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Overview

This dissertation treats three different methods to extract information from the etheroge-
neous data sources. This is a common problem in applications, as motivated by the examples
presented in each Chapter. This sources can be different in nature.

In the field of design of experiment is important to integrate external source of evidence
as well as data from previous experiments. Each piece of evidence we collect can help
us, if appropriately used, to shed light on the phenomenon of interest. This matter is
discussed in the first Chapter were a new method to to construct adaptive experiments is
presented. Adaptive trial designs can considerably improve upon traditional designs, by
modifying design aspects of the ongoing trial, like early stopping, adding, or dropping doses,
or changing the sample size. In the present work, we propose a two-stage Bayesian adaptive
design for a Phase IIb study aimed at selecting the lowest effective dose for Phase III. In
this setting, efcacy has been proved for a high dose in a Phase IIa proof-of-concept study,
but the existence of a lower but still effective dose is investigated before the scheduled Phase
III starts. In the rst stage, we randomize patients to placebo, maximal tolerated dose, and
one or more additional doses within the dose range. Based on an interim analysis, we either
stop the study for futility or success or continue the study to the second stage, where newly
recruited patients are allocated to placebo, some fairly high dose, and one additional dose
chosen based on interim data. At the interim analysis, we use the criteria based on the
predictive probability of success to decide on whether to stop or to continue the trial and,
in the latter case, which dose to select for the second stage. Finally, we will select a dose
as lowest effective dose for Phase III either at the end of the rst stage or at the end of the
second stage. We evaluate the operating characteristics of the procedure via simulations
and present the results for several scenarios, comparing the performance of the proposed
procedure to those of the non-adaptive design.

The context of the second Chapter deals with the common setting in which the outcome
of interest is too hard or expensive to measure or too slow to observe. In this case we might
be able to measure another variable which can then be used as a surrogate for the outcome
of interest. The development of novel therapies in multiple sclerosis (MS) is one area where
a range of surrogate outcomes are used in various stages of clinical research. While the aim
of treatments in MS is to prevent disability, a clinical trial for evaluating a drugs effect on
disability progression would require a large sample of patients with many years of follow-
up. The early stage of MS is characterized by relapses. To reduce study size and duration,
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clinical relapses are accepted as primary endpoints in phase III trials. For phase II studies, the
primary outcomes are typically lesion counts based on Magnetic Resonance Imaging (MRI),
as these are considerably more sensitive than clinical measures for detecting MS activity.
Recently, Sormani and colleagues in “Surrogate endpoints for EDSS worsening in multiple
sclerosis” provided a systematic review, and used weighted regression analyses to examine
the role of either MRI lesions or relapses as trial level surrogate outcomes for disability.
We build on this work by developing a Bayesian three-level model, accommodating the two
surrogates and the disability endpoint, and properly taking into account that treatment
effects are estimated with errors. Specifically, a combination of treatment effects based on
MRI lesion count outcomes and clinical relapse, both expressed on the log risk ratio scale,
were used to develop a study level surrogate outcome model for the corresponding treatment
effects based on disability progression. While the primary aim for developing this model was
to support decision making in drug development, the proposed model may also be considered
for future validation.

The third Chapter deals with the problem of finding interpretable patterns in the massive
amount of data collected in fields such as genomics and epidemiology is increasingly becoming
a challenge. We present a new method of histogram regression ideally suitable for high
dimensional data. Being a form of histogram regression, the algorithm produces partitions
of the covariate space that are selected to predict an outcome minimizing some loss function.
The partitions are constructed using a clustering algorithm that groups together observations
and constructs a hierarchical partition of the space. The hierarchy is then explored to find
a tradeoff between prediction accuracy and complexity, as in common tree methods. This
results in sometimes relatively interpretable groups of observations defined by having similar
values of covariates. The class of learners proposed in this paper extends the class of tree
based methods. This procedure is illustrated by simulations from which we can see how this
method compares to CART. A feature selection heuristic is also developed to improve the
performances and reduce the noise. Software is made available in the R package HOPSLAM
(HOpach-Pam Supervised Learning AlgorithM) to make this methodology easily accessible.

Further detail about the algorithms, the implementation of the methods and further
results and data are included in the Appendices.
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Chapter 1

A Bayesian Adaptive Dose Selection
Procedure with an Overdispersed
Count Endpoint

1.1 Introduction

In clinical drug development, a sequence of studies is carried out to identify an efficacious and
safe dose of the investigational drug. The different phases of clinical development have a focus
on either learning or confirming Sheiner (1997), and the development process in a general
medicine (non-oncology) setting can be described as follows. Clinical development typically
starts in Phase I with studies to find the maximal tolerated dose in healthy volunteers.
In Phase IIa, a Proof-of-Concept (PoC) study aims at confirming efficacy in patients, by
comparing some fairly high dose against placebo or active comparator (but placebo will be
assumed for now on for the sake of simplicity). If the PoC is successful, full development
starts with Phase IIb, where several doses of the investigational drug are evaluated, with
the aim to select the lowest effective dose for the confirmatory Phase III. In Phase III, the
selected dose is then compared against placebo, confirming its efficacy and safety.

We focus here on the design of Phase IIb studies, and propose a two-stage Bayesian
adaptive design to select the lowest effective dose for Phase III, using the results of the
previous PoC study. A key assumption we will make is that, in our setting, efficacy has
been proved for a high dose, but the existence of a lower but still effective dose has to be
investigated before the scheduled Phase III starts.

Usual Phase IIb studies are parallel group studies, where patients are randomized to
placebo and three to five doses of the investigational drug. These traditional designs do not
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make the best use of patients. For example, some of the doses included in the trial may
be equivalent to placebo, and it would be better to allocate patients to other doses. As
an alternative, adaptive trial designs can considerably improve upon traditional designs, by
modifying design aspects of the ongoing trial, such as early stopping, adding or dropping
doses, or changing the sample size Bornkamp et al. (2007) Berry et al. (2010), Berry (2006).
We consider here a two-stage adaptive design where in the first stage patients are randomized
to placebo, some fairly high dose, and one or more additional doses within the dose range.
Based on an interim analysis, the study is either stopped for futility, stopped for success,
or enters the second stage. In the second stage, newly recruited patients are allocated to
placebo, the highest dose considered, and one additional dose chosen on the basis of interim
data. At the end of the trial, all available data are used to select the lowest effective dose.

In confirmatory adaptive Phase III trials, regulatory constraints such as strict control of
type I error limit the possibility for adaptations Hung et al. (2011), U.S. Food and Drug
Administration (2010), CHMP (2007). Hence in confirmatory adaptive trials, frequentist
procedures are typically used for the final statistical analysis Schmidli et al. (2006), Bretz
et al. (2009), and Bayesian methods are mainly used to support interim decision making
Schmidli et al. (2007) Brannath et al. (2009). In adaptive phase IIb trials, Bayesian methods
are commonly used for the final evaluation as well Berry et al. (2002) Grieve and Krams
(2005). In our two-stage Bayesian adaptive design, we assume a monotone dose-response
relationship, use informative priors for the placebo and the highest dose investigated based
on the results of the PoC trial, and derive the posterior distribution for the model parameters
at interim.

At the interim analysis, criteria based on the predictive distribution are used to decide
whether to stop or to continue the trial, and, in the latter case, which dose to select for the
second stage.

In all cases, enough evidence about the efficacy of the highest dose of the drug has been
accrued in the previous phase IIA proof-of-concept study and a Phase III is certainly going
to be carried out. However the scope of the study is to investigate the possibility of sending
a better dose to Phase III. If this second Phase IIb does not give a clear result the highest
dose will typically be used in Phase III.

In Section 2, the adaptive trial is presented. First, a negative binomial model for the count
endpoint is introduced, and the main features of the adaptive design are briefly discussed.
Then a semi-parametric model used to describe the monotone dose-response relationship
is presented, and the posterior distribution of the model parameters is derived. Finally,
the criteria for the Least Effective Dose (LED) are defined, and the adaptation criteria are
discussed. In Section 3, the operating characteristics of the adaptive design are evaluated
by simulations. The Chapter closes with a brief discussion on implications and possible
extensions.
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1.2 A Phase II trial with a Count Endpoint

1.2.1 Overdispersed Count Endpoint

In several disease areas, the primary endpoint in phase II trials is a count endpoint. For
example, in the development of investigational drugs against multiple sclerosis, the primary
endpoint in phase II is the number of lesions Friede and Schmidli (2010a). Other diseases
where count endpoints are used include gout (number of flares) Akacha and Benda (2010)
epilepsy (number of seizures) Molenberghs et al. (2007) and COPD Friede and Schmidli
(2010c).

A Poisson distribution may not fit count endpoints, as the variance of the counts is some-
times substantially larger than the mean. A commonly used model to describe overdispersed
count data is the negative binomial model. This model can often adequately describe count
data observed in clinical trials (Keene et al. (2007a), van den Elskamp et al. (2009a), Cook
et al. (2009)).

The motivating example for this work comes from research in Multiple sclerosis (MS),
a chronic autoimmune disease of the central nervous system that causes inflammation and
neurodegeneration. About 2.5 million people worldwide are affected by MS World Health
Organization (2004), with 50% of patients severely disabled and not ambulatory 20 years
after onset.

Phase II trials in MS patients with new investigational drugs are typically randomized
placebo-controlled parallel group studies with a duration of around 6 months Friede and
Schmidli (2010a). The primary endpoint is the number of lesions in the brain, measured
by Magnetic Resonance Imaging (MRI). The distribution of this count endpoint can not be
described by a Poisson distribution, as the variance is typically far larger than the mean. For
example, in a recent Phase II trial Kappos et al. (2006), the average number of lesions in the
placebo group was 15 and the variance was 500. However, a negative binomial distribution
can adequately describe the distribution of the number of lesions Sormani et al. (2009)
Sormani et al. (2001b) van den Elskamp et al. (2009a) Mercier et al. (2009).

The negative binomial distribution can be defined as a mixture of Poisson distributions,
where the means are from a gamma distribution with shape parameter α and inverse scale
parameter β. Denoting the number of events by Y , we write Y ∼ dnbinom(α, β).

The expected value of Y is µ = α/β and its variance is µ · (1 + µ/α). As α and β
increase, with µ being constant, the overdispersion factor (1 + µ/α) goes to 1, and the
negative binomial distribution approaches the Poisson distribution.

The negative binomial model will be used in the following to describe the distribution of
the number of events for a given dose. Following a Bayesian approach α and β will be given
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prior distributions.

1.2.2 Adaptive Trial Design

We consider the design of a phase IIb clinical trial with the aim to select the lowest effective
dose (LED) for phase III. Such a clinical trial typically includes a control group (placebo), the
maximum tolerated dose, and several intermediate doses. For ease of presentation, we discuss
here the situation where three intermediate doses are available, although the methodology
can easily be generalized.

There are various ways to define what constitutes the lowest effective dose, and this
requires medical expertise. We consider here the lowest effective dose as the dose which is,
in terms of mean number of lesions, better than placebo by at least 50%, and at most 20%
worse than the highest dose, for which efficacy has already been proven in the previous phase
IIa study. The percentages used here were considered to be appropriate for our case, but
will need to be changed in other situations. We emphasize again that our discussion will be
conducted in general terms, but using specific details of our case study.

Traditionally, dose selection trials use a fixed design, i.e. patients are allocated to the
different treatment groups and at the end of the trial a dose is selected. As an alternative, we
propose here a two-stage adaptive clinical trial where in the first stage patients are allocated
to placebo (dose 1 from now on), the highest dose under investigation (dose 5 from now
on), and 1 to 3 intermediate doses (doses 2 to 4). At the interim analysis, a decision is
made to either stop the study for success/futility, or to continue. If the trial continues,
then additional patients are randomized to dose 1, dose 5, and an additional intermediate
dose chosen at the interim analysis. The interim decision making will be based on Bayesian
criteria, as discussed in detail below (Section 2.5). The evaluation of the criteria will be
based on a semi-parametric dose-response model described in Section 2.3. Prior information
from the previous phase IIa trial is also used (Section 2.4).

1.2.3 Bayesian Model Averaging and Monotone Dose-Response
Model

Based on biological and pharmacological knowledge, one can often assume that the dose-
response relationship is monotone. A commonly used parametric model to describe monotone
dose-response curves is the sigmoid Emax model Tan et al. (2011). However, when only few
doses (3-5) are used, such a model is often difficult to fit. We propose instead a semipara-
metric model based on the following monotonicity constraints between the mean effects of
the dose groups:

µ1 ≥ µ2 ≥ µ3 ≥ µ4 ≥ µ5
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where µj = E[Yi,j] and Yi,j is the number of events for patient i in dose group j. We
assume that at least one inequality is strict (i.e. there is at least one > sign in place of
≥) and we adopt a Bayesian Model Averaging (BMA) approach (see, for example, Hoeting
et al. (1999)). Within the BMA approach we put a prior over each model, represented by
a different combination of equalities and inequalities, and use Markov Chain Monte Carlo
(MCMC) methods to simulate from the posterior distributions of interest.

Formally, BMA is based on three components:

1. A set of M mutually exclusive modelsM = {M1, ...,MM}. In each modelMm, m =
1, ...,M a probability mass function f(y|θ(m)Mm) is specified for Y , up to the unknown
parameter θ(m);

2. a prior density on θ(m) for each model Mm, denoted by g(θ(m)|Mm);

3. a vector of prior model probabilities π = (π1, ..., πM), assigned to the collectionM, with
πm = P(Mm), m = 1, ..., n. As a default, a uniform discrete distribution πm = 1/n
for all m may be assumed, and we will do so.

Combining the first two components, the marginal likelihood for each model is given by

p(y|Mm) =

∫
f
(
y|θ(m),Mm

)
g
(
θ(m)|Mm

)
dθ(m).

The posterior probability of the model is then given by:

P(Mm|y) =
p(y|Mm)P(Mm)∑
k p(y|Mk)P(Mk)

The posterior model probabilities can be combined to produce model averaged predictions
for any event of interest:

P(event|y) =
M∑
m=1

P(event|Mm, y)P(Mm|y)

where y are the observed data. For a more complete introduction of this technique and
for some bibliographical references see Hoeting et al. (1999) and Ohlssen and Racine (sion),
where this approach is applied to continuous and binary outcomes for model selection in the
framework of studies in early clinical development.

Notice how we use BMA as a semi-parametric modeling tool to base our curve-free
inference upon, not unlike Yin and Yuan (2009). We are therefore not interested in the
posterior model probabilities as we would be if we were dealing with a model finding question.
The choice of the ensemble of models we are averaging over is also functional only to this
purpose.
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1.2.4 Case Study: BMA in MS practice

The choice of the model space has to be wide enough to provide generality and strength
to the inference, but has to exclude those models which, being biologically unlikely, may
misguide our analysis. Pharmacological knowledge may help to rule out some models. For
example, in the case study considered here the following models

• µ1 ≥ µ2 ≥ µ3 = µ4 ≥ µ5

• µ1 = µ2 ≥ µ3 = µ4 ≥ µ5

• µ1 ≥ µ2 = µ3 ≥ µ4 ≥ µ5

• µ1 ≥ µ2 = µ3 = µ4 ≥ µ5

i.e. the ones which imply a flat region in the middle of the dose-response curve, are to be
excluded as being biologically unlikely. The null model

• µ1 = µ2 = µ3 = µ4 = µ5

is ruled out as the previous Phase IIa study was successful. The models assumed to make
up the model space are the remaining ones:

M1: µ1 > µ2 > µ3 > µ4 > µ5

M2: µ1 = µ2 > µ3 > µ4 > µ5

M3: µ1 > µ2 > µ3 > µ4 = µ5

M4: µ1 > µ2 > µ3 = µ4 = µ5

M5: µ1 = µ2 = µ3 > µ4 > µ5

M6: µ1 = µ2 > µ3 > µ4 = µ5

M7: µ1 = µ2 = µ3 = µ4 > µ5

M8: µ1 = µ2 > µ3 = µ4 = µ5

M9: µ1 = µ2 = µ3 > µ4 = µ5

M10: µ1 > µ2 = µ3 = µ4 = µ5
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Since BMA is used here as a tool and not as an end, we focus on uniform prior assessments.
This working choice seems to go well with our intention to smooth over all plausible models.
The Bayesian model according to the BMA approach can now be fully specified as follows,
for i = 1, ..., nj, j = 1, ..., 5 and m = 1, ..., 10:

• Yij given λij is Poisson distributed: Yij ∼ dpois(λij);

• λij is gamma distributed: λij ∼ dgamma(αj, β), so that µj = αj/β and Yij is negative-
binomial distributed. The scale parameter β is assumed identical across dose groups
to reach identifiability;

• log(β) ∼ N (0, σ2
β), which corresponds to β around one on average. The scale parameter

β is assumed identical across dose groups to reach identifiability; the αs are then
proportional to the mean number of lesions;

• the prior distribution of the α’s is given in a series of steps, starting from log(α1) ∼
N (να, σ

2
α) and proceding as described below.

To model the monotonicity constraint under them-th model and to complete the specification
of the distribution of the vector α = (α1, α2, α3, α4, α5) we introduce the jump variables
δk,m = log(αk)− log(αk+1) and we put a truncated normal prior on

δsum =
4∑

k=1

δk,m = log(α1)− log(α5) ∼ T N (µsum, σ
2
sum), m = 1, ..., 10.

the maximum differential effect compared to Dose 1. T N means truncated normal, a normal
distribution folded around its mean. More precisely, if Z ∼ N (0, 1) then X ∼ T N (ν, τ 2) iff
X = ν + τ |Z|. The different models are subject to the following constraint:

log(α1) ≥︸︷︷︸
δ1,m

log(α2) ≥︸︷︷︸
δ2,m

log(α3) ≥︸︷︷︸
δ3,m

log(α4) ≥︸︷︷︸
δ4,m

log(α5).

which allows us, in cases in which αk > αk+1, to define δk,m = log(αk+1)− log(αk) > 0

This means that the number of δ’s depends on the model: for a given model, the α
vector follows a continuous multivariate distribution the support of which is a subspace of
dimension less than or equal to five, depending on the chosen model.

The different configurations of the δ’s are summarized in the following jump×model
matrix:

∆ =


δ1,1 0 δ1,3 δ1,4 0 0 0 0 0 δ1,10

δ2,1 δ2,2 δ2,3 δ2,4 0 δ2,6 0 δ2,8 0 0
δ3,1 δ3,2 δ3,3 0 δ3,5 δ3,6 0 0 δ3,9 0
δ4,1 δ4,2 0 0 δ4,5 0 δ4,7 0 0 0

 (1.1)
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where each column represents a different model, for example

M5 : µ1 = µ2 = µ3 > µ4 > µ5 ⇒ log(α1) = log(α2) = log(α3) >︸︷︷︸
δ3,5

log(α4) >︸︷︷︸
δ4,5

log(α5).

For each model (i.e. for each column) the overall treatment effect δsum is partitioned along
each column using a ”stick-breaking” construction involving independent uniform random
variables. For example, consider model 2, let sk,2 ∼ U(0, 1), k = 1, 2 and let s(1),2 ≤ s(2),2

be their order statistics: the prior for the first change point is δ2,2 = s(1),2 · δsum, while for
the second one we have δ3,2 = (s(2),2 − s(1),2) · δsum and for the third and last one we have
δ4,2 = (1− s(2),2) · δsum.

After putting a prior on the collection of models, the stick breaking construction allows us
to average over all of them without any parametric assumption on the dose-response curve.

1.2.5 Prior Information Based on Historical Trials

Before starting the phase IIb dose finding study, typically a phase IIa study comparing a
very high tolerated dose with placebo is available. Such a study can provide relevant prior
information on the effect of the drug at the maximal tolerated dose. The study also provides
information on the placebo effect, and there may be further historical information on the
placebo effect from other clinical trials. The historical data can then be used to derive
prior information for the phase IIb studies, for example using the meta-analytic predictive
approach Neuenschwander et al. (2010) Gsteiger et al. (2013).

Based on the previous phase IIa trial, the prior was defined by chosing the hyperparam-
eters as follows:

να = 0.1 σ2
α = 0.49 σ2

β = 0.64 µsum = 1.2 σ2
sum = 0.81

Putting a prior on the collection of models allows us to average the dose-response curve over
all models without strong parametric assumptions. Notice how the variances are given on
the logarithmic scale and become then much larger when exponentiated.

1.2.6 Design Issues and Decision Rules

The planned study is parallel-arm, placebo-controlled, highest dose-controlled with one in-
terim look after all enrolled patients complete three months treatment. Based on interim
data, a decision will be made whether to stop for success, to stop for futility, or to proceed
further. The decision will depend on the Predictive Probabilities for the several alternative
post-interim dose selections.
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Define the following criteria of acceptability of the dose d, to be used both at interim
and at the end of the study:

Exclusion criterion P{µd/µ1 ≥ 0.7|data} ≥ 50%, i.e. the efficacy of dose d is not better
than placebo to a clinically relevant extent.

Efficacy criterion is the intersection of the following events:

(i) P{µd/µ1 < 1|data} ≥ 95%, i.e. with very high probability, we require dose d to be
superior to dose 1.

(ii) max
{

P{µd/µ1 ≤ 0.5|data},P{µd/µ5 ≤ 1.2|data}
}
≥ 50%, i.e., we require the

dose to be either at least 50% better than Dose 1, or at most 20% worse than
Dose 5.

The reason for setting the second condition is to take into account the possibility that even
the effect of Dose 5, due to between-study variation, is close to Dose 1, hence reducing the
expected effects of the three doses.

We want to explore the different strategies and prune out those we know to be not-
optimal, as illustrated in Figure 1.1. After an initial allocation ratio 1 : a : b : c : 1 to the
five doses, during the interim evaluation, doses 2, 3 and 4 are tested for futility according to
the Exclusion criterion. This allows us to prune out those branches that will not lead to a
candidate dose and allows us to reduce the space of decision. After dropping the futile doses
we proceed as follows:

• if dose 4 has been dropped, stop the trial for futility since, due to the monotonicity
constraints, also doses 2 and 3 have to be dropped and we recommend dose 5 for Phase
III. We know in fact that the effect of dose 4 is an upper bound for the effects of the
other doses, so, if this branch has to be pruned because it is sub optimal, so will be
the others.

• if dose 2 meets the Efficacy criterion, stop for success: dose 2 is declared to be the
LED to be recommended for Phase III, in fact the effect of dose 2 is a lower bound
for the effects of the other doses, hence the other branches will not be superior when
penalizing for the increase in the dosage;

• otherwise we will apply the following branch and bound procedure: let j be the lowest
dose that has not been dropped, let Aj denote the allocation which contemplates Dose
j for second stage in addition to Dose 1 and Dose 5. Then, either the Predictive
Probability of a dose to be effective, is greater or equal than a prespecified threshold
t, or we prune this branch out of the decision tree and we repeat the procedure with
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Figure 1.1: Decision Tree for the LED. Starting from the initial node we move to the Interim
Decisions of either stopping the study for Futility or Success or allocating to the most
promising dose, from there we proceed to the final analysis which is either going to claim
one of the doses is LED, to be used in Phase III, or to assess that the LED does not exist
( ˆLED@), in which case d5 is going to be used in Phase III. Selecting a dose at Interim does
not exclude the other doses to be claimed LED. For example a possible path is highlighted
in the above tree in which we select dose 3 for the Interim phase, dose 2 being borderline,
but enough evidence is accrued by the end of the study to pronounce the latter LED.

dose j + 1, if this is different from 5, otherwise the study stops and we recommend
Dose 5 for Phase III. If the study continues the same criteria will be used in the end
for the final analysis: Doses 2, 3, 4 are tested for futility and the lowest not dropped
dose which meets the Efficacy criterion is chosen as the LED.

At the end of the study the same criteria will be used for the final analysis: those among
Doses 2, 3 and 4 not discarded at interim will be tested for futility and the lowest not
dropped dose which will meet the Efficacy criterion will be chosen as the LED. Notice how
the successful dose in the end can be different from the selected dose at interim.

1.2.7 Predictive Probability

For the ease of notation let us define:

Y = {Past Data} (in our case, data available at interim );

Y ∗ = {Future Data} (in our case, post interim data).

A general definition of Predictive Probability (PP) of success is

PP = P{Success|Y } = P{Y ∗ ∈ YS|Y } =

∫
YS
p(Y ∗|Y )dY ∗ (1.2)

for some region YS which defines success. For example, “Success” can be defined as follows:

{Success} = YS = {Y ∗ : P{θ ∈ ΘE|Y, Y ∗} > c}

for some efficacy domain ΘE and some threshold c, where θ has the familiar meaning of
parameter vector. The predictive quantity (1.2) then becomes

PP = P{Success|Y } =

∫
YS
p(Y ∗|Y )dY ∗ =

∫
1{Y ∗ : P{θ ∈ ΘE|Y, Y ∗} > c}p(Y ∗|Y )dY ∗

(1.3)
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where P{θ ∈ ΘE|Y, Y ∗} =
∫

ΘE
p(θ|Y, Y ∗)dθ.

Now, consider our setup described in the previous sections and suppose that, at interim,
early success has not been claimed and we want to evaluate the decision to allocate patients
to three doses: 1, 5 and d, where d is to be chosen among doses not yet discarded for
futility (if any) at interim. We base our decision by comparing different PPs over all possible
allocations. For each j ∈ {2, 3, 4} not yet futile, let Aj denote post-interim allocation to 1,
j and 5. The j−th PP, corresponding to allocation Aj, then becomes

P

{{
P{µj/µ1 < 1|Aj, Y, Y ∗} > 95%

}
∩
{

max

{
P{µj/µ1 ≤ 0.5|Aj, Y, Y ∗},
P{µj/µ5 ≤ 1.2|Aj, Y, Y ∗}

}
> 50%

}∣∣∣∣∣Y
}

(1.4)
which corresponds to a formal representation of the Efficacy Criterion. Let d the smallest j
for which (1.4), representing the Predictive Probability of a dose to be effective, is greater
or equal than a prespecified threshold t. Then choose Ad, i.e. continue post-interim with
placebo (dose 1), dose d and dose 5.

In practice, Predictive Probabilities are approximated by sums over simulated Y ∗, while
for the computation of the posterior distribution of the parameters conditioned on the pre-
dicted post interim data, i.e. P{θ ∈ ΘE|Y, Y ∗}, we rely on the Sampling-Importance Resam-
pling Algorithm (SIR Smith and Gelfand (1992)). Theoretical and computational details are
provided in Appendix A.1.

The definition of Success we are using at interim is the event in which the dose gets
selected as the LED, called “Selection” in the following. Simulations show how this definition
allows us to often select the “right” dose.

1.3 Operating Characteristics of the Adaptive Design

1.3.1 Optimizing the Case Study

The case study concerns the planning of a dose selection trial after a Phase IIa study has
shown that the experimental therapy is worth pursuing. The challenge is to optimize the
choice of the working parameters a, b, c, i.e. the patient allocations at stage 1 (being the
allocation ratio 1 : a : b : c : 1) and t, the threshold for the Predictive Probability decision.
An extensive simulation study is used in order to tune those parameters.
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1.3.2 Scenarios

Although we are proposing a Bayesian adaptive design, frequentist operating characteristics
are important. Berry et al. (2010). We conduct simulations to explore the behavior of our
adaptive design for different scenarios. The superscript (0) is used to identify values of the
parameters of the distribution we will simulate our data from, in this sense the Scenario(s)
are defined in terms of the “true” value of the unknown parameters we are trying to estimate.

The following features, dose-response, initial allocation, Predictive Probability threshold
and number of patients, are to be explored, from which we obtain 54 different combinations
of design features and scenarios. To mantain the narration straightforward and not to miss
the main picture only one scenario is presented here, while the others are summarized in
Appendix C.1.

The Moderate Scenario is given by α
(0)
Mod = [1.1, 0.7, 0.1, 0.06, 0.05] which implies:

1. µ
(0)
2 /µ

(0)
1 = 0.6 and µ

(0)
2 /µ

(0)
5 = 14, so dose 2 is futile and meets none of the (ii)

conditions;

2. µ
(0)
3 /µ

(0)
1 = 0.09 and µ

(0)
3 /µ

(0)
5 = 2, so dose 3 meets only the first of the (ii) conditions;

3. µ
(0)
4 /µ

(0)
1 = 0.04 and µ

(0)
4 /µ

(0)
5 = 1, so dose 4 meets both of the (ii) conditions.

We keep β fixed across dose groups for identifiability reasons; then the αs have the straight-
forward interpretation of mean number of lesions.

We can see in Figure 1.2 a representation of this dose-response scheme, the light grey bar
being the effect under the LED and any dose below the light grey line satisfying the first of
the (ii) conditions.

whose scale parameter β(0) equals one, the shape parameter α
(0)
j = µ

(0)
j for every Dose j.

For what concerns the optimization of the design we will explore different decisions:

• we explore the effects of the initial allocation a = 1, b = 1, c = 1, i.e. 1 : 1 : 1 : 1 : 1
and a = 1, b = 2, c = 1, i.e. 1 : 1 : 2 : 1 : 1.

• we explore the effects of the adoption of different thresholds for the predictive decision
at interim, i.e. t = 0.4, t = 0.5, t = 0.6.

• we explore the impact of using different proportions of the 250 patients for the first
and the second stage. The configurations to be considered are 30% for the interim -
70% for the stage 2 - and 50% for the interim - 50% for the stage 2.
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Figure 1.2: True dose-response relationship under the Moderate Scenario

The performance indicators to investigate with our simulations are P{”right” dose} and
P{Select a LED}.

Due to the computation burden of the program, we started our sensitivity analysis with
500 studies and n = 500 simulated predictive data set for each dose for the interim decision;
the size N of the posterior sample to apply SIR over is chosen to be around 10000; the
number of iterations for WinBUGS is fixed to 15000, 500 discarded in the burn-in phase.
For each study we simulated all the 50 patients per dose group necessary for the non-adaptive
scenario, then we used the same dataset for both the non adaptive and the adaptive scheme
in order to compare the performance of the two designs with identical data sets.

Notice how the computations, despite being quite cumbersome, are not problematic for a
single study, most of the computational troubles in the present work came from the simulation
study which required the use of a proprietary version of the R-WinBUGS interface. The
simple implementation will be more than appropriate in a real world application.

1.3.3 Simulations Results

In the following paragraphs, we will call “Right dose” the event of declaring the Right dose
the LED, “Selection” the event of declaring some dose the LED. Furthermore FP will mean
False Positive and likewise FN False Negative. By Interim allocation we mean the initial
allocation scheme used at the beginning of the interim phase, specifically we will indicate
by 1:1:1 the Interim allocation scheme 1:1:1:1:1 and by 1:2:1 the Interim allocation scheme
1:1:2:1:1. 30% and 50% are percentage of patients used before the interim look.

Tables 1, 2 and 3 show how the the 30%-70% sample size allocation - for stage 1 and 2
respectively - has a very low probability of early stopping, which is due to the low amount
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of information obtained about the dose-response relationship. It is also clear the predictive
probability threshold t = 0.6 may be too conservative. The performances of the non-adaptive
and those of the adaptive design in terms of detecting the LED seems to be almost the same,
but the adaptive approach allows us to use a lower number of patients. In fact, while the
expected sample size for the non-adaptive analysis is always equal to the total number of
patients (in our simulations 250), the expected number of patients needed by the adaptive
design is always lower, as illustrated in Table 1.1.

1:1:1 1:2:1
50%− 50% 30%− 70% 50%− 50% 30%− 70%

Moderate 232 237 238 239

Table 1.1: Expected sample size for the adaptive design (Moderate Scenario),
where E[# of patients] = (interim sample size) + (post interim sample size) ·
P{not stopping at interim}

Another good characteristic of the adaptive dose selection procedure is the possibility of
correcting a sub-optimal decision made at interim: in fact, if a“wrong” dose is selected at
interim, the BMA and the interim data in the final analysis lead anyway to the detection of
the “right” dose.

From the clinical prospective, a small study is preferable to a large study, which means
that in comparing the adaptive and the non-adaptive approach the early stopping probability
has a positive weight in the evaluation of the method. So, even if the two approaches are
equivalent in performances, the adaptive design, requiring a lower number of patients, is to
be preferred.

The Non-Adaptive Design, when simulating from the above presented Moderate Scenario,
detected the right (dose 3 in this example) dose with probability P{Right dose} = 0.84 and
called some dose LED in all cases (i.e. P{Selection} = 1.000).

In addition to the Moderate scenario, four other scenarios for the true dose-response
curve were also considered (Optimistic, Intermediate 1, Intermediate 2, Pessimistic), and the
corresponding operating characteristics were again obtained by simulation; see Appendix C.1
for details. For some of the scenarios, the expected sample size was considerably reduced in
the adaptive design, as compared to the non-adaptive design, e.g. by 50% in the Optimistic
scenario, with an initial allocation of 1:1:1, and 30% of patients used in the first stage. The
probabilities of selecting the Right dose, and the probability of success where comparable to
the non-adaptive design.
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1:1:1-30% 1:1:1-50% 1:2:1-30% 1:2:1-50%
P{False Positive} 0.08 0.13 0.07 0.1

P{False Negative} 0.00 0.00 0.00 0.00

Table 1.2: Moderate Scenario: Interim Decision

1:1:1-0.4 1:1:1-0.5 1:1:1-0.6 1:2:1-0.4 1:2:1-0.5 1:2:1-0.6
P{Right dose|30%,70%} 0.82 0.86 0.81 0.73 0.78 0.86

P{Selection|30%,70%} 1.00 1.00 1.00 1.00 1.00 1.00
P{False Negative|30%,30%} 0.00 0.00 0.00 0.00 0.00 0.00

P{Right dose|50%,50%} 0.77 0.82 0.77 0.73 0.79 0.85
P{Selection|50%,50%} 1.00 1.00 1.00 1.00 1.00 1.00

P{False Negative|50%,50%} 0.00 0.00 0.00 0.00 0.00 0.00

Table 1.3: Moderate Scenario: different allocations and different predictive probability
thresholds

1.4 Conclusions and Discussion

Ideally, dose finding studies should include a wide range of doses to allow for more accurate
dose-response modeling. However, in many situations, due to availability of formulation,
tablet strength, and patient number constraints, one can only study a limited number of
doses and regimens. We proposed the evaluation of a dose-response under monotone con-
straints which performed well even when the doses studied were too few for the estimation
of a parametric model. To optimize the study, an adaptive design was proposed based on
Predictive Probability. To evaluate the operating characteristics, devoted methods were
required, such as Sampling Importance Resampling Smith and Gelfand (1992). There are
no sufficient statistics available for over-dispersed count data, resulting in more demand-
ing computing.The SIR algorithm was therefore implemented for calculating the predictive
probability of success at the interim analysis; this reduced the computing burden of the
simulations to an acceptable level.

The case study considers a POC trial designed to look for a dose which can improve, in
terms of safety, upon a therapy whose efficacy has already been proved. Even if in many
settings POC studies are small and don’t accrue enough evidence to motivate a full phase
III trial, in the considered example a phase III has already been planned and the study is
run to refine the characteristic of such a trial. In other situations, the decision rules may be
modified to include futility rules such that if results are unfavorable for all doses, no phase
III would be started. As such futility rules can also be expressed as criteria on the posterior
distribution, the same framework can be considered as presented in this article.
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The equal allocation 1:1:1:1:1 gives the best results, allowing for the exploration of a wider
range of doses. Its performances were similar to those of the non-adaptive design,but the
number of patients required much lower. The adaptive design proposed here is conservative,
one can only stop if either the lowest active dose is LED or the Dose 4 is futile. This
are two very extreme but meaningful events. From the observation of the frequency with
which, for example, Dose 2 gets selected one might want to taylor them by specifying a more
complicated loss function linked, for example, to the joint examination of the chances of
success of all the intermediate doses.

If one is willing to stop at interim when there is sufficient evidence that Dose 3 is LED,
that will reduce the number of patients. Often, there are logistical reasons and recruitment
constraints when choosing one design over the other. The implementation of these simu-
lations assumes that recruitment will be stopped once sufficient patients are recruited for
the interim; this may not be realistic. One needs to consider other important factors of a
study in addition to the operating characteristics for the design. The proposed approach is,
however, flexible enough to be adapted to most of these settings.

In this article, we described a Bayesian adaptive dose selection procedure for overdis-
persed count data, motivated by clinical trials in MS, where counts are the primary endpoint.
Both the adaptive design and the semi-parametric approach can be easily modified for use
with other endpoints.
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Chapter 2

A Bayesian hierarchical surrogate
outcome model for multiple sclerosis

2.1 Introduction

Within a clinical trial setting, a surrogate endpoint is a biomarker that can be used instead
of the main outcome of interest in the evaluation of an experimental treatment. While the
treatment effect associated with a surrogate endpoint might not be of any direct value to a
patient, it can be used to predict the corresponding effect that would have been achieved in
key clinical outcomes. For example, based on experience from numerous long-term outcome
studies of diverse antihypertensive drugs showing a clear effect on stroke and at least favorable
trends on cardiovascular events, blood pressure has become an established surrogate outcome
for such therapies and can form the basis for regulatory approval Temple (1999).

In situations where the evidence linking the surrogate to the main clinical outcome is not
deemed sufficient for regulatory acceptance, it could still be very valuable in non-confirmatory
phases of drug development. This is particularly the case, when the primary clinical endpoint
is costly to obtain or requiring a substantial amount of time to observe. However, due to
the increased uncertainty associated with use of a surrogate, additional risks are inherent
in development decision making Weir and Walley (2006). Therefore, it is essential to gain
a quantitative understanding of the evidence linking the surrogate to the main outcome of
interest that can then be utilized in the design of clinical studies and the formulation of
development decision criteria.

The development of novel therapies for the treatment of multiple sclerosis (MS) is one
area where a range surrogate outcomes are used in various stages of clinical research. While
the aim of treatments in MS is to prevent long term irreversible disability, a clinical trial for
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evaluating a drugs effect on disability progression would require a large sample of patients
with many years of follow-up. In early stages, the vast majority of MS cases typically present
as relapsing disease (Relapsing Remitting MS, RRMS) where patients suffer from bouts of
neurological deficits, affecting the motor, sensory and vegetative nervous system from which
they usually recover with little or no sequelae. As such, to reduce study size and duration,
clinical relapses are usually used as primary endpoints in phase III trials. In the case of
phase II studies, the primary outcomes are typically based on Magnetic Resonance Imaging
(MRI), usually in the form of lesion counts, that are around 5 to 10 times more sensitive
than clinical measures for detecting MS activity. Although MRI imaging is not accepted for
regulatory approval, it is typically one of the most important factors in decision making in
drug development.

Recent work by Sormani and colleagues provided a systematic review and meta-analysis
examining the role of both MRI and relapse as trial level surrogate outcomes for disability
Sormani et al. (2010). Trial level surrogacy is an approach that links the potential surrogate
outcome with main outcome of interest by using summary data from each of the trials iden-
tified in a systematic review. Typically, the summary information consists of the estimated
treatment effect and standard error associated with both the main outcome and surrogate.

In the analysis presented in Sormani et al. (2010), two separate weighted least-squares
regressions were fitted. The first relating the observed treatment effect on MRI lesions to
the observed treatment effect on disability (adjusted R2 = 0.57), and the second relating the
observed treatment effect on relapses to the observed treatment effect on disability (adjusted
R2 = 0.71). This approach has two main drawbacks: First, it ignores that the independent
variable, which in this case is the observed treatment effect on the potential surrogate, is
measured with error Qin (2011). Second, a biomarker combining information from both
MRI lesions and relapses may be a better surrogate for disability than each of them alone
Sormani et al. (2011). To address these two drawbacks, we propose a joint analysis, linking
both MRI and relapses to disability, and also take into account the measurement errors in
the biomarkers. To this purpose, we expand the Bayesian trial level surrogate outcome meta-
analysis model introduced by Daniels and Hughes (1997) to a three level structure. This
model is then used to re-analyze the data provided in the systematic review by Sormani and
colleagues.

The remainder of the Chapter is structured as follows: In section 2.2 we describe some
background on statistical approaches to examining surrogate outcomes and outline the
methodological developments. Subsequently, section 2.3 provides further background on
the running example and describes how the key covariance estimates are extracted. Section
2.4 applies the methods developed in section 2.2. Finally, a discussion of the application and
methods is presented in section 2.5.
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2.2 Methods

The seminal work by Prentice Prentice (1989) subsequently lead to large literature examining
statistical evaluation of surrogate outcomes (see Molenberghs et al. (2002) and Weir and
Walley (2006) for an extensive overview). Within this area statistical methods have been
divided into three groups: Those focusing on data from a single trial such as the Prentice
criteria; those which use meta-analysis to combine summary information from multiple trials
Daniels and Hughes (1997), Gail et al. (2000); and techniques that use a combination of
trial-level and individual-level data Molenberghs et al. (2010). As this Chapter provides
an analysis of summary data from multiple clinical trials, with the aim of understanding
uncertainty associated with drug development decisions rather than formal validation, we
shall solely focus on the Bayesian meta-analytic approach that was developed by Daniels
and Hughes (1997).

2.2.1 Two level Surrogate outcome Bayesian meta-analysis model

To provide a framework and corresponding notation, which shall be adopted throughout, a
data structure is assumed where there are i = 1, . . . , n trials and k = 1, 2, . . . , K possible
treatments. In the case of two treatments (K = 2), we assume the following sampling model
applies to trial i:

(
θ̂i
γ̂i

)
∼ N

((
θi
γi

)
,

(
σ2
θi ρiσθiσγi
.. σ2

γi

))
(2.1)

where θ̂i represents the estimated treatment effect on the main outcome of interest, γ̂i
denotes the the estimated treatment effect associated with the surrogate outcome, σ2

θi and
σ2
γi are the variances that reflect the sampling uncertainty and ρi is the correlation between

the estimated treatment differences conditional on the true differences θi and γi.

The simplest trial-level model to describe the relationship between θi and γi is linear:

θi = α1 + β1γi + εi (2.2)

εi ∼ N
(
0, τ 2

ε

)
(2.3)

In this context, γi are usually assumed to be a set of separate fixed effects.

The combination of the sampling model given in (2.1) with the linear model given in
(2.2) -(2.3) leads to a bivariate normal distribution, conditional on γi, α1 and β1:
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(
θ̂i
γ̂i

)
∼ N

((
α1 + β1γi

γi

)
,

(
σ2
θi + τ 2

ε ρiσθiσγi
.. σ2

γi

))
(2.4)

When fitting the model in the Bayesian framework prior distributions must be assumed.
In the multiple sclerosis case-study, N (0, 106) priors will be assumed for all fixed effects
(α1, β1 and γi i = 1, . . . , n). This choice, or more generally a normal distribution with a large
variance relative to the scale of the outcome variable, is often a reasonable non-informative
prior for fixed effects. In terms of the variance component τ 2

ε , it is well known that results
can be sensitive to the choice of prior distribution Gelman (2006). Following the suggestions
of Spiegelhalter et al Spiegelhalter et al. (2003), a standard half normal prior, denoted by
Half-Normal(1) (i.e. with scale parameter set to 1), will be adopted, providing a weakly
informative prior over a range of plausible values on the log relative risk scale. The pa-
rameters of the covariance matrix σθi , τε and σθi are typically assumed to be known in the
meta-analytic literature.

If studies have more than two arms the analysis must account for the correlation between
the multiple treatment effects within a study. This can be accomplished by adjusting the
sampling model, e.g. to a 4-dimensional multivariate normal model in the case of three
treatment arms to:


θ̂1i
θ̂2i
γ̂1i
γ̂2i

 ∼ N



θ1i

θ2i

γ1i

γ2i

 ,


σ2
θ1,i

ρθ,iσθ1,iσθ2,i ρ1,1,iσθ1,iσγ1i ρ1,2,iσθ1,iσγ2,i
.. σ2

θ2,i
ρ2,1,iσθ1,2,iσγ1,i ρ2,2,iσθ1,2,iσγ2,i

.. .. σ2
γ1,i

ργ,iσγ1,iσγ2,i
.. .. .. σ2

γ2,i


. (2.5)

2.2.2 Extension to a three level surrogate outcome Bayesian meta-
analysis model

If two surrogates are considered, as in the case of relapsing remitting MS case study, the
sampling model for study i becomes

 θ̂i
γ̂i
ψ̂i

 ∼ N
 θi

γi
ψi

 ,

 σ2
θi ρθ,γ,iσθiσγi ρθ,ψ,iσθiσψi
.. σ2

γi ργ,ψ,iσγiσψi
.. .. σ2

ψi

, (2.6)

where ψ̂i represents the estimated treatment effect from the second surrogate, σ2
ψi is the

corresponding variance representing sampling uncertainty and the set of correlations between
the estimated treatment effects are denoted by ρθ,γ,i, ρθ,ψ,i, ργ,ψ,i.
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When formulating the trial level model, a natural extension of the Daniels and Hughes
model would involve two levels of linear models:

θi = α1 + β1γi + εi (2.7)

γi = α2 + β2ψi + δi (2.8)

εi ∼ N
(
0, τ 2

ε

)
(2.9)

δi ∼ N
(
0, τ 2

δ

)
. (2.10)

Here, γi are assumed to be a set of separate fixed effects, as usually considered in the
meta-analytical context.

Various alternative structures could be applied when formulating the three level model.
Here, we shall consider two alternative models: Firstly, equation (2.7) could be modified so
that both surrogates contribute directly in the linear predictor:

θi = α1 + β1γi + β3ψi + εi. (2.11)

Secondly, instead of formulating a conditional structure, the second level of the model
could be formulated as a multivariate normal random effects meta-analysis model (see van
Houwelingen et al. (2002) for further background):

 θi
γi
ψi

 ∼ MVN
(

(µ1, µ2, µ3)
′
,Σ
)

. (2.12)

For each of the possible models prior distributions must be chosen. Following the sugges-
tions made in section 2.2.1, in the case-study N (0, 106) priors will be assumed for all fixed
effects (α1, α2, β1, β2, β3, µ1, µ2, µ3 and ψi i = 1, . . . , n) and Half-Normal(1) (i.e. with scale
parameter set to 1), will be adopted for the variance components (τδ, τε). In the case of the
multivariate meta-analysis, Half-Normal(1) priors will also be adopted for the between study
standard deviations (i.e. the square root of the diagonal elements of Σ) and uniform priors
will be used over the 3-dimensional set of admissible correlations, which were formed using
Cholesky-decomposition Turner et al. (2006).

With a number of models under consideration, some form of model assessment and
comparison should be implemented. Here, we suggest examining the deviance information
criterion (DIC) Spiegelhalter et al. (2002) and graphics that compare predicted outcomes,
based on the predictive distribution from the model, with the observed values. Both methods
will be applied in the case-study.
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2.2.3 Practical issues when extracting trial level data

For each of the studies included in the surrogate outcome meta-analysis, an estimated vari-
ance covariance matrix must be formed. In the case of sampling variances, σ2

θi, σ
2
γi and σ2

ψi,
estimates can usually be drawn directly from summary data included in a publication, such
as a standard deviation, or by applying standard approximate variance formula associated to
an assumed likelihood. However, direct estimation of the correlations among the treatment
effect estimates either requires the specification of a joint model for the relationship among
each of the treatment differences, which is complex if the outcomes are non-commensurate,
or application of a non-parametric bootstrapping technique (see Daniels and Hughes (1997),
Normand et al. (2007), Riley et al. (2007)). In either case, estimation requires the availability
of the individual patient data from each clinical trial which is not available in a systematic
review based primarily on summary information available in publications.

If only summary data is available the challenge of dealing with missing sampling covari-
ances or correlations must be addressed. The problem has been discussed in the context of
multivariate meta-analysis Riley (2009), where the author suggests: using a range of plau-
sible values; sensitivity analysis over the entire correlation range and finally the use of an
alternative model, described in Riley et al. (2007), that does not depend on within study
correlation. Because we wish to focus on the modeling developments outlined in sections
2.2.1 and 2.2.2, here sensitivity analysis across a range of reasonable values shall later be
utilized in the case-study. This choice of values shall be based on some limited proprietary
individual patient data.

2.3 Background to the MS case-study and data extrac-

tion

2.3.1 Background to application

Due to the advancement in therapies for Multiple Sclerosis, for ethical reasons, fewer placebo
controlled trials will be launched Polman et al. (2008). Therefore, future studies will typically
have lower event rates and as a consequence require a combination of more patients and longer
duration. Surrogate endpoints in MS have a long history Wolinsky and Beck (2011) and are
well motivated given the aforementioned design challenges.

As stated in section 2.1, we focus on the recent work by Sormani and colleagues who
provided a systematic review and meta-analysis examining the role of both MRI and relapse
as trial level surrogate outcomes for disability progression in trials examining therapies for
relapsing-remitting multiple sclerosis (RRMS). Full background details are provided in Sor-
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mani et al. (2010), below a brief overview is provided together with a summary of the key
findings.

During the systematic review a set of 19 randomized double-blind controlled trials in
RRMS were identified, with a total of 44 arms, 25 contrasts, and 10,009 patients. The data
extraction, which was conducted independently by 3 reviewers, involved gathering informa-
tion from each of the studies on the following outcome measures: First, the treatment effect
expressed as a risk ratio based on MRI lesion counts. Second, the corresponding risk ratio
associated annualized relapse rate. Finally, the risk ratio based on the proportion of patients
with a disability progression as assessed by the Expanded Disability Status Scale (EDSS)
score.

In the analysis presented in Sormani et al. (2010), set of treatment contrasts within
a trial, weights w were specified according the study duration and number of completers(
w = ncomplete

√
follow up in months

12

)
. In the trials with more than two treatments, each

of the treatment contrasts were assigned an adjusted weight, accounting for the correlation
among the contrasts. Specifically, when forming an adjusted weight, the number of patients
associated with the control group was distributed equally among each of the treatment
contrasts.

Having derived the set of weights, the following linear weighted regression models were
applied:

θi = α1 + β1γi i ∈ J

θk = α2 + β2ψk i ∈ K

where θi = log (EDSS risk ratio), γi = log (Relapse risk ratio), ψi = log (MRI risk ratio),
J is the set of EDSS and relapse treatment effect pairs and K is the set of EDSS and MRI
treatment effect pairs. A strong association between the disability treatment effect and the
potential surrogate was observed in both cases (relapses - adjusted R2 = 0.71; MRI - adjusted
R2 = 0.57). As noted in the introduction, this approach ignores that the independent variable
is measured with error Qin (2011). To address these two drawbacks, we propose an analysis
based on the methods described in section 2.2. However, as emphasized in section 2.2.3,
implementation requires an appropriate set of estimated covariance matrices, which shall be
discussed in the next section.
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2.3.2 Covariance matrix formulation

The Bayesian surrogate outcome models outlined in section 2.2 are based around forming an
approximate normal likelihood from the estimated treatment effects and corresponding esti-
mated variance-covariance matrix. In the multiple sclerosis case study, the treatment effects
can be taken directly from the summary data provided in Sormani et al. (2010). However, the
corresponding standard errors, which form the diagonal elements of the estimated variance-
covariance matrix must be approximated from the available summary information by using
a combination of sampling model assumptions, assumptions about drop-out and incomplete
follow-up as described in Appendix A.2. Further, the covariance parameters cannot typically
be obtained from summary data. In this case, results from the analysis of proprietary data
are used to form the basis of a sensitivity analysis.

The final two elements required for the Bayesian analysis are the covariance parameters
to deal with multiple arm studies and the covariance parameters among the different types
of outcomes. In the case of the former, this was achieved by using the same set of sampling
models described above to calculate the squared standard error associated with placebo arm
rates, which is equal to the required covariance. While in the case of the latter, a initial
value of 0.05 shall be used for each of the missing correlations. The selection of this value
was in part informed by exploratory analysis of proprietary data. To assess robustness of
the results to this choice, values of 0.1 and 0.01 shall also be used in a sensitivity analysis.

2.4 Analysis of the MS data using Bayesian surrogate

outcome models

As an initial step, the two classical weighted regression models, described in Sormani et al.
(2010) were applied. Recall that for the set of studies, these models regressed the re-
sponse variable θ̂i (log (EDSS risk ratio)) against either γ̂i, (log (Relapse risk ratio)) or ψ̂i
(log (MRI risk ratio)). In addition, an approach that used identical regression models but
with the weights based on the inverse variances associated with θ̂i, which were derived in
Section 2.3.2, was implemented. For both sets of weights, the resulting estimated intercepts,
slopes and adjusted R2 values are displayed in Table 2.1. The two approaches produce sim-
ilar results. However, the adjusted R2 values associated with the inverse variance weights
were slightly lower suggesting a slightly weaker relationship.

Next, the Bayesian surrogate outcome models, described in Section 2.2, were fitted. The
two level model was based on regressing θi against γi, while the three level approach, used
the chain of regression models described in (2.7)-(2.10). When fitting these models, and
in all subsequent models presented in this section, WinBUGS 1.4.3 Lunn et al. (2000) was
used to draw 50000 MCMC samples from each of three parallel sampling chains following
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a 50000-iteration burn-in period. Convergence was assessed using the Brooks Gelman and
Rubin diagnostic.

The resulting regression models are displayed in Figure 2.1. The display shows the
posterior distribution for the regression line θi = α1 + β1γi, together with a 95% credible
interval and the corresponding 95% predictive interval, based on θi = α1 + β1γi + εi ,which
accounts for the between study variability εi ∼ N (0, τ 2

ε ). It is noted, when comparing the
2-level and 3-level models, the regression lines provide similar point-estimates. However, the
3-level model provides a narrower predictive distribution, suggesting a benefit of including
both MRI and relapse jointly in a model. The predictive distribution could be particularly
valuable when assessing the probability of success of a future phase III study based on phase
II study, which would typically have a reasonable amount of MRI data but limited relapse
data.

Sensitivity analysis to the choice of sample correlation ρ is examined in Table 2.3. The
table displays the posterior means and standard deviations for each of the model parameters
resulting from fitting the 2-level and 3-level Bayesian surrogate outcome models, with three
different assumed values of ρ. The results suggest robustness over a range of correlations.

The final part of the analysis involved examining alternative modeling structures for the
3-level model based on equations (2.11) and (2.12). In Table 2.2, the deviance information
criterion (DIC) is shown for each of the models. The multivariate meta-analysis model
and the extended 3-level model both have slightly lower DIC than the initial 3-level model.
However, the differences are small suggesting little difference among models in terms of
a complexity and fit tradeoff. To investigate further, for each of the models, forest plots
examining the study level relapse risk ratios (exp (γi))and EDSS risk ratios (exp (θi)) were
produced. Figure 2.2 displays posterior means and 95% credible intervals are displayed for
the set of risk ratios associated with relapse.
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Regressor Weights Intercept (s.e.) Slope (s.e.) adjusted R2

γ̂i Sormani 0.1 (0.055) 0.63 (0.087) 0.7
γ̂i Inverse Variance 0.074 (0.05) 0.575 (0.083) 0.676

ψ̂i Sormani 0.2 (0.097) 0.36 (0.085) 0.56

ψ̂i Inverse Variance 0.107 (0.091) 0.285 (0.085) 0.465

Table 2.1: The results from weighted linear regression of the response variable θ̂i =
log (EDSS risk ratio) against either γ̂i, (log (Relapse risk ratio)) or ψ̂i (log (MRI risk ratio)).
Two sets of weights were employed: The first is based on the previous work of Sor-
mani and colleagues. The second is based on inverse variance weights derived from the
log (EDSS risk ratio).
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Figure 2.1: The fitted 2-level and 3-level Bayesian surrogate outcome models for θi =
log (EDSS risk ratio) based on γi, (log (Relapse risk ratio)) in the 2-level model or a 3-level
model involving γi and ψi (log (MRI risk ratio)). The display shows the posterior distri-
bution for the regression line θi = α1 + β1γi, together with a 95% credible interval and
the corresponding predictive interval, based on θi = α1 + β1γi + εi, which accounts for the
between study variance component, εi ∼ N (0, τ 2

ε ).
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Figure 2.2: Analysis of the multiple sclerosis surrogate outcome data using three alternative
surrogate models. Posterior means and 95% credible intervals are displayed for the set of risk
ratios associated with relapse. The models are: 3-level model (gray circle)and multivariate
meta-analysis (gray triangle). For comparison purposes, the estimates and 95% are displayed
from fixed effects model (black circle).
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Figure 2.3: Analysis of the multiple sclerosis surrogate outcome data using three alternative
surrogate models. Posterior means and 95% credible intervals are displayed for the set of
risk ratios associated with EDSS. The models are: 3-level model (gray circle); extended three
level model (gray square) and multivariate meta-analysis (gray triangle). For comparison
purposes, the estimates and 95% are displayed from fixed effects model (black circle).
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Model D (µ̄) D (µ) pD DIC
Fixed effects (saturated) -74.146 -9.162 64.984 55.822
3 level surrogate outcome model -51.336 -11.006 40.33 29.324
extended 3 level (equation 11) -52.899 -12.517 40.382 27.865
Multivariate meta-analysis (equation 12) -59.521 -15.658 43.863 28.205

Table 2.2: Examining model fit and complexity using the Deviance information criteria
(DIC). The mean of the posterior deviance is denoted by D (µ), the deviance of the posterior
mean is denoted by D (µ̄) and the effective number of parameters is denoted by pD =
D (µ) − D (µ̄). Four models are examined: A saturated fixed effects model; 3-level model;
the extended 3-level model and multivariate meta-analysis model.
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2.5 Discussion

The case-study presented in this Chapter reconsidered a previously published surrogate
outcome meta-analysis in the context of multiple sclerosis clinical trials. Specifically, a
combination of treatment effects based on MRI lesion count outcomes and clinical relapse,
both expressed on the log risk ratio scale, were used in a study level surrogate outcome
model for corresponding treatment effects based on disability progression, measured using the
expanded expanded disability status scale (EDSS). The work extended a previous Bayesian
model described in Daniels and Hughes (1997) to a three level model accommodating the
two surrogates.

One of the advantages of the Bayesian model is the ability to provide predictions for
the results of future clinical trials that fully account for parameter uncertainty. This can
be particularly valuable in a multiple sclerosis drug development setting. For example, a
completed phase II study, which would typically have a reasonable amount of MRI data
but limited relapse data and no information about disability progression, could be used a
the basis for calculating the probability of success of a future phase III program. However,
trial durations and population will often change substantially between phase II and phase
III. Therefore, assumptions about exchangeability when moving from phase II to phase III
must be critically assessed. In some circumstances, when forming a prediction, it would be
necessary to discount the value of the historical information.

As noted, when only summary data is available from clinical trial publications, one of
the key challenges when developing a study level surrogate outcome meta-analysis model, is
dealing with missing sampling covariances or correlations. Here, sensitivity analysis across a
range of reasonable correlation values was utilized. Alternative approaches, such as different
model formulations, suggested in the multivariate meta-analysis literature Riley (2009), could
also be implemented. Nevertheless, access to individual patient data would greatly help with
this problem.

Finally, we note, the European Medicines Agency has stated its commitment to publish-
ing clinical trial information on all drugs submitted as part of the licensing process, whether
or not they are approved Eichler et al. (2012), Steinbrook (2013). As emphasized above, this
information would be invaluable when forming a surrogate outcome model in the multiple
sclerosis setting and other disease areas. Hence, combining individual patient data with
summary data in a surrogate outcome setting would provide an important area for future
research.
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Chapter 3

Non-parametric Regression and
Classification via Supervised
Hierarchical Clustering

3.1 Introduction

Mechanisms for collecting massive amounts of empirical data are growing more common
and sophisticated in many fields such as biology, medicine and public health. Advances in
genomics and related high throughput technologies, the advent of electronic medical records
and other developments are creating datasets that enable researchers to ask new questions.
At the same time analyzing such data presents new challenges. One such challenge common
to many data-driven fields involves finding interpretable patterns guided by very limited
hypotheses about which mechanisms may be producing such patterns (e.g. which variables
are important and how they are related to each other and to some outcome of interest). An
example of this kind of problems comes from emergency care units where patients are carried
in after all sorts of serious traumas. The conditions of the patients upon arrival in the ER,
such as the kind of trauma or the amount of blood lost and their characteristics such as gender
or age are all important predictors of their prognosis. The early diagnosis of the patient being
at a higher risk of an adverse event such as the need for Massive Blood Transfusion (MBT) or
death in the first 24 hours is crucial for decision making. The information available defines a
quite complicated picture, often too difficult to decipher even for the physicians. In practice,
as described in Nunez et al. (2009), indicators of particular conditions are combined to define
scores that summarize the patient’s overall status. Those scores provide an easy to compute
one number summary, which is very valuable in an emergency setting, but provides a pretty
limited description of the patterns that link the patients’ conditions to the severity of their
status.
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The inability to make inference about a particular parameter of the data-generating
distribution without strong assumptions on the underlying model is potential consequence
of the so-called curse of dimensionality. An ambitious parameter of interest could be the
joint distribution of all the variables, estimating the conditional distribution of some outcome
given a large list of potential predictors. Depending on the goal of the estimation, there are
different approaches to address the curse of dimensionality. One approach is to assume a
relatively small statistical model. However these models typically rely on assumptions that
are more a function of practicality than of well-established theory.

In the present article we follow the steps of the roadmap laid out in van der Laan and
Rose (2011) to construct a flexible tool which provides an interpretable estimate of the
conditional distribution of an outcome given high dimension predictors without relying on
restrictive parametric assumptions. The roadmap is aimed at clearly defining the research
question we are trying to answer by specifying the data structure we are dealing with, the
statistical model their distribution belongs to and the parameter of this distribution that we
are trying to estimate. As in the example from the intensive care units our data consists in a
set of features, continuous, categorical or a mix of the two, and an outcome variable of some
kind. This data is fully observed and i.i.d. from a non parametric distribution. Following
the roadmap we define the parameter of interest as the expected loss minimizer according
to an appropriate loss-function.

The parameter we are interested in is a function that links the joint distribution of the
variables to the value of the outcome, so it makes sense to define this function in terms
of a regression problem, linking particular regions of the feature space to a common value
of the outcome. The estimation of the joint density of the variables is often addressed by
constructing a partition of the space, trying to identify regions of high density and to separate
different peaks or modes. One way to do this is with unsupervised learning methods such
as clustering which group observations based on their similarity to each other with respect
to a certain metric. This essentially reduces the potentially large vector of covariates to a
single categorical variable, which assigns each point in the space to a group. In addition,
if there is an outcome of interest, then a natural second step would be to examine how the
distribution of outcomes varies by these this new grouping variable. In our trauma example,
one could use the groupings created by clustering clinical and other variables related to
patient heath, to predict the relevant outcomes, such as death. With unsupervised learning,
groups can be found, but these groups are defined independently from of their ability to
predict the outcome. The algorithm proposed here combines unsupervised clustering, used
to generate a sequence of potential prediction models, and loss-based estimation (using cross-
validation; van der Laan and Dudoit (2005)) to choose which of these candidates are the
best at predicting the outcome.

Prediction problems are made harder when high number of features are measured, such
as in gene expression studies. This high dimensionality can obscure the relatively small
portion of variables that are actually related jointly to the outcome. Addressing this issue
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properly might imply the need to define our loss function so that it penalizes models using
too many features. We are in fact interested in finding a trade-off between parsimony and
prediction error, specifically if a less complicated model results in a better ”fit” than a more
complicated one (say based on more variables and splits). In other settings we might be
interested in a screening that throws out those variables whose inclusion doesn’t imply a
significant gain. For example in emergency settings such as the ER example introduced
above we are interested in the simplest possible model that gives equivalent prediction to
the best possible model. A well-known approach to variable selection is to introduce a
penalty on the number of predictors in a linear regression problem, like in the well known
lasso Tibshirani (1996). Lasso adds a penalty related to the number of features considered
in a least squares problem in order to find the solution with the lowest number of non-zero
coefficients. The parametric assumptions underlying this approach are a strong limitation.
Tree-based methods on the other hand, are a non-parametric tool which addresses variable
selection in a more flexible way. CART (Breiman et al. (1984)) iteratively splits the space
using one feature at a time to identify a parsimonious set of predictors, making it a very
useful approach to simultaneous prediction and dimensionality reduction. This procedure
achieves the two-fold goal of constructing a parsimonious learner often well suited to certain
application where decision trees are preferred. For instance, decision trees are widely used in
medical literature because of their interpretability and parsimony, as described for example
in Podgorelec et al. (2002) or in Kotsiantis (2013) and its references. Given our proposal
for combining clustering with model selection based on the cross-validated risk estimate is
a generalization of classification trees (Breiman et al. (1984)), We propose an approach to
variable selection that borrows from procedures used to prune regression trees. We construct
cluster-based trees iteratively adding variables to a working set and select the size of the
working set which is optimal in terms of cross-validated risk wrt a proper loss function
while constructing the candidate splits in terms of the distance between observations in the
covariate space.

The paper is structured as follows. In Section 3.2 the general class of estimator defined by
our algorithm is presented and framed in the context of histogram regression. In histogram
regression the feature space is partitioned into regions and then the outcome is regressed on
the indicator functions of those sets. We review a general framework for using loss-based,
data-adaptive methods based on cross-validation for choosing candidate trees generated by
clustering for use as the basis for histogram regression. We then discuss a specific implemen-
tation of this approach based on the hierarchical clustering routine, HOPACH van der Laan
and Pollard (2003). In Section 3.3 the proposed methodology is presented and the details of
the specific implementation are described. The functionalities of the R package are used to
provide use cases and examples of how the method can be readily applicable in real settings.
Results of a simulation study are presented in Section 3.4 to compare the performance of the
proposed method to that of CART. In Section 3.5, the need for variable selection is discussed
and an heuristic to address the problem is added to the algorithm. In Section 3.6, a real
data application. We look at Trauma patients from Nunez et al. (2009), and construct a
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parsimonious biomarker predicting adverse events. In Section 3.8 results are discussed and
we present possible directions for future work.

3.2 Background on Histogram Regression and Loss-

Based Estimation

The data are i.i.d. pairs ,O = (Y,X) ∼ P0, where P0 ∼ M being M the space of models
defineed by partitions of the feature space and X has dimension p. The components of X and
Y can be continuous, categorical or a mix of the two. The class of parameters we consider
is indexed by a partition of the covariate space Rk, k = 1, ..., K which specify the regression
function

ψ(P0)(X) = E[Y |X] =
K∑
k=1

ck1{X ∈ Rk} (3.1)

The parameter of interest, given some specified loss-function, can be defined as the minimizer
over the the specified family of regression functions, the one that minimizes the expected
loss, i.e. ψ0(X) = argmin

ψ
EPL(Y,E[Y |X]) (discussed in more detail in Section 3.2.1). The

structure defined by equation 3.1 implies a dimensionality reduction, specially in cases in
which p � n and K � p. The high dimensionality of the data points is collapsed in
the information contained in the class label. Many well known methods fall under the
label of histogram regression, differing in the way the regions are constructed. For instance
classification methods such as Support Vector Machines (SVM) Cortes and Vapnik (1995)
or Linear Discriminant Analysis Fisher (1936) aim at splitting the feature space using some
discriminant functions based on hyperplanes that separate regions where the outcome takes
a different value. Tree based methods such as CART are also a kind of histogram regression
which uses recursive binary splits to define the basis for the regression function. In the next
Sections we will propose an alternative way to construct the basis for histogram regression
based on hierarchically clustering the observations.

3.2.1 Loss-Based Estimation: Conceptual Framework

As opposed to the situation whereM contains the true model, consider that it is a possibly
misspecified estimating model. We still want to define a standard by which our procedure
will be optimal with regard to competing candidates that are all based on partitions of
covariate space. Loss-based estimation provides a framework for defining optimality in this
context ( van der Laan and Dudoit (2005)).

In order to estimate such a parameter our first step is to define a loss function L, such
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that our parameter of interest is the minimizer of its the expectation, i.e. the risk minimizer

ψ0 ≡ argmin
ψ

EP0L(O, ψ)

Some common examples of loss functions are the squared error loss and -log-likelihood loss.

The next step is to define a finite collection of candidate estimators (a “sieve”) that
approximates the parameter space. Different classes can correspond to different statistical
procedures indexed by the values of their tuning parameters, as the case of the Super (Ma-
chine) Learning Algorithm described in Van Der Laan et al. (2007). For each candidate

estimator ψ
(k)
n we can define the conditional risk as the random variable

∫
L(x, ψ

(k)
n )dP (x).

The risk minimization is translated into the data-driven selection of an optimal estimator,
indexed by k̂, that minimizes this conditional risk (that is, conditional on a particular fit,

ψ
(k)
n , indexed by some size of model, e.g. the number of partitions of covariate space, k).

Let k̃, the theoretical Oracle selector, be the minimizer of the true conditional risk over the
space of candidates. The class indexed by the oracle selector is the one that minimizes the
distance between the conditional risk and the minimum of the true risk (attained by the
parameter of interest).

Using results from (ReF - Sandrine and Mark’s 2005 paper), we define an estimator of
ψ that is asymptotically equivalent (in fit) to the Oracle Selector. To do so, we divide the
set of data into V equal folds, then iteratively using V − 1 folds as a training set, producing
estimates of the parameter of interest for each candidate. Those estimates are compared with
the reserved data (validation set). The prediction error is averaged to produce an estimate of
the conditional risk. Let k̂ be the CV-selector, i.e. the procedure that selects the candidate
estimator which minimizes the cross-validated risk:

k̂ = argmin
k

EBn

∫
L(x, ψ(k)

n (P 0
n,Bn

))dP 1
n,Bn

= EBn

1

n1

∑
{i:Bn(i)=1}

L(Xi, ψ
(k)
n (P 0

n,Bn
))

being Bn the indicator of the training set. This procedure has a conditional risk asymptot-
ically equivalent to the Oracle risk, and hence asymptotically optimal. The formal oracle
result from van der Laan and Dudoit (2005) considers a loss function uniformly bounded
and with second moment bounded by the first moment and proves that the CV estimator of
the conditional risk wrt such a loss function converges at the Oracle’s conditional risk with
an error term O(logK(n)/n). If the number of candidate estimators K(n) is polynomial
in sample size, then the cross-validation selector is asymptotically equivalent to the oracle
selector or converges at rate O(log n/n) with respect to P0{L(ψ)−L(ψ0)}. This means that
one gets performance asymptotically equivalent to the Oracle selector, even if the number
of candidates grows very large, so that for practical sample sizes, we can use the CV-risk
among a large pool of candidates without overfitting.
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3.3 Methods

In this section we introduce the general methods we use for building the partitions and
splitting the space in Section 3.3.1, while in Section 3.2.1 we present the main ideas behind
loss-based estimation. In Section 3.3.2 we fill in the details relative to the proposed algorithm
and we present the implementation that makes it available in the R package HOPSLAM.

3.3.1 Grouping Observations and Splitting the Space

The flexibility in identifying convoluted patterns in the data depends strongly on the class of
sets or metric adopted. For example the CART procedure splits the feature space based on a
single variable at the time. The space is iteratively split in pairs of hyperplanes defined by an
inequality based on the selected variable. In a two-dimensional setting this technique defines
a set of rectangles in the feature space whose sides are parallel to one of the coordinate axis.
Fig. 3.1 shows an example of the resulting partition.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

CART Partition

x1

x 2

Figure 3.1: CART partitions the space using rectangles whose sides are parallel to the
coordinate axes. This is defined by hierarchical sequence of splits involving one variable
at the time. This class of sets is not very flexible in capturing elaborate patterns in the
data. In this figure the sets are defined by the inequalities {X1 < 0.3} ∩ {X2 < −0.5},
{X1 < 0.3} ∩ {X2 > −0.5}, {X1 > 0.3} ∩ {X1 < 0.7}, {X1 > 0.7} ∩ {X2 < 0.8} and
{X1 > 0.7} ∩ {X2 > 0.8}

We consider partitioning methods based on clustering ( Kaufman and Rousseeuw (1990)),
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and construct a richer class of partitions, which are functions of a distance (or similarity)
matrix of all observations. Procedures such as PAM or K-Means define the clusters in terms
of centroids and assign an observation to a cluster based on the proximity to the centroid
of that cluster. Different kinds of metrics will result in very different shapes for the clusters
(and thus ultimately different candidate partitions for our procedure to choose among). For
example, Euclidean distance on the raw data makes sense when the variables are measured at
the same scale and are (roughly) equivalent variables (e.g., gene expression measurements).
However, cosine angle distance will compare the pattern of the features after rescaling them
and the correlation distance will go even further by centering the values around their mean.
The choice of the metric defines the characteristics of the features that are important in
defining the groups (the pattern, scale and size, the scale and pattern only, etc.) and of
defining the geometry of the sets in our partition as shown in Fig. 3.2.

Figure 3.2: Different partitions obtained using different metrics. The partitions are defined
as the points that are closer to one medoid than all the others. We pick the medoids to be
the points (−0.9,−0.8), (0.7, 0.7), (0.2,−0.1) and (−0.9, 0.9). Different notions of distance
define completely different partitions (represented by the color)

Some algorithms, such as PAM or K-means, require the number of groups as an input.
There are several hierarchical clustering algorithms, based on divisive or agglomerative ap-
proaches. To generate the class of sets to construct our partition with we consider HOPACH,
introduced in van der Laan and Pollard (2003). HOPACH is a hierarchical procedure built
upon a clustering algorithm that requires a fixed number of clusters. In particular we choose
PAM (Partitioning Around Medoids Kaufman and Rousseeuw (1990)) as the underlying clus-
tering algorithm because it can work with any possible definition of distance and is therefore
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very flexible in defining the partition. PAM is a clustering algorithm that groups the ob-
servations in a specified number of clusters by minimizing the sum of the distance of each
observation from its class representative, called a medoid. Clusters are defined by the choice
of the medoid, and then observations are assigned to the closest medoid, which defines the
cluster. A heuristic search through possible medoids is performed, and the set chosen that
result from optimizing a measure of how tight the observations are grouped within the same
group and how far apart the clusters are.

One measure of how well cluster an observation is, is the silhouette score. For the i-th
observation in the k-th cluster the silhouette contribution is

S(i) =
bi − ai

max{ai, bi}
i ∈ Ck

ai = avg
j:xj∈Ck

δ(xi, xj) within cluster contribution

bi = min
h6=k

{
avg

j:xj∈Ch

δ(xi, xj)
}

between cluster contribution

The mean of the silhouette score of each observation is a measure of how well the clusters
split the data

HOPACH-PAM can be described as follows:

Initialize: Split the full data, using PAM, in a number of groups between 2 and K (a param-
eter to be appropriately tuned) and select the number of clusters k which maximizes
the mean of the silhouette score. Order the clusters based on the distance between the
respective medoids.

Iterate: For each cluster identified at the previous iteration perform the same splitting
described above, choosing the optimal k based on the mean silhouette score, order the
clusters and collapse some of them together if doing so improves the mean (average)
silhouette score.

Main Clusters: through iterations we built a hierarchy of clusters. The final clustering
solution is selected as the level that maximizes the mean silhouette score

HOPACH-PAM has three main features that provide more flexibility relative to other hier-
archical procedures:

1. It can use any measure of distance: this implies a high flexibility in the way the space is
partitioned, as shown in Figure 3.2, but also the possibility for combining heterogeneous
features.
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2. It doesn’t use just binary splits.

3. It can collapse clusters allowing to correct a decision to split at a previous step. Stan-
dard hierarchical procedures are greedy algorithms, i.e. they choose the optimal split
at the considered level, even though it’s not always true that a sequence of local opti-
mizations leads to a global optimum in this case.

A convenient feature of PAM is how the medoids around which the observations are clustered
are observations themselves. In addition, being the pairwise distance is the only summary of
the observations used by the algorithm, categorical, binary and continuos variables can be
easily combined by defining an appropriate dissimilarity measure. For example we can define
a distance that sums contributions from different components of a vector. In the case the
vector is composed by categorical and continuous components we can use two different kind
of dissimilarities and then simply sum their contributions. The same idea can be used to work
with features which are on a different scale. We can either re-scale them in a pre-processing
step, or define a weighted Manhattan distance that combines different contributions. Let
Jcat be the set of categorical features in X, and let Jcont be the set of continous features in
X. Then we can define the distance between Xi and Xi′ as

δ(Xi,Xi′) = wcat · δcat(Xi,JcatXi′,Jcat) + wcont · δcont(Xi,JcontXi′,Jcont)

where δcont can be one of the distances shown in Fig. 3.2, δcat can be, for example, the
indicator of {Xi,j = Xi′,j} and the w’s are two weights that can be specified to give a
different importance to the two contributions

A common use of cluster analysis is to group the observations and then interpret the
clusters obtained based on subject matter knowledge (see, for example, Golub et al. (1999)).
In this case clusters get “validated” by how well they match some grouping of the vari-
ables according to some feature not included in the clustering procedure (e.g. disease type,
phylogenetic information, etc...). We formalize this idea to create a supervised learner that
creates a set of partitions based on how well the observations cluster together and then uses
the outcome variable to select the partition of the space which represents it better.

3.3.2 HOPSLAM: HOPACH-Pam Supervised Learning AlgorithM

In the previous sections we described how to construct a set of partitions of the feature space
based on a clustering algorithm and how to select among a space of candidate estimators of
a quantity of interest. In this section we are going to describe how to use those partitions to
build our set of candidate learners and how to explore this set using V -fold cross-validation.

The HOPACH clustering algorithm defines a tree. This tree represents the hierarchy of
splits, each node is a cluster and each level of this tree represents a partition of the space. If
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we just consider different levels of the full HOPACH tree our candidate estimators are the
subtrees with depth 1, 2, .... To each of them we associate a predicted value for the parameter
of interest E[Y |X] as in the histogram regression-classification setting, e.g. the average of
a continuous outcome for the observations within each group. The groups defined by these
trees are, however, a function of the silhouette score, which might improve down a branch
even if splitting does not improve the estimate of E[Y |X]. We can think, for instance, of a
region coherent in terms of Y but in which the distribution of the features has two or more
modes. In this case HOPACH would split the region, because doing so would improve the
silhouette score, but the splits would make the prediction model more complicated without
providing more accurate (and maybe even less accurate) predictions of the outcome.

To make the space of candidate estimators richer without changing the nature of the
partitions we want to have the flexibility to split only some regions of the space and we
want to let the outcome to determine if a cluster is to be split or not. The levels of the full
tree are the clustering solutions found letting the silhouette score determine the need for
further splits. Once we have this set of clusters we can examine the outcome and collapse
the groups together when doing so improves the fit. This is equivalent to considering as a
space of candidate estimators the set of the subtrees in which only some branches are pruned
at a varying depth. This can be done by pruning upward the full HOPACH tree along each
branch instead of cutting the tree at a defined level. Now the set of possible trees includes
the subtrees that we obtain by collapsing together the children of a node. Fig. 3.3 represents
the candidate estimators under different definition of the splitting rule.

Pruning a tree is based upon a tradeoff between the parsimony of the model and the
prediction error. Making the partition finer decreases the error (bias) in prediciton, but
the gain might not be sufficient to justify the increase in complexity and thus variance of
the prediction, resulting in an ”over-fit” model. A common way to index trees obtained
by pruning a larger partition tree (Breiman et al. (1984)) is to index the subtrees by a
complexity parameter α that tunes the tradeoff between error and complexity. We define a
measure analogous to the AIC, the Split Information Criterion (SIC). This measure, like the
AIC, has a term related to the complexity and another linked to the goodness of fit based
on the chosen loss function instead of the likelihood. The SIC is defined as

SIC(partition) = [# elements in the partition] +
∑
i

L(Yi, partition)

where Ŷi(partition) is the fitted value of the outcome associated to the chosen partition of
the space. Given a full HOPACH tree we start from the leaves and go up every branch
pruning the subtree and keeping the parent cluster every time the following condition holds

SIC(parent) ≤
∑

α SIC(children)

where α is the parameter that indexes the space of trees. For α = 1 we split whenever the
inequality is strict.
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Full Data

C 2C 1

C 1-1

C 3

C 1-3C 1-2 C 2-2C 2-1 C 3-2C 3-1

Full Data

C 2C 1

C 1-1

C 3

C 1-3C 1-2 C 2-2C 2-1 C 3-2C 3-1

Full Data

C 2C 1

C 1-1

C 3

C 1-3C 1-2 C 2-2C 2-1 C 3-2C 3-1

1Figure 3.3: Three examples of possible partition subtrees on the same HOPACH tree. Greyed
out are the subtrees whose leaves define the final partition. The first example simply consid-
ers the second level of the HOPACH tree as the final solution. The second and third trees,
on the other hand, represent the case in which we prune along a branch and not across a
specific level. In one case only Cluster 2 is split in its two children (Cluster 2 - 1 and Cluster
2 - 2), in the other case only the children of Cluster 3 are collapsed back together.
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Now that we indexed with α the set of candidate estimators we can use cross-validation
to choose its optimal value. The parameter α defines how aggressive is the pruning, and the
goal of cross-validation is to estimate how such strategy generalizes well to new data. We
partition the dataset into V (approximately) equal parts, set aside the v-th as a validation
subset and use the rest of the data to build a full HOPACH tree. From this tree we can
compute the range of α’s that define all the possible subtrees. Namely, for each split there
is a value of α for which the algorithm would prune the subtree: SIC(parent)

SIC(children)
. For each value

of α we have a different tree that defines a partition of the space to which we associate a
prediction of the value of the outcome (e.g. the partition average). We can compare such
prediction with the value of the outcome in the fold we left out using the loss function. This
defines, for each fold, a piece-wise constant function of α. The CV selector α∗ is the minimizer
of the point wise average of those V functions. Algorithm 1 is a schematic representation of
this procedure.

Input: Features X, Outcome Y, distance d
Output: Partition that minimizes the empirical risk and predicted value of the

outcome for each element of the partition
for v = 1→ V do

tree← HOPACH(X0
v, d);

Ŷ(α)← fit(prune(tree, α),Y0
v);

loss[v](α)← EnL(Y1
v, Ŷ(α));

end

Risk(α) = 1
V

∑V
v=1 loss[v](α);

α∗ = argmin
α

Risk(α);

Tree← prune(HOPACH(X, d), α∗);

Ŷ ← fit(Tree,Y);
Algorithm 1: HOPSLAM(d,X,Y). The operator fit associates a common value of the
outcome to each partition. X0

v is the v-th training set, X1
v the v-th validation set. loss[v](α)

is the average of the losses, i.e. the empirical risk of the estimator built with the training
set and applied to the validation set. The tree defined by the HOPACH clustering is a
function of the distance matrix which is a function of the data X and of the chosen distance
d.

The Algorithm we just described constructs a flexible and potentially interpretable par-
tition of the feature space space. It is helpful to define the splits in terms of spacial grouping
of the observations because it offers us insight on how similar the observations are to the
medoid and between each other. Belonging to a cluster implies being similar to the other
observations in the group. An important reason for collapsing adjacent regions when they
are associated to a similar value of the outcome is the importance to control the complexity
of the estimator. If splitting is not improving the prediction error enough to justify the
increase in the number of groups our algorithm will penalize this choice and keep the ad-
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jacent regions together. Since groups are defined in terms of proximity to the medoids the
algorithm produces a quite interpretable tool. In medical settings such as the one in Nunez
et al. (2009) we are interested in making a prognosis of an incoming patient based on initially
collected clinical data. However, a procedure that defines too many patient groups carries
too much information which becomes impractical for use by medical personnel.

3.4 Simulation Study

In this section the characteristics of the proposed algorithm are studied by simulation. We
begin by explaining with simple examples the strengths and weaknesses of the proposed
procedure in comparison with a standard recursive partitioning method. Then we evaluate
the performance of the method in high dimensional settings with a larger simulation study.

The toy examples are designed to give an intuition of the strengths and differences of
our method compared with CART. With the first toy examples we want to show how even
a simple geometry is hard to reconstruct with rectangles such as those in Fig. 3.1. These
examples help explaining the performance we observe in higher dimensional settings where a
characteristic of CART is the choice of more groups than necessary, due to the relative lack
of flexibility of the kind of splits used.

3.4.1 Simple setting

As a first example we chose the [0, 10] × [0, 10] square with a diagonal band. The outcome
is set to one on the upper side of the the band delimited by the lines y = x± 5, to zero on
the band and to −1 on the other side i.e. Y |X = 1{X2 > X1 + 5} − 1{X2 < X1 − 5}. In
the feature space data is simulated around nine points on the equally spaced grid (µ1, µ2) ∈
{−8, 0, 8} × {−8, 0, 8} with bivariate gaussian distribution (correlation zero and standard
deviation 2.5) each one representing a mode in the feature distribution. A sample of 500
observations is generated. We fit HOPSLAM using euclidean distance clustering, 10 fold
cross-validation and quadratic loss and CART using function rpart, from the homonymous
package Therneau et al. (2012) fitting a CART regression tree. We pick such a geometry
for the sake of a clear comparison of the two algorithms. Such a geometry is both simple
enough to make clear the behavior of the two methods and quite realistic.

Fig. 3.4 shows a case where CART is not flexible enough to split the covariate space
parsimoniously. If we look at the center of the right hand side panel we can see how CART
uses small rectangles to partition that area. This area doesn’t contain many observations, so
those small regions are also fairly empty. This happens because the set of candidates used
by CART is limited to orthogonal splits. Such splits do not easily capture linear decision
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Figure 3.4: Predicted labels for CART and for HOPSLAM. The grey circles are centered
around the centers the data is simulated around and the radius is equal to the standard
deviation. Different colors identify different labels predicted by the algorithm. The shape of
the dot represents the value of the outcome. We also use the color to represent the split of
the space.

boundaries, as shown in Fig. 3.5. CART creates many small regions to approximate the
boundaries between the groups. The consequence of this is that overfits the observed data
and that those small regions will not capture well new observation.

The groups that CART identifies are not strongly related to the underlying spacial dis-
tribution of the observation, but just to the outcome. In practice CART uses the outcome
variable to define regions in which it is homogeneous, while our procedure first identifies
groups in terms of spacial coherency and then merges together the groups found to improve
the coherency in terms of the outcome variable. This simple example shows when the HOP-
SLAM approach has the potential for much better prediction accuracy relative to CART.
In this simple example the CV-risk of HOPSLAM is 0.14 while CART has a CV-risk of 0.2.
This will be made clearer from the simulations in section 3.4.2.

One final remark can be made on the nature of the regions identified by the two methods.
The regions HOPSLAM identifies can be described as the points that are similar to the
respective medoid. This helps characterizing the groups and reducing the dimension of the
population by picking few representative individuals. The regions defined by CART can
be hard to interpret, such as the turquoise region in the middle of the bottom part of 3.4.
HOPSLAM uses 7 groups to describe the joint distribution of the variables and predict the
outcome, CART uses just one more group, but it’s clear from Fig. ? how they are inadequate
in capturing the variability in the data.
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Figure 3.5: An example of stepfunctions approximating a linear decision boundary. A very
high number of splits is necessary to achieve a good approximation of the stright line. HOP-
SLAM decision boundaries are defined as stright lines (hyperplanes in higher dimension)
while CART decision boundaries are step functions (lines/hyperplanes parallel to one of the
coordinate axis).

3.4.2 Relative Performance

We now look more in depth at the example from Fig. 3.4 and study the average behavior
of the algorithm through repeated simulations. From the same distribution we draw 250
simulated datasets and compare HOPSLAM and CART. We simulate n = 500 points from a
bivariate gaussian mixture with varying standard deviation (but zero correlation) and means
on the grid {−8, 0, 8} × {−8, 0, 8}. The Outcome is set to -1 above the band determined by
the lines x2 = x1 ± 5, to zero on the band and to one below the band.

In Fig. 3.6 we repeat 250 times the scenario in Fig. 3.4, where the standard deviation of
the components of the mixture is set to 1 and 2. We can see how the behavior is very similar
to Fig. 3.4, i.e. CART tends to require an higher number of groups and, partitioning in
smaller regions, but paying a high price in terms of interpretability and over fitting achieving
a higher MSE. In this scenario the true number of groups is 9. CART, in some simulations,
uses up to 12 groups. As made clear in Fig. 3.4 most of these groups are tiny and very
hardly generalizable to a new dataset. So we can see how CART pays an higher price in
terms of MSE due to the high number of small group used to partition the space as shown
in Fig. 3.6. This is relevant in applying the regions in a prediction setting: too small and
ad hoc regions generalize poorly to a new dataset. Like in Fig. 3.4 many small regions are
created and this generalizes very poorly as shown by the higher MSE. HOPSLAM, on the
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other hand, has a better MSE and does a good job finding the true number of groups.
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Figure 3.6: MSE and number of groups for the simulation study. The data is simulated from
a 9 component gaussian mixture. The elements of the mixture have a diagonal covariance
matrix with standard deviation 1 (top) and 2 (bottom) respectively. The Outcome is set to
-1 above the band determined by the lines x2 = x1±5, to zero on the band and to one below
the band.
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3.4.3 Simulation under a True CART Model

To show the different use of the spacial distribution we make the setting even simpler. We
simulate 1000 from a bivariate normal distribution centered at zero, with diagonal covariance
matrix and unitary standard error. We then translate rigidly the observation with positive
abscissa by 0.1 and those with negative abscissa by −0.1. The outcome is set to −1 on the
left and to +1 on the right. In this case the information carried by the spacial density in
the X space has nothing to do with the outcome. This makes this problem very easy for
CART since a single vertical line perfectly splits the two classes where HOPSLAM uses three
groups that still don’t capture the geometry of the problem, for example the upper triangle
in the left hand side panel.
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Figure 3.7: Predicted labels for CART and for HOPSLAM in the simple circular example.
Data is generated around a bivariate gaussian centered at the origin with standard deviation
1 and no correlation. Points in the right half plane are shifted to the right by 0.1, points in
the left half plane are shifted to the left by 0.1. The color of the dots is the predicted label,
the shape the value of the outcome. The color is used to represent the split of the space.

The setting in 3.7 is, however, very unrealistic. It implies that a small change in the X’s
yields a sudden jump in the Y ’s. Also here the distribution of the feature has a high density
peak exactly in the point of discontinuity for the Y ’s. Of course CART does better when it
contains the true model, but as one can see, a model such as this simulation is not typically
realistic.

In this example there is no relation between the density of the variables and the outcome.
Most of your population is around zero, but the outcome changes dramatically between
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positive and negative ordinate. This is unrealistic because is a very ill conditioned problem
in which most of the population is clustered around the origin and a very small fluctuation
in their coordinates make them switch condition. This might, in an applied seting, imply
that we are not measuring an important variable. To give a simpler practical example, this
situation would be anlogous to a setting in which being 1 pound above or below average
explains an outcome such as getting cancer or not.

3.5 Variable Selection

Thus far, we have treated the set of predictors used to construct the clusters as fixed.
However, in many settings, such as the gene expression studies mentioned in the introduction,
we observe a high number of features, e.g. 104 or more gene expression values, and there can
be significant improvements in both explanatory and predictive power by using only a small
subset of the available variables. We propose a heuristic approach to variable selection as an
add on to the general version of the algorithm. When considering subsets of variables, we
run into the computationally infeasible problem of evaluating the full space of such subsets.
A common solution in regression literature (see for example Narendra and Fukunaga (1977))
is to use a branch and bound approach based on the monotonicity of the residual sum
of squares. Other very popular dimensionality reduction methods like lasso are also built
upon a linear model and extensions. In these settings we know the error to increase when
removing variables. It is the goal of such methods to find an appropriate tradeoff between
the parsimony gained and the price payed in terms of accuracy. However, in our case a
smaller number of variables might support a cleaner clustering solution and hence have a
lower error. This means that we have to find an alternative to branch and bound to avoid
exploring all the combinations of variables, we adopt one of the following heuristics:

Forward Starting from the leaves, i.e. the singletons with a single variable. Initialize the
working set as the empty set.

1. While the cardinality of the working set is smaller than the maximum number of
variables needed, do:

2. For each variable j not in the working set build the tree using the union between
the working set and the variable j;

3. For each tree at the previous step compute the prediction error associated. Pick
the variable whose inclusion yields the lowest error and add it to the working set.

Backward this approach starts from a working set with all the variables and iteratively
removes one variable at a time until we removed the maximum number of variables
needed.

In the rest of this paper, we will use forward selection.

52



We address the problem of selecting the optimal number of variables using the loss based
estimation roadmap we described in Section 3.2.1. The set of candidate estimators contracted
with the forward selection heuristic is indexed by the number of variables used in building
the full tree and by the parameter α used to prune it. For each training fold we construct
the full HOPACH tree using k = 1, 2, ... variables. For each one of this trees we identify a
set of α’s as in the simple case described in Algorithm 1. The error is now a function of
two variables, α and k. We then select the pair (α∗k∗ , k

∗) for which the cross-validated risk is
minimum. Algorithm 2 from Appendix A.3 describes this in a more schematic and detailed
way.

3.5.1 Feature selection: a simulation study in higher dimension

An simulation study has been run for the variable selection. We extend the example presented
in Section 3.4.2. Data is simulated by a nine component gaussian mixture in two dimensions
and noise is introduced by adding an increasing number of noise features with mean zero.
The simulations are ran for a number of noise features equal to 3 and 5. In Fig. 3.8 we
can see from some of the results how HOPSLAM performs well in terms of dimensionality
reduction, being able to efficiently reduce the dimensionality. We see how in Fig.3.8 we
outperform CART in terms of MSE, while capturing the number of groups in the true data
generating distribution and reducing the dimensionality considerably. CART’s approach
to dimensionality reduction makes it a very powerful tool, as shown in Fig.3.8 it is more
aggressive in pruning noise features which results in a lower number of groups. Correctly
reducing the dimensionality allows CART to work in a smaller space and hence to use less
group. This strategy is, however, too aggressive, since CART throws away too many variables
and pays a price in terms of MSE. Our method on the other hand keeps the MSE under
control, being more conservative with the dimensionality reduction.

3.6 Real Data Application

As a real data application we consider the study from Nunez et al. (2009). The authors
address the problem of predicting an adverse event, Massive Blood Transfusion (MBT),
defined as requiring more than 10 Packed Red Blood Cells (PRBC) units within the first
24 hours. The authors review existing methods for clinical assessment and propose a score,
ABC (Assessment of Blood Consumption), a number between 0 and 4, defined as the sum
of four dichotomous components readily available at the patient’s bedside: the presence of
a penetrating mechanism, systolic blood pressure lower than 90 mmHg, heart rate higher
than 120bpm and positive Focused Abdominal Sonography for Trauma (FAST). An ABC
score larger than 2 is used as a predictor for an higher risk of adverse events. The authors
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Figure 3.8: MSE, number of variables used and number of groups for the simulation study
(100 simulations). The data is simulated from a 9 component gaussian mixture. The elements
of the mixture have a diagonal covariance matrix with standard deviation 1 (top) and 2
(bottom) respectively. The Outcome is set to -1 above the band determined by the lines
x2 = x1 ± 5, to zero on the band and to one below the band. To the relevant variables 3
noise features are added.

explain how this measure can be evaluated very quickly upon patient arrival and how it is
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very predictive of the subsequent conditions of the patient.

The data consist in a total of 513 patients with around forty variables describing their
condition upon arrival at the Intense Care Unit (ICU). These variables describe the kind
of trauma suffered, the conditions in which the patient is upon arrival and his conditions
after the very first emergency procedures. The ABC score provides a very useful summary,
helping the physicians to make quick decision without measuring too many variables.

In this case the result obtained using all the variables available is worse than the one given
by a smaller subsets. In fact, the clustering solution obtained using all the measurements
available has no relationship with the outcome variable. The MBT cases were almost evenly
split between different clusters so the estimated outcome was, for all the clusters, non-MBT.

Even though we will use the four variables that define the ABC score to cluster the pa-
tient, we find useful to display the results in 2D plots representing the projection on the span
of the first two principal components components, explaining 60% of the variability. This is
a very common visualization technique, implemented, for example, for the PAM object in
the R package clustering Maechler et al. (2013), that helps us to give a 2D representation of
higher dimensional data.

From a preliminary exploration we can see how there is some area in the feature space
where the patients at higher risk of MBT concentrate. Fig. 3.9 shows the projection of the
data on the first two principal components of the ABC variables. Most of the observations
are concentrated in the center, but we can see how the right hand side is mostly associated
with MBT.

Using the sum of the four indicators is a quick solution to get a summary of the most
important characteristics of the patient, but identifying specific patterns can add more gran-
ularity, differentiating between patients with the same ABC score. In Fig.3.10 we can see
the comparison of the supervised clustering of the observations using a cosangle based dis-
similarity with the results obtained with a threshold of 2 on the ABC score. We perform
the supervised clustering on the same set of variables used to compute the ABC score The
supervised partitioning has a cross-validation estimated misclassification rate of 0.11, while
the procedure that selects the threshold on the ABC score that minimizes the misclassi-
fication rate has a CV estimated misclassification rate of 0.12. Also in this case CART’s
performances are not comparable with those of the other methods, with a CV estimated
misclassification rate of 0.98 , as made clear by Fig. 3.10.

It is clear from the results how HOPSLAM captures the important features of the data
and results in a similar classification as produced by experts working in trauma.

One of the streghts of HOPSLAM is the interpretability granted by the underlying PAM
clustering. The medoids are the observations that best represent their group. In our case
we can see themedoid in Tab. ??
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Figure 3.9: Projection on the first two principal components (60% variability explained) of
the variables contribution to the ABC score. Red dots are patients who received a massive
blood transfusion within the first 24 hours.

Ŷ MOI edbp edhr FAST
0 1 122 86 0
0 1 164 92 0
1 1 80 117 0
0 1 130 124 0

As we can see for all of them a penetrating mechanism is present, but what is more
interesting is how a lower asystolic blood pressure characterizes the cluster associated with
the positive predicted outcome. That cluster also has a higher heart rate than two of the
other clusters. We can see in Fig. 3.11 how the variables are distributed across clusters

3.7 Software

We have made the algorithm described above available in the R package HOPSLAM. This
provides a prototype implementation that can be applied to real data and provides estimation
and visualization tools for fitting supervised partitions of the space. The core function of the
package, HOPSLAM is currently based on HOPACH as an underlying clustering algorithm
and builds upon the hopach function from Pollard et al. (2010) with similar syntax and
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Figure 3.10: Comparison between thresholding the ABC score, classifying based on proximity
on the ABC variables and CART. Notice how the variables are the same as in Fig. 3.9 but
the color coding now represents the predicted label and the information on the outcome is
conveyed by the shape of the dot.

behavior. Main inputs of the functions are the feature matrix X and the outcome vector Y
and the number of folds for the cross-validation. All the distances available for hopach are
also available for HOPSLAM, but users can specify their own choice by creating a function
dissuser and a function vdissuser and specifying the option d=”user”. The first function will
be used to compute the full distance metric, while the second just computes the distance
vector of a point from a set of observations. Users also have the option to specify their own
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Figure 3.12: Heatmap of the ABC variables divided by cluster. We see a similar pattern to
Fig. 3.11.

choice of fit and loss functions. The package includes the most common choices of an average
fit, majority vote, squared error loss and misclassification error, but these functions are an
example that the user can follow, if need be, to define something more exotic.
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3.8 Discussion

In this article we present a novel method to use clustering to construct a space of candidate
estimators of a non-parametric regression function. These estimators are constructed by
using HOPSLAM clustering to define a hierarchy of splits. The selection of the optimal
estimator is supported by the theory of loss-based estimation and by the optimality of the
cross-validated selector that allows us to choose a candidate from this space with theoretical
guarantees on the risk. The Oracle Inequality for the risk of the cross-validated selector
gives an asymptotic bound on the performance of this procedure which, as the sample size
increases, converges to the true risk minimizer. We show, via simulations and data analysis
that our method performs better than standard CART trees in terms of mean squared error
under many scenarios and it is more stable in the number of regions used to partition the
space. The groups our method produces generalize well to new samples and are interpretable
since they group the observations in terms of their pairwise similarity.

The present work shows how the trees built with the proposed procedure perform better
than CART trees. However regression trees have known limitations (see, for example Hastie
et al. (2001)) and they are often used as a base for building ensemble estimators. A natural
extension of the present work is to study the performance of a forest of such trees, as described
in ??, in order to exploit the better performances on the single tree. This would, however,
imply a loss in interpretability. The ideal ensemble method to improve the performance of
our estimator would be gradient boosting Friedman (2000), which would allow to combine
multiple trees without losing interpretability.

Both these extension rely on being able to fit the model multiple times and very fast.
This is problematic since the current implementation has all the limitations that come from
building on pre-existing code that has not been developed for being optimally reused many
times. There are two layers in the current implementation: HOPSLAM calls hopach which
calls pam. The function implementing PAM clustering has been written to be applied to
a single dataset at the time, hence performs a series of checks and transformations of the
data that get run every time the function is called. The same happens with the current
implementation of HOPACH. The goal of both functions is to cluster efficiently a single
dataset performing all the operations necessary to make this as user-friendly as possible.
Making the current implementation more efficient will require to slim down these operations
and to remove all the “bells and whistles”. The current implementation is, however, a useful
prototype that allows to tackle medium sized datasets and makes the method available to
be applied to real problems.
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Appendix A

Details of the Algorithms

This appendix aims to describe the algorithmic details that have been omitted from the main
corpus of the dissertation not to distract the reader. Section A.1 describes the algorithm used
in Chapter 1 and explains the computational approach to the computation of the predictive
probabilities.

Section A.2 describes the data extraction procedure used in the meta-analsis from Chap-
ter 2.

A.1 Theoretical and Computational Details of Chapter

1

A.1.1 Programming Approach to the Computation of Predictive
Quantities

The first step of the analysis conducted with WinBUGS, is the analysis of the interim data
in order to compute the posterior distribution of the parameters; the predictive stage is
then carried on with ad hoc R code in order to cope with the computational intensity of the
task. In both cases the analysis carried on at the end of the study will be performed with
WinBUGS.

To summarize our “predictive” pipeline is composed by three stages:

1. Approximate the posterior distribution p(θ|Y ) of the parameters given the interim data
(using WinBUGS);
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2. Using the above sample simulate possible outcomes for stage 2 in order to compute the
predictive quantities to be used for interim decision making (using dedicate R code) as
described in the next section;

3. If any allocation has been chosen at the previous step run the post interim part of
the trial and then assess the performances of the drug using the approximation of
p(θ|Y, Y ∗) obtained from the post interim data (using again WinBUGS).

A.1.2 The Sampling-Importance Resampling Algorithm: General
Framework

The Sampling-Importance Resampling technique (SIR from now on), also called Bayesian
bootstrapping, has been introduced in Smith and Gelfand (1992) and widely used in the field
of computer vision and particle filtering, as in Doucet and Johansen (2008), and in genomics
as for example in Trapnell et al. (2010) and Jiang and Wong (2009). Suppose we are able to
sample θi (i = 1, ..., N) easily from a distribution g(θ) but we are interested in sampling from
h(θ) = f(θ)/

∫
f(θ′)dθ′. For each sample θi from g one calculates qi = f(θi)/g(θi) and the

normalized weight wi = qi/
∑N

j=1 qj. Sample one θ∗ from the θj, j = 1, ..., N with probability
wj. This new sample is approximately distributed according to h, and the approximation
becomes more precise with increasing N .

This approach has an application in a Bayesian context: take f(θ) = l(θ;x) · p(θ), where
l(θ;x) is the likelihood and p(θ) is the prior. As described in the above section we can easily
draw a sample from θ ∼ g(θ) = p(θ) but we need to sample from the posterior distribution
h(θ) = p(θ|x). Since p(θ|y) ∝ l(θ;x) · p(θ) apply SIR one draws samples with the resample
weight given by

wi =
l(θi;x)∑
j l(θj;x)

for obtain m samples θ∗ ∼ p(θ|x).

A.1.3 Application of SIR to Bayesian Dose-Finding

In our dose-finding context, let θ = (α, β) be sampled from the prior p(θ) for stage 2 which
is the interim posterior, i.e. p(θ) = p(θ|Y ). We are interested in approximating the integrals
in (1.4) by averaging over a number of possible outcomes Y ∗ in stage 2.

To do so, using WinBUGS select a posterior sample (α, β)(1), ..., (α, β)(k), ..., (α, β)(N).
To simulate future outcomes in stage 2, draw a pair (α, β)(l) from this sample, use this

parameter to simulate one post-interim posterior dataset Y
∗(l)
d , where d is the dose to be

explored, future placebo and Dose 5 response are also included in this data set.
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p
(
Y
∗(l)
d |(α, β)(k)

)
is computed k = 1, ..., N . The resample weights are given by

wk =
l(θk; y)∑
j l(θj; y)

=
p(Y

∗(l)
d |(α, β)(k)) · p((α, β)(k))∑

j p(Y
∗(l)
d |(α, β)(j)) · p((α, β)(j))

=
p(Y

∗(l)
d |(α, β)(k))∑

j p(Y
∗(l)
d |(α, β)(j))

being the interim posterior sample uniformly distributed with probability p((α, β)(j)) =
1/N, ∀j = 1, ..N .

Whether a sample (α, β)(k) satisfies a decision criterion can be checked directly. We then
obtain

P{satisfy criterion|Y ∗} =

∫
R2
+

P{satisfy criterion|(α, β), Y ∗}P{(α, β)|Y ∗}d(α, β) ≈

≈ 1

N

N∑
k=1

1{(α, β)(k) satisfies the criterion} · wk = PP
(l)
d [criterion]

We repeat this procedure for l going up to a very large number, say L,

PPd =
1

L

L∑
l=1

1
{ ⋂
{criteria}

{PP (l)
d [criterion] > c}

}
is then an approximation of (1.4).

To summarize, our algorithm is as follows

1. Select Dose d;

2. sample (α, β)(1), ..., (α, β)(k), ..., (α, β)(N) from the post interim posterior (with Win-
BUGS);

3. draw (α, β)(l) from the posterior sample at interim of size N ;

4. simulate one dataset Y
∗(l)
d |(α, β)(l), Ad, with Ad as defined above;

5. apply importance resampling (using R):

• compute p
(
Y

(l)
d |(α, β)(k)

)
, k = 1, ..., N ;

• compute wk;

• compute PP
(l)
d [criterion] for each criteria success is defined upon;

6. repeat steps 3-5 for l = 1, ..., L, in the end

PPd = avg

[(
1
{ ⋂
{criteria}

{PP (l)
d [criterion] > c}

})
l

]

In the end, we choose the lowest dose d satisfying the criteria.
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A.2 Full Data from Sormani’s meta-analysis from Chap-

ter 2

Trial S.Size log(RRARR)(s.e.) log(RREDSS)(s.e.) log(RRMRI)(s.e.)
2,38 248 -0.083 (0.15) 0 (0.24) -0.994 (0.276)
2,38 247 -0.416 (0.147) -0.342 (0.263) -0.892 (0.274)
21 26 -0.211 (0.687) 0.122 (0.811) - (-)
22 251 -0.342 (0.213) -0.128 (0.261) - (-)
23,39 172 -0.386 (0.253) -0.446 (0.301) -0.4 (0.208)
24 150 -0.896 (0.269) -0.357 (0.376) - (-)
4 51 -1.08 (0.484) -1.66 (0.816) -0.734 (0.502)
25 40 -0.994 (0.479) -0.223 (0.807) - (-)
5,40 376 -0.342 (0.369) -0.386 (0.189) -0.545 (0.227)
5,40 371 -0.386 (0.178) -0.315 (0.186) -1.05 (0.222)
26 802 0.049 (0.112) 0 (0.116) -0.117 (0.125)
27 188 -0.342 (0.27) -0.844 (0.342) - (-)
28 306 -0.163 (0.196) 0.077 (0.22) - (-)
29 942 -1.14 (0.156) -0.528 (0.141) -1.77 (0.124)
30 1171 -0.799 (0.121) -0.236 (0.115) -1.77 (0.112)
31 223 -1.17 (0.304) -1.14 (0.366) - (-)
31 221 -1.51 (0.269) -1.02 (0.354) - (-)
32 764 0.03 (0.188) 0.285 (0.226) -0.198 (0.151)
33,34 870 -0.868 (0.164) -0.363 (0.165) -1.31 (0.156)
33,34 893 -0.799 (0.161) -0.308 (0.16) -1.47 (0.149)
35 118 -0.139 (0.408) 0.207 (0.425) - (-)
35 123 -0.357 (0.25) 0.039 (0.431) - (-)
36 130 -0.994 (0.438) -0.446 (0.397) -0.261 (0.32)
37 1345 0.058 (0.23) 0.255 (0.112) -0.328 (0.098)
37 1347 -0.03 (0.181) 0.049 (0.118) -0.328 (0.082)

Table A.1: Data from Sormani’s meta-analysis: log(RiskRatio) for the MS outcomes with
the extracted standard errors

The calculation of approximate standard errors proceeded as follows for each study: Firstly,
in the case of the EDSS, we assume a binomial model with treatment effects on the log

relative risk scale. As such, σθ =
√

1
nC

+ 1
nT

, where nC equals the number of patients

in the control group and nT equals the number of patients randomized to the treatment
group. Secondly, when calculating the standard error associated with the relapse treatment
effects, a Poisson sampling model with multiplicative over-dispersion (Y.C. et al. (2009))

71



parameter was assumed. Therefore, σγ =

√
φ
(

1
eCλC

+ 1
eTλT

)
, where eC and eT represent the

number of years of patient exposure associated with the control and treatment groups in
study i, λC and λT represent the corresponding estimates for the annualized relapse rates
and φ is used to control the amount of multiplicative over-dispersion. To calculate the
exposure parameters an assumption must be made on how to combine the available drop-
out information, which in Sormani et al. (2010) was only provided at the study level rather
than the arm level, with the total number of randomized subjects and the planned length
of follow-up. Therefore, it was assumed that the subjects with incomplete follow-up where
spread across the treatment groups proportionally to the randomization ratio. Further, by
assuming that in each study the time of drop-out was uniformly distributed throughout the
follow-up period, the expected exposure from the subjects with incomplete follow-up was
calculated. This was then added to the exposure from subjects with complete follow-up
to calculate eC and eT . As the overdispersion could not be estimated directly from the
available summary data, we selected a plug-in value of 2. The choice of 2 was based on a
recently published investigation and simulation study examining sample size re-estimation
Friede and Schmidli (2010b). Finally, the standard errors associated with the MRI treatment
effects were based on the assumption of a negative binomial sampling model (Sormani et al.
(2001a), van den Elskamp et al. (2009b)), using the parametrization described in Keene

et al. (2007b). As such, σψi =

√
1
nC

(
1
µC

+ k
)

+ 1
nT,i

(
1
µT

+ k
)

, where µC and µT represent

the average number of MRI lesions/patient observed, which could be taken from the summary
data, and k represents the over-dispersion parameter associated with the negative binomial.
In this case, the negative binomial over-dispersion parameter could not be derived from
the summary data and therefore a value of k = 3 was selected (again based on Friede and
Schmidli (2010b) and Friede and Schmidli (2010d)).
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A.3 Variable Selection Algorithm

Input: Features X, Outcome Y, distance d, the maximum number of variables to use
maxV ar

Output: Partition that minimizes the empirical risk and predicted value of the
outcome for each element of the partition

for v = 1→ V do
vars← {};
for k = 1→ maxV ar do

q ← |vars|+ 1;
for j /∈ vars do

tree← HOPACH(X0
v[, vars ∪ {j}]);

Ŷj(α)← fit(prune(tree, α),Y0
v);

Err[j]←
∫

EnL(Y0
v, Ŷj(α))dα;

end
j∗ ← argmin

j
Err[j];

loss[v, q](α)← EnL(Y1
v, Ŷj∗(α));

vars← vars ∪ {j∗};
end

Risk[q](α) = 1
V

∑V
v=1 loss[v, q](α);

end
(q∗, α∗) = argmin

α,q
Risk[q](α);

vars← {};
for k = 1→ q∗ do

for j /∈ vars do
Tree← prune(HOPACH(X[, vars ∪ {j}]), α∗);
Ŷj ← fit(Tree,Y);

Err[j]←
∫

EnL(Y, Ŷj(α))dα;

end
j∗ ← argmin

j
Err[j];

vars← vars ∪ {j∗};
end
Tree← prune(HOPACH(X[, vars]), α∗);

Ŷ ← fit(Tree,Y);
Algorithm 2: HOPSLAM(d,X,Y)
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Appendix B

Code

This appendix is similar to Appendix A and contains some of the code that implements the
methodology discussed in the Chapters to help replicating and reusing the results and to
explain in a clearer way the details of the algorithms.

B.1 R code from Chapter 1

#########################################################################################
######################## ledSIR ########################
#########################################################################################
### ###
### This func t i on performs the Sampling−Importance Resampling c a l c u l a t i o n s to ###
### al low p r e d i c t i v e dec i s i on . ###
### Input : a lpha = a sample from inter im po s t e r i o r with a lpha fo r Placebo , dose to ###
### be exp lored and d5 ; ###
### beta = a sample from inter im po s t e r i o r ; ###
### N = the s i z e o f the po s t e r i o r sample to be cons idered ; ###
### s . s i z e = the t o t a l post−in ter im sample s i z e ; ###
### n . sim = number o f s imula ted s t u d i e s to perform pred i c t i on over . ###
### Output : PPw = the p r e d i c t i v e power g iven the a l l o c a t i o n . ###
### ###
#########################################################################################
#########################################################################################

ledSIR <− function ( alpha , beta , N=1e4 , s . size=150 ,n . sim=500){

## ind i ca t o r func t i on o f the event succes s
## not i c e t ha t : P( c r i t e r i o n ) = sum P( c r i t e r i o n | a , b )∗P(a , b ) = sum IS (a , b ) ∗ w(a , b )

IS1 <− ( ( log ( alpha [ , 1 ] )−log ( alpha [ , 2 ] ) )>0)
IS2 <− ( ( log ( alpha [ , 1 ] )−log ( alpha [ , 2 ] ) )>log (2 ) )
IS3 <− ( ( log ( alpha [ , 3 ] )−log ( alpha [ , 2 ] )+log ( 1 . 2 ) )>0)
#IS <− ( ( l o g ( a lpha [ , 1 ] )− l o g ( a lpha [ , 2 ] ) )> l o g (2) ) | ( ( l o g ( a lpha [ , 3 ] )− l o g ( a lpha [ , 2 ] )+lo g←↩

(1 . 2 ) )>0))
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## nega t i v e b inomia l l i k e l i h o o d
nb . likelihood <− function (A , Y , E ) {

pY <− prod (dnbinom(Y , size=A [ 1 ] , prob=A [ 2 ] /(1+A [ 2 ] ) ) ˆE )
return ( pY )
}

cat ( ”\n” )

## loop over the s imula ted s t u d i e s
PS <− lapply ( 1 : n . sim , function ( l ) {

cat (paste (100∗l/n . sim , ”% ” , sep=”” ) ) # progres s

## chose one ( alpha , be ta ) coup le randomly
s <− as . integer ( runif (1 , 1 , length (beta ) ) )

## generate a s imula ted data−s e t
Y <− matrix ( rpois (3∗s . size ,rgamma(3∗s . size , shape=alpha [ s , ] , rate=rep (beta [ s ] , 3 ) ) ) ,←↩

ncol=3,byrow=TRUE )

## r counts the number o f time t assumes each va lue
r <− l i s t ( ”Pl” = table ( Y [ , 1 ] ) , ”d” = table ( Y [ , 2 ] ) , ”dmax” = table ( Y [ , 3 ] ) )
w <− apply (cbind ( alpha [ , 1 ] , beta ) ,1 , nb . likelihood , Y=as .numeric (names( r$Pl ) ) , E=r$Pl )←↩

∗
apply (cbind ( alpha [ , 2 ] , beta ) ,1 , nb . likelihood , Y=as .numeric (names( r$d ) ) , E=r$d )∗
apply (cbind ( alpha [ , 3 ] , beta ) ,1 , nb . likelihood , Y=as .numeric (names( r$dmax ) ) , E=r$←↩

dmax )

(sum( w∗IS1 )/sum( w ) >0.95)&(max(sum( w∗IS2 )/sum( w ) , sum( w∗IS3 )/sum( w ) ) >0.5)

})

PPw <− mean( unlist ( PS ) )

return ( PPw )

}

B.2 WinBUGS code from Chapter 1

model
{

## se t p r i o r s f o r the maximum e f f e c t

for ( i in 1 : 1 0 ) {
deltasum [ i ] ˜ dnorm( meansum , tausum ) }

tausum <− 1/sigmasum

## de f ine d e l t a matrix and s t i c k−break ing p r i o r s
## for each column (model ) the maximum e f f e c t i s randomly broke a long d i f f e r e n t rows

stick1 [ 1 ] ˜ dbeta ( 1 , 1 ) # s t i c k v a r i a b l e s i d e n t i f y the p a r t i t i o n o f the maximum e f f e c t
stick1 [ 2 ] ˜ dbeta ( 1 , 1 )
stick1 [ 3 ] ˜ dbeta ( 1 , 1 )
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delta [ 1 , 1 ] <− deltasum [ 1 ] ∗ ranked ( stick1 [ ] , 1 )
delta [ 2 , 1 ] <− deltasum [ 1 ] ∗ ( ranked ( stick1 [ ] , 2 ) − ranked ( stick1 [ ] , 1 ) )
delta [ 3 , 1 ] <− deltasum [ 1 ] ∗ ( ranked ( stick1 [ ] , 3 ) − ranked ( stick1 [ ] , 2 ) )
delta [ 4 , 1 ] <− deltasum [ 1 ] ∗ (1 − ranked ( stick1 [ ] , 3 ) )

stick2 [ 1 ] ˜ dbeta ( 1 , 1 )
stick2 [ 2 ] ˜ dbeta ( 1 , 1 )
delta [ 1 , 2 ] <− 0
delta [ 2 , 2 ] <− deltasum [ 2 ] ∗ ranked ( stick2 [ ] , 1 )
delta [ 3 , 2 ] <− deltasum [ 2 ] ∗ ( ranked ( stick2 [ ] , 2 ) − ranked ( stick2 [ ] , 1 ) )
delta [ 4 , 2 ] <− deltasum [ 2 ] ∗ (1 − ranked ( stick2 [ ] , 2 ) )

delta [ 1 , 3 ] <− deltasum [ 3 ]
delta [ 2 , 3 ] <− 0
delta [ 3 , 3 ] <− 0
delta [ 4 , 3 ] <− 0

stick4 ˜ dbeta ( 1 , 1 )
delta [ 1 , 4 ] <− deltasum [ 4 ] ∗ stick4

delta [ 2 , 4 ] <− deltasum [ 4 ] ∗ (1 − stick4 )
delta [ 3 , 4 ] <− 0
delta [ 4 , 4 ] <− 0

stick5 ˜ dbeta ( 1 , 1 )
delta [ 1 , 5 ] <− 0
delta [ 2 , 5 ] <− 0
delta [ 3 , 5 ] <− deltasum [ 5 ] ∗ stick5

delta [ 4 , 5 ] <− deltasum [ 5 ] ∗ (1 − stick5 )

delta [ 1 , 6 ] <− 0
delta [ 2 , 6 ] <− deltasum [ 6 ]
delta [ 3 , 6 ] <− 0
delta [ 4 , 6 ] <− 0

delta [ 1 , 7 ] <− 0
delta [ 2 , 7 ] <− 0
delta [ 3 , 7 ] <− 0
delta [ 4 , 7 ] <− deltasum [ 7 ]

stick8 ˜ dbeta ( 1 , 1 )
delta [ 1 , 8 ] <− 0
delta [ 2 , 8 ] <− deltasum [ 8 ] ∗ stick8

delta [ 3 , 8 ] <− deltasum [ 8 ] ∗ (1 − stick8 )
delta [ 4 , 8 ] <− 0

delta [ 1 , 9 ] <− 0
delta [ 2 , 9 ] <− 0
delta [ 3 , 9 ] <− deltasum [ 9 ]
delta [ 4 , 9 ] <− 0

stick10 [ 1 ] ˜ dbeta ( 1 , 1 )
stick10 [ 2 ] ˜ dbeta ( 1 , 1 )
delta [ 1 , 1 0 ] <− deltasum [ 1 0 ] ∗ ranked ( stick10 [ ] , 1 )
delta [ 2 , 1 0 ] <− deltasum [ 1 0 ] ∗ ( ranked ( stick10 [ ] , 2 ) − ranked ( stick10 [ ] , 1 ) )
delta [ 3 , 1 0 ] <− deltasum [ 1 0 ] ∗ (1 − ranked ( stick10 [ ] , 2 ) )
delta [ 4 , 1 0 ] <− 0

## Y[ i , j ] i s the number brain l e s i o n s
## for the i−th pa t i en t be l ong ing to the j−th dose group
## lambda truncated to avoid underf low

for ( j in 1 : ndose ) {

76



for ( i in 1 : ssize [ j ] ) {
Y [ i , j ] ˜ dpois ( lambda [ i , j ] )
lambda [ i , j ] ˜ dgamma( alpha [ j ] , beta ) I ( 0 . 0 0 1 , ) }

csi [ j ] <− log (beta/alpha [ j ] ) }

beta <− exp( LB )
LB ˜ dnorm(0 , tauB ) ## we want be ta to be around one
tauB <− 1/sigmaB

## averag ing over the models

mod ˜ dcat ( prob [ 1 : 1 0 ] )

## monotonici ty con s t r a i n t s
for ( j in 2 : ndose ) {

alpha [ j ] <− alpha [ j−1] ∗ exp(−delta [ j−1,mod ] ) }
alpha [ 1 ] <− exp( LA )
LA ˜ dnorm( alpha0 , tauA ) # we put a pr io r on the Placebo e f f e c t
tauA <− 1/sigmaA

## ca l c u l a t e the po s t e r i o r p r o b a b i l i t y o f F u t i l i t y & Success

for ( j in 1 : ndose ) {
futility [ j ] <− step ( csi [ 1 ] − csi [ j ] − log ( 0 . 7 ) )
success i [ j ] <− 1 − step ( csi [ 1 ] − csi [ j ] )
success ii [ j ] <− max( step ( csi [ j ] − csi [ ndose ] + log ( 1 . 2 ) ) , step ( csi [ j ] − csi [ 1 ] + log←↩

( 0 . 5 ) ) )
##success i i [ j ] <− min( s t ep ( c s i [ j ] − c s i [ ndose ] + lo g (1 . 2 ) ) , s t ep ( c s i [ j ] − c s i [ 1 ] + ←↩

l o g (0 . 5 ) ) ) }

}

This model can be called directly from R using a syntax like

l ibrary ( ”R2WinBUGS” )

## data fo r the WinBUGS model
dat <− l i s t ( ndose = 5 , ssize = rep (50 ,5 ) ,

meansum = 1 . 2 , sigmasum = 0.81 ,
sigmaB = 0.64 , alpha0 = 0 . 1 ,
sigmaA = 0.49 , prob = rep (1/10 ,10) , Y = Y )

model . name <− ”LED. txt ” # change to the appropr ia te path

## parameters to be monitored
para <− c ( ” f u t i l i t y ” , ” s u c c e s s i ” , ” s u c c e s s i i ” )

## i n i t i a l va lue s
iniz <− function ( ) { l i s t ( deltasum = rep (0 , 10 ) ,

stick1 = rbeta ( 3 , 1 , 1 ) , stick2 = rbeta ( 2 , 1 , 1 ) ,
stick4 = rbeta ( 1 , 1 , 1 ) , stick5 = rbeta ( 1 , 1 , 1 ) ,
stick8 = rbeta ( 1 , 1 , 1 ) , stick10 = rbeta ( 2 , 1 , 1 ) ,
LB = 0 , LA = 0 . 1 , mod = as . integer (1 ) ) }

res <− bugs (data = dat ,
inits = iniz ,
bugs . seed = runif (1 ) ,
parameters . to . save = para ,

77



model . f i l e = model . name ,
n . chains = 3 ,
n . burnin = 500 ,
n . thin = 2 ,
n . sims = 1000 ,
debug = FALSE )

B.3 WinBUGS code from Chapter 2

B.3.1 3 Level Model

model{

y1 [ 1 : 4 ] ˜ dmnorm ( theta1 [ 1 : 4 ] , T1 [ 1 : 4 , 1 : 4 ] )

theta1 [ 1 ] <− alpha1 + beta1∗theta1 [ 2 ] + epsilon [ 1 ]
theta1 [ 2 ] ˜ dnorm(0 , prec .gamma)
theta1 [ 3 ] <− alpha1 + beta1∗theta1 [ 4 ] + epsilon [ 2 ]
theta1 [ 4 ] ˜ dnorm(0 , prec .gamma)

y2 [ 1 : 4 ] ˜ dmnorm ( theta2 [ 1 : 4 ] , T2 [ 1 : 4 , 1 : 4 ] )

theta2 [ 1 ] <− alpha1 + beta1∗theta2 [ 2 ] + epsilon [ 3 ]
theta2 [ 2 ] ˜ dnorm(0 , prec .gamma)
theta2 [ 3 ] <− alpha1 + beta1∗theta2 [ 4 ] + epsilon [ 4 ]
theta2 [ 4 ] ˜ dnorm(0 , prec .gamma)

y3 [ 1 : 2 ] ˜ dmnorm ( theta3 [ 1 : 2 ] , T3 [ 1 : 2 , 1 : 2 ] )

theta3 [ 1 ] <− alpha1 + beta1∗theta3 [ 2 ] + epsilon [ 5 ]
theta3 [ 2 ] ˜ dnorm(0 , prec .gamma)

y4 [ 1 : 2 ] ˜ dmnorm ( theta4 [ 1 : 2 ] , T4 [ 1 : 2 , 1 : 2 ] )

theta4 [ 1 ] <− alpha1 + beta1∗theta4 [ 2 ] + epsilon [ 6 ]
theta4 [ 2 ] ˜ dnorm(0 , prec .gamma)

y5 [ 1 : 2 ] ˜ dmnorm ( theta5 [ 1 : 2 ] , T5 [ 1 : 2 , 1 : 2 ] )

theta5 [ 1 ] <− alpha1 + beta1∗theta5 [ 2 ] + epsilon [ 7 ]
theta5 [ 2 ] ˜ dnorm(0 , prec .gamma)

y6 [ 1 : 2 ] ˜ dmnorm ( theta6 [ 1 : 2 ] , T6 [ 1 : 2 , 1 : 2 ] )

theta6 [ 1 ] <− alpha1 + beta1∗theta6 [ 2 ] + epsilon [ 8 ]
theta6 [ 2 ] ˜ dnorm(0 , prec .gamma)
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y7 [ 1 : 2 ] ˜ dmnorm ( theta7 [ 1 : 2 ] , T7 [ 1 : 2 , 1 : 2 ] )

theta7 [ 1 ] <− alpha1 + beta1∗theta7 [ 2 ] + epsilon [ 9 ]
theta7 [ 2 ] ˜ dnorm(0 , prec .gamma)

y8 [ 1 : 2 ] ˜ dmnorm ( theta8 [ 1 : 2 ] , T8 [ 1 : 2 , 1 : 2 ] )

theta8 [ 1 ] <− alpha1 + beta1∗theta8 [ 2 ] + epsilon [ 1 0 ]
theta8 [ 2 ] ˜ dnorm(0 , prec .gamma)

y9 [ 1 : 6 ] ˜ dmnorm ( theta9 [ 1 : 6 ] , T9 [ 1 : 6 , 1 : 6 ] )
theta9 [ 1 ] <− alpha1 + beta1∗theta9 [ 2 ] + epsilon [ 1 1 ]

theta9 [ 2 ] <− alpha2 + beta2∗theta9 [ 3 ] + delta [ 1 ]
theta9 [ 3 ] ˜ dnorm(0 , prec .gamma)
theta9 [ 4 ] <− alpha1 + beta1∗theta9 [ 5 ] + epsilon [ 1 2 ]
theta9 [ 5 ] <− alpha2 + beta2∗theta9 [ 6 ] + delta [ 2 ]
theta9 [ 6 ] ˜ dnorm(0 , prec .gamma)

y10 [ 1 : 6 ] ˜ dmnorm ( theta10 [ 1 : 6 ] , T10 [ 1 : 6 , 1 : 6 ] )
theta10 [ 1 ] <− alpha1 + beta1∗theta10 [ 2 ] + epsilon [ 1 3 ]

theta10 [ 2 ] <− alpha2 + beta2∗theta10 [ 3 ] + delta [ 3 ]
theta10 [ 3 ] ˜ dnorm(0 , prec .gamma)
theta10 [ 4 ] <− alpha1 + beta1∗theta10 [ 5 ] + epsilon [ 1 4 ]
theta10 [ 5 ] <− alpha2 + beta2∗theta10 [ 6 ] + delta [ 4 ]
theta10 [ 6 ] ˜ dnorm(0 , prec .gamma)

y11 [ 1 : 6 ] ˜ dmnorm ( theta11 [ 1 : 6 ] , T11 [ 1 : 6 , 1 : 6 ] )
theta11 [ 1 ] <− alpha1 + beta1∗theta11 [ 2 ] + epsilon [ 1 5 ]

theta11 [ 2 ] <− alpha2 + beta2∗theta11 [ 3 ] + delta [ 5 ]
theta11 [ 3 ] ˜ dnorm(0 , prec .gamma)
theta11 [ 4 ] <− alpha1 + beta1∗theta11 [ 5 ] + epsilon [ 1 6 ]
theta11 [ 5 ] <− alpha2 + beta2∗theta11 [ 6 ] + delta [ 6 ]
theta11 [ 6 ] ˜ dnorm(0 , prec .gamma)

y12 [ 1 : 6 ] ˜ dmnorm ( theta12 [ 1 : 6 ] , T12 [ 1 : 6 , 1 : 6 ] )
theta12 [ 1 ] <− alpha1 + beta1∗theta12 [ 2 ] + epsilon [ 1 7 ]

theta12 [ 2 ] <− alpha2 + beta2∗theta12 [ 3 ] + delta [ 7 ]
theta12 [ 3 ] ˜ dnorm(0 , prec .gamma)
theta12 [ 4 ] <− alpha1 + beta1∗theta12 [ 5 ] + epsilon [ 1 8 ]
theta12 [ 5 ] <− alpha2 + beta2∗theta12 [ 6 ] + delta [ 8 ]
theta12 [ 6 ] ˜ dnorm(0 , prec .gamma)

y13 [ 1 : 3 ] ˜ dmnorm ( theta13 [ 1 : 3 ] , T13 [ 1 : 3 , 1 : 3 ] )
theta13 [ 1 ] <− alpha1 + beta1∗theta13 [ 2 ] + epsilon [ 1 9 ]

theta13 [ 2 ] <− alpha2 + beta2∗theta13 [ 3 ] + delta [ 9 ]
theta13 [ 3 ] ˜ dnorm(0 , prec .gamma)

y14 [ 1 : 3 ] ˜ dmnorm ( theta14 [ 1 : 3 ] , T14 [ 1 : 3 , 1 : 3 ] )
theta14 [ 1 ] <− alpha1 + beta1∗theta14 [ 2 ] + epsilon [ 2 0 ]

theta14 [ 2 ] <− alpha2 + beta2∗theta14 [ 3 ] + delta [ 1 0 ]
theta14 [ 3 ] ˜ dnorm(0 , prec .gamma)

y15 [ 1 : 3 ] ˜ dmnorm ( theta15 [ 1 : 3 ] , T15 [ 1 : 3 , 1 : 3 ] )
theta15 [ 1 ] <− alpha1 + beta1∗theta15 [ 2 ] + epsilon [ 2 1 ]

theta15 [ 2 ] <− alpha2 + beta2∗theta15 [ 3 ] + delta [ 1 1 ]
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theta15 [ 3 ] ˜ dnorm(0 , prec .gamma)

y16 [ 1 : 3 ] ˜ dmnorm ( theta16 [ 1 : 3 ] , T16 [ 1 : 3 , 1 : 3 ] )
theta16 [ 1 ] <− alpha1 + beta1∗theta16 [ 2 ] + epsilon [ 2 2 ]

theta16 [ 2 ] <− alpha2 + beta2∗theta16 [ 3 ] + delta [ 1 2 ]
theta16 [ 3 ] ˜ dnorm(0 , prec .gamma)

y17 [ 1 : 3 ] ˜ dmnorm ( theta17 [ 1 : 3 ] , T17 [ 1 : 3 , 1 : 3 ] )
theta17 [ 1 ] <− alpha1 + beta1∗theta17 [ 2 ] + epsilon [ 2 3 ]

theta17 [ 2 ] <− alpha2 + beta2∗theta17 [ 3 ] + delta [ 1 3 ]
theta17 [ 3 ] ˜ dnorm(0 , prec .gamma)

y18 [ 1 : 3 ] ˜ dmnorm ( theta18 [ 1 : 3 ] , T18 [ 1 : 3 , 1 : 3 ] )
theta18 [ 1 ] <− alpha1 + beta1∗theta18 [ 2 ] + epsilon [ 2 4 ]

theta18 [ 2 ] <− alpha2 + beta2∗theta18 [ 3 ] + delta [ 1 4 ]
theta18 [ 3 ] ˜ dnorm(0 , prec .gamma)

y19 [ 1 : 3 ] ˜ dmnorm ( theta19 [ 1 : 3 ] , T19 [ 1 : 3 , 1 : 3 ] )
theta19 [ 1 ] <− alpha1 + beta1∗theta19 [ 2 ] + epsilon [ 2 5 ]

theta19 [ 2 ] <− alpha2 + beta2∗theta19 [ 3 ] + delta [ 1 5 ]
theta19 [ 3 ] ˜ dnorm(0 , prec .gamma)

for ( j in 1 : 2 5 ) {
epsilon [ j ]˜dnorm(0 , prec . tau )
}

for ( j in 1 : 1 5 ) {
delta [ j ]˜dnorm(0 , prec . omega )
}

alpha1˜dnorm(0 , A1 )
beta1˜dnorm(0 , B1 )
alpha2˜dnorm(0 , A2 )
beta2˜dnorm(0 , B2 )
prec .gamma<−pow (1000 ,−2)
prec . tau<−pow ( tau ,−2)
tau˜dnorm(0 , v ) I ( 0 , )
prec . omega<−pow ( omega ,−2)
omega˜dnorm(0 , v ) I ( 0 , )

A1 <− pow ( a1 ,−2)
B1 <− pow ( b1 ,−2)
A2 <− pow ( a2 ,−2)
B2 <− pow ( b2 ,−2)
V <− pow (v ,−2)

}

B.3.2 Extended 3 Level Model (Equation 2.11)
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model{

y1 [ 1 : 4 ] ˜ dmnorm ( theta1 [ 1 : 4 ] , T1 [ 1 : 4 , 1 : 4 ] )
theta1 [ 1 ] <− alpha1 + beta1∗theta1 [ 2 ] + epsilon [ 1 ]
theta1 [ 2 ] ˜ dnorm(0 , prec .gamma)
theta1 [ 3 ] <− alpha1 + beta1∗theta1 [ 4 ] + epsilon [ 2 ]
theta1 [ 4 ] ˜ dnorm(0 , prec .gamma)

y2 [ 1 : 4 ] ˜ dmnorm ( theta2 [ 1 : 4 ] , T2 [ 1 : 4 , 1 : 4 ] )
theta2 [ 1 ] <− alpha1 + beta1∗theta2 [ 2 ] + epsilon [ 3 ]
theta2 [ 2 ] ˜ dnorm(0 , prec .gamma)
theta2 [ 3 ] <− alpha1 + beta1∗theta2 [ 4 ] + epsilon [ 4 ]
theta2 [ 4 ] ˜ dnorm(0 , prec .gamma)

y3 [ 1 : 2 ] ˜ dmnorm ( theta3 [ 1 : 2 ] , T3 [ 1 : 2 , 1 : 2 ] )
theta3 [ 1 ] <− alpha1 + beta1∗theta3 [ 2 ] + epsilon [ 5 ]
theta3 [ 2 ] ˜ dnorm(0 , prec .gamma)

y4 [ 1 : 2 ] ˜ dmnorm ( theta4 [ 1 : 2 ] , T4 [ 1 : 2 , 1 : 2 ] )
theta4 [ 1 ] <− alpha1 + beta1∗theta4 [ 2 ] + epsilon [ 6 ]
theta4 [ 2 ] ˜ dnorm(0 , prec .gamma)

y5 [ 1 : 2 ] ˜ dmnorm ( theta5 [ 1 : 2 ] , T5 [ 1 : 2 , 1 : 2 ] )
theta5 [ 1 ] <− alpha1 + beta1∗theta5 [ 2 ] + epsilon [ 7 ]
theta5 [ 2 ] ˜ dnorm(0 , prec .gamma)

y6 [ 1 : 2 ] ˜ dmnorm ( theta6 [ 1 : 2 ] , T6 [ 1 : 2 , 1 : 2 ] )
theta6 [ 1 ] <− alpha1 + beta1∗theta6 [ 2 ] + epsilon [ 8 ]
theta6 [ 2 ] ˜ dnorm(0 , prec .gamma)

y7 [ 1 : 2 ] ˜ dmnorm ( theta7 [ 1 : 2 ] , T7 [ 1 : 2 , 1 : 2 ] )
theta7 [ 1 ] <− alpha1 + beta1∗theta7 [ 2 ] + epsilon [ 9 ]
theta7 [ 2 ] ˜ dnorm(0 , prec .gamma)

y8 [ 1 : 2 ] ˜ dmnorm ( theta8 [ 1 : 2 ] , T8 [ 1 : 2 , 1 : 2 ] )
theta8 [ 1 ] <− alpha1 + beta1∗theta8 [ 2 ] + epsilon [ 1 0 ]
theta8 [ 2 ] ˜ dnorm(0 , prec .gamma)

y9 [ 1 : 6 ] ˜ dmnorm ( theta9 [ 1 : 6 ] , T9 [ 1 : 6 , 1 : 6 ] )
theta9 [ 1 ] <− alpha1 + beta1∗theta9 [ 2 ] +beta3∗theta9 [ 3 ] +epsilon [ 1 1 ]
theta9 [ 2 ] <− alpha2 + beta2∗theta9 [ 3 ] + delta [ 1 ]
theta9 [ 3 ] ˜ dnorm(0 , prec .gamma)
theta9 [ 4 ] <− alpha1 + beta1∗theta9 [ 5 ] +beta3∗theta9 [ 6 ] + epsilon [ 1 2 ]
theta9 [ 5 ] <− alpha2 + beta2∗theta9 [ 6 ] + delta [ 2 ]
theta9 [ 6 ] ˜ dnorm(0 , prec .gamma)

y10 [ 1 : 6 ] ˜ dmnorm ( theta10 [ 1 : 6 ] , T10 [ 1 : 6 , 1 : 6 ] )
theta10 [ 1 ] <− alpha1 + beta1∗theta10 [ 2 ] +beta3∗theta10 [3 ]+ epsilon [ 1 3 ]
theta10 [ 2 ] <− alpha2 + beta2∗theta10 [ 3 ] + delta [ 3 ]
theta10 [ 3 ] ˜ dnorm(0 , prec .gamma)
theta10 [ 4 ] <− alpha1 + beta1∗theta10 [ 5 ] +beta3∗theta10 [6 ]+ epsilon [ 1 4 ]
theta10 [ 5 ] <− alpha2 + beta2∗theta10 [ 6 ] + delta [ 4 ]
theta10 [ 6 ] ˜ dnorm(0 , prec .gamma)
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y11 [ 1 : 6 ] ˜ dmnorm ( theta11 [ 1 : 6 ] , T11 [ 1 : 6 , 1 : 6 ] )
theta11 [ 1 ] <− alpha1 + beta1∗theta11 [ 2 ] +beta3∗theta11 [3 ]+ epsilon [ 1 5 ]
theta11 [ 2 ] <− alpha2 + beta2∗theta11 [ 3 ] + delta [ 5 ]
theta11 [ 3 ] ˜ dnorm(0 , prec .gamma)
theta11 [ 4 ] <− alpha1 + beta1∗theta11 [ 5 ] +beta3∗theta11 [6 ]+ epsilon [ 1 6 ]
theta11 [ 5 ] <− alpha2 + beta2∗theta11 [ 6 ] + delta [ 6 ]
theta11 [ 6 ] ˜ dnorm(0 , prec .gamma)

y12 [ 1 : 6 ] ˜ dmnorm ( theta12 [ 1 : 6 ] , T12 [ 1 : 6 , 1 : 6 ] )
theta12 [ 1 ] <− alpha1 + beta1∗theta12 [ 2 ] +beta3∗theta12 [3 ]+ epsilon [ 1 7 ]
theta12 [ 2 ] <− alpha2 + beta2∗theta12 [ 3 ] + delta [ 7 ]
theta12 [ 3 ] ˜ dnorm(0 , prec .gamma)
theta12 [ 4 ] <− alpha1 + beta1∗theta12 [ 5 ] +beta3∗theta12 [6 ]+ epsilon [ 1 8 ]
theta12 [ 5 ] <− alpha2 + beta2∗theta12 [ 6 ] + delta [ 8 ]
theta12 [ 6 ] ˜ dnorm(0 , prec .gamma)

y13 [ 1 : 3 ] ˜ dmnorm ( theta13 [ 1 : 3 ] , T13 [ 1 : 3 , 1 : 3 ] )
theta13 [ 1 ] <− alpha1 + beta1∗theta13 [ 2 ] +beta3∗theta13 [3 ]+ epsilon [ 1 9 ]
theta13 [ 2 ] <− alpha2 + beta2∗theta13 [ 3 ] + delta [ 9 ]
theta13 [ 3 ] ˜ dnorm(0 , prec .gamma)

y14 [ 1 : 3 ] ˜ dmnorm ( theta14 [ 1 : 3 ] , T14 [ 1 : 3 , 1 : 3 ] )
theta14 [ 1 ] <− alpha1 + beta1∗theta14 [ 2 ] +beta3∗theta14 [3 ]+ epsilon [ 2 0 ]
theta14 [ 2 ] <− alpha2 + beta2∗theta14 [ 3 ] + delta [ 1 0 ]
theta14 [ 3 ] ˜ dnorm(0 , prec .gamma)

y15 [ 1 : 3 ] ˜ dmnorm ( theta15 [ 1 : 3 ] , T15 [ 1 : 3 , 1 : 3 ] )
theta15 [ 1 ] <− alpha1 + beta1∗theta15 [ 2 ] +beta3∗theta15 [3 ]+ epsilon [ 2 1 ]
theta15 [ 2 ] <− alpha2 + beta2∗theta15 [ 3 ] + delta [ 1 1 ]
theta15 [ 3 ] ˜ dnorm(0 , prec .gamma)

y16 [ 1 : 3 ] ˜ dmnorm ( theta16 [ 1 : 3 ] , T16 [ 1 : 3 , 1 : 3 ] )
theta16 [ 1 ] <− alpha1 + beta1∗theta16 [ 2 ] +beta3∗theta16 [3 ]+ epsilon [ 2 2 ]
theta16 [ 2 ] <− alpha2 + beta2∗theta16 [ 3 ] + delta [ 1 2 ]
theta16 [ 3 ] ˜ dnorm(0 , prec .gamma)

y17 [ 1 : 3 ] ˜ dmnorm ( theta17 [ 1 : 3 ] , T17 [ 1 : 3 , 1 : 3 ] )
theta17 [ 1 ] <− alpha1 + beta1∗theta17 [ 2 ] +beta3∗theta17 [3 ]+ epsilon [ 2 3 ]
theta17 [ 2 ] <− alpha2 + beta2∗theta17 [ 3 ] + delta [ 1 3 ]
theta17 [ 3 ] ˜ dnorm(0 , prec .gamma)

y18 [ 1 : 3 ] ˜ dmnorm ( theta18 [ 1 : 3 ] , T18 [ 1 : 3 , 1 : 3 ] )
theta18 [ 1 ] <− alpha1 + beta1∗theta18 [ 2 ] + beta3∗theta18 [3 ]+ epsilon [ 2 4 ]
theta18 [ 2 ] <− alpha2 + beta2∗theta18 [ 3 ] + delta [ 1 4 ]
theta18 [ 3 ] ˜ dnorm(0 , prec .gamma)

y19 [ 1 : 3 ] ˜ dmnorm ( theta19 [ 1 : 3 ] , T19 [ 1 : 3 , 1 : 3 ] )
theta19 [ 1 ] <− alpha1 + beta1∗theta19 [ 2 ] + beta3∗theta19 [ 3 ] + epsilon [ 2 5 ]
theta19 [ 2 ] <− alpha2 + beta2∗theta19 [ 3 ] + delta [ 1 5 ]
theta19 [ 3 ] ˜ dnorm(0 , prec .gamma)

for ( j in 1 : 2 5 ) {
epsilon [ j ] ˜dnorm(0 , prec . tau )
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}

for ( j in 1 : 1 5 ) {
delta [ j ] ˜dnorm(0 , prec . omega )
}

alpha1˜dnorm(0 , A )
beta1˜dnorm(0 , B )
beta3˜dnorm(0 , B )
alpha2˜dnorm(0 , A2 )
beta2˜dnorm(0 , B2 )
prec .gamma<−pow (1000 ,−2)
prec . tau<−pow ( tau ,−2)
tau˜dnorm(0 , v ) I ( 0 , )
prec . omega<−pow ( omega ,−2)
omega˜dnorm(0 , v ) I ( 0 , )

A <− pow ( a1 ,−2)
B <− pow ( b1 ,−2)
A2 <− pow ( a2 ,−2)
B2 <− pow ( b2 ,−2)
V <− pow (v ,−2)

}

B.3.3 Multivariate meta-analysis (Equation 2.12)

model{

y1 [ 1 : 4 ] ˜ dmnorm ( theta1b [ 1 : 4 ] , T1 [ 1 : 4 , 1 : 4 ] )
theta1b [ 1 ]<−theta1 [ 1 ]
theta1b [ 2 ]<−theta1 [ 2 ]
theta1b [ 3 ]<−theta1 [ 4 ]
theta1b [ 4 ]<−theta1 [ 5 ]

theta1 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )
theta1 [ 4 : 6 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y2 [ 1 : 4 ] ˜ dmnorm ( theta2b [ 1 : 4 ] , T2 [ 1 : 4 , 1 : 4 ] )
theta2b [ 1 ]<−theta2 [ 1 ]
theta2b [ 2 ]<−theta2 [ 2 ]
theta2b [ 3 ]<−theta2 [ 4 ]
theta2b [ 4 ]<−theta2 [ 5 ]

theta2 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )
theta2 [ 4 : 6 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y3 [ 1 : 2 ] ˜ dmnorm ( theta3 [ 1 : 2 ] , T3 [ 1 : 2 , 1 : 2 ] )
theta3 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y4 [ 1 : 2 ] ˜ dmnorm ( theta4 [ 1 : 2 ] , T4 [ 1 : 2 , 1 : 2 ] )
theta4 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y5 [ 1 : 2 ] ˜ dmnorm ( theta5 [ 1 : 2 ] , T5 [ 1 : 2 , 1 : 2 ] )
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theta5 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y6 [ 1 : 2 ] ˜ dmnorm ( theta6 [ 1 : 2 ] , T6 [ 1 : 2 , 1 : 2 ] )
theta6 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y7 [ 1 : 2 ] ˜ dmnorm ( theta7 [ 1 : 2 ] , T7 [ 1 : 2 , 1 : 2 ] )
theta7 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y8 [ 1 : 2 ] ˜ dmnorm ( theta8 [ 1 : 2 ] , T8 [ 1 : 2 , 1 : 2 ] )
theta8 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

# crea te a b locked d iagona l covar iance matrix f o r t r i a l s 9−12
for ( i in 1 : 3 ) {

for ( j in 1 : 3 ) {
omega . inv2 [ i , j ]<−omega . inv [ i , j ]

omega . inv2 [ i+3,j+3]<−omega . inv [ i , j ]
omega . inv2 [ i , j+3]<−0
omega . inv2 [ i+3,j ]<−0
}

mu2 [ i ]<−mu [ i ]
mu2 [ i+3]<−mu [ i ]
}

y9 [ 1 : 6 ] ˜ dmnorm ( theta9 [ 1 : 6 ] , T9 [ 1 : 6 , 1 : 6 ] )
theta9 [ 1 : 6 ] ˜ dmnorm ( mu2 [ 1 : 6 ] , omega . inv2 [ 1 : 6 , 1 : 6 ] )

y10 [ 1 : 6 ] ˜ dmnorm ( theta10 [ 1 : 6 ] , T10 [ 1 : 6 , 1 : 6 ] )
theta10 [ 1 : 6 ] ˜ dmnorm ( mu2 [ 1 : 6 ] , omega . inv2 [ 1 : 6 , 1 : 6 ] )

y11 [ 1 : 6 ] ˜ dmnorm ( theta11 [ 1 : 6 ] , T11 [ 1 : 6 , 1 : 6 ] )
theta11 [ 1 : 6 ] ˜ dmnorm ( mu2 [ 1 : 6 ] , omega . inv2 [ 1 : 6 , 1 : 6 ] )

y12 [ 1 : 6 ] ˜ dmnorm ( theta12 [ 1 : 6 ] , T12 [ 1 : 6 , 1 : 6 ] )
theta12 [ 1 : 6 ] ˜ dmnorm ( mu2 [ 1 : 6 ] , omega . inv2 [ 1 : 6 , 1 : 6 ] )

y13 [ 1 : 3 ] ˜ dmnorm ( theta13 [ 1 : 3 ] , T13 [ 1 : 3 , 1 : 3 ] )
theta13 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y14 [ 1 : 3 ] ˜ dmnorm ( theta14 [ 1 : 3 ] , T14 [ 1 : 3 , 1 : 3 ] )
theta14 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y15 [ 1 : 3 ] ˜ dmnorm ( theta15 [ 1 : 3 ] , T15 [ 1 : 3 , 1 : 3 ] )
theta15 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y16 [ 1 : 3 ] ˜ dmnorm ( theta16 [ 1 : 3 ] , T16 [ 1 : 3 , 1 : 3 ] )
theta16 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y17 [ 1 : 3 ] ˜ dmnorm ( theta17 [ 1 : 3 ] , T17 [ 1 : 3 , 1 : 3 ] )
theta17 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y18 [ 1 : 3 ] ˜ dmnorm ( theta18 [ 1 : 3 ] , T18 [ 1 : 3 , 1 : 3 ] )
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theta18 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

y19 [ 1 : 3 ] ˜ dmnorm ( theta19 [ 1 : 3 ] , T19 [ 1 : 3 , 1 : 3 ] )
theta19 [ 1 : 3 ] ˜ dmnorm ( mu [ 1 : 3 ] , omega . inv [ 1 : 3 , 1 : 3 ] )

A <− pow (a ,−2)
for ( i in 1 : 3 ) {

mu [ i ] ˜dnorm(0 , A )
}

omega . inv [ 1 : 3 , 1 : 3 ] <− inverse ( rev [ 1 : 3 , 1 : 3 ] )

rev [ 1 , 1 ] <− omeg1∗omeg1
rev [ 2 , 2 ] <− omeg2∗omeg2
rev [ 3 , 3 ] <− omeg3∗omeg3
rev [ 1 , 2 ] <− rho12∗omeg1∗omeg2
rev [ 2 , 1 ] <− rho12∗omeg1∗omeg2
rev [ 1 , 3 ] <− rho13∗omeg1∗omeg3
rev [ 3 , 1 ] <− rho13∗omeg1∗omeg3
rev [ 2 , 3 ] <− rho23∗omeg2∗omeg3
rev [ 3 , 2 ] <− rho23∗omeg2∗omeg3

low12 <− rho13∗rho23 − sq12

hig12 <− rho13∗rho23 + sq12

low13 <− rho12∗rho23 − sq13

hig13 <− rho12∗rho23 + sq13

low23 <− rho12∗rho13 − sq23

hig23 <− rho12∗rho13 + sq23

sq12 <− sqrt ( c23∗c13 )
sq13 <− sqrt ( c12∗c23 )
sq23 <− sqrt ( c12∗c13 )

c12 <− 1−rho12∗rho12
c13 <− 1−rho13∗rho13
c23 <− 1−rho23∗rho23

omeg1 ˜ dunif ( 0 . 0 1 , omega . diag [ 1 ] )
omeg2 ˜ dunif ( 0 . 0 1 , omega . diag [ 2 ] )
omeg3 ˜ dunif ( 0 . 0 1 , omega . diag [ 3 ] )

rho12 ˜ dunif ( low12 , hig12 )
rho13 ˜ dunif ( low13 , hig13 )
rho23 ˜ dunif ( low23 , hig23 )

}

B.4 HOPSLAM Demo Chapter 3

rm( l i s t=l s ( ) )
gc ( )

l ibrary ( ”HOPSLAM” )
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A <− simHop ( n=100 ,p=1000 ,mu=0, muk=c (−10 ,0 ,10) , sX=1,sY=1)

regression <− with (A , HOPSLAM (X , Y , fold=10L , verbose=TRUE , d=” cosang l e ” ) )
regression

Z <− cut ( A$Y , c(−Inf ,−3 ,3 , Inf ) )
classification <− with (A , HOPSLAM (X , Z , fold=10L , balanced=TRUE , verbose=TRUE , method=”←↩

c l a s s i f i c a t i o n ” , d=” cor r ” ) )
classification

selection <− with (A , HOPSLAM (X , Y , fold=5L , verbose=TRUE , d=” cosang l e ” , maxVars=2,bNb=TRUE ,←↩
forward=TRUE ) )

selection
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Appendix C

Additional Results

In this Appendix we include some additional results from the other Chapters.

C.1 Additional Scenarios from Chapter 1

C.1.1 Dose-Response Scenarios

In addition to the Moderate scenario discussed in Section 1.3.2, four additional dose-response
scenarios are considered in the following (see also Figure C.1).

Optimistic is given by α
(0)
Opt = [1.1, 0.06, 0.055, 0.05, 0.05]:

1. µ
(0)
2 /µ

(0)
1 = 0.05 and µ

(0)
2 /µ

(0)
5 = 1.2, so this dose meets only the first of the (ii)

conditions;

2. µ
(0)
3 /µ

(0)
1 = 0.05 and µ

(0)
3 /µ

(0)
5 = 1.1, so this dose meets both of the (ii) conditions;

3. µ
(0)
4 = µ

(0)
5 (same as the effect of Dose 5) ⇒ µ4/µ1 = 0.04 and µ

(0)
4 /µ

(0)
5 = 1, so

this dose meets both (ii) condition.

We can see in the picture below a representation of this dose-response scheme, being
the light grey bar the effect under the LED and any dose below the light grey line
satisfying the first of the (ii) conditions.

Intermediate 1 given by α
(0)
flat a = [1.1, 0.9, 0.85, 0.75, 0.7]:

1. µ
(0)
2 /µ

(0)
1 = 0.8 and µ

(0)
2 /µ

(0)
5 = 1.3, so this dose is futile and meets none of the

(ii) conditions;
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2. µ
(0)
3 /µ

(0)
1 = 0.77 and µ

(0)
3 /µ

(0)
5 = 1.2, so this dose is also futile and meets none of

the (ii) conditions;

3. µ
(0)
4 /µ

(0)
1 = 0.68 and µ

(0)
4 /µ

(0)
5 = 1.07, so this dose meets the second of the (ii)

conditions and is therefore the LED.

4. µ
(0)
5 /µ

(0)
1 = 0.6, so the higher dose does not meet the first of the (ii) conditions.

Intermediate 2 α
(0)
flat b = [1.1, 0.8, 0.6, 0.58, 0.55]

1. µ
(0)
2 /µ

(0)
1 = 0.7 and µ

(0)
2 /µ

(0)
5 = 1.4, so this dose is futile and meets none of the

(ii) conditions;

2. µ
(0)
3 /µ

(0)
1 = 0.54 and µ

(0)
3 /µ

(0)
5 = 1.09, so this dose meets the second of the (ii)

conditions and is therefore the LED.

3. µ
(0)
4 /µ

(0)
1 = 0.52 and µ

(0)
4 /µ

(0)
5 = 1.05, so this dose meets the second of the (ii).

4. µ
(0)
5 /µ

(0)
1 = 0.6, so the higher dose does barely meet the first of the (ii) conditions.

Pessimistic is given by α
(0)
Pes = [1.1, 1.1, 0.9, 0.8, 0.05]:

1. µ
(0)
2 = µ

(0)
1 (same as the effect of the placebo)⇒ µ

(0)
2 /µ

(0)
1 = 1 and µ

(0)
2 /µ

(0)
5 = 22,

so this dose is futile and meets none of the (ii) conditions;

2. µ
(0)
3 /µ

(0)
1 = 0.8 and µ

(0)
3 µ

(0)
5 = 18, so this dose is futile meets none of the (ii)

conditions;

3. µ
(0)
4 /µ

(0)
1 = 0.7 and µ

(0)
4 µ

(0)
5 = 16, so this dose is futile and meets none of the (ii)

conditions.

C.1.2 Results

The following Tables C.1 to C.10 present the results under the additional scenarios. A
superscript − will imply a rounding to the next greater integer (e.g. 1.00− = 0.999).
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Figure C.1: True dose-response relationship under the Various Scenarios. All doses whose
bar is lower that the dark grey line meet the second of the (ii) criteria.

1:1:1 1:2:1
50%-50% 30%-70% 50%-50% 30%-70%

Optimistic 138 130 145 150
Intermediate 1 180 151 168 152
Intermediate 2 216 191 216 195

Pessimistic 183 177 189 188

Table C.1: Expected sample size for the adaptive design under different scenarios

Optimistic Intermediate 1 Intermediate 2 Pessimistic
P{Right dose} 0.98 0.27 0.39 0.94

P{Selection} 1.00 0.37 0.68 0.06

Table C.2: Non-Adaptive Design

1:1:1-30% 1:1:1-50% 1:2:1-30% 1:2:1-50%
P{Selection} 0.72 0.9 0.60 0.84

P{False Negative} 0.00 0.00 0.00 0.00

Table C.3: Optimistic Scenario: Interim Decision
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1:1:1-0.4 1:1:1-0.5 1:1:1-0.6 1:2:1-0.4 1:2:1-0.5 1:2:1-0.6
P{Right dose|30%,70%} 0.99 0.93 0.96 0.98 0.98 0.98

P{Selection|30%,70%} 1.00 1.00 1.00 1.00 1.00 1.00
P{False Negative|30%,70%} 0.00 0.00 0.00 0.00 0.00 0.00

P{Right dose|50%,50%} 0.98 0.97 1.00− 0.98 1.00− 0.98
P{Selection|50%,50%} 1.00 1.00 1.00 1.000 1.000 1.000

P{False Negative|50%,50%} 0.00 0.00 0.00 0.00 0.00 0.00

Table C.4: Optimistic Scenario: different allocations and different predictive probability
thresholds

1:1:1-30% 1:1:1-50% 1:2:1-30% 1:2:1-50%
P{False Positive} 0.00 0.00 0.00 0.00

P{False Negative} 0.59 0.56 0.59 0.66

Table C.5: Intermediate 1 Scenario Interim Decision

1:1:1-0.4 1:1:1-0.5 1:1:1-0.6 1:2:1-0.4 1:2:1-0.5 1:2:1-0.6
P{Right dose|30%,70%} 0.24 0.24 0.24 0.21 0.20 0.21

P{Selection|30%,70%} 0.32 0.32 0.32 0.29 0.29 0.29
P{False Negative|30%,70%} 0.48 0.48 0.48 0.71 0.71 0.71

P{Right dose|50%,50%} 0.24 0.24 0.22 0.18 0.18 0.20
P{Selection|50%,50%} 0.32 0.32 0.32 0.26 0.26 0.26

P{False Negative|50%,50%} 0.68 0.68 0.68 0.74 0.74 0.74

Table C.6: Intermediate 1 Scenario: different allocations and different predictive probability
thresholds

1:1:1-30% 1:1:1-50% 1:2:1-30% 1:2:1-50%
P{False Positive} 0.02 0.00− 0.02 0.00

P{False Negative} 0.33 0.27 0.31 0.27

Table C.7: Intermediate 2 Scenario: Interim Decision
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1:1:1-0.4 1:1:1-0.5 1:1:1-0.6 1:2:1-0.4 1:2:1-0.5 1:2:1-0.6
P{Right dose|30%,70%} 0.33 0.41 0.27 0.33 0.34 0.29

P{Selection|30%,70%} 0.65 0.65 0.65 0.65 0.65 0.65
P{False Negative|30%,70%} 0.35 0.35 0.35 0.35 0.35 0.35

P{Right dose|50%,50%} 0.49 0.41 0.35 0.39 0.39 0.45
P{Selection|50%,50%} 0.70 0.70 0.70 0.69 0.69 0.69

P{False Negative|50%,50%} 0.30 0.30 0.30 0.31 0.31 0.31

Table C.8: Intermediate 2 Scenario: different allocations and different predictive probability
thresholds

1:1:1-30% 1:1:1-50% 1:2:1-30% 1:2:1-50%
P{False Positive} 0.00 0.00 0.00 0.0
P{True Negative} 0.44 0.54 0.37 0.5

Table C.9: Pessimistic Scenario: Interim Decision

1:1:1-0.4 1:1:1-0.5 1:1:1-0.6 1:2:1-0.4 1:2:1-0.5 1:2:1-0.6
P{Right dose|30%,70%} 0.41 0.41 0.41 0.47 0.47 0.47

P{False Positive|30%,70%} 0.15 0.15 0.15 0.16 0.16 0.16
P{True Negative|30%,70%} 0.85 0.85 0.85 0.84 0.84 0.84

P{Right dose|50%,50%} 0.29 0.29 0.29 0.34 0.34 0.34
P{False Positive|50%,50%} 0.17 0.17 0.17 0.16 0.16 0.16
P{True Negative|50%,50%} 0.83 0.83 0.83 0.84 0.84 0.84

Table C.10: Pessimistic Scenario Scenario: different allocations and different predictive prob-
ability thresholds
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