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Evaluation of Structural Connectome Models and Network Diffusion in Predicting Cortical 
Atrophy in Alzheimer’s Disease Spectrum 

 
Alan Zhu 

 

 

 

Abstract 

 
Alzheimer’s Disease (AD) is one of the most common forms of dementia, yet the exact 

mechanisms by which it operates and progresses through the brain are not completely known. To 

help identify and characterize the underlying pathways, or subnetworks, of AD, a network diffusion 

model is built based on the heat diffusion equation, grey matter volume atrophy measurements, and 

individual brain structural connectivity networks. Longitudinal neuroimaging data from individuals in 

various stages of the AD disease spectrum are used to seed the model as well as provide empirical 

end-atrophy measurements to assess overall model predictive value. The dominant brain networks 

facilitating AD progression in each patient are extracted using regression analysis and these principal 

networks are then clustered into distinct groups by applying dimensionality reduction and 

classification. These identified groups expose AD-specific subnetworks, each having a unique 

distribution of disease spread topology through various regions of the brain. Further anatomical 

evaluation of these subnetworks shows that the affected regions of interest coincide with and support 

long-standing results of previous research. 
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1 Introduction 

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease that affects roughly 48 

million people worldwide. It is the most common form of dementia, accounting for 60-70% of all 

cases [5]. Clinical symptoms of sporadic AD usually begin in elderly individuals over 65 years of age 

and initially present with short-term memory loss. Life expectancy after diagnosis is 8-10 years on 

average with advancement of the disease leading to neurological symptoms of increasing severity as 

well as loss of motor and other critical bodily functions [6]. Classified as a proteopathy, i.e. a disease 

caused by abnormal protein structure, AD results from accumulation of misfolded amyloid beta and 

tau proteins in the brain [8]. The exact path from this protein buildup to the onset of the disease 

remains a present area of research.  

A critical component in understanding and developing treatment for AD lies in 

understanding how the disease progresses and spreads in terms of structural brain changes, as a 

surrogate measure of underlying neurodegeneration. AD advances in a trans-synaptic manner, 

moving along various structural networks in the brain [15]. AD associated neurodegeneration pattern 

is highly stereotyped, beginning in the medial temporal lobe, spreading next to the lateral temporal 

and parietal lobes, and eventually making its way to the frontal and occipital lobes [11].  In addition, 

research strongly suggests that AD attacks brain regions in accordance to function as opposed to 

physical proximity, thus incorporating understanding and modeling of the brain’s structural and 

functional connectivity has become necessary for the advancement of AD research. 

Raj et al. (2012, 2015) present a “network diffusion” model that aims to mathematically 

model the spread of AD-related pathophysiology mediated by and restricted to the brain’s intrinsic 

structural connectivity networks measured from diffusion-weighted magnetic resonance imaging 

(MRI) [12,13].  The premise behind this approach is that in light of accumulating evidence for the trans-
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neuronal transmission of AD, the spread pattern of AD pathophysiology may be mathematically 

modeled to predict individual disease progression based on baseline measurements. A simple 

mathematical model based on heat diffusion is proposed and its predictive results are reproduced 

in Figure 1a. 

Figure 1a: Atrophy predicted by network diffusion model plotted against actual 
observed atrophy [reproduced from Raj et al. (2015)]  

 

Inspired by these preliminary findings, this investigation 

examines the work of Raj et al. (2015) and evaluates the predictive 

power of the network diffusion model and its ability to capture the 

spatiotemporal evolution of neurodegeneration in the AD disease 

spectrum. This study seeks to further existing research by 

attempting to characterize both the diffusion model and the disease spread at finer granularity, 

using longitudinal model fitting to extract the subnetworks influencing AD progression. It primarily 

considers observations in subject grey matter atrophy patterns and subject brain connectivity 

models called connectomes. Long-term atrophy measurements derived from longitudinal structural 

MRIs are used as a surrogate measure of regional neurodegeneration spread.  

Previous research does not take into account the specific networks facilitating the spread, 

but rather considers the disease as a whole, focusing on end-atrophy prediction. This work employs 

various methods of mathematical analysis in attempt to identify these specific individual networks. 

Via eigen decomposition of subject connectomes and application of partial least squares regression, 

the dominating networks capturing the disease spread are identified and isolated. By successively 

applying dimensionality reduction and classification techniques, clear and identifiable patterns and 

categories can be observed amongst various network paths. At certain points in the investigation 
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where applicable, limitations of the original proposed model and results are identified and 

addressed.  

 

2 ADNI MRI Data Processing 
Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative-

2 (ADNI-2) database (www.adni-info.org). Led by principal investigator Michael W. Weiner, MD, ADNI 

was launched in 2003 as a public-private partnership. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), various 

biological markers, and clinical and neuropsychological assessment can be used in combination to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD) in 

clinical trials [3].   

 
2.1 MRI Scan Protocols 

All subjects underwent whole-brain MRI scans on 3 Tesla GE Medical Systems scanners at 14 

acquisition sites across North America. Anatomical T1-weighted images from spoiled gradient echo 

sequences (SPGR, 256 × 256 matrix; voxel size = 1.2 × 1.0 × 1.0 mm3; TI = 400 ms; TR = 6.98 ms; TE = 

2.85 ms; flip angle = 11°), and diffusion-weighted images (DWI; 256 × 256 matrix; voxel size: 2.7 × 2.7 

× 2.7 mm3; TR = 9000 ms; scan time = 9 min) were collected. 46 separate images were acquired for 

each DTI scan: 5 T2-weighted images with no diffusion sensitization (b0 images) and 41 diffusion-

weighted images (b = 1000 s/mm2). This protocol was chosen after conducting a detailed 

comparison of several different DTI protocols to optimize the signal-to-noise ratio in a fixed scan 

time. All T1-weighted MRI and DWI images underwent visual inspection for quality assurance to 

exclude scans with excessive motion and/or artifacts. No scans were excluded. 
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2.2 Structural MRI processing 
FreeSurfer is an open source software suite for automated analysis of human brain MRI data 

(http://surfer.nmr.mgh.harvard.edu/fswiki). FreeSurfer 5.3 was used to estimate regional atrophy in 

terms of total grey matter tissue volume for 84 cerebral cortical and subcortical brain regions. Each 

of these is referred to as a specific region of interest or ROI. Each cortical ROI is associated with one 

of four lobes: frontal, occipital, parietal, or temporal. ROIs pertaining to the cerebellum were not 

included in these analyses.  

To reduce the confounding effect of intra-patient morphological variability, each participant’s 

longitudinal data series was processed by longitudinal stream processing in FreeSurfer [14]. For each 

patient FreeSurfer calculates a median template brain and resamples all data points accordingly, 

allowing for joint processing of data from all scan sessions. FreeSurfer longitudinal processing also 

ensures consistent ROI definitions and minimal measurement errors within each subject over 

multiple time points. All images underwent standardized quality control procedures. Participants 

with complete segmentation failure or gross errors throughout all brain regions were rated as 

complete failure and those with gross errors in one or more specific brain regions (i.e., temporal 

lobe regions, superior regions, occipital regions, and insula) were given a partial pass rating. All 

subjects included in this study received a complete pass rating. 

 
2.3 Diffusion-Weighted MRI Processing 

Each subject’s raw DWI volumes was aligned to the average b0 image (DTI volume with no 

diffusion sensitization) using the FSL eddy_correct tool to correct for head motion and eddy current 

distortions. To correct for echo-planar imaging (EPI) induced susceptibility artifacts which can cause 

distortion at tissue–fluid interfaces, skull-stripped b0 images were linearly aligned (FSL FLIRT 9 dof) 

and then elastically registered to their respective T1-weighted structural scans using an inverse-
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consistent registration algorithm with a mutual information cost function as described by Jahanshad 

et al. (2010) [7]. The resulting 3D deformation fields were then applied to the remaining 41 DWI 

volumes prior to estimate diffusion parameters. To account for the linear registration of the DWI 

images to the structural T1-weighted scan a corrected gradient table was calculated. A single 

diffusion tensor, or ellipsoid, was modeled at each voxel in the brain from the eddy and EPI-

corrected DWI scans using FSL dtifit. The DTI tensor model has its limitations, particularly in 

regions where fibers cross, but is not investigated further here. 

 
2.4 Connectome Processing 

Connectomes represent the structural connectivity networks in the brain. In their graphical 

representation, labeled ROIs are nodes and streamlines between regions are undirected edges 

connecting some or all pairs of nodes. Using this graphical definition, connectome data can be 

represented by an adjacency matrix, where the dimensions are both equal to the number of ROIs 

and the value at entry (i,j) is equal to the number of tracks between ROI or node i and j. Since track 

direction is not considered in these analyses the adjacency matrix is symmetric, i.e. the value at (i,j) 

is equal to the value at (j,i).  

Camino (http://camino.cs.ucl.ac.uk/) is an open-source software toolkit developed for 

diffusion MRI processing and is used for purposes of this investigation. Deterministic streamline 

tractography is performed via Camino's track command, utilizing directional information derived 

from the diffusion tensor and the 84 ROIs defined by FreeSurfer. The 84 FreeSurfer ROIs and 

corresponding set of tracts are used as inputs into the conmat command from Camino which reads 

the target image containing the labeled ROIs and streamlines output by tract. conmat generates a 

matrix counting the number of streamlines connecting each pair of ROIs in the target image.  
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3 Study Cohort 

ADNI recruits volunteers that commit to providing their own diagnostic information over a 

multi-year timespan to contribute towards AD research. All subjects analyzed had both diffusion-

weighted and structural MRIs at baseline and at least one follow-up structural MRI. Subject 

diagnoses span the AD spectrum with the following categories: early mild cognitive impairment 

(EMCI), late mild cognitive impairment (LMCI), and Alzheimer’s Disease (AD). Clinical diagnoses were 

based on natural history and cognitive assessment and were not validated using histopathology or 

imaging.  

This study analyzes data from 53 patients, divided into 3 groups based on diagnosis of either 

EMCI, LMCI, or AD, and 110 subjects categorized as cognitively normal (CN), used as a control group. 

Cross-sectional (i.e., study baseline) regional grey matter volume estimates for CN subjects are used 

to create normal population distribution (i.e., mean and standard deviation) for each ROI. Estimated 

regional normal population distributions are used to standardized grey matter volume estimates 

from longitudinal structural MRIs to z-scores for the 3 patient groups (cf. Section 3.3 Z-Score 

Conversion). Patients with subjective memory complaints (SMC) are normally also included in the AD 

spectrum, but the selected cohort contained only 2 SMC subjects, who were excluded to preserve 

statistical confidence and significance.  

The ADNI study population is well balanced with regards to age, gender, and other subject 

characteristics. The subcohort examined here were selected without any consideration to these 

factors as specific population comparisons are not within the scope of this investigation. 

 
3.1 Cohort Data 

All subject data, including connectome data, ROI volume measurements, subject diagnoses, 

and ROI lobular region mappings, were provided in CSV and XLS format. All data analysis was 
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performed using MATLAB R2015a. Raw data was imported via native MATLAB data import library 

functions csvread and xlsread. Each subject was represented as a struct data type in MATLAB, 

and the entire cohort as an array of struct. Table 3.1a describes a selection of these struct fields. 

 
Table 3.1a: Description for select fields within each subject’s struct element. 
 

Field Data Type Description 

connectome 84x84 double Matrix of connectivity strength between each ROI 
 

eigenvalues 83x1 double Eigenvalues from the eigendecomposition of the connectome matrix 
 
Note: Eigenvalues are thresholded to zero if below =10-5, so the 
original eigenvalue vector from 84 ROIs is trimmed from length 84 to 
83. 

eigenvectors 84x83 double Eigenvectors corresponding to each eigenvalue, arranged columnwise 

volume_data Nx84 double Grey matter volume measurements for each ROI, with each column 
representing one ROI and each row representing one scan 
session/time point  

icv Nx1 double Intracranial volume, one measurement taken per scan session/time 
point 

time_points Nx1 double Array of decimal values corresponding to the number of years from 
the baseline scan to each scan session 

dx string Subject diagnosis, one of ‘EMCI’, ‘LMCI’, or ‘AD’ 

 
 
3.2 Time Point Scaling 

Subject scan dates were initially logged and provided in mm/dd/yyyy format. For each 

subject the scan date was parsed and converted into MATLAB serial form as defined by the function 

datenum, representing the number of whole and fractional number of days from January 0, 0000 in 

the proleptic ISO calendar (http://www.mathworks.com/help/matlab/ref/datenum.html). Each 

serialized scan date was then normalized via Equation 3.2a. This creates a year-based decimal time 

scale (1 year = 1.0) that can be easily plotted or used as a vector. The baseline scan is set to a value 

of 0, and every subsequent scan becomes a decimal value corresponding to the number of years 

between the scan date and the baseline scan date.  
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Equation 3.2a: Time point normalization for scan dates 
 

!"#$%&' ()*+	-*./ 	− 	!"#$%&'(2*(/34+/	()*+	-*./)
365

 
 
 
3.3 Z-Score Conversion 

The volumetric data obtained from the scans was initially provided in mm3, with values on 

the order of 106 in magnitude. As noted earlier, FreeSurfer longitudinal stream processing minimizes 

intra-subject measurement error over time, but in order to account for inter-patient discrepancies, 

as well as reduce computational complexity, volumetric measurements were converted to z-scores 

prior to all analyses.   

To convert all data points to z-scores, 110 cognitively normal (CN) subjects were used. A 

control mean and standard deviation were calculated for each ROI by averaging each ROI volume at 

each control subject’s individual time points across all subjects. Before averaging, the ROI volumes 

were normalized within each subject by taking each subject’s baseline ROI volume from each scan 

and dividing by the baseline intracranial volume (ICV). ICV is an approximate representation for total 

brain volume and FreeSurfer uses template-based estimation to calculate this, as opposed to simply 

taking a summation of all regions. After normalization, every volume measurement in the analysis 

cohort was then remapped by means of the standard z-score equation given by Equation 3.3a. Here 

mu and sigma represent the mean and standard deviation calculated from all the control 

measurements for a given ROI.  

 
Equation 3.3a: z-score conversion for subject volume measurements 

 
9:;< = 	
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4 Methods 

4.1 Eigen Decomposition 
As a first step to characterizing the diffusion network in the brain, the eigen decomposition 

of each subject’s connectome is considered. Each subject’s connectome is a symmetric square 

matrix having a dimension equal to the number of ROIs, i.e., 84x84. The eigen decomposition of 

each connectome yields a vector of length 84 corresponding to the connectome eigenvalues, and a 

square matrix of dimension 84x84 representing 84 eigenvectors, each of length 84 concatenated 

column-wise into a matrix according to the eigenvalue ordering. Conceptually, the eigenvectors (i.e., 

84x1 vector) represent the orthogonal sub-networks of brain connectivity, and the eigenvalues 

relate to the natural frequencies of the associated connectivity patterns (i.e., eigenvectors) emerging 

on the particular connectome.   

To observe patterns in the eigenvalues across subjects, the eigenvalues for each subject are 

bucketed and visualized via MATLAB’s histogram function. Additionally, sorting each subject’s 

eigenvalues in numerically ascending order and plotting for all subjects gives a more continuous 

representation where the slope and curvature of the line reveal information about the eigenvalue 

distribution across subjects. As an additional step to reduce noise in the results, thresholding is 

applied to zero out any eigenvalues of insignificant but nonzero magnitude. Any eigenvalues below 

the thresholding limit of ε = 10-5 are removed, as well as their corresponding eigenvectors. 

Consequently, patients may have eigenvector matrices that are not square, e.g. 84x83 if one 

eigenvalue is removed. The histogram and plot of sorted eigenvalues are illustrated in Figure 4.1a 

and Figure 4.1b respectively. Each color represents the data set for an individual subject. 
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Figure 4.1a: Histogram of eigenvalues for all subjects             Figure 4.1b: Sorted eigenvalues for all subjects 
 

 

 
4.2 The Network Diffusion Model 

The network diffusion model proposed by Raj et al. (2015) to predict spread and magnitude 

of neurodegeneration progression by attempting to fit subject atrophy to a deterministic 

mathematical model. The basis of the model is of the form described in Equation 4.2a., where the 

disease pattern at time t is essentially characterized as the multiplication of a diffusion “kernel” or 

“filter”, /FGHB, into the baseline volume or baseline atrophy measurements. Here H represents the 

network Laplacian derived from the subject connectome matrix, I a diffusion speed coefficient, X0 

the baseline atrophy pattern, and t the time elapsed since the baseline measurement. Note that in 

the context of the network diffusion model, baseline atrophy refers to the grey matter tissue volume 

observed at the initial study visit, and end-atrophy refers to the grey matter tissue volume from the 

subject’s follow-up scans. 

 
Equation 4.2a: Basic network diffusion model proposed by Raj et al. (2015) 
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Recall the results obtained by Raj et al. (2015) from plotting the model predicted end-atrophy 

against observed actual end-atrophy in Figure 1a. The plot displays a strong, positive linear 

correlation between predicted and observed end-atrophy and adherence to the y=x line of 

symmetry, which represents the line where predicted end-atrophy directly equals observed end-

atrophy. The source code developed by Raj et al. (2015) was dissected to validate the methods used 

in producing these results and revealed the following general algorithm: 

I. For each ROI, take the first and last volume measurements. These are the baseline scan 

volume data and the most recent scan follow-up volume data. This yields 2 84x1 vectors. 

II. Define a range for the model time t, namely a linearly spaced vector from 0 to some 

maximum value.  

III. For each time point t in this vector, do the following: 

A. Calculate a vector according to the network diffusion model equation for disease 

evolution. Expanding the basic network diffusion model equation gives Equation 4.2b 

where disease evolution is then based on the eigen decomposition of the connectome.  

Equation 4.2b: Network diffusion model rewritten in terms of eigenvalues and eigenvectors (Raj et al., 2015) 

 

Here U represents the eigenvector matrix, J represents the eigenvalue vector, and ui, Ki 

represent the ith eigenvector and eigenvalue, respectively. 

B. Correlate the resulting model vector from A. with the end-atrophy vector in I. and store 

the correlation coefficient for point t.  

IV. Pick the point t with maximum correlation coefficient as the end model time, tmax.  

This point, tmax now represents the “time” point that gives the model the best correlation 

between predicted end-atrophy calculation and the true end-atrophy observation. Note the time 
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range of the model is a variable unique for each subject, so the range and spacing of t the model 

operates on is separate from real absolute time. Since tmax defines the model time where the model 

best predicts the observed end-atrophy, tmax can be converted into real time by aligning it to the scan 

date of the end-atrophy scan. Finally, re-substituting it into the network diffusion model equation 

yields the model-predicted end-atrophy measurement itself. The plot from Raj et al. (2015) plots 

exactly this value against the observed end-atrophy. 

 
4.3 Partial Least Squares Regression 

Connectomes and their eigen decomposition give a general map of the diffusion network 

across each subject’s brain. The eigenvectors, also referred to as “eigenmodes” in the context of 

network diffusion, give a sense of how strong the diffusivity and connectivity is between any pair of 

ROIs. In the results published by Raj et al. (2015), each eigenmode is given equal weight in facilitating 

the diffusion (i.e., spread) of the initial atrophy pattern. But research has shown AD spreads across 

the brain’s neural network in a non-uniform fashion and likely spreads unevenly across the neuronal 

pathways of the brain. The distribution of the eigenvalues shown in Figure 4.1a and Figure 4.1b 

further support the theory that not all the network regions across the brain diffuse uniformly, and 

so in addition each eigenmode possessing its own eigenvalue “magnitude,” the AD pathology spread 

may be determined by a separate specific weighting applied across the subject’s eigenmodes.  

Partial least squares regression, or PLS regression, is a statistical method combining 

principal component analysis and multiple regression that can be used to find the underlying 

relationships between two given matrices. PLS regression proves particularly effective in situations 

where the number of “predictors,” or input variables, far exceeds the number of observations. In this 

context the 84 ROI eigenmodes represent the predictor variables, and the longitudinal grey matter 

volumetric measurements for each ROI are the observations.  
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PLS is a linear regression model, so given as input both the end-atrophy observation vector 

and the model-atrophy matrix at a time point t, PLS will find the best linear combination of 

coefficients that relate the model matrix to the end-atrophy measurements. For each instance of 

PLS, the resulting linear combination can then be multiplied into the model matrix and correlated 

with the end-atrophy observation as before to produce a regression coefficient that gives an overall 

metric of predictive strength. Because the model is re-evaluated at each time point t, a separate PLS 

regression is done for every time point t, and tmax is then defined by the time point that produces the 

PLS coefficients having the highest correlation with the true atrophy measurements.  

 
4.4 t-SNE Dimensionality Reduction 

Classification needs to be done in order to better group and characterize the various 

patterns amongst the subject eigenmodes. The t-distributed stochastic neighbor embedding (t-SNE) 

dimensionality reduction technique is used to map each subject’s 84 variable eigenmode vector to a 

2-dimensional space. t-SNE is based off stochastic neighbor embedding and specialities in visualizing 

high-dimensional data in 2D or 3D space (van der Maaten, 2014) [17]. The implementation used here 

was provided as a MATLAB library (https://lvdmaaten.github.io/tsne/).  

t-SNE, unlike PCA or other dimensionality reduction methods, has a non-convex objective 

function. The objective function is minimized using a gradient descent optimization seeded 

randomly with the default perplexity parameter value (van der Maaten, 2014) [17]. 

 
4.5 k-means Classification 

k-means classification is an unsupervised classification method where the number of desired 

clusters k is given, and elements are classified into k clusters based on minimizing Euclidean 

distance from an average centroid or mean of every cluster. 
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5 Analysis and Results 
5.1 Accuracy and Limitations of tmax 

Raj et al. (2015) showed that using the implementation of the diffusion model as described 

in the previous section yields a plot of model versus empirical end-atrophy well defined along the 

line of symmetry L = >	showing that the model, at some scaling defined by tmax, can produce an end-

atrophy value very close to the observed end-atrophy from real subjects. However, after applying 

the identical algorithm to the subject data for this investigation, a histogram of tmax across all 

subjects reveals that all tmax have values at or close to zero. This means that the model values at t=0 

produced the highest correlation with the observed end-atrophy values. Since the model at t=0 is 

identical to the initial observed baseline atrophy (/FGHB filter goes to 1), this means the baseline 

atrophy is closer to the end-point than any calculation produced by the model, giving it effectively 

zero predictive value. Algorithmically speaking, this means the largest model-predicted values 

(smallest t, least atrophy, highest remaining volume) have the highest correlation with the observed-

end atrophy. Thus the kernel is decaying much faster than the true state of the disease and the floor 

of the range of t is most likely too large to produce any useful model. 

In an attempt to mitigate this problem, the range of t is adjusted to lower values. But if the 

range is set too low, tmax then aggregates all at the end of the range, or the maximal value of t. When 

the tmax distribution is skewed towards the maximal value of t it indicates the values of t are too large 

to properly reflect the true diffusion rate across ROIs. Algorithmically speaking, this means the 

smallest model predicted values (largest t, greatest atrophy, lowest remaining volume) have the 

highest correlation with the observed end-atrophy, meaning the model decays too slowly compared 

to the true state of the disease and the max value of t in the given range is still insufficient to provide 

a useful model. 
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It turns out there is no “sweet spot” for the range of t in terms of the pre-existing out-of-the-

box implementation. Since finding an accurate range for t is critical to the predictive accuracy of the 

model, the plots presented in Raj et al. (2015) do not accurately reflect the power of the model they 

imply, at least not in a straightforward manner. A primary goal then becomes modifying the model 

in attempt to correct the tmax distribution. The mathematical equation for describing the disease 

atrophy is reconsidered and partial least squares regression is applied to each subject’s 

eigenvectors.  

 
5.2 Reformulating the Network Diffusion Model 

The atrophy seen from the MRI data, i.e. the reduction in grey matter volume per ROI, is the 

primary measurement upon which the model results are based. As noted previously, the simulation 

provided by Raj et al. (2015) was initially coded with the mathematical equation for the AD disease 

pattern described in Equation 4.2b, but that equation does not account for accumulation of the 

disease. The input data in this context, however, is in terms of volumetric measurements, which 

needs to be interpreted exactly as pathological accumulation. So taking an integral over the basic 

original equation gives a formulation for pathology accumulation, and thus provides the proper 

equation for describing the model-predicted atrophy and for the input subject data. Equation 5.2a 

shows the derivation of the reformulated equation. 

 
Equation 5.2a: Network diffusion model in terms of accumulated pathology or volume loss (atrophy) (Raj et al., 2015)
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Although the above derivation is published in the results of Raj et al. (2015), the code used to 

generate the published results relies only on the initial disease progression equation described in 

Equation 4.2b, perhaps due to the format of input subject data and for purposes of providing an 

initial simplified proof-of-concept. Since this study uses multi-year longitudinal MRI atrophy 

measurements, Equation 5.2a is substituted as the basis for all further analysis. 

Modification of the network diffusion equation alone proves insufficient to shift tmax away 

from zero, meaning that there are still significant factors in the disease spread behavior the model 

still hasn’t accounted for. After modifying the network diffusion equation to Equation 5.2a and 

incorporating PLS into the tmax selection algorithm, the tmax distribution becomes much more 

centralized and neither skewed towards zero or the end of the range of t. This makes for a much 

stronger argument for the power and accuracy of network diffusion model because the range of t 

reasonably reflects the true rate of atrophy displayed by the empirical data. tmax is no longer 

inaccurately skewed towards zero or the maximum value of t meaning the model can now produce 

a correlation that surpasses the bias of baseline 

atrophy and end-atrophy measurements. Figure 

5.2b shows the distribution of tmax after 

implementing the new diffusion model equation and 

PLS regression. 

 
 
Figure 5.2b: Histogram of tmax after model improvements 
 
 

5.3 Principal Eigenmodes 
Previous evaluation of subject eigenvalue histograms showed a small number of eigenvalues 

having small magnitude, and a majority of eigenvalues having large magnitudes. Factoring in the 
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kernel of the network diffusion model /FMN, the model implies that a large number of eigenvalues 

diffuse very quickly (large lambda, faster decay), and a small number of eigenvalues diffuse slower 

over time (small lambda, slower decay) and so end up dominating the diffusion process. 

Consequently, if this hypothesized behavior stands true then the histogram of the optimized (tmax) 

PLS coefficients across all subjects should reflect this. The majority of PLS coefficients should remain 

similar in value, with only a few that are outliers, indicating the dominant eigenmodes. To confirm 

this, for each subject the PLS coefficients for the model at tmax are converted to z-scores and 

absolute values of the z-scores across all subjects are histogrammed, with the resulting visualization 

shown in Figure 5.3a. 

 
Figure 5.3a: Histogram of z-scored PLS coefficient 
magnitude across all analyzed subjects 

 

The PLS coefficient histogram 

shows a distribution that supports the 

implications of the model and eigenvalue 

distribution. The distribution follows an 

inverse power law relationship, where the 

PLS coefficient weights are heavily 

concentrated in only a few eigenmodes, if 

not a single one. Because these “principal” eigenmodes dominate the spread of the disease the 

scope of any further analysis will be limited to these principal eigenmodes and removes the other 

eigenmodes from consideration. 

As an additional point of analysis, the distribution of principal eigenmodes as a function of 

eigenvalue index is evaluated. For each subject, the principal eigenmode determined by PLS 

corresponds to an eigenvalue. Recall from Table 3.1a that for each subject the eigenvalues are 
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stored in sorted order, so for each subject the rank of the principal eigenmode is collected and the 

indices of the principal eigenmodes across all subjects are histogrammed. Examining Figure 5.3b 

almost half of the study subjects had a 

principal eigenmode corresponding to the 

first or smallest eigenvalue. This supports 

the intuition behind the network diffusion 

model that smaller eigenvalues tend to 

dominate the pathology spread.  

 
Figure 5.3b: Histogram of the indices for the principal 

eigenmodes across all analyzed subjects 
 

5.4 ROI-based Inspection 
In the context of the network diffusion model, the principal eigenmodes represent the main 

subnetworks by which AD pathology progresses. Having identified these, it becomes important to 

characterize these subnetworks, looking for patterns and consistencies in the dominant eigenmodes 

across subjects. Similarities across these networks may indicate pathways of disease preference, or 

groupings of eigenmodes may be linked to disease stage or subject-specific similarities and 

differences.  

As an initial step in characterizing the principal eigenmodes, the principal eigenmodes for all 

subjects are plotted together, yielding the “spectra” seen in Figure 5.4a. Each colored line represents 

the principal eigenmode for one subject, with the normalized value of each ROI plotted against the 

ROI index. This visualization yields little information, as the eigenmodes seem to have no relation to 

each other, appearing much like noise or completely independent variables.  
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Figure 5.4a: Plot of normalized principal eigenmodes 
across all subjects 
          

However, if the ROIs are grouped 

by lobular region and then plotted, much 

more distinct patterns are noticeable. 

Figures 5.4b and 5.4c show only the ROIs 

of the principal eigenmodes located in the 

frontal and temporal regions, respectively. 

Realizing these patterns within each ROI is useful in the sense that it confirms there are similarities 

between the principal eigenmodes and motivates the need for classification or clustering. However, 

because the nature of the disease spreads from one region to another, the eigenmodes still require 

to be classified in their entirety, so the ROI-based inspection is limited to this point. 

 
Figures 5.4b & 5.4c (left & right): Principal eigenmodes limited to ROIs located in the frontal (b) and temporal (c) lobes. 

 
5.5 Dimensionality Reduction & Classification 

In order to classify the principal eigenmodes, the dimensionality of the eigenmodes needs to 

be reduced. The data consists of 84 ROIs which effectively represents 84 dimensions but the 
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number of subjects is less than the number of ROIs, namely 53, so the dimensionality is actually 

limited at 53. The output of t-SNE in 2D space can be seen in Figure 5.5a. 

After dimensionality reduction, k-means clustering is used to classify the 2D eigenmode 

vector data. The cluster number k was not optimized but cluster distinction diminished significantly 

after k=3. Figures 5.5b and 5.5c show the output clusters and centroids. The resulting clusters show 

no apparent correlation with progression or stage of the disease - each cluster had similar 

proportions of EMCI, LMCI, and AD subjects. Note for Figures 5.5a, 5.5b, and 5.5c, the axes are 

unitless and simply serve to represent the new n (where n=2,3) dimensional space the data has been 

mapped onto. 
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Figure 5.5a (top left): Principal eigenmodes plotted in 2D space after running t-SNE algorithm 
Figure 5.5b (top right): Output of k-means clustering on t-SNE-reduced eigenmodes with k=3 in 2D  
Figure 5.5c (bottom): Output of k-means clustering on t-SNE-reduced eigenmodes with k=3 in 3D  
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5.6 Anatomical Mapping 
Having applied dimensionality reduction followed by k-means clustering, each principal 

eigenmode now belongs in one of three clusters. Intuitively, each cluster of principal eigenmodes 

represents a specific subnetwork, so the number of clusters corresponds to the number of 

subnetworks. The number of subnetworks identified here may be limited by the number of subjects, 

number of ROIs, number of time points, and precision of the various tools in the workflow used to 

obtain the volumetric measurements, including MRI resolution and accuracy of longitudinal 

processing. Plotting the original 84 principal eigenvectors (each of 84x1 dimension) by their new 

cluster labels reveals clear characteristic patterns across the ROIs and thus a distinct shape for each 

subnetwork. In each of these plots in Figures 5.6a, 5.6b, and 5.6c, individual lines represent single 

subject principal eigenmodes.  

Also included with each respective plot in Figures 5.6a, 5.6b, and 5.6c is the anatomical 

mapping of each eigenmode cluster onto the brain. For each cluster, the principal eigenmodes 

belonging to that cluster were averaged to create a single eigenvector. Each value in the eigenvector 

corresponds to an ROI and each ROI has a known center of mass coordinate position with respect to 

a map of the brain. For each brain image, the size of the spheres corresponds to magnitude of the 

eigenmode at a given ROI, and the spheres are color-coded by ROI anatomical region. Frontal, 

occipital, parietal, subcortical, and temporal map to the integer range [1-5] respectively. These 

anatomical maps were generated with BrainNet Viewer 1.3 [18]. 

Looking at the lobular prominence for each principal eigenmode group, the results remain in 

line with previously theorized AD spread pattern. The subnetwork represented by cluster 1 (Figure 

5.6a) is dominated by frontotemporal brain connections and the subnetwork represented by cluster 

2 (Figure 5.6b) is localized mainly in the occipital lobe and medial temporal regions. This is in line 

with the expected afflicted areas in full-blown AD. Cluster 3 is more diverse, revealing a subnetwork 
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that spans all of the cortical and subcortical regions, with relative sparing of parietal and motor 

cortices. There may be more underlying subnetworks within the third cluster that are not definitively 

characterizable due to the limitations mentioned earlier.  
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Figures 5.6a, 5.6b, & 5.6c (top, middle & bottom): 3D and anatomical plots of principal eigenmode groups defined by k-
means clusters. The left side of each figure is a 3D line plot of principal eigenmode values with each line representing a single 
subject. The right side shows the average of these principal eigenmode groups, mapped onto brain anatomy. Colors on the 
left-side plots represent eigenmode magnitude while color range [1-5] on the right-side brain figures represent the different 
lobular regions of the ROIs - frontal, occipital, parietal, subcortical, and temporal, respectively. 
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6 Summary & Conclusions 
In this study a proposed model for the spread of Alzheimer’s disease pathology is evaluated 

and further researched upon. The “network diffusion” model, published by Raj et al. (2015), relies on 

both a mathematical foundation based on heat diffusion as well the structural connectivity 

information for a given patient. This paper applies related methods in order to help characterize the 

subnetworks that influence AD progression and neural degeneration. Using MRI data from the ADNI 

project, a cohort of 53 patients is analyzed and dominating networks related to the disease 

pathology are extracted. Additionally, the limitations of previously published results are evaluated 

and improved upon.  

The response of the network diffusion model is determined in part by the baseline grey 

matter volume measurements and the eigen decomposition of subject connectomes. Applying PLS 

to this response allows the eigenmodes or subnetworks of the subject to be identified. The notion of 

principal eigenmodes, that only one or a few eigenmodes dominate the spread of the disease, is 

justified by evaluating the histograms of both the PLS coefficients and the PLS eigenvalue 

indices.  These principal eigenmodes or subnetworks represent those pathways most favored by the 

disease.  

ROI-based evaluation strongly supports the presence of patterns amongst the principal 

eigenmodes. In order to further characterize these subnetworks, the eigenmodes need to be 

classified or categorized by some means. Employing a combination of dimensionality reduction 

using t-SNE and classification via k-means, for the cohort considered, three strongly distinct clusters 

of eigenmode patterns are identified. When mapped onto the anatomical regions of the brain, the 

regions these subnetworks dominate coincide with the areas observed to be heavily affected by 

severe AD. 
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6.1 Limitations & Future Work 
The predictive ability of a diffusion-model-based approach and the mathematical analysis 

showed here has yet to be fully evaluated. The number of subjects investigated was limited due to 

lack of longitudinal data. Those that did possess longitudinal data had varying sets of time points, 

and even though software correction and post-processing were used, variations between scan 

sessions, as well as aggregation of computational error from image processing may have polluted 

the input data to a certain extent. The number of ROIs considered also influenced the granularity of 

the results, and PLS, t-SNE, and k-means all have various counterpart algorithms that may have 

affected the observed outcome.  

Nevertheless, there is a clear path for future work. There is a strong case for the presence of 

subnetworks in AD disease progression and further break down and extraction of these 

subnetworks is a natural continuation of this investigation. Here only grey matter volume 

measurements are considered; a natural extension would include multimodal imaging measures to 

capture in further detail both the structural and functional brain changes and spread in AD 

spectrum. The results here are limited by the precision of how the fiber tracts and connections are 

represented – an in-depth derivation and analysis of individual subject connectome data is 

warranted.  

Another important question that arises is how these subnetworks relate to patient 

phenotype and other patient-specific characteristics. None of the subject characteristics other than 

the brain imaging data were considered (e.g. gender, age, education, genotype, depressive 

symptoms, cardiovascular health, etc.). Furthermore, the implications of identifying subnetworks for 

AD may find themselves generalizable to other neurodegenerative diseases. When these critical 

factors can be combined to form a comprehensive model, the ultimate end goal would be to build a 

classifier for disease state and progression given any patient scan and connectome data. 
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