arbitrarily fast switching signals, as well as switching signals satisfying dwell-time

constraints [202], and plants internally stabilized by control systems such as PWM

control [203], quantized control systems [204] and reset linear control systems [78].

For a plant of the form (2.49)-(2.50), we are again interested in using measure-

ments of the output yθ in order to control the input u, without any knowledge of the

mathematical form of the dynamics (2.49) and the output function (2.50), and aiming
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to optimize the steady-state input-to-output mapping J(u), i.e., the response map. For

the purpose of generality, it is assumed that this response map can be vector-valued,

such that Pareto optimization problems and game-theoretic learning problems can be

captured by individual cost functions associated to the entries of the vector J(u).

Under the assumption that the plant (2.49)-(2.50) generates a well-defined response

map J : Rn → Rm (formally established in Assumption 10 below), the extremum seek-

ing problem is again characterized by problem (2.7), and we consider that Assumption

(4) holds again.

2.2.2 Hybrid Extremum Seeking Controllers with Hybrid Dither

Generators and Hybrid Filters

In order to solve problem (2.7) with hybrid plants of the form 2.49, we now consider

a class of set-valued hybrid extremum seeking controllers comprised of three main

hybrid dynamical systems: 1) A hybrid dynamic Jacobian-based optimizer, with state

x̂; 2) a hybrid dynamic Jacobian generator, with state ξ; and 3) a hybrid dynamic

dither generator, with state µ. We describe as follows each of these blocks.

Hybrid Jacobian-Based Optimizer

This block corresponds to a hybrid dynamical system with flow map taking as

input a matrix yξ ∈ Rm×n corresponding to an estimation of the Jacobian matrix

DJ(u) associated to the response map J(u). This dynamical system is designed a

priori for the particular type of optimization problem (2.7), e.g., standard convex and

non-convex optimization [90], Pareto-Optimum seeking [205], Nash seeking in non-

cooperative [105] or population games [101], distributed optimization, etc. The state

of the hybrid optimizer is given by x̂ := [x̂>1 , x̂
>
2 ]> ∈ R`, where x̂1 ∈ Rn and x̂2 ∈ Rn2

60



Hybrid Extremum Seeking Control Chapter 2

are auxiliary states, and ` = n + n2. The hybrid dynamics of the optimizer are given

by the equations

˙̂x ∈ k · Fx̂(x̂, yξ, δ), x̂ ∈ Ĉ := Ĉx1 × Ĉx2 , (2.51a)

x̂+ ∈ Gx̂(x̂, δ), x̂ ∈ D̂ := D̂x1 × D̂x2 , (2.51b)

where k = ωL ·σ, ωL := ε · ω̄, (ε, ω̄, σ) ∈ R3
>0 are tunable gains, Fx̂ : R`×Rn×m×R>0 ⇒

R` and Gx̂ : R` × R>0 ⇒ R`, δ ∈ R>0 is a tunable parameter, Ĉ ⊂ R`, D̂ ⊂ R`, and

Ĉx1 , D̂x1 ⊂ Rn. The output of system (2.51) is given by

yx̂ = hx̂(x̂), (2.52)

where hx̂ : R` → Rn is continuous.

As in the previous section, the hybrid Jacobian-based optimizer is designed under

the assumption that the input signal yξ satisfies yξ = DJ(x̂1) + e, where e is a small

approximation error. Thus, system (2.51) is designed based on the HDS

˙̂x ∈ F̂x̂(x̂, DJ(x̂1) + e, δ), x̂ ∈ Ĉ, (2.53a)

x̂+ ∈ Gx̂(x̂, δ), x̂ ∈ D̂, (2.53b)

where e(t) is a uniformly bounded signal. In particular, it is assumed that system

(2.53) satisfies Assumptions 5 and 6.

Several examples of hybrid learning dynamics of this form were presented in the

previous section.

Finally, the hybrid optimizer (2.51) is designed such that the jumps generated by

the dynamics (2.51b) do not change the values of the other states of the system. That
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is, whenever x̂ jumps according to (2.51b), the states ξ, µ, and θ are updated as ξ+ = ξ,

µ+ = µ, θ+ = θ.

A Hybrid Jacobian Generator

This block corresponds to a hybrid dynamical system having flows with input given

by the matrix fξ(yθ, yµ) ∈ Rn×m, where fξ : Rn × Rn → Rn×m maps the output of the

plant yθ, and the output of the dither generator block yµ. The state of the hybrid

Jacobian generator is given by ξ ∈ Rs, where s ∈ Z≥1. The hybrid dynamics of ξ are

given by

ξ̇ ∈ ωL · Fξ(ξ, fξ(yθ, yµ), a), ξ ∈ ΨC,ξ(x̂), (2.54a)

ξ+ ∈ Gξ(ξ, a), ξ ∈ ΨD,ξ(x̂), (2.54b)

where a ∈ R>0 is a small tunable parameter, and Fξ : Rs × Rn×m × R>0 ⇒ Rs,

Gξ : Rs × R>0 ⇒ Rs, ΨC,ξ : R` ⇒ Rs, ΨD,ξ : R` ⇒ Rs, and Ψξ(x̂) = ΨC,ξ(x̂) ∪ΨD,ξ(x̂).

The output of (2.54) is given by

yξ = hξ(ξ), (2.55)

which is the same input of the hybrid optimizer (2.51), and where hξ : Rs → Rm×n

is a continuous function. Although, in principle, the hybrid Jacobian generator is not

needed by the extremum seeking control, it is commonly used to improve the transient

performance of the closed-loop system by attenuating the oscillations induced by the

dithering signals, and by allowing to increase the adaptation gain k in the optimization

dynamics (2.51).

The hybrid Jacobian generator (2.54) is designed such that the jumps given by
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the dynamics (2.54b) do not generate instantaneous changes in the other states of the

system. In this way, the interconnection of the hybrid optimizer (2.51) and the hybrid

Jacobian generator (2.54) generates two types of jumps, given by

x̂+ = x̂, x̂ ∈ Ĉ, (2.56a)

ξ+ ∈ Gξ(ξ, a), ξ ∈ ΨD,ξ(x̂), (2.56b)

and

x̂+ ∈ Gx̂(x̂, δ), x̂ ∈ D̂, (2.57a)

ξ+ = ξ, ξ ∈ ΨC,ξ(x̂) ∪ΨD,ξ(x̂). (2.57b)

The dynamics of the hybrid Jacobian generator (2.54) are designed under the as-

sumption that fξ = DJ(x̂1) + e, where e is a uniformly bounded small error. Thus,

under this assumption, the flows given by the interconnection of the hybrid optimizer

(2.51) and the hybrid Jacobian generator (2.59) are given by

˙̂x ∈ k · Fx̂(x̂, yξ, δ), x̂ ∈ Ĉ, (2.58a)

ξ̇ ∈ ωL · Fξ(ξ,DJ(x̂1) + e, a), ξ̂ ∈ ΨC,ξ(x̂), (2.58b)

Using the definition of k, and a new time scale τ = σt, for values of σ sufficiently small,

it can be observed that the HDS given by the equations (2.56), (2.57), and (2.58) in

the τ -time scale, is a SP-HDS of the form (D.1). This system has hybrid boundary
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layer dynamics with flows given by

˙̂x = 0, x̂ ∈ Ĉ, (2.59a)

ξ̇ ∈ Fξ(ξ,DJ(x̂1) + e, a), ξ̂ ∈ ΨC,ξ(x̂), (2.59b)

and jumps given by

x̂+ = x̂, x̂ ∈ Ĉ, (2.60a)

ξ+ ∈ Gξ(ξ, a), ξ ∈ ΨD,ξ(x̂). (2.60b)

Based on this, the hybrid dynamics (2.54) and the output function (2.55) are designed

such that the following assumption holds.

Assumption 8 Let δ∗ be given by Assumption 5. Then for each δ ∈ (0, δ∗) there

exists an a∗ ∈ R>0 such that for all a ∈ (0, a∗) the SP-HDS (2.56), (2.57), (2.58),

in the τ -time scale, with boundary layer dynamics (2.59)-(2.60), satisfies the following

conditions:

(a) The set-valued mappings Fξ(·, ·, a), Gξ(·, a), ΨC,ξ(·) and ΨD,ξ(·) are OSC and LB.

Moreover, Fξ(·, ·, a) is convex-valued for each (x̂, ξ) ∈ Ĉ ×ΨC,ξ(x̂).

(b) Definition 13 holds with x1 = x̂, x2 = ξ, F1 = Fx̂, F2 := Fξ, C̃ = {(x̂, ξ) : x̂ ∈

Ĉ, ξ ∈ ΨC,ξ(x̂)}, H2 = Gξ, and set-valued mapping FA given by

FA(x̂) := Fx̂(x̂, DJ(x̂1) + e, δ), (2.61)

where e(·) is a measurable function of order O(a).

(c) The boundary layer dynamics (2.59)-(2.60) do not generate purely discrete solu-
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tions, and system (2.56), (2.57), (2.58) generates at least one complete solution

from every initial condition.

Note that the classic first order low pass filter commonly used in ESC, e.g., [96],

[90], satisfies Assumption 8. However, Assumption 8 opens the door for more advanced

hybrid filters that combine continuous and discrete-time dynamics, e.g., [78, Ex. 7.26].

A Hybrid Dither Generator

This block corresponds to a hybrid dynamical system generating the dithering sig-

nals µ ∈ Rr used by the ESC in order to extract the gradient information of the

response map J . The hybrid dynamics of the dither generator are given by

µ̇ ∈ ε · Fµ(µ), µ ∈ ΨC,µ(x̂, ξ), (2.62a)

µ+ ∈ Gµ(µ), µ ∈ ΨD,µ(x̂, ξ), (2.62b)

where the mappings Fµ : Rr ⇒ Rr, Gµ : Rr ⇒ Rr, ΨC,µ : R` × Rs ⇒ Rr, and

ΨD,µ : R`×Rs ⇒ Rr are set-valued, and Ψµ(x̂, ξ) = ΨC,µ(x̂, ξ)∪ΨD,µ(x̂, ξ) and ε ∈ R>0

is the same tunable parameter used in the definition of k in equation (2.51). The

output of (2.62) is given by

yµ = hµ(µ), (2.63)

where hµ : Rr → Rn×m is a continuous function.

Discrete-time updates of the dither generator, given by the equation (2.62b), do

not generate instantaneous changes in the other states of the system. In this way,

the interconnection of the hybrid dither generator (2.62), and the hybrid Jacobian

generator and hybrid optimizer (2.56)-(2.58), generates a HDS with three types of
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jumps given by

x̂+ = x̂, x̂ ∈ Ĉ, (2.64a)

ξ+ = ξ, ξ ∈ ΨC,ξ(x̂), (2.64b)

µ+ ∈ Gµ(µ), µ ∈ ΨD,µ(x̂, ξ), (2.64c)

x̂+ = x̂, x̂ ∈ Ĉ, (2.65a)

ξ+ ∈ Gξ(ξ), ξ ∈ ΨD,ξ(x̂), (2.65b)

µ+ = µ, µ ∈ ΨC,µ(x̂, ξ) ∪ΨD,µ(x̂, ξ), (2.65c)

x+ ∈ Gx̂(x̂, δ), x̂ ∈ D̂, (2.66a)

ξ+ = ξ, ξ ∈ ΨC,ξ(x̂) ∪ΨD,ξ(x̂), (2.66b)

µ+ = µ, µ ∈ ΨC,µ(x̂, ξ) ∪ΨD,µ(x̂, ξ), (2.66c)

Note that the jumps (2.65) and (2.66) are related to the jumps (2.56) and (2.57). The

hybrid dither generator is designed under the assumption that yθ = J(u), with input

u given by

u = hu(yx̂, yµ), (2.67)

where hu : Rn × Rn×m → Rn is a continuous mapping. Under this assumption, the

flows given by the interconnection of the hybrid optimizer, the Jacobian generator, and
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the dither generator are given by

˙̂x ∈ k · Fx̂(x̂, ξ, δ), x̂ ∈ Ĉ, (2.68a)

ξ̇ ∈ ωL · Fξ(ξ, fξ(J(u), yµ), a), ξ ∈ ΨC,ξ(x̂), (2.68b)

µ̇ ∈ ε · Fµ(µ), µ ∈ ΨC,µ(x̂, ξ), (2.68c)

where u = hu(yx̂, yµ). Using a new time scale τ = εω̄t, and the definition of k, for ωL

sufficiently small, the HDS (2.64), (2.65), (2.66), (2.68), with flows in the τ -scale is a

SP-HDS of the form (D.1) with ω̄ acting as a small parameter. The hybrid boundary

layer dynamics of this system have flows

˙̂x = 0, x̂ ∈ Ĉ, (2.69a)

ξ̇ = 0, ξ ∈ ΨC,ξ(x̂), (2.69b)

µ̇ ∈ Fµ(µ), µ ∈ ΨC,µ(x̂, ξ), (2.69c)

and jumps given by

x̂+ = x̂, x̂ ∈ Ĉ, (2.70a)

ξ+ = ξ, ξ ∈ ΨC,ξ(x̂), (2.70b)

µ+ ∈ Gµ(µ), µ ∈ ΨD,µ(x̂, ξ). (2.70c)

Based on this, the hybrid dither generator is designed such that the following assump-

tion holds.

Assumption 9 Let δ∗ be generated by Assumption 5 and a∗ be generated by Assump-

tion 8. Then for each δ ∈ (0, δ∗) and a ∈ (0, a∗) the SP-HDS (2.64),(2.65), (2.66),

(2.68) in the τ -time scale, with boundary layer dynamics (2.69)-(2.70), satisfies the
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following conditions:

(a) The set-valued mappings Fµ, Gµ, Ψµ,C, and Ψµ,D are OSC and LB. The mapping

Fµ is convex valued for each (x̂, ξ) ∈ ΨC,µ(x̂, ξ).

(b) Definition 13 holds with x1 = [x̂>, ξ>]>, x2 = µ, F1 := Fx̂ × Fξ, F2 := Fµ,

C̃ = {(x, z) : x̂ ∈ Ĉ, ξ ∈ ΨC,ξ(x̂), µ ∈ ΨC,µ(ξ)}, H2 = Gµ, and

FA := Fx̂(x̂, yξ, δ)× Fξ(ξ,DJ(x̂1) + e, a)

where e(·) is a measurable function of order O(a).

(c) The boundary layer dynamics (2.69)-(2.70) do not generate purely discrete or even-

tually discrete solutions, and system (2.64),(2.65), (2.66), (2.68), generates at least

one complete solution from every possible initial condition.

Assumption (9) is satisfied by the linear oscillator considered in [206], as well as by

any nonlinear system rendering UGAS a compact set, and generating solutions that

have the orthogonality property, e.g., [205, Def. 11]. System (2.62) also opens the door

for nonsmooth and discontinuous dithering signals generated by switching mechanisms,

e.g., [207], [208].

Closed-Loop System

The closed-loop system, shown in Figure 2.20, is given by the interconnection of the

hybrid plant and the hybrid extremum seeking control. In the closed-loop system, the

jumps of the plant state, given by (2.49b), do not generate instantaneous changes in

the other states of the system. Thus, the closed-loop system has four types of jumps,
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given by

x̂+ = x̂, x̂ ∈ Ĉ, (2.71a)

ξ+ = ξ, ξ ∈ ΨC,ξ(x̂), (2.71b)

µ+ = µ, µ ∈ ΨC,µ(x̂, ξ), (2.71c)

θ+ ∈ Gθ(θ, u), θ ∈ ΨD,θ(u), (2.71d)

x̂+ = x̂, x̂ ∈ Ĉ, (2.72a)

ξ+ = ξ, ξ ∈ ΨC,ξ(x̂), (2.72b)

µ+ ∈ Gµ(µ), µ ∈ ΨD,µ(x̂, ξ), (2.72c)

θ+ = θ, θ ∈ ΨC,θ(u) ∪ΨD,θ(u), (2.72d)

x̂+ = x̂, x̂ ∈ Ĉ, (2.73a)

ξ+ ∈ Gξ(ξ, a), ξ ∈ ΨD,ξ(x̂), (2.73b)

µ+ = µ, µ ∈ ΨC,µ(x̂, ξ) ∪ΨD,µ(x̂, ξ), (2.73c)

θ+ = θ, θ ∈ ΨC,θ(u) ∪ΨD,θ(u), (2.73d)
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x+ ∈ Gx̂(x̂, δ), x̂ ∈ D̂, (2.74a)

ξ+ = ξ, ξ ∈ ΨC,ξ(x̂) ∪ΨD,ξ(x̂), (2.74b)

µ+ = µ, µ ∈ ΨC,µ(x̂, ξ) ∪ΨD,µ(x̂, ξ), (2.74c)

θ+ = θ, θ ∈ ΨC,θ(u) ∪ΨD,θ(u), (2.74d)

and flows given by

˙̂x ∈ k · Fx̂(x̂, ξ, δ), x̂ ∈ Ĉ, (2.75a)

ξ̇ ∈ ωL · Fξ(ξ, fξ(yθ, yµ), a), ξ ∈ ΨC,ξ(x̂), (2.75b)

µ̇ ∈ ε · Fµ(µ), µ ∈ ΨC,µ(x̂, ξ), (2.75c)

θ̇ ∈ Fθ(θ, u), θ ∈ ΨC,θ(u). (2.75d)

Finally, using the definitions of k and ωL, we note that for values of ε sufficiently small,

and in a new time scale defined as τ = εt, the closed-loop HDS (2.71)-(2.75) is a SP-

HDS of the form (D.1), with ε acting as small parameter, and with boundary layer

dynamics having flows of the form

˙̂x = 0, x̂ ∈ Ĉ (2.76a)

ξ̇ = 0, ξ ∈ ΨC,ξ(x̂) (2.76b)

µ̇ = 0, µ ∈ ΨC,µ(x̂, ξ) (2.76c)

θ̇ ∈ Fθ(θ, u), θ ∈ ΨC,θ(u), (2.76d)
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and jumps given by

x̂+ = x̂, x̂ ∈ Ĉ (2.77a)

ξ+ = ξ, ξ ∈ ΨC,ξ(x̂) (2.77b)

µ+ = µ, µ ∈ ΨC,µ(x̂, ξ) (2.77c)

θ+ ∈ Gθ(θ, u), θ ∈ ΨD,θ(u), (2.77d)

These boundary layer dynamics characterize the class of response maps J(u) that can

be generated by the plant (2.49), such that the extremum seeking problem is well-

defined.

Assumption 10 Let δ∗ be given by Assumption 5, and a∗ be given by Assumption 8.

Then, for each δ ∈ (0, δ∗) and a ∈ (0, a∗) the SP-HDS (2.71)-(2.75) in the τ -time scale,

and with boundary layer dynamics (2.76)-(2.77), satisfies the following conditions:

1. The set-valued mappings Fθ, Gθ, ΨC,θ and ΨD,θ are OSC and LB. The mapping

Fθ is convex valued.

2. There exists a unique map J : Rn → Rm such that Definition 13 holds with

x1 = [x̂>, ξ>, µ>]>, x2 = θ, F1 := Fx̂ × Fξ × Fµ, F2 := Fθ, C̃ = {(x, z) : x ∈

Ĉ, ξ ∈ ΨC,ξ(x̂), µ ∈ ΨC,µ(x̂, ξ), θ ∈ ΨC,θ(x̂, ξ, θ)}, H2 = Gθ, and

FA := Fx̂(x̂, yξ, δ)× Fξ(ξ, fξ(J(u), yµ), a)× Fµ(µ).

3. The boundary layer dynamics (2.76)-(2.77) do not generate purely discrete or

eventually discrete solutions.
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Figure 2.20: Closed-loop system with HESC.

Analysis of the Closed-Loop System

In order to establish the stability properties of the closed-loop system, we define

the state x := [x̂>, ξ>, µ>, θ>]> ∈ R`+s+r+p, and the compact sets

Aξ : = Ψξ(Ax̂), Aµ := Ψµ(Ax̂,Aξ), (2.78a)

Aθ : = Ψθ (hu(hx̂(Ax̂), hµ(Aµ))) , (2.78b)

Ax̂,ξ,µ,θ : = Ax̂ ×Aξ ×Aµ ×Aθ. (2.78c)

Using this construction, we obtain the following result for the closed-loop system (2.71)-

(2.75).

Theorem 2 Consider the HDS (2.71)-(2.75), and the compact set (5.10). Suppose that

Assumptions 4, 8, 9, and 10 hold. Then, for each compact set K := Kx̂×Kξ×Kµ×Kθ ⊂

R`+s+r+p and each ν > 0 such that Ax̂,ξ,µ,θ + νB ⊂ int(K), there exists δ∗ such that

for each δ ∈ (0, δ∗] there exists a∗ such that for each a ∈ (0, a∗] there exists σ∗ ∈ R>0

such that for each σ ∈ (0, σ∗] there exists ω̄∗ such that for each ω̄ ∈ (0, ω̄∗] there
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exists ε∗ ∈ R>0 such that for each ε ∈ (0, ε∗] there exists a ULAS compact set Aε,ω̄,σ,a,δ

satisfying Aε,ω̄,σ,a,δ ⊂ Ax̂,ξ,µ,θ + νB, with basin of attraction containing the set K.

Theorem 2 is similar in spirit to Theorem 1. In particular, for each arbitrarily large

compact set of initial conditions and each arbitrarily small neighborhood of the optimal

solution of the ES problem, it is possible to tune the parameters of the control system

such that convergence is achieved in finite time.

2.3 Neuro-Adaptive Hybrid Extremum Seeking for

Differential Inclusions

We now proceed to study hybrid extremum seeking controllers based on neuro-

adaptive architectures, which have been recently and successfully used to solve learning

problems in dynamical systems [209]. In contrast to the averaging-based architectures,

this type of HESCs implement a neural network in order to approximate the gradient

of the response map of the plant. In particular, we focus on the hybrid extremum

seeking controller shown in Figure 2.21. This scheme is comprised of four main blocks:

(a) the neural network-based model-free gradient approximator; (b) the differential

inclusion generating the dither signal µ; (c) the hybrid learning dynamics Ĥδ; and d)

a plant characterized by a differential inclusion, such as the one considered in Section

2.1.1. In contrast to the averaging-based HESC, which only requires an orthogonality

property on the dithering signals, the neuro-adaptive hybrid extremum seeking control

(NHESC) requires a classic persistency of excitation condition. We proceed now to the

describe in detail the blocks (a), (b) and (c).
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2.3.1 NN-based Model-Free Approximator

Under Assumption 4 the response map J(·) is smooth, which implies that there

exists a complete independent basis set of functions {φi(u)} such that J and ∇J are

uniformly approximated [210], i.e., there exist coefficients ci such that

J(u) =
N∑
i=1

ciφi(u) +
∞∑

i=N+1

ciφi(u) (2.79)

∇J(u) =
N∑
i=1

ci
∂φ(u)

∂u
+

∞∑
i=N+1

ci
∂φ(u)

∂u
, (2.80)

where φ(u) = [φ1(u), . . . , φN(u)]> : Rn → RN , and the last terms in (2.79)-(2.80)

converge uniformly to 0 as N → ∞. Therefore, given N ∈ Z≥1, (2.79) and (2.80) can

be written as

J(u) = φ(u)>w∗ + ε(u) (2.81)

∇J(u) = ∇φ(u)>w∗ +∇ε(u), (2.82)

where w∗ ∈ RN . The mapping φ : Rn → RN is called the NN activation function

vector, N the number of neurons in the hidden layer, and ε(·) the NN approximation

error. The following lemma, adapted from [211], [212], and [209, Lemma 1] establishes

the approximation properties of the neurons in the hidden layer.

Lemma 2 Let Ω ⊂ Rn be a compact set. Then as N → ∞ the approximation errors

ε and ∇ε satisfy ε → 0 and ∇ε → 0, uniformly on compact sets. Moreover, for each

fixed N and each compact set K ⊂ Rn, there exist (ε̄1, ε̄2, w̄) ∈ R3
>0 such that ‖ε‖ ≤ ε̄1,

‖∇ε‖ ≤ ε̄2, and ‖w∗‖ ≤ w̄.

The main limitation for the direct implementation of equations (2.81) and (2.82) is

that the ideal weights w∗, which provide the best approximation of order N for J and
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Figure 2.21: Modular scheme of NHESC

∇J , are unknown, and so, they have to be estimated online by using measurements of

J . In order to do this, let u be fixed, and define the output of the NN as

Ĵ(u) = ŵ>φ(u), (2.83)

where ŵ is the estimated value of the NN weights w∗. Define the weight approximation

error as

w̃ = ŵ − w∗, (2.84)

and the estimation error of J as

e = Ĵ − J, or e = w̃>φ(u) + ε(u). (2.85)

We aim to select ŵ to minimize the squared residual error E = 1
2
e>e. To minimize E we

propose the following learning dynamics based on the modified Levenberg-Marquardt
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gradient descent algorithm

˙̂w = −Γ
φ

(1 + φ>φ)2
e, (2.86)

where Γ ∈ R≥0, which has a normalization term (1 + φ>φ)2 instead of the standard

(1 + φ>φ) , see also [213]. The learning dynamics (2.86) will be constrained to evolve

in a compact set Ωc that will be defined in the next section.

2.3.2 Signal Generator for Persistence of Excitation

Similar to standard adaptive architectures [1], in order to obtain convergence of the

learning dynamics (2.86) to their correct values, a persistency of excitation condition

is needed in φ. To achieve this, a dither signal µ : R≥0 → Rn needs to be injected

to u for all t ≥ 0. This signal will be generated as the solution of the time-invariant

differential inclusion

µ̇ ∈ Π(µ), µ ∈ Ψ, (2.87)

where Π : Rn ⇒ Rn, and Ψ ⊂ Rn is the flow set describing the points in the space

where µ is allowed to evolve. System (2.87) needs to satisfy the following regularity

assumption.

Assumption 11 Π(·) is OSC, LB, and convex-valued relative to Ψ, and Ψ is compact.

Note that Assumption 11 is not restrictive, and it is satisfied if, for instance, P (·) is

single-valued and continuous. However, using set-valued mappings as signal generators

allows us to consider a broader class of excitation signals compared to those generated

by differential equations.

The following stability and completness assumption is also imposed on system

(2.87).
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Assumption 12 For system (2.87) there exists a UGAS compact set Aµ ⊂ Ψ, and

for each initial condition in Ψ there exists at least one complete solution µ(·).

Although the stability condition imposed by Assumption 12 is critical for our stability

analysis of the closed-loop system, so is the persistently exciting (PE) property asso-

ciated to the signal φ in the learning dynamics (2.86). We formalize the PE condition

on φ with the following assumption:

Assumption 13 Define φ(t) := φ(u+µ(t)). Then, there exists constants (β1, β2, T ) ∈

R3
>0 such that for each u ∈ Rn and each solution µ(·) of (2.87), the normalized time

varying signal

φ̄(t) :=
φ(t)

1 + φ(t)>φ(t)
(2.88)

satisfies the PE property

β1I 6
∫ t+T

t

φ̄(τ)φ̄>(τ)dτ 6 β2I (2.89)

for all t ≥ 0.

Remark 9 Note that under Assumption 12, and by the compactness of Ψ, for each

fixed u, the signal φ(t) is uniformly bounded. Moreover, there will always exists a signal

φ with unbounded time domain, such that the PE condition can actually be evaluated.

Remark 10 One can ensure that the signal φ̄(t) is persistently exciting by adding

exploration noise formed by sinusoids of different frequencies, see [1, Chapter 4].

Using the PE property of φ̄, as well as the learning dynamics (2.86), and the

change of variable (2.84), for each pair of positive numbers (ρ, c) ∈ R2
>0 we can study
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the stability properties of the system

u̇ = 0

µ̇ ∈ Π(µ)

˙̃w = −Γ
φ(u+ µ)

(1 + φ(u+ µ)>φ(u+ µ))2 e


, (u, µ, w̃) ∈ Cρ,c (2.90)

with flow set

Cρ,c := (ρB ∩ U)×Ψ× Ωc, (2.91)

where Ωc := {w̃ ∈ RN : 1
2
tr
{
w̃>Γ−1w̃

}
≤ c}, and e is defined as in (2.85). The

following proposition establishes a stability result for this system with frozen input:

Proposition 6 Consider system (2.90) with flow set (2.91), and suppose that As-

sumptions 11-13 hold. Then, for each pair (ρ, c) ∈ R2
>0, and each ε̄� c there exists a

number N∗ of NN such that for all N ≥ N∗ there exists a compact set Ac ⊂ ε̄B such

that the set

Mρ := {(u, µ, w̃) : u ∈ ρB ∩ U, (µ, w̃) ∈ Aµ ×Ac} (2.92)

is UGAS.

The stability result of Proposition 6, which assumes a frozen input u, will allows us

to make use of singular perturbation arguments for time-invariant set-valued systems

once the learning dynamics u̇ are taken into consideration. This approach makes the

design of the NHESC of modular nature, allowing us to design the learning dynamics

of u independently of the dynamics of the NN.

Remark 11 The proof of Proposition 6 hinges on invariance and well-posedness prop-

erties of the set-valued time-invariant systems. It also exploits the stability properties

of µ, as well as the PE Assumption 13 on the solutions of the generator (2.87), instead
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of using the weaker and more common (see [1, Ch. 4]) PE assumption in an arbitrary

time-varying signal φ(·). However, as noted before, several classes of dithers can be

generated by system (2.87), including the classic sinusoids commonly used in adaptive

schemes.

2.3.3 Hybrid Learning Dynamics

Similar to the averaging-based HESCs considered in Sections 2.1 and 2.2, the op-

timization block Ĥ in Figure 2.21, is modeled as a hybrid dynamical system of the

form

ẋu,z ∈ F̂δ
(
xu,z,∇φ(u)>ŵ

)
, xu,z ∈ Cu × Cz, (2.93a)

x+
u,x ∈ Ĝδ

(
xu,z

)
, xu,z ∈ Du ×Dz, (2.93b)

where xu,z := (u>, z>)> ∈ Rn+r, z is an auxiliary state of dimension3 r ∈ Z≥0, which

can be used to model timers, automatas, logic modes, etc, n+ r = `, the sets Cu, Du ⊂

Rn and Cz, Dz ⊂ Rr define the flow and jump sets for u and z, respectively, and

δ ∈ R>0 is a tunable parameter that gives flexibility for the design of the set-valued

mappings F̂δ : R` × Rn ⇒ R` and Ĝδ : Rl ⇒ R`. As in the averaging-based case, the

hybrid learning dynamics (2.93) are designed based on Assumption 5, and the following

stability assumption:

Assumption 14 The set U satisfies Cu ∪ Du = U, and there exists a compact set

Υ ⊂ Cz ×Dz such that the set Au,z := O×Υ is SGP-AS as δ → 0+ for system (2.93)

with ∇φ(u)>ŵ = ∇J(u).

For the case that the mappings F̂δ and Ĝδ are independent of any parameter δ,

Assumption 14 is just a UGAS assumption on (2.93).

3The case r = 0 indicates that the auxiliary state z is omitted.
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2.3.4 Main Result

The closed-loop system is obtained by combining the plant dynamics (2.1), the PE

generator (2.87), the NN learning dynamics (2.86) with J replaced by the output of

the plant y = ϕ(θ), and the hybrid seeking dynamics (2.93). The resulting system is a

HDS H := {C,F,D,G} with state x := (x>u,z, ŵ
>, µ>, θ>)> and equations

C := (Cu × Cz)× Ωc ×Ψ× Λθ (2.94a)

ẋ ∈ F (x) :=



k1 · F̂δ
(
xu,z,∇φ(u)>ŵ

)
−k2 · ¯̄φ(u+ µ)

(
ŵ>φ(u+ µ)− ϕ(θ)

)
−ε2 · Π(µ)

P (θ, u+ µ)


(2.94b)

D := (Du ×Dz)× Ωc ×Ψ× Λθ (2.94c)

x+ ∈ G(x) := Ĝδ

(
xu,z
)
× {ŵ} × {µ} × {θ}, (2.94d)

where k1 := ε1 · ε2, k2 := ε2 · Γ, (ε1, ε2) ∈ R2
>0 are tunable parameters, and where

¯̄φ(u+ µ) :=
φ̄(u+ µ)

(1 + φ(u+ µ)>φ(u+ µ))
, (2.95)

with φ̄ defined as in (2.88). The following theorem characterizes the stability properties

of the neuro-adaptive HESC.

Theorem 3 Suppose that all the assumptions of Section 2.3 hold. Then, for each

compact set K̃ ⊂ Rl satisfying Au,z ⊂ int(K̃), there exists a pair (c, λθ), such that for

each ε > 0 there exists N ∈ Z>0, w∗ ∈ RN , δ∗ > 0, such that for each δ ∈ (0, δ∗) there

exists ε∗2 > 0 such that for each ε2 ∈ (0, ε∗2) there exists ε1 ∈ (0, ε∗1) and a UGAS set

Aε ⊂ (Au,z × {w∗} ×Aµ × Λθ) + εB for the HDS (2.94) with restricted flow and jump
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sets

CK̃ :=[(Cu × Cz) ∩ K̃]× Ωc ×Ψ× Λθ (2.96)

DK̃ :=[(Du ×Dz) ∩ K̃]× Ωc ×Ψ× Λθ. (2.97)

Remark 12 The proof of Theorem 6 is similar to the proof of [206, Thm. 1]. However,

it has three main differences: First, using the NN model-free approximator allows us

to eliminate one of the multiple time scales that emerge in the closed-loop system.

Second, the averaging-based step of [206, Thm. 1] is replaced by a singular-perturbation

argument that makes use of Proposition 6. Third, the amplitude of the dither signal µ

does not necessarily have to be small in order to obtain a good approximation of the

gradient of the response map J . Instead, the number of neurons in the hidden layer

should be sufficiently large.

2.3.5 Numerical Examples: Neuro-Adaptive HESC

We present two numerical examples of neuro-adaptive extremum seeking controllers.

SISO Static Plants

Suppose that the plant is a static map such that y = J(u) := u2, which has a

global minimum at u∗ = 0. We want to achieve convergence to u∗ in “finite-time”, and

with an approximately constant evolution rate. To achieve this objective we consider

again the learning dynamics (2.35). The dither signal is generated by a linear periodic

oscillator. The vector of basis functions is defined as φ = [u2, u, 1]>. Figure 2.22 shows

the evolution of the vector of weights ŵ = [ŵ1, ŵ2, ŵ3]> converging to the actual values

w∗ = [1, 5, 16]>. The inset shows the evolution in time of the input u converging to

the optimal value u∗. The parameters are Γ = 500, k = 10, a = 2, and ω = 40.
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Figure 2.22: Evolution in time of ŵ and u.

Multivariable Dynamic Plants

Consider a simple linear system with state θ ∈ R2, dynamics given by δ·θ̇ = Aθ+Bu,

and output given by y = (θ1−5)2+(θ2−4)2, where A and B are just the identity matrix

I, u ∈ R2, and δ = 5×10−4. Note that the output is a scalar nonlinear function of both

states θ1 and θ2. The response map is obtained as J = (u1−5)2+(u2−4)2, which attain

its minimum at the point u∗ = [5, 4]>. For this system, we use a vector of basis functions

given by φ = [u2
1, u1, u

2
2, u2, 1]>. Note that although here for simplicity we consider

quadratic functions, one could consider other types of polynomial or not polynomial

basis functions [214] for non-quadratic response maps. We consider standard gradient

descent as learning mechanism. Figure (2.23) shows the evolution in time of the weights

wi associated to each of the entries of the basis functions. Figure (2.24) shows the

evolution of the control actions converging to the optimal point that minimizes the

response map. Here a = 2.5, k = 0.1, Γ = 200, ω1 = 40, ω2 = 45.
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Chapter 3

Online Learning for Dynamic

Pricing in Societal Systems

In this chapter, we study an application of the theoretical results of Section 2.3 in the

context of societal systems [215]. In particular, we study the problem of designing

model-free algorithms to control in real-time the incentives assigned to a population

of users, aiming to maximize the welfare of the society. Our results rely on two main

assumptions about the societal system under consideration. First, we assume that the

entities of the society are faced with a decision making problem that can be modeled by

a congestion game. Second, we assume that every entity of the society is rational and

selfish, in the sense that each entity always implements an action that minimizes its

own individual cost given the actions of the other users. Under these two assumptions,

we show that a model-free cooperative controller can be designed such that the social

welfare of the system is asymptotically maximized.
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3.1 Societal Model and Problem Statement

We consider a population of users with a total mass m, where each user can choose

between a finite set of available resources V := {1, . . . , N}. Since the mass of users is

constant, we can normalize the size of the population to 1, and for each i ∈ V we denote

by xi the share of users implementing the ith resource. We call x = [x1, . . . , xN ]> the

society state, and we note that x belongs to the simplex ∆ = {x ∈ RN
≥0 : 1>x = 1}.

Each strategy i ∈ V has a related cost given by ci(xi), and we denote the vector of

costs of the game as c(x) = [c1(x1), . . . , cN(xN)]>.

Example 3 A simple example of a population game that fits our setting, is given by a

routing problem, where a mass of drivers travels from point A to point B using a network

of N different parallel paths. In this case each path can be seen as a resource, and the

cost ci(·) is a measure of the delay experienced by the users using the ith path. When

users make choices aiming to minimize their delay, we call the steady-state distribution

that emerges in this game a Nash equilibria or Nash flow.

3.1.1 Nash flows

When players aim to minimize their individual cost, the steady-state distribution

xf ∈ ∆ that emerges in a congestion game is called a Nash flow or Wardrop equilibrium

[216]. It turns out that congestion games are also potential games [121, Sect. 2.4], with

potential function given by

P (x) = −
N∑
i

∫ xi

0

ci(z)dz, z ∈ R. (3.1)

Being a potential game simply means that the vector of costs c(x) corresponds to the

gradient of the potential function P . When the costs ci(·) satisfy ∂ci(xi)
∂xi

> 0 for all
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xi and i ∈ {1, . . . , N}, the potential function P (·) is strictly concave. In this case,

Nash flows correspond to the maximizers of P (x), i.e., the pair (xf , µ) ∈ RN ×R is the

solution of the system of equations

∂P (xf )

∂xi
+ λi + µ = 0, ∀ i ∈ {1, . . . , N} (3.2a)

1>xf = 1, (3.2b)

λixf,i = 0, λi ≥ 0, ∀ i ∈ {1, . . . , N} (3.2c)

which correspond to the KKT first order conditions for maximizers of P (x) in the

simplex ∆. Since when P (·) is strictly concave the solution of (3.2) is unique, Nash

flows are also unique. Moreover, since (3.1) is a separable function, condition (3.2a)

can be rewritten as

−ci(xf,i) + λi + µ = 0, ∀ i ∈ {1, . . . , N}. (3.3)

3.1.2 Nash flows and Social Welfare

In a population game, the total welfare function W (xf ) of the population is given

by the negative sumation of the costs ci(xf ) multiplied by the share of users xf,i that

implement the ith strategy, i.e.,

W (xf ) = −
N∑
i=1

ci(xf,i)xf,i. (3.4)

When (3.4) is strictly concave, the socially optimal Nash flow x∗ corresponds to the

Nash flow that maximizes W (·) over ∆. Thus, x∗ satisfies the KKT first order condi-
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tions

∂W (x∗)

∂xi
+ λi + µ = 0, ∀ i ∈ {1, . . . , N} (3.5a)

1>x∗ = m (3.5b)

λix
∗
i = 0, λi ≥ 0, ∀ i ∈ {1, . . . , N} (3.5c)

and in this case equation (3.5) can be rewritten as

−∂ci(x
∗)

∂xi
x∗i − ci(x∗i ) + λi + µ = 0, ∀ i ∈ {1, . . . , N}. (3.6)

Since the solutions of (3.2) and (3.6) are in general not the same, Nash flows xf are,

in general, not socially socially optimal.

3.1.3 The role of the social planner

Since Nash flows are in general not socially optimal, a social planner who seeks to

optimize the behavior of the overall society will be interested in designing incentive

mechanisms for the population, such that the emerging collective behavior under this

incentives leads to a socially optimal Nash flow, i.e., a distribution xf ∈ ∆ that is a

solution of both (3.2) and (3.5). One of the most practical ways to incentive users

corresponds to assign different tolls τi to each of the N resources of the game. In this

way, under the assumption that users are sensitive to costs and tolls, a new congestion

game with costs

ĉi(xi) = ci(xi) + s · τi, (3.7)

is induced by the social planner, where the sensitivity parameter s characterizes the

impact of the toll on the users. The challenge for the social planer is then to design the
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pricing mechanism for the tolls τi such that the Nash flow induced by the new game

with costs ĉi(·) is now also a solution of (3.5). To achieve this goal two types of tolls

have been mostly studied in the literature of pricing mechanisms: 1) flow varying tolls,

and 2) fixed tolls.

3.1.4 Flow Varying Tolls

A flow varying toll is a static mapping τ : ∆ → RN that maps flows to tolls. It is

well known, e.g., [118], [121] that marginal pricing of the form

τi(xi) =
∂ci(xi)

∂xi
xi, ∀ i ∈ {1, . . . , N}, (3.8)

incentives socially optimal Nash flows provided they induced potential game obtained

with the cost ĉ(xi) = ci(x) + τi(xi) is strictly concave. The dynamic implementation

of the static pricing mechanism (3.8) then assumes that the user’s behavior evolves

according to some social dynamics depending on τi(xi), whose equilibrium point will

correspond to the socially optimal Nash flow x∗. Though this approach has been

extensively studied in many settings, e.g., [118], [121], [123] some limitations prevent

its application in practical environments. In particular, as noted in [114], users dislike

fast-changing tolls, and they prefer prior information of the tolls before making a

decision.

3.1.5 Fixed Tolls

The limitations of flow-varying tolls can be addressed by using fixed tolls [125],

where the value of the toll is kept constant until the population of users converges to a

steady state Nash flow. This convergence is usually application-dependent, and varies

from seconds to days or weeks. Once the population achieves a steady state condition,
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the values of the steady state Nash flow and the cost functions are measured, and the

toll is recalculated following a particular update rule. This process is repeated until

convergence to a toll that incentivizes a socially optimal Nash flow is achieved. In

this chapter we will focus on designing adaptive model-free pricing mechanisms of this

form.

3.1.6 Dynamic Pricing in Fully Utilized Affine Congestion

Games

To keep our analysis tractable we consider in this work a particular class of con-

gestion games characterized by the following assumption.

Assumption 15 For the congestion game with N ∈ Z≥1 resources, and mass of users

m ∈ R≥0, the following holds:

• Affine Costs: The vector of costs c(x) is of the form c(x) = Ax+b, where b ∈ RN ,

and A ∈ Rn×n is a positive definite diagonal matrix.

• Full utilization: The mass m of users is sufficiently large such that for any τ ∈ RN

we have that the induced Nash flows always satisfy xf,i > 0 for all resources

i ∈ {1, . . . , N}. �

We term congestion games satisfying Assumption 15 with arbitrary matrix A as

fully utilized affine congestion games.

Remark 13 Note that although the conditions of Assumption 15 may seem too re-

strictive, affine congestion games emerge in many societal systems such as routing and

traffic problems in parallel networks [113], power electrical systems and water distribu-

tion systems [117], and resource allocation models in biological and economic systems

89



Online Learning for Dynamic Pricing in Societal Systems Chapter 3

[217]. Additionally, the fully utilization assumption will actually be needed to hold only

on compact sets selected a priori by the social planer or the pricing mechanism. In this

way, it is natural to expect that when the set of tolls is bounded, and the mass of users

is too large, or the number of resources is too small, there is always at least an ε > 0

small share of users using every resource i ∈ V. �

Clearly, for fully utilized affine congestion games with positive definite matrix A,

the Welfare function (3.4) is a quadratic function that is strictly concave, and because

of this there exists a unique socially optimal Nash flow x∗ ∈ ∆. However, the set of

fixed optimal tolls that generate x∗ is, in general, not unique, and not even bounded.

We formally characterize this set by the following Lemma, which is proved in the

Appendix.

Lemma 3 Consider a congestion game satisfying Assumption 15. Then, the set of

fixed tolls that generate socially optimal Nash flows is given by

A = {τ ∈ RN : τ = τ ∗ + µ1, µ ∈ R} (3.9)

where τ ∗ = − b
2
. �

Based on the definition of A, the dynamic adaptive pricing problem on fully utilized

affine congestion games consists on designing “model-free” and decentralized algorithms

that recursively adjust the tolls τi such that convergence to the unknown set A is

achieved, thus indirectly steering the population towards the unique socially optimal

Nash flow x∗. By “model-free” it is understood that such algorithms should not rely

on the specific mathematical model and parameters of the congestion game, i.e., the

parameters of the costs ci(·) may be unknown. Instead, they must be data-driven and

adaptable to changes in the game . Finally, since congestion games usually model large-
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scale systems, it is desirable that the dynamic pricing mechanism associated to each

resource i ∈ V shares information only with a subset of the other individual pricing

mechanisms.

3.2 Adaptive Pricing Mechanisms in Static Societal

Systems

In this section we design distributed dynamic pricing mechanisms for fully utilized

affine congestion games for the case when the dynamics of the society are ignored. In

this setting, it is assumed that there exists a static Oracle that delivers sampled values

of all the relevant information of the game to the pricing mechanisms. We characterize

this static Oracle by a state function O(·) that maps incentives τ to Nash flows xf ,

and by an output function hO(·) that delivers the values of xf , c(xf ), and ∇c(xf ) to

the pricing mechanisms. We write this Oracle as the static system

xf = O(τ), y = hx(xf ), (3.10)

where τ 7→ O(τ) ⊂ F , being F ⊂ ∆ the set of solutions of (3.2) with induced cost

(3.7), and

hx(xf ) =


hx,1(xf )

hx,2(xf )

hx,3(xf )

 =


xf

c(xf )

diag(∇c(xf ))

 . (3.11)

In order to learn the fixed optimal tolls τ in a distributed way, we assume that the

Oracle delivers to the ith resource only the tuple
{
xf,i, ci(xf,i),

∂ci(xf,i)

∂xi

}
corresponding

to sampled-values of the current Nash flow xf,i, the current cost ci(xf,i), and the current

marginal cost
∂ci(xf,i)

∂xi
.
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3.2.1 Welfare-Gradient Dynamics are Full-Information Con-

sensus Dynamics

To design distributed adaptive pricing mechanisms that only use local information,

we start with the most basic pricing scheme which, although centralized, serves as the

basic block for the adaptive distributed schemes presented in the next sections. In

particular, consider a pricing mechanism based on welfare gradient dynamics of the

form

τ̇ = ∇τW̃ (τ), (3.12)

where W̃ := W ◦O(τ). It turns out that, in affine congestion games with full utilization,

the welfare gradient dynamics (3.12) describe a Laplacian flow with a Laplacian matrix

having a particular structure.

Lemma 4 Suppose that Assumption 15 holds and consider the static Oracle given by

(3.10). Then, the gradient dynamics (3.12) have the form

τ̇ = k LGA
(
hx,2(xf ) + hx,3(xf ) · hx,1(xf )

)
, (3.13)

where k = (1>A−11)−1 ∈ R, and where LGA is the out-degree Laplacian of an undirected

graph GA with adjacency matrix A−111>A−1. Moreover, system (3.13) renders the set

A in (3.9) globally asymptotically stable (GAS), and every solution converges to the

fixed toll

τ ∗ +
1> (τ(0)− τ ∗)

N
1. (3.14)

Proposition (3.13) reveals that using welfare-gradient dynamics to learn the op-

timal tolls in fully utilized diagonal affine congestion games, is equivalent to imple-

menting a Laplacian algorithm with the induced vector of cost functions ĉ(xf ) =
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c(xf ) + diag(∇c(xf )) · xf , where the Laplacian matrix LGA characterizes a weighted

undirected complete graph.

Although the welfare-gradient dynamics (3.13) render the set A GAS, their imple-

mentation requires the individual pricing mechanisms to share information with all the

other mechanisms of the game. To alleviate this issue, we introduce in the next section

a distributed version of (3.13) that allows the pricing mechanisms to update their tolls

by only sharing information with their neighboring mechanisms.

3.2.2 A Class of Distributed Welfare-Gradient Dynamics

We consider pricing mechanisms sharing information via a graph G that satisfies

the following assumption.

Assumption 16 (Graph Connectivity) The individual pricing mechanisms share

information via a communication graph G that is strongly connected and weighted-

balanced.

To achieve distributed learning of optimal tolls with the static Oracle (3.10), con-

sider the now distributed pricing dynamics

τ̇ = LG
(
hx,2(xf ) + hx,3(xf ) · hx,1(xf )

)
, (3.15)

where LG is the Laplacian matrix associated to the graph G. The stability and conver-

gence properties of (3.15) are characterized by the following proposition.

Proposition 7 Suppose that Assumptions 15 and 16 hold. Then, the learning dy-

namics (3.15) render the set A GAS, and every solution converges to the fixed toll

(3.14).
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Distributed pricing dynamics of the form (3.15) are indeed consistent with the char-

acterization of socially optimal Nash flows presented in Section 3.1.2, since whenever

the individual induced cost functions ĉi(·) with marginal utility tolls have all the same

value µ, a socially optimal Nash flows emerges.

3.2.3 Learning Socially Optimal Tolls With A Performance

Index

In some applications it may be of interest to converge to an optimal point τ ? that

not only generates socially optimal Nash flows, but that also minimizes a particular

performance index J(·) defined over the set of optimal tolls A. Examples of common

performance indexes include

J(τ) = τ>xf (τ), and J(τ) = ‖τ‖pp, p ≥ 1,

which correspond to the total revenue of the pricing mechanism, and the p-norm of the

vector of tolls, respectively. For instance, when p = 2 the pricing mechanisms should

converge to the toll τ ? that solves the convex problem

min J(τ) = ‖τ‖2
2,

s.t. τ ∈ A,
(3.16)

where the set A is defined in (3.9). Using the definition of A in (3.9), this problem is

equivalent to the unconstrained optimization problem

min
µ∈R

J(µ) = ‖τ ∗ + µ1‖2 =
N∑
i=1

Ji(µ), (3.17)
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where Ji(µ) = (µ+ τ ∗i )2, and τ ∗ was defined in Lemma 3. Note that here the scalar µ

is the argument of the N different functions Ji. Using standard first order conditions

for optimality it can be verified that the optimal solution µ? of (3.17) satisfies −1>b+

2µ?N = 0, such that

µ? =
1>b

2N
for (3.17) =⇒ τ ? = − b

2
+

1>b

2N
1 for (3.16).

To generate distributed adaptive pricing mechanisms that converge to τ ? using a static

Oracle of the form (3.10), we can consider the learning dynamics

τ̇ = L
(
hx,2(xf ) + hx,3(xf ) · hx,1(xf )− 2z

)
− 2 · ∇J(τ)

ż = L
(
hx,2(xf ) + hx,3(xf ) · hx,1(xf )) · xf

)
,

(3.18)

where the cost J is defined as in (3.16). The following Proposition establishes the

convergence properties of the dynamics (3.18).

Proposition 8 Suppose that Assumption 15 holds, and consider a learning commu-

nication network having a Laplacian matrix LG satisfying Assumption 16. Then, each

solution of (3.18) remains bounded, and τ converges to τ ?.

Based on the proof of Proposition 8, the learning dynamics (3.18) can be seen as a

type of saddle-point dynamics similar to those presented in [218], or [219]. Therefore the

performance index J(·) in (3.16) can be generalized to other classes of strictly convex

cost functions that may be of interest for the social planner. These cost functions

can be used to generate barrier functions that bound τ [220], or to model additional

performance index that incorporate political costs [221], or budget and environmental

constraints [118], for example.
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3.3 Adaptive Pricing Mechanisms in Dynamic So-

cietal Systems

Since a Nash flow is a steady-state equilibrium concept, in practice an Oracle O(·)

will have to wait infinite time in order to report the steady state flow induced by a

new toll acting on the social dynamics. To avoid this infinite waiting time, the results

of the previous section assumed that the oracle O(·) was actually characterized by the

static functions (3.10). One can also interpret this assumption as an instantaneous

convergence property on the social dynamics that describe the evolution of the social

state. To dispense with this assumption we study in this section the problem of dis-

tributed learning of fixed-tolls with dynamic oracles. In particular, dynamic Oracles

are simply social dynamics defined on the simplex that converge to a Nash flow for any

fixed vector of incentives τ . In the classic literature of congestion and population games

e.g., [183], [217], these social dynamics are usually modeled by Lipschitz continuous

differential equations of the form

ẋ = F (x, c(x)), x ∈ ∆. (3.19)

Stability properties of social dynamics of the form (3.19) have been recently studied in

the literature using Lyapunov and passivity-based tools e.g., [222], [223], [121], [117]. To

capture this, and more general set-valued social dynamics, we model dynamic Oracles

as differential inclusions with inputs and outputs, of the form

ẋ ∈ F (x, u), x ∈ ∆, u ∈ RN , (3.20a)

yx = hx(x), (3.20b)
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where F : ∆×RN → T∆ is a set-valued mapping assumed to be outer semicontinuous,

locally bounded and convex valued, and which already encodes the vector of cost

functions c(·) of the game. The input u is the effective vector of tolls perceived by the

society, and the output mapping hx(·) is defined as in (3.11) with the argument being

now the state of the society x instead of the Nash flow xf .

Dynamic Oracles modeled by equations of the form (3.20) must satisfy the following

two assumptions.

Assumption 17 (Invariance of the simplex) For all u ∈ RN the differential in-

clusion (3.20a) renders the set ∆ positively invariant. �

Assumption 18 (Stability of Nash Flows) Consider the social dynamics given by

(3.20) and the Oracle mapping given by (3.10) that maps tolls to Nash flows. Then,

under Assumption 15 for each fixed compact set K ⊂ RN , the K-constrained system

ẋ ∈ F (x, u)

u̇ = 0

 , (x, u) ∈ ∆×K, (3.21)

renders the set MK = {(xf , u) : xf ∈ O(u), u ∈ K} GAS. �

Remark 14 In words, Assumption 18 asks that for each fixed incentive τ , all solutions

of (3.20) converge to the unique Nash flow xf that solves (3.2). �

With the new definition of the Oracle, the adaptive pricing dynamics are now of

the form

τ̇ = α L
(
hx,2(x) + hx,3(x) · hx,1(x)

)
, α ∈ R>0, (3.22)

with output function

yτ = hτ (τ) := τ. (3.23)
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To characterize the convergence properties of the pricing dynamics (3.22) intercon-

nected with the dynamic Oracle (3.20), let (ρ, ε) ∈ R2
>0, and define the compact set

Kρ := {τ : ‖τ‖A ≤ ρ and 1>τ ∈ ρB}. (3.24)

Based on this the following proposition is in order.

Proposition 9 For each pair (ρ, ε) ∈ R2
>0 there exists α∗ ∈ R>0 such that for each α ∈

(0, α∗] every complete solution (x, τ) of the interconnection of the learning dynamics

(3.22) and the social dynamics (3.20) with u = hτ (τ), constrained to Kρ×∆, converges

to an ε-neighborhood of the set {x∗} × A.

Proposition 9 is obtained by means of singular-perturbation theory for set-valued

dynamical systems with compact attractors, e.g., [224], thus the convergence of the

solutions is indeed uniform. Since the set A in (3) is not compact, we are forced to

constrain a priori the trajectories of τ in (3.22) to the compact set Kρ, which can be

selected arbitrarily large to encompass any complete solution of interest. We stress that

constraining the trajectories of consensus dynamics to compact sets is indeed needed

in most applications, since the stability properties of points in the set A are not robust

to arbitrarily small perturbations. Thus, in order to avoid tolls that due to arbitrarily

small perturbations “slide” along the set A and grow unbounded, one will need to

constrain τ a priori to a compact set. Examples of dynamics for bounded consensus

are presented in [220].

Remark 15 If one is willing to impose additional regularity assumptions on the social

dynamics (3.20), e.g. a uniform Lipschitz condition with respect to τ , a convergence

result can be obtained in Theorem 9 without a priori constraining the trajectories of

τ . This follows by the result in [91] for non-bounded attractors. However, said results

could still generate unbounded tolls. �
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We finish this section by discussing the case when the sensitivity s of the entire

population has a known value that is not necessarily 1. In this case the set A will be

given by (3.9) with τ ∗ = − b
2s

Since the sensitivity multiplies the input u in the social

dynamics (3.20), convergence to the optimal set A can be recovered by simply defining

the output function hτ (τ) in (3.23) as hτ (τ) = τ
s
.

3.4 Adaptive Pricing Mechanisms with Population

Excitation

One of the standing assumptions in Sections 3.2 and 3.3, was the ability of the

Oracle to generate sampled values of the marginal costs ∇c(x) as part of its output

mapping. In practice, this implies that either the Oracle can directly sample the

gradient of the costs ci(·), or that the mathematical structure of ci(·) is known for all

i ∈ {1, . . . , N}. However, in most cyber-physical societal systems these assumptions are

difficult to satisfy. In this section, we address this issue by making the observation that

even though the results of the previous section can be seen as a robustness result for

the distributed welfare dynamics under small perturbations induced by social dynamics

that are not infinitely fast, they also open the door for the exploitation of the social

dynamics (3.20) to learn information from the underlaying game based on the evolution

of the social state x. This can be achieved by sharing ideas from adaptive control theory

e.g., [1], [209].

In order to exploit the social dynamics to learn information from the game, for each

pricing mechanism i ∈ V , let c̆i(x) := w̆>i φi(xi) be an approximation of the cost function

ci(·), where w̆i ∈ Rm is a vector of tunable weights, and φi : R → Rm is a continuous

vector valued basis function. A simple choice of basis functions for affine congestion

99



Online Learning for Dynamic Pricing in Societal Systems Chapter 3

games is given by φi = [xi, 1]>, for all i ∈ {1, . . . , N}, since the true parameters are

w∗i = [ai, bi]
>. In order to online learn this parameters consider the simple estimator

˙̆wi = − φi(xi)(
1 + φ>i (xi)φi(xi)

)2

(
c̆i(xi)− ci(xi)

)
, (3.25)

which can be seen as a normalized gradient-based algorithm of the estimation error

[1, Sec. 4.3.5]. System (3.25) only needs to mesaure the value of the social state xi

and cost function ci(xi) associated to the ith resource. Therefore, since now the only

information that the individual pricing mechanism i requires is the pair (xi, ci(xi)), the

output (3.11) of the social dynamics is defined as

hx(x) =

 hx,1(x)

hx,2(x)

 =

 x

c(x)

 . (3.26)

To guarantee convergence of (3.25) to the true parameters w∗i , the social state xi

must have enough excitation. To provide this excitation to the population, consider

the time-invariant signal generator given by the differential inclusion

µ̇i ∈ Ψi(µi), µi ∈ Λi, (3.27a)

yi = hµ,i(µi), (3.27b)

where for each i ∈ {1, . . . , N} the set Λi ⊂ R` is compact, ` ∈ Z≥1, the set-valued

mapping Ψi : R` → R` is outer-semicontinuous, locally bounded, and convex-valued,

and hµ,i : R` → R is continuous. The signal generator is assumed to satisfy the

following stability condition.

Assumption 19 The dynamic signal generator (3.27) renders a nonempty compact

set Aµ,i ⊂ Λi GAS. �

100



Online Learning for Dynamic Pricing in Societal Systems Chapter 3

Assumption 19 is mainly needed to guarantee a uniform bound property on the

signal µ. Standard signal generators of the form (3.27) include linear periodic oscillators

defined on the circle Λi = S, or nonlinear systems rendering asymptotically stable a

limit cycle .

Using the excitation signal µ, and the output function (3.27b), the overall toll is

now defined as

τtotal = τ + diag(a) · hµ(µ), (3.28)

where µ := [µ1, . . . , µN ]>, diag(a) is a N × N diagonal matrix with diagonal entries

given by the vector a = [a1, . . . , aN ]>, with ai ∈ R>0 for all i ∈ {1, . . . , N}, and

hµ := [hµ,1, . . . , hµ,N ]>. The nominal toll τ is generated by the distributed welfare-

gradient dynamics

τ̇ = α L
(
hx,2 + w̆>∇φ(hx,1) · hx,1

)
, (3.29)

where α ∈ R>0, and where

w̆>∇φ(hx,1) = diag

([
w̆1
∂φi(xi)

∂xi
, . . . , w̆N

∂φN(xN)

∂xN

])
.

Based on this, the main idea that we seek to convey in this section is that, if the

signal generator (3.27) is designed such that for each fixed nominal toll τ in (3.28)

the overall toll τtotal provides enough excitation, in the PE sense (see 2.89), to the

population state, then the combination of the distributed welfare-gradient dynamics

(3.22) and the parameter estimator (3.25) allows us to dispense with the assumption

of the existence of a social Oracle that has perfect information of the game. To exploit

this idea the signal µ generated by (3.27) must provide enough excitation to the social

system.
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Assumption 20 Let ρ ∈ R≥0 and consider the system

µ̇ ∈ Ψ(µ)

τ̇ = 0

ẋ ∈ F (x, τtotal)

 , (µ, x, τ) ∈ Λ×∆×Kρ, (3.30)

where Λ := Λ1 × . . .×ΛN , Ψ := Ψ1 × . . .×ΨN , and Kρ is defined as in (3.24). There

exists a∗ ∈ R>0 such that for all amplitude vectors a ∈ RN
>0 with entries satisfying

ai ∈ (0, a∗] and all solutions of (3.30), we have that the signals φi(xi(t)) satisfy (2.89)

i ∈ {1, . . . , N}. �

Let Aµ := Aµ,1 × . . . × Aµ,N , where each Aµ,i is given by Assumption 19. Let

ρ ∈ R>0 and consider the compact set

Aclosed-loop = Aµ × (A ∩Kρ)× {x∗} × {w∗}. (3.31)

The following theorem generalizes the results of the previous sections.

Theorem 4 Consider the closed-loop system obtained by the interconnection of: the

signal generator (3.27), the estimator (3.25), the social dynamics (3.20) with input

given by (3.28) and output given by (3.26), and the learning mechanism (3.22) with

input given by (3.26) and output given by (3.23). Then, for each (ρ, ε) ∈ R2
>0 there

exists α∗ ∈ R>0 such that for all α ∈ (0, α∗] there exists a∗ ∈ R>0 such that for

all a ∈ (0, a∗) every complete solution (µ, τ, x, w̆) of the closed-loop system with τ

constrained to Kρ converges to Aclosed-loop + εB in finite time. �

In words Theorem 4 says for each compact set where the tolls are constrained,

and for any arbitrarily small ε-neighborhood of the socially optimal state x∗, it is

always possible to select the amplitude of the excitation signals and the gain of the
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distributed welfare gradient dynamics, such that complete solutions of the adaptive

pricing mechanism incentivize the society state x towards an ε-neighborhood of the

socially optimal state x. This is achieved by using only measurements of xi and the

costs ci(xi), i.e., the pricing mechanisms are agnostic with respect to the game.

3.5 Numerical Example

To illustrate the geometrical interpretation of the pricing mechanism, we present

in this section a simple example of an affine congestion game with two resources, i.e.,

V = {1, 2}, and matrices A and b with entries a1 = 3, a2 = 2, b = 2.5, b = 2. We

consider first the case when the pricing mechanisms have access to a dynamic Oracle of

the form (3.20), which delivers to each mechanism i ∈ V sampled values of ci(xi) and

∂ci(xi)
∂xi

. For the social dynamics we consider the Brown-von Neumann-Nash dynamics

[], i.e.,

ẋi = max{0, c̄i(x, τ)} − xi
∑
j∈N

max{0, c̄j(x, τ)} (3.32)

where c̄i(x, τ) = ĉi(xi, τi)−
∑

j∈V ĉj(xj, τj)xj, and

ĉi(xi, τi) = −(aixi + bi + τi), ∀ i ∈ V . (3.33)

which satisfy Assumptions 17 and 18. We select the set Kρ with ρ = 10 to make sure

that every solution of interest was complete.

Figure 3.1 shows the convergence of the tolls to the unknown set A of optimal tolls

that incentivize socially optimal states, from four different initial conditions. The red

points denote the theoretical optimal toll (3.14). The evolution of the toll τ for the

case when τ(0) = [−2,−2, 5]> is shown in Figure 3.2. The inset shows the evolution

of the social state x towards the socially optimal Nash equilibrium. To address the
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Figure 3.1: Convergence to the unknown set of optimal tolls A, from 4 different
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Figure 3.2: Evolution in time of the optimal toll
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case when then parameters of the game are unknown for the pricing mechanisms, we

also simulate the adaptive pricing mechanisms with population excitation presented in

Section 3.4. In this case, for each pricing mechanism we use a signal generator (3.27)

of the form  µ̇1,i

µ̇2,i

 =

 0 −ωi

ωi 0


 µ1,i

µ2,i

 , [µ1,i, µ2,i]
> ∈ S,

µ̇3,i = −βi · (µ3,i + ε), βi, ε ∈ R2
>0,

yi = hµ,i(µi) = µ3,i · µ1,i.

which generates an output that is an exponentially decaying sinusoid signal. Note that

the dynamics of this system render the set S×{ε} UGAS, thus satisfying Assumption

19. The frequencies of the oscillator are selected as ω1 = 40 and ω2 = 50. Figure 3.3

shows the evolution in time of the pricing tolls τi converging to its optimal value on the

setA. Note that convergence to the optimal toll is achieved in approximately 6 seconds.

Figure (3.4) shows the evolution in time of the social state, which slowly decays to a

neighborhood of the optimal social state. Note that in practice the excitation signals

hµ,i are turned off after an initial learning phase, which in this case takes approximately

10 seconds. After turning off the excitation signal the social state x settles to a steady

state value ε-close to the optimal social Nash flow x∗. This case is shown in Figure 3.5.

Note that here the full utilization assumption is violated during the first second of the

simulation. Nevertheless, convergence to the optimal set of tolls is still achieved.
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Chapter 4

Event-Triggered Sampled-Data

Extremization

In the previous chapters we studied learning dynamics that require continuous mea-

surements of the output of the plant in order to update the input. On the other hand, a

different approach considered in the literature studies the problem of designing learning

mechanisms where only periodic samples of the output of the plant can be obtained.

This approach usually relies on stability and robustness results for standard periodic

sampled-data systems. In this chapter, we show that, by considering a class of event-

triggered controllers, it is possible to significantly improve the rate of convergence of

the closed-loop sampled-data system. Moreover, we show that a variety of different

set-valued discrete-time learning mechanisms can be implemented in a model-free way,

provided some particular regularity conditions are satisfied.

107



Event-Triggered Sampled-Data Extremization Chapter 4

4.1 Model and Problem Statement

Consider a plant with input u ∈ Rn, state θ ∈ Rp, and output y ∈ R, characterized

in open-loop by the dynamics

(θ, u) ∈ Rp × U :

 θ̇ ∈ f(θ, α(θ, u))

u̇ = 0
, y = ϕ(θ), (4.1)

where α : Rp×Rn → Rn is a feedback law, f : Rp×Rn ⇒ Rp is a set-valued mapping,

ϕ : Rp → R is an output function, and U := Û + 1B ⊂ Rn is the set where the input

u is constrained to evolve. The unitary inflation on Û is motivated by the fact that

the controller will be designed such that the signal u will satisfy u(t) ∈ Û + aB ⊂ U

for all t ≥ 0, where a ∈ (0, 1) is a tunable parameter. Note that since (4.1) is a purely

continuous-time system we omit the discrete-time index j in this section.

Similarly to the previous chapters, we impose the following regularity conditions

on the plant (4.1).

Assumption 21 (Regularity) The set-valued mapping P : Rp × Rn ⇒ Rp, defined as

P (θ, u) := f(θ, α(θ, u)), is OSC, LB, and convex valued with respect to Rp × U. The

mapping ϕ(·) is continuously differentiable. The set Û is closed.

Assumption 22 (UGAS) There exists a feedback law α(·, ·), and an OSC and LB

set-valued mapping H : Rn ⇒ Rp, such that for each ρ > 0 the set Mρ := {(θ, u) : θ ∈

H(u), u ∈ ρB ∩ U} is UGAS for system (4.1) with restricted flow set Rp × (ρB ∩ U).

Moreover, for all u ∈ U and for each pair θ, θ′ ∈ H(u) we have that ϕ(θ) = ϕ(θ′).

In this chapter we will also impose the following condition on the plant (4.1).
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Assumption 23 (Regularity at Equilibrium) Let P and H be defined as in Assump-

tions 21 and 22. Then, for each u ∈ U we have that P (θ, u) = {0} if and only if

θ ∈ H(u).

Using the definition of H(·) in Assumption 22, the response map associated to

system (6.2) is again defined as

J(u) := {ϕ(θ) : θ ∈ H(u)}, (4.2)

for all u ∈ U. The following assumption characterizes the types of response maps J

that we study.

Assumption 24 (Regularity and Feasibility of J) The function J(·) is locally Lips-

chitz and regular [225, Def. 2.3.4], and there exists a nonempty compact set Au ⊂ Û

corresponding to the solutions of the problem

optimize f(J(u)), s.t. u ∈ Û. (4.3)

Remark 16 As in the previous section, the optimization problem (4.3) may correspond

to a game theoretic problem or a distributed optimization problem defined on a multi-

agent system.

We assume that the mappings P , ϕ, H, and J are unknown or poorly known, pre-

cluding the implementation of model-based extremization algorithms. Based on this,

the main goal in this chapter is to design efficient learning dynamics that regulate the

input u of the plant (4.1) to a neighborhood of the optimal set Au using only sequen-

tial measurements of the output y. To achieve this, we consider an event-triggered

control (ETC) that will continuously monitor a triggering signal z(t) related to the
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plant (4.1) in order to evaluate the convergence of θ to a neighborhood of Mρ. A

high-level scheme of the closed-loop event-triggered system is shown in Figure 4.1 for

the case when z(t) = y(t). Since here we will focus our attention on output-based

event-triggered control, the following “observability” assumption will be needed.

Assumption 25 (Observability) Consider the set

Z := {(θ, u) ∈ Rp+n : ∃ ζ ∈ P (θ, u) s.t. ∇ϕ(θ)>ζ = 0}.

Then, for each K ⊂ Rp+n and ẽ ∈ R>0 there exists a δ ∈ R>0 such that for all

solutions (θ, u) of system (4.1) with initial condition in K, and all T ≥ 0, we have

that: (θ>, u>)>(t) ∈ Z + δB for all t ≥ T ⇒ θ(t) ∈ H(u(t)) + ẽB for all t ≥ T .

By exploiting the well-posedness and stability properties of system (4.1), as well as

the “observability” property induced by Assumption 25, the following proposition can

be established.

Proposition 10 (ε-Observability) Suppose that Assumptions 21, 22, and 25 hold.

Then, for each K0 := Kθ × (U ∩ ρB) ⊂ Rp+n and ẽ ∈ R>0 there exists ε ∈ R>0

such that for all solutions (θ, u) of (4.1) with initial conditions in K0, and all T ≥ 0,

we have that: |ẏ(t)| ≤ ε for almost all t ≥ T ⇒ θ(t) ∈ H(u(t)) + ẽB for all t ≥ T .

Proposition 10 ensures that the condition |ẏ(t)| ≤ ε for all t ≥ T , with T ≥ 0, is an

indication of convergence of θ to H(u). We stress that Assumption 25 is only needed

for output-based event-triggered control. If, on the other hand, measurements of θ(t)

are available, a state-based event-triggered approach may not require Assumption 25.

Remark 17 In the classic sampled-data based learning approach, Proposition 10 is

usually replaced by an assumption regarding the existence of a sufficiently large T such
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Triggering
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Dynamics

Figure 4.1: Closed-loop system with event-triggered control (ETC).

that, whenever a measurement of the output y is taken, the second containment in

Proposition 10 holds, see [87, Assump. 1.4]. If, additionally, Û is also assumed to be

bounded, the existence of such T can easily be established, see [135, Lemma 10].

4.2 Event-Based Triggering Mechanism

In this section, we first characterize a class of robust dynamic triggering mechanisms

that receive uniformly sampled values of a triggering signal z(t) related to system (4.1),

guaranteeing that the control system is triggered only after a given event condition

has been verified during a given time window. After this, we show how to use these

mechanisms to achieve quasi-steady state triggering in plants satisfying Assumption

25.

4.2.1 Robust Triggering Mechanisms

Consider a class of dynamic triggering mechanisms that make use of three auxiliary

states (τ, γ, ξ) ∈ [0, 1]× [0, 1]× Rm, a set S ⊂ Rm, and a triggering signal

z = fz(y, θ), (4.4)

where fz : R × Rp → R maps information from the output and/or states of system
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(4.1) to a real number. The state τ corresponds to a fast resetting clock, which is reset

to 0 every ∆T seconds, where ∆T ∈ R>0 is a small tuning parameter. Every time

that τ is reset to 0 the triggering signal z is sampled, and its sampled value is used to

update a memory state ξ as ξ+ ∈ Gξ(ξ, z), where Gξ : Rm × R ⇒ Rm is a set-valued

mapping. Also, whenever τ is reset to 0 and ξ ∈ int(S), a counter state γ is increased

by a small quantity re
γ∗

, where (re, γ
∗) ∈ (0, 1) × Z>0. If ξ /∈ S, the counter γ is reset

to zero. Finally, since we aim to design robust triggering mechanisms that under small

perturbations behave “similarly” to the nominal unperturbed mechanism, any of the

two previously discussed updates for γ are allowed whenever ξ ∈ bd(S), a condition

that may emerge when ξ ∈ int(S) and arbitrarily small perturbations act on ξ.

Assumption 26 (Regularity of Triggering Mechanism) The set S ⊂ Rm satis-

fies int(S) 6= ∅. The set-valued mapping Gξ(·, ·) satisfies (C3) with respect to Rm × R,

and fz(·, ·) is continuous with respect to both arguments.

Remark 18 The design of the set S and the mappings fz and Gξ, are application-

dependent. The mapping fz must be selected based on the available measurements of

system (4.1), e.g., fz = y for output-based event-triggered control, or fz = θ for state-

based event-triggered control. The set S characterizes a particular condition of interest

that is periodically verified via measurements of z, e.g., tracking or regulation error,

boundedness of the states, quasi-steady state conditions, etc. Finally, the mapping Gξ

can be use to simply assign sampled values of z to the entries of the memory state ξ,

or it can be designed as a dynamic filter for smoothing z.

Let the set valued mapping IS : Rm ⇒ R be defined as the outer semicontinuous
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hull of the indicator function 1S(·), i.e.,

IS(ξ) :=


{0, 1}, if ξ ∈ Bd(S)

1, if ξ ∈ int(S)

0, if ξ /∈ S.

(4.5)

Then, the previously discussed mechanism, interconnected with the plant (4.1), can

be modeled as a HDS with overall state xs,u := (x>s , u
>)> ∈ RNs × Rn, where xs :=

(τ, γ, ξ>, θ>)>, Ns := 2 +m+ p, m ∈ Z>0, and data Hs given by

Hs :=
{
Cs × U, Fs × {0n}, Ds × U, Gs × {id}

}
, (4.6)

where id : Rn → Rn is the identity function, and where the mappings Fs, Gs, and sets

Cs, Ds are defined as follows:

Cs := [0, 1]× [0, 1]× Rm × Rp , (4.7a)

τ̇

γ̇

ξ̇

θ̇


∈ Fs(xs, u) :=



1
∆T

0

0m

P (θ, u)


, (4.7b)

Ds := {1} × [0, 1]× Rm × Rp , (4.7c)

τ+

γ+

ξ+

θ+


∈ Gs(xs, z) :=



0{
min

{(
γ + re

γ∗

)
· s, 1

}
, s ∈ IS(ξ)

}
Gξ(ξ, z)

θ


. (4.7d)

Under Assumptions 21, 22, and 26, the HDS (4.6) is well-posed, and it corresponds
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to a hybrid system that jumps every ∆T seconds, i.e., every time that τ = 1. Note

that the function min{·, 1} in (4.7d) simply guarantees the positive invariance of the

set [0, 1] for the counter γ.

We characterize the behavior during jumps of the solutions of the HDS (4.6) in

terms of sub-event and event sets. The sub-event sets are characterized mainly by the

condition ξ ∈ S, while the event-sets require an additional lower bound on the counter

state γ.

Definition 1 A solution xs,u of (4.6) generates a sub-event (resp. strict sub-event)

at the hybrid time (t, j) ∈ dom(xs,u), if xs,u(t, j) ∈ Dse×U (resp. xs,u(t, j) ∈ D̊se×U),

where

Dse := {1} × [0, 1]× S × Rp, (4.8a)

D̊se := {1} × [0, 1]× int (S)× Rp. (4.8b)

Definition 2 A solution xs,u of (4.6) generates an event (resp. strict event) at the

hybrid time (t, j) ∈ dom(xs,u), if xs,u(t, j) ∈ De×U (resp. xs,u(t, j) ∈ D̊e×U), where

De : = {1} × [re, 1]× S × Rp, (4.9a)

D̊e : = {1} × (re, 1]× int (S)× Rp. (4.9b)

Using Definitions 1 and 2 we obtain the following lemma which relates the occurrence

of events and sub-events:

Lemma 5 Let (∆T, γ∗) ∈ R>0×Z>0, and re ∈ (0, 1). Let K := {0}×{0}×Kξ×Kθ×

Ku, where Kξ ⊂ Rm, Kθ ⊂ Rp, and Ku ⊂ Rn are compact. Then, for all xs,u ∈ SHs(K)
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generating an event at some time (t∗, j∗) ∈ dom(xs,u) we have that

γ∗∑
k=0

1Dse (xs(t
∗ − k∆T, j∗ − k)) = γ∗ + 1, (4.10)

and t∗ ≥ (γ∗ + 1)∆T , j∗ ≥ γ∗.

It is easy to see that equality (4.10) is also a sufficient condition to guarantee that a

solution xs,u is generating an event at the hybrid time (t∗, j∗). On the other hand, note

that the simple verification of the condition ξ ∈ S at the end times of the last γ∗ + 1

consecutive intervals of ∆T seconds of flow is not a sufficient condition to guarantee

that a given solution xs,u generates an event. This is because the occurrence of non-

strict sub-events does not necessarily imply that γ must increase. This behavior is

induced on purpose by using the outer semicontinuous hull IS(·) in (4.7d) instead of

the standard indicator function, and it aims to give a robust characterization of the

behavior of the solutions of system (4.6) under arbitrarily small disturbances that may

be problematic when ξ ∈ bd(S).

The following lemma is instrumental in order to guarantee that every solution of

system (4.6) will eventually generate a (strict) event during jumps.

Lemma 6 Consider the HDS (4.6). Let (∆T, γ∗) ∈ R>0×Z>0 and re ∈ (0, 1). Suppose

that Assumptions 21, 22, and 26 hold. Then, system (4.6) is forward complete and

well-posed. Additionally, suppose that the following assumption holds:

A1. For each compact set K = Ks × Ku ⊂ R2+m+p+n there exists a Tε,K ∈ R>0

such that for all xs,u ∈ SHs(K) and (t, j) ∈ dom(xs,u) satisfying t + j > Tε,K we have

that ξ(t, j) ∈ int(S).

Then, there exists a T ∗ > Tε,K such that for all xs,u ∈ SHs(K) and (t, j) ∈ dom(xs,u)

satisfying t+ j > T ∗ we have that xs,u(t, j) ∈ Ds ×Ku ⇒ xs,u(t, j) ∈ D̊e ×Ku.
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Figure 4.2: a) Three different solutions during jumps, eventually generating a stric-
t-event. b) Evolution of γ and τ .

Lemma 6 says that if given a fixed input u the state ξ uniformly converges to int(S),

then there exists a T ∗ such that for all t+ j ≥ T ∗ every solution of (4.6) will generate

a strict event (and an event) every time that a jump occurs. Figure 4.2-a) shows an

abstract representation of the relation between the jump set and the sub-event and

event-sets, as well as the different behaviors of the solutions of the HDS (4.6) during

jumps. In particular, the simultaneous occurrence of an event and a non-strict sub-

event may reset the timer γ to 0 forcing the state xs out of the event set. However,

under Assumptions 21, 22, 26, and A1, a strict-event will eventually occur. Figure

4.2-b) illustrates this for the case when γ∗ = 2.

4.2.2 Event-triggered Closed-Loop System

The HDS (4.7) will be used to trigger a discrete-time control system with state

xu ∈ RNu , given by the dynamics

x+
u ∈ Gu(xu, y), xu ∈ Du, (4.11)

where y is the output of system (4.1), the input u is a state component of xu, and

U ⊂ Du. The control dynamics satisfy the following assumption.

116



Event-Triggered Sampled-Data Extremization Chapter 4

Assumption 27 (Regularity) The set-valued mapping Gu : RNu × R → RNu satisfies

(C3) with respect to Du × R. The set Du satisfies (C1). For each xu ∈ Du and y ∈ R

there exists a v ∈ Gu(xu, y) ∩Du.

Based on this, the event-triggered closed-loop HDS obtained by interconnecting

(4.7) and (4.11) has a global state x := (x>s , x
>
u )> ∈ RNs+Nu , and it is represented by

the HDS H̃ := {C̃, F̃ , D̃, G̃} with data given by

ẋ ∈ F̃ (x) :=

 Fs(xs, u)

0Nu

 , C̃ := Cs ×Du,

x+ ∈ G̃(x) := G̃q(xs, z, y), D̃ := Ds ×Du,

(4.12)

where Cs, Fs, and Ds are given by (4.7a)-(4.7c), and the jump map G̃q is defined as

G̃q :=



 Gs(xs, z)

xu

 , xs ∈ Ds\De Gs(xs, z)

xu

 ∪
 Gr(xs)

Gu(xu, y)

 , xs ∈ De\D̊e Gr(xs)

Gu(xu, y)

 , xs ∈ D̊e,

(4.13)

where Gs is given by (4.7d), z is defined as in (4.4), and the reset map Gr is given by

Gr(xs) := (0, 0, ξ>, θ>)>. (4.14)

The following lemma characterizes the behavior of the HDS (4.12). The proof follows

directly by Lemmas 5 and 6, and Assumption 27.
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Lemma 7 Consider the HDS (4.12) and suppose that Assumptions 21, 22, 26, and

27 hold. Then, system (4.12) is well-posed, and it generates at least one complete

solution from every initial condition in C̃ ∪ D̃. Additionally, if Assumption A1 holds,

then every complete solution of system (4.12) triggers the control dynamics (4.11)

infinitely often, and each pair of consecutive triggering times {(t1, j1), (t2, j2)} satisfies

t2 + j2 − t1 − j1 ≥ TL := (γ∗ + 1)∆T + γ∗.

Although Lemma 7 establishes a uniform lower bound for the amount of hybrid

time that can pass between any two consecutive triggering times, as well as an infinitely

often triggering property for the control dynamics, its does not entail a uniform upper

bound for the amount of hybrid time that can pass between consecutive triggering

times. However, under assumption A1, if a uniform bound can be established for xu

and θ, e.g., if U is also compact, said uniform upper bound between triggering times

can be readily established. A detailed characterization of the stability properties of

the control dynamics (4.11), and the closed-loop dynamics (4.12), will be addressed in

Sections 4.3 and 4.4, respectively, for the case when U is only assumed to be closed.

Remark 19 In system (4.6) the sub-event and event conditions are periodically verified

every ∆T seconds. Since the control dynamics in (4.13) are triggered only when an

event is detected, i.e., xs ∈ De, the control strategy in system (4.12) can be seen as a

type of periodic event-triggered control (PETC) [128].

4.2.3 An Application for Quasi-Steady State-based Triggering

According to Lemmas 5 and 7, systems of the form (4.12) verify online the satis-

faction of the condition ξ ∈ S during a window of time (γ∗ + 1)∆T before triggering

the control system (4.11). For plants of the form (4.1), this type of mechanisms can

be used to trigger a control system that requires a quasi-steady state condition of the
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form (θ>, y)>(t) ∈ (H(u)× ϕ(H(u))) + ε̃B for all t ≥ T ∗, for some ε̃ sufficiently small,

and some T ∗ > 0. For this purpose, consider a family of steady-state identification

mechanisms that make use of a vector of m ≥ 2 uniformly sampled measurements of

the output y, given by

ȳtk :=
(
y(tk − (m− 1)∆T ), . . . , y(tk −∆T ), y(tk)

)>
, (4.15)

where tk ≥ (m− 1)∆T . Each sequence ȳtk of the form (4.15) is mapped by a function

fe(·) that gives an approximation of |ẏ(tk)| on compact sets. This value is then com-

pared with some tunable parameter ε ∈ R>0 in order to obtain a conclusion pertaining

to the validity of the bound |ẏ(tk)| ≤ ε at time tk. By implementing this procedure

for a sequence of vectors {ȳtk+`∆T}`
∗

`=0 of the form (4.15), where `∗ ∈ Z>1, a conclu-

sion of whether or not the bound |ẏ(t)| ≤ ε holds for almost all t ∈ [tk, tk + `∗∆T ],

is obtained. This approach is aligned with several existing methods for online steady

state identification in dynamical systems, where the function fe can be used to model

simple finite differences, or Runge-Kutta-based methods [191, Chapter 7], as well as

more elaborated algorithms for triggering signals corrupted with noise [226]. Moreover,

this methodology is easily adaptable for other numerical and statistical methods where

the satisfaction of an ε-bound on a steady state index fe(ȳtk) is monitored, see [227],

[228]. The following assumption aims to capture this idea.

Assumption 28 (Data (∆T, γ∗, fe) of SSIM) Let m ∈ Z≥2, and suppose that As-

sumptions 21-23 hold. For each ε ∈ R>0, each η ∈ (0, ε/2) and each compact set

K ⊂ Rp+n there exists a continuous function fe : Rm → R≥0, and a tuple (∆T, γ∗) ∈

R>0 × Z≥2m, such that for every solution of (4.1) with initial conditions in K the

following holds:

(a) For any tk ≥ (m− 1)∆T such that ẏ(tk) is defined, and any vector ȳtk having the
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structure of (4.15), we have that fe(ȳtk) ∈ {|ẏ(tk)|}+ ηB.

(b) For any tk ≥ T := (γ∗ −m)∆T , we have that if |ẏ(t)| ≤ ε, ∀ t ∈ {tk − T , tk − T +

∆T, tk − T + 2∆T, . . . , tk}, then |ẏ(t)| ≤ ε, for almost all t ≥ tk − T .

Remark 20 Item (a) in Assumption 28 says that for each η > 0 it is possible to use

a sequence of the form (4.15) with ∆T sufficiently small, such that an estimation of

|ẏ(tk)|, up to an η-bounded error, is obtained using an m-finite sequence of measure-

ments of y.

Remark 21 Item (b) in Assumption 28 says that it is possible to select the sampling

period ∆T sufficiently small, and γ∗ sufficiently large, such that, if the bound |ẏ(tk)| ≤ ε

is verified at a sequence of γ∗ −m+ 1 uniformly sampled points spanning the interval

[tk − T , tk], then this ε-bound can be guaranteed for almost all time t ≥ tk − T . Such

T will always exist under Assumptions 21-23 (see Lemma 21 in Section H.2).

There exists a vast amount of literature regarding numerical methods that satisfy

Assumption 28. Simple examples include Euler based methods of different orders,

Runge-Kutta methods [191, Chapter 7], as well as differentiators with smoothing for

signals that are only locally absolutely continuous, or corrupted with noise [226], [229],

[230].

Using data (∆T, γ∗, fe) satisfying Assumption 28, we can now make use of the

triggering mechanism (4.6) to relate the occurrence of an event with the detection of

a quasi-steady state condition in system (4.1). To achieve this, define the triggering

signal (4.4) and the set S in (4.7d) as

fz := y, S := {ξ ∈ Rm : fe(ξ) ≤ ε}, (4.16)
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where ε ∈ R>0 is a tunable parameter. The mapping Gξ can be defined as the linear

system

ξ+ = Gξ(ξ, y) := Aξ +By, (4.17)

with block matrices A ∈ Rm×m and B ∈ Rm×1 given by

A :=

 0m−1 I

0 0>m−1

 , B :=

 0m−1

1

 , (4.18)

which simply assign a new measurement of y(t) to the last entry of ξ, while the other

entries satisfy the relation ξ+
i = ξi+1, for all i = {1, . . . ,m − 1}. This implies that,

given any initial condition ξ(0) ∈ Rm, after m jumps the state ξ in (4.17) will have the

structure of (4.15), acting as a memory state.

The following proposition is the main result of this section, and it relates the oc-

currence of an event generated by a solution of system (4.6), with the convergence of

θ and y to an ε-neighborhood of their steady state values.

Proposition 11 Suppose that Assumptions 21-23, 25, and 28 hold, and consider the

HDS (4.6) with fz, S, and Gξ defined as in (4.16) and (4.17), respectively. Let (ẽ, ρ) ∈

R2
>0, re ∈ (0, 1), and K := Ks × (ρB ∩ U) ⊂ R2+m+p+n be compact, where Ks := Kτ ×

Kγ×Kξ×Kθ, [0, 1] ⊂ Kτ , and [0, 1] ⊂ Kγ. Then, there exist constants (ε, ε,∆T, γ∗) ∈

R3 × Z≥2m with ε > ε, and a nonnegative function fe : Rm → R≥0, such that for each

ε ∈ (ε, ε]:

1. Assumption A1 holds with fixed set K = Ks × (ρB ∩ U).

2. Let K0 := {0} × {0} × Kξ × Kθ × (U ∩ ρB). If for each xs,u ∈ SHs(K0) there

exists (t∗, j∗) ∈ dom(xs,u) such that xs,u(t
∗, j∗) ∈ De × (U ∩ ρB), then for each

xs,u ∈ SHs(K0) and all (t, j) ∈ dom(xs,u) satisfying t > t∗ − T and j > j∗ − T
∆T
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we have that xs(t, j) ∈ Aρs + ẽB, where

Aρs := [0, 1]2 × ϕ(H(U ∩ ρB))m ×H(U ∩ ρB), (4.19)

and where H(·) is given by Assumption 22.

4.3 Set-Valued Learning Dynamics

In this section, we characterize the family of control algorithms (4.11) that will be

used to extremize the response map J of system (4.1) in the event-triggered closed-

loop system (4.12). The design of these algorithms neglects the dynamics in (4.1),

and assumes direct availability of measurements of J , i.e., y = J(u). We consider

algorithms that can be modeled as a time-invariant logic-based set-valued discrete-

time system with state xu = (x̂>u , q)
> ∈ RNu , given by

 x̂+
u

q+

 ∈ Gu(xu, y) :=

 Gq(x̂u, y)

`(q)

 , (4.20a)

xu ∈ Du := Dx̂u ×Q, (4.20b)

where the sets Dx̂u and Q are defined as

Dx̂u := Dû,ẑ × U× Rσ, Q := {q, . . . , q̄} ⊂ Z, q ≤ q̄, (4.21)

and where σ := |Q| − 1, being |Q| the cardinality of Q. The state x̂u has three main

components x̂u := (x̂>u,z, u
>, ŷ>)> ∈ R2n+r+σ, where the learning component state x̂u,z

is defined as x̂u,z := (û>, ẑ>)> ∈ Rn+r. The set Dû,ẑ := Û × Dẑ ⊂ Rn+r in (4.21)

constrains the evolution of x̂u,z. The state ŷ ∈ Rσ is a memory state, and q ∈ R is a
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logic-state constrained to evolve in Q. The function ` : Q→ Q is defined as

`(q) :=

 q + 1, if q ∈ {q, . . . , q − 1},

q, if q = q,
(4.22)

which orderly cycles through all the modes in Q. Let y := (ŷ>, y)> ∈ R|Q|. Then,

the set-valued mapping Gq : R2n+r+σ × R⇒ R2n+r+σ in (4.20a) is defined as follows:

If q = q (Learning - Dither Mode)

Gq(x̂u, y) =


(v>1 , v

>
2 )>

v1 + a · dq(v2)
,

 v1

v2

 ∈ GL
δ (x̂u,z, y)

ŷ

 , (4.23a)

If q ∈ Q\{q} (Dither-Measure modes),

Gq(x̂u, y) =


x̂u,z

û+ a · dq(ẑ)

Aŷ +By

 , (4.23b)

where the matrices A ∈ Rσ×σ and B ∈ Rσ in (4.23b) are given by (4.18) with m

replaced by σ.

The key elements of the mapping Gq in (4.23a)-(4.23b) are the dither functions

dq : Rr → Rn, which have a tunable gain a ∈ (0, 1), and the learning set-valued

mapping GL
δ : Rn+r × R|Q| ⇒ Rn+r, which is allowed to be parametrized by a tunable

constant δ ∈ (0, 1). These mappings must satisfy the following regularity assumption.

Assumption 29 (Regularity of GL
δ and dq)
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(a) For each δ ∈ [0, 1]: GL
δ satisfies (C3) with respect to Dû,ẑ ×R|Q|. The set Dẑ ⊂ Rr

is closed. For each x̂u,z ∈ Dû,ẑ and y ∈ R|Q| there exists a v ∈ GL
δ (x̂û,ẑ, y) ∩Dû,ẑ.

(b) For each q ∈ Q the mapping dq(·) is continuous in Dẑ, and dq(Dẑ) ⊂ [−1, 1]n.

Under Assumption 29 the control dynamics (4.20) satisfy Assumption 27. Note that

the regularity conditions imposed by Assumption 29 are, indeed, mild. In fact, any δ-

independent algorithm with a continuous right-hand side, of the form x̂+
u,z = gL(x̂u,z, y),

that renders the set Dû,ẑ positively invariant, will satisfy item (a) in Assumption 29.

If the algorithm is set-valued, Assumption 29 only asks for the existence of at least

one complete solution from every initial condition. On the other hand, apart from the

continuity of dq(·) for each q ∈ Q, Assumption 29-(b) is simply a unitary bound on the

amplitude of the dither signals.

Remark 22 In contrast to [135, Lemma 28] we assume that GL
δ is not only upper

semicontinuous, but that it also OSC and LB. This allows us to guarantee the closedness

of the graph of GL
δ , a property that we will exploit in order to obtain a closed-loop HDS

with good robustness properties.

The choice of the mappings GL
δ and dq in (4.23) is application dependent, and it

will be based on the concept of target optimizing dynamical system (TODS) and a

property that we refer to as finite differences approximability (FDA).

4.3.1 Target Optimizing Dynamical Systems

A target optimizing dynamical system (TODS) is characterized by the following

definition:

Definition 3 Let the pair (J, Û) satisfy Assumption 24. The time-invariant discrete-

time dynamical system, with state x̂u,z := (û>, ẑ>)> ∈ Rn+r, jump set Dû,ẑ = Û×Dz,
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jump map GT
δ : Rn+r ⇒ Rn+r, and dynamics

x̂+
u,z ∈ GT

δ (x̂u,z), x̂u,z ∈ Dû,ẑ, (4.24)

is said to be a target optimizing dynamical system (TODS) with respect to (J, Û), if:

(a) (Regularity) For each δ ∈ [0, 1] system (4.24) is well-posed.

(b) (Stability) There exists a compact set Ψ ⊂ Dẑ such that the set Aû,ẑ := Au ×Ψ is

SGP-AS as δ → 0+.

In equation (4.24) the mapping GT
δ is assumed to implicitly have all the necessary

information of J required to render the set Au × Ψ SGP-AS. This information may

correspond to direct measurements of J , the (sub) gradient ∂J , or the Hessian matrix H

of J , for example. Depending on this information, the TODS (4.24) will describe a class

of payoff-based learning dynamics, gradient-based learning dynamics, or Newton-based

learning dynamics, respectively. The role of the auxiliary state ẑ is to give additional

flexibility for modeling logic states, timers, monitoring states, persistently exciting

signals, etc. This allows us to consider a more general class of algorithms not studied so

far in the context of sampled-data optimization. If the mapping GT
δ is independent of ẑ,

the setsDẑ and Ψ can be neglected. TODS are well-posed by definition. Because of this,

we do not consider constrained optimization or learning problems defined on sets that

are not closed. Algorithms of the form x̂+
u,z = gTδ (x̂u,z) with a discontinuous right-hand

side can also be considered provided their corresponding Krasovskii regularization,

given by

x̂+
u,z ∈ GT

δ (x̂u,z) :=
⋂
ε>0

gLδ ((x̂u,z + εB) ∩Dû,ẑ), (4.25)

is also a TODS. Since item (b) in Definition 3 only asks for a SGP-AS property1 in δ

1If system (4.24) does not depend on any parameter δ, item (b) in Definition 3 is equivalent to a
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with respect to Aû,ẑ, the dynamics (4.24) can be constructed via an Euler discretization

of continuous-time or set-valued hybrid dynamical systems. This follows directly by

[191, Example 7.5 & Theorem. 7.8]. Examples of hybrid learning dynamics that are

suitable to obtain TODS via an Euler discretization are presented in [206]. Finally,

note that TODS are defined only with respect to a feasible set Û, and a payoff function

J , which for a multi-agent systems scenario can be taken as a vector of the form

[J1, . . . , JN ]>.

Example 4 (Smooth unconstrained optimization) If J is C2 and strictly con-

cave, and Û := Rn, a discretized gradient system û+ = GT
δ (û) := û + δ · ∇J(û) is

the simplest type of TODS satisfying the conditions of Definition 3. In this case, the

regularization (4.25) of the discontinuous version û+ = gTδ (û) := û+ δ · sgn(∇J(û)), is

also a TODS.

Example 5 (Optimal resource allocation) If J is C2 and strictly concave, and

Û := {û ∈ Rn
≥0 : 1>û = s}, where s ∈ R>0 is a limited resource, the set-valued

dynamics û+ ∈ GT
δ (û) := û−δ ·

(
û−s ·arg maxw∈Ûw

>∇J(û)
)

describes a TODS, since

this dynamics correspond to the discretized best-response dynamics [183, Section 6.1].

Example 6 (Gradient systems with adversarial signals) Let J be quadratic, strictly

concave, and Û := Rn. The system ẑ+
1 = (1−ẑ2)

2
(ẑ1 + 1 − ρ) + (1+ẑ2)

2
max{0, ẑ1 − ρ},

ẑ+
2 ∈ {−1, 1}, û+ = û+ δ · ẑ2∇J(û), evolving on the set Dû,ẑ := [0,M ]×{−1, 1}×Rn,

where M ≥ 1 and ρ ∈ (0, 1), models a gradient system subject to external jamming

signals that aim to unstabilize the state û via the condition ẑ2 = −1. Here ẑ1 acts as

a monitor state that guarantees that in any complete solution the state ẑ2 is equal to

1 “sufficiently often”, see [231, Lemma 3]. Thus, the parameters (δ, ρ) can be selected

such that this system is a TODS.

UGAS property.
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4.3.2 Finite Differences Approximability

The direct implementation of a TODS to optimize J in Û will most likely require

knowledge of the mathematical model of J , ∇J or H, thus precluding its application

in a black-box setting. Because of this, we consider TODS only as a “target” system,

whose solutions we seek to approximate via an appropriate design of the learning

mappings GL
δ and the dither functions dq in (4.23).

Assumption 30 ( FDA) Let the pair (J, Û) satisfy Assumption 24, and let (GT
δ , Du,z)

be a TODS. Then, GL
δ and dq are such that for each compact set Ku,z ⊂ Du,z, each

ρ ∈ (0, 1), and each δ ∈ (0, 1), there exists a∗ ∈ (0, 1) such that for each a ∈ (0, a∗) we

have that if:

ŷ =



J(û+ adq(ẑ))

J(û+ adq+1(ẑ))

...

J(û+ adq̄−1(ẑ))


,
ỹ = J(û+ adq̄(ẑ))

y = (ŷ>, ỹ)>
, (4.26)

then GL
δ (x̂u,z, y) ⊂ GT

δ ((x̂u,z + ρB) ∩Du,z) + ρB, for all (û, ẑ) ∈ Ku,z.

In words, the FDA property implies that under an appropriate choice of the dither

signals dq, parameters (a, δ), and a sequence comprised of |Q| measurements of J

evaluated at points û+ adq(ẑ), for all q ∈ Q, the solutions of GL
δ in (4.23a) will also be

solutions of a ρ-perturbation of a TODS. The SGP-AS property in Definition 3 implies

that Assumption 30 is similar in spirit to [87, Assumption 2] and [135, Assumption

16.(ii)-(iii)], although we do not make any extra assumption regarding the robustness

of GL
δ under additive perturbations in the vector y. Indeed, these robustness properties

will be obtained as a direct consequence of the structural properties of the learning

mapping GL
δ .

127



Event-Triggered Sampled-Data Extremization Chapter 4

Example 7 Let (J, Û) satisfy Assumption 24, J ∈ C2, and consider the system

x̂+
u,z ∈ GT

δ (x̂u,z) := Ĝδ(x̂u,z, k · ∇J(û)), x̂u,z ∈ Dû,ẑ, (4.27)

where Ĝδ(·, ·) satisfies (C3) with respect to Dû,ẑ ×Rn, Dû,ẑ is closed, and (4.27) satis-

fies item (b) in Definition 3 for any k > 0. Then (4.27) is a TODS, and the learning

mapping GL
δ := Ĝδ(x̂u,z, E(ȳ)), with E(ȳ) = (ŷ1− ŷ2, . . . , ŷ2n−1−y)>, Q = {1, . . . , 2n},

and dither functions dq = e q+1
2

for q odd, and dq = −e q
2

for q even, i.e., the Kiefer-

Wolfowitz approach for the estimation of (a · ∇J), satisfies Assumption 30. This ob-

servation follows by the upper-semicontinuity property of GL
δ induced by (C3), which

implies that in compact sets, any O(a) estimation error of ∇J can be embedded in an

additive ρ-inflation of (4.27).

Many extremization algorithms satisfying the FDA property have the structure

of (4.27). In particular, standard finite differences approximations can be used to

approximate the gradient of J on compact sets whenever J ∈ C2. Moreover, any

gradient-based time-invariant optimization algorithm with a continuous right-hand side

can be combined with this approximation to satisfy Assumption 30. Other ways of

generating the functions dq can be found in [232, Section 5.5] for smooth response

maps, or in [233] for nonsmooth response maps. A particular application of a TODS

in nonsmooth networked systems is presented in the conference paper [161].

Remark 23 Some TODS are able to guarantee convergence to the optimal set Au by

directly using unperturbed measurements of J(u), i.e., without dithering, e.g., [183, ch.

7.2 ]. For this type of dynamics we can take GL
δ := GT

δ , Q := {0}, d0 := 0, and the

memory state ŷ can be neglected.

The following theorem, which is of semi-global practical nature, is the main result
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of this section.

Theorem 5 Consider the system (4.20) with y ∈ J(u) + ẽB, ẽ ∈ R>0, and suppose

that Assumptions 24-30 hold. Let

Ax̂u := Aû,ẑ ×Au × J(Au)σ, (4.28)

where Au,z is defined as in Definition 3-(b), and Au is defined as in Assumption 24.

Then, system (4.20) is well-posed, and for each ν ∈ R>0 and each pair of compact

sets Kx̂u ⊂ R2n+r+σ and Kq ⊂ R satisfying (Ax̂u ×Q) + νB ⊂ int(Kx̂u × Kq), there

exists δ∗ ∈ (0, 1) such that for all δ ∈ (0, δ∗] there exists a∗ ∈ (0, 1) such that for each

a ∈ (0, a∗] there exists ẽ∗ ∈ (0, 1) such that for each ẽ ∈ (0, ẽ∗] there exists at least

one complete solution from every point in Kx̂u ×Kq, as well as a ULAS compact set

Aδ,a ⊂ (Ax̂u ×Q) + νB with basin of attraction BAδ,a containing the set Kx̂u ×Kq.

4.4 Stability Analysis of the Closed-Loop System

We now proceed to analyze the complete closed-loop event-triggered system ob-

tained by the hybrid dynamics (4.12) using the control dynamics (4.20) with y being

the output of system (4.1). Since the control dynamics are parameterized by a logic

state q ∈ Q the closed-loop system can be seen as a logic-based automaton that allows

flows of the plant (4.1) only when xs ∈ Cs, i.e., when τ < 1 . Whenever τ = 1 and

an event occurs, the control state and the logic mode q are allowed to be updated.

Figure 4.3 illustrates this automaton-like representation of system (4.12) for the case

that q = 0 and q̄ = 1.
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Figure 4.3: Automaton-like representation of the HDS (4.12) using the control dy-
namics (4.20) with only two modes, i.e., Q = {0, 1}.

Consider the compact set

A := As ×Ax̂u ×Q, (4.29)

where Ax̂u is defined as in (4.28), Q is defined as in (4.21), and As is defined as (4.19)

with Û ∩ ρB replaced by Au. The following semi-global practical asymptotic stability

theorem corresponds to the main result of this chapter.

Theorem 6 Consider the HDS (4.12) with control dynamics (4.20), where y, S, and

Gξ are given by (4.16) and (4.17), respectively. Suppose that Assumptions 37-25 and

28-30 hold. Then, the closed-loop HDS is well-posed, and for each ν ∈ R>0 and each

compact set K ⊂ RNs+Nu satisfying A+ νB ⊂ int(K), there exists δ∗ ∈ R>0 such that

for each δ ∈ (0, δ∗] there exists a∗ ∈ R>0 such that for each a ∈ (0, a∗] there exists data

(∆T, γ∗, fe) and a pair (ε, ε), such that for each ε ∈ (ε, ε]: 1) There exists at least one

complete solution from any initial condition in K ∩ (C̃ ∪ D̃). 2) There exists a ULAS

compact set Aε ⊂ A+ νB with basin of attraction BAε ⊃ K.

Theorem 6 characterizes the order in which the parameters of the closed-loop system

must be tuned, being the constant δ the first parameter to be selected sufficiently small.

Once this parameter has been selected one proceeds to tune the amplitude a, and finally
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one proceeds to tune the parameters (∆T, γ∗, ε) and the function fe in order to detect

the quasi-steady state condition with the sufficient accuracy. Since we only assume a

“practical” derivative estimation characterized by item (a) in Assumption 28 (which is

usually the best one can expect for noise corrupted signals), the sampling period ∆T

needs to be selected sufficiently small, while the length of the vector (4.15) and the

verification window (γ∗ −m)∆T need to be selected sufficiently large to avoid events

that are not an indication of steady state.

Theorem 6 and [78, Lemma 7.20] allows us to directly obtain the following corollary,

which exploits the well-posedness of the closed-loop system.

Corollary 2 Consider the HDS (4.12) with data H̃ := {C̃, F̃ , D̃, G̃} and control dy-

namics (4.20) with output y of (4.1). Suppose that all assumptions from Theorem 6

hold, and let Aε be the generated ULAS compact set. Then, for the ρ-perturbation of

H̃, given by the HDS with data

C̃ρ := {x : (x+ ρB) ∩ C̃ 6= ∅}

F̃ ρ := co F̃ ((x+ ρB) ∩ C̃) + ρB,

D̃ρ := {x : (x+ ρB) ∩ D̃ 6= ∅}

G̃ρ := {v : v ∈ g + ρB, g ∈ G̃((x+ ρB) ∩ D̃)},

(4.30)

the set Aε is SGP-AS (with respect to BAε) as ρ→ 0+.

The margins of robustness given by Corollary 2 cover a variety of scenarios that

are critical for the safe implementation of the output-based event-triggered control.

These include: small additive perturbations with unknown directions acting on the

measurements of the triggering signal z; mismatches and additive noises on τ , γ, and

(ξ, ŷ); and small additive disturbances acting on the states (x̂u,z, u, q) and on dq(·).
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4.4.1 Connections with the Periodic Sample-Data Approach

The standard approach for black-box optimization in sampled-data systems [133],

[135], [87], periodically updates the control system by using a constant large sam-

pling period T . Indeed, this approach can naturally be defined as a hybrid triggering

mechanism with hybrid dynamics given by


τ̇

θ̇

ẋu

 ∈


1
∆T

P (θ, u)

0Nu

 , Cs = [0, 1]× Rp ×Du


τ+

θ+

x+
u

 ∈


0

θ

Gu(xu, y)

 , Ds = {1} × Rp ×Du,

(4.31)

where the (strict) event set is now defined as D̊e := De := Ds. In this case ∆T has

now the role of T , and it is selected as the worst case settling time that guarantees

a quasi-steady state condition for all solutions generated by the plant (4.1) from a

given compact set of initial conditions. By using this definition for De and D̊e, system

(4.31) is consistent with the HDS (4.12), since now Ds\De = De\D̊e = ∅, which implies

that the jumps of the closed-loop system are completely characterized by the mapping

Gr × Gu in (4.13). In this case the auxiliary states (γ, ξ) have no particular role,

and the HDS (4.12) reduces to system (4.31). Since ∆T is now selected sufficiently

large to guarantee an ẽ-quasi-steady state condition at every jump, we have that the

conclusions of Proposition 11.2 still hold (with appropriate set Aρs), thus, a stability

result for system (4.31) can be seen as a corollary of Theorem 6, where the parameters

(γ∗, ε, re), and the function fe, have no particular role. This approach was pursued in

[161] in a networked systems scenario.
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4.4.2 On the Convergence Rate of the Event-triggered Ap-

proach

In the standard periodic sampled-data optimization approach [133], [135], [87],

which as mentioned before can also be modeled as (4.31), the updates of the control

system occur in a periodic way, generating hybrid time domains of the form

[0, (1− τ0)∆T ]× {0} ∪

(
∞⋃
k=0

[sk, sk+1]× {k + 1}

)
, (4.32)

where the sequence {sk} is generated by the recursion sk+1 = sk+∆T, ∀ k ∈ Z≥0, s0 =

(1− τ0)∆T , and where τ0 := τ(0, 0). This type of hybrid time domains is independent

of the initial conditions and dynamics of the plant (4.1), and illustrates the limitations

imposed by using a large ∆T in (4.31). On the other hand, note that due to the

equivalent KL characterization of the UGAS property of system (4.1), every time that

u is updated to u+ 6= u at some time ti, the state of the plant will satisfy during flows

a KL bound of the form2

|θ(t)|H(u+) ≤ β
(
|θ (ti)|H(u+) , t− ti

)
, (4.33)

for all t in the interval [ti, tf ], where tf corresponds to the time where u+ is updated

again. Moreover, by Assumption 22, Proposition 11, and the construction of the jump

map (4.13), at the time ti the state of the plant will satisfy |θ(ti)|H(u) ≤ ẽ. Due to the

OSC and LB properties, the set-valued mapping H(·) is also upper semicontinuous [78,

Lemma 5.15], which implies that for each u+ and ε1 ∈ R>0 there exists an ε2 ∈ R>0 such

that H(u++ε2B) ⊂ H(u+)+ε1B. Thus, for any ẽ ∈ R>0 and u+ satisfying ‖u+−u‖ ≤ ε2

we have that H(u) + ẽB ⊂ H(u+) + (ε1 + ẽ)B. Without loss of generality we can take

2For simplicity we omit here the dependence of θ(t, j) on j.
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ε1 = αu(ε2), where αu ∈ K. Thus, right after the controller is updated we have that

|θ (ti)|H(u+) ≤ αu(ε2) + ẽ, and since αu ∈ K the upper bound on |θ (ti)|H(u+) will

decrease as ε2 decreases. Moreover, αu(·) can be taken independent of u in a compact

set sufficiently close to u∗. Therefore, for any learning dynamics of the form (4.20) that

guarantees SGP-AS of a singleton Au = {u∗}, and for which the upper bound ε2 will

eventually decrease in a neighborhood of u∗, e.g., learning dynamics with a smooth

right-hand side, the first argument of the KL function β in (4.33), i.e., the overshoot,

will eventually decrease, thus leading to smaller settling times, and therefore smaller

intervals of flow between updates of the discrete-time control dynamics, necessarily

reducing the convergence time of the closed-loop system to a neighborhood of the

optimal set. The reduction in the convergence time is achieved without deteriorating

the basin of attraction and the residual set where solutions converge. Note, however,

that it is easy to construct plants with a discontinuous right-hand side whose settling

times do not depend on the norm of the input. Thus, to obtain a better estimate of

the improvement on the convergence rate achieved by the event-triggered approach one

would need additional information regarding the model of the plant. For instance, in

[234], the authors show that for the smooth nonlinear system (and a more general class

of systems) of the form θ̇1 = −θ1+θ2
2 +u, θ̇2 = −2θ2+2u, y = θ1+θ2, the ẽ-settling time

to the origin is approximately given by − log
(

ẽ
|us+4u2

s/3|

)
, where us is the normalized

input. For this system, values of ẽ = 0.01 and |us| ≤ 1 lead to settling times decreasing

from 5.5s to 0 as |us| → 0+, see [234]. In contrast to the event-triggered approach, this

reduction in the settling time cannot be exploited by the periodic sampled-data system

(4.31). We point out that this idea has been exploited in the process control and model-

based optimization literature, e.g., [235, Ch. 9], although a rigorous stability analysis,

as well as its study in the setting of set-valued model-free sampled-data learning and

extremum seeking in nonlinear systems, was absent.
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4.5 Numerical Example

Consider a switched system of the form

εθ̇ =

 −1 3
2
− 5

4
p

−9
4

+ 5
4
p −1

 θ +

 1

9
4
− 5

4
p

u , (4.34a)

y = −(θ1 − 10)2, (4.34b)

where θ ∈ R2, u ∈ R, ε = 0.1, and p : [0,∞) → {1, 2} is a switching signal that is

constant for at least δt > 0 seconds. Since δt is arbitrarily small, to analyze all the

solutions of system (4.34) one needs to consider the differential inclusion

θ̇ ∈ P (θ, u) := co ∪p∈{1,2} fp(θ, u), (4.35)

where fp(θ, u) corresponds to the right hand side of (4.34a). Indeed, every solution

of (4.34) is also a solution of (4.35), and every solution of (4.35) can be generated

by (4.34) under an appropriate selection of the switching signal p [78, Example 2.14].

Therefore the stability properties of system (4.34) are characterized by the stability

properties of system (4.35). Since for each fixed u we have that V = (θ1 − u)2 + θ2
2

is a common Lyapunov function for (4.34), it follows that (4.35) renders the singleton

H(u) := {u} × {0} UGAS. Moreover, since the response map of (4.34) is given by

J(u) = −(u− 10)2, and system (4.35) is well-posed by construction, the plant satisfies

Assumptions 37-24 with Au = {10}. Now, given any δt > 0 arbitrarily small, the

selection of the waiting time T for the classic periodic sampled-data optimization given

by (4.31) must be based on the largest settling time among all the worst case settling

time generated by all solutions of (4.35). For δt = 0.01s the worst case T is given by

the solution generated by the periodic switching signal p that jumps every δt seconds,
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shown in Figure 4.4-b. These type of solutions generate a settling time approximately

equal to 1.5 sec, which is more than double of the settling time generated by the

solution associated to ṗ = 0 for all t ≥ 0, which is approximately equal to 0.6s, for

any p ∈ {1, 2}. For the dynamics (4.35) with output (4.34b) we have that Z :={
(θ, u) ∈ R2 × R : θ1 = 10, u = θ1 + θ2(1− 5

4
λ), λ ∈ [0, 1]

}
, and no solution of (4.35)

with u̇ = 0 can stay indefinitely in Z unless θ1 = u and θ2 = 0. Thus, system

(4.35) satisfies Assumption 25. Using the event-triggered approach, we simulate the

solutions generated when p(t) corresponds to the switching signals shown in Figure

4.4, and θ(0) = [0, 0]>. The evolution of θ1 for both of these solutions is shown in

Figure 4.5, marked as “(a)” and “(b)”, respectively. Additionally, we simulated the

solution generated by the classic sampled-data system (4.31) for the switching signal

in Figure 4.4-a. This solution is marked as “(c)” in Figure 4.5. For clarity we do

not show the solution generated by system (4.31) with the switching signal of Figure

4.4-b since this solution is almost identical to the one generated using the switching

signal (a), as both solutions are generated with the same worst case sampling period

T=1.5s. Figures 4.5 and 4.6 illustrate the behavior discussed in Section 4.4.2: At the

beginning of the simulation (t ≤ 20 sec) the rate of convergence of the three solutions

is almost the same. For t > 20s the rate of convergence of solution (a) increases, since

the event-triggered method exploits the fact that this solution requires settling times

that are approximately half of the settling times of solutions (b). Note that although

for t ≤ 120s the difference between the rates of convergence of solutions (b) and (c)

is moderate, as |u+ − u| → 0.2, solution (b) accelerates, converging to the residual

set [9.9, 10.1] in approximately 300s, compared to solution (c), which converges in

approximately 700s. Solution (a), which requires smaller settling times, converges in

approximately 200s. The data of the SSIM was selected as: ε = 0.06, ∆T = 0.01,

m = 2, γ∗ = 10, re = 0.99, and fe = |(ξ1− ξ2)/∆T |. The TODS employed corresponds
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Figure 4.4: Switching signals p(t) with: (a) low switching frequency, (b) high switch-
ing frequency.
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Figure 4.5: Trajectories of θ1 (solid) and u (dashed), with (a)-(b), and without (c),
event-triggered control.

to a standard continuous discretized gradient system as the one in Example 4. The

parameters of the optimizer are selected as a = 0.1, δ = 0.1, and we used Q = {0, 1}

and d0 = 1, d1 = −1. The signal ẏ, and its estimated value, are shown in Figure 4.7

for solutions (a) and (b). The evolution of γ is shown in Figure 4.8, illustrating how

events in solution (a) are generated more frequently compared to solution (b).
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Figure 4.6: Solutions θ1 of (4.34) converging to a neighborhood of u∗, with (a)-(b),
and without (c), event-triggered control.
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ẏ
(t
)

 

 

34 35 36 37 38 39 40
−20

0

20

 

 

144 145 146 147 148 149 150
−0.2

0

0.2

0.4

0.6

 

 

144 145 146 147 148 149 150
−0.2

0

0.2

0.4

0.6

 

 

(a)

(b)
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Chapter 5

Robust Coordination of Networked

Sampled-Data Systems

In networked multi-agent cyber-physical systems where agents have access to only local

information, i.e., to the states and inputs/outputs of their neighboring agents, it is not

possible to implement centralized architectures that require a synchronous and coor-

dinated behavior of the agents. In order to overcome this limitation, in this chapter

we study a methodology that allows to implement fully decentralized feedback mecha-

nisms with good robustness properties, based on a centralized control system designed

a priori. This methodology is based on a robust synchronization mechanism and a

type of control system termed “pre-jump sampling control”. We show that, by using

these feedback mechanisms, the resulting closed-loop system exhibits desirable stabil-

ity and robustness properties, which, in general, are difficult to obtain in networked

cyber-physical systems.
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5.1 Motivational Example

In networked multi-agent CPS with decentralized controllers, the interaction be-

tween multiple hybrid dynamical systems leads to complex behaviors due to the absence

of a central node that coordinates the jumps. To illustrate this idea, and to prepare

for the general discussion to follow, we present a simple motivational example using

a MAS comprised of three sampled-data systems with linear dynamics and periodic

discrete-time controllers.

5.1.1 Model of the System

Consider 3 sampled-data systems with scalar continuous-time dynamics given by

δθ̇i = −θi + ui, yi = θi, ∀ i ∈ V := {1, 2, 3}, (5.1)

where yi is the output of the ith plant. The parameter δ ∈ R>0 is assumed to be

small, inducing a fast transient modeling fast actuator dynamics, such as in [224].

The control dynamics of the sampled-data systems share information via a ring graph

{1} → {2} → {3} → {1}. We assume that agents also have access to the information of

their own state. Each agent implements linear periodic discrete-time control dynamics

of the form

u+
i = Ai,ziu+Biy, ui ∈ R, (5.2a)

z+
i = zi + 1 if zi ∈ {0, 1}, or z+

i = 0 if zi = 2, (5.2b)

where u = [u1, u2, u3]>, y = [y1, y2, y3]>, and Bi is a row vector with the jth entry

different from zero only if j is a neighbor of agent i. For each agent i ∈ {1, 2, 3} and each
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Figure 5.1: Three different collections of adjacency matrices {Ãzc} associated with
the networked periodic discrete-time system with dynamics (5.4). (a) Nominal sta-
ble system. (b) System obtained when agent 1 always updates its controller before
the other agents. (c) System obtained when agents do not coordinate their logic
mode zci and z(0) = [1, 0, 2]>.

logic state zi ∈ {0, 1, 2} the matrices Ai,zi are given as follows: A1,0 =
[
−7

5
, 4

5
, 0
]
, A1,1 =[

−13
10
, 3

5
, 0
]
, A1,2 =

[
−6

5
, 1, 0

]
; A2,0 = [0, 1, 0] , A2,1 =

[
0,−9

8
,−1

]
, A2,2 = [0, 2, 0];

A3,0 =
[
2, 0,−4

5

]
, A3,1 =

[
2, 0,−2

3

]
, A3,2 = [2, 0, 1]. Since according to (5.2b) the

logic state zi models a periodic discrete-time parameter with period equal to 3, the

control dynamics (5.2a) are also periodic.

As in [150], the plant dynamics (5.1) are interconnected in feedback with the peri-

odic discrete-time dynamics (5.2) by means of an individual sampler/zero-order hold

(S/ZOH) mechanism with periodic resetting clock τi ∈ R≥0. This clock has a constant

frequency ω, and it is reset to 0 every ω−1 seconds. Every time that τi is reset to zero,

the S/ZOH samples the inputs and outputs of (5.1) and its neighbors, updates the

states (ui, zi) via (5.2), and sends the new value of the input u+
i to the plant (5.1).

Our goal is to design the row vectors Bi and any other necessary feedback mechanism,

such that, for δ sufficiently small, the overall states (θ, u) of the networked multi-agent

sampled-data system converge to a neighborhood of the origin.
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5.1.2 Control Design

In order to design the matrices Bi, consider the case when δ = 0 in (5.1), which cor-

responds to “instantaneous” actuator dynamics generating the steady state input-to-

output condition yi = θi = ui. The feedback interconnection with this static mapping

in (5.2a) generates discrete-time scalar dynamics of the form

u+
i = Ãi,ziu, where Ãi,zi = Ai,zi +Bi. (5.3)

Now, suppose that the three agents of the network are coordinated by a global logic

state zc with dynamics (5.2b), and by a global clock τc that simultaneously triggers the

S/ZOH mechanisms and the control dynamics of all agents. Using (5.3) for all i ∈ V ,

the synchronous discrete-time dynamics of the MAS can be written in vectorial form

as

u+ = Ãzcu, Ãzc :=

[
Ã>1,zc , Ã

>
2,zc , Ã

>
3,zc

]>
, (5.4a)

z+
c = zc + 1, if zc ∈ {0, 1}, or z+

c = 0 if zc = 2. (5.4b)

Since the dynamics of agent i only depend on its own actions and the actions of its

neighbors, the matrix Ãzc in (5.4a) can be interpreted as a 3-periodic weighted adja-

cency matrix describing time-varying weights associated to the edges of the communi-

cation graph of the controllers. We assume that these weights only affect the dynamics

(5.4), and not the communication between agents. This interpretation is shown in

Figure 5.1 for three different collections {Ãzc}zc∈{0,1,2}.

The analysis of synchronous systems of the form (5.4) is significantly easier com-

pared to the analysis of asynchronous MAS with dynamics (5.2). In fact, systems of

the form (5.4) can be studied using standard algebraic or Lyapunov tools [236] . For
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instance, since it is well known [236, pp. 15] that the origin is UGAS for the system

(5.4a) if and only if the monodromy matrix M := Ã2Ã1Ã0 is Schur stable, we can use

B1 := [1, 0, 0], B2 := [0, 1, 1], and B3 := [−1, 0, 1] in (5.3) to obtain the weighted adja-

cency matrices {Ãzc}2
zc=0 shown in Figure 5.1-(a), which generate a Schur stable matrix

M with eigenvalues |λ(M)| = [0.0021, 0.8809, 0.8809]. Since for δ > 0 sufficiently small

we have that every ω−1 seconds yi = ui +O(δ) in (5.2a), the synchronous and coordi-

nated network of sampled-data systems with continuous-time dynamics (5.1), discrete-

time dynamics (5.4), and global states (τc, zc) will render the origin SGP-AS as δ → 0.

Robustness to small perturbations of the form (G.14) follows by well-posedness of the

synchronous system [78, Thm. 7.21].

5.1.3 Instability and Lack of Robustness due to Absence of

Coordination

Once a robust feedback mechanism has been designed for the synchronous system

given by equations (5.1) and (5.4) with global clock τc and global logic state zc, a natural

question to ask is whether or not the same matrices Bi can be used in the original

asynchronous networked multi-agent sampled-data system with control dynamics (5.2)

and individual states (τi, zi). To explore this question, consider the initial conditions

τ(0) = [0, 0, 0] and z(0) = [1, 0, 2], and suppose that each agent individually updates its

own state zi according to the uncoupled dynamics (5.2b). When δ = 0, we obtain again

the synchronous control dynamics u+ = Ãzcu, which will now periodically implement
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the following matrices

Ã0 =


A1,1

A2,0

A3,2

 , Ã1 =


A1,2

A2,1

A3,0

 , Ã2 =


A1,0

A2,2

A3,1

 . (5.5)

Clearly, these matrices are different from those defined in (5.4). Indeed, using the

same matrices Bi defined in the previous section, we obtain this time a collection of

weighted adjacency matrices {Ã}zc∈{0,1,2} describing the three graphs shown in Figure

5.1-(c). In this case the monodromy matrix M has eigenvalues satisfying |λ(M)| =

[0.27, 0.036, 1.225], which implies thatM is not Schur stable. Figure 5.2-(center) shows

a numerical simulation illustrating the unstable behavior of the closed-loop system

emerging from the given initial conditions. The inset shows the synchronous behavior of

the clocks, as well as the uncoordinated behavior of the logic states zi. The parameters

of the system are selected δ = 0.1 and ω = 0.5.

On the other hand, suppose now that the initial values of the clocks τi(0) and

the logic states zi(0) are common for all the agents, i.e., these states are initially

synchronized. Consider any measurable perturbation ε : R≥0 → R with supt≥0 |ε(t)| ≤

ε and ε ∈ R>0 arbitrarily small, acting on the clock τ1 of the S/ZOH mechanism of

agent 1, such that the control dynamics (5.2) of agent 1 are triggered ε seconds before

the control dynamics of agents 2 and 3. Since agent 1 updates its controller before

agents 2 and 3, the closed-loop system will exhibit sequential updates of the control

dynamics (5.2). In the simplest case, when δ = 0, these sequential updates will generate

control dynamics (5.3) for agents 2 and 3 given by

u+
2 = Ã2,z2 [u+

1 , u2, u3]>, u+
3 = Ã3,z3 [u+

1 , u2, u3]>. (5.6)
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Replacing u+
1 by its definition in (5.3), we obtain the control dynamics in vectorial

form, given by

u+ =


Ã1,z1

ã1
2,z2
ã1

1,z1
, ã1

2,z2
ã2

1,z1
+ ã2

2,z2
, ã1

2,z2
ã3

1,z1
+ ã3

2,z2

ã1
3,z3
ã1

1,z1
, ã1

3,z3
ã2

1,z1
+ ã2

2,z2
, ã1

3,z3
ã3

1,z1
+ ã3

2,z2

u,

where ãki,zi is the kth entry of the row vector Ãi,zi . Again, the emerging synchronous

discrete-time system is different from the desired nominal system (5.4). In fact, if

we implement the same matrices Bi designed in the previous section, the resulting 3-

periodic weighted adjacency matrices {Ãzc}zc∈{0,1,2} will correspond to the three graphs

shown in Figure 5.1-(b). In this case, the monodromy matrix satisfies |λ(M)| =

[0.04, 0.02, 2.239], which is also not Schur stable. Figure 5.2-(left) shows a simu-

lation illustrating the unstable behavior that emerges in this case. Note that here the

states (τi, zi) are essentially synchronized. Of course, the instability generated by the

sequential jumps can also emerge if the clocks are not synchronized during the evolution

of the system, or if any other ε-perturbation acting on the clocks triggers the S/ZOH

mechanisms in sequential order. This implies that synchronization of the clocks and

logic modes is, in general, not enough to guarantee robust asymptotic stability of the

networked sampled-data system (5.2) under a feedback control designed for the syn-

chronous system (5.4), even when the continuous-time dynamics (5.1) are neglected.

Moreover, as we will show in the next section, the sequential jumps of the controllers

in the networked MAS are unavoidable when a robust synchronization mechanism is

implemented for the clocks.
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Figure 5.2: Agents with synchronized states τi and zi, but without coordination
mechanism Kρi (left). Agents using Kρi , but without using KSi to synchronize zi
(center). Agents using both coordination mechanisms KSi and Kρi (right).

5.1.4 A Universal Robust Coordination Mechanism

The lack of robustness discussed above is even more dramatic when the plant dy-

namics (5.1) are nonlinear, open-loop unstable, and set-valued, as well as when the

control dynamics (5.2) are nonlinear and set-valued, such as those shown in Figure

5.3. However, as we will show in Section 5.3, it is indeed possible to design a feed-

back coordination mechanism that allows each agent i, with dynamics (5.1)-(5.2) and

individual states (τi, zi), to retain the stability properties, in a robust way, of the

nominal synchronous system (5.4). In particular, as shown in Figure 5.5, the feedback

coordination mechanism of each agent i is based on two main blocks: The block KSi

will guarantee global, robust, and decentralized, synchronization of the states τi and zi.

The block Kρi will guarantee that, under any sequential order of updates of the control

dynamics (5.2a), the MAS with individual states (τi, zi) will emulate the behavior

of the synchronous system with global state (τc, zc). Implementing this coordination

mechanism, together with the matrices Bi designed for system (5.4), leads to the stable

behavior shown in Figure 5.2-(right). The blocks KSi and Kρi are “universal”, in the

sense that they can be used to coordinate a variety of networked multi-agent sampled-

data systems with nonlinear and set-valued dynamics that implements a control system

designed a priori to stabilize the networked system under the assumption of a global

clock τc and a global logic state zc. The design of KSi and Kρi relies on robust stability
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theory for set-valued hybrid dynamical systems, and these blocks can be implemented

in a decentralized way.

5.2 Modeling Framework for a Class of CPS

We consider a multi-agent CPS withN agents, where each agent i ∈ V := {1, 2, . . . , N}

is an asynchronous sampled-data system comprised of three main parts:

(a) A continuous-time plant Pi, modeled by a differential equation or inclusion, and

an individual output yi.

(b) A periodic discrete-time controller Ci, modeled by a difference equation or inclusion,

and parametrized by a periodic logic state zi.

(c) A sampler/zero-order hold (S/ZOH) mechanism activated by an individual periodic

resetting clock τi.

The physical coupling between the continuous-time dynamics Pi is characterized by

a graph GP := {V , EP}, whereas the communication graph between the individual

controllers Ci is characterized by a graph GC = {V , EC}. The graph GC also characterizes

the access of each agent i to the clock information of its neighboring agents. In this

section both graphs are assumed to be time-invariant. Next, we present the detailed

model and assumptions behind each of the components (a), (b), (c) of each agent i ∈ V .
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5.2.1 Plant Dynamics

We consider nonlinear dynamical systems Pi with state θi ∈ Rpi , input ui ∈ Rmi ,

and output yi ∈ Rli . The governing dynamics are modeled by the set-valued system

θ̇i ∈ Pi(θ, u), θi ∈ Θi, ui ∈ Ui, (5.7a)

yi = hi(θ, u), (5.7b)

where θ := [θ>1 , . . . , θ
>
N ]> ∈ Rp, u = [u>1 , . . . , u

>
N ]> ∈ Rm, m =

∑N
i=1mi, p =

∑N
i=1 pi,

Θi ⊂ Rpi , Ui ⊂ Rmi , Pi : Rp ×Rm ⇒ Rpi is a set-valued mapping, and hi : Rp ×Rm →

Rli . Since the graph GP is time-invariant, we assume that it is embedded in the

mappings Pi and hi, i.e., even though we write these mappings as functions of the overall

vectors θ and u, they only depend on the states θj and inputs uj of the neighboring

agents j ∈ NPi := {j : (i, j) ∈ EP}. This graph, however, won’t play any central role

in our results. The model (5.7) is quite general and allows us to consider a variety of

plants, including those with dynamics represented by non-Lipschitz or discontinuous

differential equations, systems switching arbitrarily fast between a finite number of

vector fields, and plants having unknown parameters that are known to lie on compact

and convex sets [206], to just name a few. Aiming to exploit robustness properties

for set-valued dynamical systems, we impose the following regularity assumption on

system (5.7).

Assumption 31 For each i ∈ V the following holds: (a) The set-valued mapping

Pi(·, ·) is OSC, LB and convex valued relative to Θ × U . (b) The sets Θi and Ui are

closed. (c) The function hi(·, ·) is continuous.

Item (a) in Assumption 31 is satisfied by any differential equation with a continuous

right-hand side. It is also satisfied by the Krasovskii regularization of a discontinuous
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vector field, provided it is LB [78, Lemma 5.16]. We also consider the following as-

sumption, which simply asks that solutions generated by system (5.7a) are complete

under fixed inputs.

Assumption 32 Every solution of system (5.7a) with u̇ = 0, has an unbounded time

domain.

In situations where the plant (5.7a) does not satisfy Assumption 32 a priori, one may

need to design a pre-stabilizing controller that ensures that solutions of the controlled

system have no finite escape times.

5.2.2 Clock Dynamics

The S/ZOH mechanism of each agent has an individual clock τi ∈ R≥0 with hybrid

dynamics

τ̇i = ω, τi ∈ [0, 1] (5.8a)

τ+
i = 0, τi ∈ {1}, (5.8b)

where the frequency ω ∈ R>0 is assumed to be the same for all agents. In this hybrid

system the clock flows with frequency ω until the condition τi = 1 is satisfied, which

resets τ+
i to zero. As in [141], we assume that each agent i has continuous access to

the clock information τj of its neighboring agents j ∈ NCi .

5.2.3 Control Dynamics

In order to control the plant Pi, each agent of the network implements a discrete-

time controller Ci with states [u>i , zi]
> ∈ Rmi+1. The state ui ∈ Rmi is the control signal,

and zi is a scalar periodic logic state defined on the finite set Z := {0, 1, 2, . . . , z̄}, where
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z̄ ∈ Z≥0 is a non-negative integer. The dynamics of the individual controllers are given

by the periodic discrete-time set-valued dynamical system

u+
i ∈ Gzi(u, y), ui ∈ Ui, (5.9a)

z+
i = fz̄(zi) :=

 zi + 1, if zi ∈ Z\{z},

0, if zi ∈ {z},
(5.9b)

where y = [y>1 , y
>
2 , . . . , y

>
N ]> ∈ R`, with yi defined as in (5.7b), and ` =

∑N
i=1 `i. In

the update rule (5.9a) the mapping Gzi : Rm ×R` → Rmi is parametrized by the logic

state zi, which, according to (5.9b), is increased by one every time that the control

dynamics (5.9a) are updated. This occurs until the condition zi = z̄ is satisfied and

the value of z+
i is reset back to zero. As in (5.7), the graph GC that characterizes

the communication network between the controllers is embedded in the mapping Gzi .

This means that for each zi, and each graph configuration GC, the mapping Gzi only

depends on the individual signals (ui, yi) and the neighboring signals (uj, yj) for all

j ∈ NCi := {j : (i, j) ∈ EC}. As it is the case for the clock τi, we assume that each

agent i has continuous access to the information of the logic states zj associated with

its neighbors j ∈ NCi .

Remark 24 System (5.9) generalizes standard non-periodic discrete-time systems. In

fact, by taking z = 0 such that Z = {0}, we obtain that the mapping at the right hand

side of (5.9a) is the same for all iterations.

Using set-valued dynamical systems to model the control system allows us to consider

controllers with continuous or discontinuous dynamics, as well as more elaborated set-

valued algorithms that generate multiple potential updates at every iteration. Let

Θ :=
∏

i∈V Θi and U :=
∏

i∈V Ui. The following regularity assumption is considered on

the mapping Gzi .
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Figure 5.3: Structure of each sampled-data agent i of the networked system.

Assumption 33 For each i ∈ V and each zi ∈ Z the mapping Gzi(·, ·) is OSC and

LB relative to U × h(Θ, U)

Since we allow to constrain the state ui to the set Ui, the following assumption is im-

posed on system (5.9) to guarantee that the interconnection of (5.7) and (5.9) generates

at least one complete solution.

Assumption 34 For each (θ, u, zi) ∈ Θ×U ×Z we have that Gzi(u, h(θ, u))∩Ui 6= ∅.

Equations (5.7), (5.8), and (5.9) comprise our baseline model for the asynchronous net-

worked multi-agent sampled-data system. Figure 5.3 shows a conceptual representation

of the structure of each agent. Each time that the clock τi is reset to zero according

to (5.8), agent i proceeds to sample the inputs and outputs (ui, yi) and (uj, yj), for

j ∈ NCi , generated by the dynamics (5.7b), and to update the control states (ui, zi)

via the set-valued mapping (5.9).
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5.2.4 Problem Statement

In this chapter, we are interested in designing robust distributed feedback mecha-

nisms for networked multi-agent sampled-data systems with dynamics (5.7), (5.8), and

(5.9). In particular, let Aθ ⊂ Rp and Au ⊂ Rm be nonempty compact sets defined a

priori for a particular application. Let ξ := [θ>, u>]> and

Aξ := Aθ ×Au. (5.10)

We wish to establish the existence of a KL function β(·, ·) such that for each (ν,∆) ∈

R2
>0 it is possible to tune the parameters of the feedback mechanism such that for all

|ξ(0, 0)|Aξ ≤ ∆ and all trajectories of ξ generated by the HDS that characterizes the

networked sampled data system, the following bound holds:

|ξ(t, j)|Aξ ≤ β(|ξ(0, 0)|Aξ , t+ j) + ν. (5.11)

Moreover, the feedback mechanisms must be robust with respect to small disturbances

acting on the states and dynamics of the closed-loop system, i.e., we want to avoid that

arbitrarily small perturbations on the inputs, outputs, states, and clocks, dramatically

change the stability properties of the system. As shown in the motivational example of

Section 5.1, this is a challenging task, since we don’t preclude the existence of sequential

jumps generated by ε perturbations acting on the clocks of each agent. In fact, as we

will show in the next section, this sequential jumps are unavoidable when robust clock

synchronization mechanisms are implemented.
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Figure 5.4: Networked multi-agent sampled-data system with centralized sampling
and logic state.

5.3 Robust Hybrid Coordination Mechanisms

In order to design a decentralized feedback control that stabilizes the multi-agent

sampled-data system with dynamics (5.7), (5.8), and (5.9), we propose an emulation-

like approach, where the control system is designed to emulate the behavior of a feed-

back stabilization mechanism designed a priori for a synchronous networked system

with a global clock τc, a global logic state zc, and a unique S/ZOH mechanism for

the MAS. This synchronized networked system with centralized sampling and peri-

odic logic state zc is shown in Figure 5.4, where P (θ, u) := P1(θ, u) × . . . × PN(θ, u)

and Gzc(u, y) = Gz1(u, y) × . . . × GzN (u, y), zi = zc for all i ∈ V . One can design

control dynamics for this type of synchronous systems by using standard algebraic or

Lyapunov-based tools that are not suitable for asynchronous systems, e.g., [236], [78].

Moreover, if the plants have trivial dynamics, i.e., θ̇ = 0, and the set Z is a singleton,

as in Remark 24, the closed-loop system corresponds to a synchronous non-periodic

discrete-time system that can be analyzed using classic tools for discrete-time MAS,

e.g., [237], [238], [239].

We model the synchronous networked system as a HDS with state xc := [τc, zc, θ
>, u>]>
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and data Hc := {Cc, Fc, Dc, Gc}, given by

Cc := [0, 1]× Z ×Θ× U (5.12a)

[τ̇c, żc, θ̇
>, u̇>]> ∈ Fc := {ω} × {0} × P (θ, u)× {0m} (5.12b)

Dc := {1} × Z ×Θ× U (5.12c)

[τ+
c , z

+
c , θ

>+, u>+]> ∈ Gc = {0} × {fz̄(zc)} × . . .

. . . {θ} ×Gzc (u, h(θ, u)) . (5.12d)

where fz̄ is defined in (5.9b). For this centralized system, the control dynamics Gzc are

designed such that the following assumption holds.

Assumption 35 For the HDS (5.12) the compact set Ac := [0, 1]× Z ×Aξ, with Aξ

given by (5.10), is UGAS.

Under Assumptions 1-5, the HDS (5.12) is well-posed and robust to small pertur-

bations. However, as shown in Section 5.1, the direct implementation of the control dy-

namics Gzc in the original asynchronous networked system leads to closed-loop systems

with zero margins of robustness, as well as asymptotic behaviors that are dependent

on the initial conditions of the states. Therefore, to guarantee that the asynchronous

MAS with controllers Gzi retains the robust stability properties of the centralized sys-

tem (5.12), we implement the control dynamics together with two decentralized robust

synchronization and coordination mechanisms, KSi and Kρi , shown in Figure 5.5.

5.3.1 Robust Global Synchronization Using KSi

For each agent i ∈ V , we design a Lyapunov-based feedback mechanism KSi that

guarantees global and robust synchronization in finite time of the states τi and zi.

Since a network of resetting clocks with equal frequency ω is equivalent to a network
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Figure 5.5: Networked system with robust synchronization and coordination mech-
anisms KSi and Kρi .

of oscillators flowing on the unit circle, global and robust synchronization of clocks is

impossible using smooth feedback [157]. In fact, synchronization of periodic clocks and

logic states is equivalent to synchronization of periodic oscillators flowing on a circle

generated by the union of unitary arcs, each arc representing a different possible value

of zi, where the beginning of each arc corresponds to τi = 0 and the end to τi = 1,

see Figures 5.7 and 5.8. In the language of robust hybrid dynamical systems, e.g.,

[78, Chapter 4], a robust synchronization mechanism must guarantee that for each

τ0 ∈ [0, 1], and each sequence of initial conditions {τk(0, 0)}k∈Z≥0
with components

τi,k(0, 0) satisfying 0 ≤ τ1,k(0, 0) ≤ . . . ≤ τN,k(0, 0) < τ0 and limk→∞ τ1,k(0, 0) = . . . =

τN,k(0, 0) = τ0, the sequence of solutions {τk}k∈Z≥0
must converge to a limiting solution

as k →∞ that approximates the behavior that one obtains from the initial condition

τ1 = . . . = τN = τ0. For the case when τ0 = 1, this condition implies that the clocks are

sequentially reset with smaller and smaller times between resets, which implies that in

the limiting case the resets must also be sequential, in this case with no time between

resets. Since the initial conditions τi ∈ [0, 1] are arbitrary, a robust synchronization
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mechanism must guarantee synchronization under any possible order of sequential

resets of the clocks, i.e., any sequential order of the triggering mechanisms. Similarly,

synchronization of the states zi must be achieved from every possible initial condition

in ZN . Since the integer states zi increment by one every time the controller i is

updated, the synchronization goal for zi is to guarantee the existence of a finite time

T (uniform over all initial conditions) such that for all (t, j) satisfying t + j > T , the

states zi always agree on the same value during flows.

Based on this, for a HDS with state [τ>, z>]>, with τ = [τ1, . . . , τN ]>, and z =

[z1, . . . , zN ]>, we are interested in guaranteeing UGAS of the compact set

Aτ,z := Ajump1
τ,z ∪ Ajump2

τ,z ∪ Aflow
τ,z ⊂ [0, 1]N × ZN , (5.13)

where the sets Ajump1
τ,z , Ajump2

τ,z , and Aflow
τ,z are defined as

Ajump1
τ,z :=

⋃
k∈Z\{0}

{
(τ, z) ∈ [0, 1]N × ZN : τi + zi = k, ∀ i ∈ V

}
,

Ajump2
τ,z :=

{
(τ, z) ∈ [0, 1]N × ZN : τi + zi ∈ {0, z̄ + 1}, ∀ i ∈ V

}
,

Aflow
τ,z :=

⋃
k∈Z

(
[0, 1]× {k}

)
· 1N .

Set Aτ,z corresponds to the case where all agents have the same value of τi and zi

during flows, and where this values can differ only by one, in an ordered way, whenever

zi jumps to the next mode for some i ∈ V . Figure 5.6 shows the set Aτ,z for the case

when N = 2 and Z = {0, 1, 2, 3}. In order to stabilize the set (5.13), we consider a

hybrid mechanism KSi that works as follows:

(a) During flows, i.e., when τi ∈ [0, 1), the states (τi, zi) of agent i ∈ V flow according
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Figure 5.6: Set Aτ,z for V = {1, 2} and Z = {0, 1, 2, 3}. Ajump1
τ,z corresponds to the

union of the encircled black dots with dash lines. Ajump2
τ,z corresponds to the set of

red dots, and Aflow
τ,z corresponds to the blue lines with same value of zi.

to the dynamics

τ̇i = ω, żi = 0. (5.15)

(b) Let i ∈ V be an agent of the network satisfying the condition τi = 1. Then, agent

i resets its clock according to (5.8b), and updates zi as (5.9b). Simultaneously, all

its neighboring agents j satisfying i ∈ NCj update their states (τj, zj) using the

set-valued rule

[τ+
j , z

+
j ] ∈ Rj(zi, τj, zj), (5.16)

with mapping Rj defined as

Rj :=
{

(Lτ,j(zi, v, w),Lz,j(zi, zj, w)) : v ∈ Tj(τj),

w ∈ Qj(τj, zj)
}
,

where the functions Lτ,j and Lz,j are defined as

Lτ,j : = v · IO(zi) + 1 · w · (1− IO(zi)) (5.17a)

Lz,j : = zj · IO(zi) + z̄ · w · (1− IO(zi)) , (5.17b)

where O := Z\{z̄}, and where the coordination set-valued mappings Tj : [0, 1] ⇒
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Figure 5.7: Agents with synchronized clocks τi, flowing with different values of zi (colored).

{0, 1} and Qj : [0, 1]× Z ⇒ {0, 1} are defined as

Tj(τj) : =


{1} if τj ∈ (rj, 1]

{0, 1} if τj = rj

{0} if τj ∈ [0, rj),

(5.18a)

Qj(τj, zj) : =


{1} if zj + τj ∈ (rj, z̄ + 1]

{0, 1} if zj + τj = rj

{0} if zj + τj ∈ [0, rj)

(5.18b)

where rj ∈ (0, N−1) for all j ∈ V .

Finally, for those agents j such that i /∈ NCj the states (τj, zj) are kept constant.

According to this update rule, each agent needs to know only the cardinality of V

and the values (zj, vj) of its neighboring agents. Note that when zi < z̄, the update of

τ+
j for the neighboring agents j is entirely characterized by (5.18a), leaving the state zj

constant. On the other hand, when zi = z̄ the updates of the states (τj, zj) depend on

the value w generated by the coordination mapping (5.18b), but it will only update τj

either to 1 or 0. Figures 5.7 and 5.8 show a conceptual representation of the evolution

of (zi, τi) in a network with V = {1, 2, 3, 4, 5}, and Z = {0, 1, 2, 3}. The parentheses

show the value (zi, τi). The hybrid synchronization mechanism KSi described above
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Figure 5.8: Jumps on zi induced by agent 4, which shares information with agents {1,2,3}.

can formally be written as a HDS that generates every possible trajectory that emerges

due to sequential jumps when more than one agent satisfies the condition τi = 1. This

HDS is given by the data

[
τ̇>, ż>

]
∈ Fτ,z := {ω · 1N} × {0N}, Cτ,z := Cτ × ZN

[τ>, z>]+ ∈ Gτ,z(τ, z), Dτ,z := Dτ × ZN ,

(5.19)

where Cτ and Dτ are defined as

Cτ = [0, 1]N , Dτ =

{
τ ∈ [0, 1]N : max

i∈V
τi = 1

}
, (5.20)

and where the jump map Gτ,z is defined as the outer semicontinuous hull of the mapping

G0
τ,z(τ, z) :=

{
g ∈ R2N : gi = [0, fz̄(zi)]

>,

gj ∈

 Rj(τ, z), if i ∈ NCj

{τj} × {zj}, if i /∈ NCj
, ∀ j 6= i

}
,

which is defined to be not empty only when τi = 1 for some i ∈ V and τj ∈ [0, 1) for

j 6= i. Based on this, Gτ,z satisfies graph(Gτ,z) = cl(graph(G0
τ,z)).

The asymptotic and robustness properties of system (5.19) are characterized by the
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following proposition.

Proposition 12 Consider the hybrid synchronization mechanism KSi described by the

HDS (5.19). Suppose that the graph GC is strongly connected. Then the set Aτ,z is

UGAS. Moreover, the convergence to Aτ,z is in finite time.

Proof : The result follows as a special case of Theorem 8 in Section 5.4.

Remark 25 For the case when z̄ = 0, i.e., when the control dynamics are not periodic,

the state zi can be omitted and the set O is defined to be O = {0}. In this case the

set-valued mapping Rj reduces to Tj in (5.18a), and the compact set (5.13) reduces to

the set

Aτ,sync := ([0, 1] · 1N) ∪ ({0, 1}N), (5.21)

which was studied in [240].

5.3.2 Pre-Jump Sampling Control Using Kρi

As illustrated in Section 5.1, synchronization of the clocks and logic states is not

enough to guarantee robust stability of the MAS. This is due to the sequential updates

of the control dynamics (5.9) that can generate composite mappings such as those

emerging in (5.6). Since the results of Section 5.3.1 show that sequential updates

induced by the clocks are unavoidable when describing robust clock synchronization

mechanisms, we now proceed to design a distributed coordination mechanism that,

under the effect of sequential updates, allows agents to retain the stability properties

of the centralized system (5.12). The key idea behind the coordination mechanism is

that each agent i ∈ V will sample the value of the inputs and outputs of its neighboring

agents just before resetting its clock. The sampled values will be stored in a memory

state si ∈ Rm+`, which will then be passed as argument to the mapping Gzi in (5.9a)
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to generate the new update u+
i whenever the clock τi is reset to zero. We call this

strategy “pre-jump sampling control”.

The main challenge in designing the hybrid mechanism that implements the pre-

jump sampling control is to guarantee that the resulting system is well-posed, i.e., that

small noise or ε-disturbances do not destroy the stability properties of the system. To

achieve this, each agent i ∈ V is given a logic state αi that takes values in the discrete

set {0, 1}, where 0 corresponds to being ready to take a sample, and 1 corresponds to

having already taken the sample. The sampling location in the interval [0, 1] is denoted

as ρi ∈ (N−1, 1), which is a tunable parameter. The ith clock variable τi is allowed to

flow continuously when αi = 0 and τi ∈ [0, ρi], as well as when αi = 1 and τi ∈ [ρi, 1].

Jumps where a sample is taken should occur when τi = ρi and αi = 0, and they should

toggle the state αi to 1. Jumps that reset the clock to zero and toggle αi to 0 should

occur when τi = 1 and αi = 1. Based on this idea, we define the sets

Ci,0 := [0, ρi]× {0}, Ci,1 := [ρi, 1]× {1} (5.22a)

Di,0 := {ρi} × {0}, Di,1 := {1} × {1} (5.22b)

Ci := Ci,0 ∪ Ci,1, Di := Di,0 ∪Di,1. (5.22c)

The value of si is held constant during flows, and it is also not changed at jumps

that correspond to resetting the clock τi to zero. However, whenever (τi, αi) ∈ Di,0 the

value of si is updated to [u>, h(θ, u)>]>. Note that although we set the dimension of si

to m+`, the only components of si that need to be updated are the ones corresponding

to the neighboring agents j ∈ NCi .

Remark 26 For each agent i ∈ V the role of the state αi is to guarantee a robust

detection of the sampling instant ρi. This state is needed because the condition τi = ρi
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can easily be “missed” under arbitrarily small measurement noise on τi. To avoid this

phenomenon the memory state αi is introduced, such that it keeps track of the side of

the decision boundary in which the clock is located. See [157] and [241, pp. 35] for

similar discussions in this direction.

5.3.3 Closed-loop System with Mechanisms KSi
and Kρi

We now analyze the interconnection of the coordination mechanisms KSi and Kρi

with the control dynamics Gzi designed for system (5.12).

Individual Agent Dynamics

The interconnection of the flow dynamics (5.7), control dynamics (5.9), resetting

clocks (5.8), synchronization mechanism (5.19), and pre-sampling control with auxiliary

states (αi, si), leads to the following hybrid dynamics for each agent i ∈ V
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τ̇i

α̇i

żi

ṡi

θ̇i

u̇i


∈



ω

0

0

0

Pi(θ, h(θ, u))

0


,

(τi, αi) ∈ Ci

zi ∈ Z, si ∈ U × R`

θi ∈ Θi, ui ∈ Ui

(5.23a)



τ+
i

α+
i

z+
i

s+
i

θ+
i

u+
i


∈



τi

1

zi[
u>, h(θ, u)>

]>
θi

ui


,

(τi, αi) ∈ Di,0

zi ∈ Z, si ∈ U × R`

θi ∈ Θi, ui ∈ Ui

(5.23b)



τ+
i

α+
i

z+
i

s+
i

θ+
i

u+
i


∈



0

0

fz̄(zi)

si

θi

Gi,u,z(si)


,

(τi, αi) ∈ Di,1

zi ∈ Z, si ∈ U × R`

θi ∈ Θi, ui ∈ Ui

(5.23c)



τ+
i

α+
i

z+
i

s+
i

θ+
i

u+
i


∈



Lτ,i(zi, v, w)

Lτ,i(zi, v, w)

Lz,i(zi, zj, w)

 ,
v ∈ Ti,

w ∈ Qi

si

θi

ui


,

(τi, αi) ∈ Ci,

(τj, αj) ∈ Dj,1,

j ∈ NCi , zi ∈ Z,

si ∈ U × R`,

θi ∈ Θi, ui ∈ Ui.

(5.23d)
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During flows the states τi and θi evolve according to their continuous-time dynamics in

(5.23a) and subject to the flow sets Ci, i.e., if τi ≤ ρi flows are only allowed if αi = 0,

while if τi ≥ ρi flows are only allowed if αi = 1. Whenever the clock satisfies the

condition τi = ρi with αi = 0, a jump is generated according to the mapping (5.23b),

which toggles αi to 1, and samples the states uj and outputs yj of the neighboring

agents j ∈ NCi , storing said value in the state si. Toggling αi to 1 will force the

system to be in the set Ci,1, where the states of the agent will flow according to (5.23a)

again, until the condition τi = 1 is satisfied. This condition will force the states of

the ith agent to jump according to (5.23c). Finally, equation (5.23d) models the jumps

induced by any neighbor j of agent i satisfying τj = 1, i.e., the jumps that guarantee

the synchronization during flows of the vectors τ and z.

Dynamics of the Closed-loop Networked MAS

To analyze the closed-loop MAS that emerges when each agent implements the

dynamics (5.23), let s = [s1, . . . , sN ]> ∈ RmN+`N , n = 3N + `N + mN + p + m, and

let the overall state be

x =
[
(τ1, α1, z1)>, . . . , (τN , αN , zN)>, s>, θ>, u>

]>
.

Let f̃ := ω · f , where f ∈ R3N and fk = 1 for all k ∈ {1, 4, 7, 10, . . . , 3N − 2} and

fk = 0 otherwise. Using this construction the continuous-time dynamics of the MAS

are given by

ẋ ∈ F (x) := {f̃} × {0N} × P (θ, h(θ, u))× {0N}. (5.24)
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Also, let C̃1 := (C1×Z)× . . .×(CN×Z) and C̃2 = (U×R`)× . . .×(U×R`) ⊂ RN`+Nm.

The flow set for the MAS is then given by

C := C̃1 × C̃2 ×Θ× U. (5.25)

To cover all the jumps described by equation (5.23), the jump set is defined as

D :=

{
x ∈ C : max

i∈V

(
(1− αi)

τi
ρi

+ αiτi

)
= 1

}
. (5.26)

To construct the jump map that generates the jumps of equation (5.23), let G0 : Rn ⇒

Rn be a set-valued mapping that is non-empty only at points x ∈ D0, where

D0 := {x ∈ C : (1− αi)
τi
ρi

+αiτi = 1,

for one and only one i ∈ V}

Let x ∈ D0, (1− αi) τiρi + αiτi = 1. Then G0(x) is defined as follows:

• If αi = 0, then

G0(x) := x+ e3i−1 +Mi

(
[u>, h(θ, u)>]> − si

)
, (5.27)

where e3i−1 ∈ Rn is a vector of zeros except at the 3i− 1 entry, which is one, and

Mi ∈ Rn×(m+`) is a matrix of zeros, except in the m+ ` rows from 3N + (i− 1) ·

(m+ `) + 1 to 3N + i · (m+ `), where it is set to the identity matrix. This models

the jumps of (5.23b).

• If αi = 1, then G0(x) is defined as the set of vectors in g ∈ Rn such that the

components that generate τ+
i and α+

i are zero, the component that generate z+
i is
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fz̄(zi) given by (5.9b), the component that generates s+
i is si, and the component

that generates u+
i belongs to Gzi(si). This models the jumps (5.23c). For j ∈

NCi the components of g that generate (τ+
j , α

+
j , z

+
j , s

+
j , θ

+
j , u

+
j ) are updated as in

(5.23d), and for j /∈ NCi the components of g that generate (τ+
j , α

+
j , z

+
j , s

+
j , θ

+
j , u

+
j )

are (τj, αj, zj, sj, θj, uj). This models the jumps (5.23d).

Using the previous construction, the jump map G(x) for the overall system is defined

as

x+ ∈ G(x) := G0(x). (5.28)

where G0(x) is the outer semicontinuous hull of G0(x).

Based on this, the resulting HDS has data H = {C,F,D,G} given by (5.25), (5.24),

(5.26), and (5.28). For this system we are interested in studying the stability properties

of the compact set

A := Aτ,α,z ×ANs ×Aξ, (5.29)

where Aτ,α,z ⊂ R3N and As ⊂ Rm+` are defined as

Aτ,α,z :=
{

(τ1, α1, z1)× . . .× (τN , αN , zN) ∈ C̃1 :

(τ>, z>)> ∈ Aτ,z
}
,

As := Au × h(Aθ,Au),

and where Aτ,z is given by (5.13), and Aξ by (5.10). The following theorem is the first

main result of this chapter.

Theorem 7 Consider the HDS H = {C,F,D,G} with F given by (5.24), C given by

(5.25), D given by (5.26), and G given by (5.28). Suppose that the graph GC is strongly

connected. Let ρ̃i := 1 − ρi, and ρ̃∗ = maxi∈V{ρ̃i}. Then system H is well-posed, and
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the set (5.29) is SGP-AS as ρ̃∗ → 0+.

The SGP-AS result of Theorem 7 allow us to obtain a KL bound of the form (5.11)

for the state x in the closed-loop HDS. Moreover, finite-time convergence of (τ, z), and

compactness of the sets Cτ , Dτ , C̃1 imply the existence of a similar KL bound for the

state ξ, as in (5.11).

Remark 27 According to Theorem 7, for values of ρi sufficiently close to 1, if each

agent implements the coordination mechanisms KSi and Kρi, as well as a discrete-time

controller Gzi designed to stabilize the centralized system (35), the resulting decentral-

ized system with local clocks τi and logic states zi will emulate the behavior of system

(35). Moreover, well-posedness of the resulting HDS confers desirable robustness prop-

erties to the MAS.

5.4 Robust Synchronization in Time-Varying Graphs

In many applications, the topology of the graph that characterizes a communication

network changes over time, and in some cases leads to disconnected graphs. In this

section, we study the asymptotic properties of the synchronization mechanism KSi

when GC is a time-varying graph that is strongly connected only “sufficiently often”. To

model this time-varying behavior, let L ∈ Z>0 be the number of possible configurations

of directed unweighted graphs that are realizable with N ordered nodes and no self-

loops. Let each of these configurations be represented by a logic state q ∈ Q :=

{1, 2, 3, . . . , L}. Let Qs ⊂ Q be the set of indices associated only to strongly connected

graphs, and let Q′s = Q\Qs be the set of indices associated to graphs that are not

strongly connected. Figure 5.9 illustrates this idea in graphs with only two nodes.

To characterize the time-varying behavior of the graph GC(t) we consider a switching
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1 2

1 2

1 2

1 2

q = 1

q = 2

q = 3

q = 4

Figure 5.9: Graph configurations realizable with N = 2 nodes. In this case L = 4,
Q = {1, 2, 3, 4}, Qs = {4}, Q′s = {1, 2, 3}.

signal q : R≥0 → Q that indicates which of the configurations in Q is implementing the

graph at time t. Using this signal we write the graph as GC,q and the sets of neighbors

as NCi,q .

Definition 4 We say that a digraph GC,q is (α, T )-persistently strongly connected (PSC)

if there exists (α, T ) ∈ R2
>0 with T > α such that for each time interval I of length T

there exists a subinterval Ii := [ti, ti+1] satisfying ti+1− ti = α, and an integer qα ∈ Qs,

such that q(t) = qα for all t ∈ Ii .

To analyze the stability and robustness properties of the synchronization mechanism

KSi under switching graphs, we consider dynamic signal generators, such as those in

[78, Sec. 2.4], with state xG := [σ>, q]> ∈ Rσ̄+1, and hybrid dynamics

ẋG ∈ FG(xG), xG ∈ CG ⊂ Rσ̄ ×Q, (5.30a)

x+
G ∈ GG(xG), xG ∈ DG ⊂ Rσ̄ ×Q. (5.30b)

This signal generator uses an auxiliary state σ ∈ Rσ̄ to regulate the switching behavior

of system (5.30). We make the following assumption on this system.

Assumption 36 System (5.30) satisfies the following:

(a) The data HG = {FG, CG, GG, DG} satisfies (C1), (C2), and (C3).
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(b) There exists T > α > 0 such that the q-components of all trajectories xG satisfy

the conditions of Definition 4.

(c) There exist at least one complete solution.

(d) There exists a nonempty compact set AG ⊂ CG ∪ DG that is UGAS for system

(5.30).

The following example illustrates a HDS of the form (5.30) that satisfifes Assumption

36.

Example 8 Consider the HDS with state [σ1, σ2, q] ∈ R3, and dynamics


σ̇1

σ̇2

q̇

 ∈


[0, α−1]

[0, γ]− IQ′s(q)

0

 , (σ1, σ2, q) ∈ CG (5.31a)


σ+

1

σ+
2

q+

 ∈


σ1 − 1

σ2

Q

 , (σ1, σ2, q) ∈ DG, (5.31b)

where η ∈ R>0, γ ∈ (0, 1), and

CG := [0, 1]× [0, T0]×Q, DG := {1} × [0, T0]×Q, (5.32)

with T0 > 0. By [78, Example 2.15], for any pair of hybrid times (t1, s1) ≤ (t2, s2), every

complete individual solution of σ1 generated by (5.31) satisfies the dwell-time condition

(s2−s1) ≤ 1+ 1
α

(t2−t1), where (s2−s1) is here the number of jumps in the time interval

t2 − t1. Also, by [206, Lemma 7], every complete individual solution of σ2 in (5.31)

satisfies the time-ratio constraint Nt2−t1 ≤ T0 + γ(t2 − t1), where Nt2−t1 corresponds
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to the total amount of time that q ∈ Q′s during the interval t2 − t1. Therefore, any

complete solution of the HDS (5.31) satisfies the dwell-time constraint and the time-

ratio constraint. Moreover, by taking γ = 1− α+T0

T0
we have that whenever t2 − t1 = T

the time-ratio constraint simplifies to Nt2−t1 ≤ T − α, that is T − Nt ≥ α. Since

T −Nt is the total amount of time in the interval T where q ∈ Qs holds, and the graph

cannot switch faster than every α seconds, it must be the case that in any interval of

length T + α there exists a subinterval of at least α seconds where q = qα for some

qα ∈ Qs. Finally, note that the set CG is UGAS for the HDS (5.31). Thus, system

(5.31) satisfies Assumption (36).

5.4.1 Main Result for Time-Varying Graphs

To analyze the hybrid synchronization mechanism KSi under switching graphs that

are (α, T ) − PSC, we consider the interconnection of the HDS (5.30) with the HDS

(5.19), where now the mapping Gτ,z is parameterized by the switching signal q, rep-

resenting the graph GC(t). The complete system has state xτ,z = [τ>, z>, x>G ]> and

dynamics

xτ,z ∈ Cxτ,z := Cτ × ZN × CG, (5.33a)

ẋτ,z ∈ Fxτ,z := {Fτ,z} × FG, (5.33b)

x+
τ,z ∈ Gxτ,z :=


G1(xτ,z) if xτ,z ∈ D1\D2

G1(xτ,z) ∪G2(xτ,z) if xτ,z ∈ D1 ∩D2

G2(xτ,z) if xτ,z ∈ D2\D1,

(5.33c)

xτ,z ∈ Dxτ,z = D1 ∪D2, (5.33d)
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Figure 5.10: Evolution of z along time.

where the set-valued mappings G1 and G2 are defined as

G1(xτ,z) := {τ} × {z} ×GG, G2(xτ,z) := Gτ,z,q × {Gc}, (5.34)

and the sets D1 and D2 are now defined as

D1 : = [0, 1]N × ZN ×DG, D2 := Dτ × ZN × CG. (5.35)

For system (5.33) we obtain the following theorem.

Theorem 8 Let GC(t) be a (α, T )-PSC graph. If card(Z) · ω−1 < α, the HDS with

data Hxτ,z := {Fxτ,z , Cxτ,z , Gxτ,z , Dxτ,z}, renders the set Aτ,z×AG UGAS Moreover, the

convergence of (τ, z) to Aτ,z is in finite time.

5.4.2 Numerical Example: Noisy Synchronization

Consider a network of 5 agents, i.e., V = {1, 2, 3, 4, 5}, with clocks τi and logic

modes zi with dynamics (5.8) and (5.9b), respectively, and z̄ = 3. We implement the

synchronization mechanism described by the HDS Hxτ,z in a time-varying graph (5.31)
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Figure 5.11: Evolution of τ along time.

switching every 2.3 seconds. The parameters of the clock synchronization algorithm

(5.18a) are selected as ri = 0.1 for all i ∈ V , and the frequency of the clocks is selected

as ω = 0.5. The graph Gc is initially disconnected until it switches at time t = 2.3

into a ring configuration for the next two periods. To test the robustness properties

of the synchronization mechanism, for each agent i ∈ V we add small noise εi to the

clock measurements τi after the first four seconds of simulation. This corrupted clock

measurements are used by the mapping Ti(τi + εi) in the synchronization mechanism

(5.18a). The noise εi is generated as a scalar with random direction and amplitude

equal to 0.1, which is 10% of the maximum amplitude of the clocks. Also, after the

first 4 seconds of simulation, a random bounded drift di is added to the dynamics

τ̇i = ω + di of each agent’s clock. Figures 5.10 and 5.11 show the evolution in time of

the logic modes and clocks. After the graph switches into a connected configuration,

synchronization of the clocks and logic modes is achieved in finite time. Once the noise

is added to the clocks (at t = 4 sec), the synchronization is maintained in a “practical”

way.
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Chapter 6

Intermittent Stochastic Nash

Seeking in Sampled-Data Systems

Many decision making problems in multi-agent systems can be analyzed using game

theoretic models. In this chapter, we study one of these models, namely a non-

cooperative game, where each player is a dynamical system mathematically modeled

as a periodic sampled-data system. Our goal is to design a decentralized feedback

mechanism to control the actions of each player, such that the overall vector of ac-

tions converges to the Nash equilibrium of the game. Due to privacy and robustness

concerns, we are interested in using stochastic learning dynamics instead of classic

deterministic approaches. Because of this, we pay particular attention to the role of

causality in the stability properties of the closed-loop system. Since the closed-loop

system is modeled by a stochastic hybrid dynamical system, the results of this chapter

rely on the mathematical background presented in Appendices J and K.
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6.1 Problem Statement

Consider a network of n ∈ Z≥0 sampled-data systems, also called agents, where

each agent i ∈ {1, . . . , n} consists of three elements: 1) A continuous-time plant Pi; 2)

a discrete-time controller Ci; 3) a resetting clock that characterizes the times at which

the sampler/hold mechanism samples the output of the plant and updates the control

signal. We proceed to characterize in detail each of these components.

6.1.1 Plant Dynamics and Game Structure

The continuous-time plant Pi associated to the ith agent is characterized by a

differential inclusion with individual state θi ∈ Rpi , input ui ∈ R, and given by

θ̇i ∈ fi
(
θ, αi(θ, u)

)
, yi = ϕi(θ, u), (6.1)

where αi : Rp × Rn → Rn is a feedback law, pre-designed to stabilize the plant,

fi : Rp × Rn ⇒ Rp is a set-valued mapping, ϕi : Rp × Rn → R is the output function,

θ = (θ>1 , . . . , θ
>
n )>, u = (u1, . . . , un)>, and p :=

∑n
i=1 pi. For each plant i ∈ {1, . . . , n}

the dynamics (6.1) are assumed to depend only on the states θj and inputs uj of its

neighboring interacting plants j, which are characterized by a time-invariant strongly

connected directed graph GP = (V , EP), where V := {1, . . . , n} is the set of nodes, and

EP is the set of directed edges. The interaction graph GP can be understood as the

graph that describes the interconnection between the physical dynamics of the plants

of the network.

In general, the mappings (fi, αi, ϕi), as well as the structure of GP , are assumed to

be unknown. However, as in the previous chapters, we impose the following regularity

assumption on system (6.1).
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Assumption 37 (Regularity) Let Fi : Rp×Rn ⇒ Rp be defined as Fi(θ, u) := fi(θ, αi(θ, u)).

For each i ∈ V, the set-valued mapping Fi(·, ·) is OSC, LB, and convex valued with

respect to Rp × Rn, and ϕi(·) is continuous. �

Let us define F (θ, u) := F1(θ, u) × . . . × Fn(θ, u), where each set-valued mapping

Fi(·, ·) is defined as in Assumption 37. Then, the overall network of plants with a fixed

input u ∈ Rn can be represented as a single set-valued system with dynamics

θ̇ ∈ F (θ, u), u̇ = 0, (θ, u) ∈ Rp × Rn. (6.2)

For system (6.2) we impose the following regularity and stability assumptions, also

considered in the previous chapters.

Assumption 38 (Regularity and Stability) There exists a nonempty OSC and LB

set-valued mapping H : Rn ⇒ Rp, such that for each ρ ∈ R>0, the compact set Mρ :=

{(θ, u) : θ ∈ H(u), u ∈ Rn ∩ ρB} is globally asymptotically stable for system (6.2) with

restricted flow set Rp × (Rn ∩ ρB). �

Assumption 39 (Regularity of Output) Let H(·) be given by Assumption 38. For

each i ∈ V, each u ∈ Rn, and each pair θ, θ′ ∈ H(u), we have that ϕi(θ, u) = ϕi(θ
′, u).

�

The response map associated to each agent i is defined as Ji(u) := {ϕi(θ, u) : θ ∈ H(u)},

for all i ∈ V , where H(·) is defined as in Assumption 38. Note that under Assump-

tion 39 the response map is well-defined. We assume that the response maps have a

quadratic structure of the form

Ji(u) = uTQiu+ uTLi + Ci, ∀ i ∈ {1, . . . , n} , (6.3)
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Figure 6.1: Sampled-data associated to each player of the game.

where without loss of generality we assume that Qi = QT
i ∈ Rn×n, Li ∈ Rn, and

Ci ∈ R.

Assumption 40 Let A denote the n × n matrix whose ith row is the ith row of Qi.

There exists w ∈ Rn
>0 such that I(w)A is symmetric and negative definite. �

Under Assumption 40 the matrix A is Hurwitz, and therefore invertible. Moreover,

the non-cooperative game characterized by the response maps Ji will be a potential

game with unique Nash equilibrium given by

u∗ = (u∗1, . . . , u
∗
n)> = −0.5A−1B, (6.4)

where B denotes the n × 1 column vector whose ith entry is the ith entry of Li. This

fact follows from the following Lemma whose proof was presented in [231].

Lemma 8 Under Assumption 40, the quadratic game (6.3) is a weighted potential

game as verified by the potential function

W (u) := uT I(w)Au+ uT I(w)B − 0.5(u∗)T I(w)B (6.5)

which is negative definite with respect to u = u∗. �
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Note that the payoff functions, and therefore the game, are defined based on the

graph GP .

Remark 28 In the deterministic setting it is straightforward to consider the case when

Ji is not quadratic, see for instance [105] or [242]. This is usually achieved either

via a linearization-based stability analysis, or via a “semi-global” analysis based on

Taylor-series expansions. However, for the stochastic case, semi-global, and in fact,

local results, are more difficult to characterize than the type of stability results that we

pursue here (see [243, Section 7.1]). Hence, for ease of presentation, we confine our

analysis to quadratic payoff functions

6.1.2 Resetting Clock and Control Communication Structure

For each agent i ∈ V the resetting clock that coordinates the periodic sampler

and the zero-order hold is modeled by a state τi ∈ R≥0, which in open-loop evolves

according to the following uncoupled hybrid dynamics

τ̇i =
1

T
, τi ∈ [0, 1] (6.6a)

τ+
i = 0, τi ∈ {1} , (6.6b)

where T ∈ R>0 is a tunable sampling period assumed to be the same for all agents.

The control system Ci associated to each agent i, has access to measurements of the

output yi of its own plant Pi, gathered every time that the clock τi reaches the end of

its period, i.e., when τi = 1, as well as to the values of the control and clock states of

its neighboring agents, which are characterized by a directed graph GC := {V , EC}, i.e.,

the sampler/hold and control system j shares information with system i if and only if

(j, i) ∈ EC. The control communication digraph GC satisfies the following assumption.

177



Intermittent Stochastic Nash Seeking in Sampled-Data Systems Chapter 6

Assumption 41 The communication digraph GC is time-invariant and strongly con-

nected.

Figure 6.1 shows the sampled-data structure of each individual player i ∈ V .

6.2 Stochastic Learning in Static Games

In order to design the control dynamics for each sampled-data system, we start

by considering the case where each agent is characterized by a static mapping Ji, i.e.,

agents have no dynamics. After this, in the next section, we extend the results to the

setting of dynamic agents.

6.2.1 Static Game under Persistent Attacks

In order to learn the Nash equilibrium of the game generated by the payoff functions

Ji(û), we consider a class of stochastic learning dynamics where each agent has an

individual state x̂i := (αi, `i, ûi) ∈ R3, and dynamics of the form

x̂+
i ∈ Ĝδ,i (x̂i, vi) , x̂i ∈ D̂i := {0, 1} × [0,M ]× R, (6.7)

where M ≥ 1, and where the set-valued mapping Ĝδ,i is defined as

Ĝδ,i :=


{0, 1}

(1− αi)(`i + 1− ρ) + αi max {0, `i − ρ}

ûi + δs,iαivi ·
[
Ji(ua)− Ji(ub)

]
 , (6.8)

where vi is a random input, ρ ∈ (0, 1), δs,i = ks,i
√
δ, and

ua := û+ I(δp)I(α)v, ub := û− I(δm)I(α)v, (6.9)
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with δp = [δp,1, . . . , δp,n]>, δm = [δm,1, . . . , δm,n]>, where δp,i = kp,i
√
δ, δm,i = km,i

√
δ,

(kp,i, km,i, ks,i) ∈ (0, 1]3, δ ∈ (0, 1), and I(·) = diag(·).

Modeling the “on” and “off” attacks

In the dynamics (6.7) the state αi ∈ {0, 1} models external attacks that can per-

sistently turn off the controller of the ith agent. In particular, the condition αi = 0

represents the ith agent being attacked, which induces the control updated û+
i = ûi,

i.e., agent ith cannot update the value of this controller. On the other hand, the con-

dition αi = 1 represents the ith agent not being attacked, and it induces the nominal

learning dynamics

û+
i = ûi + δs,ivi ·

[
Ji(ua)− Ji(ub)

]
. (6.10)

This modeling framework has been shown to be useful in different engineering ap-

plications in communication networks and power systems [244], [245]. On the other

hand, modeling the attacking signal α : Z≥0 → {0, 1} as a function generated by the

difference inclusion

α+
i ∈ {0, 1}, (6.11)

allows us to consider an entire variety of different attacking signals.

A Time-ratio Constraint on the Attacking Signals

The individual auxiliary state `i in (6.8) is used to monitor the amount of time

that each agent is under attack. The dynamics of this state can be used to induce

constraints on the amount of time that αi can be equal to 1 in a particular window of

time, i.e., to bound how “persistent” are the attacks. In particular, the interconnection

of the dynamics of the attacks and the dynamics of the auxiliary state `i are given by
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a constrained difference inclusion with states (αi, `i) and dynamics


α+
i ∈ {0, 1}

`+
i = (1− αi)(`i + 1− ρ) + αi ·max {0, `i − ρ} ,

(αi, `i) ∈ {0, 1}×[0,M ] , (6.12)

where ρ ∈ (0, 1). For this system it is not difficult to see that the condition αi = 0

will force `i to increase beyond M in a finite number of steps, at which point such a

solution would be forced to stop. Therefore, complete solutions generated by system

6.12 must guarantee that αi = 1 “sufficiently often”. The following lemma formalizes

this observation.

Lemma 9 For each complete solution k → (αi(k), `i(k)) of (6.12) and integers j1 ≤ j2,

we have

j2−1∑
k=j1

(
1− αi(k)

)
≤M + ρ(j2 − j1). (6.13)

Moreover, any function αi : Z≥0 → {0, 1} satisfying (6.13) can be generated by the

system (6.12). �

Remark 29 The condition (6.13) can also be interpreted as a discrete-time persistency

of excitation (PE) condition on the participation variable qi; indeed, it is equivalent to

the condition

j2−1∑
k=j1

αi(k) ≥ −M + (1− ρ)(j2 − j1). (6.14)

Thus, whenever j2− j1 ≥ (M +1)/(1−ρ) there must be some k ∈ {j1, . . . , j2 − 1} such

that αi(k) = 1.
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Stochastic Learning Dynamics

The stochastic learning dynamics that update û in (6.7), make use of a random

dither signal vi to probe the individual payoff functions Ji. These random variables

are selected to satisfy vi ∈ {−1, 1} for all i ∈ V , as well as the following assumption:

Assumption 42 The sequence of random variables {vj}∞j=1 defined on a probability

space (Ω,F ,P) is i.i.d. with zero mean and identity correlation matrix; that is, E [vj] =

0 and E
[
vjv

T
j

]
= I for each j ∈ Z≥0. �

Under Assumptions 40 and 42, the stability properties of the stochastic learning dy-

namics are characterized by the following theorem.

Theorem 9 Consider the individual stochastic learning dynamics under attacks, mod-

eled by the stochastic difference inclusion (6.7), and define the stochastic difference

inclusion

x̂+ ∈ Ĝδ(x̂, v) := Ĝδ,1(x̂, v)× . . .× Ĝδ,n(x̂, v) (6.15a)

x̂ ∈ D̂ := D̂1 × . . .× D̂n, (6.15b)

as well as the compact set

Ax̂ := {0, 1}n × {0,M}n × {u∗}, (6.16)

where u∗ is the Nash equilibrium given by (6.4) for the quadratic game defined by the

payoff function (6.3). Then, under Assumptions 40 and 42, and the discrete-time PE

condition (6.14), for each ρ ∈ (0, 1) and M ≥ 1, the compact set A is mean-square

practically exponentially stable1 in δ. �

1The notion of mean-square practical exponential stability is presented in Definition 16 in the
Appendix.
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A trivial consequence of Theorem 9 is that an open neighborhood of the Nash

equilibrium is also practically positive recurrent2.

Corollary 3 For the quadratic game defined by the payoff function (6.3) under As-

sumptions 40, 42, and the PE condition (6.14) with ρ ∈ (0, 1) and M ≥ 1, the compact

set A, defined in (6.16), is uniformly globally practically positive recurrent (UGPPR).

�

Remark 30 The result of Theorem 9 implies that maximal solutions x ∈ Sr(x) of

system (6.7), with x ∈ D, can be guaranteed to be ultimately bounded (in a mean square

sense) inside a small residual set containing A, which in turn can be made arbitrarily

small by decreasing the parameter δ. On the other hand, the result of Corollary 3 says

that, on average, solutions of the stochastic system will hit an open neighborhood of the

set A in finite time.

To illustrate the previous results consider a non-cooperative game with 3 players,

characterized by quadratic cost functions with the following matrices:

2The notion of practical positive recurrence is presented in Definition 14 in the Appendix.
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Q1 :=


− 6 3 − 1

3 2 1

− 1 1 2

 , L1 :=


10

5

15

 , (6.17a)

Q2 :=


3 6 1

6 − 9 4

1 4 3

 , L2 :=


15

20

25

 , (6.17b)

Q3 :=


2 −3 −0.5

−3 −1 1

−0.5 1 −3

 , L3 :=


20

10

30

 , (6.17c)

If we select w = [1, 0.5, 2]>, then I(w)A is symmetric and negative definite with kA =

[−12.44,−3.384,−2.175]. Also, there exists a unique Nash equilibrium given by u∗ =

[2.62, 5.73, 6.47]>. We define M = 5, ρ = 0.5, δs = [0.005, 0.005, 0.01]>, and δm,i = 0.01,

δp,i = 0.02, for all i ∈ {1, 2, 3}. The initial conditions of the actions are set up as

u(0) = [5, 1, 2]>. We generate a sample path associated with a complete solution of

the closed-loop system, where at each iteration each player has %50 of probability of

being attacked, except when αi = 1 must hold such that PE condition is satisfied.

Figure 6.2 shows the complete solution associated with this sample path converging

to a neighborhood of the Nash equilibrium. We also show in Figure 6.3 and Figure

6.4 the solutions of `(k) and q(k), respectively, during the first 500 iterations of the

simulation.
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Figure 6.2: Evolution in time of the control state û, under causal attacks satisfying
condition 6.14.

0 50 100 150 200 250 300 350 400 450 500
0

5

I teration(k)

ℓ
1
(k

)

0 50 100 150 200 250 300 350 400 450 500
0

2

4

I teration(k)

ℓ
2
(k

)

0 50 100 150 200 250 300 350 400 450 500
0

2

4

ℓ
3
(k

)

I teration(k)

Figure 6.3: Evolution in time of the auxiliary states `(k) used to induce condition
6.14 on the attacking signals αi.
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Figure 6.4: Evolution in time of the attacks αi.
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6.2.2 Static Game with Permanent Attacks

In some adversarial scenarios, the attacks influencing the behavior of the agents

may not satisfy the PE condition (6.14). Instead, the attacks may be able to per-

manently damage the control systems of some of the agents. We model this scenario

by considering the existence of r < n “stubborn” agents in the game, whose control

systems have been compromised, generating fixed inputs with dynamics of the form

û+
p,i = u∗i + dp,i (6.18a)

û+
m,i = u∗i + dm,i, (6.18b)

and probing signals up,i and um,i, for each i = {s + 1, . . . , n}, where s = n − r is now

the number of agents that are still running a Nash seeking algorithm, which, without

loss of generality, we assume to be the first s agents. For non-cooperative games with

stubborn agents, the stability properties of the stochastic learning dynamics are now

characterized by the following theorem.

Theorem 10 Consider the stochastic learning dynamics under attacks, modeled by the

stochastic difference inclusion (6.15), and the stubborn agents with dynamics (6.18).

Then, under Assumptions 40 and 42, and the PE condition (6.14), for each ρ ∈ (0, 1)

and M ≥ 1, the compact set A is mean-square d-input-to-state practically stable3 in δ,

where d = [d>p , d
>
m]>. �

Figure 6.5 shows the evolution in time of the trajectories of the control state û

for the numerical example associated with the matrices (6.17), where now player 3 is

stubborn, and where dp = 0.4 and dm = 0.2.

3The notion of mean-square input-to-state practical stability is presented in Definition 17 in the
Appendix.
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Figure 6.5: Evolution in time of the states û for the case when player 3 is stubborn.

6.3 Stochastic Learning in Dynamic Games Under

Causal Attacks

The stochastic learning dynamics presented in the previous section rely on two

main assumptions: 1) for each agent i ∈ V direct measurements of the payoff function

Ji evaluated at the points ua and ub are available for all time; 2) the construction

of the update rule for û in (6.8) assumes that the measurements Ji(ua) and Ji(ub)

are evaluated at the same nominal point û, and same state α. These two conditions

preclude the direct application of the dynamics (6.15) in a network of sampled-data

systems, as the one presented in Section 6.1, since the presence of continuous-time

dynamics induce a lag of at least T seconds between measurements of the output of

the plant. Nevertheless, both issues can be addressed by an appropriate design of a

distributed hybrid mechanism that guarantees the necessary level of synchronization

and coordination among the agents, such as the one considered in Chapter 5. In order to

analyze the stability properties of the stochastic closed-loop system that emerges when

this synchronization and coordination mechanism is used, we proceed to formulate

the stochastic dynamics (6.8) as a centralized logic-based control system that can be

implemented in a sampled-data system. Subsequently, we use the results of Chapter
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5 to obtain a fully decentralized control system that retains the stability properties of

the centralized system

6.3.1 Learning with Central Coordinator

The interconnection of the plant (6.2) and the dynamics (6.7) is modeled by a

logic-based SHDS with 4 logic modes, characterized by a logic state zc ∈ Z :=

{1, 2, 3, 4}, a centralized timer τc ∈ R>0, and distributed controllers Ci with states

xu,i := (si, ui, x̂
>
i , ŷ

>
i ) ∈ R7, where si ∈ R is here an auxiliary state that keeps track of

the value of the random variable vi during each learning iteration, ui ∈ R is the input

of the ith plant, x̂i ∈ R3 is the same state used in (6.8), and ŷi ∈ R2 is an auxiliary state

used to keep track of the two measurements of the output of the plant i, needed to imple-

ment the dynamics (6.8). Defining xu := (x>u,1, . . . , x
>
u,n)>, Du,i := {−1, 1}×R×D̂i×R2,

and Du := Du,1 × . . . ×Du,n, the closed-loop system can be modeled by a SHDS rep-

resented by Hc := (Cc, Fc, Dc, Gc), with overall state xc := (τc, zc, x
>
u , θ

>)> ∈ Rm,
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m = 2 + 7n+ p, and data

Cc := [0, 1]× {2, 3} ×Du × Rp, (6.19a)

ẋc ∈ Fc(xc) :=



1
T

0

07n

F (θ, u)


, (6.19b)

Dc :=
(

({1} × Z) ∪ ([0, 1]× {1, 4})
)
×Du × Rp, (6.19c)

x+
c ∈ Gc(xc, v) :=



fτ (τc, zc)

fz(zc)

Gq
δ(xu, v, ỹ)

0p


, (6.19d)

where ỹ = (ỹ1, . . . , ỹn)> in (6.19d) corresponds to a vector of measurements of the

outputs of the plants (6.1), i.e., ỹi = ϕi(θ, u). The mappings fτ and fz in (6.19d) are

given by

fτ (τc, zc) : =

 0 if zc ∈ {2, 3}

τc if zc ∈ {1, 4},
(6.20a)

fz(zc) : =

 zc + 1 if zc ∈ {1, 2, 3}

1 if zc = {4}.
(6.20b)

Note that these dynamics are slightly different from those of the centralized system of

Chapter 5, since, due to the definition of the jump set, system (6.19) is not allowed to

flow when zc ∈ {1, 4}.

The logic-based stochastic set-valued mapping that characterizes the jumps of the
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network is defined as Gzc
δ in (6.19d) is defined as Gzc

δ (x̂, v) := Gzc
δ,1(x̂, v)×. . .×Gzc

δ,n(x̂, v),

where for each i ∈ V and each zc ∈ Z the map Gzc
δ,i is defined as

G1
δ,i =

(
si, εi · sat((ûi + δp,iαisi)/εi), x̂

>
i , ŷ

>
i

)>
, (6.21a)

G2
δ,i =

(
si, εi · sat((ûi − δp,iαisi)/εi), x̂>i , (ỹi, ŷi,2)>

)>
(6.21b)

G3
δ,i =

(
si, ui, x̂

>
i , (ŷi,1, ỹi)

>)> (6.21c)

G4
δ,i =

(
vi, ui, Ĝδ,i(x̂i, si, ŷi), ŷ

>
i

)>
, (6.21d)

with sat(·) in (6.21a)-(6.21b) being the saturation function, εi ∈ R>0 satisfies |u∗i | ≤ εi,

and Ĝδ,i(x̂i, si, ŷi) in (6.21d) is given by (6.8) with Ji(ua) replaced by ŷi,1, J(ub) replaced

by ŷi,2, and vi replaced by si. We point out that the introduction of the saturation

function in (6.21a)-(6.21b) is motivated merely for purposes of analysis. In general,

the positive constants εi can be selected arbitrarily large to characterize any solution

of practical interest.

Note that the behavior generated by the SHDS (6.19) can be seen as a logic-based

automaton where flows given by (6.19b) are allowed only during the modes 2 and 3.

This implies that whenever zc ∈ {1, 4} a jump is induced, and the state xc is updated

according to the dynamics (6.19d). Note also that, according to the definition of the

jump set in (6.19c), agents can jump out of the modes 2 and 3 only if τc = 1. Moreover,

by the definition of the mappings fτ and fzc in (6.20), each time that the agents jump

from the modes 2 and 3 the timer is reset to 0. Finally, note that every time that

there is a jump the logic state zc is incremented by 1, except when zc = 4, a case that

forces zc to be reset to 1. Since the maximum amount of time that the entire system

can spend in the modes 2 or 3 is ∆T seconds, we have that every agent of the network

visits in order every mode in the set Z infinitely often. In this way, every time that a

solution of the SHDS (6.19) hits for the first time the mode 1 after passing by all the
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modes Z, we say that the solution has completed a learning iteration.

The following proposition will be fundamental for our results. It follows directly by

the regularity and stability properties of system (6.2).

Proposition 13 (Slow sampling) Consider the dynamical system (6.2) with restricted

flow set Rp × Ku. Let Kθ ⊂ Rp, and suppose that Assumptions 37 and 38 hold. Let

Mρ̃ be defined as in Assumption 38, with ρ̃ > 0. Then, for each pair (ρ, ρ̃) ∈ R2
>0 and

each compact set Kθ there exists a sufficiently large sampling period ∆T > 0 such that

[θ(t)>, u(t)>]> ∈Mρ̃ + ρB, (6.22)

for all t ≥ ∆T , (θ(0)>, u(0)>)> ∈ Kθ ×Ku. �

Let us denote x̃ := (u>, s>, ŷ>, θ>)>, where ŷ = (ŷ>1 , . . . , ŷ
>
n )>. The stability prop-

erties of the SHDS (6.19) are characterized with respect to the compact set Ax̂ given

by (6.16), and the compact sets

Aτ,z :=
(

([0, 1]× {2, 3}) ∪ ({0} × {1, 4})
)
, (6.23)

M̃ : =
{
x̃ ∈ R4n+p : u = u∗, s ∈ {−1, 1}n,

ŷi = Ji(u) · [1, 1]> ∀ i ∈ V , θ ∈ H(u),
}
. (6.24)

The following theorem establishes the stability and convergence properties of the cen-

tralized stochastic system.

Theorem 11 (Stability with Central Coordinator) For the SHDS (6.19) there

exist βτ,q, βx̃ ∈ KL, (σ, γ, α) ∈ R3, δ∗ ∈ (0, 1), and λ < 1/δ∗, such that for each

δ ∈ (0, δ∗) and each compact set Kθ ⊂ Rp there exists ∆T ∗ ∈ R≥0, such that for all

∆T ≥ ∆T ∗ and xc(0, 0) ∈ [0, 1]×Z×Du×Kθ there exists a ρδ,x̂(0,0) ∈ R>0 and j∗ ∈ Z≥0
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such that for all (t, j) ∈ dom(xc),

|τc(t, j), zc(t, j)|Aτ,q ≤ βτ,q(|τc(0, 0), qc(0, 0)|Aτ,q , t+ j) (6.25)

P
(
|x̃(t, j)|M̃ ≤ βx̃(|x̃(0, 0)|M̃, t+ j) + δ,

∀ (t, j) ∈ dom(xc)
)

= 1 (6.26)

E
[
‖x̂(t, j(t))‖2

Ax̂

]
≤ σ(1− δλ)h(t)ρδ,x̂(0,0) + γδα, ∀ t ≥ 0, (6.27)

where j(t) is the smallest integer j such that (t, j) is in the domain of the solution, and

h(t) := max{0, t−∆T
∆T+1

}. �

6.3.2 Distributed Learning without Central Coordinator

In the absence of a global clock τc and a global logic mode zc, a distributed mech-

anism able to globally synchronize and coordinate the states τi and qi is needed. To

achieve this, we consider a hybrid algorithm similar to the one considered in Chapter

5. This algorithm makes use of an OSC reset map Ri : R⇒ R defined as

Ri(τi) :=



0 τi ∈ [0, ri)

{0, 1} τi = ri

1 τi ∈ (ri, 1],

, ri ∈
(

0,
1

n

)
, (6.28)

where ri is an individual parameter selected by each agent i ∈ V . The algorithm is

modeled by a deterministic HDS represented as Hτ,z := {Cτ,z, Fτ,z, Dτ,z, Gτ,z}, with

states (τ, z) ∈ Rn × Zn, and data given by
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Cτ,z := [0, 1]n × {2, 3}n, (6.29a) τ̇

ż

 = Fτ,z(τ, z) :=

 ω · 1n

0n

 , (6.29b)

Dτ,z :=
{

(τ, z) ∈ [0, 1]n × Zn : max
i∈V

τi = 1, or

max
i∈V

zi = 4, or min
i∈V

zi = 1
}
, (6.29c) τ+

z+

 ∈ Gτ,z(τ, z), (6.29d)

where Gτ,z is the outer semicontinuous hull of a mapping Gτ,z generating the entries

of the vectors τ and z as follows:

(a) Let i ∈ V be an agent satisfying τi = 1 or zi ∈ {1, 4}, then its states are updated

as

τ+
i = fτ (τi, zi), z+

i = fz(zi), (6.30)

where fτ and fz are given by (6.20).

(b) Let j ∈ V be an agent satisfying (i, j) ∈ E , and zj ∈ {2, 3}, then its states are

updated as follows:

If (zi, zj) ∈ {2, 3}2, then

τ+
j ∈ Rj(τj), z+

j = zj. (6.31)
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If (zi, zj) ∈ {1} × {2}, then

τ+
j = τj, z+

j ∈ zj +Rj(τj). (6.32)

If (zi, zj) ∈ {1} × {3}, then

τ+
j = τj, z+

j ∈ zj + (1−Rj(τj)) . (6.33)

(c) Let j ∈ V be an agent satisfying either (i, j) /∈ E or (zi, zj) /∈ {1, 2, 3} × {2, 3},

then τ+
j = τj, z

+
j = zj.

According to the HDS (6.29), each time that the states of at least one agent are

in the jump set (6.29c), this agent signals the value of its states (τi, zi) to all the

neighboring agents satisfying (i, j) ∈ E , and updates its states according to (6.30),

while the neighboring agents j update their states according to (6.31), (6.32), or (6.33),

depending on the values of zi and their individual state zj. If multiple agents have states

in the jump set (6.29c), they will jump sequentially, the order being not important since

the outer semicontinuous hull of Gτ,z captures all possible orders of jumps. Note that

according to (6.29), the agents can flow only whenever all states (τ, z) belong to the

flow set (6.29a). This does not mean that agents need full information of the network

in order to flow, but rather it exploits the fact that jumps occur instantaneously, such

that whenever an agent decides to flow, every agent that was in the jump set has

already jumped.

We proceed to establish the stability properties of the HDS (6.29) with respect to

the “synchronized” compact set

Async :=
⋃

z∈{2,3}

(
[0, 1] · 1n × {z}n

)
∪ A2 ∪ A3, (6.34)
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where the compact sets A2 and A3 are given by

A2 : =
(

({0} × {3}) ∪ ({1} × {2})
)n

A3 : =
(

({0} × Z\{3}) ∪ ({1} × {3})
)n
.

The following proposition characterizes the stability and convergence properties of the

synchronization dynamics.

Proposition 14 Consider the network of sampled-data systems described in Section

6.1, where each controller Ci has an individual clock τi, and logic state zi ∈ Z, and

implements the dynamics (6.29). Then, the compact set Async, given by (6.34), is

uniformly globally asymptotically stable (UGAS). �

Using the synchronization mechanism, the distributed Nash seeking dynamics for the

network of asynchronous sampled-data systems are given by a SHDSH := (C,F,D,G),

with state x := (τ>, z>, x>u , θ
>)> ∈ Rm, m = 9 · n+ p, and data given by

ẋ ∈ F (x) :=


Fτ,z(τ, z)

07·n

F (θ, u)

 , C := Cτ,z ×Du × Rp, (6.35a)

x+ ∈ G(x, v), D := Dτ,z ×Du × Rp, (6.35b)

where the sets Cτ,z and Dτ,z are given by (6.29a) and (6.29c), respectively, the mapping

Fτ,z is given by (6.29b), and the stochastic jump map G(x, v) is the outer semicontin-

uous hull of a set-valued mapping G(x, v) defined as follows: Let x ∈ D and τi = 1 or

zi ∈ {1, 4}. Then, G(x, v) is the set of vectors g ∈ Rm such that the components that

generate τ+
i and q+

i are given by (6.30), the component that generate xu,i is given by

(6.21), and the component that generate θ+
i is given by θi. For the rest of the agents
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j 6= i, the components that generate x+
u,j and θ+

j are given by xu,j and θj. Similarly, for

the agents j 6= i, if (i, j) ∈ E and (zi, zj) ∈ {2, 3}2, then the components that generate

τ+
j and z+

j are given by (6.31). If (i, j) ∈ E and (zi, zj) ∈ {1}×{2} then τ+
j and z+

j are

updated as (6.32), and for those agents j satisfying (i, j) ∈ E and (zi, zj) ∈ {1} × {3}

the components τ+
j and z+

j are updated as (6.33). The rest of the agents keep (τj, zj)

constant.

The following theorem characterizes the convergence properties of the closed-loop

decentralized stochastic hybrid dynamical system.

Theorem 12 For the SHDS (6.35) there exists βτ,z, βx̃ ∈ KL, (σ, γ, α) ∈ R3, δ∗ ∈

(0, 1), and λ < 1/δ∗, such that for each δ ∈ (0, δ∗) and each compact set Kθ ⊂ Rp

there exists ∆T ∗ ∈ R≥0, such that for all ∆T ≥ ∆T ∗ and xc(0, 0) ∈ [0, 1] × Z ×

Du × Kθ there exists a ρδ,x̂(0,0) ∈ R>0 and j∗ ∈ Z≥0 such that |τ(t, j), z(t, j)|Async ≤

βτ,z(|τ(0, 0), z(0, 0)|Async , t+ j) and x̂, x̃ satisfies equations (6.27)-(6.26). �

We illustrate this convergence result by means of a numerical example in a networked

sampled-data system with 5 agents. The communication network is characterized by

a ring graph GP , and the continuous-time dynamics of the sampled-data systems are
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given by

 θ̇1,1

θ̇1,2

 ∈
 −θ5

1,1 − (1 + θ5,1)θ3
1,1

−sgn(θ1,2 − u1)

 ,


θ̇2,1

θ̇2,2

θ̇2,3

 =


−θ3

2,1 + θ5,1

θ2,3 − u2

−(1 + θ2
2,2)θ2,2 − (θ2,3 − u2) + θ2,1

 ,

 θ̇3,1

θ̇3,2

 =

 −θ3,1 + θ1,2 − u1

−θ3,2 + θ3,1 + u3

 ,

 θ̇4,1

θ̇4,2

 ∈
 −θ4,1 + θ2,2

−θ4,2 + θ4,1 + u4

 ,

 θ̇5,1

θ̇5,2

 ∈
 −θ5,1 − 2θ3

5,1 + (1 + θ2
5,1)θ3,1

−sgn(θ5,2 − u5) + θ5,1

 ,

where sgn(s) := [−1, 1] if s = 0. The output functions are defined as y1 = −2 ·

θ2
1,2 + θ2

4,3 + 20 · θ1,2 + θ43 + 5, y2 = −5 · θ2
2,2 + θ2

5,2 + 150 · θ2,2 + θ5,2 + 10, y3 =

−4 · θ2
3,2 + θ2

1,2 + θ1,2 − 20 · θ3,2 + 10, y4 = −θ2
4,3 + θ2

2,2 + 50 · θ4,3 + θ2,2 − 15, y5 =

−3 · θ2
5,2 + θ2

3,2 + 70 · θ5,2 + θ3,2 − 50. This network satisfies Assumptions 38-39 with

a single-valued mapping H(u) = (0, u1)> × (0, 0, u2)> × (0, u3)> × (0, u4)> × (0, u5)>.

Thus, the response maps Ji are well-defined quadratic functions with unique NE given

by u∗ = [5, 15, 2.5, 25, 11.66]>, satisfying Assumption 40 with w = [1, 1, 1/2, 1/3, 2].

Figure 6.6 shows a simulation of the HDS (6.35) generating a sample-path where at

each learning iteration (i.e., mode 4) each sampled-data system is attacked with a

probability of 50%, except at the times when the PE-like condition forces the attacking

signal to satisfy αi = 1. The initial conditions of the clocks and logic modes are
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Figure 6.6: Trajectories of u converging to u∗.

selected as τ(0, 0) = [0.2, 0.4, 0.6, 0.8, 1] and q(0, 0) = [2, 3, 2, 3, 4]. The parameters of

the simulation are selected as M = 5, ρ = 0.5, δs,i = 0.02, δp,i = δm,i = 0.1, ri = 0.1

for all i ∈ V , and ∆T = 0.5.
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Appendix A

Hybrid Dynamical Systems

In this dissertation we consider set-valued HDS aligned with the framework presented

in [78], which allows us to exploit a sequential compactness property that is useful to

establish robustness properties in HDS with regular data. A HDS with state x ∈ Rn

is modeled by the equation

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D,
(A.1)

where ẋ stands for the derivative of x with respect to time, and x+ represents the

value of x after an instantaneous jump. The set-valued mappings F : Rn ⇒ Rn and

G : Rn ⇒ Rn are called the flow map and the jump map, respectively, and they describe

the evolution of the system when x belongs to the flow set C, or/and the jump set D,

respectively. System (A.1) is represented by the notation H := {C,F,D,G}, where

C, F , D and G comprise the data of H. Note that HDS of the form (A.1) generalize

purely continuous-time systems and purely discrete-time systems. Namely, continuous-

time dynamical systems can be seen as a HDS of the form (A.1) with D = ∅, while

discrete-time dynamical systems can be seen as a HDS of the form (A.1) with C = ∅.
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This fact allows us to make use of a unified framework to analyze the different types

of systems considered in this thesis, irrespective of the nature of the sets C and D.

We proceed to review some relevant definitions for HDS of the form (A.1). Further

details and illustrative examples are presented in [78].

A.1 Solutions and Stability Concepts for HDS

Solutions of (A.1) are defined on hybrid time domains. A set E ⊂ R≥0 × Z≥0 is

called a compact hybrid time domain if E = ∪J−1
j=0 ([tj, tj+1], j) for some finite sequence

of times 0 = t0 ≤ t1 . . . ≤ tJ . The set E is a hybrid time domain if for all (T, J) ∈ E,

E ∩ ([0, T ]× {0, . . . , J}) is a compact hybrid time domain.

Definition 5 A function x : dom(x) 7→ Rn is a hybrid arc if dom(x) is a hybrid time

domain and t 7→ x(t, j) is locally absolutely continuous for each j such that the interval

Ij := {t : (t, j) ∈ dom(x)} has nonempty interior. A hybrid arc x is a solution to (A.1)

if x(0, 0) ∈ C ∪D, and the following two conditions hold:

1. For each j ∈ Z≥0 such that Ij has nonempty interior: x(t, j) ∈ C for all t ∈

int(Ij), and ẋ(t, j) ∈ F (x(t, j)) for almost all t ∈ Ij.

2. For each (t, j) ∈ dom(x) such that (t, j + 1) ∈ dom(x): x(t, j) ∈ D, and x(t, j +

1) ∈ G(x(t, j)).

Since F and G are set-valued, and C∩D may not be empty, the solutions generated by

the HDS (A.1) from an initial condition x(0, 0) ∈ Rn may not necessarily be unique.

Definition 6 A hybrid solution x is said to be forward pre-complete if its domain is

compact or unbounded, i.e., if the flows do not generate finite escape times. A hybrid

solution is said to be forward complete if its domain is unbounded. A hybrid solution is

199



Hybrid Dynamical Systems Chapter A

maximal if there does not exist another solution ψ to H such that dom(x) is a proper

subset of dom(ψ), and x(t, j) = ψ(t, j) for all (t, j) ∈ dom(x). System H is said to be

forward (pre) complete from a compact set K0 ⊂ Rn if all maximal solutions x with

x(0, 0) ∈ K0, describing the set SH(K0), are forward (pre) complete.

Definition 7 Let H be a hybrid system of the form (A.1), and A ⊂ Rn be a compact

set. The set A is said to be uniformly globally asymptotically stable (UGAS) for

H if there exists a KL function β such that any maximal solution x to H satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j), for all (t, j) ∈ dom(x).

Note that Definition 7 does not insist that each maximal solution must have an un-

bounded time domain, neither in the t direction nor in the j direction. However, if the

time domain of a particular solution is unbounded, then that particular solution must

converge to A.

The following is the local version of Definition 7.

Definition 8 Let H be a hybrid system of the form (A.1), A ⊂ Rn be a compact set,

and BA be an open set satisfying A ⊂ BA. The set A is said to be uniformly locally

asymptotically stable (ULAS) for H with basin of attraction BA, if there exists a KL

function β and a proper indicator ω(·)1 of A on BA such that all solutions x to H with

x(0, 0) ∈ BA satisfy ω(x(t, j)) ≤ β(ω(x(0, 0)), t+ j), for all (t, j) ∈ dom(x).

Since we are interested in designing feedback mechanisms with good robustness

properties, we will always consider systems of the form (A.1) that satisfy the following

conditions:

(C1) The sets C and D are closed.

1A function ω : BA → R≥0 is a proper indicator of A on BA if it is continuous, ω(xi) → ∞ when
i → ∞ if either |xi| → ∞ or the sequence {xi}∞i=1 approaches the boundary of BA, and ω(x) = 0 if
and only if x ∈ A.
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(C2) F is OSC and LB relative to C, C ⊂ dom(F ), and F (x) is convex for every

x ∈ C.

(C3) G is OSC and LB relative to D, and D ⊂ dom(G).

A.2 Some Robustness and Invariance Results for

HDS

We now review some useful theoretical results for HDS satisfying conditions (C1)-

(C3). The following definition will be useful to analyze the stability and convergence

properties of parametrized HDS.

Definition 9 For a HDS parametrized by a small positive parameter ε, given by Hε :=

{Cε, Fε, Dε, Gε}, a compact set A ⊂ Rn is said to be semi-globally practically asymp-

totically stable (SGP-AS) as ε → 0+ if there exists a function β ∈ KL such that the

following holds: For each ∆ > 0 and ν > 0 there exists ε∗ > 0 such that for each

ε ∈ (0, ε∗) each solution x of Hε that satisfies |x(0, 0)|A ≤ ∆ also satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + ν, for all (t, j) ∈ dom(x). (A.2)

Remark 31 If the sets Cε and Dε are compact, SGP-AS is equivalent to global prac-

tical asymptotic stability (GP-AS), since ∆ can be selected sufficiently large to encom-

pass every initial condition where the solutions of Hε are defined.

The following lemma, adapted from [78, Lemma 7.20], establishes SGP-AS of a compact

set A for a well-posed HDS with persistent disturbances.

201



Hybrid Dynamical Systems Chapter A

Lemma 10 Let H be a well-posed HDS of the form (A.1) rendering a nonempty com-

pact set A ⊂ Rn UGAS. Then, for the perturbed HDS Hρ with data given by

Fρ(x) : = co F ((x+ ρB) ∩ C) + ρB (A.3a)

Gρ(x) : = {v ∈ Rn : v ∈ g + ρB, g ∈ G((x+ ρB) ∩D)} (A.3b)

Cρ : = {x ∈ Rn : (x+ ρB) ∩ C 6= ∅} (A.3c)

Dρ : = {x ∈ Rn : (x+ ρB) ∩D 6= ∅}, (A.3d)

the set A is SGP-AS as ρ 7→ 0+.

The following definition is taken from [246, Sec. 3].

Definition 10 Consider the HDS H given by (A.1), and let K ⊂ Rn be a com-

pact set. The Ω-limit set from K of (A.1) is defined as ΩH(K) := {x ∈ Rn : x =

limi→∞ xi(ti, ji), xi ∈ SH(K), (ti, ji) ∈ dom(xi), ti + ji →∞}.

The following lemma, adapted from [78, Corollary 7.7], provides sufficient conditions

to establish UGAS of Ω-limit sets for a well-posed HDS of the form (A.1).

Lemma 11 Suppose that H is a well-posed HDS of the form (A.1). Let K ⊂ Rn be

compact, and suppose that ΩH(K) is nonempty and satisfies ΩH(K) ⊂ int(K), and

that the reachable set from K is bounded. Then, the set ΩH(K) is UGAS for system

(A.1) with restricted flow set C ∩K, and restricted jump set D ∩K.

Non-emptiness of ΩH(K) can be guaranteed, for example, by establishing the existence

of at least one bounded complete solution with an initial condition in K [246, Remark

2]. Lemma 11, together with Definition 9, allow us to establish the following lemma

for well-posed HDS.
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Lemma 12 Let Hε := {C,Fε, D,Gε} be a well-posed HDS of the form (A.1) rendering

a nonempty compact set A SGP-AS as ε → 0+. Let ∆ > v > 0, and define K∆ :=

A+ ∆B. Suppose that for all ε > 0 sufficiently small there exists at least one complete

solution x ∈ SHε(K∆). Then there exists a ε∗ such that for all ε ∈ (0, ε∗) there

exists a UGAS compact set Ωε
H′(K∆) ⊂ A+ vB for the restricted hybrid system H′ :=

{C ∩K∆, Fε, D ∩K∆, Gε}.

If the data of the HDS is not restricted to the compact set K∆ we obtain the

following local result.

Lemma 13 Suppose that a HDS Hε := {Cε, Fε, Dε, Gε} satisfying (C1)− (C3) ren-

ders a compact set A ⊂ Rn SGP-AS as ε→ 0+. Then, for each compact set K∆ ⊂ Rn

and each δ ∈ R>0 such that A + δB ⊂ int(K∆) there exists an ε∗ ∈ R>0 such that

for each ε ∈ (0, ε∗) there exists a ULAS compact set Ωε(K∆) ⊂ A + δB with basin of

attraction B(Ωε(K∆)) satisfying K∆ ⊂ B(Ωε(K∆)). �

The following result exploits the OSC and LB properties of well-posed set-valued

mappings.

Lemma 14 Let F : Rn × Rn ⇒ Rn satisfy (C2), and let f : Rn → Rn be continuous.

Then, for each compact set K ∈ Rn and each ρ ∈ R>0 there exists a δ ∈ R>0 such that

F (x, f(x) + δB) ⊂ F (x+ ρB, f(x+ ρB)) + ρB, (A.4)

for all x ∈ K.

Proof: Suppose the statement is false. Then, there exists a compact set K ⊂ Rn and

an ρ ∈ R>0 such that for each i ∈ Z≥1 there exists an xi ∈ K such that

F

(
xi, f(xi) +

1

i
B
)
6⊂ F (xi + ρB, f(xi + ρB)) + ρB. (A.5)
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Since {xi}∞i=1 is a bounded sequence it has a convergent subsequence that we will not

relabel. Let xi → x′, and define M1 := x′ + ρ
2
B. Then, M1 × f(M1) is compact, and

there exists an i∗ ∈ Z≥1 such that for all i ≥ i∗ we have that |xi − x′| ≤ ρ/2. Using

continuity of f we obtain that for all i ≥ i∗

F

(
xi, f(xi) +

1

i
B
)
⊂ F

(
M1, f(M1) +

1

i
B
)
. (A.6)

Since F satisfies (C2) it is also upper semicontinuous [78, Lemma 5.15], and then by

[247, Claim 3], there exists an i∗∗ ∈ Z≥1 such that for all i ≥ i∗∗

F

(
M1, f(M1) +

1

i
B
)
⊂ F

(
M1, f(M1)

)
+ ρB. (A.7)

Also, for all i > i∗ we have that y ∈M1 ⇒ y ∈ xi + ρB, and then

F (M1, f(M1)) + ρB ⊂ F (xi + ρB, f(xi + ρB)) + ρB. (A.8)

Using i > max{i∗, i∗∗} and (A.6), (A.7), (A.8), we get the desired contradiction. �
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Appendix B

Singularly Perturbed Hybrid

Systems with Non-Hybrid

Boundary Layer Dynamics

In this section, we use ẋt to describe the derivative of x with respect to the time scale t.

The following definition, together with Lemma 15, subsumes the main results presented

in [224] for singularly perturbed HDS (SP-HDS) with a well-defined boundary layer

and reduced system.

Definition 11 (SP-HDS with Reduced Dynamics) Let x = [x>1 , x
>
2 ]> ∈ Rn, where

x1 ∈ Rn1 and x2 ∈ Rn2. Let ε > 0 and K̃ ⊂ Rn2 be compact. We say that the hybrid

system Hε := {C × K̃, F,D × K̃,G} given by

 In1 0

0 εIn2

 ẋt ∈ F (x) x ∈ C × K̃, (B.1a)

x+ ∈ G(x) x ∈ D × K̃, (B.1b)
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is a SP-HDS with a well-defined boundary layer and reduced system if it satisfies the

following conditions:

1. The data {C × K̃, F,D × K̃,G} satisfies conditions (C1)-(C3).

2. Let τ = t/ε and ρ ∈ R>0. For the boundary layer system of (B.1), defined as

ẋblτ ∈

 0 0

0 In2

F (xbl), xbl ∈ (C ∩ ρB)× K̃, (B.2)

there exists an OSC, LB set-valued mapping H : Rn1 ⇒ Rn2, with H(xbl1 ) being

a nonempty subset of K̃ for each xbl1 ∈ C, such that for each ρ > 0 the compact

set

Mρ := {(xbl1 , xbl2 ) : xbl1 ∈ C ∩ ρB, xbl2 ∈ H(xbl1 )} (B.3)

is UGAS.

3. For the reduced system of (B.1), defined as

ẋ1 ∈ F r(x1), x1 ∈ C (B.4a)

x+
1 ∈ Gr(x1), x1 ∈ D, (B.4b)

where

F r(x1) : = co {v1 ∈ Rn1 : (v1, v2) ∈ F (x1, x2),

x2 ∈ H(x1), v2 ∈ Rn2}, (B.5a)
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Gr(x1) : = {v1 ∈ Rn1 : (v1, v2) ∈ G(x1, x2),

(x2, v2) ∈ K̃ × K̃}, (B.5b)

there exists a UGAS compact set A ⊂ Rn1.

The following Lemma, which is a direct consequence of [224, Theorem 1] characterizes

the stability properties of the set A× K̃ for a well-posed SP-HDS with a well-defined

boundary layer and reduced system.

Lemma 15 For a SP-HDS with a well-defined boundary layer and reduced system,

the set A× K̃ is SGP-AS as ε→ 0+.

Proof : The result follows directly by noting that conditions (1), (2), and (3), in

Definition 11, fulfill the required assumptions for the application of [224, Theorem 1].

�

In the same way, SP-HDS with a well-defined boundary layer and average system

are characterized by Definition 12 and Lemma 16, the later being a simple extension

of [248, Theorem 2].

Definition 12 (SP-HDS with Average Dynamics) Let x = [x>1 , x
>
2 , x

>
3 ]> ∈ Rn,

where x1 ∈ Rn1, x2 ∈ Rn2, and x3 ∈ Rn3. Let ε > 0 and K̃ ⊂ Rn3 be a compact set.

We say that the hybrid system Hε := {C × K̃, F,D × K̃,G} given by


In1 0 0

0 In2 0

0 0 εIn3

 ẋt ∈ F (x), ((x1, x2), x3) ∈ C × K̃, (B.6a)

x+ ∈ G(x), ((x1, x2), x3) ∈ D × K̃, (B.6b)

where F := F1 × F2 × F3, F1 : Rn1+n2 ⇒ Rn1 F2 : Rn → Rn2, F3 : Rn2+n3 → Rn3, is
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a SP-HDS with a well-defined boundary layer and average system, if it satisfies the

following conditions:

1. The data (C × K̃, F,D × K̃,G) satisfies (C1)-(C3).

2. Let τ = t/ε and ρ ∈ R>0. For the boundary layer system of (B.6), defined as

ẋbl1τ = 0

ẋbl2τ = 0

ẋbl3τ = F3(xbl)

,
(
(xbl1 , x

bl
2 ), xbl3

)
∈ (C ∩ ρB)× K̃, (B.7)

there exists a compact set MA
ρ ⊂ (C ∩ ρB) × K̃, a class-L function σL(MA

ρ )(·),

and a continuous function FA
2 : C → Rn2, such that, for each L > 0, and

function xbl3τ : [0, L] → K̃ that is a solution of (B.7), the following holds: i)∣∣∣ 1
L

∫ L
0

(F2(x1, x2, x
bl
3 )− FA

2 (x1, x2))ds
∣∣∣ ≤ σL(MA

ρ )(L), (ii) the set MA
ρ is UGAS

for system (B.7).

3. For the average system of (B.6), defined as

 ẋA1

ẋA2

 ∈ FA(xA1 , x
A
2 ), (xA1 , x

A
2 ) ∈ C, (B.8a)

 xA+
1

xA+
2

 ∈ GA(xA1 , x
A
2 ), (xA1 , x

A
2 ) ∈ D, (B.8b)

where FA = F1 × FA
2 , FA

2 is defined as in item (2), and GA is given by

GA :=
{

(v1, v2) ∈ Rn1+n2 : (v1, v2, v3) ∈ G(xA1 , x
A
2 , x3),

(x3, v3) ∈ K̃ × Rn3
}
, (B.9)
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there exists a UGAS compact set A ⊂ Rn1+n2.

Lemma 16 For a well-posed SP-HDS with a well-defined boundary layer and average

system, the set A× K̃ is SGP-AS as ε→ 0+.

Proof: The proof of Lemma 16 follows a similar path as the proof of [248, Theorem 2],

with the addition that we exploit the fact that F1 is independent of the fast state x3, as

well as the non-dependence of F3 on x1. We extend the SP-HDS (B.6) by introducing

an auxiliary state η ∈ Rn2 , a small constant µ ≥ 0, and by intercepting the flow and

jump sets C and D by a compact set K (that is constructed as Eq. (31) in [248]).

Specifically we consider the extended hybrid system HK given by

ẋ1 ∈ F1(x1, x2)

ẋ2 = F2(x1, x2, x3)

ẋ3 = 1
ε
F3(x2, x3)

η̇ = 1
ε

[
F2(x1, x2, x3)− FA

2 (x1, x2)− µη
]


, (B.10a)

((x1, x2), x3, η) ∈ C ∩K × K̃ × Rn2 ,

x+ ∈ G(x)

η+ = 0
, ((x1, x2), x3, η) ∈ D ∩K × K̃ × Rn2 . (B.10b)

Consider the change of variables x̄1 = x1 and x̄2 = x2 − εη. Using (B.10) and the

definition of GA(x) in (B.9) we obtain the auxiliary system given by

˙̄x1 ∈ F1(x̄1, x̄2 + εη)

˙̄x2 = FA
2 (x̄1, x̄2 + εη) + µη

, x̄+ εη ∈ C, (B.11a)

x̄+ ∈ GA(x̄1, x̄2 + εη), x̄+ εη ∈ D. (B.11b)
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Since the data of the system (B.10) satisfies item (1) in Definition 12, F1 is independent

of x3, and F2 is continuous, by [248, Lemma 4] we have that for any δ > 0 and compact

set K ⊂ Rn1+n2 there exists (µ, ε∗) ∈ R2
>0 such that, for all ε ∈ (0, ε∗], each solution

(x, η) of system (B.10) with η(0, 0) = 0 satisfies µ|η(t, j)| ≤ δ, for all (t, j) ∈ dom(x),

impliying that solutions x̄(t, j) of system (B.11) will also be solutions of an inflated

system HA
δ given by

˙̄x ∈ FA(x̄+ δB), x̄ ∈ Cδ, (B.12a)

x̄+ ∈ GA(x̄+ δB), x̄ ∈ Dδ. (B.12b)

where Cδ and Dδ are defined as in equations (A.3c) and (A.3d). From this point the

proof follows the same steps as in the proof of Theorems 1 and 2 in [248] using closeness

of solutions of systems HA
δ and HA, the uniform stability of A for the system HA, and

Lemma 10. �
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Proof of Theorem 1

The proof of Theorem 1 is based on singular perturbation and averaging theory for

HDS with non-hybrid boundary layers [224], [248]. To prove Theorem 1 we start by

obtaining the average-reduced HDS in the slowest time-scale, which will correspond to

a perturbed version of the learning dynamics (2.11). Making use of Lemmas 12 and 10

we will establish the existence of a UGAS Ω-limit set for this average-reduced system

with restricted flow and jump sets. After this, we will repeatedly use Lemmas 12, 15,

and 16, to establish a global practical stability results for the optimal compact set for

the average system in the quasi-steady state, for the non-average quasi-steady state

system, and finally for the original system (2.12). We divide the proof in 5 main steps:

Step 1: We start by considering the case when the dynamics of θ are negligible, such

that direct measurements of the response map are available, i.e., y = J(u). In this case

we consider a hybrid dynamical system in the λ-time scale (which only affect the flows),

where λ = εωt, given by Hs := {(Cu × Cz)× Λξ × Sn, Fs, (Du ×Dz)× Λξ × Sn, Gs},

with state xs :=
[
x>u,z, ξ

>, µ>
]> ∈ R`+3n, and ω acting as a small perturbation param-
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eter. The data of this system is given by

Fs :=


σF̂δ(xu,z, ξ)

−(ξ − 2
a
J(u) · D µ)

ω−1Φ(κ) µ

 , (Cu × Cz)× Λξ × Sn, (C.1a)

Gs :=


Ĝδ(xu,z)

ξ

µ

 , (Du ×Dz)× Λξ × Sn. (C.1b)

System (C.1) is a SP-HDS of the form (B.6), with ω acting as small parameter. For this

system the boundary layer dynamics, in the τω := λ/ω̄-time scale, simply correspond

to the oscillator µ̇ = Φ(κ) µ, which generates a vector of periodic solutions with

even components given by µ2i(τω̄) = − sin(κiτω̄)µ2i−1(0) + cos(κiτω̄)µ2i(0), and odd

components given by µ2i−1(τω̄) = cos(κiτω̄)µ2i−1(0) + sin(κiτω̄)µ2i(0), for each i ∈

{1, . . . , n}, rendering the compact set Sn UGAS. Moreover, by the selection of the

constants κi, the matrix D, and the fact that J is analytic, a Taylor series expansion of

J(û+ aDµ) with respect to û can be performed, obtaining that J(û+ aDµ) = J(û) +

a(Dµ)>∇J(û) +O(a2). By defining T = 2π ·LCM(1/κ1, . . . , 1/κn), and using the facts

that
∫ T

0
µ2i−1(s)ds = 0,

∫ T
0
µ2i−1(s)µ2j−1(s)ds = 0 for all i 6= j, and 1

T

∫ T
0
µ2i−1(s)2ds =

1
2
, for all i ∈ {1, . . . , n}, we obtain that ψa(û

A) := 1
T

∫ T
0

2
a
J(û + aDµ(s)) (Dµ(s)) ds =

∇J(ûA)+O(a). Therefore, system (C.1) has a well defined boundary layer system of the

form (B.7), and average system of the form (B.8), with state xAs :=
[
xA
>

u,z , ξ
A>
]> ∈ R`+n,

given by HA
s :=

{
Cu × Cz × Λξ, F

A
s , Du ×Dz × Λξ, G

A
s

}
, which in the λ-time scale has
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the following data

FA
s :=

 σF̂δ(x
A
u,z, ξ

A)

−ξA + ψa(û
A)

 , (Cu × Cz)× Λξ, (C.2a)

GA
s :=

 Ĝδ(x
A
u,z)

ξA

 , (Du ×Dz)× Λξ. (C.2b)

In the γ-time scale, with γ = σλ, and σ acting as a small perturbation parameter, the

data (C.2) is given by

FA
s :=

 F̂δ(x
A
u,z, ξ

A)

− 1
σ

(
ξA − ψa(ûA)

)
 , (Cu × Cz)× Λξ, (C.3a)

GA
s :=

 Ĝδ(x
A
u,z)

ξA

 , (Du ×Dz)× Λξ. (C.3b)

For σ small, system (C.3) is a SP-HDS of the form (B.1), where the flow dynamics of ξA

evolve on a faster time scale compared to the flow dynamics of xAu,z. The boundary layer

dynamics (B.2) associated to system (C.3), with state xA,bl := [xA,bl>u,z , ξA,bl>]> ∈ R`+n,

are characterized in the τ = γ/σ-time scale by the mapping

FA,bl
s (xA,bl) :=

 0

−ξA,bl + ψa(û
A,bl)

 , (C.4)

with flow set [(Cu × Cz) ∩ ρB] × Λξ, for each ρ > 0. These linear boundary layer

dynamics render the set Mρ := {(xA,blu,z , ξ
A,bl) : xA,blu,z ∈ (Cu×Cz)∩ ρB, ξA,bl ∈ Ha(û

A,bl)}
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UGAS, where

Ha(û
A,bl) :=

 ψa(û
A,bl), ũ ∈ Cu ∪Du,

∅, ũ /∈ Cu ∪Du.
(C.5)

In the same way, the reduced dynamics (B.4) associated to system (C.3) are given by

the HDS HA,r
s := {Cu × Cz, FA,r

s , Du × Dz, G
A,r
s }, with state xA,ru,z ∈ R`, which in the

γ-time scale has the following data:

ẋA,rγu,z ∈ F
A,r
s : = F̂δ

(
xA,ru,z , ψa(û

A,r)
)
, (Cu × Cz), (C.6a)

x+A,r
u,z ∈ GA,r

s : = Ĝδ

(
xA,ru,z

)
, (Du ×Dz). (C.6b)

System (C.6) thus approximates the behavior of the HESC (2.12) in the slowest time

scale.

Step 2: Let ∆ > ν > 0 be given and define K̃ := A + ∆B. We make the

observation that due to the definition of ψa system (C.6) is an O(a)-perturbed version

of the hybrid learning dynamics (2.11). Let Lemma 12 generate δ∗ with the pair (∆, ν
5
),

and let δ ∈ (0, δ∗). Using Assumption 6, and by Lemma 12, there exists a compact

set Ωδ
Ĥ(K̃) ⊂ A + ν

5
B ⊂ int(K̃) that is UGAS for the learning dynamics (2.11) with

restricted flow and jump set (Cu × Cz) ∩ K̃ and (Du ×Dz) ∩ K̃. Since this restricted

system is well-posed and its restriction is compact, we have that by Lemma 10 and

Remark 31, its inflated version (A.3) will render the set Ωδ
Ĥ(K̃) GP-AS with respect to

the inflation size. Moreover, by the definition of O(a), there exists a k∆ > 0 such that

F̂δ
(
xA,ru,z , ψa(û

A,r)
)
⊂ co F̂δ

(
xA,ru,z ,∇J(ûA,r) + ak∆B

)
, for all xA,ru,z ∈ K̃. Using Lemma
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14 we have that for each ρ ∈ R>0 there exists an a∗ ∈ (0, 1) such that for all a ∈ (0, a∗)

coF̂δ
(
xA,ru,z ,∇J(ûA,r) + akB

)
⊂

coF̂δ
(
xAru,z + ρB,∇J(ûA,r + ρB)

)
+ ρB,

for all ûA,r ∈ K̃, which implies that for any ρ we can select a sufficiently small such

that solutions of system (C.6) with restricted flow and jump set are also solutions of

the inflated HDS (A.3) associated to the learning dynamics (2.11), with restricted flow

and jump set. Therefore, the set Ωδ
Ĥ(K̃) is also GP-AS for system (C.6) with restricted

flow and jump set (Cu×Cz)∩ K̃ and (Du×Dz)∩ K̃, as a→ 0+, where without loss of

generality we assumed the existence of a function α(·) ∈ K such that ρ = α(a). Now, by

Assumption 5, item (d), the O(a) perturbation on the gradient ∇J does not preclude

the existence of at least one complete solution of system (C.6) from every possible

initial condition. Let Lemma 12 generate a∗∗ ∈ (0, a∗) for the HDS (C.6) using again

(∆, ν/5). Let a ∈ (0, a∗∗). Then, there exists a compact set Ωδ,a

HA,rs
(K̃) ⊂ A + 2ν

5
B,

that is UGAS for system (C.6) with restricted flow and jump set (Cu × Cz) ∩ K̃ and

(Du ×Dz) ∩ K̃.

Step 3: The restricted reduced system (C.6) has compact flow and jump sets,

and ψa(·) in (C.5) is continuous, therefore there exists a λξ ∈ R>0 such that for each

xu,z ∈ (Cu × Cz) ∩ K̃ we have that Ha(û) ⊂ λξB =: Λξ, thus satisfying the condition

(2) in Definition 11. By the UGAS stability of the set Ωδ,a

HA,rs
(K̃) for system (C.6) with

flow set (Cu × Cz) ∩ K̃ and jump set (Du × Dz) ∩ K̃, and the UGAS stability of the

compact set Mρ for the boundary layer system (C.4), we obtain via Lemma, 15 GP-AS

as σ → 0+ of the set Ωδ,a

HA,rs
(K̃)× Λξ for the average system (C.3), with restricted flow

set
[
(Cu × Cz) ∩ K̃

]
× Λξ, and jump set

[
(Du ×Dz) ∩ K̃

]
× Λξ. Since this system is

well-posed, and complete solutions are always guaranteed by selecting λξ sufficiently
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large, we can now use again Lemma 12 to generate σ∗ using (∆, ν/5) and the compact

set K ′′ := K̃ × K ′′ξ , where Λξ ⊂ int(K ′′ξ ). Then, for each σ ∈ (0, σ∗) there exists a

UGAS compact set Ωδ,a,σ
HAs

(K ′′) ⊂
(
A+ 3v

5
B
)
× Λξ, for the average system (C.3) with

flow set given by
[
(Cu × Cz) ∩ K̃ × Λξ

]
∩K ′′ =

[
(Cu × Cz) ∩ K̃

]
× Λξ, and jump set

given by
[
(Du ×Dz) ∩ K̃ × Λξ

]
∩K ′′ =

[
(Du ×Dz) ∩ K̃

]
×Λξ. Since the result holds

for system (C.3) in the γ-time scale it also holds for system (C.2) in the λ-time scale.

Step 4: By definition, all solutions of the boundary layer dynamics of (C.1) are

complete and defined on Sn. Thus, system (C.1) satisfies condition (2) in Defini-

tion 12. Combining the UGAS property of the set Ωδ,a,σ
HAs

(K ′′) for the average system

(C.2) with restricted data, and the UGAS of the set Sn for the boundary layer dy-

namics of system (C.1), we get, by Lemma 16, SGP-AS of the set Ωδ,a,σ
HAs

(K ′′) × Sn

as ω → 0+ for system (C.1). Applying again Lemma 11 with (∆, ν/5) and K ′′′ :=

K̃ × K ′′′ξ × K ′′′µ , where Λξ ⊂ int(K ′′′ξ ), and Sn ⊂ int(K ′′′µ ), we generate ω∗, and

select ω ∈ (0, ω∗), obtaining the existence of a UGAS compact set Ωδ,a,σ,ω̄
Hs (K ′′′) ⊂(

A+ 4ν
5
B
)
× Λξ × Sn for the quasi-steady state system (C.1), with restricted flow set[

(Cu × Cz) ∩ K̃ × Λξ × Sn
]
∩K ′′′ =

[
(Cu × Cz) ∩ K̃

]
× Λξ × Sn, and restricted jump

set given by
[
(Du ×Dz) ∩ K̃ × Λξ × Sn

]
∩K ′′′ =

[
(Du ×Dz) ∩ K̃

]
× Λξ × Sn.

Step 5: Finally, consider the complete system interconnected with the plant (2.1),

given in the closed-loop form by Eq. (2.12). Rewriting the flow and jump maps of

(2.12) in the ς-time scale, where ς = εt we obtain

Fε :=



ωσF̂δ(xu,z, ξ)

−ω
(
ξ − 2

a
ϕ(θ, u) · D · µ

)
Φ(κi) · µ

ε−1g(θ, û+ aD · µ)


, G :=



Ĝδ(xu,z)

ξ

µ

θ


, (C.7)
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with flow and jump set defined as in Theorem 1. System (C.7) is of the form (B.1),

with ε acting as small parameter. The boundary layer dynamics (B.2) in this case

correspond to the dynamics of the plant, given by (2.1), with frozen input u. By

Assumptions 1 and 2 this boundary layer dynamics are well-posed and render the set

Mρ UGAS. Moreover, using LB of the quasy-steady-state manifold H(·), there exists a

λθ ∈ R>0 such that for any u ∈ (Cu∩K̃)+aB ⊂ U the containment H(u) ⊂ λθB holds,

thus satisfying condition (2) in Definition 11. Also, by Assumption 3, the function J(u)

is well-defined, and the reduced system associated to (C.7) in the α = ως-time scale

corresponds to the same system (C.1) with restricted flow and jump set, and whose

stability properties were already established in Step 4. Therefore, we can use again

Lemma 15 to obtain that system (C.7) with flow set
[
(Cu × Cz) ∩ K̃

]
×Λξ×Sn×Λθ and

jump set
[
(Du ×Dz) ∩ K̃

]
×Λξ×Sn×Λθ renders the set Ωδ,a,σ,ω̄

Hs (K ′′′)×Λθ SGP-AS as

ε→ 0+. Since complete solutions for this system can always be guaranteed by selecting

λθ sufficiently large, we can apply again Lemma 12 with (∆, ν/5) and compact set

K ′′′′ := K̃×K ′′′′ξ ×K ′′′′µ ×K ′′′′θ , where Λξ ⊂ int(K ′′′′ξ ), Sn ⊂ int(K ′′′′µ ), and Λθ ⊂ int(K ′′′′θ ),

obtaining the existence of an ε∗ such that for each ε ∈ (0, ε∗) there exists a compact set

Ωδ,a,σ,ω̄,ε
H (K ′′′′) ⊂ (A+ vB)×Λξ×Sn×Λθ that is UGAS for the closed-loop system (C.7)

with restricted jump and flow set given by
[
(Cu × Cz) ∩ K̃

]
×Λξ × Sn ×Λθ and jump

set
[
(Du ×Dz) ∩ K̃

]
× Λξ × Sn × Λθ. Theorem 1 follows by noting that for any pair

∆ > ν, uniform convergence to an arbitrarily small ν-neighborhood of A, from initial

conditions of xuz in arbitrarily large compact sets K̃, can be achieved by decreasing

in order the parameters (δ, a, σ, ω̄, ε) (note that, unlike Definition 9, the resulting KL

function will depend on these parameters). Finally, note that if Cu×Cz and Du×Dz are

bounded, ∆ can always be selected sufficiently large to satisfy (Cu×Cz)∩K̃ = Cu×Cz

and (Du × Dz) ∩ K̃ = Du × Dz, obtaining the global practical result for the original

system (C.7) as in Corollary 1. �
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C.1 Proof of Lemma 1.

The first part of the Lemma follows by noting that

0 ≤ τ2(t, j) ≤ τ2(s, i) + ρ(t− s)−
∫ t

s

IQu(q(r, j(r)))dr

≤ T0 + ρ(t− s)−
∫ t

s

IQu(q(r, j(r)))dr,

For the second part, choose

τ2(0, 0) = T0, (C.8a)

τ̇2 =

 η2 − IQu(q) τ2 < T0,

−IQu(q) τ2 = T0.
(C.8b)

The solution can track the hybrid time domain E as long as it does not reach the

condition

τ2(s, i) = 0 (C.9a)

q(s, i) ∈ Qu (C.9b)

(t, i) ∈ E for some t > s. (C.9c)

Let (p, k) be the largest time preceding (s, i) such that τ(p, k) = T0. There exists such

a time due to (C.8a). The conditions in (C.8b) together with (C.9a) imply

0 = T0 + η2(s− p)−
∫ s

p

IQu(q(r, j(r)))dr. (C.10)
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Then, since η2 ∈ [0, 1), the condition (C.9b)-(C.9c) and the fact that q is constant

along flows imply

∫ t

p

IQu(q(r, j(r)))dr =

∫ s

p

IQu(q(r, j(r)))dr + (t− s)

= T0 + η2(s− p) + (t− s)

> T0 + η2(s− p) + η2(t− s) = T0 + η2(t− p),

which violates the time-ratio constraint (2.18). �
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Appendix D

Singularly Perturbed Hybrid

Systems with Hybrid Boundary

Layer

We consider now singularly perturbed hybrid dynamical systems (SP-HDS) with state

x = [x>1 , x
>
2 ]>, x1 ∈ Rn1 , x2 ∈ Rn2 , and dynamics in the τ = εt-time scale, given by

dx1

dτ
∈ F1(x1, x2)

εdx2

dτ
∈ F2(x1, x2)

, (x1, x2) ∈ Cs ×ΨC(x1), (D.1a)

x+
1 = x1

x+
2 ∈ H2(x1, x2)

, (x1, x2) ∈ Cs ×ΨD(x1), (D.1b)

x+
1 ∈ G1(x1)

x+
2 ∈ G2(x1, x2)

, (x1, x2) ∈ Ds ×Ψ(x1), (D.1c)

where ΨC ,ΨD : Rn1 ⇒ Rn2 , F1 : Rn1+n2 ⇒ Rn1 , F2 : Rn1+n2 ⇒ Rn2 , G2, H2 : Rn1+n2 ⇒

Rn2 , Ψ(x1) = ΨC(x1) ∪ ΨD(x1), and ε ∈ R>0 is a small constant. The set-valued
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mappings ΨC , ΨD, F1, F2, G1, G2, H2, are assumed to be locally bounded and

outer-semicontinuous. The set-valued mappings F1, F2 are additionally assumed to be

convex-valued. The sets Cs and Ds are assumed to be closed and nonempty. For system

(D.1) we will use the notation F = F1×F2, and C̃ := {(x1, x2) : x ∈ Cs, x2 ∈ ΨC(x1)}.

Systems of the form (D.1) are studied in [249] and [203]. In the HDS (D.1) the

state x2 evolves faster than the state x1 during flows. Also, during jumps induced by

the condition x1 ∈ Cs and x2 ∈ ΨD(x1), the state x2 is updated according to H2, and

the state x1 remains constant. To analyze system (D.1) we introduce the boundary

layer dynamics in the standard time scale t, given by

ẋbl1 = 0

ẋbl2 ∈ F2(xbl1 , x
bl
2 )

, (xbl1 , x
bl
2 ) ∈ Cs ×ΨC(x1), (D.2a)

xbl +
1 = xbl1

xbl +
2 ∈ H2(xbl1 , x

bl
2 )

, (xbl1 , x
bl
2 ) ∈ Cs ×ΨD(x1). (D.2b)

Based on these boundary layer dynamics, the average system associated to the HDS

(D.1) is defined as follows.

Definition 13 Consider the hybrid dynamical system

dx1

dτ
∈ FA(x1), x1 ∈ Cs, (D.3a)

x+
1 ∈ G1(x1), x1 ∈ Ds. (D.3b)

We say that system (D.3) is a well-defined average system for the HDS (D.1) if the

mapping FA : Rn1 ⇒ Rn1 is OSC, LB, convex-valued, and non-empty for each x1 ∈ Cs,

and if for each compact set K ⊂ Rn1 there exists a continuous function σK : R>0 →

R≥0 that decreases to zero as it argument increases, such that for each L > 0, each
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x ∈ Cs ∩ K, each solution xbl2 to the boundary layer system (D.2) with dom(xbl2 ) ∩

([L,∞]× Z≥0) 6= ∅ and each measurable function f1 : [0, L]→ Rn that satisfies f1(s) ∈

F1(x1, x
bl
2 (s, j)) for each j ∈ Z≥0 and almost all t ∈ [0, L] ∩ {t : (t, j) ∈ dom(xbl2 )},

there exists a measurable function fA : [0, L] → Rn1 with fA(s) ∈ FA(x1) such that

1
L

∥∥∥∫ L0 (f1(s)− fA(s)
)
ds
∥∥∥ ≤ σK(L). �

In order to characterize the stability properties of system (D.1) based on the stability

properties of the average system (D.3), we need to take into account that the time

domain of the solutions of the average system do not take into account the jumps

associated to the boundary layer dynamics (D.2). In order to account for this difference,

a mapping x̃1 is defined as follows:

graph(x̃1) = ∪(t,j)∈dom(x){s(t, j), k(t, j), x1(t, j)}, (D.4)

where s(t, j) is a timer that counts the flow time of system (D.1), and k(t, j) is a timer

that counts the jumps given by (D.1c). Note that the values of x̃1 match those of

x1. Thus convergence of x̃1 as s + k → ∞ will necessarily imply convergence for the

original state x1. Based on this, and using Definition 13, the next Theorem follows by

the results in [249, Thm. 2] relaxed to local stability.

Theorem 13 Consider the SP-HDS (D.1), and suppose that the hybrid boundary layer

dynamics (D.2) do not generate purely discrete solutions. Also, suppose that the SP-

HDS has a well-defined average system (D.3) in the sense of Definition 13, and that

this average system renders ULAS a compact set A ⊂ Cs ∪Ds with some KL function

β and basin of attraction BA. Then, there exists a proper indicator ω for A on BA

such that for each compact set K ⊂ BA and each ν ∈ R>0 there exists an ε∗ ∈ R>0

such that for each ε ∈ (0, ε∗) every solution of the singularly perturbed HDS (D.1) with

x1(0, 0) ∈ K, x̃1 constructed as in (D.4), and s(0, 0) = k(0, 0) = 0 generates the bound
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ω(x̃1(s, k)) ≤ β(ω(x̃1(0, 0)), s+ k) + ν, (D.5)

for all (s(t, j), k(t, j)) such that (t, j) ∈ dom(x). �

Note that the bound (D.5) does not decrease when the HDS (D.1) jumps according to

(D.1b). Thus, in order to obtain convergence of x1 towards A+ νB it is required that

system (D.1) generates complete solutions that flow or jump according to (D.1a) or

(D.1c). Finally, note that if x1 converges to A+νB, by definition of the flow and jump

set of x2 in (D.1), we have that x2 will converge to the set Ψ(A+νB). Using the fact that

OSC and LB of Ψ imply upper-semicontinuity of Ψ [78, Lemma 5.15], we have that for

any ν̃ ∈ R>0 there exists a sufficiently small ν < ν̃ such that Ψ(A+ νB) ⊂ Ψ(A) + ν̃B,

which in turn implies that one can select ν sufficiently small in Theorem 13 to establish

convergence of the states (x1, x2) in finite time (from compact sets in BA) towards the

set (A×Ψ(A)) + ν̃B.
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Proof of Theorem 2

Proof: Fix K and ν, such that Ax̂,ξ,µ,θ + νB ⊂ int(K). Using OSC and LB of the

mappings Ψξ, Ψµ, and Ψθ, and continuity of hu and hµ, there exists νa such that

Ψθ (hu(hx̂(Ax̂ + νaB), hµ(Aµ + νaB))) + νaB ⊂ Ψθ (hu(hx̂(Ax̂), hµ(Aµ))) + νB. Using

this νa, there exists a νb > 0 such that Ψµ(Ax̂+νbB,Aξ+νbB)+νbB ⊂ Ψξ(Ax̂,Aξ)+ νa
2
B.

Using this νb, there exists νc > 0 such that Ψξ(Ax̂+νcB)+νcB ⊂ Ψξ(Ax̂)+ νb
2
B. Based

on this, we divide the proof in 4 main steps:

Step 1: By Lemma 13, there exists a ULAS compact set Ωδ(Kx̂) ⊂ Ax̂ + νc
3
B for

system (2.53) with e = 0, with basin of attraction BΩδ(Kx̂) satisfying Kx̂ ⊂ BΩδ(Kx̂).

Since the system satisfies (C1)-(C3), and e(t) is of order O(a), by Lemmas 11 and 12,

the set Ωδ(Kx̂) is SGP-AS as a → 0+. Using again Lemma 13 with νc
3

we obtain the

existence of a ULAS compact set Ωδ,a(Kx̂) ⊂ Ax̂ + 2νc
3
B for system (2.53), with basin

of attraction BΩδ,a(Kx̂) satisfying Kx̂ ⊂ BΩδ,a(Kx̂).

Step 2: The previous step established ULAS of the set Ωδ,a(Kx̂) for system (2.53).

Since system (2.53) is the average system associated to the SP-HDS given by the

equations (2.56), (2.57), and (2.58), by Assumption 8 and Theorem 13 we obtain the

existence of an σ∗ such that for each σ ∈ (0, σ∗) the trajectories of the slow state x̂ of
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the SP-HDS (2.56), (2.57), and (2.58) satisfying x̂(0, 0) ∈ Kx̂, also generate a bound

of the form (D.5) with residual term νc
3

, constructed as in (D.4). Since by assumption

the SP-HDS generates complete solutions, and the boundary layer dynamics do not

generate purely-discrete solutions, the bound (D.5) and the construction (D.4) imply

the convergence in finite time of the state x̂ to a νc
3

-neighborhood of the compact

set Ωδ,a(Kx̂). In turn, this implies the convergence of x̂ to Ax̂ + νcB in finite time.

Using the properties of νc, we obtain that the states (x̂, ξ) converge in finite time to

the set Ax̂,ξ + νb
2
B, where Ax̂,ξ := Ax̂ × Aξ. Using again Lemma 13, there exists a

ULAS compact set Ωδ,a,σ(Kx̂ × Kξ) ⊂ Ax̂,ξ + νb
2
B, with basin of attraction satisfying

Kx̂ ×Kξ ⊂ BΩδ,a,σ(Kx̂×Kξ).

Step 3: The previous step established ULAS of the set Ωδ,a,σ(Kx̂ × Kξ) for the

HDS (2.56), (2.57), and (2.58). Since the HDS (2.56), (2.57), and (2.58) is the average

system associated to the SP-HDS given by the equations (2.64), (2.65), (2.66), (2.68),

by Assumption 9 and Theorem 13, we obtain the existence of an ω̄∗ such that for each

ω̄ ∈ (0, ω̄∗) the trajectories of the slow states (x̂, ξ) of the SP-HDS (2.64), (2.65), (2.66),

(2.68) satisfying [x̂>(0, 0), ξ>(0, 0)]> ∈ Kx̂×Kξ, also generate a bound of the form (D.5)

with νb
2

, constructed as in (D.4). Therefore, using the properties νb, the states (x̂, ξ, µ)

will converge in finite time to the set Ax̂,ξ,µ + νa
2
B, where Ax̂,ξ,µ := Ax̂ ×Aξ ×Aµ. By

Lemma 13 there exists a ULAS compact set Ωδ,a,σ,ω̄(Kx̂ × Kξ × Kµ) ⊂ Ax̂,ξ,µ + νa
2
B,

with basin of attraction satisfying Kx̂ ×Kξ ×Kµ ⊂ BΩδ,a,σ,ω̄(Kx̂×Kξ×Kµ).

Step 4: The previous step established ULAS of the set Ωδ,a,σ,ω̄(Kx̂ × Kξ × Kµ)

for the HDS (2.64), (2.65), (2.66), (2.68). Since this HDS is the average system asso-

ciated to the complete SP-HDS given by the equations (2.71)-(2.75), by Assumptions

10 and Theorem 13, we obtain the existence of an ε∗ such that for each ε ∈ (0, ε∗)

the trajectories of the slow states (x̂, ξ, µ) of the SP-HDS (2.71)-(2.75), satisfying

[x̂>(0, 0), ξ>(0, 0), µ>(0, 0)]> ∈ Kx̂×Kξ ×Kµ, also generate a bound of the form (D.5)
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with residual term νa
2

, constructed as in (D.4). Using the properties of νa we obtain fi-

nite time convergence of the states (x̂, ξ, µ, θ) to the set Ax̂,ξ,µ,θ+νB, which, by Lemma

13 implies the existence of a ULAS compact set Ωδ,a,σ,ω̄,ε(Kx̂×Kξ×Kµ×Kθ) ⊂ Ax̂,ξ,µ,θ+

νB, with basin of attraction satisfying Kx̂ ×Kξ ×Kµ ×Kθ ⊂ BΩδ,a,σ,ω̄,ε(Kx̂×Kξ×Kµ×Kθ).
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Appendix F

Proof of Theorem 3

F.1 Proof of Proposition 6

Since u is constant and µ is generated by the uncoupled PE signal generator (2.87)

which renders the set Aµ UGAS, it suffices to study the behavior of the dynamics of ŵ.

Moreover, since u is constrained to lie in the compact set ρB ∩ U, and µ is uniformly

bounded, we can take φ(t) in (2.90) as an independent absolutely continuous function

of time. Now, consider the radially unbounded Lyapunov function

Vw̃ =
1

2
trace

{
w̃TΓ−1w̃

}
, (F.1)
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and note that ˙̃w = ˙̂w. Taking the derivative of (F.1) one gets

V̇w̃ = trace
{

˙̃wTΓ−1w̃
}

= trace

{(
−Γ

φ

(1 + φ>φ)2
(w̃>φ+ ε)

)>
Γ−1w̃

}

= trace

{(
−Γ

φ̄

(1 + φ>φ)
(w̃>φ+ ε)

)>
Γ−1w̃

}

= trace

{(
−Γφ̄

(
w̃>φ̄+

ε

1 + φ>φ

))>
Γ−1w̃

}

= −trace
{
w̃T φ̄φ̄T w̃

}
+ trace

{
ε · φ̄T 1

(1 + φTφ)
w̃

}
.

When ε = 0 we have that V̇w reduces to

V̇w̃ = −trace
{
w̃T φ̄φ̄T w̃

}
, (F.2)

which can be rewritten as

V̇w̃ = −trace

{
e2

(1 + φ>φ)2

}
≤ 0. (F.3)

This implies that supt≥0 |Vw̃(t)| < ∞ and supt≥0 ‖w̃(t)‖ < ∞. Moreover, (F.3) and

(F.1) imply that for each c ∈ R>0 the compact set

Ωc := {w̃ ∈ RN : Vw̃(w̃) ≤ c}, (F.4)

is positively invariant under the dynamics (2.86), which guarantees the existence of

complete solutions for system (2.90). Using the PE condition on φ̄, and equation

(F.2), it follows by [1, Theorem 4.3.2] or [209, Thm. 1] that w̃ converges to zero

exponentially fast. Now, if ε 6= 0, using the PE condition, one has that V̇ω̃ is negative
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if [209, Thm. 1],

‖ω̃>φ̄‖ ≥ ‖ε‖
‖1 + φTφ‖

. (F.5)

Note that ‖1+φTφ‖ ≥ 1. Moreover, given the fact that u is constrained to the compact

set ρB ∩ U, by Lemma 2 the condition ‖ε‖ ≤ ε1 can be guaranteed for any ε1 < ε� c

by taking N sufficiently large. Therefore, for any ε1 there exists a N∗ such that for any

N ≥ N∗ (F.5) is satisfied if

‖w̃>φ̄‖ ≥ ε1. (F.6)

Then, since ‖φ̄(t)‖ < 1 for all t ≥ 0, using the Cauchy-Schwarz inequality we have that

V̇ω̃ will be negative outside the set

Ωε̄ := {w̃ ∈ RN : ‖w̃‖ ≤ ε1}. (F.7)

Finally, define Bε̄ := ε̄B ⊂ RN and note that for sufficiently small ε̄1 one has that

Ωε̄1 ⊂ Bε̄ ⊂ int(Ωc). Then, w̃(t) is guaranteed to converge exponentially fast and in

finite time to Bε̄. Since the flow set in (2.90) is compact, the previous arguments, and

Assumption 12, imply by [78, Corollary 7.7] and [206, Lemma 1] that there exists a

compact set Ac ⊂ w∗ + ε̄B such that the set (ρB ∩ U)×Aµ ×Ac is UGAS for system

(2.90).

F.1.1 Proof of Theorem 3

The proof is divided in 4 steps:

Step 1: Suppose the dynamics of θ are negligible, such that y = J(u), i.e., the

plant is just a static mapping J(·). Then, the resulting HDS in the λ-time scale (which

only affects the flows) with λ := ε1 · ε2 · t, has data Hs := {Cs, Fs, Ds, Gs}, state
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xs :=
[
x>u,z, ŵ, µ

>]>, and is characterized by the equations

Cs := (Cu × Cz)× Ωc ×Ψ, (F.8a)

Fs :=


F̂δ(xu,z,∇φ(u)>ŵ)

1
ε1
· Γ¯̄φ(u+ µ)

(
ŵ>φ(u+ µ)− J(u+ µ)

)
1
ε1
· Π(µ)

 , (F.8b)

Gs :=


Ĝδ(xu,z)

ŵ

µ

 , Ds := (Du ×Dz)× Ωc ×Ψ. (F.8c)

System (F.8) is a singularly perturbed HDS [224], with ε1 acting as small positive

parameter. For this system the boundary layer dynamics, in the τε1 := λ/ε1-time

scale, correspond to the same dynamics (2.90), where the “slow” variable u is assumed

to be frozen. By Proposition 6, for each pair (ρ, c) ∈ R2
>0, and each ε̄� c there exists

a number N∗ of NN such that for all N ≥ N∗ the compact set Abdl ⊂ Aρ + ε̄B is

UGAS for this boundary layer dynamics. Also, the reduced system associated to the

singularly perturbed HDS (F.8) corresponds to the learning dynamics with an additive

ε̄-bounded perturbation on the estimated gradient ∇φ>ŵ, i.e.,

ẋu,z ∈ F̂δ
(
xu,z,∇φ(u)>ŵ + εB

)
, xu,z ∈ Cu × Cz, (F.9a)

x+
u,x ∈ Ĝδ

(
xu,z

)
, xu,z ∈ Du ×Dz. (F.9b)

Step 2: Let ∆ > ν > 0 be given and define K̃ := Au,z + ∆B. Let Lemma 12 in the

Appendix generate δ∗ with the pair (∆, ν
4
), and let δ ∈ (0, δ∗). Then, by Assumption

14, and Lemma 11 in the Appendix, there exists a compact set Ωδ(K∆) ⊂ Au,z + ν
4
B ⊂

int(K∆) that is UGAS for the learning dynamics with restricted flow and jump set
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(Cu × Cz) ∩K∆ and (Du ×Dz) ∩K∆. Then, by Lemmas 14 and 10 in the Appendix,

the perturbed system (F.9) with restricted flow and jump set (Cu × Cz) ∩ K∆ and

(Du ×Dz) ∩K∆ renders the set Ωδ(K∆) GP-AS as ε̄ → 0+. Moreover, by Lemma 2,

without loss of generality we can assume that there exists a function α(·) ∈ K such

that ε = α
(

1
N̄

)
, such that Ωδ(K∆) is GP-AS as N → ∞. Using again (∆, ν/4) let

Lemma 12 generate N∗. Let N ≥ N∗ such that ε̄ can be chosen sufficiently small.

Then, there exists a compact set Ωδ,N(K∆) ⊂ A+ 2ν
4
B that is UGAS for system (F.9)

with restricted flow and jump set (Cu × Cz) ∩K∆ and (Du ×Dz) ∩K∆.

Step 3: Since the restriction of system (F.9) has compact flow and jump set, we

can chose c� ε̄ such that {w∗}+ ε̄B ⊂ Ωc, thus [224, Assumption 2] is satisfied by the

compact set (2.92). By the UGAS stability of the set Ωδ,N(K∆) for the reduced system

(F.9) with flow set (Cu×Cz)∩K∆ and jump set (Du×Dz)∩K∆, and the UGAS stability

of the compact setMρ for the boundary layer system (2.90), we obtain via [224, Thm.

1] GP-AS as ε1 → 0+ of the set Ωδ,N(K∆)×Ψ×Ωc for system (F.8) with restricted flow

set ((Cu × Cz) ∩K∆)×Ψ× Ωc, and jump set ((Du ×Dz) ∩K∆)×Ψ× Ωc. Since this

system is well-posed, and complete solutions are always guaranteed under the given

assumptions, we can now use again Lemma 12 to generate ε∗1 using (∆, ν/5) and the

compact set K ′′ := K∆ ×K ′′µ,c, where Ψ × Ωc ⊂ int(K ′′µ,c). Then, for each ε ∈ (0, ε∗)

there exists a UGAS compact set Ωδ,N,ε1(K ′′) ⊂
(
A+ 3v

4
B
)
×Ψ×Ωc, for system (F.8)

with flow set given by ((Cu × Cz) ∩K∆ ×Ψ× Ωc)∩K ′′ = ((Cu × Cz) ∩K∆)×Ψ×Ωc,

and jump set given by ((Du ×Dz) ∩K∆ ×Ψ× Ωc)∩K ′′ = ((Du ×Dz) ∩K∆)×Ψ×Ωc.

Since the result holds for system (F.8) in the λ-time scale it also holds for system (F.8)

in the t-time scale.

Step 4: Finally, consider the complete system (2.94) taking into account the dy-

namics of the plant (2.49). Rewriting the flow and jump maps of (2.94) in the ς-time

231



Proof of Theorem 3 Chapter F

scale, where ς = ε2t we obtain

Fε1 : =



ε1 · F̂δ
(
xu,z,∇φ(u)>ŵ

)
−Γ¯̄φ(u+ µ)

(
ŵ>φ(u+ µ)− ϕ(θ)

)
Π(µ)

1
ε2
P (θ, u+ µ)


, (F.10a)

G : =



Ĝδ(xu,z)

µ

û

θ


, (F.10b)

with flow and jump set defined as in (2.94a) and (2.94c). System (F.10) is also a

singularly perturbed HDS [224], with ε1 acting as small parameter. The boundary

layer dynamics now correspond to the dynamics of the plant (2.49), with frozen input

ũ = u + µ, which under Assumptions 37 and 38 is well-posed and renders the set Mρ

UGAS. Moreover, using local boundedness of the quasy-steady-state manifold H(·)

and compactness of Ψ, there exists a λθ ∈ R>0 and λµ ∈ R>0, such that Ψ ⊂ λµB,

and for any ũ ∈ (Cu ∩K∆) + λB the containment H(ũ) ⊂ λθB holds, thus satisfying

[224, Assumption 2]. Also, by Assumption 39, the response map function J(ũ) is

well-defined, and the reduced system associated to (F.10) in the λ = ε1 · ς time scale

corresponds to the same system (F.8) with restricted flow and jump set, and whose

stability properties were already established in Step 3. Therefore, using again [224,

Thm 1.] we obtain that the HDS (F.10) with flow set ((Cu × Cz) ∩K∆)×Ψ×Ωc×Λθ

and jump set ((Du ×Dz) ∩K∆)×Ψ×Ωc×Λθ renders the set Ωδ,N,ε1(K ′′)×Λθ SGP-AS

as ε2 → 0+. For this system complete solutions can always be guaranteed by selecting

λθ sufficiently large. Therefore, using again Lemma 12 with (∆, ν/4) and compact set
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K ′′′′ := K∆ × K ′′′′µ,c × K ′′′′θ , where Ψ × Ωc ⊂ int(K ′′′′µ,c), and Λθ ⊂ int(K ′′′′θ ), we obtain

the existence of ε∗2 > 0 such that for each ε2 ∈ (0, ε∗2) there exists a compact set

Ωδ,N,ε1,ε2(K ′′′′) ⊂ (A+ vB) × Ψ × Ωc × Λθ that is UGAS for the closed-loop system

(F.10) with restricted jump and flow set given by ((Cu × Cz) ∩K∆)×Ψ×Ωc×Λθ and

jump set ((Du ×Dz) ∩K∆)×Ψ×Ωc×Λθ. The result of the theorem follows by noting

that for any pair ∆ > ν, uniform convergence to an arbitrarily small ν-neighborhood of

A, from initial conditions of xuz in arbitrarily large compact sets K∆ can be achieved

by decreasing, in order, the constants
(
δ, 1

N̄
, ε1, ε2

)
. �
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Proofs of Chapter 3

The following Lemma gives some instrumental facts for the proofs of Lemma 18 and

Proposition 7.

Lemma 17 Let A ∈ RN×N be a positive definite diagonal matrix, and consider the

matrix Q ∈ RN×N defined as

Q :=

(
I − A−1

1>A−11
11>

)
A−1. (G.1)

Then, the following holds:

1. Q = kLGA where LGA is the out-degree Laplacian of a weighted graph with

symmetric adjacency matrix Adj := A−111>A−1, and k is a scalar defined as

k = (1>A−11)−1.

2. Q is symmetric and for any x ∈ RN

x>Qx =
k

2

N∑
i,j=1

āi,j(xi − xj)2, ∀ x ∈ RN . (G.2)

where āi,j is the entry (i, j) of A−111>A−1.
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3. Q1 = 0 and 1>Q = 0>.

4. Q is positive semidefinite.

5. The largest eigenvalue of Q satisfies λmax ≤ 2k‖Dout1‖∞, where Dout is the out-

degree matrix of Adj.

6. rank(Q) = n− 1 and λ2 > 0, where λ2 is the second smallest eigenvalue of Q.

7. L̃AQ = L̃, for any Laplacian matrix L̃

Proof:

1. Note that Adj has out-degree matrix

Dout := diag(Adj 1) = diag((A−111>A−1)1)

= k−1diag(A−11)

= k−1A−1.

Since the out-degree Laplacian of a graph with adjacency matrix Adj is defined

as L := Dout − Adj, [Bullo, Sec. 6.1], we get

LGA = k−1A−1 − A−111>A−1

= k−1(I − kA−111>)A−1

= k−1Q.

2. Since Adj = A−111>A−1 is symmetric, then LGA , and therefore Q, are also

symmetric. Equation (G.2) is obtained expanding x>Qx.

3. The first part follows directly by the fact that L1 = 0 for any Laplacian matrix

L. The second part follows by the symmetry of Q.
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4. The eigenvalues of Q different from 0 have strictly-positive real part. This follows

by the fact that this property holds for any Laplacian matrix LGA .

5. Follows by the fact that the largest eigenvalue of LGA is upper bounded by λmax ≤

2‖Dout1‖∞.

6. Follows by the fact that the graph of LGA is connected and undirected, such

that rank(L) = n − 1. Since the rank of a matrix is invariant under scalar

multiplication, we obtain the result for Q.

7. Expanding

L̃AQ = kL̃A(k−1A−1 − A−111>A−1) (G.5a)

= L̃ − kL̃11>A−1 (G.5b)

where the last term is zero due to the fact that L̃1 = 0. �

Before presenting the proof of Lemma 3, we characterize the Oracle mapping O(·) that

maps tolls to Nash flows in fully utilized affine congestion games with a positive definite

diagonal matrix A.

Lemma 18 Under Assumption 15 the Oracle O(·) satisfies

xf = O(τ) = −Q(b+ τ) +
A−1

1>A−11
1, (G.6)

where Q is given by (G.1). Moreover, Q is positive semidefinite and N (Q) = span{1}.

�

Proof: The fact that N (Q) = span{1} follows by items 3) and 6) in Lemma 17.
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Now to obtain Q, note that any Nash flow xf ∈ int(∆) corresponds to the solution

of the linear program (3.2) with equation (3.2a) replaced by equation (3.3), i.e.,

 A 1

1> 0


 x

−µ

 = −

 b+ τ

−1

 . (G.7)

This system has a square matrix of the form

 A B>

B 0

 which, provided A and

BA−1B are invertible, has inverse of the form A−1 −A−1B>(BA−1B)−1BA−1 A−1B>(BA−1B>)−1

(BA−1B>)−1BA−1 −(BA−1B>)−1


Thus, solving for x we get

xf (τ) = −
(
I − A−111>

1>A−11

)
A−1(b+ τ) +

A−1

1>A−11
1. (G.8)

which gives a closed expression for the Oracle mapping xf (τ) = O(τ).

G.1 Proof of Lemma 3

For affine congestion games satisfying Assumption 15 the total welfare (3.4) in

terms of the Nash flows xf can be written as

W (xf ) = −(x>f Axf + b>xf ), (G.9)
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which for the case when x is a Nash flow xf , can be written in terms of τ by means of

the Oracle O(·). In particular, using the chain rule we get

∇W (τ)> = (2Axf (τ) + b)>Q (G.10)

and using the mapping τ 7→ xf (τ) defined in (G.8), we obtain

∇W (τ)> =

(
2A(−

(
I − A−111>

1>A−11

)
A−1(b+ τ) (G.11)

+
A−1

1>A−11
1) + b

)>
Q. (G.12)

Expanding terms we get

∇W (τ)> = −2(b+ τ)>QAQ+ 2
1A−1AQ

1>A−11
+ b>Q− 2τ>QAQ,

and using items 3) and 7) of Lemma 17, we get

∇W (τ)> = (−b− 2τ)>Q. (G.13)

Thus the set of minimizers of W (τ) correspond to the points τ ′ ∈ RN satisfying

∇W (τ) = 0, i.e.,

τ ′ ∈ τ ∗ +N (Q), where τ ∗ = − b
2
. (G.14)

Since by Lemma 18 we have that N (Q) = span{1}, we get that the set of optimal

fixed tolls is

A = {τ ∈ RN : τ ∗ + µ, µ ∈ R}. (G.15)
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This establishes the result. �

The following Lemma recalls some stability properties of Laplacian flows.

Lemma 19 Consider the Laplacian flow

ẏ = −LGy, (G.16)

and suppose that G is strongly connected and weighted balanced. Then, we have that

the set span{1} is GAS. �

G.2 Proof of Lemma 4

From the proof of Lemma 3 and equation (G.10) we have that the gradient dynamics

can be written as

τ̇ = ∇W (τ) = −Q(Axf (τ) + b+ Axf (τ)) (G.17)

which by item 1) in Lemma 17, is of the form (3.13). Moreover, using equation (G.13)

and item 1) in Lemma 17 we get the dynamics

τ̇ = −kLA(b+ 2τ). (G.18)

Equilibrium points of (G.18) are given by the set of points τ = − b
2

+N (LA). Since by

item 1) in Lemma 17 the matrix LA corresponds to the Laplacian matrix of a connected,

undirected graph, we have that N (LA) = span{1}, thus the set of equilibrium points

of (G.18) corresponds to the set A. Finally, consider the change of variable τ̃ = τ − τ ∗,
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where τ ∗ is defined in Lemma 3. The resulting system has dynamics

˙̃τ = −2kLAτ̃ . (G.19)

The result of the lemma follows by Lemma 19.

G.3 Proof of Proposition 7:

Using the Oracle mapping O(·) given by (G.8) we get the vector field of the learning

dynamics in terms of τ̃ = τ − τ ∗, i.e.,

xf = −
(
I − A−111>

1>A−11
−
)
A−1(b+ τ̃ + τ ∗) +

A−1

1>A−11
1.

= −Qτ̃ −Qb−Qτ ∗ +
A−1

1>A−11
1 (G.20a)

Using the Oracle mapping (G.8) we get the learning dynamics in terms of τ̃ .

τ̇ = L
(

2Axf + b
)

= L

(
2A

(
−Qτ̃ −Qb−Qτ ∗ +

A−1

1>A−11
1

)
+ b

)

= −2LAQτ̃ − 2LAQb− 2LAQτ ∗ + 2LA A−1

1>A−11
1 + Lb

= −2Lτ̃ − 2Lb− 2Lτ ∗ + Lb

= −2Lτ̃ − Lb− 2Lτ ∗

where in the last step we used facts 7) and 3) of Lemma 17. Since τ̇ = ˙̃τ , and using

the definition of τ ∗ in 3, we get that

˙̃τ = −2Lτ̃ (G.21a)
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By Lemma 3 the set of optimal tolls is

A = {τ ∈ RN : τ = τ ∗ + µ1, µ ∈ R}, (G.21b)

which in the τ̃ -error space can be written as

A = {τ̃ ∈ RN : τ̃ = µ1, µ ∈ R}

= {τ̃ ∈ RN : τ̃i = τ̃j, ∀ (i, j) ∈ {1, . . . , N}}

= span{1}. (G.21ca)

Based on this, the result of the proposition follows now by Lemma 19.

G.4 Proof of Proposition 8

The learning dynamics can be written as

τ̇ = L
(
c(x) +∇c(x)x

)
− 2Lz − 2∇J(τ) (G.4)

ż = L
(
c(x) +∇c(x)x

)
. (G.5)

Using the transformation (G.20a) as in the proof of Theorem 7, we get the dynamics

in terms of τ̃

˙̃τ = −2Lτ̃ − 2Lz − 2∇J(τ̃ + τ ∗) (G.6a)

ż = −2Lτ̃ (G.6b)

and note that subject to A in (G.21b), τ̃ = µ1. Thus, using (3.17), converging to the

optimal τ̃ that maximizes J in the τ̃ -space is equivalent to converging to µ?. Since
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system (G.6) is just a time-scaled version of the saddle-point dynamics considered in

[218]. Therefore, under Assumptions 16 and 15, by [218, Thm. 4.1]solutions of system

G.6 remain bounded, with bound depending on the initial condition, and τ̃ converges

to the point that maximizes J , i.e., µ?. In turn, using the fact that τ̃ = τ − τ ∗ we

obtain that τ → τ ?. �

G.5 Proof of Proposition 9

We verify that all the Assumptions from [224, Thm. 1] are satisfied. In fact, by

the linearity of the dynamics (3.22), and the regularity assumptions on the set-valued

mapping F in (3.20a), Assumption 1 in [224] is satisfied. Also, since τ 7→ O(τ) is

single-valued and continuous, and O(τ) ⊂ ∆ for all τ ∈ RN , we have that the quasi-

steady-state manifold is well posed and satisfies Assumption 2 of [224]. Next, since

the “boundary layer dynamics” correspond in this case to the social dynamics (3.20),

Assumption 18 implies that Assumption 3 in [224] is satisfied. Finally, note that the

“reduced dynamics” associated to the interconnection of the learning dynamics and

(3.20) corresponds to equation (3.22) with x replaced by the its equilibrium value,

which according to Assumption 18 is generated by the mapping O(·). Therefore, the

reduced system is precisely the distributed welfare dynamics (3.15). By Proposition 7,

this dynamics render the set A GAS. Moreover, for each γ ∈ R they also render the

set 1>τ(0) = γ positively invariant. Therefore, constrained to the set Kρ, they render

the compact set A ∩ Kρ UGAS. Thus the reduced system satisfies Assumption 4 of

[224]. Since all the assumptions required to apply [224, Thm. 1] are satisfied, we obtain

convergence of complete solutions to the set {(A ∩Kρ)×∆}+ εB. Finally, by noting

that the closed-loop system has no discrete-dynamics we can further use Assumption

18 to replace the set ∆ by O(A). Since A is the set of optimal tolls, and the socially
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optimal Nash flow x∗ is unique, by definition of mapping O(·) we get that O(A) = x∗.

G.6 Proof of Theorem 4

The proof of Theorem 4 is based on standard adaptive control arguments for model-

free estimators, singular perturbation arguments for set-valued dynamical systems, and

regularity properties of set-valued dynamical systems. Based on this we divide the proof

on three steps:

Step 1: Let ρ ∈ R>0 and consider the dynamical system (3.30). Since by Assump-

tion 17 the population state x satisfies x(t) ∈ ∆ for all t ≥ 0 and all τtotal ∈ RN , we

have that x ∈ L∞, which by continuity of φ(·) implies that φ ∈ L∞. Now consider the

individual estimator given by (G.7), which in the error coordinates w̃i = w̆i − w∗i is

given by

˙̃wi = − φi(xi)(
1 + φ>i (xi)φi(xi)

)2φi(x)>w̃i, (G.7)

and the Lyapunov-like function Vw̃ = 1
2
w̃>i w̃i. Taking the derivative of V along the

trajectories of (G.7) we get

V̇w̃ = −w̃>i

(
φi(xi)(

1 + φ>i (xi)φi(xi)
)2φi(x)>w̃i

)
(G.8)

Defining φ̄i := φi(x)

(1+φ>i (x)φi(x))
we get that

V̇w̃ = −w̃>i
(
φ̄i(xi)φ̄i(x)>

)
w̃i (G.9)

And since x ∈ L∞, under the PE assumption 20 we get by [1, Theorem 4.3.2], expo-

nential convergence of w̃i to zero, i.e, w̆i → w∗i for all i ∈ {1, . . . , N}.
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Step 2: The “boundary layer” dynamics obtained when α = 0 are now given by

µ̇ ∈ Ψ(µ)

τ̇ = 0

ẋ ∈ F (x, τtotal)

˙̆wi = − φi(xi)(
1 + φ>i (xi)φi(xi)

)2φi(x)>w̃i, ∀ i ∈ {1, . . . , N}

with states evolving on the sets

(µ, x, τ, w̆) ∈ Λ×∆×Kρ × RNm. (G.11)

and by Step 1 and Assumption 18, system (G.10) renders the set Aµ,i×Kρ×MK′×{w∗}

UGAS, where K ′ := {z : z = τ + diag(a) · hµ(µ), τ ∈ Kρ, µ ∈ Λ}.

Step 3: The “reduced system” constrained to Kρ is given by the toll dynamics

evaluated at the steady-state of x and w̆, are given by:

τ̇ = α · L ·
(
c(xs) + (w∗)>φ(xs)xs, w̆)

)
, (G.12)

with xs ∈ {τ + diag(a) · µ : µ ∈ Λ}. Since hx1(·), hx2(·), hx3(·), and hµ(·) are continuous,

and µ is uniformly bounded, for each δ > 0 there exists an a∗∗ > 0 such that for all

a ∈ (0, a∗∗]

L
(
hx2,s(xs) + hx3,s(xs)h

x
1,s(xs)

)
⊂ L

(
hx2(xf ) + hx3(xf )h

x
1(xf )

)
+ δB

= L
(
c(xf (τ)) +∇c(xf (τ))xf (τ)

)
+ δB (G.13)
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Thus, constrained to Kρ, and with a ∈ (0,min{a∗, a∗∗}), where a∗ comes from the PE

assumption, solutions of the reduced system (G.12) are also solutions of the differential

inclusion

τ̇ ∈ L
(
c(xf (τ)) +∇c(xf (τ))xf (τ)

)
+ δB (G.14)

Equation (G.13) corresponds to a δ-perturbed version of the distributed welfare gradi-

ent dynamics, which by the result of Proposition 7 render the set A∩Kρ UGAS when

the trajectories of τ are constrained to Kρ. Since equation G.14 with δ = 0 is just

a linear ODE, by standard robustness results with respect to compact attractors for

systems with a continuous right hand side, e.g., [250], we obtain that for each ε ∈ R>0

there exists a δ∗ ∈ R>0 and a compact set Aε ⊂ RN that is ε-close to A, such that

for all δ ∈ (0, δ∗] it is UGAS under the dynamics (G.14), with solutions constrained to

Kρ. Since every solution of (G.12) is also a solution of (G.14), we get that the set Aε

is also UGAS for the reduced dynamics (G.12) with trajectories constrained to Kρ.

The proof finishes by noting that all assumptions from [224, Theorem 1] are sat-

isfied, and since there are no discrete-time dynamics in the closed-loop system, all

complete solutions (µ, τ, x, w̆) converge uniformly to a ε-neighborhood of the set

Aclosed-loop = Aµ × (A ∩Kρ)×O(A ∩Kρ)× {w∗} (G.15)

= Aµ × (A ∩Kρ)× {x∗} × {w∗}. (G.16)

�
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Appendix H

Proofs of Chapter 4

In this section, we present the proof of Chapter 4.

Proof of Lemma 5: By the construction of (4.7) we have that if τ(0, 0) = γ(0, 0) =

0, then a solution xs,u of (4.6) can generate an event at a time (t, j) ∈ dom(xs,u) only

if: 1) xs,u generated sub-events in each of its previous γ∗ jumps, a condition that is

necessary in order to have at least γ = re, and 2) xs,u is also generating a sub-event

at the time (t, j). Since this implies that the condition ξ ∈ S was verified at the end

times of the last (γ∗ + 1) consecutive intervals of flow, each flow having a duration of

∆T seconds, and using the definition of the sets De and Dse we obtain equality (4.10),

which in turn implies that t∗ ≥ (γ∗ + 1)∆T and j∗ ≥ γ∗. �

Proof of Lemma 6: Completness follows by the absence of finite escape times

in (4.1), and the construction of the jump map (4.7d). The second part of the lemma

follows by the fact that if ξ(t, j) ∈ int(S) for all (t, j) ∈ dom(xs,u) such that t+j > Tε,K ,

then for all t + j > Tε,K + (γ∗ + 2)∆T + γ∗ + 1 =: T ∗, γ will satisfy γ ∈ (re, 1] every

time that xs,u ∈ Ds ×Ku. �
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H.1 Proof of Proposition 10

To prove Proposition 10 we first generate the following lemma.

Lemma 20 Suppose that Assumption 21 holds. For each compact set K ⊂ Rn+p and

each δ > 0, there exists an ε ∈ R>0 such that |∇ϕ(θ)>ζ| ≤ ε ⇒ (θ, u) ∈ Z + δB, for

all (θ, u) ∈ K and all ζ ∈ P (θ, u). �

Proof: We prove the Lemma for the case that Z∩K 6= ∅ since otherwise the result

is trivial. Suppose the statement of Lemma 20 is false. Then there exists a compact

set K ⊂ Rn+p satisfying K ∩Z 6= ∅, and a δ > 0 such that for each i ∈ Z≥0 there exists

(θi, ui) ∈ K and ξi ∈ P (θi, ui) such that:

|∇ϕ(θi)
>ζi| ≤

1

i+ 1
and (θi, ui) /∈ Z + δB. (H.1)

Since (θi, ui) ∈ K for all i ∈ Z≥0, there exists a convergent subsequence (not relabeled)

satisfying (θi, ui) → (θ∗, u∗) ∈ K. Thus, ∃ M > 0 such that |θi| ≤ M and |ui| ≤ M

for all i ∈ Z>0. By LB of P (·, ·) we have that the sequence ξi ∈ P (θi, ui) satisfies

|ξi| < M ′ for all i ∈ Z>0 and for some M ′ > 0, which implies the existence of a

convergent subsequence (not relabeled) ξi → ξ∗. Using OSC of P (·, ·) we have that ξ∗ ∈

P (θ∗, u∗). Since (H.1) implies that 0 ≤ |∇ϕ(θi)
>ζi| ≤ 1

i+1
, we get limi→∞ |∇ϕ(θi)

>ζi| =

0. By continuity of the absolute value and inner product we get limi→∞ |∇ϕ(θi)
>ζi| =

|∇ϕ(θ∗)>ζ∗|. Therefore (θ∗, u∗) ∈ Z, and since (θi, ui) → (θ∗, u∗) as i → ∞, there

exists i∗ ∈ Z≥0 such that (θi, ui) ∈ Z + δB for all i ≥ i∗, which contradicts (H.1). �

Proof of Proposition 10: By Assumption 22 and [78, Lemma 7.8] the reachable

set from K0 in infinite time, denotedR(K0), is compact. UsingR(K0) and δ let Lemma

20 generate ε. Then, since (θ>, u>)>(t) ∈ R(K0) for all t ≥ 0, and θ̇(t) ∈ F (θ(t), u(t))
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for almost all t ≥ 0, we have that for any T ≥ 0 and almost all t ≥ T

|∇ϕ(θ(t))>θ̇(t)| ≤ ε ⇒ (θ>, u>)>(t) ∈ Z + δB, (H.2)

but since θ(·) and u(·) are continuous functions, and Z + δB is a closed set, we have

that the right hand side of (H.2) must hold for all t ≥ T . Indeed, for any T > 0

suppose that there exists a t∗ ≥ T in a set of measure zero such that (θ>, u>)(t∗) ∈

Rn+p\(Z+ δB). But since Rn+p\(Z+ δB) is an open set, there exists a ν > 0 such that

(θ>, u>)(t) ∈ Rn+p\(Z + δB) for all t ∈ t∗ + νB◦, which contradicts the assumption

that the set where t∗ belongs is of measure zero. �

H.2 Proof of Proposition 11

We first show that for systems of the form (4.1), under Assumptions 21-23, the

limit |ẏ(t)| −−−→
t→∞

0+ is well-defined.

Lemma 21 Consider system (4.1) with restricted flow set Rp × (U ∩ ρB). Suppose

that Assumptions 21-23 hold. Then, for each pair (ε, ρ) ∈ R2
>0 and each compact set

Kθ ⊂ Rp there exists a t∗ ∈ R>0 such that if (θ>, u>)>(0) ∈ Kθ × (U ∩ ρB) then

ẏ(t) ∈ εB for almost all t ≥ t∗. �

Proof: By the chain rule we have that |ẏ(t)| = |∇ϕ(θ(t))>θ̇(t)|, where θ̇(t) ∈

P (θ(t), u(t)) for almost all t ≥ 0. Using Holder’s inequality we obtain that |ẏ| satisfies

|ẏ(t)| ≤ ‖∇ϕ(θ(t))‖‖θ̇(t)‖ for all θ̇(t) ∈ P (θ(t), u(t)) and almost all t ≥ 0. By the

UGAS property of Mρ there exists M > 0 such that θ(t) ∈MB for all t ≥ 0, which by

continuity of ∇ϕ(·) implies that ‖∇ϕ(θ(t))‖ ≤ M ′ for all t ≥ 0 and for some M ′ > 0.

Moreover, since P is OSC and LB it is also upper semicontinuous [78, Lemma 5.15],

which implies the existence of an ε2 ∈ R>0 such that P (H(ρB ∩ U) + ε2B, ρB ∩ U) ⊂
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P (H(ρB∩U), ρB∩U)+ ε
M ′

B = ε
M ′

B. Using again UGAS of Mρ we obtain the existence

of a time t∗ > 0 such that θ(t) ∈ H(ρB ∩ U) + ε2B for all t ≥ t∗, which implies that

|ẏ(t)| ≤ ε for almost all t ≥ t∗. �

Proof of Proposition 11 Let (ẽ, ρ) ∈ R2
>0, K0, and K and re ∈ (0, 1) be given.

We start by proving the second part of the proposition. Let Proposition 10 generate

ε, and let η ∈ (0, ε/2). Let Assumption 28 generate the triple (∆T, γ∗, fe). Define

ε̄ := ε − η, and let ε ∈ (0, ε̄]. By the structure of the set K0, the HDS (4.6), and the

discussion in Section 4.2.1, the condition xs,u(`, ) ∈ De×U necessarily implies that the

condition ξ ∈ S, i.e., fe(ξ) ≤ ε, was verified γ∗ + 1 times up to the continuous time `,

each verification separated by a flow of ∆T seconds, since otherwise γ would have been

reset to 0. During the last γ∗ −m+ 1 verifications the state ξ will have the structure

(4.15), and by Item (a) in Assumption 28 we conclude that
∣∣ẏ(t̄, j)| − fe(ξ(t̄, j))

∣∣ ≤ η

for all t̄ ∈ domt(xs,u) such that t̄ = sup Ij for each Ij := {t : (t, j) ∈ dom(xs,u)} with

j ∈ {,  − 1 . . . ,  − (γ∗ − m)}, which correspond to the last γ∗ − m + 1 nonempty

intervals of flow of the solution. Using the reverse triangle inequality we have that

|ẏ(t, j)| − |fe (ξ(t)) | ≤ |ẏ(t, j) − fe(ξ(t))|, which implies |ẏ(t, j)| ≤ η + ε ≤ ε for a

sequence of uniformly sampled (γ∗ − m + 1) points in time, with sampling period

of ∆T . By Item (b) in Assumption 28 this implies that |ẏ(t, j)| ≤ ε, for almost all

t ≥ `− (γ∗ −m)∆T . Then, item 2) of the proposition follows directly by the positive

invariance of the set [0, 1] for the dynamics of τ and γ, by Proposition 10, and by

noting that during the last γ∗−m jumps each entry of the state ξ was updated with a

measurement of y, and since γ∗−m ≥ m we have that every entry ξi of ξ corresponded

to a measurements of y(t, j) after the time `− (γ∗ −m)∆T .

To prove the first part of the proposition define ε := η, and let ε ∈ (ε, ε]. Note

that by Assumption 22 the state θ converges uniformly to the set H(U ∩ ρB). Let

ε2 ∈ (0, ε−η). Then, by Lemma 21 there exists a T2 > 0 such that for all xsu ∈ SHs(K)
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and almost all (t, j) ∈ dom(xsu) satisfying t+ j ≥ T2 the inequality |ẏ(t, j)| ≤ ε2 holds.

Then, after at must m jumps separated by (∆T − 1) intervals of flow, the state ξ will

have the structure of (4.15), and by Item (a) in Assumption 28, we have that for almost

all t + j ≥ T2 + m + ∆T (m − 1) the bound
∣∣fe(ξ(t, j)) − |ẏ(t, j)|

∣∣ ≤ η holds. Using

again the reverse triangle inequality we obtain that fe(ξ(t, j)) ≤ η + ε2 < ε. �

H.3 Preliminaries of Proofs of Theorems 1 and 2

Throughout this and the next section, given two sets A and B we use A ⊕ B :=

{a + b : a ∈ A, b ∈ B} to represent their Minkowski sum, and given two nonnegative

scalars s2 ≥ s1 we define A+ [s1, s2]B :=
⋃
s∈[s1,s2] (A⊕ sB).

The following Lemma, corresponding to [78, Corollary 7.7 and Lemma 7.12], gives

sufficient conditions for ULAS of ΩH-limit sets.

Lemma 22 Suppose that a HDS satisfies (C1)-(C3). Let K ⊂ Rn be compact, and

suppose that there exists a ρ ∈ R>0, such that every solution x ∈ SH(K) satisfies

x(t, j) ∈ ρB for all (t, j) ∈ dom(x). Suppose also that ΩH(K) is nonempty and satisfies

ΩH(K) ⊂ int(K). Then, ΩH(K) is ULAS with basin of attraction containing K. �

The next proposition follows by [78, Lemma 7.20].

Proposition 15 Let (GT
δ , Dû,ẑ) be a TODS with respect to (J, Û). Then, for each

ε ∈ R>0 and each compact K ⊂ Rn+r satisfying Aû,ẑ + εB ⊂ int(K), there exists

δ∗ ∈ (0, 1) such that for each δ ∈ (0, δ∗] there exists ρ∗ ∈ (0, 1) such that for all

ρ ∈ (0, ρ∗] there exists (M, j∗) ∈ R2
>0 such that every complete solution of the ρ-

perturbation (4.30) of (GT
δ , Dû,ẑ), with initial condition in K, satisfies x̂u,z(j) ∈ MB

for all j ≥ 0, and x̂u,z(j) ∈ Aû,ẑ + εB, for all j ≥ j∗. �
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H.4 Proof of Theorem 5

The following claim is a direct consequence of the continuity of J(·) and dq(·), and

the LB property of GL
δ .

Claim 1 Let Kû,ẑ := Kû × Kẑ ⊂ Rn+r, and Kŷ ⊂ R be compact. Define KJ :=⋃
q∈Q J (Kû + [0, 1]dq(Kẑ)) + [0, 1]B. Then, there exists a positive M0 ∈ R>0 such that⋃
δ∈[0,1]G

L
δ (Kû,ẑ, (Kŷ ∪KJ)σ ×KJ) ∪Kû,ẑ ⊂M0B. �

The proof of Theorem 5 follows three steps:

1) Uniform convergence of x̂u,z when ẽ = 0: Set ẽ = 0, and let ε ∈ R>0, Kx̂u :=

Kû,ẑ×Ku×Kŷ ⊂ R2n+r+σ and Kq ⊂ R be such that (Ax̂u ×Q) + νB ⊂ int(Kx̂u×Kq).

Let Assumptions 29 and 30 generate the TODS (GT
δ , Du,z) and the functions dq(·). Let

Claim 1 generate M0. Using M0 and ε let Proposition 15 generate δ′ ∈ (0, 1), and

ρ′ ∈ (0, 1) for each δ ∈ (0, δ′). Let ρ ∈ (0, ρ′). Using this δ and ρ let Assumption

30 generate a′ ∈ (0, 1), and choose a ∈ (0, a′). Then, by the structure of the jump

map, for each complete solution xu of (4.20) with initial conditions in Kx̂u ×Kq there

exists a jq0 ∈ R>0 satisfying jq0 ≤ 2q̄ + 1, such that: q(jq0) = q, the state ŷ and

the output y are given by (4.26), and the state x̂u,z has been updated at most once

according to the mapping GL
δ . By the construction of the sets in Claim 1 we have

that x̂u,z(jq0) ∈ M0B. Finally, note that for all j ≥ jq0 , whenever q(j) = q the state

ŷ and the output y will always have the structure of (4.26), which by Assumption 30

implies that the solutions generated by the learning dynamics GL
δ will also be solutions

of the ρ-inflation GT
δ (x̂u,z + ρB) + ρB. Since x̂u,z(jq0) ∈M0B and x̂u,z is kept constant

whenever q 6= q, we have that by the selection of the constants (δ, a), and for ρ ∈ R>0

sufficiently small, the state x̂u,z retains the boundedness and convergence properties of

the ρ-perturbed TODS, which by Proposition 15 implies the existence of a j∗ ∈ R>0

such that x̂u,z(j) ∈ Aû,ẑ + εB for all j ≥ j∗.
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2) Omega-limit set for the learning dynamics: Let ν ∈ R>0 and the compact sets

Kx̂u := Kû,ẑ × Ku × Kŷ ⊂ R2n+r+σ, and Kq ⊂ R be such that (Ax̂u ×Q) + νB ⊂

int(Kx̂u ×Kq). Let ν̃ ∈ (0, ν/2). By continuity of J(·)σ and compactness of Au there

exists a δ3 > 0 such that J(Au+δ3B)σ ⊂ J(Au)σ+ν̃B ⊂ int(Kŷ). Let δ1, δ2 ∈ (0, ν̃). By

the assumption on Kx̂u it follows that Aû,ẑ + δ1B ⊂ int(Kû,ẑ), and Au+ δ2B ⊂ int(Ku).

By the previous discussion in numeral 2), for each ε < ν̃ there exists a δ∗, such that for

each δ ∈ (0, δ∗) there exists a ρ∗ such that for each ρ ∈ (0, ρ)∗ there exists an a∗ such

that for each a ∈ (0, a∗) the component x̂u,z of every complete solution of (4.20) with

initial conditions in Kx̂u ×Kq will satisfy x̂u,z(j) ∈ Aû,ẑ + εB ⊂ Aû,ẑ + ν̃B ⊂ int(Kû,ẑ)

for all j ≥ j∗, for some j ∈ Z≥2κ+2. Choose ε and its generated a∗ sufficiently small,

such that ε < δ1 and ε + a∗ < min{δ3, δ2}. Since by construction of the dynamics

of u we have that u(j) ∈ û(j) + aB for all j ≥ 2, and a < a∗, the previous item

also implies that u(j) ∈ Au + (ε + a∗)B for all j ≥ j∗. Since ε + a∗ < δ2 we have

that u(j) ∈ Au + ν̃B ⊂ int(Ku) for all j ≥ j∗. Since the state ŷ(j) corresponds to

a vector of measurements of J(·) evaluated at u(j), the previous item implies that

ŷi(j) ∈ J(Au+(ε+a∗)B), for all i ∈ {q, . . . , q̄−1}, and for all j ≥ j∗. Since ε+a∗ < δ3

we have that ŷ(j) ∈ J(Au + (a∗+ ε)B)σ ⊂ J(Au)σ + ν̃B ⊂ int(Kŷ) for all j ≥ j∗. From

the previous arguments, and the fact that Q ⊂ int(Kq), we have that every solution

of (4.20) with initial conditions in Kx̂u ×Kq will satisfy xu(j) ∈ (Aû,ẑ + ν̃B)× (Au +

ν̃B) × (J(Au)σ + ν̃B) × Q ⊂ (Ax̂u ×Q) + ν
2
B. This fact, together with Definition of

Omega limit sets in the Appendix, implies that Ωu,q(Kx̂u × Kq) ⊂ (Ax̂u × Q) + ν
2
B,

which by Lemma 22 implies ULAS of Ωu,q(Kx̂u × Kq), with basin of attraction BΩu,q

containing the set Kx̂u ×Kq.

3) Robustness with respect to ẽ: Finally, note that under the given assumptions,

system (5) is well-posed. Therefore, since Ωu,q(Kx̂u × Kq) is ULAS when y = J(u),

it is SGP-AS (w.r.t. BΩu,q) as ẽ → 0+ when y ∈ J(u) + ẽB. This implies that
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for any ν ∈ (0, ν
2
) and for the same compact set of initial conditions and constants

(δ, a), there exists an ẽ∗ ∈ (0, 1) such that for all ẽ ∈ (0, ẽ∗) convergence of x̂u,q to

Ωu,q(Kx̂u ×Kq) + ν
2
⊂ (Ax̂u ×Q) + νB is achieved in finite time. Using Lemma 22 we

obtain the stability result. �

H.5 Preliminary results for the proof of Theorem

6

To prove Theorem 6 we first generate the following lemma, which follows by As-

sumption 29, and Lemma 7.

Lemma 23 Let ν ∈ R>0, and K ⊂ RNs+Nu be a compact set satisfying A + νB ⊂

int(K). Suppose that Assumptions 21, 22, and 29 hold. Then, for any (ε,∆T, γ∗) ∈

R>0 × R>0 × Z≥2m, any (a, δ, re) ∈ (0, 1)3, any nonnegative continuous function fe :

Rm → R≥0, and any initial condition x(0, 0) ∈ K, there exists at least one complete

solution for the HDS (4.12) using z, S, and Gξ as in (4.16) and (4.17), respectively.

�

The following lemma is just a re-statement of the stability property induced by

Assumption 22, the continuity of ϕ(·), and the upper semicontinuity of H(·).

Lemma 24 Let ν ∈ R>0 and consider system (4.1) under Assumption 22. Then, for

each δ2 ∈ (0, ν) there exists δ1 ∈ (0, δ2) such that if (θ, u)(0) ∈ (H(Au)×Au) + δ1B,

then (θ, y)(t) ∈
(
H(Au)× ϕ(H(Au))

)
+ δ2B, for all t ≥ 0. �

The following proposition establishes a uniform convergence result for the control

state xu.
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Proposition 16 Let ν ∈ R>0 and a compact set K ∈ RNs+Nu be given, and suppose

that A + νB ⊂ int(K). Let ε ∈ (0, ν
2
). Suppose that Assumptions 21-25 and 28-30

hold Then, there exists M ∈ R>0, and δ∗ ∈ R>0 such that for each δ ∈ (0, δ∗] there

exists a∗ ∈ R>0 such that for each a ∈ (0, a∗) there exists ẽ∗ ∈ R>0 such that for each

ẽ ∈ (0, ẽ∗] there exists data (∆T, γ∗, fssi), and a pair (ε, ε) ∈ R2
>0 such that for each

ε ∈ (ε, ε] there exists a T ∗ ∈ R>0 such that each complete solution x ∈ SH̃(K) satisfies

x(t, j) ∈ ([0, 1]× [0, 1]× Rm × Rp × (Axu + εB)×Q)∩MB for all (t, j) ∈ dom(x) such

that t+ j ≥ T ∗. �

Proof of Proposition 16: The proof of Proposition 16 is based on Lemmas 25-27,

given below, and the following construction: Let K := Kτ×Kγ×Kξ×Kθ×Ku,z×Ku×

Kŷ ×Kq ⊂ RNs+Nu and ε be given. Let ε1 ∈ (0, ε), kθ,u ∈ R>0 such that Kθ ⊂ kθ,uB

and H(Ku) ⊂ kθ,uB, and consider the sets

K ′θ : = [H(Ku) + βθ (2kθ,u, 0)B] ∪Kθ,

K ′y : = ϕ(K ′θ), K ′ξ := (K ′y)
m ∪Kξ, (H.3a)

K ′ŷ : = {ζ ∈ Rq̄ : ζq̄ ∈ K ′y ∪K ′J , ζi ∈ Kŷ, i 6= q̄} (H.3b)

K ′u,z : =

 ⋃
δ∈[0,1]

GL
δ

(
Ku,z, K

′
ŷ × (K ′y ∪K ′J)

) ∪Ku,z

K ′û : = {u ∈ Rn : (u, z) ∈ K ′u,z}, K ′u := K ′û + 1B.

Kθ : = H(K ′u + 1B) + βθ

(
2MK′uρB

, 0
)
B,

Ky : = ϕ(Kθ), Kξ := (Ky)
m ∪K ′ξ, (H.3c)

K ŷ : = {ζ ∈ Rσ : ζq̄ ∈ Ky ∪KJ , ζi ∈ K ŷ, i 6= q̄} (H.3d)

where βθ(·, ·) is a KL function given by the UGAS Assumption 22, K ′J in (H.3b)

is defined as in Claim 1, MK′uB
∈ R>0 is chosen sufficiently large to satisfy K ′θ ∪
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(H(K ′u) + 1B) ⊂ MK′uB
B, and KJ in (H.3d) is defined as in Claim 1 using (K ′u, K

′
z)

instead of (Ku, Kz). Let K0
u := K ′u,z × K ′u × (K ŷ ∪ K ′ŷ) × Kq ⊂ RNu . Using K0

u and

ε1 let Theorem 5 generate δ∗ ∈ (0, 1), a∗δ ∈ (0, 1) and ẽ∗δ,a ∈ (0, 1). Let re ∈ (0, 1) and

ẽδ,a ∈ (0, ẽ∗δ,a). By the ULAS result of Theorem 5 there exists a Mu ∈ R>0 such that

the xu-component of the solutions of (4.20) satisfies xu(j) ∈MuB for all j ≥ 0 and for

all initial conditions in K0
u. Let MK0

uB
∈ R>0 be such that H(MuB) + 1B ⊂ MK0

uB
B.

Define K0
θ :=

(
H(MK0

uB
) + βθ(2MK0

uB
, 0)B

)
∪ Kθ, K

0
ξ := ϕ(K0

θ )m ∪ Kξ, and K0
s :=

Kτ × Kγ × K0
ξ × K0

θ , which are all compact. Since MuB, K0
s , and Q are compact,

there exists an M ∈ R>0 such that K0
s ×MuB×Q ⊂MB. Using ẽδ,a and the compact

set MB let Proposition 11 generate the parameters (ε, ε,∆T, γ∗) ∈ R3 × Z≥2m, and

the continuous function fe(·), and let ε ∈ (ε, ε). Using this construction we have the

following lemmas:

Lemma 25 Every complete solution x ∈ SH̃(K) satisfies x(t, j) ∈ MB for all (t, j) ∈

dom(x). �

Proof: For any q(0, 0) ∈ Q every solution x ∈ SH̃(K) can stay at the mode q(0, 0)

only for a finite amount of time. Indeed, note that solutions of (4.12) jump periodically.

Whenever there is a jump, the jump map is characterized by (4.13). If xs ∈ Ds ∩ D̊e

then x will jump according to the mapping Gr × Gq × `, which resets the states τ

and γ, and updates q according to the mapping `(·). On the other hand, if xs ∈ Ds

but xs /∈ De, the trajectories will evolve according to the triggering mechanism (4.6),

which by Item 1) in Proposition 11 implies the existence of a T0 > 0 such that for all

(t, j) ∈ dom(x) satisfying t+ j > T0 we have that fe(ξ(t, j)) < ε. In turn, by Lemma 6,

this implies the existence of a T ′0 > 0 such that every solution that was not in D̊e during

jumps will now be in D̊e at some times t0 + j0 < T ′0. Since when xs ∈ De\D̊e both

of the previously discussed updates are possible, we obtain the existence of a T ′′0 > 0
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such that for each x ∈ SH̃(K) there exists (t0, j0) ∈ dom(x) satisfying t0 + j0 < T ′′0

such that x(t0, j0) ∈ Kq0 , where

Kq0 := {0} × {0} ×K ′ξ ×K ′θ ×K ′u,z ×K ′u ×K ′ŷ × {`(q0)}, (H.4)

and where q0 := q(0, 0). Moreover, by construction, we have that every solution satisfies

x(t, j) ∈ [0, 1]× [0, 1]×K ′ξ ×K ′θ ×K ′u,z ×K ′u ×K ′ŷ ×Q =: K0 for all t+ j ≤ t0 + j0.

Now, let us restart each solution from the set Kq0 given by (H.4). Again, using

Proposition 11 there exists a T1 > 0 such that every solution that starts at the set

Kq0 will jump at some times (t1, j1) (different for each solution) satisfying t1 + j1 < T1

using the mapping Gr ×Gq × `. Moreover, the occurrence of an event will now imply

that the state component xs will be in the set (4.19), with U∩ρB replaced by K ′u, such

that x(t1, j1) ∈ K ẽ
q1

, where

K ẽ
q1

:= {0} × {0} ×K ẽ
ξ ×K ẽ

θ ×K ′u,z ×K ′u ×Kŷ × {`(`(q0))},

and where the sets K ẽ
θ and K ẽ

ξ are given by

K ẽ
θ := H(K ′u) + ẽB, K ẽ

ξ := (ϕ(H(K ′u)) + ẽB)m. (H.5)

Moreover, for each solution x ∈ SH̃(K) and all (t, j) ∈ dom(x) satisfying t+ j ≤ t1 + j1

we have that x(t, j) ∈
(
[0, 1]× [0, 1]Kξ ×Kθ ×K ′u,z ×K ′u ×K ŷ ×Q

)
∪ K0 := K1,

which follows by the construction of the dynamics (4.12) and the sets (H.3). This

process can be iteratively repeated at most 2q̄ + 1 times, leading to the existence of a

T ′ ∈ R>0 such that for each x ∈ SH̃(K) there exists times (t′, j′) ∈ dom(x) satisfying

t′ + j′ < T ′ such that q(t′, j′) = q for the second time, and q(t′, j′ + 1) = q + 1. Now,

note that since x̂u,z is updated only when there is a jump that updates q from q to q+1,
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only one jump of this type has occurred before time (t′, j′). Also, after time (t1, j1),

whenever there was a jump from one mode to another mode we have that θ ∈ K ẽ
θ

before flowing again. Using the definition of MK′uB
and the fact that ξ correspond

to measurements of ϕ(θ), and ŷ correspond to measurements of ϕ(θ) at steady state

(by item 2) in Propositon 11), we obtain that x(t′, j′) ∈ K1 for all (t, j) ∈ dom(x)

satisfying t + j ≤ t′ + j′. Moreover, the second time that any solution hits the mode

q, and an event occurs, ŷ and y will necessarily be given by (4.26), since ŷ has been

updated at the previous (q̄ − q − 1) events, each event describing a quasi-steady state

condition. Therefore, starting from time (t1, j1) the updates of x̂u,z will be characterized

by Theorem 5 which gives a uniform bound MuB for the state xu for all t+ j > t1 + j1.

In turn, this uniform bound on xu, and the quasi-steady state condition induced by

the event set, gives the uniform bound K0
θ for the plant state θ for all t+ j > t1 + j1.

The construction of M establishes the result. �

Lemma 26 There exist a T ∗ ∈ R>0 such that for each solution x ∈ SH̃(K) and each

pair (t1, j1), (t3, j3) ∈ dom(x) such that q(t1, j1) = q(t3, j3) = q and such that there

exists (t2, j2) ∈ dom(x) satisfying t1 + j1 < t2 + j2 < t3 + j3 and q(t2, j2) = q, the bound

(t3 + j3)− (t1 + j1) ≤ T ∗ holds. �

Proof: Follows directly by the fact that x(t, j) ∈ MB for all t + j ≥ 0 such that

(t, j) ∈ dom(x), Proposition 11.1, Lemma 6, and the discussion in the proof of Lemma

25. �

By the discussion in the last part of the proof of Lemma 25, whenever a solution

x ∈ SH̃(K) hits the mode q for the second time, its evolution will be characterized

by Theorem 5. Thus, Lemma 26 allows us to directly obtain the following uniform

convergence result for the state xu.
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Lemma 27 There exists a Tc ∈ R>0 such that for all x ∈ SH̃(K) and all (t, j) ∈

dom(x) satisfying t+ j ≥ Tc, we have that xu(t, j) ∈ (Ax̂u ×Q) + εB. �

H.6 Proof of Theorem 6

Let ν ∈ R>0 be given and let K ⊂ RNs+Nu be a compact set satisfying A + νB ⊂

int(K). Let δ3 ∈ (0, ν) and define δ2 := δ3/
√
m. Using these δ2 and Lemma 24

generate δ1. Let δb0 ∈ (0, δ1
2

). By upper semicontinuity of H(·) and compactness of

Au there exists a δa0 ∈ (0, δb0) such that H (Au + δa0B) ⊂ H(Au) + δb0B. Using this

δa0 , by Proposition 16, there exists a δ∗ such that ∀ δ ∈ (0, δ∗] ∃ a∗ ∈ (0, 1) such

that ∀ a ∈ (0, a∗) ∃ ẽ∗ ∈ (0, δ1
2

) such that ∀ ẽ ∈ (0, ẽ∗) ∃ data (∆T, γ∗, fe), and a

pair (ε, ε) such that ∀ ε ∈ (ε, ε] ∃ a T ∗ such that every complete x ∈ SH(K) satisfies

x(t, j) ∈ ([0, 1]× [0, 1]× Rm × Rp × (Axu + δa0B)×Q) ∩ MB for all (t, j) ∈ dom(x)

such that t + j ≥ T ∗. Also, by Proposition 11.2, and the proof of Proposition 16, for

all t + j ≥ T ∗ the condition x(t, j) ∈ De ×Du × Q implies that θ(t, j) ∈ H(u(t, j)) +

ẽB ⊂ H(Au + δa0B) + ẽB ⊂ H(Au) + (δb0 + ẽ)B ⊂ H(Au) + δ1B . Since flows of θ

happening after the input u has been updated can only happen after an event, for

each t + j ≥ T ∗, the initial conditions of θ before starting to flow according to (6.2)

will satisfy θ(t, j) ∈ H(Au) + δ1B. Since δ1 was generated by δ2 via Lemma 24, we

obtain that (θ>, y)>(t, j) ∈
(
H(Au) × ϕ(H(Au))

)
+ δ2B, ∀ (t, j) ∈ dom(x) such that

t + j ≥ T ∗. Since each entry ξi of the vector ξ ∈ Rm corresponds to measurements of

z gathered every ∆T seconds, we obtain that ∀ t+ j ≥ T ∗ + (∆T )m+ (m− 1) := T ∗∗

we have that ξi(t, j) ∈ ϕ(H(Au)) + δ2B ∀ i ∈ {1, . . . ,m}, which by the definition of δ2

implies that ξ(t, j) ∈ ϕ(H(Au))m + δ3B ∀ t + j ≥ T ∗. Then, every complete solution

x ∈ SH̃(K) will satisfy x(t, j) ∈ A+ δ3B ∀ (t, j) ∈ dom(x) such that t+ j ≥ T ∗∗. The

stability result follows by Lemma 22. �

258



Appendix I

Proofs of Chapter 5

In this section we present the proofs of the results of Chapter 5. We start by proving

Theorem 8.

I.1 Proof of Theorem 8

The proof of Theorem 8 follows two steps. First, we assume that z̄ = 0, such that

only the clocks τi need to be synchronized, and we establish synchronization for the

network of clocks using a Lyapunov function and the invariance principle for hybrid

systems. Second, we show that if z̄ > 0, the synchronization of clocks is preserved, and

a similar Lyapunov function can be constructed to show synchronization of the logic

states.

Step 1: Consider the HDS (5.33) and let z̄ = 0 such that the states zi can be

omitted and the stability properties of the system can be studied with respect to the

set Aτ,sync in (5.21). Since the flow set is compact there are no finite escape times. By

assumption, solutions of system (5.31) converge asymptotically to the compact set AG.

Thus, to establish UGAS of the set Aτ,sync × AG it suffices to study the convergence
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and stability properties of the state τ with respect to the compact set Aτ,sync. Consider

the Lyapunov function Vτ : [0, 1]N → R≥0 defined as the infimum of the lengths of all

arcs that touch all agents τi, for all i ∈ V , where the points 0 and 1 on the interval

[0, 1] are identified to be the same, forming a circle with perimeter equal to 1. By

construction, Vτ is positive definite with respect to Aτ,sync. Moreover, since all clocks

flow at the same rate, the Lyapunov function is constant during flows. Also, since

the jumps never increase the number of distinct points occupied by the agents, the

Lyapunov function does not increase during jumps. Indeed, jumps occur only when

one agent is at the end of the interval [0, 1], or when the graph Gc switches to a new

configuration. In both cases the effect of the jumps on the state τ is to either leave

the agent’s location unchanged, or to move it to the beginning or end of the interval.

Also, note that since the dynamics (5.31) generate solutions that can have at most N

consecutive jumps, the existence of purely discrete or zeno solutions is ruled out. By

assumption, there exists a hybrid time (t∗0, j
∗
0) with t∗0 < T + α and j∗0 < J∗, J being

only a function of N and the parameters of (5.31), such that q(t∗0, j
∗
0) ∈ Qs, i.e., GC is

strongly connected. Moreover, since α > 1
ω

, the strong connectivity and configuration

of the graph is preserved for at least 1
ω

seconds. Since by construction of V we must

have Vτ (τ) ≤ N−1
N

= 1− 1
N

for all τ ∈ [0, 1]N , and since the parameter ri of every agent

i satisfies ri ∈ (0, 1
N

), there must exist a hybrid time (t∗, j∗) > (t∗0, j
∗
0) in the domain of

each solution, such that τi(t
∗, j∗) = 1 for some agent i, and τj > rj for all j 6= i. Indeed,

let τi be the first clock that satisfies τi = 1 after the hybrid time (t∗0, j
∗
0). If τi does

not correspond to the right extreme of of the arc Vτ , then there exists a τj satisfying

τj < rj. Let τi be reset to 0, and let agent i′ be the next agent that satisfies the

condition τi′ = 1. Then, again, if τi′ does not correspond to the right extreme of of the

arc V , then there exists a τk satisfying τk < rk. This process can be repeated at most

N − 1 times, until eventually, after at most 1
ω

seconds of flow, agent i will satisfy again
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the condition τi = 1. Since Vτ < 1− 1
N

, it must be the case that τi = 1, and τj > rj for

all agents j. Moreover since t∗ − t∗0 < 1
ω

, we have that q(t∗, j∗) ∈ Qs holds. From this

point agent i will reset its clock to zero, forcing its neighbors to jump via (5.18a) to 1.

Since q(t∗, j∗) ∈ Qs implies that the graph is strongly connected, this process will be

repeated at most N times, generating at most N consecutive jumps before the clocks

satisfy τi = 0, for all i ∈ V . In fact, suppose there is a group of agents, denoted P,

that do not jump to the end of the interval while the rest of the agents do start at or

jump to the end of the interval. Each element of P is connected to some element in the

complement of P, and thus they will be forced to jump to the end of the interval when

an appropriate member of the complement of P jumps to zero. From this point, the

system can only flow synchronously, preserving the synchronization during the flows,

and sequentially resetting τi to 0 whenever τi = 1 for some agent i. This implies that

no complete solution keeps Vτ (τ) equal to a non-zero constant, and by [188, Thm. 7.6],

τ is guaranteed to converge to Aτ,sync. The robustness properties of Aτ,sync follow by

Lemma 10. �

Step 2: Let z̄ > 0, and consider the compact set

Aclocks
τ,z := Aτ,sync × ZN ×AG , (I.1)

where Aτ,sync is defined in (5.21), and note that Aτ,z ×AG ⊂ Aclocks
τ,z . The compact set

(I.1) corresponds to the case where only the clocks τi are synchronized, and the timer

have converged to AG. Note that when z̄ > 0 the synchronization dynamics for τ are

the same as in Step 1, except when zi = z̄ and τi = 1 for some agent i ∈ NCj,q . In this

latter case, if i ∈ NCj,q and zj + τj > rj, τj jumps to 1 and zj jumps to z̄. If zj + τj < rj

(a condition that can happen only if zj = 0), then τj jumps to 0 and zj remains equal

to 0, a point where agent j can only flow. Since no agent can jump out of the state

(0, 0), and agents always increase zj whenever their jump, except when zj = z̄ such
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that z+
j = 0, there must exist a time (t̃, j̃) where the HDS Hxτ,z must flow. Moreover,

since τj still jumps either to 0 or 1, we have that the function Vτ constructed in Step 1

retains its main properties. Namely, it is constant during flows, non-increasing during

jumps, and it satisfies Vτ (τ) ≤ 1− 1
N

. Since during flows the clocks evolve at a constant

rate, we have again that no complete solution keeps Vτ at a value different to zero for

all time, and synchronization of clocks is achieved in finite time. Using the fact that

|xτ,z|Aclocks
τ,z

= |τ |Async
τ

, we have that the set (I.1) is UGAS for the HDS Hxτ,z .

Now consider the HDS with data (5.33b), (5.33c), and (5.33d), with the sets Cτ,z

and Dτ,z intersected by the set Async
τ × ZN , i.e., with flow and jump set given by

Cτ,z∩(Async
τ ×ZN), and Dτ,z∩(Async

τ ×ZN), respectively. Consider an interval [0, z̄+1],

and let the points 0 and z̄ + 1 identify the same point in a circle with perimeter equal

to z̄ + 1. Let yi = zi + τi be the position of the agent i ∈ V in this circle. Since

zi ∈ Z is a nonnegative integer, and τi ∈ [0, 1], each non-integer position in the interval

[0, z̄ + 1] can be uniquely identified with a state (τi, zi). Indeed, integer positions on

[0, z̄ + 1] correspond to the sets Ajump1
τ,z and Ajump2

τ,z , which only contain the elements

{(kN ,0N), (0N ,kN)} for each k ∈ {0, z̄ + 1}. Thus, for each k ∈ {0, z̄ + 1}, the points

(kN ,0N) and (0N ,kN) are identified with the same point in the circle of perimeter

z̄ + 1. Based on this, consider the Lyapunov function Vτ,z : [0, 1]N ×ZN → R≥ defined

as the infimum of the length of all arcs that touch the position yi of all agents in the

circle. Then Vτ,z(τ, z) is constant during flows. Moreover Vτ,z is positive definite with

respect to Aτ,z. Additionally, during jumps, when zi < z̄ for all i ∈ V , the position

yi of each agent i ∈ V is kept constant, and so the value of V doesn’t change during

these jumps. During jumps generated by some agent i satisfying zi = z̄ and τi = 1,

i.e., zi + τi = z̄ + 1 , the position of the neighboring agents of i is either moved to the

end of the interval, or kept constant at the initial of the circle. Therefore Vτ,z does not

increase during jumps. Finally, note that since the data of the system is restricted to
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the set Aclockτ,z , the vector of clocks τ is synchronized, therefore Vτ,z ≤ z̄ always hold by

construction of Vτ,z. To see this, we consider the two possible cases: 1) Each arc that

touch agent’s position yi just at its endpoints has length less than or equal to 1, or 2)

there exists an arc that touches agents just at its endpoints with length greater than 1.

In the second case, since z̄ + 1 arcs are enough to cover the circle, the complementary

arc that touches all agents has length less than or equal to z̄ + 1− 1 = z̄. In the first

case, we have that it is impossible to have such arcs with length less than 1 (since the

clocks are synchronized). If the length is equal to 1, we have that at most z̄ arcs of

length 1 are needed to connect all agents. This establishes that Vτ,z(τ, z) ≤ z̄.

Finally, since the graph GC,q is (α, T ) − PSC, there exists a hybrid time (t∗0, j
∗
0)

with t∗0 < T − α and j∗0 < J , J being only a function of N and the parameters of

(5.31), such that q(t∗0, j
∗
0) ∈ Qs. Also, due to the fact that α > card(Z)

ω
, the strong

connectivity and time-invariance of the graph is preserved for at least card(Z)
ω

seconds.

Since the hybrid system with flow and jump set given by Cτ,z ∩ (Async
τ ×ZN)×AG and

Dτ,z ∩ (Async
τ × ZN)×AG is by construction synchronized in the clocks, there exists a

hybrid time (t1, j1) such that τi(t1, j1) = 1 for all i ∈ V and with t1− t∗0 ≤ 1
ω

. Moreover,

since whenever zi < z̄ agents always increase their mode zi by 1, there must exist a

time (t∗, j∗) after at most z̄ − 1 intervals of flow of 1
ω

seconds, such that τi(t
∗, j∗) = 1

and zi(t
∗, j∗) = z̄ for some agent i ∈ V . Based on the construction of the Lyapunov

function this implies that (zi + τi) > ri for all i ∈ V . At this point, since the graph

is still strongly connected, the jump map will generate at most N consecutive jumps

until all agents have converged to the beginning of the circle, i.e, yi = 0 for all i ∈ V ,

which implies that Vτ,z = 0. This condition is preserved forward in time, which implies

that no complete solution keeps Vτ,z(τ, z) equal to a non-zero constant, and by [188,

Thm. 7.6], we obtain UGAS of Aτ,z ×AG for the HDS with restricted jump and flow

set. UGAS of the set Aτ,z ×AG for the original HDS Hxτ,z follows now by the UGAS
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property of (I.1) established in the previous paragraph, and by the reduction principle

[78, Corollary 7.24]. The robustness properties of Aτ,z follow by Lemma 10. �

I.2 Proof of Theorem 7

The proof of Theorem 7 follows four steps. First we intersect the data of the HDS

H with the set R3N×K, where K ⊂ Rn−3N is compact, and by making use of Theorem

8, we will establish UGAS of the compact set Aτ,α,z ×K. Second, we further intersect

the data of this system with the set Aτ,α,z ×K. For this synchronized system we show

that if ρ̃∗ > 0 is sufficiently small, whenever the ith agent resets his clock and updates

his controller, the values stored in si will correspond to an ε-perturbed version of the

values of [u>, h(θ, u)>]> when τi = 1. Moreover, the ε-perturbation shrinks to zero as

ρ̃∗ → 0+. Third, we show that for the liming case ρ̃∗ = 0, every solution where each

agent updates his controller only after every other agent has toggled αi from 0 to 1,

generates the same control and state updates as the centralized system (5.12). Since for

any ρ̃∗ > 0 every solution of the original system behaves in this way, this allows us to

establish SGP-AS for the perturbed system with ε > 0. Finally, we use the reduction

principle [241, Corollary 19] and Lemma 12 in order to establish a semiglobal practical

stability result for the original system.

Step 1. By Assumption 32 and the construction of the flow map (5.24), system H

has no finite scape times. Now, let K ⊂ Rn−3N be a compact set satisfying ANs ×Aξ ⊂

int(K), and define K̃ = R3N ×K. Consider the HDS HK̃ = {CK̃ , F,DK̃ , GK̃}, where

CK̃ := C ∩ K̃, DK̃ := D ∩ K̃, GK̃ := G ∩ K̃, which restricts the states (s, θ, u) to

the compact set K. Since the synchronization dynamics of (τ, z) are independent of

the other states, and the graph is assumed to be time-invariant, by Theorem 8 we

obtain directly UGAS of the set Aτ,α,z × K for the HDS HK̃ . In particular, the set
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Aτ,α,z×K is positively invariant, and every solution initialized in CK̃∪DK̃ will converge

to Aτ,α,z ×K in finite time.

Step 2. Let Ksync := Aτ,α,z × K, and consider the hybrid dynamical system

HKsync := {CKsync , F,DKsync , GKsync}, with data constructed as in Step 1, but with Ksync

instead of K̃. This HDS corresponds to a system where the states (τ, z) are already

synchronized. Let ρ̄ = maxi∈V ρi. By the construction of the jump map (5.28) based on

(5.23), for each (tr, jr) ∈ dom(x) such that τi(tr, jr) = 1 and τi(tr, jr + 1) = 0 for some

agent i ∈ V , the updates ui(tr, jr + 1) are generated by the mapping Gi,u,z(si(tr, jr)),

with si(tr, jr) = [s>i,a, s
>
i,b]
>, where si,a = u(t′i, j

′
i), si,b = h

(
θ(t′i, j

′
i), u(t′i, j

′
i)
)
, t′i =

tr − ρ̃iω
−1, and j′i = max{k : (t′i, k) ∈ dom(x)} i.e., the pair (t′i, j

′
i) is the hybrid

time indicating the moment right after agent i sampled the value of the state θ and

output vector y. Then, by (5.24), and omitting the discrete-time index, we have that

θ(tr) = θ(t′i) +
∫ tr
t′i
ν(τ)dτ for some measurable selection ν(t) ∈ P (θ(t), u(t)). Since by

construction of HKsync the states θ and u are constrained to a compact set, by the local

boundedness property of P (·, ·) there exists M > 0 such that P (θ, u) ⊂ MB for all

(s, θ, u) ∈ K, which implies that |θ(tr, jr) − θ(t′i, j′i)| ≤ |
∫ tr
t′
Mdτ | = ρ̃iω

−1M , and by

definition of ρ̃∗ in Theorem 7 we have that |θ(tr, jr)− θ(t′i, j′i)| ≤ ρ̃∗ω−1M =: δ, for all

i ∈ V . Then, since u is kept constant during flows, we have that at time (tr, jr) the

reset map (5.23c) satisfies Gzi(si(tr, jr)) ⊂ Gzi(u(tr, jr), h(θ(tr, jr) + δB, u(tr, jr))), for

all i ∈ V . Since Gzi(·, ·) is OSC and LB, it is also upper-semicontinuous. Therefore,

by continuity of h(·, ·), upper semicontinuity of Gzi(·, ·), and compactness of K, for

each ε > 0 there exists δ > 0 such that whenever an agent updates his controller, the

update mapping satisfies Gi,u,z(u, h(θ + δB, u)) ⊂ Gi,u,z(u, h(θ, u)) + εB =: Gε,zi(u, θ).

Thus, GKsync ⊂ Gε,Ksync , where Gε,Ksync is constructed as GKsync but with Gε,zi instead

of Gzi in (5.23c). Since by construction of HKsync the clocks and logic modes are syn-

chronized, the previous argument implies that for any ε > 0 there exists a ρ̃∗ > 0 such
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that whenever an agent jumps according to (5.23c), the states (θ, u) in system HKsync

are updated as in the centralized system (5.12), plus an ε-perturbation on the jump

map.

Step 3. Let ε > 0, and consider the inflated system Hε,Ksync constructed as HKsync

but with Gε,Ksync instead of GKsync . Then, the control updates of this system are the

same as the centralized system (5.12), plus a small additive ε-perturbation on the

jump map. By construction of Gε,Ksync , as ε → 0+ we must also have that ρ̃∗ → 0+,

i.e., ρi → 1− for all i ∈ V , which means that agents should sample their neighbor’s

states and outputs closer and closer to the condition τj = 1 for all j ∈ NCi . Note

that increasing ρi shrinks the flow set Ci,1 in (5.22a), but for any ρi < 1 we have that

[ρi, 1] 6= ∅, and the updates of u will always correspond to an ε-perturbation of the

updates generated by the centralized system (5.12). In the limiting case, when ε = 0

such that ρi = 1 for all i ∈ V , system Hε,Ksync generates additional solutions where

agents jump from Di,0 to Di,1 and then to Ci,0, without allowing the other agents to

sample their states. However, again, for any ρ̃∗ > 0 these extra solutions are precluded.

Since when ρ̃∗ > 0 the updates of (θ, u) in systemHε,Ksync correspond to an ε-perturbed

version of the centralized system (5.12), and every solution of HKsync is also a solution

of Hε,Ksync , by Assumption 35 and Lemma 10, we have that every solution of system

HKsync retains the SGP-AS property of the centralized system (5.12) in K. Namely, for

any ε̃ > 0 there exists always ρ̃∗∗ > 0 sufficiently small, such that for all ρ̃∗ ∈ (0, ρ̃∗∗)

every solution of HKsync will converge in finite-time to the set Aτ,α,z×
(
ANs ×Aξ

)
+ ε̃B.

Step 4. Using the result of the previous step, and Lemma 12, for each ε̃ > 0 such

that
(
ANs ×Aξ

)
+ ε̃B ⊂ K, there exists an Ω-limit set Ω(K) ⊂ A+εB that is UGAS for

system HKsync . Since ε̃ and K can always be chosen such that Ω(K) ⊂ Aτ,α,z×K, and

since by Step 1 the set Aτ,α,z×K is UGAS for system HK̃ , by the Reduction Principle

[78, Corollary 7.24] we obtain that Ω(K) is also UGAS for system HK̃ . Finally, note
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that by decreasing ρ̃∗ one can chose the set K and the ε̃-neighborhood arbitrarily large

and small, respectively. Moreover, as discussed in Step 3, decreasing ρ̃∗ does not

affect the uniform bound on the states. This observations establishes the semi-global

practical asymptotic stability result for system H. �
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Appendix J

Stochastic Difference Inclusions

In this section we review some basic notions about stochastic difference inclusions,

which are needed in Chapter 6.

J.1 Notation and Basic Definitions

B(Rm) denotes the Borel field, i.e., the subsets of Rm generated from open subsets of

Rm through complements and finite and countable unions. A set F ⊂ Rm is measurable

if F ∈ B(Rm). A mapping M : Rp ⇒ Rn is measurable [251, Def. 14.1] if for each

open set O ⊂ Rn the set M−1(O) := {v ∈ Rp : M(v) ∩ O 6= ∅} is measurable. When

the values of M are closed, measurability is equivalent to M−1(O) being measurable

for each closed set O ⊂ Rn [251, Thm. 14.3].
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J.2 Parameterized Stochastic Difference Inclusions

with Inputs

We consider constrained stochastic discrete-time systems with inputs, given by

x+ ∈ Gδ(x, u, v) v ∼ µ(·) (J.1)

where x ∈ Rn is the current value of the state of the system at time j ∈ Z≥0, and

x+ represents the value of state x at the time j + 1. The input u ∈ Rp is an explicit

worst-case input, Gδ : Rn × Rp × Rm ⇒ Rn is a set-valued mapping parameterized by

a positive real number δ ∈ R>0, and v is a random input taken from a sequence of

independent, identically distributed (i.i.d) random variables {vk}∞k=1. Note that for the

particular case when u = 0, system (J.1) reduces to a standard stochastic difference

inclusion without inputs, a class of systems previously studied in [252], [253], and [231],

for example.

To define random solutions of systems of the form (J.1) we introduce a probability

structure. Let (Ω,F ,P) be a probability space, where Ω denotes the set of all possible

outcomes, F is the σ-field associated with Ω and P is the probability measure that

assigns probability to events in F . Since the sequence vi : Ω 7→ Rm is i.i.d it follows

that v−1
i (F ) := {ω ∈ Ω : vi(ω) ∈ F} ∈ F for each F ∈ B(Rm). We use Fi to

denote the collection of sets {ω ∈ Ω : (v1(ω), . . . ,vi(ω)) ∈ F}, F ∈ B((Rm)i), which

are the sub-σ-fields of F that form the minimal filtration of v := {vi}∞i=1. It follows

from the i.i.d property that each random variable has the same probability measure

µ : B(Rm) 7→ [0, 1] defined as µ(F ) := P{ω ∈ Ω : vi(ω) ∈ F}, and for almost all ω ∈ Ω,

269



Stochastic Difference Inclusions Chapter J

E[f(v0, . . . ,vi,vi+1)|Fi](ω)

=

∫
Rm

f(v0(ω), . . . ,vi(ω), v)µ(dv),
(J.2)

for each i ∈ Z≥0 and each measurable f : (Rm)i+2 7→ R.

We impose the following assumption on system (J.1).

Assumption 43 There exists δ∗ > 0 such that for all δ ∈ (0, δ∗) the mapping Gδ is

locally bounded and v 7→ graph(Gδ(·, ·, v)) := {(x, u, y) ∈ Rn×Rp×Rn : y ∈ Gδ(x, u, v)}

is measurable with closed values. �

By [251, Theorem 5.7(a)], Assumption 43 implies that (x, u) 7→ Gδ(x, u, v) is outer-

semicontinuous for each v ∈ Rm. Moreover, by [251, Proposition 14.11(a) and Theorem

14.13(a)] measurability of v 7→ graph(Gδ(·, ·, v)) implies that v 7→ Gδ(x, u, v) is mea-

surable for each (x, u) ∈ Rn × Rp. Finally, note that the measurability condition of

Assumption 43 holds if the domain of v 7→ graph(G(·, ·, v)) is countable or if G is OSC.

The type of inputs u allowed in (J.1) are worst-case inputs that satisfy a pointwise-

in-time constraint of the form u ∈ λ(x)B where λ : Rn → R≥0 is a continuous function.

Thus, we consider solutions generated by the system

x+ ∈ Gδ(x, λ(x)B, v) v ∼ µ(·) (J.3)

The following Lemma is a trivial extension of [254, Proposition 1] for δ-parameterized

set-valued mappings Gδ.

Lemma 28 If λ : Rn → R≥0 is continuous and Gδ satisfies Assumption 43 then there

exists δ∗ > 0 such that for all δ ∈ (0, δ∗) the mapping (x, v) 7→ Gδ(x, λ(x)B, v) is locally

bounded and v 7→ graph(Gδ(·, λ(·)B, v)) is measurable with closed values. �
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The graph of a sequence φ = {φi}J−1
i=0 with φi ∈ Rn is defined as the set graph(φ) =⋃J−1

i=0 ({i} × φi) ⊂ Rn+1. A sequence (φ,w) = {(φi, wi)}J−1
i=0 with (φi, wi) ∈ Rn ×Rm, is

a regular solution of (J.3) starting at x ∈ Rn if φ0 = x and φi+1 ∈ Gδ(φi, λ(φi), wi) for

all i ∈ {0, . . . , J − 2}. A mapping x from Ω to sequences is a random solution of (J.3)

starting at x ∈ Rn if it satisfies the following two properties:

• (Pathwise feasibility) For each ω ∈ Ω, the sequence {(xi(ω),vi(ω))}J(ω)−1
i=0 with

arbitrarily v0 is a regular solution of (J.3) starting at x, where J(ω) is the number

of elements of the sequence x(w).

• (Causal measurability) For each i ∈ Z≥0, the mapping ω 7→ xi+1(ω) is Fi-

measurable where F0 = {∅,Ω} and (F1,F2, . . .) is the minimal filtration of v.

Remark 32 Note that the causality condition prevents the value of the state up to the

ith jump from anticipating the value of the ith or later random input. This causality

condition plays an important role in the results of Chapter 6. �

A random solution x is said to be maximal if it cannot be extended, i.e., there does

not exist another random solution y from x such that dom xi ⊂ dom yi for all i ∈ Z≥0,

yi(ω) = xi(ω) for all ω ∈ dom xi and all i ∈ Z≥0. We denote Sr(x) the set of maximal

random solutions of (J.3) from x ∈ Rn. In the case when J(ω) = ∞ for almost every

ω ∈ Ω, we say that the random solution x is almost surely complete. Clearly, almost

surely complete solutions are maximal, but not every maximal solution is almost surely

complete. Maximal solutions of (J.1) can be guaranteed to be almost surely complete

if, for example, Gδ(x, λ(x), v) 6= ∅ for all x ∈ D, and Gδ(D × λ(D) × V) ⊂ D, where

V := ∪ω∈Ω,i∈Z≥0
vi(ω).
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J.3 Some Stability Results for SDIs

In this section we introduce three novel stability definitions for SDIs of the form

(J.3), as well as sufficient Lyapunov conditions that can be used to certify these stability

notions .

J.3.1 Stability Notions and Sufficient Lyapunov Conditions

for 0-Input Systems

We start by considering the SDI given by (J.3) for the case when u = 0, i.e., the

0-input case. The following definition aims to capture a global positive recurrence

property (see also [255]) where the recurrence is established with respect to an open

neighborhood of a compact set A.

Definition 14 For system (J.1) with u = 0 the compact set A ⊂ Rn is said to be

uniformly globally practically positively recurrent (UGPPR) if there exists δ∗ ∈ (0, 1]

and for each compact set K ⊂ Rn and ε > 0 and δ ∈ (0, δ∗] there exists Mδ > 0 such

that

E [inf {k ∈ Z≥0 : xk ∈ A+ εB◦}] ≤Mδ, (J.4)

for all x ∈ Sr(K). �

In essence, UGPPR requires that the sample paths of every random solution either

stop or hit the set A + εBo in finite time, where the upper bound of the hitting time

is uniform over compact sets.

The following proposition establishes a sufficient Lyapunov condition for UGPPR

in SDIs of the form (J.3) with u = 0, and satisfying Assumption 43.
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Proposition 17 Let A ⊂ Rn be compact, and consider the system (J.1) under As-

sumption 43. If there exists an upper semicontinuous function V : Rn 7→ R≥0,

α1, α2 ∈ K∞, ρ1, ρ2 ∈ K, and a δ∗ ∈ (0, 1) such that for all δ ∈ (0, δ∗)

α1(|x|A) ≤ V (x) ≤ α2(|x|A), ∀ x ∈ Rn (J.5a)∫
Rn

max
g∈Gδ(x,0,v)

V (g)µ(dv)− V (x) ≤ −ρ1(δ) + ICcδ (x), (J.5b)

where Cδ := {x ∈ Rn : V (x) ≥ ρ2(δ)}, then the set A is UGPPR.

Proof: Let ε > 0 and the compact set K ⊂ Rn be given. Let R := maxx∈K∩D V (x).

Pick δ ∈ (0, δ∗] sufficiently small such that V (x) < ρ2(δ) imply |x|A < ε. Let Tx,Ccδ
:

Ω → Z≥0 ∪ {∞} and define Tx,Ccδ
:= inf{k ∈ Z≥0 : xk(ω) ∈ Cc

δ}, and τn(ω) :=

min{n,Tx,Ccδ
}. Then, for all x ∈ Sr(K), we have that

V (xτn) = V (x0) +
τn∑
i=1

(V (xi)− V (xi−1))

= V (x0) +
n∑
i=1

(V (xi)− V (xi−1)) I(Tx,Ccδ
≥ i).

Taking the expectation of V (xτn) we get

E[V (xτn)] = E[V (x0)] + E

[
τn∑
i=1

(V (xi)− V (xi−1))

]

= V (x) + E

[
n∑
i=1

(V (xi)− V (xi−1)) I(Tx,Ccδ
≥ i)

]
. (J.6)
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Also, note that since {Tx,Ccδ
≥ i} ∈ Fi−1 we have that

E

[
n∑
i=1

(V (xi)− V (xi−1)) I(Tx,Ccδ
≥ i)

]

= E

[
n∑
i=1

E
[
(V (xi)− V (xi−1)) I(Tx,Ccδ

≥ i)|Fi−1

]]

= E

[
n∑
i=1

I(Tx,Ccδ
≥ i)E [(V (xi)− V (xi−1)) |Fi−1]

]
. (J.7)

By definition, for any k ∈ Z≥0 the following bound holds with probability one

E [V (xk)|Fk−1] ≤
∫
Rm

max
g∈G(xk−1,0,v)

V (g)µ(dv), (J.8)

where using the fact that V is upper semicontinuous, and because of Assumption 1,

the integral in (J.8) is well defined. Using (J.5b), (J.7) and (J.8) we get that for all

x ∈ Cδ ∩D

E

[
n∑
i=1

(V (xi)− V (xi−1)) I(Tx,Ccδ
≥ i)

]

≤ −ρ1(δ) · E

[
n∑
i=1

I(Tx,Ccδ
≥ i)

]

≤ −ρ1(δ) · E
[
min{Tx,Ccδ

, n}
]
, (J.9)

and since E [V (xτn)] ≥ 0, by combining (J.6) and (J.9) we get that for all x ∈ Cδ and

x ∈ Sr(x), E
[
min{Tx,Ccδ

, n}
]
≤ V (x)/ρ1(δ). By the monotone convergence theorem,

as n → ∞ we have E
[
Tx,Ccδ

]
≤ V (x)/ρ1(δ), but since δ was chosen such that Cc

δ ⊂

A + εBo, and R is an upper bound of V (x) over the compact set K, we obtain that

E [Tx,A+εBo ] ≤ K/ρ1(δ) =: Mρ, for all x ∈ Sr(K ∩ Cδ). The result follows by noting

that if x ∈ Cc
δ we obtain E [Tx,A+εBo ] = 0 since x0(ω) = x. �
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A related but weaker notion of recurrence for parameterized stochastic systems is

the notion of uniform global practical recurrence (UGPR).

Definition 15 For system (J.1) with u = 0 the compact set A ⊂ Rn is said to be

uniformly globally practically recurrent (UGPR) if there exists δ∗ ∈ (0, 1] and for each

δ ∈ (0, δ∗], each compact set K ⊂ Rn, and each pair (ε, ρ) ∈ R2
>0 there exists Tδ > 0

such that

P [inf {k ∈ Z≥0 : xk ∈ A+ εB◦} ≤ Tδ] ≥ 1− ρ

for all x ∈ Sr(K). �

As it is the case for the standard notions of recurrence and positive recurrence, for

a given δ > 0 we have that UGPPR implies UGPR.

Lemma 29 If A is UGPPR, then A is UGPR. �

Proof: The proof parallels [256, Lemma 4.2]. Suppose the set A is UGPPR with

δ∗ ∈ R>0. Let K ⊂ Rn and (ε, ρ) ∈ R2
>0 be given. Let Mδ such that (J.4) holds. Choose

Tδ > 0 such that Tδ > Mδ/ρ. Let x ∈ Sr(K) and define S := inf{k ≥ 0 : xk ∈ A+εBo}.

Using Markov’s inequality and inequality (J.4) we get

P(S > Tδ) ≤
E[S]

Tδ
< ρ. (J.10)

This implies that P [inf {k ∈ Z≥0 : xk ∈ A+ εB◦} ≤ Tδ] ≥ 1−ρ holds for all x ∈ Sr(K),

which is the definition of UGPR. �

Remark 33 (Global vs Semi-Global Results) In the literature of stability theory

for nonlinear dynamical systems e.g., [91], small persistent disturbances usually pre-

clude global stability results, but rather induce ”semi-global” properties, i.e., for each
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compact set of initial conditions one can always find a sufficiently small disturbance

such that the convergence is guaranteed towards a neighborhood of the compact attractor

A. However, in stochastic systems it is usually difficult to establish this property, see

for instance [243, Sec. 7.1]. In particular, semi-global results usually lead to solutions

that can escape with probability one and in infinite time any given arbitrarily large

compact subset of the state space. Because of this reason in this section we focus only

on global results.

The following definition captures a mean-square exponential stability property with

respect to a neighborhood of the compact attractor A, where the neighborhood can be

made arbitrarily small by decreasing the parameter δ.

Definition 16 A compact set A ⊂ Rn is said to be mean-square practically expo-

nentially stable (MSP-ES) for the system (J.1) if there exist δ∗ ∈ (0, 1), positive real

numbers β, λ < 1
δ∗

, γ, and α, such that for all δ ∈ (0, δ∗] and all x0 ∈ Rn the following

bound holds

E
[
|xk|2A

]
≤ β(1− δλ)k‖x0‖2

A + γδα, (J.11)

for all k ∈ Z≥0, and x ∈ Sr(x0). �

The following theorem provides a sufficient Lyapunov condition that certifies the

notion of MSP-ES introduced in Definition 16.

Proposition 18 Let A ⊂ Rn be compact, and consider the system (J.1) under As-

sumption 43. If there exists an upper semicontinuous function V : Rn 7→ R≥0 and

positive constants (c1, c2, λ, δ
∗, K, κ) ∈ R>0×R>0×R>0× (0, 1)×R>0×R>1, such that

∀ δ ∈ (0, δ∗)

c1‖x‖2
A ≤ V (x) ≤ c2‖x‖2

A, ∀ x ∈ Rn, (J.12a)
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∫
Rm

max
g∈Gδ(x,0,v)

V (g)µ(dv) ≤ (1− δλ)V (x) +Kδκ, ∀x ∈ Rn (J.12b)

then, the set A is MSP-ES for (J.1). �

Proof: It follows from (7) and (J.12b), that for any k ∈ Z≥0 the following bound

holds with probability one

E [V (xk)|Fk−1] ≤
∫
Rm

max
g∈G(xk−1,0,v)

V (g)µ(dv) (J.13)

≤ (1− δλ)V (xk−1) +Kδκ, (J.14)

where using the fact that V is upper semicontinuous, and because of Assumption 1,

the integral in (J.13) is well defined. Since we have that

E [V (xk)] =E [E [V (xk|F0)]]

=E [E[· · ·E [E [V (xk)|Fk−1] |Fk−2] · · · |F0]] ,

we can apply (J.14) repeatedly to get

E [V (xk)] ≤ (1− δλ)kV (x0) +Kδκ
k−1∑
i=0

(1− δλ)i

≤ (1− δλ)kV (x0) +Kδκ
1

δλ
.

Using (J.12a) we have

c1E
[
‖xk‖2

A
]
≤ (1− δλ)kV (x0) +Kδκ

1

δλ

≤ (1− δλ)kc2‖x0‖2
A +Kδκ

1

δλ
,
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and then

E
[
‖xk‖2

A
]
≤
(
c2

c1

)
(1− δλ)k‖x0‖2

A + δκ−1 K

c1λ
(J.15)

which implies MSP-ES with β := c2/c1, γ = K/c1λ, and α = κ− 1 > 0. �

J.3.2 Stability Notions and Sufficient Lyapunov Conditions

for SDIs with Inputs

We now consider SDIs of the form (J.3) for the general case when the input u is

different from zero. The following stability notion aims to capture the effect of the

size of the input on the convergence of the solutions of (J.3). It is aligned with the

notions of input-to-state stability [257] and practical input-to-state stability studied in

deterministic systems [91].

Definition 17 The SDI (J.3) is said to be mean-square input-to-state practically stable

(MSISpS) relative to the compact set A if:

(a) The set A is MSPES for (J.3) when λ(x) = 0.

(b) There exists γ ∈ K∞ and δ∗ such that for each δ ∈ (0, δ∗) and c > 0, the set

A+ γ(c)B is UGPPR for (J.3) when λ(x) = c, for all x ∈ D.

By the definition of (J.3), when λ(x) = 0 we have that u = 0. Therefore, according

to the definition (17), if the input of the system is set to zero, the notion of MSISpS

coincides with the notion of MSPES. On the other hand, for the general case when

λ(x) 6= 0, Definition (17) asks that for each ε > 0 the open set A+(γ(c)+ε)Bo satisfies

the property

E [inf {k ∈ Z≥0 : xk ∈ A+ (γ(c) + ε)Bo}] ≤Mδ, (J.16)
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for all x ∈ Sr(K) and some Mδ.

Using Propositions 17 and 18 we obtain directly the following theorem.

Theorem 14 Let A ⊂ Rn be compact, and consider the system (J.1) under Assump-

tion 43. If, in addition to (J.12a), the following condition holds:

∫
Rn
V (x+)µ(dv) ≤

(
1− 1

4
δη

)
V (x) + δ

3
2K, ∀ ‖x‖A ≥

2
√
δ

ηc
|u|2, (J.17)

then the system is MSISpS.

Proof: Follows directly by applying Propositions 17 and 18, and using (J.12a). �
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Appendix K

Stochastic Hybrid Dynamical

Systems and Proofs of Chapter 6

A stochastic hybrid dynamical system is characterized by the equation

ẋ ∈ F (x), x ∈ C (K.1a)

x+ ∈ Gδ(x, v
+), x ∈ D, v ∼ µ(·), (K.1b)

where the set-valued mappings F : Rn ⇒ Rn and Gδ : Rn × Rm ⇒ Rn, called the

flow map and the jump map, respectively, describe the evolution of the state x when

it belongs to the flow set C or/and and the jump set D, respectively. The distribution

function µ is derived from the probability space (Ω,F ,P) and a sequence of indepen-

dent, identically distributed (i.i.d) input random variables vi : Ω → Rm defined on

(Ω,F ,P) for i ∈ Z≥1. Then, µ is defined as µ(A) := P(ω ∈ Ω : vi(ω) ∈ A) for every

A ∈ B(Rm). We denote by Fi the collection of sets {ω : (v1(ω), . . . ,vi(ω)) ∈ A},

A ∈ B((Rm)i) which are the sub-σ fields of F that form the natural filtration of

v = {vi}∞i=1. To define the solutions for the SHDS (K.1) we impose the following
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conditions on the data of the system:

(C1) The sets C and D are closed.

(C2) F is OSC and LB relative to C, and F (x) is convex and nonempty for every

x ∈ C.

(C3) For each δ ∈ R>0 the mapping Gδ is LB and the mapping v 7→ graph(Gδ(·, v)) :=

{(x, y) ∈ R2n : y ∈ Gδ(x, v)} is measurable with closed values.

Solutions of (K.1) are defined on hybrid time domains. We recall [78, Chap. 2] that

a compact hybrid time domain is a subset of R≥0×Z≥0 of the form
⋃J
j=0([tj, tj+1]×{j})

for some nonnegative integer J and some real numbers 0 = t0 ≤ t1 ≤ . . . ≤ tJ+1. A

hybrid time domain is a set H ⊂ R≥0 × Z≥0 such that, for each (T, J) ∈ H the

set H ∩ ([0, T ] × {0, . . . , J}) is a compact time domain. A hybrid arc is a mapping

φ : H → Rn such that H is a hybrid time domain and, for each j ∈ Z≥0, t → φ(t, j)

is locally absolutely continuous. Given a measure space (Ω,F), a stochastic hybrid

arc is a mapping x defined on Ω such that x(ω) is a hybrid arc for each ω ∈ Ω and

the set-valued mapping from Ω to Rn+2 defined by ω 7→ graph(x(ω)) := {(t, j, z) ∈

Rn+2 : φ = x(ω), (t, j) ∈ dom(φ), z = φ(t, j)} is F -measurable. Define F0 := {Ω, ∅},

and let {Fi}∞i=1 denote the minimal filtration associated to the random process {vi}∞i=1.

An ({Fj}∞j=0)-adapted stochastic hybrid arc is a stochastic hybrid arc such that the

set-valued mapping ω 7→ graph(x(ω)) ∩ (R≥0 × {0, . . . , j} × Rn) is Fj measurable for

each j ∈ Z≥0. An adapted stochastic hybrid arc x is a solution to (K.1) from x ∈ Rn,

denoted by x ∈ Sr(x), if with the definition φω := x(ω) for each ω ∈ Ω, we have that

for each ω ∈ Ω:

1. φω(0, 0) = x.
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2. If (t1, j), (t2, j) ∈ dom(φω) with t1 < t2 then, for almost every t ∈ [t1, t2],

φω(t, j) ∈ C and φ̇ω ∈ F (φω(t, j)).

3. If (t, j), (t, j+1) ∈ dom(φω), then φω(t, j) ∈ D and φω(t, j+1) ∈ Gδ(φω(t, j),vj+1(ω)).

We use the notation x ∈ Sr(K), where K ⊂ Rn, to indicate that x is a solution to the

hybrid system (K.1) starting at some x ∈ K.

K.1 Proof of Lemma 9

Let k → (αi(k), `i(k)) be a complete solution of (6.12). It is immediate that

`i(k + 1) ≥ `i(k)− ρ+ 1− αi(k) ∀k ∈ Z≥0,

and taking the summation from j1 to j2 − 1 we obtain

`i(j2)− `i(j1) ≥ −ρ(j2 − j1) +

j2−1∑
k=j1

(
1− αi(k)

)
. (K.2)

Since the solution is complete, `i(k) ∈ [0,M ] for all k ∈ Z≥0. Therefore,

M ≥ `i(j2) ≥ `i(j1)− ρ(j2 − j1) +

j2−1∑
k=j1

(
1− αi(k)

)

≥ −ρ(j2 − j1) +

j2−1∑
k=j1

(
1− αi(k)

)
.

Rearranging this inequality gives the desired result. Now let αi : Z≥0 → {0, 1} satisfy

(6.13). Set `i(0) = 0. Suppose there exists k ∈ Z≥0 such that `i(k+1) > M . Then there

exists k ∈ Z≥0 such that `i(k) = 0, `i(k) ∈ [0,M ] and `i(k + 1) = `i(k) + 1− ρ− αi(k)
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for all k ∈
{
k, . . . , k

}
. Thus,

`i(k + 1) = `i(k)− ρ(k − k) +
k∑

k=k

(1− αi(k))

≤ −ρ(k − k) +M + ρ(k − k) = M ,

which is a contradiction. �

K.2 Proof of Theorem 9

System (6.15) satisfies Assumption 1, and since Gδ(x, v) 6= ∅ for all x ∈ D, and by

Lemma 9, we have that maximal solutions are almost surely complete.

To analyze the dynamics learning dynamics, we draw special attention to the dy-

namics of û. To save on notation, we define

Q =


Q1

...

Qn

 , L =


L1

...

Ln

 . (K.3)

Then, using (K.3) it follows that û+ has the form

û+ = û+ I(δs)I(q)g(q, û, v), (K.4)

which can be rewritten as

g(q, û, v) =
[(
I(v)⊗ v>

)(
I ⊗ I(q)I(δp + δm)

)]
(
Q2û+ L

)
+
√
δ|δp − δm|O(1). (K.5)
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This implies that

û+ = û+ δ ·O(max {1, |û|}). (K.6)

Moreover, using Assumption 42 we obtain

∫
Rn

(
I(v)⊗ vT

)
µ(dv) =

n∑
i=1

(
I(ei)⊗ eTi

)
, (K.7)

and thus, using (K.4), (K.41), (K.7), and the definition of u∗ in (6.4) we have that

∫
Rn
g(q, û, v)µ(dv) =I(q)I(δp + δm)2A(û− u∗) (K.8)

+
√
δ · |δp − δm| ·O(1).

Using Assumption 40 of Section 6.1, let w ∈ Rn
>0 be such that I(w)A is symmetric

and negative definite. Define

P := −I(w)A (K.9a)

R(û) := P (û− u∗) (K.9b)

V1(û) := R(û)TP−1R(û) (K.9c)

V2(x) := R(û)T
(

(M + 1)I − I(`)

)
R(û) (K.9d)

V (x) := V1(û) + δµV2(x) (K.9e)

µ := 4 min
i∈{1,...,n}

ks,i(kp,i + ks,i)

wi
. (K.9f)

Due to these definitions, there exist positive real numbers c, c such that, for all δ ∈ (0, 1)

c‖û‖2
A ≤ V (x) ≤ c‖û‖2

A ∀x ∈ D, (K.10)
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where ‖û‖A = ‖û − u∗‖ since qi ∈ {0, 1} and `i ∈ [0,M ], for all i ∈ {1, . . . , n}. It

follows from (6.12) that

I(`+) ≥ I(`) + (1− ρ)I − I(q). (K.11)

Therefore, using (K.6),

V2(x+) = R(û+)>
(
(M + 1)I − I(`+)

)
R(û+)

≤ R(û+ δO(max{1, |û|}))>
(

(M + 1)I − I(`)

− (1− ρ)I + I(q)
)
R(û+ δO(max{1, ‖û‖}))

≤ R(û)>
(

(M + 1)I − I(`)
)
R(û)

− (1− ρ)R(û)>R(û) +R(û)>I(q)R(û)

+ δO(max 1, ‖û‖2)

≤ V2(x)− (1− ρ)R(û)>R(û) +R(û)>I(q)R(û)

+ δO(max{1, ‖û‖2}).

(K.12)

Also,

V1(û+) =R(û+ I(δs)g)>P−1R(û+ I(δs)g)

= [P (û− û∗ + I(δs)g)]> P−1 [P (û− u∗ + I(δs)g)]

=
[
[P (û− u∗)]> + [PI(δs)g]>

]
P−1

[
[P (û− u∗)]

+ [PI(δs)g]
]

=R(û)>P−1R(û) + (û− u∗)>PI(δs)g +

(I(δs)g)>P (û− u∗) + g>I(δs)PI(δs)g

=V1(û) + 2(û−u∗)>PI(δs)g + g>I(δs)PI(δs)g,

(K.13)
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where for ease of notation we have omitted the arguments of g. Using (K.8) and (K.13)

we get

∫
Rn
V1(û+)µ(dv) = V1(û) + 2(û− u∗)>PI(δs)

[
I(δp

+ δm)I(q)2A(û− u∗) +
√
δ · |δp − δm|O(1)

]
+

∫
Rn
g>I(δs)PI(δs)g µ(dv).

(K.14)

After a set of lengthy calculations we obtain

∫
Rn
g>I(δs)PI(δs)g µ(dv) ≤δ2O

(
max{1, ‖û‖2}

)
+ δ5/2O (max{1, ‖û‖})

+ δ3O(1),

which combined with (K.14) and (K.9f) implies

∫
Rn
V1(û+)µ(dv) ≤V1(û)− δµR(û)T I(q)R(û)

+ δ3/2 ·O
(
max

{
1, ‖û‖2

})
.

(K.15)

Using (K.12) and (K.15) we have

∫
Rn
V (x+)µ(dv) =

∫
Rn

(
V1(û+) + δµV2(x+)

)
µ(dv)

≤ V1(û) + δµV2(x)− δµ(1− ρ)

R(û)TR(û) + δ3/2O(max
{

1, ‖û‖2
}

). (K.16)

Let P̄ := P−1 + (M + 1)δµI, and define

η := µ(1− ρ)λmin(P̄−1). (K.17)
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Equation (K.17) implies that µ(1− ρ)R(û)>R(û) ≥ ηV (x), for all δ ∈ (0, 1), and then

using (K.10) we obtain

∫
Rn
V (x+)µ(dv) ≤V (x)− δηV (x) + δ

3
2O(max

{
1, ‖û‖2

}
)

≤V (x)− δηV (x) + δ
3
2K + δ

3
2KV (x) (K.18)

which gives the existence of K > 0, such that for δ sufficiently small we have that

∫
Rn
V (x+)µ(dv) ≤ (1− 0.5δη)V (x) + δ

3
2K. (K.19)

for all x ∈ D, which implies by that the compact set A is MSP-ES, with λ = 0.5η, and

κ = 3/2. �

K.3 Proof of Theorem 10

Focusing on the upper s × s block of A, denoted As×s, it necessarily follows that

there exists w ∈ Rs
>0 such that Is(w)As×s is symmetric and negative definite. Indeed,

[
Is 0

] Ia(w) 0

0 Ib(w)

A
 Is

0

 = Ia(w)As×s. (K.20)

Since the matrix on the left-hand side is symmetric and negative definite, it follows

that Ia(w)As×s is symmetric and negative definite. We also note that in the case of a

one-player sub-game, taken to be player i, if (Qi)ii < 0 then Assumption 40 holds for

the sub-game. Thus, we can consider the analysis in the proof of Theorem 9 changing

the payoff mapping to be a mapping J : Rn+d → Rn and partitioning the matrices Qi

so that the matrix A formed from the upper s × s blocks of Qi satisfies Assumption
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40. In general, we still have (K.41) which we can write with

ua =

 u+ I(δp)I(q)v

up

ub =

 u− I(δm)I(q)v

um

 (K.21)

as

Ji(ua)− Ji(ub) =
[
(I(δp + δm)I(q)v)T , (up

− um)T
]Qi

 2u

2u∗

+Qi

 I(δp − δm)I(q)v

up + um − 2u∗

+ Li

 .

In this case Eq. (K.41) can be written as,

g(q, u, v) =I ([v,0])
[
I ⊗

(
[v>,1>]Mb

)](
2Q

 u

u∗


+QMc + Li

)
, (K.22)

where 0 ∈ Rs, 1 ∈ Rs, and where the block matrices Mb and Mc are defined as

Mb :=

 I(q)I(δp + δm),0

0, I(up − um)

 , (K.23)

Mc :=

 I(δp − δm)I(q)v

up + um − 2u∗

 . (K.24)
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Using the mixed product property of the Kronecker product we can rewrite (K.22) as

g(q, u, v) =
(
I ([v,0])⊗ [v>,1>]

)
[I ⊗Mb]

(
2Q

 u

u∗

+

L

)
+
(
I ([v,0])⊗ [v>,1>]

)
[I ⊗Mb] 2QMc (K.25)

In this case we have that (K.7) is now given by the block matrix

∫
Rn

(
I ([v,0])⊗ [v>,1>]

)
µ(dv) =

[
n∑
i=1

(
I(ei)⊗ eTi

)
|0s×s

]
,

and we now obtain that

∫
Rn
g(q, u, v)µ(dv) =

= I
(
[q>,0>]

)
I
(
[(δp + δm)>,0>]

)2A

 [u]n−r×1[
u∗
]
r×1

+B


+ 2

∫
Rn

(
I ([v,0])⊗ [v>,1>]

)
[I ⊗Mb]QMcµ(dv) (K.26)

For each of the n players we partition each matrix Qi as

Qi =

 Qi
s Qi>

ns

Qi
ns Qi

nn

 (K.27)
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Using this partitioning we get that

[I ⊗Mb]Q =



I(qδ+)Q1
s I(qδ+)Q1>

ns

I(u−pm)Q1
ns I(u−pm)Q1

nn

I(qδ+)Q2
s I(qδ+)Q2>

ns

I(u−pm)Q2
ns I(u−pm)Q2

nn

...
...

I(qδ+)Qn
s I(qδ+)Qn>

ns

I(u−pm)Qn
ns I(u−pm)Qn

nn



(K.28)

such that [I ⊗Mb]QMc is given by

[I ⊗Mb]QMc =



I(qδ+)Q1
sI(qδ−)v + I(qδ+)Q1>

nsu
+
pm

I(u−pm)Q1
nsI(qδ−)v + I(u−pm)Q1

nnu
+
pm

I(qδ+)Q2
sI(qδ−)v + I(qδ+)Q2>

nsu
+
pm

I(u−pm)Q2
nsI(qδ−)v + I(u−pm)Q2

nnu
+
pm

...

I(qδ+)Qn
s I(qδ−)v + I(qδ+)Qn>

ns u
+
pm

I(u−pm)Qn
nsI(qδ−)v + I(u−pm)Qn

nnu
+
pm
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and then the argument of the integral in the second term of Eq. (K.26) can be written

as

=I(v)



v>
[
I(qδ+)Q1

sI(qδ−)v + I(qδ+)Q1>
nsu

+
pm

]
+

1>[I(u−pm)Q1
nsI(qδ−)v + I(u−pm)Q1

nnu
+
pm]

v>
[
I(qδ+)Q2

sI(qδ−)v + I(qδ+)Q2>
nsu

+
pm

]
+

1>
[
I(u−pm)Q2

nsI(qδ−)v + I(u−pm)Q2
nnu

+
pm

]
...

v>
[
I(qδ+)Qn−r

s I(qδ−)v + I(qδ+)Qn−r>
ns u+

pm

]
+

1>
[
I(u−pm)Qn−r

ns I(qδ−)v + I(u−pm)Qn−r
nn u+

pm

]
0r×1



=



v1

(
v>
[
I(qδ+)Q1

sI(qδ−)v + I(qδ+)Q1>
nsu

+
pm

]
+

1>[I(u−pm)Q1
nsI(qδ−)v + I(u−pm)Q1

nnu
+
pm]

)

v2

(
v>
[
I(qδ+)Q2

sI(qδ−)v + I(qδ+)Q2>
nsu

+
pm

]
+

1>
[
I(u−pm)Q2

nsI(qδ−)v + I(u−pm)Q2
nnu

+
pm

])
...

vn−r

(
v>
[
I(qδ+)Qn−r

s I(qδ−)v + I(qδ+)Qn−r>
ns u+

pm

]
+

1>
[
I(u−pm)Qn−r

ns I(qδ−)v + I(u−pm)Qn−r
nn u+

pm

])
0r×1



(K.29)

where each block in (K.29) corresponds to a scalar associated to each player. Defining

Mi,1 = I(qδ+)Qi
sI(qδ−), Mi,2 = I(qδ+)Q1>

nsu
+
pm, Mi,3 = I(u−pm)Qn−r

ns I(qδ−), and Mi,4 =
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I(u−pm)Qn−r
nn u+

pm, each block associated to each player can be written as

vi(v
>Mi,1v) + vi(v

>Mi,2) + vi(1
>Mi,3v) + vi(1

>Mi,4) (K.30)

and due to the zero-mean property of v we have that

∫
Rn
vi(1

>Mi,4)µ(dv) = 0. (K.31)

Also we have that

∫
Rn
vi(v

>Mi,1v)µ(dv) =
√
δ|δp − δm|O(1). (K.32)

Similarly we have that

vi(v
>Mi,2) = vi

(
u+>
pmQ

i
nsI(qδ+)vs

)>
= vi

(
u+>
pm

(
Qi
ns,col1

δ+
1 q1v1 + . . .

+Qi
ns,colj

δ+
j qjvj+

. . .+Q1
ns,coln−rδ

+
n−rqn−rvn−r

))>
(K.33)

and using the fact that E[vv>] = I we obtain that

∫
Rn
vi(v

>Mi,2µ(dv) =
(
u+>
pmQ

i
ns,coli

δ+
i qi
)>

= δ+
i qiQ

i>
ns,coli

u+
pm

= δ+
i qiu

+>
pmQ

i
ns,coli

(K.34)
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The same reasoning can be applied to Mi,3, obtaining

∫
Rn
vi(v

>Mi,3µ(dv) = δ−i qiu
−>
pmQ

i
ns,coli

. (K.35)

Therefore, for each ith player, the second term in (K.26) is given by

= 2δ+
i qiu

+>
pmQ

i>
ns,coli

+ 2δ−i qiu
−>
pmQ

i
ns,coli

= 2qi
[
δ+
i u

+
pm + δ−i u

−
pm

]>
Qi
ns,coli

= 2qi

[
(δp,i + δm,i)(up,i + um,i − 2u∗i )

+ (δp,i − δm,i)(up,i − um,i)
]>
Qi
ns,coli

= 2qi

[
δp,idp + δm,idm

]>
Qi
ns,coli

= 2qiδp,i
(
Qi
ns,coli

)>
dp + 2qiδm,i

(
Qi
ns,coli

)>
dm (K.36)

Finally, using the symmetry of each matrix Q we have that (K.36) can be written as

= 2qiδp,iQ
i
ns,rowi

dp + 2qiδm,iQ
i
ns,rowi

dm,∀ i ∈ {1, . . . , n} (K.37)

Now, recall that the matrix A is given by the matrix whose ith row corresponds to the

ith row of Qi. Therefore we can also partition A as

A =

 As Arns

ALns Ann

 (K.38)

where the upper block contains the entries of the matrices Qi associated to players that

are still aiming to converge to the Nash equilibrium. Using (K.38), (K.32), and (6.4)
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we obtain that (K.26) is given by

∫
Rn
g(q, u, v)µ(dv) =

I
(
[q>,0>]

)
I
(
[(δp + δm)>,0>]

)2A

 [u− u∗]n−r×1[
0
]
r×1




+

 2I(q)I(δp)A
r
nsdp + 2I(q)I(δm)Arnsdm +

√
δ|δp − δm|O(1)

0

 (K.39)

and therefore we obtain that the dynamics of the agents who are still trying to achieve

a Nash equilibrium are given by

u+ = u+ I(δs)I(q)I(δp + δm)2A(u− u∗)

+ δs
√
δ|δp − δm|O(1) + 2I(q)δγ1dp + I(q)δγ2dm,

= u+ δO(max{1, |u|, |dp|, |dm|}) (K.40)

where γ1 := I(ks)I(kp)A
r
ns, and γ2 := I(ks)I(km)Arns.

Using the same quadratic Lyapunov function V (x) as in [231], and following a

similar analysis we now obtain the following inequality

∫
Rn
V (x+)µ(dv) ≤ V (x)− δηV (x)

+ δ
3
2O
(
max

{
1, ‖u‖2, |dp|2, |dm|2

})
,

≤ V (x)− δηV (x) + δ
3
2K + δδ

1
2KV (x)

+ δ
3
2

(
d2
p + d2

m

)
,
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selecting δ ∈ (0, 1) such that δ
1
2K ≤ 0.25η we obtain that

∫
Rn
V (x+)µ(dv) ≤ V (x)− δηV (x) + δ

3
2K + δ

1

4
ηV (x)

+ δ
3
2

(
d2
p + d2

m

)
≤
(

1− 1

4
δη

)
V (x) + δ

3
2K − 1

2
δηV (x)

+ δ
3
2

(
d2
p + d2

m

)
Using the fact that V (x) is quadratic we obtain

∫
Rn
V (x+)µ(dv) ≤ V (x)− δηV (x) + δ

3
2K + δ

1

4
ηV (x)

+ δ
3
2

(
d2
p + d2

m

)
≤
(

1− 1

4
δη

)
V (x) + δ

3
2K − 1

2
δηc‖x‖A

+ δ
3
2

(
d2
p + d2

m

)
which implies that

∫
Rn
V (x+)µ(dv) ≤

(
1− 1

4
δη

)
V (x) + δ

3
2K,

∀ ‖x‖A ≥
2
√
δ

ηc
|d|2,

which establishes MSISpS with respect to the input d = [dp, dm]> and the parameter

δ. �
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K.4 Proof of Theorem 11

The proof starts by noticing that for any initial condition (τc(0, 0), zc(0, 0)) ∈ [0, 1]×

Z, the evolution of τc and zc is independent of the other states. Moreover, by the

automaton-like behavior induced by the SHDS (6.19), for any ∆T > 0 the state zc will

hit in order every mode in Z infinitely often, and since the function fτ in (6.20) resets

τc whenever there is a jump from the modes 2 and 3, there exists a time (t∗, j∗) such

that for all (t, j) in the domain of a solution satisfying t + j ≥ t∗ + j∗ we have that

zc(t, j) ∈ {4, 1} implies that τc(t, j) = 0. This establishes the uniform attractivity and

invariance of the set Aτ,q. Now, let Kθ ⊂ Rp and Ku = [−ε1, ε1]× . . .× [−εn, εn]. By

Proposition 13, for each ρ > 0 there exists ∆T , such that (6.22) holds. Since H(·)

in MKu is OSC and LB, then H(·) is upper-semicontinuous on compact sets, which

implies that for each ε1 > 0 there exists ρ > 0 such that H(Ku + ρB) ⊂ H(Ku) + ε1B.

Moreover, since ϕ(·) is continuous, for each ε0 > 0 there exists an ε1 > 0 such that

ϕi(H(Ku) + ε1B, Ku) ⊂ ϕi(H(Ku), Ku) + ε0B = Ji(Ku) + ε0B. Now note that the state

û is updated only at the mode 4, and via the dynamics (6.8). Assuming that s = v,

and ŷi = (Ji(ua), Ji(ub))
>, and based on [231], this dynamics can be written as

û+ = û+
[(
I(v)⊗v>

)(
I ⊗ I(q)I(δp + δm)

)]
×(

2Qû+ L
)

+
√
δ|δp − δm|O(1), (K.41)

where ⊗ is the Kronecker product, Q is a block matrix with each row-block i cor-

responding to Qi, and L is a block matrix with each row-block corresponding to Li.

Therefore, by selecting ε0 <
√
δ|δp− δm| there exists a ∆T > 0 such that whenever the

system hits the mode 4 after hitting the modes 1, 2, and 3 in order, and u ∈ Ku, the

update mapping for the state ûi, given in (6.21d), will generate solutions that are also
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solutions of (K.41). This implies that for ∆T sufficiently large, the stability properties

of the dynamics x̂ are preserved from this point. Now, to analyze the behavior of the

dynamics in the transient of the automaton, note that for each random solution xc of

(6.19) with initial condition xc(0, 0) ∈ Cc ∪Dc there exists (t∗, j∗) such that z has hit

every mode in Z and q(t∗, j∗) = 4. Moreover, since the time domains of the solutions

depend only on ∆T , zc(0, 0), and τc(0, 0), and the compactness of [0, 1]×Z, there exists

a T ∗, such that t∗ + j∗ ≤ T ∗ for all solutions of system (6.19). Using LB of Gz
δ , the

absence of finite escape times in (6.19b), and the boundedness of the random variables,

given the initial condition there exists a ρδ,x̂(0,0) such that for each solution starting at

x̂(0, 0) we have that x̂(t∗, j∗) ∈ Ax̂ + ρδ,x̂(0,0)B. Then, we have that for all j ≥ j∗ such

that z = 4 the state x̂ satisfies during jumps the bound

E[|x̂(t, j)|2Ax̂|Fj∗ ] ≤ σ(1− δλ)j−j
∗|x̂(t∗, j∗)|2Ax̂ + γδα. (K.42)

Since x̂(t∗, j∗) ∈ Ax̂ + ρδ,x̂(0,0)B for all ω ∈ Ω, taking the expectation at both sides of

(K.42) we obtain that during jumps at the mode 4 we have

E
[
‖x̂(t, j)‖2

Ax̂

]
≤ σ(1− δλ)j−j

∗
ρδ,x̂(0,0) + γδα, (K.43)

and note that since x̂ is kept constant during flows, and t < ∆T + j∆T always hold,

equation (K.43) can be written as (6.27), where j(t) is the smallest integer j such that

(t, j) is in the domain of the solution. This establishes the inequality (6.27). Equation

(6.26) follows by Proposition 13, the fact that δ is chosen sufficiently small, and that

the KL bound holds for all ω ∈ Ω. �
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K.4.1 Proof of Theorem 12

Note that the synchronization and coordination dynamics evolve independently of

the dynamics of the plant and the stochastic dynamics generated by Gz
δ,i. Indeed, by

Proposition 14, there exists a hybrid time (t∗, j∗) such that for any initial condition of

τ and z in [0, 1]n × Zn, and all t+ j > t∗ + j∗ satisfying (t, j) ∈ dom(x) we have that

(τ(t, j), z(t, j)) ∈ Async. From this point the distributed dynamics (6.35) behave as the

centralized dynamics (6.19), with the only difference that agents now jump sequentially

instead of simultaneously, and note that since Gz
δ,i only depends on the states of agent

i, this sequential jumps do not affect the updates of the agents. Therefore, from this

point the analysis follows the same steps as in the proof of Theorem 11.
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[91] A. R. Teel, L. Moreau, and D. Nes̆ić, A Unified Framework for Input-to-State
Stability in Systems With Two Time Scales, IEEE Trans. Autom. Control. 48
(2003) 1526–1544.
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[150] D. Nešić, A. R. Teel, and D. Carnevale, Explicit computation of the sampling pe-
riod in emulation of controllers for nonlinear sampled-data systems, IEEE Trans-
actions on Automatic and Control 54 (2009), no. 3 619–624.
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