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Abstract

All ethologically-relevant behavior is dynamic, and biological in origin. To understand

the neural underpinnings of motor behavior is then to quantify the limitations placed on

organisms as they move through and interact with their environment. This thesis stands

as an attempt to understand the way the brain processes information to prepare for move-

ment, and how a network of neurons might give rise to that movement. I chose to in-

vestigate oculomotor tracking in non-human primates as a model behavior that allowed

excellent spatial and temporal control over the stimulus. First, by carefully controlling the

motion of a single target, and measuring the eyes’ response to particular perturbations, I

mapped out effective constraints on the way the brain processes target motion to guide

smooth eye movements. The next set of experiments was motivated by the observation

that no two tracking movements are alike, even when faced with identical stimuli. I es-

tablish the dynamic relationship between fluctuations in single neurons recorded in the

frontal eye fields and concomitant behavioral fluctuations. Utilizing measurements of the

covariation between simultaneously recorded neurons, I describe the properties of the net-

work of cells which give rise said fluctuations, which is likely dominated by fluctuations

in a small subset of the active population at any moment in time. Taken together, the work

I’ve done first establishes that proper oculomotor tracking likely takes the form of a re-

allocation of cortical resources, but one that may be dominated by the activity of a small

number of cortical neurons.
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Chapter 1

Saccades Exert Spatial Control of

Motion Processing for Smooth

Pursuit Eye Movements

1.1 Abstract

Saccades modulate the relationship between visual motion and smooth eye movement.

Prior to a saccade, pursuit eye movements reflect a vector average of motion across the vi-

sual field. After a saccade, pursuit primarily reflects the motion of the target closest to the

saccade’s endpoint. We tested the hypothesis that the saccade produces a spatial weight-

ing of motion around the endpoint of the saccade. Using a moving pursuit stimulus that

stepped to a new spatial location just before a targeting saccade, we controlled the distance

between the saccade’s endpoint and the moving target’s position. We demonstrate that the

smooth eye velocity following the targeting saccade weights the pre-saccadic visual mo-

tion inputs by the distance from their location in space to the endpoint of the saccade,

defining the extent of a spatiotemporal filter for driving the eyes. The center of the filter is

located at the endpoint of the saccade in space, not at the position of the fovea. The filter
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is stable in the face of a distracter target, is present for saccades to stationary and moving

targets, and affects both the speed and direction of the post-saccadic eye movement. The

spatial filter can explain the target-selecting gain change in post-saccadic pursuit, and has

intriguing parallels to the process by which perceptual decisions about a restricted region

of space are enhanced by attention. The effect of the spatial saccade plan on the pursuit

response to a given retinal motion describes the dynamics of a coordinate transformation.

1.2 Introduction

Retinal inputs provide sensory drive for visually guided behaviors. Because the eyes move

continuously, the retinal locus of a stimulus cannot provide unambiguous guidance about

the correct location of objects in space. Yet, spatial information drives many behaviors.

For example, saccadic eye movements are based on the location of targets in space, not on

the retinal locus activated by a momentary flash [Mays and Sparks, 1980]. Transformation

of inputs that enter the brain in retinal coordinates into spatial behavior is a fundamental

sensorimotor process. Saccadic selection of moving targets for smooth pursuit eye move-

ments provides a specific example of this transformation that lends itself particularly well

to study.

Recent reports have established that visual motion processing for smooth pursuit eye

movements can be altered dynamically by saccades. An example occurs when a single

target moves across a locus eccentric from the fovea: the initial pursuit response is weak,

but the response after the saccade is strong, as if the visual motion drive for pursuit has

been enhanced. Similarly, if two moving targets are present, the saccade to one is an ocu-

lomotor choice: post-saccadic smooth eye velocity is dominated by visual inputs from the

moving target at the endpoint of the saccade, even if the initial pursuit was driven by the

other target [Gardner and Lisberger, 2001, 2002, Liston and Krauzlis, 2005]. These results

illustrate the ability of the spatially specific saccade plan to enhance motion inputs that

2



arise in a retinal coordinate frame. The preferential treatment of one target’s motion at the

expense of the others resembles cued spatial attention.

Three features of perceptual attention parallel the effects of saccades on subsequent

pursuit. First, both specify a region of space for enhanced processing: saccades deter-

mine the location of target motion to be preferentially processed by pursuit while spatial

attention enhances perception at a region of space. Second, both can be triggered by the

saccade plan. For pursuit, even sub-threshold stimulation in the superior colliculus (SC)

biases the subsequent pursuit choice towards targets in the movement field of the excited

neurons [Carello and Krauzlis, 2004]. For perception, stimulation of the frontal eye fields

(FEF) with current too weak to evoke a saccade is sufficient to cause the responses of ex-

trastriate neurons in area V4 to mimic the effects of cued attention [Moore and Armstrong,

2003]. Similarly, microstimulation in the SC enhances attentional processing in a spatially

selective manner [Muller et al., 2005]. Third, both depend on modulation of response gain.

Target choice for pursuit reflects in an increase in the response to specific visual motion

inputs. Likewise, attention manifests itself as increases in the gain of neural responses for

stimuli falling within a restricted spatial locus. If the behavioral effects of target choice

for pursuit and perceptual attention are so similar, then perhaps they use similar neural

mechanisms.

We tested the hypothesis that saccades enhance the processing of visual motion within

a specific spatial location, just as does cued attention. We show that the gain of the pursuit

response to a given target motion is weighted spatially, by the distance from the endpoint

of the upcoming saccade to the spatial location of the target. We propose that a spatial filter

anticipating the movement of the eyes controls the gain of visual-motor transformation for

pursuit.
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1.3 Materials and Methods

1.3.1 Subjects and equipment

Four male monkeys (Macaca mulatta) were used in experiments approved by the Institu-

tional Animal Care and Use Committee of the University of California, San Francisco. All

experimental procedures were in accordance with the National Institutes of Health Guide

for the Care and Use of Laboratory Animals. Briefly, eye position was monitored using the

scleral search coil technique while the head was held stationary using custom hardware

that had been implanted on the monkey’s skull during sterile surgery under Isoflurane

anesthesia. Surgical procedures have been reported before [Ramachandran and Lisberger,

2005]. All monkeys were experienced in smoothly tracking visual targets for a fluid re-

ward, and needed no additional behavioral training for this study.

In a dimly lit room, visual stimuli were projected onto the back of a tangent screen

placed 114 cm in front of the monkey. Projecting a stationary red light-emitting diode onto

the center of the screen generated a fixation spot. The position of the tracking target, which

was a small white 0.5-deg spot, was controlled by reflecting a beam of light off a pair of two

orthogonal mirror galvanometers. Many of the experiments described here implicitly rely

on displacing the target instantaneously; the galvanometers could complete our largest

step (9 deg) within 4 ms. To verify that our data were not affected by the visual streak

generated during the displacement, we also presented targets using two separate pairs of

galvanometers and shutters to illuminate different targets before and after displacement,

eliminating the visual streak. We did not find any differences in the results for the two

methods of target presentation, and data from both are included.

1.3.2 Data collection and analysis

Stimuli were presented as a series of trials, where each trial represented a different set of

target trajectories, and the order of the trials was randomized. Each trial began when the
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fixation target appeared for a random time (500-1100 ms), followed by the appearance of

the tracking target. The target usually appeared slightly eccentric (0-1.5 deg) to the po-

sition of fixation and immediately moved toward the position of fixation. On half of the

trials, the target moved for a short interval (100-200 ms) and then underwent a step change

in position, sometimes changing its direction of motion or speed as well. Whether or not

the target underwent this step, it continued moving for a random duration (600-800 ms)

during which the monkey was required to keep his gaze within 2 deg of the tracking target.

Whenever the target was displaced, the monkey was allowed a 300-ms grace period when

fixation requirements were suspended so that he could catch the target and complete the

trial. In each experiment, all variables such as the initial and post-displacement direction

of motion were balanced to discourage any sort of learning, as well as efforts to anticipate

the target motion. Monkeys were rewarded with droplets of fluid for the approximately

95% of all attempted trials they completed. They typically worked until satiated, for ap-

proximately 1500-2500 trials.

Horizontal and vertical eye position signals were sampled at 1 kHz on each channel

and differentiated digitally using a balanced difference algorithm over a 2 ms time win-

dow. The differentiated traces then were filtered digitally using a 2-pole Butterworth filter

with a cutoff at 25 Hz. For a discussion of the effects of filtering on the measurement of

post-saccadic eye velocity, see [Lisberger, 1998]. An automated threshold-crossing algo-

rithm marked the beginning and end of each saccade with a threshold at 50 deg/s; the

ends of the saccades were provisionally estimated to occur 15 ms after eye velocity crossed

back below threshold. For target motion at 10 deg/s, we lowered the threshold to 40

deg/s to catch smaller saccades. After provisional marking of saccade start and end by the

automated algorithm, all trials were inspected and, if necessary, the saccade marks were

adjusted by hand using custom software. The measurements reported in this paper rest

on a precise identification of saccade initiation; to confirm that our algorithm gave excel-

lent results, we re-marked the saccades by hand for selected experiments on the basis of
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the initial deflection on eye velocity traces that had been generated on-line using an ana-

log circuit. The circuit differentiated signals up to a cutoff at 25 Hz and filtered signals of

higher frequencies. Because the analog filter was causal, the latter assessment of the time of

the start of the saccade is uncorrupted by the smoothing that arises with zero-phase digital

filtering. Results did not depend on how the saccade start and end were determined.

Our analysis used standard statistical methodology, including t-tests and linear regres-

sion techniques. Data were fit to simple linear models in a least-squared sense, and the

p-values for slopes and y-intercepts were estimated by generating a t-statistic for each. We

fitted plots of post-saccadic eye velocity as a function of the duration of the motion that

drove it with either a sigmoid (1) or an exponential (2):

Ė(t) =
1

1+ e−m(t−β ) (1.1)

Ė(t) = eβ+(τ∗t) (1.2)

For these equations, m represents the slope of the function, τ the time constant, and β the

point at which it reaches half its maximum value. When fitting the sigmoid, we used only

eye velocity data that had been normalized to the mean eye velocity on control trials; this

removed our subjects’ spatial bias from the analysis. Curve-fitting was done in a least-

squares sense, using Levenberg-Marquardt minimization; 95% confidence intervals were

estimated from the residuals. To find the time at which the sigmoid was at 10% and 90% of

its maximal value, we solved (1.1) for t. The original data used in this paper, analysis code,

and figure-generation code are available on the internet (http://keck.ucsf.edu/∼schoppik/).
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1.4 Results

1.4.1 A stimulus paradigm for controlling the distance between tracking target

position and saccade endpoint

Our experiments tested the hypothesis that saccades enhance the processing of visual mo-

tion inputs for pursuit in proportion to the proximity of the target to the endpoint of the

saccade. We began by designing a behavioral task that would allow us to control the lo-

cation of a moving target relative to the endpoint of a saccade, by disrupting the usual

accuracy of saccades to moving targets. Specifically, we contrived for monkeys to make a

saccade to a target that was no longer where they expected it to be, but instead had been

displaced some distance at carefully controlled moments. Our approach bears some re-

semblance to the well-explored double-step paradigm [Becker and Jurgens, 1979], and to

remapping experiments in the parietal cortex [Duhamel et al., 1992].

Our task, which can be described in four intervals, is diagrammed in two ways in

Figure 1.1. First, the set of four Cartesian plots in 1.1A.1 - 1.1A.4 provide snapshots of both

target and eye motion for each interval. Second, for an example trial, Figure 1.1B plots the

position of the eyes and the target as a function of time, and Figure 1.1C similarly plots

velocity. The black bars with numbers over them delineate the duration of each of the

four intervals specified in Figures 1.1A.1 - 1.1A.4, allowing the reader to cross-reference

between the spatial and temporal presentations.

Each trial begins with a brief period of fixation, after which the target moved rightward

(Figure 1.1A.1). The initial motion of the target was designed both to necessitate a right-

ward saccade and to drive the initiation of pursuit. The short-latency pursuit response is

shown as a small black arrow pointing rightward in Figure 1.1A.2 (second interval). For

the duration of the second interval, the initial saccade plan is locked in; the animal is now

committed to use the target position at the end of interval 1 to drive a rightward saccade.

During the second interval, though, the target’s motion changes: it is displaced vertically
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Figure 1.1: Schematic diagram of the behavioral task and sample responses. A: The task is
shown in spatial coordinates as a sequence of 4 snapshots. In each panel, the open circle
and the cross indicate the position of the target and eye. A1. Starting just off fixation point,
the target moves to the right at 20 deg/s. A2. The eye moves rightward in response to
the initial target motion, while the target stpdf up (the "new" position) and begins mov-
ing upwards at 20 deg/s (the "new" motion). A3. The eye makes a rightward saccade
driven by the pre-displacement location of the target, while the target continues to move
up. A4. A second saccade takes the eye directly to the target, which is tracked it appro-
priately. B: The horizontal and vertical components of eye (solid line) and target (dashed
line) positions are plotted as a function of time. Black bars with numbers over them mark
the periods corresponding to the schematic in (A). The labels "d", "s1", and "s2" mark the
target displacement to the new position and motion, and the first and second saccades.
C: The horizontal and vertical components of eye velocity (solid line) and target velocity
(dashed line) as a function of time. The bold, horizontal bars correspond to intervals 2 and
3. D, E: Same data as in C, but with the time base expanded so that data are shown only
for intervals 2 and 3. In D-E, the thick and thin lines show responses when the size of the
target displacement was 9 deg and 1 deg, respectively, while the shaded vertical rectangles
indicate the interval used for analysis.
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0, 1, 5, or 9 deg and its direction of motion changes from horizontal to vertical. In the

third interval (Figure 1.1A.3), we see the consequences of the saccade planned to the target

position in interval 1. The rightward saccade takes the eyes to the "wrong" location; how-

ever, the post-saccadic pursuit, which must be driven by pre-saccadic target motion, has

already incorporated both the "old" target motion of interval 1 and the "new" target motion

of interval 2 (diagrammed by an arrow moving both up and to the right). By analyzing the

component of eye motion in the direction of the "new" target motion, as a function of the

jump size, we test the hypothesis that the target motion affects pursuit eye velocity with a

gain related to the location of the new target motion in space. Finally, in interval 4 (Figure

1.1A.4), the monkey makes a corrective saccade to the new location of the target, tracking

accurately for a brief period of time to receive his reward.

Figure 1.1B diagrams the eye and target positions as a function of time, while 1C sim-

ilarly diagrams the corresponding velocities. The initial horizontal target motion marks

the beginning of interval 1, and the eye’s horizontal smooth response can be seen slightly

before interval 2. The vertical target displacement and subsequent motion (marked ’d’)

marks the beginning of interval 2. The initial saccade (marked ’s1’), driven by the hor-

izontal target trajectory, defines the end of interval 2. Before the beginning of interval

3, the change in eye position is entirely horizontal, bringing the eye ahead of the target.

At the end of saccade s1, interval 3 begins; the eye velocity traces reveal that despite the

switch from horizontal to vertical target velocity, both horizontal and vertical eye velocity

is present up until the point of the second, corrective saccade (marked ’s2’), which marks

the start of interval 4.

The success of our experiment depends on correctly timing the length of interval #1.

The endpoint of saccade s1 must be determined by the original position of the moving

target, but the saccade latency must be long enough for pursuit to have seen the new target

motion. Because pursuit has a shorter latency to respond to the new target motion, we can

hope that interval 2 will interpose up to 100 ms of new target motion between displacement
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d and saccade s1. As a consequence, post-saccadic eye velocity is driven by the new target

motion and is our dependent variable. Furthermore, because we displaced the target at

the start of interval 2, the new motion is some distance above the endpoint of the first

saccade and so the distance from the endpoint of the saccade to the target becomes our

independent variable. To ensure that the monkeys did not simply withhold their saccades

until the target had changed direction, 50% of trials were controls in which the target did

not change its trajectory, and the monkey received his reward by tracking accurately to the

end of the trial.

On 45% of the trials, the monkey made his first saccade before the target had changed

direction (interval #1 was too long) or made a saccade directly to the post-displacement

location of the target (interval #1 was too short); both outcomes are to be expected when

the target trajectory changes in this fashion [Lisberger et al., 1975]. Such trials were ex-

cluded from further analysis, as the pre-saccadic motion took place too close to the spatial

endpoint of the saccade. After excluding control trials (50% of all trials) and those with

unsuitable saccade timing (45-48% of all trials), we were left with usable trials that repre-

sented 2-5% of the all trials the monkeys performed. For the analyses in Figures 2-5, we

further restricted the trials we analyzed to those in which the duration of the new motion

was greater than 50 ms. As a result, many days of experiments were needed to obtain

sufficient data.

Finally, although it may appear as if the second saccade has a shorter latency than the

first saccade, when measured relative to the onset of the driving target motion, they are

quite similar. The average delay from the time the target changed position and direction

to this second saccade (d→s2) was 141 ms (±28 ms SD). The average delay from the onset

of target motion to the first saccade was similar at 146 ms (±32 ms). The time between the

onsets of the first and second saccades (S1→S2) averaged 82 ms (±36 ms). As would be

expected in a double-step-like task, the endpoints of the saccade were not influenced by

the ongoing pursuit, and had a bimodal distribution, landing either directly on the target,

10



or at the "incorrect" location.

1.4.2 A spatial filter for processing motion direction around the endpoint of a

saccade

The expanded eye velocity traces in Figures 1.1D and E show examples of how the distance

between the moving target and the endpoint of the saccade itself affects post-saccadic eye

velocity. Each panel shows the eye velocity along one component, for two trials: one with

a 1 deg step (thin traces) and one with a 9 deg step (thick traces). Figure 1.1D illustrates

the eye velocity responses along the axis of new motion, here vertical, and Figure 1.1E

the eye velocity responses along the axes of old motion, here horizontal. Compared to

when the step was 1 deg (thin traces), the vertical, or new, component of post-saccadic

eye velocity (Figure 1D) at the start of interval #3 was smaller and the horizontal, or old,

component (Figure 1.1E) was larger when the target had been displaced 9 deg (bold traces)

from the endpoint of the saccade. Consequently, pursuit was more nearly vertical when

the endpoint of the saccade was close to the vertically moving target. Alternately, when

the endpoint of the saccade was far from the vertical motion, pursuit was more nearly

horizontal.

The records in Figure 1.1D and E present an example of our basic finding, and also

underscore the challenges of performing and analyzing these experiments. First, both the

horizontal and vertical eye velocity traces in the time between interval #2 and interval #3

are contaminated by rapid deflections associated with the saccade to the prior location of

the original rightward-moving target. We have previously provided a detailed evaluation

of the challenges of measuring immediate post-saccadic eye velocity and we are confident

that the differences demonstrated in Figures 1D and E are well beyond the time when eye

velocity is related directly to the saccades themselves [Lisberger, 1998]. Second, because

the feedback loop closes quickly after the end of the saccade, by design, our analysis is

based on a brief 20 ms interval (shaded rectangle in Figures 1.1D and E) when eye velocity

11



depends on the distance from the endpoint of the saccade to the moving target. As the

pursuit system naturally corrects the difference between target and eye velocity, the eye

velocity traces for target displacements of 1 and 9 deg converge quickly, even though they

are quite different during the period under study.

Figure 1.2B uses data from monkey Cb to illustrate how we quantified the results of our

experiments. Each of the 1672 points represents the post-saccadic pursuit velocity in a sin-

gle trial plotted as a function of the radial distance in space between the target and the eye

at the endpoint of the saccade. Variation in the latency and accuracy of the monkey’s first

saccade cause scatter along the x-axis for each cluster of points and variation in the post-

saccadic eye velocity cause scatter along the y-axis. The experiment summarized in Figure

2B contained targets that began to move along the horizontal meridian. In 50% of the tri-

als, targets then stepped 1, 5, or 9 deg vertically and moved either upward or downward,

shown as points plotted at negative or positive values along the y-axis. Both the clouds of

points from the individual trials and the averages for monkey Cb (open diamonds) show

that the post-saccadic vertical eye velocity depended strongly on the distance from the

endpoint of the saccade to the spatial location of the new motion. Trials were included in

this analysis only if the first saccade landed within 1 deg of the horizontal meridian, and

if the interval of new motion was at least 50 ms long. Requiring a longer period of target

motion before the saccade would have revealed larger effects, but at the cost of including

fewer trials, a feature of the data that we will document later.

To summarize the results, we inverted the eye velocity traces from the trials that ended

with downward motion, so that we could combine the data from both directions of target

motion as if the new motion always had been upward. We then averaged the data for

each displacement of target position (0/1, 5, or 9 deg) and plotted the mean and standard

deviation of post-saccadic eye velocity as a function of the mean distance from the target

position to the eye position at the endpoint of the saccade (Figure 1.2C). For all 4 monkeys,

the post-saccadic eye velocity in the direction of the new target motion was largest when

12
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Figure 1.2: Relationship between post-saccadic eye velocity and the distance from the end-
point of the saccade to the target position when the direction of new motion was orthog-
onal to the original motion. A: Same schematic as Figure 1.1. B-D: Analysis of data when
target displacement was orthogonal to the original motion, as shown schematically in A.
E-G: Analysis of data when target displacement was parallel to the original motion. B, E:
Plots of post-saccadic eye velocity in the direction of new motion as a function the distance
between target and eye at the end of the saccade for individual monkeys. Dots show data
for individual trials and larger symbols (diamonds in B for monkey Cb and squares in E
for monkey Pu) show means for the 3 different amplitudes of displacement of target posi-
tion. Positive and negative values of post-saccadic eye velocity were taken from trials in
which the new target motion was upward or downward. C, F: Means and standard devi-
ations of post-saccadic eye velocity in the direction of new motion for all monkeys used in
each experiment. Different symbols correspond to different monkeys. E, G: The mean and
standard deviation of post-saccadic eye velocity in the direction of the original motion.
The graphs in C and D summarize data for experiments in which the original direction of
motion was horizontal and new motion vertical, while in F and G, original motion was
vertical and new motion horizontal. Before averaging, we took the absolute velocity of all
eye velocities.
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the distance between the target and eye position at the endpoint of the saccade was small-

est. Post-saccadic eye velocity declined as the distance increased. In the same trials, the

eye velocity response to the original, horizontal target motion showed the opposite trend

(Figure 1.2D); the greater the distance from target to saccadic endpoint, the faster the eyes

moved along the original component of motion.

Statistical evaluation supported the qualitative effects seen in Figures 1.2B-D. Regres-

sion lines were fit to the collection of single-trial measurements from each monkey individ-

ually; complete statistical information can be found in Table 1.4.2. The mean slope across

monkeys was 0.45±0.14 (SD), and the mean y-intercept was 10.72±2.88 (SD). All slopes

and y-intercepts were significantly different from zero (p < .001). In Figure 1.2D, the mean

slope was 0.35±0.20 (SD), but was significantly different from zero for only two monkeys.

The absence of a strong effect in Figure 1.2D is due to relationships we will document later

between post-saccadic eye velocity in the original and new directions of motion and the

duration of the interval of new motion.

We repeated the experiment in Figure 1.2A-D, with the motion rotated so that the orig-

inal direction was vertical, and the new direction horizontal (data not shown, details for

each monkey in Table 1.4.2). Statistical evaluation demonstrated the same decrease in post-

saccadic eye velocity with increasing distance between the target and the endpoint of the

saccade. For four monkeys, neither the mean slope in the new direction, -0.14±0.28 (SD),

nor the mean y-intercept, 8.44±2.97 (SD) were different from the data shown in Figure

2C (paired t-test, p > 0.06, p > 0.08). Similarly, neither the mean slope in the old direc-

tion, 0.20±0.14 (SD), nor the mean y-intercept 2.83±0.60 (SD), were different from the data

shown in Figure 2D (paired t-test, p > 0.36, p > 0.42).

To control for the effect of step direction, we also conducted a variation of the experi-

ment in Figure 1.2A-D where the step of target motion at the start of interval #2 was paral-

lel to the initial motion of the target, rather than orthogonal. Otherwise, the experimental

design was the same: at the time of the target step, the direction of smooth target motion
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changed so that it was orthogonal to the original motion, and the amplitudes of the target

stpdf again were 1, 5, or 9 deg. The step always moved the target away from the position

of fixation, and the experiment was run only with target motion that was initially vertical

and then changed to new motion that was horizontal.

For an example monkey (Pu), the cloud of points of post-saccadic eye velocity from

individual trials (n=285) and the averages (Figure 1.2E, squares) indicate that the speed

of eye motion in the direction of the new target motion was related inversely to the dis-

tance between target and eye position at the endpoint of the saccade. For all 3 monkeys

tested on this experiment (Figure 1.2F), the same trend is visible in the plots of average

post-saccadic eye velocity as a function of the distance from the endpoint of the saccade to

the target. Further, for all 3 monkeys, the post-saccadic eye velocity in the direction of the

original target motion scaled proportionately with the distance to the endpoint of the sac-

cade (Figure 1.2G). The fact that the new direction of motion was horizontal, the monkeys’

best axis of pursuit, led to a better illustration of this feature of our data in Figure 1.2G

than in Figure 1.2D. Statistical analysis supported the trends seen in the graphs. For eye

velocity in the new direction of target motion, the mean slope of the three regression lines

fitted to all trials from each monkey independently was -0.66±0.41 (SD), and the mean y-

intercept was 9.64±3.67 (SD). Neither the slopes nor the y-intercepts for Figure 1.2F were

significantly different from those for Figure 1.2C (two-tailed paired t-test, p > 0.4). For eye

velocity in the original direction of target motion (Figure 1.2G), the mean slope of the re-

lationship between post-saccadic eye speed and distance from saccade endpoint to target

was 1.06±0.06, and the mean y-intercept 2.84±0.33. Here, unlike Figure 1.2D, the slopes

and y-intercepts were significant for all three monkeys tested (p < 0.001).

The data in Figure 1.2 show that the pursuit response to a given target motion is mod-

ulated by the distance from the endpoint of the saccade to the target. The modulation is

consistent with the conclusion that a spatial filter surrounds the endpoint of a saccade. If

the target is near the center of the spatial filter, its motion has priority access to the pursuit
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system and dominates the smooth eye velocity response.

1.4.3 Distracter targets do not affect the spatial filter

In experiments like that diagrammed in Figure 1.3A, interval #1 provided two targets mov-

ing in opposite directions along the vertical axis. The monkey was free to saccade to either

target, and each had an equal likelihood of undergoing a displacement and a change to a

new, horizontal direction of motion in interval #2, just as in the experiments of Figure 2.

Software detected saccades, determined which target the monkey had chosen, and turned

off the remaining target, allowing the monkey to track only one target and receive a re-

ward. Trials were not included in the analysis if the monkey chose the target that did not

displace ( 25% of all trials), or if neither target was displaced (50% of all trials). When the

monkey chose the target that did displace, his behavior was largely the same as during

the single target case, in that his saccade was too early or late most of the time ( 23% of all

trials), leaving us with only 2% of all trials for analysis.

Figure 1.3B shows the results of the experiment for one monkey (Qu). Each of the

181 points shows the pursuit response on a single trial. The y-axis plots the horizontal

component of post-saccadic eye velocity when the step of target position in interval #2

was to the right or left (points plotting at positive or negative values on the y-axis); the

x-axis shows the radial distance between target and eye at the end of the saccade. Both the

clouds of points for the individual trials and their means (open triangles) indicate that the

post-saccadic horizontal eye speed tends to be slower when the distance from the endpoint

of the saccade to the horizontally-moving target is larger. The same relationship appears

in the means of post-saccadic horizontal eye velocity of all four monkeys (Figure 1.3C).

Regression lines were fit to all trials from each monkey separately; detailed statistics are in

Table 1.4.2. The regression slope of eye velocity versus distance for four monkeys averaged

-0.55±0.24, the y-intercept averaged 10.42±4.04, and neither the slope nor the y-intercept

was statistically different from those for the two experiments summarized in Figure 1.2
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Table 1.1: Parameters of linear regression for text and Figures 1.2-1.4. In the left column,
the first entry indicates the monkey. When the data appeared in a figure, the second entry
indicates the figure panel. When the data was mentioned only in the text, the second entry
indicates whether the regression is for the old or new direction of motion and the third
entry is "text."
Monkey, Figure # Trials Slope (95% CI) y-intercept (95% CI) R2 F p
CB, 2C 1672 -0.50 (0.04) 8.96 (0.29) 0.28 664.81 0
MO, 2C 459 -0.28 (0.08) 7.74 (0.69) 0.09 44.85 0
PU, 2C 42 -0.61 (0.26) 14.02 (2.13) 0.36 22.84 0
QU, 2C 29 -0.41 (0.30) 12.15 (2.29) 0.22 7.71 0

CB, 2D 1672 0.17 (0.02) 1.48 (0.16) 0.12 230.76 0
MO, 2D 459 0.06 (0.09) 3.41 (0.71) 0 1.63 0.20
PU, 2D 42 0.15 (0.20) 1.55 (1.66) 0.05 2.21 0.14
QU, 2D 29 0.40 (0.20) 2.10 (1.57) 0.38 16.40 0

CB new, tex 1295 -0.18 (0.03) 5.48 (0.25) 0.08 111.31 0
MO new, text 621 -0.10 (0.05) 7.59 (0.40) 0.03 17.76 0
PU new, text 117 -0.47 (0.18) 12.55 (1.43) 0.19 26.94 0
QU new, text 295 0.21 (0.09) 8.14 (0.64) 0.07 21.72 0

CB old, text 1295 0.04 (0.40) 3.01 (0.30) 0.27 378.05 0
MO old, text 621 0.46 (0.56) 1.95 (0.48) 0.27 230.14 0
PU old, text 117 0.47 (0.13) 3.30 (1.06) 0.30 49.91 0
QU old, text 295 0.37 (0.08) 3.06 (0.59) 0.21 81.87 0

CB, 2F 188 -0.34 (0.13) 6.21 (0.66) 0.12 25.65 0
MO, 2F 138 -0.52 (0.14) 9.20 (0.64) 0.28 52.32 0
PU, 2F 285 -1.13 (0.81) 13.51 (0.81) 0.39 184.40 0

CB, 2G 188 1.02 (0.15) 2.46 (0.76) 0.48 173.06 0
MO, 2G 138 1.04 (0.16) 3.04 (0.73) 0.54 158.95 0
PU, 2G 285 1.12 (0.16) 3.03 (0.81) 0.39 182.00 0

CB, 3C 278 -0.22 (0.07) 5.39 (0.52) 0.12 37.69 0
MO, 3C 141 -0.52 (0.13) 9.00 (0.95) 0.31 61.20 0
PU, 3C 286 -0.66 (0.10) 13.00 (0.80) 0.35 154.62 0
QU, 3C 181 -0.78 (0.13) 14.30 (1.05) 0.45 149 0

CB, 3D 278 -0.15 (0.07) 3.88 (0.47) 0.07 21.56 0
MO, 3D 141 0.24 (0.10) 1.92 (0.74) 0.13 21.61 0
PU, 3D 286 0.01 (0.06) 2.48 (0.49) 0 0.21 0.64
QU, 3D 181 0.03 (0.09) 2.46 (0.73) 0 0.44 0.51

CB, 4C 248 0 (0.11) 4.45 (0.91) 0 0 0.96
MO, 4C 780 -0.35 (0.06) 7.60 (0.50) 0.15 133.23 0
PU, 4C 211 -0.61 (0.12) 10.41 (1.02) 0.31 93.92 0
QU, 4C 615 -0.41 (0.07) 9.34 (0.56) 0.17 123.38 0
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Figure 1.3: Relationship between post-saccadic eye velocity and the distance from the end-
point of the saccade to the target position in the presence of a distracter. A: Schematic
diagram showing the task as a sequence of 4 snapshots in time. A1. Two targets (open
circles) began moving in opposite directions away from the fixation point and the eye (x).
A2. One of the targets is displaced and begins to move orthogonally, while the other con-
tinues along the original trajectory. A3. A saccade is made to the old location of one of the
targets and the eyes begin to move smoothly; the second target disappears. A4. A saccade
was made to the new location of the target, followed by proper tracking. B: Plot of post-
saccadic eye velocity in the direction of new motion as a function the distance between
target and eye at the end of the saccade for one monkey. Dots show data for individual
trials and larger symbols show means for the 3 different amplitudes of displacement of
target position. Positive and negative values of post-saccadic eye velocity were taken from
trials in which the new target motion was rightward or leftward. C: Means and standard
deviations of the absolute value of post-saccadic eye velocity in the direction of new mo-
tion for all monkeys used in each experiment. Different symbols correspond to different
monkeys. D: The mean and standard deviation of the absolute value of post-saccadic eye
velocity in the direction of the original motion.
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(two-tailed paired t-test p > 0.3). Regression analysis was performed on all trials that went

into Figure 1.3D, and detailed statistics can be found in Table 1. As in Figure 1.2D, the

relationship between vertical post-saccadic eye velocity and the distance from the eye to

the target at the endpoint of the saccade is unimpressive (Figure 1.3D), though the slopes

for two of the monkeys are statistically different from zero.

1.4.4 The spatial filter exists for saccades to stationary targets

The experiment diagrammed in Figure 1.4A follows same structure used before, except

that in interval 1, the target does not move smoothly. Each trial began with the monkey

fixating straight ahead. At the start of interval #1, the fixation target disappeared and

another target appeared 3 degrees eccentrically along the horizontal meridian, to provide

the stimulus for a saccade. In interval 2, the target stpdf vertically and begins to move

horizontally. The target remained stationary in 50% of the trials to encourage the animal

to make a timely and accurate saccade; these control trials were removed from further

analysis.

As before, a falloff in post-saccadic eye velocity as a consequence of the distance be-

tween target and saccadic endpoint appears in the clouds of points for individual trials for

one monkey (Figure 1.4B), the means for those trials (open squares in Figure 1.4B), and the

means for all 4 monkeys used in this experiment (Figure 1.4C). Regression lines were fit

to data from all trials for each monkey separately, and detailed statistics can be found in

Table 1.4.2. Coefficients for one monkey (Cb) were not significantly different from zero,

indicating that a regression model was not appropriate. As such, his data were excluded

from the following summary statistics. The average regression slope for the remaining

three monkeys in Figure 4C was -0.46±0.14, and the y-intercept was 9.12±1.42. Neither

the slope nor the y-intercepts were significantly different from those for the experiments

summarized in Figures 1.2 and 1.4 (two-tailed paired t-test, p > 0.15). For this experiment

it did not make sense to show plots of the orthogonal, vertical eye velocity as there was
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Figure 1.4: Relationship between post-saccadic eye velocity and the distance from the end-
point of the saccade to the target position when the first saccade is aimed at a stationary
target. A: Schematic diagram showing the task as a sequence of 4 snapshots in time. A1.
A target (open circle) appears stationary but offset from the current position of the eye
(x). A2. The target stpdf and moves to the right at 20 deg/s. A3. A saccade is made to
the old location of the target and the eyes begin to move smoothly along the direction of
target motion. A4. The eye saccades to the new location of the target and tracks it appro-
priately. B: Plot of post-saccadic eye velocity in the direction of new motion as a function
the distance between target and eye at the end of the saccade for one monkey. Dots show
data for individual trials and larger symbols show means for the 3 different amplitudes
of displacement of target position. Positive and negative values of post-saccadic eye ve-
locity were taken from trials in which the new target motion was rightward or leftward.
C: Means and standard deviations of the absolute value of post-saccadic eye velocity in
the direction of new motion for all monkeys used in each experiment. Different symbols
correspond to different monkeys.

20



never any vertical target motion.

1.4.5 Processing of target speed within the spatial filter

The experiment diagrammed in Figure 1.5A has the same basic structure as the previous

experiments. In interval #1, the target started from straight ahead gaze and moved to the

right. At the start of interval #2, after the initiation of pursuit, but before the monkey

executed a catch-up saccade for the initial target motion, the target stepped to a location

that was 1, 5, or 9 deg off the horizontal meridian and continued to move in the same

direction. At the time of the target step, the target either continued at its original speed of

20 deg/s (Figure 1.4A, white circle), or changed to 10 or 30 deg/s (black and grey circles,

respectively). As a result, the new motion comprised one of the three target speeds that

was present in interval #2, before the catch-up saccade; the speed of new motion should

affect post-saccadic eye velocity more strongly when the distance from the target to the eye

position at the endpoint of the saccade is small, and less or not at all when the distance is

large.

For each of the 4 monkeys, the effect of the speed of the new target motion on post-

saccadic pursuit depended on the distance from the endpoint of the saccade to the target.

For the smallest distances of about 1 degree, the post-saccadic eye velocity was highest for

new target motion at 30 deg/s (Figure 1.5B, gray symbols), intermediate for new target

motion at 20 deg/s (white symbols), and lowest for new target motion at 10 deg/s (black

symbols). For the largest distances of about 9 degrees, the post-saccadic eye velocities are

much more similar for the three target speeds. For the intermediate distances, the separa-

tion of the responses for the three target speeds also was intermediate. We performed two

statistical analyses to quantify our observations. First, we compared the y-intercepts of

regression lines fitted to the relationship between post-saccadic eye velocity and distance

from saccade endpoint to target for each of the three final target speeds. When the pre-

saccadic target speed was 10, 20, or 30 deg/s, the y-intercept was 9.05±0.85, 13.45±0.67,
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Figure 1.5: Effect of the distance from the endpoint of the saccade to the target position
on the relationship between post-saccadic eye velocity and target speed. A: Schematic di-
agram showing the task as a sequence of 4 snapshots in time. A1. A target (open circle)
began moving at the fixation point at 20 deg/s. 2. The target stepped and moved at a
speed indicated by the marker: 10 deg/s (black filled circle), 20 deg/s (open circle), or 30
deg/s (gray circle). Only one target was visible to the monkey on the trial. The eye (x)
begins pursuit in the direction of initial target motion. A3. The eye makes a saccade to
the old location of the target and moves in the same direction. Only the 20 deg/s target is
shown for clarity. A4. The eye makes a saccade to the new location of the target and tracks
it appropriately. (B) Four graphs plotting the mean and standard deviation of the abso-
lute value of post-saccadic eye velocity against the distance between target and eye, for
three different speeds of target motion. Different axes and markers correspond to different
monkeys. Black filled markers are trials where the target slowed to 10 deg/s, open mark-
ers where the target continued to move at 20 deg/s and grey markers where the targets
sped up to 30 deg/s.
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and 20±3.56. All differences in y-intercept were statistically significant (t-test, p < 0.05).

Second, we ran an ANOVA using the speed of new motion (d.f = 2) and the size of the tar-

get step (d.f. = 2) as factors on all data points (n = 2928). There was a main effect of the size

of the target step, and no main effect of speed (F = 6.29, F = 0.53; p < 0.01, p = 0.53). Sup-

porting our observations, there was an interaction between the size and speed (p < 0.01).

Post-hoc comparisons across factors failed to reach significance.

The effect of target speed on the post-saccadic eye velocity for a given distance between

saccade endpoint and target is diagnostic for how strongly the new visual motion just

before the saccade affects pursuit. Thus, the results in Figure 1.5 indicate that speed is

processed within the spatial filter for pursuit, as is direction.

1.4.6 Frame of reference of the spatial filter for pursuit.

The experimental design used so far shows that there is a spatial filter for pursuit, as the

post-saccadic eye velocity depends on the location of the moving target relative to the

endpoint of the saccade. However, it does not resolve the frame of reference of the spatial

filter. In all of our experiments so far, the target was displaced away from both the endpoint

of the saccade and the current location of the fovea. As such, our previous experiments

cannot disambiguate whether the spatial filter is positioned in relation to the location of

the target on the retina before or after the saccade. The experiment diagrammed in Figure

1.6A can do so.

Each trial began with the monkey fixating straight ahead. At the start of interval #1,

the fixation target disappeared and another target appeared eccentrically at 3 degrees up

and right. At the start of interval #2, before the saccade, the target stepped 3 degrees up

or down and began to move back toward the vertical meridian either along the horizontal

axis (Figure 1.6A, interval #2b, "along") or along a parallel line 6 degrees off the axis (Figure

1.6A, interval #2a, "above"). Once the monkey makes a saccade to the original location of

the target at 3 degrees up and right, these two options disambiguate the coordinate system
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Figure 1.6: Analysis of the frame of reference of the relationship between post-saccadic
eye velocity and the distance from the endpoint of the saccade to the target position. A:
Schematic diagram showing the task as a sequence of 4 snapshots in time. A1. A stationary
target (open circle) appeared 3 deg above and to the right of the eye (x). A2a/b. The target
could follow onw of two trajectories. It could step 3 deg upwards and begin moving to the
left, "above" trials, indicated with a grey filled circle. Or, it could step 3 deg downward to
the horizontal meridian and begin moving to the left, "along" trials indicated by black filled
circles. A3a/b. The eye makes a saccade to the original location of the target, and begins
to move smoothly to the left. A4a/b. The eye makes a saccade to the correct location of the
target and continues to track it smoothly. (B) Graphs that plot eye velocity as a function of
the duration of target motion prior to the first saccade for two monkeys. Grey and black
dots show data from individual trials in which the target stepped so that it moved either
above or along the horizontal meridian. The solid grey curves show the exponential fit to
the "above" trials, while the two dashed black curves delimit the 95% confidence intervals
on the fit to the "along" data.
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of the spatial filter. For both the "above" and "along" target motions, post-saccadic eye

velocity is driven by new target motion that is approximately 3 deg from the eye position

at the endpoint of the saccade. If the spatial filter is centered on the endpoint of the saccade,

then the responses to either target motion should be the same, because in both cases, the

motion is 3 degrees from the endpoint of the saccade. However, the "above" and "along"

target motions provide new target motion at quite different retinal eccentricities just before

the saccade. The target motion along the horizontal meridian is very close to the fovea

while the target motion that is above the meridian is more than 6 deg eccentric. If the filter

is centered in retinal coordinates on the fovea just before the saccade, then post-saccadic

eye velocity should be larger for the target that stepped back to the horizontal meridian.

Post-saccadic eye velocity was the same for both target trajectories. The symbols in Fig-

ure 1.6B plot two monkeys’ post-saccadic eye velocity on individual trials, as a function of

the duration of the new target motion that caused the pursuit response. The duration was

defined as the interval between the step and ramp of target position at the start of interval

#2 and the monkey’s saccade at the start of interval #3. Post-saccadic eye velocity increased

as a function of the duration of motion exposure, and the data overlapped extensively for

the along target motion (black symbols) and above target motion (grey symbols) for both

monkeys. To quantify this claim, we fitted an exponential to the data (1.2), and calculated

the 95% confidence intervals for our fit. The grey line representing the fit to the "above"

trials sits well within the black dashed lines, which show the 95% confidence intervals of

the fit to the "along" trials, demonstrating that the response of the pursuit system under

these different conditions cannot be distinguished. For monkey Mo, the latency (β ) and

time constant (τ) were 0.19 and 0.04 for 471 "along" trials; for 436 "above" trials, β and τ

were -0.64 and 0.04. For monkey Pu, β and τ for 148 "along" trials were -0.69 and 0.05;

for 153 "above" trials, β and τ were -0.99 and 0.04. We conclude that the spatial filter for

pursuit is centered on the endpoint of the saccade: the location of new motion relative to

the endpoint of the saccade is more important in determining the magnitude of pursuit
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than is the actual retinal location of the target.

1.4.7 Dynamics of processing in the spatial filter for pursuit

Figure 1.6B shows that post-saccadic eye velocity depends strongly on the duration of the

new motion before the saccade. Figures 1.7A-F analyze the dynamics further by re-plotting

the data from the experiments reported in Figure 2 and the accompanying text. Recall that

in these experiments, the targets were displaced and assumed an orthogonal direction of

motion at the start of interval 2. For each of the three different step sizes (0/1, 5, or 9 deg)

in that experiment, we plotted horizontal eye velocity when it was in the direction of new

target motion in Figures 1.7A-C, and when it was in the direction of old target motion in

Figures 1.7D-F. The gray clouds of points show normalized post-saccadic eye velocity as

a function of the duration of new motion for each individual trial from 4 monkeys. Eye

velocity was normalized relative to the average post-saccadic eye velocity measured on

control trials in the same experiment, when the target started to move horizontally and

continued without any changes.

Figures 1.7A-C show that longer durations of pre-saccadic target motion in the new

direction caused larger post-saccadic eye velocities. The duration of the rise from zero to

90% of maximal response is between 90 and 130ms, and is similar to the initial response of

the smooth pursuit system to optimal step-ramp target trajectories. For a direct compari-

son between the two, see Figure 5 of [Lisberger, 1998]. The data are well-approximated by

the sigmoid curve in each graph; the solid ribbon shows 95% confidence intervals around

the best fitting curve. Details about the fits and the exact values of the sigmoid at 90%

can be found in Table 2. Figures 1.7D-F show that post-saccadic eye velocity in the direc-

tion of original motion declines as a function of the duration of the new motion. The data

could again be summarized by the superimposed decreasing sigmoid functions plotted as

ribbons to show their 95% confidence intervals. The functions describing the decrease in

post-saccadic eye velocity are related to the offset of the pursuit response, as analyzed in

26



0

0.5

1
A 1 deg B 5 deg C 9 deg

N
o

rm
a

liz
e

d
 p

o
s
t-

s
a

c
c
a

d
ic

 e
y
e

 v
e

lo
c
it
y

0

0.5

1
D E F

0 25 50 75 100
0.25

0.75

1.25
G

Duration of new motion before targeting saccade (ms)

0 25 50 75 100

H

0 25 50 75 100

I

Figure 1.7: Temporal dynamics of the modulation of visual-motor transmission for pur-
suit. All plots show normalized horizontal post-saccadic eye velocity as a function of the
duration of new motion before the beginning to the targeting saccade. Normalization was
performed relative to the post-saccadic eye velocity on control trials in which a single tar-
get moved horizontally. Graphs are grouped by rows, which show a particular type of
experiment, and columns, which show data when the displacement of the target was 1, 5,
or 9 deg. In each graph, the tiny gray dots show the responses in individual trials across all
4 monkeys. A-C: Data from the experiment described in Figure 1-2. Initial target motion
was vertical and the new target motion was horizontal. The graphs plot the time course of
the increase in post-saccadic eye velocity in the direction of new motion. D-F: The original
direction of motion was horizontal and the new direction of target motion vertical. The
graphs plot the time course of decay of the response to the old, horizontal target motion.
In A-F, the black ribbons show the best fitting sigmoid function with the 95% confidence
intervals on the fit. G-J: Data from the experiment diagrammed by open circles in Figure
5A, where the target underwent a vertical displacement but continued to move horizon-
tally at 20 deg/s so that the original and new motions were the same. The jagged solid line
corresponds to the mean of the data smoothed by a 5 ms sliding window. The dashed line
shows to the sum of the sigmoid fits from the data in the in two graphs directly above each
of the bottom graphs.
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Figure 4 of [Luebke and Robinson, 1988], Figure 5B of [Soechting et al., 2005], and through-

out [Krauzlis and Lisberger, 1994]. The parameters of the sigmoid fits to the data (1.1) re-

veal how the location of the visual stimulus within the spatial filter affects the dynamics

of the gain of visual-motor transformations for pursuit. As shown in Table 1.2, the slope

decreased and the half-maximum time of the best fitting sigmoid increased as a function

of the distance from the saccade endpoint to the target. Thus, gain of visual-motor trans-

formations rises more quickly to a higher level at the center of the spatial filter.

The time courses of gain modulation in Figure 1.7 allow us to explain why the values

of post-saccadic eye velocity in the direction of the original target motion were small and

not strongly related to the duration of new motion in Figures 1.2D and 1.3D. Figures 1.7D-

F indicate that post-saccadic eye velocity in the original direction of target motion decays

quite rapidly, reaching 10% of its maximum value when there had been as little as 65 ms of

new motion (Table 1.2). Because we included data in our graphs only if there had been in

excess of 50 ms of new motion, the values of post-saccadic eye velocity should be small and

therefore the effects of the distance from the endpoint of the saccade to the target difficult

to see.

Table 1.2:
Step size Slope (95% CI) Half-max (95% CI) # Trials Time at 0.10 Time at 0.90
0/1 deg, "New" 0.061 (0.003) 53.9 (0.8) 2814 18.94 90.01
5 deg, "New" 0.053 (0.003) 73.4 (1.36) 3055 30.67 112.82
9 deg, "New" 0.045 (0.003) 86.3 (2.23) 3161 37.04 129.54

0/1 deg, "Old" -0.066 (0.003) 36.0 (0.7) 3446 64.24 7.39
5 deg, "Old" -0.050 (0.002) 52.4 (0.88) 4737 88.89 9.03
9 deg, "Old" -0.048 (0.003) 58.9 (1.21) 4234 97.38 12.76

1.4.8 Motion processing within the spatial filter reflects the weighted vector

superposition of old and new target trajectories

The bottom row of graphs in Figure 1.7 plots data for the trials from Figure 1.5, where the

target moved horizontally at 20 deg/s, and underwent a step displacement but did not
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change direction or speed. Even though the same direction and speed of target motion

was present both before and after the step change in target position, the clouds of points in

Figures 1.7G-I suggest a parabolic shape that is clarified by averaging the normalized eye

velocity in 1 ms bins to yield the functions shown by the bold, jagged curves.

The transient dip in the relationships between post-saccadic eye velocity and the dura-

tion of the visual motion stimulus even when the target has not changed speed or direction

suggests that a step of target position initiates two simultaneous components of the pur-

suit response: decay of the response to the original motion and build-up of a response

to the new target motion. To test this hypothesis, we added the paired functions derived

from the data in the first two rows of Figure 1.7, which provide direct estimates of the time

courses of build-up and decay of the horizontal pursuit response. For each size of target

step, the resulting curves (Figure 1.7G-I, dashed curves) predict the means of the actual

data quite well, diverging only as the number of points becomes small when the duration

of "new" motion approaches 75-100 ms. The analysis in Figure 1.7 provides direct support

for the conclusions of [Soechting et al., 2005] who showed that the pursuit response to an

abrupt change in target direction could be described as the vector superposition of two

discrete responses.

The graphs in Figure 1.7G-I explain why the average post-saccadic eye velocity did

not depend on the distance from the saccade endpoint to the target when the target un-

derwent a step of position but did not change speed or direction (Figures 1.5B-E, open

symbols). Under these conditions, eye velocity was near its minimum when the duration

of new target motion was 50 ms, which is the situation that obtained when many of the

data in Figure 1.5 were measured. However, the minimum was not a large decrease from

maximum, and did not depend on the distance from the endpoint of the saccade to the

target position.
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1.5 Discussion

We have demonstrated that target motion is processed preferentially to guide smooth pur-

suit eye movements within a symmetric spatial region around the endpoint of a saccade.

When the initial target motion at one location in one direction is followed closely by new

target motion at a new location, the resulting pursuit eye movement reflects a weighted

vector superposition of the two. The weighting is related to, and varies dynamically in

time as a function of, the spatial distance between the saccade’s endpoint and the target.

Intuitively, visual motion signals stimulating the foveal retina ought be more effective in

driving pursuit; given the latency of visual processing, this effect would first be detectable

100 ms after the saccade brings the eye to point at the target. Instead, our results demon-

strate that the weighting change is present immediately after the saccade and therefore,

because of the latencies in sensory-motor processing for pursuit, must begin before the

saccade. Thus, the pursuit system anticipates the spatial location of target motion with

respect to the endpoint of a saccade, and responds unhampered by the visual latency. Our

Discussion will make the case that this very specific oculomotor interaction affords a com-

prehensive and mechanistic description of gain control for smooth pursuit eye movements.

1.5.1 Old and new concepts of gain control for pursuit

There is a marked difference between pre-saccadic and post-saccadic smooth eye velocity

when comparing responses at comparable times after the onset of target motion [Lisberger,

1998, Ogawa and Fujita, 1998]. Lisberger [1998] suggested that post-saccadic enhancement

could be thought of as one consequence of a "volume control" turned to a high setting

by the execution of a saccade. Gardner and Lisberger [2001, 2002] demonstrated that the

saccade-driven increase in pursuit gain was inextricable from more cognitive processes

of decision-making. When confronted with the motion of two targets, pursuit generates

an initial, pre-saccadic eye velocity that is a weighted vector average of the independent
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responses to the two targets. A natural or electrically evoked saccade to one target is

sufficient to drive post-saccadic smooth pursuit preferentially by the motion of the target

closest to the endpoint of the saccade. The selective change in pursuit gain is sufficient to

instantiate a "choice" between the two targets.

We propose a single model of pursuit that can explain our data as well as a two prior

observations: smooth pursuit results from a stereotyped response to visual motion, where

the response is modulated by a spatial filter that operates as though it moves with the

eye. First, Lisberger and Westbrook [1985] demonstrated the existence of a comparable

spatial filter in their exploration of the consequences of initial target eccentricity on pre-

saccadic pursuit. They attributed the modulation to weaker visual motion signals from

more eccentric retinal locations. Even though the filter described in the present paper is

centered on the endpoint of the saccade, rather than the current position of fixation, their

filter is remarkably similar. Second, the temporal dynamics of the filter, revealed in our

Figure 1.7 and Figure 5 of Lisberger [1998], follow a time course remarkably similar to that

of the "best" pre-saccadic eye velocity initiated by a target that ramps toward the position

of fixation from just eccentric [Lisberger and Westbrook, 1985]. Given the similarity of

the spatial and temporal properties of the filters that affect both pre-saccadic and post-

saccadic pursuit, it seems reasonable to conclude that they are mediated by the same neural

mechanisms. The saccade plan represents the upcoming locus of the fovea; as the plan is

formulated and executed, the locus of the strongest positive modulation of visual motion

inputs moves to the upcoming location of the fovea.

Liston and Krauzlis [2003, 2005] have proposed a different explanation based on data

that fit well with ours. They used the shorter latency of pursuit to study the response of

the oculomotor system to two targets. They contrived a situation where the initial pur-

suit response could be in a different direction than the eye movement following a saccade,

and studied pursuit dynamics in the pre-saccadic period. They posit that a single high

level "decision process" coordinates the tracking response, forcing the smooth eye move-
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ment to match that of the target closest to the endpoint of the saccade. Their data are

consistent with our proposal for the role of the saccade: the formulation and execution of

the saccade plan itself provides the "decision signal" for the pursuit system by enhancing

the transmission of visual motion signals from the region of space at the endpoint of the

saccade. Further, the time-course of their effect resembles the formulation of a plan to sac-

cade. Our interpretation is consistent with their report that subthreshold microstimulation

in the superior colliculus can bias pursuit toward the motion of targets passing through

the movement field of the excited neurons [Carello and Krauzlis, 2004]. Finally, our inter-

pretation provides a mechanistic explanation for why space ought be a primal cue for the

pursuit system, as Adler et al. [2002] have described: a spatial cue provides direct infor-

mation to the pursuit system about the upcoming location of the fovea, just as does the

saccade plan. We conclude that our data provide a quantitative description of the influ-

ence of the upcoming locus of the fovea, as driven by the saccade plan, on smooth pursuit

eye movements.

1.5.2 Features of the neural underpinnings of a moveable spatial filter, and per-

ceptual consequences

We propose that weighting retino-centric visual motion by the upcoming position of the

eye in space transforms the representation of visual motion into a spatial command for eye

velocity. Saccades rely on a similar coordinate transformation, taking account of the for-

mer retinal position of a flashed stimulus and all subsequent changes in the position of the

eyes [Mays and Sparks, 1980]. Insights from computational studies provide a framework

for thinking about how this kind of computation might be done in the brain. If model neu-

rons combine extra-retinal information about the locus of gaze with visual signals about

the retinal position of a target, then they can learn and compute a movement command

appropriate for bringing the eyes to the position of a target in space [Zipser and Andersen,

1988, Pouget and Sejnowski, 1994, Salinas and Abbott, 2001, Smith and Crawford, 2005].
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These models suggest that neurons involved in creating a spatial-weighting of the visual

motion drive for pursuit ought integrate two signals: A directional signal related to the

retinal visual motion stimulus, and a direction-independent gain modulation related to

eye position. The effects of electrical stimulation of pursuit-related neurons in the frontal

eye fields were interpreted as having two similar components, suggesting a direct neural

correlate of the interactions needed to explain our data [Tanaka and Lisberger, 2002a].

It would be tempting, but unproductive, to speculate about the anatomical loci of ei-

ther the filter itself or the signals that control it. It is unlikely that neural correlates of such

fundamental sensorimotor transformations would be restricted to a single anatomical lo-

cus, as neurons across the sensorimotor spectrum show spatially-selective enhancement in

conjunction with saccades [Newsome et al., 1988, Tolias et al., 2001, Reppas et al., 2002].

Even subthreshold micro-stimulation in an area that generates saccades (FEF) enhances

visual responses in the extrastriate visual cortex (V4) to targets presented at the endpoint

of saccades generated by stronger stimulation at the same site [Moore and Armstrong,

2003]. While it is likely that the filter’s effects will be felt across many anatomical areas,

research into the neural correlates of attention suggests that these effects might be different

in magnitude in tractable ways.

Our proposed filter fits well with concepts suggested by prior research on attention.

For example, neurophysiologists have demonstrated many correlates of perceptual en-

hancement where the neural responses to a given visual stimulus are larger if a monkey

attends to the location of the stimulus or is going to use the stimulus as the target of an

impending saccade, e.g. [Goldberg and Wurtz, 1972, Mountcastle et al., 1981, Connor et al.,

1997, Bisley and Goldberg, 2006]). The magnitude of these effects can vary with the area.

Consider two areas involved in representing retinal motion to drive smooth pursuit eye

movements, MT [Newsome et al., 1985, Carey et al., 2005]) and VIP [Schlack et al., 2003].

The magnitude of neural modulation following cued attention is considerably larger in

VIP than in MT [Cook and Maunsell, 2002]; crucially, VIP receives considerable informa-
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tion about the position of the eyes, whereas MT has little or no extra-retinal input [New-

some et al., 1988, Bremmer et al., 1999, Cook and Maunsell, 2002]. Correspondingly, we

predict that the neural correlates of the spatial control of visual motion processing for pur-

suit will be clearest in areas that have responses related to visual motion and/or pursuit,

and also are driven strongly by information about the direction of gaze.

Lastly, we note an intriguing parallel between perceptual and motor effects of sac-

cades. In the face of many saccades, we maintain a stable perception of the world. As

Dodge [1907] observed, the inverse of the command to saccade is the exact signal needed

to maintain such perceptual constancy. Perception of both space and time is compromised

in specific ways around the time of the saccade [Morrone et al., 2005]. These perceptual

effects have been modeled as resulting from a coordinate transformation similar to the one

we proposed to explain our results [VanRullen, 2004]. Perhaps use of the pursuit system

to obtain continuous measures of the neural dynamics surrounding saccades will allow

an understanding at the level of neural circuits into this most fundamental and intriguing

perceptual phenomena.
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Chapter 2

Sparse Encoding of Smooth Eye

Movement by Single Spikes in

Frontal Eye Field Neurons

2.1 Abstract

Cortical neurons are customarily described as noisy encoders, whose responses must be

pooled to precisely encode behavior. In this study, we show that spikes from single neu-

rons in the pursuit sub-region of the macaque frontal eye field are sensitive enough to

encode trial-to-trial fluctuations in smooth eye movements. Using linear filter estimation

techniques, we model the co-variation of spikes and behavior, allowing us to measure

and describe the nature and strength of the relationship. Individual neurons tend to have

strong correlations at specific time periods, roughly in line with their moments of peak fir-

ing, which tile the duration of the trial in a sparse fashion. The shape of the filters suggests

a network of orthogonal encoders, supported by the finding that filtration decreases the

pairwise correlation between simultaneously recorded pairs. We estimate the co-variation

of neural activity, and build a simple summative population model compatible with our
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hypotheses of sparse network function. Our population model supports the idea that even

in the face of co-variation between pairs of neurons, behavioral variability arises from the

activity of a small set of highly active neurons.

2.2 Introduction

Cortical neurons respond to repeated stimulus presentations with highly variable patterns

of spikes [Tolhurst et al., 1983], yet we are able to make incredibly sensitive perceptual

judgments [Sakitt, 1972]. Some have proposed that this trial-to-trial variability represents

noise in sensory encoding, and suggested that responses of many neurons must be pooled

to obtain reliable perceptions [Shadlen and Newsome, 1998]. Recent theoretical work has

suggested that variability in and among cortical neurons may represent a probabilistic

estimate of how certain we are about a sensory stimulus [Ma et al., 2006]. Both these

models suggest that single spikes play little role in the final perceptual judgment.

Like sensory neurons, cortical neurons in motor areas vary their firing from movement

to movement. Unlike sensory stimuli that can be presented repeatedly, movements to-

wards the same goal vary across repetitions. Does variation in the firing of motor neurons

represent noise that is averaged out by pooling operations, or might this variation form

part of the motor command signal itself? Recent work has successfully linked prepara-

tory cortical dynamics to motor variability [Churchland et al., 2006a,b, Riehle and Requin,

1993], suggested a sensory origin for motor variability [Osborne et al., 2005], and begun to

model the consequences of motor variability [Harris and Wolpert, 1998, Todorov and Jor-

dan, 2002]. Work with large ensembles of simultaneously recorded neurons for continuous

behavior suggests that neural variability in cortical motor areas is so potent that stable rep-

resentation of movement is only possible by pooling large numbers of neurons [Carmena

et al., 2005, Lee et al., 1998, Maynard et al., 1999, Paninski et al., 2004b]. To examine this

suggestion, we explored whether single cortical spikes could encode the trial-to-trial vari-
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ations present in a repeated oculomotor behavior.

Pursuit is a dynamic oculomotor behavior engaged when primates attempt to keep

their fovea pointed at a target that is moving in space. A subset of neurons in the frontal

eye fields (FEFSEM) of the macaque monkey respond preferentially during smooth track-

ing in a given direction. Electrical microstimulation of the FEFSEM both drives smooth

eye movements and increases the gain of the eyes’ response to target motion. Previous

recording studies have demonstrated a link between the mean firing of single neurons in

the FEFSEM and ongoing smooth pursuit [Tanaka and Lisberger, 2002a]. We thus capital-

ize on the strong relationship between spikes in the FEFSEM and the eye movement in the

subspace of the neuron’s preferred direction [Ringach et al., 1997].

To quantify the co-variation between neural activity and the dynamic pursuit behavior,

we use linear systems analysis to estimate the nature and fidelity of the transformation be-

tween brain and behavior [Halliday et al., 1995, Paninski et al., 2004a]. We derive a function

that represents the transformation between deviations from the "average" spiking activity

of single neurons in the FEFSEM and simultaneous deviations from the mean eye velocity,

and show that this function can predict the trial-to-trial dynamics of the eye movement for

a set of neurons. An individual neuron’s peak activity is restricted to particular times in

the trial, which we term "sparseness," and correlates well with the time of best correlation

between neural and behavioral variation. We model the consequence of such a relation-

ship, demonstrating the limits placed on the level and nature of downstream noise. Using

measurements of pairwise covariation between filtered spike trains from simultaneously

recorded neurons, we model the generation of an eye movement in a manner compatible

with a sparsely driven population. Finally, classification of the filter shapes suggests an

orthogonal basis set, and we demonstrate that the filters act to decorrelate the spike trains.

Our data and models are compatible with the idea that the FEFSEM contains a sparse repre-

sentation of smooth eye movement, and that spikes from individual cortical neurons may

play a strong role in driving the dynamics of ongoing behavior.
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2.3 Results

Our experiments, analyses, and models were designed to quantify, at the level of short

time intervals and single trials, the degree of co-variation between dynamic behavior and

spikes from single and paired units in the macaque cortex. We begin with a description

of the fluctuations present in both behavior and neural activity when two monkeys re-

peated a highly constrained oculomotor behavior. Next, we use linear filter estimation

techniques, closely related to those used to characterize sensory responses, to model the

relationship between neural and behavioral variation, and to quantify the precision with

which neurons can encode variation. We describe the shapes and latencies of our pop-

ulation of filters. We next show the temporal heterogeneity of peak neural activity, and

describe its relationship to the time course of the neuron-behavior correlation. To under-

stand the conditions under which such a relationship obtain, we explore a simple model

of the downstream noise. We then show data from a pair of simultaneously recorded units

from our data set, and the relevant distributions we measure. A model of the population

follows, using the distributions from all pairs to estimate the size and nature of the net-

work. Finally, we conclude by demonstrating that the orthogonality of our filters serves to

decorrelate spike trains.

2.3.1 Neural and behavioral variation expressed as residuals

To elicit a set of highly stereotyped behaviors, we trained two male monkeys to fixate on

a target straight ahead, and then to track the target after rapid displacement to one side,

followed by constant velocity in the opposite direction across the original position of fix-

ation. This "step-ramp" stimulus naturally induces the eyes to track the target, beginning

with a smooth acceleration of the eyes 100 ms after target motion begins, followed by

sustained smooth tracking near the velocity of the target. Though the eye movement re-

sponse to step-ramp target motion is stereotyped, animals show considerable variation in
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the latency to move, the magnitude of acceleration, and the final tracking velocity (Figure

2.1A). The smooth component of eye movement evoked by the target motion has the same

general form on each trial (Figure 2.1A, gray traces), but the spread in the distribution

demonstrates that each motor response is unique.

Likewise, single neuron activity recorded in the FEFSEM during repeated responses to

the same target motion shows a stereotyped profile with subtle trial-to-trial variability. The

raster in Figure 2.1B shows neural activity associated with each of the 95 eye movements

included in Figure 2.1A. On every trial, the neuron was relatively silent before the eyes

began to move, and was then generally active during tracking. For this particular neuron,

activity was most vigorous in two intervals, one at the beginning of the movement, and

one towards the end of the illustrated interval. Even in the face of this consistency, there is

considerable variation in the precise number and timing of spikes on individual trials. The

variation appears to be random in the sense that the raster does not suggest any consistent

drift in the neural response across the duration of the experiment (from bottom to top of the

raster). Consequently, we are confident that we can consider the response to be stationary

across the experiment.

To examine behavioral and neural variation in more detail, we plotted the residuals

of eye movement and firing rate, defined as the difference between the response on each

individual trial and the mean across trials. The residuals of eye velocity (Figure 2.1C, gray

traces) reach maxima of about +5 deg/s, about twice the magnitude of the standard devia-

tion of the original traces (black trace) and considerably smaller than the 15-20 deg/s of eye

velocity in the original traces. Inspection of Figure 2.1C, and more detailed quantitative

analysis, confirm that the residuals form a continuous distribution that is fairly uniform

across the part of the trial that contains smooth tracking. While some of the variation no

doubt arises from the way in which we’ve aligned the trials, all of our findings are robust

to trial alignment. Similarly, our findings obtain when we perform our analysis on the eye

position trace, rather than on eye velocity records (Figure 3.1).
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Figure 2.1: A typical example of neural and behavioral variability. A, The gray area shows
superimposed eye movements in response to 95 presentations of identical target motion.
The dashed black line indicates target velocity as a function of time. B, Raster showing
the responses of a single neuron during the eye movements shown in A; each black tick
indicates one spike. C, Residuals of eye velocity derived from the data in A by subtracting
the mean of all responses to a given target motion from each individual trace. The black
trace shows standard deviation of the residuals as a function of time. D, The gray area
shows the residual spikes as a function of time; the thick black line shows the standard
deviation of the firing rate residuals.
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We obtained an analogous representation of the variation in firing rate by starting with

a binary representation of each trial. In each 1 ms-wide bin, the neural activity takes on a

value of one, if a spike occurred in that bin, or zero, indicating no activity. To compute the

residuals of firing rate, we subtracted the average activity across trials (effectively, a peri-

stimulus time histogram) from the binary representations of the neural activity on each

trial. When the residuals from all 95 trials are superimposed (Figure 2.1D), the spikes from

individual trials cannot be resolved but it is possible to see important trends. Within each

individual trial, there is a small but non-zero probability in any 1-ms bin that a spike will

have occurred. When a spike is present, it takes the gray traces up to a value of one minus

the mean across trials. Because 95 traces have been superimposed, the spikes appear as a

positive gray area during the time when the neuron responds. In most bins, however, a

spike will not have occurred so that the value of the residual is the negative of the mean

firing rate (〈fr〉), or the PSTH, inverted. At higher resolution (not shown), it becomes clear

that the top and bottom of the gray region ride, as expected, along (1−〈fr〉) and (−〈fr〉) .

This and other analyses were done with a bin size of 1 ms. We show in Supplementary

Figure 3.2 that altering the bin size, or sampling resolution, does not change the nature of

our results.

Figure 2.1 illustrates that there is a reasonable degree of trial-by-trial variation in both

smooth eye movements and neural activity when the monkey tracks the same target mo-

tion repeatedly. The heterogeneity provides a substrate for asking whether there is a rela-

tionship at the level of individual trials between neural and behavioral fluctuations.

2.3.2 The structure of correlations between neural and behavioral variation

To ask whether eye movements co-vary with single neuron activity, we must first derive

a relationship between spiking and movement. Spikes in FEFSEM could be correlated with

changes in the eye movement that precede or follow them, and might be related to any

number of movement parameters such as velocity or acceleration. We adopt a linear sys-
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tems approach that models the eye movement velocity residuals on each trial as a linear

filter of the spiking residuals. This approach makes few assumptions about what the neu-

ron encodes, and can capture relationships between spiking and any linear combination

of movement parameters. Similar to filters derived from reverse correlation in sensory

systems, the filter for any particular neuron provides a linear approximation of "what the

neuron encodes." Using residuals restricts the analysis to a small range of eye movements,

with the advantage of making our linear model a reasonable approximation to the com-

plete non-linear relationship between spiking and movement.

The linear filter is closely related to the more familiar description of the trial-by-trial

correlation between the residual firing rate and the residual eye velocity (Brenner et al.,

2000; Gerstein and Perkel, 1972; Vaadia et al., 1995). In the correlation "map" shown in Fig-

ure 2.2A, each pixel represents the strength of the relationship between one time point in

the eye movement and one time point in the neural response. The color of each pixel rep-

resents the value of Pearson’s correlation coefficient between the residual of eye velocity

and the residual firing rate across all trials, evaluated at all pairs of time points. To make

the trends in the data more readily apparent, we’ve smoothed the residual spike train with

a Gaussian function of width 20 ms.

The upper-left corner of Figure 2.2A represents the period of fixation before the tar-

get starts to move (c.f. Figure 2.1A), and is mottled green and blue, corresponding to the

limited variation in both the eyes’ velocity and the neural response. During the initiation

of pursuit (t = 100 to 200 ms), there is a strong positive correlation between the residual

firing rate, and the residual eye movement 10-20 ms later. The correlation appears as the

red peak with a dark core just below the black diagonal line. The correlation map also con-

tains a wide region of positive correlations at later times in the response, and a blue strip

indicating strong negative correlation just to the right of the strongest positive correlation.

The hotspots in the correlation map of Figure 2.2A suggest that the neuron’s response

across trials does co-vary with the animal’s behavior. However, the analysis has sev-

42



Time during firing rate
-200 0 250 500

Tim
e d

ur
ing

 ey
e v

elo
cit

y -200

0

250

500

A

Va
lue

 of
 r

-0.7

-0.35

0

0.35

0.7

Time from spike (ms)
-350 -175 0 175 350

De
g/s

/sp
ike

-0.25

0

0.25

0.5

0.75

1
B

Time (ms)
-200 0 250 500

Va
lue

 of
 r

-0.5

0

0.5

1C

Frequency (Hz)
0 4 8 12 16

Co
he

re
nc

e

0

0.25

D

Po
we

r in
 ey

e v
elo

cit
y

0

0.1

0.2

Peak value of r
0 0.4 0.8

Nu
mb

er
 of

 ne
ur

on
s

0

15

30
E

log Filter size (deg/s)
1 1.5 2 2.5

Pe
ak

 co
rre

lat
ion

0

0.5

1
F

Figure 2.2: The co-variation between spikes and eye movements for an example neuron.
A, The joint peri-behavior correlation histogram between the eye movements and spikes.
Each pixel shows the correlation coefficient between the eye velocity and the spikes at
times given by the position of the x- and y-axes. B, The black trace shows the filter that
describes the relationship between residual eye velocity and spikes as a function the time
elapsed from a spike. Negative and positive values of time correspond to changes in eye
velocity that precede or follow the spike. The gray trace shows the corresponding filter
derived from shuffled trials. The width of the function represents one standard deviation
above and below the distribution of filters derived from 150 draws of 40% of the trials. C,
The black and gray traces plot the correlation coefficient between the actual and predicted
residuals as a function of time, for the filters obtained from the actual and shuffled data,
respectively. The width of the line represents one standard deviation above and below the
mean for 150 tests of the 60% of the data reserved to test the filter. D, The coherence of the
filter in B is plotted as a function of frequency; black corresponds to the normal transfer
function, and gray to the shuffled. Overlaid in red is the normalized power in the residual
eye velocity. E. Peak neuron-behavior correlation for each cell in the population; significant
cells (n = 105/141) in black, non-significant cells in grey. Means for each distribution are
plotted as lines, colored accordingly F, Filter size, on a log scale, plotted against the peak
values for neuron-behavior correlation. Significant cells in black, non-significant cells in
grey.
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eral limitations: it does not provide a single number that encapsulates the amount of co-

variation; it does not correct for the influence of correlation within the eye movement or

spike train; and it does not provide a testable model of the relationship between spiking

and behavior.

The filter shown in Figure 2.2B (black ribbon) corrects the limitations inherent in the

correlation map of Figure 2.2A. It is derived by cross-correlating the residuals in the eye’s

velocity with the residuals in the spike train (Section 2.5), and is closely related to the av-

erage value along the diagonals of Figure 2.2A. The filter shows the time course of the

variation in eye velocity that is related to the occurrence of one extra spike above the mean

in our example neuron. The shape of the filter suggests that following each "extra" spike,

the eye increases its velocity over a duration of ∼130 ms, with a peak response of ∼0.75

deg/s. The time where the filter peaks, 57 ms after the extra the spike, represents the time,

probabilistically speaking, when the influence of an "extra" spike will be felt most strongly.

The filter was corrected for the first-order correlations in the spike train; correcting for cor-

relations in the eye movement yielded a similar filter, reflected about the zero-lag point.

The gray ribbon describes a filter derived similarly on the same data, but shuffled to re-

move the trial-to-trial correspondence.

The filter in Figure 2.2B allows us to assess the magnitude and significance of neuron-

behavior covariance, and provides a model of how an additional spike in this cell influ-

ences the behavior, but it does not tell us what percent of the behavioral variation can

be accounted for by this neuron’s firing. To obtain such a measure, we used the filter to

predict the time course of the residual eye velocity for each test trial and computed the

trial-by-trial correlation between actual and predicted residual eye velocity as a function

of time (Figure 2.2C, black ribbon). Here, the black ribbon is visible only when the cor-

relations were statistically different (paired t-test, p < 10−3) from the analysis based on

shuffled data (gray ribbon). The correlations were small and mostly non-significant before

the onset of pursuit. They rose rapidly around the initiation of pursuit, reached values as
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high as 0.7 for an interval of 20 ms duration, and were greater than 0.6 for an interval of

over 50 ms. For the example neuron, maximal correlations between actual and predicted

residuals of eye velocity fell around the time when the neuron fired most vigorously (cf.

Figure 2.1B).

While corrected for correlations in the spike train residuals, our filter is still compro-

mised by the correlations in the eye movement. To be sure of the veracity of our estimates

of the relationship between neuron and behavior, we computed the coherence of our fil-

ter, plotted in Figure 2.2D as black bars. The coherence between two signals describes the

variance at a given frequency accounted for by the function relating the signals (our filter);

it is weighted by the autocorrelation of both eye movement and spike train residuals. If

the coherence were one, there would be a perfect trial-by-trial correspondence between the

neural and behavioral variation; the coherence is thus similar to the square of the correla-

tion coefficient.

For the example unit, over the frequency range that contained most of the power in

the eye movement residuals (0-8 Hz), the coherence averaged 0.25; compare to the coher-

ence of the shuffled trials, plotted in grey. The coherence has two major peaks: one peak

is at frequencies below 4 Hz where eye movement has the most power (red curve); the

other peak is at ∼6 Hz and probably corresponds to the initiation of pursuit, expressed

as a small deflection at ∼6 Hz in the power spectrum of the variation in eye velocity (red

curve). The spectrogram of the eye movement residuals confirms this hypothesis (data not

shown). The difference in the relative size of these two peaks in the eye movement and

the coherence suggests that the neuron responds preferentially to more rapid changes in

the eye movement, such as pursuit, and responds less to slow changes in the eye move-

ment . Thus, the coherence agrees both quantitatively with the filter analysis, in that the

filters account for about 25% of the variation in the actual residual eye velocities, as well

as qualitatively, as the preferred frequency range matches the correlation obtained in the

time domain analysis across the interval of pursuit (100 to 500 ms) (Figure 2.2C).
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Population data confirmed the patterns seen in our example cell. Of 141 neurons in our

sample, 105 yielded filters that were statistically different from filters based on shuffled

data. For each neuron, we evaluated the correlation between the actual and predicted

residuals of eye velocity as a function of time, as in Figure 2.2C, and measured the peak

value of the correlation coefficient. For the neurons with significant filters (Figure 2.2E,

black versus gray bars), the peak value of the correlation coefficient averaged 0.41 (range

0.18 to 0.76, SD: 0.15) versus those that were not statistically significant, averaging 0.23

(range 0.07 to 0.43, SD: 0.08). The correlations between actual and predicted residuals

were significantly different for significant versus non-significant filters (t-test,p < 10−9).

The measures of coherence over the frequency range from 0 to 10 Hz (data not shown)

confirmed those in the time domain: the mean for significant cells was 0.15 (SD: 0.10), while

for non-significant cells the mean was 0.11 (SD: 0.08) (Wilcoxon rank-sum, p < 0.02). As

expected, many neurons had values of coherence that peaked between 0 and 10 Hz (data

not shown), in good agreement with the range of frequencies found in the eye movements.

Our population of neurons is not equivalent in their ability to encode behavioral vari-

ability. Figure 2.2F plots the peak neuron-behavior correlation against the log of the in-

tegral of the absolute value of the filter (a measure of filter "size"), with significant cells

in plotted in black, and non-significant in grey. The log of the size of the significant fil-

ters is normally distributed (Bera-Jarque test,p = 0.4). The correlation coefficient between

the peak neuron-behavior correlation and the size of the filter is significant, confirming

that the larger filters are more reliable encoders of the trial-to-trial fluctuations in behav-

ior (r = 0.43, p < 10−5). Crucially, the logarithmic distribution shows that some neurons

are considerably larger than others, allowing them to directly encode a greater range of

dynamic fluctuations in the behavior.

We have illustrated that we can describe comprehensively, on a trial-by-trial basis, the

nature of the correlation between the activity of a single neuron and the associated behav-

ior. We extend the analysis to a population of neurons, and find that many can encode a
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Figure 2.3: Properties of the filters that link neural activity to behavior. A,B,C, Superim-
posed time courses of statistically-significant filters that could be classified as monophasic
(A, n = 18), biphasic (B, n = 40), triphasic (C, n = 8), or unclassifiable (n = 39). For clarity,
filters are aligned at their center. D, The distribution of latencies is plotted as a stacked bar
histogram for the three filter types shown in A-C. Monophasic filters are plotted in light
gray, biphasic in dark gray, and triphasic in black.

surprisingly large fraction of the variability in the eye movement.

2.3.3 Filter shapes suggest an orthogonal basis set for movement commands

Do our neurons encode similar aspects of behavioral variation? The shape of the filter can

be thought of as the "feature" that best describes the relationship between neural activ-

ity and the attendant behavior. As such, filter shape allows considerable insight into the

behavioral consequences of a spike in a given neuron.

Of the 105 filters that were statistically significant, 66 could be classified according to

their shape into three classes: 18 had a single, positive-going lobe (Figure 2.3A), 40 were

biphasic (Figure 2.3B), and 8 were triphasic, with a large negative deflection (Figure 2.3C).
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Each filter shape suggests a different role in encoding smooth eye movement. A single

lobed filter describes an integrator: a neuron whose activity is related to a pulse of eye

velocity. The width of the filter reflects the downstream smoothing of the impulse pro-

vided by a single spike in the neuron. A biphasic positive-going filter describes a situation

where spikes are associated with a transition from lower to higher eye velocity, i.e. eye

acceleration. Finally, a triphasic filter with a downward deflection implies that a spike is

associated with an increase in the rate of change of the acceleration, or "jerk."

The latency and width of the filter provide another way to classify the data. Filters

with a negative, or acausal latency are traditionally described as "sensory," inasmuch as

their response is entirely determined by the information available before the spike. Filters

with a positive latency are causal, and traditionally called "motor," as their effects are ap-

parent only after the moment of a spike. The filter width suggests the time over which the

relationship between neuron and behavior is present. We estimate the latency of each filter

as the time from the extra spike to the "moment of maximal influence", defined as the time

of the peak of an single or tri-lobed filter and the zero crossing for a biphasic filter. The

distribution of time lags from the occurrence of an extra spike to the moment of maximal

influence had a single peak centered close to zero (Figure 2.3D). There was no difference in

time lag among the three filter types, and the mean latency from the spike to the moment

of maximum influence was -0.93 ms (SD: 54.9 ms). The filter width was on the order of

150 to 350 ms — the width is due to the structure of smooth eye movements, which by

definition are highly correlated in time. There was no relationship between the shape of a

filter and the time of its maximum influence.

To confirm our method of filter clustering, we aligned the classifiable filters on their la-

tency, and decomposed the resulting matrix into its principal components. The decompo-

sition confirmed our earlier classification, and is described in full in Supplementary Figure

3.6. Briefly, the shape of the each of the first three significant eigenvectors was either sin-

gle, double, or triple-lobed, and the clusters that emerged when filters were projected into
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this space precisely matched our classification. We thus feel confident that our grouping

of filters by the number of lobes is a reasonable approximation of the space in which they

operate.

2.3.4 The timecourse of neuron-behavior correlations suggests sparse encod-

ing, with low downstream noise

We have described a heterogeneous population of neurons, both with respect to their

strength and features. Are they similarly heterogeneous with respect to the timecourse

of the trial? Peak neural activity was remarkably dissimilar across our population of neu-

rons. Figure 2.4A plots the normalized PSTH from each cell as a color-coded line, ordered

by the latency to peak. The large red stripe tracks the peak of firing across the duration of

the eyes’ movement, and both cells with significant (top section) and non-significant filters

(bottom section) tile the space. The cells averaged 64.37 ms (SD: 40.93) spent at or above

80% of their peak rate. Similarly, Figure 2.4B plots the timecourse of the correlation be-

tween neuron and behavior, (cf. Figure 2.2C), for the population, again split into cells with

significant (top section) and non-significant filters (bottom section) ordered by latency to

peak correlation. Just as with peak neural activity, when the eyes are moving, a similar

stripe is visible.

The similar tiling across the trial led us to ask whether the cells most active at a given

time best predicted behavioral variability at that time. We found that this was true: the

mean correlation between the two time-courses was r = 0.40, and the range of our estimates

(SD: 0.35) gave us confidence that this was unlikely to be artifactual. As plotted in Figure

2.4C, the strength of the neuron-behavior correlation predicted the likelihood that said

correlation would resemble the PSTH (r = 0.54, p < 10−10). Therefore, there is a relationship

between the peak activity and the peak correlation time, and it is strongest for the best-

correlated neurons.

Cells in the FEFSEM are many synapses away from the muscles, and so the transforma-
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Figure 2.4: Temporal features of population activity, and a model of the consequences of
downstream noise. A, The PSTH from each cell was normalized to its maximum activity,
and plotted as a color-coded strip. Cells have been ordered according to the latency to
peak, and divided into significant (top group) and non-significant (bottom group). B, Each
horizontal line of the graph plots the correlation between the actual and predicted residual
of eye velocity as a function of time for a single neuron, where color indicate the value of
r. Data are grouped as in A. C, The correlation between the PSTH and the time course of
neuron-behavior correlations is plotted against the peak value of the correlation. Signifi-
cant cells are plotted in black, non-significant in grey. D, The filter from two model units is
plotted as a blue or red line, and the summed activity from the two (the model eye move-
ment) is plotted in black. E, The time course of the correlation between the signal from the
model unit and the summed activity of the two units assuming additive neural noise on
the model unit (grey line) and multiplicative noise on the model unit (black line). F, The
time course of correlation between the signal from the model unit and the summed activity
in the face of uncorrelated multiplicative noise on all units (grey line) and multiplicative
noise on both units and their summed activity (black line).
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tion between our spikes and the behavior is likely to be quite noisy. In the face of such

noise, how could the neuron-behavior correlation come to resemble the PSTH? To address

this question, we considered a simple model population. Here, our network is comprised

of two independent sub-populations summed together in the face of different types of

noise to produce the eye movement. These sub-populations can be thought of simply as

two independent neurons, or as the correlated and uncorrelated parts of the network. Fig-

ure 2.4D illustrates the time course of activity of the two model sources (blue and red lines),

as well as the time course of the command (black) generated by averaging the two traces.

If variations in a neuron’s output are additive — that is, if their standard deviation does

not depend on the cell’s mean firing rate — then the correlation between a given neurons’s

firing rate residuals and the motor command will be constant as a function of time (Figure

2.4E, gray line). However, if the variations are multiplicative, and scale with the mean

firing rate, the correlation as a function of time will closely resemble the sub-population’s

PSTH (black line), as the fraction of the overall variance contributed by that neuron will

rise with its firing rate. Multiplicative variations in firing rate arise naturally from neurons

that fire with near-Poisson statistics, such as found in our data set. Therefore, the restricted

time course of correlations between neural and behavioral variations may arise in part

from the firing patterns of the neurons themselves, in light of the multiplicative nature of

their variability.

In contrast, large multiplicative variations in other neurons comprising the active pop-

ulation can cause the neuron-behavior correlation for the neuron of interest to look dif-

ferent from its PSTH. As the variance contributed by these other noise sources rises, the

fraction contributed to the eye movement command by the neuron in question will drop.

Uncorrelated multiplicative noise in other neurons will tend to remove the inverse of those

other neurons’ PSTHs from the cell’s neuron-behavior correlation, as illustrated by the

gray line in Figure 2.4F (see the inverted notch at t = 280, the peak of the red cell’s PSTH).

Multiplicative noise applied directly to the eye movement command will decrease the
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magnitude of the correlation, but can preserve the time course of the correlation; such

an example is plotted in black.

The close match between the time course of the PSTH and the neuron-behavior correla-

tion in our data implies that multiplicative noise from other neurons or from downstream

sources ought to be small — a particularly profound finding, given the synaptic distance

of the FEFSEM from the muscles. The fact that the peak of the neuron-behavior correlation

predicts the similarity between the time courses can be accounted for by a small population

of reliable encoders of movement fluctuations. Our data so far suggests that a small popu-

lation of neurons, heterogeneous with respect to its strength, features, and time-course of

activity could be sufficient to encode the observed movement variability.

2.3.5 An example of the pairwise relationship between filtered spike trains

Thus far, we have dealt exclusively with the relationship between a single neuron and

behavior. To further our understanding of the set of neurons responsible for movement

variability, we need describe the relationship between the members. One direction of mo-

tion from two simultaneously recorded neurons is shown in Figure 2.5. The rasters are

plotted in Figure 2.5A, with color-coded spikes; the temporal heterogeneity we have de-

scribed earlier is clear, with limited overlap in the spikes. Figure 2.5B plots the two filters

as a function of lag, as well as a filter derived from shuffled trials, in grey. The red fil-

ter is considerably smaller than the blue filter; despite the size difference, the red neuron

was over twice as active in this direction: 37.86 (SD: 19.23) spikes/trial, compared to 16.25

(SD: 5.15) spikes/trial from the blue neuron. Figure 2.5C shows the correlation between

the predicted and actual behavior as a function of time, as well as the correlation with the

filter from randomly shuffled trials (plotted as a gray line).

We’ve previously established that the neurons in our population are likely contributing

to movement variability in a sparse fashion. Therefore, we restrict our analysis to times

when both neurons are likely to be part of the active population, as determined by overlap-
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Figure 2.5: The variation, co-variation, and neuron-behavior correlation for an example
pair of simultaneously recorded neurons. A, Raster showing the responses of two neurons
(blue and red) during the same set of eye movements in one direction. B, The filters asso-
ciated with each cell, color coded to match; grey lines are the filter derived from shuffled
trials. Filter width is the mean ± 1 SD. C, The time course of neuron-behavior correlation
for each unit and randomly shuffled data, color-coded to match. Blue and red horizontal
lines show the times when the correlation was 1.5 SD away from the randomly shuffled
data. Rectangle shows the time window for analysis, where both cells were significant. D,
The variation for all time points are plotted as color-coded bars on a log scale. The red cell
has been inverted. Black bars show the corresponding values during the time window of
interest, for each cell. E, The co-variation between filtered spike trains for all time points
is plotted in grey, and for the time window of interest in black. F, The color-coded distri-
bution of neuron-behavior correlation across the trial, with the time window of interest in
black.
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ping points in the time-course of the neuron-behavior correlation. Figure 2.5C plots (thick

lines) the potential time window for each neurons, with the overlapping region of interest

as a rectangle. Within this time region, we examined the variation, and co-variation of

the filtered spike trains (the set of predicted eye velocity residuals) from our example pair.

The variation is the absolute strength of the fluctuations arising from a set of filtered spike

trains. Similarly, the co-variation is the strength of the relationship between the predicted

eye velocity residuals from one neuron and its pair. Both quantities are time-vectors, with

units of (deg/s)2.

Figure 2.5D plots a histogram representing the probability distribution of the variation

on a logarithmic scale (n = 35,050). Each neuron is plotted with its respective color, and

the sign of the red neuron has been flipped for presentation purposes. The blue neuron

has a substantial fraction of values above 102, whereas the red neuron peaks around 101.5,

confirming that even with fewer spikes, the blue neuron can better describe large fluctu-

ations in behavioral variability, as predicted by size of their respective filters (c.f. Figure

2.5B). The two histograms plotted in black reflect the distribution of values found during

the time period of interest, where both neurons encoded behavioral variability well (n =

6850). In agreement with our finding that the time course of neuron-behavior correlation

tracks the time course of neural activity, the period where the filtered spike trains have

their highest values (the tail of the blue and red distribution) corresponds to the period

where both neurons have high neuron-behavior correlations.

Figure 2.5E plots the distribution of co-variation between the two units in time, as a

grey histogram. Given the opposite signs of the filters (c.f. Figure 2.5B), the large posi-

tive tail implies that the red neuron was more active on trials when the blue neuron was

less active. The black histogram shows the co-variation present during the time period of

interest; it sits well into the tail of the grey histogram, suggesting that there may be a rela-

tionship between when the neurons are both actively encoding behavioral variability and

when they are most related. Figure 2.5F examines this possibility by plotting the average
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correlation (r2, so as to value positive and negative correlations equally) during the time of

overlap (137 ms) against the average value of the best correlated non-contiguous 137 ms,

for each run of the model (n = 50). Each point lies above the unity line, demonstrating that

our example pair of filtered spike trains are maximally correlation elsewhere than the time

of overlap. On average, 24% (SD: 22%) of the highest correlation values were found within

the time period when both neurons were well-correlated with the behavior. We conclude

that the high values of co-variation found in the time period under examination likely arise

from above-average individual activity, and do not reflect a stronger relationship between

the two neurons.

We have quantified the relationship between activity from a pair of neurons and on-

going behavior by measuring three quantities: the variation, co-variation, and the neuron-

behavior correlation. Further, we have demonstrated the impact of evaluating the data

when both neurons can encode the trial-to-trial behavioral dynamics. For this particular

pair, the variability is log-normally distributed, suggesting that the encoding capacity of

neural fluctuations can be orders of magnitude greater at some times in the trial than in

others. Lastly, while the co-variation during the time window of interest is high, it does

not reflect the times when this pair of neurons is best correlated.

2.3.6 Quantification of the relationship between members of our population

We turn now to the distributions that characterize our data. 104 pairs of simultaneously

recorded units yielded 93 directions with overlapping significant activity, 22 of which had

at least 20ms worth of overlapping time; on average 85.18 ms (SD: 56.99). In order to

compare equivalently across neurons and between directions, we take the average value

across the time window of interest for each direction, for each run (n = 2200). Figure 2.6B

plots the distribution of neuron-behavior correlations for each neuron within a pair, on

each run, for each direction as a set of black bars. Data in Figure 2.6B confirm the veracity

of the population maxima plotted in Figure 2.2E, with an average correlation coefficient
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Figure 2.6: A schematic network model, the relevant distributions from all pairs of cells,
and a model implementation. A, Each filtered spike trains, schematized by a circle and
named with an "X" is summed together to produce an eye movement, schematized by the
letter "S." The relevant quantities are the variation (Xi ·Xi), the co-variation (Xi ·X j), and the
neuron-behavior correlation, (Xi · S). B, The distribution of neuron-behavior correlations
plotted as black bars, with the mean and standard deviations in grey. C, The distribution
of variation, plotted as black bars on a log scale, with mean and standard deviation in
grey. D, The distribution of co-variation, plotted in black, with median and inter-quartile
interval plotted in grey. E, The expected value for the neuron-behavior correlations made
by the model is plotted against the number of neurons in the active population as a gray
line. Error bars represent runs of the model using the standard deviation and inter-quartile
interval. Black lines plot the observed mean and standard deviation of the distribution of
neuron-behavior correlations.
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of 0.37 (SD: 0.13); mean ± 1SD are plotted in grey. Figure 2.6C plots the distribution of

variance on a log scale. The data are well approximated by a log-normal distribution,

allowing us to estimate the expected value of, 35.56 (deg/s)2 (SD: 38.74); expected value

+ 1 SD are plotted in grey — note that for a log-normal distribution, the expected value

is slightly to the right of the mean in log-space. Figure 2.6D plots the distribution of co-

variation between pairs of neurons (n = 1100). The large concentration of values about

zero, combined with the skewed tail and negative values made the distribution difficult

to fit, and so we used the median as our estimate of expected value, 3.55(deg/s)2(inter-

quartile range: 6.06).

If behavioral variability is generated by correlated activity between large numbers of

neurons, then we would expect that when a pair of neurons each individually encodes

behavior well, they ought be most correlated with each other. We tested this possibility by

comparing the average correlation in time between the filtered spike trains during the time

interval of interest to the maximal correlations for the same number of time points. The

actual correlation (n = 1100, average r2 = 0.06 SD: 0.06) was significantly lower than the

maximal correlation values (average r2 = 0.07 SD: 0.06, paired t-test, p < 10−15). As with

our example pair, there was some overlap between the maximal moments of correlation

and the time window of interest, on average 0.45% (SD: 0.36%). Despite the overlap, the

difference between the actual and maximum values of correlation leads us to conclude

that pairs of neurons were not maximally correlated when they were most likely to jointly

contribute to the behavior.

Our population measure of paired data confirms our estimate of the neuron-behavior

correlation, as well as the logarithmically distributed nature of the predicted eye move-

ment residuals. We add a measure of the co-variation between individual neurons, and

confirm that our pairs are not best correlated with each other when they are both likely to

be encoding behavioral variability.

57



Number of neurons

10 100 1000 Ac
tua

l/M
od

el 
ne

ur
on

-b
eh

av
ior

 (r
)

0

0.5

1B

X ‧Xi j

S

X ‧Sn

Σ

⊗

Xi

Xn

Xj

A

Figure 2.7: A schematic network model, the relevant distributions from all pairs of cells,
and a model implementation. A, Each filtered spike trains, schematized by a circle and
named with an "X" is summed together to produce an eye movement, schematized by the
letter "S." The relevant quantities are the variation (Xi ·Xi), the co-variation (Xi ·X j), and the
neuron-behavior correlation, (Xi ·S). B, The expected value for the neuron-behavior correla-
tions made by the model is plotted against the number of neurons in the active population
as a gray line. Error bars represent runs of the model using the standard deviation and
inter-quartile interval. Black lines plot the observed mean and standard deviation of the
distribution of neuron-behavior correlations.

2.3.7 Our model of the active population is compatible with a sparse set of

neurons

With population-level estimates in hand, we can now describe the properties of a network

that could give rise to behavioral fluctuations. Our goal is to determine whether a small,

sparse population of neurons with properties similar to ours could give rise to the level

of correlation between neural and behavioral fluctuations we’ve observed. Figure 2.7A

schematizes our model. On the far left, the rectangle encompasses the drive to behavioral

variability: the filtered spike train, with the output drawn as a circle and labeled X1 . . .Xn.

The contribution from each neuron is given by the variation (Xi ·Xi), the co-variation de-

scribes the strength of the relationship between elements (Xi ·X j), and we postulate that

the elements in the set are summed, schematized by the square box, to produce the eye

movement, labeled with an S. The neuron-behavior correlation for a given neuron is then

Xi ·S.
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At any point in the trial, we estimate a relationship between the size of the population

and the expected value of the following three quantities: the variation (Xi ·Xi), co-variation

(Xi · X j), and the neuron-behavior correlation (Xi · S). To explain the population activity

across the duration of the trial, we make one key assumption: that the expected values of

the relevant distributions are stable across time. While the values from different elements

may change we assume that the expected values do not, allowing us to model the network

once for all time points. Notably, many aspects of our model are equivalent to models used

by others to describe the relationship between a population of sensory neurons and a set

of perceptual decisions [Zohary et al., 1994, Shadlen et al., 1996].

Figure 2.7B utilizes our model to plot an estimate of the expected valued for the neuron-

behavior correlation, as a function of the number of neurons in the pool, (grey line). Error

bars are given from the SD and inter-quartile range of the relevant distributions. We plot

the mean and standard deviation of the observed distribution of neuron-behavior correla-

tions (black error bars). While the asymptote of the model falls below the expected value

of the observed neuron-behavior correlations, suggesting the population size falls at their

intersection, the variability in our estimates is too high to draw a firm conclusion about the

absolute size of the population. Crucially, a network of between 10-30 neurons with prop-

erties similar to ours could give rise to the distribution of neuron-behavior correlations

we’ve observed.

Our model is thus compatible with a population where a small handful of neurons

(those that are most active) contribute the most to the behavioral drive, and the rest of

the population, be it large or small, contributes considerably less. Others have noted that

in the presence of correlations, there is little advantage gained in a summative model by

increasing the pool size to arbitrarily large numbers; the resulting fidelity of sensory repre-

sentation remains the same [Zohary et al., 1994]. Similarly, elements of our network remain

correlated with the behavior thanks to the correlations, which ensure that the drive from

the strongest neurons will be preserved, no matter how many neurons comprise the pop-
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Figure 2.8: The filters decorrelate spike trains. A, Black points plot the raw spike-count
correlation against the correlation between filtered spike trains. B, The correlation between
filtered spike trains is plotted against the distance between the electrodes. Gray points plot
the raw data, and black markers the mean and standard deviation for each spacing.

ulation. Thus we conclude that we need not reject the idea our idea of a sparse source for

movement variation in the face of co-variation between neurons.

2.3.8 Pairs of filters decorrelate spike trains

Filter shapes can play an important role in determining what happens downstream of the

spikes. Correlated spike trains passed through correlated filters retain their correlation,

while spikes passing through uncorrelated filters lose theirs. Thus, common input, mea-

sured at the level of the spike trains, need not be propagated throughout the network. Our

filter shapes form an orthogonal basis set which could remove correlations from the spike

trains.

We measured the correlation between filters for the subset of our pairs of neurons that

had significant spike-count correlations, evaluated across trials (n=42/93, data not shown).

Our filters were normally distributed (Kolmogorov-Smirnoff test, p < 10−5), mean -0.02

(SD:0.36), implying that pairs of filters were predominantly orthogonal. Figure 2.8A con-

firms this finding, plotting the raw spike-count correlation against the average correlation

between filtered spike trains, for each relevant direction. Only 4/42 points fell above the

unity line, demonstrating that the filters largely decrease the level of correlation in the pop-

ulation. The relationship between spike-count correlation and filter similarity just missed
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being significant (Spearman’s ρ = 0.30, p = 0.053), and no relationship remained between

the spike-count correlation and the correlation between filtered spike trains (Spearman’s

ρ = 0.15, p = 0.33). Lastly, there was an anatomical basis for the preservation of correla-

tions. Figure 2.8B plots the electrode spacing against the correlation between the filtered

spike trains; grey points show the raw data, while black circles show the mean and stan-

dard deviation. The relationship was significant, demonstrating that after filtering, spike

trains from nearby neurons were likely to be better correlated (r =−0.55, p < 10−3).

We conclude that our filters can and do form an effective basis set for removing corre-

lations from common input, as correlated spiking activity is transformed along orthogonal

axes, except when the neurons are anatomically close.

2.3.9 Control analyses

In addition to those already described, we performed a set of control analyses. Supple-

mentary Figure 3.3 demonstrates the linearity of the example filter within the space of

residuals, the robustness of our fitting procedure, and shows examples of performance on

single trials and the distribution across trials. Supplementary Figure 3.4 shows that the

filters generalize to both the mean eye movement and off-preferred axes nearly optimally.

Supplementary Figure 3.5 shows that that the strength of the predictions was unrelated to

any of the following: the neurons’ preferred direction; the tuning bandwidth; the average

firing rate; the number of trials we were able to record for each direction of target motion;

the variance in eye velocity during pursuit; and the variance in the spike train during pur-

suit. Our controls serve to assure us that our methodology is valid. We therefore conclude

that the filters we have described do indeed reflect veridical estimates of what the neurons

encode.
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2.4 Discussion

2.4.1 Linear systems analysis of continuous oculomotor behavior, across the

brain

While many have proposed that cortical neurons, both sensory and motor, are inherently

unreliable, our report describes a population of cortical motor neurons whose variation

encodes the trial-to-trial deviations in behavior. Neurons in the FEFSEM are thus in agree-

ment with studies suggesting that firing patterns of individual neurons can be quite pre-

cise, [Mainen and Sejnowski, 1995, Uzzell and Chichilnisky, 2004] that small numbers of

spikes can encode significant information [Luna et al., 2005, Osborne et al., 2004], and that

variability in continuous motor behavior is unlikely to reflect true "noise" [Maye et al.,

2007]. In sensory systems, it has long been appreciated that quantifying the limits of trans-

mission capability will provide insight into the flow of information between neurons. By

demonstrating that single spikes can encode information about behavior, we can extend

the analyses established in the sensory domain into the realm of movement.

Linear systems analysis of motor systems offers a number of special challenges. The

method we used to analyze the co-variation of neural firing and behavior is adapted from

techniques traditionally used to describe the relationship between neural firing and a sen-

sory stimulus [Chichilnisky, 2001, Nagel and Doupe, 2006, Wu et al., 2006, Dayan and

Abbott, 2005, Rieke et al., 1999]. Because of the slow nature of smooth eye movements, our

filters are probably wider than the actual influence of each cell on its immediate down-

stream targets, even though we corrected for the first-order autocorrelations. The filters

accurately approximate the relationship between spikes and the real smooth eye move-

ment, and should be thought of not as models of FEFSEM neurons per se, but rather of the

entire downstream cascade that follows an FEFSEM spike.

When choosing to analyze the variation in a set of closely related motor behaviors —

stereotyped responses to an identical stimulus — we hoped to find a range of motor out-
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puts over which the neural response would be largely linear. There may yet be a nonlinear

model relating neural spiking to eye movements that would reveal even greater correla-

tions. To our knowledge, all relevant non-linear models perform better than their linear

counterparts, confirming our belief that our method represents a lower bound on the pos-

sible correlations between neural and behavioral residuals. Perhaps the most promising

way to extend our model is to adopt an approach that has proven successful in the sensory

domain: to model the transformations that occur throughout the sensory-motor circuit as a

cascade of linear/non-linear systems [Rust et al., 2006]. Additionally, it may even be possi-

ble to exploit new methods for estimation of non-linear filters and come closer to deriving

a near-optimal filter for a given data set [Pillow and Simoncelli, 2006, Sharpee et al., 2004].

By similarly measuring the transformation between neurons and behavior at the motor pe-

riphery, and moving upstream, we may be able to gather the data necessary to extend our

model of FEFSEM neurons to explain the transformations between areas, and not simply

between one area and ongoing behavior. We can extend this approach further to quantify

the relationship between each transformative stage along the sensorimotor continuum, to

ultimately characterize how populations of cells control behavior.

2.4.2 A sparse network model in the face of co-variation

Our analysis of the correlation between neural and behavioral variability demonstrates

that "extra" spikes in single neurons in the FEFSEM are strongly correlated with subtle trial-

to-trial variations in behavior. The strongest form of our hypothesis suggests that proba-

bilistically speaking, in a brief time window, a single additional spike in a given neuron

will lead to a deviation of known shape and size in the eye movement. If true, what would

this tell us about the network of cells that generate movement variability?

One architecture such a network might have is a set of independent neurons, each

making their own unique contribution to movement; under such circumstances, a sparse

source for movement variability is quite reasonable. However, the presence of correlated
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activity between pairs of cells allows us to rule out such a network. Alternatively, the

network of cells might be both large and correlated, with the activity from many units

ultimately averaged together [Zohary et al., 1994, Shadlen et al., 1996]. In such a network,

movement variability would arise from common aspects of variation, which is all that

could be preserved in the face of downstream aggregation. Could such a model of common

drive explain our observations?

The orthogonality of our filters, and the ensuing decorrelation of spike trains suggests

that common fluctuations in the set of neurons we observed are unlikely to be the sole

source of movement variability. To preserve the common drive hypothesis, we must sub-

divide our set of neurons by their filter shape, thus allowing neurons to have differen-

tial access to behavior. Our data suggests that neurons encode behavioral fluctuations at

different moments, and so we must further aggregate our population into groups with

similar filters, temporal profiles, and preferred direction. In light of the many aspects of

oculomotor behavior our task has not addressed, such as speed, vergence, and vestibular

sensitivity, the behavioral space rapidly becomes quite large.

Ultimately, though, our data are not compatible with the idea that common drive from

large populations of neurons in the FEFSEM is the source of behavioral fluctuations. Both

the magnitude of the filters — our best estimate of the consequences of a single spike —

and our measurement of variation in behavioral drive, are log-normally distributed. The

implication of such a distribution is that some neural fluctuations are orders of magnitude

better at encoding behavioral variability than others. In the framework of the "common

drive" hypothesis, cells that best encode behavioral fluctuations must be cells that encode

common elements of population fluctuations. Mechanistically, the most parsimonious ex-

planation for the presence of such cells is that that they are the source of correlated neural

variability. This is not to imply that a handful of cells have a preferential ability to drive

behavior. Instead our data is compatible with the idea that variability in certain cells, at

certain moments, on certain trials, are preferentially amplified to produce behavioral fluc-
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tuations.

For technical reasons, we restricted our analysis of the encoding capacity of single neu-

rons to the domain of movement variability, as opposed to the totality of movement. An-

alytically, filters derived from the residuals are the same as derived from the complete

movement; our control analyses of filter generality support this notion. We therefore feel

that our conclusions about a sparse origin of movement variability could well extend to

the population of neurons that give rise to the totality of behavior.

2.4.3 The role of spikes in the FEFSEM

Are single spikes capable of eliciting behavior? Invertebrate neurobiology has identified

"command neurons" that actuate ethologically relevant behavioral cascades; many quite

complicated [Pearson, 1993]. Furthermore, recent evidence shows that rodent whisking

can be modulated by single spikes, suggesting that even in mammals, single neurons can

affect motor behavior [Brecht et al., 2004]. Does the strong relationship we observe suggest

a similarly strong causal role for spikes in the FEFSEM? Both microstimulation studies

[Bruce et al., 1985, Gottlieb et al., 1993] and lesion studies [Keating, 1991] have described

the causal role the FEFSEM plays in determining the parameters of eye movements: while

not unique in this respect, activity in the FEFSEM is likely necessary for normal pursuit

dynamics.

The strong correlations observed between neurons and behavior might reflect a highly

precise command for movement, or an "efference copy" of the ongoing movement. Such a

representation could arise from the corollary discharge inputs that may well contribute to

the responses of neurons in the FEFSEM [Wurtz and Sommer, 2004]. The latencies of our fil-

ters do not resolve this issue, partly because the lag from the spike to the time of maximum

influence is broadly distributed around zero, and partly because the autocorrelations in the

pursuit response limit our ability to resolve the precise latency of the neuron-behavior cor-

relations. Therefore, we cannot exclude the possibility that the neurons we’ve recorded
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from play no causal role in determining behavior, even though they are high-fidelity en-

coders of the movement, a finding that would be fascinating in its own right. However,

we think that the other evidence of a causal role for neurons in the FEFSEM renders this

conclusion unlikely.

2.4.4 A sparse temporal code for movement variability in the cortex

Our working hypothesis to explain the temporal diversity of neuron-behavior correlations,

and its relationship to the temporally restricted neural activity, is that for each period of

a trial, the natural variability in a small sub-population of FEFSEM neurons gives rise to

the fluctuations observed in the eye movement. A sparse source for movement variation

has a number of advantages. First, it would allow the cortex to exercise modulation and

voluntary control over different aspects of motor behavior on a fine temporal scale, al-

lowing different neurons that mediate pursuit to have special influences at different times;

the orthogonal nature of the filters supports this notion. Second, it would enable excel-

lent temporal control over long-term plasticity and learning (Fiete et al., 2004). Available

data imply that the site of pursuit learning is downstream from the signals provided by

the FEFSEM: recordings from the FEFSEM failed to reveal any changes that accompanied

pursuit learning, while learning did cause changes in the smooth eye movements evoked

by stimulation in the FEFSEM [Chou and Lisberger, 2004]. Pursuit learning is exquisitely

sensitive to time, and both the direction of target motion and the time when it changed can

be learned well [Carey et al., 2005, Medina et al., 2005]. A temporally sparse representation

of pursuit in the FEFSEM could thus be an important factor underlying temporally specific

learning at a downstream site such as the cerebellum. We propose that the neurons that

can encode movement with high-fidelity are likely to be preferentially involved in learn-

ing. Further, we note that changing a small set of neurons is likely to be more efficient than

synchronously modulating thousands, and may underlie our remarkable ability to rapidly

learn new motor behaviors while still retaining old ones.
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Recent work in motor control in songbirds and representation of visual stimuli pro-

vides evidence that ethologically relevant stimuli and behaviors can be quite sparsely rep-

resented, with remarkable sensitivity and precision; here we provide complementary ev-

idence for sparse coding in a similarly relevant behavioral space [Hahnloser et al., 2002,

Theunissen, 2003, Vinje and Gallant, 2000]. Since smooth pursuit is considerably slower

than most behaviors, sparseness in oculomotor neurons ought be comparably restricted.

We feel that the idea of sparse network organization for the generation of behavior can

accommodate many behaviors, no matter their specific coding demands.

2.4.5 The origin of behavioral fluctuations

In light of the temporal similarity between neural activity and neuron-behavior correla-

tions, we have suggested that the noise downstream of the FEFSEM must be quite low. The

finding is most remarkable in light of the number of synapses between the FEFSEM and the

muscles, and demands high-fidelity transmission of information downstream. Naturally,

a reliable motor system is compatible with noise originating in the FEFSEM itself, or sen-

sory areas upstream, in agreement with behavioral experiments from our group [Osborne

et al., 2005, 2007].

Evidence for reliable transmission of variability is found in our analysis of the output of

the cerebellum (Medina and Lisberger, under review). In contrast to the temporal sparse-

ness of the FEFSEM, responses of Purkinje cells in the flocculus are temporally stereotyped

across the population. In excellent agreement with the attendant neuron-behavior correla-

tions, neural activity peaks during the initiation of pursuit and is sustained at a lower level

during steady-state tracking, and thus furthers our proposition of limited downstream

noise. Further, Purkinje cells are largely tuned to cardinal directions — consonant with

the pairs of muscles that drive the eyes — while neurons in the FEFSEM are tuned across

all possible eye movement directions. The stereotyped responses of the Purkinje cells may

serve to transforming the spatially-oriented movement commands into coordinates appro-
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priate for the muscles in a high-fidelity manner. The cortical and cerebellar data are thus

in agreement with the notion of a sensory origin for motor noise.

2.4.6 What is a single spike worth?

In this paper, we show a set of data, analyses and models compatible with the notion

that variability in single cortical neurons can give rise to movement variability. While we

cannot yet watch the entire population of neurons involved in generating smooth pursuit

eye movements, it is this very limitation that makes understanding the nature of the active

population intriguing and controversial. We hope that this report serves to inform this

most interesting debate, and appreciate that it is far from the final word.

2.5 Methods

Two male monkeys (Macaca mulatta) were used in experiments approved by the Institu-

tional Animal Care and Use Committee of the University of California, San Francisco. All

experimental procedures were in accordance with the National Institutes of Health Guide

for the Care and Use of Laboratory Animals. Eye position was monitored using the scleral

search coil technique as described previously while the head was held stationary using

custom hardware [Ramachandran and Lisberger, 2005]. The eye coil and hardware were

previously implanted during sterile surgery with the monkey under Isoflurane anesthesia.

One monkey was an experienced subject, having previously been well-trained to smoothly

track visual targets for a juice reward; he needed no additional behavioral training for this

study. The other monkey was naive to experimental methods, and was trained over a pe-

riod of one month until his performance was indistinguishable from other, expert, animals.

We used traditional step-ramp target motion to elicit excellent smooth pursuit responses

from our subjects. A small spot of light was presented at the center of an analog oscillo-

scope screen (14 inches diagonal), and after a variable fixation period the light stepped and
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ramped in opposite directions such that the target would cross the original position of fixa-

tion at approximately the time of maximal smooth eye velocity. Targets always moved at 20

deg/s in one of eight evenly spaced directions. Monkeys had to maintain their gaze within

a small window (0.75 degrees during fixation, and 2-3 degrees during target movement)

to receive a small fluid reward. The duration of monkey Cb’s pursuit started between 500-

700 ms, and was increased for the last∼2/3 of experiments, first to 750-950 ms and then to

900-1100 ms,to gather data over longer periods of sustained behavior. Monkey Gu always

tracked the target for between 900-1100 ms.

Up to five quartz-shielded tungsten electrodes were lowered simultaneously into the

caudal region of the frontal eye fields using a microdrive (Thomas Mini-Matrix 05, Thomas

Recording, Giessen, Germany). When feasible, we sought to record from multiple single

units simultaneously, both on the same and on different electrodes. Electrical signals were

amplified and digitized for on-line spike sorting using template matching of waveforms

that crossed a user-defined threshold (Plexon MAP, Plexon Inc., Dallas TX). Waveforms

were considered to reflect the activity of a single source if they were distinct from the noise

and had no refractory period violations (more than 2 threshold crossings within 1ms).

Additionally, during offline sorting, when plotted as projections onto the first and second

principal components, units had to form clusters distinct from both noise and other units

over the duration of the experiment (usually > 45 minutes of continuous data acquisition).

After sorting, waveforms were converted to timestamps with 1 ms precision for analysis.

We studied the smooth component of the monkey’s pursuit of a moving target. The

movement period was defined as 200 ms of fixation before the onset of target motion, and

500 ms after the target began to move. Velocity traces were generated by digitally dif-

ferentiating the position traces with a balanced difference algorithm; traces were digitally

smoothed with a zero-phase 25 Hz 2-pole Butterworth filter. Saccades show up as large

deflections in the velocity trace and were removed so as not to dominate the trial-to-trial

variations: saccades were marked initially with a threshold-crossing algorithm, described
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previously, and each trial was examined by eye using custom software [Schoppik and Lis-

berger, 2006]. The velocity trace then was interpolated between saccade beginning and

end. We restricted our analysis of the relationship between behavioral and neural variabil-

ity to the eye movements along the single best direction of the neuron, determined by the

direction that had the greatest number of spikes overall. When the preferred direction was

along an oblique axis, we analyzed the radial eye velocity. There was little jitter in the time

of movement onset, so we defined the appearance of the moving target as the beginning

of the behavior.

Each neuron’s raster was examined by eye, to exclude units that were not strongly

responsive during the eye movement, or whose responses changed qualitatively over the

duration of the experiment. A minimum of 15 repeats of pursuit in a single direction was

necessary for inclusion; on average, we had 80 (SD: 53) repetitions of each trial in our data

sets. A total of 141 single units met our criteria for inclusion in the analysis (97 and 44

from monkeys Cb and Gu). As we could not resolve qualitative or quantitative differences

between the data from the two monkeys, all data were analyzed as a unified population.

Although a smoothed estimate of firing rate was not used for these analyses, we did

need to generate one for the schematic shown in Figure 2.2A. To obtain a continuous esti-

mate of firing rate for our diagrams, we smoothed the binary spike train for that experi-

ment using a Gaussian filter with a standard deviation of 20ms. Similarly, the estimate of

the PSTH in Figure 2.4A was determined in a 10ms sliding window.

2.5.1 Modeling the relationship between the residuals in spikes and eye move-

ments

Our analysis consisted of deriving a linear filter that related the variation in neural firing

to the variation in eye movement responses on a trial-by-trial basis. The residual varia-

tion was generated by subtracting the mean eye trajectory across all trials from the eye’s

trajectory on each trial, and similarly for the spike train. Filters were then generated by
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cross-correlating the residuals of firing rate and eye velocity on each trial, and taking the

average of across trials. To avoid over-fitting, we used a cross-validation technique that

randomly selected a subset of data to generate the filter, and used the remaining trials to

test the performance of the filter. The split that minimized both the variance in the estimate

of the filter and the variance in the prediction quality was 40% filter generation and 60%

tests (Supplementary Figure 8). To generate confidence intervals on the filter, we repeated

the reconstruction procedure 150 times with different trials assigned for filter generation

or testing. To estimate the null hypothesis, that there was no relationship between trial-

by-trial neural and behavioral variation, we generated a separate filter after shuffling the

neural responses across trials. This procedure is conceptually similar to the "shuffle" or

"shift-predictor" used to estimate the effect of a repeated stimulus on correlations between

neurons [Brody, 1999].

Specifically, we began with the following model of the transfer function between eye

movement residuals and spikes:

ei(t)− ē(t) = D(τ)⊗ (ρi(t)− ρ̄(t)) (2.1)

where ei(t) and ρi(t) are the eye speed and the spike train on trial i, and ē(t) and ρ̄(t) are

the mean eye movement and mean neural response, respectively. Our model assumes that

there exists some linear filter, D(τ) that allows us to convert the residual spike variability

into the residual eye movement. To estimate D(τ), we used the following equation:

Qeρ(t) =
1
n

n

∑
i=1

[(ei(t)− ē(t))⊗ (ρi(t)− ρ̄(t))] (2.2)

Qeρ is the filter we have generated, and is some approximation of the true filter D(τ). Qeρ

differs from D(τ) by the autocorrelation of the spike train [Theunissen et al., 2000]. To

correct for correlations in the spike train, we divided the filter in the frequency domain by

the power spectrum of the residual spike train:

71



D̂(τ) =
1

2π

∫
∞

−∞

dω
∑

n
i=1 Qeiρi(ω)

∑
n
i=1 Qρiρi(ω)

(2.3)

where D̂(τ) is the decorrelated filter, and Qeiρi(ω) and Qρiρi(ω) are the Fourier domain

representations of the filter from Equation 2.2 and the power spectrum of the spike train,

respectively. Equation 2.3 states that the true eye movement reconstruction filter can be

estimated by weighting the power in the raw filter by the power in the spike train. Because

the spike train has a relatively narrow autocorrelogram, the majority of its power lies above

50 Hz. Consequently, the denominator of Equation 2.3 acts as a low-pass filter.

By convention, we call the filter we have generated the "reverse" filter, as it allows

us to predict eye movements using spike trains. To generate the "forward" filter, which

predicts spike trains from eye movements, we must correct for the autocorrelations in the

eye movement. We replaced the denominator in Equation 2.3 with the power spectrum

of the residual eye movements. Noise in the estimate of the power spectrum tends to

overwhelm the signal in the filter, and so we smoothed the spectrum using an exponential

filter with a rapid dropoff (∼2.5Hz). The cutoff for smoothing was set at the frequency

where the power in the spectrum of the shuffled residual eye movements (our estimate of

a noise spectrum) overlapped the power in the spectrum of the residual eye movements.

The mean dot-product between the forward filter flipped about the zero-lag point and

the reverse filter was 0.91 (SD: 0.05), supporting the conclusion that despite a different

denominator, the two filters ought be equivalent. We thus focus the description of our

results on the "reverse" filter, which needed no additional smoothing. Lastly, we computed

the coherence of the filter:

C(ω) =
Qeρ(ω)2

Qee(ω)∗Qρρ(ω)
(2.4)

where Qxx is iconic for ∑
n
i=1 Qxixi(ω). Coherence describes the percent of variance in

the data accounted for as a function of frequency, and thus is similar to the definition of

r2, which is the square of Pearson’s correlation coefficient. Importantly, with two terms
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in the denominator, the coherence corrects for autocorrelations in both the eye movement

residuals and the spike train residuals.

We defined a filter as "significant" if a two-sided t-test showed that the total power in

the filter was significantly different from the total power in the filter derived from ran-

domly shuffled data. The value of α was adjusted by the number of draws, so that our

criterion for significance became p < 0.0003. In monkeys Cb and Gu, 74/97 and 31/44

neurons yielded filters that were significant, respectively. By convolving the successfully

derived filters with the residuals of the spike trains on each test trial, we generated pre-

dictions that could be compared directly with the residual eye velocity on each trial. We

measured the model performance by calculating Pearson’s correlation coefficient for the

predicted vs. actual residuals, point-by-point. To estimate the significance of the predicted

residuals, we shuffled the eye velocity and firing rate residuals and recalculated the cor-

relation coefficient on shuffled trials. All significant filters made statistically significant

predictions.

2.5.2 Data and analysis of paired recordings

Our data set included 104 simultaneously recorded pairs of neurons, (84 and 20 from mon-

keys Cb and Gu), with 26 pairs recorded on the same electrode. As the neurons rarely had

overlapping preferred directions, we had to extend our analysis to the complete set of eight

directions of motion. We computed the filter as in Equation 2.3, direction by direction, for

each neuron in the pair, for 50 runs in each direction. Covariation and correlation were

only evaluated for directions where both filters were significantly different from shuffled

trials, (n = 43/104 pairs with overlapping significant filters, n = 93 directions from the 43

pairs)

Our model for the relationship between brain and behavior, given by Equation 2.1,

states that the filter convolved with the spike train residuals is our prediction for the eye

movement residuals on that trial. We used this to model the relationship among a pop-
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ulation of filtered spike trains, estimating three relevant quantities. The neuron-behavior

correlation as a function of time has been defined earlier. The variation and co-variation

are used to estimate the parameters of the covariance matrix, and are defined according to

the following equation:

Fi j(t) = [Da(τ)⊗ (ρa(t)− ρ̄a(t)) ·Db(τ)⊗ (ρb(t)− ρ̄b(t))] (2.5)

where Dn(τ) represents the filter from a given neuron, n, and (ρn(t)− ρ̄n(t)) represents

the matrix of spike train residuals from neuron n. The equation thus compares the rela-

tionship between the filtered spike trains. By aligning the matrix appropriately, we could

evaluate the relationship across trials, producing a vector of values in time. Alternatively,

we could evaluate the dot-product aligned such as to compare the trials across time, pro-

ducing a vector as long as the number of trials. By definition, if the two matrices of filtered

spike trains were identical (a = b), Equation 2.5 yields the variation, and if different (a 6= b),

the co-variation. To evaluate the correlation, we added a denominator to Equation 2.5

consisting of the square root of the product of the variance in each matrix.

To analyze the relationship between spike trains before and after filtration, we needed

a way to compute the correlation across trials. We measured the correlation between spike

trains across the trial by computing the familiar spike-count correlation (rSC), defined as

the correlation between a vector containing the number of spikes on each trial (evaluated

during pursuit) for each neuron. Statistical significance was evaluated by comparing the

spike-count correlation to the correlation derived from randomly shuffled trials. The rSC

was computed only on the 60% of trials evaluated on each run of the model, allowing us to

compare directly to the correlation between filtered spike trains, evaluated using equation

2.5, taken across time, rather than trials.

We used standard statistical methodology to describe our data. Correlation coefficients

were evaluated using Pearson’s method; when the data contained large outliers, we used
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Spearman’s ρ . To compare normally distributed data, we used t-tests, paired when appro-

priate; non-normally distributed data, were compared with the Wilcoxon rank-sum test.

Finally, circular correlation was evaluated using Mardia’s r test. All code was written us-

ing MATLAB (Mathworks, Natick MA), and is available, along with all relevant data, at

http://keck.ucsf.edu/∼schoppik/.
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Chapter 3

Supplementary Material

3.1 Control Analyses

3.1.1 Abstract

In addition to the analyses described in 2, we provide a number of complementary inves-

tigations to examine the validity and generality of our filters. We start by examining the

performance of linear filters derived on the position trace, as well as on eye movements

aligned to minimize variability. Next, we examine the consequences of changing the size

of the bins we use to examine our data. We then present a complete analysis of the pre-

dictions made by our example neuron. We describe how our filters perform when asked

to evaluate the mean eye movement, as well as the eye movement along directions other

than the preferred. We present data that show that the performance of our filter is not

related to common parameters of oculomotor performance. We use PCA analysis to con-

firm our clustering of the filters, and finally, we justify the fractions of data we chose for

cross-validation runs of our model.
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Figure 3.1: The relationship between spikes and behavior does not depend upon the rep-
resentation of the eye movement, the trial alignment, or the trial length. Each plot shows
the peak correlation between actual and predicted residuals of eye velocity for each cell
in the population under different analysis conditions as a function of the peak correlation
derived from the eye velocity traces used throughout the paper. A, filters based on the
eye position trace, including saccades, B, filters based on eye velocity traces that had been
aligned in time so as to minimize the overall variation among the responses, and C, filters
based on eye velocity traces that were shortened in duration. X’es and gray circles show
data from neurons with statistically-significant and non-significant filters. The unity line
is plotted as a dashed black line.
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3.1.2 Our findings obtain in the position domain, as well as for aligned data

How important was our choice to represent behavior as the eye’s velocity? We opted to

use the eyes’ velocity, after saccades had been removed because catch-up saccades, being

almost an order of magnitude faster than normal pursuit dominate the trial-to-trial fluc-

tuations. Additionally, neurons in the FEFSEM are not thought to be sensitive to saccadic

eye movements, or the eyes’ position in the orbit, and so we opted to exclude informa-

tion about the eyes’ position [Tanaka and Lisberger, 2002b]. To confirm that our findings

were not limited to the particular representation of the eye movements we chose, we re-ran

the analysis using the complete eye position trace. Supplementary Figure 3.1A plots the

outcome of analyzing position against the analysis of velocity. The strength of the relation-

ship between spikes and behavior for each cell is quantified by the peak of the correlation

between the predicted and actual variability, measured in time. Cells that yielded a signifi-

cant filter are marked with a black "x," while non-significant filters are shown as gray dots.

The cells continued to do well at predicting the variability in the position trace, as marked

by a mean correlation for the significant filters of 0.38 (SD: 0.17). The predictions made

by significant filters generated in the position or velocity domain are not distinct (paired

t-test, p > 0.15). We propose that cells performing better using the position analysis are

sensitive to variation either in the position, or at the high frequencies present during the

saccade. Similarly, cells that perform better using the velocity trace are likely sensitive to

the slower changes in the eyes’ movement present during smooth pursuit. We conclude

that our choice of the velocity trace, with saccades removed, represents an appropriate

measure of the behavior.

Our method of filter generation relies upon an accurate estimate of the variation. In our

analysis, we have aligned the data at the start of target motion, rather than at the moment

that the eye begins to move. If the spike trains carry information that is time-locked to

the start of the eye’s movement, then this will appear as "variation" in our analysis. Such

precise timing from trial-to-trial is interesting in its own right [DiCarlo and Maunsell, 2005,
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Pouget et al., 2005], but we were concerned that it might lead to an overestimation of our

models’ performance. Rather than re-aligning the eye movement traces according to some

arbitrary measure of the latency, we opted to simply eliminate as much of the trial-to-trial

variability as was possible through temporal realignment.

We realigned our trials by shifting each trial so as to minimize the in a least-squared

distance between all eye velocity traces in a given experiment. This had the effect of dras-

tically homogenizing the trials in time. As a consequence of realignment, our trials began

and ended at different points: we shortened the trials appropriately so that they were all

of the same duration. Supplementary Figure 3.1B plots the outcome of our analysis using

the aligned traces against the outcome of the analysis on unaligned data. The strength

of the relationship between spikes and behavior for each cell is quantified by the peak of

the correlation between the predicted and actual variability, measured in time. Cells that

yielded a significant filter are marked with a black "x," while non-significant filters are

shown as gray dots. Two features bear highlighting: first, despite removing as much of

the variation from trial-to-trial that we could by realignment, cells continued to do well:

the mean correlation between actual and predicted residuals of eye velocity was 0.33 (SD:

0.14) for significant filters, versus 0.41 (0.15). Secondly, the majority of the points fall be-

low the unity line, suggesting that the filters do better on unaligned data; the aligned data

performed significantly worse (paired t-test, p < 10−6). We conclude that the variability in-

troduced by our choice of alignment does contribute to our estimate of filter performance;

but our main findings persist even when the trials are optimally aligned.

Our realignment was performed on shorter trials; the missing data may have con-

tributed to the slight underperformance of aligned trials. We repeated our analysis on

trials aligned to the onset of target motion as in the Results, but that had been truncated to

match the length of the re-aligned trials. Supplementary Figure 3.1C plots the outcome of

our analysis using the shortened traces against the data described in the paper. Each point

plots the peak of the function describing the correlation between the predicted and the
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actual eye variation as a function of time. Cells that yielded a significant filter are marked

with a black "x," while non-significant filters are shown as gray dots. The high correla-

tion between the two data sets demonstrates that the findings described in Supplementary

Figure 3.1B are not due to shorter trials (r = 0.92, p < 10−43). The mean of the significant

filters generated on shorter trials was slightly lower, 0.39 (SD: 0.15) compared to 0.41 (SD:

0.14) (paired t-test, p < 0.01). More importantly for the analysis, the data in Supplementary

Figure 3.1C show that our finding is robust to losing 10-15% of the trial duration. Beyond

this point, though, the data set is likely to be too short to describe the entirety of the filter,

given the distribution of filter widths and latencies that we have observed.

3.1.3 Increasing bin size decreases our signal-to-noise ratio

In our analysis, we did not bin our data beyond our initial sampling rate. Many studies of

neural activity present data that has been smoothed in some fashion, by binning, window-

ing, or by some more sophisticated method. The signal to noise ratio of many analyses

can improve with increasing bin size, and at first glance, the same should hold true for

our analysis: we derive the transfer function from the residual eye movements and spike

trains, a linear operation. Binning too is a linear operation, and thus we should be able

to filter our data before or after derivation of the transfer function, with an accompany-

ing improvement in the signal to noise ratio. However, division by the power spectrum

of the spike train (Equation 2.2) introduces a non-linearity in filter generation. This non-

linearity is the source of a counter-intuitive consequence of binning data: the less binning,

the smoother our estimate of the transfer function — our behavior is smooth and contin-

uous, and so a smoother filter can better capture the relevant frequencies. Supplementary

Figure 3.2 demonstrates the consequences of binning on the smoothness of the resulting

filters.

Supplementary Figures 3.2A and 3.2D show the residuals for the spike train binned

into 1 ms or 20 ms bins. Visually, they differ because the absolute number of spikes/bin
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Figure 3.2: Smaller bin sizes lead to lower noise in the estimate of the relationship between
spikes and eye movements. A,D, The variation in the spike train, evaluated at 1 ms bin
size and 20 ms bin size. B,E, The filter generated from the spike data in A,D. C,F. The
normalized power spectrum of the residual spike trains is plotted in black for 1 ms and 20
ms bin sizes. The normalized power spectrum of the filter in B,E, is plotted in red.
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increases with the size of the bin. The resulting filters in Supplementary Figures 3.2B and

3.2E have similar shapes, but differ in that the use of a 20-ms bin leads to more high fre-

quency noise in the filter. Here, the filters differ because they have been "decorrelated" by

the power spectrum of the spike train, and the power spectrum of the spike train depends

on the bin width. Recall from Equation 2.4 that the power spectrum of the spike train is in

the denominator while that of the raw, un-normalized filter (Supplementary Figures 3.2C

and 3.2F, red curve) is in the numerator. When the bin width is 1 ms, there is little power in

the spike train variability at low frequencies but considerable power at high frequencies:

the denominator acts as a low-pass filter. When the bin width is 20 ms, in contrast, the

spike train has more power at low frequencies and less power at high frequencies: as a

result, the signal to noise ratio of the filter is decreased substantially. Practically speaking,

then, the finer the resolution used to generate filters, the smoother the filter.

3.1.4 A detailed evaluation of the predictions made by the example neuron

How well do our predictions fit for a single neuron? In 2 we describe the performance

of the filter in time, but there are many other ways to describe the results of our analysis.

Here we describe the complete predictions, point by point, as well as trial-by-trial. Our

techniques for quantifying the strength of the transformation between brain and behavior

assume the relationship is linear. By choosing to model the filter between the residual spike

train and the residual eye movement, we hoped to constrain our analysis to a regime where

the relationship was likely to be linear. To examine the behavior of our filter, we combined

the data from all trials and plotted the predicted versus actual eye movement residuals for

each time point in each trial (Supplementary Figure 3.3A). The relationship can be well-fit

by a line, shown both in the raw samples (gray symbols) and in the means obtained by

averaging within 20 bins chosen so that they contained equal numbers of points (black

symbols and line). Many points cluster around 0 because they included data from 200 ms

of fixation, corresponding to the mottled region in the upper left corner of Figure 2.2A, and
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Figure 3.3: Predictions of the model relating spikes and behavior for the example neuron.
A, Gray points show the actual and predicted residual eye velocity plotted for all time
points across all trials. Black points represent the mean and standard deviation for the
data shown in gray, grouped such that each of 20 bins would have an equal number of
points. B, Histograms showing the distribution of correlations between actual and pre-
dicted residual eye velocity for 150 derivations of the filter based on different subsets of
the data. Black and gray show results for the actual and shuffled data. C,D, Predicted
residual eye velocity for the two trials yielding the best and worst correlations with actual
eye velocity. Dashed and solid lines show the predicted and actual eye velocities. E, The
distribution of correlations for each individual trial, ranked according to the value of r. The
thickness of the ribbon shows one standard deviation above and below the mean correla-
tion coefficient. The two horizontal dotted lines show the mean +2 standard deviations for
the distribution of predictions made by the filter computed from shuffled data.
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the outermost binned markers are likely compromised due to undersampling. For the full

set of points, the correlation between the actual and predicted values of the residuals was

0.41. Plotting our data as in Supplementary Figure 3.3A supports our choice of a linear

model for the relationship between residuals of neural responses and behavior.

To avoid overfitting, we used different sets of data to fit and test the model, across

many runs. In Figures 2.2B and 2.2C, for example, the width of the black ribbon repre-

sents the mean and standard deviation of the filters derived from many draws of 40% (38

of 95) of our trials. The analysis described by Supplementary Figure 3.3A was repeated

150 times to provide statistically valid estimates of the performance of the linear filters.

The distribution of correlations across runs was narrow (Supplementary Figure 3.3B, black

bars) and was distinctly different from the distribution provided by analysis of shuffled

data (Supplementary Figure 3.3B, gray bars). For the example neuron, the mean values of

r across runs for the direct and shuffled analysis were 0.38 (SD: 0.03) and 0.0 (SD: 0.07).

The holistic look at the correlation across the trials reassures us that our correlations be-

tween the predicted and actual values do not arise from the stereotyped nature of repeated

movements.

Finally, we summarize the predictions of the filter on a trial-by-trial basis. For the

example neuron, Supplementary Figures 3.3C and 3.3D show the actual (continuous line)

and predicted (dashed line) residuals of eye velocity for the two trials with the largest

(r = 0.84), and smallest (r = -0.43) correlation coefficients between actual and predicted

residual eye velocity. Data has been normalized to the peak of the absolute value of each

trace. Although the model does not capture all the details of the movement residuals, it

does capture some aspects, particularly near the center of the trials. To obtain a single

measure of the covariance between neural firing and behavior for each individual trial,

we computed the correlations between model predictions and eye movement residuals for

all trials (Supplementary Figure 3.3E), and compared these to correlations two standard

deviations above predictions made from the shuffled filters (dashed lines). The majority of
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trials (n=60) lie above the range of correlations for shuffled filters (dashed lines), and 8 lie

below. The mean correlation coefficient was 0.34 (SD: 0.35). We conclude for the example

neuron that the filter that relates the residual firing rate to the residual eye velocity has

considerable explanatory power.

3.1.5 Generalization of neuron-behavior correlations to mean responses

For control analyses, we re-ran the filter-generation procedure on three different sets of

data: i) responses to targets that moved 45 degrees above and below the preferred direc-

tion, ii) using the position trace, and iii) after shifting the data in time to minimize the mean

squared difference between the eye velocity responses across trials. We also asked whether

the filters obtained from the residuals of eye velocity and firing rate also could predict the

mean eye movement. For the latter analysis, we convolved the filter obtained from the

residuals for each neuron with the complete spike train and calculated the correlation co-

efficient with the actual eye movement. To evaluate filter performance when predicting the

mean eye movement, we computed the spike-triggered average eye movement to serve as

a benchmark:

Qep(t) =
1
n

n

∑
i=1

[ei(t)⊗ρi(t)] (3.1)

We used this filter in conjunction with the complete spike train to generate a prediction

for the complete eye movement for each trial as previously described. While this model

performs well, it is constrained by the stereotyped nature of the behavior. Nonetheless,

it provides an important reference point on how well linear filters might do at predicting

behavior in a given direction [Machens et al., 2004]. Not surprisingly, the correlation coef-

ficient between the filter predictions and the actual eye movement was always above zero,

averaging 0.93 (SD:0.11). The filters we derived from the residuals constitute local, linear

models of how the eye movement that is related to one extra spike in one neuron within
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the limited space of trial-to-trial movement variations. To ask whether the filters general-

ize to the complete range of motions contained in a trial, we first examined how well they

predicted the mean eye velocity from the mean spike train.

To generate a prediction of the mean eye velocity, we convolved the residual-derived

filter with the mean firing rate (the PSTH in 1-ms bins). We then computed the correlation

between this prediction and actual mean eye velocity as a function of time. As the filters

were generated without respect to the mean, this method provides independent verifica-

tion of our model. In general, statistically significant filters produced positive correlations

(Supplementary Figure 3.4A, black bars), whereas non-significant filters produced a wide

range of correlations with a distribution that surrounded zero (gray bars). The two dis-

tributions were different (Wilcoxon rank-sum, p < 0.05). Curiously, there were a handful

of neurons with significant filters that yielded negative correlations with the mean eye

movement but positive correlations with the residuals. We do not have a comprehensive

explanation for this surprising, but infrequent, finding.

For each neuron, we compared the performance of the filter computed from the resid-

uals with the best possible performance for a linear model by computing a performance

index (PI):

PI =
rresiduals

rSTA
(3.2)

where rresiduals and rSTA are the correlations between the actual and predicted mean eye

movements based on the filters obtained from the residuals versus from the spike-triggered

average. Thus, PI describes the performance of the filter based on the residuals as a fraction

of the maximum variance that can be captured by any linear filter. Values of PI close to 1

indicate that the predictive power of the filter derived from the residuals came closer to the

best possible linear prediction. As before, a large portion of significant filters (Supplemen-

tary Figure 3.4B, black bars) performed significantly better than did non-significant filters

(gray bars). Median values for significant versus non-significant filters were 0.32 (SD: 0.49)
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Figure 3.4: Generalization from filters derived for pursuit in the preferred direction to the
mean eye movement and the eye movement variation in different directions. A, Distribu-
tion of the correlation coefficient between the prediction of the filter made on the mean eye
movement and the actual mean eye movement. B, Distribution of the value of PI, which
describes the correlation between actual and predicted mean eye velocity as a fraction of
that for the optimal linear filter. C,D, The correlation between the predicted and actual
eye velocity for pursuit in non-preferred directions is plotted versus that for pursuit in the
preferred direction, where predictions were all based on filters derived from pursuit in the
preferred direction. The direction of pursuit was 45 degrees clockwise (C) or counterclock-
wise (D) relative to the preferred direction. E,F, The distribution of the value of GI for the
data in C and D. In all graphs, data from neurons with statistically significant filters are
shown in black, and those from non-significant filters in gray.
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versus 0.10 (SD: 0.42). The difference was statistically significant (Wilcoxon rank-sum test,

p < 0.05). We conclude that a substantial subset of the filters derived from the residual

eye movements describe the main features of the mean eye movement. As such, the filters

derived from analysis of the residual spike trains and eye velocities are likely an excellent

approximation of how the features in the eye movement are related to neural activity.

3.1.6 Generalization of neuron-behavior correlations across pursuit direction

Although we have analyzed so far only the data recorded during pursuit in the preferred

direction of neurons in the FEFSEM, we recorded responses during pursuit in eight direc-

tions spaced evenly around 360 deg. Neurons in the FEFSEM tend to be broadly tuned, gen-

erally yielding responses vigorous enough to analyze in 3 of the 8 directions, including the

preferred direction and the two directions rotated 45 deg clockwise and counter-clockwise

from preferred. We found a strong relationship between the performance of filters on data

from the preferred direction and the +45 deg directions.

For each neuron, we used the filters generated from residuals of spike trains and eye

velocity in the neuron’s preferred direction to compute predicted residuals of eye velocity

for the +45 deg directions. The correlations between the actual and predicted residuals

of eye velocity were similar across directions (Supplementary Figures 3.4C and 3.4D). To

quantify how well the filters derived from the preferred direction generalized to other

directions, we compared their performance to the performance of filters computed directly

on the residuals of neural activity and eye velocity for each non-preferred direction. The

two filters together allowed us to compute a generalization index (GI) for each neuron:

GI =
rpref

r45
(3.3)

rpref is performance of the filter derived in the preferred direction, evaluated on the non-

preferred direction and r45 is the performance of a filter built and tested on the non-
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preferred direction. A GI of one implies that the filter derived from the preferred direction

data performed as well at describing activity in the non-preferred direction as a filter built

directly from that data set. For pursuit in both the +45 and -45 deg directions (Supplemen-

tary Figures 3.4E and 3.4F), the distribution of GI was fairly close to one, indicating that the

two filters made largely identical predictions, and by extension, that filters derived from

pursuit in the preferred direction generalized well.

3.1.7 Relationship between filter performance and neural response properties

As with any population of cortical neurons, those selected for our study showed a range

of response properties. However, we did not find evidence that the predictive value of

the filter derived from residuals during pursuit in the preferred direction was related to

any of the following response properties: the preferred direction (Supplementary Figure

3.5A), the tuning bandwidth (3.5B), the average firing rate during pursuit in the preferred

direction (3.5C), the number of trials we were able to record for each direction of target

motion (3.5D), the variance in eye velocity during pursuit (3.5E), and the variance in the

spike train during pursuit (3.5F). We compared each response parameter to the strength

of the relationship between spikes and eye velocity, as measured by the peak value of the

correlation between the actual and predicted residuals of eye velocity, estimated in time.

No graph showed a convincing relationship between the value of the measured parameter

and either the strength of the neuron-behavior correlation or the likelihood of obtaining

a statistically significant filter. Only the relationship between neuron-behavior correlation

and tuning bandwidth was statistically significant: Figure 3.5B (r = -0.39, p < 0.01). For the

other parameters: 3.5A (Mardia’s r = 0.02, p > 0.6), 3.5C (r = 0.10, p = 0.30), 3.5D (r = -0.04,

p = 0.63), 3.5E (r = -0.02, p = 0.87), 3.5F (r = 0.16, p = 0.10).
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Figure 3.5: The relationship between traditional neural response properties and the cor-
relation between actual and predicted residual eye velocity. Each graph plots correlation
as a function of a different parameter of the neural response or experiment: A, preferred
direction, B, tuning bandwidth, C, average response amplitude during pursuit, D, number
of trials, E, total eye velocity variance, and F, total spike train variance.
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Figure 3.6: Principal component analysis decomposition of the filters. A, Scree plot of
eigenvalues, in black, scaled to report the fraction of variance described. The first three are
color-coded green, blue, and red. B, The first three eigenvectors, each color corresponding
to the plot in A. C, The projection of the filters into the space defined by the first two prin-
cipal components. Filters have been color coded according to the original classification,
where blue points are filters we called "single lobed," green "double," and red "triple."

3.2 Complementary Analyses

3.2.1 PCA decomposition of the filters

In order to confirm our categorization of our filters into single, double, and triple-lobed

groups, we performed decomposed the unaligned matrix of filters into its principal com-

ponents. We observed that the first three eigenvectors were single, double, and triple-lobed

in shape, and together explained 39% of the variance. As these vectors matched our ini-

tial observations, we felt confident in using these three templates as archetypes. We then

aligned our filters as described in the test, and re-ran the PCA decomposition. Supplemen-

tary Figure 3.6A shows a scree plot of eigenvalues, in black, scaled to report the fraction

of variance described. The first three are color-coded green, blue, and red, to facilitate

comparison with the corresponding eigenvectors, plotted in Supplementary Figure 3.6B.
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To demonstrate the separation, Supplementary Figure 3.6C plots the projection of the fil-

ters into the space defined by the first two principal components. Points are color-coded

to match our original classification (i.e. blue points are from filters we called single-lobed,

green double, and red triple). The clear clustering confirms that our categorization was

identical to an unbiased separation of filters.

3.2.2 Evaluation of cross-validation fractions for filter generation and testing

To avoid over-fitting, we split the data for each neuron into two fractions: one to generate a

filter, and the other reserved for testing. Our final estimate of the strength of the correlation

between the actual and predicted residuals of eye velocity depends on the fraction used:

a filter based on too few trials is not an adequate representation of the data; conversely,

a filter based on too high a fraction of the trials will be excellent, but without a sufficient

test-bed. To find an appropriate compromise, we varied the percentage of trials devoted

to generating filters, from 10 to 90% of the trials for each cell.

Supplementary Figure 3.78 shows that the choice to use 40% of the trials for filter

derivation and 60% for test trials was an excellent compromise. Each gray symbol shows

data for a single neuron and plots the variance of the correlation between predicted and

actual residuals of eye velocity across multiple derivations of the filter as a function of the

variance in the filter itself, integrated across its duration. Moving from left to right, the

clusters of points and their means (black symbols and error bars) show results when 90%

to 10% of the trials were used for filter generation and the remainder as test trials. Mini-

mum variance of the neuron-behavior correlation falls at the point where 40% of the trials

were used for filter generation, validating the approach taken in the rest of the paper.
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Figure 3.7: The effects on filter reliability of changing the ratio of trials used for filter gen-
eration to the fraction reserved for testing. Each point plots the normalized variance of the
correlation between actual and predicted residuals of eye velocity versus the normalized
variance of the filter itself. From left to right, the filters were generated on the basis of
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