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ABSTRACT OF THE DISSERTATION

Multiscale simulations and design of porous materials

by

Xuan Zhang

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)
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Professor Daniel M. Tartakovsky, Chair

Nanoporous materials are used in the variety of fields, ranging from medicine

and biosensors to clean energy and purification. Technological advances have enabled

one to manufacture nanoporous materials with a prescribed pore structure. This raises

a possibility of using controllable pore scale properties (e.g., pore size distribution, pore

connectivity and tortuosity) to design materials with desired macroscopic properties

(e.g., porosity, effective diffusion coefficient and effective electrical conductivity).

Upscaling techniques, such as homogenization via multiple-scale expansions, provide a

framework to connect these two scale. This research uses such techniques to optimize

xiv



macroscopic properties of a material by using its microscopic properties as decision

variables.

This research aims to obtain qualitative understanding and quantitative pre-

dictions of macroscopic properties of nanoporous materials to transmit solutes that

undergo non-equilibrium adsorption and local electrochemical surface reactions at the

fluid-solid interface. The first part of this work focuses on the design of hierarchical

nanoporous materials with optimal permeability and sorption capacity. A class of

nanoporous materials whose pore space consists of ordered nanopores interconnected

by nano-channels is considered. Anisotropic effective diffusion coefficients and ad-

sorption coefficients of such materials are expressed in terms of pore properties and

connectivity Nano-channels can significantly alter diffusive properties and increase its

adsorbing capacity.

The second part of this work contains a macroscopic model of ion transport

in electrically charged nanoporous materials. The corresponding effective diffusion

coefficients, electric conductivity and transference numbers account for dynamic

changes in the electrical double layer (EDL), possible overlap of EDLs in nanopores,

and electrochemical conditions (i.e., concentration of ions in the electrolyte). Our

effective coefficients are derived from the first principles and vary with a range of

electrochemical conditions (e.g., initial concentration of ions in the electrolyte). The

resulting model predictions of the EDLC voltage response match the experimental

data better than the original model does.

The last part of this work is devoted to derivation of macroscopic properties of

three-dimensional dendritic spines. The effective diffusion coefficient estimated with

this analysis is used to quantify travel time of electric signal through the spine.

xv



Chapter 1

Introduction

1.1 Nanoporous materials in science & engineering

Nanoporous materials, as a category of nanostructured materials, possess

distinguished features such as high interior surface, distinctive porous structures and

bulk properties. Their unique surface features make nanoporous materials attractive

for applications in the fields ranging from ion exchange, adsorption (for separation)

and catalysis to purification and sensor. Nanoporous materials attract technological

and scientific interest because of their ability to chemically and physically interact

with atoms, ions and molecules on their large interior surfaces. New technological

fields engendered by nanoporous materials include infusion chemistry, molecular

manipulations and reaction in the nanoscale for making quantum nanostructures [59,

27]. Because of the potential to use nanomaterial topography and spatial distribution

of functional groups, bio-nanomaterials are applied to control proteins, cells, tissue

interactions and for bioseparations and other biological applications [80, 71, 31].

Of particular interest is the use of nanomaterials in clean energy and other

1
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environment-oriented fields. For example, porous membranes are the top choices

for new separation systems in chemical industry, hot gas filtration materials for

energy production, and separation for filtering poisonous and nano-particles cleanup

technologies. Environmentally friendly modes of transportation, such as hybrid,

electric and fuel cell powered vehicles, place different requirements on porous materials

for electrodes, separators, and gas storage media. Rechargeable batteries need cost-

effective and efficient porous materials for electrodes and separators [82, 85, 26, 56, 64].

1.2 Multiphysics and multiscale modeling of nano-

porous materials

Distributions of pore sizes, shapes and voids directly affect functional macro-

scopic properties of porous materials. Nanoporous structures can be tailored to

improve a material’s ability to perform a required function. The overall performance

of a tailored material are not only determined by atoms and molecular composition,

but also the transport mechanisms that take place in the pores.

When accounting for driving force inside the pores, advection due to pressure-

driven flow is often not negligible; electric potential-driven ion transport is often

referred to as electromigration. Pore size variability affects the importance of different

transport mechanisms. Macropores, pore size larger than 50 nm in diameter, are

much larger than the mean free path of molecular species of interest. In this cases,

molecular diffusion is significant due to predominance of molecule-molecule collision

over molecule-wall collisions. Mesopores, pore size 2 to 50 nm, are on the same

order or smaller than the mean free path and Knudsen diffusion is the predominant
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mechanism that accounts for the relative importance of molecule-wall collisions. If

the pore surface is sensitive to the specific adsorption features forming strong bond

of the molecule-solid pair, multilayer adsorption and capillary transport may occur.

Micropores (pore diameter < 2 nm) are comparable in size to molecules. In this

regime, micro-phenomena depend on both molecular size and specific interactions

with the solid. For instance, in ionic solution, electrical double layer forms on the

solid surface and impacts transport inside micropores [60, 82, 31].

A complete analysis of composite porous materials problems is extremely

difficult. For example, the dispersed phases (fibers or particles) in porous materials,

which may be randomly distributed, give rise to uncertainties in the thermal or

electrical conductivity; moreover, problems of discontinuity of conductivity across the

phase boundaries might arise [100]. Direct solutions provide quantitative information

of the physical processes at all scales only when the resolving all small-scale features of

a physical problem is affordable. A direct numerical solution of multiscale problems is

computationally prohibitive even with modern supercomputers. The major problem is

the size of computation [29]. Multiscale methods have been proposed to bridge distinct

scales ranging from particle to continuum. From engineering viewpoint, macroscopic

models with approximated effective conductivity and permeability properties are

frequently deployed in multiscale simulations [82]. A motivation for multiscale modeling

comes from the requirement of combining the efficiency of macroscale models and the

accuracy of microscale models. Some knowledge of microscale information is crucial

for predicting tailored materials while empirically obtained macroscale models are

very efficient but often not accurate enough. Microscopic models, on the other hand,

are able to incorporate microstructure and give better accuracy of solutions, but too
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expensive to be used to model systems of real interest.

Major analytical approaches to multiscle probelms include matched asymptotic

expansions, averaging method, homogenization methods and renormalization group

methods. Analytical methods along with comprehensive interpretation of multiscale

physics provide a needed insight into the nature of many problems. Such methods,

a problem can be either simplified to the point of being amenable to analytical

treatment or provide guidance for designing and analyzing numerical algorithms.

Matched asymptotics methods are used for problems that have different dominant

features in distinct regions. An “inner region” or “local region” is one in which

a solution changes rapidly. Effective models match the leading-order behavior of

the solution in both inner and outer regions. Analyzing disparate scales through

multiscale expansions is systematic and effective. Homogenization methods based on

the multiple-scale expansions establish effective equations for slow variables (large

scale) by averaging out fast variables (local scale). Numerical techniques, such as

multigrid methods and adaptive mesh refinement, are examples of resolving the details

of a solution efficiently. In this work, I use a homogenization upscaling method to

study nanoporous materials.

1.3 Objectives of this dissertation

This research provides an analytical methodology to determine macroscopic

functional properties of nanoporous materials. Continuum-scale transport models are

introduced with effective properties that account for the pore structure and microscale

behavior at solid-fluid interface. With controlled and tailored molecular treatment,

the desirable properties of porous materials can be purposely formed by designing
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their microstructure. This research presents a methodology for systematical design

and optimization of micropore structure, obviating the need for endless and blind trial

and errors in materials design.

The specific objectives are to

1. Derive a macroscopic transport model for non-equilibrium Langmuir-type adsorp-

tion reactions. Express effective diffusion coefficients and adsorption reaction

rates that account for complex pore structure and microscale processes.

2. Derive a macroscopic ion transport model that captures the significant influence

of formation of electric double layer on the solution-solid surface. Effective

diffusion coefficients of positive/negative charges are specified under different

electric double layer conditions.

3. Validate the macroscopic model with experimental data of electric double layer

capacitor charging and include effects of different diffuse layer potentials and

solution concentrations on macroscopic diffusion coefficients.

4. Design and optimize sorption materials with tunnels-connected microporous

structures and nonequilibrium Langmuir-type adsorption.

5. Design and optimize hierarchical porous electrode materials composed of micro-

mesopores. Using macroscopic effective properties as complementary instruction,

microscale structures are optimized to reach material functional goals.

6. Introduce periodic closure formula to upscale an actin network and calculate

effective diffusion coefficients of an F-actin dendritic spine model through particle

methods. Discuss representative unit cell size and microscale morphology of the

actin network.
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1.4 Organization of this dissertation

Chapter 1 discusses the profound impact of nanoporous materials on various

applications in modern live. Alternative techniques of multiscale and multiphysics anal-

yses of porous materials techniques are briefly reviewed. Objectives and motivations

of this research are formulated.

In chapter 2, I derive a homogenized formula by relating pore-scale parameters

and macroscopic properties. Using controllable pore-scale parameters (e.g., pore size

and connectivity) enables one to manufacture nanoporous materials with desired

diffusion coefficients and adsorption capacity. This provides a means of guiding

experimental design. A class of nanoporous materials, whose pore space consists of

nanotunnels interconnected by microporous tubes (carbon nanotubes), is considered. I

express the anisotropic diffusion coefficients and adsorption coefficient of such materials

in terms of tunnel’s properties (pore radius and inter-pore throat width) and their

connectivity (spacing between the adjacent tunnels and microporous tube-bridge

density). Micropore structures details (i.e., intersection angle, porosity, tube-bridge

densities) are discussed with the goal of optimizing permeability and sorption capacity.

Chapter 3 contains a study of porous materials filled with a charged ion

solution. I derive a new homogenized ion transport model, which considers the

effect of electrical double layer behavior in micropores. Homogenized Nernst-Planck

equations are represented by bulk properties of the solution and macroscopic effective

diffusion coefficients, which are modified through digging into microscopic double layer

behavior in pore structure. To demonstrate the superiority of this model, I simulate

the behavior of electric double layer capacitors under a constant current charging

process. Simulation results using my effective diffusion coefficients show a much
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more prominent congruency with experimental data than using diffusion coefficient

predicted by widely used Bruggeman’s effective medium theory. Meanwhile, to address

the significance of microscopic double layer potential for determining effective diffusion

coefficients, different charging and solution conditions are studied and compared with

Bruggeman’s predictions.

In chapter 4, a class of hierarchical micro-meso porous materials are considered.

Because of the high interior surface area provided by micropores and the sustainable

conductivity in mesopores, I concentrate on the use of such materials in next-generation

energy storage devices. The macroscopic ion transport model derived in chapter 3

provides guidance for optimization of electrolyte conductivity by designing the porous

structure and electrode porosity. The double layer formed in micropores not only

effects real specific surface area of such materials, but also impacts transport paths

of ions-filled mesopores. An optimum micro-meso hierarchical structure is suggested

through an optimization analysis of micro- and meso-pore sizes, ion concentrations

and solid-fluid interface potentials.

In chapter 5, two-dimensional (2D) cross sections of a F-actin cytoskeleton in

purkinje cell dendritic spine allow us to interpret the microstructure of actin through

characteristic unit cells. Pore-structure information is assembled and interpreted

through macroscopic effective diffusion coefficients. A sufficient and adequate amount

of unit cells is collected in order to predict the overall anisotropic effective diffusion

coefficients using finite element methods. Representative cell size and morphologies

of the pore structure are discussed. The prediction of effective diffusions for the

three-dimensional network structure is alternatively achieved via MCell using particle

methods.



Chapter 2

Design of Nanoporous Materials

with Optimal Sorption Capacity

2.1 Abstract

Modern technological advances have enabled one to manufacture nanoporous

materials with a prescribed pore structure. This raises a possibility of using controllable

pore-scale parameters (e.g., pore size and connectivity) to design materials with desired

macroscopic properties (e.g., diffusion coefficient and adsorption capacity). By relating

these two scales, the homogenization theory (or other upscaling techniques) provides a

means of guiding the experimental design. To demonstrate this approach, we consider a

class of nanoporous materials whose pore space consists of nanotunnels interconnected

by microporous tube bridge. Such hierarchical nanoporous carbons with mesopores and

micropores have shown high specific electric double layer capacitances and high rate

capability in an organic electrolyte. We express the anisotropic diffusion coefficient and

adsorption coefficient of such materials in terms of the tunnels’ properties (pore radius

8
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and inter-pore throat width) and their connectivity (spacing between the adjacent

tunnels and microporous tube-bridge density) Our analysis is applicable for solutes

that undergo a non-equilibrium Langmuir adsorption reaction on the surfaces of fluid-

filled pores, but other homogeneous and heterogeneous reactions can be handled in a

similar fashion. The presented results can be used to guide the design of nanoporous

materials with optimal permeability and sorption capacity.

2.2 Introduction

Small pore sizes and large surface porosity are some of the unique properties of

nanoporous materials, which can be used in a wide range of applications involving ion

exchange, adsorption, sensing and catalysis.[85, 105, 72] Nanoporous materials play

central role in biomedical diagnostics, such as combinatorial biochemistry on-a-chip,

chromatography, biosensors, cell manipulation and DNA analysis.[28, 2, 77] Because

of their high electrical conductivity and wettability towards electrolytes, nanoporous

materials might significantly boost the performance of energy storage devices.[1, 50, 49]

Desirable properties of manufactured (nano)porous materials can be enhanced

by controlling their pore structure and physicochemical properties of emerging pore

networks.[27] For instance, introduction of active sites onto pore surfaces of meso-

porous metallosilicate materials is a promising venue for designing novel adsor-

bents and catalysis.[62] Embedment of microporous tubes[104] between layers of

macro- or nanopores results in new materials with superior mechanical and thermal

properties.[108] For example, hierarchical nanoporous carbons with mesopores and

micropores have shown high specific electric double layer capacitances and high rate

capability in an organic electrolyte.
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Quantitative predictions of macroscopic properties of such new materials (e.g.,

their sorption capacity or thermal conductivity) require the ability to relate these

properties to their pore-scale counterparts, such as a pore-size distribution and

pore-network connectivity.[86] This can be accomplished with a variety of upscaling

techniques, including volume averaging[102] and homogenization via multiple-scale

expansions[42, 14, 5]. We use the latter approach to predict anisotropic diffusion

coefficients and effective adsorption rates for a class of nanoporous materials[63], whose

synthesis allows one to control their pore structure. It is worthwhile emphasizing

that the use of various homogenization techniques to derive effective (continuum-

or Darcy-scale) models of reactive transport in porous media (primarily subsurface

environments) is not new.[30, 94, 99, 4] The novelty of our study comes from using such

techniques to optimize macorscopic properties of a material by using its microscopic

properties as decision variables.

The effective reaction rate in a given solid-solution system is an essential factor

for sorption system design. Our analysis is applicable for solutes that undergo a

non-equilibrium Langmuir-type adsorption reaction on the surfaces of fluid-filled pores,

but other homogeneous and heterogeneous reactions can be handled in a similar

fashion. The presented results can be used to guide the design of nanoporous materials

with optimal permeability and sorption capacity.

In section 2.3, we formulate a non-equilibrium pore-scale model, which is based

on the first-order theory of sorption kinetics[11, 22, 76]. The corresponding continuum-

scale model is derived in Section 2.4. This model relates the macroscopic properties

of a nanoporous material (i.e., its diffusion coefficient and adsorption capacity) to

its pore-scale counterparts (e.g., the radii of micro- and macro-pores, and the size
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of nanobridges). In Section 2.5, we present simulations results and discuss their

implications for material design. Our findings are summarized in Section 2.6.

2.3 Problem formulation

Consider a nanoporous material Ω̂ with a characteristic length L. Let P̂ denote

the part of this material occupied by nanopores whose characteristic length scale, e.g.,

a typical pore diameter, is l such that ǫ ≡ l/L ≪ 1. The impermeable solid skeleton Ŝ

occupies the rest of the nanoporous material, i.e., Ω̂ = P̂ ∪ Ŝ. The (multi-connected,

smooth) boundary between the pore space P̂ and the solid skeleton Ŝ is denoted by Γ̂.

The pore space P̂ is occupied by a fluid, which contains a solute with con-

centration ĉ(x̂, t̂) [mol/L3], where x̂ denotes a point in P̂ and t̂ is time. The solute

diffuses throughout the pore space P̂ and undergoes a heterogeneous reaction at the

solid-fluid interface Γ̂, both taking place in isothermal conditions. The former process

is described by a diffusion equation

∂ĉ

∂t̂
= D∇̂2ĉ, x̂ ∈ P̂ , t̂ > 0. (2.1)

where D [L2/T] is the diffusion coefficient. The pore spaces considered in our analysis

consist of both interconnected nanopores and nanotubes. The diffusive transport in

the former is due to molecular diffusion (with molecular diffusion coefficient Dm),

while Knudsen diffusion (with diffusion coefficient Dk) might take place in the latter.

While the analysis presented below is capable of handling spatially variable and

anisotropic diffusion coefficients, we use the constant diffusion coefficient D to simplify

the presentation.
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Mass conservation along the impermeable solid-fluid interface Γ̂ requires the

normal component of the solute mass flux −D∇̂ĉ to be balanced by the rate of change

in the adsorbed solute q̂, i.e.,

−Dn · ∇̂ĉ =
∂q̂

∂t̂
= q̂m

∂ŝ

∂t̂
, x̂ ∈ Γ̂, t̂ > 0, (2.2)

where q̂ [mol/L2] is the adsorption amount per unit area of the solid-fluid surface Γ̂,

q̂m [mol/L2] is the maximal adsorption amount, ŝ(x̂, t̂) [-] is the fractional coverage of

Γ̂, and n(x) is the unit normal vector of Γ̂. Equation (2.1) is also subject to an initial

condition ĉ(x, 0) = cin, in which the initial concentration cin assumed to be spatially

uniform. Finally, appropriate boundary conditions are imposed on the bounding

surface of the nanoporous material Ω̂.

Previous efforts to derive effective (continuum-scale) descriptions of processes,

which admit the pore-scale representation (2.1) and (2.2), dealt with either equilibrium

adsorption[79, 36] or general non-equilibrium adsorption described by a coupled system

of reaction-diffusion equations for ĉ and ŝ[30, 94, 99, 4, 15]. While the former are

not applicable for many nanoporous phenomena, the latter are too complex to be

used in materials design. Instead, we derive a reduced-complexity model based on the

Lagergren (pseudo-first-order) rate equation,[53, 74, 41, 57]

dŝ
dt̂

= γ(ŝeq − ŝ), (2.3)

where γ [T−1] is the first-order adsorption rate constant, and ŝeq is the adsorption

coverage fraction at equilibrium. The latter is assumed to follow the Langmuir
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adsorption isotherm,

ŝeq =
K̂ĉ

1 + K̂ĉ
, (2.4)

where K̂ [L3/mol] is the adsorption equilibrium constant. The derivation of the

reduced-complexity model is facilitated by rewriting this pore-scale boundary-value

problem (BVP) in the dimensionless form. Let us introduce dimensionless variables

and parameters

x =
x̂

L
, t =

Dt̂

L2
, c =

ĉ

cin

, qm =
q̂m

Lcin

, K = ĉinK̂, Da =
L2γ

D
(2.5)

where the Damköhler number Da represents the ratio of reaction and diffusion time-

scales. We show in Appendix A that, for nanoporous materials characterized by

Da ≪ 1, Eqs. (2.2)–(2.4) give rise to a nonlinear (but decoupled) boundary condition

at the solid-fluid interface Γ,

−n · ∇c = Da qm
Kc

1 +Kc
, x ∈ Γ, t > 0. (2.6a)

The remainder of the pore-scale BVP takes the form of a diffusion equation

∂c

∂t
= ∇2c, x ∈ P, t > 0 (2.6b)

subject to the initial condition c(x, 0) = 1 for x ∈ P and the corresponding boundary

conditions on the bounding surface of the nanoporous material Ω.

Solving this BVP in a large interconnected network of nanopores P is neither

feasible nor necessary. Instead, one is often interested in the emerging (macroscopic)
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properties of the nanoporous material Ω as a whole. While its pore structure is de-

scribed by diameters and a spatial arrangement of individual nanopores and nanotubes

bridges, its macroscopic properties are characterized by bulk (average) quantities such

as porosity φ, effective diffusion coefficient Deff, and effective adsorption rate constant

γeff. Connecting these two levels of description allows us to relate such macroscopic

properties to the underlying microscopic (pore-scale) characteristics. This, in turn,

enables one to manufacture nanoporous materials with desired macroscopic attributes.

y1

y2

0 yc1−yc1

yc2

R
θ

PU

ΓU

Γf

Figure 2.1: A schematic representation of Material 1 (left) and the corre-
sponding unit cell U (right). The unit cell is a 2yc

1 by yc
2 rectangle, with

yc
1 = R cos θ and yc

2 = 2R + l.

By way of example, we consider nanoporous materials in which rows of inter-

connected uniform nanopores of radius R are bridged by regularly placed microporous

tubes. The spacing between two neighboring pores in a single row is expressed in terms

of the angle θ that we refer to as an intersection factor. A number n of microporous

tubes (diameter d = 0.7 nm) per unit cell is referred to as a microporous tube density.

In the first class of materials, the rows of interconnected nanopores are perfectly

aligned (Fig. 2.1). In the second, the rows are shifted relative to each other by the

distance R/2 (Fig. 2.6). These two settings provide an adequate representation of the
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nanoporous materials[63].

2.4 Macroscopic properties of nanoporous materi-

als

Macroscopic representations of a nanoporous material Ω treat it as a continuum,

without separating it into the pore space P and the solid skeleton S. Macroscopic

solute concentration C(x, t)—the microscopic concentration c(y, t) averaged over a

(representative elementary) volume V centered at point x ∈ Ω—is defined as

C(x, t) ≡ 1
‖PV ‖

∫

PV (x)
c(y, t)dy (2.7)

where ‖PV ‖ is the total volume of pores contained in V .

We show in Appendix E that, for nanoporous materials composed of periodic

arrangements of unit cells U , the macroscopic concentration C(x, t) satisfies a reaction-

diffusion equation

∂C

∂t
= φ−1∇ · (Deff∇C) − γeffqm

KC

1 +KC
(2.8)

where φ ≡ ‖PV ‖/‖V ‖ = ‖PU‖/‖U‖ is the porosity (with PU denoting the pore space

of the unit cell U); the effective reaction constant γeff is related to ‖ΓV ‖, the total

surface area of the pores contained in V , (or to ‖ΓU‖, the total surface area of the

pores contained in U), by

γeff =
‖ΓV ‖
‖PV ‖ =

‖ΓU‖
‖PU‖ ; (2.9)
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and the effective diffusion tensor Deff defined as

Deff =
D

‖U‖
∫

PU

(I + ∇yχ)dy. (2.10)

Here I is the identity matrix, and the “closure variable” χ(y) is a U -periodic vector

defined on PU . It satisfies

∇2
y
χ = 0, y ∈ PU ; 〈χ(y)〉 ≡ 1

‖U‖
∫

PU

χ(x)dy = 0 (2.11)

subject to the boundary condition along the fluid-solid segments ΓU of the boundary

of PU ,

n · ∇yχ = −n · I, y ∈ ΓU . (2.12)

Along the remaining (“fluid”) segments Γf of the boundary of PU (see Fig. 2.1)

the U-periodicity of χ(x) is enforced. Accounting for the normalization condition

〈χ(y)〉 = 0, in the case of the rectangular unit cell U (Fig. 2.1) this yields

χ1(−yc
1, y2) = χ1(yc

1, y2) = 0,
∂χ1

∂y2

(y1, 0) =
∂χ1

∂y2

(y1, y
c
2) = 0 (2.13a)

and

χ2(y1, 0) = χ2(y1, y
c
2) = 0,

∂χ2

∂y1

(−yc
1, y2) =

∂χ2

∂y1

(y2
1, y2) = 0. (2.13b)

Here yc
1 = R cos θ and yc

2 = 2R+ l. Figure 2.2 exhibits a numerical solution χ(y) =

(χ1, χ2)⊤ of the BVP (2.11)–(2.13) defined on PU in Fig. 2.1. This solution and all



17

the numerical results reported below are obtained with COMSOL.

Figure 2.2: The horizontal χ1 (left) and vertical χ2 (right) components of
the closure variable χ(y) = (χ1, χ2)⊤ defined on the fluid-domain PU of the
unit cell U in Fig. 2.1. In this example, the four vertical nanobridges are
spaced ∆ = 0.3 nm apart.

2.5 Simulation results

The upscaled relations derived above allow one to infer macroscopic properties

of a nanomaterial, e.g., the (effective) anisotropic diffusion coefficient Deff and the

effective reaction constant γeff, from its microscopic characteristics. Unless specified

otherwise, the subsequent simulations deal with the effects of these microscopic

parameters on the macroscopic properties of Material 1 (Fig. 2.1). The external

concentration gradient is applied in the x1 direction.

Nanopore radius in isolated nanotunnels. In the absence of nanobridges (n =

0), diffusion through the nanoporous Material 1 (Fig. 2.1) occurs only in the x direction

along the disconnected nanotunnels. The latter consist of stacked nanopores of uniform

radius R, which varies from R = 20 nm to 60 nm. The effective (macroscopic)
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longitudinal diffusion coefficient D11, normalized by molecular diffusion coefficient D,

and the effective reaction constant γeff are shown in Fig. 2.3; the transverse diffusion

coefficient is D22 = 0. The effective diffusion coefficient D11 increases with pore radius

R and intersection angle θ. The reaction constant γeff decreases with both.

Pore radius, R (nm)Pore radius, R (nm)
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Figure 2.3: Dependence of effective longitudinal diffusion coefficientD11 (left)
and effective reaction constant γeff (right) on pore radius R and intersection
angle θ.

Intersection angle θ. Intersection angle θ quantifies the distance between the

centers of any two adjacent spherical pores in a given nanotunnel (Fig.2.1), such

that θ decreases as this distance increases. Figure 2.4 exhibits the impact of θ on

the effective properties of Material 1 (Fig.2.1), in which nanotunnels composed of

pores of radius R = 40 nm are connected by microporous tubes of length l = 10

nm. As θ increases, the throats between the adjacent pores become large, giving

rise to a significant increase in the longitudinal component of the effective diffusion

tensor (D11). The impact of θ on both the transverse diffusion (D22) and the effective

reaction constant (γeff) is less pronounced. A slight (≈ 3%) increase of the longitudinal
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diffusion coefficient D11 caused by the addition of n = 10 nanotubes is due to the rise

in the material’s connectivity and porosity. Despite their negligible contribution to

the porosity of this nanoporous material, the microporous tube bridges significantly

alter its diffusive properties, giving rise to the non-zero transverse diffusion coefficient

D22. They also nearly double the effective reaction constant γeff.
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Figure 2.4: Dependence of the longitudinal (D11) and transverse (D22) com-
ponents of the effective diffusion tensor (left) and effective reaction constant
γeff (right) on intersection angle θ, for materials with disconnected (n = 0)
and interconnected (by n = 10 microporous tubes) nanotunnels. The latter
are composed of pores with uniform radius R = 40 nm.

Nanobridge density. This numerical experiment deals with nanotunnels formed

by pores of radius R = 40 nm, which are intersected at angle θ = 20◦; the neighboring

nanotunnels are connected by microporous tubes of length l = 10 nm. In the

simulations reported below we set the distance between individual microporous tubes

to either ∆ = 1.4 nm or ∆ = 0.3 nm. For the given microporous tube length of

l = 10 ∼ 11 nm and ∆ = 0.3 nm, the maximum possible number of microporous

tubes in the unit cell is nmax = 10. If no limits are placed on the microporous tube

length (i.e., if it is allowed to vary between l = 10 ∼ 50 nm), then placing microporous
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tubes ∆ = 1.4 nm apart would allows for the maximum number of microporous tubes

in the unit cell is nmax = 34. The behavior of the effective transport properties of

these nanoporous materials as a function of nanobridge density is shown in Fig. 2.5.

While the number of microporous tubes in a bridge, n, does not appreciably affect the

material’s diffusive properties (D11 and D22), it significantly influences its adsorbing

capacity (γeff).
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Figure 2.5: Dependence of the longitudinal (D11) and transverse (D22)
components of the effective diffusion tensor (left) and effective reaction con-
stant γeff (right) on the number of microporous tubes (n) comprising the
nanobridges between the neighboring nanotunnels. The latter are composed
of pores with uniform radius R = 40 nm, which are intersected at angle
θ = 20◦.

Alternative material topology. To investigate the effects of spatial arrangement

of nanotunnels and nanobridges comprising a nanoporous material, we consider the

second class of materials (Material 2 in Fig. 2.6). The neighboring nanotunnels in

these materials are shifted by R/2, while in Material 1 (Fig. 2.1) they are aligned.

For a given structure of the nanotunnels (e.g., the pore radius R = 40 nm and

the intersection angle θ = 20◦) and nanobridges (e.g., the microporous tube spacing
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Figure 2.6: A schematic representation of Material 2 and the corresponding
unit cell U (right).

∆ = 1.4 nm and the number of microporous tubes n), Eq. (2.9) suggests that Materials

1 and 2 have the same adsorbing capacity (the effective reaction constant γeff). The

topologic differences between the two materials manifest themselves in the macroscopic

diffusive properties (Fig. 2.7). Material 2 possesses the higher longitudinal diffusion

coefficient (D11) that is significantly more sensitive to the number of microporous

tubes in the nanobridge; the transverse diffusion coefficients (D22) of the two materials

are practically the same. Although not shown here, a local distribution of microporous

tubes within a unit cell also affects a material’s diffusive properties. A symmetric

arrangement of nanobridges, which consists of an equal number of nanotubes arranged

at acute and obtuse angles (as in Fig. 2.6), yields the higher values of D11 and D22

than its asymmetric counterpart, in which only the left or the right bridge is present,

does.



22

0.0

0.1

0.2

0.3

L
o
n
g
it
u
d
in
a
l
d
iff
u
si
o
n
,
D

1
1
/
D

0.56

0.58

0.60

0.62

0.64

Number of CNTs, n
0 2 4 6 8 10

T
ra
n
sv
er
se

d
iff
u
si
o
n
,
D

2
2
/
D

0.66

D11, Material 1

D11, Material 2

D22, Material 2

D22, Material 1

Figure 2.7: Dependence of the longitudinal (D11) and transverse (D22)
components of the effective diffusion tensor on the number of microporous
tubes (n) for Materials 1 and 2. In both materials, pores of uniform radius
R = 40 nm are intersected at angle θ = 20◦.

2.6 Conclusions

Modern technological advances have enabled one to manufacture nanoporous

materials with a prescribed pore structure. This raises a possibility of using controllable

pore-scale parameters (e.g., pore size and connectivity) to design materials with desired

macroscopic properties (e.g., diffusion coefficient and adsorption capacity). By relating

these two scales, the homogenization theory (or other upscaling techniques) provides

a means of guiding the experimental design. To demonstrate this approach, we

consider a class of nanoporous materials whose pore space consists of nanotunnels

interconnected by carbon nanotubes (microporous tubes). We express the anisotropic

diffusion coefficient and adsorption coefficient of such materials in terms of the tunnels’

properties (pore radius and inter-pore throat width) and their connectivity (spacing

between the adjacent tunnels and microporous tube-bridge density). Our analysis
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leads to the following major conclusions.

1. Upscaling (e.g., by means of the homogenization theory) provides a general

framework for optimal design of nanoporous materials. In the case of adsorption-

diffusion systems, this approach provides a venue for manufacturing nanoporous

materials with desired anisotropic diffusion coefficient Deff and reaction constant

γeff, which can be used, for example, in the design of filters.

2. Intersection angle θ quantifies the distance between the centers of any two

adjacent spherical pores in a given nanotunnel. As θ increases, the throats

between the adjacent pores become large, giving rise to a significant increase in

the longitudinal component of the effective diffusion tensor (D11). The impact

of θ on both the transverse diffusion (D22) and the effective reaction constant

(γeff) is less pronounced.

3. Despite their negligible contribution to the porosity of this nanoporous material,

the microporous tube bridges significantly alter its diffusive properties, giving

rise to the non-zero transverse diffusion coefficient D22. They also nearly double

the effective reaction constant γeff.

4. While the number of microporous tubes in a bridge, n, does not appreciably

affect the material’s diffusive properties (D11 and D22), it significantly influences

its adsorbing capacity (γeff).
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Chapter 3

Effective Ion Diffusion in Charged

Nanoporous Materials

3.1 Abstract

Multiscale models of ion transport in porous media relate microscopic material

properties (e.g., pore size distribution, pore connectivity and tortuosity) to their

macroscopic counterparts (e.g., porosity, effective diffusion coefficient and effective

electrical conductivity). We derive a macroscopic model of ion transport in electrically

charged nanoporous materials, and the corresponding effective diffusion coefficient,

electric conductivity and transference numbers, that explicitly account for dynamic

changes in electrical double layer (EDL) and possible overlap of EDLs in nanopores.

The general equations comprising this model reduce to a model of an electrical

double layer capacitor (EDLC) used to interpret measurements of the EDLC’s voltage

response to charging. While the original model relies on empirical coefficients (e.g.,

Bruggeman’s relation), our effective coefficients are derived from the first principles

25
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and vary with a range of electrochemical conditions (e.g., initial concentration of ions

in the electrolyte). The resulting model predictions of the EDLC voltage response

match the experimental data better than the original model does.

3.2 Introduction

Rapid growth of the global economy, depletion of fossil fuels, and increasing

environmental concerns accelerate the shift to renewable (e.g., solar and wind) energy

production and electric and/or hybrid electric vehicles with low CO2 emissions. These

and other applications rely on energy conversion and storage technologies. Some of

the most effective and practical technologies for electrochemical energy conversion

and storage are batteries, fuel cells, and electrochemical supercapacitors. Their

performance needs to substantially improve in order to meet power density and energy

density demands. This requires breakthroughs in our understanding of electrochemical

phenomena at the nanoscale and ability to model these processes at the device scale,

and parlaying them into design of new materials and devices.

Nanoscale pore-structure of, e.g., electrodes affects energy storage through

formation of electrical double layer (EDL) at the solid material/electrolyte inter-

faces [61, 19, 25, 23, 89]. EDL formation plays an important role in other physical,

chemical and biological systems, including separation processes used to remove heavy

metals from aqueous solutions, groundwater remediation mediated by electrosorption,

and capacitive desalination [70].

Nanoporous materials with a hierarchical porous structure are thought to

possess attractive electrosorption and capacitance characteristics due to their large

specific surface area (provided by mircropores) and fast transport (facilitated by
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mesopores) [69]. However, their large surface areas do not always translate into

more energy stored on the surface, because the local electrical potential formation

can both dominate ion transport and sorption inside nanopores and restrict pore

accessibility. For example, poor electrochemical accessibility of micropores was found

to significantly reduce the extent of surface reactions between the electrode material

and electrolyte [97, 55]. This suggests that the porous structure of a nanoporous

material controls power density and accessibility to the energy stored on the interface.

Qualitative understanding and quantitative predictions of this phenomenon

and, more specifically, the effects of EDL on ion transport are a prerequisite for

bottom-up design of new nanoporous metamaterials [110]. Guided by the goal of

maximizing an electrode’s specific surface area accessible to electrolyte, an optimal

design of such materials must account for the potential overlap of EDLs in nanoporous

structures saturated with a very dilute solution, which decreases not only the ion

transport rate but also the equilibrium concentration of ions inside the pores. Such

design strategies are guided by mathematical models that relate microscopic material

properties (e.g., pore size distribution, pore connectivity and tortuosity) to their

macroscopic counterparts (e.g., porosity, effective diffusion coefficient and effective

electrical conductivity).

A commonly used approach is to postulate the equivalency of mathematical

descriptors on the pore and continuum scales and to use phenomenological relations

to express coefficients of the continuum-scale equations in terms of their pore-scale

counterparts. For instance, a diffusion process taking place within the pore network

of a porous electrode might be described by diffusion equations at both scales, and

the molecular diffusion coefficient D in the pore-scale equation is replaced at the
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continuum scale with an assumed effective diffusion coefficient Deff = ωD/τ , where ω

and τ are the material’s porosity and tortuosity, respectively, often supplemented with

Bruggeman’s relation [24] τ = ω−1/2. This widely-used expression for estimation of

effective properties in electrochemical systems is thought to be applicable for materials

with low porosity, connected electrolyte transport paths, and spherical electrode

particles [37]. Many porous electrode metamaterials and local electrical conditions

(electrolyte concentration and applied electric field) do not satisfy these conditions,

undermining the veracity of the Bruggeman model (as we demonstrate in this study)

or, at least, the value of its exponent [24, 91].

Derivation of more rigorous models often relies on homogenization, e.g., via

multiple-scale expansions. For example, it was used to derive macroscopic Poisson-

Nernst-Planck (PNP) equations under assumptions of either a fixed surface charge

density on the solid matrix [83] or an infinitely thin EDL [17]; to obtain macroscopic

Onsager’s reciprocal relations from a linearized version of PNP equations [58]; and to

derive a macroscopic PNP-based model of water flow and ion transport in geological

deformable porous media [54, 68, 66, 65]. In addition to providing a map between the

microscopic and macroscopic parameters and processes, homogenization establishes

both the rigorous macroscopic descriptors grounded in the first principles and the

limits of applicability of macroscopic models [38]. The homogenization analyses

mentioned above are grounded in physical limitations: the assumption of a fixed surface

charge density translates into an upscaled Poisson equation that does not contain

information about the local electric potential distribution [83] and is not applicable for

electrochemical processes in which zeta potential and solution concentration change

in response to charging/discharging [66, 65].
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In contrast to these and other similar studies (e.g., [92]) we derive a macroscopic

model of ion transport in electrically charged nanoporous materials, and the corre-

sponding effective diffusion coefficient, electric conductivity and transference numbers,

that explicitly account for dynamic changes in the EDL. Our model goes beyond the

infinitely thin EDL approximation and, hence, accounts for possible overlap of EDLs

in nanopores. The general equations comprising this model reduce to a model of

an electrical double layer capacitor (EDLC) used to interpret measurements of the

EDLC’s voltage response to charging [96]. While the original model [96] relies on em-

pirical coefficients, such as Deff = ωD/τ or its Bruggeman’s analog Deff = ω3/2D, our

effective coefficients are derived from the first principles and vary with electrochemical

conditions (e.g., initial concentration of ions in the electrolyte). The resulting model

predictions of the EDLC voltage response match the experimental data [96] better

than the original model did.

3.3 Problem Description

We consider a hierarchical porous material Ω with a characteristic length L. Let

P denote the part of this material occupied by nanopores whose characteristic length

scale, e.g., a typical pore diameter, is l such that ǫ ≡ l/L ≪ 1. The impermeable

solid skeleton S occupies the rest of the nanoporous material, i.e., Ω = P ∪ S. The

(multi-connected, smooth) boundary between the pore space P and the solid skeleton

S is denoted by Γ.

The pore space P is completely occupied by an ionized fluid, in which cations

and anions have concentrations c+(x, t) and c−(x, t), respectively; these concentrations

have units [mol/L3], and vary both in space, x ∈ P , and time t. Interactions between
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the ionized solution and static charges at the solid-fluid interface Γ gives rise to an

electrical double layer.

Microscopic models of ion transport through the hierarchical porous material Ω

track the spatiotemporal evolution of c±(x, t) inside a complex pore network P ; they

rest on a solid electrochemical foundation but are computationally demanding, and

often prohibitively so. Macroscopic models treat the porous material Ω as a continuum,

i.e., associate ion concentrations C±(x, t) with a certain (representative elementary)

volume of the material, over which the pore-scale concentrations c±(x, t) are averaged;

such models are largely phenomenological, but relatively fast to solve. Microscopic and

macroscopic formulations are provided below. Establishing the relationship between

the two is one of the main goals of this study.

3.3.1 Microscopic transport model

Processes in the fluid-filled pores P. We adopt the dilute theory of solvents,

which treats ions as point charges and defines electrochemical potential [J/mol] as

µ± = µ̄± +RT ln c± + z±Fϕ where µ̄± is a reference value, and z± are the ion charges

(valencies) [−]. Here R [J/K/mol] and F [C/mol] are the gas and Faraday constants,

respectively; T [K] is temperature; and ϕ [V] is the electric potential. Spatial variability

of µ± induces ionic (Nernst-Planck) fluxes J±
NP = −M±c±∇µ±, where the ion mobility

M± is related to the molecular diffusion coefficient of ions in the fluid, D± [L2/T],

by the Einstein relation M± = D±/RT . In the absence of homogeneous chemical

reactions, mass conservation of anions and cations, ∂tc± = −∇ · J±
NP, gives rise to the
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Nernst-Planck equations

∂c±

∂t
= ∇ · [D±(∇c± + c±

z±F

RT
∇ϕ)], x ∈ P. (3.1)

The total (net) ionic charge density q ≡ F (z+c+ + z−c−) is related to the electric

potential ϕ(x, t) through a Poisson equation,

−E∇2ϕ = F (z+c+ + z−c−), x ∈ P, (3.2)

where E is dielectric constant of the solvent.

Processes on the fluid-solid interface Γ. Within the electrical double layer

(EDL) framework, the electrically charged surface Γ is “coated” with a compact Stern

layer comprised of mixture of solvent molecules and a single layer of adsorbed ions.

These are effectively immobilized by the interplay of adsorption, van der Waals forces

and hydrogen bonding. To simplify the presentation, we assume the thickness of

the Stern layer, ℓS ∼ 0.03 nm to 0.2 nm (a typical diameter of an ion) [87] to be

negligible relative to the characteristic pore size ℓp ∼ 1.0 nm (a typical diameter of

a micropore) to 25.0 nm (that of a mesopore), so that the Nernst-Planck-Poisson

(PNP) equations (3.1)–(3.2) are defined on the whole domain P and the corresponding

boundary conditions are specified on the fluid-solid interface Γ. (The analysis presented

below is valid even when this assumption does not hold, in which case the transport

domain P is reduced by the thickness of the Stern layer to P− and the interface Γ is

replaced with Γ−, the surface of P−.)

Following the standard practice [46, 48], we assume that the surface Γ carries
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a constant electric (zeta) potential ϕΓ, which translates into a Dirichlet boundary

condition

ϕ(x, t) = ϕΓ, x ∈ Γ. (3.3)

This assumption is applicable if the solid matrix S is highly conductive, which occurs,

e.g., in carbon aerogels[106]. Heterogeneous chemical reactions, f±(c−, c+), at the

fluid-solid interface Γ, give rise to Robin boundary conditions

−n · D±(∇c± + c±
z±F

RT
∇ϕ) = f±(c−, c+), x ∈ Γ. (3.4)

When the EDL is stably formed, the situation considered in the present analysis, the

surface electrosorption reaction reaches equilibrium, f± ≡ 0. This implies the absence

of the net local current source.

EDL-explicit decomposition. The remaining part of the EDL consists of a diffu-

sive layer, in which the EDL potential ϕEDL(x, t) decays rapidly with the distance from

the charged surface Γ. Depending on a pore’s size, this diffusive layer can either occupy

the entire pore space or coexist with an electrically neutral (c+/ν+ = c−/ν− ≡ cb,

where ν± are the dissociation coefficients) bulk electrolyte[70] present in the pore’s

core. This suggests a decomposition of the unknown electric potential ϕ(x, t) into the

sum[18]

ϕ = ϕEDL + ϕb. (3.5)
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It follows from (3.2) and the electroneutrality condition that the bulk electric potential

ϕb(x, t) satisfies

∇2ϕb = 0, x ∈ P; ϕb = 0, x ∈ Γ; (3.6)

and is driven by an externally imposed (macroscopic) potential gradient.

Thermodynamic equilibrium between the EDL and electrolyte’s core requires

the equality of their respective chemical potentials µ± and µb±. Recalling the definition

of chemical potential, this yields z±Fϕ+RT ln c± = z±Fϕb + ν±RT ln cb. Combining

this with the decomposition (3.5) yields a Boltzmann distribution for ion concentrations

in the EDL,

c± = ν±cb exp
(

−z±F

RT
ϕEDL

)

. (3.7)

Relations (3.5) and (3.7) transform dependent variables ϕ(x, t), c+(x, t) and

c−(x, t) into new unknowns ϕEDL(x, t), ϕb(x, t) and cb(x, t). Substituting these

relations into (3.1) and (3.4) gives transformed Nernst-Planck equations

∂

∂t

(

cbe−
z±F

RT
ϕEDL

)

= ∇ ·
[

D±e−
z±F

RT
ϕEDL(∇cb +

z±F

RT
cb∇ϕb)

]

, x ∈ P (3.8a)

subject to the boundary conditions

n · (∇cb +
z±F

RT
cb∇ϕb) = 0, x ∈ Γ. (3.8b)

Substituting (3.5) and (3.7) into (3.2) and (3.3), while accounting for (3.6), leads to a
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Poisson-Boltzmann equation

−∇2ϕEDL =
F

E cb

(

ν+z+e−
z+F

RT
ϕEDL + ν−z−e−

z−F

RT
ϕEDL

)

, x ∈ P (3.9a)

subject to the boundary condition

ϕEDL = ϕΓ, x ∈ Γ. (3.9b)

This formulation of the PNP equations we proposed in [18] and subsequently used to

upscale fluid flow in clays [65, 66, 68].

To simplify the presentation, we set D− = D+ ≡ D and consider symmetric

completely dissociated electrolyte ions, i.e., assume the equality of the ion charges

(valency), z+ = −z− ≡ z, and dissociation constants, ν+ = ν− ≡ ν. However,

the methodology developed below is equally applicable to multicomponent and/or

asymmetric electrolytes.

Non-dimensional formulation. The subsequent analysis is facilitated by intro-

ducing, in addition to ǫ = l/L, dimensionless variables

x̂ =
x

L
, t̂ =

tD
L2
, ∇̂ = L∇, ĉb =

cb

cin

, ϕ̂ =
Fϕ

RT
, (3.10)

where cin is the initial ion concentration, and rewriting (3.11) and (3.12) in dimen-

sionless form:

∂

∂t̂
(ĉbe∓zϕ̂EDL) = ∇̂ ·

[

e∓zϕ̂EDL(∇̂ĉb ± zĉb∇̂ϕ̂b)
]

, x̂ ∈ P̂ (3.11a)
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subject to the boundary conditions

n̂ · (∇̂ĉb ± zĉb∇̂ϕ̂b) = 0, x̂ ∈ Γ̂; (3.11b)

and

ǫ2∇̂2ϕ̂EDL =
l2

λ2
D

ĉb sinh(zϕ̂EDL), λD =

√

RTE
2F 2zνcin

; x̂ ∈ P̂ (3.12a)

subject to the boundary condition

ϕ̂EDL = ϕ̂Γ, x̂ ∈ Γ̂. (3.12b)

In nanoporous materials the Debye length λD, a characteristic length of the EDL, is

of the same order of magnitude as the characteristic pore size l.

3.3.2 Macroscopic Transport Model

Macroscopic representations of a nanoporous material Ω treat it as a continuum,

without separating it into the pore space P and the solid skeleton S. In other words,

macroscopic ion concentration C(x, t) and electric potential Φ(x, t) are defined at

every “point” x ∈ Ω. One macroscopic characteristic of such a material is its porosity,

ω = ‖P‖/‖Ω‖. Our goal is to estimate more elusive macroscopic properties, such as

an effective diffusion coefficient, which are properties of both a nanoporous material

and an electrolyte.

We use the multiple-scale expansion technique [42, 10, 14, 110] to derive

effective (macroscopic) counterparts of the PNP equations (3.11) and (3.12). The
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method explicitly accounts for the spatial variability of ion concentration, and other

dependent variables, on both macroscopic scale (across the porous material, denoted

by the coordinate x) and microscopic scale (inside individual pores, denoted by

the coordinate y). We assume that the bulk concentration and potential exhibit

pronounced variability on both scales, i.e., cb = cb(x,y, t) and ϕb = ϕb(x,y, t);

while the spatial variability of the EDL potential is confined to the nanoscale, i.e.,

ϕEDL = ϕEDL(y, t).

The latter assumption enables one to decouple equations (3.11) and (3.12),

and to compute ϕEDL(y) by solving (3.12) on a “unit cell” U representative of the

material’s pore structure,

∇̂2ϕ̂EDL =
l2ĉ⋆

b

ǫ2λ2
D

sinh(zϕ̂EDL), ŷ ∈ P̂U ; ϕ̂EDL = ϕ̂Γ, x̂ ∈ Γ̂U (3.13)

where c⋆
b is a characteristic ion concentration in the system, e.g., its initial or average

value; and P̂U and Γ̂U are the pore space and fluid-solid interface contained in the unit

cell U . Then, (3.11) is upscaled in Appendix C to yield continuum-scale Nernst-Planck

equations satisfied by macroscopic ion concentration C(x, t) and electric potential

Φ(x, t),

ω
∂C

∂t
= ∇ · [Deff

± (∇C ± zF

RT
C∇Φ)]. (3.14)

Here the effective diffusion coefficients Deff
± are second-order semi-positive-definite

tensors defined by

Deff
± =

Dω
G±

∫

P̂U

e∓zϕ̂EDL(I + ∇yχ
⊤
±)dy, G± =

∫

P̂U

e∓zϕ̂EDLdy, (3.15)
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where I is the identity matrix, and the closure variables χ±(y) are U -periodic vector

functions, which are computed as solutions of boundary-value problems

∇y[e∓zϕ̂EDL(I + ∇yχ
⊤

±)] =0, y ∈ P̂U ; n(I + ∇yχ
⊤
±) = 0, y ∈ Γ̂U ;

∫

P̂U

χ±dy =0. (3.16)

A few observations about this general result are in order. First, the effective

equations (3.14) are identical to those obtained phenomenologically from the solute

material balance considerations [70]. Second, the rigorous derivation of these equations

enables one to express the diffusion coefficient tensor (3.15) in terms of the pore

structure and electrical double layer potential, as opposed to treating them as fitting

parameters. Third, it follows from (3.16) that the off-diagonal elements of the second-

rank tensor ∇yχ
⊤
± are zeros, i.e., ∂χ±,i/∂yk = 0 for i 6= k. Consequently, the

off-diagonal elements of the diffusion tensors Deff
± are zero as well.

By way of example, let us consider a homogeneous isotropic nanoporous

material assembled from the unit cell shown in Figure 3.1a. The unit cell’s symmetry

suggests that χ±,1 = χ±,2, i.e., χ±(y) = χ±(y)(1, 1)⊤. The resulting isotropy of the

nanoporous material implies that the diffusion coefficients in (3.15) become scalars,

Deff
+ and Deff

− . Figure 3.1b exhibits χ(y), a solution of the unit cell problem (3.16)

with ϕΓ = 0 and, hence, ϕEDL = 0, in the absence of electrical charge on the fluid-solid

interface Γ. For charged surfaces (ϕΓ = 0.3 V), solutions for the closure variables

χ+(y1, y2) and χ−(y1, y2) are shown in Figures 3.1c and 3.1d, respectively. These

three solutions demonstrate that the double layer potential ϕEDL affects the effective

transport properties of nanoporous materials (the size of the pore throats in this
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example is 1.5 nm).

This finding is in contrast with often used phenomenological relations such as

Deff = ωD/τ , where τ is the tortuosity of a porous medium, which is set to τ = ω−0.5

in the Bruggeman model[70]. Such expressions are not readily adaptable to anisotropic

materials and do not account for EDL’s presence in charged nanoporous materials and,

hence, for the dependence of Deff on applied voltage. Figure 3.2 shows the dependence

of the normalized effective diffusion coefficient Deff/D on porosity ω, predicted with

both Bruggeman’s relation, Deff = Dω3/2, and the weighted harmonic mean (a binary

effective diffusion coefficient[70]),

Deff =
2Deff

+ D
eff
−

Deff
+ +Deff

−

, (3.17)

of the effective diffusion coefficients Deff
− and Deff

+ computed with (3.15). As expected,

the discrepancy between the two predictions increases with the surface potential ϕΓ.

The effective model presented above also allows one to estimate an electrode’s

surface potential ϕΓ, which is generated by applying an external voltage V . This is

done by inverting a relationship[43]

ϕΓ =
V

2
− ϕecm − σ

CH

, (3.18)

where ϕecm is the electrocapillary maximum, CH is the Helmholtz capacitance, and σ is

the surface charge density. The electrocapillary maximum ϕecm determines a material’s

resistance to applied voltage, i.e., the applied electrical driving force that has to be

exceeded for electrosorption to set in; experiments on carbon aerogel electrodes[106]

showed that 0.1 V ≤ ϕecm ≤ 0.25 V. For a dilute solution and low applied voltage 1.2 V,
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(b)

(c) (d)

(a)

Figure 3.1: (a) A unit cell comprising a homogeneous isotropic nanoporous
material with porosity ω = 0.67 and pore throat size 1.5 nm. (b) Spatial
distribution of the closure variable χ(y1, y2) for electroneutral fluid, computed
by solving the scalar version of (3.16) with ϕEDL = 0 for cin = 0.93 M.
(c) and (d) Spatial distributions of the closure variables χ+(y1, y2) and
χ−(y1, y2), respectively, computed by solving the scalar versions of (3.16)
with ϕEDL = 0.3 V for cin = 0.93 M.
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Figure 3.2: The normalized effective diffusion coefficient of an isotropic
nanoporous material, Deff/D, computed alternatively with Bruggeman’s re-
lation Deff = Dω3/2 and our model (3.15) and (3.17). Unlike Bruggeman’s
relation, our model captures the dependence of Deff on electrical surface
potential ϕΓ and initial ion concentration cin.
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the Helmholtz capacitance CH is practically independent of both the surface potential

and electrolyte concentration[106, 95] and has values[35] ranging from 20 µF/cm2 to

45 µF/cm2. Finally, the surface charge density σ is computed as[70, 43, 106]

σ =
√

4ERTI
√

cosh
(

eϕΓ

kT

)

− cosh
(

eϕmin

kT

)

,

I =z2C, ϕmin = min
y∈UP

ϕEDL(y) (3.19)

where I is the ionic strength, ϕmin is the midplane potential computed by solving (3.13).

Combining (3.18) and (3.19) gives a transcendental equation for ϕΓ, whose solution,

depending on the choice of parameters, varies between 0.2 V and 0.4 V when the

external voltage V = 1.2 V is applied.

3.4 Application to electrical double layer capaci-

tors

Electrical double layer capacitors (EDLCs) store energy in the EDL; they

have been shown to possess high power density and long reversible cycle life. These

properties suggest that EDLCs can be used in electric and hybrid electric vehicles to

offset the low charge/discharge of current in batteries, providing an acceleration boost.

The performance of EDLCs has been analyzed with effective electrodiffusion models,

which were validated with experimental data[96, 6, 47]. Our goal is to improve the

predictive power of EDLC models by using our expressions for the effective diffusion

coefficients.
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A mathematical model of EDLCs. A typical EDLC consists of three compart-

ments, positive and negative electrodes separated by a porous dielectric material

(Fig. 3.3), which are fully saturated with electrolyte. The models[96, 70] assume that i)

both the electrodes (made from a porous activated-carbon material) and the separator

are homogeneous and isotropic, ii) temperature is uniform and constant throughout

the EDLC, and iii) convection in the cell is negligible.

0 LLcat Lcat + Lsep

Figure 3.3: Schematic representation of an electrical double layer capacitor
(EDLC) cell. Pore space of the cathode and anode and the separator is filled
with electrolyte. The electrolyte within the carbon electrodes is electrically
neutral, i.e., the total charge of the ions adsorbed on the electrode surfaces is
balanced by the surface charge on the carbon electrodes. The separator is
made of a porous dielectric material, such as glass fiber.

Under these assumptions, the EDLC behavior is characterized by three macro-

scopic state variables: electrolyte ionic concentration, C(x, t); electrolyte potential,

Φ(x, t); and electric potential of the solid phase, Φs(x, t). For the EDLC in Fig. 3.3,

these variables satisfy a three-equation model[96] (see Appendix D for derivation),

CEDL
∂(Φs − Φ)

∂t
=

∂

∂x

(

σs
∂Φs

∂x

)

, (3.20)
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∂

∂x

(

σs
∂Φs

∂x
+ κeff∂Φ

∂x
+ κeffRT

2t+ − 1
zF

∂ lnC
∂x

)

= 0, (3.21)

ω
∂C

∂t
=

∂

∂x

(

Deff∂C

∂x

)

− α
∂(Φs − Φ)

∂t
, (3.22)

that is defined for x ∈ [0, L].

Here the effective conductivity of the electrolyte, κeff, is given by

κeff = νz2F
2cin

RT
(Deff

+ +Deff
− ); (3.23a)

the transference number t+, the fraction of the current carried by cations, has the

form

t+ =
Deff

+

Deff
+ +Deff

−

; (3.23b)

σs is the electric conductivity of the solid phase, with σs = 0 in the dielectric separator

(Lcat < x < Lcat +Lsep); the EDL capacitance CEDL is absent in the dielectric separator

(CEDL = 0 for Lcat < x < Lcat + Lsep); and

α =
CEDL

νzF











































t+ − 1 0 < x < Lcat

0 Lcat < x < Lcat + Lsep

t+ Lcat + Lsep < x < L.

(3.23c)

Since σs = 0 for Lcat < x < Lcat + Lsep, it follows from (3.20) that in the separator

iliquid = i, i.e., the liquid-phase current iliquid equals the total (externally applied)
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current i. Moreover, since the solid phase of the separator is dielectric, Φs = 0 for

Lcat < x < Lcat + Lsep.

The partial-differential equations (3.20)–(3.22) are subject to the following

boundary conditions[96]. Since the EDLC surface is impermeable to electrolyte and

the current it carries,

∂C

∂x
= 0,

∂Φ
∂x

= 0 at x = 0, L; (3.24a)

with the second condition stemming from iliquid = 0. Application of the external

current i to the anode (x = L) gives rise to the boundary condition

σs
∂Φs

∂x
= −i at x = L. (3.24b)

Finally, the (reference) electric potential at the cathode (x = 0) is set to

Φs = 0 at x = 0. (3.24c)

The initial conditions are Φ(x, 0) = 0, σs ∂xΦs(x, 0) = −i and C(x, 0) = cin.

An observable quantity, and the quantity of interest computed with (3.20)–

(3.24), is an EDLC’s voltage response, Vcell(L, t) ≡ Φs(L, t) − Φs(0, t) = Φs(L, t), to

charging with the constant current i.

Model parametrization. The experimental study[96] of an EDLC’s voltage re-

sponse involves activated carbon electrodes, whose homogeneous, orderly aligned

microstructure has average pore throat size of 1.5 nm, with porosity ω = 0.67. These

and other relevant parameter values from this experiment are collated in Table 3.1.
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Table 3.1: Parameter values used in the experimental study[96] of superca-
pacitors.

Parameter Value Units

Electrodes thickness, Lcat = Lan 50 µm
Separator thickness, Lsep 25 µm

Initial ion concentration, cin 0.93 mol/l
Porosity of electrodes, ω 0.67 -
Porosity of separator, ω 0.6 -

Solid phase conductivity, σs 52.1 S/m
Tortuosity of separator, τsep 1.3 -

Charge number, z 1 -
Dissociation coefficient, ν 1 -

Charging current, i 36.4 A/m2

Conductivity of electrolyte at cin, κ 0.67 mS/cm
Molecular diffusion coefficient, D 4.312 × 10−5 cm2/s

The nearly equal solvated tetrafluoroborate anion and tetraethylammonium cation

sizes in acetonitrile used in the experiment suggest the equality of their molecular

diffusion coefficients, D+ = D− = D. The value of D = 4.312 × 10−5 cm2/s was

determined from measurements of the electrical conductivity of acetonitrile by using a

free-electrolyte version of (3.23a), D = RTκ/(2νz2F 2cin). The EDL capacitance CEDL

serves as the only fitting parameter[96].

Simulation results. The parametrization of the mathematical model (3.20)–(3.24)

in the analysis[96] is completed by employing the empirical relation Deff
± = Deff = Dω/τ

with an assumed tortuosity value of τ = 2.3. According to (3.23), the equality

Deff
+ = Deff

− translates into t+ = 0.5 and κeff = κω/τ . Fitting the resulting model

prediction of the EDLC’s voltage response to data yields CEDL = 42 F/cm3, with

the predicted voltage response Vcell(t) shown in Figure 3.4 by the dotted line. A

modification of this procedure, which replaces the assumed tortuosity value with that
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Figure 3.4: Measured EDLC voltage response to charging[96] (stars), and
its counterparts predicted with the original model[96] (dotted line), the same
model supplemented with the Bruggeman relation (dashed line) and our
effective model (solid line).

given by the Bruggeman relation τ = ω−0.5 = 1.2, yields CEDL = 44 F/cm3 and the

prediction of Vcell(t) that is closer to the experiment (Fig. 3.4).

Unlike these two phenomenological relations, our model (??) yields unequal

effective diffusion coefficients for cations and anions, Deff
− 6= Deff

+ , which accounts for

the EDL effects.1 Substituting these values into (3.23b) and (3.17) yields the cation

(tetraethylamonium ion) transference number t+ = 0.779 and the effective binary

diffusion coefficient Deff, respectively. Fitting the resulting model prediction of the

EDLC’s voltage response to data yields CEDL = 47 F/cm3, with the predicted voltage

1These values were computed as follows. In the experiment[96], application of the constant
charging current i = 36.4 A/m2 to the anode changed the EDLC voltage from V = 1.6 V to
V = 2.2 V (Fig. 3.4). We took the midpoint voltage as external voltage V = 1.9 V of EDLC
cell during charging; from (3.18) and (3.19), the diffuse layer potential ϕΓ = 0.4 V was calculated.
Due to short time charging, the influence of concentration variation on EDL potential distribution
is negligible. Double layer potential in (3.13) is thus solved with characteristic ion concentration
c⋆

b
= cin = 0.93 M and the diffuse layer potential ϕΓ = 0.4 V.
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Figure 3.5: Temporal snapshots, at t = 1, 8 and 18 s, of the (a) ion
concentration C(x, t) and (b) electric potential Φ(x, t) profiles computed
with our rigorously derived model (solid lines) and the Bruggeman relation
(dashed lines). Our model predicts significantly higher gradients of both ion
concentration and electric potential.
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response Vcell(t) shown in Figure 3.4 by the solid line. This result demonstrates that

our model matches the data better than its empirical counterparts; crucially, it does

not rely on the assumed relation Deff = Dω/τ . (If needed, one can estimate an

electrode’s tortuosity from this relation, which for the material under investigation

yields τ = ωD/Deff = 2.4 or τ = ω−2.3).

Figure 3.5 exhibits temporal snapshots of the ion concentration and electric

potential profiles computed alternatively with our rigorously derived model and the

empirical Bruggeman relation. The gradients of both the ion concentration and electric

potential increase with time, as the EDLC continues to be charged with a constant

current. The Bruggeman relation significantly underestimates these gradients.

3.5 Conclusions

We derived expressions for effective diffusion coefficients, Deff
± , and transference

numbers t±, which are used in macroscopic (continuum-scale) models of ion transport in

nanoporous materials. These expressions relate the nanoscale topological properties of

such materials (e.g., pore size and connectivity) to their macroscopic counterparts (e.g.,

porosity and tortuosity) and account for the nonlinear effects of the electrical double

layer (EDL) on ion transport. While applicable to a wide range of electrochemical

phenomena in porous materials, these expressions are deployed here to estimate the

voltage response of an electrical double layer capacitor (EDLC) to charging. Our

analysis leads to the following major conclusions.

1. The effective diffusion coefficients Deff
± are, in general, second-rank semi-positive

definite tensors, reflecting possible anisotropy of nanoporous structures.
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2. Even if molecular diffusion coefficients of cations (D+) and anions (D−) in an

electrolyte are equal, their effective counterparts differ, Deff
+ 6= Deff

− , unless the

binary electrolyte is symmetric (i.e., has equal dissociation coefficients, ν+ = ν−,

and ion charges, z+ = z−).

3. Even if the cations and anions in an electrolyte have similar size, their effective

transference numbers are not equal, t+ 6= t−, unless the binary electrolyte is

symmetric.

4. These features of the effective parameters are a manifestation of the EDL’s effects

on diffusion of ions in nanoporous materials. These effects are not captured by

phenomenological relations, such as Bruggeman’s relation Deff = ω3/2D, which

estimate the effective ionic diffusion Deff as a fraction of the molecular diffusion

of ions in electrolyte, D, reduced by a power of porosity ω.

5. Bruggeman’s relation overestimates the effective diffusion coefficient and effective

electric conductivity, especially for dilute solutions and relatively large diffuse

layer potentials ϕΓ.

6. By accounting for the electrochemical effect at the fluid-solid interfaces (specifi-

cally, the reduction of surface area[25]), our expressions increase the accuracy of

predictions of double-layer capacitance of electrode materials.

7. The use of our effective coefficients in a macroscopic model of EDLC charging

yields the predictions of voltage response that are in close agreement with the

data[96]. The reliance on Bruggeman’s relation significantly underestimates the

gradients of both ion concentration and electric potential within the EDLC.
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Chapter 4

Optimal Design of Nanoporous

Materials for Electrochemical

Devices

4.1 Abstract

Unique macroscopic properties of nanoporous metamaterials stem from their

microscopic structure. An optimal design of such materials is facilitated by mapping

a material’s pore-network topology onto its macroscopic characteristics. This is in

contrast to both a trial-and-error experimental design and design based on empir-

ical relations between macroscopic properties, such as the often-used Bruggeman

formula that relates a material’s effective diffusion coefficient to its porosity. We

use homogenization to construct such a map in the context of materials design that

maximizes energy/power density performance in electrochemical devices. For example,

effective diffusion coefficients and specific surface area, key macroscopic characteristics

51
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of ion transport in a hierarchical nanoporous material, are expressed in terms of the

material’s pore structure and, equally important, ion concentrations in the electrolyte

and externally applied electric potential. Using these microscopic characteristics as

decision variables we optimize the macroscopic properties for two material’s assembly

templates and several operating conditions. The latter affect the material’s perfor-

mance through formation of electrical double layer at the fluid-solid interfaces, which

restricts the pore space available for ion transport.

4.2 Introduction

Advances in materials science offer a plethora of alternative strategies for gener-

ation of nanoporous metamaterials with prescribed pore structures [16? ]. This opens

the possibility of bottom-up design of application-specific materials that optimize a

desired macroscopic property, e.g., permittivity [16] or electric capacitance [? ]. When

not done by trial-and-error, metamaterial assembly is often guided by phenomeno-

logical relations between macroscopic properties. For example, the effective diffusion

coefficient, Deff, for a material with porosity ω and tortuosity τ is estimated from the

corresponding molecular diffusion in free solvent, Dm, by using a phenomenological

model Deff = ωDm/τ ; if supplemented with another assumption, τ = 1/
√
ω, this gives

Bruggeman’s relation Deff = ω3/2Dm.

Reliance on such macroscopic relations has a number of limitations. First, they

provide insufficient information about the pore structure and, hence, are of limited

use in its design. Second, their veracity is questionable, especially when (in the case of

diffusion) pores are small and concentration gradients are large. While Bruggeman’s

relation is widely used to model ion diffusion in charged porous media (e.g., [70] and
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references therein), it fails to account for the diffusion coefficient’s reduction due to

formation of an electrical double layer (EDL) on the electrolyte-solid interfaces. Effects

of the latter phenomenon are magnified in nanoporous materials, wherein adjacent

EDLs can overlap, appreciably restricting the pore space available for ion transport.

Such materials are mooted as a breakthrough technology for energy storage [23, 25].

Dynamic maps expressing macroscopic (effective) parameters in terms of mi-

croscopic properties of porous media are derived by means of upscaling techniques.

Crucially, such parameters depend not only on the pore structure but also on pore-

scale processes that, in the case of electrochemical systems, affect the EDL formation.

Examples of upscaling analyses of pore-scale electrochemical phenomena described

by Poisson-Nernst-Planck’s equations can be found in [37, 38, 83, 109]. Our goal

is to use the results of one such analysis [109] to inform the design of hierarchical

nanoporous materials, which optimizes a material’s macroscopic properties (diffusion

coefficient and electric capacitance) by using the pore structure and operation condi-

tions (electrolyte concentration and externally imposed electric potential) as decision

variables.

4.3 Macroscopic transport model

Macroscopic representations of a charged nanoporous material Ω treat it as

a continuum, without separating it into the pore space P and the solid skeleton S.

Final homogenized macroscopic Nernst-Planck equations satisfied by macroscopic ion
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concentration C(x, t) and electric potential Φ(x, t),

ω
∂C

∂t
= ∇ · [Deff

± (∇C ± zF

RT
C∇Φ)]. (4.1)

Here ω is porosity, F,R, z, T are Faraday constant, gas constant, valency and

temperature, respectively. The effective diffusion coefficients Deff
± are second-order

semi-positive-definite tensors defined by

Deff
± =

Dω
G±

∫

PU

e∓ zF

RT
ϕEDL(I + ∇yχ

⊤
±)dy,

G± =
∫

PU

e∓ zF

RT
ϕEDLdy, (4.2)

where I is the identity matrix, D is molecular diffusion coefficient and ϕEDL is electric

potential distribution inside EDL. The closure variables χ±(y) are U -periodic vector

functions, which are computed as solutions of boundary-value problems

∇y[e∓ zF

RT
ϕEDL(I + ∇yχ

⊤

±)] = 0, y ∈ PU ;

n(I + ∇yχ
⊤
±) = 0, y ∈ ΓU ;

∫

PU

χ±dy = 0. (4.3)

4.4 Electrosorption on charged porous materials

Effective diffusion coefficients (Deff
± ) are not only crucial elements in understand-

ing macroscale transport, also can be used as instruction to predict performance and

guide experimental design of porous electrode materials. Comparing electrosorption

model with previous paper [110] of solvent transport through uncharged porous mate-

rial under Langmuir adsorption reaction, charged solid materials exert considerable
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influence on transport process via accumulated ions within electrical double layer.

Aiming at exploring porous structure and aiding design optimal porous elec-

trode, we simulate ion transport in half cell - positive electrode (ϕ is positive). Two

dimensional hierarchical structure [97, 98] is studied and discussed for the its appli-

cation of various sorption behaviors. See Fig. 4.1 , pore connection stuctures, like

mesopores’ overlapping (transverse direction 1) and nano-channels engaged (longitudi-

nal direction 2) types are explored. Either dilute solution or small pore size can impair

the ion transport due to thick diffuse layer in pores. From the simulation results, we

will discuss such phenomenon.

Figure 4.1: Conceptual and schematic representation of hierarchical porous
texture containing mesopores and micropores[110].

Binary diffusion coefficient D is used for electrochemical systems like batteries,

supercapacitors, its magnitude is limited by relatively smaller ionic diffusivity[84, 106]
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. For simplicity, effective binary diffusion coefficient Deff of monovalent solution shown

in the plots is in the form of D1 and D2 that Deff/(ωD) = [ D1 0
0 D2

]. Symbols D1 and

D2 stand for the ration between effective diffusion and the product of porosity and

molecular diffusivity in transverse and longitudinal direction respectively. Generally,

the studies of energy storage systems use prediction Deff = D ω
τ

for effective diffusion

coefficient ( τ is the tortuosity of the material). This leads to the assumption that

porous electrode materials are isotropic. Actually, we just prove D1 and D2 are not

necessarily identical due to microstrucure.

4.4.1 Parameters for electrosorption study

General micro and meso pore sizes for electrical double layer capacitors are

employed for this study [12, 88, 103] . Micropore size is as small as 1nm and mesopores

can range from 2 to 10 nm. Versatile performances of porous carbon materials depend

on pore sizes. Therefore, in the following simulation, mesopore radius R ranges from

2 nm to 5 nm, radius of adjoining mesopores is treated as r = 0.4 nm, nanochannel

tube size d = 0.7 nm, lenght l = 3 nm.

External voltage V is limited by the breakdown voltage of electrolyte species.

For example aqueous solution breakdown voltage could reach 1.23 V depends on

electrolyte, while organic electrolyte can be as high as 4 V[25] . The diffuse layer

potential ϕd on the charged material after an applied external voltage V is ϕd =

V
2

− φecm − σ
CH

(Zhang and Tartakovsky, 2016). Therefore applied voltage factor on

diffuse layer potential is studied from as low as ϕd = 0.2 V to 0.4 V for aqueous

solution.

Dilute concentrations of electrolyte is assumed that Poisson Boltzmann (PB)
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equation is satisfied. In the case of slit shaped pores, Yeomans [107] found that

PB equation always gives very good results for low concentrations of monovalent

electrolytes. Therefore, the electrolyte concentration of 0.1 M (mol/L) is considered

as the upper limit of ion concentration that we use for analysis[106].

Effective diffusion coefficients of electrosorption model varying with multiple

objective variables - mesopore radius R, micropore radius r, concentration C, diffuse

layer potential ϕd, porosity ω and different microstructures are discovered.

4.4.2 Results and discussions

Previous study for uncharged optimal nanoporous structure isn’t applicable

and replicable to an electrosorption charged material [110]. Mesopores show good

electrochemical accessibility. However micropores, superior in high surface area,

present a slow mass transfer of ions inside pores because micropores are about the

same size of Debye length. The effect of electrical double layer on retarding transport

inside pores can be reduced by increasing the pore size, electrolyte concentration, and

applied potential. Results of effective diffusion coefficients with different pore sizes R,

electrolyte concentrations C and diffuse layer potentials ϕd are analyzed.

Electrolyte concentration C We study the effect of electrolyte concentration on

ion transport in charged materials as a function of mesopore size R. Concentrations

considered are for dilute electrolytes, C = 0.1, 0.05 M and relative diluter C = 0.01

M . See Fig. 4.2, Fig. 4.3 and Fig. 4.4.

Effective diffusion coefficients decrease with increasing mesopore size R in

both charged and uncharged materials 1 and 2. In material 1 (Fig. 4.2), transport

in longitudinal direction shows different concentrations give rise to slight deviations
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Figure 4.2: Effective diffusion coefficients Deff as a function of concentration,
for material 1 with diffuse layer potential ϕd = 0.2 V.

Figure 4.3: Effective diffusion coefficients Deff as a function of concentration,
for material 2 with diffuse layer potential ϕd = 0.2 V.
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of D2. Overall, material 2 has larger effective diffusion in both directions (Fig. 4.3).

Concentration as low as C = 0.01 M indicates inhibition of the transport in charged

materials (always smaller than uncharged materials). Material 2 data also implies

that D2 starts to surpass uncharged model for mesopore radius larger than 3.0 nm

and larger concentration C ≥ 0.05 M.

Indiscriminately choosing larger mesopore R may help create more space for

ions to diffuse. However, if micropores are keeping the same, resulted from the

increasing ratio of ’arc and chord’, larger mesopores will lead to larger tortuosity.

Micropore size r is a determinant factor of micropore-mesopore hierarchical structure.

Real effective size of micropores for transport is determined by electrical double layer

thickness.

Figure 4.4: Longitudinal transport D2 as a function of dilute concentration
C = 0.01M, for material 2 with different diffuse layer potentials.

Diffuse layer potential ϕd The oscillatory behaviors of charged material 2 for

small ϕd = 0.2 V comes from the integrated influences of electric field, concentration

and pore structure (angled channels). Such oscillation vanishes by applying larger
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electric field Fig. 4.4. For material 1, higher diffuse layer potential ϕd always shows

larger effective diffusion coefficients in both directions. Transverse D1 for charged

materials are smaller than uncharged model for dilute concentration C = 0.01 M (see

Fig. 4.5 ) . In Fig. 4.6material 2, the occurrence of electrical double layer overlapping

in micropores narrows the ’throat’ for ion to transport to mesopores. Such phenomena

dramatically changes D1, D2 tendencies with respect to mesopore size. (see Fig. 4.3

and Fig. 4.6)

Figure 4.5: Effective diffusion coefficients Deff as a function of diffuse layer
potential, for material 1 with concentration C = 0.01 M

Synergistic Discussion Distinctions between different dilute concentrations C =

0.1 M and C = 0.01 M are magnificent (see Fig. 4.6 and Fig. 4.7). For dilute

solution, due to larger double layer thickness, solution transport is interfered with

the occurrence of micropores’ electrical double layer overlapping. While, for denser

solution C = 0.1 M, transport is strengthened by applied electric field. The decline

tendencies of D1 and D2 are slowing down with larger mesopores. As a consequence,

the concentration of solution plays a critical role in porous electrode application.
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Figure 4.6: Effective diffusion coefficients Deff as a function of diffuse layer
potential, for material 2 with concentration C = 0.01 M

Figure 4.7: Effective diffusion coefficients Deff as a function of diffuse layer
potential, for material 2 with concentration C = 0.1 M
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With regard to the relation of electric field (See Fig. 4.3, D2), small diffuse layer

potential ϕd ≤ 0.2 V may cause transport oscillation in longitudinal direction owing

to anisotropic pore scale structure. Such oscillational factor can be eliminated by

applying larger electric field (ϕd ≥ 0.3 V) Fig. 4.7.

Therefor the design of ideal porous material for the objectives of higher transport

flexibility and capability should take account of synergistic effects of pore structure,

electric field and solution concentration. The radius of mesopores less than 3 nm has

extensive applicabilities to different electric field and concentration.

4.5 Optimum design of microstructure for charged

materials

One significant goal of material science is to have perceptive knowledge of

structure/properties relations to design material microstructures with desired prop-

erties and performance characteristics. Homogenization is used to obtain effective

properties from microscopic information of porous materials which effective material

properties are used to determine the macroscale structural performance. Optimization

methods provide a systematic means of designing heterogeneous materials with desired

macroscopic properties and microstructures. Combining such modeling techniques

with novel synthesis and fabrication methodologies may make optimal design of real

materials a reality in the future.
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4.5.1 The optimization problem

To obtain optimum microstructure aiming at both high surface reaction and

high transport performance, we introduce the objective function of maximizing specific

surface area αv. This is an optimization problem with constrained conditions of

macroscopic diffusion coefficients Deff
obj/(ωD) = [ D1,obj 0

0 D2,obj
].

max
{R,r,d,l}

αv(R, r, d, l)

subject to :

95%D1,obj ≤ D1 ≤ 105%D1,obj

95%D2,obj ≤ D2 ≤ 105%D2,obj

Lb ≤ {R, r, d, l} ≤ Ub

(4.4)

Structural variables R, r, d, l are geometrical conditions in determining effective

diffusion coefficient in eq. (??). Table 4.1 lists geometrical limits of design structure.

Micropore radii r should be smaller than 1 nm by definition, mesopores are controlled

within the range determined from previous section discussion R <3 nm. Nano-channel

diameter d is controlled by manufacture limits and length l determines the thickness

between each mesopores. Objective of D1,obj and D2,obj in transverse and longitudinal

directions are estimated from the values found in previous section.

Table 4.1: Geometry limits of porous structure

R
(nm)

r
(nm)

d
(nm)

l
(nm)

Lb 1.6 0.5 0.6 3.0
Ub 3.0 0.7 1.0 5.0
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Optimization is running for both material 1 and material 2 under different

electrolyte concentrations. A general conclusion of optimum mesopore size (2R) is

around 3 to 4 nm, micropore (2r) is around 1nm. Due to the structural feature, material

2 has the capacity to reach higher transport performance (larger D1,obj, D2,obj). Also

material 2 has larger specific surface area αv as the objective of optimization. We can

tell from D2,obj > D1,obj in Table 4.2 and Table 4.3 that longitudinal transports of both

material structures are superior to transport in transverse direction. Nano-channel

size is optimum to diameter d = 0.6 nm, length about l = 3.3 nm.

Table 4.2: Material 1, dilute electrolyte (C = 0.1 M and 0.01 M), ϕd=0.3 V

R r d l D1,obj=0.57 D2,obj=0.59 αv

C = 0.1 M
1.756 0.571 0.6 3.30 0.5713 0.5896 1.223
1.755 0.568 0.6 3.30 0.5700 0.5898 1.225
R r d l D1,obj=0.48 D2,obj=0.54 αv

C = 0.01 M
1.787 0.400 0.6 3.15 0.4766 0.5498 1.238
1.787 0.400 0.6 3.15 0.4766 0.5499 1.238

Table 4.3: Material 2, dilute electrolyte (C = 0.1 M and 0.01 M), ϕd=0.3 V

R r d l D1,obj=0.6 D2,obj=0.6 αv

C = 0.1 M
1.736 0.600 0.6 3.13 0.5974 0.6150 1.423
1.736 0.600 0.6 3.13 0.5972 0.6153 1.424
R r d l D1,obj=0.6 D2,obj=0.6 αv

C = 0.01 M
1.814 0.576 0.6 3.69 0.5989 0.6186 1.464
1.814 0.576 0.6 3.69 0.5987 0.6188 1.464

4.6 Conclusions

Pore structure and microscopic ion behaviors are translated into effective

diffusion coefficients in macroscopic transport model. By a proper unit cell description

of pore connection and structure, effective diffusion coefficients Deff characterizing
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transport flexibility in charged materials are derived. Such model can be used widely

in multiscale electrochemical systems, from electro-separation targeting separation

systems to porous electrodes based supercapacitors, batteries. Application of our

model to guide experimental design of hierarchical porous materials is analyzed

with design parameters, such as micropore and mesopore sizes, ion concentration

and applied voltage. Our analysis leads to the following major conclusions. For

maintaining micropore’s high surface area feature and balancing the flexibility of

transport, optimization results are concluded. Mesopore size of 3 to 4 nm and

micropore size of 1 nm have extensive applicability to different electric field and

concentrations. Material 2 has better transport capabilities in both directions and

higher specific surface area. Very dilute concentration (C = 0.01 M) can cause double

layer overlapping and decelerate transport in porous structure.
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Chapter 5

Effective Transport Properties for

Dendritic Spine F-actin Network

5.1 Abstract

Quantitative prediction of effective transport properties of three dimensional

dendritic spine F-actin network can be accomplished with upscaling techniques. The

pore scale random and complex internal structure incorporated in porous media are

needed to take into account to predict the overall continuum behaviors. Such technique

permits a macroscopic description of complicated pore structure for diffusion systems.

Dendritic spines are the postsynaptic component of synaptic contacts. Study of the

relation of synaptic structure and function is important because of the critical role

of synapses in information processing in the brain and in particular learning and

memory formation. The effective diffusion coefficient estimated with this technique

is used to quantify transmission time between neurons in the brain. Characteristic

two dimensional (2-D) unit cells drawn from 3-D models are analyzed and averaged

66
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to obtain the anisotropic effective diffusion coefficients. Compared with intensive

molecular dynamics and Brownian dynamics methods for the whole 3-D model, 2-D

analysis is efficient and instructive to understand porous structure morphology and

determine representative elementary volume (REV) size.

5.2 Instruction

In physical and biological science, transport problems incorporating simultane-

ous diffusion and reaction in porous media are in abundance. Examples are found

in such widely different processes as heterogeneous catalysis, migration of atoms and

defects in solids, colloid or crystal growth, and the decay of nuclear magnetism in

fluid-saturated porous media, cell metabolism, diffusion of molecules through biological

structures[93, 78, 39] .A detailed understanding of the complexities of transport behav-

iors in porous media is therefor essential for the development, design, and optimization

of catalytic, signal transmission and adsorption processes and for technological ex-

ploitation of porous materials in general[45]. However, the continuum scale modeling

doesn’t pay attention to individual pores but the homogenized equivalent material.

For instance, gas or liquid diffusion transport in the pore space is described by its

molecular diffusion coefficient. The equivalent diffusion coefficient for homogenized

mixture which is also known as effective/apparent diffusion coefficient is lowered

than molecular diffusion coefficient. Corresponding effective transport properties

could also relate to the conductivity, dielectric constant, or magnetic permeability of

inhomogeneous substances.

The 3-D model is of the F-actin network of the cytoskeleton in the dendritic

spine of a Purkinje neuron from an adult rat (See Fig.5.1, model provided by Dinu
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Patirniche). Dendritic spines are the postsynaptic component of synaptic contacts.

Synapses are the loci of neural communication and information transmission between

neurons in the brain. Study of the relation of synaptic structure and function is

important because of the critical role of synapses in information processing in the

brain and in particular learning and memory formation. Dendritic spines are small with

spine head volumes ranging 0.01 µm3 to 0.8 µm3 and it has been recently established

that the precise size of each synapse is very significant to its function [13]. During

learning and the formation of new memories, the efficacy of communication between

neurons is adjusted through synaptic plasticity – the strengthening and weakening of

individual synaptic connections in accordance with their usage histories. Functionally

stronger synapses have a structurally larger spine head and area of contact and the

larger size is due to an overall increase in the extent of the F-actin network in the

spine. The changes in synaptic structure are affected by biochemical signaling and

molecular interactions within the spine. It is important to note that the effective

diffusive transport properties of the spine structure determine how fast chemical

signals can transmit through it. Fig.5.1 illustrates the complexity of the F-actin

network. Determination of the effective transport properties of the F-actin network

would significantly reduce the complexity of the model. This is the motivation for our

work here.

Methods of calculating effective transport properties, such as effective media

approximation of Bruggeman and Maxwell Garret, failed to incorporate microstructure

morphology information, like pore shape, pore size distribution and pore connectivity.

The improvement of Maxwell theoretical work can be accessed by the utilization of

statistical information about the random geometry of the medium or introduce pore
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network. Probability functions are introduced in order to correlate the geometrical

microstructure for a porous material [101, 67, 40]. Nevertheless, quantitatively predic-

tion of macroscopic properties requires detailed description of internal structure, or the

microstructure. Thanks to modern experimental techniques, complete information on

the microstructure morphology of materials can be obtained. Techniques of capturing

morphology of microstructure representations in 2-D acquire using electron or light

microscopy, while in 3-D X-ray microtomography, serial sectioning, confocal imaging,

or magnetic resonance imaging are commonly used [32, 90, 44]. Contrary to the case

of random models of microstructures, these techniques provide the opportunities of

directly reconstructed 3-D models via sweeping digitized serial sections measuring the

complex morphology of the composite materials at resolutions down to a few micros.

With the known morphology, computational methods such as molecular dynamics

and Brownian dynamics simulations are very CPU intensive and the steady-state

regime is sometimes hard to reach because one has to wait for the transient regions to

decay [3, 75, 33]. A variety of robust upscaling techniques, including volume averaging

[102] and homogenization via multiple-scale expansions [42] are used in this work to

quantitatively predict macroscopic properties of porous materials.

In this paper work, general framework for relating macroscopic anisotropic

effective diffusion coefficients to microscopic structure (reconstructed 3-D F-actin

dendritic spine network) is accomplished with homogenization via multiple-scale

expansions. A sufficient amount of 2-D unit cells representing microstructure are

extracted from plane cross-sections of 3-D model. Effective diffusion coefficients are

sequentially computed and statistically obtained by solving the closure problem in

each unit cell. 2-D unit cells allow us to investigate the different diffusion behaviors
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through the differences in morphology of microstructure. Unit cell (or REV) size is

discussed depending on statistical analysis of effective diffusion calculations. Recasting

the closure problem in 3-D unit cell, MCell can remarkably reduce computational

effort.

y

x

x

z

Figure 5.1: 3-D dendritic spine head model. Porosity of this F-actin network
of the cytoskeleton is 0.689.

5.3 Effective transport properties of spine network

structure

Diffusion transport model relating macroscopic anisotropic diffusion coefficients

to the complexity of the F-actin network is obtained with homogenization via multiple-
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(a) Cross section sample in XY and XZ planes (b) 3-D representative volume element

Figure 5.2: 2-D cross sections sampling and 3-D representative volume
element.

scale expansion [110]. The effective anisotropic diffusion coefficients unveiling transport

features of the microscale spine structure Fig.5.1 help to understand biochemical

signaling and molecular interactions within the spine affected by the changes in

synaptic structure. Meanwhile effective diffusive transport properties of this spine

structure can quantify the travel time of transmitting chemical signals in the spine.

5.3.1 Problem formulation

We consider a nanoporous material Ω with a characteristic length L, and let

P denote the part of this material occupied by pores whose characteristic length

scale, e.g., a typical pore diameter, is l such that ǫ ≡ l/L ≪ 1. The impermeable

solid skeleton S occupies the rest of the porous material, i.e., Ω = P ∪ S. The

multiconnected boundary between the pore space P and solid skeleton S is denoted
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(a) XY plane cross section samples

(b) XZ plane cross section sampes

Figure 5.3: XY plane and XZ plane cross sections of 3-D actin spin model
in Fig. 5.2a

by Γ.

The pore space P is occupied by a fluid, which contains a solute with con-

centration c(x, t) [mol/m3], where x denotes a point in P and t is time. The solute

diffuses throughout the pore space P, taking place in isothermal conditions. This

process is described by a diffusion equation

∂c

∂t
+ ∇ · (−D∇c) = 0, x ∈ P, t > 0. (5.1)

Here D[L2/T] is the diffusion coefficient. Analysis presented below is capable of

handling spatially variable and anisotropic diffusion coefficients, we use constant
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diffusion coefficient D to simplify the presentation.

Mass conservation along the impermeable solid-fluid interface Γ requires the

normal component of the solute mass flux −D∇c to be balanced by the rate of change

(surface reaction) at the solid-fluid interface. Here we assume no interaction between

solid and fluid at the interface, i.e.,

−n · (D∇c) = 0, x ∈ Γ, t > 0. (5.2)

5.3.2 Macroscopic properties of porous material

Macroscopic representations of a nanoporous material Ω treat it as a continuum,

without separating it into the pore space P and the solid skeleton S. Macroscopic

solute concentration C(x, t)—the microscopic concentration c(y, t) averaged over a

(representative elementary) volume V centered at point x ∈ Ω—is defined as

C(x, t) ≡ 1
‖PV ‖

∫

PV (x)
c(y, t)dy, (5.3)

where ‖PV ‖ is the total volume of pores contained in V .

We show in Appendix E that, for materials composed of periodic arrangements

of unit cells U , the macroscopic concentration C(x, t) satisfies a diffusion equation

ε
∂C

∂t
= ∇ · (Deff∇C), (5.4)

where ε ≡ ‖PV ‖/‖V ‖ = ‖PU‖/‖U‖ is the porosity (with PU denoting the pore space
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of the unit cell U); and the effective diffusion tensor Deff defined as

Deff =
D

‖U‖
∫

PU

(I + ∇yχ)dy. (5.5)

Here I is the identity matrix, and the “closure variable” χ(y) is a U -periodic vector

defined on PU . It satisfies

∇2
y
χ = 0, y ∈ PU ; 〈χ(y)〉 ≡ 1

‖U‖
∫

PU

χ(x)dy = 0 (5.6)

subject to the boundary condition along the fluid-solid segments ΓU of the boundary

of PU ,

−n · (∇yχ + I) = 0, y ∈ ΓU . (5.7)

The rigorous derivation of closure equations enables one to express the diffusion

coefficient tensor (5.5) in terms of the pore structure. Following from (5.6) that the

off-diagonal elements of the second-rank tensor ∇yχ
⊤ are zeros, i.e., ∂χi/∂yk = 0 for

i 6= k. Consequently, the off-diagonal elements of the diffusion tensors Deff are zero as

well.

5.4 Results and discussion

Unit cells are considered as a function of porosity (pore fraction of the con-

stituents). 3-D dendritic spine model has porosity of 0.689. The porosity of sample

unit cells chosen from each XY-plane and XZ-plane cross sections should be consistent

with model global porosity, see Fig. 5.6.
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Effective diffusion coefficients are computed through solving closure problems

in sample cells in Fig. 5.4. Fig. 5.5 shows the solution to closure variable χ in a

sample unit cell. From eq.(5.5), the effective diffusion coefficients can be computed.

We extract a sufficient large number of unit cells in XY-plane with porosity variance of

σε = 0.0006 which gives rise to the variance of calculated effective diffusion coefficients

Deff
x,y up to σx = σy = 0.0045 (See Fig. 5.8). Due to the largely variant morphology

in XY-plane and XZ-plane shown in Fig.5.4, for the same size of unit cells extracted

in XZ-plane with porosity variance of σε = 0.0006, the calculated effective diffusion

coefficients Deff
x,z have variances of σx = σz = 0.002 (Fig. 5.7). This implies the unit

cell size in XZ plane is sufficiently large to represent microstructure because when

increasing cell size, the variance of computed effective diffusion properties decreases.

Following discusses the anisotropy of spine material respective to factors like

porous morphology and tortuosity. The representative elementary size of unit cells

is estimated. For a given precision of effective diffusion coefficients, cell size should

account for actin grown pattern in each direction.

5.4.1 Porosity

The porosity of all unit cells satisfies Gaussian distribution with mean of 0.685

which is consistent with global porosity and a variance of σε = 0.0006 (See Fig.5.6).

It is clear in general that larger porosity (volume fraction) results more paths for

molecules to diffuse. However, the fluctuations of effective diffusion coefficients Fig.5.8

cannot be barely explained by porosity. Calculated XY-plane and XZ-plane effective

properties show that Deff
x , Deff

y and Deff
z have anisotropic behaviors which are highly

influenced by microscopic structures of actin Fig.5.7, Fig.5.8.
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(a) XY plane characteristic unit cells,clumped dispersion pattern

(b) XZ plane characteristic unit cells, random dispersion pattern

Figure 5.4: Unit cells U in XY and XZ planes. The U-periodicity of χ(x)
is enforced. For the same representative cell size of 100 nm × 100 nm,
distinguishable differences of morphology of unit cells are observed.

Figure 5.5: Simulation results of closure variable χ of the first unit cell in
Fig.5.4a
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Unlike in XY-plane, the effective diffusion coefficients in XZ-plane Fig.5.7,

presented as Deff
x and Deff

z , show a linearly-like dependence on porosity. As explained,

the unit cells extracted from XZ-plane are sufficiently large that fluctuations of

microstructure are compensated by averaging over large representative cell.

Figure 5.6: Porosity of selected unit cell satisfies Gaussian distribution.
Mean value of porosity of all samples, consistent in XY-plane and XZ-plane,
is 0.685.

5.4.2 Porous morphology

Aside from the influence of porosity, we dig into the microscale information of

sample cells that can explain the statistical results of effective diffusion behaviors in all

directions (See Fig. 5.7 and Fig. 5.8). Sample cells in Fig. 5.4 selected from multiple

XY-plane and XZ-plane cross-sections represent typical actin grown pattern – random

and clumped interior structures. Actin in XY-plane clumps into a larger size than

that in XZ-plane which implies the characteristic length in XY plane is larger than

that in XZ-plane. This clumped formation requires a larger cell size to adequately
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(a) x component of normalized Deff
x

/D = 0.30 (b) z component of normalized Deff
x

/D = 0.35

Figure 5.7: Dependency of effective diffusion coefficients and porosity in XZ
plane

(a) x component of normalized Deff
x

/D = 0.30 (b) y component of normalized Deff
x

/D = 0.40

Figure 5.8: Dependency of effective diffusion coefficients and porosity in XY
plane
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present macroscopic transport properties. Cell size smaller than representative cell

size can induce microstructure uncertainties and can not be accurately used to predict

effective transport properties.

Clumped actin formation in XY-plane Fig. 5.4a results oval or strip like

geometry lying vertically which significantly decreases x direction transport. The

calculation of Deff
x is about 25% smaller than that in y direction. As well in XZ-plane,

smaller size actin strip-like geometry randomly distributed in vertical i.e., z direction.

Because of strip-like geometry, the statistical results in Fig. 5.7 shows z direction has

better diffusion transport (Deff
z > Deff

x ).

While randomly grown actin Fig. 5.4b enlarges the interface region for trapping

particles which is one kind of structure modes used for compromising the transport

ability and interface area. The consequential effective diffusion in z direction Deff
z is

slightly smaller that Deff
y . In favor of increasing surface area for surface reaction and

studies of solid and particle interactions, we can emphasize on random structure.

5.4.3 Tortuosity

This effective diffusion linear-like dependence on porosity in XZ-plane suggests

an alternative description of effective diffusion coefficients. Next we will discuss the

geometries of porous material and their accumulative grown pattern on effective

diffusion coefficients in terms of tortuosity. The basic idea of introducing tortuosity

is to account for microstructure without solving computational intense microscale

model. This additional porous materials variable serves as a parameter in macroscopic

theories dealing with transport in complex porous media. Such material property

is obtained in this work via rigorously derived model for relating effective diffusion
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coefficients to microscopic actin grown pattern. Therefore, this alternative description

can facilitate the prediction of effective diffusion for other dendritic spin network with

similar actin grown features.

Tortuoisty as an introduced additional parameter is attempted to generalize

effects which take care of the more complicated transport paths neglected in the

model. As a physical quantity, it can be defined in various ways. The preferred

definition depends on the context and on the model being used. The most intuitive

and straightforward definition is that of the ratio of the average length of true flow

paths to the length of the system in the direction of the macroscopic flux. Tortuosity

depends not only on the microscopic geometry of the pores, but also on the transport

process undergoing[51]. The concept of tortuosity is often introduced in the context

of solving the closure problem for transport in porous media, i.e., in deriving the

macroscopic transport equations in terms of averaged quantities alone[81]. We define,

Deff = D
ε

τ
, (5.8)

where Deff is effective diffusion coefficient for solute or molecule transport; D is free-

water diffusion coefficient or molecule diffusion coefficient; ε is porosity of material;

and τ is a turtuosity factor that accounts for the reduction diffusion caused by tortuous

path lengths in porous materials.

Here we use effective Deff
x (x component effective diffusion coefficient) to address

tortuosity in x direction. Fig. 5.7 and Fig. 5.8 conclude the mean value of Deff
x is 0.30,

gives τx = ε
Deff

x /D
= 2.36. Same for getting τy = 1.7 and τz = 1.95. Larger tortuosity

τx stands for longer true flow path for particle to diffuse in x direction. It’s hard to
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distinguish by eye that z-direction is less tortuous than x and y direction from Fig. 5.3.

Tortuosity gives accumulated pore morphological effects and is very straightforward

to present material structure. The tortuosity obtained in our work can instructively

apply to similar actin network to predict effective transport properties.

5.5 Future work – MCell simulation

The closure problem (5.6) can also be solved through MCell which uses Monte

Carlo algorithms to track the Brownian dynamics random-walk diffusion of discrete

particles (e.g. molecules) in complex 3-D spaces. The motions of individual particles

are tracked by ray-tracing their trajectories through space and their collisions and

interactions with other particles and boundaries embedded in the space. Boundaries are

represented as triangulated 2-D manifold surfaces embedded in 3-D space. Boundaries

can be given reflective, absorptive, or emissive properties with respect to particle

identities[20]. MCell’s particle-based Monte Carlo reaction/diffusion algorithms can be

much more computationally efficient than PDE-based numerical methods especially in

cases involving complex geometry and boundary conditions. The main disadvantages

of PDE-based methods are due to the requirement to create complex, computational

quality tetrahedral meshes – a tetrahedral mesh of the whole spine with F-actin

network would be composed of billions of mesh elements. In contrast MCell requires

only triangulated 2-D meshes of the boundaries – about 1.7 million triangles for the

full F-actin network. Future work is to solve 3-D unit cell Fig. 5.2b with MCell to

reduce computational effort.

To solve this closure problem with MCell we recast the problem formulated

in equations (5.6), and (5.7) as a steady-state diffusion problem in a period unit cell
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Figure 5.9: MCell simulation of 2-D unit cell. (a) is particle distribution
at steady stead. Porosity of this unit cell is ε = 0.757 (COMSOL result)
. (b) is the spatial distribution of the closure variable χx(y1, y2). Porosity
prediction using MCell is 0.83. Smaller voxel size is needed for MCell to
increase accuracy.

in which Neumann (i.e. constant flux) boundary conditions are imposed on the solid

boundaries. The value of the spatial distribution of χ(y1, y2) is the total number

particles in each voxel when the diffusion process is at steady state. (See Fig. 5.9)

From eq.(5.5) it can be seen that the effective diffusion coefficients can be computed

integrating over the gradient vector field of χ.

5.6 Conclusions

In this paper, we use homogenization to calculate effective properties of 3-D

dendritic spine model which upscale method can be widely used to determine effective

properties of various porous materials as well as microstructure design and optimization.

Through 2-D unit cells drawn from plane cross sections, effective diffusion coefficients

of this dendritic spine are evaluated. The effects of porosity, porous morphology and

pore tortuosity on effective diffusion coefficients are discussed. The computations

show that:
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• Porosity of sample cells collected from both XY-plane and XZ-plane is inherent

in consistence with global porosity. As shown in Fig. 5.7 and Fig. 5.8, besides

porosity, microscropic structures strikingly play roles on transport abilities.

Larger porosity enables more space for molecules to diffuse which generally gives

a larger effective diffusion coefficients. Porous morphology analysis discovers

even for the same porosity, a random actin structure may cause larger diffusion

length and result in a lower effective diffusion in relative to clumped structure.

Clumped geometry and orientation determine the anisotropicity of the material.

• An additional parameter tortuosity τ is introduced. It illustrates more compli-

cated transport paths by the ratio of the average length of true transport path

to the length of the system in the direction of the macroscopic flux. Calculation

shows that x direction has larger τx, y and z directions have smaller τy, τz.
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Chapter 6

Conclusions

This research integrates multiscale studies and analyses of transport phenomena

in hierarchical nanoporous materials. The main contribution of this research is the

introduction of robust and efficient analytical methods for capturing with anisotropic

macroscopic properties of porous media and improving the current approximations

of effective diffusion coefficients and electrolyte conductivities in porous electrodes

materials.

The fundamental features of this research impact several disciplines. The

results obtained for non-equilibrium Langmuir-type adsorption reactions can be used

to capture microscale fluid-solid surface sorption on the macroscopic behavior of

nanoporous materials. The new insights into the electrical double layer formation at

the pore scale are crucial for many interfacial phenomena, especially for the design of

the pore structure of porous electrodes. The results obtained by using the electrical

double layer modification for macroscopic charged ion transport show remarkable

congruence with experimental data from electrical double layer capacitors. The models

developed for the solvent transport in nanoporous materials under the influence of

84
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electrical double layer potential and dynamic Langmuir-type adsorption provide insight

into design and tailoring of nanoporous materials for separation and energy storage

applications. Based on the analytical analysis and modeling results, the following

specific conclusions are drawn.

Homogenization theory (or other upscaling techniques) provides a means of

bridging pore-scale structure and macroscopic properties:

• By relating these two scales, the possibilities of designing materials with desired

macroscopic properties (e.g., diffusion coefficient and adsorption capacity) are

raised by using controllable pore-scale parameters (e.g., pore size and connec-

tivity). Such analysis is applicable for solute that undergo a non-equilibrium

Langmuir adsorption reaction on the surface of fluid filled pores, as well as other

homogeneous and heterogenous reactions. The presented results can be used to

guide the design of nanoporous materials with optimal permeability and sorption

capacity.

A class of porous materials designed by embedding micro-tubes in microporous

materials is applied to study the adsorption capacity and anisotropic effective

diffusion coefficients . Optimization results indicate that despite the negligible

contribution of tubes to the porosity of this nanoporous material, the tube

bridges significantly alter its diffusive properties. They also nearly double the

effective reaction constant γeff .While the number of microporous tubes in a

bridge, n, does not appreciably affect the material’s diffusive properties in

longitudinal and horizontal directions, it significantly influences its adsorbing

capacity (γeff)

• The effect of electrical double layer (EDL) formation in charged porous electrode
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materials on macroscopic diffusion coefficients and electrolyte conductivities are

studied. The macroscopic diffusion coefficients incorporating porous structure

and local electric potential determined by EDL are derived through multi-scale

analysis. The modifications of effective diffusion and electrolyte conductivities

indicate, for dilute solutions, diverse electrolyte concentrations and charged

conditions can vary macroscopic ion diffusion through their impacts on EDL.

This effective model of predicting porous electrode effective diffusion coefficients,

electrolyte conductivities and transference number improves the understanding

of phenomenal pore scale transport contrast to Bruggeman empirical relation.

Especially for the conditions that pore size is of the same order of magnitude

as the electrical double layer thickness, Bruggeman relation overestimates the

effective diffusion coefficients.

• Considering the impact of pore size, local electric potential and porous structure,

closure problems based periodic unit cell of porous materials are solved. For

dilute solution, however, micropore size is of the same order of magnitude as the

electrical double layer thickness. In this condition, micropores notably restrain

the mesopores’ performance. Regardless of micropore’s dominant contribution

to high surface area, pore accessibility is restricted and ion transport is impeded

by electrical double layer formation.

Two different material morphologies are used to optimize micro/meso-pore pairs

for different EDL conditions. For maintaining micropore’s high surface area

features and balancing the flexibility of transport, optimization presents a general

3 ∼ 4 nm mesopore size and micropore size of 1.5 nm (for solution concentration

c > 0.01 M) result. Morphology 2 (Material 2) has better transport capabilities
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in both directions and higher specific surface area. The lower bound condition of

concentration is discussed and concluded. For very dilute concentration (cin =

0.01 M), double layer overlapping will cause deceleration of transport in porous

materials.

• A detailed microscopic three dimensional F-actin network model is launched

and macroscopic effective diffusion coefficients of a dendritic spine network are

evaluated. The effects of porosity, porous morphology and pore tortuosity on

the effective diffusion coefficients are discussed.

Sample cells collected from both xy-plane and xz-plane are consistently inherent

in global porosity and minimum statistical request for same Deff,x. Calculated

effective diffusion coefficients indicate that besides porosity, microscopic struc-

tures play dramatically roles on determining transport abilities. Larger porosity

enables more space for molecules to diffuse which generally gives a larger effective

diffusion coefficients. The porous morphology analysis reveals that, even for

the same porosity, a random actin packing may cause longer length of diffusion

and result in a lower effective diffusion in relative to a clumped packing mode.

Clumped geometry and orientation determine the anisotropy of the material.

An additional parameter tortuosity τ is introduced. As calculated from effec-

tive diffusion coefficients in all directions in, x direction has larger τx, y and z

directions have smaller τy and τz.



Appendix A

Derivation of the boundary

condition

Rewriting (2.2) and (2.3) in terms of the dimensionless quantities (2.5) yields

−n · ∇c = qm
∂s

∂t
, and

ds
dt

= Da (seq − s). (A.1)

In a typical application of nanoporous materials, e.g., mesoporous catalyst membranes,

the characteristic macroscopic length (membrane size) is[73] L ∼ 100 µm and the

characteristic pore scale is[62] l ∼ 20 − 100 nm. Hence the length-scale ratio is

ǫ ≡ l/L ∼ 10−4. Moreover, the characteristic time scale of adsorption processes in

mesoporous membranes, e.g., for methylene blue, is[62, 34] 1/γ ∼ 40 − 80 min, while

its diffusion coefficient is [52] D ∼ 10−5 cm2s−1. Hence, the Damköhler number is

Da ∼ O(10−3), which allows its use as a small perturbation parameter.

Consider an asymptotic expansion of s(x, t) in the powers of Da, s = s0 +

Da s1 + O(Da2). Substituting this expansion into the second equation in (A.1) and
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collecting the terms of equal powers of Da yields

ds0

dt
= 0 and

ds1

dt
= seq − s0. (A.2)

For the homogenous initial condition, s(x, 0) = 0, this yields s0 = 0 and ds1/dt =

Kc/(1 + Kc). Hence, the first-order approximation of the sorbed concentration,

s ≈ s0 + Da s1, gives rise to

ds
dt

≈ Da
Kc

1 +Kc
. (A.3)

Substituting this approximation into (A.1) yields (2.6a).



Appendix B

Homogenization of transport

equations

Three types of local average of a quantity A(x, t) are defined

〈A〉 ≡ 1
‖U‖

∫

PU (x)
Ady, 〈A〉P ≡ 1

‖PU‖
∫

PU (x)
Ady, 〈A〉Γ ≡

∫

ΓU (x)
Ady, (B.1)

such that 〈A〉 = φ〈A〉P where φ = ‖PU‖/‖U‖ is the porosity. We use the multiple-

scale expansion technique [42, 14] to derive effective continuum scale equations for

average concentration C(x, t) ≡ 〈c(x, t)〉. The method postulates that concentration

exhibits both large-scale (across the porous material, denoted by the coordinate x) and

small-scale (inside individual pores, denoted by the coordinate y) spatial variability,

such that y = ǫ−1 x with ǫ ≪ 1; the corresponding temporal scales are denoted,

respectively, by t and τr = Da t where Da is the Damköhler number.
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Let us introduce a membership (indicator) function Π(x) = Π(x/ǫ),

Π(x) =























1, x ∈ P

0, x ∈ S.
(B.2)

For the nanoporous materials under consideration, the function Π(x) = Π(x/ǫ)

is periodic on the unit cell U . This allows one to define the pore-scale diffusion

equation (2.6b) on the whole unit cell U (rather than on the multi-connected subdomain

PU occupied the liquid),

∂c

∂t
= ∇ · (Π∇c), y ∈ U , t > 0. (B.3)

Replacing the concentration c(x, t) with c(x,y, t, τr) and substituting into Eq. (B.3)

yields

∂c

∂t
+ Da

∂c

∂τr

= ∇x · [Π(∇xc+ ǫ−1∇yc)] + ǫ−1∇y · [Π(∇xc+ ǫ−1∇yc)], y ∈ U .

(B.4a)

The interfacial condition (2.6a) takes the form

−n · (∇xc+ ǫ−1∇yc) = Da qm
Kc

1 +Kc
, y ∈ ΓU . (B.4b)

In the multiple-scale expansion method, the concentration c(x,y, t, τr) is repre-

sented by an asymptotic series

c(x,y, t, τr) =
∞
∑

m=0

ǫmcm(x,y, t, τr). (B.5)
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Substituting Eq. (B.5) into Eqs. (B.4), approximating the Langmuir adsorption

isotherm with a series

Kc

1 +Kc
= 1 − 1

1 +Kc
= 1 −

[

1 −K(c0 + ǫc1) +K2(c2
0 + 2ǫc1c0)

]

+ O(ǫ2),

= Kc0 −K2c2
0 + ǫ(Kc1 − 2K2c0c1) + O(ǫ2), (B.6)

and recalling from Appendix A that Da ∼ O(ǫ1), we obtain

− ǫ−2∇y · (Π∇yc0)

− ǫ−1 {∇x · (Π∇yc0) + ∇y · [Π(∇yc1 + ∇xc0)]}

+ ǫ0

{

∂c0

∂t
− ∇x · [Π(∇xc0 + ∇yc1)] − ∇y · [Π(∇xc1 + ∇yc2)]

}

= O(ǫ1), y ∈ U

(B.7)

and

−ǫ−1n · ∇yc0 − ǫ0[n · (∇xc0 + ∇yc1)]

− ǫ1[qm(Kc0 −K2c2
0) + n · (∇xc1 + ∇yc2)] = O(ǫ2), y ∈ ΓU . (B.8)

Collecting terms of the equal powers of ǫ yields boundary-value problems (BVPs) for

cm(x,y, t, τr) (m = 0, 1, . . .).

Leading-order term, O(ǫ−2). Collecting the O(ǫ−2) terms yields a BVP for

the leading-order term in the expansion (B.5),

∇y · (Π∇yc0) = 0, y ∈ U ; −n · ∇yc0 = 0, y ∈ ΓU . (B.9)
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This BVP has a trivial solution, which implies that c0 is independent of y.

Term of order O(ǫ−1). Since Da ∼ O(ǫ1), collecting the O(ǫ−1) terms yields

a BVP for the first-order term in the expansion (B.5),

∇y · [Π(∇xc0 + ∇yc1)] = 0, y ∈ U (B.10a)

subject to the interfacial condition

−n · (∇xc0 + ∇yc1) = 0, y ∈ ΓU . (B.10b)

Equations (B.10), which form a BVP for c1(x,y, t, τr), define a local problem. It

depends only on the geometry of the unit cell. We represent its solution as [42, 14]

c1(x,y, t, τr) = χ(y) · ∇xc0(x, t, τr) + c̄1(x, t, τr). (B.11)

Substituting this into Eq. (B.10a) yields an equation for the closure variable (a vector)

χ(y),

∇y · (I + ∇yχ)∇xc0 = 0, y ∈ PU (B.12)

This equation is subject to 〈χ〉 = 0 and the boundary condition

n · (I + ∇yχ)∇xc0 = 0, y ∈ ΓU , (B.13)

which is obtained by substituting Eq. (B.11) into Eq. (B.10b).
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Terms of order O(ǫ0). Collecting the terms of order ǫ (B.7) yields

∂c0

∂t
− ∇x · [Π(∇xc0 + ∇yc1)] − ∇y · [Π(∇xc1 + ∇yc2)] = 0, y ∈ U (B.14a)

subject to the interfacial condition

−qm(Kc0 −K2c2
0) − n · (∇xc1 + ∇yc2) = 0, y ∈ ΓU , (B.14b)

Integrating over U with respect to y, applying the interfacial conditions (B.14b), and

accounting for the periodicity of Π(y) on the boundary of the unit cell U , we obtain

∂c0

∂t
− ∇x · (φ−1〈(I + ∇yχ)〉∇xc0) + γeffqm(Kc0 −K2c2

0) = 0 (B.15)

where γeff is defined in Eq. (2.9), φ is the porosity and effective diffusion coefficient

Deff/D = 〈(I + ∇yχ)〉 is defined in (2.10).

Rewriting the linearized form of the Langmuir isotherm, Kc0 − K2c2
0, in its

original form, Kc0/(1 + Kc0); approximating the solute concentration c ≈ c0; and

defining its average over the cell as C(x, t) ≡ 〈c(x, t)〉 leads to the homogenized

continuum-scale diffusion-reaction equation for the average concentration (2.8).



Appendix C

Homogenization of PNP equations

In the derivations below we drop the hats over the dimensionless quantities to

simplify the notation. The “fast” (y) and “slow” (x) scales are related by y = ǫ−1x,

with ǫ ≪ 1, such that ∇ = ∇x + ǫ−1∇y. The state variables cb(x, t) and ϕb(x, t)

are replaced with their two-scale counterparts cb(x,y, t) and ϕb(x,y, t), and the

macroscopic (average) ion concentration and electric potential are defined as

C(x, t) =
ω

‖PU‖
∫

PU

cb(x,y, t)dy and Φav(x, t) =
ω

‖PU‖
∫

PU

ϕb(x,y, t)dy. (C.1)

Following the standard practice in homogenization, we postulate that the

nanoporous material Ω can be viewed as an assemblage of periodically repeated unit

cells U , each of which consists of the fluid-filled pore space PU and solid phase SU .
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Since ϕEDL = ϕEDL(y), cb = cb(x,y, t) and ϕb = ϕb(x,y, t), (3.11) yields

e∓zϕEDL
∂cb

∂t
=e∓zϕEDL∇x · {∇xcb + ǫ−1∇ycb ± zcb(∇xϕb + ǫ−1∇yϕb)}

+ǫ−1∇y · {e∓zϕEDL [∇xcb + ǫ−1∇ycb ± zcb(∇xϕb + ǫ−1∇yϕb)]}, y ∈ PU .

(C.2a)

The interfacial condition (3.4) takes the form

n ·
[

∇xcb + ǫ−1∇ycb ± zcb(∇xϕb + ǫ−1∇yϕb)
]

= 0, y ∈ ΓU . (C.2b)

Next, the state variables cb(x,y, t) and ϕb(x,y, t) are expanded in asymptotic

series in the powers of the small parameter ǫ,

cb(x,y, t) =
∞
∑

m=0

ǫmcm(x,y, t), ϕb(x,y, t) =
∞
∑

m=0

ǫmϕm(x,y, t), (C.3)

where the functions cm(x,y, t) and ϕm(x,y, t) are U -periodic in y. Substituting (C.3)

into (C.2) and collecting the terms of equal powers of ǫ yields the following set of

recursive boundary-value problems (BVPs) for the expansion coefficients ci and ϕi

(i = 0, 1, . . .).

Terms of order ǫ−2. Collecting the terms of order ǫ−2 yields

∇y · [Πc0e∓zϕEDL(∇yc0 ± zc0∇yϕ0)] = 0, y ∈ PU (C.4a)

subject to

n · (∇yc0 ± zc0∇yϕ0) = 0, y ∈ ΓU (C.4b)
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This homogeneous BVP has a trivial solution, i.e., both c0 and ϕ0 are independent of

y. That indicates insignificant spatial variability of both bulk concentration and bulk

potential at the pore scale.

Terms of order ǫ−1. Since c0 and ϕ0 are independent of y, collecting the

terms of order ǫ−1 yields

∇y · [e∓zϕEDL∇y(c1 ± zc0ϕ1)] = −∇ye∓zϕEDL · (∇xc0 ± zc0∇xϕ0), y ∈ PU (C.5a)

subject to

n · ∇y(c1 ± zc0ϕ1) = −n · (∇xc0 ± zc0∇xϕ0), y ∈ ΓU . (C.5b)

This BVP involves both the fast and slow scales; to decouple these scales we introduce

pore-scale U -periodic closure variables[65, 66, 68, 83] χ±(y), such that

c1 ± zc0ϕ1 = χ± · (∇xc0 ± zc0∇xϕ0). (C.6)

Substituting this closure approximation into (C.5) gives

∇y · [e∓zϕEDL(I + ∇yχ
⊤
±)(∇xc0 ± zc0∇xϕ0)] = 0, y ∈ PU (C.7a)

subject to the boundary condition

−n · [(I + ∇yχ
⊤
±)(∇xc0 ± zc0∇xϕ0)] = 0, y ∈ ΓU . (C.7b)

These BVPs are turned into identities if the vector functions χ
⊤
±(y) are defined as
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solutions to the first two equations in (3.16). When supplemented with the third

condition in (3.16), this definition ensures that a solution of the unit cell problem, i.e.,

the vector functions χ
⊤
±(y), is unique[9, 21, 7, 8].

Terms of order ǫ0. Collecting the terms of order ǫ0 yields

e∓zϕEDL
∂c0

∂t
= e∓zϕEDL∇x · {∇xc0 + ∇yc1 ± zc0(∇xϕ0 + ∇yϕ1)}

+∇y · {e∓zϕEDL [∇xc1 + ∇yc2 ± zc0(∇xϕ1 + ∇yϕ2) ± zc1(∇xϕ0 + ∇yϕ1)]}, y ∈ PU

(C.8a)

subject to

n · [∇xc1 + ∇yc2 ± zc0(∇xϕ1 + ∇yϕ2) ± zc1(∇xϕ0 + ∇yϕ1)] = 0, y ∈ ΓU . (C.8b)

Approximating cb and ϕb in (C.1) with their leading-order counterparts, c0 and ϕ0,

and integrating (C.8a) over PU leads to

∂C

∂t
= ∇x ·

[

∇xC ± zC

ω
∇xΦav +

ω

G±‖PU‖
∫

PU

e∓zϕEDL∇y(c1 ± zc0ϕ1)dy

]

. (C.9)

where G± is defined in (3.15). Accounting for (E.10), this turns into

∂C

∂t
= ∇x ·

[(

I +
1
G±

∫

PU

e∓zϕEDL∇yχ
⊤
±dy

)

(∇xC ± zC

ω
∇xΦav)

]

. (C.10)

To account for the effects of electrical potential in the solid matrix, it is common[70] to

define an average potential for the fluid-solid mixture. In our context, it is equivalent

to defining the average as Φ(x, t) = 1
‖U‖

∫

PU
ϕb(x,y, t)dy, i.e., setting Φ = Φav/ω. This

leads to (3.14) with the effective diffusion coefficient tensors Deff
± given by (3.15).
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The condition
∫

PU
χ±dy = 0 also ensures the order (in ǫ) consistency between

the approximations of the (dimensionless) bulk electrochemical potential µ̂b± =

ln ĉb± + z±ϕ̂b and other state variables. Indeed, dropping the hats, substituting the

expansions (C.3) into this expression and retaining the terms up to the second order in ǫ

yields µb± = ln c0±zϕ0+ǫ(c1±zc0ϕ1)/c0+O(ǫ2). Accounting for the closure (C.6) this

leads to µb± = ln c0 ±zϕ0 +ǫχ± ·∇x(ln c0 ±zϕ0)+O(ǫ2). Integration of this expression

over PU yields the leading-order approximation of the average electrochemical potential

in terms of the leading-order approximations of the average concentration and bulk

potential.



Appendix D

Macroscopic model of an EDLC

cell

Charge conservation. Total electrical current through a porous electroconductive

material, i = isolid + iliquid, is the sum of the currents through its solid (isolid) and

liquid-saturated (iliquid) phases. Hence, conservation of the total charge, ∇ · i = 0

yields

∇ · iliquid = −∇ · isolid. (D.1)

Because of electric double layer charging/discharge, charges are storing in double layer

capacitance. Conservation of charge in the liquid phase leads to[70],

∇ · iliquid = CEDL
∂(Φs − Φ)

∂t
, (D.2)

where CEDL is the EDL capacitance [F/cm3]. Substituting (D.1) into (D.2) and using

Ohm’s law in solid phase isolid = −σs∇Φs, where σs is the electric conductivity of the

100
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solid phase [S/m], yields

CEDL
∂(Φs − Φ)

∂t
= ∇ · (σs∇Φs). (D.3)

Mass conservation. Macroscopic mass balance (Nernst-Plank) equations for posi-

tively and negatively charged ions have the form

ω
∂C±

∂t
= −∇ · J±

NP + S±, J±
NP = −Deff

± ∇C± −Deff
±

z±F

RT
C±∇Φ. (D.4)

The concentrations of cations (C+) and anions (C−) are related to the ion concentration

C by

C =
C+

ν+

=
C−

ν−

, (D.5)

where ν± are the dissociation coefficients. Combined with (D.5), the charge neutrality

condition[70], Fz+C+ + Fz−C− = 0, gives

z+ν+ + z−ν− = 0. (D.6)

(For example, asymmetric electrolyte CaCl2 has ν+ = 1 and ν− = 2, and the ion

charges z+ = 2 and z− = −1.) The current density S±(x, t) represents the rate of ion

transfer to/from the EDL storage. We express it as

S± = H[±(Φ − Φs)]MREDL, (D.7)
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where H[·] is the Heaviside function, M(x) is the membership function such that

M = 1 for all x in the electrodes and = 0 otherwise, and the transfer rate REDL is

defined as follows. Multiplying (D.4) with Fz± and summing up the resulting two

equations, while accounting for (D.5) and (D.6), yields ∇ · iliquid = F (z+S+ + z−S−);

combining this with (D.2) and (D.7) gives an expression for the transfer rate,

MREDL =
CEDL

ψF

∂(Φs − Φ)
∂t

, (D.8)

where ψ = z+H(Φ − Φs) + z−H(Φs − Φ).

Problem reformulation in terms of charge current. The analyses[96, 70] found

it necessary to rewrite conservation laws (D.4) and (D.1) in terms of the ionic flux

iliquid = F (z+J+
NP + z−J−

NP). Substituting the definition of J±
NP in (D.4) into this

expression we obtain

iliquid

ν+z+F
= − F

RT
(z+D

eff
+ +

ν−z
2
−

ν+z+

Deff
− )C∇Φ − (Deff

+ +
ν−z−

ν+z+

Deff
− )∇C. (D.9)

Using the latter to eliminate C∇Φ from the definition of J+
NP leads to

J+
NP = −ν+Deff

+ ∇C +
t+iliquid

z+F
, (D.10)

with the binary effective diffusion coefficient Deff and the transference number t+

defined as

Deff
+ =

ν−z−(z− − z+)Deff
+ D

eff
−

ν+z2
+D

eff
+ + ν−z2

−D
eff
−

, t+ =
ν+z

2
+D

eff
+

ν+z2
+D

eff
+ + ν−z2

−D
eff
−

. (D.11)
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By the same token, eliminating C∇Φ from the definition of J−
NP yields

J−
NP = −ν−Deff

− ∇C +
t−iliquid

z−F
. (D.12)

with

Deff
− =

ν+z+(z+ − z−)Deff
+ D

eff
−

ν+z2
+D

eff
+ + ν−z2

−D
eff
−

, t− =
ν−z

2
−D

eff
−

ν+z2
+D

eff
+ + ν−z2

−D
eff
−

. (D.13)

Hence, we obtain a general expression for the ion fluxes

J±
NP = −ν±Deff

± ∇C +
t±iliquid

z±F
. (D.14)

The charge conservation law (D.1) is rewritten[96, 70] by combining it with

Ohm’s law, isolid = −σs∇Φs, the definition of the the ionic flux, iliquid = F (z+J+
NP +

z−J−
NP), and the definitions of J±

NP in (D.4):

∇ · (κeff∇Φ) + F∇ · [(ν+z+Deff
+ + ν−z−Deff

− )C∇ lnC) = −∇ · (σs∇Φs), (D.15)

where the effective conductivity of the electrolyte is defined as

κeff =
F 2C

RT
(ν+z

2
+Deff

+ + ν−z
2
−Deff

− ). (D.16)

When combined with the expressions for the transference numbers t+ and t− in (D.11)

and (D.13), this definition of κeff transforms (D.15) into

∇ ·
[

κeff∇Φ + κeffRT

F

(

t+
z+

+
t−
z−

)

∇ lnC

]

= −∇ · (σs∇Φs). (D.17)
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A three-compartment formulation. The mass conservation equations (D.4)

and (D.14) are simplified when written for each compartment (the two electrodes and

separator in Fig. 3.3) separately. In the cathode (0 < x < Lcat), Φ − Φs > 0 and

combining (D.4), (D.7), (D.8) and (D.14) yields mass conservation equations

ω
∂C

∂t
= ∇ · (Deff

+ ∇C) +
t−CEDL

ν+z+F

∂(Φs − Φ)
∂t

, (D.18a)

and

ω
∂C

∂t
= ∇ · (Deff

− ∇C) − t−CEDL

ν−z−F

∂(Φs − Φ)
∂t

. (D.18b)

These two equations are identical since, accounting for (D.6), Deff
+ = Deff

− ≡ Deff.

A similar procedure is used to derive mass conservation equations for the anode

(Lcat + Lsep < x < L), wherein Φ − Φs < 0. Finally, mass conservation equations for

the separator (Lcat < x < Lsep) are derived by setting S± = 0. The resulting mass

balance equation takes the form

ω
∂C

∂t
= ∇ · (Deff∇C) − α

∂(Φs − Φ)
∂t

, 0 < x < L; (D.19a)

and

α =















































t−CEDL

z−ν−F
0 < x < Lcat

0 Lcat < x < Lcat + Lsep

t+CEDL

z+ν+F
Lcat + Lsep < x < L.

(D.19b)

The three conservation equations, (D.3), (D.17) and (D.19), govern the dy-
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namics of the three state variables, C(x, t), Φ(x, t) and Φs(x, t). These equations are

subject to boundary conditions at the EDLC external surfaces x = 0 and x = L. When

solved separately in each of the compartments, they are also subject to continuity

conditions at the internal interfaces x = Lcat and x = Lcat + Lsep.[96]

Model simplification for symmetric binary electrolytes. These equations are

simplified for a symmetric binary electrolyte (ν+ = ν− ≡ ν) with equal of ion charges

(z+ = −z− ≡ z). In this case, both Deff
+ in (D.11) and Deff

− in (D.13) reduce to Deff given

by (3.17), t+ in (D.11) gives rise to its counterpart in (3.23b), t− in (D.13) becomes

t− = 1 − t+, and κeff in (D.16) is approximated with (3.23a) upon replacing the ion

concentration C with its initial value cin. Finally, the governing equations (D.3), (D.17)

and (D.19) reduce to their one-dimensional counterparts (3.20), (3.21) and (3.22).



Appendix E

Homogenization of diffusion

equation

Three types of local average of a quantity A(x, t) are defined

〈A〉 ≡ 1
‖U‖

∫

PU (x)
Ady, 〈A〉P ≡ 1

‖PU‖
∫

PU (x)
Ady, 〈A〉Γ ≡

∫

ΓU (x)
Ady, (E.1)

such that 〈A〉 = φ〈A〉P where φ = ‖PU‖/‖U‖ is the porosity. We use the multiple-scale

expansion technique [42] to derive effective continuum scale equations for average

concentration C(x, t) ≡ 〈c(x, t)〉. The method postulates that concentration exhibits

both large-scale (across the porous material, denoted by the coordinate x) and small-

scale (inside individual pores, denoted by the coordinate y) spatial variability, such

that y = ǫ−1 x with ǫ ≪ 1;
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Let us introduce a membership (indicator) function Π(x) = Π(x/ǫ),

Π(x) =























1, x ∈ P

0, x ∈ S.
(E.2)

For the nanoporous materials under consideration, the function Π(x) = Π(x/ǫ)

is periodic on the unit cell U . This allows one to define the pore-scale diffusion

equation (5.1) on the whole unit cell U (rather than on the multi-connected subdomain

PU occupied the liquid),

∂c

∂t
= ∇ · (Π∇c), y ∈ U , t > 0. (E.3)

Replacing the concentration c(x, t) with c(x,y, t, τr) and substituting into Eq. (E.3)

yields

∂c

∂t
= ∇x · [Π(∇xc+ ǫ−1∇yc)] + ǫ−1∇y · [Π(∇xc+ ǫ−1∇yc)], y ∈ U . (E.4a)

The interfacial condition (5.2) takes the form

−n · (∇xc+ ǫ−1∇yc) = 0, y ∈ ΓU . (E.4b)

In the multiple-scale expansion method, the concentration c(x,y, t, τr) is repre-

sented by an asymptotic series

c(x,y, t, τr) =
∞
∑

m=0

ǫmcm(x,y, t, τr). (E.5)
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we obtain

− ǫ−2∇y · (Π∇yc0)

− ǫ−1 {∇x · (Π∇yc0) + ∇y · [Π(∇yc1 + ∇xc0)]}

+ ǫ0

{

∂c0

∂t
− ∇x · [Π(∇xc0 + ∇yc1)] − ∇y · [Π(∇xc1 + ∇yc2)]

}

= O(ǫ1), y ∈ U

(E.6)

and

−ǫ−1n · ∇yc0 − ǫ0[n · (∇xc0 + ∇yc1)]

− ǫ1[n · (∇xc1 + ∇yc2)] = O(ǫ2), y ∈ ΓU . (E.7)

Collecting terms of the equal powers of ǫ yields boundary-value problems (BVPs) for

cm(x,y, t, τr) (m = 0, 1, . . .).

Leading-order term, O(ǫ−2). Collecting the O(ǫ−2) terms yields a BVP for

the leading-order term in the expansion (E.5),

∇y · (Π∇yc0) = 0, y ∈ U ; −n · ∇yc0 = 0, y ∈ ΓU . (E.8)

This BVP has a trivial solution, which implies that c0 is independent of y.

Term of order O(ǫ−1). Since Da ∼ O(ǫ1), collecting the O(ǫ−1) terms yields

a BVP for the first-order term in the expansion (E.5),

∇y · [Π(∇xc0 + ∇yc1)] = 0, y ∈ U (E.9a)
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subject to the interfacial condition

−n · (∇xc0 + ∇yc1) = 0, y ∈ ΓU . (E.9b)

Equations (E.9), which form a BVP for c1(x,y, t, τr), define a local problem. It

depends only on the geometry of the unit cell. We represent its solution as [42, 14]

c1(x,y, t, τr) = χ(y) · ∇xc0(x, t, τr) + c̄1(x, t, τr). (E.10)

Substituting this into Eq. (E.9a) yields an equation for the closure variable (a vector)

χ(y),

∇y · (I + ∇yχ)∇xc0 = 0, y ∈ PU (E.11)

This equation is subject to 〈χ〉 = 0 and the boundary condition

n · (I + ∇yχ)∇xc0 = 0, y ∈ ΓU , (E.12)

which is obtained by substituting Eq. (E.10) into Eq. (E.9b).

Terms of order O(ǫ0). Collecting the terms of order ǫ (E.6) yields

∂c0

∂t
− ∇x · [Π(∇xc0 + ∇yc1)] − ∇y · [Π(∇xc1 + ∇yc2)] = 0, y ∈ U (E.13a)

subject to the interfacial condition

−n · (∇xc1 + ∇yc2) = 0, y ∈ ΓU , (E.13b)

Integrating over U with respect to y, applying the interfacial conditions (E.13b), and
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accounting for the periodicity of Π(y) on the boundary of the unit cell U , we obtain

ε
∂c0

∂t
− ∇x · (〈(I + ∇yχ)〉∇xc0) = 0 (E.14)

ε is the porosity and effective diffusion coefficient Deff/D = 〈(I + ∇yχ)〉 is defined in

(5.5). Defining its average over the cell as C(x, t) ≡ 〈c(x, t)〉 leads to the homogenized

continuum-scale diffusion-reaction equation for the average concentration (5.4).
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113

Validity of the Bruggeman relation for porous electrodes. Modelling Simul.

Mater. Sci. Eng., 21:074009, 2013.

[25] Brian E. Conway. Electrochemical supercapacitors: scientific fundamentals and

technological applications. Springer, 2013.

[26] Liming Dai, Dong Wook Chang, Jong-Beom Baek, and Wen Lu. Carbon
nanomaterials for advanced energy conversion and storage. small, 8(8):1130–
1166, 2012.

[27] Mark E Davis. Ordered porous materials for emerging applications. Nature,
417(6891):813–821, 2002.

[28] Tejal A Desai, Derek J Hansford, Lawrence Kulinsky, Amir H Nashat, Guido
Rasi, Jay Tu, Yuchun Wang, Miqin Zhang, and Mauro Ferrari. Nanopore
technology for biomedical applications. Biomed. Microdevices, 2(1):11–40, 1999.

[29] Yalchin Efendiev and Thomas Y Hou. Multiscale finite element methods: theory

and applications, volume 4. Springer Science & Business Media, 2009.

[30] C. G. Enfield, C. C. Harlin, and B. E. Bledsoe. Comparison of five kinetic
models for orthophosphate reactions in mineral soils. Soil Sci. Soc. Am. J.,
40(2):243–249, 1976.

[31] David Ferry and Stephen Marshall Goodnick. Transport in nanostructures.
Number 6. Cambridge university press, 1997.

[32] Brian P Flannery, Harry W Deckman, Wayne G Roberge, and KEVIN L
D’AMICO. Three-dimensional x-ray microtomography. Science, 237(4821):1439–
1444, 1987.

[33] EJ Garboczi and Anthony Roy Day. An algorithm for computing the effective
linear elastic properties of heterogeneous materials: three-dimensional results
for composites with equal phase poisson ratios. Journal of the Mechanics and

Physics of Solids, 43(9):1349–1362, 1995.

[34] Daniel E Giammar and Janet G Hering. Time scales for sorption-desorption and
surface precipitation of uranyl on goethite. Environ. Sci. Tech., 35(16):3332–3337,
2001.

[35] David C Grahame. Differential capacity of mercury in aqueous sodium fluoride
solutions. I. Effect of concentration at 25◦. J. Am. Chem. Soc., 76(19):4819–4823,
1954.

[36] Carlos A Grattoni, Richard A Dawe, and Mirtha S Bidner. On the simultaneous
determination of dispersion and nonlinear adsorption parameters from displace-
ment tests by using numerical models and optimisation techniques. Adv. Water

Resour., 16(2):127–135, 1993.



114

[37] A Gully, H Liu, S Srinivasan, A. K. Sethurajan, S Schougaard, and B Protas.
Effective transport properties of porous electrochemical materials–a homoge-
nization approach. J. Electrochem. Soc., 161(8):E3066–E3077, 2014.

[38] Ilenia Battiato Harikesh Arunachalam, Simona Onori. On veracity of macroscopic
lithium-ion battery models. J. Electrochem. Soc., 162(10):A1940–A1951, 2015.

[39] Paul Heitjans and Jörg Kärger. Diffusion in condensed matter: methods, mate-

rials, models. Springer Science & Business Media, 2006.

[40] D Hlushkou, H Liasneuski, U Tallarek, and S Torquato. Effective diffusion
coefficients in random packings of polydisperse hard spheres from two-point and
three-point correlation functions. Journal of Applied Physics, 118(12):124901,
2015.

[41] Yuh-Shan Ho and Gordon McKay. Pseudo-second order model for sorption
processes. Process Biochem., 34(5):451–465, 1999.

[42] U. Hornung. Homogenization and Porous Media. Springer, New York, 1997.

[43] Robert J Hunter. Foundations of colloid science. Oxford University Press, 2001.

[44] Toufik Kanit, Franck NâĂŹGuyen, Samuel Forest, Dominique Jeulin, Matt Reed,
and Scott Singleton. Apparent and effective physical properties of heterogeneous
materials: representativity of samples of two materials from food industry.
Computer Methods in Applied Mechanics and Engineering, 195(33):3960–3982,
2006.

[45] Jörg Kärger, Douglas M Ruthven, and Doros N Theodorou. Diffusion in

nanoporous materials. John Wiley & Sons, 2012.

[46] George Karniadakis, Ali Beskok, and Narayan Aluru. Microflows and nanoflows:

fundamentals and simulation, volume 29. Springer Science & Business Media,
2006.

[47] Ali Ghorbani Kashkooli, Siamak Farhad, Victor Chabot, Aiping Yu, and Zhong-
wei Chen. Effects of structural design on the performance of electrical double
layer capacitors. Appl. Energ., 138:631–639, 2015.

[48] Brian J Kirby. Micro-and nanoscale fluid mechanics: transport in microfluidic

devices. Cambridge University Press, 2010.

[49] M. P. Klein, B. W. Jacobs, M. D. Ong, S. J. Fares, D. B. Robinson, V. Stavila,
G. J. Wagner, and I. Arslan. Three-dimensional pore evolution of nanoporous
metal particles for energy storage. J. Am. Chem. Soc., 133(24):9144–9147, 2011.
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