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Abstract

Generating Natural Language with Semantic and Syntactic Generalization

by

Lena Reed

Traditional statistical natural language generation (NLG) systems require substantial

hand-engineering: many of the components, such as content planners, sentence planners

and surface realizers must all be designed and created manually and updated when a

new type of utterance is required. Neural natural language generation (NNLG) models,

on the other hand, learn to generate text through processing massive amounts of data

in end-to-end encoder-decoder frameworks, where syntactic properties are learned au-

tomatically by the model. While the learning components of NNLG models are mostly

accomplished automatically, they do require, however, that the training data be col-

lected and labeled, which can often be a laborious process. The advantages of not

needing handcrafted templates and syntax-to-semantics dictionaries may thereby be

offset by the need to retrain neural models with new data as new domains are added,

effectively replacing a “knowledge bottleneck” with a “data bottleneck”.

To overcome the data bottleneck, we experiment with methods to leverage

existing datasets to allow our NNLG models to generalize to novel meaning represen-

tations and sentence planning operations. We explore the generation of artificial data

and mixing data from different sources as a way to augment existing training data avail-

able to the NNLG. Given our different methods for augmentation, we evaluate whether

xi



NNLGs can learn syntactic and semantic generalizations.

In this thesis, we developed methods to enable NNLG models to perform three

types of generalization. First, we generalized multiple stylistic features to a single su-

pervision token which represented the personality formed by the stylistic features. We

then generated output with two different personality supervision tokens to create novel

personalities not present in the training data. Second, we performed generalization on

sentence planning operations. Sentence planning is the module of NLG models that

affects the way individual propositions are combined into sentences, which usually has

an effect on the final style of the realization. We generalized specific sentence planning

operations, such as sentence scoping and contrastive discourse structuring, with values

and attribute combinations beyond what was seen in the original training data. Finally,

we combined training data from different sources to produce outputs for meaning rep-

resentations that blend the ontologies from both sources. In all three experiments, we

investigated different representations and architectures to enable models to generalize.

Our contributions include the development of methods that enable NNLG

models to generalize and thereby expand beyond their original training data. This is an

important extension of results to date and a significant step in making NNLG models

more useful at low data cost. We also generated and released multiple datasets which

we used to train and test our models.
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Chapter 1

Introduction

1.1 Overview

Natural Language Generation (NLG) is essential for many tasks in Natural

Language Processing (NLP), from dialogue systems to question answering to summa-

rization. There are many areas where generating coherent, interesting, and accurate

language is necessary to achieve one’s goal. While NLG has been fundamental to NLP

since its origin [Machinery, 1950], Neural Natural Language Generation (NNLG) has led

to many advancements in the field. NNLG uses end-to-end deep neural models to auto-

matically learn from massive amounts of data to create a generator, instead of requiring

templates and hand-crafted modules, such as sentence planners and surface realizers,

needed by traditional statistical NLG models. End-to-end models, which only require

data to learn, allows us to quickly train complex models that can generate a wide range

of diverse outputs. Since neural models learn from data with minimal human input,
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we cannot explicitly control what information is represented by these models. There is

still much to learn about how to encourage models handle different tasks and whether

specific goals are feasible when employing an NNLG model.

NNLG models depend on exceedingly large datasets, in the range of tens of

thousands of sentences, to generate new text. To create new data using an NNLG, we

have first to acquire a dataset, traditionally by either finding an existing dataset1 or

develop a dataset oneself either by crowdsourcing or scraping data from online sources

and processing it to fit the needed format. Both of these options are very time-consuming

and, especially for crowdsourcing, very expensive. But what if one wants to generate

new data with only slight variations from an existing dataset? Often generated text

needs to be tailored to a specific audience [Paris, 2015; Walker et al., 2004], but being

forced to create an entirely new dataset to make minor modifications to the tone of the

generated output is impractical.

In this thesis, we develop methods to generalize from existing datasets to

create novel output and to control the form and content of the output in order to

generate precisely what we need for these tasks. It is commonly assumed that models

will generalize beyond their training data. We develop methods that ensure that models

generalize.

We show that with proper supervision and completely novel methods, such

as performing self-training on the model, we can generate utterly novel outputs. We

use a combination of existing and synthetic datasets, which makes the data overhead to

1while there are some existing and freely available datasets, depending on what you need to generate
this might not be possible
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generate the desired result relatively small. We systematically experiment with different

types of supervision to determine how control features guide the model to generalize to

unseen input specifications; we find that even single tokens of supervision can signifi-

cantly improve the results.

While there has been previous work on generalizing experiments to more com-

plex instances not seen in the training data [Ficler and Goldberg, 2017], these are some

of the first experiments in generalization for semantic and syntactic variation in data-to-

text NNLG. The experiments focused on explicitly determining how to enable models

to generalize to meaning representations (MRs) with combinations of attributes com-

pletely novel from the MRs in the training data. We also explore the best ways to

encourage these models to learn a general representation of the training data, so the

model can learn to generate accurate output given these specific MRs. We hypothesize

that NNLG models can generalize with proper supervision, and that baseline MRs would

not accomplish these tasks. Throughout this thesis, we will show that for syntactic and

style generalization, this is the case. The models can learn to generalize to new values

and generate completely novel output with simple token supervision. Still, this is not

sufficient for semantic generalization, and we needed to employ a self-training regime

that learns from the model’s mistakes to achieve our generalization goals.
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1.2 Generalization of Data-to-Text NNLG

The purpose of these experiments is to establish baselines and then develop

methods to allow NNLG models to learn general forms and representations of the data

to perform generalization. We can then generate output on MRs that are significantly

different from the input training data. The framework of these experiments is data-to-

text NNLG in the domain of restaurant reviews. We focus on this type of generation

because there are existing and plentiful datasets in the restaurant review domain that

can be utilized to develop methods which allows models to generalize across multiple

datasets. Also, the data input of the data-to-text generation of these restaurant review

corpora allows us to easily add additional control variables since the task already gener-

ates text from a series of control variables. Here we will define the task of data-to-text

generation in NNLG and provide examples of the datasets. We will go into more detail

on the datasets used in these experiments in Chapter 3.

1.2.1 Data-to-Text Generation

Data-to-text generation involves taking non-linguistic data and transforming

it into text, representing the meaning specified by the input [Reiter and Dale, 2000].

This data often defines the semantics of the desired output but it can also describe

other features, such as the length or sentiment of the output. The structure can also

have various forms, such as a flat series of attribute-value pairs or a structured tree

representation indicating the sentence structure of the output. This type of generation
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is helpful for any task where one has information that needs to be provided in an easier-

to-understand and interpretable manner, such as taking the statistics of a basketball

game and creating an output that explains what happened in the game.

The input data, which we refer to as meaning representations or MRs, consists

mainly of the semantics of the output. The MR describes the content that we want

the output to realize. We also have a limited representation of the discourse structures

desired in the output, as well as control features that indicate specific characteristics that

we want in the output depending on the experiment, such as a token representing the

number of sentences in the generated output. An example of the data is “name[Zorros]

cuisine[Italian] decor[good]”. The output would need to describe Zorros as a restaurant

with Italian food and good decor. This MR has three attribute-value pairs. Every

attribute can potentially have multiple values associated with it. Here, cuisine is Italian,

but it can also be French or Japanese. Content selection and downsampling can be

accomplished by not realizing every attribute-value pair in the output. This is a feature

in some models and allows them to select the best or most relevant content. In these

experiments, we consider an output to be “correct” if it accurately realizes all of the

attribute-value pairs in the input. Not including an attribute is therefore considered a

mistake. Other mistakes are realizing the incorrect value of the attribute or adding an

attribute to the output that was not in the MR. Also, a common mistake that NNLGs

make is repeating information, and therefore we consider it a potential semantic error.

Figure 1.1 has an example from the E2E dataset [Novikova et al., 2017b], which

we cover in more detail in Section 3.3. In the example, we can see that each value in
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name || Cocum
eat type || coffee shop
food || Chinese
price range || more than £30
customer rating || high
family friendly || no

The Cocum is a coffee shop
that serves Chinese food. It
is not kid friendly, the rating
is high, and the price range is
more than £30.

Figure 1.1: Data-to-Text Example. Each attribute is represented in the MR on the left
and the text on the right in the same color.

the attribute is represented in the text. Each attribute has a similar phrasing as the

attribute-value pair in the MR, but it does not need to be precisely the same. For

example, the natural language phrase “kid friendly” represents the attribute family-

friendly, which is a similar, but not exactly the same wording. As long as the same

meaning is captured, it is correct to describe the attribute and value using this string.

The order is also not dependent on the order in the MR. The model reads in the

attributes in a fixed order. Each attribute is in the same location in the MR, but it can

be represented in the text in any order. Attributes not in the text were not included in

the MR. This dataset has one more attribute, location, but since there is no location

mentioned in the review, the MR does not have a location either. There are many ways

to represent a single MR, and most training datasets have more than one text example

per MR to represent this; this is just one example.
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1.2.2 Restaurant Review Domain

There are multiple datasets in the restaurant domain, examples of which are

in Table 1.1. E2E is a crowdsourced dataset where participants wrote restaurant re-

views and descriptions based on pictograph representations of the MR [Novikova et al.,

2017b]. NYC is a synthetic dataset of restaurant reviews generated with the person-

age [Mairesse and Walker, 2010, 2011] statistical language generator based on actual

reviews of restaurants in New York City; this dataset was generated as a contribution

of this thesis [Reed et al., 2018]. YelpNLG is a natural dataset scraped from Yelp and

processed to automatically produce MRs representing the type of food mentioned, ser-

vice, and other features [Oraby et al., 2019]. We use the E2E dataset and the NYC

dataset in the course of these experiments. We also generate and provide synthetically

generated data modeled after E2E. We go into more detail about the specifics of these

datasets in Chapter 3.

We use data from the restaurant domain for multiple reasons. The first is

that it uses the data-to-text structure that we desire. With this data-to-text structure

we can control and evaluate the model’s output automatically. Each dataset consists

of matched pairs of MRs and text, where the MRs represent the semantics in the

text and some limited discourse relations, and the text is in the form of a restaurant

review. The structure of the dataset entails that there is often only a finite number

of ways to represent the semantics in the output. We can therefore create scripts that

automatically calculate the output’s semantic accuracy, allowing us to iterate through
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Dataset MR Realization

E2E name[The Olive Grove]
eatType[pub]
food[Indian]
priceRange[moderate]
area[riverside]
familyFriendly[no]

There is a pub that is mod-
erate priced called The Olive
Grove in the Riverside area,
that serves Indian food and is
not child friendly.

NYC name[nameVariable]
recommend[no]
cuisine[Caribbean]
decor[bad]
food qual[bad]
location[the West Village]
price[affordable]
service[bad]

nameVariable is the worst
restaurant since it provides bad
staff and mediocre decor. It of-
fers mediocre food. nameVari-
able is in the West Village. it’s
a caribbean place. It is afford-
able.

YelpNLG food[type:chicken tacos,adj:pulled,mention:1]
food[type:fish tacos,adj:no adj,mention:1]
food[type:chicken,adj:fried,mention:1

we also had the pulled chicken
tacos, the fish tacos, and the
bao with fried chicken.

.

Table 1.1: Examples from restaurant review datasets E2E [Novikova et al., 2017b], NYC
[Reed et al., 2018], and YelpNLG [Oraby et al., 2019].

multiple experiments quickly. We go into more detail about automatically evaluating

the output in Chapter 4.

We also decided to use datasets from the restaurant domain because there are

multiple datasets that have similar, but not identical semantics. These experiments

across these similar, but different, datasets are the first experiments in this type of

transfer learning. To give the model the best chance of success, we explore whether the

model can learn to apply sentence operations and attributes to a dataset where they

were not seen before, but the two datasets have semantic overlap. For these experiments,

having multiple data-to-text datasets in the same domain was crucial.

We also wanted a dataset that had significant stylistic variation. Because the
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NYC dataset is synthetically generated and already provides stylistic controls motivated

by the Big Five Personality Traits, through NYC, we are able to control many of the

linguistic features in the outputs. We are able to generate outputs which represent mul-

tiple personality traits, such as disagreeable, agreeable, conscientious, unconscientious

and extrovert. Still, we also wanted a crowdsourced natural dataset with interesting

syntactic and discourse lexical features, which E2E provides. In the E2E dataset, 5.4%

of the training examples use constrastive discourse structures, such as “Near the Rain-

bow Vegetarian Café is The Rice Boat. It has a low rating but costs less than £20.”

and 14.5% uses a discourse feature we call fronting, such as “With a 1 out of 5 rating,

Cotto is kid friendly, located near Ranch, and serves French food.” [Juraska and Walker,

2018].

These datasets also provide variety in the types of values represented in the

MR. There are four main types of values across the datasets. The first is a boolean

value, which is either yes or no. This attribute is represented in the text as a trait

that the restaurant has or is explicitly missing. For example, restaurants can either

be expressly family-friendly or explicitly not. If a defining feature of the restaurant is

neither that it is family-friendly nor not family-friendly, the MR does not include the

attribute family friendly. The second type of attribute is a scalar. Attributes such

as food quality are scalar, where there are different values, indicating how positively

or negatively the author views the restaurant. These values are useful for contrast

since one way to contrast two attributes is for them to be explicitly comparable to

each other. One cannot contrast two attributes that the author considers positive.
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Because these values represent a rating instead of a specific string, there can be multiple

ways to realize the value in the output. For example, the utterance can also represent

“food quality[terrific]” with phrases such as “terrific food” or “delicious food”. There

are also finite set and infinite set values. These are very similar. The main difference

is that the MR can define finite set values with multiple potential values, such as the

attribute-value pair “area[riverside]” can be represented by either of these realizations:

“in the riverside area” or “is located near the river”. On the other hand, infinite set

values must be represented by that exact string. The attribute-value pair “location[the

West Village]” must represent as “the West Village” in the output text because that is

the name of the location. Generally, proper nouns must be represented with the exact

string that is the value; otherwise, there might be multiple ways to realize the same

content.

Finally, these datasets also have grounded real-world applications. For ex-

ample, rather than just giving categorical ratings, someone who would like to write a

review, but does not have confidence in their writing or language skills, could fill in a

form with categorical and scalar information and have a review generated automati-

cally. They could then select from multiple possible automatically generated reviews.

Also, reviews could be generated in multiple languages. Reviews are often written in

the dominant language of the area where the restaurant is located. A system based on

a generation engine that could write reviews in another language could help those who

do not speak the dominant language learn about the restaurant.
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1.2.3 Generalization

A common goal of most work in machine learning is the development of models

that generalize to unseen test instances. While neural methods in general have led to

huge performance improvements for many NLP tasks, much recent work has also been

concerned with creating models and methods for better generalization to unseen cases

[Chen et al., 2020b; Zhao and Eskenazi, 2018; Goodwin et al., 2020; Chen et al., 2020a].

In the case of data-to-text NNLG, one problem has been that varied and large datasets

are needed to ensure the models’ semantic accuracy, and review semantic accuracy is

often achieved at the expense of stylistic variation. Moreover, our initial experiments

show that these models do not generalize well to unseen cases in the way that would be

expected.

As mentioned previously, NNLGs depend on large amounts of training data

that can generate accurate outputs. By generalizing from existing datasets to unseen

cases we will be able generate more diverse output without needing to collect more

data. To that end, we developed methods which improve how NNLG’s generalize from

existing datasets to generate output which has different representations of stylistic,

syntactic and semantic features, which are not seen in the training data, with minimal

additional supervision.

We developed methods to generalize across three types of generalization, stylis-

tic generalization, syntactic generalization and semantic generalization. Each type of

generalization focuses on a different component of the utterances being generated by
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Figure 1.2: Examples of the stylistic generalization accomplished in this thesis.

the neural models. Stylistic generalization generalizes stylistic features, features which

do not affect the meaning of the utterance, but can affect how the reader perceives the

text. Syntactic generalization generalizes across sentence planning operations that com-

bine the attributes in the data input. And semantic generalization generalizes across

the semantics being expressed in the generated output. We will now describe in more

detail what and how we generalized within these categories.

Stylistic generalization entails generalizing stylistic features present in the data.

Stylistic features are important for creating interesting and varied outputs that sound

natural. But, neural models often converge on generating the same words and phrases

repeatedly. We experimented with two different types of stylistic generalization, which

can be seen in Figure 1.2. The first, Generalization Type 1, is controlling multiple

features with a single supervision token. Each personality is a combination of many
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different stylistic features, such as pragmatic markers and aggregation operations. We

were able to control the personality generated in the output using a single token which

represented that personality.

We also further generalized the stylistic features by generating output with

combinations of stylistic features not seen in the training data, Generalization Type

2 in Figure 1.2. Our model, described in the previous paragraph, was trained with

five distinct personalities. The token model, which prompted the model to generate a

personality given a single token of supervision appended to the input data, was then

given two personality tokens as supervision when generating output. We determined

that this method allows the model to generate completely novel personalities which

combined features from multiple personalities.

Figure 1.3: Examples of the syntactic generalization accomplished in this thesis.

We then explored syntactic generalization. We had two distinct types of tasks
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with which we experimented. These syntactic generalization tasks are illustrated in

Figure 1.3. The first task, Generalization Type 3, was generating sentence planning

operations using values that did not perform those sentence planning operations in the

training data. We had two experiments, sentence scoping and distributive aggregation.

For sentence scoping, we generated outputs which controlled the number of sentences

in the output. We were able to generate the desired number of sentences regardless

of the attributes that we were generating. For distributive aggregation, we trained a

model where two attributes, price and rating, were distributed using this an aggregation

operation. These two attributes could have one of three values associated with them,

high, average and low. In the training data, we only used the values average and low

when distributing. The value high was also present in the training data, but did not

use the distributive aggregation operation. We were, with a boolean supervision token

representing the presence or absence of this operation, able to generate the distributive

aggregation operation with the value high. The development of this method allows us

to expand aggregation operations to values not seen in train.

We also generalized across datasets by transferring an aggregation operation

that was plentiful in one dataset to a dataset which had very few examples, as seen

in Generation Type 4 in Figure 1.3. We had one dataset with only a few instances

of contrast and we augmented this dataset with another, synthetic, dataset which had

contrast in every utterance. This method of augmenting the data and transferring the

contrast operation across the two datasets allowed us to generate contrast frequently

with high accuracy using a supervision token to encourage the generation of contrast.
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Transferring syntactic operations across datasets is an effective method of learning a

syntactic operation, along with supervision.

Figure 1.4: Examples of the semantic generalization accomplished in this thesis.

The final type of generalization, semantic generalization, involved generating

output which blended the semantics of two different datasets. We provide an illustration

of this task in Figure 1.4. The two datasets, NYC and E2E, were from the same domain,

the restaurant review domain. Though the datasets were from the same domain, they

did not have the same attributes. The datasets had four attributes in common and four

to five attributes which were unique. We created a new ontology which combined the

two two separate ontologies and generated output with blended semantics. We found

this was a surprisingly adversarial task, with low semantic accuracy in initial results

regardless of supervision method. We developed a self-training regime which improved

the results. We achieved a high semantic accuracy on this task, generating output which
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generalized across the two training datasets.

1.3 Summary of Contributions

In this work, we discovered how to control multiple types of generalization us-

ing NNLGs. The first is generalizing numerous stylistic features, which create a single

personality, into a single “personality” token and generating combinations of stylistic

features not seen together in the training data to develop new personalities (Chapter 5).

We find that, while the model can control multiple stylistic features with a general “per-

sonality” token, more supervision improves the results. Though, we believe that this

does not mean that fine-grained control is the best solution as it requires that each

feature be explicitly included or excluded when generating. Also, for some personali-

ties, the token supervision does out perform the fine-grained supervision. Controlled

generation with a single “personality” token does allow us to generate outputs that

blend personalities. This is our second form of stylistic generalization. We controlled

the output with two tokens instead of one, generating a new personality not seen in the

training data. These two types of generalization are illustrated in Figure 1.2.

Next, we developed supervision and transfer learning schemas which allow for

syntactic generalization with different sentence planning operations (Chapter 6). First,

we generalized to aggregate new values using these sentence planning operations which

were not seen being aggregated with these operations in the training data. Second,

we improved the generation of contrast in the output by augmenting a dataset with
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the desired semantics with data from a dataset with more examples of contrast. We

illustrated both of these types of generalization in Figure 1.3. In these experiments we

introduced methods to control various sentence planning operation, such as sentence

planning and distributive aggregation, when generating using NNLG models. We can

control the number of sentences being generated in the output, regardless of the number

of attributes in the data input, given a token which either represents the number of

sentences or the sentence complexity of the desired output. We also discovered that

we can teach a model a general representation of aggregation operations which can

be applied to new values that were not seen performing this aggregation operation

previously, with a single boolean supervision token. We also proved that datasets with

a small amount of a sentence planning operation, in this case, contrast, can learn from

other datasets with more examples of the operation and can achieve improved control

of the contrast operation by generalizing from one dataset to another.

The final generalization task is combining data from two sources and generat-

ing output that combines attributes from each source not seen together in the original

datasets (Chapter 7). This generalization task is illustrated in Figure 1.4. This a com-

pletely novel task which has not been attempted previously. While results from the

initial experiments to blend datasets resulted in low accuracy regardless of supervision

method, the model did generate outputs with attributes from both sources The outputs,

though they blended the semantics, did not match the input MR. We created an im-

proved model with a learning method that allows the model to learn from its mistakes.

We retrofit corrected MRs for the erroneous outputs generated by the model, creating
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correct, blended, utterances which the model could learn from. This is only possible

due to methods for automatic semantic evaluation created for these experiments. This

self-training regime lead to significantly improved results. These results demonstrated

that we can generate novel outputs from a new ontology. We can, therefore, also po-

tentially use two separate datasets to generate a desired output without needing to

develop a completely new dataset to achieve the same results. We also attempted this

same experiment with a pre-trained model, GPT-2 [Radford and Narasimhan, 2018],

and found that the semantic results did not significantly improve. There were, however,

were slight improvements of the amount stylistic variation in the final results after self-

training when compared to the results after self-training of the encoder-decoder model

used initially.

We also created and released three datasets that were used to perform these

experiments.

1. PersonageNLG2: 88K MR/utterance pairs of training data and 1,390 pairs of test-

ing data. The utterances are in the restaurant domain and generated using per-

sonage. They are based on the E2E challenge MRs and utterances. Each utter-

ance has stylistic features which represent one of the following five personalities:

agreeable, disagreeable, conscientious, unconscientious and extrovert.

2. Sentence Planning Corpus for NLG3: a dataset of approximately 205K MR/utterance

pairs demonstrating discourse relations such as contrast and justification, as well

2https://nlds.soe.ucsc.edu/stylistic-variation-nlg
3https://nlds.soe.ucsc.edu/sentence-planning-NLG
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as the use of aggregation operators in NLG.

3. Source Blending in NLG4:a dataset of 77K MR/utterance pairs of training data in

the restaurant domain from two source ontologies, NYC and E2E and 3040 MRs

with attributes from both sources of testing data.

1.4 Thesis Outline

This thesis starts by defining the task and components that we will be us-

ing in this work. In Chapter 2, we define the models which we used in this work as

well as previous work in data-to-text generation and generalization in NNLG. Then,

in Chapter 3, we describe the datasets that we used in these experiments; the NYC

dataset, generated by the statistical natural language generator personage [Mairesse

and Walker, 2011], the E2E dataset, a crowdsourced dataset created for the E2E gen-

eration challenge [Novikova et al., 2016], and a synthetic E2E dataset, which is also

generated using personage with the attributes and values from the E2E dataset. In

Chapter 4, we go over the evaluation methods that we used to evaluate our results,

both standard evaluation metrics, such as BLEU [Papineni et al., 2002] and human

evaluation, and the evaluation methods that we designed to evaluate the semantics and

stylistic features in the generated outputs. We explain the semantic evaluation metric

that we developed, slot error rate or SER, which automatically detect semantic errors

in the generated output based on the semantics of the input MR and generates a score

4https://nlds.soe.ucsc.edu/source-blending-NLG
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based on the number of errors divided by the number of slots in the input. We use this

method of automatically detecting errors to also generate MRs from output text, which

was vital in creating a self-training regime for our ontology blending task.

The second half of this thesis presents stylistic and syntactic generalization

experiments to develop methods to improve NNLG models’ ability to generalize across

various tasks and types of generalization. In Chapter 5, we evaluate if models can

learn to generate multiple types of stylistic features with a single token of supervision

or if more fine-grained control is needed to accomplish the task. In Chapter 6, we

test how models can generalize to new values when learning aggregation operations

and if aggregation operations can generalize across multiple datasets. In Chapter 7,

we experiment with techniques to teach models how to make semantic generalization

across two datasets. This allows the models to generate output that combines attributes

never seen together in the training data. Finally, the conclusion chapter, Chapter 8,

summarizes the contributions of this thesis and describes future directions.
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Chapter 2

Previous Research

2.1 Overview

The goal of this thesis is to develop methods that enable Neural Natural Lan-

guage Generation (NNLG) models to better generalize to unseen test instances. In this

chapter, we will start by going over NLG methods and architectures and NNLG models.

Then, we will explore recent work done in different generalization tasks, such domain

transfer.

2.2 Natural Language Generation

NLG is the subfield of NLP which involves data-to-text generation and text-to-

text generation. Data-to-text generation generates from either a semantic or database

representation and text-to-text generates from text input; they both generate text as

output. This is a wide area of research, with many types of generation, such as machine
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translation, question answering, text summarization and dialogue generation [Garbacea

and Mei, 2020]. Inputs for NLG tasks can be anything from text to structured knowledge

to an image. In this research, we focused on data-to-text NLG. In the datasets used

in this thesis, the input is a flat representation of the semantics that are desired in

the output. We are experimenting with how NNLG models generate text, and ways to

control this generation, given an input meaning representation or MR. First, we will

review NLG more broadly, including the components of NLG and the architectures, and

then we review over data-to-text generation in particular.

2.2.1 NLG Tasks

There are six basic tasks found in many template based, grammar-based and

statistical NLG systems. These tasks generally describe what steps need to be accom-

plished by any NLG system, either explicitly or implicitly [Reiter and Dale, 1997, 2000].

1. Content Determination: the process of deciding what information should be in

the text.

2. Discourse Planning: the process of deciding the order in which the information

should be presented in the text.

3. Sentence aggregation: the process of grouping data into separate sentences and

how data will be combined in a single sentence, if grouped into a single sentence.

4. Lexicalization: the process of deciding specifically which words and phrases will

be used in the text.
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5. Referring expression generation: the process of deciding which words and phrases

will be used to express domain entities.

6. Linguistic realisation: the process of creating the final output with correct gram-

mar.

These six stages of generation are sometimes accomplished in a separate module for

each task. Though, in many models, these stages are combined, either all into a single

step or into multiple steps that each accomplish one or more stages. For example, a

system could both decide what content will be realized and the order in which it will

be realized in a single module of the generator. These six stages are often completed

explicitly in statistical NLG models. NNLG models, on the other hand, often complete

all these steps implicitly. They do not have explicit modules to perform each of these

stages. However, even with models that accomplish these tasks implicitly, all of these

must be executed to take in input and generate text. Controlling the decisions being

made in each of these stages is needed to generalize operations to new, unseen, inputs.

2.2.2 NLG Architectures

There are three dominant approaches to NLG architectures, which can also be

described as ways that NLG systems can be organize the tasks listed above [Gatt and

Krahmer, 2018]. These are as follows:

1. Modular architectures: the tasks are divided amongst different modules where

each module does one or more particular task.
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2. Planning perspectives: these are similar to the modular approach but with less

strict boundaries between subtasks.

3. Integrated approaches: these are not divided into tasks and are usually dependent

on statistical learning.

Modular architectures are the oldest methods of NLG. They are often con-

sidered pipe-lined architectures, with each task handled by a module in the pipeline.

The module completes the task which it was designed for and then the output of that

module is passed to the next module in the pipeline. Realizing the final, textual output

is the final step. Different models can divide the tasks up differently between modules.

Some models have multiple tasks in a single module and some even split up a single

task between multiple modules.

Planning based approaches, on the other hand, often do not divide these differ-

ent tasks cleanly across different modules. In a planning perspective, goals are accom-

plished by identifying a sequence of actions that are needed to accomplish the goal. This

means, that if needed, the “what to say” and “how to say it” tasks, which are clearly dif-

ferent tasks in modular architectures, can be combined and approached simultaneously.

Planning, for example, can be done through grammar by viewing linguistic structures

as planning operators. Since these structures both indicate what is being said and the

rules which indicate where it can be said, tasks such as sentence planning and realisation

are not separated into different modules.

Finally, integrated, or end-to-end, approaches do not break the generator into
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different modules, tasks or actions. There are many ways to approach this kind of gen-

eration, including using context-free grammar rules learned from data using statistical

machine translation methods [Wong and Mooney, 2007]. These end-to-end methods

also include deep learning neural methods, which we go into more detail in Section 2.3.

2.2.3 Data-to-Text Generation

Data-to-text generation is a classic NLG problem [Kukich, 1983; Reiter and

Dale, 1997] that takes structured data and generates natural language. The structured

input data can come in many forms, such as a records or tables [Mei et al., 2015;

Wiseman et al., 2017] or a set of triples [Gardent et al., 2017], but the output must

be natural language. The goal of the generator is therefore to take the input data and

generate a fluent output where the information in the text transcribes some or all of the

information in the input data. This can have many applications, such as sport reports

[Chen and Mooney, 2008], presenting customized scientific information [Wanner et al.,

2015], and interacting with financial data [Plachouras et al., 2016].

The boundaries of what can be done in data-to-text generation with state-of-

the-art NNLG models is constantly being expanded. While there has been speculation

that these models allow for end-to-end training that does both the sentence planning and

surface realization steps mentioned previously [Dusek and Jurćıcek, 2016b; Nayak et al.,

2017], recent work has found that even when using neural methods a more pipe-lined

approach leads to more fluent output [Ferreira et al., 2019].

Several different approaches have examined more hybrid architectures, such as
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in work by [Jiang et al., 2020]. In this work, they experimented with combining both

explicit representations of sentence planning operations with neural methods to focus

on the most relevant data in the data structures presented to the model. There has

also been work which defines multiple modules for content and sentence planning while

maintaining the end-to-end nature of neural models [Puduppully et al., 2019]. Semantic

errors have also been explored in recent work, such as Shen et al. [2020], where they take

advantage of the segmental nature of data-to-text generation and create a model which

explicitly must generate each section of the input data as a segment in the output text.

There is also work that both modifies the architecture and the input data. In Rebuffel

et al. [2021], they aligned each word in the output text to the tokens in the input and

the decoder of the model leverages these alignments to generate fewer hallucinations.

There has been recent work in data-to-text generation to create new datasets,

such as DART, a large dataset of RDF triples in multiple domains [Nan et al., 2020]

and ToTTo, a table-to-text dataset that produces a single sentence description from a

highlighted set of cells from a Wikipedia table [Parikh et al., 2020]. Existing datasets

such as E2E [Dušek et al., 2020], RotoWire [Wiseman et al., 2017], and WebNLG

[Gardent et al., 2017] have been cited and used hundreds of times since their releases

[Fu et al., 2019; Zeng et al., 2018; Fu et al., 2019; Balakrishnan et al., 2019; Kedzie and

McKeown, 2019; Puduppully et al., 2019]. Data-to-text generation is a rapidly growing

field and researchers need to be able to generate new output for different tasks and

situations, without necessarily needing to create an entirely new dataset.
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2.3 Neural Natural Language Generation

NNLG models are behind recent most advances in NLG. They are able to auto-

matically learn from raw data to represent features and model complex high-dimensional

distributions. Essentially NLG systems can be created with minimal supervision and

hand-crafted work, when one has a significant amount of training data. The steps

covered in Section 2.2.1 are all combined into a single end-to-end framework. It is

commonly assumed that every step is automatically learned by the model, without the

need for intermediate representations, allowing significantly less hand-engineering and

the ability to learn new tasks by creating new datasets [Wen et al., 2015; Dusek and

Jurćıcek, 2016b; Nayak et al., 2017; Wen et al., 2016].

2.3.1 Seq2seq models

Sequence-to-sequence, or seq2seq, models [Sutskever et al., 2014] are popular

in many NNLG tasks. This is because they do not require a known and fixed length

input, and the length of the input and output can be different. Seq2seq models have

two components, an encoder and a decoder. They map a sequence input onto a fixed

dimensionality vector in the encoder, which then gets passed to the decoder where

the target sequence is decoded using that vector. This is very useful for data-to-text

generation where very frequently the data and text are not the same length. Seq2seq

models are conditional language models, also referred to as encoder-decoder models

because they consist of two main parts, an encoder which interprets the input, and a
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decoder, which decodes the output. The conditional probability of the output given the

input can be expressed as:

p(y1, y2, ..., yT ′ |x1, x2, ..., xT ) =
T ′∏
t=1

p(yt|v, y1, y2, ..., yt−1) (2.1)

where x is the input sequence, y is the output sequence, T is the length of the input

and T ′ is the length of the output.

The encoder and decoder of seq2seq models are often composed of either Re-

current Neural Networks (RNNs) [Rumelhart et al., 1986; Mikolov et al., 2010] or Long

Short Term Memory units (LSTMs) [Hochreiter and Schmidhuber, 1997]. RNNs are a

neural network architecture that is able to model long-term dependencies by passing the

output of the feedforward network which processes each item of a sequence as input to

the next item in the sequence. But while RNNs should be able to model any length of

sequence, the reality is that vanishing and exploding gradients means that they cannot

actually consider context beyond a few previous items [Bengio et al., 1994].

LSTMs are the solution to this problem and therefore are widely used in

seq2seq models. LSTMs have a similar architecture to an RNN, except with an ad-

ditional memory cell with a self-connected recurrent edge which stores information over

many timesteps. At each timestep the LSTM cell takes as input the item in the sequence

at that timestep and the hidden output and the internal encoder state of the LSTM cell

from the previous timestep and output a hidden output and an internal encoder state

[Dušek, 2017]. The memory cell ct has a node with an internal hidden state ht and a
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series of gates. The gates regulate what information is retained and what is forgotten

in the cell using a sigmoid neural net layer. The first gate is the input gate it, which

controls what values and how much the unit is updated. The second gate is the forget

gate ft, which controls how much information from the previous cell is forgotten. The

third and final gate is the output gate ot, which controls how much of this cell is output.

The operations computed by the LSTM at each timestep are [Graves, 2013]:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)

ot = σ(W + xoxt +Whoht− 1 +Wcoct + bo)

ht = ottanh(ct)

(2.2)

where σ is the logistic sigmoid function, xt is the input at timestep t and W are learned

weight matrices. Using these formulas, an LSTM can control what information is re-

membered and forgotten allowing the gradient to pass through without vanishing or

exploding.

Both the encoder and the decoder are composed of either RNNs or LSTMs.

The seq2seq model then learns from the training data, which is a set of paired input

and outputs, using maximum likelihood to maximize the conditional log-likelihood of

the correct output given the input for each instance in the training data. For NNLG, in

order to generate an output given only an input, there are different decoding methods
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that can be selected from in order to generate the most likely output sequence.

To generate the output, the decoder scores a potential sequence using the

following equation:

ŷ = argmax
y

P (y|x) = argmax
y

N∏
t=1

P (yt|y<t, x) (2.3)

where each word in the output sequence, yt is scored given the previous words that were

predicted and the input x. The probability distribution over the next word is commonly

calculated using a softmax function.

To generate the most likely output, the decoder, theoretically, would calculate

the probability of every potential output sequence and then select the one output with

the highest likelihood. But calculating the probability of every possible combination

of words is not feasible, since the problem is exponential in length. This means that

we use different decoding strategies to prune off branches that are unlikely to yield

the best result. While there are multiple strategies that accomplish this, for all of the

experiments and models, we use beam search. Beam search is a breadth-first search

method over the hypothesis space, where for each token the model only keeps the k-

best hypotheses where k is the beam size. This method has proven to be effective and

has become the standard algorithm for many NLG tasks.

All of the models that we used in this thesis also use an attention mechanism

[Bahdanau et al., 2014; Luong et al., 2015]. This mechanism is used to enhance seq2seq

models by allowing them to learn to pay attention to particular sections of the sequence,
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especially with longer utterances where not all of the input necessarily informs the token

that is currently being generated. Attention for each target token is calculated over all

the tokens in the input and higher values are assigned to tokens that are considered

relevant for the token being generated.

In this thesis we used multiple seq2seq frameworks based on the state-of-the-

art and the availability of NNLG models. For the experiments in Chapters 5 and

6, we built the models using the open-source framework TGen [Dusek and Jurćıcek,

2016a], which is implemented in Tensorflow [Abadi et al., 2016]. For the experiments in

Chapter 7, we used the open-source seq2seq modeling framework OpenNMT-py [Klein

et al., 2017], which is implemented in pyTorch [Paszke et al., 2019]. We also used GPT-

2, a pre-trained model. We used an open-source implementation of GPT-2 available on

Huggingface. Pre-trained models are the current state-of-the-art in NNLG, we will go

into more detail about GPT-2 and other pre-trained models here.

2.3.2 Pre-trained Models

Since the introduction of BERT [Devlin et al., 2019] in 2018, there has been

a growing interest in using pre-trained models in NNLG. Pre-trained language models

are trained on large amounts of unannotated data, which allows the model to learn the

general structure of human language, including features like word usage and grammar.

There have been many pre-trained models released in the last couple of years, including

GPT-2 [Radford and Narasimhan, 2018], GPT-3 [Brown et al., 2020] and ELMo [Peters

et al., 2018]. After pre-training, the model can be fine tuned for particular tasks with
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smaller amounts of data, since it only needs to learn the specific task, instead of also

needing to learn how to generate human language in general. Since the data fed to the

model does not need to be annotated, millions or billions of utterances can be used to

train the pre-trained model. This has allowed BERT, and other pre-trained models, to

excel at tasks such as question answering [He et al., 2020], sentiment analysis [Li et al.,

2020; Karimi et al., 2020] and named entity recognition [Liang et al., 2020]. Experiments

using and improving these models are being released in new papers and new models are

appearing very frequently.

Models are pre-trained using an assortment of tasks, which can be summarized

into three categories: supervised learning, unsupervised learning and self-supervised

learning [Qiu et al., 2020]. Supervised learning involves learning to map an input to

an output and requires input/output pairs. Unsupervised learning tasks learn from

just unlabeled, unpaired data and find intrinsic knowledge from the data. Finally, self-

supervised learning is a blend of the two, where the learning paradigm is the same as

supervised learning, but no labels or data pairs are needed since the model creates those

automatically.

There are multiple types of tasks within these three categories that can be used

to pre-train a model. The most common unsupervised task is probabilistic language

modeling, where the model learns the probability of the next word given all of the

previous words. The product of the probabilities for each word is the overall probability

of that utterance. This can be accomplished either in one direction or two directions.

When carried out in two directions the model is a bidirectional language model (LM),
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which is a combination of two unidirectional LMs, one for left-to-right and one for

right-to-left.

Another common pre-training task is masked language modeling, which was

based on the cloze procedure [Taylor, 1953]. This task is a self-supervised task where the

model masks some tokens in the utterance by replacing the actual token with a special

mask token or a random token. The model then learns to predict these tokens based on

the rest of the model. This task was adapted for BERT [Devlin et al., 2019]. There have

also been improvements made to the basic masking procedure, such as dynamic masking

where a different mask is generated each time the data is fed through the model [Liu

et al., 2019]. Also, there are additional tasks used for pre-training such as permuted

language modeling [Yang et al., 2019b] and denoising autoencoder [Lewis et al., 2020].

Pre-training is hypothesized to be a type of regularization and can help the

model avoid overfitting [Erhan et al., 2010]. This means that pre-training has been

shown to help models avoid generalization errors. This is why we experimented with

this type of model, to see if the general knowledge of language gained from pre-training

will aid in these attempts to generalize on specific datasets.

GPT-2 [Radford and Narasimhan, 2018] is one of the most recent pre-trained

models that is widely available and used. We experiment with generalization using GPT-

2 in this thesis. GPT-2 is a transformer-based language model, which is different from

a seq2seq model because it does not have an input and an output. Instead the language

model predicts each next word based on the words given so far, P (yt|y1, ..., yt−1). While

these models are generally useful for generating text such as in creative writing, etc.,
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they can be used for other types of generation. For the system that we employed, we

are able to generate output text by training the model on data and text concatenated

with an end token and then testing by only passing the input data. Since the model

predicts the next word based on all previously seen words, it is able to learn to generate

the review text given the data input.

2.4 Generalization in Neural Natural Language Genera-

tion

Generalizing to new input has always been a feature desired in Natural Lan-

guage Generation (NLG). If we can only generate instances that we have seen in the

training data then we are very limited in what we can generate. While simply gener-

alizing to unseen data is standard in NLG tasks, and test sets are generally composed

of entirely unseen data, this is just the first step in generalization. To really generalize,

we need to be able to generate instances which are significantly different from the data

seen in the training data. This is how we will be able to leverage existing datasets to

combat the data bottleneck and learn to generate on small amounts of data. This is not

an easy task. Generalizing, especially to adversarial examples, has been shown to be a

challenging task that neural models often fail to accomplish [Wallace et al., 2019; Feng

et al., 2018; Ribeiro et al., 2018; Goodfellow et al., 2014]. Generalizing is a growing field

of research, the different techniques to approach these problems appearing often.

The data bottleneck is widely believed to be a fundamental issue within NNLG
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with work being accomplished to combat it in different ways[Oraby et al., 2019; Chen

et al., 2020b; Chang et al., 2021]. The data bottleneck is a result of NNLG needing

thousands of utterances to train, and that annotated datasets take a tremendous amount

of time and resources to create. When it takes 5hrs to label 50 utterances, creating tens

of thousands of utterances to train a model on a new domain is not feasible [Peng et al.,

2020].

Pre-training appears to be the main way that recent work has approached the

problem of generalization and tackling the data bottleneck. There have been multiple

papers using pre-trained models to perform few-shot tasks. Few-shot means that the

model only needs to be trained or fine-tuned on a small amount of data to learn new

tasks, instead of the usual large amount of data needed to train a neural model. In

Chen et al. [2020a], they use a pre-training regime that exploits unlabeled data-to-text

data to create a generation model that is designed to generate knowledge-enriched text.

They found that they could achieve the same results as a baseline model with only one

fifteenth of the data.

Generalization across domains has been the goal of multiple recently released

papers, and pre-trained models are the most recent attempt at solving this problem.

While we are not experimenting with domain transfer in this work, these few-shot tasks

are examples of how existing datasets are being leveraged to generate novel output.

New models are being generated that can more easily learn few-shot tasks, such as Chen

et al. [2020b] where they created a model to generalize across domains. Their model is

designed in two phases, the first performs content selection on the input data, and the
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second step generates using the pre-trained GPT-2 language model to generate coherent

text. This allows them to improve on the baseline with just 200 training examples. In

Peng et al. [2020], they also want to more easily learn to expand to new domains, in

this case, in the context of task-oriented dialogue generation . This few-shot NLG task

involves created a pre-trained model and fine-tuning an small amounts of data within

the target domain. They create a model, based on GPT-2, called SC-GPT, which is

pre-trained on a large amount of dialogue act labeled utterances as well as the GPT-2

pre-training to help it learn the data-to-text task-oriented dialogue generation problem.

With this model they are able to generalize to new domains with a small number of

training instances in the target domain.

Data augmentation is another way to handle a lack of training data. In this

work, we generated synthetic data based on existing datasets, changing the stylistic

features present in the training data using a statistical generator. In Chang et al. [2021],

they also generate new data from existing data-to-text datasets using two different

methods. The first is by replacing values which are in both the input data and the

output text with other values in the same category and the second is by using GPT-2

and cycle consistency to generate new training instances. With these data augmentation

techniques with less than 10% of the annotated data they outperform seq2seq models

trained on 100% of the annotated data.
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2.5 Summary

In this chapter, we described NLG, NNLG and generalization within NNLG. In

Section 2.2, we went over the tasks needed to generate text, including content planning,

sentence planning and realization. We also described the different types of architec-

tures that can do these tasks. This work is focused on data-to-text generation and

in this chapter we describes the state-of-the-art in data-to-text generation tasks. In

Section 2.3, we went over the architecture of NNLG models, more specifically seq2seq

models and pre-trained models. Then, in Section 2.4 described the state-of-the-art in

work in generalization, including work using pre-trained models such as GPT-2 [Radford

and Narasimhan, 2018] and few-shot learning tasks.
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Chapter 3

Creating Corpuses

3.1 Overview

The goal of this thesis is to test how well NNLG models’ generalize. Being

able to generalize will allow us to generate different types of data with existing datasets

and help users get more use out of a single dataset, which will help combat the data

bottleneck in NNLG. To perform these tests, we needed datasets which we used to train

the NNLG models. In this chapter, we will describe the three datasets that we use in the

experiments and the methods used to create them. We used three data-to-text datasets

from the same domain, the restaurant review domain. We decided to use datasets within

the same domain so that we can learn to generalize within and across datasets.

The three datasets that we use are all in the same domain, restaurant reviews.

They are data-to-text datasets, so each instance in the dataset is a meaning represen-

tation (MR) and utterance pair. The MR is made up of a series of attribute and value
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pairs which represent the semantics in the utterance. The utterance is one or more sen-

tences which represent the attributes and values in the MR in the form of a restaurant

review. The three datasets are E2E, E2E synthetic and NYC. E2E is a crowdsourced

dataset [Novikova et al., 2017b], and E2E synthetic and NYC are synthetic datasets.

E2E synthetic is a synthetic dataset based off of the original E2E dataset, so they have

the same attributes and values. We will describe the process of creating a synthetic

dataset and the NYC dataset in particular in Section 3.2, the process by which E2E

was created and the attributes and values in the dataset in Section 3.3, and converting

the E2E dataset into a synthetic dataset Section 3.4.

We hypothesized that synthetically created data, which is automatically gen-

erated using Statistical Natural Language Generation (SNLG), can be used to augment

crowdsourced data. This is why having both synthetic and crowdsourced datasets from

the same domain is vital for these experiments. Synthetically generated data can be

generated quickly without having to query humans for utterances, a task which takes

time and money. It is also very structured, so if you want significant amounts of data

with a specific feature, one can acquire that dataset by generating synthetic data. This

is true even if that type of construction is quite rare in datasets generated by people.

Synthetic text data is used to both perform specific sentence planning generalization

and to combine data from multiple sources. As mentioned previously, crowdsourced

data generally takes significant time and capital to collect and the quality of the data

is difficult to control. On the other hand, crowdsourced data can also be more stylisti-

cally varied than synthetic data, though this can be difficult to elicit from the human
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annotators. There is also a third type of dataset, natural datasets. These are the most

stylistically varied and complex of these datasets, extracted from existing sources on the

internet, e.g. Twitter and Yelp, but they do not have semantics associated with them.

They therefore need to be generated either automatically or with complex crowdsourc-

ing strategies, which is why we do not use them in these experiments for data-to-text

generation. Both synthetic and crowdsourced datasets will be used in this thesis.

There are three types of datasets: (1) synthetic, which is automatically gen-

erated using statistical natural language generation (SNGL), (2) crowdsourced, which

is generated by asking humans to write sentences given instructions or another type of

prompt, and (3) natural, which is gathered from sources, generally online, where peo-

ple write at will (Yelp, Twitter, blogs, etc). In the data-to-text generation tasks, each

dataset has its advantages and disadvantages.

3.1.1 Synthetic Datasets

Synthetic datasets can be generated quickly and cheaply with a statistical gen-

erator, which we define in Section 2.2.2. Statistical generators, given enough potential

content, can create a dataset with as many utterances as needed. Statistical genera-

tors can perform content planning and sentence planning allowing the models to decide

the order of the content, the aggregation operations used to combine them, additional

stylistic features to add to the utterance to modify the voice and other modifications.

A set of just a few templates can therefore create hundreds of unique utterances, de-

pending on the number of voices and the potential variety of features that can be added
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to contribute to the voice. We are then able to generate synthetic datasets of tens of

thousands of utterances, which are needed to train an NNLG model.

Synthetic datasets are especially useful for creating controlled datasets with

particular stylistic features. When generating a dataset with a statistical generator one

has complete control over the types of features present in the dataset. For example, if

one wants to test a NNLG’s ability to generate contrast correctly, a statistical generator

can generate thousands of examples of contrast and the NNLG can be trained and the

model’s ability to generate this particular feature can be tested. It also makes testing

these features more feasible without needing the resources to generate a crowdsourced

dataset with the specific intention to include this feature.

There are a few disadvantages of using a completely synthetic dataset. One

issue is that this method relies on templates and any new attribute needs a new template.

These templates, which will be explained in more detail in Section 3.2.1, need to have

the syntactic structure of the phrase so that the SNLG can add in adverbs and other

features while maintaining grammaticality. Since these templates are not simple to

generate it takes an expert annotator to generate them. Also, each stylistic feature that

needs to be controlled needs to be added to the SNLG if not already present, complete

with the rules needed to add the feature and maintain the fluency and grammar of the

utterance. The model also needs as input the probability of each feature appearing in the

text and these probabilities need to be hand-tuned. While this is all often less work than

generating a crowdsourced dataset or collecting a natural one, it is not an insignificant

amount of effort. This also means that there are limited sentence structures and the
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text will not have the stylistic variation that exists in natural text. Also, since the

statistical model must use hand written rules and templates to generate, grammatical

errors are possible. The utterances might also, even if grammatically accurate, sound

artificial and lack the fluency that is present in utterances written by a human. Any

grammatical errors or unnatural phrasing might be learned by the NNLGs trained on

this dataset, so the model can potentially generate these mistakes as well. This is one

reason why when evaluating the outputs of the NNLG model with human annotators

it is important to also evaluate the synthetic dataset so that a proper baseline can be

established.

3.1.2 Crowdsourced Datasets

Crowdsourced datasets are more natural than synthetic data since humans

write the sentences that are in the dataset, though, as mentioned previously, it is much

more expensive and time consuming to generate these types of datasets. To generate

a crowdsourced dataset for a data-to-text task, the annotators are presented meaning

representation (MR), either in a written or visual format, and then asked to write an

utterance based on the MR and a series of instructions. These prompts will inform the

author if there are other guidelines they need to follow, such as the type of utterance they

need to write (review, statement, etc.), if there are any length restrictions (maximum

or minimum number of words or sentences), etc.

An advantage of the crowdsourced dataset is that it allows the authors to

control the instructions and the data given to the crowdworkers and the type of data
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they generate. If the authors want a specific feature in their dataset they simply need to

add instructions requesting that the crowdworkers include those features in their writing

and they have a dataset with the needed feature. Also, for data-to-text datasets, since

the MR was used to generate the dataset the authors do not need retroactively design

an MR and match it to data. There will be a fixed set of attributes and values and the

utterance will already be matched to a complete MR. If the quality of the crowdworkers’

results are properly controlled the utterances should have accurate grammar and should

be fluent and natural since humans wrote the utterances.

While these advantages may make it seem like crowdsourced datasets are op-

timal for data-to-text generation, there are still some downsides. The first is that it is

expensive and time consuming to generate these crowdsourced datasets since tens or

hundreds of thousands of utterances are necessary to train an NNLG and it can take a

minute or two to generate a single utterance. If one assumes it will take one minute to

generate an utterance, and the goal is to pay crowdworkers 8.5USD an hour, it would

cost approximately 1500USD to get 10,000 utterances. Collecting a new dataset for

every new attribute or feature one wants to add becomes prohibitively expensive. Also,

in order to get varied sentences, one does not want to influence the writers by including

too much text in the semantics presented to them, so a schema must be created to allow

for variety. Finally, while the text will most likely be more grammatically accurate and

natural, it is hard to get humans to generate truly varied text using crowdsourcing, since

most participants are more likely to generate the minimum requirements presented to

them to try to maximize the number of tasks they can complete, since in most cases for
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these crowdsourced tasks the more utterances a single crowdworker can generate the

more money they will make.

3.1.3 Natural Datasets

Natural datasets are datasets that are gathered from existing sources, generally

online, where humans are generating written utterances not for the purpose of the

dataset, but instead for multiple different reasons, such as writing reviews and blogs.

While there are many natural datasets for different NLP tasks, such as classification

[Waseem and Hovy, 2016] and sentiment analysis [Socher et al., 2013], there are fewer for

natural language generation. One reason for this is that while there are many different

sources of natural language data, the task of NNLG needs pairs of data, either text-to-

text pairs or data-to-text pairs, both of which are difficult to find online. For text-to-text

pairs, some tasks are easier to find natural datasets for, such as summarization [Lu et al.,

2020], though others, such as changing the tone of an utterance, are much more difficult

to collect pairs for. Data-to-text datasets are challenging to extract from online sources

since there generally is not a fixed set of attributes that can appear in the text. The

authors are not bound to certain attribute or values in their writing, and even with

more concrete tasks such as writing reviews, there are many different features of the

entity they are reviewing that the reviewer can write about. One dataset of data-to-

text, YelpNLG, generates meaning representations (MRs) by selecting attributes that

they would find in the text, such as food words, and then generating MRs for reviews

which had these features present [Oraby et al., 2019]. Additional features in the text
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were not included in the MR.

These natural datasets have many advantages, they are cheaper to collect

than crowdsourced data, they are often very varied and often the writers’ tone and

voice are apparent in the utterances. They are the most natural of the three types

of datasets, synthetic datasets often are clearly written by a statistical generator and

crowdsourced datasets are created by crowdworkers who are trying to get as many

utterances written as quickly as possible, so neither are perfect representations of how

people create utterances when doing so of their own volition. The main downside of

these natural datasets is that they are not designed for NNLG. MRs are often inaccurate

or only capture part of the utterance. Because in this work we are testing the bounds of

generalization and the ability of models to learn very specific attributes in the utterance,

while natural datasets have the most variety and represent what we hope NNLGs will

eventually be able to generate, there are not currently useable natural datasets for these

tasks.

3.2 NYC Dataset

The first dataset we will describe is the NYC dataset. This is a synthetic

dataset, which consists of data in the form of attributes and values paired with utter-

ances, generated by the Statistical Natural Language Generator (SNLG) personage

[Mairesse and Walker, 2007]. The utterances are reviews of restaurants and the data

which generates the reviews comes from real reviews of restaurants in NYC, which is
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why we refer to the dataset as NYC. In this section we will describe the attribute/value

pairs used to generate the utterances in the dataset, then we will go over the the SNLG

personage which generates the dataset before finally describing the particulars of the

dataset itself.

3.2.0.1 Source of Data

The NYC dataset is from the personage’s built in content pool, which is based

on a database of restaurants in New York City. This dataset consists of approximately

1000 restaurants and the information was gathered from information freely available

from the internet [Walker et al., 2002b]. There are seven different attributes, four of

which have scalar values associated with them, and, therefore, can be used for contrast

and concession. Each restaurant has six attributes associated with it, which describe the

qualities of the restaurant. There are four quantitative attributes, food quality, service,

decor and price and two categorical attributes, cuisine and location. Each of the four

scalar values are transformed to map from 0-100 in their original ratings, where higher

values are more desirable. Food quality, service and decor are mapped directly since

their original values also had higher values as more desirable. The inverse was taken for

price, so the highest listed price was mapped to 0, since higher price values are generally

less desirable. Since these values are from real data, the reviews are semantically feasible,

for example, poor food quality and excellent service is a combination that appears very

infrequently in the data, as there are not many actual restaurants with this combination

of attributes. This allows us to use these combinations with the knowledge they make
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semantic sense. An example output from personage using all the attributes in Table

3.3 is in Row 1 of Table 3.2.

One challenge we face in generating diverse output in NNLG is that NNLG

models are highly sensitive to the distribution of phenomena in the training data, and the

personality experiments showed that the outputs of NNLG models exhibit less stylistic

variation than their training data [Oraby et al., 2018b]. Moreover, even large corpora,

such as the 50k E2E Generation Challenge corpus, may not contain particular stylistic

variations. For example, out of the 50k crowdsourced examples in the E2E corpus,

there are only 1,956 examples of contrast with the operator but. There is also only

one instance of distributive aggregation because attribute values are rarely lexicalized

identically in E2E. In NYC on the other hand, attributes food quality, service, price

and decor all have scalar values that allow for contrast, and we are able to increase

the probability of any stylistic variation we want to occur more frequently so we can

create a dataset with ample contrast. The rhetorical structure also means that we have

a dialogue act, recommend, that supports personage ability to have a justify relation,

which is in the NYC example in Row 1 of Table 3.2 with the text “I know xname is

alright because”. The rest of the reference is informing this recommend act.

3.2.1 Personage Tool

personage is a highly parameterizable statistical generator which uses deep

syntactic structures (dsynts) to generate outputs with different stylistic variations such

as pragmatic markers and aggregation operations [Mairesse and Walker, 2011]. A dsynt
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is what represents each attribute in the dataset, and describes how to generate a textual

output for that attribute. personage takes an input two files, a textplan, which

indicates which dsynts can appear in the reference and their relationship with each

other, such as justify and infer, and a parameter file which contains the probability

of each feature, such as types of aggregation operations or pragmatic markers, being

used by the model. personage can create many different outputs for each textplan

given, depending on the variety of aggregation operations and pragmatic markers in the

parameter file as well as the number of dsynts in the textplan.

The architecture for personage is in Figure 3.1. The model has three modules

which it uses to take the input files and output natural language. These three modules

are the content planning module, the sentence planning module and the realization mod-

ule. The content planning module selects and structures the content, making decisions

such as content size, polarity and content ordering. This is where the generator does

both content determination and discourse planning, where the dsynts are selected and

ordered. Next is the sentence planning module, which has four submodules. The first

is syntactic structure selection, where it decides features like the number of first person

pronouns that will be realized when generating the dsynt based on inputs like syntactic

complexity and polarity. Next, the second and third submodules perform aggregation

and pragmatic marker insertion respectively and will be covered in more detail below.

The fourth and final submodule within sentence planning, lexical choice, selects which

words will be used in the output. The realization module combines all the decisions of

the previous two and outputs the natural language utterance.
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Figure 3.1: The architecture of the personage generator.

The pragmatic markers and aggregation operations defined in the parameter

file and used by personage can be tuned manually to form the desired output, but

there are also built-in personality templates for the ten personalities from the Big Five

personality traits. We have used these personality templates to generate data with

significant stylistic variation. An example of the stylistic variation used for the introvert

and extrovert personalities and the rationale behind including each one in either the

extrovert or introvert personalities is in Figure 3.2. While there are many features for

each personality in both the content planning phase of the model and in all four steps

of sentence planning, not all are used in a single utterance. Given a parameter file with

all these features personage decides which features to use in the utterance using the

structure in the dsynts. For example, an output utterance from personage is “xname

is a Japanese place near xnear, you know, it is a pub mate and it is in the city centre!”.

The dsynts are realized in a single sentence and there are two emphasizer hedges, “you

know” and an exclamation. But other features, like tag questions and the downtoners

“kind of” and “like” are not present because of the length of the utterance.

A list of the primary aggregation operations and pragmatic markers used by
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Figure 3.2: The personality model for the introvert and extrovert personalities.

personage can be seen in Table 3.1. personage uses the dsynt’s structure and values

to determine when an aggregation operation can be used to concatenate two dsynts

using an appropriate operation [Stent et al., 2004]. The “with” relation, for example,

has two syntactic contrasts: (1) the subjects of the clauses must be identical and (2)

the clause being concatenated using the “with” must have a have-possession predicate.

While this operation has very specific requirements, others, like merge, only need one

identical argument and period has no requirements.

Examples of output from personage can be seen in Table 3.2. In Rows 1&2

there are examples of the narrator voice, from the NYC source and the E2E source

(to be covered in more detail in Section 3.3) respectively. These utterances realize the
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Attribute Example

Aggregation Operations
Period X serves Y. It is in Z.
“With” cue X is in Y, with Z.
Conjunction X is Y and it is Z. & X is Y, it is Z.
All Merge X is Y, W and Z & X is Y in Z
“Also” cue X has Y, also it has Z.

Pragmatic Markers
acknowledge definitive right, ok
acknowledge justification I see, well
acknowledge yeah yeah
confirmation request let’s see what we can find on X, let’s see .....,

did you say X?
initial rejection mmm, I’m not sure, I don’t know.
competence mitigation come on, obviously, everybody knows that
filled pause stative err, I mean, mmhm
down kind of kind of
down like like
down around around
exclaim !
indicate surprise oh
general softener sort of, somewhat, quite, rather
down subord I think that, I guess
emphasizer really, basically, actually, just
emph you know you know
expletives oh god, damn
near expletives oh gosh, darn
in group marker pal, mate, buddy, friend
tag question alright?, you see? ok?

Table 3.1: Examples of aggregation operations and pragmatic markers.

content of the MRs but have very few other features, though there is some variety in

aggregation operations, with a contrast in Row 1. Rows 3-7 have examples of six of the

different personalities that personage can generate. The pragmatic markers that are

added to the references are in bold. Some personalities, like extrovert, do not have

many pragmatic markers that are added to the text, and others, such as agreeable,
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have multiple. There is also variety in aggregation operations with personalities for

example unconscientious has multiple uses of “also” while disagree has none.

personage also allows for variety in its output by having multiple templates

per dsynt, one of which is randomly chosen using probabilities that are input into the

dsynt. This allows for some templates to occur more frequently than others. Also,

dsynts can have synonyms included for words in its structure, which personage can

select from. Decor, ambiance and atmosphere are all synonyms that personage can

chose from in the decor dsynt. When inserting a value into the dsynt one can also give

a list of options and allow the generator to choose from them. So if one wants to say

that the food is great the system can choose between a list of words such as amazing,

fabulous, tasty, etc.

With this tool we are able to create synthetic data which we can use to either

train an NNLG with crowdsourced data that has been augmented by synthetic data,

or to test whether or not specific features are generalizable using nnlg. By creating

the data synthetically we do not need to crowdsource the data, which takes more time

and resources, but instead we can create thousands of output references with a variety

of different stylistic features that we control. We have made synthetic sets of data

for different personalities that will be described in Section 5.3.1, for distribution of

adjectives across nouns in Section 6.4 and contrast data in Section 6.5, as well as 38k

examples using the narrator voice that will be described in Section 7.2.
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Domain Personality MR Utterance

1 NYC narrator name[xname], recom-
mend[yes], cuisine[Italian],
decor[good], qual[good],
location[TriBeCa SoHo],
price[expensive], ser-
vice[acceptable]

I know xname is alright be-
cause it is pricey with friendly
service, but it provides fla-
vorful food though. It is in
TriBeCa SoHo. xname is an
Italian restaurant. It offers
good decor.

2 E2E narrator name[xname], eatType[coffee
shop], food[Indian],
priceRange[more than £30],
customer rating[high], fami-
lyFriendly[yes]

xname is a coffee shop with a
high rating, xname costs more
than £30 and it’s kid friendly
and an Indian place.

3 E2E agree name[xname], eatType[pub],
priceRange[high], cus-
tomerRating[average],
area[riverside]

Did you say xname? Well
it is a pub with a quite aver-
age rating and it is expensive
kind of in riverside, alright?

4 E2E disagree name[xname], eatType[coffee
shop], food[French],
priceRange[cheap], cus-
tomerRating[excellent], fami-
lyFriendly[yes]

Obviously, basically it’s a
French place and cheap with
a damn excellent rating and
xname is a coffee shop. It is
kid friendly.

5 E2E consc name[xname], eatType[pub],
customerRating[average],
familyFriendly[no],
near[xnear]

Let’s see what we can find
on xname. I see, I think
that it is a pub with an aver-
age rating and it isn’t family
friendly, also it’s sort of near
xnear.

6 E2E unconsc name[xname], eatType[coffee
shop], food[Italian],
priceRange[£20-25], cus-
tomerRating[high], fami-
lyFriendly[no]

Oh God I don’t know.
I mean xname isn’t kid
friendly, also the rating is
darn high, also it is a coffee
shop, also it is an Italian place.
It has a price range of £20-25.

7 E2E extrovert name[xname], food[Italian],
priceRange[moderate],
area[city centre], fami-
lyFriendly[no]

xname is an Italian place in
city centre and moderately
priced, also it isn’t family
friendly, friend, you know!

Table 3.2: personage Natural language outputs with different personalities.
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3.2.2 Generated Dataset

The NYC dataset was generated using the meaning representations described

in beginning of Section 3.2 and the model personage described in Section 3.2.1. We

required a basic dataset without specific personalities (as mentioned above, personage

can generate pragmatic markers and aggregation operations based on personality). To

do this, we generated the data using very basic pragmatic markers and set the probabil-

ity of the basic aggregation operations to be equal to each other. This means that while

there are some pragmatic markers, such as “like“, they do not appear too frequently in

the dataset. Each textplan we used to generate an utterance had all six attributes that

describe the restaurants in the NYC dataset. personage then generates a subset of

these attributes in the output utterance. There are exactly 779 different combination

of attributes describing 779 different restaurants. We had 1558 different textplans, two

for each restaurant with a positive and negative recommendation associated with each

of them. personage ran 50 times per textplan and we collected the output for every

successful run. Since personage is a statistical generator, in some cases the model fails

to generate an output. Each textplan generated 15-50 utterances. We then needed to

generate the meaning representations (MRs) for each utterance.

For each utterance, though we knew the potential attributes and values that

could be in the utterance, we needed to detect the attributes which were generated

because personage does not always generate all the attributes. Since each attribute

can only be generated a finite number of ways, given the dsynt used to generate it, we
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can automatically detect which attributes are in the utterance and generate the MR.

We also, for some of the attributes, modify the values in the textplan when generating

the MR. While for food quality, service, decor and price the values given in the textplan

are numerical, when realized by personage different numbers fall into different buck-

ets which determines which words are generated to describe the attribute. To make it

easier for the models to learn to generate we transformed the scalar values into cate-

gories. Since these textplans are reviews, personage always generates the name of the

restaurant and the recommendation dialogue act and therefore is automatically included

in the MR. We then simplified the generation task by delexicalizing the name of the

restaurant in both the MR and the utterance. We delexicalized the name (for example

“Cottos”) by replacing it in the textplan with the variable “xname”. The attributes

and potential values for each attribute can be seen in Table 3.3.

Attributes Values Scalar

name xname No

food quality excellent, good, decent, bad, terrible Yes

service excellent, good, decent, bad, terrible Yes

cuisine French, Italian, Indian, Chinese, Thai... No

location Manhattan, Harlem, Upper East Side... No

price cheap, affordable, expensive, very expensive Yes

decor excellent, good, decent, bad, terrible Yes

Table 3.3: NYC attributes and values.

When we finished generating the utterances and MRs we had 76,823 MR/utterance

pairs. Repeated MR/utterance pairs were not removed from the dataset, so there were

70,219 unique references and 7,009 unique MRs. Example MR/utterance pairs from the
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synthetically generated NYC dataset that we use in the experiments in this thesis can

be seen in Table 3.4. Stylistic features generated by personage can also be seen in this

table, demonstrating that there are different features that appear in the dataset. There

are also many aggregation features, with 48,272 utterances with the “with” aggregation

operation, and the average number of attributes per sentence is 2.54.

3.3 E2E Dataset

The E2E dataset1 is from the E2E NLG challenge [Novikova et al., 2017b],

which was created to test the capabilities of end-to-end data-driven NLG methods. It is

a data-to-text dataset where the utterances are reviews or descriptions of restaurants.

The full data set consists of about 50K references with their MRs. This is then split

into two separate datasets, a training dataset and a development dataset, with 42K

reference-MR pairs in the training data and 5K reference-MR pairs in development. An

additional 630 MRs form the test set, with an average of 7.5 references per test set MR

for evaluation. The MRs in each set do not appear in the others. The test set was

quite adversarial since the MRs on average were significantly larger than the MRs in

the training and development set, can be seen in Table 3.5.

3.3.1 Creation of Dataset

The E2E dataset was created through crowdsourcing using Crowd-Flower. In

order to generate high quality data while crowdsourcing they employed some techniques

1http://www.macs.hw.ac.uk/InteractionLab/E2E/
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MR Utterance feature N

name[xname] recommend[no]
cuisine[New American]
decor[acceptable]
food qual[good]
location[the West Village]
price[expensive]
service[acceptable]

Because xname is expensive and
a new american restaurant, but
it provides tasty food though.
It is in the West Village with
friendly staff and acceptable
decor, I wouldn’t suggest it.

contrast 8716

name[xname]
recommend[no] cuisine[Korean]
food qual[acceptable]
location[The Bronx]
price[affordable] service[bad]

Right, I believe you wouldn’t
love xname because it is a ko-
rean restaurant with rude staff.
It is in The Bronx. this place
provides decent food. it’s af-
fordable.

acknowledge
definitive

890

name[xname]
recommend[no] decor[bad]
food qual[acceptable]
service[bad]

I see, xname is the worst place
with acceptable food, bad staff
and mediocre decor.

acknowledge
justification

925

name[xname]
recommend[no]
location[Manhattan]
price[affordable]
service[acceptable]

Yeah, I wouldn’t suggest
xname since it’s affordable and
this place is in Manhattan with
satisfying service.

yeah 462

name[xname]
recommend[yes]
cuisine[Spanish]
decor[acceptable]
food qual[acceptable]
location[Manhattan]
price[cheap] service[bad]

I would suggest xname since it is
kind of in Manhattan with ac-
ceptable food and pleasant am-
biance. xname is a Spanish
restaurant. even if it is cheap,
it provides rude staff.

kind of 541

name[xname] recommend[no]
food qual[acceptable]

xname is quite the worst place
with kind of adequate food.

general
softener

1649

name[xname]
recommend[yes]
cuisine[French]
location[Chelsea]
price[affordable]

I guess xname is alright be-
cause it is affordable and a
french place. it’s in Chelsea.

down
subord

563

Table 3.4: NYC utterances with most common narrator voice stylistic features.
N=76,823
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Number of Attributes in MR

Dataset 3 4 5 6 7 8

Train 0.13 0.30 0.29 0.22 0.06 0.01

Test 0.02 0.04 0.06 0.15 0.35 0.37

Table 3.5: Percentage of the MRs in the training and testing data in terms of number
of attributes in the MR.

designed to avoid areas where crowdsourcing can fail. First, they provided clear instruc-

tions, complete with MR/utterance pairs. The workers received the average pay for the

platform to not encourage unqualified workers to cheat. And, finally, they employed a

validation procedure where they pre-validate the workers to ensure they were fluent in

English and checked that at least 20 seconds was spent generating the utterance and

they performed human evaluation on the collected data [Novikova et al., 2016]. The

participants were given visual representations of the data so that they were not influ-

enced by the word choice of the MR and so they were more likely to produce more

natural and informative utterances. An example of a pictorial MR is in Figure 3.3

Figure 3.3: Example of a pictorial MR.
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The E2E dataset has eight different attributes, each of which have at least two

potential values. The attributes name and near have by far the most options for values,

so we generally delexicalize them, so they each have only one value option, “xname” or

“xnear” respectively. After that the attribute with the most number of values is food

with eight, which represents the type of food the restaurant serves. See Table 3.6 for a

list of attributes and their values.

Attributes Values

name xname

area city centre, riverside

eatType coffee shop, pub, restaurant

familyFriendly Yes, No

food Fast Food, Chinese, English, French, Indian...

near xnear

priceRange less than £20, more than £30, cheap, high...

rating 1 out of 5, 5 out of 5, average, high...

Table 3.6: E2E attributes and values.

The E2E dataset is also more lexically rich than previous datasets, with a mean

segmental type-token ratio (MSTTR) value of 0.75. It is also lexically sophisticated,

otherwise known as lexical rareness, with 57% of the words in the references not on the

list of 2,000 most frequent words generated from the British National Corpus. It has

a diverse set of bigrams and trigrams with 61% of trigrams and 50% of bigrams only

appearing once in the dataset. The D-Level Scale [Lu, 2014] was also used to evaluate

the syntactic variation and complexity of the references. 46% of the data are simple

sentences, such as “The Loch Fyne is a moderately priced family restaurant”, but most

of the data has a more complex structure, such as “The coffee shop Wildwood has fairly
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priced food, while being in the same vicinity as the Ranch” and 16% of the data has

the highest levels of syntactic complexity with sentences such as “Serving cheap English

food, as well as having a coffee shop, the Golden Palace has an average customer rating

and is located along the riverside” [Novikova et al., 2017b]. Also, analysis of the data

shows that there are interesting discourse markers in the data that make it stylistically

diverse. For example, contrast appears in 5.4% of the training data, and gerunds appear

in 11.2% of the data[Juraska and Walker, 2018].

3.4 Synthetic E2E Dataset

We also created a synthetic version of the E2E dataset where we could control

the features present in the utterances. For this dataset, we created dsynts to generate

synthetic data based on the E2E dataset. We used these dsynts to create multiple

additional synthetic E2E datasets with specific features. These dsynts have one template

for generating each of the attributes in Table 3.6, which creates a dataset much more

structured than the original E2E. Also, because of this structure, the MRs are more

accurate, every attribute in the MR is realized in the reference for that MR since we can

correct the MR to match the output of personage. We can also add the pragmatic

markers and aggregation operations from personage to create references that have

more stylistic variation, though not the same types as are present in the crowdsourced

version of this dataset. Examples of synthetic E2E references are in Table 3.2 in Rows

2-8.
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We created three synthetic E2E datasets for the experiments in this thesis,

which we will briefly go over here and explain in further detail in later chapters. First

we created a personality dataset, with 88k MR/utterance pairs in the training data

and 1390 pairs in the testing data. This dataset uses five of the personalities built

into personage and all the features associated with them. We generated this data

set to test NNLG models’ ability to learn stylistic features and generalize to labels

which represent multiple features. The second dataset is 64k MR/utterance pairs with

different numbers of sentences to test NNLG’s ability to learn sentence scoping. Here

we used the disagreeable personality since it has the highest likelihood of aggregating

using a period and then removed all pragmatic markers from the utterance. Finally we

have the distributive training dataset, with 64k MR/utterance pairs, where we apply

specialized aggregation operations on the attributes price and rating. We go into more

detail on this dataset in Chapter 6.

3.5 Summary

In this section we went over the different data-to-text datasets that we use

throughout these experiments. Since NNLGs depend on massive amounts of data to

train they are a vital part of this thesis. All the datasets are in the restaurant domain,

allowing us to combine data from multiple datasets without losing semantic coherency

and by using synthetic datasets we can cheaply generate data with specific features,

allowing us to do concise experiments on very particular attributes in an academic
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setting.

The three main sources of data that we covered in this section are the NYC

dataset, a synthetic dataset generated using the statistical natural language generator

personage, the E2E dataset, a crowdsourced dataset designed for an end-to-end gen-

eration challenge, and a synthetic E2E dataset, which again uses personage but uses

novel dsynts which were designed to match the attributes seen in the E2E dataset. We

go into more detail on the exact datasets used in each experiment in Chapters 5, 6 and

7.
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Chapter 4

Evaluation Methods

4.1 Overview

Neural Natural Language Generation (NNLG) is difficult to evaluate, since

language itself is difficult to judge for “accuracy”. Natural Language Generator (NLG)

outputs are not obviously correct or incorrect like the outputs to classification problems.

Instead, there are often multiple ways to generate output which can be considered cor-

rect. In both data-to-text and text-to-text NLG, the model can generate text selecting

different orderings of content, employing synonyms when selecting words, choosing to

insert different pragmatic markers, and making many more decisions which will change

the output of the model, while still achieving the desired goal.

Two classic ways to evaluate the output of all types of NLGs are statistical

comparison to reference utterances and human evaluation. These both have their ad-

vantages and disadvantages, which we will go over in this chapter. Four of the most
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common metrics which evaluate NLG outputs by comparing the generated utterance to

a reference utterance are BLEU, NIST, METEOR, and ROUGE L. One problem with

these metrics is that they are all dependent on having a reference utterance to com-

pare with the generated output. In the following experiments we do not always have

reference utterances, making these metrics not only unreliable but also unusable.

Human evaluation also has its flaws. Beyond just being time consuming and

expensive, it can often be hard to prompt humans to accurately rate the features of the

output being rated. There has been recent attempts to standardize and improve human

evaluation in NLG [Belz et al., 2020; Howcroft et al., 2020] but currently human eval-

uation is not necessarily the gold standard that many of us might desire. Additionally,

while we stated that there are flaws beyond the amount of time and money it takes to

get human evaluation, those are not insignificant concerns. It is especially concerning

when using NNLG models. Researchers need to be able to test and compare many

models with slight variations in parameters, supervision and datasets. Needing to stop

and get human evaluations after each iteration of training is not a viable option if we

want to compare more than one or two models.

To this end, we define the slot error rate (SER), which is modeled after word

error rate. Word error rate is commonly used in speech recognition and machine trans-

lation systems. Slot error rate has been used previously in work such as [Wen et al.,

2015], though they define the errors in their slot error rate, or EER, as the number

of missing and redundant slots in the output. We define four distinct types of errors

that we believe cover all the possible ways to incorrectly realize the data in a meaning
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representation (MR). We go into more detail on this, the main metric for evaluating

semantic accuracy in the output, in Section 4.4.

The experiments also rely on analyzing various stylistic features, such as those

mentioned in Section 3.2.1. These are representations of different features which we

are controlling in the MR. We must determine that these features are in the output

as expected and use scripts to analyze the text and compare it to the input MR. The

scripts then either calculate the accuracy or the correlation on the test set.

4.2 Automatic Evaluation

Automatic evaluation has always been a goal within the field of NLG. Human

annotators are expensive and can take significant amounts of time. Therefore there have

been multiple attempts in past research to create reliable automatic evaluation methods

that allow researchers to evaluate the outputs of their models quickly and cheaply.

In the early 2000s, four evaluation metrics for NLG were released that are

still used frequently today, BLEU, NIST, METEOR and ROUGE L. All four compare

the outputs of the model to gold standard test references. Because these metrics only

require gold standard test references, all four can be used in data-to-text and text-to-

text NLG, provided there are gold standard test references for comparison. While these

metrics have been useful at providing quick evaluation for NLG models to allow efficient

testing of different parameters and inputs, they are not perfect metrics which capture

everything one would want in NLG outputs. Here we will first go over the different
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automatic evaluation metrics we use in this paper. We then will explain why they are

not sufficient and why we created evaluation metrics to evaluate the results.

The first evaluation metric, one of the most widely used metrics in NLG, is

BLEU [Papineni et al., 2002]. It was designed to evaluate the output of machine trans-

lation models, although it is widely used in various types of NLG today. This metrics

compares the output to one or more references using a modified n-gram precision, where

the maximum number of times any one n-gram can be counted positively towards the

precision in the output is the maximum number of times that n-gram appears in any

one reference. As a result, utterances with unwanted repetition of n-grams that appear

in the references are not rewarded for their repetition. The metric then combines the

n-gram precision using a geometric mean which takes into account that the precision

decays exponentially as n increases. The metric also penalizes short utterances so that

outputs that only realize a subsection of the output do not get higher scores than out-

puts that realize more of the reference strings with a few errors. The final equation for

BLEU is:

BLEU = BP ∗ exp(
N∑

n=1

wnlogpn)

where BP is the brevity penalty, w is the positive weight and p is the modified n-gram

precision. BLEU was one of the first attempts at using automatic metrics to evaluate

NLG models. Though it does have problems, on which we will go into detail, most

papers on NLG require BLEU scores to be complete.

Another automatic metric often used to evaluate NLG is NIST [Doddington,
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2002]. NIST is modeled off of BLEU. While in BLEU each n-gram is weighted evenly,

NIST weights the n-grams by importance. It calculates this weight by counting the

number of times the n-gram occurs in the references over the total number of reference

n-grams and taking the log of this frequency. The less frequent the n-gram, the more

important it is.

Another metric that takes BLEU and modifies it is METEOR [Banerjee and

Lavie, 2005]. METEOR tries to explicitly address some weaknesses of both BLEU

and NIST. These weaknesses are lack of recall and the use of higher order n-grams to

measure grammaticality instead of measuring this explicitly. Also, the use of geometric

averaging of n-grams, which can result in a score of zero for a single sentence if one

of the component n-gram scores is zero. METEOR corrects these flaws by mapping

between references and candidates by first looking at exact matches, then stemming

the words and mapping, and finally mapping using Wordnet synonyms. It then finds

the precision and recall over the entire dataset and calculates a final combined score by

calculating the F-score of the precision and recall.

The final automatic evaluation metric from previous work is ROUGE L [Lin

and Och, 2004]. ROUGE L was designed to improve upon the progress made by metrics

such as BLEU. The authors believed three main points: (1) that the brevity penalty

used by BLEU was insufficient as a replacement for recall, (2) that the higher order

n-grams are not a substitute for considering sentence level structure and (3) that the

geometric mean can cause a score of zero incorrectly for some sentences. They modified

BLEU by including a recall using the longest common subsequence of the reference and
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the candidates.

While all of these metrics have allowed for quick evaluation of NLG models,

helping prevent a bottleneck caused by human evaluation, they are not without their

issues. Essentially, since the release of BLEU, there have been studies which have

pointed out and analyzed their flaws, starting as early as 2 years after BLEU was pub-

lished [Zhang et al., 2004]. Specifically in the area of variations in text there have been

studies which show that these metrics do not correlate highly with human evaluation

of either fluency or meaning equivalence [Stent et al., 2005]. This finding is important

to this work because we are also attempting to generate outputs that are different from

the training data to establish how models generalize. These results have not prevented

BLEU and the other metrics from becoming the standard of NLG metrics, and in fact

the number of papers citing these metrics have grown almost every year in the past two

decades regardless of the work being published pushing back against them [Sai et al.,

2020]. Even so, there have been many recent papers that continue to demonstrate that

these evaluation metrics are insufficient for many tasks and need to be improved or

replaced with alternative metrics [Sulem et al., 2018; Sellam et al., 2020; Mathur et al.,

2020]. For these reasons, the evaluation metrics that we focused on in this paper were

not the automatic evaluation metrics like BLEU. They were instead automatic metrics

that we created and designed. We used automatic metrics to evaluate both the semantic

accuracy of the output and the stylistic features that we are generating. We also used

human evaluation where appropriate, as it is still considered the gold standard way to

evaluate aspects of text such as fluency.
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4.3 Human Evaluation

Human evaluation, while slow and expensive, is still necessary to judge some

qualities in text that we currently do not have automatic metrics for. In the exper-

iments, we use human evaluation to measure the naturalness/fluency, grammaticality

and semantic correctness of the outputs. For some experiments, we also ask for eval-

uations on the personality of the output. While the automatic evaluation metrics like

BLEU compare the results to reference text, they do not explicitly measure any of these

features. Therefore, in order to get an accurate representation of these qualities, we

need to ask annotators to evaluate the output. We did not evaluate the results of all

models with human annotators, only the models which do best according to the other

metrics.

We perform human evaluation using Mechanical Turk. We restrict the annota-

tors to those who have 98% accuracy on other experiments and who have done at least

1000 other HITs. We do this to verify that the annotators are experienced and will

answer the questions seriously. We also limit the locations of the Turkers to the USA,

Canada, the UK, Australia and New Zealand to confirm that the Turkers are proficient

in English. This is necessary because, when asking about qualities like naturalness it

is important that the annotators are as fluent as possible in English. For each HIT we

have five annotators rate the utterance so that we can calculate agreement.

The HITs are designed to first describe the task that the annotators are going

to perform. We then give them the utterance that they are annotating. We define
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fluency/naturalness by asking “Does the utterance sound fluent and natural? As though

it could be said by a human?”. Semantic coherency is defined as “Does it make sense?

Is the meaning clear?”. Finally, when we ask about grammatically, we ask “Is the

utterance grammatically correct? Does it follow the rules of English grammar?”. We

then ask the five annotators to rate how well the utterance fulfills each category on a 5

point Likert scale, where 1 means that the utterance does not fulfill the category at all,

and 5 means that the category is perfect in the utterance. An example of a HIT is in

Figure 4.1.

Figure 4.1: An example of the questions asked in a Mechanical Turk HIT.

We also have to determine if the annotators are in agreement about their
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ratings to determine how reliable the annotations are. If the annotators have very

different labels for each category, then the results are less reliable, since the results are

quite different from person to person, so it is either hard to tell how well the utterance

does on the output, or the annotators themselves were unreliable. We calculate average

Pearson correlation across the five annotators to determine agreement.

While we do sometimes ask the annotators to rate semantic correctness, we do

not give them the meaning representation (MR) nor do we ask them to compare the MR

to the output. This is because we have an automatic metric for semantic accuracy in

reference to the MR. We will go over this metric in the following section (Section 4.4).

4.4 Slot Error Rate (SER)

As mentioned previously, slot error rate, or SER, is a calculation of the cor-

rectness of the semantics of an output from a data-to-text model, based on the input

data. Word error rate (WER) is a common metric that is the inspiration behind SER.

WER is commonly used in speech recognition and machine translation and is derived

from the Levenshtein distance. Speech recognition and machine translation, in general,

have an exact “correct” response for the output of their systems. Therefore, one can

measure the performance of these models by checking the accuracy of the exact words.

In other NLG problems, this is not possible as there are often many different potential

correct outputs. What we do have in data-to-text generation is the desired semantics of

the output. There is an expectation that the model will generate everything in the MR,
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Error Type MR Realization

Delete cui-
sine, price,
near

name[restaurant]
cuisine[mexicain] location[midtown]
price[expensive] eatType[coffee shop]
familyFriendly[no]
near[point-of-interest]

[restaurant] is a coffee shop
that is not family friendly. It is
located in Midtown.

Repeat lo-
cation,
decor

name[restaurant] decor[good] lo-
cation[midtown west]
eatType[coffee shop]
rating[1 out of 5]

[restaurant] is a coffee shop
in Midtown West with good am-
biance. It is in Midtown West
with good decor.

Substitution
quality
bad to good

name[restaurant] decor[good]
qual[bad] location[tribeca/soho]
eatType[pub]

[restaurant] is in
Tribeca/Soho with good food
and good decor. It is a pub.

Hallucination
service

name[restaurant] decor[good]
qual[good] location[riverside]
near[point-of-interest]

[restaurant] is near [point-
of-interest] in the riverside
area. It has good food, good
decor and good service.

Table 4.1: Model outputs illustrating types of semantic errors.

without hallucinations, deletions, substitutions or repetitions. Considering these are the

same types of errors the WER uses, we decided to also calculate semantic accuracy by

taking the number of errors and normalizing them by the number of semantic features

that were expected in the output. The number of features is the number of attributes

or slots, and therefore we are calculating the slot error rate.

In order to calculate the SER, we define four types of errors that can occur when

realizing the slots in the MR. The first is deletion, which is when an attribute that is in

the MR is not in the realization. The second is substitution, which is where an attribute

in the MR is realized but the wrong value is used. For example, the MR contains the

attribute-value pair “cuisine[French]”, but the output utterance instead says “serves

Spanish food”. The attribute defining the cuisine being served in the restaurant is
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present in the utterance, but the type of food, the value, is incorrect. The third type

of error is hallucination, which is where an attribute is not in the input MR but it is in

the realization. And finally, the fourth type of error is a repetition. This is where an

attribute is mentioned more than once in the output realization. Repetitions and co-

occur with the other errors, so one attribute can be at the same time a substitution and

a repetition. Repetitions are also defined at the attribute level. If the same attribute is

repeated with two different values, it is still considered a repetition and is often also a

contradiction, such as saying the restaurant has both good and bad service. The values

are different, but this is not a correct utterance because both statements cannot be true

simultaneously. Examples of all four errors are in Table 4.1.

We then define SER as:

SER =
D + S +H +R

N

where D is the number of deletions, S is the number of substitutions, H is the number

of hallucinations, R is the number of repetitions and N is the number of slots in the

input MR. The SER is calculated for each output and then averaged over the entire test

set. Since fewer errors is better, the best SER value is zero and a higher SER indicates

poor performance. Also, the SER can be higher than one since the number of errors is

not limited to the number of slots.

We are able to automatically calculate the SER by taking advantage of the

fact that the datasets are synthetic and crowdsourced. Both datasets do not have an

unlimited way to realize the values in the MR and we therefore are able to generalize
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the potential ways the attributes will appear in the text. By searching for potential

keywords, key phrases or combinations thereof, we are able to approximate which at-

tributes and values are in the utterance using scripts. We verified that these estimates

are fairly accurate, which we will go into more depth on later. First, we will go over

how we evaluate which attributes and values are in the dataset for both the NYC and

the E2E datasets.

Synthetic datasets have a limited number of ways to generate the desired out-

put for each attribute. For the NYC dataset we were able to take advantage of this

fact to determine exactly which attributes and which values were in the text. There are

three types of attributes in the NYC dataset, the DA attribute recommendation, the

attributes where the value describes the polarity of the attribute (food quality, service,

decor, price) and the attributes where the value is a direct description of the restau-

rant (cuisine, location). The crowdsourced dataset has more variability in how the

attributes are realized, but, because the crowdworkers were given similar queues for the

same attributes and values they also have some patterns that we found and used to

automatically evaluate the utterances. Most of the attributes in E2E are categorical,

except for family friendly, which is a boolean value, which we handle differently. For

both NYC and E2E, since the attribute name is in every utterance, it is the subject of

the utterance and is in both NYC and E2E we do not include it in the SER calcula-

tion. There are no utterances that miss it, it does not have a value since it is always

delexicalized, and it can accurately occur multiple times if there are multiple sentences

considering it is a valid option to repeat the subject instead of using pronouns for later
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sentences.

The attributes unique to NYC can all be evaluated using set lists of potential

values given the input to the MR. For the DA attribute, which in NYC is only rec-

ommendation, there are 12 ways to represent this feature for each of the two values,

a positive recommendation or a negative recommendation, so we search the text for

all of these values, if one is present we know the attribute is represented in the out-

put. For the three attributes where the value describes the polarity which are unique

to NYC, (food quality, service, decor), each polarity value, terrible, bad, decent, good

and terrific, have multiple potential values which can represent these values, such as for

food quality, terrific can be represented with adjectives such as “terrific”, “amazing”,

“superb”, “delicious” and more. Also, some values can be shared across attributes, so

“amazing” can be used to not only describe food quality but also service and decor. To

make sure we have found the correct attribute we also analyze the noun these descrip-

tors are attached to, so food quality is represented using “food”, service is represented

using “service” and “staff” and decor is represented using “decor”, “atmosphere” and

“ambiance”. Finally, because some adjectives can be used for multiple polarities, “bad”

for example is often used to represent both “bad” and “terrible”, we assume the model

is correct if possible, so if the MR has “service[terrible]” and service is represented in

the output as “the service was bad”, we assume that the intended value was terrible.

We do this for all attributes that have potential overlap in realizations.

For E2E we have two types of datasets, synthetic and crowdsourced. For the

synthetic dataset, and for the categorical attributes in the NYC dataset, we can search

75



the text for the values in the attribute. For location, cuisine, eat type, customer rating,

price and near we are looking for the exact value in the attribute because when per-

sonage generates the training data it inserts the exact value into the text, so if the

location is riverside, personage will always include “riverside” in the text. Therefore

the only way for the model to learn to correctly generate these attributes is by realizing

the exact values in the MR. For the boolean attribute, family friendly, we need to check

if there is a negation preceding the attribute, so whether the text is “is family friendly”

or “isn’t family friendly”. There are multiple ways this can be realized, so we check for

them all.

When the E2E dataset is crowdsource there are more potential ways to generate

these attributes. For example, for the attributes customer rating with the value 1 out

of 5 the crowdworker could have included this attribute with the following phrases: “1

out of 5 stars”, “1 star”, “low rating”, etc. In order to correctly analyze the output we

search for all these options, collecting potential phrases by manually going through the

training data and finding the most common ways to represent each value. Again, since

customer rating can also have the value low, “low rating” can be used to represent both

so we prioritize the value in the original MR.

In order to confirm that the SER calculations were accurately capturing the

semantic accuracy in the outputs we evaluated it with an experiment where two NLG

experts hand-labelled a random sample of 200 model outputs. Over the 200 samples,

the automatic SER was 0.45 and the human was 0.46. The overall correlation of the

automatic SER with the human SER over all types of errors (deletions, repetitions,
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substitutions and hallucinations) is 0.80 and the correlation with deletions, the most

frequent error type, is 0.97.

4.5 Stylistic Evaluation

We have now gone over how we automatically evaluated the semantics of the

outputs, but these are not the only desired features of the utterances that we can auto-

matically evaluated. Stylistic features are important in NNLG to generate interesting

and varied output. If the models are always generating the same attributes and values

with the same word choice, in the same order, we might as well just use templates.

In the experiments, we both evaluate the models for overall stylistic variety as well as

controlled style, where there is an expected stylistic feature and we must confirm that

the model properly generated it.

For measuring overall style we measure Shannon text entropy [Shannon, 2001],

which quantifies the amount of variation in the output of the models. We calculate it

using the following formula:

−
∑
x∈S

freq

total
∗ log2(

freq

total
)

where S is the set of unique words in all outputs generated by the model, freq is the

frequency of a term, and total counts the number of terms in all references. When we

test entropy we do so for multiple n-grams to determine if the output not only has variety

in words, but also combinations of words. The larger the entropy the more stylistically

varied the text. freq
total represents the probability that any word in the references is the
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term x, and −log2( freqtotal ) is the amount of surprisal (how unexpected the term is) for x,

where low probability terms have high surprisal, so entropy is the average amount of

surprise when a term occurs. The more unexpected a term is, the more variety in the

output.

Some of the experiments also have specific desired stylistic features in the

output, and it is important that the models accurately realize these features. Being

able to automatically evaluate the quality and accuracy of these models based on these

features is important to allow us to quickly iterate through many models, just as it is

for semantic evaluation.

We have two main ways the model tries to generate stylistic features. The

first is, given a category label, we want the model to only generate features within

that category. The other type of stylistic generation is individual feature generation.

We generally have a feature attribute and a label, for example the feature of sentence

aggregation and the value of number of sentences, where we need to confirm both the

presence of the feature as well as the accuracy of the feature. We will go over how we

evaluate both types of stylistic feature generation here.

For categorical feature labels we are evaluating both the pragmatic markers

and the aggregation operations which make up the category. We then determine which

features are in each utterance in the output and take the Pearson’s correlation between

the output of the model and the reference text. While these metrics give good estimates

on the overall correctness of the models, they do not show the fine-grained accuracy on

different features, so we also generate graphical representations to compare the different
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models in a more interpretable manner.

For individual feature generation we determine if both the feature is present,

and in some cases, if the feature is accurately generated. Each feature in these exper-

iments has a value associated with it. For example, when controlling the number of

sentences in the generated output, we have to not just determine that there are sen-

tences in the output, but that the value matches. We take both the accuracy of these

experiments, but also in some cases the correlation. We also determine if the feature is

correctly generated, such as in the case with generating contrast, we need to determine

that contrast is present, but also that the attributes being generated are able to be

contrasted.

4.6 Summary

Evaluating the results is an integral part of Neural Natural Language Gen-

eration. Because we are able to train models fairly quickly, automatic evaluation is

paramount to iterating through multiple models and performing learning techniques

such as self-training. In this chapter we explained why existing automatic evaluation

metrics are not sufficient for the tasks that we are experimenting on. Because of this

we introduce multiple metrics that use the data-to-text structure of the experiments,

and that we want specific features in the outputs, to automatically evaluate both the

semantics and stylistic features of the outputs. We also explained and presented the

human evaluation procedure, since some features are not currently able to be accurately
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evaluated automatically, such as fluency, and therefore human evaluation is still nec-

essary. These metrics will be used in the experiments described in chapters 5, 6 and

7.
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Chapter 5

Personality Control and Generalization

5.1 Overview

At this point in the thesis we have defined why generalization is needed in

Neural Natural Language Generation (NNLG) and introduced the datasets and evalu-

ation metrics that we will use in the experiments in generalization. In Chapter 3 we

described the sources of the datasets we will use in this and the following experiments

and in Chapter 4, we demonstrate that the standard automatic evaluation metrics are

insufficient and define new ones to evaluate the experiments. In this chapter we go

over the first experiments in generalization where we test neural models’ architectures

to demonstrate what these systems can achieve in terms of controlling and generalizing

the stylistic features of the output text [Oraby et al., 2018b,a].

We used the Statistical Natural Language Generator (SNLG) personage

[Mairesse and Walker, 2007], to generate the training data for these experiments. We
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went over how personage generates data in more detail in Section 3.2.1. Using this

generator, we are able to generate not only the semantics required to train the NNLGs,

but we are also able to generate controlled stylistic features. personage was created

with the ability to not only generate individual specific features, but also with combina-

tions of them designed to imitate the Big Five personality traits [Mairesse and Walker,

2010]. These rules govern decisions such as word choice, pragmatic marker insertion

and aggregation operations. By generating multiple stylistic features to form a single

personality based on pre-defined rules we can learn not only if these models can dis-

entangle style from semantics but also if the model can learn combinations of stylistic

features which form abstract concepts such as personality.

In Section 5.2.1, we describe the corpus as well as the personalities that we

use in these experiments. We also go into detail about the models we will use. We

experiment with three types of supervision. The first is no supervision, which is the

baseline to determine what the model can learn if trained with multiple personalities and

many stylistic features. The second is a token supervision, where the model is expected

to learn the rules associated with a single personality on its own. The final supervision

is trained with the personality as well as the features which appear in the utterance,

which is the closest to the supervision provided to the SNLG model personage.

After training the NNLG’s on the models described briefly above we go over

the results in Section 5.2.2. We have multiple quantitative and qualitative evaluation

metrics. Even though in Section 4.2 we describe why the standard automatic metrics are

not very informative we include them for completeness. We also present the slot error
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rate (SER) results (a metric defined in Section 4.4), and evaluate the stylistic features

which make up each personality, and collect human evaluations on the naturalness and

perceived personality.

While for the ease of writing we refer to the sets of rules determining the style

of the output as personalities, they are actually personality traits. Human personalities

can be described as combinations of these traits, so a person can be extroverted and

either agreeable or disagreeable. The degree of each of these traits also can vary from

person to person. This inspired us to test the model’s ability to generalize from training

data which has separate personality traits and create novel output that has multiple

personality traits, which we refer to as multivoice. To do this we create a new test set

where we signal the model to generate two personalities, instead of just one personality,

while still using a model trained on data with single personalities.

We go over the experimental framework for this multivoice experiment in Sec-

tion 5.3.1, then in Section 5.3.2 we describe the semantic and stylistic evaluation of this

output where for each multivoice pair we compare the results to both single voices and

show that the results are not just a simple average of the two personalities but are a

novel voice.

5.2 Personality Generation

As a first step toward generalizing the output of trained NNLG models, we

are learning general representations of multiple stylistic features. While NNLG mod-
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els are capable of controlling stylistic features when generating text, generating with

overarching style labels which encompass multiple features, such as polite, allows for

variation in generation without having to hand tune many features. Here we performed

a controlled experiment where we had five general labels for sets of features grounded in

psychological context, so stylistic features which one would expect to see together. We

test whether the model can learn to generate the style, while preserving semantics with

only the general label as supervision, or if the model requires more specific supervision.

These five general labels are from the Big Five personality traits, where each

trait is defined by many content planning schemas, aggregation operations and prag-

matic markers which are grounding in psychological literature [Mairesse and Walker,

2010]. We selected the personalities agreeable, disagreeable, conscientious, unconsci-

entious, and extrovert, all of which have distinct rules, though there is some overlap.

We generated the data using personage (Section 3.2.1) and meaning representations

(MRs) from the E2E Generation Challenge (Section 3.3) and creating a synthetic E2E

dataset (Section 3.4. We use the metrics defined in Chapter 4 to automatically evalu-

ate the outputs of the models and then perform human evaluation on the best model.

We experimented with controlling stylistic variation using NNLG by creating references

with different personalities and testing if the models could learn the pragmatic markers

and aggregation operations associated with the personalities [Oraby et al., 2018b].
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5.2.1 Experimental Framework

We hypothesized that we could create an NNLG model that could learn the

different pragmatic markers and aggregation operations that form the personalities in

personage and determine whether we can control these features with a single, general,

personality token. With this in mind, we created a dataset with data from five personal-

ities from personage and trained multiple models with increasing levels of supervision

to learn which could generate the stylistic variation we desired while maintaining se-

mantic fidelity. We will go over details about generating this personality dataset and

the model architecture in this section.

5.2.1.1 Corpus Creation

For this experiment, we created a new data-to-text dataset of restaurant re-

views. This is a synthetic dataset with MRs from the E2E Generation Challenge

[Novikova et al., 2017b] that is generated using personage [Mairesse and Walker, 2010].

We created a deep syntactic structure representation for each of the eight attributes in

the E2E MRs, which personage uses to generate references. As mentioned previously,

there are more details about this process in Chapter 3 where we describe both how

personage works and the E2E dataset. For this corpus, we generated the datasets

with personalities informed by the Big Five Personality Traits and the characteristics

defined by the high and low extremes for each personality trait. In Table 5.1, we present

these personalities and their high and low score labels, which from now on we will refer

to as the “personalities”. For each reference, we generated the references with one of
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Personality Trait High Score Label Low Score Label
EXTROVERSION extrovert introvert
AGREEABLENESS agreeable disagreeable

OPENNESS open not open
CONSCIENTIOUSNESS conscientious unconscientious

EMOTIONAL STABILITY emotionally stable neurotic

Table 5.1: The five personalities of the Big Five Personality Traits and their high and
low score labels. The trait labels that we experimented with are in red.

five personalities: agreeable, disagreeable, conscientious, unconscientious, and extrovert,

which are marked in red in the table. We are able create many different outputs for

a single MR by using the different pragmatic markers and aggregation operations that

each personality can use and the content and sentence planning that personage uses

to generate different variations. By generating synthetic data with personage we are

able to have a controlled dataset with specific stylistic features associated with each

personality. This allows us to test how different neural architectures affect the ability of

the trained model to disentangle style from content and faithfully produce semantically

correct utterances that vary style.

As mentioned previously, the dataset consists of five personalities, agreeable,

disagreeable, conscientious, unconscientious and extrovert. We selected these five be-

cause they have easily visible and distinct traits and they are personalities we could

conceivably want to generate reviews using. Extroversion, as the most important of the

five traits and a personality which attracts others, was especially important to include

[Goldberg, 1990]. Agreeable and conscientious could make positive reviews appear even

more positive and disagreeable and unconscientious would emphasize the negativity in
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poor reviews, so we also select these personalities, though for this experiment we do not

define reviews as overall positive and negative and therefore do not limit a personality

to certain attribute and value pairs. We do not include introvert because being shy is

not a desirable trait for restaurant reviews; neurotic and emotionally stable are also not

included for a similar reason. Openness to experience and not open are the least visible

and weakest among the Big Five personality traits, so we also do not include those

personalities [Peabody and Goldberg, 1989]. We wanted a stylistically varied corpus

and one of the main distinctions between the different personality models is their use of

aggregation operations and pragmatic markers. In Table 5.2, we show the aggregation

operations and pragmatic markers used and their level of intensity in the five personali-

ties, examples of these features can be seen in Table 3.1. Each personality has a distinct

set of features though not all features are unique to a single personality. Agreeable and

conscientious, for example, both have high levels of confirmation requests and general

softeners, though these are not the same personality regardless of this overlap, as other

features are only included for one of these personalities. Figure 5.1 shows the propor-

tion of all the aggregation operations and a sample of the pragmatic markers, from

Table 3.1, for the different personalities. This demonstrates that although some traits

are high for multiple personalities, this does not mean they appear in the same rate

for both personalities. So even though general softeners is high for both agreeable and

conscientious you can see they do not appear in both personalities to the same degree.

This shows that each personality produces stylistically distinct data.

We used the train, development and test split used in the E2E Generation
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Attribute Agree Disag Consc Uncon Extr

Aggregation Operations
Period low high mid mid low
“With” cue mid mid mid mid low
Conjunction high low mid mid high
All Merge mid mid mid mid mid
“Also” cue high low mid mid high
Ellipsis high low mid mid high

Pragmatic Markers
acknowledge definitive high low mid mid low
acknowledge justification high low high low low
acknowledge yeah high low low high high

down kind of high low low high high
down like mid mid low high high
down around high low mid mid mid
down subord high low high low low
general softener high low high low low

emphasizer low high mid mid high
emph you know high low mid mid low
exclaim mid mid low high high

expletives low high low high mid
near expletives mid mid low high high

indicate surprise mid mid mid mid mid
initial rejection low high low high mid
competence mitigation low high mid mid mid
filled pause stative mid mid low high low
confirmation request high low high low high
in group marker high low low high high
tag question high low mid mid high

Table 5.2: Aggregation and pragmatic markers produced by different personalities.

Challenge, since the three sets had unique MRs. Since did not need a development set

we used both the train and development MRs in the training dataset. We had 3,784

unique MRs in the training set and generated 17,771 utterances per personality for a

training set of 88,855 utterances. The test set consists of 278 unique MRs and we gen-

erate five utterances, one per personality, for a test set of 1,390 utterances. Examples of
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(a) Aggregation Operations.

(b) Pragmatic Markers.

Figure 5.1: Frequency of the most frequent Aggregation and Pragmatic Markers in the
Training Data.

the utterances can be seen in Table 5.3. Each personality has a different distribution of

pragmatic markers and aggregation operations, as mentioned previously and can be seen

in these examples. For example, both the agreeable and conscientious personali-

ties use a confirmation request, such as “Let’s see what we can find...”, but agreeable

also has the tag question “you see?” which conscientious does not. unconscien-
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tious uses expletives and initial rejections, like “I don’t know” and extrovert uses

emphasizers, such as “basically”. They also have different aggregation operations, with

disagreeable having many, smaller, sentences, while for the rest of the personalities

all of the attributes are in a single sentence. Also, agreeable uses the also cue twice

and unconscientious uses it once. The variation in these personalities is clear with

just a single reference for each one. These personalities have lots of stylistic variation

that the model will need to learn.

5.2.1.2 Model Architectures

The neural generation models build on the open-source sequence-to-sequence

(seq2seq) TGen system [Dusek and Jurćıcek, 2016a], implemented in Tensorflow [Abadi

et al., 2016]. The system is based on seq2seq generation with attention [Bahdanau et al.,

2014; Sutskever et al., 2014] and uses a sequence of LSTMs [Hochreiter and Schmidhu-

ber, 1997] for the encoder and decoder, combined with beam-search and reranking for

output tuning.

The inputs to TGen are dialogue acts for each system action (such as inform)

and a set of attribute slots (such as rating) and their values (such as high for attribute

rating). The system integrates sentence planning and surface realization into a single

step to produce natural language outputs. To preprocess the corpus of MR/utterance

pairs, attributes that take on proper-noun values are delexicalized during training i.e.,

name an d near. During the generation phase on the test set, a post-processing step re-

lexicalizes the outputs. The MRs (and the resultant embeddings) are sorted internally
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Personalities Realization

Meaning name[Fitzbillies], eatType[pub], food[Italian],
priceRange[moderate],

Representation
(MR)

customer rating[decent], area[riverside], fami-
lyFriendly[no],near[’The Sorrento’]

No-Agg/
No-Prag

Fitzbillies is a pub. Fitzbillies has a decent rating. Fitzbillies
is moderately priced. Fitzbillies is in riverside. Fitzbillies
is an Italian restaurant. Fitzbillies is not family friendly.
Fitzbillies is near The Sorrento.

Agreeable Let’s see what we can find on Fitzbillies. I see, well it
is a pub with a decent rating, also it is an Italian restaurant
in riverside and moderately priced near The Sorrento, also
it isn’t family friendly, you see?

Disagreeable I mean, everybody knows that moderately priced Fitz-
billies is in riverside with a decent rating. It’s near The
Sorrento. It isn’t family friendly. It is an Italian place. It is
a pub.

Conscientious Let’s see what we can find on Fitzbillies. I see, well
it is a pub with a decent rating, it isn’t kid friendly and it’s
moderately priced near The Sorrento and an Italian restau-
rant in riverside.

Unconscientious Oh god yeah, I don’t know. Fitzbillies is a pub with a
decent rating, also it is moderately priced near The Sorrento
and an Italian place in riverside and it isn’t kid friendly.

Extrovert Basically, Fitzbillies is an Italian place near The Sorrento
and actually moderately priced in riverside, it has a decent
rating, it isn’t kid friendly and it’s a pub, you know.

Table 5.3: Sample neural model output realizations for the same MR for personage’s
personalities, Pragmatic markers in the utterances are in bold.

by dialogue act tag and attribute name.

The models are designed to systematically test the effects of increasing the

level of supervision, with novel architectural additions to accommodate these changes.

We use the default parameter settings from TGen [Dusek and Jurćıcek, 2016a] with

batch size 20 and beam size 10, and use 2,000 training instances for parameter tuning
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to set the number of training epochs and learning rate. Figure 5.2 summarizes the

architectures.

Figure 5.2: Neural network model architectures for different levels of supervision to
represent personality.

As mentioned previously, we experimented with three levels of supervision and

tuned the parameters of the model for each type of supervision separately.

The simplest model, which has no additional supervision and we will refer

to as model nosup from now on, follows the baseline TGen architecture [Dusek and

Jurćıcek, 2016b], with training using all 88K utterances in a single pool for up to 14

epochs based on loss monitoring for the decoder and reranker.

The second model adds a token of additional supervision by introducing a new

dialogue act, convert, to encode personality, inspired by the use of a language token for
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machine translation [Johnson et al., 2017]. Unlike other work that uses a single token

to control generator output [Fan et al., 2018; Hu et al., 2017], the personality token

encodes multiple different parameters that define the style of the matching reference,

generalizing this many parameters into a single label. Uniquely here, the model at-

tempts to simultaneously control multiple style variables that may interact in different

ways. This model will be referred to as model token. Again, we monitor loss on the

validation set and training continues for up to 14 epochs for the decoder and reranker.

The most complex model introduces a context vector, as shown at the top right

of Figure 5.2. The vector explicitly encodes a set of 36 style parameters from Table 5.4.

The parameters for each reference text are encoded as a boolean vector where if the

parameter is present in the text the style parameter is set to True, otherwise it is set to

False. A feed-forward network is added as a context encoder, taking the vector as input

to the hidden state of the encoder and making the parameters available at every time

step to a multiplicative attention unit. The activations of the fully connected nodes

are represented as an additional time step of the encoder of the seq2seq architecture.

The attention is computed over all of the encoder states and the hidden state of the

fully connected network. Again, we set the learning rate, alpha decay, and maximum

training epochs (up to 20) based on loss monitoring on the validation set.

5.2.2 Results

Here, we present results on controlling stylistic variation while maintaining

semantic fidelity.
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1: emph you know 10: down quite 19: ack well 28: init rejection
2: emph really 11: down rather 20: ack oh 29: tag question
3: emph basically 12: down around 21: ack right 30: req confirmation
4: emph actually 13: down like 22: ack ok 31: aggreg conjunc
5: emph just 14: filled err 23: ack i see 32: aggreg ellipses
6: emph exclaim 15: filled mmhm 24: expletives 33: aggreg also
7: down kind of 16: down subord 25: near expletives 34: aggreg merge
8: down sort of 17: filled i mean 26: comp mitigation 35: aggreg period
9: down somewhat 18: ack yeah 27: in group marker 36: aggreg with

Table 5.4: The 36 parameters encoded into the context vector used in model context.

5.2.2.1 Evaluating Semantic Quality

First we present the classic automatic metrics used in nlg to measure how well

the output compared to the original personage input, then we will introduce the novel

metrics. The classic evaluation uses the E2E generation challenge script, the summary

of the results for automatic metrics are in Table 5.5. Although the results are similar,

model context is slightly better than the others.

Model BLEU ↑ NIST ↑ METEOR ↑ ROUGE L ↑
NoSup 0.2774 4.2859 0.3488 0.4567
Token 0.3464 4.9285 0.3648 0.5016
Context 0.3766 5.3437 0.3964 0.5255

Table 5.5: Automated Metric Evaluation.

These classic evaluation metrics are not informative about the quality of the

references and penalize stylistic variation, so we developed new scripts to automatically

evaluate specific features in the text. We went into more detail on these scripts in

Chapter 4. Here we use the slot error rate (SER) to evaluate the semantic accuracy of the

output. We also evaluate three of the errors that make up the SER separately, deletions,
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repetitions and substitutions, to see how the model is making errors. Hallucinations

did not occur frequently enough to include. The results are in Table 5.6. Note that

smaller ratios are preferable since these results represent the number of errors. Also,

since model nosup does not encode the personality parameter the results are the same

across each personality.

Model AGREE ↓ CONSC ↓ DISAG ↓ EXTR ↓ UNCON ↓
deletions

NoSup 0.01 0.01 0.01 0.01 0.01
Token 0.27 0.22 0.87 0.74 0.31
Context 0.08 0.01 0.14 0.08 0.01

repetitions
NoSup 0.00 0.00 0.00 0.00 0.00
Token 0.29 0.12 0.81 0.46 0.28
Context 0.02 0.00 0.14 0.00 0.00

substitutions
NoSup 0.10 0.10 0.10 0.10 0.10
Token 0.34 0.41 0.22 0.35 0.29
Context 0.03 0.03 0.00 0.00 0.03

SER
NoSup 0.02 0.02 0.02 0.02 0.02
Token 0.13 0.11 0.27 0.22 0.13
Context 0.02 0.01 0.04 0.01 0.00

Table 5.6: Deletions, Repetitions, Substitutions and SER by Personality.

We can see that model nosup makes the fewest semantic errors, but we will

later show that this is at the cost of stylistic variation. After that, model context

makes fewer errors than model token, which suggests that having more supervision

for the stylistic variation also helps avoid semantic errors. We can also see in the

last row, that disagreeable and extrovert have the most semantic errors while

conscientious has the fewest.
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5.2.2.2 Evaluating Stylistic Variation

Here we characterize the fidelity of stylistic variation across different model

outputs.

Entropy. Shannon text entropy quantifies the amount of variation in the output pro-

duced by each model. We calculate entropy as −Σx∈S
freq
total ∗log2(

freq
total ), where S is the set

of unique words in all outputs generated by the model, freq is the frequency of a term,

and total counts the number of terms in all references. Table 5.7 shows that the train-

ing data has the highest entropy, but model context performs the best at preserving

the variation seen in the training data. Row nosup shows that model nosup makes

the fewest semantic errors, but produces the least varied output. model context,

informed by the explicit stylistic context encoding, makes comparably few semantic

errors, while producing stylistically varied output with high entropy.

Model 1-grams 1-2grams 1-3 grams

personage train 5.97 7.95 9.34
nosup 5.38 6.90 7.87
token 5.67 7.35 8.47
context 5.70 7.42 8.58

Table 5.7: Shannon Text Entropy.

Pragmatic Marker Usage. We calculate the model’s ability to reproduce pragmatic

markers by personality by counting the occurences of each pragmatic marker in the

reference, averaging those counts and then computing the Pearson correlation between

the averages for the personage reference and the averages for the output reference for
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each model and personality, as seen in Table 5.8. The table shows that model context

has the highest correlation for all personalities except agreeable. model nosup, on

the other hand, does quite poorly for all the personalities except conscientious, and

is in fact negative for three out of the five personalities. This is most likely because

the most common pragmatic marker for conscientious is request confirmation, which,

since it is just added to the beginning of the reference, is less complex to introduce to

the utterance.

Model AGREE ↑ CONSC ↑ DISAG ↑ EXTR ↑ UNCON ↑
NoSup 0.05 0.59 -0.07 -0.06 -0.11
Token 0.35 0.66 0.31 0.57 0.53
Context 0.28 0.67 0.40 0.76 0.63

Table 5.8: Correlations between Personage and models for pragmatic markers in
Table 3.1.

Aggregation Operation Usage. We use the same methods to calculate the models’

ability to reproduce aggregation operations by personality, by counting the occurrences

of each aggregation operation in the reference, averaging those counts and then com-

puting the Pearson correlation between the averages for the personage reference and

the averages for the output reference for each model and personality, as seen in Ta-

ble 5.9. The table shows that, again, model context has a higher correlation for

all the personalities except one, disagreeable in this instance. Because aggregation

operations are necessary to form a reference, unlike pragmatic markers, model nosup

actually outperforms model token for some personalities such as agreeable, con-

scientious and unconscientious.
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Model AGREE ↑ CONSC ↑ DISAG ↑ EXTR ↑ UNCON ↑
NoSup 0.78 0.80 0.13 0.42 0.69
Token 0.74 0.74 0.57 0.56 0.60
Context 0.83 0.83 0.55 0.66 0.70

Table 5.9: Correlations between Personage and models for aggregation operations in
Table 3.1.

By creating these new tools to evaluate the outputs of NNLG models we are

able to quickly and accurately get feedback from the experiments. These experiments

were focused on very specific aspects of the reference, which were measurable through

specific scripts. While these scripts do not evaluate the naturalness of the data, neither

do the classic automatic metrics, and unlike the classic metrics, these scripts are very

transparent as to what they are measuring and why.1

5.2.2.3 Human Analysis

Based on the quantitative results, we select model context as the best-

performing model and conduct an evaluation to test if humans can distinguish the

personalities exhibited. We randomly select a set of 10 unique MRs from the personage

training data along with their corresponding reference texts for each personality (50

items in total), and 30 unique MRs model context output (150 items in total).2 We

construct a HIT on Mechanical Turk, presenting a single output (either personage or

model context, and ask 5 Turkers to label the output using the Ten Item Personality

1These results were improved upon in [Harrison et al., 2019] by using an update seq2seq model where
the hyper-parameters were tuned using a grid search method over the RNN layers and size

2Note that we use fewer personage references simply to validate that the personalities are distin-
guishable in the training data, but will more rigorously evaluate the model in future work.
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Inventory (TIPI) [Gosling et al., 2003]. The TIPI is a ten-item measure of the Big Five

personality dimensions, consisting of two items for each of the five dimensions, one that

matches the dimension, and one that is the reverse of it, and a scale that ranges from

1 (disagree strongly) to 7 (agree strongly). To qualify Turkers for the task, we ask that

they first complete a TIPI on themselves, to help ensure that they understand it.

Table 5.10 presents results as aggregated counts for the number of times at

least 3 out of the 5 Turkers rated the matching item for that personality higher than the

reverse item (Ratio Correct), the average rating the correct item received (range between

1-7), and an average “naturalness“ score for the output (also rated 1-7). From the table,

we can see that for personage training data, all of the personalities have a correct ratio

that is higher than 0.5. The model context outputs exhibit the same trend except

for unconscientious and agreeable, where the correct ratio is only 0.17 and 0.50,

respectively (they also have the lowest correct ratio for the original personage data).

Table 5.10 also presents results for naturalness for both the reference and

generated utterances, showing that both achieve decent scores for naturalness (on a

scale of 1-7). While human utterances would probably be judged more natural, it is not

at all clear that similar experiments could be done with human generated utterances,

where it is difficult to enforce the same amount of experimental control.
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personage model context

Person. Ratio
Correct

Avg.
Rating

Nat.
Rating

Ratio
Correct

Avg.
Rating

Nat.
Rating

Agree 0.60 4.04 5.22 0.50 4.04 4.69
Disagr 0.80 4.76 4.24 0.63 4.03 4.39
Consc 1.00 5.08 5.60 0.97 5.19 5.18
Uncon 0.70 4.34 4.36 0.17 3.31 4.58
Extr 0.90 5.34 5.22 0.80 4.76 4.61

Table 5.10: Percentage of Correct Items and Average Ratings and Naturalness Scores
for Each Personality (personage vs. model context.

5.3 Multivoice Personality Generation

The first experiment with generalization beyond training focused on creating

outputs with multiple personalities, while training on data with single, separate person-

alities [Oraby et al., 2018a].

5.3.1 Experimental Framework

For this experiment we used the same dataset that we used for the first per-

sonality experiment, described in Section 5.2.1.

For the model we also used the same architecture based on TGen for the

personality experiment, described in Section 5.2.1. Since we are combining two person-

alities we used the supervision described for the model token model, instead of the

model nosup or model context. model nosup does not have the supervision nec-

essary to combine personalities, and model context has too many parameters and is

therefore difficult to combine, even though it performed the best out of the three models.

We wanted to see if with just the model token framework the model could combine
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the pragmatic markers and aggregation operations seen in both models to create a new

personality.

The model was slightly different from model token because it is trained on

unsorted input, which allows us to add multiple convert tags to the MR for testing.

This also means that the training and testing data is different, the training data has

one token of supervision and the testing data has two tokens.

When we generate the test references, we also used the same test MRs, but

instead of generating one reference per personality we generate two references per com-

bination of two personalities, since the order of the personality tokens matters. We do

not have true references for these outputs since we do not know what multivoice should

be. We have eight combinations since we do not combine personalities that are exact

opposites, such as agreeable and disagreeable. This results in us generating 4,448

total realizations from 278 MRs.

5.3.2 Results

Evaluating Semantic Quality.

Again, we still report on the classic automatic metrics for completeness, since

those are the standard evaluation of quality for nlg models. We use the automatic eval-

uation scripts from the E2E Generation Challenge, the results of which are summarized

in Table 5.11. Multivoice automatically has a better chance of having higher results

because the evaluation is over more examples than for single voice. Each multivoice

output is compared to two possible references, one for each of the single voice and then
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averaged.

Personality BLEU NIST METEOR ROUGE L

Single Voice 0.35 4.93 0.36 .50
Multivoice 0.42 5.64 0.36 .52

Table 5.11: Automatic Metric Evaluation.

For the semantic evaluations we again calculated the SER as defined in Sec-

tion 4.4. Table 5.13 has the results for both the multivoice outputs and the single voice

outputs for comparison. Semantic fidelity is worse for the multivoice model across most

combinations as it is more difficult to preserve semantic fidelity while trying to achieve

multiple types of stylistic variation. For deletions, when comparing single to multi-

ple personalities, there are more deletions for the single personality outputs than the

multivoice outputs, though they are proportionate. Extrovert and disagreeable

have the most deletions for the single personalities, and the multivoice output with the

highest numbers of deletions has either extrovert or disagreeable as one of the

personalities. Though sometimes for deletions the worse personality does not signifi-

cantly hurt the semantic quality, such as for agreeable + extrovert, there are only

slightly more deletions than agreeable, and considerably fewer than extrovert. The

number of repetitions for multivoice are closer to the single personality outputs, and

actually seem to decrease in a number of cases, and same for hallucinations. This shows

that adding an extra token not seen in the training data does not seem to significantly

hurt the semantic accuracy of the results.

Evaluating Stylistic Variation.
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Personality Deletions Repetitions Hallucinations

Agree 0.27 0.29 0.34
Consc 0.22 0.12 0.41
Extr 0.74 0.46 0.35
UnConsc 0.31 0.28 0.29
Disagree 0.87 0.81 0.22

Personality Pairs

Agree+Consc 0.44 0.08 0.26
Agree+Extr 0.28 0.17 0.19
Agree+Unconsc 0.33 0.24 0.24
Consc+Disagr 1.01 0.18 0.28
Consc+Extr 0.67 0.28 0.23
Disagr+Extr 1.20 0.75 0.09
Disagr+Unconsc 1.10 0.39 0.14
Extr+Unconsc 1.05 0.55 0.17

Table 5.12: Deletions, Repetitions and Hallucinations for Single Voice and MultiVoice
Personality Pair.

Personality SER

Agree 0.13
Consc 0.11
Extr 0.22
UnConsc 0.13
Disagree 0.27

(a) Single-Voice model SER.

Personality Pairs SER

Agree+Consc 0.11
Agree+Extr 0.09
Agree+Unconsc 0.12
Consc+Disagr 0.21
Consc+Extr 0.17
Disagr+Extr 0.29
Disagr+Unconsc 0.23
Extr+Unconsc 0.25

(b) MultiVoice model SER.

Table 5.13: Slot Error Rate by MultiVoice Personality Pair as Compared to Single-Voice
models.

We calculate the multivoice model’s ability to reproduce aggregation oper-

ations of both of its parent single voice models by counting the occurrences of each

aggregation operation in the reference, averaging those counts and then computing the

Pearson correlation between the averages for the personage reference and the averages
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for the output reference for each model and personality, as seen in Table 5.15. The third

and fourth columns are the correlations between the multivoice output and the single

personality output and the last column provides correlations between the original two

single personalities. From the last column we can see that some personalities are very

similar in terms of aggregation, such as the agreeable and conscientious personali-

ties, and some are very different, such as disagreeable and extrovert. As we would

expect, models that are similar to begin with are less novel when they are combined,

as you can see from agreeable + conscientious. However other combinations seem

to produce completely novel models that use aggregation very differently than either of

their single voice source models. For example, combining disagreeable and uncon-

scientious produces a model whose use of aggregation is distinct from either of its

source models.

P1 P2 P1+P2 vs. P1 P1+P2 vs. P2 P1 vs. P2

Agree Consc 0.74 0.76 0.74
Agree Extr 0.70 0.31 0.44
Agree Unconsc 0.75 0.31 0.65
Consc Disagr 0.36 0.65 0.01
Consc Extr 0.51 0.31 0.44
Disagr Extr 0.53 -0.36 -0.04
Disagr Unconsc 0.23 0.33 0.05
Extr Unconsc 0.20 0.43 0.47

Table 5.15: Correlations between PERSONAGE and multivoice models for aggregation
operations in Table 3.1.

Figure 5.3 provides a closer look at particular aggregation operations associ-

ated with conscientious and disagreeable and plots the differences between the
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single voice models and the use of these operations in the multivoice models. For ex-

ample, the period operation is very common for disagreeable and not common for

conscientious, but for the multivoice output the use of period seems to interpolate

the two values. Though some operations counts appear to interpolate the two original

voices, some are unique, so the model does not always interpolate, as you can see from

the conjunction and also operations. These plots clearly show that the multivoice model

is a novel personality, yielding a different distribution for aggregation operations than

either of its source voice styles.

Figure 5.3: Frequency of the most frequent Aggregation Operations for Conscientious
and Disagreeable compared to combined Conscientious and Disagreeable Multivoice.

Again, we calculate the multivoice model’s ability to reproduce pragmatic

markers of both of its parent single voice models by counting the occurrences of each

pragmatic marker in the reference, averaging those counts and then computing the Pear-

son correlation between the averages for the personage reference and the averages for
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the output reference for each model and personality, as seen in Table 5.16. As you

can see, while most multivoice models are more similar to one parent model than the

other, none are very similar to either of their parents, they each appear to demonstrate

characteristics of a novel voice. For example disagreeable + extrovert bears very

little similarity to either disagreeable or extrovert.

P1 P2 P1+P2 vs. P1 P1+P2 vs. P2 P1 vs. P2

Agree Consc 0.11 0.74 0.30
Agree Extr 0.19 -0.02 -0.07
Agree Unconsc 0.03 0.18 -0.16
Consc Disagr 0.44 0.05 -0.10
Consc Extr 0.41 -0.09 -0.11
Disagr Extr 0.12 -0.03 -0.07
Disagr Unconsc 0.09 0.34 -0.05
Extr Unconsc -0.11 0.37 -0.08

Table 5.16: Correlations between PERSONAGE and multivoice models for pragmatic
markers in Table 3.1.

Figure 5.4 provides a closer look at particular pragmatic markers associated

with conscientious and disagreeable and plots the difference between the single

personality models and multivoice models. Most markers are used by only one of the

two single voices, while the multivoice model uses most, but not all of them, and the

original amount of use does not have a direct correlation to the frequency of use within

the multivoice model. The subord and request confirmation markers are used in very

different amounts by the conscientious voice and similar amounts by the multivoice

model. Again, these plots show that the multivoice model is a novel personality that

yields a different distribution for pragmatic markers than either of its source voice styles.
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Figure 5.4: Frequency of the most frequent Pragmatic Markers for Conscientious and
Disagreeable compared to combined Conscientious and Disagreeable Multivoice.

One limitation is that although we know that the personalities being generated

by these multivoice models are novel, we have no way of knowing which personality they

actually are because we have no gold standard for multivoice data. But it still shows

that we are able to take two separate personalities and combine them to create output

that generalizes between the two source personalities.

5.4 Summary

In this chapter we went over the first attempts at generalization using NNLG.

We first attempted to generalize multiple stylistic features to a single label, using per-

sonality to combine different stylistic features in a way that is natural. We found that

representing multiple features under a single label results in decent correlation to the
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original data but degrades the semantic accuracy of results. In Section 5.2, we showed

that a more fine-grained representation with each feature represented separately signif-

icantly improves the semantic accuracy.

We then further tested the NNLG’s ability to generalize by combining person-

alities together in test that were not seen combined in the training data. In Section 5.3),

we used the general token representation from the first experiment and found that test-

ing on two tokens was able to create completely novel combinations of stylistic features.

This demonstrates that these models can be extended outside the scope of the original

training data and learn to generate without a significant decrease in semantic accuracy.

Next we will describe how we experiment further with these models’ ability

to learn more than what is seen in the training data and to learn to generate new

combinations of stylistic features with new semantics. Chapter 6) presents experiments

on learning to generate aggregation on unseen values and improve contrast results by

combining multiple datasets, and Chapter 7 describes the results of combining semantics

from multiple sources.
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Chapter 6

Sentence Planning and Discourse

Structuring

6.1 Overview

We have shown that Neural Natural Language Generation (NNLG) models

can learn to generalize different stylistic features representing a single personality using

a single token representation, though more supervision leads to better results. Now

we want to test if NNLG models can learn general sentence planning and discourse

structuring rules, without needing to hard code these rules, as is done in Statistical

Natural Language Generation (SNLG). This includes testing if these models are able to

learn to control specific aggregation operations, generalize to new value combinations

not seen in the training data and learn to generate discourse structures across disparate

datasets.
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Recent work in NNLG explicitly claims that training models end-to-end allows

them to do both sentence planning and surface realization without the need for inter-

mediate representations [Dusek and Jurćıcek, 2016b; Lampouras and Vlachos, 2016;

Mei et al., 2015; Wen et al., 2015; Nayak et al., 2017]. However, no-one has actually

demonstrated that an NNLG model can faithfully produce outputs that exhibit the

sentence planning and discourse operations given only examples of these operations in

the training data. Given only examples in the training data, the model is not presented

a structure designed to represent these features, such as tree-structured representation.

Examples of these operations are in Tables 6.1, 6.2 and 6.3. Instead, NNLG evaluations

focus on measuring the semantic correctness of the outputs and their fluency [Novikova

et al., 2017a; Nayak et al., 2017]. The experiments in this chapter systematically test

whether these claims are actually true [Reed et al., 2018].

The experiments aim to show that NNLG can perform the same operations

executed by the sentence planner of a SNLG. In contrast, earlier models of SNLG for

dialogue were based around the NLG architecture in Figure 6.1 [Rambow et al., 2001;

Stent, 2002].

Figure 6.1: Statistical NLG Dialogue Architecture.

In statistical NLGs the dialogue manager sends one or more dialogue acts
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and their arguments to the NLG engine, which then makes decisions how to render

the utterance using separate modules for content planning and structuring, sentence

planning and surface realization [Reiter and Dale, 2000]. The sentence planner’s job

includes:

• Sentence Scoping: deciding how to allocate the content to be expressed across

different sentences;

• Aggregation: implementing strategies for removing redundancy and construct-

ing compact sentences;

• Discourse Structuring: deciding how to express discourse relations that hold

between content items, such as causality, contrast, or justification.

Table 6.1 shows sample training data for an NNLG with a meaning repre-

sentation (MR) for a restaurant named zizzi, along with three reference realizations,

that should allow the NNLG to learn to realize the MR as either 1, 3, or 5 sentences.

Sentence scoping affects the complexity of the sentences that compose an utterance, al-

lowing the NLG to produce simpler sentences when desired that might then be easier for

particular users to understand. Aggregation reduces redundancy, composing multiple

content items into single sentences. Table 6.2 presents common aggregation operations

[Cahill et al., 2001; Shaw, 1998]. Discourse structuring is often critical in persuasive

settings such as recommending restaurants, hotels or travel options [Scott and de Souza,

1990; Moore and Paris, 1993], in order to express discourse relations that hold between

content items. Table 6.3 shows how recommend dialogue acts can be included in the
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MR, and how content can be related with justify and contrast discourse relations

[Stent et al., 2002].

# Type Example

name[Zizzi], priceRange[moderate], area[riverside], food[English],
eatType[pub], near[Avalon], familyFriendly[no]

1 1 Sent Zizzi is moderately priced in riverside, also it isn’t family friendly,
also it’s a pub, and it is an English place near Avalon.

2 3 Sents Moderately priced Zizzi isn’t kid friendly, it’s in riverside and it
is near Avalon. It is a pub. It is an English place.

3 5 Sents Zizzi is moderately priced near Avalon. It is a pub. It’s in river-
side. It isn’t family friendly. It is an English place.

Table 6.1: Sentence Scoping: a sentence planning operation that decides what content
to place in each sentence of an utterance.

In this chapter, we systematically perform a set of controlled experiments

to test whether an NNLG can learn to perform sentence planning operations. This

chapter is broken up into three experiments. The first controls sentence scoping, as

seen in Table 6.1, where we experiment with controlling the number of sentences in the

generated output. These experiments are a proxy for controlling utterance syntactic

complexity. In Table 6.1 one can see how realizing the same MR with fewer sentences

(row 3) creates a simpler utterance than realizing it in 1 sentence (row 1). The second

controls distributive aggregation, an aggregation operation that can compactly express

a description when two attributes share the same value. This is shown in row number

6 in Table 6.2. Distributive aggregation requires learning a proxy for the semantic

property of equality along with the standard mathematical distributive operation.

The final experiment explores discourse contrast, which can be seen in row number 8 in
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# Type Example

name[The Mill], eatType[coffee shop], food[Italian],
priceRange[low], customerRating[high], near[The Sorrento]

4 With, Also The Mill is a coffee shop with a high rating with a low cost, also The
Mill is an Italian place near The Sorrento.

5 With, And The Mill is a coffee shop with a high rating with a high cost and it is
an Italian restaurant near The Sorrento.

6 Distributive The Mill is a coffee shop with a high rating and cost, also it is an
Italian restaurant near The Sorrento.

Table 6.2: Aggregation Operation Examples.

# Discourse Rel’n Example

name[Babbo], recommend[yes],food[Italian], price[cheap], qual[excellent],
near[The Sorrento],location[West Village], service[poor]

7 justify ([recommend]
[food, price, qual])

I would suggest Babbo because it serves Italian
food with excellent quality and it is inexpen-
sive. The service is poor and it is near the Sorrento
in the West Village.

8 contrast [price, ser-
vice]

I would suggest Babbo because it serves Italian food
with excellent quality and it is inexpensive. How-
ever the service is poor. It is near the Sorrento in
the West Village.

Table 6.3: Justify & Contrast Discourse Relations.

Table 6.3. Discourse contrast requires learning a proxy for semantic comparison. That

is, that some attribute values are evaluated as positive (inexpensive) while others are

evaluated negatively (poor service), and that a successful contrast can only be produced

when two attributes are on opposite poles (in either order).1

1We also note that the evaluation of an attribute may come from the attribute itself, e.g. “kid
friendly”, or from its adjective, e.g. “excellent service”.
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6.2 Experimental Framework

6.2.1 Model Architecture

The goal of these experiments are to test how well NNLG models can produce

realizations of these three sentence planning operations and discourse structures with

varying levels of supervision, while simultaneously achieving high semantic fidelity. Fig-

ure 6.2 shows the general architecture, implemented in Tensorflow, based on TGen, an

open-source sequence-to-sequence (seq2seq) neural generation framework [Abadi et al.,

2016; Dusek and Jurćıcek, 2016a].2 The model uses seq2seq generation with attention

[Bahdanau et al., 2014; Sutskever et al., 2014], with a sequence of LSTMs [Hochreiter

and Schmidhuber, 1997] for encoding and decoding, along with beam-search and an

n-best reranker.

The input to the seq2seq model is a sequence of tokens xt, t ∈ {0, . . . , n} that

represent the dialogue act and associated arguments. Each xi is associated with an

embedding vector wi of some fixed length. Thus, for each MR, TGen takes as input

the dialogue acts representing system actions (recommend and inform acts) and the

attributes and their values (for example, an attribute might be price range, and its value

might be moderate), as shown in Table 6.1. The MRs (and resultant embeddings) are

sorted internally by dialogue act tag and attribute name. For every MR in the training

data, we have a matching reference text, which we delexicalize in pre-processing, and

then re-lexicalize in the generated outputs. The encoder reads all the input vectors and

2https://github.com/UFAL-DSG/tgen
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Figure 6.2: Neural Network Model Architecture, illustrating both the no supervision
baseline and models that add the token supervision.

encodes the sequence into a vector hn. At each time step t, the encoder computes the

hidden layer ht from the input wt and hidden vector at the previous time step ht−1,

following:

ht = (W1.xt +W2.ht−1) + b

All experiments use a standard LSTM decoder. At each point in time, a

softmax over the output of the LSTM determines the index of the next token generated.

The decoder LSTM generates each word of the sentence as conditioned on the context

vector ct. The probability distribution pt for each candidate word at time t is calculated
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using the following equations:

st = f(yt−1, st−1, ct)

and

pt = softmax(st, yt−1)

where st is the hidden state of the decoder LSTM at time t. The context vector

is a weighted average of the hidden states of the encoder:

ct =
n∑

k=1

αt,khk

αt,k = exp(et,k)/
n∑

j=1

exp(et,j)

et,j = ν(st−1, ht)

where ν is usually implemented as a feed-forward network.

We test three different dialogue act and input vector representations in the

three experiments, based on the level of supervision, as demonstrated by the two input

vectors in Figure 6.2. (1) models with no supervision, where the input vector simply

consists of a set of inform and recommend tokens each specifying an attribute and value

pair. (2) models with a supervision token, where the input vector is supplemented

with a new token (either period or distribute or contrast), to represent a latent variable

to guide the NNLG to produce the correct type of sentence planning operation. (3)
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models with semantic supervision, which is tested only on distributive aggregation,

where the input vector is supplemented with specific instructions of which attribute

value to distribute over, e.g. low, average or high, in the distribute token. We describe

the specific model variations for each experiment in Sections 6.3, 6.4 and 6.5 respectively.

6.2.2 Corpus Creation

We use automatically generated data by personage [Mairesse and Walker,

2011], as described in Section 3.2.1, for the sentence scoping and distributive aggrega-

tion experiments to ensure that the training data contains enough examples of particu-

lar phenomena. Then, for the contrast discourse experiment, we use crowdsourced E2E

data (as described in Section 3.3) combined with data automatically generated by per-

sonage. By automatically generating data using the SNLG personage, this allows us

to systematically create training data that exhibits particular sentence planning oper-

ations, or combinations of them. This would be difficult to find in significant amounts

of in crowdsourced or natural datasets. personage is capable of generating data with

high numbers of sentences as well as generating data with specific adjective combina-

tions for the sentence planning and distributive aggregation experiments, respectively.

Also, personage is able to generate contrast, which is uncommon in existing datasets

like E2E.

We populate personage with the syntax/meaning mappings that it needs to

produce output for the E2E MRs, and then automatically produce a large (204,955

117



utterance/MR pairs), systematically varied sentence planning corpus.3 This process is

described in more detail in Section 3.4

6.2.3 Evaluation Metrics

As mentioned previously, a secondary contribution of this work is the develop-

ment of new automatic evaluation metrics and corresponding scripts. These evaluation

metrics are used to evaluate the semantic accuracy of the output given the semantics of

the input MR. The evaluation metrics also detect the presence of the syntactic features

that we are generating and their accuracy. Accuracy of syntactic features can be based

on the expected behaviour given the supervision tokens or correctness. For instance,

a contrast can be either correct or incorrect based on the attributes and values being

contrasted. Contrast should only occur between two attributes on opposite ends of the

spectrum of sentiment. It is necessary to verify the correctness of the generated contrast

by confirming that the attributes on either side of the contrast cue word are not the same

sentiment. We note that previous work on sentence planning has always assumed that

sentence planning operations improve the quality of the output [Barzilay and Lapata,

2006; Shaw, 1998], while the primary focus here is to determine whether an NNLG can

be trained to perform such operations while maintaining semantic fidelity. Moreover,

due to the large size of the controlled training datasets, we observe few problems with

output quality and fluency. Thus we leave an evaluation of fluency and naturalness to

future work, and focus here on evaluating the multiple targets of semantic accuracy and

3We make the sentence planning for nlg corpus available at: nlds.soe.ucsc.edu/sentence-planning-
NLG.
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sentence planning accuracy.

We calculate the semantic accuracy using the SER, which is defined in Sec-

tion 4.4. We also define scripts for evaluating the accuracy of the sentence planner’s

operations. We check whether: (1) the output has the right number of sentences; (2) at-

tributes with equal values are realized using distributive aggregation, and (3) discourse

contrast is used when semantically appropriate.

6.3 Sentence Scoping

First, we experiment with controlling the number of sentences in the generated

output, which is measured using the period operator. This is to test whether it is

possible to control basic sentence scoping with an NNLG. As the data for this experiment

is synthetically generated, we only allow periods to be used as the end of sentence

punctuation and therefore only need to confirm the presence or absence of a period

to determine a sentence split. For example, Table 6.1 shows the same MR semantics

realized in 1, 3 or 5 sentences using the period operation. We experiment with two

different model supervision schemas:

• No Supervision: no additional information in the MR (only attributes and their

values)

• Period Count Supervision: has an additional supervision token, period, spec-

ifying the number of periods (i.e. the number of sentences) to be used in the output

realization.
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For the sentence planning experiment, we generated a dataset using E2E MRs

with no additional pragmatic markers and a high probability of generating a period

aggregation operation versus the other aggregation operations, listed in Table 6.4. All

other aggregation operations had the same likelihood of being generated.

Operation Example

Period X serves Y. It is in Z.
“With” cue X is in Y, with Z.
Conjunction X is Y and it is Z. & X is Y, it is Z.
All Merge X is Y, W and Z & X is Y in Z
“Also” cue X has Y, also it has Z.
Distrib X has Y and Z.

Table 6.4: Scoping and Aggregation Operations in Personage.

We construct a training set of 64,442 output/MR pairs and a test set of 398

output/MR pairs where the reference utterances for the outputs are generated from

personage. The maximum number of sentences in the reference for each MR is N-

1 where N is the number of attributes. This is because one attribute is the name

of the restaurant, which we delexicalize, and, as that is the subject of the output,

it cannot be in a sentence without at least one other attribute. All other attributes

are descriptors of the restaurant (proposition) and, therefore, can be on their own in

a sentence. Since personage is capable of combining many propositions into a single

sentence, the minimum number of sentences for the reference of any MR is one. Table 6.5

shows the number of training instances for each MR size for each period count. The

right frontier of the table shows that there are low frequencies of training instances

where each proposition in the MR is realized in its own sentence (Period = Number of
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MR attrs -1). The lower left quadrant of the table shows that as the MRs get longer,

there are lower frequencies of utterances with Period=1.

Number of Periods

1 2 3 4 5 6 7

A
tt

ri
b

u
te

s
3 3745 167 0 0 0 0 0
4 5231 8355 333 0 0 0 0
5 2948 9510 7367 225 0 0 0
6 821 5002 7591 3448 102 0 0
7 150 1207 2983 2764 910 15 0
8 11 115 396 575 388 82 1

Table 6.5: Distribution of Training Data.

For all the sentence scoping experiments, we start with the default TGen pa-

rameters and monitor the losses on Tensorboard on a subset of 3,000 validation instances

from the 64,000 training set. The best settings use a batch size of 20, with a minimum

of 5 epochs and a maximum of 20 (with early-stopping based on validation loss). We

generate outputs on the test set of 398 MRs.

6.3.1 Sentence Scoping Results

First, we experimented with the two types of supervision mentioned above in

order to see if we could control for the number of sentences in the output. Table 6.6

shows the accuracy of both models in terms of the number of the output utterances

that realize the MR attributes in the specified number of sentences. This is shows in

the column labeled “Period Accuracy”. The correctness of the semantics of the MR is

not accounted for in this metric, which is represented by the slot error rate (SER), the

metric for semantic accuracy defined in Section 4.4. This metric for both experiments
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show that the model is very accurate in realizing the correct semantics. In the case of

NoSup, we compare the number of sentences in the generated output to those in the

corresponding test reference. In the case of PeriodCount, we compare the number

of sentences in the generated output to the number of sentences we explicitly encode in

the MR. The table presents that the NoSup setting fails to output the correct number

of sentences in most cases (with only a 22% accuracy), but the PeriodCount setting

makes only 2 mistakes (with almost perfect accuracy), demonstrating almost complete

control of the number of output sentences with the single-token supervision. We also

show correlation levels with the gold-standard references (all correlations significant at

p ≤ 0.01).

Model SER ↓ Period Period
Accuracy ↑ Correlation ↑

NoSup 0.06 0.216 0.455

Period Count 0.03 0.995 0.998

Table 6.6: Sentence Scoping Results.

6.3.2 Generalization Test

While the experiment above shows that we are able to control the number of

sentences in the output, we generated the test using held-out instances from personage.

Then for each MR, we only tested the model with the sentence number also generated

by personage for that instance. We also wanted to confirm that regardless of the

number of attributes and the MR itself we can generate any number of sentences. To

this end, we carry out an additional experiment to test the ability of the PeriodCount
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model to see if it works more generally. To do this, we randomly select a set of 31 MRs

from the test set. We then create a new test set where, for each of the 31 selected MRs,

we have N-1 test instances (where N is the number of attributes). Each of these N-1

test instances have a different period token value, from 1 to N-1, in order to represent

every potential number of sentences this MR could be realized with. This allows us

to systematically test that, for the same MR and therefore the same semantics, we are

able to control the output and generate a varied number of sentences. The new test set

consists of 196 MRs.

We generated new test outputs using the model trained on the dataset with

token supervision, PeriodCount. We correctly generated the desired number of sen-

tences 84% of the time on this test set (with a correlation of 0.802 with the test refs,

p ≤ 0.01). When analyzing the errors, we observe that all of the scoping errors the

model makes (31 in total) are the case of period=N-1. These cases correspond to

the right frontier of Table 6.5 where there were fewer training instances. Thus, while

the period supervision improves the model, it still fails on cases where there were few

instances in the training set. This also demonstrates that learning to generate three

sentences for an MR with four attributes is different from generating three sentences

for an MR with six attributes. While we had many instances with three sentences, the

test MRs with four attributes failed to generate their output in three sentences.
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6.3.3 Complexity Experiment

We performed a third sentence scoping experiment where we specified a target

sentence complexity instead of a target number of sentences. This is because sentence

complexity may more intuitively correspond to a notion of reading level or difficulty,

where the assumption is that longer sentences, that contain more propositions, are more

complex [Howcroft et al., 2017; Siddharthan et al., 2004]. Being able to control sentence

complexity would potentially allow for generation of outputs based on reading level, tai-

loring the output to the audience. We used the same training and test data, but labeled

each reference as either high, medium or low complexity. When calculating sentence

complexity, the name attribute does not contribute to the number of propositions in

the utterance since it is the subject of the review and therefore not a proposition. The

number of propositions per sentence was calculated using this formula: {number of at-

tributes in the MR - 1} / {the number of sentences}. A reference was labeled high when

there were > 2 propositions per sentence, medium when the number of propositions per

sentence was > 1.5 and ≤ 2 and low when there were ≤ 1.5 propositions per sentence.

The distribution of these labels in the training and testing data are in Table 6.7, which

shows that high and medium complexity are in the training and testing data in similar

proportions, with low appearing slightly less in both the training and testing data.

This experiment results in 89% accuracy across the three complexity labels. 39

of the 44 errors occurred when the labeled complexity was medium, and of those, 36 had

an actual complexity of 1.5, which is on the border of medium and high. This is most
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Complexity % in Train % in Test

high 37.5 33.4

medium 37.9 36.9

low 24.6 29.6

Table 6.7: Distribution of complexity labels in the training and testing data.

likely because there is often only one sentence difference between the two complexity

labels and the model struggles to make this distinction with categorical labels. This also

shows that the model is learning sentence complexity not based on an absolute number

of sentences given an input number of attributes.

These three experiments on sentence scoping indicate that sentence scoping

can be used to create references with either exactly the number of sentences requested

or categories of sentence complexity.

6.4 Distributive Aggregation

Distributive Aggregation
if ATTR1 := ADJi

and ATTR2 := ADJj
and ADJi = ADJj

then DISTRIB(ATTR1, ATTR2)

Figure 6.3: Semantic operations underlying distributive aggregation.

Aggregation describes a set of sentence planning operations that combine mul-

tiple attributes into single sentences or phrases. Common aggregation operations can

be seen in Table 6.4. In this section, we focus on distributive aggregation as defined in
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Figure 6.3 and illustrated in Row 6 of Table 6.2. Distributive aggregation occurs when

there are two attributes (nouns) with the same values (adjectives). Instead of repeat-

ing the values, for example, “The restaurant has a high price and a high rating”, both

attributes can be associated with a single mention of the value, as in “The restaurant

has a high price and rating”. In a SNLG setting, the generator achieves this type of ag-

gregation by operating on syntactic trees [Shaw, 1998; Scott and de Souza, 1990; Stent

et al., 2004; Walker et al., 2002a]. In an NNLG setting, we hope the model will induce

the syntactic structure and the mathematical operation underlying it, automatically,

without explicit training supervision.

We again created a novel training corpus for these examples using personage

and we again used the E2E ontology, like in the previous sentence scoping experiment.

However, we changed values to allow more opportunities for distributive aggregation,

as there were low frequencies of distributive aggregation in the original data. This was

because lexical values rarely matched for different attributes. To prepare the training

data, we limited the values for price and rating attributes to low, average, and

high. We reserved the combination {price=high, rating=high} for test, leaving two

combinations of values where distributive aggregation is possible ({price=low, rat-

ing=low} and {price=average, rating=average}). This allowed us to determine

if the model is only learning to generate combinations of words that are in the training

data or if the model can learn the sentence structure of distributive aggregation. We

then used all three values in MRs where the values associated with price and rating

are not the same {price=low, rating=high}. This ensured that the model does
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see the value high in training, but never in a setting where distributive aggregation

is possible. We always distributed whenever possible, so every MR where the values

are the same used distributive aggregation. Aggregation operations between all other

attributes used the other operations defined in personage, as specified in Table 6.4,

with equal probability.

The aggregation training set contains 63,690 total instances, with 19,107 in-

stances for each of the two combinations that are able to distribute and 4,246 instances

for each of the six combinations that are not able to distribute. The test set contains

408 MRs, 288 specify distributive aggregation over high,4 30 specify distributive aggre-

gation over average, 30 over low, and 60 are examples where the values are different

and therefore do not require distributive aggregation (none). We test whether the

model will learn the equality relation independent of the value (high vs. low), and

thus realizes the aggregation with high. For this experiment, we test three different

types of supervision with which we train the models:

• No Supervision: no additional information in the MR (only attributes and their

values)

• Binary Supervision: we add a supervision token, distribute, where the value

is either a binary 0 or 1 indicating whether or not the corresponding reference text

contains an aggregation operation over attributes price range and rating.

• Semantic Supervision: we add a supervision token, distribute, where the

4which again we note is not a setting seen in the training data, and explicitly tests the models’ ability
to generalize
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value is either a string that is none if there is no aggregation over price range and

rating in the corresponding reference text, or a value of low, average, or high

for distributive aggregation.

Like in the previous experiment on sentence scoping, we started with the de-

fault TGen parameters and monitor the losses on Tensorboard on subset of 3,000 vali-

dation instances from the 63,000 training set. The best settings use a batch size of 20,

with a minimum of 5 epochs and a maximum of 20 epochs with early-stopping.

6.4.1 Distributive Aggregation Results

Model SER ↓ Distributive
Accuracy ↑

Distributive
Accuracy
(on high) ↑

NoSup 0.12 0.29 0.00
Binary 0.07 0.99 0.98
Semantic 0.25 0.36 0.09

Table 6.8: Distributive Aggregation Results.

Table 6.8 shows the accuracy of each model overall on all 4 values, as well as

the accuracy specifically on high, the only distributive aggregation value unseen in the

training data. The nosup model has a low accuracy overall, and is unable to generalize

to high, which is unseen in the training data. It is able to use the high value frequently,

but is not able to distribute (generating output like high cost and cost).

The binary model is the best performing model, with an almost perfect accu-

racy. It is able to accurately distribute over low and average for every test instance,
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however it makes some mistakes when trying to distribute over high; specifically, while

it always distributes, it sometimes uses an incorrect value (low or average). When-

ever binary correctly distributes over high it, interestingly, always selects the attribute

rating before price range, realizing the output as high rating and price. Additionally,

binary is consistent even when it incorrectly uses the value low instead of high: it

always selects the attribute price range before rating.

Surprisingly, the semantic model does poorly, with 36% overall accuracy.

For the value high, there is only a 9% accuracy, where most of the mistakes on high

involve repeating the attribute high rating and rating, including examples where it does

not distribute at all, e.g. high rating and high rating. We believe the poor results from

semantic are due to the model not seeing the value high in relation to the supervision

token in the training data and therefore does not encode the value high, unlike for

values that are seen in the training data, which it can recognize are related such as the

value low and the word “low”. In other words, even though the model knows the word

“high”, the value high in relation to the semantic supervision attribute is completely

unknown to the model and it does not provide any useful information to help the model

realize it needs to use distributive aggregation.

We also completed a human evaluation to compare the fluency, grammaticality,

and semantic coherency of the outputs of the binary model. We described these terms

in more detail in Section 4.3. We had five Turkers select which was of two outputs from

the model was more fluent, grammatical and coherent. We split the output into three

categories: (1) high distributive (high), where the output realized the “high” adjective
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for both attributes and used the distributive aggregation operation, (2) low and average

distributive (lowaverage), where the output realized either the “low” or “average”

adjective for both attributes and used the distributive aggregation operation, and (3)

not distributive (none), where the output realized different adjectives for both attributes

and did not use the distributive aggregation operation. For each pair of outputs shown

to the Turkers, we put together utterances from two different categories and asked

them which they thought was better for each category we evaluated. We found, when

compared to both lowaverage and none, high was preferred across all categories. But

between lowaverage and none, lowaverage is preferred across all categories. This

indicates that using the distributive operation creates an utterance that humans prefer

in all measured aspects. Also, even though “high” is the only value not seen distributed

in the training data, the output which uses this adjective is preferred by humans. This

could be because “high” rating is seen as positive. This does demonstrate that the

model generated good quality output even on unseen data, since it did not detract from

the readers’ opinions of the utterance. Results in Table 6.9.

Utt.Type A Utt. Type B Nat. Coher. Grammat.
A B A B A B

high low&average 57% 43% 67% 33% 57% 43%
high none 67% 33% 60% 40% 63% 37%
low&average none 63% 37% 63% 37% 63% 37%

agreement 0.58 0.53 0.54

Table 6.9: Human Evaluation on Mechanical Turk comparing high, lowaverage and
none for Naturalness, Semantic Coherence, and Grammaticality.
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6.5 Contrast

Persuasive settings such as recommending restaurants, hotels or travel options

often have a critical discourse structure [Scott and de Souza, 1990; Moore and Paris,

1993; Nakatsu, 2008]. For example, a recommendation may consist of an explicitly

evaluative utterance, e.g. Chanpen Thai is the best option, along with content related

by the justify discourse relation, e.g. It has great food and service, as can be seen

Table 6.3 or a recommendation may explicitly contrast two different attributes when

one is perceived positive and the other negative.

The experiments in this section focus on discourse-contrast, which is de-

fined in Figure 6.4. Contrast can occur between two attributes when the value of one of

the attributes is considered negative and the value of the other attribute is considered

positive. We developed a script to find contrastive sentences in the 40K E2E training

set by searching for any instance of a contrast cue word, such as but, although, and even

if. This script identified 3,540 instances. While this data size is comparable to the 3-4K

instances used in prior work [Wen et al., 2015; Nayak et al., 2017], we anticipated that

it might not be enough data to properly test whether an NNLG can learn to produce

discourse contrast. We were also interested in testing whether synthetic data would

Discourse Contrast
if EVAL(ADJi(ATTR1)) = POS

and EVAL(ADJj(ATTR2)) = NEG
then CONTRAST(ATTR1, ATTR2)

Figure 6.4: Semantic operations underlying discourse contrast.
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improve the ability of the NNLG to produce contrastive utterances while maintaining

semantic fidelity. Thus, we used personage to generate the NYC data described in

Section 3.2 in order to generate an additional 3,500 examples of one form of contrast

using only the discourse marker but. This was the most common contrast cue in the

E2E data. This also allows us to test if, given a dataset with few instances of contrast,

we can improve the model’s ability to generate contrast on MRs from this dataset by

augmenting the training data with contrastive data from another dataset.

Table 6.10 illustrates both personage and E2E contrast examples. While

personage also contains justifications, which could possibly confuse the NNLG, it

offers many more attributes that can be contrasted and, thus, more unique instances

of contrast. We also delexicalize the attributes cuisine and location in both datasets.

We do this as the values for neither attribute have explicit sentiment and they were

both simple to delexicalize, which gives the model fewer values to learn and improves

its chance to learn contrast. We create four training datasets with contrast data in

order to systematically test the effect of combining training data from different sources.

Table 6.11 provides an overview of the training sets.

3K Training Set. This dataset consists only of instances of contrast in the E2E

training data (i.e. 3,540 E2E references and no additional data).

7K Training Set. We created a training set of 7K references by supplementing the E2E

contrastive references with an equal number of personage references with contrast.

11K Training Set. Since 7K is a smaller dataset size than is desirable for training an

NNLG, we created several additional training sets with the aim of helping the model
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Source MR Realization

NYC name[xname] recommend[no]
cuisine[xcuisine] decor[bad]
qual[acceptable]
location[xlocation] price[affordable]
service[bad]

I imagine xname isn’t great be-
cause xname is affordable, but it
provides bad ambiance and rude
service. It is in xlocation. It’s a
xcuisine restaurant with accept-
able food.

E2E name[xname] cuisine[xcuisine]
location[xlocation]
familyFriendly[no]

It might be okay for lunch, but
it’s not a place for a family out-
ing.

E2E name[xname]
eatType[coffee shop] cuisine[xcuisine]
price[more than $30]
customerRating[low]
location[xlocation] familyFriendly[yes]

Xname is a low customer rated
coffee shop offering xcuisine
food in the xlocation. Yes, it
is child friendly, but the price
range is more than $30.

Table 6.10: Training examples of E2E and NYC Contrast sentences.

Training Sets NYC #N E2E #N

3K N/A 3,540 contrast
7K 3,500 contrast 3,540 contrast
11K 3,500 contrast 3,540 contrast + 4K random
21K 3,500 contrast 3,540 contrast + 14K random
21K contrast 3,500 contrast 3,540 contrast + 14K random

Table 6.11: Overview of the training sets for contrast experiments.

learn to correctly realize domain semantics while still being able to produce contrastive

utterances. Thus, we added an additional 4K crowd-sourced E2E data that was not

contrastive to the training data, for a total of 11,065. See Table 6.11.

21K Training Set. Additionally, we created a larger training set by adding more E2E

data, again to test the effect of increasing the size of the training set on realization of

domain semantics, without a significant decrease in the ability to produce contrastive

utterances. We added an additional 14K E2E references, for a total of 21,065. See

133



Table 6.11. We perform two experiments with the 21K training set. First, we trained

on the MR and reference exactly as we had done for the 7K and 11K training sets. The

second experiment added a contrast token during training time with values of either 1

(contrast) or 0 (no contrast) to test if added supervision would help the model achieve

better control of contrast.

There is also a representation of the distribution of data from NYC and E2E

(contrast data and non-contrast data) in each training dataset in Figure 6.5.

Figure 6.5: The Distribution of the Contrast Training Datasets.

Contrast Test Sets. To have a potential for contrast, there must be an attribute

with a positive value and an additional attribute with a negative value in the same

MR. We constructed three different test sets, two for E2E and one for NYC. First, we

created a delexicalized version of the test set used in the E2E generation challenge. We

delexicalized the test sets so they matched the already delexicalized training dataset.

This resulted in a test of 82 MRs of which only 25 could support contrast (E2E Test).

In order for an MR to support contrast it must have two attributes from Table 6.12,
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one that has a positive value and one that has a negative value. It can then have any

other additional attribute and value pairs, including other attributes and values which

support contrast. In order to allow for a better test of contrast, we constructed an

additional test set of 500 E2E MRs which all could support contrast (E2E Contrast

Test). For the NYC test, which provides many opportunities for contrast, we created

a dataset of 785 MRs that were different than those seen in the training data (NYC

Test), 374 of which support explicit contrast. We utilize the contrast token, at test

time, for the 21K contrast token experiment, to match the training data.

While these experiments focus on contrast between two attributes that have

clear sentiment, such as customer rating, it is generally agreed that a higher rating

is better, sentiment towards attributes often depends on the opinions of the author.

Attributes other than the ones listed in Table 6.12 can potentially support contrast if

the author has a negative or positive opinion of them. Location, for example, can be very

important to some people. An utterance like “has good food but is located in riverside”

can be a very reasonable utterance from someone who dislikes riverside. Also, we made

the assumption that price range being high was negative, but some people prefer higher

end restaurants and price might be indicative of this. For these experiments, we do

not consider the author’s opinion, and therefore do not count these as correct contrast.

This is so we can measure the model’s ability to correctly generate contrast based on

what it has seen and not generate contrast that it not prevalent in the data.

135



Attribute Positive Values Negative Values Dataset

price cheap, low, less than $20 very expensive, expen-
sive, high, more than $30

both

customerRating high, 5 out of 5 low, 1 out of 5 E2E

familyFriendly yes no E2E

service fantastic, good bad, terrible NYC

qual fantastic, good bad, terrible NYC

decor fantastic, good bad, terrible NYC

Table 6.12: Attributes with sentiment and their positive and negative values.

6.5.1 Contrast Results

We present the results for both SER and contrast for the Original E2E test

set in Table 6.13, E2E Contrast in Table 6.14, and NYC test set in Table 6.15.

Table 6.13 shows the results for testing on the Original E2E test set, where

we only have 25 instances out of 82 with the possibility for contrast. Overall, the table

shows large performance improvements with the contrast token supervision for the

model trained on 21K instances for both SER and correct contrast. On the Original E2E

test set, the model trained on just 3K E2E instances gives a slot error rate (SER) of 0.38

and only 15% of the attempts at contrast were correct. We define a correct contrast as

a contrast between a negative and positive attribute-value pair. The model trained on

7K instances, which was supplemented with additional synthetically generated contrast

examples, gets a correct contrast of 0.41 but the SER is much worse, increasing from 0.38

to 0.56. Interestingly, the model trained on 11K instances performed better than the

model trained on 3K instances for contrast correct. This occurs even though the model

trained on 11K has a smaller proportion of contrast instances, suggesting a positive
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effect for the automatically generated contrast examples along with more E2E training

data. The model trained on 21K instances without additional supervision has the least

number of attempts to contrast since the frequency of contrast data is low, but with the

contrast token, it attempts contrast every time it is possible (25/25 instances) and

has the highest percentage of correct contrast out of all the models by 34%.

Train E2E Test (N = 82)
SER ↓ Contrast

Attempts ↑
Contrast
Correct ↑

3K .38 13 .15
7K .56 61 .41
11K .31 24 .33
21K .28 2 .50

21K
contrast .24 25 .84

Table 6.13: Slot Error Rates and Contrast for Original E2E.

In Table 6.14, we can see the results on the test set E2E Contrast, where every

test instances has the potential for contrast. For this test set, we also see similar trends

as when we tested on Original E2E, with the lowest SER (0.16) and highest correct con-

trast (0.75) ratios for the experiment with token supervision on 21K instances. Again,

we see a much better performance from the model trained on 11K instances than the

model trained on 3K instances or the model trained on 7K instances. This is in terms

of both SER and correct contrast, indicating that more training data (even if that data

does not contain contrast) helps the model. As before, we see a very low amount of con-

trast attempts with the model trained on 21K instances without additional supervision,

with a huge increase in the number of contrast attempts when using token supervision
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(422/500).

Train E2E Contrast Test (N=500)
SER ↓ Contrast

Attempts ↑
Contrast
Correct ↑

3K .70 213 .19
7K .45 325 .22
11K .23 227 .70
21K .17 13 .62

21K
contrast .16 422 .75

Table 6.14: Slot Error Rates and Contrast for E2E, Contrast Only.

Table 6.15 also shows large performance improvements with contrast token

supervision for the NYC test set, again with improvements for the 21K contrast in

both SER and in correct contrast. Interestingly, while we get the highest correct contrast

ratio of 0.85 with 21K Contrast, we actually see fewer contrast attempts. This

shows that the most explicitly supervised model becomes more selective when deciding

when to generate contrast. With the model trained on 7K instances, the neural model

always produces a contrastive utterance for the NYC MRs (all the NYC training data

is contrastive), although 35% of the time this contrast is incorrect. Although the model

trained on 21K instances with contrast supervision is not trained with any NYC

non-contrastive MRs, the additional E2E training data allows it to improve its ability

to decide when to contrast as well as improving the SER in the final experiment. This

is especially interesting since for each addition of E2E non-contrasting data, both the

SER and the contrast accuracy improve for NYC. This shows that more data improves

an NNLG regardless of its direct correlation to test.
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Train NYC Test (N = 785)
SER ↓ Contrast

Attempts ↑
Contrast
Correct ↑

3K N/A N/A N/A
7K .29 784 .65
11K .26 696 .71
21K .25 659 .82

21K
contrast .24 566 .85

Table 6.15: Slot Error Rates and Contrast for NYC.

We also performed human evaluation on the outputs from the 21K contrast

model using the E2E contrast test set. While every MR had the potential for contrast

and the supervision indicated there should be contrast in every utterance, 78 outputs did

not have contrast. We compared these 78 instances where contrast failed to a random

sample of 78 outputs with correct contrast to see how the contrast learned through

transfer learning affected the readers’ experience. We compared the utterances in terms

of fluency, grammaticality and semantic coherency, as described in Section 4.3. We

had five Turkers evaluate each utterance pair. We found that, across all three metrics,

that the outputs without contrast were evaluated as better. This shows that there are

still improvements to be made to improve the quality of the contrast being generated.

Results are in Table 6.16

6.6 Summary

These experiments demonstrate that we can learn a general sentence planning

framework from specific examples in the training data with minimal supervision and
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Nat. Coher. Grammat.

contrast 35.9% 32.1% 23.1%
no contrast 64.1% 67.9% 76.9%

agreement 0.56 0.56 0.58

Table 6.16: Human Evaluation on Mechanical Turk comparing outputs with con-
trast and without contrast for Naturalness, Semantic Coherence, and Grammaticality
(N=78). Results are percentage of times Turkers rated the contrast or without contrast
as “better”.

thereby control the sentence planning operations expressed in output, learn how to ap-

ply sentence planning operations to new values that the model was not trained on, and

blend data from multiple sources to improve the ability to learn sentence planning op-

erations which might be underrepresented in existing datasets. In the sentence scoping

experiment, we had the model learn how to split the same MR into different numbers

of sentences, and apply that to MRs that it had never seen before. For the distributive

experiment, we trained the model to distribute adjectives and, by using a binary token,

the model learned to distribute on a value that it had seen, but never seen distributed

in the training data. This showed us that in order to generalize, additional supervision

is sometimes necessary. In the contrast experiment we combined data from two sources

to augment the number of times the model sees contrast. This helped both sources

learn to contrast more accurately and improved semantic accuracy for both sources,

even when we only added data from one source.

Overall, the results show that the models benefit from extra latent supervision,

which improves the semantic accuracy of the NNLG, provides the capability to con-

trol variation in the output, and enables generalizing to unseen value combinations.
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These are forms of generalization that we believe can extend to other types of sentence

planning operations and other forms of stylistic variation.
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Chapter 7

Source Blending

7.1 Overview

Current Natural Language Generators (NLGs) take massive amounts of data

to train. The creation of such datasets is labor-intensive and time-consuming. We

believe when building an NLG for a new domain ontology, it should be possible to re-

use data built on existing domain ontologies. If this idea is possible, it would speed up

the development of new dialogue systems significantly.

In this chapter, we built a new domain ontology based on combining two

different existing ontologies within the same domain and utilizing their training data.

Each dataset is based on a different domain ontology in the restaurant domain. They

each have novel attributes and dialogue acts not seen in the other dataset, e.g., only one

dataset had attributes representing family-friendly and rating information and only the

other dataset had attributes for decor and service. The aim was an NLG engine that can
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ID Ontology MEANING REPRESEN-
TATION

EXAMPLE

e1 nyc
(train) recommend[yes], in-

form(name[restaurant],
service[excellent],
food[excellent],
décor[excellent],
location[area],
price[expensive])

I suggest you go to [restaurant].
The food, service and
atmosphere are all excellent,
even if it is expensive. Its in
[area].

e2 e2e
(train)

inform(name[restaurant],
eatType[restaurant-
type], customer-
rating[high], area[area],
near[point-of-interest])

[restaurant] is a
[restaurant-type]
in [area]
near [point-of-interest]. It
has a high customer rating.

e3 combined
(test) recommend = yes, in-

form(name[restaurant],
eatType[restaurant-
type], food = excel-
lent, location[area],
near[point-of-interest],
customer-rating[high],
décor = excellent,
service=excellent,
price=expensive)

[restaurant] is the best be-
cause it has excellent service
and atmosphere. It is a
[restaurant-type] offering
excellent food in [area] near
[point-of-interest] with a
high customer rating, but it is
expensive.

Figure 7.1: E1 and E2 illustrate training instances from the two source datasets E2E
and NYC. E2E attributes are represented in blue and NYC is in red. Some attributes
are shared between both sources: here the unique dialogue acts and attributes for each
source are underlined in E1 and E2. E3 illustrates an MR from the target test set
that we dub COM. All the MRs in COM combine dialogue acts and attributes from
E2E and NYC. There is no training data corresponding to E3. The MRs illustrate how
some attribute values, e.g. restaurant name, point-of-interest, are delexicalized
to improve generalization.

realize utterances for the extended combined ontology not found in the training data,

e.g. for meaning representations (MRs) that specify values for family-friendly, rating,

decor and service. Figure 7.1 illustrates this task. Example E1 is from a dataset referred
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to as NYC, described in Section 3.2, while E2 is from the dataset created for the E2E

NLG shared task, described in Section 3.3. As we explain in detail in Section 7.2, E1

and E2 are based on two distinct ontologies. Example E3 illustrates the task addressed

in this paper: we created a test set of novel MRs for the combined ontology and trained

a model to generate high-quality outputs where individual sentences realize attributes

from both ontologies.

To our knowledge, this is a entirely novel task. While it is common prac-

tice in NLG to construct test sets of MRs that realize attribute combinations not seen

in the training data, initial experiments showed that this task is surprisingly adver-

sarial. However, methods for supporting this type of generalization and extension to

new cases would greatly benefit task-oriented dialogue systems. In these NLG systems,

it is common to start with a restricted set of attributes and then slowly enlarge the

domain ontology over time. Also, in real world data, new attributes are constantly

being added to databases of restaurants, hotels, and other entities to support better

recommendations and better search. The experiments tested whether an NLG for an

enlarged ontology can be produced using individual existing datasets that each only

cover a subset of attributes.

We describe below how we created a test set — that we call com — of com-

bined MRs to test different methods for creating such an NLG. A baseline sequence-to-

sequence NLG model had a slot error rate (SER) (Section 4.4) of 0.45 and only produced

semantically perfect outputs 3.5% of the time. We experimented with three different

ways of conditioning the model by incorporating side constraints that encode the source
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of the attributes in the MR [Sennrich et al., 2016; Harrison et al., 2019] to improve

performance. However, this only increases the proportion of semantically perfect model

outputs from 3.5% to 5.5% (Section 7.4.1).

We then proposed and motivated a novel self-training method that dramati-

cally improves performance by learning from the model mistakes. Error analysis showed

that the models do produce many combined outputs but with errorful semantics. We

developed a rule-based text-to-meaning semantic extractor, based on SER, that auto-

matically creates novel correct MR/text training instances from errorful model outputs.

Self-training experiments used these corrected MR/text instances, thus learning from

mistakes (Section 7.4.2). We validated the text-to-meaning extractor with human eval-

uation. We found that a model trained with this process produced SERs of only 0.03

and semantically perfect outputs 81% of the time (a 75.4 percent improvement). We

also found that using a pre-trained model, GPT-2 [Radford and Narasimhan, 2018],

does not improve the semantic results but has more stylistic variation in the final model

output (Section 7.5.3). A human evaluation showed that these outputs are also natural,

coherent, and grammatical. The contributions are:

• Definition of a novel generalization task for neural NLG engines, which gener-

ates from unseen MRs that combine attributes from two datasets with different

ontologies;

• Systematic experiments on methods for conditioning NLG models, with results

showing the effects on model performance for both semantic errors and combining
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attributes;

• A novel self-training method that learns from the model’s mistakes to produce

semantically correct outputs 81% of the time, an absolute 75.4% improvement.

We start in Section 7.2 by defining the task in more detail, we describe the

models and metrics in Section 7.3, and we provide results in Section 7.4. In Section 7.5,

we test if using a pre-trained model, GPT-2, improves the results [Reed et al., 2020].

7.2 Ontology Merging and Data Curation

We started with two existing datasets, NYC and E2E, representing different

ontologies for the restaurant domain. We describe Both of these datasets in more detail

in Chapter 3. The NYC dataset used the narrator voice with minimal pragmatic

markers and an even distribution of aggregation operations. We used the crowdsourced

E2E dataset, combining training and development datasets into a single, larger, training

dataset. Figure 7.1 shows sample MRs for each source and corresponding training

instances as E1 and E2.

7.2.1 Ontology Merging

We first made a new combined ontology, onto-com, by merging NYC and

E2E. Attributes, dialogue acts, and sample values for E2E and NYC are illustrated on

the left-hand side of Figure 7.2. The result of merging them to create the new ontology

is on the right-hand side of Figure 7.2. Since there are only eight attributes in each
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source dataset, we developed a script by hand that maps the MRs from each source into

the onto-com ontology.

Figure 7.2: An example illustrating how dialogue acts and attributes for both source
databases were merged and relabelled to make a new combined ontology used in the
training and testing data.

As Figure 7.2 shows, both datasets have the inform dialogue act and include

the attributes name, cuisine, location, and price after mapping. The unique attributes

for the NYC ontology are scalar ratings for service, food quality, and decor. The NYC

dataset also has the recommend dialogue act, seen in E1 in Figure 7.1. The unique

attributes of the E2E ontology are customer rating, eat type (“coffee shop”), near and

family-friendly.
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7.2.2 Dataset Curation

Training Dataset. Given the combined ontology onto-com, we then mapped the

training data for both E2E and NYC into onto-com by relabelling the MRs to have

consistent names for shared attributes, as illustrated in Figure 7.2. We created a bal-

anced training set of ∼77K MR/utterance pairs from the two original datasets by com-

bining all NYC references with a random same-size sample of E2E references.

Test Set. We then manually created a test set, COM, consisting of 3040 MRs based

on the new combined ontology onto-com. Each test MR must have at least one at-

tribute unique to E2E and one attribute unique to NYC. This is so the MR combines

attributes from both sources, and these MRs form a dataset that is composed of com-

binations never seen in training.1 Example E3 in Figure 7.1 provides an example test

MR. The procedure for creating the test set ensured that its length and complexity

are systematically varied, with lengths normally distributed and ranging from three to

ten attributes. Recommendations only occur in the NYC training data, and they in-

crease both semantic and syntactic complexity, with longer utterances that use the

discourse relation of justification [Stent et al., 2002], e.g., Babbo is the best because

it has excellent food. We hypothesize that recommendations may be more challenging

to combine across domains, so we vary MR complexity by including the recommend

dialogue act in half the test references. We show in Section 7.4.2 that the length and

complexity of the MRs are important factors in the performance of the trained models.

1The train and test data are available at http://nlds.soe.ucsc.edu/source-blending-NLG
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7.3 Experimental Overview and Methods

Given the training and test sets for the combined ontology in Section 7.2, we

tested four different neural model architectures and present results in Section 7.4.1. We

then proposed a novel self-training method and presented results in Section 7.4.2. These

experiments relied on the model architectures presented here in Section 7.3.1 and the

Text-to-Meaning semantic extractor and performance metrics in Section 7.3.2.

7.3.1 Model Architectures

Here we also used a standard RNN encoder–decoder model [Sutskever et al.,

2014] that mapped a source sequence (the input MR) to a target sequence (the utterance

text). We first implemented a baseline model and then added three variations of model

supervision that aim to improve semantic accuracy. All of the models were built with

OpenNMT-py, a seq2seq modeling framework [Klein et al., 2017].

7.3.1.1 Encoder

The MR was represented as a sequence of (attribute, value) pairs with separate

vocabularies for attributes and values. Each attribute and each value were represented

using 1-hot vectors. An (attribute, value) pair was represented by concatenating the

two 1-hot vectors.

The input sequence was processed using two single layer bidirectional-LSTM

[Hochreiter and Schmidhuber, 1997] encoders. The first encoder operated at the pair

level, producing a hidden state for each attribute-value pair of the input sequence. The
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second LSTM encoder was intended to produce utterance level context information

in the form of a full MR encoding produced by taking the final hidden state after

processing the full input sequence. The outputs of both encoders were combined via

concatenation. That is, the final state of the second encoder was concatenated onto

each hidden state output by the first encoder. The size of the pair level encoder was 46

units and the size of the MR encoder was 20 units. Model parameters were initialized

using Glorot initialization [Glorot and Bengio, 2010] and optimized using Stochastic

Gradient Descent with mini-batches of size 128.

7.3.1.2 Decoder

The decoder was a uni-directional LSTM that uses global attention with input-

feeding. Attention weights were calculated via the general scoring method [Luong et al.,

2015]. The decoder took two inputs at each time step: the word embedding of the

previous time step, and the attention weighted average of the encoder hidden states.

The ground-truth previous word was used when training, and the predicted previous

word when evaluating. Beam search with five beams was used during inference.

7.3.1.3 Supervision

Figure 7.3 shows the baseline system architecture as well as three types of

supervision, based on conditioning on source (E2E, NYC) information. The additional

supervision was intended to help the model attend to the source dataset information. We

call the three types of supervision guide, attr and bool, and the baseline architecture
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Figure 7.3: Attentional Encoder-Decoder architecture with each supervision method
shown.

Figure 7.4: An illustration of attr and bool supervision methods, with the source
supervision (NYC or E2E) shown in red.
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nosup, representing that it has no additional supervision.

The supervision methods are shown in Figure 7.4. The source feature had a

vocabulary of three items: nyc, e2e and both. Since both was never seen in the training

data, the source information was represented using two booleans: True||False denoted a

reference from E2E while False||True denoted a reference from NYC. This encoding was

intended to encourage generalization at inference time. During inference, blending of

information from both sources was specified by using True||True. The attr supervision

method represented the source information by concatenating the boolean source token

onto each attribute as seen in the top half of Figure 7.4. This redundantly represented

the source information locally to each attribute, which has been effective for tasks such

as question generation and stylistic control [Harrison and Walker, 2018; Harrison et al.,

2019]. The bool supervision method added the boolean source token to the end of the

sequence of attribute-value pairs as its own attribute, as in work on machine translation

and controllable stylistic generation [Sennrich et al., 2016; Yamagishi et al., 2016; Ficler

and Goldberg, 2017]. This can also be seen in the bottom half of Figure 7.4. The guide

supervision method inputted the source information directly to the decoder LSTM. In

previous work, putting information into the decoder in this way yielded improvements

in paraphrase generation and controllable generation [Iyyer et al., 2018; Harrison et al.,

2019].
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7.3.2 Text-to-Meaning Semantic Extractor

Much previous work in NLG relied on a test set that provides gold reference

outputs, and then applied automatic metrics such as BLEU that compare the gold

reference to the model output [Papineni et al., 2002; Dušek et al., 2020]. This occurred

even though the limitations of BLEU for NLG are widely acknowledged. We addressed

this in more detail in Chapter 4. To address these limitations, recent work has started

to develop “referenceless” NLG evaluation metrics [Dusek et al., 2017; Kann et al., 2018;

Tian et al., 2018; Mehri and Eskenazi, 2020].

Since there are no reference outputs for the COM test set, we needed a refer-

enceless evaluation metric. We developed a rule-based text-to-MR semantic extractor

(TTM) that allowed us to automatically construct an MR from an NLG model’s textual

output by the TTM. The TTM system was based on information extraction methods.

A similar approach was used to calculate semantic accuracy in other work in NLG, in-

cluding comparative system evaluation in the E2E Generation Challenge [Juraska et al.,

2018; Dušek et al., 2020; Wiseman et al., 2017; Shen et al., 2019].

The TTM relied on a rule-based automatic aligner that tagged each output

utterance with the attributes and values that it realized. It was also used to calculate

the SER. The aligner, and the process to calculate the SER was covered in more detail

in Section 4.4. The output of the aligner was then used by the TTM extractor to

construct an MR that matches the (potentially errorful) utterance that was generated

by the NLG. We referred to this MR as the “retrofit MR”. For additional insight, we
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also reported the percentage of semantically perfect outputs (perfect%). These are

outputs where the SER is 0 and there are no semantic errors. This measure is analogous

to the Sentence Error Rate used in speech recognition.

Retrofit MRs for Self-Training. The TTM was critical for the novel self-training

method described in Section 7.4.2. The retrofit MRs matched the (errorful) NLG output:

when these MR/NLG output pairs combine attributes from both sources, they provided

novel corrected examples to add back into training.

7.4 Results

We ran two sets of experiments. We first ran all of the NLG models described

in Section 7.3.1 on the COM test set, and automatically calculate SER and perfect%

as described in Section 4.4 and Section 7.3.2. We report these results in Section 7.4.1.

Section 7.4.2 motivates and describes the self-training method and presents the results.

The final models generated semantically perfect outputs 83% of the time.

7.4.1 Initial Model Results

Model Training Test ser perfect
N %

nosup e2e + nyc com .45 106 3.5%
guide e2e + nyc com .66 15 0.5%
attr e2e + nyc com .46 167 5.5%
bool e2e + nyc com .45 86 2.8%

Table 7.1: SER and perfect% on test for each model type on the test of 3040 MRs
(com) that combine attributes from both sources.

154



Semantic Accuracy. Table 7.1 summarizes the semantic results across the four models

nosup, guide, attr and bool. Overall, these results show that the task, and the COM

test set, were surprisingly adversarial. All of the models had extremely high SER, and

the SER for nosup, attr, and bool are very similar. Row 2 shows that the guide

model had much worse performance than the other models, in contrast to other tasks

[Iyyer et al., 2018]. Because of this we did not examine the guide model further. Row

3 shows that the attr supervision results in the largest percentage of perfect outputs

(5.5%). This made it the best model of the three remaining models but there is much

room for improvement since this is a very low number of correct outputs for an NNLG

model.

Model Training Test ser perf %

nosup e2e e2e .16 19%
nosup e2e + nyc e2e .18 15%
nosup nyc nyc .06 69%
nosup e2e + nyc nyc .06 71%

Table 7.2: Baseline results for each source on its own test using the nosup model. E2E
test N = 630. NYC test N = 314.

In order to verify that these initial results are quite poor, the results in Table 7.1

should be compared with the baselines for testing nosup on only E2E or NYC in

Table 7.2. Both the E2E and NYC test sets consist of unseen inputs, where E2E is

the standard E2E generation challenge test [Dušek et al., 2020], and NYC consists of

novel MRs with baseline attribute frequencies matching the training data.2 Rows 1

2Previous work on the E2E dataset has also used seq2seq models, with SOA results for SER of 1%
[Dušek et al., 2020] but here we do not use the full training set. The partition of the NYC dataset has
not been used before but experiments on comparable NYC datasets have SERs of 0.06 and 0.02 [Reed
et al., 2018; Harrison et al., 2019].
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and 3 tested models trained on only E2E or only NYC, while Rows 2 and 4 tested

the same trained nosup model used in Row 1 of Table 7.1 on the E2E and NYC test

sets respectively. Comparing Rows 1 and 2 shows that training on the same combined

data used in Table 7.1 slightly degrades performance on E2E. However, this SER is still

considerably lower than the 0.45 SER for the nosup model tested on the COM test

set, shown in the first row of Table 7.1. Row 4 shows that the nosup model trained

on the combined data appears to actually improve performance on the NYC test. The

perfect% goes up from 69% in Row 3 to 71% on Row 4. The SER of 0.06 shown in Row

4, should also be compared to the 0.45 SER reported for the nosup model in the first

row of Table 7.1. Again, this indicated that there is significant room for improvement.

These results taken together establish that the combined MRs in the COM test provide

a very different challenge than the E2E and NYC unseen test inputs.

However, despite the poor performance of the initial models, we hypothesized

that there may be enough good outputs to experiment with self-training. Since the

original training data had no combined outputs, decoding may benefit from even small

numbers of training items added back for self-training.

Model Nat. Coher. Grammat.

nosup 4.04 4.13 4.12
attr 4.11 4.25 4.14
bool 3.97 4.18 4.25

agreement .63 .62 .65

Table 7.3: Human Evaluation for nosup (N = 100) attr (N = 100) and bool (N =
86) for Naturalness, Semantic Coherence, and Grammaticality.

Human Evaluation. The automatic SER results provided insight into the semantic
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accuracy of the models but no assessment of other aspects of performance. We thus

conducted a human evaluation on Mechanical Turk to qualitatively assess fluency, co-

herency and grammaticality, as described in Section 4.3. We used the automatic SER

to select 100 semantically perfect references from the nosup and the attr models’ test

outputs, and the 86 perfect references from bool. We asked five Turkers to judge on a

scale of 1 (worst) to 5 (best) whether the utterance is: (1) fluent and natural; (2) seman-

tically coherent; and (3) grammatically well-formed. Table 7.3 reports the average score

for these qualitative metrics as well as the Turker agreement, using the average Pearson

correlation across the Turkers. The results show that the agreement among Turkers is

high, and that all the models perform well but that the attr model outputs are the

most natural and coherent, while the bool model outputs are the most grammatical.

7.4.2 Self-Training

In order to conduct self-training experiments, we needed perfect outputs that

combine attributes from both sources to add back into training. These outputs must

also be natural, coherent and grammatical but Table 7.3 shows that this is true of all the

models. A key idea for the novel self-training method was that the TTM (Section 7.3.2)

automatically produces “retrofit” corrected MRs that match the output texts of the

NLG models. Thus we expected that we can construct more perfect outputs for self-

training by using retrofitting than by just using the small number reported in Table

7.1. Here, we first analyse the outputs of the initial models to show that self-training is

feasible, and then explain the method and present results.
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Figure 7.5: Source Blending Rate (SB) as a function of MR length for nosup, attr
and bool.

Error Analysis. An initial examination of the outputs suggested that the models sim-

ply have trouble combining attributes from both sources. Table 7.4 provides examples

of NLG model output utterances with high SERs. It illustrates how the NLG models

struggle to combine attributes from the two ontologies which is required by all the input

MRs (Column SB). It also illustrates cases where it is not possible to produce a valid

retrofit MR that can be added back into training during self-training (Column Valid).

In most cases these are due to many repetitions. Row 1 is an example where there is no

source blending and since it has a repetition (price) it cannot be used for self-training

(valid = no). Row 1 also illustrates an ungrammatical realization of price which we

have no way to automatically detect at present “it is in the high price”. Row 2 has

three deletions as well as two repetitions. The output repeats “It is in midtown” three

times in a row. Row 3 has five errors, it does not realize the dialogue act recommend

and has deleted three other attributes and it hallucinations food quality. While this is a

158



significant number of errors, this realization can still be used in self-training, since none

of its errors are repetitions. Row 4 has all four types of errors. It deletes cuisine, decor

and service, it realizes a value for family-friendly twice with different values, which is a

substitution, and, finally, it hallucinates food quality. Row 5 actually has more errors

than slots. It deletes all but two of its attributes: name and rating. It also hallucinates

food quality and repeats rating.

To quantify this observation, we defined a metric, Source Blending Rate (SB),

that counted the percentage of outputs that combine attributes from both sources,

whether or not the attribute values are accurate:

SB =
Rsb

N

where Rsb is the count of references r that contain an attribute ai ⊆ source1 and another

attribute aj ⊆ source2, and N is the total number of references. Only attributes that

appear uniquely in each source are included in the ai, aj : the unique attributes are

illustrated in Figure 7.2.

Figure 7.5 graphs SB as a function of MR length. This shows that indeed

the models do in many cases produce combined outputs and that the type of model

supervision greatly influences SB. The nosup model was the worst: a fact that is masked

by the nosup model’s SER in Table 7.1, which appeared to be on a par with both attr

and bool. Interestingly, all models were more likely to produce an SB output as the

MRs get longer but Figure 7.5 shows clearly that the bool model especially excels.

For self-training, we also needed a model that generates utterances with the
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# SER Valid SB MR Realization

1 .60 no no name[restaurant],
decor[fantastic],
qual[acceptable], price[high],
familyFriendly[yes]

[restaurant] is a child friendly
restaurant with french food and
it is in the high price range. it is
in the high price.

2 .63 no no name[restaurant],
recommend[yes], cui-
sine[japanese], decor[bad],
location[midtown],
service[fantastic], rat-
ing[low], near[point-of-
interest]

[restaurant] is the best
restaurant since it is a japanese
restaurant with bad ambiance
and it is in midtown. it is in
midtown. it is in midtown.

3 .71 yes yes name[restaurant],
recommend[yes],
decor[fantastic],
service[acceptable], eat-
Type[pub], rating[high],
near[xnear]

[restaurant] is a pub with
good food and it is located near
the xnear.

4 .75 no yes name[restaurant],
cuisine[southern],
decor[fantastic], loca-
tion[city centre], price[cheap],
service[good], eatType[coffee
shop], familyFriendly[no]

[restaurant] is a cheap, fam-
ily friendly coffee shop with good
food. it is in the city centre. it
is not family friendly.

5 1.17 no yes name[restaurant], cui-
sine[indian], decor[fantastic],
service[good], rating[high],
near[point-of-interest]

[restaurant] provides good
food and has great customer rat-
ing and has great customer rat-
ing .

.

Table 7.4: Example pathological outputs with high SERs from the NLG models before
self-training. Valid realizations (col 3) are defined as those usable for self-training. In the
MRs, the NYC attributes are represented using typewriter font and E2E attributes
are represented using italics.
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recommend dialogue act. As mentioned in Section 7.2.2, recommendations increased

both semantic and syntactic complexity. Half the test items contained a recommenda-

tion, so we needed a model that can produce them. Table 7.5 presents results for SER

and SB depending on whether a recommend was in the MR, showing that the three

models vary a great deal. However, the bool row for the SB column shows that when

the MR includes a recommendation, the bool model produces a combined output far

more frequently than nosup or attr (SB = 0.73).

Model ser sb
rec no-rec rec no-rec

nosup .43 .46 .44 .56
attr .51 .41 .36 .77
bool .47 .43 .73 .67

Table 7.5: Effect of the recommend dialogue act on Slot Error Rate (SER) and Source
Blending (SB) for the three types of model supervision: nosup, attr and bool.

Thus Figure 7.5 and Table 7.5 show that the bool model produced the most

combined outputs. After TTM extraction, the bool model provided the most instances

(1405) of retrofit MR/output pairs to add to self-training. We therefore used bool in

the self-training experiments below.

Retrofitting MRs for Self-Training. Table 7.6 illustrates how the TTM works, and

shows that it can effectively create a new MR that may not have been previously seen in

the training data. This allowed the model to learn from its mistakes. In Table 7.6 we

can see two examples that start from different original MRs (col 1), but yield the same

MR after text-to-MR extraction (col 2). In Row 1, the model output in column 3 deleted

the attributes price, decor and eat type (pub), and, for food quality, substituted the value
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Original MR Text-to-MR OUTPUT

name[restaurant], cui-
sine[fastfood], decor[good],
qual[fantastic], loca-
tion[riverside], price[cheap],
eatType[pub], fami-
lyFriendly[no]

name[restaurant],
cuisine[fastfood],
qual[good], loca-
tion[riverside], fami-
lyFriendly[no]

[restaurant] is a fast
food restaurant located in
the riverside area. it has
good food and it is not
family friendly.

name[restaurant],
recommend[yes], cui-
sine[fastfood], qual[good],
location[riverside], fami-
lyFriendly[no]

name[restaurant],
cuisine[fastfood],
qual[good], loca-
tion[riverside], fami-
lyFriendly[no]

[restaurant] is a fast
food restaurant in the
riverside area. it is not
family friendly and has
good food.

Table 7.6: Examples to show retrofitting.

“good” for “fantastic”. In Row 2, the model deleted the recommend dialogue act, but

otherwise realized the original MR correctly. At test time, the original MRs produced

different outputs (col 3). Thus the retrofitting yields two unique novel instances for

self-training.

It is important to again note that the retrofit MRs for some NLG outputs

cannot be used for self-training. NLG model outputs, whose semantic errors include

repetitions, can never be used in self-training, because valid MRs do not include re-

peated attributes and values, and the method does not edit the NLG output string.

However, deletion errors cause no issues: the retrofit MR simply does not have that

attribute. Substitutions and hallucinations can also be used because the retrofit MR

substitutes a value or adds an attribute and value to the MR. This could occur as long

as the realized attribute and values were valid, e.g. “friendly food” is not a valid value
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for food quality.3,4

Experiments. To begin the self-training experiments, we applied the source-blending

metric (SB) defined above to identify candidates that combine attributes from both

sources. We then applied the TTM to construct MRs that match the NLG model

outputs, as illustrated in Table 7.6, eliminating references that contain a repetition.

We started with the same combined 76,832 training examples and the 1405 retrofit

MR/NLG outputs from the bool model. We explored two bootstrapping regimes,

depending on whether a model output is a repetition of one that we have already seen

in the training data. One model kept repetitions and added them back into training,

which we dubbed S-Repeat. The other model only added unique outputs back into

training, which we dubbed S-Unique.

Quantitative Results. Figure 7.6 shows how the SER and perfect% continuously

improved on the COM test set for S-Repeat over ten rounds of self-training, and that

S-Repeat had better performance. This indicated that adding multiple instances of

the same item to training was useful. The performance on the COM test set of the

S-Unique model flattened after eight rounds. After ten rounds, the S-Repeat model had

an SER of 0.03 and produced perfect outputs 82.9% of the time, a 77.4 percent absolute

improvement over the best results in Table 7.1.

COM-2 Test Set. The self-training procedure used the COM test set during self-

3We applied the human evaluation in Section 7.3.2 to instances included in self-training: the corre-
lation between human judgements and the automatic SER is 0.95, indicating that the retrofit MRs are
highly accurate.

4Table 7.4 in provides additional examples of errorful outputs that can or cannot be used in self-
training.
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Figure 7.6: SER and perfect% on the COM test set for S-Repeat vs. S-Unique during
self-training.

training and therefore potentially added the MRs from the COM test set back into

training. To address this, we constructed a new test with 3040 novel MRs using the

procedure described in Section 7.2.2, which we called COM-2. First we tested the initial

models on COM-2, resulting in a best SER of 0.45 for the bool model, identical with

the result for COM. For perfect% the best result was 5.3% on the attr model, which

is again comparable to the original COM test set. This demonstrated that COM-2 was

just as adversarial for the initial models as COM. We then tested the final self-trained

model on COM-2, with the result that the SER for S-Repeat (0.03) and S-Unique (0.11)

are again identical to the result for COM. The perfect% is comparable to that reported

in Figure 7.6; it decreased by 2.2% for S-Repeat to 80.7% and increased by 0.2% for S-

Unique to 50.7%. Overall, the performance on COM-2 improved by an absolute 75.4%,

a significant improvement.
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Figure 7.7: SER and perfect% on COM-2 as a function of MR length for bool super-
vision before self-training and for the S-Repeat model after self-training.

Figure 7.7 shows that the results improve, not only overall but also by MR

length. It plots the SER and perfect% results, by MR length, for the bool model

before and after self-training. While the perfect% decreased as the number of attributes

increase, there is a large improvement over the initial model results. Also, after self-

training the worst perfect% was still above 0.5, which was higher than perfect% for

any MR length before self-training. The SER also improved over all MR lengths after

self-training, not exceeding 0.06, significantly better than even the shortest MR before

self-training.

Performance on E2E and NYC test sets. Table 7.2 provided a baseline for nosup’s

performance before self-training on the original test sets for E2E and NYC. We also
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verified that the self-trained model performs well after self-training. Table 7.7 shows

that self-training improves the results for the original E2E and NYC test sets.

Model Training Test ser perf %

bool S-Repeat e2e .14 25%
bool S-Repeat nyc .05 77%

Table 7.7: Performance of the self-trained S-Repeat model on the original E2E and
NYC test sets. E2E test N = 630. NYC test N = 314.

Human Evaluation. We performed a human evaluation on Mechanical Turk to assess

Model Nat. Coher. Grammat.

S-Repeat 3.99 4.08 4.02
S-Unique 4.06 4.13 4.14
agreement .57 .61 .57

Table 7.8: Human Evaluation on Mechanical Turk for S-Repeat (N = 100) and S-Unique
(N = 100) for Naturalness, Semantic Coherence, and Grammaticality.

the qualitative properties of the model outputs after self-training. We selected 100

perfect references for S-Repeat and 100 for S-Unique and used the same HIT as in

Section 7.4.1. Table 7.8 reports the average score for these qualitative metrics as well

as the Turker agreement, using the average Pearson correlation, across the Turkers.

The results show that naturalness, coherence and grammaticality are still high after

self-training for both models, but that the S-Unique model produce better outputs from

a qualitative perspective. We believed we could improve the self-training method used

here with additional referenceless evaluation metrics that aim to measure naturalness

and grammaticality [Mehri and Eskenazi, 2020].

Qualitative and Linguistic Analysis. Table 7.9 provides outputs from the models
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# Realization

1 [restaurant] is the best place because it is a family friendly pub with
good decor and good food.

2 [restaurant] is a family friendly restaurant with bland food and is in
the low price range. It is the best restaurant.

3 [restaurant] is a family friendly coffee shop with decent service and a
low customer rating. It is in the £20-25 price range.

4 [restaurant] is the best restaurant because it is in the east village, it
is near [point-of-interest] with great service and it is affordable.

Table 7.9: Example outputs with source blending. NYC attributes are represented using
red and E2E attributes are represented using blue.

that display different ways of combining attributes from the original sources. In Row 1

we can see that the recommend dialogue act from NYC can be combined in the same

sentence as the attributes family-friendly and eat type from E2E and aggregate these

E2E attributes with NYC attributes decor and food quality using a “with” operator.

Row 2 shows another example where the NYC and E2E attributes are joined using a

“with” operator. In Row 3 there is a single sentence with four attributes where the

NYC attribute is preceded and followed by E2E attributes. Row 4 concatenates the two

sources in a single sentence using sentence coordination. The “east village” location

from the NYC dataset, is concatenated with the attributes near from E2E and service

from NYC. These examples show that the NLG models can combine attributes from

both sources in many different ways.

Additional examples, in Table 7.10, provide outputs from the final iteration

of self-training that display different ways of combining different attributes from the

ontologies along with their input MRs. Row 1 shows that the model can combine
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attributes from the two sources in the same sentence, with attributes from each source,

decor and rating, appearing in a single sentence with an “and” operation. Row 2 shows

a different way of combining attributes from the two sources, with family-friendly and

food quality, in a single sentence, this time using a “with” operation. In Row 3 we can

see that the model can also generate complex sentences for recommendations using the

“because” operation. Also, the attribute used in the because clause is from E2E, i.e.

family-friendly but such sentences never appear in the original E2E training data. The

last row shows a complex sentence where decor is combined with eat type and customer

rating, again a novel combination.

# MR Realization

1 name[restaurant],cuisine[Indian],
decor[fantastic],qual[good],
service[good], rating[high], near[point-
of-interest]

[restaurant] is a Indian restaurant with
great service and excellent ambiance and
a high customer rating. It is located near
the [point-of-interest].

2 name[restaurant], recommend[yes],
decor[good], qual[good], price[cheap],
service[bad], familyFriendly[yes],

[restaurant] is a family friendly restau-
rant with good food, good ambiance and
bad service. It is in the low price range.

3 name[restaurant], recommend[yes],
decor[bad], qual[good], loca-
tion[flatiron/union square], price[cheap],
service[acceptable], eatType[coffee
shop], rating[3 out of 5],

[restaurant] is the best restaurant be-
cause it is a family friendly coffee shop
with good food, friendly service and bad
ambiance. It is in Flatiron/Union Square.
It has a customer rating of 3 out of 5. It
is cheap.

4 name[restaurant], recommend[yes],
cuisine[mediterranean],
decor[fantastic], price[very expen-
sive], eatType[pub], rating[5 out of 5]

[restaurant] is a Mediterranean pub
with excellent ambiance and a customer
rating of 5 out of 5. It is in the upper
price range. It is the best restaurant.

.

Table 7.10: Example outputs of source blending from final self-training iterations. In the
MRs, the NYC attributes are represented using typewriter font and E2E attributes
are represented using italics.
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7.5 Pre-trained Model

Currently, massively pre-trained models are being tested for language tasks

spanning from summarization to question answering to reading comprehension. These

models, such as OpenAI’s GPT-2 [Radford et al., 2019], Google’s BERT [Devlin et al.,

2019] and ELMo [Peters et al., 2018], are natural language models which are pre-trained

on millions of pieces of texts from the internet. This allows for a model that has some

working knowledge of language constructs before training on a specific task. Previously,

models only had the specific task’s dataset from which to learn natural language. There

has also been success in using these models for open domain tasks such as question

answering [Yang et al., 2019a; Alberti et al., 2019; Wang et al., 2019]. Because of this

we decided to tune one of these models, OpenAI’s GPT-2, with the dataset to see if a

pre-trained model could improve the results.

7.5.1 GPT-2 Model

GPT-2 is a transformer-based language model created by OpenAI that has

1.5 billion parameters and is pre-trained on 8 million webpages [Radford et al., 2019].

Though the full model is not released to the public, we used a smaller model that is

available on the GitHub.5 GPT-2 was created to be able to predict the next word given

the previous words in the text. GPT-2 used an unsupervised pre-training framework

using a standard language modeling objective and a multi-layer Transformer decoder

[Liu et al., 2018] based off the GPT model framework [Radford and Narasimhan, 2018].

5https://github.com/huggingface/transformers
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Their training data focused on high quality data from many sources, using outbound

Reddit links with at least three karma as a heuristic to only keep webpages which

users found engaging. GPT-2 had state of the art performance on seven of the eight

tested language modeling datasets, and confirmed that although there is some overlap

between their training data and the data in their test sets, this n-gram overlap was not

significantly larger than standard overlaps in the training and testing data, indicating

that GPT-2 is not simply memorizing but instead is generalizing.

7.5.2 Training

While GPT-2 is a pre-trained model, the task cannot be handled by a zero-shot

model. The MRs were a very particular type of data input and would not be represented

in the data used for pre-training. This means that we needed to perform task-specific

fine tuning before we could test how GPT-2 performed on the source blending task.

Since GPT-2 is a language model, and not a seq2seq model, we had to modify

the training and test data. There is not a separate encoder and decoder to input the

MR and the text to respectively. Instead, we created a single input with the MR and

the text of the review concatenated together. We used an end-token to indicate where

the MR ends and the text begins. Since GPT-2 learns the next word based on all

previous words in the text, it first reads in the MR and uses that to inform what should

appear in the output text. Because of this, the MR was handled as a string and was not

transformed into a 1-hot vector encoding. At test time, we inputted just the MR and

the end-token. We allowed the model to output 100 words to guarantee the model was
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not cut off. When processing the output of the model, we split the output text at the

end-token and everything after that token was considered the review the GPT-2 model

generated. We used gpt2-small with a batch size of 4 and half-precision floating point

run on Google Colab.

We trained the model with three levels of supervision, nosup, bool and attr,

as described in Section 7.3.1, where nosup has no additional supervision besides the

attribute value pairs, bool has an additional token appended to the end of the MR which

has the source described as a pair of booleans, False||True for NYC, True||False for E2E

and True||True for the blended test, and attr has these boolean tokens appended to

each attribute indicating its source as NYC, E2E or both.

7.5.3 Results

Model Test ser perfect SB N
N %

nosup com .46 139 4.6% 1580
attr com .45 137 4.5% 1408
bool com .45 139 4.6% 1590

Table 7.11: SER, perfect% and SB N for initial GPT-2 fine tuned model for each type
of supervision on the test of 3040 MRs (com).

After training the GPT-2 model with nosup, attr and bool, we generated

test output with the same test set, COM, from the original experiment. The results,

seen in Table 7.11, for both SER and perfect% are very similar for all three types

of supervision. In order to determine if GPT-2 improved the results from the initial

findings using OpenNMT-py, we compared the results in Table 7.11 to the results in
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Table 7.1. We found that both of these results are comparable. This indicated that

using a pre-trained model does not actually improve the results. In order to confirm if

GPT-2 leads to any improvements in this type of generalization, we needed to perform

self-training, as in Section 7.4.2. We also confirmed that there are significant instances of

source blending in the test output, which will allow us to perform the same self-training

regime.

Figure 7.8: SER and perfect% on COM as a function of self-training iteration for nosup,
bool and attr.

Self-training Results. Since all three types of supervision, nosup, bool and attr,

had very similar results, we decided to attempt to do self-training with all three models.

Even though we only performed self-training on bool previously, all three models here

had very similar results, so we wanted to know if, while self-training, these results
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diverged or stayed similar. We followed the same self-training procedure described in

Section 7.4.2 and we used the S-Repeat schema since it had better results than just

using unique instances when previously self-training using the OpenNMT-py model.

In Table 7.8, we can see that the self-training does improve the results at each

iteration across all three supervisions, though attr has a better perfect% than the other

two supervisions. After ten iterations of self-training attr had an SER of 0.08 and a

perfect% of 64.6%. This is better than the other two supervisions but it is still worse

than the best results of the OpenNMT-py model, which had a best perfect% of 82.9%.

This indicates that GPT-2 does not perform better than OpenNMT-py, though, we do

observe that, unlike for OpenNMT-py, GPT-2 is still improving after ten iterations.

We continued to perform self-training for another ten iterations for attr (for

a total of 20 iterations) and compared it to the final results with OpenNMT-py. In

Table 7.12, we can see that OpenNMT-py and GPT-2’s results were very similar and

GPT-2 did not lead to any improvements of the semantic accuracy of the results. This

was potentially because the OpenNMT-py model performed so well after self-training

that it will be difficult to improve on them, based only on semantic evaluation. Merely

using a pre-trained model does not make this task any easier to perform.

Stylistic Analysis. While there were not any improvements in terms of semantic

accuracy when comparing OpenNMT-py to GPT-2, we were also curious if there might

be any improvements in stylistic diversity. GPT-2, since it has been pre-trained on

millions of utterances, might retain more stylistic features, which are often lost when

performing self-training. This was because the model learns to generate with data it
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NNLG Sup Iter ser perfect
N %

OpenNMT-py bool 0 .45 87 2.9%
OpenNMT-py bool 10 .03 2520 82.9%
GPT-2 attr 0 .45 137 4.5%
GPT-2 attr 20 .04 2419 79.6%

Table 7.12: SER and perfect% comparing the initial models to the final models for
OpenNMT-py and GPT-2 on the test set com.

has generated previously and can converge on only a small number of ways to generate

output. GPT-2 was trained on a much larger vocabulary with many interesting features

such as contrast.

We measured several stylistic features to compare OpenNMT-py and GPT-2.

Since high semantic accuracy is important for models we only tested these results on the

final iterations of self-training for both models. The first stylistic feature we measured

was the size of the vocabulary, which is how many unique words are in the output. Then

we measured the average sentence length, since longer sentences have more content per

sentence and therefore have to aggregate together different attributes in ways other

than separate sentences. We then also counted the number of times specific features

appeared, the first number of utterances with a recommendation, then the number with

contrast and finally the number with a relative clause. These statistics are in Table 7.13.

In the results, we can see that the stylistic variation is slightly better in the

GPT-2 output. For both models, most features, other than recommendations, have

fewer instances or decreased in stylistic diversity from before to after self-training. For

OpenNMT-py, both the number of contrasts and the number of relative clauses decreases
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NNLG Sup Iter
vocab

N
av sent

len
recom.

N
contrast

N
relative

N

OpenNMT-py bool 0 158 11.13 256 68 64
OpenNMT-py bool 10 92 10.06 1506 0 0

GPT-2 attr 0 422 11.34 730 205 191
GPT-2 attr 20 213 9.51 1560 118 62

Table 7.13: SER and perfect% comparing the initial models’ to the final models’ stylistic
diversity for OpenNMT-py and GPT-2 on the test set com.

to 0. Recommendations is the one feature that increased, which is not surprising as it

is a feature in the MR and therefore is controlled and encouraged to be generated by

the model. It should increase as the semantic accuracy improves. For GPT-2, the

vocabulary size started and remained higher than OpenNMT-py and the number of

recommendations, contrasts and relative clauses also started and remained higher be-

fore and after self-training when compared to OpenNMT-py. Of the stylistic features

measured, GPT-2 only performs worse than OpenNMT-py for average sentence length.

Though it started higher before self-training, performing self-training caused a signif-

icant drop in sentence length and it was worse for GPT-2 than OpenNMT-py in the

final iteration of self-training. Most significant was that GPT-2 after self-training still

had contrast and relative clauses appear in its output, so it does appear that using a

pre-trained model helped improve the stylistic variation of the output, though more

work into this in particular is needed.

We also performed human evaluation on the output from the final iteration of

self-training, using the same procedure described in Section 7.4.1. The results of this

experiment are in Table 7.14. The final iteration of self-training for GPT-2 is worse than
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Model Nat. Coher. Grammat.

GPT-2 3.73 3.63 3.77
agreement 0.48 0.49 0.49

S-Repeat 3.99 4.08 4.02
S-Unique 4.06 4.13 4.14
agreement 0.57 0.61 0.57

Table 7.14: Human Evaluation on Mechanical Turk for GPT-2 after 20 iterations of self-
training for Naturalness, Semantic Coherence, and Grammaticality. Also, results from
human analysis after self-training on OpenNMT-py are included for ease of comparison.

both S-Repeat and S-Unique self-training regimes using OpenNMT-py. This shows that

even though the results are more stylistically varied, pre-training does not automatically

lead to more natural, coherent or grammatical utterances.

7.6 Summary

Here, we present the first experiments on training an NLG for an extended do-

main ontology by re-using existing within-domain training data. We show that we can

combine two training datasets for the restaurant domain, that have different ontologies,

and generate output that combines attributes from both sources. We do this by apply-

ing a combination of neural supervision and a novel self-training method. While it is

common practice to construct test sets with unseen attribute combinations, we know of

no prior work based on constructing a new combined ontology. The experiments show

that the task is surprisingly adversarial, consistent with recent work suggesting that

neural models often fail to generalize [Wallace et al., 2019; Feng et al., 2018; Ribeiro

et al., 2018; Goodfellow et al., 2014]. Work on domain transfer shares similar goals to the
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experiments presented here [Wen et al., 2016; Golovanov et al., 2019] but these methods

do not produce NLG outputs that integrate attributes from two different sources into

the same sentence.

In Section 7.2, we described a goal of this thesis, ontology merging, and how

it can be performed. We take two separate ontologies, map similar attributes so they

are represented using the same name, and create new MRs that use attributes and

values from both sources. In this section we also described the training and testing

datasets. We described the experimental overview, including the model architecture, in

Section 7.3. We experimented with four types of supervision. The first is the baseline,

nosup, where we just use the baseline architecture and no additional features in the

MR. The second was attr, where two booleans representing the source ontology of the

attribute was concatenated to every attribute in the MR. The third type of supervision

was bool, where two booleans representing the source ontology of the entire utterance

was added as a separate feature to the end of the MR. The final supervision was guide,

where the token concatenated to the end of the MR for bool was added directly to the

decoder.

We presented the results in Section 7.4. The initial results showed that this task

is very adversarial and that none of the supervisions had high semantic accuracy. After

analyzing the output, we realized that there was ontology blending in the utterances

output by the model, they just had semantic errors when compared to the input MR.

By “retrofitting” new MRs which matched the output, we were able to perform a self-

training regime. By adding all utterances which had attributes from both ontologies, and
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no semantic errors such as repetitions, we were able to have 77.4% absolute improvement

of perfect outputs on the original test set, com, and a 75.4% absolute improvement on

a new test set, com-2.

Finally, in Section 7.5, we reran the experiments with a pre-trained model,

GPT-2. This state-of-the-art model has been shown to lead to improved generalizing

results in other work [Chen et al., 2020a; Peng et al., 2020]. The experiments with

it did not lead to any improvements in semantic accuracy, even after 20 iterations of

self-training. We saw slight improvements in stylistic variation with this pre-trained

model.

The final results show that the ability of the self-training method to automat-

ically construct new training instances, results in high quality natural, coherent and

grammatical outputs with high semantic accuracy. Also, that using a pre-trained model

such as GPT-2 can help improve the stylistic diversity of the output.
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Chapter 8

Conclusions

8.1 Overview

Generalization is needed in Neural Natural Language Generation (NNLG) in

order to appropriately control the output being generated and to avoid the data bot-

tleneck. Generalization in NNLG involves generating output which is similar, but not

the same, as data seen in the training data and deriving general rules from particulars.

We have accomplished both of these tasks in the course of this thesis, through multiple

techniques to improve upon NNLG models’ ability to learn general forms of the training

data. By being able to expand on existing training data, we reduce the amount of new

training data that needs to be created to generate new text. In this final chapter, we

summarize the contributions, describe potential applications of the work and go over

both the limitations and the future directions of the work.
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8.2 Contributions

In Chapter 1, we defined the task of generalization and explained why it is

necessary in NNLG. We outlined Natural Language Generation and neural models as

well as reviewed the state-of-the-art in these fields and in generalization in Chapter 2.

In Chapter 3, we described both the datasets from other sources and the datasets we

generated that we employed in the experiments. The experiments required automatic

and human evaluation, and we described the limitations of these metrics and the metrics

that we used in Chapter 4. In Chapters 5-7, we went over the experiments on generaliza-

tion. First, in Chapter 5, we generalized multiple features to a single personality label

and learned to combine personalities only seen separately in the training data. Then

in Chapter 6, we generalized from sentence planning operations seen in the training

data to new data in test as well as transferring sentence planning operations between

datasets. And finally, in Chapter 7, we trained a model on two distinct datasets in the

same domain with different attributes and learned to generate output with attributes

from bout sources. In this section we will further describe the contributions of this

thesis.

8.2.1 Generalization

Over the course of this thesis, we developed methods to enable NNLG models

learned to generalize. We found that these models need additional information to per-

form the generalization tasks that we were experimenting with. Here we will go over
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what these tasks were, and what we learned.

The first task was generalizing multiple specific stylistic features, which make

up a complex personality, using a single token and learning to generate these multi-

ple stylistic features together. We found that the model can learn to generate these

personality features together, with high levels of correlation for pragmatic markers and

aggregation operations between the gold data and the outputs of the model for token

level supervision. But, a more fine grained supervision led to better results for both

pragmatic markers and aggregation operations across all but one personality for each,

agreeable for pragmatic markers and disagreeable for aggregation operations, demon-

strating that the token level supervision does not capture all of the stylistic features

accurately.

The next task was creating novel personalities not seen in the training data by

learning to generalize across multiple different personalities. We showed that the model

could learn to combine features not seen together in the training data and create these

novel personalities. We observed that these personalities do not combine the features

in even proportions in the new personalities, but instead the model learns features to

different degrees that are not reflected in the original training data.

We demonstrated that the NNLG models can learn sentence planning op-

erations and generalize them to values that the operation was not applied to in the

training data. This applied to new meaning representations in sentence scoping, where

the model could, with a 89% accuracy, generalize the number of sentences to complexity

labels which could be used to generate data based on reading ability. The NNLG model
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could also apply sentence planning operation to new adjectives, which we tested using

distributive aggregation where the model learned to distribute on the adjectives “low”

and “average” in the training data, and with a single binary supervision token could

learn to distribute on the adjective “high” with 98% accuracy. We also demonstrated

that transfer learning could apply to discourse operations and that a small amount of a

discourse operation in one dataset can be augmented with another dataset to improve

the accuracy in generating that discourse operation.

Finally we showed that ontologies could be merged together from different

datasets with a small number of overlapping attributes and with self-training. We

demonstrated that this was a very challenging task for these models. Before self-training

the best model only had 5.5% of the outputs which perfectly matched the semantics

of the input meaning representation. Self-training, seeded on a very small number

of outputs that combined the semantics from both input datasets, led to very large

improvements in the accuracy of the model. After self-training the model had a 77.4%

absolute improvement over those best results with a perfect output percentage of 82.9%.

Even though there has been many successes in few-shot learning, even with pre-trained

models like GPT-2 [Radford and Narasimhan, 2018], NNLG models do not excel at

transferring semantics from one dataset to another. We showed that GPT-2 had the

same problems that a seq2seq model had accomplishing this generalization task, needing

self-training to improve the semantic results, though GPT-2 did result in higher levels

of stylistic variation in the final model.
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8.2.2 Datasets

We created datasets in the course of this thesis with which to experiment

with generalization using NNLG models and have released these datasets to the wider

community. Here we will describe these datasets.

The first datasets is the personality corpus, PersonageNLG.1. This is a cor-

pus of 88K MR/utterance pairs of training data in the restaurant domain which were

generated using personage. The utterances vary in style according to five personality

types, agreeable, disagreeable, conscientious, unconscientious, and extrovert. There are

also 1,390 pairs of test data.

The second dataset is the sentence planning corpus.2 This is a set of ap-

proximately 205K meaning representation to natural language utterance pairs which

demonstrate discourse relations, such as contrast and justification, as well as multiple

aggregation operations. This corpus is divided into three separate datasets:

1. NYC - 76,823 MR/utterance pairs used in the contrast experiment in Section 6.5

and the source blending experiment in Chapter 7. This dataset is described in

detail in Section 3.2.

2. Distributive Train - 63,690 MR/utterance pairs with synthetically generated ut-

terances with and without the distributive aggregation operation. Each MR in

this dataset has both the price and rating attributes. This dataset was used in

Section 6.4.

1https://nlds.soe.ucsc.edu/stylistic-variation-nlg
2https://nlds.soe.ucsc.edu/sentence-planning-NLG
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3. Sentence Scoping Train - 64,442 MR/utterance pairs with synthetically generated

utterances which were generated with varying numbers of sentences. This dataset

was used in Section 6.3.

And, finally, a third dataset where we included an even number of training

data instances from E2E and NYC, which we used in Chapter 7.3 This dataset also

included a novel test dataset of just MRs which combined attributes from both sources.

Each MR in this test set had to have at least one attribute which was unique to each of

the two sources. It could then include any number of additional attributes from either

source and any number of additional attributes that belonged to both sources. This

test set has 3040 unique MRs.

8.3 Applications

Being able to generalize within and between datasets has multiple applications,

the most salient of which is the ability to generate new data without needing to generate

a new dataset. This is necessary as the field of NLG continues to grow, since generating

datasets is prohibitively expensive and time-consuming. Groups without a large amount

of resources cannot generate a new datasets every time they need to include a new

stylistic feature in their output. Being able to generate novel data without new datasets

is necessary to keep the field equitable.

Generation of datasets with personality and other stylistic features is important

to creating text curated towards individuals. In persuasive settings discourse structuring

3https://nlds.soe.ucsc.edu/source-blending-NLG
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can be critical, for example in recommendations for restaurants, hotels, etc [Scott and

de Souza, 1990; Moore and Paris, 1993]. Controlling a complex stylistic schema with

a single token could be crucial to generating output which complements the person

listening or reading without needing to tune many features.

Generating restaurant reviews also has the application of allowing people who

might otherwise struggle to produce a natural language review the opportunity to voice

their opinions on a restaurant in an engaging way. If one considers the values of the

meaning representation as inputs into a form then one can insert their ratings and opin-

ions about different features of a restaurant, generate multiple natural language outputs

and select the one which expresses their feelings in a way that they are comfortable with.

8.4 Future Work

For future work, we are interested in multiple variations and more thorough

analysis of these existing systems. Most of the experiments were done using synthetic or

crowdsourced data. We are interested in attempting all of these tasks with natural data.

As we mentioned in Chapter 3, natural data has the most stylistic variation and is more

fluent and engaging than synthetic or even crowdsourced data. While this is the goal,

this is a difficult task because natural datasets that contain the necessary information

to perform these experiments do not necessarily exist, and they would require extensive

annotations and filtering to create the precise datasets that are needed for some of these

experiments. We also have multiple potential future work tasks for each of the three
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experiments that are in this thesis.

For generating new personalities as in the multivoice experiments (Section 5.3),

we want to expand on these experiments by both combining more personality traits to

create a greater variety of personalities as well as combining different types of personality

traits. This is since the Big Five Personality Traits are actually all combined to form a

full personality, with each personality trait as a spectrum that the personality is on. So,

a single trait in a personality will have some amount of introversion or extroversion, it

is not extroversion by itself. By combining more personalities we are closer to modeling

a full personality instead of just one or two personality traits.

While the experiments in sentence planning (Chapter 6) resulted in models

with high accuracy with only basic supervision, there are many other sentence planning

operations and discourse relations that still can be tested. Some potential future ex-

periments could include controlling which content is combined in sentences and other

experiments to learn operations on new words, such as fronting. We also only tested

merging contrast between datasets. We also also interested in transferring other dis-

course relations, such as recommendation and concessions.

For future work for the source blending experiments (Chapter 7), we want to

try blending data from different domains as well as different sources. While not all

domains will form coherent, combined, utterances, there are domains that could be

referred to together, such as hotels and restaurants. People often want a hotel with

restaurants nearby, and hotels often have restaurants within them, so being able to

refer to both together could be advantageous. A dialogue system might also want to
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talk about many other topics together in a single turn and could be aided by a system

that could blend ontologies from multiple sources, such as recommending a movie and

movie theater as well as a restaurant to go to afterward, or talking about a baseball

game and the weather together. This is a much harder task, because the utterances

that would be combined would have multiple subjects and it would be more likely that

the output would be semantically incoherent, but this is a task that has many potential

applications and is an extension of this work.

In addition to combining different domains, combining datasets, within or

across domains, which have no overlapping attributes is another extension of the source

blending results. The self-training regime relies on a model that can generate some

utterances that combine facts from both datasets, but if no combined utterances are

generated can self-training still be seeded with hand created utterances? This is much

more likely in dataset that have no attributes in common. We are interested, if these

models can be seeded with hand written utterances which combine attributes, how

many would be needed to start self-training? These are questions we are interested in

answering in future work.

While we performed some preliminary evaluation of stylistic features in the

source blending output, we found that the majority of stylistic features we lost in the

self-training regime. We want to improve upon this because just generating the same

basic templates when generating NNLG output is not sufficient to create useful output.

We want the model to retain the interesting and varied utterances which are present in

the training data.
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Though we attempted to source blend with the pre-trained model GPT-2,

there are new architectures being created with great frequency. We are interested in

exploring different architectures, either by testing existing architectures or creating one,

which will improve the models’ ability to generalize, especially in the ontology blending

experiment. We hope, that even though initial experiments using a pre-trained model

did not improve the results, that with further experimentation, that this task can be

accomplished with a pre-trained model.
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