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ABSTRACT OF THE DISSERTATION

Generative Modeling with Introspective Networks, Amodally-informed Vision Algorithms,
and Regression-based Instance Segmentation

by

Justin Lazarow

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Zhuowen Tu, Chair
Professor Hao Su, Co-Chair

Visual perception is a fundamental task of computer vision. Subtasks within perception

can be decomposed in two types: reasoning about the generative process of images or phenomena

themselves (i.e., a prior on the sensory input we expect to perceive) as well as discriminating

high-level structural information contained within them. In this dissertation, we first explore how

this decomposition is not as decoupled as it might appear. In particular, we show how the act of

discrimination is sufficient to produce a model of generative ability. Furthermore, while vision

algorithms are required at minimum to discriminate about visible aspects of a scene captured,

xiv



it is often useful to reason about what cannot be seen within a 2D observation. We explore a

practical method for eliciting so-called 2.1D information on two popular, large-scale datasets and

demonstrate how this generative information can improve certain scene-level segmentation tasks.

Next, we explicitly build a model of scene layout which relies on an amodal understanding (both

what can and cannot be seen) of so-called “stuff” (background classes) to accurately place “things”

(objects) in a scene. Finally, we revisit the de facto method of instance segmentation within

the modern age of computer vision — binary mask prediction — and question whether other

approaches (i.e., boundary-based regression) can be suitable alternatives. We validate for the first

time that continuous, boundary-based regression can match mask-based prediction with respect

to a variety of notions of parity. We believe this opens up further research into the segmentation

algorithms of the future.
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Chapter 1

Introduction

Humans have a remarkable set of abilities to perceive and act upon the visual stimuli that

surround them. The almost effortless capacity for the brain to perceive and explain the visual

world serves as the principal target for the field of computer vision — to endow computers with

similar potential. However, the sheer magnitude of this goal is daunting. While animals have

had millions of years to fine-tune their perception of the visual world, computers have hardly

existed in their modern form for half a century. Fortunately, a resurgence in efforts to apply

machine learning techniques to solve computer vision tasks has led to a revolution in research

and progress. The usage of machine learning allows us to divide these tasks into two main

paradigms: generative models and discriminative models. Generative models attempt to explain

the observation themselves (e.g., image formation) whereas discriminative ones often try to derive

structural information (e.g.recognition) from observations. However, both have found renewed

interest in recent time.

We focus on applying both generative and discriminative ideas with respect to 2D images

in this thesis. We depend on the strong advances from deep learning techniques to revisit

approaches and methodology.
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1.1 Generative Modeling

Machine learning begins with observations of some phenomena through a random variable

X . Within unsupervised learning, estimating a probability distribution p(x = X) (implicitly or

explicitly) from these observations is desirable for many reasons. For computer vision and

graphics, where X usually corresponds to some subspace of natural images, the ability to sample

faithfully from this distribution allows for production of novel examples and provides the ability

to impose priors on inputs to vision algorithms. While this seemingly simple task is quite difficult,

it is also rich in history.

Early models focused on modeling simple textures and often used primitives and de-

formations as part of a general image pattern theory [Gre93] describing the generation process

of an image. Significant work relied on MiniMax entropy theory and Markov random fields

[ZWM97, ZWM98] to select a filter bank which can capture characteristic features of a given

texture. By using Gibbs sampling from the resulting maximum entropy probability distribution,

new examples of textures can be synthesized. Additionally, more general algorithms (often trained

with maximum likelhood estimation) like wake-sleep [HDFN95] , fields of experts [RB05], and

deep belief nets [HOT06] are all generative models which can be applied to the domain of images.

These models are often hindered by an inability to directly maximize the log-likelihood criterion

of the data for sufficiently complex distributions.

However, the resurgence of convolutional neural networks and deep learning has led

to significant progress within generative models. Variational autoencoders (VAEs) [KW13,

RMW14] extend the task of auto-encoding and rely on variational techniques to allow a neural

network to predict parameters of a Gaussian which governs an approximate posterior over the

bottleneck. After sampling from the predicted Gaussian, an additional feedforward process

(the decoder) realizes samples from the bottleneck in the observation (e.g., image) space and

altogether, a lower bound of the log-likelihood of the data is maximized.

2



In contrast, generative adversarial nets (GANs) [GPAM+14] along with numerous variants

[ACB17, MLX+17] define two adversarial components: a generator network and a discriminator

network which are optimized according to a minimax protocol where the generator attempts

to “fool” the discriminator by eventually producing convincing samples from the underlying

probability distribution. The generator allows for an implicit model of the distribution with

a feedforward explicit function defining the sampler. GANs generally display superior image

fidelity [BDS18, KLA19] compared to VAEs but without additional techniques [SGZ+16] can

often be hard to train and less interpretable.

Flow-based models [DKB14, RM15] attempt to transform a standard distribution (e.g.,

a Gaussian) directly to the observation space using a sequence of invertible functions. This

allows for tractable log-likelihood computation and thus has a traditional maximum-likelihood

training criterion. The exact (invertible) transformations govern the ability to model effectively

and thus much work has gone into defining what these should be. Despite a simple training

regime, flow-based models of images can produce very high quality results [KD18].

While most of the aforementioned generative models ultimately estimate a function that

produces samples given random noise and a feedforward neural network, a large amount of

recent work [JLT17a, LJT17, LXFT18, GWJ+19, DM19, SE19] (including some presented in

this thesis) relies on designing an iterative process from which samples can be drawn. Often, these

methods rely on estimation of some form of the gradient of the underlying distribution coupled

with the remarkable ability of Stochastic Gradient Langevin Dynamics [WT11] to reliably follow

this distribution from areas of low density (i.e. noise) to modes of high density. Furthermore,

rather than learning or modeling this gradient, an iterative “denoising” update rule can be learned

directly by training a neural network on sequences of noise perturbations made to examples

from the data distribution. These processes are now able to challenge and outperform [DN21]

the standard models of the past e.g. GANs and VAEs and often have well-defined theoretical

properties.
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1.2 Image Segmentation

Image segmentation [MFTM01] is a natural extension of coarse localization methods like

object detection. Rather than being concerned with predicting boxes which only roughly bound

the extent of objects, segmentation aims to produce a dense understanding of the occupancy of

an object or class within an image. Convolutional neural networks (CNNs) [LBD+89a] have

ushered in enormous progress in image classification [KSH12] and similarly within segmentation

tasks [LSD15, HGDG17] which rely on both effective localization and classification. What a

segmentation represents can be more succinctly described based on the depth of understanding

desired: semantic, instance, and panoptic segmentations are common paradigms in which to

segment an image with varying levels of structural outputs. We note that we (and the literature)

will often reference segmentations as being synonymous with predicting pixel-wise masks

denoting membership, however, we are careful to establish that masks are simply one manner

(albeit immensely popular) in which to denote occupancy in an image.

Semantic segmentation requires only a class-wise labeling of an image. In the context of

masks, this means that each pixel must be labeled with a class and no instance-wise distinction

for is required. For countable objects (e.g.persons), therefore, there is no need to denote that

two person-labeled pixels may correspond to two distinct people. This allows the semantic

segmentation task to be considered as a per-pixel classification task. The most successful

architectures for semantic segmentation implement this as a “fully convolutional” [LSD15]

approach which mostly uses convolutional and de-convolutional operations in a respective encoder

and decoder component to output a pixel grid having size proportional to the input image. Within

this grid, each cell predicts a probability distribution over classes from which a predicted label

can be derived. Recent work [CPK+18] has shown the need to effectively model spatial context.

Dilated operations [YK16] are often employed to accomplish this at an acceptable computational

cost. In recent work, Transformers [VSP+17, CMS+20, XWY+21] have been employed as an

4



effective alternative to convolutional operations that inherently model long range depedencies.

Instance segmentation removes the requirement to label “background” classes (e.g. grass)

and other non-countable phenomena. However, it introduces the need to differentiate between

distinct instance within the same class (e.g., Person 1 versus Person 2). Historically, this required

significantly different architectures (R-CNN) and departures from semantic segmentation to

achieve the best performance. Grouping approaches [LJFU17, AT17], which aim to produce an

instance-level understanding from a semantic segmentation were quickly surpassed by object-

centric, region-based models. The R-CNN [Gir15, RHGS15] family of object detection and

eventual instance segmentation [HGDG17] approaches are often considered the de facto baselines.

They constitute a well-engineered sequence of tasks: foreground-background classification,

foreground classification and regression, and finally mask prediction on “regions of interest”

which altogether serve as a robust model of instance segmentation. Most competitive models

[CV19, CWHL20, KWHG20, QCY21] today are still heavily derived from this initial approach.

Only recently have region-free approaches [TSC20, CSK21] to instance segmentation matched

or exceeded the performance of Mask R-CNN [HGDG17].

Lastly, we remark that while this is not a definition per se, instance segmentation pre-

dictions are judged independently of one another in recent benchmarks [LMB+14]. This means

that both the ground-truth and predictions can be annotated and predicted in a manner such

that two pixels might be occupied by the same instance. This appears to have been due to

individual annotator bias and might be attributable to the ease at which humans perform amodal

completion. There is some evidence that removing such overlap [LPY+19] can reduce overall

performance. Recently, this ambiguity has been resolved by the introduction of panoptic seg-

mentation which requires combining both semantic segmentations of background objects and

instance-wise segmentations of foreground objects within a single image output.

Panoptic segmentation [TCYZ05, KHG+19] hinges on a dichotomy of categories/classes

into both “things” and “stuff”. Thing classes usually correspond to foreground objects with a
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countable nature. Stuff classes are associated with background classes (road, grass, etc) that are

usually amorphous in extent. Given this organization, one is tasked with assigning each and every

pixel in an image to either a thing or stuff class. Thing classes must be additionally distinguished

into distinct instances. Overall, this can be seen as a combination of semantic segmentation (of

stuff) and an instance segmentation of things. Critically, since panoptic segmentation requires

a single image output, we no longer have the ambiguity that might be present within instance

segmentation. Thus, determining unique ownership of a pixel is a requisite task.

Approaches to panoptic segmentation initially replicated the combination of semantic

and instance segmentation [KGHD19] by merging the outputs of a strong semantic segmen-

tation model and a strong instance segmentation model. A greedy algorithm [KHG+19] can

be constructed to assign pixels to instances by their classification confidence values (denoting

uncertainty) and subsequently merge the “stuff” from the semantic segmentation to the remaining

unclaimed pixels. As we discuss later in this disseration, this approach is not optimal and often

results in “missing” objects in the final panoptic output that were successfully predicted by the

instance segmentation component. However, recent work has sometimes removed the need for this

heuristic-driven merging process. Recently, fully convolutional approaches [TSC20, LZQ+21]

allow for predicting dynamic kernels (functional parameters) which unify the prediction of masks

for both things and stuff. Furthermore, end-to-end Transformer-based approaches [CMS+20]

appear to provide significantly improved performance — possibly due to the ability to better

model global context within an image.

1.3 2D Scene Layout

Unlike the tasks of detection and segmentation which aim to predict structural elements

from images, e.g. dense segmentations or object detections, 2D scene layout is a generative task

which aims to produce structural information in the form of a layout, i.e.a set of box and class
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pairs describing where objects plausibly should be within an image. Practically, this is realized

by producing a generative model (e.g. a VAE [JDH+19], GAN [LYH+19], Autoregressive

[GLA+21]) over the annotations (i.e., without the corresponding image) of common object

detection datasets [LMB+14, COR+16a]. However, predicting where objects are is inherently

ill-posed without further conditioning. In particular, it is necessary to understand where the

background classes are before one can have any sort of confidence in placing the foreground.

A common approach is to rely on semantic segmentation (or panoptic) annotations to derive

bounding boxes for background classes or segments. Bounding boxes are used since they provide

generally amodal (but coarse) cues of where the background classes are since dense amodal

segmentations of the background classes are not generally available.

An accurate model of scene layout can be useful. For instance, in the area of scene

generation, an interpretable component would ideally sample a plausible scene layout before

continuing to realize shapes within it. Altogether, this resulting panoptic segmentation can then

be synthesized [PLWZ19] into an RGB image directly. Furthermore, depending on the underlying

properties of the generative model, one could use this model as a prior on structural components

like object detection systems e.g., to detect unlikely layouts [LYH+19, GLA+21]. While we

focus on 2D layouts here, similar ideas can be extended to 3D [GLA+21].

1.4 Overview of This Dissertation

In this dissertation, we study a myriad of instances of both generative and discrmina-

tive tasks. These tasks range from generative models of images, panoptic segmentation with

2.1D [NM90] reasoning, scene layout using amodal information, and finally revisit instance

segmentation as a regression problem rather than classification.

In Chapter 2, we consider generative models of images. Rather than relying on traditional

methods or adversarial (having two components) methods, we show the ability to discriminate
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between true observations of natural images and false observations is sufficient to produce a

generative model of the natural images. This discriminative ability in the form of a sequence of

deep classifiers provides direction to a gradient-based sampling algorithm to produce high quality,

novel samples starting from random noise.

In Chapter 3, we consider the modal nature of vision alongside the amodal nature of

perception. Within 2D images, we often observe the 3D world only partially (modally) since

one entity might occlude or obscure another. Nonetheless, this does not change the amodal

properties of the object which could be recovered by removing any occluders from the scene.

While full recovery of the amodal nature of an object is difficult, it is often useful and possible

the relative depth ordering. This form of 2.1D information becomes applicable to the task of

panoptic segmentation. When two foreground instances might claim to own a subset of the same

pixels, the relative depth ordering can be consulted to resolve these conflicts. We explore how to

recover approximate ground-truth supervision of this relative depth ordering and build a classifier

to learn instance occlusion within the panoptic segmentation task.

In Chapter 4, we consider similar ideas in the context of the generative task of laying out

objects in a scene. To effectively produce layouts, understanding affinity between objects and

the background extent of a scene can be informative. This is intuitive since in order to know

where pedestrians and cars might be in an image, it is necessary to know the where the road and

sidewalks are. Representing where the road and sidewalks are usually comes in the form of a

coarse bounding box. However, we show it is a dense representations that provides more accurate

conditioning and better overall performance. Producing a dense representation of the background

requires high degrees of amodal knowledge of the world — roads are almost exclusively obscured

by the cars that drive upon them, while sidewalks are crowded by people as they walk upon them.

Therefore, for both the panoptic and scene layout tasks, we require amodal knowledge of the

world. We find that this knowledge can often be derived “for free” from common datasets and

work to understand how best to incorporate it into each respective task.
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In Chapter 5, we revisit the task of instance segmentation. In the deep learning era, this

has almost entirely been synonymous with directly predicting dense binary mask representations.

However, this representation is inherently discrete and relies on classification to estimate the

likelihood of a pixel belonging to an instance. However, we argue for continuous regression-based

models of instance segmentation that sparsely predict points along the boundary of a polygon

in a fully differentiable manner. While this poses numerous challenges, we present a model

and training paradigm that requires no additional supervision than mask-based counterparts and

performs equally as well as established baselines. We hope that this can spurn new directions in

regression-based segmentation and provide a framework for future applications.
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Chapter 2

Introspective Neural Networks for

Generative Modeling
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2.1 Introduction

Supervised learning techniques have made a substantial impact on tasks that can be for-

mulated as a classification/regression problem [Vap95, FS97, Bre01, LBD+89b]. Unsupervised

learning, where no task-specific labeling/feedback is provided on top of the input data, still

remains one of the most difficult problems in machine learning but holds a bright future since a

large number of tasks have little to no supervision.

Popular unsupervised learning methods include mixture models [DHS00], principal

component analysis (PCA) [Jol02], spectral clustering [SM00], topic modeling [BNJ03], and

autoencoders [BL07, Bal12]. In a nutshell, unsupervised learning techniques are mostly guided

by the minimum description length principle (MDL) [Ris78] to best reconstruct the data whereas

supervised learning methods are primarily driven by minimizing error metrics to best fit the input

labeling. Unsupervised learning models are often generative and supervised classifiers are often

discriminative; generative model learning has been traditionally considered to be a much harder

task than discriminative learning [FHT01] due to its intrinsic learning complexity, as well as

many assumptions and simplifications made about the underlying models.

Generative and discriminative models have traditionally been considered distinct and

complementary to each other. In the past, connections have been built to combine the two

families [FHT01, LJ08, TND+08, Jeb12]. In the presence of supervised information with a large

amount of data, a discriminative classifier [KSH12] exhibits superior capability in making robust

classification by learning rich and informative representations; unsupervised generative models

do not require supervision but at a price of relying on assumptions that are often too ideal in

dealing with problems of real-world complexity. Attempts have previously been made to learn

generative models directly using discriminative classifiers for density estimation [WZH02] and

image modeling [Tu07]. There is also a wave of recent development in generative adversarial

networks (GAN) [GPAM+14, RMC15, SGZ+16, ACB17] in which a discriminator helps a
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Figure 2.1: The first row shows the development of two 64×64 pseudo-negative samples (patches)
over the course of the training process on the “tree bark” texture at selected stages. We can see the initial
“scaffold” created and then refined by the networks in later stages. The input “tree bark” texture and a
synthesized image by our INNg algorithm are shown in the second row. This texture was synthesized by
INNg using 20 CNN classifiers each with 4 layers.

generator try not to be fooled by “fake” samples. We will discuss in detail the relations and

connections of our model with these existing literature in the later sections.

In [WZH02], a self supervised boosting algorithm was proposed to train a boosting

algorithm by sequentially adding features as weak classifiers on additionally self-generated

negative samples. Furthermore, the generative discriminative modeling work (GDL) in [Tu07]

generalizes the concept that a generative model can be successfully modeled by learning a

sequence of discriminative classifiers via self-generated pseudo-negatives.

Inspired by the prior work on generative modeling [ZWM97, WZH02, Tu07] and devel-

opment of convolutional neural networks [LBD+89b, KSH12, GEB15], we develop an image

modeling algorithm, introspective neural networks for generative modeling (INNg) that can be

used simultaneously as a generator and a discriminator, consisting of two critical stages during

training: (1) pseudo-negative sampling (synthesis) — a generation of samples considered to be

positive examples and (2) a CNN classifier learning stage (classification) for self-evaluation and
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model updating from the previous synthesis. There are a number of interesting properties about

INNg worth highlighting:

• CNN classifier as generator: No special conditions on the CNN architecture are needed in INNg and

existing CNN classifiers can be directly made into generators, if trained properly.

• End-to-end self-evaluation and learning: Perform end-to-end “introspective learning” to self-classify

between synthesized samples (pseudo-negatives) and the training data, to approach the target distribution.

• All backpropagation: Our synthesis-by-classification algorithm performs efficient training using

backpropagation in both stages: the sampling stage for the input images and the classification training

stage for the CNN parameters.

• Model-based anysize-image-generation: Since we model the input image, we can train on images of a

given size and generate an image of a larger size while maintaining coherence of the entire image.

• Agnostic to various vision applications: Due to its intrinsic modeling power being at the same time

generative and discriminative, INNg can be adopted to many applications in computer vision. In addition

to the applications shown here, extension of the objective (loss) function within INNg is expected to

work for other tasks such as “image-to-image translation” [IZZE17].

2.2 Significance and related work

Our introspective neural networks generative modeling (INNg) algorithm has connections

to many existing approaches including the MinMax entropy work for texture modeling [ZWM97],

and the self-supervised boosting algorithm [WZH02]. It builds on top of convolutional neural

networks [LBD+89b] and we are particularly inspired by two lines of prior algorithms: the

generative modeling via discriminative approach method (GDL) [Tu07], and the DeepDream

code [MOT15] and the neural artistic style work [GEB15]. Parallels can be drawn to ideas

elaborated in [GH10] where parameters of a distribution are learned using a (single) classifier

between noise and training data. Additionally, the use of “negative” examples to bridge the gap
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between an unsupervised task into a supervised one is also seen in [HOWT06], although this

focuses on the training of the weights of the network for classification rather than synthesis. The

work of [MOT15, GEB15], along with the Hybrid Monte Carlo literature [WT11], motivates

us to significantly improve the time-consuming sampling process in [Tu07] by an efficient

stochastic gradient descent (SGD) process via backpropagation (the reason for us to say “all

backpropagation”). Next, we review some existing generative image modeling work, followed by

detailed discussions about GDL [Tu07]; comparisons to generative adversarial networks (GAN)

[GPAM+14] will be provided in Section 2.3.7.

The history of generative modeling on image or non-image domains is extremely rich,

including the general image pattern theory [Gre93], deformable models [YHC92], inducing

features [DPDPL97], wake-sleep [HDFN95], the MiniMax entropy theory [ZWM97], the field

of experts [RB05], Bayesian models [YK06], and deep belief nets [HOT06]. Each of these pio-

neering works points to some promising direction in unsupervised generative modeling. However

the modeling power of these existing frameworks is still somewhat limited in computational

and/or representational aspects. In addition, not too many of them sufficiently explore the power

of discriminative modeling. Recent works that adopt convolutional neural networks for gen-

erative modeling [XLZW16b] either use CNNs as a feature extractor or create separate paths

[XLZW16a, ULVL16]. The neural artistic transferring work [GEB15] has demonstrated impres-

sive results on the image transferring and texture synthesis tasks but it is focused [GEB15] on a

careful study of channels attributed to artistic texture patterns, instead of aiming to build a generic

image modeling framework. The self-supervised boosting work [WZH02] sequentially learns

weak classifiers under boosting [FS97] for density estimation, but its modeling power was not

adequately demonstrated.
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Relationship with GDL [Tu07]

The generative via discriminative learning framework (GDL) [Tu07] learns a generator

through a sequence of boosting classifiers [FS97] using repeatedly self-generated samples, called

pseudo-negatives. Our INNg algorithm takes inspiration from GDL, but we also observe a

number of limitations in GDL that will be overcome by INNg: GDL uses manually specified

feature types (histograms and Haar filters), which are fairly limited; the sampling process in GDL,

based on Markov chain Monte Carlo (MCMC), is a big computational bottleneck. Additional

differences between GDL and INNg include: (1) the adoption of convolutional networks in INNg

results in a significant boost to feature learning. (2) introducing SGD based sampling schemes

to the synthesis process in INNg makes a fundamental improvement to the sampling process

in GDL that is otherwise slow and impractical. (3) two compromises to the algorithm, namely

INNg-single (see Fig. 2.4) and INNg-compressed, are additionally proposed to maintain a single

classifier or subset of classifiers, respectively.

Introspective Discriminative Networks [JLT17b]

In the sister paper [JLT17b], the formulation is extended to focus on the discriminative

aspect — improvement of existing classifiers. Additional key differences are: a) the model

in [JLT17b] is usually composed of a single classifier with a new formulation for training a

softmax multi-class classification and b) it is less concerned with human perceivable quality of

its syntheses and instead focuses on their impact within the classification task.

2.3 Method

We describe below the introspective neural networks generative modeling (INNg) al-

gorithm. We discuss the main formulation first, which bears some level of similarity to GDL

[Tu07] with the replacement of the boosting algorithm [FS97] by convolutional neural networks

15



[LBD+89b]. As a result, INNg demonstrates significant improvement over GDL in terms of both

modeling and computational power. Whereas GDL relies on manually crafted features, the use of

CNNs within INNg provides for automatic feature learning and tuning when backpropagating on

the network parameters as well as an increase in computational power. Both are motivated by a

formulation from the Bayes theory.

2.3.1 Motivation

input                          Gatys et al.                    TextureNets Portilla & Simoncelli DCGAN                INNg-single (ours)      INNg (ours)             

Figure 2.2: Texture synthesis algorithm comparison. Gatys et al. [GEB15], Texture Nets [ULVL16],
Portilla & Simoncelli [PS00], and DCGAN [RMC15] results are from [ULVL16].

We start the discussion by borrowing notation from [Tu07]. Suppose we are given a set of

training images (patches): S = {xi | i = 1..n} where we assume each xi ∈R m e.g. m = 64×64 for

64×64 patches. These will constitute positive examples of the patterns/targets we wish to model.

To introduce the supervised formulation of studying these patterns, we introduce class labels

y ∈ {−1,+1} to indicate negative and positive examples, respectively. With this, a generative

model computes p(y,x) = p(x|y)p(y), which captures the underlying generation process of x for

class y. A discriminative classifier instead computes p(y|x). Under Bayes rule, similar to [Tu07]:

p(x|y =+1) =
p(y =+1|x)p(y =−1)
p(y =−1|x)p(y =+1)

p(x|y =−1), (2.1)
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which can be further simplified when assuming equal priors p(y =+1) = p(y =−1):

p(x|y =+1) =
p(y =+1|x)

1− p(y =+1|x) p(x|y =−1). (2.2)

Based on Eq. (2.2), a generative model for the positive samples (patterns of interest)

p(x|y =+1) can be fully represented by a generative model for the negatives p(x|y =−1) and

a discriminative classifier p(y =+1|x), if both p(x|y =−1) and p(y =+1|x) can be accurately

obtained/learned. However, this seemingly intriguing property is circular. To faithfully learn the

positive patterns p(x|y =+1), we need to have a representative p(x|y =−1), which is equally

difficult, if not more. For clarity, we now use p−(x) to represent p(x|y = −1). In the GDL

algorithm [Tu07], a solution was given to learning p(x|y = +1) by using an iterative process

starting from an initial reference distribution of the negatives p−0 (x), e.g. a Gaussian distribution

U(x) on the entire space of x ∈ R m:

p−0 (x) =U(x),

p−t (x) =
1
Zt

qt(y =+1|x)
qt(y =−1|x) · p

−
t−1(x), t = 1..T (2.3)

where Zt =
∫ qt(y=+1|x)

qt(y=−1|x) p−t−1(x)dx. Our hope is to gradually learn p−t (x) by following this iterative

process of Eq. 2.3:

p−t (x)
t=∞→ p(x|y =+1), (2.4)

such that the samples drawn x∼ p−t (x) become indistinguishable from the given training samples.

The samples drawn from x∼ p−t (x) are called pseudo-negatives, following a definition in [Tu07]

to indicate examples considered by the current iteration of the model to be positives but are,

in reality, negative examples. Next, we present the practical realization of ideas from Eq. 2.3,

namely INNg (consisting of a sequence of CNN classifiers composed to produce the process

seen in Fig. 2.3) and, additionally, the extreme case of INNg-single that maintains a sequence
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consisting of single CNN classifier as seen in Fig. 2.4.

2.3.2 INNg Training

Classification

(training samples vs. 

pseudo-negatives)  

Introspective Neural Networks for Generative Modeling 

INNg

Synthesis

(pseudo-negatives)

training samples

Learned Model

Figure 2.3: Schematic illustration of the pipeline of INNg. The top figure shows the input training
samples shown in red circles. The bottom figure shows the pseudo-negative samples drawn by the learned
final model. The left panel displays pseudo-negative samples drawn at each time stamp t. The right panel
shows the classification by the CNN on the training samples and pseudo-negatives at each time stamp t.

As defined in the previous section, we are given an unlabeled training set by S = {xi |

i = 1..n} as our positive examples. Since pseudo-negatives will be added, we refer to this initial

positive set as S+ = {(xi,yi =+1) | i = 1..n} within the discriminative formulation. Additionally,

we must consider the initial set of negatives bootstrapped from noise (also referred to as the initial
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Algorithm 1 Outline of the INNg algorithm.
Input: Given a set of training data S+ = {(xi,yi =+1), i = 1..n} with x ∈ℜm.

Initialization: obtain an initial distribution e.g. Gaussian for the pseudo-negative samples:
p−0 (x) =U(x). Create S0

− = {(xi,−1), i = 1, ..., l} with xi ∼ p−0 (x)

For t=1..T

1. Classification-step: Train CNN classifier Ct on S+∪St−1
− , resulting in qt(y =+1|x).

2. Update the model: p−t (x) = 1
Zt

qt(y=+1|x)
qt(y=−1|x) p−t−1(x).

3. Synthesis-step: sample l pseudo-negative samples xi ∼ p−t (x), i = 1, ..., l from the current
model p−t (x) using a SGD-based sampling procedure (backpropagation on the input) to obtain
St
− = {(xi,−1), i = 1, ..., l}.

4. t← t +1 and go back to step 1 until convergence (e.g. indistinguishable to the given training
samples).
End

pseudo-negative set) denoted:

S0
− = {(xi,−1) | i = 1, ..., l}

where xi ∼ p−0 (x) =U(x) according to a Gaussian distribution. Since each stage of the algorithm

will refine this set, we define the working set for stage t = 1..T as

St−1
− = {(xi,−1) | i = 1, ..., l}.

to include the pseudo-negative samples (l of them) self-generated by the model after stage t. We

then train the model at each stage t to obtain

qt(y =+1|x), qt(y =−1|x) (2.5)
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over S+∪St
− resulting in the classifier Ct . Note that q is an approximation to the true p due to

limited samples drawn from ℜm. At each time t, we then compute an approximation to (elaborated

in Section 2.3.2)

p−t (x) =
1
Zt

qt(y =+1|x)
qt(y =−1|x) p−t−1(x), (2.6)

where Zt =
∫ qt(y=+1|x)

qt(y=−1|x) p−t−1(x)dx. Then, we can draw new samples

xi ∼ p−t (x)

to produce the stages’s pseudo-negative set:

St+1
− = {(xi,−1), i = 1, ..., l}. (2.7)

Algorithm 1 describes the learning process. The pipeline of INNg is shown in Fig. 2.3, which

consists of: (1) a synthesis step and (2) a classification step. A sequence of CNN classifiers is

progressively learned. With the pseudo-negatives being gradually generated, the classification

boundary gets tightened and approaches the target distribution.

Classification-step

The classification-step can be viewed as training a classifier on the training set S+∪St
−

where S+ = {(xi,yi =+1), i = 1..n}. St
− = {(xi,−1), i = 1, ..., l} for t ≥ 1. In practice, we also

keep a subset of pseudo-negatives from earlier stages to increase stability. We use a CNN as

our base classifier. When training a classifier Ct on S+∪ St
−, we denote the parameters to be

learned in Ct by a high-dimensional vector Wt = (w(0)
t ,w(1)

t ) which might consist of millions of

parameters. w(1)
t denotes the weights on the top layer combining the features φ(x;w(0)

t ) and w(0)
t

carries all the internal representations. Without loss of generality, we assume a sigmoid function
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for the discriminative probability

qt(y|x;Wt) = 1/(1+ exp{−y < w(1)
t ,φ(x;w(0)

t )>}). (2.8)

Both w(1)
t and w(0)

t can be learned by the standard stochastic gradient descent algorithm via

backpropagation to minimize a cross-entropy loss with an additional term on the pseudo-negatives:

L(Wt) =−
i=1..n

∑
(xi,+1)∈S+

lnqt(+1|xi;Wt)−
i=1..l

∑
(xi,−1)∈St

−

lnqt(−1|xi;Wt)

Synthesis-step

In the classification step, we obtain qt(y|x;Wt) which is then used to update p−t (x)

according to Eq. (2.6):

p−t (x) =
t

∏
a=1

1
Za

qa(y =+1|x;Wa)

qa(y =−1|x;Wa)
p−0 (x). (2.9)

In the synthesis-step, our goal is to draw fair samples from p−t (x). By using SGD-based sampling,

we carry out backpropagation with respect to x (the image space) using the CNN models making

up Eq. 2.9. Note that the partition function (normalization) Za is a constant that is not dependent

on the sample x. Let

ga(x) =
qa(y =+1|x;Wa)

qa(y =−1|x;Wa)
= exp{< w(1)

a ,φ(x;w(0)
a )>}, (2.10)

and take its ln, which is nicely turned into the logit of qa(y =+1|x;Wa)

lnga(x) =< w(1)
a ,φ(x;w(0)

a )> . (2.11)
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Starting from an initialization of x, the process allows us to directly increase

∑
t
a=1 < w(1)

a ,φ(x;w(0)
a )> using gradient ascent on x via backpropagation to obtain fair samples

subject to Eq. (2.9). Injecting the noise to the sampler results in a general family of stochastic

gradient Langevin dynamics [WT11]: ∆x=∇(∑t
a=1 lnga(x))+η where η∼N(0,ε) is a Gaussian

distribution. In practice, to reduce the time and memory complexity, we initialize x drawn from

p−t−1(x), allowing us to primarily focus on the most recent model qt with SGD sampling for

lngt(x) =< w(1)
t ,φ(x;w(0)

t )>. Therefore, generating pseudo-negative samples does not need a

large overhead.

To ensure this follows Langevin dynamics as elaborated in [WT11], Gaussian noise with

an annealed variance would be added, however, we did not observe a big difference in the quality

of samples in practice. Additionally, recent work in [CFG14, MHB17] also show the connections

and equivalence between MCMC and SGD-based sampling schemes, where the sampling bias

and variance are worth further studying but pose no particular disadvantages here. We have also

recently experimented on using different SGD sampling schemes (eg. early-stopping, long steps,

perturbations) but did observe significant differences. This is likely partially compensated for by

the inherent stochasticity introduced by the random selection of the image patches (and to what

extent due to overlap) during synthesis.

Overall model

The overall INNg model after T stages of training becomes:

p−T (x) =
1
Z

T

∏
a=1

qa(y =+1|x;Wa)

qt(y =−1|x;Wa)
p−0 (x)

=
1
Z

T

∏
a=1

exp{< w(1)
a ,φ(x;w(0)

a )>}p−0 (x),

(2.12)
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where Z =
∫

∏
T
a=1 exp{< w(1)

a ,φ(x;w(0)
a )>}p−0 (x)dx. INNg shares a similar cascade aspect with

GDL [Tu07] where the convergence of this iterative learning process to the target distribution

was shown by the following theorem in [Tu07].

Theorem 1 KL[p(x|y = +1)||p−t+1(x)] ≤ KL[p(x|y = +1)||p−t (x)] where KL denotes the

Kullback-Leibler divergences, and p(x|y =+1)≡ p+(x).

This implies that after sufficiently many stages of INNg training, the distribution of the

positives should be well approximated by the resulting cascade of classifiers modeled in Eq. 2.12.

2.3.3 INNg synthesis

While the previous section describes the training process of an INNg model (which itself

uses a synthesis step in it to generate pseudo-negatives for the next stage), we consider the

synthesis of a new sample from the fully trained model. Since a fully trained model consists of T

saved classifiers, we attempt to sample through this sequence in a similar fashion to the training.

Starting with some x∼U(x), we perform gradient ascent with respect to x until, based off the

current classifier Ct , x crosses the decision boundary of Ct — to now be considered a positive

example. Then, Ct+1 is loaded and the process is repeated again on the resulting x until it has

passed through all classifiers (through CT ) in a similar manner to produce the sample. Note that

we perform early stopping within each stage i.e. it was not seen to be effective to produce a

transformation of x that has near 1.0 probability of being considered a positive, only one that is a

narrow margin over this boundary. This additionally allows for a more efficient runtime of the

synthesis process.

2.3.4 An alternative: INNg-single

We briefly present the INNg-single algorithm and show the pipeline of INNg-single is in

Fig. 2.4. Note that we maintain a single CNN classifier throughout the entire learning process in

INNg-single.
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Figure 2.4: Schematic illustration of the pipeline of INNg-single.

In the classification step, we obtain qt(y|x;Wt) (similar as Eq. 2.8) which is then used to

update p−t (x) according to Eq. (2.13):

p−t (x) =
1
Zt

qt(y =+1|x;Wt)

qt(y =−1|x;Wt)
p−0 (x). (2.13)

In the synthesis-step, we draw samples from p−t (x). The overall INNg-single model after T stages

of training becomes:

p−T (x) =
1

ZT
exp{< w(1)

T ,φ(x;w(0)
T )>}p−0 (x), (2.14)

where ZT =
∫

exp{< w(1)
T ,φ(x;w(0)

T )>}p−0 (x)dx.
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Figure 2.5: Illustration of model-based anysize-image-generation strategy.

2.3.5 Model-based anysize-image-generation

Given a particularly sized image, anysize-image-generation within INNg allows one

to generate/synthesize an image much larger than the given one. Patches extracted from the

training images are used in the training of the discriminator. However, their position within the

training (or pseudo-negative) image is not lost. In particular, when performing synthesis using

backpropagation, updates to the pixel values are made by considering the average loss of all

patches that overlap a given pixel. Thus, up to stage T , in order to consider the updates to the

patch of x(i, j) centered at position (i, j) for image I of size m1×m2, we perform backpropagation

on the patches to increase the probability:

pT (I) ∝

T

∏
a=1

m1

∏
i=1

m2

∏
j=1

ga(x(i, j))p−0 (x(i, j)) (2.15)

where ga(x(i, j)) (see Eq. 2.10) denotes the score of the patch of size e.g. 64×64 for x(i, j) under

the discriminator at stage a. Fig. 2.5 gives an illustration for one stage of sampling. This allows
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us to synthesize much larger images by being able to enforce the coherence and interactions

surrounding a particular pixel. In practice, we add stochasticity and efficiency to the synthesis

process by randomly sampling these set of patches.

2.3.6 Model size reduction

As mentioned in Section 2.3.2 and 2.3.3, the process of INNg relies on keeping a snapshot

of the classifier after each stage t = 1 . . .T . This can pose a problem for both space and time

efficiency. However, it may not be all necessary to keep each classifier around. Instead, one can

pick some factor b such that the classifier is only saved every b stages. We accomplish this by: i)

only saving the model to disk every b stages ii) initializing the sampling process at stage b× i+ k

(i ∈ N and k < b ) from those of stage b× i. We still, however, keep the pseudo-negatives around

for training purposes to stabilize the process. We do find that later stages within each “mini stage”

should be allowed more backpropagation steps during the synthesis step in order to compensate

for the more complex optimization landscape. The image seen in Fig. 2.1 was generated from

a reduced model (b = 3 and T = 60), resulting in only 20 classifiers. One can view this as a

cascade of multiple of INNg-singles.

2.3.7 Comparison with GAN [GPAM+14]

Next we compare INNg with a very interesting and popular line of work, generative

adversarial neural networks (GAN) [GPAM+14]. We summarize the key differences between

INNg and GAN. Other recent algorithms [GPAM+14, RMC15, ZML16, BLRW16] share similar

properties with it.

• Unified generator/discriminator vs. separate generator and discriminator. INNg maintains a single

model that is simultaneously a generator and a discriminator. The INNg generator therefore is able

to self-evaluate the difference between its generated samples (pseudo-negatives) against the training

data. This gives us an integrated framework to achieve competitive results in unsupervised and fully
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supervised learning with the generator and discriminator helping each other internally (not externally).

GAN instead creates two convolutional networks, a generator and a discriminator.

• Training. Due to the internal competition between the generator and the discriminator, GAN is known

to be hard to train [ACB17]. INNg instead carries out a straightforward use of backpropagation in both

the sampling and the classifier training stage, making the learning process direct. For example, all the

textures by INNg shown in the experiments Fig. 2.2 and Fig. 2.6 are obtained under the identical setting

without hyper-parameter tuning.

• Speed. GAN performs a forward pass to reconstruct an image, which is generally faster than INNg

where synthesis is carried out using backpropagation. INNg is still practically feasible since it takes

about 10 seconds to synthesize a batch of 50 images of 64×64 and around 30 seconds to synthesize a

texture image of size 256×256, excluding the time to load the models.

• Model size. Since a sequence of CNN classifiers (10−60) are included in INNg, INNg has a much larger

model complexity than GAN. This is an advantage of GAN over INNg. Our alternative INNg-single

model maintains a single CNN classifier but its generative power is worse than those of INNg and GAN.

2.4 Experiments

We evaluate both INNg and INNg-single. In each method, we adopt the discriminator

architecture of [RMC15] which takes an input size of 64×64×3 in the RGB colorspace by four

convolutional layers using 5×5 kernel sizes with the layers using 64, 128, 256 and 512 channels,

respectively. We include batch normalization after each convolutional layer (excluding the first)

and use leaky ReLU activations with leak slope 0.2. The classification layer flattens the input

and finally feeds it into a sigmoid activation. This serves as the discriminator for the 64× 64

patches we extract from the training image(s). Note that it is a general purpose architecture with

no modifications made for a specific task in mind.

In texture synthesis and artistic style, we make use of the “anysize-image-generation”

architecture by adding a “head” to the network that, at each forward pass of the network, randomly
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input                    Gatys et al.               TextureNets INNg-single (ours)         INNg (ours)             

Figure 2.6: More texture synthesis results. Gatys et al. [GEB15] and Texture Nets [ULVL16] results
are from [ULVL16].
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selects some number (equal to the desired batch size) of 64× 64 random patches (possibly

overlapping) from the full sized images and passes them to the discriminator. This allows us to

retain the whole space of patches within a training image rather than select some subset of them

in advance to use during training.

2.4.1 Texture modeling

Texture modeling/rendering is a long standing problem in computer vision and graphics

[HB95, ZWM97, EL99, PS00]. Here we are interested in statistical texture modeling [ZWM97,

XLZW16a], instead of just texture rendering [EL99]. We train similar textures to [ULVL16].

Each source texture is resized to 256×256, used as the “positive” image in the training set; a

set of 200 negative images are initially sampled from a normal distribution with σ = 0.3 of size

320× 320 after adding padding of 32 pixels to each spatial dimension of the image to ensure

each pixel of the 256×256 center has equal probability of being extracted in some patch. 1,000

patches are extracted randomly across the training images and fed to the discriminator at each

forward pass of the network (during training and synthesis stages) from a batch size of 100

patches — 50 random positives and negatives when training and 100 pseudo-negatives during

synthesis. At each stage, our classifier is finetuned using stochastic gradient descent with learning

rate 0.01 from the previous stage’s classifier. Pseudo-negatives from more recent stages are

chosen in mini-batches with higher probability than those of earlier stages in order to ensure the

discriminator learns from its most recent mistakes as well as provide for more efficient training

when the set of accumulated negatives has grown large in later stages. During the synthesis

stage, pseudo-negatives are synthesized using the previous stage’s pseudo-negatives as their

initialization. Adam is used with a learning rate of 0.1 and β = 0.5 and stops early when the

average probability of the patches under the discriminator becomes positive (across some window

of steps, usually 20). We find this sampling strategy to attain a good balance in effectiveness and

efficiency.
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New textures are synthesized under INNg by: initializing from the normal distribution

with σ = 0.3 followed by SGD based sampling via backpropagation using the saved networks for

each stage, and feeding the resulting synthesis to the next stage. The number of patches is decided

based on the image size to be synthesized, typically 10 patches when synthesizing a 256×256

image since this matches the average number of patches extracted per image during training.

For INNg-single which consists of a single CNN classifier, SGD-based sampling is performed

directly using this CNN classifier to transform the initial normal distribution to a desired texture.

Considering the results in Fig. 2.2, we see that INNg (60 CNN classifiers each with 4

layers) generates images of similar quality to [ULVL16], but of higher quality than those by Gatys

et al. [GEB15], Portilla & Simoncelli [PS00], and DCGAN [RMC15]. In general, synthesis by

INNg is usually more faithful to the structure of the input images.

More texture modeling results are provided in Fig. 2.6 using the same model and CNN

setting as in Fig. 2.2. We make an interesting observation that the “diamond” texture (the fourth

row) generated by INNg shows to preserve the near-regular patterns much better than the other

methods. In the bottom row of Fig. 2.6, the “pebbles” synthesis of INNg captures the size

variation as well as the variation in color and shading, better than TextureNets [ULVL16] and

Gatys et al. [GEB15].

2.4.2 Artistic style transfer

We also attempt to transfer artistic style as shown in [GEB15]. However, our architecture

makes no use of additional networks for content and texture transferring task uses a loss functions

during synthesis to minimize

− ln p(Istyle | I) ∝ γ · ||Istyle− I||2− (1− γ) · ln p−style(Istyle),
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Figure 2.7: Artistic style transfer results using the “Starry Night” and “Scream” style on the image from
Amsterdam.
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where I is an input image and Istyle is its stylized version, and p−style(I) denotes the model learned

from the training style image. We include a L2 fidelity term during synthesis, weighted by a

parameter γ, making Istyle not too far away from the input image I. We choose γ = 0.3 and average

the L2 difference between the original content image and the current stylized image at each step

of synthesis. Two examples of the artistic style transfer are shown in Fig. 2.7.

2.4.3 Face modeling

Figure 2.8: Generated images learned on the CelebA dataset. The first, the second, and the third column
are respectively results by DCGAN [RMC15] (using tensorflow implementation [Kim16]), INNg-single
(1 CNN classifier with 4 layers), and INNg (12 CNN classifiers each with 4 layers).

INNg is also demonstrated on a face modeling task. The CelebA dataset [LLWT15] is

used in our face modeling experiment, which consists of 202,599 face images. We crop the center

64× 64 patches in these images as our positive examples. For the classification step, we use

stochastic gradient descent with learning rate 0.01 and a batch size of 100 images, which contains

50 random positives and 50 random negatives. For the synthesis step, we use the Adam optimizer

with learning rate 0.02 and β = 0.5 and stop early when the pseudo-negatives cross the decision

boundary. In Fig. 2.8, we show some face examples generated by the DCGAN model [RMC15],

our INNg-single model (1 CNN classifier with 4 conv layers), and our INNg model (12 CNN
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classifiers each with 4 conv layers).

2.4.4 SVHN unsupervised learning

Figure 2.9: Generated images learned on the SVHN dataset. The first, the second, and the third column
are respectively results by DCGAN [RMC15] (using tensorflow implementation [Kim16]), INNg-single
(1 CNN classifier with 4 layers), and INNg (10 CNN classifiers each with 4 layers).

The SVHN [NWC+11] dataset consists of color images of house numbers collected by

Google Street View. The training set consists of 73,257 images, the extra set consists of 531,131

images, and the test set has 26,032 images. The images are of the size 32× 32. We combine

the training and extra set as our positive examples for unsupervised learning. Following the

same settings in the face modeling experiments, we shown some examples generated by the

DCGAN model [RMC15], INNg-single (1 CNN classifier with 4 conv layers), and INNg (10

CNN classifiers each with 4 conv layers).

2.4.5 Unsupervised feature learning

We perform the unsupervised feature learning and semi-supervised classification exper-

iment by following the procedure outlined in [RMC15]. We first train a model on the SVHN
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training and extra set in an unsupervised way, as in Section 2.4.4. Then, we train an L2-SVM on

the learned representations of this model. The features from the last three convolutional layers are

concatenated to form a 14336-dimensional feature vector. A 10,000 example held-out validation

set is taken from the training set and is used for model selection. The SVM classifier is trained

on 1000 examples taken at random from the remainder of the training set. The test error rate is

averaged over 100 different SVMs trained on random 1000-example training sets. Within the

same setting, our INNg model achieves the test error rate of 32.81% and the DCGAN model

achieves 33.13% (we ran the DCGAN code [Kim16] in an identical setting as INNg for a fair

comparison).

2.5 Conclusion

Generative modeling using introspective neural networks points to an encouraging di-

rection for unsupervised image modeling that capitalizes on the power of discriminative deep

convolutional neural networks. It can be adopted for a wide range of problems in computer vision.

This chapter is based on material as it appears in the Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2017. (Justin Lazarow, Long Jin, Zhuowen Tu, “Intro-

spective neural networks for generative modeling”). The dissertation author was the co-primary

investigator and author of this paper.
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Chapter 3

Learning Instance Occlusion for Panoptic

Segmentation
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3.1 Introduction

Image understanding has been a long standing problem in both human perception [Bie87]

and computer vision [Mar82]. The image parsing framework [TCYZ05] is concerned with the

task of decomposing and segmenting an input image into constituents such as objects (text and

faces) and generic regions through the integration of image segmentation, object detection, and

object recognition. Scene parsing is similar in spirit and consists of both non-parametric [TNL14]

and parametric [ZSQ+17] approaches.

After the initial development, the problem of image understanding was studied separately

as object detection (or extended to instance segmentation) and semantic segmentation. In-

stance segmentation [PCD15, PLCD16, DHS16, LLW+18, HGDG17, RSD+12, ZFU16, JCT16]

requires the detection and segmentation of each thing (countable object instance) within an

image, while semantic segmentation [SWRC06, Tu08, EVGW+10, LSD15, CPK+18, ZJRP+15,

ZSQ+17] provides a dense per-pixel classification without distinction between instances within

the same thing category. Kirillov et al.[KHG+19] proposed the panoptic segmentation task that

combines the strength of semantic segmentation and instance segmentation. In this task, each

pixel in an image is assigned either to a background class (stuff ) or to a specific foreground object

(an instance of things).

A common approach for panoptic segmentation has emerged in a number of works

[KGHD19, LCZ+19, XLZ+19] that relies on combining the strong baseline architectures used in

semantic segmentation and instance segmentation into either a separate or shared architecture

and then fusing the results from the semantic segmentation and instance segmentation branches

into a single panoptic output. Since there is no expectation of consistency in proposals between

semantic and instance segmentation branches, conflicts must be resolved. Furthermore, one

must resolve conflicts within the instance segmentation branch as it proposes segmentations

independent of each other. While a pixel in the panoptic output can only be assigned to a single
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Figure 3.1: An illustration of fusion using masks sorted by detection confidence alone
[KHG+19] vs. with the ability to query for occlusions (OCFusion; ours). Occlude(A,B) = 0
in occlusion head means mask B should be placed on top of mask A. Mask R-CNN proposes
three instance masks listed with decreasing confidence. The heuristic of [KHG+19] occludes all
subsequent instances after the “person”, while our method retains them in the final output by
querying the occlusion head.

class and instance, instance segmentation proposals are often overlapping.

To handle these issues, Kirillov et al.[KHG+19] proposed a fusion process similar to non-

maximum suppression (NMS) that favors instance proposals over semantic proposals. However,

we observe that occlusion relationships between different objects do not correlate well with

object detection confidences used in this NMS-like fusion procedure [KHG+19], which therefore

generally leads to poor performance when an instance that overlaps another (e.g., a tie on a shirt
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Figure 3.2: Illustration of the overall architecture. The FPN is used as a shared backbone
for both thing and stuff branches. In thing branch, Mask R-CNN will generate instance mask
proposals, and the occlusion head will output binary values Occlude(Mi,M j) (Equation 3.1) for
each pair of mask proposals Mi and M j with appreciable overlap (larger than a threshold) to
indicate occlusion relation between them. Occlusion head architecture is described in Section
3.2.4. Fusion process is described in 3.2.3.

in Figure 3.3a) has lower detection confidence than the instance it should occlude. This can cause

a large number of instances that Mask R-CNN successfully proposes fail to exist in the panoptic

prediction (shown in Figure 3.1).

In this work, we focus on enriching the fusion process established by [KHG+19] with a

binary relationship between instances to determine occlusion ordering. We propose adding an

additional branch (occlusion head) to the instance segmentation pipeline tasked with determining

which of two instance masks should lie on top of (or below) the other to resolve occlusions in

the fusion process. The proposed occlusion head can be fine-tuned easily on top of an existing

Panoptic Feature Pyramid Networks (FPNs) [KGHD19] architecture with minimal difficulty.

We call our approach fusion with occlusion head (OCFusion). OCFusion brings significant

performance gains on the COCO and Cityscapes panoptic segmentation benchmarks with low

computational cost.
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3.2 Learning Instance Occlusion for Panoptic Fusion

We adopt the coupled approach of [KGHD19] that uses a shared Feature Pyramid Network

(FPN) [LDG+17b] backbone with a top-down process for semantic segmentation branch and

Mask R-CNN [HGDG17] for instance segmentation branch.

In this section, we first discuss the instance occlusion problem arising within the fusion

heuristic introduced in [KHG+19] and then introduce OCFusion method to address the problem.

The overall approach is shown in Figure 3.2.

3.2.1 Fusion by confidence

The fusion protocol in [KHG+19] adopts a greedy strategy during inference in an iterative

manner. Instance proposals are first sorted in order of decreasing detection confidence. In each

iteration, the proposal is skipped if its intersection with the mask of all already assigned pixels

is above a certain ratio of τ. Otherwise, pixels in this mask that have yet to be assigned are

assigned to the instance in the output. After all instance proposals of some minimum detection

threshold are considered, the semantic segmentation is merged into the output by considering

its pixels corresponding to each “stuff” class. If the number of pixels exceeds some threshold

after removing already assigned pixels, then these pixels are assigned to the corresponding “stuff”

category. Pixels that are unassigned after this entire process are considered void predictions and

have special treatment in the panoptic scoring process. We denote this type of fusion as fusion by

confidence.

Softening the greed. The main weakness of the greedy fusion process is the complete re-

liance on detection confidences (e.g.for Mask R-CNN, those from the box classification score) for

a tangential task. Detection scores not only have little to do with mask quality (e.g., [HHG+19]),

but they also do not incorporate any knowledge of layout. If they are used in such a way, higher

detection scores would imply a more foreground ordering. Often this is detrimental since Mask
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R-CNN exhibits behavior that can assign near-maximum confidence to very large objects (e.g.see

dining table images in Figure 3.3b) that are both of poor mask quality and not truly foreground. It

is common to see images with a significant number of true instances suppressed in the panoptic

output by a single instance with large area that was assigned the largest confidence.

Our approach softens this greedy fusion process with an occlusion head that is dedicated

to predicting the binary relation between instances with appreciable overlap so that instance

occlusions can be properly handled.

3.2.2 Occlusion head formulation

Consider two masks Mi and M j proposed by an instance segmentation model, and denote

their intersection as Ii j = Mi ∩M j. We are interested in the case where one of the masks

is heavily occluded by the other. Therefore, we consider their respective intersection ratios

Ri = Area(Ii j)/Area(Mi) and R j = Area(Ii j)/Area(M j) where Area(M) denotes the number of

“on” pixels in mask M. As noted in Section 3.2.1, the fusion process considers the intersection of

the current instance proposal with the mask consisting of all already claimed pixels. Here, we

are looking at the intersection between two masks and denote the threshold as ρ. If either Ri ≥ ρ

or R j ≥ ρ, we define these two masks as having appreciable overlap. In this case, we must then

decide which instance the pixels in Ii j should belong to. We attempt to answer this by learning a

binary relation Occlude(Mi,M j) such that whenever Mi and M j have appreciable intersection:

Occlude(Mi,M j) =


1 if Mi should be placed on top of M j

0 if M j should be placed on top of Mi.

(3.1)
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(a)

(b)

Figure 3.3: Images and ground truth masks from the COCO dataset. (a) is an example
where even predicting the ground truth mask creates ambiguity when attempting to assign
pixels to instances in a greedy manner. The baseline fusion process [KHG+19] is unable to
properly assign these as shown in the 2nd and 4th images of the rightmost column whereas
our method is able to handle the occlusion relationship present as shown in the 1st and 3rd
images of the rightmost column. (b) is an example where Mask R-CNN baseline produces an
instance prediction that occludes the entire image and creates the same ambiguity in (a) despite
an unambiguous ground truth annotation.
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3.2.3 Fusion with occlusion head

We now describe our modifications to the inference-time fusion heuristic of [KHG+19]

that incorporates Occlude(Mi,M j) in Algorithm 2.

Algorithm 2 Fusion with Occlusion Head.
P is H×W matrix, initially empty.

ρ is a hyperparameter, the minimum intersection ratio for occlusion.
τ is a hyperparameter.

for each proposed instance mask Mi do
Ci = Mi−P . pixels in Mi that are not assigned in P
for j < i do . each already merged segment

Ii j is the intersection between mask Mi and M j.
Ri = Area(Ii j)/Area(Mi).
R j = Area(Ii j)/Area(M j).
if Ri ≥ ρ or R j ≥ ρ then . significant intersection

if Occlude(Mi,M j) = 1 then
Ci =Ci

⋃
(C j

⋂
Ii j).

C j =C j− Ii j.
end if

end if
end for
if Area(Ci)/Area(Mi)≤ τ then

continue
else

assign the pixels in Ci to the panoptic mask P.
end if

end for

After the instance fusion component has completed, the semantic segmentation is then

incorporated as usual, only considering pixels assigned to stuff classes and determining whether

the number of unassigned pixels corresponding to the class in the current panoptic output exceeds

some threshold, e.g., 4096. The instance fusion process is illustrated in Figure 3.1.

3.2.4 Occlusion head architecture

We implement Occlude(Mi,M j) as an additional “head” in Mask R-CNN [HGDG17].

Mask R-CNN already contains two heads: a box head that is tasked with taking region proposal
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network (RPN) proposals and refining the bounding box as well as assigning classification

scores, while the mask head predicts a fixed size binary mask (usually 28×28) for all classes

independently from the output of the box head. Each head derives its own set of features from

the underlying FPN. We name our additional head, the “occlusion head” and implement it as a

binary classifier that takes two (soft) masks Mi and M j along with their respective FPN features

(determined by their respective boxes) as input. The classifier output is interpreted as the value of

Occlude(Mi,M j).

The architecture of occlusion head is inspired by [HHG+19] as shown in Figure 3.2. For

two mask representations Mi and M j, we apply max pooling to produce a 14×14 representation

and concatenate each with the corresponding RoI features to produce the input to the head. Three

layers of 3×3 convolutions with 512 feature maps and stride 1 are applied before a final one

with stride 2. The features are then flattened before a 1024 dimensional fully connected layer and

finally projected to a single logit.

3.2.5 Ground truth occlusion

We use ground truth panoptic mask along with ground truth instance masks to derive

ground truth occlusion relation. We pre-compute the intersection between all pairs of masks with

appreciable overlap. We then find the pixels corresponding to the intersection of the masks in the

panoptic ground truth. We determine the instance occlusion based on which instance owns the

majority of pixels in the intersection. We store the resulting “occlusion matrix” for each image in

an Ni×Ni matrix where Ni is the number of instances in the image and the value at position (i, j)

is either −1, indicating no occlusion, or encodes the value of Occlude(i, j).
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3.2.6 Occlusion head training

During training, the occlusion head is designed to first find pairs of predicted masks that

match to different ground truth instances. Then, the intersection between these pairs of masks

is computed, and the ratio of the intersection to mask area taken. A pair of masks is added for

consideration when one of these ratios is at least as large as the pre-determined threshold ρ. We

then subsample the set of all pairs meeting this criterion to decrease computational cost. It is

desirable for the occlusion head to reflect the consistency of Occlude, therefore we also invert all

pairs so that Occlude(Mi,M j) = 0 ⇐⇒ Occlude(M j,Mi) = 1 whenever the pair (Mi,M j) meets

the intersection criteria. This also mitigates class imbalance. Since this is a binary classification

problem, the overall loss Lo from the occlusion head is given by the binary cross-entropy over all

subsampled pairs of masks that meet the intersection criteria.

3.3 Related work

Next, we discuss in detail the difference between OCFusion and the existing approaches

for panoptic segmentation, occlusion ordering, and non-maximum suppression.

Panoptic segmentation. The task of panoptic segmentation is introduced in [KHG+19]

along with a baseline where predictions from instance segmentation (Mask R-CNN [HGDG17])

and semantic segmentation (PSPNet [ZSQ+17]) are combined via a heuristics-based fusion

strategy. A stronger baseline based on a single Feature Pyramid Network (FPN) [LDG+17b]

backbone followed by multi-task heads consisting of semantic and instance segmentation branches

is concurrently proposed by [LCZ+19, LRB+18, KGHD19, XLZ+19]. On top of this baseline,

attention layers are added in [LCZ+19] to the instance segmentation branch, which are guided by

the semantic segmentation branch; a loss term enforcing consistency between things and stuff

predictions is then introduced in [LRB+18]; a parameter-free panoptic head which computes the
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final panoptic mask by pasting instance mask logits onto semantic segmentation logits is presetned

in [XLZ+19]. These works have been making steady progress in panoptic segmentation, but their

focus is not to address the problem for explicit reasoning of instance occlusion.

Occlusion ordering and layout learning. Occlusion handling is a long-studied computer

vision task [WHY09, EESG10, SLKS05, HSEH07]. In the context of semantic segmentation,

occlusion ordering has been adopted in [TNL14, CLY15, ZTMD17]. A repulsion loss is added

to a pedestrian detection algorithm [WXJ+18] to deal with the crowd occlusion problem, but it

focuses on detection only, without instance segmentation.

In contrast, we study the occlusion ordering problem for instance maps in panoptic

segmentation. Closest to our method is the recent work of [LPY+19], which proposes a panoptic

head to resolve this issue in a similar manner to [XLZ+19] but instead with a learnable convolution

layer. Since our occlusion head can deal with two arbitrary masks, it offers more flexibility over

these approaches which attempt to “rerank” the masks in a linear fashion [XLZ+19, LPY+19].

Furthermore, the approach of [LPY+19] is based off how a class should be placed on top of

another class (akin to semantic segmentation) while we explicitly model the occlusion relation

between arbitrary instances. This allows us to leverage the intra-class occlusion relations such as

“which of these two persons should occlude the other?”, and we show this leads to a gain in Figure

3.7 and Table 3.9. In a nutshell, we tackle the occlusion problem in a scope that is more general

than [LPY+19] with noticeable performance advantage, as shown in Table 5.1 and Table 3.3.

Learnable NMS. One can relate resolving occlusions to non-maximum suppression

(NMS) that is applied to boxes, while our method tries to suppress intersections between masks.

Our method acts as a learnable version of NMS for instance masks with similar computations to

the analogous ideas for boxes such as [HBS17].
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3.4 Experiments

3.4.1 Implementation details

We extend the Mask R-CNN benchmark framework [MG18], built on top of PyTorch, to

implement our architecture. Batch normalization [IS15] layers are frozen and not fine-tuned for

simplicity. We perform experiments on the COCO dataset [LMB+14] [KHG+19] as well as the

Cityscapes dataset [COR+16b] with panoptic annotations.

We find the most stable and efficient way to train the occlusion head is by fine-tuning with

all other parameters frozen. We add a single additional loss only at fine-tuning time so that the

total loss during panoptic training is L = λi(Lc +Lb +Lm)+λsLs where Lc, Lb, and Lm are the

box head classification loss, bounding-box regression loss, and mask loss while Ls is the semantic

segmentation cross-entropy loss. At fine-tuning time, we only minimize Lo, the classification loss

from the occlusion head. We subsample 128 mask occlusions per image.

During fusion, we only consider instance masks with detection confidence of at least 0.5

or 0.6 and reject segments during fusion when their overlap ratio with the existing panoptic mask

(after occlusions are resolved) exceeds τ = 0.5 on COCO and τ = 0.6 on Cityscapes. Lastly, when

considering the segments of stuff generated from the semantic segmentation, we only consider

those which have at least 4096 pixels remaining after discarding those already assigned on COCO

and 2048 on Cityscapes.

Semantic head. On COCO, repeat the combination of 3×3 convolution and 2× bilinear

upsampling until 1/4 scale is reached, following the design of [KGHD19]. For the model with

ResNeXt-101 backbone, we replace each convolution with deformable convolution [DQX+17].

For ResNet-50 backbone, we additionally add one experiment that adopts the design from

[XLZ+19] which uses 2 layers of deformable convolution followed by a bilinear upsampling to

the 1/4 scale. On Cityscapes, we adopt the design from [XLZ+19].

COCO. The COCO 2018 panoptic segmentation task consists of 80 thing and 53 stuff
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classes. We use 2017 dataset which has a split of 118k/5k/20k for training, validation and testing

respectively.

Cityscapes. Cityscapes consists of 8 thing classes and 11 stuff classes. We use only fine

dataset with a split of 2975/500/1525 for training, validation and testing respectively.

COCO training

We train the FPN-based architecture described in [KGHD19] for 90K iterations on 8

GPUs with 1 image per GPU. The base learning rate of 0.02 is reduced by 10 at both 60k and 80k

iterations. We then proceed to fine-tune with the occlusion head for 2500 more iterations. We

choose λi = 1.0 and λs = 0.5 while for the occlusion head we choose the intersection ratio ρ as

0.2. For models with ResNet-50 and ResNet-101 backbone, we use random horizontal flipping as

data augmentation. For model with ResNeXt-101 backbone, we additionally use scale jitter (with

scale of shorter image edge equals to {640,680,720,760,800}).

Cityscapes training

We randomly rescale each image by 0.5 to 2× (scale factor sampled from a uniform

distribution) and construct each batch of 16 (4 images per GPU) by randomly cropping images

of size 512 × 1024. We train for 65k iterations with a base learning rate of 0.01 with decay at

40k and 55k iterations. We fine-tune the occlusion head for 5000 more iterations. We choose

λi = λs = 1.0 with intersection ratio ρ as 0.1. We do not pretrain on COCO.
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Panoptic segmentation metrics

We adopt the panoptic quality (PQ) metric from [KHG+19] to measure panoptic seg-

mentation performance. This single metric captures both segmentation and recognition quality.

PQ can be further broken down into scores specific to things and stuff, denoted PQTh and PQSt,

respectively.

Multi-scale testing

We adopt the same scales as [XLZ+19] for both COCO and Cityscapes multi-scale testing.

For the stuff branch, we average the multi-scale semantic logits of semantic head. For the thing

branch, we average the multi-scale masks and choose not to do bounding box augmentation for

simplicity.

Table 3.1: Comparison to our implementation of Panoptic FPN [KGHD19] baseline model
on the MS-COCO val dataset.

Method Backbone PQ PQTh PQSt

Baseline ResNet-50 39.5 46.5 29.0
OCFusion ResNet-50 41.3 49.4 29.0

relative improvement +1.8 +3.0 +0.0

Baseline ResNet-101 41.0 47.9 30.7
OCFusion ResNet-101 43.0 51.1 30.7

relative improvement +2.0 +3.2 +0.0

3.4.2 COCO panoptic benchmark

We obtain state-of-the-art results on COCO Panoptic Segmentation validation set with

and without multi-scale testing as is shown in 5.1. We also obtain single model state-of-the-art

results on the COCO test-dev set, as shown in Table 3.3. In order to show the effectiveness of our
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Table 3.2: Comparison to prior work on the MS-COCO val dataset. m.s. stands for multi-
scale testing. ∗Used deformable convolution.

Method Backbone m.s.
test PQ PQTh PQSt

JSIS-Net [dGMD18] ResNet-50 26.9 29.3 23.3
Panoptic FPN [KGHD19] ResNet-50 39.0 45.9 28.7
Panoptic FPN [KGHD19] ResNet-101 40.3 47.5 29.5
AUNet [LCZ+19] ResNet-50 39.6 49.1 25.2
UPSNet∗ [XLZ+19] ResNet-50 42.5 48.5 33.4
UPSNet∗ [XLZ+19] ResNet-50 X 43.2 49.1 34.1
OANet [LPY+19] ResNet-50 39.0 48.3 24.9
OANet [LPY+19] ResNet-101 40.7 50.0 26.6
AdaptIS [SBK19] ResNet-50 35.9 40.3 29.3
AdaptIS [SBK19] ResNet-101 37 41.8 29.9
AdaptIS [SBK19] ResNeXt-101 42.3 49.2 31.8

OCFusion ResNet-50 41.3 49.4 29.0
OCFusion∗ ResNet-50 42.5 49.1 32.5
OCFusion ResNet-101 43.0 51.1 30.7
OCFusion∗ ResNeXt-101 45.7 53.1 34.5
OCFusion ResNet-50 X 41.9 49.9 29.9
OCFusion∗ ResNet-50 X 43.3 50.0 33.8
OCFusion ResNet-101 X 43.5 51.5 31.5
OCFusion∗ ResNeXt-101 X 46.3 53.5 35.4

Table 3.3: Comparison to prior work on the MS-COCO test-dev dataset. m.s. stands for
multi-scale testing. ∗Used deformable convolution.

Method Backbone m.s.
test PQ PQTh PQSt

JSIS-Net [dGMD18] ResNet-50 27.2 29.6 23.4
Panoptic FPN [KGHD19] ResNet-101 40.9 48.3 29.7
OANet [LPY+19] ResNet-101 41.3 50.4 27.7
AUNet [LCZ+19] ResNeXt-152 X 46.5 55.9 32.5
UPSNet∗ [XLZ+19] ResNet-101 X 46.6 53.2 36.7
AdaptIS [SBK19] ResNeXt-101 42.8 50.1 31.8

OCFusion∗ ResNeXt-101 X 46.7 54.0 35.7
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method, we compare to our baseline model in Table 3.1, and the results show that our method

consistently provides significant gain on PQTh as well as PQ.

3.4.3 Cityscapes panoptic benchmark

We obtain competitive results on the Cityscapes validation set and the best results among

models with a ResNet-50 backbone, shown in Table 3.5. Table 3.4 shows our strong relative

improvement over the baseline on PQTh as well as PQ.

Table 3.4: Comparison to our implementation of Panoptic FPN [KGHD19] baseline model
on the Cityscapes val dataset. All results are based on a ResNet-50 backbone.

Method PQ PQTh PQSt

Baseline 58.6 51.7 63.6
OCFusion 59.3 53.5 63.6

relative improvement +0.7 +1.7 +0.0

Table 3.5: Comparison to prior work on the Cityscapes val dataset. All results are based on
a ResNet-50 backbone. m.s. stands for multi-scale testing. ∗Used deformable convolution.

Method m.s.
test PQ PQTh PQSt

Panoptic FPN [KGHD19] 57.7 51.6 62.2
AUNet [LCZ+19] 56.4 52.7 59.0
UPSNet∗ [XLZ+19] 59.3 54.6 62.7
UPSNet∗ [XLZ+19] X 60.1 55.0 63.7
AdaptIS [SBK19] 59.0 55.8 61.3

OCFusion∗ 59.3 53.5 63.6
OCFusion∗ X 60.2 54.0 64.7

3.4.4 Occlusion head performance

In order to better gauge the performance of the occlusion head, we determine its classifi-

cation accuracy on both COCO and Cityscapes validation dataset at ρ = 0.20 with ResNet-50
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Figure 3.4: Comparison against Kirillov et al. [KGHD19] which uses fusion by confidence.

Figure 3.5: Comparison against Spatial Ranking Module [LPY+19].
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Figure 3.6: Comparison against UPSNet [XLZ+19].

backbone. We measure the accuracy of the occlusion head in predicting the true ordering

given ground truth boxes and masks. The occlusion head classification accuracy on COCO and

Cityscapes is 91.58% and 93.60%, respectively, which validates the effectiveness of OCFusion.

3.4.5 Inference time analysis

We analyze the computational cost of our method and empirically show the inference time

overhead of our method compared to the baseline model. While our method incurs an O(n2) cost

in order to compute pairwise intersections, where n is the number of instances, this computation

is only needed for the subset of masks whose detection confidence is larger than a threshold (0.5

or 0.6 usually) as dictated by the Panoptic FPN [KGHD19] baseline. This filtering greatly limits

the practical magnitude of n. Furthermore, only the subset of remaining mask pairs that have

appreciable overlap (larger than ρ) requires evaluation by the occlusion head. We measure this

inference time overhead in Table 3.6. OCFusion incurs a modest 2.0% increase in computational

time on COCO and 4.7% increase on Cityscapes.
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Table 3.6: Runtime (ms) overhead per image. Runtime results are averaged over the entire
COCO and Cityscapes validation dataset. We use a single GeForce GTX 1080 Ti GPU and
Xeon(R) CPU E5-2687W CPU.

Method COCO Cityscapes

Baseline 153 378
OCFusion 156 396
Change in runtime (ms) +3 +18

3.4.6 Visual comparisons

Since panoptic segmentation is a relatively new task, the most recent papers offer only

comparisons against the baseline presented in [KHG+19]. We additionally compare with a few

other recent methods [LPY+19, XLZ+19].

We first compare our method against [KGHD19] in Figure 3.4 as well as two recent

works: UPSNet [XLZ+19] in Figure 3.6 and the Spatial Ranking Module of [LPY+19] in Figure

3.5. The latter two have similar underlying architectures alongside modifications to their fusion

process. We note that except for comparisons between [KGHD19], the comparison images shown

are those included in the respective papers and not of our own choosing. Overall, we see that

our method is able to preserve a significant number of instance occlusions lost by other methods

while maintaining more realistic fusions, e.g., the arm is entirely above the man versus sinking

behind partly as in “fusion by confidence”.

Figure 3.7: Comparison for w/o (left) or w/ (right) intra-class capability enabled. Best
viewed in color.
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Table 3.7: COCO Hyperparameter Ablation: PQ

(τ, ρ) 0.05 0.10 0.20
0.4 41.27 (Th: 49.43, St: 28.97) 41.22 (Th: 49.33, St: 28.97) 41.20 (Th: 49.30, St: 28.97)
0.5 41.20 (Th: 49.32, St: 28.95) 41.15 (Th: 49.23, St: 28.95) 41.24 (Th: 49.29, St: 29.10)
0.6 41.09 (Th: 49.15, St: 28.93) 41.03 (Th: 49.03, St: 28.93) 41.02 (Th: 49.02, St: 28.93)
N 192,519 157,784 132,165

Table 3.8: Cityscapes Hyperparameter Ablation: PQ

(τ, ρ) 0.05 0.10 0.20
0.4 58.76 (Th: 52.10, St: 63.62) 59.15 (Th: 53.00, St: 63.62) 59.07 (Th: 52.80, St: 63.63)
0.5 59.18 (Th: 53.09, St: 63.61) 59.26 (Th: 53.28, St: 63.61) 59.22 (Th: 53.19, St: 63.61)
0.6 59.21 (Th: 53.17, St: 63.61) 59.33 (Th: 53.46, St: 63.60) 58.70 (Th: 51.96, St: 61.60)
N 33,391 29,560 6,617

3.4.7 Ablation experiments

We study the sensitivity of our method to the hyperparameters τ and ρ in Table 3.7 for

COCO and Table 3.8 for Cityscapes. We also include the number of examples of occlusions

we are able to collect at the given ρ denoted as N. Naturally, a larger ρ leads to less spurious

occlusions but decreases the overall number of examples that the occlusion head is able to learn

from.

Intra-class instance occlusion in Cityscapes is a challenging problem, also noted in

[HGDG17]. Since we can enable inter-class or intra-class occlusion query ability independently,

we show ablation results in Table 3.9 that highlight the importance of being able to handle

intra-class occlusion on. We believe this sets our method apart from others, e.g., [LPY+19]

which simplifies the problem by handling inter-class occlusion only. Additionally, Figure 3.7

shows a visual comparison between resulting panoptic segmentations when intra-class occlusion

handling is toggled on Cityscapes. Only the model with intra-class handling enabled can handle

the occluded cars better during the fusion process.
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Table 3.9: Ablation study on different types of occlusion on the Cityscapes val dataset.
Xmeans capability enabled.

Inter-class Intra-class PQ PQTh PQSt

58.6 51.7 63.6
X 59.2 (+0.5) 53.0 (+1.3) 63.6 (+0.0)
X X 59.3 (+0.7) 53.5 (+1.7) 63.6 (+0.0)

3.5 Conclusion

We have introduced an explicit notion of instance occlusion to Mask R-CNN so that

instances may be effectively fused when producing a panoptic segmentation. We assemble a

dataset of occlusions already present in the COCO and Cityscapes datasets and then learn an

additional head for Mask R-CNN tasked with predicting occlusion between two masks. Adding

occlusion head on top of Panoptic FPN incurs minimal overhead, and we show that it is effective

even when trained for few thousand iterations. In the future, we hope to explore how further

understanding of occlusion, including relationships of stuff, could be helpful.

This chapter is based on material as it appears in the Proceedings of the IEEE CVF Con-

ference on Computer Vision and Pattern Recognition. (CVPR), 2020. (Justin Lazarow, Kwonjoon

Lee, Kunyu Shi, Zhuowen Tu, “Learning instance occlusion for panoptic segmentation”). The

dissertation author was the co-primary investigator and author of this paper.
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Chapter 4

Scene Layout from Amodal Context
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4.1 Introduction

Our ability to perceive the world requires us to understand scene layout. Scene layout

conveys high-level abstractions by capturing the spatial relationships between participants within

a scene. These participants constitute a dichotomy of “things” (countable object instances such

as pedestrians and cars) and “stuff” (amorphous background regions such as sky and road).

Significant progress has been made to infer these participants from natural images [LMB+14],

[COR+16a] through semantic, instance, and now panoptic segmentation [CPK+18], [HGDG17],

[KHG+19]. However, less work has been devoted to producing scene layout from generative

models as a task within itself. While segmentation algorithms focus on producing structure from

images, we focus on producing plausible structure from which novel images can be synthesized.

SLAC (ours) LayoutVAE

Figure 4.1: An illustration of our model capturing the spatial associations between “things” and
“stuff” when attempting to hypothesize locations of persons. We call our method scene layout
from amodal context (SLAC); LayoutVAE refers to the method in [JDH+19]. The predictions
of SLAC shown on the left demonstrates its ability to accurately localize the spatial extent of
amorphous background regions by giving a diverse set of locations of persons — all constrained
to the sidewalk.
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Learning to lay out scenes requires us to consider the nature of a scene. While “things”

have a well-defined count, kind, position and scale, the “stuff” is amorphous in extent and

remains more or less static over time. People and vehicles inherently have a sense of velocity

and transience, while buildings, sidewalks, and roads do not generally find themselves in motion.

Furthermore, a scene exists without “things”, but it is less realistic to imagine a scene without

“stuff” to frame it. Additionally, the “stuff” is highly informative for valid placements of objects.

For example, a car should be on a road, and a pedestrian should likely be close to the safety of a

sidewalk. Therefore, we adopt the view [JDH+19] that in order to lay out things in a sequential

manner, we should condition on stuff.

While such an ordering of a scene is natural, the representation we pick for this condition-

ing requires care. Previous work [JDH+19] considers a coarse, bounding box based representation

for both the “things” and “stuff”. Representations of “things” through bounding boxes has been

explored and validated within object detection. However, object detection is only concerned

with “things”. When understanding of “stuff” is desired, semantic segmentation algorithms are

produced at the pixel-level to accommodate their amorphous nature. Therefore, we should adopt

conditioning of stuff during layout in the same manner by using a representation at the pixel-level.

We contrast the box versus pixel-level views in Figure 4.2. In this example, it is unclear

how to derive the true dense layout from bounding boxes alone. The bounding box for the

road contains the entirety of the sidewalk and significant parts of the buildings. In contrast, the

pixel-level semantic segmentation has clear boundaries and localization.

If we are to build an autoregressive (sequential) layout model conditioned on semantic

segmentation, we must have the ability to condition each step on the history of both stuff and

things that have already been placed. At the extreme, this implies we must have a view of the

scene without any things. This view initially represents thecomplete background segmentation

(or amodal segmentation of stuff) and in subsequent steps contains a partial number of modal

instance segmentations of “things”. While amodal segmentation has been considered previously
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[LM16], [ZTMD17], [QJL+19] at the prediction level, our approach to amodality considers it

within a generative model. Additionally, we consider amodal instance segmentation [LM16],

[QJL+19] as the extent of a thing despite occlusion (from itself or others) within our application

to scene synthesis.

Overall, we face two problems:

• How can we produce amodal stuff segmentations to condition our model on?

• How should we build a model of layout that can condition and predict with respect to a

pixel-wise segmentation?

To answer these questions, we contribute the following:

• We introduce a form of layout that is conditioned, constrained, and grounded by the amodal

stuff within a scene. Our model conditions on pixels rather than on coordinates like previous

work. We use a pixel-wise amodal segmentation of the stuff in a scene as a means to ground

our model, as well as removing the need for memory units. Furthermore, we place it within a

variational framework to support a diverse set of plausible layouts.

• We show that not only can we learn over a small-scale synthetic dataset [ZP13] and explicit

amodally segmented datasets [Bil06], [ZTMD17], but that we can derive reasonable amodal

stuff segmentations within the Cityscapes [COR+16a] dataset to enable a complex evaluation

setting.

• We propose a scenario where we ask a system for “guesses” of where objects might be in a

scene given only an amodal segmentation of the stuff in a scene. We show that our model

can achieve significant recall of instances when we treat these guesses as layout hypotheses —

being able to recall over 55% of cars in the Cityscapes dataset when given 500 guesses and

showing efficiency when given a smaller number of opportunities.

We refer to this as “scene layout from amodal context” or SLAC.
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(a) (b)

Figure 4.2: (a). A comparison of representations for the “stuff” in terms of bounding boxes to
one based off of a dense pixel-wise segmentation. Our approach uses a pixel-wise segmentation
(top left) as conditioning while still being able to predict bounding boxes. (b). An illustration of
how Cityscapes is annotated. We use this to generate near ground-truth amodal segmentations
of the stuff in a scene by not merging layers corresponding to “things”.

4.2 Related work

Layout and context. Context [OT07] plays an important role in visual perception.

Context modeling has been adopted in various computer vision applications such as object

categorization [RVG+07], semantic labeling [Tu08], and object detection [CDXH13]. While

the concept of context is rather broad, layout [HHF] provides context in the form of spatial

configurations of object shapes and locations. Learning a discriminative layout model [DRF11]

has shown to be effective in producing improved multi-class object detection. Here, we study

a generative model of layout that allows us to synthesize new layouts of multiple objects —

obtaining faithful geometric and spatial configuration in a scene.

Amodal segmentation. Few works have investigated producing amodal segmentations

of a scene. Zhu et al.[ZTMD17] produce amodal segmentations of a small subset of images

within the COCO dataset and extend the SharpMask framework to produce amodal masks. Li and

Malik [LM16] paste new instances into images to produce occlusions in order to train an amodal
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segmentation algorithm. Recently, Qi et al.[QJL+19] released a dataset consisting of amodal

instance segmentations of the KITTI dataset along with extensions to modern segmentation

pipelines to produce amodal predictions.

Sentence-conditioned image generation. A number of works [RAM+16], [RAY+16]

use natural language as grounding for synthesizing images. Most relevant to ours is Hong et

al.[HYCL18] which uses natural language to infer a semantic layout of “things” from which a

natural image consistent with it can be generated.

Inserting instances into scenes. Given a semantic segmentation, Lee et al.[LLG+18]

consider inserting a new instance in a plausible manner by modeling location and shape. However,

because they rely on inserting a new instance rather than reconstructing the layout, they are forced

to rely on GAN-based techniques. The architecture is only validated on two classes (person and

car) within the Cityscapes dataset and requires retraining for each class. Additionally, this setting

is also smaller in scope than ours as we aim to generate an entire layout from conditioning.

General layout. Recent work including [LYH+19] and [JDH+19] focuses on layout of

simple objects e.g. points and boxes without conditioning. LayoutGAN [LYH+19] using a series

of attentional blocks to transform a random parameterization of a shape or layout into plausible

one along with a basic differentiable renderer as an adversarial loss. It directly produces samples

from the joint distribution of a fixed count layout. LayoutVAE [JDH+19] is an autoregressive

VAE most relevant to ours, however, it focuses on the problem in coordinate space where their

model treats the representation of both “stuff” and “things“ as normalized bounding boxes.

4.3 Humans as Amodal Annotators

The basic premise of our model requires amodal segmentations of the “stuff” within a

scene. Except for synthetic datasets [ZP13], this hinges on the ability for humans to perceive the

visual world amodally [Kan79], [KTCM15]. We note previous attempts to annotate scenes in
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such a way [Bil06], [GH12], [ZTMD17] have been made in the past and we apply our model to

each in this work. However, we consider the Cityscapes dataset [COR+16a] as an ideal setting for

scene understanding — having basic spatial relationships but also having exceedingly complex

scenes (often having over 60 objects in a scene). While this dataset has never before been applied

in the context of amodal vision, we aim to show its promise and applicability to our problem here

by taking advantage of human annotator bias.

We note an insight from [GH12] — that human annotators are very natural in their

attempts to want to label segmentations amodally. Previous attempts to take advantage of this

include [LLT19], where they elicit ordering relationships due to amodal annotator bias. Here, we

examine the Cityscapes [COR+16a] dataset to see whether the same intuition can be applied to

stuff. While this is not a new dataset, we note that the provided label images are most commonly

used, however, in [COR+16a], they remark that annotators were asked to annotate back to front

using polygons. We hypothesized that if we were to follow this sequential process for merging

each annotation layer, we might simply be able to ignore layers corresponding to instances and be

left with a scene that might sufficiently characterize the amodal segmentation of the stuff within

the scene. We illustrate this idea in Figure 4.2.

(a) Original segmentation (b) Amodal segmentation (c) Input image

Figure 4.3: An illustration of the resulting amodal stuff segmentation compared to the original
segmentation of the image in Figure 4.2.b

To verify this, we manually examined each image within the Cityscapes training and

validation datasets. We simultaneously compared the amodal stuff segmentation of the scene

(as generated by ignoring the “thing” layers) to both the ground truth semantic segmentation

62



of the entire scene and ground truth RGB image. We look for resulting segmentations where

the annotator reasonably annotated the stuff behind an instance. In particular, it should not be

possible to determine any characteristics (kind, extent, or shape) of an object that was removed.

We find 2,707 of 2,975 images (over 90%) meet our criteria in the training set and 358 of 500 in

the validation set. We provide examples of the process (including examples we reject) in Figures

4.3 and 4.4.

4.4 Scene Layout From Amodal Context

We present our model that learns scene layout of things by amodal context (SLAC). We

emphasize the key distinctions between our model and previous work: we perform layout in the

image-space, we do not require memory units, and we explicitly encode an object with its local

context.

(a) Example segmentation (b) Rejected amodal segmentation

Figure 4.4: An example we reject from the Cityscapes dataset. We clearly see missing stuff
annotations in (b) when compared to the original (a).

4.4.1 Layout within image-space

We aim to both condition and predict layout within the image space rather than regressing

normalized coordinates in the range [0,1]. This allows us to take advantage of well-established

architectures and recent techniques within scene understanding. However, predicting bounding
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boxes becomes less straightforward in the fixed, discrete space of an N×N image. We note that

CornerNet [LD18], a recent work in object detection, found success by producing bounding box

detections through keypoint detection. In particular, they produce an output of two feature maps

whose activations are used to infer the top left and bottom right corner of a bounding box. We

adopt this by building a generative model of “corners” from which we can then infer bounding

boxes.

4.4.2 Segmentation as memory

Traditional sequence models rely on some form memory to capture long-term dependen-

cies within the sequence. Rather than relying on memory, we extend our conditioning to provide

history to the model. Recalling that our model relies on a dense segmentation of the “stuff” as

grounding, we progressively merge the ground truth segmentation of a “thing” for subsequent

steps. Subsequent steps are then immediately informed of both the class and extent of an preced-

ing thing. A scene-level segmentation can capture occupancy in a straightforward manner as well

as class relationships when predicting layout. Furthermore, since the only temporal dependency

becomes the conditioning itself, teacher-forcing permits that each training step is based off of

the conditioning alone whereas other models must past gradients through their memory units —

costly for large layouts.

4.4.3 Encoding local context

While a dense segmentation provides a full spatial conditioning to ground the predictions

of the model, we find it is unnecessary for the encoding process. Rather, we choose to encode the

local context of an object. This significantly reduces the feature dimension of the conditioning for

the encoder and allows us to encode at a variety of scales by extracting features at a subset of the

conditioning network’s feature maps. We extract features by performing bilinear interpolation on

the deeper feature maps at the center of the object’s bounding box. This produces 1×1 feature
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slices which we can concatenate across the levels. We ablate the choice of context in Table 4.2.

4.4.4 Architecture

We implement our model of layout as an autoregressive (conditional [SLY15]) VAE, as

done in [JDH+19]. Each autoregressive step predicts a single objects’ position conditional on

both the preceeding instances and background. We discuss the three high-level components of

our conditional VAE.

Conditioning. Conditioning serves to aid both the encoding of an object and the decoding

process. While previous work relies on coarse box information to condition on preceding objects,

we rely on dense conditioning. This conditioning comes in the form of a pixel-wise segmen-

tation of the scene at the current autoregressive step. Initially, this is exactly the background

segmentation (no instances) of the scene. After each autoregressive step, we apply teacher forcing

by merging the ground truth instance segmentation of the previous instance. We ensure this

merging respects the depth ordering of the ground-truth instances in the scene. Our model has no

explicit memory, instead, we find the (partially) merged segmentation sufficient to act as both

conditioning and history. The conditioning is applied in different ways to the encoder and the

decoder of the VAE as mentioned in each respective section.

In our implementation, we use a CNN as a conditioning network. The input is a one-hot

encoding of the current scene segmentation. The CNN consists of 5 layers of stride 2 convolutions

with LeakyReLU activations after. Initially, there are 32 filters with a doubling of the filter size

after each convolution until the second to last layer where the depth is repeated at 256 feature

maps.

Encoder. The encoder network E of our VAE serves to encode an object’s bounding

box, class information, and conditioning. We encode a bounding-box represented by top-left and

bottom-right coordinates (xyxy). In order to encode local object context, we perform bilinear

interpolation on the final three feature maps of the conditioning network at the center point of the
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Figure 4.5: An illustration of the general architecture of our model. The autoregressive nature
of the model is captured by the arrow emanating from the output to the input where we merge
the ground truth segmentation to use as conditioning for subsequent object placements

object’s bounding box. We concatenate the one-hot label of the current instance before projecting

into the latent representation z. We denote the approximate posterior induced by E as qφ with

prediction of mean and variance parameters µφ and σ2
φ
.

Decoder. The decoder network D is a CNN that uses bilinear upsampling (2x) between

layers of convolution. While the input to the encoder is in coordinate space, the decoder outputs

in image space in order to retain the spatial nature of the conditioning features. To accomodate

this gap, we use CoordConv [LLM+18] at each convolution to explicitly provide the discretized

nature of a feature map. Additionally, while the encoder is privy to the position of an object,

the decoder must make use of global conditioning information to ground its prediction. To

provide this global information, we use learned skip connections from the conditioning network.

Therefore, our “decoding” process mimics that of a U-Net [RFB15] where the skip connections

can aid the localization of the corner keypoints. Finally, we output two full resolution probability

maps. We denote the induced Bernoulli distribution over the output space as pθ.

An illustration of the architecture is given in Figure 4.5.
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4.4.5 Training

We follow standard VAE training procedures. Because we are only attempting to predict

two pixels (one for each corner) with a positive label, we encounter a large amount of imbalance

in an ordinary cross entropy loss formulation. Like previous work in keypoint-based detection

[LD18], we use a focal loss [LGG+17] as supervision of the decoder’s outputs. For each bounding

box, we extract the top left and bottom right corners and encode each as coordinates. The decoder

produces two heatmaps in image space for each such corner and this output is supervised using

the focal loss. We use the procedure of [LD18] which chooses an adaptive radius (corresponding

to the standard deviation of a Gaussian) based off of the size of the bounding box. Formally, the

loss for a single step i in our model becomes:

L i = Eqφ(zi|xi,ci,Ai) [log pθ(hi | zi,ci,Ai)]+β∗KL
(
qφ(zi | xi,ci,Ai)

∥∥pθ(zi | ci)
)

where A is the conditioning segmentation, x is the coordinate encoding of the bounding box, h are

the heatmaps defining the top left and bottom right corners, and c is the class label of the instance

at the current step. We average this loss over each step in a given layout.

We find β = 0.1 better balances the reduced magnitude of the focal loss.

4.4.6 Inference

At inference time, we compute the conditioning from the amodal stuff segmentation.

We draw from a unit Gaussian and concatenate the flattened conditioning with it and a one-hot

encoding of the label of the current object. From this, the decoder produces two full-sized feature

maps. We find the peak activation in the first map and use the image coordinates as the top left

corner of the bounding box. We then search in the second map down and to the right from this

corner to find the bottom right corner. In order to condition on the prediction, we must place a
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mask at the predicted box. On Abstract Scenes, we can project the true mask of the object. On

other datasets, we fill the predicted bounding box with pixels as a mask.

4.5 Experiments

We perform experiments on the Abstract Scenes dataset [ZP13], the COCO Amodal

dataset [ZTMD17], CBCL StreetScenes [Bil06], Cityscapes dataset [COR+16a]. Because our

model requires both amodal segmentations and a clear separation of “things” and “stuff”, we

elaborate on the accomodations necessary for each dataset in their respective section. All models

are trained for 100 epochs except for COCO Amodal which is trained for 50 epochs. The model

with best validation (IoU) loss chosen for evaluation. We optimize using Adam [KB14] with a

learning rate of 0.0001.

4.5.1 Baselines

We compare against LayoutVAE [JDH+19] as a strong baseline. LayoutVAE is a purely

bounding box based approach that similarly uses an autoregressive VAE but requires an LSTM

conditioning component. We relax it into a conditional sequence model by initially providing it

all ”stuff“ bounding boxes and then supervising its predictions of bounding boxes for subsequent

things. We follow their ordering procedure of boxes by sorting from leftmost to rightmost. An

implementation of LayoutVAE is not available from the authors so all experiments are done using

our own implementation.

For the “knowing where to look” evaluation, we additionally explore an extension to

LayoutVAE that we name ”LayoutVAE + Dense” where we provide equal conditioning to that

of SLAC by augmenting it to accept segmentation masks within its conditioning module. At

each step, we provide the corresponding binary mask of the stuff or thing segment of interest and

encode it using a CNN similar to the conditioning network of SLAC.
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We do not compare against LayoutGAN [LYH+19] nor [LLG+18]. LayoutGAN directly

models the joint distribution of a fixed-length layout and therefore does not factorize conditionally

like an autoregressive model. This makes comparisons of likelihood as difficult as evalauting the

log-likelihood of a GAN. Additionally, the authors provide no implementation nor is a successful

reproduction available. The model from [LLG+18] is only validated by the authors on “person”

and “car” classes where they require a separate model to be trained for each.

4.5.2 Abstract Scenes

The Abstract Scenes dataset [ZP13] is made up of “clip art” scenes where users on

MechanicalTurk were given seed images and asked to place some number of objects within it.

The set of objects is fixed and within each type of object (e.g. boy), there are a predefined set of

instantiations given in image files. We have the ability to both generate true segmentations and

synthesize novel images, because the placement of each object within the scene is described in a

procedural manner.

The dataset does not come with a predefined classification of its objects into “things” and

“stuff”. We treat grass, sky, animals, trees, sun, clouds, slides, sandboxes, grills, swings, tents, and

shelters as “stuff”. We treat hat, food, boy, girl, ball, plane, rocket, balloon, and glasses as the

“things” we want to lay out. We remove a small number of objects where the corresponding object

is not easily represented as a polygon (e.g. a cloud with rain droplets from it) for simplicity. We

use these to generate semantic segmentations of the scenes as required by our model. We reserve

20% of the dataset for validation.

4.5.3 COCO Amodal

The COCO amodal dataset was introduced in [ZTMD17] and consists of a small subset

of the COCO dataset with amodal annotations of the scene. However, annotators were given
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freedom to assign category names to each annotation which results in an unwieldy number of

categories. We reconcile this by considering the panoptic annotation [KHG+19] of each image

and assigning an amodally annotated region to a COCO category by finding the category of the

segment in the panoptic ground truth that its modal region most overlaps. We require at least 0.33

IoU to assign a segment in such a manner. However, there are numerous cases were annotators

neglected to annotate certain amorphous regions of the image. This lack of annotation can result

in sparse conditioning for our models. On the other hand, the panoptic segmentation is much

more complete in terms of “stuff”. Therefore, we additionally require that at least 1/3 of the

known areas of stuff from the panoptic segmentation are covered in the amodal stuff regions.

This results in 1,086 training images and 626 validation images over the 80 “thing” and 53 “stuff”

categories in COCO Panoptic.

4.5.4 CBCL StreetScenes

The CBCL StreetScenes dataset [Bil06] consists of street scenes around Boston, MA.

Annotators were given strict rules regarding occlusion and amodal annotation of surfaces. It has

been used in the past [GH12] as a setting for amodal surface prediction. The dataset includes 9

categories which we divide into “stuff” and “things”. The former includes building, tree, road,

sky, sidewalk, and store while the latter is made up of car, pedestrian, and bicycle. After applying

the process in Section 4.3, we retain 2,616 training images and 600 validation images.

4.5.5 Cityscapes

We adopt the Cityscapes dataset [COR+16a] as described in Section 4.3 and retain a

training subset 2,707 images and validation subset of 358 images. We divide the set of classes into

things and stuff using the same split as panoptic segmentation [KGHD19]. Thing classes include

person, rider, car, truck, train, and bicycle while stuff classes include ground, road, sidewalk
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parking, building, wall, fence, pole, traffic light, vegetation, terrain, and sky. We ignore all other

classes and set their corresponding labels to “void” in the segmentations. For all experiments,

we resize the images from 2048×1024 to 256×256. For our model, we order instances front to

back which ensures that an object’s occluder is always present in conditioning for that object.

4.5.6 Qualitative results

Novel layout synthesis. We provide qualitative results in Figure 4.6 on both datasets

by synthesizing novel layouts for each image. We use the ground truth label count and order to

anchor the generation of novel placements. At each step, we generate 25 random samples from

the model and compute pairwise IoU between predicted boxes. We use this to rank each box. By

summing the pairwise IoUs of each box and normalizing this sum, we pick the box corresponding

to the largest normalized sum.

We see that our model generates plausible layouts diverse from the ground truth layout and is

able to localize plausible locations for “items” like sunglasses (being near the head) and sports

balls (being near the hand). Furthermore, our model avoids placing objects on top of one another.

We believe this is straightforward for our model to accomplish since, at any given step, the

conditioning can convey exactly which pixels are already occupied. On Cityscapes and CBCL,

we see that our model is better able to follow the natural path of a road when laying out cars when

compared to LayoutVAE, which appears to produce more predictions that do not realistically

appear on the corresponding surface. Additionally, the predicted scale of objects appears more

plausible in our layouts. LayoutVAE can produce extremely small predictions despite belonging

to a large object in the foreground. Since our model operates in the image space, it is possible

that it can capture the effects of foreshortening and wide field of views more readily.
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Figure 4.6: Novel syntheses of layouts using our method across Abstract Scenes (top left),
CBCL (bottom left), and Cityscapes (right) with their amodal grounding. Best viewed in color.
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4.5.7 Quantitative results

Sequence evaluation. Traditional sequence evaluation considers the ability for our model

to accurately predict the ground truth bounding box conditional on all preceding bounding boxes

(teacher forcing). As in [JDH+19], we adopt intersection over union (IoU) to measure the

similarity of two bounding boxes. We compare to the baseline models in Table 4.1. In each

dataset, we observe appreciable gains in accuracy from SLAC over the baselines. The dense,

amodal context that conditions SLAC provides for more accurate localization of the stuff. This

localization further aids the localization of the predicted things.

Table 4.1: Likelihood evaluation of validation set sequences using IoU

Method Abstract Scenes Cityscapes COCO Amodal StreetScenes
LayoutVAE 0.088 0.020 0.078 0.096
SLAC (ours) 0.108 0.027 0.105 0.136

Ablation study. Context plays an important role in our encoding of an object. We choose

a subset of feature maps from which we interpolate at an object’s center position to compute

this local context. We ablate this choice of feature maps in Table 4.2 on the Cityscapes dataset.

When we include deeper feature maps, we induce a larger receptive field and higher level features

into an object’s encoding context. We achieve the best performance when we encode the deepest

three feature maps from the conditioning network, however, even the shallowest context still

outperforms the LayoutVAE baseline.

Table 4.2: Ablation study on context within the Cityscapes dataset (IoU)

Depth Box IoU
3 0.024
3, 4 0.026
3, 4, 5 0.027

Knowing where to look. While traditional sequence evaluation can be useful, we believe

that the multimodal nature of layout can be better evaluated in the spirit of object detectors.

Modern object detection systems often use a predefined set of (anchor) boxes across a set of
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locations and scales as the starting point for deciding whether an object exists within an image.

For two-stage detectors e.g. R-CNN [RHGS15], this means calculating the objectness score of

the anchor box, and then deciding the class of object actually present there once hypothesized by

the first stage. We note that there is no learned class-conditional prior concerning the positions

and scales for where the object detector should look — the hypothesis space defined by these

anchor boxes is entirely enumerated.

While this is a diligent approach for maximizing recall, we propose a less stringent setting

where we investigate a combination of perception and generative modeling to ask, where should

we look? We do not aim to build a detector but to hypothesize the true configuration of a scene

when only given the amodal extent of the stuff within it.

We define our quantitative measure of performance by the object recall of each method

given a fixed number of guesses. We use a range of IoU thresholds to determine whether a

hypothesis should be matched to a ground truth object. We evaluate the performance of a uniform

baseline [HBDS15], LayoutVAE [JDH+19], LayoutVAE + Dense, and SLAC on the Cityscapes

validation dataset in Table 4.3. Due to the density/complexity of Cityscapes scenes (often having

dozens of instances), we believe this is best suited for this type of evaluation.

In order to produce proposals, we sample the specified number of guesses for each class

and condition only on stuff. This conditioning amounts to the sequence of stuff bounding boxes

(and stuff masks for the dense extension) for LayoutVAE and the amodal stuff segmentation for

SLAC. We note that this process does not sequentially process “things” one after the other. Each

guess is independent of all other guesses, and no instances are ever present in the conditioning for

either model.

Table 4.3: Average Recall (%) at IoU of 0.5, 0.6, and 0.7 for Cityscapes

Method person rider car truck bus bicycle
50 guesses
Uniform 0.1 0.5 0.2 0.1 0.0 0.0
LayoutVAE 4.3 7.5 6.1 5.6 7.4 2.4
LayoutVAE + Dense 3.5 6.2 7.3 12.3 9.5 2.8
SLAC (ours) 4.9 9.4 11.1 11.8 11.6 5.2

Method person rider car truck bus bicycle
100 guesses
Uniform 0.1 1.9 0.2 0.1 0.0 0.0
LayoutVAE 7.2 9.1 9.5 5.6 7.4 5.7
LayoutVAE + Dense 7.5 10.1 11.4 16.9 16.4 6.3
SLAC (ours) 9.4 12.7 17.3 20.5 22.8 7.8
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Method person rider car truck bus bicycle
200 guesses
Uniform 0.2 3.6 0.3 0.1 0.0 0.0
LayoutVAE 12.7 19.2 13.5 7.7 9.5 8.4
LayoutVAE + Dense 13.1 17.4 17.6 28.2 19.6 10.0
SLAC (ours) 16.2 21.6 26.4 27.2 41.3 13.2

Method person rider car truck bus bicycle
500 guesses
Uniform 0.5 6.6 0.5 0.5 0.0 0.1
LayoutVAE 22.4 30.8 18.0 11.8 12.7 9.4
LayoutVAE + Dense 24.8 33.3 25.7 41.5 28.0 14.6
SLAC (ours) 27.1 35.3 38.6 50.3 60.3 21.8

We include the changes in performance as the total number of guesses made varies from

50 to 500 and as the IoU levels (to determine a correct guess) vary between 0.5, 0.6, and 0.7. For

reference, the hypothesis space of a typical setting for Faster R-CNN [RHGS15] will consist of

about 4000 boxes within the region proposal network on a 256×256 image. From the results,

we see that our method outperforms LayoutVAE [JDH+19] across every category. As expected,

when LayoutVAE is extended to include segmentation masks as conditioning (matching the

information provided to SLAC), performance improves over the coarse model. However, SLAC

is still able to outperform it with one exception. We believe the gains from SLAC follow for a

variety of reasons. SLAC only observes conditioning information at the scene level i.e. each

conditioning segmentation is a valid scene in itself. SLAC is free from having to aggregate (and

thus bottleneck) information within memory units. At the same time, SLAC provides the decoder

with learned skip connections from the conditioning network so that spatial information is readily

retained in order to more precisely ground the prediction at inference time. Furthermore, since

SLAC has no memory, it does not need to be directly trained as a sequence model. We speculate

that this allows for a smoother learning process by not having to aggregate gradients over long

layout sequences. While a background surface like a sidewalk might be observed early in a layout

ordering, a “person” whose context is dependent on this sidewalk might only occur much later

within the sequence of objects.
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4.6 Conclusion

We have introduced a new model of layout where the layout of “things” is conditioned on

a dense segmentation of the “stuff” in the image. In order to do this, we introduce the idea of

conditioning of an amodal segmentation of the “stuff” in an image. We show that this is plausible

even within a complex dataset as a result of human annotation bias. We apply this learned model

to hypothesize the locations of objects within images where only the “stuff” in the image is seen.

We show impressive recall that increases as the number of hypotheses is increased. We hope that

we can extend and integrate this knowledge of layout into more scene understanding tasks in the

future.

This chapter is based on material submitted for publication of material by Justin Lazarow

and Zhuowen Tu. This dissertation author was the primary investigator and author of this paper.
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Chapter 5

End-to-end Differentiable Instance

Segmentation through Boundary Prediction
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Figure 5.1: We present a model of instance segmentation which predicts the boundaries of
each object in the form of a polygon. This treats instance segmentation as a regression problem
and allows for end-to-end differentiability of predictions. At the same time, our model requires
no sacrifices in terms of resulting segmentation quality nor introduces additional supervision
requirements compared algorithms which directly predict masks.

5.1 Introduction

Image segmentation [MFTM01] and scene labeling [SWRC06, Tu08] are amongst the

most studied topics in computer vision. In addition to pixel-wise masks, representing seg-

ments/objects using vectorized boundary representations has applications and significance in

many downstream tasks such as shape recognition [BMP02], tracking [BI12], image understand-

ing [TCYZ05], medical imaging [PXP00], and 3D reconstruction [CLP10].

The recently emerged instance segmentation task (objects or areas of interest) [HGDG17]

greatly propels the practical significance for object segmentation. Unlike detection, instance

segmentation predicts the detailed extent of an object rather than a coarse bounding box. However,

while a bounding box can be represented by only two coordinate pairs and is therefore easily

turned into a regression problem, there are difficulties when deciding how to best represent and
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predict the segmentation of an object. These difficulties combined with a historical preference

for convolutional operations has led the computer vision community to become mask-centric.

This entails almost all segmentation models relying on a spatially dense function which outputs

a binary confidence to determine whether each pixel belongs to a particular object. This is in

contrast to a boundary-centric notion where a sparse set of structured points are predicted to

denote the boundary of the object in question. Polygons are one natural choice for this structure.

However, because of some inherent difficulties along with mask-centric biases, polygons have

large hurdles to overcome. First, there is not an immediately obvious metric (and thus loss) for

polygons. Second, the training regimes of mask-based models often relies on operations and

augmentations that are inherently difficult to robustly and efficiently implement on polygons

directly. This includes even basic operations like cropping and intersection. Finally, evaluation

of segmentation quality is performed with respect to masks and not contours which leads to a

possible mismatch in training and testing objectives when predicting polygons.

Despite these obstacles, past efforts to predict polygons within instance segmentation

have been made. Nevertheless, none have been able to achieve parity with baseline mask-based

segmentation models across commonly used benchmarks. By parity, we mean a few things:

1). Parity in supervision: The method should require no additional sources of supervision than

its mask-based counterpart. In particular, the method should not rely on polygons directly as

a source of supervision. This is crucial since polygons are not always available and deriving

polygons from a mask-based ground truth can introduce suboptimal performance or uncertainty –

see Table 5.4.

2). Parity in evaluation: While polygonal boundary annotations do exist in some instance

segmentation datasets, e.g.[LMB+14], further technical barriers await when using polygon

predictions for evaluation against the ground-truth directly. This is due to the vectorized polygon

representation not being unique and there existing a one-to-many representation from masks to

polygons. In other words, two similar masks may have polygons that have large differences in the
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control points, creating a mismatch between training loss and evaluation.

Finally, we also want to deal with 3). Parity in access. While the predictive model

itself might deviate in terms of architecture, the model should be generally considered to be a

“drop-in” replacement for a mask-based segmentation head. This includes working within one

and two-stage architectures, e.g., with respect to either full image or RoI features.

While certain works have touched upon aspects of our model [GSW19, LHM+20], none

has yet to provide a fully polygon based solution that is accessible to a myriad of architectures

and matches performance of mask-based architectures on standard datasets. We believe providing

a clearer picture into the capabilities of polygons in providing a performant and end-to-end

differentiable segmentation pipeline could be helpful to further development within the field. We

outline our contributions below:

1. In this paper, we present a new instance segmentation method, BoundaryFormer, a Trans-

former based approach for predicting an object’s boundary as a polygon directly. Our

model outperforms a strong baseline Mask R-CNN [HGDG17] on the MS-COCO and

Cityscapes [LMB+14, COR+16b] datasets (both from scratch and when transferring from

a COCO-based initialization). To the best of our knowledge, this is the first time a method

with polygonal outputs has matched or exceeded Mask R-CNN on the MS-COCO dataset.

Furthermore, BoundaryFormer does so without compromising its ability to be trained

end-to-end.

2. BoundaryFormer uses pixel-wise masks as ground-truth for supervision and evaluation by

utilizing a novel differentiable rasterization module. Therefore, BoundaryFormer adds

no new supervision requirements over Mask R-CNN [HGDG17].

3. By only relying on masks as a source of supervision, our model can be placed as a drop-in

replacement for the mask-based segmentation head of R-CNN [HGDG17] as either a full

image-based component or an RoI-based component. Furthermore, it can be adopted in
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other common architectures including FCOS [TSCH19].

5.2 Related Work

We highlight past work which has predicted polygonal (or contour-based) segmentations

and make special note of those which have adopted rasterization as a form of supervision for their

models.

5.2.1 Point-based Losses

We first discuss contour-based segmentation algorithms which rely primarily on a match-

ing between predicted points and ground-truth points sampled from a known polygon. Therefore,

these methods require access to some polygonal ground-truth. As one of the first works built

on modern architectures, DeepSnake [PJP+20] considers an initial octagonal polygon derived

from four extreme points, after which an iterative process of refinement is carried out using

circular convolutions. The resulting refinements are supervised using an L1 loss against a uniform

ground-truth polygon. On the other hand, PolarMask [XSS+20] models polygons in a polar

representation along with an approximation to IoU as supervisory signal.

Applying a direct distance loss in a Transformer-based architecture for line segmentation

detection [XXCT21] and pose recognition [LWZ+21] exits, but they have the direct ground-truth

supervision on the points.

PolyTransform [LHM+20] uses an off the shelf mask-based segmentation pipeline to

predict an initial binary mask of an object from which highly accurate initial polygons(s) can

be derived using an non-differentiable border following algorithm. These polygons are then

deformed using Transformers [VSP+17] after which a point-based loss is used for supervisory

signal.

Building off of DeepSnake, DANCE [LLCF21] considers an FCOS [TSCH19] detector
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to produce an initial box proposal. Points are uniformly sampled along this box to produce an

initial polygon which can be deformed using an attention-like process. This initial box contour

allows for a novel ground-truth matching which can be more easily optimized. In addition,

the attentive process plus predicted edge maps (which relies on access to panoptic annotations)

improve performance.

5.2.2 Mask-based Losses

We next consider contour-based models which entirely or in-part rely on rasterized forms

of predicted polygons as supervision. ACDRNet [GSW19] provides a system which takes crops

of objects of interest as input and iteratively deforms an initial contour by predicting a dense

heatmap of offsets in feature-space. A 3D neural renderer [KUH18] is applied to a triangulation

of the predictions against the ground-truth masks using an MSE loss. In addition, ACDRNet relies

on two additional losses: a balloon like loss to force expansion of the contour and a curvature

term. While an interesting proof of concept, the authors do not consider integration into an actual

detection pipeline and performance on the standard MS-COCO [LMB+14] is not considered.

CurveGCN [LGK+19] predicts polygonal boundaries through a graph convolutional

neural network from an initial contour proposal. For the bulk of training, they use an ordinary

Chamfer loss, however, they do note that fine-tuning their model with respect to a differentiable

accuracy metric, i.e. triangulating the polygon into a mesh and supervising with respect to masks

using a differentiable renderer [LB14] leads to improved results.

Lastly, some recent work[CWHL20] considers using boundary information as an addi-

tional supervision for instance segmentation, however, they still predict masks directly and not

polygons.
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Bi

Figure 5.2: Illustration of BoundaryFormer: Given an image, multi-scale features are
collected and boxes for each object are proposed by the underlying detector. We initialize a
proposed polygon for each box using a simple ellipse. At each layer, attention between points
within the polygon as well as attention from points to the image features is performed in order to
refine the polygon. New points are inserted between existing ones in order to efficiently produce
higher resolution polygons as the refinement progresses. After each refinement, the predicted
polygon is rasterized in a differentiable manner and compared to the ground-truth mask using a
mask-based loss.
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5.3 Method

5.3.1 Setting

Instance segmentation considers an input image I ∈RH×W×3 and is tasked with producing

N ordered instances Oi, 1≤ i≤N. Most modern benchmarks consider instances as a tuple (Mi,ci)

where Mi is a per-pixel binary mask denoting membership by the object and where ci ∈ {1, . . . ,C}

is the predicted class of the object.

Since Mi is a binary mask, most segmentation models find it natural to predict some

downsampled version of Mi. Mi is predicted as a discrete grid of continuous confidence values

Mi(x,y) with x ∈ {1, . . . ,X ′}, y ∈ {1, . . . ,Y ′} for a mask size of X ′×Y ′. This phrases mask

prediction as a classification problem. At inference time, Mi is transformed into a binary mask

with an ordinary decision rule (usually Mi(x,y) > 0.5). Therefore, without approximations or

relaxations, Mi is not differentiable for downstream components relying on Mi(x,y).

In this work, we phrase the prediction of Mi rather as a regression problem. This

decomposes the prediction of Mi into two parts. First, we predict K vertices, denoted as

Vi = {(xi
0,y

i
0), . . . ,(x

i
K−1,y

i
K−1} which define the boundary of a polygon in 2D under a fixed

ordering. Then, we produce Mi through rasterization to the desired mask size X ′×Y ′. Mi must

be produced because instance segmentation relies on masks for evaluation. This leads to the

following choices: how should Vi be predicted and more importantly, how should Vi be supervised

with respect to the ground truth. We present our approach to this problem as BoundaryFormer.

5.3.2 Instance Segmentation with BoundaryFormer

We design BoundaryFormer as a component that can be added on to existing detection-

based frameworks. While we believe BoundaryFormer is generally applicable, we consider

a more concrete setup for the sake of presentation. In particular, we assume a detector built

upon a standard FPN architecture (this includes FCOS [TSCH19] or R-CNN [HGDG17]) which
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produces feature maps F = {P2, . . . ,P5} in decreasing resolution from the image I. From these

features, the detector proposes N objects in the form of boxes Bi = (li, ti,wi,hi) which denote

the left edge, top edge, width, and height of the box respectively. Each Bi corresponds to some

ground-truth mask Mi where Mi is expected to be clipped to Bi. We use Bi as a means to

initialize an ellipsoidal polygon Vi(0) inscribed in Bi, similar to other contour-based methods

[PJP+20, LHM+20, LLCF21]. From Vi(0), our model iteratively refines this shape L times by

Vi( j+1) = g j(F,Vi( j)) to produce a final prediction Vi(L).

We visualize a concrete implementation in Figure 5.2. Since we are dealing with point

sets, we implement g with Transformers [VSP+17] using two kinds of attention. Each vertex

within the polygon Vi corresponds to some point embedding Pk
i where 1≤ k ≤ K and includes

a “point encoding” modeled off of the usual Transformer sine positional encoding. The first

kind of attention allows each Pk
i to attend to all other point embeddings Pk′

i within the same

object. The second allows each Pk
i to attend to the image features F . While the first kind of

attention is implemented using ordinary (quadratic) self-attention, we implement the point to

image feature attention using Deformable Attention [ZSL+20] which significantly reduces the

computational cost. Furthermore, this allows multi-scale across levels P2 through P5. Finally, for

each embedding Pk
i , g j predicts a 2D offset (∆x,∆y) to refine the vertex using an MLP.

5.3.3 Mask-based Supervision

Given the predictive model, we expect a final output polygon Vi consisting of K points for

each proposed box Bi from the underlying detector. However, in order to train such a model, we

must provide a means of supervision. Most previous work has relied upon point-based matching

losses where some scheme to assign a predicted point to a point in the polygonal ground-truth is

devised. These might include: the Chamfer distance [LHM+20], permutation-based matching

[LGK+19], and assignment rules that depend on the initial contour [LLCF21]. However, we

believe these approaches are undesirable and unnecessary. First, they require access to ground-
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truth polygons which are not always available and attempting to derive polygonal contours from

masks is a noisy process (Table 5.4). These ground-truth polygons might need to be sampled (up

or down) against heuristics in order to satisfy the requirements of point-based losses. Second, we

evaluate instance segmentation quality with respect to masks (i.e. COCO mask AP [LMB+14]),

and therefore it’s not guaranteed that these metrics are optimizing the desired metric. Lastly, many

essential operations are nontrivial to implement on polygons directly. This includes: clipping to a

box (required for RoI-like operations), intersection, and even union. However, the mask-based

counterparts are simple, highly optimized, and differentiable in existing frameworks.

Therefore, we require our model to only require mask-based supervision and furthermore,

to require it in the exact same sense as an ordinary mask-based segmentation model. We

transparently handle this transformation from polygon space to mask space by the usage of a

differentiable 2D rasterizer. Because of the dynamic nature of rasterization, we are afforded more

flexibility than a purely mask-based model. We now describe specific details of the rasterization

process.

A polygon-specific rasterizer

While previous work [GSW19, LGK+19] has used 3D renderers (leaving the depth

component constant) to produce masks from polygons in a differentiable manner, these methods

require the additional step of triangulation. We find this to be unnecessary, especially accounting

for the time necessary for triangulation and additional choice of triangulation method required.

Rather, we use [LLCL19] as inspiration to design a rasterizer that operates on polygons directly

rather than triangulated meshes.

The pipeline of the proposed differentiable rasterizer is shown in Figure 5.3. Consider

a polygon with vertices V and a desired rasterization pixel size of X ′×Y ′. For each pixel (x,y)

where 0≤ x < X ′,0≤ y <Y ′, we use a PnP algorithm [wrf] to determine which whether the pixel

at position (x,y) lies within the polygon as C(V,x,y), where C = 1 if it lies within and −1 if it
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C(V, x, y)

Figure 5.3: Illustration of differentiable rasterizer: We illustrate the transformation from
polygonal point predictions to a differentiably rasterized mask: pixels are given signs based
on being within the polygon or not, projections onto the nearest segment are computed, and
Equation 5.1 determines the final rasterized value.

does not. Then, each pixel (x,y) is projected onto the closest segment on the polygon’s boundary

and this distance is recorded as D(V,x,y). Finally, following [LLCL19], we model each pixel’s

contribution to the rasterized image as a sigmoidal function (with some sharpness τ) according to

the associated distance:

I(x,y) = σ

(
C(V,x,y)∗D(V,x,y)

τ

)
(5.1)

Therefore, this rasterizer provides signal solely from the boundary without the need to

consider derived mesh points.

The rasterizer and backwards pass are implemented entirely in CUDA. This affords us

efficiency to train solely with the differentiable rasterizer for the entirety of training. We find the

Dice [MNA16] loss to be critical to the success of training with rasterized masks, although we

find similar losses, e.g., Lovasz-Softmax [BTB18] to perform equally well.
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Alignment

Alignment with ground-truth: We emphasize that we use the exact same ground-truth

masks (although possibly at differing resolutions) as an ordinary R-CNN pipeline. Thus, it is

imperative that we ensure our differentiable rasterization is “aligned” to the method of rasterization

built into the COCO API [LMB+14]. Due to differences in what is considered a “pixel”, we

ensure that we subtract a half pixel on all coordinates before passing them to our rasterizer. This

significantly improves alignment and thus performance, e.g., mask AP drops from 36.1 AP to

35.3 AP when not aligned.

Alignment with architecture: When building off of existing architectures, e.g., FPN

[LDG+17a], operations often have a bias towards alignment with convolutions. We find that

when we attempt to use BoundaryFormer in an RoI-less setting, i.e., directly attending to the full

image-based features, it is essential to perform a global pooling-like operation to significantly

increase performance — without this, mask AP drops from 36.1 AP to 34.2 AP. We hypothesize

this might be due to aliasing in the deconvolutional process of the FPN.

5.3.4 Additional details

We describe specific implementation details that we find essential to satisfactory perfor-

mance and speed.

Coarse to fine upsampling

By having each point dedicated to a single point query embedding, we afford a great deal

of flexibility to our model. However, since often we might have a large number O of objects or

object proposals and K control points for each object, this can require computation on the order of

O∗K ∗L if we include L layers. At the same time, it’s unlikely that we truly need K vertices until

the prediction is itself more accurate. Therefore, we consider a base number of control points

B (usually 8) and upsample the points by 2× at each layer. Specifically, given Vi(l) consisting
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of K(l) points, we first apply gl(G,Vi(l)) to get refinements to produce Vi(l +1) still consisting

of K(l) points. Then, for between each point (x j,y j) and (x j+1,y j+1), we insert a new point at

the midpoint
(

x j+x j+1
2 ,

y j+y j+1
2

)
. We do not average the corresponding point embeddings Pj and

Pj+1 to initialize the new point and instead insert the corresponding “learned” point embedding .

Overall, this speeds up training and memory consumption by about 1.5× versus using the same

number of points at each layer.

Deep supervision

Like many other Transformer-based models [CMS+20], we find that deep supervision

[LXG+15, XT15] of layer-wise outputs of the Transformer essential. Combined with a coarse to

fine approach, this implies that each layer is supervised with respect to the same ground-truth

mask (without loss of detail). However, each layer, by virtue of having more and more points

can model higher resolution features. This is in contrast to point-based approaches which must

heuristically downsample the ground-truth polygons in order to apply a point-based matching.

Loss

We finally present the loss of our polygon-based boundary prediction model trained jointly

with a box-based detector. Suppose the detector is trained against Lbbox. We denote the subset of

foreground-matched boxes as {Bi | 1≤ i≤ R} and associate ground-truth mask Mi of resolution

X ′×Y ′ to each. If our predictive model of polygons consists of L layers, then we have dense

outputs corresponding to Vi(l) with 1 ≤ l ≤ L. Then, using Ii(l) to denote the (differentiably)

rasterized version of Vi(l), we define a total loss:

L = Lbbox +
L

∑
l

R

∑
i=1

Dice(Ii(l),Mi) (5.2)

This loss provides parity in supervision since like a standard instance segmentation model, it

relies only on access to ground-truth masks Mi.
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5.4 Experiments

We evaluate the parity in performance of BoundaryFormer across the commonly used

MS-COCO dataset [LMB+14] and Cityscapes dataset [COR+16b]. We additionally provide

experiments for transferring models from MS-COCO to Cityscapes to illustrate possible dif-

ferences based on the underlying representation learned. We focus on comparisons with Mask

R-CNN [HGDG17] as the standard baseline for instance segmentation, although, we calibrate our

results with other contour-based and masked-based models. Furthermore, we consider inclusion

of BoundaryFormer in both single stage, FCOS [TSCH19], and two stage approaches, Faster

R-CNN [RHGS15].

5.4.1 Training Details

All models are trained in an end-to-end fashion with respect to the entire network. We aim

to keep underlying backbones and architectures as close as possible to Mask R-CNN [HGDG17]

to compare as fairly as possible. Therefore, unless specified, we use an ResNet50-FPN backbone

for all models which follows the exact same settings as Mask-RCNN in Detectron2 [WKM+19]

with only the “mask head” of Mask R-CNN replaced with the architecture outlined in Figure 5.2.

While Mask R-CNN requires RoI pooling to predict masks, this feature is optional in our approach

and frees us from constraints that such a grid-based approach imposes. Rather, we present results

without the need of RoI pooling such that the point to image features attention is with respect to

the entirety of {P2, . . . ,P5}. One notable exception to standard training is that instead of SGD, we

train all models with the Adam [KB14] optimizer according to the settings generally outlined in

Swin [LLC+21] due to our use of Transformers. We find it is necessary increase weight decay on

larger models (e.g., ResNet-101), longer training schedules, and smaller datasets (e.g., Cityscapes)

in order to combat overfitting (Swin instead uses an increased dropout rate).

For details specific to BoundaryFormer, we train all models with coarse to fine upsampling
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over 4 layers of Transformers [VSP+17] to produce a final output of 64 points for experiments on

COCO and 128 points on Cityscapes. All other parameters with respect to deformable attention

follow the same settings of Deformable DETR’s [ZSL+20] decoder layer. The MLP that produces

refinements for each point is applied independently and consists of 3 layers.

For rasterization, we find that τ = 0.005 (denoting rasterization smoothness) generally

performs well. Additionally, we rasterize polygons during training to a fixed X ′×Y ′ = 64×64

resolution. When performing rasterization, we only rasterize the predicted polygon within its

box, not with respect to the entire image. This emulates the behavior of RoI pooling. Like Mask

R-CNN [HGDG17], the ground-truth mask is clipped to this box. All results are evaluated with

respect to the standard COCO mask AP [LMB+14].

Inference

At inference time, we follow the same inference procedures as the underlying detector.

We rely on rasterization from the COCO API directly [LMB+14] rather than our own rasterizer

since differentiability is not required.

5.4.2 COCO

COCO [LMB+14] is a large-scale dataset containing 118K training images of natural

scenes with 80 annotated foreground classes. It has historically been a relatively difficult dataset

for contour or boundary-based models to achieve parity in performance with. As far as we can

tell, our model is the first to achieve parity in mask quality to Mask R-CNN on COCO.

We detail these comparisons in Tables 5.1 and 5.2. We note that BoundaryFormer achieves

a slight edge in mask quality over Mask R-CNN and is competitive with the boundary-preserving

variant [CWHL20] while significantly outperforming the best contour-based method [LLCF21].

At the same time, we observe that both models attain the same box performance — indicating

that both tasks (mask or polygon prediction) provide multi-task training benefits to the underlying
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Table 5.1: Results on MS-COCO val: We compare BoundaryFormer to the state of the art
in contour/boundary prediction [LLCF21] as well as mask-based counterparts. * indicates
re-trained with Adam [KB14].

Method Backbone Detector AP AP50 APbbox

Mask R-CNN [HGDG17] R50-FPN R-CNN 35.2 56.3 38.6
Mask R-CNN* [HGDG17] R50-FPN R-CNN 35.8 56.8 38.8
BMask R-CNN [CWHL20] R50-FPN R-CNN 36.6 56.7 39.4
BMask R-CNN* [CWHL20] R50-FPN R-CNN 36.4 56.3 37.8
DANCE [LLCF21] R50-FPN FCOS 34.5 55.3 40.2
BoundaryFormer (ours) R50-FPN FCOS 35.8 55.7 40.2
BoundaryFormer (ours) R50-FPN R-CNN 36.1 56.7 38.8

Table 5.2: Results on MS-COCO test-dev: We evaluate and compare BoundaryFormer on the
MS-COCO test-dev set with larger backbones and longer training schedules, showing that its
performance scales as expected while staying competitive with strong mask-based baselines.

Method Backbone Detector Schedule Output Supervision AP AP50 AP75 APS APM APL

Mask R-CNN [HGDG17] R50-FPN R-CNN 1× masks masks 36.1 57.3 38.7 19.7 38.0 47.1
Mask R-CNN [HGDG17] R101-FPN R-CNN 3× masks masks 39.2 61.1 42.3 22.4 41.4 50.7
BMask R-CNN [CWHL20] R50-FPN R-CNN 1× masks masks 36.6 57.0 39.6 19.4 38.7 48.0
BMask R-CNN [CWHL20] R101-FPN R-CNN 1× masks masks 38.3 59.2 41.3 20.3 40.8 50.2
DeepSnake [PJP+20] R50-FPN CenterNet - polygons polygons 30.5 - - - - -
PolarMask [PJP+20] R101-FPN FCOS 2× polygons polygons 32.1 53.7 33.1 14.7 33.8 45.3
DANCE [LLCF21] R50-FPN FCOS 1× polygons polygons + panoptic 34.6 55.9 36.4 19.3 37.2 43.9
DANCE [LLCF21] R101-FPN FCOS 3× polygons polygons + panoptic 38.1 60.2 40.5 21.5 40.7 48.8
BoundaryFormer (ours) R50-FPN R-CNN 1× polygons masks 36.4 57.2 39.0 19.6 38.6 47.9
BoundaryFormer (ours) R101-FPN R-CNN 1× polygons masks 37.7 58.8 40.5 20.4 40.2 49.0
BoundaryFormer (ours) R101-FPN R-CNN 3× polygons masks 39.4 60.9 42.6 22.1 42.0 51.2

detector when trained end-to-end. While we find the best results using R-CNN as an underlying

architecture, BoundaryFormer can still match Mask R-CNN when using FCOS. Performance

appears to be slightly worse despite performing better with respect to box AP. We hypothesize

this might be due to FCOS using only P3-P7 within its FPN whereas R-CNN includes P2 and

thus might learn enhanced features relevant to boundary prediction.

5.4.3 Cityscapes

Cityscapes [COR+16b] consists of a diverse set of street scenes across European cities.

The dataset is relatively small compared to COCO — consisting of only 2975 training images,

however, each image is of a high resolution and annotation quality. Furthermore, it is notable for

its large amount of occlusion [HGDG17] which causes a significant number of instances to be
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Table 5.3: Results on Cityscapes val: We establish that BoundaryFormer can maintain parity
with Mask R-CNN even on the difficult Cityscapes dataset. Additionally, when using a model
initialized from COCO, BoundaryFormer shows improved transfer ability over Mask R-CNN
and is competitive with PolyTransform, which requires UPSNet [XLZ+19] and the use of a mask
head to initialize its contours. Lastly, BoundaryFormer is the only model that both relies solely
on ground-truth masks for supervision and is end-to-end differentiable. * indicates re-trained
with Adam [KB14].

Method model init poly init e2e sup AP AP50

Mask R-CNN* [HGDG17] ImageNet N/A - masks 34.2 60.7
Mask R-CNN* [HGDG17] COCO N/A - masks 36.5 62.0
DeepSnake [PJP+20] ImageNet extreme pts X poly 28.2 -
UPSNet [LHM+20] COCO pred masks - masks 37.8 -
UPSNet + PolyTransform [LHM+20] COCO pred masks - both 40.2 -
BoundaryFormer (64 points) ImageNet ellipse X masks 34.7 60.8
BoundaryFormer (64 points) COCO ellipse X masks 37.6 62.8
BoundaryFormer (128 points) COCO ellipse X masks 38.3 62.9

fragmented into multiple simple polygons. This creates problems for boundary prediction which

usually only consists of predicting and matching to a single ground-truth polygon. While we

compare to other methods which include mitigations (e.g., initialization from masks [LHM+20]),

we emphasize that BoundaryFormer uses no special handling and does not deviate from the

standard training process.

We highlight the performance of our method with respect to both ImageNet and COCO

initializations. COCO initializations are made using a model trained under the standard 1x

training schedule, i.e., the models in Table 5.1. Mask R-CNN [HGDG17] and BoundaryFormer

results are the average of three runs to account for well-known instabilities in Cityscapes training.

We observe that BoundaryFormer is still able to achieve parity with Mask R-CNN despite

being at a significant disadvantage by predicting only a single polygon for fragmented objects.

Additionally, when initializing BoundaryFormer from COCO, it significantly exceeds Mask

R-CNN in final performance which might indicate a polygonal representation transfers well.
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5.4.4 Ablation studies

We provide ablations for the hyperparameters of both the supervision (the rasterization

process) and some model-specific hyperparameters/justifications.

Polygonal ground-truth from masks? While we promote the usage of masks directly as

supervision of our model for both performance and flexibility, contour models that require access

to polygonal ground-truth could resort to generating contours from masks themselves when masks

are the only available annotation source. Therefore, we re-generate the COCO training dataset

(where polygonal ground-truth is available) and replace the existing segmentations with those

generated using a border following algorithm in order to retrain DANCE [LLCF21]. Details are

discussed in the supplementary materials. In Table 5.4, we observe sharp decreases in resulting

performance as measured by the unmodified MS-COCO val set — indicating that generating

polygons from masks can introduce errors. While it’s plausible this could be improved, we believe

it acts as an unnecessary barrier in producing an accurate, certain model.

Table 5.4: Comparison in training a point-based supervised model using verbatim polygons
from annotators or those generated using standard algorithms from masks.

DANCE [LLCF21] Polygons (verbatim) Polygons (from masks)
Mask AP 34.5 23.1

Rasterization smoothness (τ): The rasterization smoothness dictates the (inverse) steep-

ness of the sigmoidal function in Equation 5.1. While it must be sufficiently large to allow

good gradient flow, it should also be small enough to accurately reflect what will be predicted at

inference time, i.e., the hard rasterization of the predicted polygons. We find that lower values

of τ are required (i.e. sharper), however, within that lower range, the performance is generally

robust with values around τ = 0.005 to be sufficient. Larger values, e.g., τ = 0.15 lack sufficient

sharpness for optimal results.

τ 0.15 0.05 0.005 0.0005
Mask AP 35.6 35.7 36.1 36.1
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Figure 5.4: BoundaryFormer is able to predict high quality instance segmentations over
the MS-COCO dataset: Predicted boundary points are shown in black. The resulting rasterized
mask is overlayed onto the instance in color.

Rasterization resolution (X ′×Y ′): Like Mask R-CNN, each instance is supervised at

a fixed resolution with respect to some mask loss. We investigate the impact of the choice of

resolution on resulting performance. In our experiments, we find that 64× 64 performs well

with performance saturating at larger resolutions. However, this might be a consequence of the

lower quality annotations in COCO and these characteristics might change on higher quality

annotations, e.g., LVIS [GDG19].

X ′×Y ′ 48×48 64×64 80×80
Mask AP 35.8 36.1 36.1

Performance across layers (L): We find that marginal performance increases appears

to diminish over the course of four refinement layers, consistent with the need for iterative

refinement.

Layer 1 Layer 2 Layer 3 Layer 4
Mask AP 29.0 33.6 35.4 36.1

Since adding more layers in our coarse-to-fine setting doubles the total number of points, we find
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four layers to be a good tradeoff in performance and computational needs.

Number of control points (K): Given our coarse-to-fine setting, each layer doubles the

number of points. We consider three initial point settings (4, 8, and 16) and models consisting of

L = 4 layers, predicting final polygons with 32, 64, and 128 points, respectively. We find that a

larger number of points is critical, suffering close to a 1 point drop in Mask AP when using less

than 64 points. While performance mostly saturates at 64 points, we note that larger gains can be

observed on Cityscapes (see Table 5.3). Lastly, we analyze whether the coarse-to-fine strategy

sacrifices any performance and find it is equally performant to using 64 points at each layer.

K1/K2/K3/K4 4/8/16/32 8/16/32/64 16/32/64/128 64/64/64/64

Mask AP 35.2 36.1 36.2 36.1

5.5 Qualitative Analysis

We briefly investigate the general qualitative quality of predicted polygons in Table 5.4.

Furthermore, we observe some robustness to fragmeneted objects in Figure 5.5b, which we

hypothesize can be implicitly learned due to supervision only in the form of masks. Finally, we

exhibit the approximations our coarse-to-fine model learns in Figure 5.5a and improvements in

quality it makes as more and more points become available.

5.6 Conclusion

We presented BoundaryFormer, a simple baseline for regressing instance segmentations as

polygonal boundaries rather than predicting dense masks. Despite regressing polygons, this model

relies on supervision only through masks. Combined with a strong point-based architecture and

supervision in pixel space, BoundaryFormer can match and outperform mask-based counterparts

across a variety of datasets. As a result, we believe that many tasks that have historically been
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V(1) V(2) V(3) V(4) ground truth

(a)

(b)

Figure 5.5: Progressive refinement and fragment robustness (a) illustrates the progressive
improvement in boundary quality over layers. (b) shows some implicitly learned robustness to
fragmented objects.
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mask-based, e.g., semantic and panoptic segmentation can now be revisited. Furthermore, we hope

downstream tasks that have relied on non-differentiable mask predictions can now consider using

the sparse representation of a polygon and the end-to-end differentiability it provides. Finally, we

believe further research can alleviate some limitations: predicting fragmented objects faithfully,

incorporating additional mask-based advancements, and finding more efficient architectures. How

best to scale BoundaryFormer to higher fidelities remains an open question.

This chapter is based on material submitted for publication of material by Justin Lazarow,

Weijian Xu, Zhuowen Tu. This dissertation author was the primary investigator and author of this

paper.
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