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Abstract

Statistical learning models of sensory processing and implications of biological constraints

by

Eric Dodds

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Michael DeWeese, Chair

Despite progress in understanding the organization and function of neural sensory sys-
tems, fundamental questions remain about how organisms convert visual, auditory, and other
sensory input into useful representations to understand the world and guide behavior. An
important and fruitful line of work models the brain as an unsupervised statistical learner,
examining how a sensory system may optimize for efficient representation of the natural
environment or for explicit representation of useful structure in that environment. This
dissertation explores efficient coding and sparse coding models of the visual and auditory
systems, the data these systems process, and how these models are affected by the constraints
imposed by implementation in biological neural systems. First, I show that both natural
images and natural sounds have statistical structure amenable to a sparse coding model but
that the sparse structure of these two types of natural data also differ in interesting ways
that may be relevant to extending the success of sparse coding in describing primary visual
cortex (V1) to analogous regions of the auditory system. I also discuss how a related model
may shed light on how the neurons in these sensory systems are organized in space based
on coding for related stimulus properties. Second, I show that a sparse coding model with
biological constraints requires its inputs to be whitened in order to learn sparse features
using synapse-local learning rules. This observation provides a novel explanation for the
separation of sparse coding and spatial decorrelation into, respectively, V1 simple cells and
preceding areas including retina. Third and finally, I turn back to the auditory system and
extend existing work on efficient coding in the cochlea to account for the requirement of
causality, i.e., determining a code without knowledge of the future of a signal.
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Chapter 1

Introduction

There is no shortage of mysteries in neuroscience; this dissertation concerns itself with a
particular class of questions around modeling neural sensory systems as performing statistical
inference and learning. In this introductory chapter, I will provide a brief overview of the
context and viewpoint on which the succeeding chapters are based and outline the structure
of the rest of the dissertation.

1.1 Efficient coding, redundancy reduction, and

perception as inference

This line of work can be traced back at least to the suggestions of Attneave [4] and Barlow
[7] that “sensory relays recode sensory messages so that their redundancy is reduced but
comparatively little information is lost” [7]. Here information is meant in the sense of
Shannon [92] and redundancy refers to mutual information between relays, e.g., one neuron’s
action potential timings being predictive of another neuron’s. Such redundancy could arise
from the internal structure of the brain such as neurons with shared inputs, but regardless
some redundancy is introduced in the inputs to the neural system. The natural world has
statistical structure that leads to redundancy between, for example, the intensity of light
striking adjacent photoreceptors in the retina.

The hypothesis of “redundancy reduction” or “efficient coding” in neural sensory systems
provided a notion of optimality for a system confronted with structured inputs: the system’s
outputs should be statistically independent when its inputs come from the natural environ-
ment. Studying the statistical structure of the natural world has thus led to insights about
and more specific hypotheses for the function of sensory systems. An important example to
which we will return in Chapter 6 is the observation of the 1/f Fourier amplitude spectrum
of natural images [30] and the theory that retinal ganglion cell receptive fields are optimized
to account for this redundancy together with noise at high spatial frequencies [2].

Reflecting forty years later on his redundancy reduction hypothesis, Barlow wrote that
“the idea was right in drawing attention to the importance of redundancy in sensory messages
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because this can often lead to crucially important knowledge of the environment, but it was
wrong in emphasizing the main technical use for redundancy, which is compressive coding”
[6]. It may be that sensory systems sometimes use the statistical structure of their inputs
simply to transmit the information to another population of neurons with greater fidelity
using less resources – this is one view of the optic nerve, for example. But redundancy in
sensory signals also provides important information about the environment, so modeling the
structure that gives rise to redundancy can help the system determine the sources of sensory
signals. The idea that sensory systems use their inputs to infer knowledge of the environment
goes back to at least Helmholtz [37] and can be seen as the guiding principle behind a great
deal of modern research into neural sensory systems, including this dissertation.

1.2 Sparse coding

The work in this dissertation builds on the hypothesis that natural signals, and specifically
natural images and natural sounds, can be modeled as sparse combinations of a fixed dic-
tionary of elementary signals. A system that knows this dictionary can then seek to infer
which are present in a given input.

Sparse coding refers to a probabilistic model wherein each datum is a sparse linear combi-
nation of elements from a fixed dictionary plus some noise. Fitting such a model to patches
of grayscale natural images, Olshausen and Field [76] found that the dictionary elements
resemble the receptive fields that had been measured in primate primary visual cortex (V1)
simple cells [40]. This resemblance suggests a model of these simple cells as encoding the
sparsely present elements of natural images in the strengths of their afferent synaptic con-
nections. That this model also reproduces so-called “extra-classical receptive field effects”
[108] lends further plausibility to this simple model, and later efforts improved the fit to
neural data [82, 73, 110].

1.3 Biological plausibility

Brains are not fabricated from silicon in a factory, nor do they operate in the imaginations
of scientists theorizing about their function. We have already hinted at the need to consider
how an abstract idea such as probabilistic inference maps onto the mechanisms of neurons
and other brain matter in mentioning how the parameters of a sparse coding model may
correspond to synaptic strengths in cortex. In this dissertation we will consider how imple-
mentation in systems of biological neurons may constrain or influence the algorithms used,
their interaction with other brain areas, and how we interpret the parameters. From the
perspective of Marr’s levels of analysis [66], we will consider how reasoning at the hardware
and mechanistic levels may need to influence our reasoning at the algorithmic level in the
context of spare coding models of early vision and audition.
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We will therefore discuss models that are more “biologically plausible” than a simple
latent variable model mapped directly onto neural activations and connections. Specifically,
we will consider the implications of using synaptic plasticity rules that use only local infor-
mation. We will also consider the challenge of encoding a time-varying signal in a causal
manner, without knowing the future of the signal.

1.4 Structure of this dissertation

Now that we have introduced the main ideas at a high level of abstraction, Chapter 2 will
provide a technical exposition of specific models and algorithms that will feature in the
chapters that follow, especially sparse coding. In Chapter 3 we focus on SAILnet, a sparse
coding algorithm that respects certain biological constraints and that we will use in later
chapters. The remaining chapters contain the bulk of the novel research in this dissertation,
beginning with Chapter 4 on a comparison of the sparse structure of natural sounds and
images. After a brief chapter (5) on a model of organization of auditory cortex by response
properties that builds on the auditory models of Chapter 4, two chapters follow in the style of
short research papers. Chapter 6 proposes an explanation for spatial whitening in the retina
as a requirement for learning a sparse model of natural scenes in V1. Chapter 7 takes a closer
look at a well-known efficient coding model of the auditory nerve and proposes a modification
to account for a previously unappreciated discrepancy with the data by requiring the model
to process sounds in a causal fashion.
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Chapter 2

Preliminaries

In this chapter we describe some of the main technical ideas in a unified and pedagogical
way. Some of this material will be recapitulated in the interest of making each chapter more-
or-less self-contained, but I hope here to provide a reference and introduction that would
have helped a younger me approach this material. This is a dissertation for a physics PhD,
so the assumed background is the mathematics, probability, and statistics knowledge of a
physicist; and the perspective and intuitions are those of a student of physics.

2.1 Sparse coding

A collection of numbers is said to be sparse if most of the numbers are zero or approximately
so. For our purposes, this requirement will often be too strict. Take for example the output
of a (nontrivial) linear filter convolved with a natural image. The output will almost never be
zero, and the distribution of the outputs will in fact be approximately Gaussian over a region
with roughly even illumination. But for certain special filters the outputs will approximately
follow a Laplace distribution, which has more probability mass at large value and very small
values. We will also call such distributions “sparse.”

For us, “sparse coding” refers to a linear generative model1

xi = x̂i + ni =
∑
m

amΦmi + ni (2.1)

where we assume that ni is iid Gaussian noise2 with variance σ2, conditioned on the set of
coefficients a:

p(x|a; Φ) ∝
∏
i

e−(xi−
∑
m amΦmi)

2/2σ2

(2.2)

1Like most technical terminology, several of these words have suffered some abuse. One point that may
cause confusion: sparse coding sometimes refers only to finding sparse codes for data (the a in our notation),
while the probabilistic model and fitting it (finding Φ) may be termed sparse modeling.

2iid is short for “independent and identically distributed.” By noise we mean roughly “that which we are
not modeling” and do not necessarily have a particular source in mind.
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Sparseness arises from the assumption of a sparse and (often) independent prior for the
coefficients aµm, for example

pa(a) =
∏
m

1

2λ
e−λ|am|. (2.3)

While this is a common example, we may also refer to models with other sparse distributions,
including non-factorial distributions, as sparse coding models.

The model distribution can be expressed

p(x; Φ) =

∫
p(x|a; Φ)pa(a)da. (2.4)

Parameter estimation and inference

Given a dataset {x} such as patches of natural images we usually want the values of the model
parameters Φ (i.e., the dictionary elements) that maximize the likelihood of the data under
the model. Usually we learn these parameters by a gradient-based method; the gradient is

∂p(x; Φ)

∂Φmi

= −
∫
∂S(x|a; Φ)

∂Φmi

p(x|a; Φ)pa(a)da

= −
∫
∂S(x|a; Φ)

∂Φmi

p(a|x; Φ)p(x)da (2.5)

where S(x|a; Φ) = − log p(x|a; Φ) is the surprise conditioned on a. In the second line I used
Bayes’s Theorem to rewrite the gradient as an expectation under the posterior distribution
of a. This integral is in general intractable, so we proceed with some approximate method
such as sampling from the posterior distribution of a. Sampling tends to be slow, so we
usually just take a single sample at the mode of the distribution. This is called maximum a
posteriori (MAP) estimation, and this MAP inference gives us a particular sparse code a∗.
Using the MAP estimate is justified if p(a|x; Φ) is unimodal and sharply peaked.3

The gradient under this approximation is4

∂p(x; Φ)

∂Φmi

∝ −∂S(x|a∗; Φ)

∂Φmi

. (2.6)

MAP inference is the same as minimizing the posterior surprise

S(a|x; Φ) = − log p(a|x; Φ) = − log p(x|a; Φ)− log pa(a) + log p(x) (2.7)

3I am not aware of any study demonstrating that datasets of interest have this property, but comparing
studies using MAP inference (e.g., [76]) to a study using a sampling approach [101] suggests that either it
holds for whitened natural image patches or that the usual results of interest are robust to the inexactness
of the MAP approximation.

4I’m dropping overall factors because they don’t matter. We’re going to scale the gradient by a learning
rate anyway, so all that matters is the direction, i.e., how the gradient depends on m and i.
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which up to an additive constant is

S(a|x; Φ) =
1

2σ2
||x−

∑
m

amΦm||22 + λ
∑
m

||a||1 (2.8)

in the case of a factorial Laplacian prior. Since S(a|x; Φ) and S(x|a; Φ) only differ by terms
that don’t depend on Φ, we can summarize our approximate gradient descent procedure as
alternating two steps: 1) minimization of S(a|x; Φ) with respect to a, and 2) a step down
the gradient of the same function with respect to Φ with a fixed at the minimizer (i.e.,
the MAP estimate) a∗. In some contexts “sparse coding” is just defined by (2.8) as an
objective function; the reasoning above shows that this is equivalent to the probabilistic
model perspective with MAP inference.

Loose ends

The objective function S(a|x; Φ) can be averaged over the dataset. Usually we average over a
random sample, say 100 data points, to compute the gradient for each step. This procedure
is known in machine learning as “stochastic gradient descent” (SGD).

The noise variance σ2 is usually swept under the rug since only the combination σ2λ
actually affects inference and learning. We then refer to the combination as λ and think of
it as the lone hyperparameter of the model. This parameter controls the tradeoff between
(mean squared) reconstruction error and sparseness.

There is at least one major problem with the procedure as explained so far: we can
always scale a down and scale Φ up to get the same reconstruction error but better sparsity.
To deal with this we usually stop the dictionary elements from growing in some way. In the
work presented in this dissertation, we simply set the norm of each dictionary element Φm

to 1 after each learning step.

Sparse coding algorithms

Sparsenet

The algorithm in [76, 75] uses a direct version of the procedure outlined above, with the
modification that the dictionary element norms are set to make the variance of the output
of each element some fixed value. So the procedure is:

1. Draw a batch (say 100 points) of data.

2. Minimize the objective, averaged over the batch, with respect to the am.

3. Adjust the Φmi to descend the gradient of the objective at fixed a.

4. Update the norm of each Φm multiplicatively: new norm = (old norm)(variance goal
/ moving average variance)η where η might be 0.01 or so.
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FISTA

The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)[8] is a popular choice for
sparse coding and other regularized linear inverse problems when speed is an important con-
sideration. Using FISTA for inference and a standard optimization routine such as LBFGS is
a good procedure from a performance standpoint on a standard computer, but our parochial
interest in modeling the brain leads us to other algorithms.

LCA

LCA refers to a class of “locally competitive algorithms” that use a MAP inference procedure
with an auxiliary variable u that gets thresholded to the coefficients a [86]. The choice of
threshold function corresponds to a choice of prior on a. LCA is sufficiently flexible that
it can be used with a variety of sparse priors and achieve L0 sparseness. It also has the
advantage of being well suited for analog implementations that can run many times faster
than digital simulations. Interpreting um as a membrane potential also gives LCA a more
neural feel than Sparsenet.

We use LCA (with SGD learning) as our primary “conventional” sparse coding algorithm,
so we provide some details on its implementation.

Details and implementation

Rozell et al. [86] show that sparse coding MAP inference can be implemented by assigning
each dictionary element a unit with an internal variable ui that evolves in time according to

u̇i(t) ∝ −
∂E

∂ai
. (2.9)

The u variables are then put through a thresholding function to get the activities a, imple-
menting the sparsity term in the objective function if

λ
dC(am)

dam
= um − am = um − Tλ(um) (2.10)

where C is the cost function (e.g. L1 norm) in the objective function and Tλ is the threshold-
ing function. Rozell et al. emphasize that the dynamics are not directly performing gradient
descent (since u̇m 6∝ ∂E/∂um) but that as long as am is a monotonically increasing function
of um the as will descend E.

The dynamical equation for the u variables is

u̇ = −u+ ΦTX − (ΦTΦ− I)a (2.11)

where the as are thresholded us. For the L1 cost, the threshold function Tλ(u) is 0 between
−λ and λ, and u− sign(u)λ elsewhere. For the L0 cost, the threshold function is 0 between
−λ and λ and u elsewhere.
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The usual procedure is to use a simple Euler method to solve this differential equation:

u(t+ 1) = (1− η)u(t) + η[ΦTX − (φTΦ− I)a(t)] (2.12)

where η is a small number, typically 0.1 is small enough. The system takes several time
constants to converge; 200 iterations with η = 0.1 (i.e., 20 time constants of evolution)
seems to work well.

There is a trick to improve the convergence of this procedure. The threshold parameter
λ is set to 1

2
maxm |

∑
i ΦmiXi|, then allowed to decay exponentially during the inference

procedure until it reaches the nominal value, where it is kept constant. Multiplying λ by
0.98 at each time step works well with the parameters above. Since the us tend to overshoot
their final values early on, this stops too many of them from clearing threshold and making
the feedback complicated. (This is my post hoc explanation; I do not know why this was
first done.)

SAILnet

Joel Zylberberg developed a Sparse And Independent Local network (SAILnet) as a more
“biologically plausible” sparse coding algorithm with spiking neurons and synaptically local
plasticity rules [110]. We will have more to say about SAILnet in later chapters.

Extensions and modifications

Sparse coding usually uses a factorial prior, but it is simple to extend the Sparsenet procedure
to incorporate dependencies among the am.

Vanilla sparse coding uses a linear generative model that is symmetric about a = 0, but
you can restrict the am to be nonnegative to gain on neural realism and/or fit asymmetric
data.

Convolutional sparse coding may be desirable for reducing the number of parameters
needed to learn a diverse dictionary.

Data preprocessing

Most sparse coding algorithms will not work well on just any data, even if that data has
an underlying linear sparse structure. It is best to center the data and normalize to unit
variance, and often you want to do more “preprocessing.”

In the case of natural image patches, there are a number of “preprocessing” steps that
are standard:

1. Do not use images with blur or other artifacts. Some images, like David Field’s set
of images from the Northwest [30, 76], have artifacts around the edges that should be
trimmed.
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2. Take a logarithm of the intensity. (This does not seem to be important, at least for
images with a small range of intensity values such as the Van Hateren database [35].)

3. Set the mean to 0 and standard deviation to 1 for each image.

4. Whiten the resulting dataset. This is not strictly necessary but improves learning
speed.

Practical issues

Choosing the sparseness parameter

So far I’ve offered no prescription for how to choose the sparseness parameter λ. Usually
it is chosen between 0.1 and 2. One could optimize λ to maximize the likelihood, or for a
task such as denoising. One simple prescription is to adjust λ during training so that the
signal-noise ratio of the reconstructions stays around a preset value, often 15 dB [73].

Pretty dictionaries and low costs

Low values of the objective function do not always go hand-in-hand with nice-looking sparse
coding dictionaries. Part of the problem seems to be that the usual results – e.g., Gabor
functions for natural images – often only show up late in training, meaning that at least
some of the gains in the objective function relative to random noise probably have nothing
to do with these nice dictionary elements.

Training dynamics, model recovery, and the loss

It is straightforward to sample from the sparse coding probabilistic model with a factorial
Laplace prior. In Chapter 6 we use data sampled from this model to see how two different
algorithms perform at recovering a known sparse model with different “preprocessing” steps.
Here I will briefly mention a set of observations about sparse model recovery that I have not
seen elsewhere. These observations are summarized in Figure 2.1.

For the left half of this plot, we trained a complete sparse coding model on iid Gaussian
noise. The model improves its reconstruction error dramatically on the first learning step;
this improvement is due to making the dictionary orthogonal. An overcomplete dictionary
cannot be orthogonal, but overcomplete models show similar though milder behavior when
trained on noise.

On the right half of the plot, we train the same model on samples from a known sparse
model. The benefit of an orthogonal dictionary persists (again, similar behavior is observed
in the overcomplete case). Throughout the rest of training, the reconstruction error is small
and nearly constant, while the L1 norm of the activations decreases substantially for as long
as the model improves its fit.
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Figure 2.1: Sparse model recovery.

Appendix: clarity over brevity

The sparse coding model distribution can be written

p(xµi ; {Φmi}) =

∫
p(xµi |{a

µ
i }m; {Φmi})pa({aµm})da0 · · · daM . (2.13)

where
p(xµ|{aµm}; {Φmi}) ∝

∏
i

e−(x̂µi )2/2σ2

(2.14)

and

pa({aµm}) =
∏
m

1

2λ
e−λ|a

µ
m|. (2.15)

2.2 Whitening

Data is whitened (or sphered) if the covariance matrix is the identity:

〈xixj〉 = δij, (2.16)

meaning there are no pairwise bilinear correlations and the variance in each direction is
the same. Sparse coding algorithms generally perform better on whitened data. Whitening
is sometimes said to “reduce redundancy,” but whitening is usually achieved by an invert-
ible transformation, which cannot reduce total entropy and therefore does not reduce the
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information-theoretic redundancy. Rather, whitening localizes information, increasing the
entropy of each dimension/symbol at the expense of the entropy associated with pairwise
correlations.

There are multiple ways to achieve this. One is to use a linear filter tailored to your data
set; Olshausen and Field whitened their images using a filter designed to flatten the Fourier
power spectrum up to a high frequency and then allow it to fall, considering the very high
frequencies to be noise [76]. The result is only approximately whitened according to my
definition of whitening.

Another method, which generalizes more simply to other datasets besides natural images,
is to use principal components analysis (PCA). For natural images, the principal components
are roughly Fourier modes, so flattening the principal component variances is roughly the
same as flattening the Fourier power spectrum. That said, the difference between the Ol-
shausen and Field 1996 whitening and PCA whitening can be significant, for instance altering
dependencies among the sparse coding coefficients. See [45] for more on PCA whitening in
the context of natural image statistics.

Chapter 6 discusses whitening and its relation to sparse coding at length.
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Chapter 3

Sparse coding with spiking neurons
and local learning rules

This chapter goes into greater depth on the Sparse and Independent Local Network men-
tioned in Chapter 2. Zylberberg et al. developed SAILnet as a model that explains in greater
detail how sparse coding and learning could be implemented in a neural system, including
spiking neurons and synaptically local learning rules. Here we discuss the model for its own
sake, recapitulating some of the ideas in [110] but also providing some new insights and
analysis. In later chapters we use SAILnet to better understand natural image and sound
statistics and to offer an explanation for earlier stages of visual processing.

3.1 A neural implementation of sparse coding: LCA

Sparse coding can be implemented in a neural architecture by a Locally Competitive Algo-
rithm (LCA) [86] as explained in Section 2.1. Each unit’s internal variable um can be thought
of as modeling the sub-threshold membrane potential of a neuron while the activations am
correspond to firing rates and neurons have lateral connections according to the overlap of
their feedforward connections. LCA performs well in practice, and Rozell et al. are able to
prove convergence properties.

In terms of modeling the brain, however, LCA has a few shortcomings: the “neuron”
outputs are analog values rather than spikes, and in order to compute the inference dynamics
or weight update rule for a particular unit, we need to know the weights Φ and activities a
of all other units.

A smaller issue with LCA as a model of sparse coding in the brain is that forcing the
interactions between units in LCA to be inhibitory significantly impairs reconstruction per-
formance. For good performance each unit inhibits some units and excites other units, which
violates Dale’s Principle.
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3.2 Spikes and local learning: SAILnet

The Sparse and Independent Local Network (SAILnet) [110] addresses each of the short-
comings mentioned above. First, the thresholding function Tλ(um) is replaced by a spiking
operation: when the internal variable um crosses a threshold it spikes (incrementing am) and
resets to 0. The a variables become spike counts (which can also be divided by inference
time to get a spike rate). In [93] the authors present a more principled development of a
spiking version of LCA, but I’ve found empirically that the näıve replacement just described
can perform well in terms of descending E.

The fact that LCA’s inference and learning rules are not synaptically local is more difficult
to deal with. The solution Zylberberg et al. present is effectively to change the mean-squared-
error term in the objective function:

1

2

∑
i

(
Xi −

∑
m

Φmiam

)2

−→ 1

2

∑
m,i

(Xi − Φmiam)2 (3.1)

This change leads to the synaptically local learning rule

∆Φmi ∝ 〈am(Xi − amΦmi)〉. (3.2)

The claim in [110] is that this learning rule approximates gradient descent well as long as
the activities a are sufficiently sparse and uncorrelated. We will address when we can expect
this approximation to be valid in Section 3.2. Before that, note that the dynamical equation
for the internal variables also changes to become simply a leaky integrator:

u̇m = −um +
∑
i

Φmixi (3.3)

which is local if boring.
In order to ensure that the activities a are actually sparse and decorrelated, Zylberberg

et al. formulate a constrained optimization problem which may be expressed in terms of a
Lagrange function

L =
1

2

∑
ij

(Xi − Φjiaj)
2 +

∑
j

θj(aj − p) +
1

2

∑
jk

Wjk(ajak − p2) (3.4)

where the θj and Wjk are Lagrange multipliers enforcing the constraints that the terms they
multiply are zero. Specifically, the activities are constrained to have mean p and no pairwise
correlations, where p is a scalar input to the model. Interpreting L as a new objective
function, we can derive dynamics for the inference circuit analogous to (2.11):

u̇m ∝ −
∂L

∂am
=
∑
i

ΦmiXi −
∑
j

Φ2
jiai − θi −

∑
j 6=m

Wjmaj. (3.5)
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Figure 3.1: Example SAILnet neuron trajectory. Dark blue vertical lines mark spikes, after
which the membrane potential is reset to its resting level. Sudden decreases occur when the
neuron receives inhibitory input from other neurons spiking. Units are arbitrary but could
be linearly mapped to real time (roughly 100ms total) and electrical potential (10s of mV)
in a real neuron.

We can reasonably interpret the terms in this equation to give us a spiking circuit with
dynamics

u̇m =
∑
i

ΦmiXi − ui −
∑
j 6=m

Wjmyj, (3.6)

which is the SAILnet inference procedure. The sum over feedforward weights in the leakage
term is approximately 1 since these weights are approximately normalized, although in prac-
tice this factor can be as large as 6 or as small as 1/2 or so. The θ parameters we interpret
as the thresholds for spiking, and yj = 1 when unit j is spiking and 0 otherwise. This model
corresponds to a leaky integrate-and-fire neuron. An example trajectory for one neuron is
shown in Figure 3.1.

SAILnet does not descend its Lagrange function

In [110], Zylberberg et al. write down a Lagrange function similar to (3.4) and derive
learning rules by gradient descent on that Lagrange function. Gradient descent on (3.4) gives
the expected learning rule for the feedforward weights Φ, but for the Lagrange multipliers
gradient descent gives

∆θm = − ∂L
∂θm

= −(am − p)

∆Wmn = − ∂L
∂Wmn

= −1

2
(aman − p2)

(3.7)

which are the opposite of the SAILnet learning rules (up to the factor of 1/2 which I included
to make the inference rule look nicer).
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This is not to say that the results in [110] are wrong, per se. Zylberberg et al. flipped
the signs on the Lagrange multipliers to make the learning rules come out right. But doing
that puts minus signs in (3.5) which makes interpreting SAILnet inference in terms of that
equation a stretch. In particular the thresholds appear as excitatory currents. Zylberberg
et al. instead derive (3.6) by heuristic arguments.

SAILnet seeks a saddle point

We can resolve this confusion by noting that solutions to a constrained optimization problem
occur at critical points of the corresponding Lagrange function, not necessarily minima. In
the case of SAILnet, we want to minimize L with respect to Φ and a, but maximize with
respect to θ and W : the solutions we want are saddle points of L.

Empirically, this approach of minimizing with respect to some parameters while maxi-
mizing with respect to the others seems to work much of the time, for the reasons explained
in [110]. As long as the learning rates for the Lagrange multipliers are large compared to the
learning rates for the feedforward weights, the system stays close to the constraint surface.

SAILnet’s method is similar to Dual Ascent, which is discussed as a precursor to ADMM
in [14]. Dual Ascent is guaranteed to converge under certain assumptions.

Empirical observations of learning

SAILnet has a few failure modes.

1. Everything goes terribly if the “learning rates” for the Lagrange multipliers are too
small. They generally need to be 10 times the dictionary learning rate or more. We
can understand this requirement: SAILnet needs to stay close to the constraint surface
for its dictionary learning rule to have any hope of working properly.

2. If the firing rate parameter p is too high relative to the number of units (say 0.25 for
100 units) the network learns nothing of interest and does a poor job descending the
objective. The objective function may even increase without bound.

3. SAILnet has no mechanism to directly force units to learn different features from one
another: the receptive field of one unit never enters directly into the inference or
learning rule for any other unit. Sometimes a bunch of units learn the same thing, and
then to keep correlations down they develop large inhibitory weights W . But they still
each need to fire at a rate p, so if there are too many of them their thresholds have to
be low. But these dynamics conflict; the result is that these units fire on the first or
second time step of inference, which inhibits all of them in the next time step so much
that they don’t fire again. We do not know how to keep this from happening other
than by setting p quite low.

4. Large violations of the constraints do not always seem to be bad. We have trained
networks with the parameters in [110] and found that the Lagrangian gets somewhat
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large (∼10) even though the MSE term asymptotes down to ∼0.6 and the learned
features are as expected in the image case.

Validity of the MSE approximation

Writing out the nonlocal learning rule derived from gradient descent on mean-squared error
gives

∆Φmi ∝ 〈amXi〉 − 〈a2
m〉Φmi −

∑
n6=i

〈aman〉Φni. (3.8)

If the SAILnet constraints are satisfied,

∆Φmi ∝ 〈amXi〉 − 〈a2
m〉Φmi − p2

∑
n

Φni. (3.9)

The third term is the nonlocal part; [110] argues that this term is small compared to
the other two in the sparse and uncorrelated limit so that SAILnet should approximately
descend the mean-squared error objective.

To make this argument more precise, let p = fη where η is the average activity ignoring
zeros and f therefore typifies the fraction of stimuli that cause any particular unit to have
nonzero activity. The mean of the square of the activities is therefore approximately fη2.
We can characterize the magnitude of the sum in the third term of (3.9) by the standard
deviation of the sum of ndict i.i.d. random variables with mean 0 and variance σ2. Then a
necessary condition for the approximation to be good is

fη2|Φik| � p2√ndictσ/
√

2π. (3.10)

Since |Φik| ∼ σ, this condition can be expressed

f �
√

2π/
√
ndict. (3.11)

So the L0 sparseness factor needs to scale as one over the square root of the number of
units. In [110], a 1536-unit network was trained with p = 0.05.

√
2π/ndict ≈ 0.06 in this

case; since η is at least one (being an average of nonzero spike counts), the condition (3.11)
was violated for this network. Nevertheless, the network seems to have functioned more or
less as claimed, and I’ve found that violating the condition above by a factor of a few still
allows the network to learn the usual features and decrease the mean-squared error function
over training time.

Empirically, I have also found that with the parameters in [110], the neglected term is
on average about the same size as (or a factor of 2 or 3 smaller than) the second term in
the dictionary learning rule (though both are consistently a factor of 2 or 3 smaller than the
Hebbian term). This average behavior is dominated by a few large “second terms”; a scatter
plot of many examples shows that the dropped nonlocal term is usually larger than the kept
local one (though both are usually smaller than the Hebbian term.) These observations
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contrast with LCA, for which the local normalizing term is about a tenth as large as the
nonlocal term, which is about half as large as the Hebbian term.

All this leads me to believe that what really matters is that the nonlocal term be small
compared to the Hebbian term, which holds when

p
√
ndict/

√
2πD � 1 =⇒ p�

√
2π/
√

OC (3.12)

where D is the dimension of the input space and OC is the overcompleteness of the dictionary.
I assumed that the data has unit standard deviation in each dimension. This condition has
the same scaling as (3.11) but is relaxed by a factor of the square root of the data dimension.

These conditions, or something more relaxed, are necessary but not sufficient for the
approximation to be good. For instance, the dropped term might be small for each learning
step but have a regular direction so that its effect adds up to become significant over time
compared to the larger terms which may be more variable.

Inhibitory weights sometimes seek feedforward weight dot
products when the data is sphered

With a few assumptions we can obtain a simple result for the lateral connections W . Let us
assume that we are in a regime where SAILnet inference is dominated by the feedforward
term and we can neglect lateral inhibition – call this the independent limit. Then for constant
input we have

um(t) = (1− e−t/τ )
∑
i

Φmixi. (3.13)

If
∑

i Φmixi < θm, unit m will never spike. Otherwise, let us assume that
∑

i Φmixi is large
enough that unit m spikes while um(t) is approximately linear in t. Then the spike rate for
unit m is given by

am =

∑
i Φmixi
θmτ

. (3.14)

The thresholds are often all similar, so we have approximately

a ∝
∑
i

Φmixi. (3.15)

The learning rule for the inhibitory weights in this approximation is (in matrix notation)

∆W ∝ aaT − p2 ∝ ΦXXTΦT − Ξp2 (3.16)

where Ξ is some constant. Ignoring that term for now, we see that the inhibitory connection
matrix should move towards the Gram matrix of the feedforward weights if and only if the
data is white, XXT ∝ I.
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Evaluating assumptions

Future work could evaluate these assumptions to gain a better understanding of how our
simple analysis relates to the true, complicated dynamics of SAILnet.

We totally neglected the term proportional to p2 in the W learning rule. This may
not matter when p is small. It may be the deviation of a from its average of p that is
approximately proportional to the input current ΦX. Certainly one could instead work with
a network with symmetric (instead of nonnegative) outputs. This provides one simple test
of whether this approximation makes sense.

There is certainly a regime in which we can neglect the effect of the lateral connections
during inference, when the network is undercomplete or at initialization with W = 0. Even
in the mildly overcomplete regime, I expect that activities are strongly correlated with input
current, based on experiments with LCA that I expect would hold up. One could run
simulations to test this.

The approximation that neurons only fire while their dynamics are essentially linear
amounts to assuming for each neuron either ΦmX/θm � τ or ΦmX < θm. This could be
tested on a sample.
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Chapter 4

On the sparse structure of natural
sounds and natural images:
similarities, differences, and
implications for neural coding

Having established our primary tools and context, I now present in this chapter the first
major new work in this dissertation. The success of sparse coding in explaining the receptive
fields of neurons in primary visual cortex inspired similar investigations for other sensory
modalities, especially audition. However, I am unaware of any direct comparison of the
statistics of natural images with the statistics of natural stimuli from another modality that
could guide modeling efforts to understand other modalities on similar terms. This chapter
provides a comparison of the statistics of natural images and natural sounds using the tools
of sparse coding generally and also SAILnet in particular that we have discussed in previous
chapters.

In addition to the primary material, I have included a number of “supplementary” figures
at the end of this chapter that provide additional comparisons and complete models. These
figures are not essential to the main narrative of the chapter and are likely only of interest to
experts, but I include them for completeness. This chapter is adapted from a paper authored
by myself and Professor DeWeese that is in review at time of writing.

4.1 Abstract

Sparse coding models of natural images and sounds have been able to predict several re-
sponse properties of neurons in the visual and auditory systems. While the success of these
models suggests that the structure they capture is universal across domains to some degree,
it is not yet clear which aspects of this structure are universal and which vary across sensory
modalities. To address this, we fit complete and highly overcomplete sparse coding models to
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natural images and spectrograms of speech and report on differences in the statistics learned
by these models. We find several types of sparse features in natural images, which all appear
in similar, approximately Laplacian distributions, whereas the many types of sparse features
in speech exhibit a broad range of sparse distributions, many of which are highly asymmet-
ric. Moreover, individual sparse coding units tend to exhibit higher lifetime sparseness for
overcomplete models trained on images compared to those trained on speech. Conversely,
population sparseness tends to be greater for these networks trained on speech compared
with sparse coding models of natural images. To illustrate the relevance of these findings to
neural coding, we studied how they impact a biologically plausible sparse coding network’s
representations in each sensory modality. In particular, a sparse coding network with synap-
tically local plasticity rules learns different sparse features from speech data than are found
by more conventional sparse coding algorithms, but the learned features are qualitatively
the same for these models when trained on natural images.

4.2 Introduction

An important goal of systems neuroscience is to discover and understand the principles that
might govern sensory processing in the brain. Several principles have been proposed, such as
reducing redundancy between neurons [4, 7, 2, 24, 21], representing statistical dependencies
between objects and events to guide action [6], minimizing expended energy [57], maximizing
entropy [89], and maximizing transmitted information [56, 26, 83, 9, 43, 49]. Each of these
principles suggests that sensory systems should use the statistical structure of sensory data
from the animal’s environment to efficiently represent and process that data. Studying the
statistics of natural sensory input and coding strategies specialized for those statistics has
helped us understand neural sensory systems [90, 28, 10, 94, 95, 77, 103].

One principle that has provided insight into the structure of data from the natural en-
vironment and the way these data are represented by neural activity is sparseness [74]. We
say that a fluctuating quantity is sparse if it is often zero (L0 sparseness), or if it is close to
zero more often than a Gaussian random variable with the same variance (L1 sparseness).
Natural visual scenes can be well-represented by sparse distributions [30], and coding strate-
gies optimized for sparseness find local, oriented, bandpass features that match the receptive
fields of simple cells in primary visual cortex (V1) [76, 82, 86, 110]. In the auditory do-
main, the filters that optimize a sparse coding scheme for the acoustic waveforms of natural
sounds resemble cat auditory nerve filters, and they form a similar tiling of time-frequency
space [97]. Interestingly, training this sparse coding model on speech rather than an opti-
mized combination of recordings of environmental sounds yields just as good a fit to auditory
nerve filters. Moreover, a sparse coding model of spectrograms of speech learns features that
resemble spectro-temporal receptive fields (STRFs) measured at higher stages of auditory
processing, such as the inferior colliculus, auditory thalamus, and primary auditory cortex
(A1) [18]. Some similar features emerge in models of simulated cochlear responses [55, 51],
and hierarchical models have found higher-level sparse structure [50, 100, 72]. Experiments
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have uncovered sparse responses from neurons in visual cortex [104, 105] and auditory cor-
tex [27, 39] as well as other brain regions [102], suggesting that the nervous system has
evolved to take advantage of the sparse structure of its inputs. Furthermore, a sparse coding
model of natural images exhibits many of the non-classical receptive field effects found in
V1 neurons in addition to learning similar classical receptive fields [108].

These results suggest that the applicability of sparse coding to understanding sensory
systems is not limited to a single modality such as vision, but that sparseness may be a more
universal property of data from the natural environment. However, there are clear differences
between visual and auditory data, which has affected the way they have been explored in
past work. For example, sparse coding studies in vision have mostly focused on static images,
while the time dimension is not as easily avoided for sounds. As another example, one model
designed to separate form and motion in natural movies did manage to learn pairs of phase-
shifted Gabor filters[17] but it did not learn phase-shifted auditory features, although an
extension was used to model binaural sound coding [71]. Moreover, images exhibit some
symmetries (e.g., a rotated natural image is still a natural image) without clear analogs in
the auditory domain.

Our primary goal was to compare the statistical structure of natural visual scenes and
of natural sounds through the lens of sparse coding. Our approach was to fit complete and
highly overcomplete sparse coding models to spectrograms of speech and to natural image
patches and then to compare the statistics of these models’ representations. We have found
that, while natural scenes and sounds can each be well-represented by sparse coding models,
this structure differs in significant ways between the two modalities. Consistent with past
work [18], we found a greater variety of sparse features in speech compared with natural
images. Among these auditory features, we identify three types with distinctive, highly
sparse and asymmetric distributions of projections in the dataset. Interestingly, elements in
the full “dictionary” of auditory features learned by our sparse coding model vary greatly in
their degree of sparseness and skewness. In contrast, we find that the sparse dimensions in
the space of natural image patches, which mostly resemble Gabor functions in the complete
case with a few other types appearing in the highly overcomplete regime, are much more
uniform in their degree of sparseness and skewness.

In addition to these observations regarding “lifetime sparseness” of individual features,
we also studied “population sparseness” of the two datasets — namely, sparseness across
features for a given stimulus. We found that a typical speech spectrogram segment admits
a sparser representation than a typical natural image patch, despite the fact that lifetime
sparseness was typically greater for image features compared with speech features in the
overcomplete regime.

We further demonstrate that the differences we find between the sparse structure of
speech and that of images have significant consequences for coding schemes used to process
these types of data, and therefore for neural models of vision and audition. In particular, we
study the effects of the statistics of natural sounds and of natural images on a sparse coding
network designed to match some important constraints imposed on real neural systems. The
Sparse and Independent Local Network (SAILnet) [110, 109, 53] is the only algorithm we
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are aware of with spiking neurons and synaptically local plasticity rules that can learn the
diverse receptive field shapes of V1 simple cells when trained on natural image patches.
Conventional sparse coding algorithms also learn these shapes but do not have the same
constraints. Throughout this paper, “conventional sparse coding” refers to an L1-sparse
linear reconstruction model with codes determined by the Locally Competitive Algorithm
(LCA) [86] and parameters updated by gradient descent on mean-squared reconstruction
error. This algorithm is used in, e.g., [18] and [73]. The choice of LCA is not crucial, and we
obtained qualitatively similar results with other coding algorithms such as gradient descent
as in [76]. See Methods for details. We trained SAILnet models on spectrograms of speech
sounds and on natural images, using the same preprocessing steps in both cases. While
SAILnet learned similar features to those found using conventional sparse coding in the
visual case, the SAILnet results were significantly different from conventional sparse coding
for auditory data.

The divergence in results with SAILnet points to surprising differences between the sparse
structure of natural images and natural sounds, with implications for both early development
and sensory processing in the mature circuit in these different modalities.

4.3 Results

To compare the sparse structure of speech sounds to that of natural images, we fit sparse
coding models to ensembles of each type of data. For speech, we adapted a preprocessing
scheme introduced previously [18] in which segments of spectrograms of recordings of speech
are first whitened and then reduced in dimensionality using principal components analysis
(PCA). We followed the same procedure for image patches of the same dimensionality as the
spectrogram segments in order to make a fair comparison between the two datasets. These
preprocessing steps are illustrated in Fig. 4.1 and discussed in more detail in section 4.5.
Note that although the preprocessing schemes for the two datasets differed in that we took
spectrograms of the auditory data, the spectrogram is not an inherently lossy transforma-
tion [58].

After this preprocessing, we trained sparse coding models using an iterative scheme based
on the locally competitive algorithm (LCA) [86] for inference (i,e., determining the activity of
each unit for representing a given sensory input) combined with stochastic gradient descent
for learning (i.e., setting the parameters of the model). (Note that we will use “activity”
and “activation” interchangeably below.) Throughout this manuscript we use the term
“conventional sparse coding” to refer to this particular scheme, and this is the primary model
we used to generate most of the results we present here, but we obtained similar results using
SPARSENET [76] and, where a comparison makes sense, Independent Components Analysis
(ICA, [9, 46]).
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Complete sparse representations

Before training a sparse coding model, one typically specifies the number of stimulus features
(also referred to below as “elements” or “units”) to include in the full “dictionary” of the
model. The optimal dictionary learned by a sparse coding model can depend substantially on
the size of that dictionary relative to the size of the data [73]. Intuitively, one might expect
a greater diversity of stimulus feature classes with a larger dictionary, and this is often the
case. We first studied the complete regime by fitting sparse coding dictionaries with 200
elements, which is the dimension of each of our datasets after PCA reduction; we will refer
to this as the “complete” regime. While models with more dictionary elements than the
dimension of the data may make a closer correspondence with the brain, we found that the
complete regime elucidates some aspects of the datasets themselves that are less clear in the
“overcomplete” regime. We also discuss the overcomplete regime in section 4.3. We used the
L1-sparse locally competitive algorithm (LCA) [86] to compute sparse codes and stochastic
gradient descent (SGD) to optimize the dictionaries (see section 4.5 for details).

Figure 4.2 illustrates several properties of the learned dictionaries and their representa-
tions of the data. The dictionary elements found by our sparse coding algorithm exhibit
clear structure beyond the restriction to the subspace spanned by the first 200 principal
components. When trained on image patches, the model recovers the Gabor functions and
long edge filter-like elements that are known to emerge in sparse coding models of smaller
image patches [76] (Fig. 4.2a, third column). In the spectrogram case, we recover the element
types previously seen in sparse coding dictionaries, including acoustic features that resemble
spectro-temporal receptive fields (STRFs) observed in the inferior colliculus and at various
other stages of the mammalian ascending auditory pathway [18] (Fig. 4.2a, first column).

For both the visual and auditory case, the distribution of unit activations for every
dictionary element was much sparser than is typically found for random directions in the
data space. Log histograms of individual unit activities were consistently sharply peaked at
0, and they had fat tails, compared with the parabolic shape of the (log) activity distribution
expected for Gaussian-distributed random vectors in the stimulus space (Fig. 4.2a, second
and fourth columns).

While both the visual and auditory dictionaries were sparse, there were several striking
differences between the sparse structure of their representations. To quantify these observa-
tions, we used the following sparseness score

S[{y}] = − 〈|y|〉√
〈y2〉

+
√

2/π, (4.1)

where the angle brackets denote the expectation over the empirical distribution of y. The
constant

√
2/π ≈ 0.80 simply shifts the score so that a normal distribution has a sparseness

score of zero. This measure of sparseness is less sensitive to outliers than is kurtosis [45],
for example. Nevertheless, we found qualitatively similar patterns for all of our results using
kurtosis (see Fig. 4.14).
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Applying our measure to the distribution of activities for each unit in response to every
stimulus in the dataset used for model training, we found that the sparseness score was
always greater than zero. For each data set, we then calculated sparseness scores for the
activity distributions for a dictionary with each element drawn iid from a normal distribution.
These sparseness scores for random elements were small, with median values of 3.3×10−2 for
spectrograms and 5.6×10−2 for images; these values correspond to a null hypothesis against
which to compare the optimized dictionary elements. These control values are plotted as
small points in Fig. 4.2b.

While most of the units in the image dictionary clustered around a particular value of
sparseness score and appeared qualitatively similar to one another, the units in spectro-
gram space covered a wider range of sparseness scores, with several distinct clusters (note
the plateaus on the left of the purple curves in Fig. 4.2b). These clusters correspond to
qualitatively different classes of features: 1) harmonic stacks, 2) broadband onsets, and 3)
broadband onsets preceded by high-frequency sound (Fig. 4.2a, first column). Examples
of several other qualitatively different types are also shown, although these do not exhibit
strong clustering of sparseness scores. The clusters we found resemble those described previ-
ously [18] in the usage frequency histogram across the units in a half-complete sparse coding
network.

Another difference between the visual and auditory sparse coding dictionaries was that
the auditory unit activations were typically much more asymmetrical compared to the visual
units. We quantified this using the skewness, which is the normalized third moment of a
distribution

skewness[{y}] =
〈y3〉
〈y2〉3/2

, (4.2)

for mean-centered data {y} [1]. A symmetric data distribution has zero skewness, whereas
a distribution with a longer tail on the right than the left has positive skewness. In fact,
we computed the absolute value of the skewness since, like most sparse coding models, our
network allows for both positive and negative activities, leading to degenerate representations
of asymmetrical signals. Fig. 4.2c demonstrates that the skewness values for the image
dictionary elements were much smaller than the majority of auditory elements. Note also that
the three most distinct categories of auditory features cluster in their degree of asymmetry
of activations, as measured by the skewness, just as what we found for sparseness.

We can understand the skewness of these elements in terms of properties of speech sounds
as represented by power spectra: speech often contains harmonic structure — power con-
centrated at integer multiples of a fundamental frequency — but it rarely if ever contains
the opposite of such structure, which would be broadband sound with power missing at
regularly spaced frequencies. Speech, like other natural sounds, also tends to contain sharp
onsets but only gradual decays into silence. Since our sparse coding scheme allows for both
positive and negative coefficients (e.g., unit activities), we multiplied the examples shown in
Fig. 4.2 by the sign of their skewness before displaying them and their corresponding activa-
tion histograms, in order to show the acoustic feature that would be added with a positive
coefficient to the network’s representation of the input. The idea is that the long tail of a
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skewed distribution of unit activity corresponds to the feature associated with large activity
magnitudes; we obtain very similar results if we instead multiply each unit by the sign of its
average activity.

The highly sparse and skewed distributions of unit activities onto these well-clustered
acoustic feature classes share a distinctive shape exemplified by the first three log-histograms
in Fig. 4.2a. In each case, a sharp peak around zero is accompanied by a long flat tail on the
positive side, showing that, for example, harmonic stacks appear at a wide range of volumes
or not at all. Most of the other activation distributions, for the auditory spectrogram case
as for the image cases, have a more symmetric, Laplacian-like shape.

We wondered to what extent these results reflected the nonlinear inference process of
our sparse coding algorithm with 200 interacting elements, as opposed to simply the one-
dimensional statistics of the data projected linearly onto each dictionary element. For exam-
ple, nonlinear processing in the retina has been found to be more responsible for decorrelation
between retinal ganglion cell outputs than their center surround receptive field shapes, which
were originally hypothesized to underlie this effect [79]. To address this, we examined the
distributions of the training data projected onto individual elements from each of these
complete sparse coding dictionaries. Since this is in the complete regime, with no more
dictionary elements than there are independent dimensions in the preprocessed dataset, one
might expect that the projection of the data onto any given dictionary element (i.e., the dis-
tribution of inner products between the dictionary element and the collection of images or
spectrograms) should be sparser than projections in random directions, provided our learning
algorithm is effective and we have a reasonable model for the data being fit. However, since
the dictionary was optimized for the sparseness of codes determined by a nonlinear function
of the dictionary and the data (LCA, see section 4.5), it did not have to turn out that linear
projections of the data onto every element had to be sparse even if sparse dimensions exist
in the data.

Nonetheless, we found that the elements of our optimized complete sparse coding dic-
tionaries did robustly correspond to sparse dimensions in the data (Fig. 4.7). As with the
analysis of unit activations, we compared our results for linear projections with those for
a dictionary composed of random directions. Specifically, for each data set, we calculated
sparseness scores for the distributions of projections for each of 200 directions drawn iid from
a normal distribution. These sparseness scores were small, with median values of 7.8× 10−3

for spectrograms and 2.5 × 10−2 for images. For each dataset, the full range of sparseness
scores for these 200 random dimensions is represented by the shaded region in Fig. 4.7b,
which lies well below the corresponding curve of sparseness scores for nearly all of the dictio-
nary elements learned by the model. As we found for the activity analysis, most of the units
in the image dictionary clustered around a particular value of sparseness score and appeared
qualitatively similar to one another, whereas the units in spectrogram space covered a wider
range of sparseness scores, with several distinct clusters in the high sparseness tail. More-
over, the sparse coefficients determined by our nonlinear algorithm were highly correlated
with linear projections onto the corresponding dictionary elements with Pearson’s r = 0.97
for both datasets, and the sparseness statistics evaluated on unit activities correlated with
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the same statistics evaluated on linear projections with r > 0.99. The distinction between
activations and projections was therefore not important for this analysis for these datasets,
in the complete regime. For a second point of comparison, we also studied dictionaries opti-
mized for the sparseness of linear projections onto the dictionary elements using independent
components analysis (ICA). The results are shown in Fig. 4.13 and are also very similar to
Fig. 4.2.

Overcomplete sparse representations

In addition to our analysis of the complete regime, we also studied the sparse structure of
speech and images in the highly overcomplete regime, defined as the case with many more
dictionary elements than the dimensionality of the (preprocessed) data. This is particularly
interesting from a biological perspective given the greater numbers of neurons in primary
sensory cortical areas compared with the number of efferents from the sensory periphery.

In the overcomplete regime, the dictionary elements cannot be truly orthogonal to all
other elements, so one might expect nonlinear interactions to be more pronounced during
inference in order to achieve sparse representations. We fit models with 2000 elements, which
is ten times the dimensionality of the preprocessed data given that we kept only the first
200 PCA components.

Figure 4.3 presents some statistics for the highly overcomplete dictionaries trained on
spectrograms and on image patches. Unlike the complete regime, there is no longer obvious
clustering of sparseness scores for either unit activations (Fig. 4.2) or linear projections onto
the dictionary elements (Fig. 4.7) of the spectrogram dictionary. However, it is still the case
that the spectrogram dictionary covers a wider range of sparseness scores than the image
dictionary and it has a larger variety of activity distributions (see Fig. 4.9). Intriguingly,
the distribution of L0 lifetime sparseness values (i.e., the fraction of stimuli eliciting no
response) was nearly identical for the spectrogram and image dictionaries (Fig. 4.11a) unlike
what we found for L1 sparseness, though the range of “L0 asymmetry” values (the fraction
of positive minus the fraction of negative responses) was still much greater for the auditory
model (Fig. 4.11b).

Since LCA uses a nonlinear process to determine a sparse representation for each data
point and this nonlinearity becomes increasingly important for higher degrees of overcom-
pleteness, we examined the sparseness of the activations of each unit in the LCA network
and compared it to that of the linear projections for the corresponding unit. The activation
of each unit depends on all the units, so we also compared our results to the behavior of
a ten-times overcomplete dictionary of random elements (thin lines, Fig. 4.3a; shaded re-
gions, Fig. 4.3b). We adjusted the sparseness parameter λ for each network to achieve the
same reconstruction error on the appropriate dataset. For both the image and spectrogram
models, the learned dictionary elements had sparser activations than the random dictionary
elements of the same rank (Fig. 4.3a), just as we found for the complete regime. Simi-
larly, linear projections were sparser for the learned dictionary elements compared with the
random dictionaries for both the image and speech models (Fig. 4.3b). However, the unit
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activations for the image dictionary were consistently sparser than those of the correspond-
ing spectrogram units (Fig. 4.3a), whereas the sparseness of linear projections (Fig. 4.3b)
displayed the same overall pattern we observed for the complete regime, with a larger range
of sparseness scores across the spectrogram dictionary compared with a fairly constant mid-
dle value for the image dictionary. (Note that the rank (horizontal axis) in each panel of
Fig. 4.3 is independently determined.)

Thus, unlike what we found for the complete regime, the sparseness of the linear pro-
jections of each element of either overcomplete dictionary was not closely correlated to the
sparseness of that element’s LCA activations: Pearson’s r of -0.12 and -0.30 for spectrograms
and image patches, respectively. Conversely, for both the image and spectrogram models,
the skewness of the activations was better explained by the skewness of the linear projec-
tions, with Pearson’s rs of 0.89 and 0.66 (Fig. 4.3c,d). Similar to what we found for the
complete regime, the overcomplete spectrogram dictionary exhibited much greater skewness
than the overcomplete image dictionary, which was true for both unit activations (Fig. 4.3c)
and linear projections (Fig. 4.3d).

These results indicate that the L1 sparseness of the LCA activations in the highly over-
complete regime is strongly affected by interactions among the units and not directly by some
aspect of the individual units, while the asymmetry of a unit’s activations largely follows
from the asymmetry of the corresponding data dimension. This contrasts with the complete
regime, where each statistic is nearly the same for linear projections as for LCA activations.
Interestingly, these nonlinearities increased the sparseness for the overcomplete image model
more than for the auditory model (compare Figs. 4.3a and 4.3b).

Finally, repeating the analysis described above for L0 sparseness rather than L1 sparse-
ness in the overcomplete regime, we found that most trends were unchanged. For example,
both spectrogram- and image-trained networks had much sparser unit activations compared
with the random controls (Fig. 4.11a), and the spectrogram activation distributions were
more asymmetrical than the image activity distributions (Fig. 4.11b). However, the distribu-
tions of L0 sparseness values for images and spectrograms were nearly identical (Fig. 4.11a).

Population sparseness

The results described above focus on the sparseness of the activations (and linear projections)
of a single unit across the dataset, which is directly related to the so-called lifetime sparseness
of an individual unit — the distribution of a unit’s activities at each moment over its lifetime.
We also examined the sparseness of the distribution of simultaneous activations of all units,
often called “population sparseness.” These two notions of sparseness are distinct and not
always related in an obvious way [106], so it is worth comparing the population sparseness
of sound and image models in addition to the lifetime sparseness analyses above.

For each of our analyses, a typical speech spectrogram admitted representations with
greater population sparseness than did comparably preprocessed images. Each panel of
Fig. 4.4 presents a pair of histograms representing comparable distributions over the two
datasets. Panels a and b show that the distribution of unit activations representing a given
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spectrogram segment for an optimized sparse coding dictionary was typically sparser than
the analogous distribution for an image patch. This trend was also evident for the projection
analysis (Fig. 4.4d,e). Since LCA uses a thresholding procedure, most units had exactly zero
activity for any given stimulus. We therefore also looked at the fraction of units active (a
measure of L0 sparseness), which tended to be smaller for the spectrogram case (Fig. 4.4c).
Thus, typical elements from the spectrogram dictionary had greater L0 population sparse-
ness, in addition to having greater L1 population sparseness, compared with those from
the image dictionary. All of these trends are summarized by the medians of the various
histograms, represented by the lower vertical lines in each figure panel.

This observation is somewhat surprising given the opposite trend we found for lifetime
sparseness (Fig. 4.3). Speech spectrograms typically admit sparser representations than
those of images, even though individual units in the image network tend to have activa-
tions with greater sparseness across examples compared to individual auditory units. We
emphasize that, while the population sparseness trends we have just described are true for
the typical element of each distribution, the distributions for the image case in particular
are not fully characterized by a single summary statistic. The means in each plot of Fig. 4.4
are represented by the top vertical lines and the differences are generally small: values of
Cohen’s d were 0.25, 0.16, 0.17, 0.20, and 0.020, for the pairs of distributions in the order of
the panels in Fig. 4.4. Normalizing the differences in medians by the same pooled standard
deviation as in Cohen’s d gives magnitudes of 0.52, 0.58, 0.70, 0.49, and 0.35 for the median
differences. The distributions for activations and for linear projections show similar differ-
ences between the two datasets. This suggests that the effect of the different data statistics
on the population sparseness of an optimized sparse coding model is primarily driven by the
statistics of the linear projections rather than by complicated nonlinear interactions between
units during inference.

Implications for biologically plausible sparse coding

Sparse coding dictionaries that resemble the distributions of observed receptive fields of
actual simple cells in the primary visual cortex have been obtained using several variations
on the classic SPARSENET sparse coding model (e.g.,[76, 10]). Among these variations,
the Sparse and Independent Local network (SAILnet; a sparse coding model with spiking
neurons and synaptically local learning rules) has been shown to learn the variety of simple-
cell receptive field shapes seen in primate primary visual cortex when trained on whitened
natural image patches [110] just as well as the best existing sparse coding algorithms [82, 86,
73]. However, we have found that this more biologically plausible sparse coding model does
learn a different representation than conventional sparse coding models on some datasets,
and that this difference is more pronounced and more clearly relevant to the comparison
with real neurons in the auditory case.

Fig. 4.5 presents examples of dictionary elements learned by conventional (LCA inference
and gradient descent learning) overcomplete sparse coding as described above, each matched
with a dictionary element learned by SAILnet on the same data with the same number of
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dictionary elements. The SAILnet elements were selected automatically to minimize the
angle with the corresponding conventional sparse coding element in the 200-dimensional
space. The conventional sparse coding dictionary for spectrograms contains elements with
no close matches in the SAILnet dictionary, and we were unable to find qualitatively similar
elements by inspection in these cases. Full dictionaries are presented in the Supporting
Information, Figs. 4.18, 4.19, 4.21, and 4.22. For example, SAILnet does not discover
features with the distinct checkerboard structure seen in Fig. 4.5a, second and fifth from
the left in the bottom row. These elements tend to have only moderately sparse and mostly
symmetric distributions of linear projections on the data (e.g., Fig. 4.2, example 6).

Although we present results for a particular learned dictionary for each dataset and each
algorithm, the results do not change substantially for the same algorithm starting from
other random initializations and/or using other random draws from the training sets during
learning.

To understand the differences between the sparse coding dictionaries learned by SAILnet,
we examined the sparseness of SAILnet activations after training on each dataset. Fig. 4.6a
shows the sparseness of each SAILnet unit, similarly to Fig. 4.3a. Since SAILnet activations
are nonnegative spike rates, we did not plot the asymmetry of these activations. The thicker
lines in Fig. 4.6a represent the activations for trained networks, whereas the thinner lines
represent values of sparseness for networks with random dictionary elements (feedforward
weights in the SAILnet architecture) after optimizing the other SAILnet parameters at fixed
mean spike rate. Interestingly, the trained network had greater sparseness than the network
with random dictionary elements, despite the fact that the mean firing rate of each network
was fixed to the same value. While some of the qualitative features in Fig. 4.6a agree with
those in Fig. 4.3a, others differ. Detailed comparison between these results and those in
Fig. 4.3 is hampered by the fact that the two SAILnet networks do not achieve the same
reconstruction error, as was the case for the results in Fig. 4.3.

To understand the differences in the learned dictionary elements between conventional
sparse coding and SAILnet, we therefore also examined the distributions of linear projections
of the data onto the dictionary elements. We found that SAILnet tends to learn stimulus
features corresponding to data dimensions that are highly sparse and, when possible, more
asymmetrical. Fig. 4.6b,c show rank plots for the sparseness scores and skewness magnitudes
of SAILnet dictionary elements projected onto the relevant dataset. These plots are similar
in many ways to Fig. 4.3b,d, which show the same statistics for conventional sparse coding
dictionaries. The strongest differences are for the spectrogram case: SAILnet learns fewer
elements corresponding to data dimensions with low sparseness scores, and almost all of its
elements correspond to data dimensions with higher values of skewness than that of any of
the 2000 random directions.

The discrepancy between sparse representations for images vs. speech due to skewness
can be partly addressed by modifying the SAILnet model to allow for negative spikes. We
note that this model with positive and negative spikes is not as biologically-plausible as the
original SAILnet model. A complete dictionary learned by this modified SAILnet model is
shown in Fig. 4.25. While it learns a few elements with harmonic structure that abruptly
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reverses sign, a feature found with conventional sparse coding but not the original SAILnet
algorithm, this model still does not capture all the features shown in Fig. 4.5a. Furthermore,
a dictionary trained with a rectified version of LCA that does not allow negative activities
still learns these features. Such a dictionary is shown in Fig. 4.24 and may be compared with
the conventional sparse coding dictionary in Fig. 4.18. Thus, the non-negativity of SAILnet
can partly, but not entirely, explain the differences between the dictionary elements it learns
and those learned in conventional sparse coding models. Full dictionaries for all the models
discussed are shown in the Supporting Information.

There are multiple differences between conventional sparse coding models and SAILnet
that may appear relevant to the sparse features the models learn. By repeating our basic
analyses with other modifications of SAILnet, we determined that the spike-based coding
scheme does not noticeably affect the results discussed above but that the local learning
rules for the dictionary elements and lateral connections are the crucial difference.

4.4 Discussion

Guided by the principle of sparse coding, we have explored the statistical structure of natural
stimuli from two different sensory modalities, vision and audition. Both natural images and
natural sounds admit sparse linear representations, but we have found some clear differences.

For complete sparse coding models trained on natural image patches, the lifetime sparse-
ness of individual features was nearly uniform across the learned dictionary, reflecting the
uniform sparseness of the linear projections of the dictionary elements onto the image dataset.
Complete dictionaries trained on spectrograms of speech, however, showed a much wider
range of lifetime sparseness values, both in terms of unit activations and projections, al-
though the average sparseness was comparable for the two models. Moreover, the spec-
trogram dictionary included many units with highly asymmetric distributions of activity
(and projections) across the dataset, unlike the highly symmetric distributions displayed by
the image dictionary elements. Most of these trends persisted in the highly overcomplete
regime, but we found that the lifetime sparseness of unit activations was greater for the im-
age dictionary, unlike population sparseness, which was typically greater for the spectrogram
dictionary.

We then compared the distribution of visual features learned by a biologically-plausible
sparse coding model trained on images with the distribution of acoustic features obtained
when the model was trained on speech spectrograms. Despite the strong agreement between
the visual features learned by this model and those learned by more conventional sparse
coding models, the spectrogram dictionary produced by this model differed markedly from
the set of acoustic features learned by conventional sparse coding models.

Previous studies have made comparisons between the statistics of natural visual and
acoustic data and their implications for neural coding in these modalities. Well-known ex-
amples of this include the fact that natural scenes and sounds both exhibit power spectra with
power law functional forms [30, 3] and natural scenes obey spatial translational invariance
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just as natural sounds obey time translational invariance. One property shared by visual and
auditory responses is the gain dependence modeled by divisive normalization [90]. Recent
work has also shown that a model that minimizes neural wiring while efficiently representing
stimuli learns various subcortical receptive fields in the visual and auditory systems [91].

However, while sparse coding has been remarkably successful at predicting the receptive
fields of V1 simple cells based on the structure of natural scenes, there is not yet a comparable
result for primary auditory cortex (A1), despite the apparent sparse structure of natural
sounds. That a linear sparse coding model can represent natural scenes at all is perhaps
surprising given the highly nonlinear processes, such as occlusion by opaque objects and cast
shadows, that cannot be explicitly represented by linear summation models. Conversely,
raw acoustic waveforms are actually very close to linear summations of different individual
component sounds in the environment. Consistent with this, previous work has demonstrated
success with sparse coding at subcortical stages of the auditory system. A sparse coding
model trained on raw auditory waveforms learns to tile time-frequency space in the same
way as cat auditory nerve fiber filters measured by reverse correlation [97], but this model
applies to the auditory nerve — the earliest stage of auditory processing once acoustic
signals are converted into spike trains. Sparse coding models of nonlinear spectrogram or
cochleogram [61, 96] representations can learn sparse structure on longer time scales [55], and
some of the learned dictionary elements resemble the diverse STRF shapes found at various
stages of the ascending auditory pathway [18], including the inferior colliculus (ICC), the
medial geniculate body (MGB) of auditory thalamus, and even some neurons recorded in
A1, but across the dictionary the agreement is not as strong for any brain region as has been
demonstrated for V1 [76, 86, 110].

This dichotomy in the ability of sparse coding models to fully capture response proper-
ties of neurons in V1 vs. A1 could reflect the possibility that A1 and V1 are not directly
analogous, even if they are both primary sensory cortices. If we include the visual processing
taking place in the retina, there are roughly equal numbers of processing stages in the visual
and auditory pathways leading to A1 or V1, as quantified by the number of synaptic connec-
tions needed to reach each of these cortical areas (although the auditory system has more
subcortical areas along the way). However, due to the greater dimensionality of visual input
(the two optic nerves are comprised of roughly 106 axons and there are ≈ 108 photoreceptors,
whereas there are fewer than 105 fibers in the two cochlear nerves) and strong nonlinearities
such as occlusion affecting visual input, it may be that more stages of processing are required
for visual signals to reach the same level of refinement as auditory representations in A1.
This is qualitatively consistent with the greater number of visual cortical areas compared
with the number of auditory areas.

The aspects of the sparse structure of natural sounds that differ from the structure of
natural images could guide our pursuit of better models of the relevant auditory brain regions.
Our analysis points to some relevant considerations. One is that the asymmetry between
greater and lesser sound intensity is important, especially for biologically realistic models
restricted to have nonnegative activations. In addition, the sparseness of individual features
optimized to form sparse representations of spectrograms of speech vary widely compared to
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the relatively uniform sparseness of sparse visual features. Moreover, dependencies among
the activities of units in overcomplete dictionaries — which are most relevant for biology —
influence which dimensions in stimulus space are most useful for sparse coding. A concrete
manifestation of this is that a network such as SAILnet, in which units cannot cooperate
directly based on the knowledge of other units’ contributions to the coding, will not learn
some of the same acoustic features as a network such as an LCA-based scheme, in which
such cooperation is explicitly incorporated. The inter-unit connections in SAILnet, learned
with only information locally available at the synapse, are more biologically plausible, but
they lead to different behavior. In the auditory case, the differences include learning a more
limited sparse coding dictionary that does not match as many receptive fields measured in
real neurons. This observation suggests that SAILnet may need to be modified to better
account for auditory sparse coding. More generally, the dependence on the stimulus statistics
we observe for a biologically plausible model suggests that some properties of neural coding
need to be specialized for the auditory system, even though it may share the basic principle
of sparse coding with the visual system. A biologically realistic mechanism for finding
approximate solutions to an optimization principle may be effective for one type of data, but
not for another.

Indeed, SAILnet was specifically designed to model learning and inference in V1. In par-
ticular, it treats different orientations within its two-dimensional input on an equal footing,
which makes sense given that these are all spatial dimensions in the visual case. In fact,
the algorithm does not assume any special relationship between the various pixels — one
could scramble their locations or convert the pixel array into a vector with any ordering
and SAILnet would find the same features when mapped back to the unscrambled space.
There is typically some mild anisotropy present in natural images (e.g., vertical and horizon-
tal edges are often slightly over-represented compared with random orientations), but this
could be learned by using the same learning rules in all orientations in the two-dimensional
image space. Spectrograms, however, are strongly and inherently anisotropic, with time
represented along one cardinal axis and (a nonlinear function of) acoustic frequency along
the other. Perhaps this contributed in some way to the divergence between our SAILnet
results for speech spectrograms and what we found using conventional sparse coding, but
if so this is a subtle effect given that the LCA-based sparse coding algorithm we used also
employs isotropic rules for learning and inference. We emphasize that, even though SAILnet
may not treat time in a natural way for a biologically-realistic mechanistic model of auditory
processing, it provides a useful tool for identifying aspects of the sparse structure of natural
sounds that differ from those of natural scenes.

Motivated by previous work [59, 97], we analyzed speech data as a proxy for a more
complete collection of “natural sounds.” As recapitulated here, spectrograms of speech by
themselves have a rich sparse structure, with several distinct feature types that our mod-
els use for their sparse codes; some of these features resemble STRFs measured in inferior
colliculus and other brain regions [18]. Using speech is particularly convenient, since us-
ing ensembles of recorded sounds has been shown to yield good agreement between sparse
coding predictions and auditory nerve response properties, such as the same time-frequency
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trade-off, only when the relative proportions of three different types of recorded sounds are
empirically adjusted to fit the model [59, 97]. Thus, using speech data is in some sense a
more principled approach, since it removes two adjustable parameters from the model.

This picture is somewhat complicated by the fact that the filters learned in such models
depend on the sound class used even when the time-frequency tiling properties match [59].
It is also unlikely that speech captures the structure of natural sounds that occurs on the
longer time-scales of our spectrogram-based models. To address this, we fit sparse coding
models to the ensemble of natural sounds described in [97]. The sparse structure captured
by our models in that data is less rich than, and largely redundant with, what we found for
speech. We have included a dictionary and sparseness rank plot in Figs. 4.26 and 4.27.

More broadly, what constitutes the relevant ensemble of “natural scenes” or “natural
sounds” is not clear to us; these notions may not be well-defined or independently deter-
minable in a way that does not rely on fitting neural response properties. Another question
is whether or not one can determine definitively if a given type of natural signal is truly
sparse with the sort of analysis employed here. In particular, preprocessing using PCA or
some other dimensionality reduction technique necessarily changes the structure of the data
for any realistic scenario (i.e., unless the raw signal is strictly L0 sparse, with the relevant
dimensions contained within the space spanned by those PCA dimensions retained for later
analysis). There are persuasive arguments challenging the notion that natural scenes or
sounds are truly sparse, in the L0 sense, for the sort of linear generative models we have
considered here [64, 38]. In addition, the oriented filters learned by sparse coding models
represent a shallow optimum, as representations of natural scenes using center-surround fil-
ters, for example, are almost as sparse [11, 29]. There are good reasons to question [64] why
the local oriented filters predicted by sparse coding models trained on natural images would
first appear in V1, skipping past the highly nonlinear retina and lateral geniculate nucleus
(LGN), if indeed sparseness is the correct normative principle for the visual system. More-
over, the sparseness of successive sensory representations at higher stages of processing in
the ascending auditory [22] and visual [87, 88] pathways does not always appear to increase.

There exist alternative choices for the models as well as the data, and different models
yield different results. The results from SAILnet learning differ enough from those from
gradient descent learning to be of interest, but we did not observe any substantial differences
between the results of gradient descent learning using different algorithms to compute the
sparse codes. Furthermore, while a greater variety of sparse features of natural images than
found in early sparse coding work (e.g., [76]) has been shown using various methods, we are
not aware of any work showing sparse features of natural images that do not have qualitative
matches in a 10-times overcomplete conventional sparse coding network. We believe that our
approach at least captures the known sparse structure of natural images in terms of feature
diversity and so can be taken as representative of the subtly varying results that different
sparse coding and learning algorithms uncover.

In this work, we have taken a pragmatic approach to our model selection and data
choices. Undoubtedly, the specific sparse coding models we have employed here are imperfect
approximations to whatever model would best fit ensembles of natural scenes and sounds as
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defined by our datasets, but by applying these models to both images and sounds, we have
been able to identify several similarities and differences between the statistical structure of
these natural signals. We are, of course, motivated by the fact that the sparse coding models
we consider here can predict receptive fields in V1 and several cell types at various stages of
the ascending auditory pathway, even if these models do not entirely capture the statistics
of natural signals. It will be interesting in future studies to explore more fully the structure
of natural stimuli, and its implications for neural coding.

Beyond the particular results presented in this work, we have shown that it is possible
and fruitful to compare the sparse structure of natural data from different modalities. The
principle of sparse coding appears to have applicability to auditory data as well as visual
data, supporting the idea that sparseness is, to at least some degree, a universal property
of natural data. Nonetheless, we have found that there are aspects of sparse structure that
are clearly not universal. Understanding these differences offers insights into the structure
of natural stimuli and into the ways in which neural systems represent it.

4.5 Methods

Data

We performed our primary analyses on three sets of natural data; Fig. 4.1 illustrates the
preparation of the two primary datasets we compared. The same preprocessing steps were
taken where possible, in order to reveal the effects of the structure inherent in the data
rather than differences in how the data were presented to the sparse coding algorithms. In
addition to these two comparably prepared datasets, we used an image dataset preprocessed
by methods common in the literature to reveal some effects of this processing. Results from
this alternative image dataset are discussed in Section S1.

Following previous work [55, 97, 18], we focused on human speech as a rich class of natural
sounds. Speech data were taken from the TIMIT continuous speech corpus [33] and prepro-
cessed as in [18]. Specifically, we divided each waveform by 10 times its variance and removed
any DC value. We then used MATLAB’s [68] spectrogram function to calculate the discrete
Fourier transform (DFT) of Hamming-windowed segments of 16 ms (256 samples) of sound,
with neighboring segments overlapping by half their length. The DFT was sampled at 256
frequencies logarithmically spaced between 100 Hz and 4 kHz. We trimmed the power spec-
trograms to remove periods of silence and then took the logarithm of the results. We divided
these spectrograms into overlapping 25-timepoint (216 ms edge-to-edge) segments, yielding
about 3 × 105 spectrogram segments. While this procedure is not a precise model of early
auditory processing, previous work has found better agreement with experimental data using
spectrograms than with preprocessing meant to emulate the cochlea [18]. Spectrograms also
provide a representation often used for generating stimuli and visualizing spectro-temporal
receptive fields in the experimental literature, e.g., [70, 81, 32, 85, 103]. Although using
only the (log) power obscures the phase structure, the original sound waveforms can in fact
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be reconstructed from power spectrograms using implicit phase structure from overlapping
windows[58].

Natural image data was taken from a subset of the van Hateren database [35] with
minimal blur and other artifacts (see [73]). We extracted approximately 3 × 105 80-by-80
pixel patches from the images and took the logarithm of the intensity at each pixel. The
mean log-intensity was removed from each patch.

The speech spectrogram segments and the natural image patches were both 6400-dimensional,
and we used PCA to reduce the dimensionality to 200. We also divided each principal com-
ponent by its variance, achieving a “whitened” or “sphered” representation in which the
empirical covariance matrix was equal to the identity matrix [52]. The PCA step discarded
about 7% of the variance in each of the two raw datasets. Another 18% of the original vari-
ance in the images was removed by the patch-wise mean subtraction described above. No
comparable effort was made to remove the dimension of largest variance in the spectrogram
data, following [18]. After whitening, this dimension had the same variance as the others
and therefore did not strongly affect our results.

Our choices were driven by the need to make the two datasets comparable, so our pre-
processing differed from that employed in much of the literature. We repeated our analyses
on a third dataset, containing the same natural images as they were preprocessed in [73]
and other sparse coding work. There were two key differences: first, [73] used small image
patches of 16x16 pixels while we used larger patches of 80x80 pixels. Since [73] first down-
sampled by a factor of 2, the scale of our images is better compared to 32x32 patches. Since
natural images have less variance in higher spatial frequencies, our dimensionality reduction
also discarded the information destroyed by this downsampling.

The other crucial difference between these two image datasets is due to the whitening
step. Olshausen and Field [76, 75, 73] whitened their raw images using a filter that flattens
the Fourier spectrum at low frequencies while allowing the variance of very high frequencies,
which is largely noise, to remain small. In contrast, we exactly equalized the variance of the
first 200 principal components and removed the other components entirely. Results with the
images preprocessed as in [73] are discussed in Section S1.

Reconstructions of original data from our reduced representations are shown in Fig. 4.28.

Sparse coding

Sparse coding is a probabilistic model

p(x; Φ) =

∫
p(x|a)pa(a)da, (4.3)

where x denotes a data vector with components xi and a denotes a set of latent variables
am. The conditional distribution p(x|a) is an isotropic Gaussian of fixed variance centered
on a linear reconstruction of the data in terms of the dictionary elements Φm:

p(x|a) ∝ exp

[
− 1

2σ2

∑
i

(xi −
∑
m

Φmiam)2

]
(4.4)
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and the prior distribution of the coefficients am is factorial with each factor given by the
same sparse distribution (in this work, a Laplace distribution):

pa(a) ∝
∏
m

e−λ|am|, (4.5)

where λ is a parameter that determines the width of the distribution and therefore how
strongly the prior favors sparse sets of am.

The am are determined by maximum a posteriori (MAP) inference given input data x:

aMAP = arg max
{am}

p(x|am)pa({am}) = arg max
{am}

e−
∑
i(xi−

∑
m Φmiam)2/2σ2

∏
m

e−λ|am|. (4.6)

The parameters σ2 and λ now only affect the model through the combination λσ2, so for
simplicity of notation we set σ = 1.

The aMAP
m are often referred to as the activity of the mth unit, and the dictionary elements

Φm are often compared to receptive fields of neurons. The analogies to neurons suggested
by these terms are not exact, but a unit’s dictionary element is approximately the same as
the linear receptive field that would be measured for that unit with an activity-triggered
average [76].

The dictionary elements Φm are learned by descending the estimate of the gradient pro-
vided by differentiating the model log-likelihood with respect to Φ with a fixed at the MAP
value:

∆Φmi ∝ −
∂

∂Φmi

[
−1

2

∑
j

(xj −
∑
m

Φmja
MAP
m )2

]
. (4.7)

For each step, this gradient with respect to Φ is averaged over a minibatch of 100 data
examples.

The use of MAP inference requires that we constrain the norms of the Φm to prevent
solutions with small am and large, meaningless Φm. We therefore divide each Φm by its norm
after each gradient step. Using the MAP estimate to compute gradients for learning is not
guaranteed to result in the same learned dictionary Φ, but a method that uses more samples
from the posterior learns familiar Gabor functions on whitened natural image patches [101].

Locally Competitive Algorithm

We used the L1-sparse locally competitive algorithm (LCA) [86] to perform MAP inference.
LCA uses a dynamical system with auxiliary variables that are thresholded to obtain esti-
mates of aMAP. Typically most of the auxiliary variables are below threshold and the aMAP

m

estimates are exactly zero for most m. The threshold is set by the sparseness parameter λ.
We dynamically adjusted this parameter to achieve reconstructions with 15 dB signal-noise
ratio while training the models, allowing direct comparison to the results of [73].

The choice of coding algorithm is not crucial to our results, and learning using alternative
inference schemes yields similar dictionaries. This is particularly true for dictionaries that
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are not overcomplete, as demonstrated by the similarity of the results in Fig. 4.13, which used
Independent Components Analysis (ICA) [9], to Fig. 4.2, which used LCA and stochastic
gradient descent on the mean-squared error.

SAILnet

We used the Sparse and Independent Local network (SAILnet) model [110] to study how
the statistics of different stimuli interact with biologically realistic constraints. SAILnet uses
spiking neurons and synaptically local plasticity rules to achieve sparse codes. Mathemati-
cally, SAILnet can be understood as optimizing the Lagrange function

L =
1

2

∑
mi

(Xi − Φmiam)2 +
∑
m

θm(am − p) +
1

2

∑
mn

Wmn(aman − p2). (4.8)

Here the first term approximates the mean-squared error in the sparse coding log-likelihood in
the limit that the am are sparse and uncorrelated. Maximizing with respect to the Lagrange
multipliers θm and Wmn constrain the am to be sparse, with average activity p � 1, and
uncorrelated. The am are the firing rates of leaky integrate-and-fire circuits with thresholds
θm and inhibitory connections between neurons with strengths Wmn. The dynamics of this
circuit approximately seek firing rates am that minimize L. As in conventional sparse coding,
the dictionary elements Φmi are updated at fixed am using; the Lagrange multipliers are
updated at the same time but with greater rates to ensure the constraints are satisfied
during learning.

The SAILnet Lagrange function, and in particular the approximation to mean-squared
error in the first term of Eq. 4.8, allow the gradient descent update for each connection to be
computed using only information available at that connection, e.g., one only needs to know
a1 and a2 to update W12. The cost of this locality is that SAILnet units do not directly learn
to cooperate to represent the data.

Although SAILnet has been shown to learn the expected dictionary Φ on whitened natural
images, in some ways it behaves differently from a conventional sparse coding algorithm such
as LCA with gradient-descent based learning. Here we have focused on how SAILnet interacts
with differing input statistics.

Model implementation

We implemented soft-thresholded LCA [86] in TensorFlow [67] to learn the overcomplete
sparse coding dictionaries. We implemented SAILnet in Python. Code for these implementa-
tions may be found online at github.com/emdodds/DictLearner and github.com/emdodds/SAILnet.
For the ICA results shown in Fig. 4.13 we used the FastICA [42] implementation in scikit-
learn [78].
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Alternative image preprocessing

We focused on comparing the intrinsic sparse structure of speech sounds to that of natural
images. This required making some preprocessing decisions that are not standard in the
literature, as discussed in Data. Here we discuss the results of our analyses on the data
from [73], preprocessed as described in that work. These image patches are 16x16 pixels and
have been approximately whitened by applying a filter to the original images.

Fig. 4.7 shows sparseness and skewness plots and example distributions for complete
sparse coding on the filter-whitened images, expanding Fig. 4.2 to include results on this
third dataset. Random directions in the space of 16x16 images whitened as in [75] are fairly
sparse, with median sparseness score 0.13. This fact is well known and largely accounted for
by variation in the local variance of natural images [5, 63]. The trend of excess sparseness
of the sparse coding dictionary closely follows the trend for the other image dataset.

For the PCA-reduced datasets, we used 10-times overcomplete sparse coding, while for
the 16x16 image patches we used a network that was nominally 8-times overcomplete, making
it about 10-times overcomplete given that some dimensions are essentially noise. Our results
on this dataset closely match those shown in [73]. A dictionary is shown in Fig. 4.20, and
sparseness and skewness rank plots are shown in Fig. 4.10.

The sparseness of an overcomplete dictionary element’s linear projections is not closely
correlated to the sparseness of that element’s LCA activations for this dataset: Pearson’s r
of -0.16. The skewness of the activations is better explained by the skewness of the linear
projections, with Pearson’s r 0.59. These observations qualitatively echo what we saw for
the other datasets.

The fact that the 16x16 image patches are not fully whitened hampers meaningful com-
parisons among the various population sparseness results. Plots are shown in Fig. 4.12. The
filter-whitened images generally admit sparser representations, but the effect is driven by the
whitening scheme and not by the intrinsic structure of the data. This is already suggested
by the fact that PCA-whitened natural images yield very different results.

A simple argument also demonstrates why whitening should matter, particularly for the
sparseness of optimized sparse codes as we computed them. In an extreme case, the data
variance may be so much greater along one dimension than all others that it is possible to
achieve 15 dB SNR reconstructions with only the special dimension nonzero. Then only
one unit need be active, in which case the population sparseness of the representation is
approximately 0.8 by our measure (the precise value depends on the dictionary size) for
most data examples. The same data, after whitening, does not permit this trick since no
direction has more variance than any other. The filter-whitened images are not exactly
whitened, and the residual variation in the variance of different dimensions allows a weaker
version of this trick to work. Imperfect whitening can also strongly affect the features found
by SAILnet — an interesting topic for future work.
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Figure 4.1: Schematic illustration of preprocessing. We preprocessed a set of natural
images and a set of speech sounds using steps as similar as possible to allow for a meaningful
comparison of the intrinsic structure of the datasets. (a) The raw auditory data consisted
of recordings of speech from the TIMIT corpus [33]. The blue curve is the sound pressure
waveform of an isolated speaker uttering the first two seconds of “She had your dark suit
in greasy wash water all year.” (b) Spectrograms were computed from the waveforms (see
Methods for details). The color of each pixel represents the intensity (red is more intense, blue
is less) of sound at a particular frequency and a particular time. (c) We took the logarithm
of each intensity spectrogram. (d) The spectrograms were divided into overlapping segments
of 25 time points each, derived from 216 ms of audio. Since 256 frequencies were sampled
at each time point, these spectrogram segments were each 6400-dimensional. (e) Principal
components analysis was used to whiten the data and reduce its dimensionality to 200. (f)
Raw image data were taken from the Van Hateren natural image dataset [35]. The lightness
of each pixel represents the intensity of light at that location. (g) We took the logarithm of
each intensity spectrogram and each intensity image. (h) Patches of 80 pixels on each side
were taken from the log-intensity images to make 6400-dimensional image patches. (i) We
repeated the PCA procedure we used for spectrograms exactly on the set of image patches.
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Figure 4.2: Natural images and speech each exhibit sparse structure, but with
clear differences. (a) Log-histograms of unit activations for individual elements (units) of

complete dictionaries show more skewness and a greater range of sparseness for representations

of speech (left pair of columns) than for representations of images (right pair of columns). Each

square contains the spectrogram (left column) or image patch (third column) representing one

sparse coding dictionary element fit to the corresponding dataset. For the spectrogram elements,

white regions have no effect on the element’s activity while red denotes positive weights and blue

negative weights. For the image patches, gray represents zero and lighter pixels represent positive

weights. Each element has been multiplied by the sign of the skewness of its activations to show

the element as it is used by the sparse coding network. The log-histogram next to each element

shows how often the unit had a given level of activity. No marker is shown when a histogram

bin is empty. The horizontal scale is consistent for each dataset, and the vertical scale is the

same for all histograms. The last example for each dataset is not from a trained network but

from a network where all elements are independently and identically distributed (iid) Gaussian

noise in each principal component after whitening. As expected, these Gaussian noise control

cases yield approximately parabolic curves, compared with the sparser distributions for the learned

dictionary elements. (b) Rank plots for the sparseness score of the distributions of activations of

each unit. Each point corresponds to one dictionary element. The numbered points correspond

to the numbered examples in panel (a). Since the activation of one element cannot be determined

without the other elements due to the non-linear nature of LCA, these statistics can be meaningfully

compared to their values for a full dictionary of random elements (thin curves at bottom). For these

curves, we generated 200 random directions in PCA space and evaluated the sparseness scores in

the same way as for the learned dictionary elements. (c) Rank plots analogous to (b) with the

magnitude of skewness (Eq. 4.2) substituted for sparseness.
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Figure 4.3: Differences in the sparse structure of natural images and speech are
also present in overcomplete representations. As in Fig. 4.2, the various measures pre-
sented here are closely related to the lifetime sparseness of individual elements. Ten-times
overcomplete sparse coding dictionaries were trained on either the spectrogram dataset or
the natural image dataset. Each curve represents 2000 discrete points, with each point rep-
resenting one element of the corresponding dictionary. (a) Sparseness scores were calculated
for the activations of the sparse coding dictionary elements using the same L1-sparse LCA
algorithm that was used to train the models. To provide meaningful comparisons, the thin
curves represent the same analysis applied to 2000 random directions in the PCA space of
the corresponding dataset. As for the complete case shown in Fig. 4.2b, training on speech
sounds produced a wider range of sparseness scores across elements. Unlike the complete
case, however, the median sparseness was clearly greater for elements from the model trained
on images than for the model trained on speech. (b) Sparseness scores were calculated for the
distribution of each dictionary element’s linear projections onto the dataset. Each sparse-
ness score is a statistic of the corresponding dimension of the data space, independent of the
sparse coding learning algorithm that was used to find that unit’s dimension. As in panel (a)
and Fig. 4.2b, the speech dictionary showed a greater range of sparseness values, but unlike
panel (a), there was no systematic difference in the sparseness scores for speech and images.
The shaded regions at the bottom show the range of sparseness values one might achieve
by chance in the corresponding dataset. Sparseness scores for each dataset were calculated
for 2000 random Gaussian-distributed vectors instead of dictionary elements; the minimum
and maximum scores determined the bounds of the shaded region. (c) Similar to (a) but
with skewness magnitudes instead of sparseness scores. (d) Similar to (b) but with skewness
magnitudes instead of sparseness scores.
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Figure 4.4: Speech and natural scenes exhibit different distributions of population
sparseness for overcomplete dictionaries. (a) Sparseness scores (Eq. 4.1) were evaluated
on the sparse codes (unit activations) generated by LCA for each spectrogram or image
patch in the corresponding dataset. This is one measure of “population sparseness,” which
quantifies the sparseness of the full network’s representation of individual images or sounds.
The purple circles form a histogram of the sparseness scores across the speech dataset, with a
linear interpolation plotted in solid purple for clarity. The vertical solid purple lines represent
the mean (top) and median (bottom) of the distribution. The green squares constitute the
analogous histogram for the image dataset, with a dotted green interpolation curve and
vertical dashed lines indicating the mean (top) and median (bottom). Note that, though the
means of the two histograms are quite similar, the medians are well separated, indicating
qualitatively that a typical speech sound from our auditory dataset tends to project onto
fewer dictionary elements than a typical image patch from our visual dataset. (b) Similar
to (a), but with the mean activity level replacing the sparseness score. (c) The LCA-
generated representations had most units completely inactive for any given input (i.e., the
L0 sparseness was high). Here we plot histograms of the fraction of LCA units active while
representing each image patch or histogram from the relevant dataset. (d) Sparseness scores
were evaluated on the set of projections of each image patch or spectrogram segment onto
the corresponding sparse coding dictionary. These histograms follow the same conventions as
in panel (a). (e) Similar to (d), but with the mean absolute value of the projection replacing
the sparseness score.
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Figure 4.5: SAILnet and conventional sparse coding learn similar representations
when trained on natural images, but not speech. Each box shows elements from a ten-
times overcomplete dictionary learned with conventional sparse coding (left) or with SAILnet
(right) on one of the datasets. (a) For a ten-times overcomplete sparse coding dictionary
trained on spectrogram segments, we handpicked elements that show qualitatively different
structure. These element types do not occur with equal frequency in the dictionary. (b)
Elements selected from a dictionary trained on image patches. There are apparently fewer
distinct classes of elements in this dictionary than in the speech-trained dictionary. (c)
SAILnet dictionary elements were selected so as to minimize the angle to each hand-picked
sparse coding element. While this yielded similar elements in some cases, there are no
elements in the SAILnet dictionary that match several of the dictionary element types seen
in the conventional sparse coding dictionary for speech data. (d) The SAILnet dictionary
trained on images includes good qualitative matches to every element from the corresponding
conventional sparse coding dictionary. Full dictionaries are shown in Figs. 4.18, 4.19, 4.21,
and 4.22.
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Figure 4.6: Statistics of overcomplete SAILnet representations are similar to con-
ventional sparse coding for natural images, but they differ for speech. Plots
as in Fig 4.3a,b,d, for ten-times overcomplete dictionaries learned by SAILnet rather than
LCA-based learning. (a) SAILnet activations are extremely sparse. This plot is analogous to
Fig. 4.3a but a direct comparison of the learned dictionaries through these plots is confounded
by the differences between LCA and SAILnet inference. (b) The sparseness score rank plots
qualitatively resemble those for conventional sparse coding (compare with Fig. 4.3b). For
the spectrogram-trained dictionary, the lower-rank tail contains somewhat higher sparseness
scores than for the conventional sparse coding dictionary. This observation is consistent
with SAILnet not utilizing some of the element types conventional sparse coding does (see
Fig 4.5a), since the data’s projections onto these element types tend to have relatively low
sparseness scores. The shaded regions at the bottom show the range of sparseness values one
might observe by chance in the corresponding dataset. Sparseness scores for each dataset
were calculated for 2000 random Gaussian-distributed vectors instead of dictionary elements;
the minimum and maximum scores determined the bounds of the shaded region. (c) Almost
all the SAILnet dictionary elements in the spectrogram case correspond to directions in the
data space with large skewness. This is consistent with SAILnet not learning some of the
element types shown in Fig 4.5a, which tend to have symmetric distributions (e.g., Fig. 4.2,
example 6). The shaded regions at the bottom indicate the range of possible skewness values
one might observe by chance based on the same skewness analysis applied to 2000 random
Gaussian-distributed directions in PCA space for the corresponding dataset.
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Figure 4.7: Histograms of projections exhibit the same sparse structure as unit
activities for both natural images and speech in the complete regime. This figure
is identical to Fig. 4.2, but with unit activities replaced by linear projections of individual
dictionary units on the corresponding dataset, and the addition of a third dataset consisting
of filter-whitened 16x16 image patches (rightmost pair of columns in panel (a), beige curves
in panels (b) and (c)). Note that these results look very similar to those in Fig. 4.2, demon-
strating that projections and activities exhibit very similar statistics in the complete regime,
even for different preprocessing of the image dataset. The shaded regions at the bottom of
panels (b) and (c) show the range of sparseness or skewness values one might observe by
chance in the corresponding dataset; sparseness scores (skewness values) on each of the three
datasets were calculated for 200 Gaussian-distributed random vectors instead of dictionary
elements, and the minimum and maximum scores (values) determined the bounds of the
shaded region for the corresponding dataset. All results in this figure are for linear projec-
tions and not sparse codes represented by unit activities generated by a nonlinear coding
algorithm. However, the results are similar for dictionaries learned with independent com-
ponents analysis (ICA), in which case the activity corresponding to each dictionary element
is itself a linear projection of the stimulus (Fig. 4.13).
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Figure 4.8: L0 lifetime sparseness rank plots for complete sparse coding This figure
is identical to Fig. 4.2 except that panels b and c show statistics that disregard the magnitude
of activations. The L0 sparseness of a unit is the fraction of stimuli that did not elicit a
nonzero activation from the unit. The L0 asymmetry is the absolute value of the difference
between the fraction of stimuli that elicited a positive response and the fraction that elicited
a negative response.
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Figure 4.9: Overcomplete models exhibit some of the same contrasts observed in
complete models. Same statistics as in Fig. 4.2

evaluated for 10-times overcomplete models. Although there is no clear clustering of
auditory feature types as observed in the complete regime, the auditory features continue

to show a greater diversity of sparseness values and activity distribution shapes. Note that
the full auditory dictionary is shown in Fig. 4.18 and that the examples in panel a do not

represent all the feature types in the overcomplete spectrogram dictionary.
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Figure 4.10: Statistics of highly overcomplete sparse representations for spectro-
grams and images with both preprocessing schemes. This figure is identical to Fig. 4.3
except for the addition of a third dataset consisting of filter-whitened 16x16 image patches
(beige).
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Figure 4.11: Statistics of highly overcomplete sparse representations for spectro-
grams and images: using L0 norm. This figure is identical to Fig. 4.3a,c except that
here L0 sparseness rather than L1 sparseness is plotted in panel a, and the asymmetry in
panel b is quantified as the absolute value of the difference between the fraction of inputs
that gave a positive response for a given unit and the fraction that gave a negative response.
Note that, unlike what we found for L1 sparseness, the range of values for L0 sparseness are
nearly identical for the image and speech models. However, the “L0 asymmetry” we plot in
panel b is still much greater for typical speech units compared with image units, just as we
found using other measures of asymmetry.
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Figure 4.12: Distributions of population sparseness statistics across each dataset,
including filter-whitened images This figure is identical to Fig. 4.4 except for the addition
of a third dataset consisting of filter-whitened 16x16 image patches (beige).
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Figure 4.13: ICA learns a similar representation to complete sparse coding. This
figure is identical to Fig. 4.7 except that the dictionaries have been learned with ICA.
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Figure 4.14: Using kurtosis to measure sparseness gives qualitatively similar
results This figure is identical to Fig. 4.2 except that in panel b the sparseness score is
replaced by the normalized fourth moment, i.e., kurtosis.
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Figure 4.15: Complete sparse coding dictionary for the speech spectrogram
dataset. There are 200 elements, spanning the 200-dimensional space of retained prin-
ciple components. The elements are ordered from most sparse (upper left) to least sparse
(lower right), evaluated with linear projections. Color and scaling conventions are the same
as in the main figures; each element is scaled independently before plotting.
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Figure 4.16: Complete sparse coding dictionary for the 80x80 pixel PCA-
whitened image dataset. Sorted as in Fig. 4.15.
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Figure 4.17: Complete sparse coding dictionary for the 16x16 pixel filter-whitened
image dataset. Sorted as in Fig. 4.15.
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Figure 4.18: 10-times overcomplete sparse coding dictionary for the speech spec-
trogram dataset. There are 2000 dictionary elements, 10 times the number of retained
principle components. These elements are not all mutually orthogonal. Sorted by sparseness
of dot products with the data, as in Fig. 4.15. Note that this is not the same as sorting by
LCA activities.



CHAPTER 4. SPARSE STRUCTURE OF SOUNDS AND IMAGES 57

Figure 4.19: 10-times overcomplete sparse coding dictionary for the 80x80 pixel
PCA-whitened image dataset. There are 2000 dictionary elements, 10 times the number
of retained principle components. These elements are not all mutually orthogonal. Sorted
as in Fig. 4.18.
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Figure 4.20: Approximately ten-times overcomplete sparse coding dictionary for
the 16x16 pixel filter-whitened image dataset. There are 2048 dictionary elements,
8 times the number of pixels (256). While the dictionary is therefore nominally 8-times
overcomplete, lowpass filtering cut the number of significant dimensions to about 200, making
this dictionary approximately 10-times overcomplete. The elements are not all mutually
orthogonal. Sorted as in Fig. 4.18.
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Figure 4.21: Ten-times overcomplete SAILnet dictionary for the speech spectro-
gram dataset. SAILnet has additional learned parameters, which act to enforce sparseness
and decorrelation. These parameters are not shown but have an effect on the learning process
for the dictionary. Sorted as in Fig. 4.18.
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Figure 4.22: Ten-times overcomplete SAILnet dictionary for the 80x80 pixel
PCA-whitened image dataset. Sorted as in Fig. 4.18.
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Figure 4.23: Approximately ten-times overcomplete SAILnet dictionary for the
16x16 pixel filter-whitened image dataset. Sorted as in Fig. 4.18.
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Figure 4.24: Ten-times overcomplete sparse coding dictionary for the speech
spectrogram dataset, learned with non-negative activities. This dictionary was
learned by the same procedure as the one in Fig. 4.18, but with the LCA thresholding
function rectified so that negative activities instead set to zero. Sorted as in Fig. 4.18.
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Figure 4.25: Complete dictionary for the speech spectrogram dataset, learned
with modified SAILnet. This dictionary was learned with a version of SAILnet mod-
ified to allow negative spikes (which still count positively toward the average firing rate
p). The dictionary has a different distribution of types with this modification, including
the appearance of several elements with harmonic structure that changes sign abruptly in
time. This type is not present in conventional SAILnet dictionaries, even at high degrees of
overcompleteness. Sorted as in Fig. 4.18.
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Figure 4.26: ICA dictionary fit to “natural sounds” dataset This dictionary was fit
to a combination of natural sounds including ambient sounds recorded in various locations,
animal vocalizations. It includes a few sparse elements reminiscent of harmonic stacks, single
frequency detectors, and checkerboard-like features also seen in the speech-trained dictionar-
ies. The majority of the elements, however, are no more sparse than random directions and
have no easily discernible structure. Overcomplete sparse coding dictionaries trained on the
same data show similar structure. Sorted as in Fig. 4.15.
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Figure 4.27: Sparseness score rank plot for natural sounds dictionary Sparseness
scores for the dictionary elements in Fig. 4.26. Many of the sparseness scores are within the
same range as random directions.
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Figure 4.28: Data reconstruction from 200 principal components. While recon-
structions from the dimensionally-reduced data are clearly distinguishable from the original
data, they retain much of the original structure, particularly at coarse scales. The speech in
the audio reconstructions is distorted but comprehensible.
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Chapter 5

Topographic sparse coding of speech:
towards a model of organization in
the primary auditory pathway

This short chapter describes the application of topographic sparse coding to sound as a
possible model of organization of cells in the primary auditory pathway by coding properties.
While the focus here is not on a comparison to the visual modality, this work also attempts
to apply a model that found success in the visual system to the auditory domain.

This line of work can be seen in the light of the main theme of this dissertation as
attempting to glean insight from applying to an abstract statistical learning model the bi-
ological constraint of being implemented on a physical, essentially two-dimensional sheet of
neurons in cortex.

5.1 Abstract

Sparse coding of natural stimuli has been shown to predict receptive field properties of
neurons in early sensory systems, especially primary visual cortex (V1) [76]. Models such as
topographic independent components analysis (ICA, closely related to sparse coding) that
pool the activity of nearby units also show the topographic structure that has been observed
in V1 [44, 43]. The relevance of sparse coding to computation in the auditory system
has been less deeply explored, but some studies have shown qualitative agreement between
sparse codes for spectrograms of speech and spectro-temporal receptive fields (STRFs) in
Inferior Colliculus (IC), medial geniculate body (MGB), and primary auditory cortex (A1)
[18]. Here we apply a topographic sparse coding model to spectrograms of speech as a step
toward understanding how units may be organized spatially by properties of their receptive
fields if an area such as IC optimizes for sparseness. Our model units learn similar STRFs
to an ordinary sparse coding model, and nearby units tend to learn STRFs with related
features due to their activities being correlated. We observe pooling of STRF types and
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smooth variation of some aspects of the STRFs in our model. Studying the organization of
such a model when trained on natural stimuli may help us understand the tonotopy of early
auditory areas as well as other potential organizing factors such as modulation frequency
that are not yet well understood.

5.2 Significance and related work

Sensory regions of cortex display a range of topographic organization, including the retino-
topic and orientation maps found in V1 [12]. The organization and function of neurons in
auditory processing areas is not yet well understood. Many studies have found tonotopic
organization [69], and there is also evidence for multiple, overlapping maps of other features
including sound amplitude and tuning sharpness in cortex [47, 80]. The degree of order of
these maps and their functional significance remains unclear, and theoretical work may help
explain and predict the topography of auditory areas.

Terashima and Okada applied a topographic sparse coding model to try to understand
the order (or disorder) in A1 by comparing to results of the same model trained on natural
images [100]. Their model, however, learns only a small variety of STRF shapes compared
to our methods (see Chapter [TODO: reference]), not including some shapes that have been
found in experimental data. We believe this is related to certain preprocessing steps including
the method of generating spectrograms and coarse-graining. Carlson, Ming, and DeWeese
[18] showed that after the preprocessing we use, a sparse coding model learns a wider variety
of STRF shapes that qualitatively resemble STRFs that have been reported in cat IC, MGB,
and A1, suggesting that the principle of sparse coding may be important for understanding a
population of neurons in one or more of these regions. In this work, we use the preprocessing
of Carlson et al. in order to train a topographic sparse coding model that learns a variety
of shapes and orders them topographically.

5.3 Methods

We trained our topographic sparse coding model on segments consisting of 25 time points
(216 ms total) of log-power spectrograms of speech from the TIMIT corpus. Each spectro-
gram samples 256 frequencies logarithmically spaced from 100 Hz to 40 kHz. The spectro-
grams were generated using a short-time Fourier transform with overlapping 16 ms Hamming
windows. These spectrograms have enough resolution and range to capture much of the spec-
trotemporal structure of speech. To reduce dimensionality and speed up training, we kept
only the first 200 principal components of the data and equalized the variance along these
200 dimensions.

Our model is based on Sparsenet (see Chapter 2). We add an additional term in the
objective function that can be thought of as sparsifying the activities of a second layer of
units that pool the squares of the activities of the first layer (i.e., the coefficients). The
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objective function of our model is

E(X, am; Φm) =
1

2
||X −

∑
m

amΦm||2 + λ1

∑
m

|am|+ λ2

∑
m,k

gmka
2
m

where X is a vector representing a spectrogram segment, am is the activity of the mth
unit in response to X, Φm is dictionary element associated with unit m, and λ1 and λ2 are
parameters weighting the relative importance of fidelity, sparsity, and group sparsity. The
matrix gmk is fixed and specifies a topographic structure. For the results in Figure 5.1 we
used a binary matrix specifying overlapping circular blocks of related units.

Note that since each am can be positive or negative, the sign of the corresponding dic-
tionary element Φm is not directly meaningful.

5.4 Results

Figure 5.1 shows a topographic sparse coding dictionary with size 30x30 units. This sample
shows some of the typical variations seen among nearby units, including time-shifts of a
particular shape and small deformations. These units are on the boundary between a region
dominated by harmonic stacks and a region dominated by sharp broadband onsets and
terminations of sound. These results show that while our model only explicitly organizes
units by their activities, nearby units learn related STRFs. Further study with different
topographical structure and/or a model that learns the topographic structure from the data
may help us understand how the organization of units with related activity corresponds to
organization by spectrotemporal modulation properties.
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Figure 5.1: Each of the 30x30 rectangles represents a single unit’s feedforward weights.
Sprectrogram plotting conventions are the same as the figures in Chapter [TODO: reference].
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Chapter 6

Spatial whitening in the retina may
be necessary for V1 to learn a sparse
representation of natural scenes

We have so far focused on sparse coding and related models of low-level sensory processing,
but there have of course been other important advances in modeling and understanding
the computations of neural sensory systems. Retinal ganglion cells are thought to counter
the spatial correlation structure in natural images, whether by the center-surround linear
receptive fields or by more complicated nonlinear computation. In this chapter we consider
the interaction between this understanding of retinal processing and the theory of sparse
coding in primary visual cortex. Specifically, we find that a biologically realistic model of
learning for sparse coding of natural scenes, like SAILnet, appears to require the sort of
spatial decorrelation thought to be accomplished in retina.

This chapter is based on a paper I coauthored with Jesse Livezey and Professor DeWeese,
which is not yet published.

6.1 Abstract

Retinal ganglion cell outputs are less correlated across space than are natural scenes. How-
ever, sparse coding, a successful computational model of primary visual cortex, can be
achieved by most sparse coding algorithms without a preceding decorrelation stage. We
propose that sparse coding with biologically plausible local learning rules does require decor-
related inputs, providing a possible explanation for why whitening may be necessary early
in the visual system.
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6.2 Introduction

Following proposals that the brain seeks to reduce redundancy in signals from the natural
environment[4, 7], such as natural visual scenes [30], Atick and Redlich proposed that the
center-surround receptive fields of retinal ganglion cells serve to decorrelate natural visual
input to obtain a representation with less redundancy among the outputs of individual neu-
rons, while also suppressing noise [2]. Atick and Redlich emphasized advantages of a code
that uses statistically independent elements, such as simple computation of joint probabili-
ties. The removal of pairwise linear correlations, or “whitening”, is then seen as a first step
towards such a representation. In fact, there is strong experimental evidence for decorrela-
tion at the earliest stages of the visual pathway [23], including nonlinear retinal processing
to remove spatial correlations [79].

We propose that it may in fact be necessary to whiten visual input before circuitry in
primary visual cortex (V1) can achieve a sparse representation of natural scenes if plasticity
mechanisms at each synapse can only access local information.

A popular normative theory for V1 simple cells postulates that these neurons are opti-
mized for forming sparse representations of natural visual stimuli [31, 76]. Olshausen and
Field demonstrated that a sparse coding model trained on photographs can learn visual
features that resemble receptive fields measured in primate V1 simple cells [76]. Related al-
gorithms obtain similar results [10] or even closer agreement with experiment [82, 110]. The
“Sparse and Independent Local Network” (SAILnet) [110], a sparse coding network with
more biologically realistic spiking neurons and local learning rules, obtains similarly strong
results when trained on whitened natural image patches. A modified version of SAILnet with
separate populations of excitatory and inhibitory neurons also produces reasonable receptive
field shapes [54].

Whereas sparse coding studies often use whitening as a preprocessing step, pre-whitening
is not necessary for conventional methods, such as those of [76, 10, 82]. In fact, some authors
have pointed to the existence of nonlinearities in the retina and thalamus as an argument
against sparseness as a normative theory for coding in V1 [64]. SAILnet, however, does not
learn V1-like receptive fields if the image data is not pre-whitened (Fig. 6.1A-D). SAILnet
differs from conventional sparse coding in several ways, but the essential feature that makes
pre-whitening necessary is the network’s synaptically local learning rules.

We call a learning rule “synaptically local” if the strength of a synapse is updated using
information known to be available at that synapse: the number and timing of recent spikes
in the pre-synaptic and post-synaptic neurons and the present strength of the synapse.

Importantly, sparse coding models with non-local plasticity can perform well on un-
whitened data such as raw natural images. We demonstrate this with an algorithm that
finds sparse codes using the Locally Competitive Algorithm (LCA) [86] to perform inference
and stochastic gradient descent (SGD) on mean squared error, a non-local learning rule,
to perform learning. While this network learns somewhat more accurately and quickly on
whitened data than on unwhitened data, pre-whitening is not necessary to generate codes
of high fidelity and sparseness or to learn visual features resembling V1 receptive fields.
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6.3 Results and Discussion

We demonstrated the contrast between learning with SAILnet versus conventional sparse
coding on whitened and unwhitened data in two complementary ways, both shown in Fig.
6.1. First, we trained models on raw natural image patches and also on the same patches
after whitening. We trained SAILnet with many different settings of its hyperparameters;
results corresponding to the optimal hyperparameters are shown in the figure. No values of
these hyperparameters led to SAILnet learning qualitatively different receptive fields in the
unwhitened case.

Second, we generated synthetic data consisting of sparse (Laplace-distributed) linear
combinations of a fixed, randomly-generated set of vectors; each of these vectors was an in-
stantiation of frozen white noise. Both conventional sparse coding and SAILnet were able to
recover these vectors from the data. We then applied to this synthetic data the singular value
spectrum of our natural image patch dataset — in effect, “unwhitening” the dataset. We
trained models on this type of synthetic data with distributions of singular values interpo-
lated between that of natural images and the original whitened data, searching many values
of hyperparameters for SAILnet in each case. We found that conventional sparse coding con-
tinued to perform well for all spectra we tested, whereas SAILnet’s performance collapsed
to chance-level for data with the singular value spectrum of natural images (Fig. 6.1E).

We have been unable to find, either in the literature or by our own efforts, a sparse coding
algorithm using synaptically local learning rules of the type discussed above that performs
well on unwhitened natural images. We believe that any such algorithm optimizing for sparse
coding will tend to be pulled towards directions of high variance just as SAILnet is.

More specifically, a network with local learning rules needs to overcome two related chal-
lenges: 1) learning lateral connections to facilitate cooperation in coding without each neuron
having direct access to the stimulus features that other neurons represent; and 2) learning
feedforward connections to minimize future coding errors without each neuron having di-
rect access to the part of the stimulus represented by other neurons. SAILnet’s inhibitory
connection learning rule solves the first problem by leveraging the fact that neuron activity
correlations are closely tied to similarity of the features the neurons represent, but strong
correlations in the stimulus can distort this relationship. Feedforward synapses onto a given
neuron lack direct access to other neurons’ spikes, so they must learn to reduce coding error
using only the stimulus and the neuron’s spikes. If some directions in stimulus space have
higher variance than others, these synapses can best reduce error alone within the spike
budget imposed by the sparseness constraint by aligning with the high-variance directions,
overwhelming the advantage of a new stimulus direction of sufficiently lower variance.

Following work on biologically plausible coding with excitatory-inhibitory balance [15][25]
we also developed sparse coding learning rules for which each synapse also has access to a
neuron-wide “membrane potential” variable. We find that these rules can learn a sparse
representations from unwhitened data (see Supplementary Information). However, dendrites
in real neurons are typically electrically compartmentalized [36], making it unlikely that there
is a well-defined variable ( i.e., membrane potential) that is uniform across all synapses
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throughout the dendritic tree of any given neuron.
It has also been shown that a sparse coding network can learn successfully from un-

whitened inputs by comparing sparse codes for the same stimulus generated by two different
configurations of the network [60]. Whereas the learning rules in this method use information
local to each synapse, we do not think it is biologically plausible that each synapse could ac-
quire, store, and compare the spike rates for two completely different network configurations
at each moment in time.

While we believe it is unlikely, more complicated models that make use of precise relative
spike timing could in principle obviate the need for pre-whitening while using local learning
rules to learn a sparse code. It is not clear how such a scheme could overcome the challenges
described above.

Our proposal compliments the prevailing notion that retinal whitening provides a more
efficient representation for transmission through the limited capacity of the optic nerve before
the creation of an overcomplete, sparse representation in primary visual cortex, and it sug-
gests a second compelling reason for decorrelation to be performed by a distinct population
of neurons at the earliest stages of the visual system.

6.4 Methods

Data and whitening

We used a set of 3×105 square patches of 256 pixels each drawn from the van Hateren image
dataset[35]. The full images, but not the patches, were mean-centered and normalized by
the standard deviation across pixels. We then subtracted the mean patch and divided by
the standard deviation across all pixels and patches.

Whitening or sphering refers to a linear transformation that results in a covariance matrix
proportional to the identity. In this work we use PCA whitening. First we multiply the data
by the matrix of eigenvectors of the covariance matrix, and then we divide each component
by its standard deviation. Thus,

XT
rawXraw = USU−1 −→ X = XrawUS

−1, (6.1)

where S is diagonal and U is unitary. A 2D visualization is shown in Fig. 6.2.
The distribution of standard deviations of the principal components, also known as the

singular values of the data, characterizes the asphericity of the data. In the case of natu-
ral images (and other data with approximate translational invariance), the singular values
correspond closely with the Fourier amplitude spectrum.

Sparse coding

We first define a probabilistic model

p(x; Φ) =

∫
p(x|a)pa(a)da, (6.2)
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Figure 6.1: SAILnet learning requires pre-whitening while conventional non-local
learning does not. (A) Receptive fields of conventional sparse coding model neurons re-
semble V1 simple cell receptive fields after the network has been trained on a set of whitened
grayscale natural image patches. The network had 256 units; a random sample of 16 units
are shown. (B) Conventional sparse coding learns qualitatively similar features on raw,
unwhitened natural image patches. (C) SAILnet receptive fields after training on a set of
whitened natural image patches resemble conventional results and V1 simple cells. (D) SAIL-
net receptive fields after training on unwhitened image patches are markedly different. (E)
Results for SAILnet and conventional sparse coding on a sparse model recovery task where
the data has been de-whitened to some degree, with 1 on the horizontal axis corresponding
to the same pairwise correlation structure as natural images. Whereas conventional meth-
ods degrade only slightly with de-whitening, SAILnet performs no better than a randomly
generated dictionary (dotted red line) for synthetic data as far from white as natural images.
All simulations were run five times. Means are plotted; standard deviations are too small to
display as error bars.
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Figure 6.2: PCA whitening for 2D data. Data can be whitened by transforming to the
principal component basis and then scaling the axes (that is, the principal components).
The result and all rotations of the result are whitened.

where x denotes a data vector with components xi and a denotes a set of latent variables
am. The conditional distribution p(x|a) is an isotropic Gaussian of fixed variance centered
on a linear reconstruction of the data in terms of the dictionary elements Φm:

p(x|a) ∝ exp

[
− 1

2σ2

∑
i

(xi −
∑
m

Φmiam)2

]
, (6.3)

and the prior distribution of the coefficients am is factorial with each factor given by the
same sparse distribution ( e.g., a Laplace distribution):

pa(a) ∝
∏
m

e−λ|am|, (6.4)

where λ is a parameter that determines the width of the distribution and therefore how
strongly the prior favors sparse sets of am.

Fitting this model usually involves estimating the gradient of the likelihood (or log-
likelihood) with respect to the parameters Φmi, but this calculation involves an intractable
integral over the latent variables am. A common approximation is to set the am by maximum
a posteriori (MAP) inference given input data x:

aMAP = arg max {am}p(x|am)pa({am}) = arg max {am}e−
∑
i(xi−

∑
m Φmiam)2/2σ2

∏
m

e−λ|am|.

(6.5)
The parameters σ2 and λ now only affect the model through the combination λσ2, so to
simplify the notation we set σ = 1.

The quantity aMAP
m is typically referred to as the activity of the mth unit, and the dic-

tionary elements {Φm} are often compared to receptive fields of neurons. The analogies to
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neurons suggested by these terms are not exact, but a unit’s dictionary element is approxi-
mately the same as the linear receptive field that would be measured for that unit with an
activity-triggered average [76].

The dictionary elements Φm are conventionally learned by descending the estimate of the
gradient provided by differentiating the model log-likelihood with respect to Φ with a fixed
at the MAP value:

∆Φmi ∝ −
∂

∂Φmi

[
−1

2

∑
j

(xj −
∑
m

Φmja
MAP
m )2

]
. (6.6)

In this work, this gradient with respect to Φ is averaged over a minibatch of 100 data
examples.

The use of MAP inference requires that we constrain the norms of the Φm to avoid
solutions with small am and large, meaningless Φm. We therefore divide each Φm by its
norm after each gradient step.

Locally Competitive Algorithm

We used the L1-sparse locally competitive algorithm (LCA) [86] to perform MAP inference
in our “conventional sparse coding” model. LCA uses a dynamical system with auxiliary
variables that are thresholded to obtain estimates of aMAP. Typically most of the auxiliary
variables are below threshold and the aMAP

m estimates are exactly zero for most m. The
threshold is set by the sparseness parameter λ.

The choice of coding algorithm is not crucial to our results, and learning using alternative
inference schemes yields qualitatively similar dictionaries.

SAILnet and related models

SAILnet uses leaky integrate-and-fire neurons to form a sparse spike-count code and local
rules to updates its synaptic strengths. The structure of the network is illustrated in Fig.
6.3

The LIF unit dynamical equation is

u̇m = −um +
∑
i

Φmixi −
∑
n

Wmnyn, (6.7)

where the spike variable yn is 0 unless the membrane potential um just crossed the threshold
θm (after each spike, um is reset to 0). (Here and elsewhere we use time units such that the
resulting time constant is 1.) An example LIF unit’s evolution is shown in Fig. 6.4. (Replac-
ing the LIF neurons with continuous-valued units similar to LCA units makes a quantitative
but not qualitative difference to learning.) These dynamics give approximately optimal codes
am, proportional to the spike counts, if the lateral weights are W ∗

mn =
∑

j ΦmjΦnj.
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Figure 6.3: SAILnet and similar models use feedforward and lateral connections
updated with local learning rules.

SAILnet updates its parameters according to

∆θm ∝ am − p (6.8)

∆Wml ∝ amal − p2 (6.9)

∆Φmk ∝ am(Xk − amΦmk), (6.10)

where am is the (possibly normalized) spike count for unit m. The first equation imposes a
constraint on the firing rate of each neuron. The second attempts to impose the constraint
that the neurons’ activities be decorrelated. The third drives each neuron to reconstruct the
stimulus (alone).

Synthetic data

Our synthetic data was generated by sampling from the sparse coding probabilistic model
(6.2) with a known, fixed dictionary. For N sources in D dimensions, we generated the dictio-
nary Φ∗ by sampling N directions in D-dimensional space uniformly at random. Then each
data vector xµ was determined by N samples aµ1 , . . . , a

µ
N from an exponential distribution

with scale λ:
xµi =

∑
n

Φ∗nia
µ
n. (6.11)

z This data generation process is spherically symmetric, but any particular dictionary and
dataset will not be perfectly white. We used D = 256 and N = 256 for the experiments in
the main text, for as close correspondence with the natural image experiments as possible.

To de-whiten the synthetic data, we multiplied by the matrix of singular values of our
natural image patch dataset, raised to some power ψ:∑

i

xµi S
ψ
ij. (6.12)

The parameter ψ is the horizontal axis of Fig. 1E in the main text.
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Figure 6.4: SAILnet uses leaky integrate-and-fire (LIF) model neurons. Constant
feedforward inputs from the data drive the unit’s internal “membrane potential” variable
u, while inhibitory inputs from other units decrease u whenever the inhibiting units spike.
When u hits the unit’s threshold θ, the unit emits a spike and resets u to zero at the next
timestep. Each unit has its own learned threshold θ.

6.5 Supplementary material

Complete dictionaries of learned models

We believe the sample dictionary elements in the main text represent the learned dictionaries
faithfully for the purposes of our argument, but we present here the complete dictionaries. In
each case the dictionary elements, which are trained on principal component representations,
are projected back to image space for presentation with no other alteration. In particular,
the whitening matrix is not used in this transformation.

Models using membrane potential and spike times

There are other notions of locality and “biological plausibility” that do not fit within the
framework described in the main text. One possibility is to allow learning based on in-
formation that may be available during the “inference” process but that isn’t in the final
activations am. Inspired by the work of [15][25] on ”learning to represent signals spike by
spike,” we developed a SAILnet-like sparse coding model in which the post-synaptic mem-
brane potential is used in addition to spikes to determine synaptic strength updates. This
model, which we describe below, learns the expected Gabor-like features on natural image
patches regardless of whether the data is pre-whitened, and recovers a ground-truth model
when the data has been de-whitened (Fig 6.9).
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Figure 6.5: All dictionary elements from a complete sparse coding dictionary
learned with stochastic gradient descent and LCA inference on whitened natural
image patches.

Sparse coding spike by spike

In the supplementary information of [15], Brendel et al. provide a set of learning rules for
an efficient autoencoding network that can be trained on unwhitened data. In our notation
and framework the feedforward weight rule is

∆Φmi = amxi

(
1−

∑
j

Φmjxj

)
. (6.13)
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Figure 6.6: All dictionary elements from a complete SAILnet model trained on
whitened natural image patches.

SAILnet with this rule and the membrane potential-based W rule can learn using unwhitened
data.

This rule as written does not fit our notion of biological plausibility: each synapse needs
to know an aggregate of many other synapses’ inputs that is not simply captured in the
membrane potential.

However, an approximation using the membrane potential in place of this term also
works:

∆Φmi = xi(am − 〈um(t)〉t) (6.14)
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Figure 6.7: All dictionary elements from a complete sparse coding dictionary
learned with stochastic gradient descent and LCA inference on natural image
patches that were not pre-whitened.

where the angle brackets denote averaging over inference time. To achieve sparse codes, we
can use this learning rule together with the inhibitory weight learning rule of [15] and the
SAILnet spiking threshold learning rule of [110]. For completeness, the inhibitory weight
learning rule in our notation is

∆Wmn = 〈um(t)−Wmn〉{t:yn(t)6=0}, (6.15)

where the angle brackets denote an average over the post-synaptic neuron’s spike times.
We call the resulting network MP-SAILnet, using the rules in Eqs. 6.14 and 6.15 plus the
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Figure 6.8: All dictionary elements for a complete SAILnet model trained on
natural image patches that were not pre-whitened.

SAILnet threshold update. MP-SAILnet can learn the expected sparse features of natural
image patches without pre-whitening, at the cost of requiring a neuron-global “membrane
potential” to be available to the feedforward synapses while determining their weight updates.
We discuss this issue further and clarify the comparison to SAILnet and other models in
section 6.5.
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Figure 6.9: A modified SAILnet with learning rules that depend on post-synaptic
membrane potential recovers a sparse model even on unwhitened data. This
figure is identical to Fig 1E in the main text, except for the addition of data for our modified
SAILnet model (MP-SAILnet).

Model variations and relation to whitening

A number of neurally-inspired sparse coding models have been proposed to learn the param-
eters of sparse linear generative models. The properties of these models are “biologically
plausible” to different degrees and in different ways, and the various algorithms have various
strengths and weaknesses in perfomance. Here we attempt to clarify the type of biological
plausibility we have focused on in this work and how models that are more or less plausible
in this sense can or cannot learn effectively from data that is not pre-whitened.

The primary aspect of biological plausibility we are concerned with here is locality of the
learning rules. One possibility is that learning rules should be “neuron-local”, meaning that
they should only depend on quantities that a neuron would have access to. For instance, a
neuron has access to its own dendritic synapse strengths, Φij, its membrane potential and
spike status (activity), ui and ai, and the spike status of its neighbors, a\i. In contrast, it
is not likely that neuron i would have access to the dendritic synapse strengths in other
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neurons: Φ(\i)j.
Although these quantities may be available at some location in the neuron, it is not

clear how many of them may be available at the dendritic synapses for learning. A different
criterion for biologically plausible learning rules, and the one we adopted in the main text, is
for the rules to be “synaptically local”. Tabulating what neural quantities are available at the
dendrites for learning is still an open area of investigation. For instance, it has been shown
that action potentials can backpropagate into the dendritic arbor from the soma [99], so those
spike times could be known to all synapses. However, due to electrical compartmentalization
throughout the dendrites of typical neurons, it is not clear that the membrane potential at
any specific point in the neuron, e.g. the soma, is continusously communicated to every
synapse in the dendritic tree.

The learning rules for various models require different sets of values to update the den-
dritic synaptic strengths. For several models, the features required to learn the dendritic
synaptic weight for neuron i and presynaptic element j are listed in Table 6.1. Here Xj is
the jth element of the feedforward activity and X\j are the other elements (not available
directly at synapse ij). A dendritic synapse may have access to the net filtered input of the
feedforward activity,

∑
j ΦijXj, the current membrane potential of its soma, ui, or its own

spiking activity and the spiking activity of its neighbors, an. Finally, gradient descent on
the mean-squared reconstruction error requires the dendritic synapse to have access to the
sum of the dendritic synapses of all neurons weighted by their spiking activity,

∑
m Φmjam.

Feature SAILnet[110] Brendel et al.[15] MP-SAILnet mse GD NL SL
Xj 3 3 3 3 3 3

X\j × × × × 3 ×∑
j ΦijXj × 3 × × 3 ×

an 3 3 3 3 3 3

ui × × 3 × 3 ×∑
m Φmjam × × × 3 × ×

Neuron-local 3 3 3 ×
Synaptically local 3 × × ×
Unwhitened inputs? × 3 3 3

Table 6.1: Features required for learning reconstruction feature weight, Φij, for neuron
i and presynaptic element j for learning rules associated with four models. NL and SL
indicate whether the learning rule or quantities is neuron-local (NL) or synaptically-local
(SL). Learning rules with a check mark in the “Unwhitened inputs?” row are capable of
learning from significantly non-white data.
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Chapter 7

Efficient causual auditory coding

In the last chapter we considered how locality, a constraint associated with implementation
in a biological neural system, may require certain computations to occur in separate stages
to facilitate optimization for stimulus statistics. In this chapter we consider a different
constraint, causality, that any system must account for in order to process data in real time
with minimal delays. Within the framework of convolutional sparse coding, we will see
that how a system deals with causality (or does not) affects the optimal parameters of that
system.

7.1 Abstract

Efficient coding models of the early auditory system explain the frequency-bandwidth rela-
tionship in auditory nerve filters as measured by reverse correlation, as well as some basic
properties of the shape of these filters. Although the model of Smith and Lewicki appeared
to explain the detailed temporal structure of these filters as well, we show that a proper com-
parison with the revcor filters shows that the model more strongly matches the time-reverse
of these filters than the filters themselves. We propose that a causal efficient coding model
will tend to favor filters with a similar shape in time to the auditory nerve filters, and we
provide preliminary evidence with particular causal model closely related to the non-causal
model of Smith and Lewicki.

7.2 Introduction

Efforts to understand neural sensory processing in terms of high-level principles have pro-
vided substantial insight into the function of the early auditory system. The idea that early
stages in a sensory pathway, such as the auditory nerve, should be optimized for efficient
transmission of information to later processing stages [Ricke1997, 4, 7, 2, 24, 22, 49, 56, 26,
9, 43, 76] led to the seminal work of Smith and Lewicki that explained important features
of auditory nerve cells in terms of efficient coding of natural sounds[59, 98, 97]. Specifi-
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cally, Smith and Lewicki developed a representation of acoustic signals consisting of discrete
“spikes,” each coding for a feature at a particular time [98]. They used a convolutional
matching pursuit algorithm to find efficient spike codes, meaning codes with low reconstruc-
tion error and few spikes. To obtain predictions of the properties of auditory nerve cells,
they optimized the acoustic features in the model for coding a set of sounds from the nat-
ural environment. The distribution of frequencies and bandwidths of the optimal features
closely matched the corresponding distribution for reverse-correlation filters measured in the
auditory nerve of several mammals, suggesting that the auditory nerve may be optimized
for efficient coding[97].

While this work on efficient auditory coding provided substantial insight into early audi-
tory processing, it also raised important further questions and a careful examination shows
that some significant details of the reverse-correlation filters remain to be explained. Al-
though there exists an interesting line of work trying to describe and understand cochlear
processing beyond the simplified linear-filter description supplied by measuring reverse-
correlation filters (e.g., [13, 19, 61, 48, 62, 107]), in this work we focus on theoretical
explanations of the properties of these filters.

The optimal features for Smith and Lewicki’s spike coding model of natural sounds are
asymmetric sinusoids in time, which appear to closely resemble the filters measured by reverse
correlation in auditory nerve cells [13, 19]. However, this resemblance is misleading in part:
the model filters most closely resemble the time-reversed auditory nerve filters (often reported
as the “impulse response” by analogy to linear systems), and the asymmetric envelope of
the model filters is backwards from that of the reverse-correlation (“revcor”) filters. We
elucidate this point in section 7.3 and figure 7.1.

Since the asymmetric envelopes of measured revcor filters are not optimal for coding
natural sounds under the model of Smith and Lewicki, it is worth considering whether this
asymmetry may have an explanation under a different model. Their model departs from
biological realism in several ways, and it may be that a more realistic model will benefit
from the observed asymmetry.

In this work we propose that the time-asymmetry of auditory nerve fiber revcor filters
may be explained by causality. A system is causal if its response depends only on the past,
never the future. Biological systems appear to be causal, but it is possible that causality
could be irrelevant to models of neural processing in some situations if the system can simply
wait for whatever information it might need from the future before responding to an event
in the past. However, organisms benefit from being able to respond quickly to stimuli, and
neurons at the auditory periphery are sensitive to stimuli within a few milliseconds [13, 19],
as is clear from auditory nerve revcor filters. We present a simple model that is closely
related to that of Smith and Lewicki but that generates codes causally, and we show that
optimal filters in this model have the same qualitative shape – including the time-asymmetry
– as auditory nerve revcor filters, although the correspondence is not perfect.

In section 7.3 we establish terminology and clarify why filters in a model like that of
Smith and Lewicki should be compared to the time-reverse of reported impulse responses.
Then in section 7.4 we review previous methods and describe our own simple causal version
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of matching pursuit. We show our primary results in section 7.5, including a replication
of Smith and Lewicki’s results and results from our causal model. Finally we discuss in
section 7.6 our findings and some of what we believe remains to be explained about cochlear
processing.

7.3 Preliminaries

Linear, time-invariant systems

The cochlea is not a linear, time-invariant system. However, linear, time-invariant systems
are simple to analyze and provide a simple first-order approximation and a convenient lan-
guage that turns out to be more applicable to nonlinear systems like the cochlea than one
might expect.

A linear, time-invariant system can be completely characterized by its impulse response
h(t), which we define as the response y(t) of the system to an impulse x(t) = δ(t). The
output of the system in response to a general stimulus is

y(t) = (x ∗ h)(t) =

∞∫
−∞

x(t− τ)h(τ)dτ (7.1)

=

∞∫
−∞

x(τ)h(t− τ)dτ (7.2)

where the second line follows from the commutativity of convolution1. From this equation
we can recover our definition of the impulse response:

y(t)|x(t)=δ(t) =

∞∫
−∞

δ(τ)h(t− τ)dτ = h(t). (7.3)

We can also see from equation (7.2) that the output is a weighted average of the stimulus at
every time point, with the weights given by the time-reversal of the impulse response h(−τ),
shifted by the time t at which the output is evaluated. In particular, a stimulus will induce
the largest response if its shape matches the system’s kernel Φ(τ) = h(−τ). The system will
in general respond more weakly to a stimulus with the same power and the shape of the
impulse response h(τ), as shown in figure 7.1.

We say a linear, time-invariant system is causal when h(t) is zero for t < 0, i.e., when
the output gives no weight to the future of the signal.

1A warning/reminder for readers steeped in machine learning: the “convolutions” in software like Ten-
sorFlow and PyTorch as of 2018 are really cross-correlations, without the minus sign. The cross-correlation
is not commutative.
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Figure 7.1: A linear time-invariant system and its responses to three example signals. The
kernel is the time-reverse of the response to a unit impulse (left). The system is maxi-
mally sensitive to a signal proportional to the kernel (center) and responds less to a signal
proportional to the impulse response (right) if the kernel is not symmetric.

Reverse correlation (revcor) filters

Reverse correlation estimates the filter h for a linear time-invariant system. When used with
a system that is not linear and/or time-invariant, it can still provide some information about
the function of that system. If the system is nonlinear but time-invariant, for example, the
reverse correlation filter can be thought of as the linear term in a series expansion of the true
response function. In the special case of a system that generates its output as a nonlinear
function of a linear functional of its input, it can be shown that reverse correlation with
white noise recovers the linear functional (i.e., h) up to a multiplicative constant [16].

Reverse correlation has been used to study retinal ganglion cells and primary visual cortex
simple cells, among others[84]. Most relevantly for our purposes here, the reverse correlation
(“revcor”) filters of fibers in the cochlear nerve have been measured [13, 34, 19] and are often
modeled by asymmetric sinusoidal “gammatone” functions [19].

7.4 Methods

Time-relative spike coding

We adopt the spike coding model described in [98], with each “spike” coding for an instance
of its corresponding kernel at the time of the spike. This model can be formulated as the
convolution of the kernels Φm(t) with their spikes am(t):

x(t) =
∑
m

∞∫
−∞

am(τ)Φm(t− τ)dτ + ε(t). (7.4)

where ε(t) is “noise” unexplained by the model. With time discretized and finite kernels, we
have

x(t) =
∑
m

∑
τ

am(τ)Φm(t− τ) + ε(t). (7.5)
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The coefficients am(t) may be real numbers; we use the analogy to spikes loosely here. This
formulation is most interesting to us when the coefficients are usually zero with occasion
nonzero “spikes.” Although decoding is linear (the map from a to x is linear), we cannot
achieve such sparseness in general with a linear encoding function.

Matching pursuit

Smith and Lewicki used a convolutional matching pursuit[65] algorithm to generate spike
codes from acoustic signals [97]. At each step, the algorithm adds to the spike code the
one spike that most reduces the mean-squared error 〈ε2〉 for the representation in equation
(7.5) of a given signal. Figure 7.2A shows one step of this process. The encoding algorithm
terminates when the next spike’s magnitude would fall below a preset threshold.

Since each spike is determined using the whole signal and all previously determined spikes
– including those placed at future times – matching pursuit is not a causal algorithm.

Causal matching pursuit

There are many possible algorithms to obtain a sparse spike code (for another example,
see [20]). Here we focus on a causal scheme closely related to matching pursuit that we
call causal matching pursuit. One step of causal matching pursuit is shown in figure 7.2B.
Rather than scan over the entire residual signal for the next best spike, causal matching
pursuit simple takes the best spike at the current time – or commits to having no spike at
that time if no spike exceeds the fixed, preset threshold. After a fixed number of iterations
at the current time (just one iteration for the results presented here), we move on to the
next time point. To determine the spike code at each time step, therefore, causal matching
pursuit only requires the signal and spikes that precede that time as long as each kernel is
causal.

Learning

We follow Smith and Lewicki in using gradient descent on mean-squared reconstruction error
to optimize kernels for efficient coding [97]. For reproducing their results, we also follow their
prescription for allowing the kernels to grow and shrink in length. For our causal matching
pursuit model, we instead simply use a fairly long (800 sample) kernel size; some learned
kernels are near zero for a substantial fraction of their extent.

Since Smith and Lewicki found good agreement with auditory nerve properties by training
their model on a set of speech sounds without the careful adjustments necessary with other
sets of “natural sounds” [97], we used speech sounds as a proxy for natural sounds generally
in this work. Specifically, we used the TIMIT speech corpus [33].
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Figure 7.2: One step of matching pursuit and causal matching pursuit encoding.
(A) The current residual signal is the difference between the given signal and the recon-
struction from the current code. To compute the next spike in the code, the kernels are
cross-correlated with the entire residual and the largest value across kernels and time is cho-
sen as a new spike (highlighted in the spikegram). The new spike’s contribution to the new
reconstruction is given by the convolution of the kernel with the spike, i.e., the kernel itself
placed at the spike’s time. The residual is updated and the process repeats until a stopping
condition. (B) In a causal method only the signal up to the current time is available, so only
the residual up to that time is considered. In causal matching pursuit, we take dot products
between each kernel and a window of the residual ending at the current time. The largest
dot product is accepted as a spike if it exceeds a preset threshold. The reconstruction and
residual are updated in the same way as matching pursuit, and then the next time step is
considered.
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Figure 7.3: (A) Kernels (orange lines) optimized for matching pursuit; compare to [97] figure
3A. Gray scale bars represent 0.5 ms (8 samples). Kernels are sorted by center frequency
from low to high. (B) Kernels (blue lines) optimized for causal matching pursuit are also
asymmetric sinusoids, but the asymmetry is in the opposite direction. Plotting conventions
are as in (A), except that each kernel is trimmed to show 90% of the total power in the
kernel. (C) The kernels exhibit a range of center frequencies and bandwidths (defined here
as the frequency range over which the kernel has at least half its maximum power). Each
orange circle represents one kernel in (A); each blue triangle represents one kernel in (B). The
kernels optimized for matching pursuit follow a similar distribution in frequency-bandwidth
space to that observed in auditory nerve, as shown in [97].

7.5 Results

We attempted to replicated Smith and Lewicki [97] as closely as possible in order to under-
stand their results and make a clear comparison to the results of our causal model. Details
on our implementation and our explorations of closely related models are given in the sup-
plementary material. We also attempted to present the kernels learned by the two models
as similarly as possible. Results for both models are shown in figure 7.3.

We replicate the qualitative distribution of the learned kernels in center frequency-
bandwidth space (Figure 7.3A) and the qualitative gammatone-like shapes of many of the
kernels in the model optimized for ordinary, non-causal matching pursuit (Figure 7.3C, or-
ange circles). We believe the discrepancy between our results and those of [97] are due to
difficulties in optimization, which future work should correct.

Preliminary results with our causal model show asymmetric sinusoids with slow attacks
and fast decays (Figure 7.3B), but detailed agreement with auditory nerve revcor filters
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is lacking. The frequency-bandwidth distribution of the kernels optimized for our causal
encoding model is significantly different. These results depend on threshold parameters in
the model and on the optimization strategy, as discussed in section 7.8.

7.6 Discussion

Smith and Lewicki [97] found and we have confirmed that the kernels optimized for matching
pursuit-based convolutional sparse coding of speech sounds bear a strong resemblance to the
impulse responses of auditory nerve fibers measured by reverse correlation (revcor). The
impulse response is the time-reverse of the kernel corresponding to the linear approximation
implied by a revcor measurement, so the optimal kernels presented in [97] and in our Figure
7.3A are directly comparable to the time-reverse of the revcor impulse responses. Indeed, re-
verse correlation with white noise using the matching pursuit model yields impulse responses
very close to the time-reverse of the kernels(see [97] supplementary discussion). We conclude
that the model predicts the time-reverse of the auditory nerve data.

The strong resemblance between a theoretical prediction and the time-reverse of the
data the theorists hoped to explain strikes us as begging for an explanation. Although we
believe the correspondence remains strong on close inspection, there are a few subtleties
that explain away the result to some degree. First, the model of [97] involves a number of a
priori somewhat arbitrary choices whose justification lies primarily in the strength of their
resulting predictions. Other approaches to sparse coding of sound waveforms yield different
results, often without any time-asymmetry (see, e.g., [59] and our supplementary material).
In exploratory investigations of related models, we found that the L0-sparse nature of the
matching pursuit encodings was crucial in obtaining asymmetric sinusoids. We also found
that providing significantly more zero-padding in the kernels during learning led to some
kernels of greater symmetry and longer extent in addition to the gammatone-like kernels.
Second, the results of [97] depend critically on the choice of natural sound ensemble, a point
obscured by our post hoc emphasis on results using clean recordings of individual humans
speaking sentences.

These subtleties aside, we believe the explanation is likely to lie in an improved under-
standing of cochlear processing and the sense in which it is optimized for natural sounds.
This paper provides a potential explanation already hinted at in [59] as well as some prelim-
inary evidence in favor of that explanation. However, we hope that our work has made clear
that more remains unexplained about why the auditory nerve has the response properties
it does than was previously appreciated, and that new ideas may be required to further our
understanding. We consider briefly a few possible directions for future work.

There are other possible efficient coding models that respect causality, aside from the one
we focused on here. In the supplementary material we discuss a model based on maximum
a posteriori inference in the convolutional sparse coding probabilistic model, conditioned on
the past of the code. One could also explore deep neural network models, which are likely
flexible enough to learn to efficiently encode a set of natural sounds.
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Some other constraint or effect that could be added to an efficient coding model, besides
causality, may explain the shape of the envelope of the cochlear revcor filters. A model
that accounts for the time scale of transmission of information among units – e.g., as de-
termined by the time scale of feedback from outer hair cells through the basilar membrane
– might have different optimal kernels, for example. The models we have considered here
have tens of analog-output units, whereas a mammalian auditory nerve may contain tens
of thousands of neurons that receive inputs from inner hair cells and fire stereotyped action
potentials[41]. It is unclear how this significant difference impacts the results of efficient
coding models. Although reverse correlation with white noise gives a result that corresponds
very closely with the generative kernels of all the models we have considered in this work,
it is not necessary that auditory nerve revcor filters correspond to any underlying “kernel.”
Indeed, measurements at different sound levels show somewhat different revcor filters [19],
and cochlear processing is highly non-linear.

As pointed out in [97], speech is more likely adapted to the cochlea than vice versa. It
may be that the cochlea is organized by frequency for a mechanistic reason unrelated to
the detailed statistical structure of natural sounds, and that efficiency at the level we have
attempted to model is too small a consideration to explain major properties of coding in the
auditory nerve.

Efficient coding has yet to offer a complete explanation for auditory nerve revcor data,
let alone for the full, complex response properties of auditory nerve cells. However, the
observation that a simple model of efficient coding of natural sounds appears to explain some
aspects of the revcor filters suggests that further inquiry may yield new insights and/or a
stronger correspondence between theoretical models and measurements.

7.7 Alternative methods

Convolutional sparse coding

Sparse coding can be viewed as a probabilistic model[76, 75] based on linear reconstruction
of a stimulus vector:

xi = x̂i + ni =
∑
m

amΦmi + ni (7.6)

where we assume that ni is iid Gaussian noise with variance σ2, conditioned on the set of
coefficients a:

p(x|a; Φ) ∝
∏
i

e−(xi−
∑
m amΦmi)

2/2σ2

(7.7)

Sparseness arises from the assumption of a sparse and (often) independent prior for the
coefficients aµm, for example

pa(a) =
∏
m

1

2λ
e−λ|am|. (7.8)
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It is straightforward to extend this model to the convolutional representation discussed in
the main text, with

p(x|a; Φ) ∝
∏
t

e−(x(t)−
∑
m

∑
τ am(τ)Φm(t−τ))2/2σ2

. (7.9)

The encoding scheme of Smith and Lewicki [97] can be seen as an approximation to
maximum a posteriori inference in this model with an L0 prior pa(a). With an L1-sparse
prior it is possible to find at least a local maximum of the posterior distribution using an
optimization scheme such as gradient descent, as done in [76]. We experimented with this
convolutional sparse coding strategy, for which the optimized kernels were mostly localized
symmetric sinusoids as found in [59] with ICA.

Causal convolutional sparse coding

Maximum a posteriori inference in the convolutional sparse coding model described above
does not suggest a causal encoding scheme. To make the procedure causal, we instead find
the most probable latent variables am(t) conditioned on the past of the signal and code:

max
am(t≥T )

p (am(t ≥ T )|am(t < T ), x(t < T )) . (7.10)

Applying this procedure iteratively for T = 0, 1, 2 . . . gives a code am(t) with no acausal
dependencies.

Using Bayes’s Theorem and assuming the prior p(am) is factorial,

p (am(t ≥ T )|am(t < T ), x(t < T )) =
p(am(t ≥ T ))p(x(t < T )|am)

p(x(t < T ))
. (7.11)

The denominator is a constant for the purposes of our optimizations. The numerator is a
product of two terms: first, the prior for present and future activations, which we assume to
be simple and factorial; and second, the likelihood of the data conditioned on the activations,
which is Gaussian. Taking a logarithm, we can write the function we want to minimize at a
given T as

L(T ) =
∑
t≤T

||x(t)−
∑
τ

∑
m

am(τ)Φm(t− τ)||2 (7.12)

and we perform the minimization with respect to all am(s) with s ≥ T , keeping those with
s < T fixed from previous iterations. We initialize the optimization at time T using the
values of am(s ≥ T ) from the optimization of that fixed am(T ).

Given a code, we can compute the gradient of the model log-likelihood with respect to
the kernels with the code fixed and update the kernels as in ordinary sparse coding. Results
using convolutional sparse coding and the causal variant we have just discussed are shown in
figure 7.4. The causal variant’s results should be considered preliminary as the model has not
converged due to time constraints. While some kernels appear to be gammatone-like with
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Figure 7.4: This figure is identical to Figure 7.3 except that the kernels in panel A were
optimized for convolutional sparse coding with a factorial Laplace prior and the kernels in
panel B were (incompletely) optimized for our causal variant of convolutional sparse coding.

the asymmetry expected from revcor filters, it is not clear whether fully-optimized kernels
will have these properties.

The primary difficulty with causal convolutional sparse coding in our experience is its
computational cost. Using PyTorch to run the model on an NVIDIA Tesla K40 GPU, each
gradient step takes about 30 minutes to compute for a single signal of length 20000 samples
(1.25 seconds of audio). We expect training to take 1000s of gradient steps, for a training
time on the order of weeks to months. Future work could reduce this time in several ways,
including but not necessarily limited to: a faster GPU, better optimization of convolution
calculations, and more efficient optimization at each T than gradient descent. It may also be
possible to subsample the times at which the optimization is performed without too much
degradation.

7.8 Causal matching pursuit and optimization

Beyond the difficulties in efficiently coding a signal on-the-fly, there are challenges in finding
the optimal kernels for a given coding strategy. Causal matching pursuit uses a heuristic to
avoid using many spikes in its codes, and a learning rule based only on reducing coding error
may exploit the shortcomings of the heuristic to reduce error at the expense of efficiency.
One solution where this difficulty is particularly clear is shown in Figure 7.5. A single kernel
with all its weight on the last time bin can be used to code with perfect fidelity, with the
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Figure 7.5: A set of kernels that allow causal matching pursuit to achieve low error but at
the cost of a high spike rate.

code identical to the signal.
In an attempt to find kernels that optimize a combination of coding accuracy and sparse-

ness, we also attempted to optimize the model considering the code to be a function of
the kernels. In this alternative optimization scheme, the gradient of the loss includes terms
due to ∂am/∂Φm rather than considering the am to be fixed. The sparseness term in the
sparse coding loss function thereby contributes to the gradient. Preliminary results with
this scheme are shown in Figure 7.6. We speculate that our implementation of this scheme,
which neglects terms arising from the dependence of the residual signal on the code, may
not provide an adequate approximation to the true gradient.
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Figure 7.6: A set of kernels for causal matching pursuit optimized by treating the coding
scheme as a function of the kernels and signal.
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