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Abstract

Vertex Operator Algebras and Jacobi Forms

by

Matthew Thomas Krauel

This thesis develops a theory relating the Jacobi group with n-point functions associated
with strongly regular vertex operator algebras. The n-point functions considered here have
additional complex variables and generalize n-point functions studied in other works in the
mathematics and physics literature. Recursion formulas are discussed which reduce the
study of n-point functions to the study of 1-point and 0-point functions.

We consider the space of 1-point functions associated to inequivalent irreducible
admissible modules for a strongly regular vertex operator algebra. We develop transforma-
tion laws for this space of functions under the Jacobi group. With additional assumptions,
we show that 1-point functions are sums of products of 1-point functions of modules for the
commutant subVOA of the vertex operator algebra together with a type of Jacobi theta
series. Conditions will be given where these functions are vector-valued weak Jacobi forms.
A number of corollaries to these results are developed, including a sharper result in the case
of holomorphic vertex operator algebras.

Other results contained in this thesis include transformation laws for Jacobi theta
functions with spherical harmonics, and a generalization of a result of Miyamoto to include

zero modes of elements.
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Chapter 1

Introduction

The theory of vertex operator algebras (VOAs) is a relatively new area of math-
ematics related to the physics of conformal field theory (CFT). In recent years, the study
of VOAs has also become a mathematically rich subject with connections to group theory,
combinatorics, number theory, algebraic geometry, elliptic genera, elliptic cohomology and
topology, among other fields. One such connection, that between VOAs and elliptic modu-
lar forms, has been a source of inspiration in both physics and mathematics. The presence
of elliptic modular forms in the theory of VOAs, however, now appears to be but one strand
in a larger web of relations between VOAs and automorphic forms. This thesis strengthens
this connection between VOAs and automorphic forms by describing the occurrence of Ja-
cobi forms in the theory of VOAs.

A wvertex operator algebra V is a vector space over C with two elements 1 and w
called the vacuum and Virasoro elements, respectively, and which is equipped with a lin-

ear map Y (-, 2): V — (End V)|[z, 27 1]] defined by Y (v, 2) = v(n)z~""1 such that a
p (7 ) ( )H ) y ) neL ’



number of axioms are satisfied. Among these axioms is the requirement of a natural action
of the Virasoro algebra (of central charge c) on V' that provides a grading V' = @,,c5 Va,
where each V,, is finite-dimensional, V,, = 0 for n sufficiently small, and V,, is the eigenspace
for an operator L(0) that will be defined in Section The precise definition of a vertex
operator algebra, as well as of a strongly regular vertex operator algebra, their modules,
and useful consequences of their definitions, are given in Chapter [3]

The interest in strongly regular vertex operator algebras is a result of the addi-
tional structure they possess. It is known that for a strongly regular vertex operator algebra

v,
1. V has a finitely many inequivalent irreducible admissible modules, M, ... M" [6],

2. V has a unique symmetric invariant bilinear form (-,-) : V' xV — C such that (1,1) =

—1 [31],
3. V is Cy-cofinite (defined in Chapter |3)),

4. V has another grading (see Subsection below where L[0] will be defined) such

that

V=DV,

n>0

where Vi) = {v € V | L[0]Jv = nv} and Vo) = C1, and
5. V1 and V];j are reductive Lie algebras [11].

Beyond considering strongly regular vertex operator algebras, this thesis is con-
cerned with VOAs that posses elements hi, ..., h, € Vi such that h;(m)h; = 61 (s, hy) 1.

Such elements may be found in any strongly regular VOA so long as V; # 0. For such



hi,...,hn, let G denote the Gram matrix G = ((h;, h;j)) associated with hq,..., h,. Ele-

ments hi,...,h, € V] are said to satisfy Condition H if
1. h1(0),...,h,(0) are semisimple operators with integral eigenvalues, and
2. [hz, hﬂ = 0 for all ’L,j

Similar conditions for hq,...,h, have also been considered in works such as [12], 37].

Let H denote the complex upper-half plane. For an integer k, an elliptic modular
form of weight k is a holomorphic function ¢: H — C that satisfies a certain invariance
property with respect to the modular group SLa(Z) and a growth condition at the infinite
cusp. Modular forms have long been a subject of study by mathematicians due to their
importance in fields such as number theory. They are also of interest to physicists, as the
presence of trace functions invariant under SLy(Z) are required in a CFT.

Automorphic forms can loosely be described as functions on higher dimensional
spaces which replace H. They generalize elliptic modular forms in the sense that they are
invariant under an arithmetic group of higher rank that replaces SLa(Z). Jacobi forms are
such generalizations in which SLy(Z) is replaced by the Jacobi group, J,, = SLa(Z) X (Z"™ < Z™)
(the Jacobi group often refers to only the n = 1 case, for example in [14]). Quasi-Jacobi
forms satisfy weaker transformation properties than Jacobi forms. More details for modular
and (quasi) Jacobi forms will be provided in Chapter

The original connection between VOAs and modular forms arose via what is called
the (genus 1) partition function or 0-point function defined by

Z(r) :=q > (dimV;)q",
ne”L



where ¢ = €2™7 (7 in H) and c is the central charge of V. In 1978, John McKay observed
that the first few coefficients of the modular form j(7) were “natural” sums of dimensions
of irreducible representations of the monster group M. This mysterious connection was la-
belled “Monstrous Moonshine” and created a lot of interest among mathematicians. VOAs
were developed largely as a way to understand McKay’s observation [19].

Partition functions are a special case of more general functions called 1-point func-
tions, which are of interest in both CFT and the algebraic study of VOAs. For each v € V,
the endomorphism v(k — 1) preserves the graded subspaces V,, of V. We denote v(k —1) by

o(v) and call it the zero mode of v. We define the (genus 1) 1-point function by

Z(v,7) = ¢~y " Try, o(v)q". (1.0.0.1)
neL

A module M for a VOA V is a vector space on which V' acts in ways that preserve
relevant algebraic structures, including an appropriate grading. The 1-point function above
can be defined analogously for any module of a VOA. A vertex operator algebra is called
rational if every admissible V-module is completely reducible. The definition of an admis-
sible module, along with a number of other details pertaining to modules of VOAs will be
given in Chapter [3

For elements vy, ..., v, € V, an m-point function on a module M7 of V is defined
as

Ter Y(qf(O)Ulv ql) e Y(Q#(O)Unu Qm)qL(O)ic/ZZla

where g, = 2™k with wy, € C, and ¢ = €™ with 7 € H. In the case m = 1, the
definition of a 1-point function here is the same as in ((1.0.0.1)). It is conjectured that 1-point

functions associated to irreducible admissible modules of rational VOAs are modular forms



on a congruence subgroup of SLo(Z). The proofs of special cases of this conjecture follow
from a result of Zhu [46]. Zhu essentially shows that for elements v € V| of a rational VOA
V', the vector consisting of 1-point functions associated to irreducible admissible modules
for V is a vector-valued modular form of weight k—a generalization of modular forms that
is considered in Section K.l

Zhu also establishes a recursion formula in which n-point functions may be written
as a sum of (n — 1)-point functions with modular coefficients [46]. Along with the results
pertaining to 1-point functions, this establishes that the space of n-point functions is a
vector-valued modular form (see Theorem below for a precise statement of Zhu’s
Theorem). A number of important extensions of this theory have been developed, such as
to orbifold modules [7], intertwining operators [39], and R-graded super VOAs [37].

This thesis considers trace functions of the form

T YV(gF Qv q1) -+ V(62O v, go) (O o (0 g LO) /24 (1.0.0.2)

where ¢, = 2™z, € C and hq, ..., h, € V; satisfy Condition H. In the 1-point case, the

function ((1.0.0.2)) reduces to
Jin(vs 7, 2) = Trp o(v)(fHO) . (hn(0) g L(0)—¢/24. (1.0.0.3)

for homogeneous v € V.

Establishing a recursion formula which expresses n-point functions of the form
as a sum of (n — 1)-point functions with coefficients that carry an invariance with
respect to the Jacobi group will be the purpose of Chapter |5} Such a recursion formula for

functions in (1.0.0.2) will follow from results in [37] developed for n-point functions without



the additional z variables. In this manner, the study of the Jacobi group invariance for the
n-point functions (|1.0.0.2) is reduced to establishing an invariance for the 1-point (|1.0.0.3))
and O-point functions. The case of the 0-point functions will follow from the 1-point case
by taking v = 1.

To prove the main transformation laws for the functions of the form (|1.0.0.3)) we
will need a 1-point analogue of a result due to Miyamoto [38]. For a V-module M7, u,v € V;
and w € V, we define the function ®;(v;u,w, ) by

O (v;u,w,7) :=Tryy, o() 2 (w0 +(uw)/2) (LO)+u(0)+{uu) /2=c/24 (1.0.0.4)
We extend Miyamoto’s proof to include zero modes under certain conditions. This estab-
lishes the following theorem. (See Theorem A in [38§].)
Theorem 1.0.0.1 Let V be a rational, Ca-cofinite vertex operator algebra and M*, ..., M"

its finitely many inequivalent irreducible admissible modules. Suppose v € Vi and w € Vi

a b
are such that v(m)w =0 for m > 0. Then for all v = € SLy(Z),
c d
®;(v;0,w,y7) = (c1 + d)* Z A;ﬁq)i(v; cw, dw, T), (1.0.0.5)
i=1

where A;-ﬁ are scalars that appear in Theorem [5.1.1.1| below.

Proving Theorem [1.0.0.1] is the focus of Chapter [6]
The development of transformation laws for 1-point functions in ((1.0.0.3)) must
be broken into two cases, both of which are considered in Chapter The convergence of

such functions will be proved in Section Also in this section, transformation laws with

respect to the Jacobi group are developed for the functions (1.0.0.3) when v € V) satisfies

7



hi(m)v =0 for m > 0 and 1 < ¢ < n. In particular, we will establish the following theorem.

Theorem 1.0.0.2 Let V be a strongly reqular VOA and MY, ... M" its finitely many in-
equivalent irreducible admissible modules. Let hq, ..., hy, satisfy Condition H. For any
v € V the function Jjp(v;T,2) converges on H x C* and has a Fourier expansion of the

form

Jin(v;T,2) = q’\j_c/mz Z c(s, b1,y tn)GE - g, (1.0.0.6)

$>011,....tn€Z

where c(s,t1,...,t,) € C, \j is the conformal weight of M7, and Aj = 0 when MI=V.
Suppose v € Vi is such that hi(m)v =0 for all 1 < i <n and m > 0. Then

Jin(v; T, 2) satisfies the following properties:

a b
1. for all v = € SLy(Z),

c d

cGlz]
ct+d

) . Z _ k .
Jin <v, T, e d> (et + d)" exp <7TZ

) Y AL Jen(viT,z),  (1.0.0.7)
/=1

and

2. for all [\, u] € Z™ x Z™ there is a j' € {1,...,r} such that

Jin (v; T, 2+ AT+ H) = exp (77T7;(G[A]T + 2§tGA)) i n (05T, 2). (1.0.0.8)

The definition of a Jacobi form (and vector-valued Jacobi form) is given in Sec-
tion It is possible to choose hi,...,h, in Theorem [1.0.0.2| so that the corresponding
Gram matrix is half-integral. Theorem [1.0.0.2] then implies that for v € V) satisfying

the assumptions of the previous theorem, the vector whose components are the functions



{J;n(v;7,2) | 1 < j <r}is a vector-valued (weak) Jacobi form of weight k and index G/2.
When V has only one irreducible module (itself), the function J;p is a weak Jacobi form of
weight k, index G/2, and some character x. These corollaries will be discussed in Section
3l

When v € V fails to satisfy h;(m)v =0 for 1 <i <n and m > 0, the functions
do not necessarily satisfy the transformation laws established in Theorem
Section [7.2] addresses this situation. In Subsection we will show that any element of
V' can be written as a sum of elements with respect to a convenient decomposition. Taking
the trace of any element in V' then reduces to taking the trace of each of these individual
elements. Among these elements we will find that the only ones that give a nonzero trace
are of the form v = ' [—m1]---uin[-=my]w (i; > 0). Here, the set {u;} is an orthogonal
basis for a natural Cartan subalgebra H contained in Vj, and w is in a subVOA ©(0) of V/
that will be discussed later.

This decomposition of elements in V' will be useful in Subsection where we

will prove the following theorem.

Theorem 1.0.0.3 Let V be a strongly reqular vertex operator algebra and M7 an irreducible
V-module. Let v € V have the decomposition v = uzf [—mq] - uff [—mglw, mi,...,mq €N,

where w € Q(0) and {ut}le is an orthogonal basis for H. Then

Zg:l JQMj (’ys),ﬁ(w; T, g) ZT fT(T)es,ﬁ(Qa Qr, kra T, g)

Jin(v,T,2) = , 1.0.0.9
where f.(7) is a quasi-modular form, a, € H, and 05}, is defined as
Osn(Qar by 7,2) = Y ay, o) @2 lahn), (1.0.0.10)

a€A+’Ys



Here A is a positive-definite even lattice and the ~s are certain states in V' that will be
discussed along with Q5 (vs) in Subsection|7.2.1,. Q is the quadratic form corresponding to

A.

Theorem generalizes Theorem 4.2.5 in [13] by including the z-variable and
covering a larger class of VOAs. The functions are discussed in Section and
satisfy certain transformation laws with respect to the Jacobi group. They are essentially
Jacobi theta series with spherical harmonics. Conditions for when these functions are Jacobi
forms are also established in Section This is an extension of results in [43] and [10],

and leads to the following refinement of Theorem [1.0.0.3

Theorem 1.0.0.4 Let hy,..., hy, € V1 be an orthogonal basis of the Cartan subalgebra H
of Vi and which satisfies Condition H. Let the rest of the assumptions be as in the previous
theorem. Then for each s, >, fr(T)0s1(Q,ar, ky, T, 2) is a sum of quasi-Jacobi forms on

[o(N). Here N is the level of the integral quadratic form Q.

The subgroup I'g(N) of SLy(Z) is defined in Section The proof of Theorem
is found in Subsection and will rest on results obtained in Section dealing
with transformation laws of the functions .

It is conjectured that the VOA Q(0) is strongly regular when V' is strongly regular.
Assuming this conjecture, combining Theorem and Theorem provide explicit
transformation laws for the functions J;(v; 7, 2) for any v € V.

Some other work can be found in the literature which discusses Jacobi forms in the
theory of vertex operator algebras. For example, in [§] the theory is developed for lattice

VOAs, and in [24] it is essentially developed for VOAs associated to the highest weight

10



integrable representations for affine Kac-Moody Lie algebras. However, Theorems [1.0.0.2

[1.0.0.3] and [1.0.0.4] establish a general theory to VOAs which extends beyond these results.

Finally, a few examples illustrating the applications of these theorems will be
discussed in Section [7.4. We begin with Chapter [2] where we will establish notational

convention that will be used in the following chapters.

11



Chapter 2

Notation

Throughout this thesis, Z, R, and C denote the integers, real numbers, and complex
numbers, respectively. The set of non-negative integers is written N, while the set of positive
integers is labelled Z,.. The complex upper half-plane, defined as the set of complex numbers
with positive imaginary part, is denoted H. For variables 21, ..., z, we will denote the vector
(z1,-.-,2n) by 2.

Of particular importance in the theory of vertex operator algebras is the space
of (doubly-infinite) formal Laurent series in z with coefficients in a linear space V. This
(linear) space is denoted V[[z, 2~ !]] and defined as

V([z, 27" = {Z vna" | vn € V} :

neL

Particular subspaces of V[[z, z71]] which occur in this work include the set of formal power

series in x with coefficients in V,

V] = {an | vy, € v} ;

neN

12



its subspace of V-valued polynomials,

Viz] = {Z vpx" | vy, € V and v, = 0 for all but finite many n} ;
neN

the space of formal Laurent polynomials,

Viz,z 7 = {Z vpx" | vy, € V and v, = 0 for all but finite many n} ;
neZ

and the space of truncated formal Laurent series,

V((z)) = {Zvn:c" | v, € V and v, = 0 for n << O} .

nel

Each of these sets of formal series may be defined to include additional formal

variables. For example, we set

V[[$,$_17yay_1]] = Z vnmxmyn | Umn €V
mneL

For a series f(z,y) € Vlz,27 1, v,y ]|, the residue of f(x,y) with respect to x is the
coefficient of its 271 term and is denoted Res,. f(z,y).

The delta function, defined by

§(z) =) a" e Cllz,z™]], (2.0.0.1)

nez

is used in the definition of a vertex algebra presented in this thesis. It can play a large role
in the theory of vertex operator algebras (see [29]). The formal exponential function e® is

defined in the usual way as

exp(z) = e* 1= Z A
We will use the common convention of setting ¢ := ¢?™7 for 7 € H throughout this work.
For >, z € C, we set ( = (. := ¢*™*. When we have indexed complex variables such as

13



z; € C, we simply write (; to denote ;.
All binomial expansions are assumed to be expanded in non-negative powers of

the second variable. That is, for n € Z,

(@+y)" =) (T;) 2"y

i€EN

() =7

Caution should be taken. While (z 4+ )" equals (y 4+ x)" for n > 0, (x + y)™ does not equal

where

(y + )™ when n < 0.
The space of endomorphisms and automorphisms of a linear space V will be de-

noted by End V' and Aut V', respectively.

14



Chapter 3

Vertex Operator Algebras

In this chapter we discuss the relevant definitions and properties of vertex operator
algebras and their modules that will be used in this thesis. More information can be found

in a number of texts, including [29] and [23].

3.1 Vertex algebras and vertex operator algebras

A vector space V is a vertex algebra if it contains an element, denoted 1 and called

the vacuum vector of V', and is equipped with a linear map

Y(-,2): V= (End V)[[z, 27 1]],

v—=>Y(v,z2) = Z v(n)z "1 (3.1.0.1)
nez

such that the following axioms are satisfied for any u,v € V;

1. the truncation condition: u(n)v = 0 for n sufficiently large,

2. the creation property: Y (u,z)1 = u + {terms involving positive powers of z},

15



3. the vacuum property: Y (1,z) = 1, where 1 is the identity operator, and

4. the Jacobi identity:

P <Zl — Z2> Y (u,21)Y (v, 22) — 25 10 <Z2_Zl> Y (v, 20)Y (u, 21)
20 —20
=20 <le_ ZO) V(Y (u, 20)v, 22).- (3.1.0.2)
2

The vector space V is called the Fock space of the vertex algebra, and for each u € V, the
infinite sum Y (u, z) is called the vertex operator (associated with u). The importance of
the vacuum element and map Y'(+, z) in the definition of a vertex algebra is paramount. To
emphasize the dependence of the definition on these components, a vertex algebra is often
denoted by the triple (V,Y, 1) rather than just V.

The endomorphisms u(n) defined in are called the modes of u. From the
the creation property, it follows that u(—1)1 = w for all w € V. It is useful to express the
Jacobi identity in terms of modes. Expanding the vertex operators and delta functions for

£, m,n € Zin[3.1.0.2|and equating the coefficients of the zo_e_lzl_m_lzgn_l terms establishes

> (-1 <§)u(m + =i +i) — (1)) (=1)’ @v(n + 0 —i)u(m + 1)

i>0 i>0

=3 (T) (u(l + i)v)(m +n — ). (3.1.0.3)

1>0
The identity (3.1.0.3) is found in [I5] and is a generalization of the original incarnation of
a vertex algebra developed by Richard Borcherds in [3].

Taking £ = 0 in (3.1.0.3)) leads to the commutator formula,

[u(m), v(n)] = 3 <m> (u(i)v)(m +n — i), (3.1.0.4)

16



for m,n € Z. Applying (3.1.0.4) to a vertex operator gives
_ m . _ \.—n—1
[u(m),Y (v,2)] = Z (Z )(u(z)v)(m +n—i)z "L (3.1.0.5)
neZ i>0
and more generally, for vy,...,v, € V,
[u(m)v Y(Ula 21) o 'Y(Una ZTL)]

n

= Z ( ) MY (vy, 21) - Y (w(i)vg, 25) - Y (0ny 2). (3.1.0.6)
>0

Jj=11
On the other hand, taking m = 0 in (3.1.0.3)) and relabelling indices establishes

the associator formula,

i>0

for m,n € Z. The commutator and associator formulas are useful tools in computations
involving vertex operators and their modes.

Also derived from the Jacobi identity is the existence of non-negative integers k

and ¢ dependent on the vertex algebra such that
(21 — 2)*[Y (u, 21),Y (v, 22)] = O, (3.1.0.8)

and

(z1 + ZQ)ZY(Y(U, 20)v, z2)w = (20 + ZQ)ZY(’LL, 20 + 22)Y (v, z9)w, (3.1.0.9)

for all u,v,w € V. These formulas are known as locallity and (weak) associativity, respec-
tively. It is known (for example [29]) that these two conditions are equivalent to the Jacobi
identity in the definition of a vertex algebra.

A space V is a vertex operator algebra (VOA) of central charge c if in addition to

17



being a vertex algebra, V has a Z-grading

V=,

neL

where

dim V,, < oo,

V,, = 0 for n sufficiently negative,

and V contains an element w € V5 (called the conformal or Virasoro element) such that

after defining the operators L(n) by

Y(w,2) = Zw(n)z‘"‘1 = ZL(n)z‘"‘Q,

nez nel

the following conditions hold:

(i) for all n € Z,

Vo ={veV|L0v=nv},

(ii) for allv eV,

Y(L(—1)v,z) = diZY(v, z),

and

(iii) for any m,n € Z, the Virasoro relation,

m3—m

[L(m), L(n)] = (m —n)L(m+n)+ (5m+n,0Tc,

holds, where ¢ € C.
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Similar to the case of vertex algebras, the vertex operator algebra V is often denoted by
the quadruple (V,Y,1,w).

A subVOA of (V,Y,1,w) is a subspace W of V such that (W,Y,1,w') is again a
vertex operator algebra. While the map Y (-, z) and vacuum vector 1 are shared between
W and V, the conformal vectors may be different. In the case that o’ = w, (W)Y, 1,w) is
said to be a conformal subVOA.

A subspace I of a vertex algebra V is an ideal of V if for all v € V, v € I, and
n € Z, v(n)u € I and u(n)v € I. The subspaces V' and 0 are always ideals of V. For a
subspace I of a vertex operator algebra V', conditions (i) and (ii) are equivalent and the
definition of an ideal may be slightly simplified. V is called simple in the case V # 0 and
V" has no other ideals besides itself and 0.

A homogeneous element v in Vj is said to be of weight k. When the weight of
a homogeneous element v is not specified, we will denote it wtv. Condition (3.1.0.10) is

called the L(—1)-derivative property. Recalling that L(n) = w(n + 1) for n € Z and using

(13.1.0.4), it follows that

LD ¥ (0] = S0 o(mle ™ = 3 3 (7 wligo)m -

meZ meZ 1>0

for any v € V. In terms of the modes of v this becomes

[L(—1),v(n)] = (L(—-1)v)(n) = —nv(n — 1). (3.1.0.12)

19



Similarly, we find

[L(0), v(n)] = [w(1),0(n)] = C) (W(@v)(n +1 =) = (L(=1)v)(n+ 1) + (L(0)v)(n)

>0

=—(n+1)v(n) + (wtv)v(n) = (wtv —n — 1)v(n).
Let u and v be homogeneous elements in V' of weight k and wtwv, respectively. Then for
any n € 7Z,
L(0)v(n)u = v(n)L(0)u + [L(0),v(n)ju = kv(n)u + (wtv —n — 1)v(n)u
= (k+wtv—n—1)v(n)u.
It follows that as an operator,
v(n): Vi = Vitwto—n—1- (3.1.0.13)

For a homogeneous element v € V', the unique endomorphism v(wtv — 1) is called the zero
mode of v and is denoted by o(v). The zero mode of v preserves each graded weight space,
so that o(v): V, = V,, for all n € Z.

We finish this subsection with a computation of another result which will be of use
later. Let v € V;, and w € V. Then L(0)v(n)w = ({+k —n — 1)v(n)w and for a variable x

we find that

ezL(O)y(% Z)e—:vL(O)w _ ezL(O) Z ,U(n)z—n—le—:cL(O)w _ Z 6:1:L(0)U(n)z—n—1e—a:€w

nez nez
_ § exL(O)U(n)wzfnflefxf _ E :ez(éJrkfnfl)v(n)wzfnflefxf
nez neL
_ § :exéfxéJra:ker(fnfl),U(n)wzfnfl _ 2 :exk,v(n)we:r:(fnfl)zfnfl
neL nez

= Z(e“(o)v)(n)(exz)_"_lw =Y (" Oy, e*2)w.
neL
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Extending by linearity, this establishes for any v,w € V that

exL(O)Y(U, z)e*xL(O) = Y(exL(O)v, e’z).

3.1.1 The “square-bracket” vertex operator algebra

(3.1.0.14)

The goal of this subsection is to provide the Fock space V of a vertex operator

algebra (V,Y,1,w) with an alternate, yet isomorphic, vertex operator algebra structure.

This different “square-bracket” vertex operator algebra structure will play a significant role

in this thesis. It is a special case of a more general theory (see [22] 2]).

Let (V,Y,1,w) be a vertex operator algebra. Define the “square-bracket” vertex

operators on V' by

Y[, z]: V — (End V)[[z,z_l]],

v Yo, 2] = Y(qf(o)v, q. —1).

The resulting modes of Y[v, z] are defined by

nel

Typically, v(n) # v[n]. However, for an integer k,

i>0 m>0

In particular, taking k£ = 0 shows

It follows that for all v € V7,

2 <];>U(i) =2 = 1&!th)m”[m]'

(3.1.1.1)

(3.1.1.2)

(3.1.1.3)



Set

O =w-—c/24,

and define the operators L[n] by

Vg, 2] =Y @l = Lnz"

neZ nel

The operators L[n| satisfy the Virasoro relations (3.1.0.11)) and the L[—1]-derivative prop-

erty, (3.1.0.10)). Moreover, L[0] provides a grading on V/,

V=D Vi,

nez
where Vj,) = {v € V' | L[0]v = nv}. It is known (see [22,[46]) that the quadruple (V, Y], 1,©)
is a vertex operator algebra that is isomorphic to (V,Y,1,w). While it is typically not true
that Vi, = V], it is known that for any N,
D Vi = B Vi
n<N n<N
We let [wt]v denote the weight of a homogeneous element v in the vertex operator algebra

(V,Y[],1,&). Note that for v € V], the operator qf[o}

: V= V[[z]] takes v+ gFv.
The difference between the two vertex operator algebras (V,Y,1,w) and (V,Y[],1,®)
stems from a difference in the geometric objects for which the respective VOAs are defined

on. The VOA structure given by the (V)Y,1,w) defines a VOA on a Riemann sphere. The

change of variable z — e* — 1 defines the VOA (V,Y[],1,®) on a torus.
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3.2 Modules

3.2.1 Definitions

Let V' be a vertex operator algebra. A vector space M is said to be a weak V-

module if it is equipped with a linear map

YM(.2): V = (End M)[[z,27 Y]]

v YM(p, 2) = Z vM(n)z7" 1,
neZ

such that the following axioms are satisfied for all u,v € V and w € M:

1. the truncation condition: u™ (n)w = 0 for n sufficiently large,

2. the vacuum property: YM(l, z) = 1, where 1 is the identity operator of M, and

3. the Jacobi identity:

2510 <21—,22> YM(u,20) Y M (0, 29) — 2516 <Z2+Zl> YM (v, 29)YM (u, 21)

20 —Z20

=20 <Z1;220) YM(Y (u, 20)v, 22). (3.2.1.1)

A V-module M can also be denoted (M,Y™) to emphasis the map Y. When a module
is written with an index, i.e. M7, the notation Y7 is used in place of Y™’ While the use of
M in vM (n) conveniently emphasizes the action of the mode on M, it will often be omitted.

An admissible V-module M is a weak V-module which also carries an N-grading
M= M,
n>0
such that for any v € V,,
M

v (m): My — Myym—n—1
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for all m,n € Z.

If M # 0, the grading may be shifted so that My # 0. We take this to be the case
throughout this thesis and refer to My as the top level of M.

A weak V-module M is called an ordinary V-module (or simply a V-module) if M

has a C-grading

M =P M,

AeC

such that
1. dim M) < oo,
2. M1, = 0 for n sufficiently negative, and
3. My ={weM|LO)w = w}.

By definition, an admissible module is a weak module. Additionally, it can be shown that

an ordinary module is always an admissible module. This provides an inclusion,
Ordinary modules C Admissible modules C Weak modules.

A submodule of a V-module M is a subspace U such that (U, YM) is also a V-module. If a
(weak, admissible, ordinary) module does not contain any proper submodules, it is called

irreductble. Of central importance to this thesis are the following definitions:
Definition 3.2.1.1 Let V be a vertex operator algebra.

1. 'V is rational if its admissible module category is semisimple. That is, if every ad-

missible module is a direct sum of irreducible admissible modules.
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2. V is Cay-cofinite if the subspace Co(V') := (u(—2)v | u,v € V') has finite codimension

nV.

3.V is of CFT-type if it has no negative weight spaces and its weight zero space is

one-dimensional. That is,

V=CipoVioVed- .

An element v of V' is quasi-primary if L(1)v = 0, and primary if L(n)v =0 for all n > 1.

Definition 3.2.1.2 A wvertex operator algebra V is strongly regular if it is rational, Co-

cofinite, of CFT-type, and every element v € Vi is quasi-primary.

This thesis is concerned with simple strongly regular vertex operator algebras. Such VOAs
come equipped with additional structure that is necessary to obtain the results of this the-
sis. A table categorizing where the different assumptions are required is included in the
Appendix.

The rationality of V implies it has finitely many inequivalent irreducible admissible
modules [6] (see also [5] for more comments on regular VOAs). Unless otherwise stated, we
denote these inequivalent irreducible modules by M1, ... M". A vertex operator algebra
V may be viewed as a V-module itself, and in this context, it is referred to as the adjoint
module. A vertex operator algebra is called holomorphic if the adjoint module is its only
irreducible admissible module.

A consequence of V' being Ca-cofinite is that every weak V-module is an admis-
sible module [I]. Meanwhile, if V' is Co-cofinite and rational, it can be shown that every

irreducible admissible module is an ordinary module [I]. In other words, when V' is strongly
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regular, the notions of weak, admissible, and ordinary module are equivalent.

A bilinear form (-,-),, on a V-module M is said to be invariant if

(Y(a, z)u,v),; = <u,Y(eZL(1)(—zf2)L(0)a7zfl)v>M, (3.2.1.2)

for a € V and u,v € M. When M =V, we simply write (-,-). It is known [16] that any
invariant bilinear form on V' is symmetric. Haisheng Li has shown [31] that the space of
all symmetric invariant bilinear forms on V' is isomorphic to the dual space of V;/(L(1)V1).
In the case L(1)V] = 0, it follows that the space of symmetric invariant bilinear forms on
V is isomorphic to Vj = C1. Furthermore, in the situation that V' is of CFT-type, (-, ) is
nondegenerate if, and only if, V' is simple.

For a simple vertex operator algebra V', we normalize an invariant bilinear form

(-,-): VxV — Csothat (1,1) = —1. So long as V is of CFT-type, then for u,v € Vi,

(u,v)1 = Res, 271 (Y (u, 2)1,v) 1 = Res, 27! <1, Y (2 (—272) L)y, z_l)’u> 1

=Res, 2" Y _(1,-u(n)vz"") 1= —u(l)v(1,1)1
nez

= u(1)v. (3.2.1.3)

Therefore, when V is a simple strongly regular vertex operator algebra, we have a unique

symmetric invariant bilinear form normalized as above that is also non-degenerate.
Consider the bracket [-,-]: Vi x Vi — V; defined by [u,v] = u(0)v. If V is of

CFT-type, the bracket [-, -] equips V7 with the structure of a Lie algebra. If V' is strongly

regular, V; is a reductive Lie algebra [I1], 34]. This will be of importance in Chapter
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3.2.2 Automorphisms

An automorphism g of a vertex operator algebra V is an invertible linear map

from V to V such that g(w) = w and

gu(n)g™! = (g(v))(n), (3.2.2.1)

for all v € V and n € Z. The set of all automorphisms of V', denoted Aut(V'), is a group

under composition. Note that

showing that g commutes with all modes of w, and in particular L(0) = w(1).

Lemma 3.2.2.1 For any u,v €V, k € Z, and n > 0, we have



Using (3.1.0.7) and our induction hypothesis, we find

nl — g n-— n—1—i i
- i:OHy( a0y tu(eutoy - i;(—l)’( S uor
= n—= n—i i
=) + S (" oo
n—1
(2] a0 a0 + (1) u(uo)”
i=1
= w(0)"v(k) + 2(-1)@ K” ; 1) + (?:f)] (0" “w(k)u(0)" + (=1)"v(k)u(0)"

as desired. [J

We are now in position to prove the following lemma.

Lemma 3.2.2.2 Let u € Vi. Then ¢*9 is an automorphism of V.

Proof Using Lemma[3.2.2.1| we find

n>0 n>0

=3 e (D )uor-euor
n>0 =0

58 (. (20
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This shows (3.2.2.1)) is satisfied. Since u € V;, we have u(0)1 = 0. Using (3.1.0.5) and

(13.1.0.12)), it follows that

i>0

= —(L(—1)u)(=1)1 — (L(0)u)(0)1 = 0.

This completes the proof of the lemma. [J

3.2.3 Twisted modules

Let V be a vertex operator algebra and g an automorphism of V' with finite order

T. For 0 <r<T-—1,set
V= {v eV]gv= e_Q’TiT/Tv}.
A linear space M equipped with a linear map

YM.V = (End M)[[z"V/7, 21/,

v YM(y, 2) = Z vM(n)z7m1
nezZ+1/T

is a weak g-twisted V-module if for u € V", v € V, and w € M; the truncation condition,

v(m)w = 0 for m >> 0; the vacuum property, Y3/(1, z) = 1; and the twisted-Jacobi identity,

P <Z1 Z_o Z2> Y (u,21)Y (v, 22) — 25 10 <Z2__Zozl> Y (v, 22)Y (u, 21)

— o\ T _
:Zil<zl ZO) 5(21 ZO)Y(Y(u,zo)v,zQ), (3.2.3.1)

22 22
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all hold. Analogous to the definitions for a V-module, a weak g-twisted V-module is called

admissible if it has a %ZJr-grading

such that for homogeneous v € V, oM (m)Mp, C Mptwtv—m—1- A weak g-twisted V-module
M is called an ordinary g-twisted V-module (or simply a g-twisted V-module) if M has a

complex grading

M:@M,\,

AeC

where M) = {w € M | L(0)w = Aw}, dim M) < oo, and My, = 0 for integers n sufficiently
small.

In the case g = 1, the definitions for weak, admissible, and ordinary g-twisted
V-modules reduce to the original definitions of weak, admissible, and ordinary V-module,
respectively. In the admissible g-twisted V-module case, M) is again assumed to not be 0

when M # 0. If M is a simple g-twisted V-module, then

o.9]
M = P My
n=0

for some A € C such that M)y # 0. (See also [0 [7] for more details.)
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3.2.4 Li’s “Delta”-function

Again let V be a vertex operator algebra and g an automorphism of V' with finite

order T'. Consider an element h € V such that

L(n)h = 8,0h, (3.2.4.1)

g(h) = h, (3.2.4.2)

h(0) is semisimple on V, and (3.2.4.3)

[h(m), h(n)] =0 (3.2.4.4)

for all m,n € Z,. Moreover, we require that Spech(0) C %Z. For such an h, define the

map Ap(2): V — (End V)[[z=V/T, 2Y/T]] by

Ap(z) = 2" exp { — Z hf)(—z)_k . (3.2.4.5)

k>1

Note that Ap(z) is invertible. Define the map YAMh(z)(" 2): V — (End M)[[z~ YT, 2/T]] by

YA]‘i(Z)(v,z) =YM (AL (2)v,2).

2mih(0)

Recall from the previous subsection that e is an automorphism of V. The following

theorem due to Li [32] (proposition 5.4) is very useful.

Theorem 3.2.4.1 (Li) Let (M,Y™) be a g-twisted V-module. Then (M, YAMh(z)) is a weak

(ge2™ O twisted V -module.

In the context of this thesis, which is concerned with strongly regular vertex operator al-
gebras, weak modules are ordinary modules. In particular, Li’s Theorem again holds with

weak module replaced by ordinary module.
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When (M,YM) is an irreducible g-twisted V-module, (M, YA]‘i (Z)) is also irre-
ducible. This follows from the invertibility of Ap(z). Taking ¢ = 1 in Theorem
results in the construction of an e2™(0)_twisted V-module (M, YAj\i (Z)) from the V-module
(M,YM). In this way, any e2™"(0)_twisted module can be constructed from some weak V-
module. In particular, if ~2(0) has integral eigenvalues, any V-module (viewed as a 1-twisted
V-module) may be constructed from some (perhaps the same) V-module.

Let V be a strongly regular vertex operator algebra and M?',..., M" its finitely
many inequivalent irreducible admissible modules. Take h(0) to satisfy conditions ((3.2.4.1)—

(3.2.4.4) and have integral eigenvalues. (Note that an element h that satisfies Condition

H also satisfies (3.2.4.1)—(3.2.4.4) for g = 1 and g = ¢*™"(0)) Then for the (1-twisted)

V-module (M7,Y7), there is another (possibly the same) V-module (M7, Y7") such that
the (again 1-twisted) V-module (M 7 th (Z)) is isomorphic to (M7, Y7). In other words, for

any of the modules (M7, Y7), there exists a j' € {1,...,r} such that there is an isomorphism
(M7 YL () = (M, Y9, (3.2.4.6)

This isomorphism plays a large role in Chapter

3.2.5 The Heisenberg VOA

Let H be a d-dimensional Lie algebra with non-degenerate symmetric invariant
bilinear form (-, -). Consider the affinization of the Lie algebra of H, H= H®Clt,t YoCK,
with commutator relations

[a®@t™, b®t"] = (a,b) dpmin,ok, and

[K,a®t™] =0,
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for all a,b € H, and m,n € Z. Let H ® CJt] act trivially on C, and K act as 1. Consider

the induced module

My =U(H) Ruecieck C
= S(H et 'C[t™),
where S(H @ t~1C[t™!]) is the symmetric algebra and the isomorphism is as linear spaces.
Let the action of h ® t" on Mpy be denoted by h(n). For an orthonormal basis

{h1,...,hq} of H, set wy, = %Z‘Ll hi(—=1)?1, where 1 = 1® 1. Any element v € My can

be written as a linear combination of elements of the form
v=ai(-n1) - ap(—nk)l,

for a1,...,ax € H, ny,...,nx € Zy. For such an element v € My, define the map
Y(-,2): My — (End My)][[z,271]] by

Y(v,2) = 80" Van(2) -+ 00 Vay(2)3,

where 9(") = 4 (%)n and g - -2 signifies normal ordering (see [19]).
It is known (for example [29]) that (Mp,Y, 1,war,,) is a simple (though not ratio-

nall) vertex operator algebra with L(0)-grading

My = (M),

n>0

where

(Mg)n ={ve My | L)y =nv}

= <a1(—n1)---ak(—nk)1 |ai,...,ax € Hyny,...,ng €Z+,an‘ :n>.
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There is a natural identification between (M), and H given by h(—1)1 — h. Moreover,

by (3.1.1.3)), a[0] = a(0) = 0 and a[1]b = a(1)b = (a,b) 1 for a,b € H.

For a € C, define the space
My (o) := My ® e”. (3.2.5.1)

For n # 0, the operators a(n) € End My act on My («) via its action on M (1). Meanwhile,
a(0) acts on e* by a(0)e® = (a,a)e®. My(«a) is an My-module. For each « in the dual of
H, denoted H°, My (c) is an irreducible My-module with conformal weight 3 (o, ). These

are all irreducible modules up to equivalence (see [15] 29]).
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Chapter 4

Modular and Jacobi Forms

4.1 Modular forms

4.1.1 Definitions

The (homogeneous) modular group is defined by

a b
I':=SLy(Z) = |a,b,c,d € Z and ad —bc=1 », (4.1.1.1)
c d
0 —1 1 1
and is generated by the matrices S = and T = . There is a left-action of
10 0 1

the modular group I' on the complex upper-half plane H given by Mobius transformations,

I'xH—-H

ar +b
et +d’

(v, 7) =1 = where 7 = el.

Under this action, T7 =7+ 1 and ST = —1/7 for all 7 € H.
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Definition 4.1.1.1 Let k be an integer. A meromorphic modular form of weight k

on I' is a meromorphic function f on H such that

a b
1. for ally = el,

c d
f(yr) = (er + d)* f(7), (4.1.1.2)

and

2. f has a Fourier series expansion, or q-expansion,

F@) =" ang" = g(q), (4.1.1.3)

n>N
where ¢ = €™ and N € Z.
The latter condition states that g is meromorphic at ¢ = 0. If g is holomorphic at ¢ = 0,
then f is said to be holomorphic at infinity.

When k = 0, f is often referred to as a modular function rather than a modular
form of weight 0. We say f is a holomorphic modular form of weight k when N > 0. In this
thesis, the term modular form will be reserved for holomorphic modular forms. In other
words, our definition of modular forms includes the conditions that the functions have no
poles in H, and are holomorphic at infinity.

There is another way to write the definition of a modular form that will be of use.
Let the notation be as above. For k € Z, there is a right I'-action on meromorphic functions
in H given by

Fliv(r) = (ar +b)F f(y7). (4.1.1.4)
In the definition of a modular form, condition can be replaced with requiring that

f be invariant under the action |;. That is, requiring f|x(7) = f(7) for all v € T.
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Let My, denote the space of (holomorphic) modular forms of weight k. It can be

shown (see [28]) that M = C and Mj, = 0 if
1. kis odd,
2. k<0,or
3. k=2

Let M denote the space consisting of modular forms with Z-grading

M=PMy=CoMioMso---. (4.1.1.5)
k>0

A typical element of M is a finite sum of modular forms of various weights, but not in
general a modular form itself.

Suppose f(7) € My, and g(7) € My for k, & > 0. Then f(7)g(7) is again
holomorphic in HU{oco}. Moreover, (fg)|ok+207(T) = f(7)g(7) for all v € T'. It follows that
f(m)g(7) is a modular form of weight 2(k + ¢). In other words, pointwise multiplication of

modular forms defines a product such that M is a Z-graded algebra.

a b a b 1 0
I'(N) = el

c d c d 0 1

mod N

The set I'(IV) is a subgroup of I'. By definition, I'(1) = I'. We are also interested in the

subgroup I'g(N) of T" defined by

[o(N) = €l|c=0modN ;. (4.1.1.6)
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A subgroup of T is called a congruence subgroup of T if it contains I'(/V) for some N. The
definition of a modular form can be extended to any congruence subgroup of T'.

Let Hol; denote the space of holomorphic functions f(7) on H such that as 7 =
x + iy — 100 (meaning y — oo, x,y € R), there exists a scalar K and N € N such that
|f(1)] < Ky~N. We define a (holomorphic) vector-valued modular form of weight k to be a

tuple of functions
F(r) = (f1i(7),., fr(7))
together with a representation p: I' = GL,(C) such that each f;(7) € Hol, and
F'|yy(7) = p(v)F'(7)

for all ¥ € T'. Here t denotes the transpose of the vector and F*|,v(7) is defined as

F'ley(r) = (fuley(7), -, feliy(7))"

Moreover, we require that each function f;(7) (1 < j < r) have a convergent g-expansion

holomorphic at infinity:

£i(r) =" an(j)g™™

n>0
for positive integers Nj.
4.1.2 Eisenstein series
Consider the sum
Go(T) = > _r (4.1.2.1)
(aT + )2k
0#(a,b)€Z?

In the case that k > 2, Giai(7) satisfies the invariance

Glary(7) = G(7)
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for all v € I'. Moreover, for all kK > 2, G5 is holomorphic on H and has the g-expansion
Gar(T) = 2¢(2k) + 2 (2mi). i (4.1.2.2)
26(T) = 2k—1 oak-1(n)q",

where ((2k) = > 02 n—%k and o—1(n) = >y, d?*=1 (see [28]). Therefore Ggy, is also

n=1

holomorphic at infinity, and it follows that for k& > 2, each Gox(7) is a modular form of

weight 2k. Such functions are called Eisenstein series. They may also be written

(27”)% o0 n2k—1qn
—1)! _
(2k —1)! —l-q

Gor(T) = 2¢(2k) + 2 (4.1.2.3)

The case £k = 1 in (4.1.2.1]) results in a series which does not converge. Instead,

define a function Ga(7) on H by

7T
Ga(r) = 5 + > ZMM (4.1.2.4)

a€Z\{0} bEZ

The function G3(7) is holomorphic in H and at infinity, and also has the g-expansion (4.1.2.2))
for £ = 1. However,

Go(y7) = (e1 + d)*Go(1) — 2mic(er + d) (4.1.2.5)

for v = € I (see [28] for details). Therefore, G5 does not satisfy (4.1.1.2) and is not
c d

a modular form. It is, however, also called an Eisenstein series and is of great importance

to us.
There are several normalizations of the functions Goi(7) that are convenient. We
define the functions Eqy(T) by

By (1) = @ 1@) - Gor(T). (4.1.2.6)

A word of caution should be made as there are competing and inconsistent notations in

the literature. The notation Es; chosen here is the same as Eg, in say [7], but different

39



than the F5; normalization in other works. The series F9 are also called Fisenstein series,
and from now on the term Eisenstein series will refer to these functions rather than the

functions Gop. With this notation, transformation (4.1.2.5)) for E5 reads

cler + d).

FEo(y7) = (er + d)*Eo (1) — o7

(4.1.2.7)

One importance of Eisenstein series is their use as generators of the graded algebra

M= @kgo Moy Namely, M is the weighted polynomial algebra
M = C|Ey, Eg). (4.1.2.8)

If the function F»s is also included, the weighted polynomial Z-graded algebra of quasi-
modular forms,

Q = C[E», Ey4, E¢), (4.1.2.9)

is obtained. The space Q is graded in the same way as M.
The Eisenstein series Ea(7) plays a role in the modular derivative 0 defined for
f(r) € My, by

Of (1) = O f(1) Lif(r) + kB> (1) f(7). (4.1.2.10)

- 2wt dr
It can be verified that

Ok ) k+27(7) = Ok fley(7),

showing that 0 maps modular forms of weight k& to modular forms of weight k + 2 (see

Lemma [4.2.2.1| below for a similar calculation).
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4.1.3 Elliptic functions

For (z,7) € C x H, we define the Weierstrass p-function by

p(z,7) :=$+ > ( ! wzl ) (4.1.3.1)

m.neZ (Z - wmm)z m,n
(m,n)#(0,0)

where wy, , = 2mi(m7 + n). The function p(z, ) is periodic in the variable z with periods

27mi and 2miT [28]. o(z,7) also has the expansion

(2, S+ Y. (n=1)E,(r)2"?, (4.1.3.2)
n>4,ne€27

where the functions F,, are the Eisenstein series defined above. For (w,7) € C x H, define

the functions Py(w, ) for k > 1 by

k 1 n ( 1)k k— lq—nqn
P, : w 4.1.3.3

where q, = €*™ and ¢ = ¢?™7. The functions Py(w,7) for k > 1 could also be defined

recursively by

Pi(w,T) = ﬂﬁa(w,ﬂ _ 1y SO <” a 1> En (r)z""F.  (4.1.3.4)
(k —1)! dzk-1 2k = k-1

These functions are often called Weierstrass functions and are related to the classical Weier-

strass p-function by the equalities Py(w,7) = p(w,7) + E2(7) and p(w,7) = Pi(w,7) —

2E5(T) (see [7,28]). For k > 2, P(w,7) is periodic in w with period 27i and 27iT. Pj(w,T)

is still periodic in w with period 27i, however, P;(w + 27it, 7) = Pj(w,7) — 1.

4.1.4 Other useful functions on H

Define the Dedekind n-function by

) =g/ [ —-q"). (4.1.4.1)

n>1
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The n-function is holomorphic on H and is closely related to the unrestricted partition

function p(n) by

n(r) =g - =D pln)g”

n>1 n>0

=q P (14 q+2¢"+3¢° +5¢" + ).

Though the n-function is not a modular form on I', it will play a role in describing the

modular invariance of n-point functions discussed later in this thesis.

4.2 Jacobi forms

4.2.1 Definitions

Let F' denote the transpose of a square matrix F. A matrix F is symmetric if
F! = F. When every off-diagonal entry of F is half-integral and the diagonal entries are
integral, we call I half-integral. For a vector z we let F'[z] denote z!F'z, and for a function

¢ defined on C" we write ¢(z) for ¢(z1,...,2n).

Definition 4.2.1.1 Let k be an integer and F be a real symmetric, positive-definite, half-
integral n X n matriz. A holomorphic function ¢: H x C* — C is a Jacobi form on I' of

weight k and index F if

a b
1. for ally = el
c d
at+b z i _CcFz]
_ | = d 2 4.2.1.1
¢<CT+d7CT+d> (e +d) exp( mc7'+ (1, 2), ( )
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2. for any (A, p) € Z"" x Z",
O(7, 2+ AT+ p) = exp (—2mi(TF[A] + 22'F))) ¢(7, 2), (4.2.1.2)
and

3. ¢ has a Fourier-Jacobi expansion

o(t,2) = Z c(l,1)¢" exp (2mi(z'r)) , (4.2.1.3)
rezn LeQ,
4—F~1[r]>0

where £ > £y for some £y. In the case that condition 3 is replaced with the weaker condition,

3. ¢ has a Fourier-Jacobi expansion

o(1,2) = Z Z c(ﬁ,f)qﬁ exp (ZWi(gtz)) , (4.2.1.4)

LeQ rezn
>4y

then ¢(t,z) is called a weak Jacobi form. In the case £y > 0, ¢ is a holomorphic (weak)

Jacobi form, otherwise it is meromorphic.

We will often use vz to denote %er for « labelled as in the previous definition.
If z = 0 the definition of a Jacobi form above reduces to the definition of a modular form.
When n = 1 and F[2] is the quadratic form 22, the definition is the same as presented in [14].
We use a more general definition here which coincides with that used in [44]. Sometimes
we will refer to such functions as matriz Jacobi forms.

Another approach to the definition of Jacobi forms is to focus on the actions of I'
and Z" x Z™ on holomorphic functions ¢: H x C" — C. For an integer k and matrix F' as

above, define the operators |, r and |r by

(Bl5ry) (T, 2) = (cr +d) Fexp (-mf J[j]d) ¢ <w, mi d> , (4.2.1.5)
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and

(9lr[\, p)) (7, 2) := exp (2mi(F AT + 22'FA)) (7, 2 + AT + p), (4.2.1.6)
respectively. In this way, the definition of a Jacobi form reads as: a holomorphic function
¢: H x C" — C such that

L (0lk,r7)(7,2) = ¢(7, 2) for any y €T,

2. (lp[A u)) (1, 2) = (7, 2) for all [\, u] € Z™ x Z™, and

3. ¢ has a Fourier expansion (4.2.1.3)) as before.

The space of all weak Jacobi forms on H x C™ will be denoted J™ and the space of weak
Jacobi forms of weight k£ and index F' is denoted j,:fF.

An example of a Jacobi form is the Weierstrass p-function (see [I4]). This function
has the required Fourier expansion and satisfies (p|2,07)(7, 2) = (7, 2) and (p|o[A, 1)) (7, 2) =
p(T,z) for all v € T and [\, u] € Z x Z. Therefore, (7, z) is a Jacobi form of weight 2 and
index 0. That is, p(7,2) € j2170.

Let Holgxcn denote the space of holomorphic functions on H x C™. We define a

vector-valued weak Jacobi form of weight k and index F' to be a tuple of functions
(1, 2) = (¢1(7,2), ..., &r(7,2))
together with a representation p: I' X (Z" x Z™) — GL,(C), such that
L @t ry(r,2) = p(7)®(r, 2) for all 5y € T,
2. |\, pl(1,2) = p([A, pu]) @' (7, 2) for all [\, ] € Z" x Z™, and

3. each ¢;(7,2) € Holgxcr» and has an expansion of the form (4.2.1.4)).
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Here the slash operators ®¢|,A(T, 2) are defined as

O A(T) = (filA(7,2), ..., frlsA(7, 2))",

where |, A is either |5 py or |p[A, p]. In the case each ¢; satisfies an expansion of the form

(4.2.1.3), then ® is a vector-valued Jacobi form.

4.2.2 Differential operators

Let k& and m # 0 be integers. Define the differential operator L by

1 d 1 1 d\%? 2%-1
_ L Eo(1). 4221
Ev=oridr ~ am <2m'dz> Ty B (4221)

We have the following lemma.

Lemma 4.2.2.1 Let k and m be as above. The operator L maps weak Jacobi forms of

weight k and index m to weak Jacobi forms of weight k + 2 and index m.

Proof Let ¢ be a weak Jacobi form. We will prove the following two properties:

1. for any v € T,

(Lk®)lkt2,m7 = L(Dlkm), (4.2.2.2)

and

2. for any [\, u] € Z x Z,

(Lk®)|m[A, 1] = Li(Plm[A, u])- (4.2.2.3)
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First, we find

1 d 1 2 2k-1 ke —omimoez>
Li(@lkm7) = (de T Im(2ri)2 d2 + 5 E2(7')) ((CT+d) e oy, ’72)>

k _ _
_ _276(67- 4 d) k=1, 27”mcr+d (j)(fyT ’yz) + me?z (CT + d) k=2¢ 2mm”+d QZ)('YT 'YZ)
™

. cz2 1
—k _—2mim promse
+ (et +d) e + (2 R oy 72))

1 1 d ozl
- m%idz[QmCZ(CTer)_k_le TG (y,7,72)

1 k —2mim 22— d
# gr(er b ) e (Loma ) |

2k —1

L

. CZ2
Bo(7)(er + d)Fe P M errd (v, v2)

ke -1, —2mim 22
= *%(CTﬁLd) T G(y7,72)

N CZQ
+ mc?22(er 4+ d)TF e e g(y T, v2) (4.2.2.4)

P 1 d
—k _—2mim -2
+ (et +d) "e + (27” dT¢(7 ’yz))

C —k—1 — wimi
+ 2(2mi) (e +d) Fle™? e+ (T, V)
- CZ2
—mc?22(er + d)7k72€_2mmm¢(77} v2) (4.2.2.5)
+ 2((23':(2) (CT _l_d) —1 _27r7’mc7—+d < ’YT ,yz ) (4227)
1 k —27rzm
2% — 1 —2mim 2
+ 5 BEo(1)(cr + d) e 2 ersd (v, v2).
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Cancelling out (4.2.2.4) and (4.2.2.5)), and adding (4.2.2.6)) and (4.2.2.7)) together, we have

the above equals

k o 22
a ﬁci(cr b d) Rl (7 2) (4.2.2.8)
; 622 1 d
+(er +d)hePmmET [ gy, 72) (4.2.2.9)
2mi dt
C —k—1 — m’mi
2y ) Kl gy, 72) (4.2.2.10)
+ Z (er+ )t te e (Lg(yr,q2) (4.2.2.11)
211 dz ’
C L e ayhemimEi (Lo (4.2.2.12)
ooler 2007 2.2,
2k —1 —k —27rimi
+ 5 EQ(T)(CT 4 d) e cr+d gf)(’YT, 'yz), (4.2.2.13)

We now consider the terms (4.2.2.8)), (4.2.2.10)), and (4.2.2.13). We find that adding these

together they become
2 c —k—2 _—2mim _ez?
B((er + d)?Ba(r) — 5 (er + d))(er + d) ™22 g7, 72)

1 - cz2
— SBa(r)(er +d) RS g (7, 72)

1 i e
* 5%(‘7 +d) TRl TP e (v, )

cz

= (er + )% M LBy (y7) (7, 12)

DN | =

1 . 022
((CT + d)?Ey(7) — gcler + d)> (cr +d)~F2e MMt g (7, y2)
Y[

— (CT + d)_k_2672ﬂ-imc-r+d

= [Zk — 2E2(77')] $(v7,72).

47



Meanwhile, combining the terms (4.2.2.9) and (4.2.2.11)) gives

_k —2mim -z 1 d
(er + d) k p—2mim g (m(hgb(yﬂ’yz))

2
—k—1 —2mim ci'z 7 Zi
+ (e +d) e + <2m' dz‘f’(’YTa V)

_k_—2mim = 1 d
= (et +d) ke 2mM T (2m’d7’¢(fw’ ’YZ)>

+ (CT _|_ d)_k_lei27rim% _i_ii
27i (et + d)

a0v7) o(, ’YZ)>

21 d cz d
d —k 727szm_ 7 w
(et +d) e o ( o+ 1 d? d)Qd(72)> (7, 72)

cz2

- 1 d
— d —k—2 —2mim “al =%
(7 +d) € (27Ti d(~T)

om72) )

where we used

d _[d(yr) d d(vz) d
Chsb(wxyz)—[ ar Ao T ar d(vz)}aﬁ(%w)

B [ 1 d cz d
(et +d)2d(yr)  (er +d)2d(vyz)

] P(y7,72).

Finally, we note that the term (4.2.2.12) equals

2
(eT + d)_k_2672mmccfzfd B (y1,72) ) .
4m d(vz)? ’

Making these substitutions we find

1 4 1 & L2kl
2rid(yt)  4md(yz)? 2

; CZ2
= (cr +d)F 2P e ( E2(’Y7')> o(y7,7%)

= (Lr®)|kt2,m">
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as desired. This proves (4.2.2.2]).
We now prove (4.2.2.3)). We have

Ly (¢lm[A, 1))
(1 d 1 2 2%k-1 2mim(A\2T+2)z)
= (s~ g+ a0 (e o2+ 37+ )

. 1 .
= mA?ET TG (7 2 Ay g ) g BTN <dd7¢(f, 2 AT+ u))

1 1 d ;
- e [T (e

1 , d
+ 7.62mm()\2‘r+2)\z) <d2¢(7775 + 0T+ N)>:|

211

2k — 1 ,
+ 5 E2(7_)62mm()\27'+2/\z)¢(7_7z + 0T+ ,UJ)

. 1 - d
_ m)\2€27mm()\27'+2)\z)¢(7_’z + AT+ N) + T62mm()\27'+2)\z) (d(b(T,Z AT+ M))
™ T

o i4m2)\262ﬂim()\27+2)\z)¢(7_’ 24N+ )
m

—omARTI N T2A) ((ZQS(T, z4+ AT+ M))

1 1 : d
— — —2mARTIm(N T H2A2) (dz¢(7', zZ4+ AT+ M)>

4dm 271

o eZﬂ'im()\2T+2)\z) i#ﬁ(ﬁ( 2+ AT+ )
4m (27i)? dz2 " TTH

2k — 1 ,
+ 5 E2(7_)€2mm(/\27'+2>\z)¢(7_7z + T+ 'u)
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1 : d
= MmN TH2)3) <d¢(7', z24+ AT+ M))
T

211

A 2mim(A274+2Xz) d
%e £¢(T,Z+)\T+M)

1 1 i (2 d
. _~ 9 2mim(N T4+2X z) [ Y%
e me dzqﬁ(T, Z+ AT+ )

2
_2mim(A2T+2)2) 1 1 d _
e <4m @ri)? 4 A(T, 2 + AT + )

+ 2k2_ 1 E2(7)62mm()‘2T+2>‘z)¢(7', z4+ AT+ p). (4.2.2.14)
Note that
d [drd | d(z+ A+ p) d
dT¢(T’Z+)\T+M) N [dT dr + dr d(2+>\7'+,U«):| o(r 2 + )
d d
= |— - A
|:d7‘ + )\d(z+ )\T—i-u)] 1z + AT+ ),

and

d _[d(z+ AT+ ) d
d

S A .
(1(,24—/\7'+AL)¢(T’Z+ THn)

Plugging these into (4.2.2.14]) we find

1 d 1 /1 d 2 ook —1
L (olm[A 1)) = (27”(17 ~ im (27T2d(z—|—)\7'—|—u)> + 5 E2(7)> O(T, 2+ AT+ )

This completes the proof of (4.2.2.3)), and with it Lemma |4.2.2.1] O
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4.2.3 Quasi-Jacobi forms

A holomorphic function ¢(7,z) on H x C" is a (weak) quasi-Jacobi form of weight

a b
k and index F' (F' as in Definition 4.2.1.1)) if for fixed 7 € H, z € C", v = eI, and
c d
(A, ] € Z™ x 7, we have
1. ¢lk,ry(T,2) € Holgxcn [Ciﬁd, ey o2, cr(fi-d] with coefficients dependent only on ¢,

and

2. ¢|p[A, (7, 2) € Holgxcn[A1, - .., A\n] with coefficients dependent only on ¢.

In other words, there are holomorphic functions S;, ;. j(¢) and T3, ;. (¢) on H x C”

determined only by ¢ such that

er+d er+d

e \" czn \™ c Y
) s , (4231
Z Sl,..., n,J((b)(T Z) <c7'+d> <c7'—|—d> <CT+d> ( ’ )

11581,..in<Sn
J<t

(eT + d)_kefzm'%¢ <a7' To 2 )

and

2 TFR2E FN) g7 5 4 A 4 ) = Z Tiyoin (O) (7, 2) AP - N (4.2.3.2)

11<81 eenin <sp,
If ¢ # 0, we can take Sy, s, +(¢) # 0 and Ts, . 5, (¢) # 0, and we say ¢ is a quasi-Jacobi
form of depth (s1,...,8n,t). In the case z = z and F = 0, this definition of a quasi-Jacobi
form reduces to that in [33]. When n > 1 in the definition above, we will sometimes refer
to these functions as matrix quasi-Jacobi forms. (See also [26] for another definition of

quasi-Jacobi form.)
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For 7 € H and z € C, define the functions

1
Bu(r,2)i= Y ————. (4.2.3.3)
(@ hez? (z+ar+0b)

Such functions converge absolutely for n > 3 on H x C. The cases n = 1,2 also converge
utilizing ‘Eisenstein summation’ (see page 10 of [33]). Moreover, for n > 3 the functions
E, (1, z) are weak Jacobi forms of weight n and index 0 on Hx C. (See [33] for more details.)

The function Ej has the transformation laws

z mic
Eq <77’, p— d) = (et +d)Ey(7,2) + 5 % and (4.2.3.4)
E\(1,z2 4+ AT+ pn) = Eq(7,2) — 2miA, (4.2.3.5)
while F5 satisfies
z B 9 mic(er + d)
E, <’y7’, p— d> = (et +d)*Ea(T, 2) + — and (4.2.3.6)
Es(7,2 + AT 4 pu) = Ea(T, 2), (4.2.3.7)
a b
for all € I'and [\, pu] € Z xZ [33]. In other words, Ei(T,z2) is a quasi-Jacobi
c d

form of index 0, weight 1, and depth (1,0), while E5(7, 2) is a quasi-Jacobi form of index 0,
weight 2, and depth (0,1). Es(7,2) — Ea(7) is a weak Jacobi form of index 0 and weight 2.
The algebra Q7" := C[Ey(7), En(7,2),n > 1] is the space of quasi-Jacobi forms
on H x C (see Proposition 2.9 in [33]). That is, any quasi-Jacobi form on H x C can be
generated by Fs(7) and E, (7, z), for n > 1.
The functions E,,(7,z) may be generalized as follows. For m > 1, define the

functions E,, (7, z) by

1

En(1,2) = Z —.
(@ Dyez? (214 +2p+ar+b)

(4.2.3.8)
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Noticing that E,,(7,2) = En (7,21 + -+ + 2,) and applying the transformation properties
known for E,, (7, z), it follows that E,,(7, z) is a weak matrix Jacobi form of index zero and
weight m on H x C™ for m > 3. F1(7,z) is again a matrix quasi-Jacobi form of index zero,
weight 1, and depth (1,0) on H x C", while Ey(7, z) is a matrix quasi-Jacobi form of index
zero, weight 2, and depth (0,1) on H x C™.

Let Q7" denote the space of quasi-Jacobi forms on H x C". It will not be discussed
here whether the functions E,, (7, z) generate Q7" however, by the discussion above, it is

clear that they are contained in QJ".

Lemma 4.2.3.1 The space of quasi-Jacobi froms Q7" is closed under the partial deriva-

twesd and 7-,1<j<mn.

Proof Suppose ¢(T, z) is a quasi-Jacobi form of weight &, index F', and depth (s1, ..., sp, t).
Let the components of F' be denoted by F' = (F},). Using the product rule we find for any

r, 1 <r <n, that

Flg] d
(e +d)” ko —2mis (dzr(ﬁ(*yﬂ 72))

cF[z]

cFlz] d —omi
Horr12)] - (4 ter+ ) ) om0

- dz,

d (4] g CZp in c J
e S”""”"”(‘“(T’Z)<c7+d> (+d> <+d>

11815500 S8
J<t

[(cr + d)*ke_%i

" cFz]
+ 2mi ZFPT +d+z T —|—d (et +d) e
=1

erHd p(yT,72),

—2m
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which then equals

d CzZ1 & CZn in c J
- Y (gSseawor2) (2) - (2) (55)

1S5 eensin <5n
j<t

+ ) (6Si, g (0)(7,2))

11581,..,In<Sn

J<t
ez i1 czy ir—1 czn in c Jj+1
ct+d cT+d cTt+d cT+d

+ Z Z(QﬁinrSil,...,in,j(gb)(T’ g))

11581,..,tn<Sn P

J<t
ez \" ez \7M ez \" ¢\
ct+d cT +d ct +d ct+d

+ Z Z(QﬁiFrqSil,...,in,j(¢)(7'7Z))

11581,..in<Sn  q

J<t
ez \" czg \ ez \" ¢ Y
et +d ct+d et +d cr+d)

This shows that (d/dz,¢)|k ry(T, z) is in Holgxcn [ L ] as desired. Similar

ct+d’ ' et+d? c7'+d

calculations show this is also true for (d/d7¢)|r ry(7,2). The same can be done for the

partial derivatives in (4.2.3.2)). [J

4.2.4 Twisted elliptic functions

For w € C, z € C", and 7 € H such that |q| < [e*™| < 1 and (s 4y, # 1, We

define the ‘twisted’” Weierstrass functions Py(w, z,7) by

ekl

Py(w,z,7) := 'Zl— C

LeZ

-, (4.2.4.1)
q

!

where ¢ = 2™, q,, = *™V, G = e?™% and the notation Y signifies that £ = 0 is omitted

if 4+ ¢, =1. When 2z = z1 + - - - + 2, the functions pk(w, z,7) = Pp(w, z,7) are the same
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¢ )
as the functions Py (w,7) in [B7], P(1,¢ Y w, 7) in [7], and (—274)*Py(qw, ¢, ¢) in [17].

1
In the case (1 ---(, = 1, the functions (4.2.4.1)) are simply those of (4.1.3.3).

Similar to the ‘untwisted’ Weierstrass functions, pk(fw, z,7) can be defined recur-

sively for k > 1 by

N (_1)k—1 dk-1
P =P . 4.2.4.2
k(w7§7 T) (k — 1)' dwk_l 1(w7§7 T) ( )
Writing (4.2.4.1)) as
5 —1 A Gt (—U"”fk_lq_zngr--Cn)
Py(w, z,7) n o+ ® , 4.2.4.3
! 'Z<1—cl 7 T= G Gt (4243)

we are able to discuss its convergence.

Lemma 4.2.4.1 The functions Py(w,z,7) converge for |q| < |qu| < 1 and Cortotzy, # 1.

Proof Note that for some ¢/, each term

et [P GG
1/2 ’ 1/2 ’
is larger than the corresponding terms
gl -Gt [P G
1—¢t Gl L= g’ |

respectively, for all £ > ¢'. This follows since ¢ — 0 as £ — oc.

Let us now consider the series,

[e.9]

> (A D GG

=1
and in particular the two series

o0

TL S and (S DRG G Y g (4.2.4.4)
/=1

(=1
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For each term in the first series of (4.2.4.4]) we find

lim (% 1) = Tim (09 gy = qu,
{—00 {—00

and therefore the corresponding series converges so long as |q,| < 1 by the root test.

Similarly, for the terms in the second series, we find

lim (6%, ") = lim (¢V*)* Mgl g = 3,4,
{—00 {—00

so that the series converges when ‘q;1q| = |qw| ' |g| < 1, or equivalently, |q| < |qu|.

We conclude that

0 <gk—1qfv<11 e N (—D)*e g b9 ¢y - - 'Cn)
o> L=¢rt - Gitet 1= G Gugt

converges on |q| < |gw| < 1. Since there are only a finite many additional terms in (4.2.4.3)),

Pi.(w, z,T) converges on the same domain. [J

Define the functions Gy (7, z) by

(271.@')216 e <€2k—1qé€1—1 . CEI €2k—1q£<—1 . Cn

Gon(T,2) + = 26(2k) + k-1 22 \ 1= g 1] I G ) , (4.2.4.5)
N o (27Ti)2k+1 0 €2kq£<-1—1 . Cgl £2kq€<l . Cn
G2k+1(7'>§) L= W 2 <1 — qzcl_l - Cn_l — = qZCl — <n> , (4246)
- NN e A KSR 4G G > omi
Gi(r,2) 1 = (27”);:; <1—q4C1_1---C;1 + 1= Cy + 1_41_1”_@71 e,
(4.2.4.7)
and set
- 1 -
Em(7,2) = Gy Gin (T, 2)- (4.2.4.8)

The above functions are called ‘twisted Eisenstein series’ in [7, [I7, 37], though here they

have additional complex variables. These additional complex variables do not add much
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difficulty, however, as in most calculations they collapse to the single complex variable case

via

En(1,2) = Ep (1,21 + -+ 2p).

The following lemma, follows as in Proposition 2 in [37] with the same proof (see also display

(C.14) in [I7]).

Lemma 4.2.4.2

We have the following functional equation for Ej, (1,2).

Lemma 4.2.4.3 For weights m > 1, the functions Ey, (7, 2) satisfy (4.2.3.1) for the matri-

ces S and T with index F = 0.

Proof We first take z = z. The result follows from a transformation discussed in [I7]. In

particular, it is established there that

so that

_ ij ;zl_kk!Ek(T, 2) (;)’H (4.2.4.9)



This proves the transformation for the matrix S. For the matrix T, we have T -7 +— 7+ 1,

and we find E,, (T + 1,2) = E,(7, z). Therefore (4.2.3.1)) holds for all 4 € T.

We now consider the general case of z. Using E,, (1,2) = Epp(1,21 4+ -+ + 2,) and

(4.2.4.9), we find

k=0 i1+--~+z7l m—k
.in>0

where Cj, . ;, is a scalar given by the expansion of ((21 + - -+ + 2,)/7)™ *. This proves the

claim for the matrix S. The case of the matrix T is again trivial. [J

4.3 Jacobi theta series with spherical harmonics

Let @ be a positive definite quadratic form, and B be the associated bilinear form
so that 2Q(z) = B(x,z). Let A be the matrix of @ of even rank f = 2r. Since A is
positive-definite, its determinant |A| > 0. Fix h € Z/. Tt is well known (page 81 of [14], for

example) that the Jacobi theta function

Zq CBnh

nezf

is a Jacobi form of weight r and index Q(h).
We now fix a vector v € Cf. In this section, transformation laws under the Jacobi

group for the functions

0r(Q,v,k,T,2) := Z B(v, m)kq@m)¢Bmh) (4.3.0.10)
meZf
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and more generally,

O (Q.v,k,7,2) = > Blu,m)kqRm i) (Blmha) (4.3.0.11)
meZf

are developed. As mentioned above, the case (k,7,z) = (0,7, z) of is found in
[14]. The case (k,7,2) = (k,7,0) is established in [I0] and is a generalization of the work
of Schoeneberg [43]. In fact, most of the results developed in this section mimic the work
of Schoeneberg [43], Dong and Mason [10], and Ogg [40]. We attempt to maintain similar
notation and structure to these works (in particular [10]), and will often make reference to

results contained within them.

To establish our desired transformation laws (see Theorems |4.3.0.5( and (4.3.4.2|

below), we will utilize the theory of Jacobi-like forms. These are holomorphic functions

¢(7,2,X) on H x C x C given by

(T, 2, X) Z o™ z)(2miX)",
n>0
a b
and which satisfy for some ¢, F' € C, an integer k, and all v = eTo(N);
c d

X - —27TiiF k cfX
) <’y7’, vz, o d)2> = x(d)e +d7 (e 4+ d)" exp <c7' T o(r,2,X), (4.3.0.12)

where ¥ is some character (see [45]). Here, the ¢(™) (7, z) denote the coefficients of the 27i X
terms, and are holomorphic functions on H x C. In the case £ = 0, equating the coefficients
of each (27iX)™ term shows that the functions ¢ (r,z) are holomorphic Jacobi forms of
weight k + 2n and index F. In the case ¢ = 1, ¢(7, 2, X) is a Jacobi-like form on I'g(N) of

weight k, index F', and character y. The X may be normalized so that ¢ equals either 0 or
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While the coeflicients of a Jacobi-like form may not be Jacobi forms themselves,
often the coefficients of the product of two Jacobi-like forms will be a Jacobi form. This
situation arises here, and will be discussed below.

For fixed @, v, and h as above, we define the function ©,(Q, v, 7,2, X) on HxCxC

by
o 2"0,(Q,v,2n,T, 2) Con
On(Q,v,7,2,X) == n;) ) (2miX)", (4.3.0.13)
Moreover, set
k 7k! 4.3.0.14
and
k
Un(Q,v,2k,T,2) = Z'y(t, 2k)Eo (1) 0,(Q, v, 2k — 2t, 7, 2). (4.3.0.15)
t=0

It is functions of the form (4.3.0.13)) and (4.3.0.15|) that will be used to prove results about

01,. For n > 0, define €(n) by

and

e(mod N) is a Dirichlet character (see page 216 in [43] for more details). The main theorem

we wish to establish in this section is the following:

Theorem 4.3.0.4 Let the notation be as above. Suppose the matriz that represents the

a b
quadratic form Q has rank f = 2r. Suppose B(v,h) =0 and let v = € I'o(N) and

c d
(A u] € Z2.
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1. If (v,v) =0, then
22 h
0(Q, v, 20,77, 72) = eld)e TP (7 + A 10,(Q,v0,2n,7,2),  (43.0.16)
and
Or(Q,v,2n, T,z + AT + p) = 62”iQ(h)(/\27+22/\)6h(Q, 0,20, T, 2). (4.3.0.17)
2. If (v,v) =1, then
N 022 h
U,(Q, v,v7,72) = e(d)e 2™ e5a®M (er + A2 (Q, v, 7, 2), (4.3.0.18)

and

Un(Q,v, 7,2+ AT+ p) = e%iQ(h)(/\QTHZA)\IJh(Q, U, T, 2). (4.3.0.19)

The crux of establishing Theorem [4.3.0.4]is in the proof of the following theorem.

a b
Theorem 4.3.0.5 Let the notation be as before. Suppose B(v,h) = 0. For vy = €

c d

To(N), we have
X
e _
h <Q7’U>’77_7727 (C7'+d)2>
i_cz? 2 X
= e(d)e%”mQ(h)(CT +d)" exp (CQ(U)> On(Q,v, 7,2, X). (4.3.0.20)
et +d

Later in this section we will be interested in the specific case 2Q(v) = (v,v).

After scaling, Theorem [4.3.0.5] essentially takes two forms of interest: the case when v is

a null vector ((v,v) = 0), and the case v is a unit vector ((v,v) = 1). In the case v is

a null vector, Theorem [4.3.0.5| implies transformation (4.3.0.16) by equating coefficients

as discussed above. This is an extension of results developed in the modular theta series
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case by Schoeneberg [42] and Hecke [20] to the case of Jacobi theta series. In fact, Hecke
[20] has proved that the functions (v,m>k are spherical harmonics of degree k and that
every spherical harmonic of degree k is a linear combination of other spherical harmonics of
degree k. In this context, the functions considered in are Jacobi theta series with
spherical harmonics. On the other hand, taking v to be a unit vector will lead to
and is a generalization of [10].

Subsection [.3.1] will establish Theorem [4.3.0.5] and Subsection [4.3.2] will show how

this result is used to prove (4.3.0.18)). In Subsection we prove (4.3.0.17)) and (4.3.0.19).

We finish this section by developing transformation laws for matrix Jacobi theta

series. With the notation already in use, define

2n0h(Q7U72n77—7 é) .
X) = 2 2mi X )" 4.3.0.21
On(Q,v, 7,2, X) go G 2miX) (4.3.0.21)
and
k
Uy(Q,v,2k,7,2) = Y (t,2k)Ea (1) 04(Q, v, 2k — 2t, 7, 2). (4.3.0.22)
t=0

In Subsection we will extend Theorem |4.3.0.5( to the functions ¢;, and ¥, on H x C".

4.3.1 Transformation laws of SLy(Z) on 6,

This subsection mimics proofs found in [43] and [I0]. Let @ be as above. Let

x = (x1,...,2y), and let 2! denote the transpose of z. Consider the series
0,(Q,x) == Z ¢~ 2Q(m+a) =2B(ma.h) (4.3.1.1)
meZf
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Let A be the matrix corresponding to @ such that 2Q(x) = 2'Az and B(x,h) =

2t Ay. Then

ot
iE) — § am62mm ac’

mezZf

with Fourier coefficients

am :/ / Z e~ n+m)tA(n+x) 72(n+z)tAh —2mim? Tax

neZf

_ /OO . / e—a:tAx—Qwimt:ce—ZJ:tAth' (4312)
—o0 —o0

Take x = A~y so that 2'Ax = y* A=Yy, 2 Ah = y'h, and dY = |A|dX. Then (4.3.1.2)
becomes
1 o0 o0 _(tA—l +27i tAfl)_ch
am=— [ o[ e WATymmIATY) =2"h gy, (4.3.1.3)
Al Jeoo Jooo

Using that

(y 4+ mim)' A~ (y + mim) = y' A"y + 2mim! A7y — w2mt A Im,

equation (4.3.1.3) becomes

— 1 e 2mtA=1Im 27rzmth/ / —(y+mim)t A~ (y+7rim)e—2(y+7rim)thdy
™Al
_ 1 e 2mtA~Im Qmmth e Y tA~ ye—2y hdY (4 3.1 4)

Completing the square in the argument of the integrand in (4.3.1.4)) gives
tg—1 ty tg—1 t
—y' A"y —2y'h = —(y+ Ah)"A™ " (y + Ah) + h* Ah,

so that (4.3.1.4]) becomes

1 —m2mtA~Im 2mimth htAh *
Am = e

o . / T AN AT (AR gy (4.3.1.5)

—0o0
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Take a vector w such that |w| = w} +--- + w]%, and consider a real matrix L such that

A=LL' Set Lw =y + Ah so that dY = |L| dW. Then

/ / —(y+A~Th)tA(y+A~1h) )Y — ]L|/ / _w%+"'+w?‘d21-~dwf

o0 2
= |L] H/ e Yidw;
j=1/ =00

— |AV2 Rl 12,
The Fourier coefficients in (4.3.1.5) are now
l/? 2mtA='m 2mimth htAh
A, = e T Mesm gl AR (4.3.1.6)
|A|1/2

Replace A with meA, where € > 0. Equation (4.3.1.6) now becomes

22

—e
(Vo) |42
Replacing A with meA also in (4.3.1.1) and using (4.3.1.2) and (4.3.1.3) we have

—TmtA-l im? £
6mA m€27rzm heweh Ah' (4317)

Z efﬂ'e(m+x)tA(m+a:) effre(m%r)tAh

meZf
B xf/2 Z L 2mimth mehtAh 2mimtx
R A -
meZf
emeht Ah —Tmt A~ Im42rimth4-2mimtx
e Z - ) (4.3.1.8)

(VT IAI"" s
As explained in [43] (page 205), this last equation is valid so long as /e > 0. Setting
€ = —iT gives

—miTht Ah
§ : 67ri7(m+m)tA(m+a:)eﬂ'iT(er:p)tAh _ € —Zimt A" m42mimt b 2mimta

Y
ot (V=in)f A" =,

)

(4.3.1.9)
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where the imaginary part of 7 > 0 and the root is chosen so that it has positive real part.
Recalling that 2Q(m) = m!Am and B(m, h) = m'!Ah, we can write (4.3.1.9) as

—2miT .
627riTQ(m+m) e27riTB(m+x,h) Qh —Zmt At 2mim! h4-2mimta
Z I a1l/2 Z :

mezf ( v f ’A‘ meZf
(4.3.1.10)

Consider the linear operator

!
)
E::Z@ax; ¢, eC

and its powers £, n € N. The operator £ has the properties (see [43]),

L(u+v) = L(u) + L(v), L(uv) = L(uw)v +uLl(v),

L(cu) =cL(u) forceC, and L(e")=e"L(u).

Set

0= (01, ... 0y).

Then

L2Q(m + z)) = L(m + x)' A(m + z) = 200 A(m + ),

and applying £ again shows
L£22Q(m +x)) = L2(m + 2) (m + 2)! A(m + ) = 200 Al = 2-2Q(0).
On the other hand, we find

L(B(m + x,h)) = L((m + x)'Ah) = (' Ah = B({, h),
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and £2((m + z)!Ah) = 0. Applying £ to the left hand side of (4.3.1.10)) gives

L ( Z eQwiTQ(m—l—a:)e?ﬂiTB(m-i—a:,h)) _ Z L (em'r[(m—i—a:)tA(m+x)+2(m+x)tAh})

meZf meZf

= 3" L(rmir[(m+ @) A(m + z) + 2(m + 2)t AR])emiT I+ Almta)2(mere) AR
meZf

= Y (mir)(20 A(m + z) + 20 Ah)2TTQUnF R +Bnt )]
meZf

If we apply £ again we find

£2 ( Z 627riT[Q(m+z)+B(m+x,h)])

meZf

::E:(ﬁ@hpﬁAmr+@+QﬁAMﬁ“Wm“*Mm”H“m””%
meZf

+WhW%WH%HQ%%WJMW”MW“HW”WMQ

= Z miT[200 AL 4 [miT (200 A(m + x) + 2£tAh)}2]eﬂ'i‘r[(m+x)tA(m+x)+2(m+x)tAh].
meZf

More generally, we have

k ( Z e27ri7'[Q(m-i-:c)-i-B(m—I—Jc,h)])

meZf
(/2]

= Z Z )(2miT)* T (2Q(0)) (L A(m + ) + £ AR)F—2 2mim(Qmtz)+B(mt.h)
J=0 mezf

For (4, k) defined in (4.3.0.14) and 0 < j < [k/2], k > 0 (see [10]). Here [k/2] denotes the
greatest integer less than or equal to k/2.

Applying £F to both sides of (4.3.1.10]) gives

[#/2)
>N v k) @rin) T (2Q(0) (£ A(m + x) + £F Ah)F 2 2T (@mrm) ¥ B(mta )
J=0 meZf

_ e—27riTQ( ) \erey) 27” Z 7:” mt A~ Im4-2mimt h+2mimtx
1/2 :

(V=) |A[YS 2=y
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As in [43] and [I0] we now replace 7 with —1/7 and x with p/N (N is the level of A).
On the right hand side we also replace m by Amj/N. Recalling that f = 2r and setting

D = |A|, we have

[k/2] k—j
S X W2 G QU)( A Al QN B
7=0 mezf

m=p(N)
_ Nk N~k
_ QM) (27”.1 \;;) N Z (¢ Arny )k (2FimQUm) /N> 2miB(m )N+ 2mim Ap/N? |
v m1€Zf
AT)’L1EO(N)

(4.3.1.11)

Next replace h with zh to find

[k/2] N k—j
> > N <_2m) (5, k) (2Q()) (¢ Am + 20 AhYF=2 = 5 (QUn)N* 2Bl ) N)
T

J=0 mezf
m=p(N)

k_r k
2"”2 22 Q(h) (27”) N~ Z (EtAml)ke2TriTQ(m1)/N2+27rizB(m1,h)/N+27rim’iAp/N2_

irD

(4.3.1.12)

For now on we assume (*Ah = 0 (this is the assumption B(¢,h) = 0). Then (4.3.1.12)

becomes

[k/2]

2m k=j . _ 2mi 2
>y N Y05, K 2QUOY (¢ Ayt e = (QU/NTHBOnI)

=0 meZzf
m=p(N)

) : —k
_ e@Q(h) (27”) "N Z (etAml)k627riTQ(m1)/N2+2ﬂ'izB(m1,h)/N+27Tim§Ap/N2.

(4.3.1.13)

As done in [43], taking p so that Ap = 0mod N, we have m}{ Ap/N? mod 1 depends only on
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pmod N and (4.3.1.13)) may be written as

[k/2] omi\ K _
>, D N <_ m) v(j, k) (2Q (€)Y (£ Amn) k=2 ¢= 7 (QUm) [N>+2B(mh) [N)

¢ T
Jj=0 mezf
m=p(N)

. 627r71'—z2 Q(h) (277Z)k7—r

_ Z 627rigAp/N2
i"vD

(4.3.1.14)

Since

N .
(-2 ey = (-207) o
we can rewrite (4.3.1.14)) as

[k/2] j
QY 1 o N B
3 <_ (0) ) Ty ST (6 A2 (Qm) /N =B lm) /)

- i
J=0 meZf
m=p(N)
— e@@(h) (_i)2k+r7_r+k Z e27rigAp/N2
\/5 gmod N
Ag=0mod N
1 ) )
. G Z (etAm)keQﬂ'z‘rQ(m)/N2+271'1ZB(m,h)/N. (43115)
meZf
m=g mod N

In the case z = 0, this becomes equation (3.8) in [10]. If we also were to assume Q(¢) = 0
(which corresponds to the case v is a null vector above) we would have equation (12) of

[43]. Following the notation in [I0] we set

G(A,p,ﬁ,k,r,z):ﬁ ST (et Am)kerirQm/NF2mizBm /N (4.3.1.16)

meZf
m=p(N)
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We also set

@(A7p7 £7 kvjv T, Z)

riz? _\r+2k r+k—2j )
:leQ(h)( i) \/% Z engtAp/NQO(A,g,Z,k:—2j,7’, 2). (4.3.1.17)
gmod N
Ag=0(N)

We have the following theorem.

Theorem 4.3.1.1 With the notation as before, we have

ey
(9(A,p,€,/€,—1/7’, Z/T) = Z <Z> 7(.77 k)G(Aapagakaja T, Z) (43118)
T
7=0

Proof This is an extension of Theorem 3.3 in [10] to include the z-variable. The proof
remains the same and we maintain the notation of [10]. Set ©; = ©(A,p, ¢,k —24,0,7, 2),

0; =0(A,p,t,k—25,—-1/1,2/7),[k/2] = K, (Q({)T)/mi = M. Then (4.3.1.18)) becomes
K .
0o =Y MI~(j, k)O;.
j=0

Equation (4.3.1.15) can now be written as
K

Op = > (—=M)'y(i, k)6,

=0

We also find by replacing k& by k& — 25 that

It follows that

7=0 7=0 =0
K s s
= > w55, 90, -1 ()
5=0 =0
- 907

69



since the terms in 7 (—1)*(}) cancel except when s = 0. Here we set s =i+ j and used
the identity (4, k)v(i, k — 2j) = (5)v(s, k). O
Continuing to mimic the structure and proofs of [10], we establish the analogue of

their Theorem 3.4 (loc. cit.) to include a z-variable.

a b
Theorem 4.3.1.2 Suppose A has rank f = 2r. If v = € I'o(N), and if d > 0,
c d
then
—27T'icz23(dh)( _i_d)f('rJrk)e A 0k at +b z
“r DS Y e+ d
2y o Qe Y
= ] N _ ] A — 27 . 4.3.1.1
riQIb/ND 3 (20 Y G R0k~ 2 2). (43119)

In particular, if also d > 0 and we take p =0, then

cz2Q(h)
—2mi 20 (et +d)~(rth)g (A,E,k,

cr+d er+d

at +b z >

[k/2] j
— € ﬂ ’ y _ - T 2
= (d); <7ri(07+d)> V(G k)O(A, Lk = 24,7, 2). (4.3.1.20)

Recalling that Ap = 0(mod N), then (4.3.1.16]) shows that
0(A,p, 0k, 7 +1,2) = exp(2miQ(p) /N?)O(A, p, £, k, T, 2). (4.3.1.21)
Moreover, if ¢ > 0 then following equation 18 in [43] (page 211) we have

0(A,p, bk, T, 2) = Z 0(cA, g, b k,cT,z). (4.3.1.22)
gmod cN
g=p(N)

The next couple of displays depend little on the z-variable, and are established
just as in [10] (displays (3.17) through (3.20)). We carry out the calculations again here,

carrying along the additional z-variable terms and making the necessary changes.
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Let vz denote . Using (4.3.1.21) and (4.3.1.22), along with Theorem

a b
we find that for all v = € I' such that ¢ > 0 we have

c d

O(A,p, b, k,y7,7v2) = 0(A,p, bk, ¢ (a— (et +d) 71, yz2)

= Z O(CA,g,&k,a—(CT—i-d)*l,’YZ)
gmod cN

g=p(N)

= Z exp(2miacQ(g)//AN?)0(cA, g, b, k, —(cT + d) "', ~z)

gmod cN
g=p(N)
[k/2] J
= 3 ewmiacle))/en?) (DTN neea,g. ke +.2
gmodcN j=0 m
g=p(N)

[k/2] j
= Z Z Z exp(2miaQ(g)/cN?) (QM)C(CHd)) v, k)

¥
gmodcN j=0 gmodcN

g=p(N) cAq=0(cN)
a2 _ g \r+2(k—2j) ,
. €2m”+dQ(h)(Z)fD(CT + d)r—i—k—?y exp(27rigtAq/cN2)c9(cA,q,ﬁ, k— 2]-’ er + d, Z)
V C
izt et + d)" R (—g)rt2k e ) .
= 62 cT+dQ(h)( )T\/% ) Z Z eXp(QTI'Z(aQ(g) —i—dQ(q) +gtAq)/N2)’y(],/<:)
C =0
/ J
- (%) 0(cA,q, 0,k —2j,c7, 2) (4.3.1.23)

’

where ) denotes that we have taken g mod ¢N, gmod cN, g = p(N), and Ag = 0(IN). Note
that ¢N arises as the level of cA.

Just as in Schoeneberg ([43], page 213), we use the functions defined by

bpg= Y exp(2mi(aQ(g) +dQ(q) + g'Ag)/N?). (4.3.1.24)
gmod cN

g=p(N)
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Making note that ¢, , depends only on ¢ only modulo N, (4.3.1.23) may be written as
[k/2]

s r4+k(__\r+2k
i) (e + &) (i) 3
cr\/ﬁ 7=0 gmod cN
Ag=0(N)
] cQ(l J )
' ¢p7q’}/(]’ k) ((CT?—%TL) H(CAv q, Ea k— 2]7 CT, Z)
srizi g (o7 + )7 (=2 N VIR
= ¥merr 7D Z Z Pp,u V(Js k) (or + d)mi

7=0 ¢ mod N

Z O(cA,q, b,k —2j,cT,2).
qmod cN
Ag=0(N),q=q1(N)

Applying (4.3.1.22)) again establishes the following lemma which is Lemma 3.5 of [10] with

a z-variable.

Lemma 4.3.1.3 We have

. CZQ
e_2mr+dQ(h)(c7' + d)f(’drk)é’(A,p, Ok, yT,v2)

(_Z-)H—Qk [k/2

] .
= > > %m(j,k)( Q0 >]0(A,q1,€,k—2j,7',z), (4.3.1.25)

VD = g1 mod N (e + d)mi
Aqle(N)
a b
for all v = eI with ¢ > 0.
c d

As in [I0] we now assume that d = 0(mod N) and use techniques of Schoeneberg

([43], page 214) to rewrite (4.3.1.25]) as

. 622
e_2me(h)(c7' + d)*(”k)G(A,p, Lk, yT,v2)

(=) dp0 [kf $ ¢ 2
=-—r exp(—2mip' Aq1b/N?)
VD =0 q1mod N
AqlEO(N)
. cQ(¢ J .
’7(‘7’/{:) ((C’T?—%ﬂ"&) H(A,Q1,€,k - 2]77-7 Z). (43126)
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We now replace 7 with —1/7 and z with z/7 in (4.3.1.26) so that

aT+beT—a and z = z
n .
ct+d dr —c cT +d dr — ¢

While this again mimics [10], deviations occur due to the z-variable. Using Theorem |4.3.1.1

we find (4.3.1.26]) becomes

e—QﬂZZQWQ(h) <dTC> 0 (A p,f k br —a Z>
- "dr —c’dr —c

iy o 2 [(k—24)/2)
=T Y Y e Aab/NT G k)

7=0 g1 mod N u=0

AqlEO(N)
Q)T \’ HT\" . )
: ((dTQ—( Z)ﬂ'l) (Q'Em) ) ’Y(U,k—Qj)@(A,Q1,€,k—2j,u7T, Z)
T+2k¢p [k/2] [(k—25)/2]

=75 Z Z Z Z exp(—2mipt Agib/N*)v(j + u, k)

7=0 ¢1 mod N u=0 gmod N
Aq1=0(N) Ag=0(N)

‘ j4+u c J cQO)T Jtu @27”'% LMTTHC*M*ZU
Jj dr —c e VD

. exp(27rigtAq1/N2)9(A, g, Uk —2j —2u,T,2).

Since
. c n 1 d
r(dr—¢) T dr—c’
we find
—2mi 422 Q(h) —(r+k) br—a =z
e dr—c (dr —¢) 0 A p bk ——) ——
dr —c dr —c
oo [k/2] [(k—25)/2] i
- Can Z Z Z Z exp(2mi(g — bp)' Aq /N*)v(j + u, k;)( >
j=0 gtmod N u=0 gmodN J
Aq1=0(N) Ag=0(N)
¢\ (N
' A —20 : 4.3.1.
<dT—C> (7”'7_> 9( 7g7£7k 2(]+U),T,Z) ( 3 27)
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Schoeneberg shows ([43], page 214) that

Z exp(2mi(g — bp)' Aqi/N?) = Dby,
q1 mod N
Aq1=0(N)

where &, is the Kronecker delta and g, bp are considered modulo N. Following [10], we

find (4.3.1.27) becomes

e~ 2 Q(h)(dT —¢)"(rthg (A p, Lk, ZT _CCL y & c>
—dr —

[k/2) [(k—27)/2]

Coems s uenn () (7) (22)

U=

’ G(Av bp) Z’ k — 2(] + u)’Ta Z)

[k/2) [£/2 j '
) %’ >N At k) ( ) <d7_c> <2§?> O(A,bp, 6,k — 2t,7, 2)

7=0 t=0
(/2] t ¢
_ (=1)"dpo dr Q(f)
= A -2 .
- jZO W6k () (557 ) 0,6k =2t72)
b —a a b
At this time, we make the change of variables — . The previous display
d —c c d

now reads

e o7 4 4~ Hg <A,p, Lr I >

cr+d er+d
[k/2]

_ (=1)"¢po0 Qe \!
= TDP ; v(t, k) (MCTH)> 0(A,bp, 0,k — 2t,T, 2). (4.3.1.28)

The proof of Theorem is complete following the use of the equality
¢p,0 . . 2
D exp(27iQ(p)ab/N*)e(d)

due to Schoeneberg ([43], page 215).

The proof of Theorem is obtained from using the fact that if p = 0 then
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0(A7p7 gv kv T, Z) is the function eh(Aa ﬁ, ka T, Z)a along with the fOHOWing calculation (See page

24 of [10]):
X _ 2n0}l(Q7U7 2”7’77_, 'YZ) 2mi X n
" <Q’ ST e+ d)?) B go 2n)! (e + d)?
= ¢(d)e 2mi 222 Q(h) (cr + d)f Zz": 2" ( Q)e >a‘
"0 = 0 2mi(er + d)

v(j,2n) (e + d)*"0(Q, v, 2n — 24,7, 2) <(2mX)>n

cT +d)?
= €(d) 27mcﬂ'+dQ h) C7—+d ZZ 2"’14 j
(2n — 2j)!
n>0 j= 0
. /92 ¢
0(Q,v,2n —2j,71,2)(2miX )" (gjf) o
2Q(v)eX
=¢e(d 27mc7'+dQ(h) d)" LWt ) o ).
e(d)e (et 4+ d)" exp p— (@Q,v,7,2,X)
This last calculation establishes (4.3.0.16f) for the case d > 0.
a b
Let y1 = € I' be such that d > 0, and let 79 = —v1. Note that v9z = —y12
c d
and o7 = 7. We find
Hh(Q,’U, 2717’}/27'7 722;) = Z B(v’ m)2ne27ri’}/2TQ(m)e27‘r’i')/QZB(m7h)
meZ
= Z B(’U, m)2n€27ri'yl7'Q(m)e27rinyzB(_m h) Z B 2n 27TW1TQ( )627ri'yng(m,h)
meEZ meZ
_ Z B v m)2n 2miy1TQ(m) 27rwng(mh (Q,’U M, T, 712)

mEZ

Replacing ¢ and d in the right hand side of (4.3.0.20) with —c and —d, respectively, gives

(1) DD 1y (er ) exp (202010 ) 0,(@u i )
2cQ(v)X

= e(d)e 27rlcT+dQ( )(CT +d)" exp < e

>@h(Q,’U,T,Z,X).
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Here we used that e(—d) = (—1)"¢(d) for d > 0. Therefore (4.3.0.20)) is unchanged due to

the negative. The proof of Theorem is now complete.

4.3.2 Transformation laws of SLy(Z) on V¥,

When v is a unit vector, Theorem tells us that ©5,(Q, v, 7, z, X) is a Jacobi-
like form. Though this does not imply that 8y is a Jacobi form, as alluded to above we can
multiply the Jacobi-like form ©p with another Jacobi-like form that will provide us with
Jacobi forms. This is how we establish for the functions ¥, in Theorem

Consider the holomorphic function

Es(1)"

By(r,X)=> (-1)" L (2mix)", (4.3.2.1)
n>0 '
where Fs(7) is as in (4.1.2.6). Due to the transformation of Eo given in (4.1.2.7) we find
a b
that for any v = el
c d

B (’w, (CT)L‘DQ — exp <—2m‘ <(cr +d)2Ey(1) — C(C;:; d)> (af d)2>
— exp <c:)j d) Ey(1, X).

It follows that E’Q(T, X) is a holomorphic Jacobi-like form of weight 0 and index 1. We find

using Theorem [4.3.0.5| that when (v, v) = 2Q(v) = 1,

~ —X X
E — 10 —
2 (77_7 (CT+d)2> h (Qa%’)’ﬁ Yz, (CT+d)2>
= exp —eX Ey(r —X)(c7’+d)re%i%@(h) exp On(Q,v,7,2,X)
or +d 2\T, or+d h\'«, U, 75 <,

- CZ2 ~
= (cr + d)"e*™ e AW Ey(r, - X)0(Q, v, 7, 2, X).
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That is, EQ(T, —X)0n(Q,v, 1,2, X) is a Jacobi-like form of weight r, index Q(h), and which

satisfies £ = 0. Following [10] we write
E\Q(Tv _X)@h(Q7 U, T, %, X) = Z fk(T, Z)<27TZX)k,
k>0

where

k
Filr Z (t,2k) Ea(1)0,(Q, v, 2k — 2,7, 2). (4.3.2.2)
t=0

By our discussions above, this implies (4.3.0.18)).

4.3.3 Transformation laws of Z x Z on 6, and V¥,

We now discuss transformation laws (4.3.0.17) and (4.3.0.19)). Note that

2Q(m + Ah) = B(m + Mh,m + Ah) = 2Q(m) + 2AB(m, h) + 2X2Q(h).
In this case, we find

Oh(Q 0.k, 72+ AT+ p) = Y B(v,m)kemm@Um 2mil=tAT i Blmh)
meZf
= 3 B(v, m)kemirCQUmF2AB(mA) 2rizB(m.h)

meZf
_ Z B(,U7m)kem"r(ZQ(m+)\h)72)\2Q(h))627rizB(m,h)
meZf
_ —27rz()\2Q(h )7) Z k 27rz7'Q(m+)\h) 27rizB(m,h)
meZf
_ 6727ri()\2Q(h)-rsz()\h,h)) Z B(v,m+ \h — )\h)ke%riTQ(er)\h)62m’zB(m+)\h,h)
m+AheZSf
— e*Qﬂi(}\QQ(h)szB()\h,h)) Z B(v,m - )\h)k€27ri‘rQ(m)e27m’zB(m,h)' (4331)
meZf

In the case B(v,h) = 0 (which is our assumption), (4.3.3.1]) becomes

On(Q, vk, T,z + AT+ p) = e_QKiQ(h)(’\2T_QZ>‘)9h(Q, e, kT, z). (4.3.3.2)
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This establishes (4.3.0.17). Equation (4.3.0.19) follows immediately from this result. We

have now completed the proof of Theorem

4.3.4 Transformation laws for Jacobi theta functions

For the remainder of this chapter we change notation and take 2Q(z) = (x,x).
This will be the notation used later. Let G be the gram matrix associated with the bilinear
form (-,-). We note that

HE(Q? vk, T, é) = Z <U7 m>k q<m,m>/2<-1(m,h1) e C;Lmvhﬂ

mezZf

= Z <U’m>kq(m,m>/262m'(m,h1zl+...hnzn>'

meZ¥f

We want to extend Theorem [4.3.0.4] to the matrix Jacobi theta series case.

Theorem 4.3.4.1 Let the notation be as above, and recall that f = 2r is the rank of the

matrix representing the quadratic form Q. Suppose (v,h;) = 0 for 1 < i < n and let

a b
v = € I'g(N) and (A, p) € Z" x Z".

c d

1. If (v,v) =0, then
O0n(Q,v,2n,77,7z2) = e(d)e " wraE (er 4 )" T0,(Q, v,2n,7,2),  (4.3.4.1)

and

On(Q,v,2n, 7,2 + AT+ p) = em(G[A]T”étGA)HQ(Q, v,2n,7T, 2). (4.3.4.2)
2. If (v,v) =1, then

U, (Q,v,y7,72) = e(d)eim‘ﬁG[é] (eT + d)2”+r\I/h(Q, v, T, 2), (4.3.4.3)
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and

U (Q, 0,7, 2 + A + p) = e CRITH2ZCN G, (Q v, 7, 2). (4.3.4.4)

Proof The most difficult part of this proof is again establishing (4.3.4.1). However, this
follows just as in the proof of Theorem (4.3.0.16|) except we take 2Q(x) = zAx = (x,x)

immediately. The proof is identical until the step between (4.3.1.11]) and (4.3.1.12)) where

we had replaced h with zh. We now replace h with z1h; + - - - 2,h,, so that (4.3.1.12)) reads
) Nk - NnT—k
G%G[é] (27T’L) N Z (EtAml)keQWiTm’iAml/N2+27ri<m1,z1h1+~~~+znhn)/N+27rim’iAp/N2
[k/2] ' omi\ K ' A
=D, > N (—) (G, k) (2QUO) Y (£ Am + 210 Ahy + -+ 2 Aby )~
T

J=0 mezf
n=p(N)

. e—@(mtAm/NQ—s—zl (m,h1)/N~+-+zn{m,hyp)/N) ] (4345)

Here we used that

eﬂ?i<Zlh1+“‘+Znhnyzlh1+“'+znhn> — G%G[é],
and G is the Gram matrix associated with hq,..., h,. The rest of the proof remains the

same making the appropriate (and clear) changes. It should be noted that when we replace

7 with —1/7 and z; with z;/7 for each 1 < j < n after (4.3.1.26)), we have
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We now develop the analogous result of Theorem We find

X o 2%04(Q, 0, 20,97, y2) [ 2miX O\
% <Q’ ST (WW) =2 (2n)! (er + d)2

n>0

_ e(d)e™ 75T (or 4 d) ZZ (2n)! (2m cr>fd))j

n>0 j= 0

. 2n _ . M !
v, 2n) (et + d)"0K(Q, v, 2n — 27, T, 2) <(CT+d)2

— e(d)e™ etz 1(CT + d)T

I xi
ZZ n(Q,v,2n — 24,7, 2)(2miX)" I <<c7' —|—>d> )]('

n>0 j= 0

_ Gl , (v,v) X
e(d)e orrd (et +d)" exp <c7‘ T On(Q,v,7,2,X),

as before. When (v,v) = 0, we have (4.3.4.1)).
As in Theorem [4.3.0.4) when (v,v) =1 we find

~ -X z X
5 X z
2 <77_’ (e + d)z) On (Q’U’W—’ et +d’ (er + d)2>

—eX \ ~ 4
- <CTC+ d) By(r,~X)(cr + d) e m7a%E exp (

cX
ct +d

> @@(Q)U7Ta §7X)
= (CT + d)TBWiﬁG[E]EQ (T7 _X)@ﬁ(Qa U, T, 2, X)

That is, EQ(T, —X)On(Q,v,T, 2z, X) is a Jacobi-like form of weight r, index G/2, and which

satisfies £ = 0. Just as before, we write

EQ(T, -X)O,(Q,v,7,2,X) = Z fr(T, 2)(2miX)E,
k>0

where

k
Fu(T Z t,2k) Ea(1)00(Q, v, 2k — 2t, 7, 2). (4.3.4.6)
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Again, this implies (4.3.4.3]).

We now consider the z-variable transformations. We find

On(Q,v, k7,2 + AT+ p) = Z (v, m)P emiT{mm) 2mi(mha (zr AT )bz AnT+pn)

meZf

_ Z <v,m>k eﬂiT((m,m)+2<m,)\1h1+~~~+)\nhn>)€27ri(zl(m,h1)+~~~+zn(m,hn))

meZf
_ Z <U m>k eWiT((m+>\1h1+~~'+>\nhn:m+>\1h1+~~'+>\nhn>h)—G[A])627Fi(z1<m,h1>+~~-+zn<m,hn>)

b

mezf

— efm'(G[A]‘r) Z (v,m)k eﬂiT((m+)\1h1+---+)\nhn,m+)\1h1+---+)\nhn>)627ri<m,z1h1+---znhn)
meZf
i _9,t
= ¢~ mUGRIT—22'GA) > (U, m 4+ Ahy + -+ Aphp — by + -+ - + Aphy))F
m+A1hi+ A by €ZF

. €7T7;7'<m+)\1h1+“'+)\nhn7m+>\1h1+"‘+)\nhn>627riB(m+>\lhl+"‘+)\nhnyzlh1+"‘znhn)

= ¢ THORIT2EO) SN g (A o Ah) g2 i),

meZf
(4.3.4.7)
In the case (v, hj) =0 for 1 < j <n, (4.3.4.7) becomes
00(Qu v,k 7,2+ Ar + 1) = e TENIT2GN g, (Q .k 7, 2). (43.4.8)

This establishes (4.3.4.2]). Equation (4.3.4.4)) follows immediately from this result. We have
now completed the proof of Theorem [£.3.4.7] O

Note that in the above proof we also proved the following analogue of Theorem

4.3.0.5| for 2Q(z) = (z,x) and complex variables z1, ..., z,.
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a b
Theorem 4.3.4.2 Suppose B(v,h) =0. For vy = € I'y(N), we have

c d

X
@ﬁ <Q7 V,VT, V%, (C7'—f-d)2>

. c X
= ¢(d)e™ = E (er + d) exp (M

X). (434
p—— >@h(Q,v,T,z, ). (434.9)
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Part 11

Trace Functions and Recursion

Formulas
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Chapter 5

Correlation Functions

A number of “trace” functions are investigated in the literature and discussed in
this thesis. This section provides an overview of such functions and provides recursion
formulas that are (a) used to reduce the study of n-point functions to the study of 1-point

functions and, (b) used in computations later in this thesis.

5.1 n-point functions

Let V be a vertex operator algebra of central charge ¢ and M a V-module. For
n > 0, the n-point correlation function, or simply n-point function, for states vi,...,v, € V

is defined as the formal expression

Fry((vi,wi), ..o, (vp, wp), 7) : = Try Y(Qf(o)vl,m) Y (gE Oy, g, )gH O/

= Trar Y (vr,q1) - Y (vn, ga)gy e - gyt g0 =72,

(5.1.0.1)
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where ¢; = e?™i for variables wy,...,w, € C. In the case n = 1 and for homogeneous

v eV, (5.1.0.1) becomes

Fur((v,w), 7) = Trp Y (20wt vy, eQWiw)qL(O)*C/M

= Try Z wto,, —n—qu(O)—c/2
nez

_ qgtv Z Ty, U(n)q;n—qu(O)—c/24
nez

_ qwtv TI'M’U(Wt’U o 1) 7wtqu( )—c/24

= Try O(U)qL(O)_C/24.

That is, the 1-point function for an element v € V is independent of w. 1-point functions

will be treated often as a special case and will be denoted
Za1(v57) = Trag ofv)gH0 /2,

When v = 1, o(1) is the identity operator on each graded space My, where \ is the

conformal weight of M. It follows that

ZM(I;T) _ TI"M 0( L(O) c/24 __ ZTrMA+n q )—c/24
n>0

¢y (dim My g)g"
n>0

This is the 0-point function which is typically called the graded trace or partition function
of M. The notations F; and Z; will be used to denote the respective trace functions for a

module M.
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5.1.1 Zhu’s Theorem

As mentioned in the introduction, a number of results detailing the modular-
invariance of n-point functions have been developed. The following theorem due to Zhu [46]
establishes transformation laws for functions of the form ([5.1.0.1) under the action of the

modular group.

Theorem 5.1.1.1 (Zhu) Let V be a rational, Co-cofinite vertex operator algebra, and

MY, ..., M" be its finitely many inequivalent irreducible admissible modules. Let vy, ..., vy
a b ,

be homogeneous elements in V. Then for any v = € I', there exists scalars Aiﬁ
c d

such that

5 z1 Zn at+b
o ey | vn, ,
J beryd) ct+d) er+d

= (e + d)zgl:l[m]”i Z A;WF]C((UL 21)y -5 (Uny 2n), T)-
k=1

Moreover, Fj((vi,21),-..,(Vn,2n),T) is a meromorphic function on the domain

{1 ) |2 £ 0,2 # 256" (b € 2), Jgl < 1}

Generalizations of this result include the modularity of trace functions associated
to orbifold models [7], n-point functions associated to R-graded super VOAs [37], and

intertwining operators [39].

5.1.2 The J-trace functions

This subsection introduces the functions which are the focus of this thesis. For

V1,...,0g € V,aV-module M, and hq, ..., h, € V] that satisfy Condition H, define
Tain(or, - vasmz) =T Vgt a) - V() @, qa) (O - (@02 (5.1.2.1)
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Here, ¢; = eQmwj,wj € Cand ¢ = eZmZJ',zj € C. Again, the 1-point function reduces so
that

Irvip(vsT, 2) = Tryy o(v)d”(o) oo (P (0) g L(0)=c/24 (5.1.2.2)
5.2 Recursion formulas
We first prove the following lemma.

Lemma 5.2.0.1 Letv € Vj, and vy,...,v,, € V. When d”(o) e Cn"(o)v = v, we have

i Jup(vi, ., 0[0]v, . o T, 2) = 0. (5.2.0.3)

r=1
Proof It is known (for example [37]) that

[0(0), Y (2" 0r, ¢, )] = Y (01 0[0)r, qu,)-

It follows that

Trar[o(0),Y (65001, uy) - Y (@5 D0, G )JGHO - im0 gHO—e/24

m
= ZJM@(’Ul, o U[0]o, v T 2).
r=1

Let h;(0)v = pjv, 1 < j < n, where p; € C. Since d”(o) e an(o) is an automorphism, we

have

vk — 1)@ cha@ = (MO ha(0) (C;hﬂO) . ghnm)v) (k—1)
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Therefore,

TI"M [O(U)7 Y(qﬂo)vh le) e Y(Qf;g,?)vm, qwm)]C{ll(O) e Cﬁn(o)qL(o)_C/WL

= Trar o(0)Y (g5 01, quy) - Y (05O 0m, qu, )G - (i (OgHO)—e/24

1

— Trar V(2O v, gy ) - - y(qig)vm, qwm)O(v)C{”(O) o (0 g L(0)=c/24

1

= Trar o(0)Y (65001, qun) -+ Y (650 0, o )G - (i@ g B0 /24

_ TrM Y(q’LLUEO)'U17 qwl) - Y(quug?)vma qwm {LI(O) e CT}_LL’IL(0)qL(O)7C/24O(,U)€727m'(U1Z1+"',Ufnzn)

= Trar o(0)Y (201, quy) - - Y (X000, quoy )OO - (B (0) g L0 —e/24

— e 2milmatnza) Teyr o(0)Y (g5 001, quy ) -+ Y (@50, Gy (O -+ (i@ gHO) /24

m

=(1- 6*27Ti(u1Z1+---unZn))JM’Q(U,1)1, e VR Ty 2)s (5.2.0.5)

where we’ve used the cyclic property of the trace function.

Combining ([5.2.0.4]) and (5.2.0.5)), it follows that

m
Z Jup(vi, .. 0[0vn, . o T 2) =0,
r=1

so long as e~ 2zt knzn) — 1 That is, so long as C{Ll(o) e SH(O)U = v. This proves the

lemma. O

5.2.1 2-point recursion formulas

The analysis necessary to develop a recursion formula expressing n-point functions
of the form as a sum of (n — 1)-point functions with coefficients that are quasi-
modular forms is already in the literature [46]. Few additional concerns must be addressed.
The proofs of two lemmas which allow for 2-point functions to be written as 1-point functions

will be presented first. These lemmas will be of use in later sections. The proofs of these
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lemmas follow along the lines of those in [35] [37]. Generalizing these constructions provides
the proofs of a more general n-point recursion formula which is essentially found in [37].

Let z - p denote the dot product of z and |2

Lemma 5.2.1.1 Let u,v € V and M be a V-module. Suppose h;(0)u = p;u, p; € C, for

each 1 <i<mn. Then

Tnip(u,v;7,2) = 5z,uZTrM o(w)o(v) {ll(o) . "Cﬁ"(o)qL(o)_C/M

n Z DB (20 — 21), 7 2 - ) Tar s (ult]v; 7, 2), (5.2.1.1)
>0

where 6.,,7 is 1 when z - 1€ Z, and 0 otherwise.

Proof It follows using ((3.1.0.5) that

¥ (@ Vo] = X () (ulr)as Vv amlas

r>0
= gjHvtuy qL(O)Z< > v, g2
r>0
Applying gives
s+1—wtu)

[u(s), Y(qél(o)v, @) = q§+1—wtu Z ( Y(qQL(O)u[t]U, ®©).

>0
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Therefore,

Tearu(s)Y (g5 v, q2) ¢ - (O gL O =e/24
= Try (Y(qé:(o)v, qQ)u(s) Cn 0/24)
+ Tearfu(s), Y (6500, o)1 - (@ gEO) /28
=g TG G Ty (Y(qu(O)v,qz)Ch - (O gHOel 2y ) )

W s+1—wtu)t —c
+ q§+1 tu Z ( . ) Tryy Y(qQL(O)u[t]v, qz)du(O) . an(o)qL(O) /24
t>0 '

_ qs+1—wt u€—2m'(g-ﬁ) Tryy <u(s)Y(q2L(0)v, qQ)CILl(O) L an(O)qL(O)—c/M)

1wt s+1—-—wtu e
4 gstim Z( )* Trar Y (gXOuft]v, ga)¢© .. chn(©gL©)—e/21,

t!
t>0

L(0)

Solving for Trps u(s)Y (g, h1(0) han (0)

v q2) o lp qL(O)_C/24

establishes
Try u(s)Y(qQL( )y e h1(0) - (n(0) gL(O)—e/24
s+1—wtu

45 (s+1-— Wt u) L(0 ha (0 . _
1 gstl-wtu, L Z Tr Y(qz( )U[t]U7Q2) 11( )"‘Cﬁ (O)QL(O) 6/24’
q Uz-p >0

(5.2.1.2)

so long as (z - p,s) # (A, wtu — 1), A € Z. Setting m = s +1 — wtu, (5.2.1.2) reads (for

(g'ﬁ,m)#(/\,O),)\EZ)

Trau(m — 14 wt u)Y(qQL(O)U g2) (IO (hn(0) g L(O)=c/24

1_ 12 TrMY Ouft]v, ga) IO ... (hn(0) gLO)=c/24 (5.2.1.3)
7" qz#t>o :
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Finally, (5.2.1.3)) gives

JM7E(U,’U;T,§)

Wt U5 L(0
_ qu tu—s—1 TI“M u(S)Y(QQ( )U q2) Ch" )—c/24
SEZL

= > @ T u(m+whu— DY (5" "0, qo)¢p O - (O ghO e/
meZ

= 0zpz Trar u(wtu — 1)Y(q2L( v, QZ)C{H(O) s G (0) g H0) /24

!

+ Z gy " Trpy u(m + wtu — 1)Y(q§(0)y q2) . ¢ (0) g L(0)—c/24
meZL
= (&E’Z TI‘M O(U)Y(qL(O)U q2)< Chn Y—c/24
) h1(0) . +hp(0),L(0)—c/24
+ Tr Y (q ¢ h
Z(h 1 _gm QZ}LZ [ rM ultlv, ¢2)¢; e q
mezZ t>0
= 0zpz Try O(U)o(v) Ch" L(0)—c/24
1 t m
+ ZTI"M Y(qg( ) ult]v, qg)g 1(0) Ch" Y—c/24 1 ' L_l <q2>
t>0 t! g 1— me§~H q

=022 Trn O(U)o(v) Cn" L(0)—c/24

ZJM tlv; T, 2)(— )t+1pt+1((22 —21),T, 2" ).

t>0

This completes the proof of the Lemma. [J

Using (5.2.1.1)) the following Lemma can be obtained.

Lemma 5.2.1.2 Let u,v € V and M be a V-module. Suppose h;(0)u = p;u, p; € C, for
each 1 <i<n. Then form>1,
I p(u[=mlv; 7, 2) = 850, 20m1 Tru O(u)O(U)C{“(O) ce (P Q) g B0 /24

+ Z:(—l)mJrl (k + 7: B 1>Ek+m(r,z ) Jarp(ulklo; T, 2). (5.2.1.4)
k>1
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Proof Although Y (u,z1)Y (v, 22) does not necessarily equal Y (Y (u, z1)v, z2), it is true

that (cf. (3.1.0.9)))

TrarY (u, 21 + 22)Y (v, 29) (11O L ¢hn(0) g L(0) —e/24

= Try Y(Yu ZI)U ZQ)C Chn L(O c/24‘

Along with (3.1.0.14)), this gives (see Lemma 1 in [36] for a complete proof)
Tain(u,v;7,2) = Tear YV (07 Vw1 — g2)ay v, o) (01O - (i@ gHO)—e/24
= Trar Yar (a3 Y (65 % 0y — D, g2) (01 - (n O gHO7e/20

= Jun(Yu, 21 — 22Jv, 7, 2).
Therefore, since (z1 — 22)™ = (—=1)™ (22 — 21)"™ for m > 0 it follows

JM@(U’ K g) = JM@(Y[U, 1 = Z2}”7 T, §)

- Z Imp(umlo, 7, 2) (21 — 22)7m—1

meZ

= Tun(ul-ml,7,2) (21 — 22)™"
meZ

= Z )" I (u[—mlo, 7, 2) (29 — 21)™ T + Z Jarn(u[—mlv, 7, 2) (21 — 22)™ L.
m>1 m<0
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Combining this with Lemma [5.2.1.1] and using Lemma [4.2.4.2] we find

Z(—l)m_IJM@(u[—m]v,T, 2)(z1 —2)™ Z Jarn(u[—mlv, 7, 2) (21 — 22)™ !

m>1 m<0

= Iy (U, v; 7, 2)
= 6&'&,2 TI'M O(U)O(’U)C Chn 6/24

+ ZJM tlo; 7, 2) (= 1) P (20 — 21), 70 2 - 1)

>0
= 0zp,z Tryp O(U)o(v) th Y—c/24

1)+ E1 B

+ZJM tlv; T, 2) M%—Z ( ; >Ek<7-,z.’u)(z2_zl)kt1
t>0 2 1 o

= 8.2 Trag o(u)o(v) (1O - (in(©) g EO)—e/24

_1)t+1 _
+ > Iu(ult]o; T, 2) (Zi_]il)mJFZ(kJrz 1>Ek+t(72 )(z2 —z1)*

>0 k>1

Equating coefficients of the (2o — z1) terms establishes (5.2.1.2)) for m > 1. No information

is obtained for m < 0. O

5.2.2 n-point recursion formulas

In this subsection, two lemmas are quoted which together provide a general recur-
sion formula for n-point functions. The proofs follow similarly to the lemmas above, and a

detailed proof is nearly identical to that found in Section 3.3 of [37].

Lemma 5.2.2.1 Let v € V and suppose h;(0)v = pv, p; € C, for each 1 < i < n. Then
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forany vy,...,um €V,

JM,@(U)UD oo 7vn;7—7§)

— 6&-&,2 TI'M O(U)YM(qf(O)'Ula ql) e Y(q'fln(O)’Um7 Qm)C{H(O) e Chn(O)qL(O)_c/24

+ Z lekﬂ(z — 26,7, 2 W) I p (v, v[E]vp, v T 2). (5.2.2.1)
s=1 k>0

0

Due to the first term on the right hand side of ([5.2.2.1]), however, the left hand side is not

written in terms of (n — 1)-point functions. The following lemma remedies this problem.

Lemma 5.2.2.2 Let the conditions be the same as in the previous lemma. Then forp > 1,

Iun(o[=plvi, ... vm; T, 2)
= 822051 Trar o(0)Y M (¢ Vor, 1) - YV (g5 0, )7 - - (im0 gEO) /24

ktp—1) .
+Z(1)k+l( : >Ek+p(7,2'M)JM,h(U[k]Uh---,Um;T,Z)
k>0

“ kE4p—1\ -
—i—ZZ(—l)pH( Z )Pk+p(zl — 2, T, 2 W) I p (v, - v[E]vs, - ums T 2).
5=2 k>0

(5.2.2.2)

O

A number of remarks should be made regarding these lemmas. To begin, note
that Lemma [5.2.1.1] is a special case of Lemma [5.2.2.T while Lemma follows from

Lemmal[5.2.2.2] The proofs of Lemmas [5.2.1.1] and [5.2.1.2] are included here to indicate how

the presence of the C{”(O) R Cn"(o) affects the outcome.

From discussion in Subsection [4.2.4] we have that convergence of the n-point func-
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tions exist on the domain [q| < [gs—2,| < 1 when (;., # 1. In the case (5, = 1, the

Pryi1(z1 — 2, 7,2 - p) are simply the elliptic functions P, y1(21 — 25, 7).

5.3 Heisenberg partition function

Recall the notation and discussion in Subsection In particular, H is a d-
dimensional space, My is the corresponding Heisenberg VOA, and My = S(H @t~ 'C[t~1]).
The central charge of (Mg, Y, 1,wyy,,) is 1. In the case H is 1-dimensional, S(H @t~ 'C[t1])
is isomorphic to S(I],>; C[t™"]) and is a polynomial algebra in the variables t™". The

graded dimension of the Fock space My can then be computed as

Zngy, (1,7) = g1/ H(q — dimension of C[t™"]) = ¢~ /%4 H(l P
n>1 n>1

_ q—1/24 H(l - qn)—l

n>1

=n(r)~".

Since the partition function is multiplicative over tensor products, in the case dim H = d,

we find

Zay (1,7) = (1)~ (5.3.0.3)

Consider Jys,, (a),n(1;7, 2), where Mpy(a) = Mg ®e® is as in (3.2.5.1). Recall that

L(0)e* = (o, a) e, hi(0)e® = (hy, ) e, while h;(0)My = 0 for all 1 < i < n. In this
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context, we have

Tntgy (@) n(1i 7 2) = Trarg@en (1O - (@ gLO-1/24

— (TrMH ?1(0) .. an(ﬂ)qL(O)—l/M) (Trea dm(O) o S"(O)QL(O)_U%‘)

« o) Yaa
= (Zar,y (1,7)) "0 - e g (@)

g gt
n(r)d

(5.3.0.4)
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Chapter 6

A Result of Miyamoto

A portion of the proof of Theorem [1.0.0.2| relies on extending a result of Miyamoto
[38] to include zero modes of elements in a VOA. The proof of this refinement differs only

slightly from the original. The purpose of this chapter is to establish the proof of Theorem

L.0.0.1

6.1 Miyamoto’s function ¢

Let V be a vertex operator algebra and M be a V-module. For u,v € Vi and

w € V define the function

Oy (U; u, w, 7_) = Try oM (U)627ri(wM(O)+<u,w>/2)qLM(O)—I—uM(O)—&—<u,u>/2—c/24, (6101)

where as usual, ¢ = €™ with 7 € H. The function ® is the same as the function Z
found in [38], except here, the roles of u and v have been reversed, the bilinear form has a
normalization which is negative of that in [38], and the zero mode of w is included. & is

the 1-point analogue of the function considered by Miyamoto.
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After establishing Theorem [1.0.0.1] it is possible to prove the 1-point analogue of
the Main Theorem in [38] with only a little more effort. As this result is not needed in this
thesis, it is not included. It should be mentioned, however, that the Main Theorem in [38]

is displayed twice, the first incorrectly.

We now prove Theorem [1.0.0.1

6.2 Proof of Theorem [1.0.0.1]

Recall the definition of the n-point functions, (5.1.0.1). In this section, consider

n-point functions that also include a formal power series endomorphism

Y € End(M7)((qz5 - - 4,))

which preserves the grading of M7. We will call such endomorphisms grade-preserving. For

homogeneous elements vy, ...,v, € V set

Si(W; 21,0y 2n, T) 1= Trpyy z/JYj(vl, qz ) Y7 (vp, qzn)qg‘ft}vl . -q[Wt]””qL(O)_C/Q4. (6.2.0.2)

Zn

The z; in the left hand side of ((6.2.0.2)) will sometimes be replaced with (v;, z;) to emphasize

the role of v;.
Throughout this proof take vi,...,v, € V; such that v;(0)v; = 0 and v;(1)v; =

(vr,v5)1 € C1 for all 1 <i,j < n. If an element v € Vi, is also included, (6.2.0.2)) reads

Si(; 21,50y 2n, (V,2),7T)

= Tryy; Y (V1,qz ) Yj(vn, qzn)Yj (v,2)q1 -+ - qnqLWt]”qL(O)*C/M. (6.2.0.3)
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Applying Theorem [5.1.1.1 to (6.2.0.3]) establishes the equality

o (1.~ Zn z
1 v T
I\ er+d  Ter+d\ Ter+4d a

= (eT + d)[Wt]”Jr" Z A}ﬁSi(l; Zlyeeny2n, (V,2),7T), (6.2.0.4)
=1

a b
for v = el

c d
Before tackling the proof of Theorem|[1.0.0.1} a number of lemmas must be collected

whose proofs rely on keeping track of permutations of sets. The notation here is kept the
same to that in [38]. Let X, denote the symmetric group of a set Q = {1,...,n}. For

o€, set

m(o)={i€Q|o(i) #i} and (6.2.0.5)

flo)={ieQ|o(i)=i}. (6.2.0.6)

Elements o1 and o9 in 3, are called disjoint if m(o1) N m(c2) = . The notation o =
o1+ -+ - + o, signifies that oy, ..., 0, are disjoint and 0 = g1 - - - 7.

Let (i,7) denote the element of ¥, that switches ¢ and j and fixes the remaining
elements of ). Such an element is called a transposition. An involution of ¥, is an element
in X, with order 2. Every transposition is an involution. Set I(n) := {o € &, | ¢* = 1} and
note that along with all involutions, I(n) also includes the identity. Since every element
o € ¥, can be written as a product of transpositions, o is in I(n) if and only if these
transpositions are mutually disjoint. That is, if o € ¥, is in I(n), then o = (i11,412) +-- -+
(111, 12) (ie., ij1 <ijo for all 1 < j <t and igp # icq for (a,b) # (c,d)).

Versions of the following lemma are found in both [38] and [46].
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Lemma 6.2.0.3 Let vq,...,v, be defined as above and let v € V' be such that v;(m)v = 0
form >0 and all 1 < i < n. Assume also that [1),v;(n)] = 0 and [¢p,v] = 0 for each i.

Then for a V-module M,

M(l/};Zl,ZQ,...,Zn,(U,Z),T)
P( Py(Z()-i:T)
= 3 T (o) =G0 sw (v TI o
oel(n)i<o(i) s€f(o)

Proof For k € Z, note that Q,Z)vl(k:)q_lk is again a grade-preserving endomorphism. Using

z
(13.1.0.5) gives

M(1/}U1 (k)qZ_lka Z2y vy Rmy (’U, 2)7 T)

= Trps o1 (k). Y (v2,¢z,) Y (Vny €2, )Y (0, 62) s, - - s, gVt gE(0) /24

= Trag ¢lor(k), Y (v2,42,) -+ Y (Un, 4,)Y (v, 42)]02, s - - - gz, gDV g MO~/
+ Tra Y (02, 02) Y (Vn, €2,)Y (0, )01 (R) 45, 0z, - - @, g2V HO /2

- Z Z <I;> qgj_i TrM 1/}Y(’U2, ng) : Y(Ul( )U]’ Qz]) e Y(Un, QZn)Y(Ua QZ)

. Qz_lquz ) qznqgwt]v L(0)—c/24
k —i
£ 30 () T ¥ )Y oV (1000
>0

'qz_lqug o gL 0)—e/24 (6.2.0.7)

+ Try ¢Y(U2, QZ2> T Y(Um an)y(va Qz)qZ_lkq,zz -qz,4; [Wt]v L(O) c/24 (k)qk

100



Because vi(i)v = 0 for all 4+ > 0, the term (6.2.0.7)) is zero. Recalling that v;(m)v; =

Om,1 (vi, vj) 1, we have

SM(@Z)m(k‘)q;k; 29,0y 2Zn, (V,2),T)

n
= kgt G Tra Y (v2, g2) - Y ((vj,01) 1,4,) -+ Y (0 62,)Y (v, 62)
=2
oy G, qgwt]qu(O)—c/Qél

+ Trar v ()Y (v2,¢20) -+ Y (0ny 45,)Y (0,02 - - - @z g0 g O /2 gE

n
=3 Trag (v, 01) kgl Y (v2,02) -+ Y (vj,42;) - Y (U 42,)Y (0, 62)
=2

*Qzy - aZ\J N qznqLWt]qu(O)_c/24

+ Trar o1 (k)Y (va,Gzy) -+ Y (Uny 40 )Y (0, 42) s - - - G g1V gH O /28R

n

= <U1a UJ> kqgj—zlsM(w; 22y 2\7'7 <y 2y (Ua 2)77—)
=2

+ SM(Q,[)Ul(k‘)qz_lk; R25 w5 2n; (Uv Z)v T)qka

where the notation @ signifies the deletion of the o term.

In the case k # 0, the previous calculation may be rewritten so that

I
—
$

<
[y
~

i Sv(; 22,00, 2j—1, Zjg1, - - s 2n, (U, 2),T). (6.2.0.8)
Since

SM(¢7 R15R25 -+ -5 ”ny (Uv 2)77-) = Z SM(¢U1(k)q;k7 22y -5 2n, (Ua Z)a 7-)’
kEZ
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the £ = 0 term can be separated from the sum. Applying (6.2.0.8) we find

(Y521, 22, - oy 20, (0, 2),T)

M (Yv1(0); 22),. .., 20, (v, 2),T) + Z Sy (Wv1(k)g s 20, ... 2, (v,2),7)

k0

M (Yv1(0); 22, ..., 20, (v, 2),7)

qZ —Zz
+ ZZ v, 1) ISM(w,zg, ey 21y 2l - ey 2y (0,2),T)

k#0 j=2

M (Yv1(0); 22, ... 2, (0, 2),7)

> (q )
+Z vj,01) ;m;l’ MW 22, 21, 2ty s 20, (U, 2),T).

Next, take 1v1(0) on the right hand side to be the grade-preserving endomorphisms
and repeat the steps for Sys(¥v1(0); 22, ..., 2n, (v,2),7). Repeating this process for the

terms with such endomorphisms establishes the desired result. [J

Set
2
D) = (orv0) (51 ) (e + 0Pl .7, (6209
2
E(r,j) = (vr,vj) (217”> (e + d)*Pa(qzy—z,, T) — (217”) cler + d), (6.2.0.10)
Dy = [] D(o(j),5), and (6.2.0.11)
i<o(d)
E,= [[ E(s(h). ) (6.2.0.12)
i<o(d)

In [38] there is a typo where the (1/27i)? factor in (6.2.0.10) is omitted. The following

lemma from [38] will be useful in simplifying notation.
Lemma 6.2.0.4 If |m(c)| = 2p, then

> (-1)'Es - EgEq = (—1)"E;. (6.2.0.13)
o1+t+ot=0
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Proof Recall that 0 = 01 + -+ + oy means m(o1) N---Nm(oy) =0 and 0 =01+ -0p. It
follows that

Eo, - Egy = H E(o¢(1),4) | - H E(01(i),1)

i<o¢(i) 1<o1(3)

:AH o ] E(ou(i),i) - E(o1(3),4)

i<oy (i) 1<o1(z)

Therefore, the proof reduces to counting how many o arise on the left hand side of (6.2.0.13]).
This is performed by induction on p. For p = 1, |m(0)| = 2 and o is a single transposition.
That is, 0 = o1 and the result follows trivially.

Assume the result holds for p — 1 and consider an arbitrary

o= (r1,re) - (rop—1,72p)

such that |m(o)| = 2p. The question becomes how many ways o can be decomposed as
o =01+ -+ 0y. Without loss of generality, take oy # 1 and set ¢/ = o5 + -+ - + 0 so that
|m(o1)] > 2 and o = 01 + ¢’. Suppose that |m(o1)| = 25 with 1 < j <p.

Of the p many pairs of elements {(r1,72),---,(rgp—1,72p)} in a set Q that are
permuted by o, o1 accounts for 7 many of them. Therefore, there are (1;) many different o
that satisfy |m(o1)| = 2j and 01 +0’ = 0. Since for each of these o1, |m(o1)| = 27, it follows

that |m(o”)| = |m(o2 + -+ - + 0¢)| = 2(p—j) so that the coefficient of the E,, - - - E,, E,, term
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for each j is (—1)l™(@2t~+o0)l/2 — (_1)P=J. Utilizing the induction hypothesis establishes

Z (_1)tE0t o Boy By = Zp: Z Z (_1)tE0t By B,

o1+tot=0 j=1 o1,Im(o1)|=2j o2++0ot=0’
o1+o’'=0
p
== Z <p> Z <_1)t71E0't e E02E01
Jj=1 J oot+or=0’
p
==Y (?) (—1)PIE
=1

as desired. [J
Most of the work required to establish Theorem [1.0.0.1] is contained in the proof
of the next lemma. The proof presented here follows that in [38], but with more detail and

the inclusion of the zero mode.

Lemma 6.2.0.5 Let vy,...,v, € Vi be as before. For v € Viyy, and a module MM 1<

h <r, we have

(EI (v c7'—|—d> ) (e + d)MlY ZA}W S 1 ( c7'+d>

k=1 ocl(n) j<o(4)

- (vy, Vo(j)) Sk H (e + d)o(vs); (v, 2), T

s€f(o)
a b
for all v = erl.
c d
Proof Consider the function
21 Zn z
Sy 1; - _— . 6.2.0.14
h<7c7_+da ’CT—Fd’(v’CT—Fd)”YT) ( )
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Let vz; denote CTerd. On one hand, Lemma [6.2.0.3| gives

Sh (1;7215 <y Y20, (U,’)/Z),’)/’T)

2
- Z H <v‘7(5)’v5> <217TZ> P <q730(s)_72577T> Sh H O(Uj); (0772)777 )

ocel(n) \s<o(s) JjEf(o)

while on the other, applying (6.2.0.4) and Lemma [6.2.0.3| to (6.2.0.14]) establishes

Sh (1;7217 - Y2Rn, (Ua’YZ)a’YT)

T
= (e + d)[ww]"'n Z Aﬁj,ySk(l; 21,5 2n, (0, 2),T)

k=1
T 1 2
(a4t S]] (<wa<s>> (3:) 7 (qzm)zm))
k=1 c€l(n) \s<o(s)

Sk | I o(vy); (v,2),7
jef(o)

Setting these two identities equal to one another, we find

2
Z H <7}o(s)7 Us> <217TZ> Py (Qq/za(s)—'yzs?’)/'r) Sh H O(Uj); (’U, 72)7 YT

c€l(n) \s<o(s) JEf(o)

r 2
= (er+ ™y Ay ST <<”s7 Vo (s)) (217”> O T))
)

k=1 ocel(n) \s<o(
S I o) (w,2),7 ] (6.2.0.15)
j€f(o)

Recall that I(n) contains the identity element 1. However, when o = 1 in (6.2.0.15)) there

is no product over s < o(s). The term associated to o = 1, which is

Sh H o(vj); (v,72),y7 | = Sh (H o(vs); (v,*yz),*w) ,
s=1

JjEf(0)
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may be pulled from (6.2.0.15)). Display (6.2.0.15) may now be written as

n 1\2
Sh (H o(vj);(v,'yz),’yT) + Z ( H <vg(s),vs> (2m> Py (quzg(s>yzsﬁ7'))

J=1 1#£0€l(n) \s<o(s)

+Sh ( 11 O(Uj);(vﬁZ),W)

jef(o)

k=1 o€l(n) \s<o(s)

- (CT—i-d)[Wt]v-i-nzT:Aﬁﬁ Z ( H <<U57%(s)> <2lm>2p2 (an(s)Zs7T)>)
.Sk( 11 o(vj);(v,z),7’> :

Jjef(o)

Solving for Sj (H?:l o(vj); (v,7z2), ’yT) gives
Sh (H o(v;); (UWZ)WT>
j=1
wWt|vn - 1 ?
e Y A Y ( IT (o) () 7 <)>)

k=1 oe€l(n) \s<o(s)

- Sk ( H o(vj);(v,z),T)

j€f(o)
1 2
- Z H <Ua(s)7vs> <27TZ> Py (q%za(s)—wzsaﬁy’r>
1#£c€l(n) \s<o(s)
'Sh ( H O(Uj);(rl}?f)/z)?fw-) .
j€f(o)

Note that |m(o)| + |f(o)| = n. Since m(c) = {i € Q | (i) # i}, the set {i < o(i)} contains
half the elements that the set m(o) contains. It follows that 2 |{s < o(s)}| + |f(o)| = n,
and thus

(e + d)" = (c7 + d)HB<oEH (er 4 @)@,
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Utilizing this identity we find

J=1

= (eT +d) [wt]v Z Aﬁﬁ Z

k=1 oel(n)

‘ ((CT+d)2{s<a<s>} I <<U87UJ(S)> (21m>2p2 (qza(s)zsm)))

s<o(s)
- Sk ((CT + d)lF )l H o(vj); (v, 2), 7')

Sh (H o(vj); (v,7%2), 77’)

Jj€f(o)

- ( IT (vorvs) (2;,)2132 (qug<s>ww)> Sh(

1#£c€l(n) \s<o(s)

O(Uj); (1)7 ’YZ), 77—)

Jjef(o)

= (cq-ﬁchl)["Vﬂ”zT:Ai7 Z ( H <<vs,vo(s)> (em 4 d)? (21m,>2P2 (qz(,(S)zs,T)))

k=1 o€l(n) <o(s)

- S ( H (et + d)o(vj); (U,Z)’T)

Jj€f(o)

2
_ Z ( H <’Uo'(s)avs> (217”> b (q'yza(s>'yzs,77—)) Sy, ( H o(vj); (v,’yz),fyT) .
1#c€l(n) \s<o(s) J

We now apply the transformation law for P,

Py (yz,y1) = (e + d)2P2(z, T) — 2mic(er 4 d),
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to the term (|6.2.0.16)) on the right hand side of the equality. This gives

Sh (H O(Uj); (’U, ’72)7 77—)

j=1

k=1 o€l(n) <o(s)

-Sk< H (CT+d)0(vj)§(v7z)7T>

j€f(o)

2
o Z ( H <UU(3)’US> (271.”) P2 (q730(5)725777—)> Sh ( H O(Uj); (Uv’YZ)v’W')
1#c€l(n) \s<o(s)

JEf(o)

r 2
= (er+ )™y AL Y ( 11 <<vs’%(s)> for +d° <2er) £ (ng<s)z577)>)
. S, ( H (eT 4+ d)o(vj); (’U,Z),T)
J€f(o)

k=1 0'6[(7’1) 8<0’(S)
(CT d)Q PZ (q —z 7) - b C(C7 + d)
271i o(s) s’ 27['i

- Sh, ( H o(vj); (v,fyz),fw') . (6.2.0.17)

- > (H (Vo(s)> Vs)

1#c€l(n) \s<o(s)

jef(o)
Using the notation in ((6.2.0.9)—(6.2.0.12)), equation (6.2.0.17) may be rewritten as

Sh, (H o(v;); (v,7%2), ’yT)

j=1

= (CT+d)[Wt}”iAﬁﬂ Z ( H D(a(s),s)) Sk ( H (e + d)o(vy); (U,Z),T)

k=1 o€l(n) \s<o(s) JjE€f(o)

_ Z ( H E(a(s),s)) Sh( H O(Uj);(U,’}’Z),’)/T)

1#o€l(n) \s<o(s) Jjef(o)

= (e + d)™ Z Afw Z D, Sy, ( H (et + d)o(vj); (v, 2), 7')

k=1 o€l(n) j€f(o)

- Z EUSh( H o(vj);(v,’yz),’yT). (6.2.0.18)
(n)

1#£0el jef(o)
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The idea is to repeat this process on the last term, S, <Hj€f(0,) o(vj); (v,7%2), 77).
In this case the product [];c s, is encountered instead of [[j=;- Therefore, the sum must
be over another element o’ € I(n) such that m(o) Nm(o’) = 0. This can be seen as follows.
Suppose o is an element of I(n) on the set {1,...,n} that fixes the first p many elements.
That is, o(i) =i for 1 < i < p, where p < n. Then f(o) equals {1,...,p}, and the next
o' € I(n) to arise in the computation should affect only this set, i.e., o/ needs to satisfy
o'(j)=jforall j € {p+1,...,n}. This is equivalent to saying that m(c) ={p+1,...,n}
and m(o’) C {1,...,p}. Therefore, the requirement m(c) Nm(c’) = () to assure this condi-

tion holds is established.

Repeating the steps above on Sy, (Hjef(a) o(vj); (v,7z2), 77') in (6.2.0.18)) and uti-

lizing the appropriate notation for the o, we have

S | ] o(i): (v,72), 97 (6.2.0.19)
j=1
= (cT + d)VY Z Afw Z D, Sy, H (et + d)o(vj); (v, 2), T (6.2.0.20)
k=1 o€l(n) j€f(o)
— (eT 4+ d) [wt]v Z AZW Z E, Z
k=1 1#o0€l(n) o’'el(n)

m(a’)Nm(o)=0

- Dy S}, T (e +do(vs); (v,2), 7 (6.2.0.21)
s€f(0")Nf(0)

+ Z E, Z E, S, H o(vj); (v,7v2),y7 | - (6.2.0.22)
I#o€l(n) 1#0’€l(n) J€f(@)Nf (")
m(a’)Nm(o)=0

We continue in this manner, reiterating this process on the last S;, term each time. Three
“types” of terms arise during this process. One is exactly the term ([6.2.0.20). Another of

these terms occurs as various sums similar to those of (6.2.0.21)) are collected. They are of
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the form

SRS N SRS SRR »
k=1 1#01€I(n) 1#0¢_1€1(n) oe€l(n)
m(o1)N--Nm(oe_1)=0 m(c1)N--Nm(oe)=0

(=1)"'E,, ---E,, Dy,Sk 11 (er +d)o(vs); (v, 2),7 | |

s€f(o1)n--Nf(oe)

(6.2.0.23)
for various £. The number of possible combinations of ¢; that satisfy the necessary conditions
is dependent on the length of the set {1,...,n}.

The final term that occurs contains only terms E,, and not D,,, though it takes
a different form depending on whether n is even or odd. If n is even, the intersection of all
f(o;) for 1 < i < ¢ will be empty after the last iteration since each o; permutes an even
number of elements of the set {1,...,n}. On the other hand, if n is odd, the last iteration
will leave one element in this intersection.

After iterating until the product in the last S}, term has either zero or one elements,
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(16.2.0.19) becomes

Sh HO(’U]‘);(U,’YZ),’YT
7=1

= (c7 + )Y Z AZW Z D, Sy, H (et + d)o(vj); (v, 2), T (6.2.0.24)
k=1 o€l(n) j€f (o)

Y I D S >
£ k=1 1#01€l(n)  1#0¢_1€1(n)
m(o1)N--Nm(oe_1)=0

Z (_1)6_1E01 o 'E(TeleGe
1#£0€l(n)
m(o1)N-Nm(og)=0

- Sk 11 (e + d)o(vs); (v, 2), T (6.2.0.25)
s€f(o1)n-Nf(or)

(n even) + Z Z

1#01€1(n) 1#oy-1€l(n)
m(o1)N-Nm(oe—1)=0

Yo (1)'Eoy - Boy  EoySk (1 (v,72),77) (6.2.0.26)
1#£0,€I(n)
m(o1)N-Nm(og)=0

(n odd) —i—zn: Z Z

Jj=11#£01€1(n) 1#0¢_1€I(n)
m(o1)N-Nm(oe_1)=0
Z (_1)6E01 T EUZ—IEUZ
1#0,€1(n)

m(o1)N-Nm(og)=0

S 11 (e +d)o(vs); (v,v2),v7 |, (6.2.0.27)
sef(or)N--Nf(oe)={j}

where the >, in (6.2.0.25)) denotes the summing over various lengths of .

We now begin to simplify this equation. First we focus on (6.2.0.26|) and (6.2.0.27]).

Note that in these cases (referred to as the “even” and “odd” cases), the summing is over all
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combinations of o1, ..., 0y such that m(oq1) N---Nm(oy) = 0, along with requirements that

for all ¢, o; # 1. This is equivalent to summing over all o # 1 such that c =01+ - 4+ 0y
for various ¢ and o; # 1 for each i, since m(o1) N --- N m(oy) = . Thus (6.2.0.26) and

(16.2.0.27)) are equal to

(n even) + Z Z

1#£c€l(n) O1,...,00€1(n)
o1+ +oe=0,f(0)=0

. (*1)ZEO'1 e EO'gflEO'gSk: (15 (/Uv /YZ)? ’Y’T)

(n odd) +Z Z Z

j=11#£c€l(n) O1,..,00€1(n)
)

o1++op=0,f(0)={j}

. (—1)£EU1 - Ey, | Eg,Sk ((c +d)o(v)); (v,v2),~T) .

Applying Lemma [6.2.0.13| to the even and odd cases, and applying Zhu’s Theorem to the

Sy, functions, we find these now equal

n even) + (cr +d)"? Ak —D)"2E,8, (1; (v, 2), T 6.2.0.28
hyy
k=1 o€l(n)
f(rf):@
(n odd) + (¢t +d [thvZAk Z > (—1)IRELS, (er + d)o(v)); (v, 2),7)
Jj=1 oc€l(n)
flo)={i}
(6.2.0.29)

Note that the 1 # ¢ notation in the last two sums may be dropped since o cannot be 1
with the condition f(o) = {j} or f(o) =

Next, consider the terms (6.2.0.24)) and (6.2.0.25)). In this case, since m(o1)N---N

m(og—1) = 0, the sum ranges over all o4 such that o5 = o1+ -+0y_1. The terms (6.2.0.24))
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and (6.2.0.25)) now take the form

(CT—{-d)[Wt}UZA Z D, S, H (et + d)o(vj); (v, 2), T

k=1 c€l(n) JjEf (o)
Y O DS >
k=1 op,1#ot€l(n) o1,...,00-1€1(n),| f(o1)]>2

Ot=01++0p_1

(-1)*'E,,---E,, Dy,Sk I[I (er+do(ws);(v,2), 7| . (6.2.0.30)
s€f(o)Nf(oe)

The condition |f(o¢)| > 2 is included in (6.2.0.30) to avoid dealing with the even and odd
cases in these terms. Moreover, the fact f(o1)N---N f(os—1) = f(oy) is also used. Applying

Lemma [6.2.0.13] these terms become

(er + d)vtv Z Alfw Z D, S, H (et + d)o(vj); (v, 2), T (6.2.0.31)

k=1 oel(n) ief(o)

+ (er + d)t Z ALY >

k=1 og,1F#0t€1(n) or,00€1(n)
m(ot)Nm(og)=0 | f(o1)|>2

(=1)medI2E, D, Sy [T (er+dows);(v,2),7]. (62032
s€f(o0)N (o)

Note that (6.2.0.31)) is the case of (6.2.0.32)) when oy # 1. Therefore, combining (6.2.0.31))

and (|6.2.0.32)) creates the single term

(cT + d)[Wt]v i A]/fw Z Z Im(at 2p Dy,

k=1 og,0t€I(n)  ot,00€l(n)
m(oy)m(oe)=0 | f(or)|>2

- S, II (er+do(ws);(v,2),7
s€f(oe)Nf(oe)

Since m(oy) N'm(oy) = 0, the notation o = oy + o4 can be used. Recalling that f(o) =
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f(or) N f(og), the previous display becomes

AL Y Y e,

k=1 o€l(n) o1,00€1(n),|f(00)[>2
ot+op=0

- Sk ( H (e + d)o(vs); (U,Z),T) . (6.2.0.33)

s€f(o)

Finally, replace ([6.2.0.26) and ([6.2.0.27) with (6.2.0.28) and (6.2.0.29)), respectively, and
(16.2.0.24)) and (|6.2.0.25)) with the single term (6.2.0.33]). This establishes

S | I e(vi); (v,72),97
j=1

=(cr+ )™y AF N >

k=1 o€l(n) or,00€l(n),|f(or)]|>2
ot+op=0

A(=)ImeNPE, Dy, S | [T (er + d)o(vs); (v, 2), 7 (6.2.0.34)
s€f(o)

(n even ) + (cr +d)v Z Aﬁﬂ Z (-1)"2E,S), (1; (v, 2),7)  (6.2.0.35)
k=1 oel(n),f(o)=0

(nodd ) + (e +d)™ Zr: Alfw z": Z

k=1 j=loel(n),f(o)={j}

A(=1)V2E S, ((er + d)o(vy); (v, 2), 7). (6.2.0.36)

It remains to discuss how this is equivalent to the final desired result.
Consider the case when n is even. The case when n is odd follows similarly. It
suffices to examine

Z Z (il)lm(gt)‘/2Eo-tDo-£Sk ( H (e + d)o(vs); (v,z),T)

o€l(n)oi,0e€l(n),|f(or)][>2 s€f(o)
ot+op=0

+ Z (_1)n/2EUSh (1;(1},2),7').
o€l(n),f(o)=0
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Fix a o € I(n) such that |m(c)| = m < mn. The larger m is, the more possibilities of o; and
oy arise. Regardless, careful observation shows that when the various identities of F,, and
D,, are expanded, all of the terms that include expressions of P cancel. What remains is

the term

S H (e + d)o(vs); (v, 2), T
s€f(o)

Plugging this into (6.2.0.34)-(6.2.0.36)) for each o € I(n) obtains the desired result. [J

11 [@a(i), o) <072;rid)2

i<o (1)

The final piece required for the proof of Theorem [1.0.0.1|is contained in the next

theorem. The proof is the same as in [3§].

Theorem 6.2.0.6 Let w € Vi satisfy w(n)w = 61, (w,w) 1 and v € Vi, be such that

w(m)v =0 for allm > 0. Then

o(w). z at +b
Sh<€ ’(U’CT+d>’CT+d

: (w,w) 5—c(cT cT o(w
— (07— 4 d)[wt]v ZAﬁ,ysk <e[ 3 s c(er+d)+(er+d)o( )],(U, Z),T> .
k=1

a b
for all v = erl.

c d
Proof In Lemma [6.2.0.5| take v1 = -+ = v, = w. Break n into the sum n = 2p + j.
On a set of 2p + j many elements, there are (2pfj)% many involutions o, such that
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|f(o)| = r. In this case, |m(o)| = 2p and

o(w). 0T +b z _ 1~
Sh<€ "er+d \er+d Sh 7;)71 11_110 T
o0 1 n
=>_ S | [T o(w)irm vz
n=0 =1

. > k > 1 C(CT+d) |m(o—)|/2 |f(0')‘
_ZA’WZH Z <w,w)T Sk ([(m’—{—d)o(w)] T, z)
k=1 n=0 o€el(n)
ST P cler +d)\* .
_ZA}W Z Gt Z | (w, w) oy S ([(c7’+d)o(w)] ,T,z)
k=1 p,jEN oel(2p+7)
T . | P
S ()8 ()
k=1 pgen PTIEN TSP
- Sk ([(er + d)o(w)); T, z). (6.2.0.37)
Since
1 (2p+j> 2p)! 1 @+ 11 1 (pt)t1
@p+ DI\ J ) p2r T (2pg)l o)t pl2e T pljl2e  (prg)l pljt 2
“wel3 )
(p+'\ J )2
becomes

O(w)‘aT—Fb z
Sh(e "er+d \eT+d

- A 3 () (0 S50 ) e e+ dotwpin
—Z MZ pﬂ,( .j> (<w’2w>c(”+.d)>psk([(CT+d)( Wi, 2).

21

(6.2.0.38)
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On the other hand,

>t (o [ 50 ke ) o+ ] .2

™

T

- Azﬁ Sk ( Z
1 m=0

_ ;Alﬁ miio " é ()i ((“”;’” D)™ (er 4 w57, )

27

- Z AL i i % (7;) <<w’2w> cler + d))mj S (((CT + d)o(w)) ;7 z) . (6.2.0.39)
k=1

21
m=0 j=0

1
m!

(e

+ (eT + d)o(w))m i, z)

Replacing m with p + j and noting

iioniv (T) =2 <p+1j>!<p+'j>’

m=0 j p,jEN J

(16.2.0.38]) and ([6.2.0.39) can be combined, which completes the proof of the theorem. [J

Finally, Theorem [6.2.0.5is used to find

(I)M(’U; 0, w, ’77_) = Tryy, o(v)e27riw(0)627ri(L(0)—c/24)7T

=Sy (e%iw(o); (v, 2), ’)/7')

(w,w)

— (CT + d)[wt]v ZA{X/[,VSR (62m’( 5 c(c7'+d)+(c7'+d)w(0); (T},Z),T)
k=1

(w,w)

_ (CT + d)[wt]v ZA?\/[,V Ter 0(v)627ri( 5 C(CT+d)+(CT+d)w(O)qL(0)76/24
k=1

_ (CT + d)[wt]v ZA]]{:\/[,V Ty O(U)627ri(dw(0)+(cw,dw>/2)qL(O)+cw(O)+(cw7cw)/2—0/24
k=1

= (e + d) Z Aﬁ/[ﬂ@k(v; cw, dw, T).
k=1

This completes the proof of Theorem [I.0.0.1]
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Chapter 7

Transformation Laws

7.1 Theorem

Throughout this section, take V' to be a strongly regular vertex operator algebra
and let M, ..., M" be its inequivalent irreducible admissible modules. Fix hq,...,h, € V}
that satisfy Condition H for each module M7 and recall the notation h = (h1,...,hy). Let
G be the Gram matrix G = ((h;, h;)) associated with the bilinear form (-,-) and elements

hi,... hn.

7.1.1 Proof of Theorem [1.0.0.2]

We first prove the transformation law ((1.0.0.7)) in Theorem (1.0.0.2). Recall the

functions @ (6.1.0.1) and Theorem |1.0.0.1} Note that

Jin(w;T,2) = ®(v;2- h,0,7),
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where 2z - h is the dot-product, z - h = z1h; 4+ - - - + 2p,hy. By Theorem [1.0.0.1

Z z-h
Jin <v YT, —|—d> D, (v —I—d’ ,77’)

= (CT—f—d)kZAz’jCI)g(v;cg-ﬁ, dz - h,T). (7.1.1.1)
(=1

Manipulating the terms on the right hand side, we find

@Z(U’ cz - h7 dg : h7 T)

= Trpe o(v) exp

o (dz dzz Zs Ch:f; Zt)]

s=1t=1
exp |2mir [ L(0) + ¢ dz Z 2o lhs )z oy
. ’7'[' ’7— J—
P cT + d pft (et +d)?
= Trpe o(v) exp (27ri§ - R/ (O)) exp | 2mi Z W g0/
. cGlz] (0 j -
= exp ( oy d) Trye o(v )Cll( ). 11 (0) g L0) —e/24, (7.1.1.2)

Combining (7.1.1.1]) and ([7.1.1.2)) establishes transformation ((1.0.0.7]).

While it does not appear that Condition H or the assumption h;(m)v = 0 for all
1 <i<nand m >0 are necessary for the proof of (1.0.0.7)), they are used in the proof of
Theorem |1.0.0.1) and are indeed necessary.

Next we prove transformation law (|1.0.0.8]). Recall Theorem [3.2.4.1| and its nota-

tion. In particular, we have the isomorphism (3.2.4.6)) of modules,

(M7, YK

1 )= (Y M),
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Utilizing the operator Ap,(z) on w for any h;, 1 <1i <n, gives
. hi(k) _
Ap (2)w = [ 2D exp{ — - —z)7F w
(2) ( Py )

=w+hiz7 4 (b, hy) 272 (7.1.1.3)

-/

Therefore, the modes of the conformal vector WA, on the module (M’ ,Yi/h_ (z)) are given

by

> wa,, (n)z " = Yihi (5@ 2) =Y (D (2)w, 2)
neL

-3 (ot et o),

nel

Taking Res; 2 of both sides, we find wa, (1) = w(1) + 7i(0) + (hi, hs) /2, or

La, (0) = L(0) + h;(0) + <hi’2hi>. (7.1.1.4)
In the same way, we find
A, (2)hj = hj + (hi, hy) 27"
for any 1 < j7 < n, and in particular,
(hj)an, (0) = h;(0) + (hi, hy) - (7.1.1.5)
By linearity, (7.1.1.4)) and ([7.1.1.5)) are used to find
La_,,(0)=L(0)—=A-h+ ;Zn: . zs (hs, hy) z¢, and (7.1.1.6)
s=1 t=1
()3 (0) = 1y (0) = 2 A ) 117
s=1
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Finally, with these same calculations applied to v € V[k] such that h;(m)v=0for 1 <i<n

and m > 0, we find that the zero mode of v on (M7, YJ ane )) isoa_,,(v) =v(k—=1) = o(v).

Using (7.1.1.6)), (7.1.1.7), and the isomorphism (M7 Y] = (Mj,YMj), it

A_xn(z ))

follows that

Jin(0iT, 2 + AT + )

= Tr,5 o(v) exp [27m' Z (zs + AsT + f1s) hS(O)] exp(2miT(L(0) — ¢/24))
s=1

= Trps5 o(v) exp [27Ti Z (zs + AsT) hS(O)] exp(2miT(L(0) — ¢/24))

s=1
= Tr, ;v o(v) exp [2m’ Z (zs + AsT) (hS(O) - Z At (e, h5>>]
s=1 t=1

exp [2m'7 (L(O) “A-h(0) + % f: f: Ao (os o) e — c/24>]
s=1t=1
= Tr, ;7 o(v) exp ( miz - h(0 )) exp (QWiTA . @) exp <2m' Z Z zs (hs, ) At)

s=1t=1
exp< QWZTZZ)\ (hs, he) A )exp( 2miTA - h(0 ))
s=1t=1
- exp <mTZZ)\ (hs, he) A ) L(0)=c/24
s=1 t=1

= exp ( i (G T+ QZtG)\)) Jj/@('l); T, Z),

where the second equality uses the fact exp <2mﬂ . @) = 1 since pu - @ on M7 is an
integer. This establishes .

It remains to prove the convergence for J;,(v;7,2) for any v € V and establish
(1.0.0.6). The technique used to prove convergence is based on work in [§] and [18]. Note

that because

Jinoim2) =Y Ty o) (O
d>0
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the trace is being taken over finite-dimensional vector spaces. The Jordan decomposition can
be considered so that o(v) = 0(v)ss + 0(v)n, where o(v)ss and o(v),, are the semisimple and
nilpotent parts, respectively. Moreover, since the set of operators {L(0),h;(0) | 1 <1i <n}
are commuting semisimple operators on each M,, we may choose a simultaneously diag-
onalizable basis for each M,. In this case, the operator o(v), {”(0) . 'C:LL"(O)QL(O)_C/M is

again nilpotent and so it has trace zero. The trace of o(v) is then reduced to the trace of

its semisimple part, so that

Tin(0i72) = @Y Ty 0(0)e O @M, (7.1.1.8)
d>0

where A; is the conformal weight of M 7,

Consider the case n = 1. That is, take h to be a single element h € V; that satisfies
Condition H. Since o(v)ss, h(0), and L(0) are mutually commuting semisimple operators on
each finite dimensional M /{J_ 4> Coset representatives 1, ..., Ty of V/C2(V') may be chosen
so that h(0)z; = ayz; and o(v)ssz; = Bix; for oy, f; € C, 1 < i < m. A result of Gaberdiel
and Neitzke [I8] states that for a Ch-cofinite vertex operator algebra V' and irreducible

module M7, the set
<xi1(51) . xm(sk)Mij |ip>--->ip>1and s1,...,s, € Z> (7.1.1.9)

generates M.

Consider w € Mij and suppose h(0)w = aw and o(v)ssw = fw for o, 5 € C. Set

W= (xi(s1) - x4 (sp)w | ig > -+ > i > 1 and s1,...,5; € Z) .
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Since Mij is finite dimensional, along with the previous discussion reducing the trace to

the semisimple operator o(v)ss, it suffices to prove convergence for the function
Tryy 0(v) 55O MO —e/24, (7.1.1.10)
Focusing on the case m = 1 for a moment, so that W is
W = (z1(s1) - z1(sp)w | s1,...,8: € Z),
we have the inequality (see the proof of Proposition 10 in [I8] for the case o(v)ss¢®) = 1)
Tryy 0(v)ss¢"Og" 072 < me2pc [T (1= prga?) ™"
p=>1

Incorporating x1,...,z,, when m > 1 and keeping track of the additional eigenvalues, we

generalize the above result (see Proposition 1.8 in [8] for the case o(v)ss = 1) so that

Tryy o(v)s¢"Oqh O~/ < Po=e/2Agce TT T (1 = Br¢™q”) ™!
k=1p>1

= e [T T @ = 18ucar ™ (7.1.1.11)

k=1p>1

Therefore, to prove the convergence of Jj(v;7,2) on H x C, we need only prove that
[T (1 - 18rC¢P|) ™" converges on the same domain for each 1 < k < m.

The convergence of this product is equivalent to the logarithm of the product,

which equals

=) “log(1 +[Be¢*qP)). (7.1.1.12)
p=1

Set 7 = x 41y, zap = a+ib, and By = r + is, with z,y,a,b,7,s € R and y > 0. Then

7B = 107 1€ ] = 2 e 2 (/17 32),
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Since |gP{¥ Br| — 0 as p — oo, it follows that

1 1 D oy
lim og(1 + |qPC%* By|)

=1.
p—oo |qPC% By |

By the limit comparison test, (7.1.1.12)) converges if, and only if, 3772, |gP(“* Bx| converges.

However, this is true since

> 167 ¢ Bl = 18kC* 1> Ll
p=1 p=1

converges as |q| < 1. The convergence of the function J;(v; 7, z) has now been proved.

To prove the convergence for the function Jjp(v;7,2), we fix all but one of the
complex variables z1,...,z, and apply the previous argument. Since the convergence can
be established in this matter for each individual complex variable, Hartogs’ Theorem in
complex analysis (see for example, Theorem 2.2.8 in [21]) gives that J;(v; T, 2) converges
on H x C™.

Finally since

JJ,E('U, T, é) - Ter 0(’0) {11(0) . Cﬁn(o)qL(O)*C/24

. h1(0 hn d
— q)\] /24dz>%TrM§j+s O(’U)Cll( ) . Cn (0)q ’

and each h;(0) has integral eigenvalues on M7, an expansion of the form (|1.0.0.6)) is obtained.

This completes the proof of Theorem [1.0.0.2] [J

7.2 Theorems [1.0.0.3 and [1.0.0.4]

This section addresses the transformation laws of the functions J;;(v; 7, z) when

hi(m)v # 0 for some 1 < i <n orm > 0.
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7.2.1 A decomposition of a strongly regular VOA

Let V be a strongly regular vertex operator algebra and M be an irreducible
admissible V-module. A result obtained by Dong and Mason [I1], [34] states that the Lie
algebra V7 is reductive and that its action on M is completely reducible. The action of u € V;
on M is given by u(0).

We fix a Cartan subalgebra H in V; of rank d. Consider the Heisenberg subVOA
My = ((H),Y,1,wpy) generated by H. If uy,...,uq is a basis for H, then My has central

charge d = dim H, Fock space
<ui1(m1) ) ulk(mk’)l | ij € {17 7d}7mj = Z>7
and conformal vector
1
WMy =g Zluz(—l)u,

(Recall Subsection [3.2.5|) Let € be a subset of M defined by

Oy ={we M| un)w=0, forue H and n > 1},
and for 8 € H set

M(B) :={we M |u0)w = (B,u) w, where u € H}.

Consider the set

P:={6e€H]|M(p)#0},

which is a subgroup of H. Then M has a decomposition

M= My @Qy =@ Mu @ Qu(B) (7.2.1.1)
BeP
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where Qp/(8) 1= Qar N M () (see [34]).
We define the commutant of My in M by
CM(MH) = kerM LAH/I(—l).

Then Cy (Mp) = Qy(0) := 2(0). It is known that £(0) is a simple vertex operator algebra
and Qp/(B) are irreducible £2(0)-modules. It is also known that My is a simple vertex

operator algebra with irreducible modules My (3), where we’ve made the identification
Mp(B) = My ® €,
with e? € (). Therefore, the tensor product My (8)®Q(B) is an irreducible My ®(0)-
module. Note also that M (8) = My (8) ® Qur(5). Set
Ly ={u € H | u(0) has eigenvalues in Z} ,
and recall the isomorphism which holds for all u € Lg. Set

A= {ueLo | (MY ) (Mj,Yj)}. (7.2.1.2)

(2)
This implies

Qu(B) =2 (B8 + u), (7.2.1.3)
where u € A and f € P. In the case § = 0, this gives Qpr(u) = Qur(0) for all u € A.
Therefore, Qps(u) # 0 and A C P. In [34], it is shown that A is a positive-definite integral

lattice of rank d and |P: A| is finite. We set 6 := |P: A

The decomposition (|7.2.1.1)) may now be written

5
M = PP Mu(B+7) @ ()

i=1 BeA

1)
=D P Mu(B)© () (7.2.1.4)

=1 ﬂGA—F’yi
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where {v; | 1 <i < §} are coset representatives of P/A.

7.2.2 Proof of Theorem [1.0.0.3

Let {u; |1 <i<d} be a basis for H. By the above decomposition of V, any
element in V' may be written as sums of elements of the form v = wj[my] - - - ug[mi] @ e* @w,
w € Q(a), for various o € A+, 1 < j < d, my,...,my € Z. Note that v(n)My(f) ®
Qu(B) € Muy(a+ ) @ Qu(a+ B). Therefore, the only v such that J;p(v;7,2) # 0, are
those that are a sum containing parts which lie in My(0) ® Q(0). It therefore suffices to

consider elements of the form
v =ui[—m] - up[-mi] ® e @ w = ui[—mq] - - - up[—mi] ® w,

where w € Q(0), mq,...,my; € N.

Since w € Q(0), it satisfies h;(0)w = (h;,w) w =0 for all 1 <i < n, and h;(m)w =
0 for all m > 0. Therefore, hi(m)w = 0 for all m > 0 and J;(w;T,2) satisfies the
assumptions of Theorem [1.0.0.2]

The following lemma and proof mimic those found in [I3].

Lemma 7.2.2.1 Let a € My. Consider an element a’[—1Jw € V, £ >0, w € Q(0), and let
a € A+ for some 1 < j < 6. Then there are scalars cpp—9; with 0 < i < £/2 and cpp =1
such that

Tati(e)@0u (@) n(al—1] w; 7, 2)

= Z coo—2i {a, @) % ((a,a) Ba(7))" Iy (@)@ (0),h (W5 T, 2)-
0<i<t/2
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Proof The proof is by induction on ¢. The case ¢ = 0 is clear. Suppose the result holds

for all k, 0 < k < {£. The recursion formula in Lemma [5.2.1.2] gives

Tntgg (@) (o) n (a1 w; 7, 2)
_ h e
= Ty ()@ () 0(&)0(&[—1]£ Lw) i 1(0) an(O)qL(O) /24
+ (0 —1){a,a) EQ(T)JMH(Q)@)QM(Q)’E(Q[_1]672?0; 7 2)

= <a’7 a> JMH (a)@QN[(a),E(a[_l]e_lw; T? g)

+ (f — 1) (a, a> EQ(7‘)JMH(a)(g)QM(a),ﬁ(a[—I]Z_Qw; T, g), (7.2.2.1)

where the Ey(7) occur because h;(0)a = 0 for all i, so that Ey(7,0) = Ex(7). Applying the

induction hypothesis on

Intn@eon @ala[=17 wim,2)  and Ty ey @)a(a[=172w; 7, 2),

we find

Tnt ()@ (@)n(al—1] w; 7, 2)

= (a, ) ( > -2 (a,0) T ¥ ((a,a) Ez(T))i) Mg (@)@ (0) 1 (W3 T, 2)

0<i<(0—1)/2

+(€1)<a,a>E2(T)( > 042752gi<a,oz>£22i((a,a>Eg(T))i>

0<i<(0—2)/2

* Iy ()29 (a),h (W5 T 2)

= ( Z cro—2i {a,a) "% ((a, a) Ez(T))i) Iy (@)@ ()b (W5 T, 2),

0<i<t/2
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as desired. The last equality follows because

(a,a) Z co—1,0-1-2; @, )7 ((a, a) Ba (7))’

0<i<(£—1)/2

+ (£ —1){a,a) E2(7) ( Z Co—2,0-2-2; {a, Oé>£7272i ((a,a) E2(7'))2)

0<i<(¢—2)/2

= Z (co—1,0-1-2i + (€ — 1)co_20-2) (a, 04>£_2i ({a,a) E2(7'))ia
0<i<r/2

so that cgg_o; == cr—10—1-2i + (£ = 1)cg—20—2;. O

Note that

It (@)@ (@), (W3 T3 2) = asy(a)@a(a)n (1 © w5 T, 2)

= It () (1575 2) - T (a),n (W3 T, 2).

Equation (5.3.0.4) gives
fa’hﬁ ‘e éayhn>q<o¢7a>
JMH(Q)(@QM(Q),@(W;T&) = () JQM(Q)@(U);T, z). (7.2.2.2)
Setting

fa,oal(T) = Z Ce0—2i <(l, OC)é_% (<a7 a> E2(7—))i7

0<i<l/2

and combining ([7.2.2.1)) and ([7.2.2.2)) establishes

JMH(a)®QM(a),@(a[—1]ew; T,2)

<<a7h1> .. <a9h’ﬂ>q<a,0¢>/2

1 “5n

= fa,ae(T) ()7 Jons ()n (W3 T, 2). (7.2.2.3)
We take uq, ..., uq to be an orthogonal basis for H and let /1, ... £ ; be non-negative integers.

Then for v = uy[—1]% - - - ug[—1]%w, Lemma [7.2.2.1] implies

C]<-Ol’hd> [ <a’h”>q<a70‘>/2
JMH(OC)(X)QM(OL),Q(’U; T, g) = fu1,a,€1 (T) e fud,a,fd (T) n(T)d JQM(Q),Q(wa T, &)
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Recalling the module decomposition (7.2.1.4)) for M7, it follows that

Jjn(v; T, 2)

Il
E

Z JMH ()@ (a),h (1) TZ)
1 aeA+

.
Sl

o,h1) (o,
C 1), Cn )/2
d
1 acA+y; 77(7_)

Each oo € A 4 v may be written as a = u + 7; for some u € A. The isomorphism ([7.2.1.3))

ful,oz Zl 'fud,a,fd('r) JQM(O[LE('LU,T,g) (7224)

.
Il

then shows
Qnr(a) = Qar(u+7v5) = Qu ().

Therefore, ([7.2.2.4]) becomes

52}

ahy) | Hevhn) (aa)/2
C< Cn q
§ : Qn(v5):h (w;,2) E : fulaafl 'fudvavzd(T) ' U(T)d .

j=1 aEA+;

Recalling that

fa,a,f(T) = Z Co0—2i <a7 a>€72i (<CL, OL> Ey (T))i’

0<i<t/2
we pull out the cy—2;({(a,a) F2(7))" terms from (7.2.2.5), which are not dependent on a.

Equation (7.2.2.5)) is now of the form

/2

‘]Q i ,h(w; 7, g) i i
2 M(%)(;)d Y ctn-ir o Cegtg-2ig(un,un) Ba(7)) - ((ug ug) Ba(r))™
j 77 il,...,id:(]
Z <U17 a>€172i1 o <Ud; a>€d72id <1<oz,h1> . g(la,hn)q(a,a)/Q‘ (7.2.2.6)
a€A+;
However, the functions
Z <U1, a>€1—2i1 . <ud’ a>€d—2id Cl(a,h1> L Cfla,hn>q<o¢,a)/2 (7227)

a€A+r;
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are linear combinations of functions of the form

Z <b, a>£1+---+£d*2(i1+---+id) Cfa,hﬂ . nga’hn>q<a’a>/2a (7228)
€Aty

for various b € H. These are the functions 6,(Q,b, T, z) considered in Section This

proves Theorem [1.0.0.3] [

7.2.3 Proof of Theorem [1.0.0.4]

Suppose hi,...,h, is an orthogonal basis for H. Then we may duplicate the

previous proof with the set {u;} replaced with {h;}. Display (7.2.2.7)) now reads
ST (@) T (B a2 M) L et gleed /2, (7.2.3.1)
aEA+y;
We have

Z <h1, a>€1—2i1 . <hn> a>fn—2in Cfcx,/m) . Q(La,hn)q(a,@ﬂ

01—21 b, —2in
(L ANt 1 d T S ) gl g2
2mi dzy 2mi dzy, 1 " '
a€A+y;

We know the function

S gl o) glased2,
acA+y;

is a Jacobi form by considering the n = 0 case in Part 1 of Theorem 4.3.4.1] (or also
by a direct proof). Since the space of quasi-Jacobi forms QY is invariant under partial
derivatives (cf. Lemma [4.2.3.1| above) and the quasi-modular form FEs(7), it follows that

> fr(1)8n(Q,b,7,2) is a sum of quasi-Jacobi form, and the theorem is proved. [J
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7.3 Consequences

In this section we examine some consequences from the results developed in the

previous two sections. We find the following corollaries to Theorem [1.0.0.2

Corollary 7.3.0.1 Let V be a strongly reqular VOA and let M',..., M" its inequivalent
irreducible modules. Suppose hi,...,h, are chosen in Vi that satisfy Condition H and are
such that G is a real, symmetric, positive definite, half-integral n x n matriz. Then for
v € Vjy) such that hi(m)v =0 for 1 <i <mn and m > 0, we have that the column vector of
functions

J(r,2) = (Jip(v;7,2), ..., Jpp(v; T, 2))

is a vector-valued weak Jacobi form of weight k and index G /2.

Remark: For any strongly regular vertex operator algebra V such that Vi # 0 we may
choose hi,...,h, € Vi that satisfy Condition H. In particular, any subset of a Cartan
subalgebra of V; will do once appropriately normalized. Moreover, it is always possible to
find hq,..., h, that simultaneously satisfy Condition H and are such that G satisfies the
assumptions in Corollary (see [27,, 134]).

In the special case that » = 1 in the corollary above, V' is a holomorphic vertex

operator algebra and we have the following result.

Corollary 7.3.0.2 Let V' be a holomorphic strongly reqular vertex operator algebra with

hi,...,hyn as in the previous corollary. For v € Vi such that hi(m)v =0 for1 <i<mn

and m > 0, we have the following functional equations for all v = eI and
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A p] € Zm x 7

1.
ar+b  z . cGlz]
— — ; .3.0.2
Jh( et +d cr—i—d) xp <mc7'+d) X(1)Jn(vi7:2) (7.3.0.2)
(where x: T' — C* is a character), and
2.

Jp (037, 24 ATp) = exp (mi(GAT + 20'G2)) Ju(v; T, 2).

Remark: The previous corollary says that Jj(v; 7, 2) is a weak Jacobi form on I' of weight

¢/24 oliminates the character

k, index G/2, and character x. Multiplying Jj,(v;7,2) by n(T)
x and results in a holomorphic weak Jacobi form of weight k£ + ¢/2 and index G/2. The

function 7(7)%?4.J,(v; 7, 2) has the Fourier-Jacobi expansion

IO EED DD DR CURSNATIS

n>0ty,...tn€Z

The case of Corollary [7.3.0.1] in which v = 1 and n = 1 is considered in [27]. In
this case, hi(m)1 =0 for all 1 <+i < n and m > 0, while G = (h, h). Using properties of
Jacobi forms, the following result is found in [27] that illustrates that (true) Jacobi forms

(not necessarily weak) can occur. (See Supplement to Theorem 2 in [27].)

Theorem 7.3.0.3 Consider the case n = 1 in Corollary [7.5.0.4 If (h,h) < 8, then

n(1)/* 0y, (1,7, 2) is a Jacobi form of weight 0 and index (h, h) /2 on the full Jacobi group.

Proof Recall the notation in Chapter [d] In particular, Mj, is the space of modular forms

of weight k and jk{m is the space of weak Jacobi forms of weight k& and index m (with one
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complex variable). We define the functions

- _ w1 1,
$_21= A =(C—-2+¢ ")+

and

&0,1:%:@4‘104‘(_1)4"“7

where ¢10,1,¢12,1, and A are defined in [I4] (the details not being necessary here). The
functions qg,g,l and gzNSO,l are weak Jacobi forms of index 1 and weights —2 and 0, respectively
[14]. Let jklm denote the space of (true) Jacobi forms of weight k& and index m (and only
one complex variable) Note that :fk{m C jkl’m.

We now quote two results from [14]. First, for even k there is a linear isomorphism

([14], page 108)

P: Mp® Mo ® - ® Mygom = T (7.3.0.3)

(f()ufla" 7f’m) = Zfid;i*ll ~’g}1_1
=0

Second, for k > 3 we have (see Theorem 9.2, its corollary, and Section 10 in [14]),

dim 7}, = dim 7, — > [;J (7.3.0.4)
v=0

Here [z] denotes the smallest integer greater than or equal to x.

We claim that ¢ = Zn,T‘EZ c(n,r)¢"C" is a Jacobi form if, and only if, ¢(0,7) =0
for » # 0. Suppose ¢ is a Jacobi form. Then c¢(n,r) = 0 unless n > 0 and 72 < 4mn. If
n =0, then 72 < 0, so that r = 0. In other words, ¢(0,7) = 0 for 7 # 0. It remains to show
that ¢(0,7) = 0 for r # 0 implies ¢ is a Jacobi form.

Set E = {gf) = nrezc(n,r)q"¢" | ¢(0,7) =0 for r # O}. First let us suppose that
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FE has codimension m in jkl’m. If 1 <m <4, then

m o2
>[5l
so that shows Jklm has codimension m. By our argument in the previous para-
graph, we have jklm CFEC jk{m. It follows that £ = j&w which completes the proof of
the claim. We must now prove that E has codimension m.

Recall the Eisenstein series . For convenience, we now normalize these

Eisenstein series so that the constant term is 1 (as in [14]). Let E; be the Eisenstein series

Ei=1+4--- in My, and let P(E;), 1 <1i <m be the weak Jacobi form defined by
P(E;) = Eid 5,005 = (¢ =2+ ¢ (¢ +10+¢H™ +0(g),
where O(q) is terms involving powers of ¢. Let = ¢ + ¢~!. Then
P(E;) = (z —2)"(z + 10)™"" 4+ O(q).

We claim that the polynomials (z — 2)*(x + 10)™"% 0 < i < m, form a basis for the
polynomials of degree at most m in Q[z]. We will prove this by induction on m. The case
m = 0 is clear, and we assume the claim holds for all 7, 0 < ¢ < m — 1. Considering the
case 0 <17 < m, we see

(x —2)"(z +10)"" = 2™ + Q(x),

where Q(x) is a polynomial in Q[z] of degree at most m — 1. By our induction hypothesis,
Q(7) is a linear combination of polynomials of the form (x —2)7(z +10)™% 0 < j < m— 1.
Therefore,

2™ = (z —2)"(z +10)"" - Q(x)
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is a linear combination of elements of the form (x — 2)%(z + 10)™~% 0 < i < m, and the
claim is proved.

It follows that there is some linear combination of the functions P(E;) that equals
each element x* + O(q) for all 0 < i < m. Moreover, these functions span all weak Jacobi
forms that do not satisfy ¢(0,7) = 0 for r # 0. Since there are m+ 1 many of these elements,
we must have that F has codimension m, as desired.

We have now proved that for k > 4 and 1 <m < 4, ¢ =3 7c(n,r)q"(" is
a Jacobi form if, and only if, ¢(0,7) = 0 for r # 0. We know that 7(7)*/?*J(r, z) has
weight ¢/2 and index (h, h) /2. Since V' is holomorphic, ¢/2 is an integer divisible by 4 [47].
Therefore, the weight is indeed greater than or equal to 4. Since the index of 5(7)*/?4J(r, z)
is (h,h) /2 and (h,h) is assumed to be less than or equal to 8, n(7)*/?4J(r,z) is in fact a

Jacobi form, as desired. [J

7.4 Examples

7.4.1 Holomorphic vertex operator algebras

Throughout this subsection let V' be a holomorphic strongly regular vertex oper-
ator algebra and let h € V; satisfy condition H.

It is clear that 1 satisfies the condition h(m)1 = 0 for all m > 0. Therefore (so
long as Vi # 0) h may be chosen so that J(1;7, z) is a weak Jacobi form of weight 0 and
index (h, h) /2 (this is the result of Corollary [7.3.0.2)). We now consider nontrivial elements
whose trace functions give rise to weak Jacobi forms and weak quasi-Jacobi forms.

First, let v € Vjy; be such that h(m)v = 0 for all m > 0. Consider the element
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<L[—2] - ﬁh[—lP) v € Vijpa. We find for m > 0 that

B[] <L[—2} - 2<;’h>h[—1]2) v

— L[-2)hfmo — [L[~2], hfm]jo — !

27y MUkl = 61 R 1y

= mhim — 2|v — 0y, 1h[—1]v.

It follows that h[m] <L[—2] - ﬁh[—l]z) v =0 for m > 0. By (3.1.1.2) we have

h(m) (L[—Q] - 2<}1h>h[—1]2> v =0

for all m > 0. Theorem now says that

J, <<L[—2] - 2<hl’h>h[—1}2> Vi, z>

is a weak Jacobi form of weight k + 2 and index (h, h) /2. Take v = 1. Then h(m)1 = 0

for m > 0, and it follows that J ((L[—Z] — 2<}ih>h[—1]2> 1:7, z) is a weak Jacobi form of

weight 2 and index (h, h) /2. Reiterating this process, we find that

¢
J ((L[—Q] -3 <}1 h>h[—1]2> 1;7, z)

is a weak Jacobi form of weight 2¢ and index (v,v) /2.

Note that if v € V} satisfies h(m)v =0 for m > 0 and L[n]v = 0 for n > 1, then

J <<L[—2] _ 2<;’h>h[—1]2> v, z:>
_ (217”077 _ 2(}:@ (2;5;2)2 + %2_ 1E2(7)> J(i7,2)

- ﬁk‘](v7 T, Z)

(see [I7T] for another use of this operator). In particular this holds for v = 1. Here, L is

the differential operator defined in (4.2.2.1)) and is known by Lemma [4.2.2.1| to map weak
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Jacobi forms of weight k£ and index m to weak Jacobi forms of weight k + 2 and index m
(see also [41]).

Consider the element L[—2]1 € V5. We have h[1]L[-2]1 = h # 0 so that we can
not apply Theorem Recall the modular derivative 9y . It is known (i.e.,
[7, [46]) that

J(L[-2]1,7,2) = Ok J(157,2) = <21ch' + kEQ(T)> J(1,7,2).

We know that J(1,7,z) is a weak Jacobi form of weight 0 and index (h,h) /2. Recall the

space of quasi-Jacobi forms discussed in Subsection Since
Q7" = C[Ey(r), En(,2),n > 0],

we have Ey(7)J(1;7,2) € Q7' . Since 4 and L preserve Q7" (cf. Lemma|4.2.3.1)), we have

J(L[-2]1,7,2) € Q7"

7.4.2 Lattice vertex operator algebras

Let L be a positive-definite lattice and set h = L ®z C. Let C[L] denote the group
algebra with basis {e® | & € L}. It is known that V;, = My ® C[L] is a vertex operator
algebra, with vertex operators Y'(v,z) for v € My defined as in Subsection The
vertex operators for the e* are more complicated and will not be discussed here. See [15]
for more details.

For each a € b, a(n) acts on My as in Subsection when n # 0. When n = 0,
a(0) acts on C[L] by a(0) = (a, o) e“.

Let L° be the dual lattice of L defined by L° = {a« €b| (o, L) CZ} and let
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L® = Ujero/ (L + A) be its coset decomposition. It is known [15] that each space Vi1, =
My ® C[L + ;] is an irreducible Vz-module, and that (see [4]) {V1y, | i € L°/L} is the
set of all inequivalent irreducible modules of V. V is a strongly regular vertex operator
algebra.

Each module V7, has the decomposition

Viia, = EB My ® e”.
C!GL"’)\Z'

This decomposition is equivalent to (7.2.1.4]), except in this case we have that Q5 («) is

trivial. The functions
Joy, . (@n(viT,2)

in Theorem are therefore trivial as well. It follows that for v € V7, decomposed as in

Theorem [1.0.0.4] we have

1
Ji,h(v; T, é) = W Z f?"(T)ei,h(Qa G, krv T, g) (7421)
h - h
Therefore,
()4 n(v; 7, 2)

is a sum of quasi-Jacobi forms on I'g(/V). Since every element in V7, is sums of elements of
the form v decomposed as in Theorem [1.0.0.4, we have that n(7)%J; 5 (u; 7, z) is a sum of

quasi-Jacobi form on I'g(N) for any u € V..
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Appendix A

Appendix

Among other conditions, a strongly regular vertex operator algebra is Cs-cofinite,
rational, and of CFT type. Below is a table listing which of these conditions are necessary

for various results in this thesis.

Result CFT type | Ca-cofinite | Rational
Translation law [1.0.0.7 No Yes Yes
Translation law [1.0.0.8 Yes No Yes
The convergence and expansion |1.0.0.6| No Yes No
Theorem |1.0.0.3 Yes Yes Yes
Theorem |1.0.0.1 No Yes Yes
Recursion Formulas (i.e. , [5.2.2.1) No No No

Table A.1: Table of assumptions.
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