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ABSTRACT OF THE DISSERTATION

Variational Methods for Optimal Experimental Design

By

Noble William Kennamer

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Alexander Ihler, Chair

In this work we study variational methods for Bayesian optimal experimental design (BOED).

Experimentation is a cornerstone of science and is central to any major engineering effort.

Often experiments require the use of substantial resources, from expensive equipment to

limited researcher time; in addition, experiments can be dangerous or may be required

to be completed in a given period of time. For these reasons, we prefer to conduct our

experiments as efficiently as possible, acquiring as much information as we can given the

resources available to us. Optimal experimental design (OED) is a sub-field of statistics

focused on developing methods for accomplishing this goal. The OED problem is formulated

by defining a utility function over designs and optimizing this function over the set of all

feasible designs. We focus on the Expected Information Gain (EIG), a widely used utility

function with sound theoretical support. However, in practice the EIG is intractable to

compute, and approximation strategies are required. We investigate the use of variational

methods for this purpose and show substantial improvement over competing approximation

techniques. A specific form of OED common in the field of machine learning (ML) is active

learning (AL). In the active learning framework, we would like to obtain a labeled dataset in

order to train a supervised model. However, for all the reasons stated, labeling data points

can be costly and again we should make efficient use of our labeling resources. We present

a novel application of active learning to optimize spectroscopic follow up for large scale

xv



astronomical surveys. Finally, much of this work requires learning functions over sets which

we know must satisfy certain properties (e.g., permutation invariance). We conclude the

thesis by presenting a novel neural network architecture for predicting the astronomical class

of individual objects in the same exposure using a neural architecture specifically designed

to accommodate known inductive biases present in the data.
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Chapter 1

Introduction

To consult the statistician after an

experiment is finished is often merely

to ask him to conduct a post mortem

examination. He can perhaps say what

the experiment died of.

Sir Ronald Fisher

This thesis primarily covers two broad themes in machine learning and statistics: optimal

experimental design (OED) and learning functions over set-based data. Both topics play a

fundamental role in three applied projects that motivate and inform the work, as illustrated

in Figure 1.1, however OED is covered in much more in depth as it is the more central topic

of this thesis.

1.1 Optimal Experimental Design

Experimenters are consistently faced with the challenge of conducting their experiments in

resource- and time- limited settings. This can be for a number of reasons, including the

limited capacity of expensive scientific devices or because the phenomena of interest can
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Figure 1.1: Research Overview

only be observed for a short period of time. Because of these limitations and constraints,

experimenters must design their experiments to be maximally informative. For controlled

experiments this can mean determining the best possible settings (e.g., temperature, chem-

ical concentrations, time, etc.) to apply to each experimental unit, in order to produce

observations that are more informative than any other settings we could have chosen. For

observational studies, where we lack the ability to control the conditions of the experimen-

tal units, researchers still must to carefully pick which set of units should be observed and

evaluated so as to gain as much information as possible from our observations.

Optimal experimental design is a sub-field of statistics that aims to address these challenges.

The aim of OED is to produce methods and algorithms that can be used by experimenters

to design their experiments to be as informative as possible. For this reason, advances in

OED can yield advances across many areas of science and engineering generally, thanks to

the central role of experimentation in science. In fact, the history of design of experiment

(DOE) illustrates the impacts and success these concepts have already had, contributing to

major advancements in science and engineering and thus across human society.
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1.1.1 A Brief History of Design of Experiment

Experimental design was first pioneered by Danish statistician Kirstine Smith, who invented

G-optimal designs for polynomial regression models in her dissertation published in 1918

[SMITH, 1918]. Subsequent development of the field of design of experiments is typically

viewed as occurring in four different, distinct eras, starting with the work of Ronald Fisher in

the 1920s and 1930s at Rothamstead experimental station, a research farm in Hertfordshire,

England that remains in operation to this day. Many of the core principles of DOE came out

of this early work, such as the importance of randomization to blunt the effect of unobserved

confounding factors; the importance of replication to reduce statistical error; blocking, or

the inclusion of factors in our experiment that are not of primary interest but contribute

observational variation, so that their inclusion in design and analysis can be used to reduce

error variance; and varying more than one factor at a time (factorial designs), which can

greatly enhance our statistical efficiency and reduce the total number of observations required

in our experiment. The vast majority of this work was developed for agricultural studies,

but history has shown the ideas to be general enough to inform all areas of science and

engineering.

The second major era (1950-1970) was pioneered by George E. P. Box and his colleagues,

and was primarily directed towards applications in chemical manufacturing. In this work

the goal was to control some industrial process so as to maximize the yield of the substance

being produced. This required first determining what factors were actually influential in the

overall yield of the process (often called screening) and then determining the optimal settings

of these factors. Given the great expense of running these industrial processes and the many

factors that could potentially contribute to the yield of the process, Box and his colleagues

were inspired to invent major advancements in design of experiment. These include response

surface methodology, where one formulates the output of a process as a function (often

a quadratic function) and then uses sequential experimentation to screen for the relevant
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factors and determine their optimal settings. The many potential factors and the quadratic

effects in the models describing the process motivated the use of fractional factorial designs,

which can greatly reduce the required number of experimental runs.

The third era of DOE (1970-1990) began in the 1950s, when statistical consultant W. Ed-

wards Deming traveled to Japan to assist in its reconstruction following World War II. In the

1950s and 1960s, Japanese manufacturing was less advanced than other parts of the world,

and many of their products were considered of lesser quality. Much of Deming’s work on the

use of statistical tools and design of experiments in quality control was embraced by Japanese

manufacturers, especially their automobile industry, and led to massive improvements in the

quality and consistency of the goods produced in Japan, turning the country into one of

the centers of global innovation. Japanese engineer and statistician, Genichi Taguchi, was

another major contributor during this time. His application of orthogonal array designs

[Taguchi, 1987], which are similar to fractional factorial designs, contributed to much of this

progress. The work done in Japan during this era was ultimately so successful that many of

the approaches were ultimately adopted by companies across the world.

The 1990s is considered the start of the “modern era”, and from this time design of experi-

ment has proliferated through much of science and engineering, with applications stretching

from culture experiments in microbiology [Montgomery, 2017, Goos and Jones, 2011] to wind

tunnel experiments for NASA [DeLoach, 1997] and everything in between. The advent of

powerful and relatively inexpensive computation has profoundly changed the way we are able

to apply design of experiments today. In the past, researchers were often limited to choosing

from a set of predetermined designs drawn from a table in the back of a book, while forcing

them to try to make their experiment fit into one of these “standard cases”. But experiments

are diverse, with all sorts of differing goals and constraints, and often will not fit nicely into

one of these precomputed cases. Now, however, experimenters are not required to force a

square peg into a round hole – instead, they can use techniques from optimal experimental
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design along with readily available computation to find bespoke designs that are tailored to

their needs and unique circumstances. This requires specifying a utility function, which is

used to compare the quality of different designs, and a feasible set of designs, which define

all designs that could be executed in the lab or factory. Then, the researcher solves a math-

ematical optimization problem to find the best (or a very good) design. However, this is

easier said then done – the desired utility function is often intractable to evaluate, and the

subsequent optimization problem is then even harder. This thesis provides progress on both

grounds, as described in the next section.

Our preceding discussion is meant to provide only a brief history of the field of design of

experiment, and to give motivation for one of the main subjects of this thesis. It should not

be considered comprehensive – for example, omitting notable contributions on clinical trials

starting in the 1950s and experiments on artillery systems during World war II. For a more

in-depth history of DOE, see [Montgomery, 2017].

1.1.2 Bayesian Optimal Experimental Design

The preceding section focused on approaches from classical statistics, which have been and

remain widely used. However, the contributions of this thesis are primarily built on the

Bayesian approach to statistics, which is being increasingly adopted of late. While both

statistical philosophies have their merits, the Bayesian approach appears particularly advan-

tageous to experimental design. Bayesian statistics focuses on quantifying uncertainty by

interpreting probability in terms of subjective degrees of belief. Central to this approach

are two mathematical objects: the prior and posterior distributions. The prior distribution

encodes our beliefs about the world prior to conducting our experiment (or receiving new

information), while the posterior distribution encapsulates our beliefs after receiving new

information. In a sense, this dichotomy between the two different objects is superficial, since

our posterior distributions of today then become our prior distributions for tomorrow. This

5



viewpoint of an ongoing refinement of belief provides an elegant framework for sequential

experimentation, which naturally enables us to design experiments that build on our past

knowledge for greater efficiency. However, both for sociological and computational reasons,

Bayesian approaches were not widely adopted during the early development of DOE, and are

still less widely used than classical methods today. This does, however, seem to be changing.

In this thesis we make contributions for Bayesian approaches to optimal experimental de-

sign that are more computationally efficient and therefore more accessible to experimenters.

This thesis does not attempt to comprehensively cover the differences between classical and

Bayesian approaches; for further discussion on this subject see, e.g., Bernardo and Smith

[2009], DIACONIS and SKYRMS [2018].

In Chapter 2 we give an illustrative example of OED used in a setting from microbiology. This

example shows how OED can be formulated within classical statistics as well as Bayesian

statistics. In Chapter 3 we focus on the Bayesian approach, defining a widely used and

theoretically well supported utility function for comparing different possible designs called

the expected information gain (EIG). This leads to a clear framework within which Bayesian

optimal experimental designs can be conducted. While conceptually straightforward, the

expected information gain is notoriously difficult to compute, leading to significant practical

challenges. We discuss several approximation strategies, with a strong focus on variational

methods, which we consider the most promising direction. In Chapter 4 we propose a novel

deep learning architecture for approximating the expected information gain. Our method al-

lows for amortization over designs, making it possible to train a single variational model that

can be applied to approximate the expected information gain for designs across the feasible

space. In addition we propose an inexpensive method for training our variational model.

Moreover, our model is differentiable with respect to the design variables, which can facili-

tate the use of first order techniques for efficiently optimizing the design. This methodology

represents the first major application of the thesis, denoted “Variational Bayesian Optimal
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Experimental Design” in Figure 1.1.

1.2 Active Learning for Astronomy

Active learning is a specific application of optimal experimental design applied to super-

vised machine learning and draws from both statistics and machine learning to derive its

techniques. In supervised machine learning, our goal is to learn a function that can be used

to make predictions. This could be a discrete classification problem, like deciding if an im-

age depicts a cancerous or healthy cell, a regression problem like attempting to predict the

amount of rain from infrared satellite images, or structured prediction problems like pre-

dicting the connections between objects in a network. In any supervised learning problem,

we require a training dataset: a set of pairs (xi, yi), where xi denote measured features of

the ith unit, and yi is its label. We then define a parameterized function, fϕ(xi), where ϕ

are the trainable parameters, and a loss function, L(fϕ(xi), yi). We use the training data to

learn the parameter values ϕ that minimize our loss function. For example, in regression the

loss function could be the mean squared error between the true values and our predictions,∑N
i (yi − fϕ(xi))

2, where N is the total number of objects in the training dataset. However,

the goal of supervised learning is not simply to minimize the loss function over the training

data, but rather to provide accurate predictions on data not seen during the training process,

often called the test data. This concept is referred to as generalization. It is also common

good practice to use an intermediate dataset called the validation set, which is used not to

train the parameters of the model, but for model selection (deciding on the best form for

the function f). Only after selecting a final model do we measure our performance on the

test set.

As we see, the training set plays a central role in any supervised learning problem, where

the amount and representativeness of the data in the training set directly impact our ability
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to generalize well. Ideally, we would like a large training dataset with complete coverage

of the types of features and labels we expect to see when applying our model in practice.

Unfortunately, obtaining such a dataset can be both challenging and costly. Often, however,

we may have plenty of unlabeled data – just the xi’s – and labeling each one (finding the

desired value of the target yi) represents the main bottleneck. For example, we might have a

large repository of medical images, but the labeling process requires hiring medical experts

to go through them one by one. These experts can be expensive to hire or have limited

availability, so we should choose a set of data to label that will be most helpful in training a

good model. Active learning frames this problem concretely: given an unlabeled set of data

U and resource constraints, find a subset, Dtr, to label that will lead to the best expected

performance of our supervised model. (Versions of active learning can also be formulated for

stream-based settings or data-synthesis settings.)

Chapter 6 covers a novel application of active learning to optimizing spectroscopic follow-

up strategies for supernova photometric classification. We focus on a significant upcoming

challenge posed by the Vera Rubin Observatory’s Legacy Survey of Space and Time (LSST).

LSST is an upcoming astronomical survey that will operate for ten years and improve our

understanding of wide ranging topics in cosmology and astrophysics. The scale of the sur-

vey is enormous, with the expectation that it will collect 15 terabytes of data per night,

culminating in a final dataset of 200 petabytes.

For our application the cadence of the survey is critically important, imaging the entire

southern sky every three nights. This cadence will enable the detection of thousands to

tens of thousands of transients per night. Transients comprise a broad category consisting

of any astronomical object that changes with time over intervals of minutes to weeks. This

change could be due to movement, as in the case of asteroids, or due to changes in the

object itself, such as variable stars or supernovae (an exploding start). Type-Ia supernovae

are an especially important class of transient objects, giving us the ability to measure the
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rate of expansion of the Universe. A type-Ia supernova occurs when a white dwarf, typically

in a binary system, gains enough mass (i.e., beyond the Chandrasekhar limit), triggering a

violent explosion. Because of the consistency in their formation we can assume the intrinsic

brightness and its dynamics are the same wherever they occur in the Universe. Thus, when

observing a type-Ia supernova we measure its apparent brightness on Earth and use its known

intrinsic brightness to infer the distance of the object from Earth via the inverse square law.

Objects with this property are called standard candles. By comparing the distance of the

object with its measured redshift we can better understand the rate of expansion of the

Universe. In fact, the Supernova Cosmology Project and the High-z Supernova Search Team

used exactly these techniques with type-Ia supernova to discover that the expansion of the

Universe was accelerating, earning the group leaders the 2011 Nobel Prize in Physics.

As we can see, obtaining a large dataset of type-Ia supernova is incredibly useful for cosmol-

ogy, and given the scale of LSST we ought to be able to accomplish this goal. But it is a

serious challenge to accurately classify all of the different types of transients that LSST will

observe. In particular we require a model to distinguish between type-Ia supernova and non-

type-Ia supernova (a binary prediction problem). One of the major challenges is related to

the type of data that LSST collects. Astronomical data tends to fit into two main categories:

photometry and spectroscopy. The main difference between photometry and spectroscopy

is the width of the wavelength bands used to filter the incoming light. Photometry uses a

relatively small number (a couple to a few dozen) of wide broad band-pass wavelength bands,

requiring only short exposure times (a few seconds) and enabling rapid collection of a mas-

sive amount data. Spectroscopy, on the other hand, is on the opposite end of the spectrum

(pun intended), separating the incoming light into thousands of narrow bands (on the order

of a angstrom) and giving much more information on the object we are observing. However

this comes at the cost of time, with exposure times on the order of tens of minutes to hours,

and requiring more complicated instrumentation. LSST will be collecting photometric data
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using six bands. The collection of photometric data is what allows for the scale and quick

cadence of LSST.

As noted, our goal is to train a model that can predict from LSST data if an object is

a type-Ia supernova or not. To complete this task we will require a high quality training

dataset, in which we know the correct label of each object. But, assigning this label can

be very difficult purely from photometric data, even for humans. So in order to build our

training dataset, we must make spectroscopic observations from which the objects can be

more precisely labeled. However, LSST will observe far too many transients for each one to

be spectroscopically labeled, resulting in a setting ripe for the application of active learning.

In Chapter 6 we cover our investigations on this problem, showing that techniques from

active learning can applied successfully. This work is designated as our second application,

labeled “Active Learning for Astronomy”, in Figure 1.1.

1.3 Learning over Sets

Another frequently occurring theme in our work is the need to learn over set-based data. In

many practical settings one needs to build a machine learning model that can act on variable

sized inputs, or where there are meaningful relationships between the data points such as

permutation invariance, where re-orderings of the input should lead to the same answer.

For instance, permutation invariance often occurs in optimal experimental design, where the

units within the experiment are exchangeable and so re-orderings of the units should not have

any change on the utility of the design. In essence, we would like our methods to produce the

same value of expected information gain for all possible orderings of the proposed design. In

our work on variational methods for Bayesian optimal experimental design, we used recent

developments on constructing permutation invariant neural networks. This forms a critical

component of our proposed neural architecture, which allows us to directly encode the desired
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invariance into our architecture while also enabling weight-sharing, which is known to lead

to benefits in the computational cost of neural network models.

We also describe a standalone project on developing machine learning algorithms over set-

based data, which is covered in Chapter 7. In this work, our goal was to produce a classifier

for discriminating between stars and galaxies, with a focus on the data that are expected

to be produced by LSST. Star/Galaxy classification is one of the early steps in a typical

astronomical data-processing pipeline, making it a critical component with significant down-

stream impacts.

In space, stars appear as point sources of light while galaxies have spatial extent, making this

a relatively simple classification problem for space-based observations. But for ground-based

telescopes (like LSST), the difficulty is magnified due to the presence of the atmosphere.

As light passes through the atmosphere it is spread out, making stars’ point sources appear

spatially distributed and widening galaxies even further. More technically speaking, the

incoming light is being convolved with a point spread function (PSF) due to its interaction

with the atmosphere and telescope optics. Moreover, due to atmospheric turbulence, this

point spread function is constantly changing in time and in space. This creates a confounding

factor that must be accounted for to produce a good classifier.

Each LSST exposure will observe on the order of a thousand objects per sensor, and the

point spread function of the atmosphere will change from one exposure to the next. Even

more challenging, it will also change spatially, from one point in the focal plane to the next,

even within the same exposure. This could result in a star in one exposure appearing larger

than a galaxy in another, so that a classifier cannot solely rely on spatial extent but must

factor in the influence of the point spread function. We develop a novel neural architecture

that is able to achieve strong performance on this challenging problem. At a high level, we

crop out small images of each individual object in the focal plane and build a classifier that

11



takes in this set of images along with the spatial coordinates of each image. The classifier

is specifically designed to be able to compare the images (and their positions) within the

set and produce a classification for each object. Chapter 7 shows the success of our method

while other, more standard, approaches fail.

Chapter 8 concludes the thesis with a discussion of what we believe are the most promising

directions for future work. We particularly emphasize our work on variational Bayesian

optimal experimental design, as we anticipate a great number of open problems that can be

attacked with these techniques, potentially producing major benefits to science generally.
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Chapter 2

An Illustrative Example

One important idea is that science is a

means whereby learning is achieved,

not by mere theoretical speculation on

the one hand, nor by the undirected

accumulation of practical facts on the

other, but rather by a motivated

iteration between theory and practice

George E. P. Box

In this chapter we provide a concrete optimal experimental design example to illustrate the

high-level ideas discussed in the previous chapter. Our example is based on an example from

Goos and Jones [2011, Chapters 2 and 3] from the field of microbiology. In Section 2.1 we

state the problem, then in Sections 2.2 and 2.3 we detail a solution from both the classical

and Bayesian perspectives, respectively.
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2.1 The Experimental Problem

For this example we imagine ourselves as statistical consultants hired by a biotechnology

company, Phylo-Networks, to help design an experiment for the development of a new prod-

uct. Phylo-Networks has developed a proprietary strain of Bacillus subtilis that produces a

molecule which is able to inhibit the growth of harmful bacteria. Currently the yield from

their cultures are too small for them to create a commercial product. But they believe if

they can increase the yield, they can use this molecule to develop a new class of antibiotic

drugs that can save many lives, in addition to using it as an agent for food safety, which can

both prevent food-borne illnesses and reduce food waste.

The current process starts by culturing the strain of B. subtilis in a specific medium at 37◦C

for 24 hours in a flask that is being gently shaken. The culture is then put into a new flask

with a different medium at a temperature between 30◦C and 33◦C for 48 hours. The contents

of the flask are then centrifuged to remove the bacterial cells, leaving a solution that is ready

for extraction of the molecule. The extraction process starts with 100 ml of the solution; four

different solvents, methanol, ethanol, propanol and butanol can be added to the solution at

concentrations between 0 and 10 mg/ml. In addition the pH of the solution can be adjusted

between 6 and 9, and it can be left to sit anywhere between 1 and 2 hours. The yield of the

extraction is then measured with chromatography and is expressed in mg per 100 ml.

Phylo-Networks believes the extraction process can be greatly improved to increase the yield

of molecule per culture extraction. They wish to design an experiment to determine the

effects of the 6 factors (methanol, ethanol, propanol, butanol, pH and time) on the extraction

process, and have hired us for our statistical expertise. If they can better understand the

effects of these factors, they can determine settings to increase the yield of the extraction.

Furthermore, based on prior knowledge, they believe the interaction effects and higher order

effects (quadratic or greater) do not play a role in the yield within the range of settings
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considered. Thus we determine to use the following main-effects model to analyze our results,

and it is for this model that we seek an optimal design:

yi = θ0 + θ1di,1 + θ2di,2 + θ3di,3 + θ4di,4 + θ5di,5 + θ6di,6 + ϵi, (2.1)

where yi is the yield from experimental run i, θj for j = 0 . . . 6 is the effect of factor j

(including an intercept term), and di,j is the setting of the jth factor for the ith experimental

run. We refer to the quantities di,j as our design variables. Finally, ϵi is a random error

that we assume to be normally distributed with mean zero and with variance σ, which we

assume has known value σ = 1. Due to budget limitations, we will only be able to conduct

16 runs. Our goal is then to find settings for all di,j that will make our experiment maximally

informative. We denote the settings of all the runs as a 16 × 7 matrix, D, often called the

design matrix. (The first column of D is all ones.) The yields from all individual runs are

denoted by the 16 dimensional column vector Y , all main effects will be denoted by the

7 dimensional column vector θ, and ϵ is a 16 dimensional column vector representing the

random error from each run. Thus we may compactly represent our main-effects model as:

Y = D · θ + ϵ. (2.2)

Note that throughout this thesis we refer to the individual experimental runs as experimental

units, and the ith row of D denotes the settings for the ith experimental unit.

2.2 A Classical Approach

In the preceding section, we stated that our goal was to find the settings of the design matrix

that will lead to our experiment being maximally informative. But what exactly is meant

by “maximally informative”? In experimental design, there are a number of utility functions
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that we may use to define precisely what is meant, and in this section we define one of the

most common utility functions from classical statistics, called D-optimality [Goos and Jones,

2011].

Imagine that we have conducted our experiment with design settings D, and observed yields

Y . We could then use ordinary least squares to estimate the effects of each factor:

θ̂ = (DT ·D)−1 ·D · Y. (2.3)

Furthermore, the covariance matrix of this estimator is,

cov
(
θ̂
)
= σ2 (DT ·D)−1, (2.4)

in which the diagonal elements correspond to the variances of each individual effect estimate,

and the off-diagonal elements to the covariances between each different pair of effects. Intu-

itively, we would like our variance and covariance of the estimators to be as small as possible,

allowing us to tightly constrain the most likely regions of our estimators (i.e., produce the

smallest possible confidence regions). We can visualize the shape and extent of a confidence

region on our 7-dimensional estimator as an ellipse defined by the positive definite covari-

ance matrix expressed in Equation (2.4), with a scaling factor that depends on the degree

of confidence, and so it is reasonable to try to minimize the volume of this ellipse. Using

basic linear algebra, we can compute the volume of this ellipse by computing the determi-

nant of the matrix cov(θ̂). Thus, we would like to minimize the determinant of the matrix

(DT · D)−1, or equivalently to maximize the determinant of (DT · D). (Note that we can

ignore the constant scaling factor as it does not affect our resulting optimization problem.)

Maximizing the determinant of (DT ·D) is known as the D-optimality criterion.

In order to maximize this quantity, we can use the coordinate exchange algorithm, which is
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frequently used to optimize experimental designs Meyer and Nachtsheim [1995b], although

we could also use a variety of other algorithms from mathematical optimization. We assume

that we have coded our design variables between the ranges of -1 to 1. We then choose

a starting design, D, by randomly sampling design variables uniformly within this range

(excluding the first column which is set to 1). We then loop through each element of the

matrix D (again excluding the first column), and calculate the D-optimality criterion for

three different values: the original design matrix D, the design matrix where the current

element is set to 1 with all other elements left the same, and the design matrix with the

current element set to -1, again with all other elements left the same. We then update our

design matrix to the setting with the highest D-optimality score of the three. After looping

through every element of the matrix, we check if any elements of the design were updated,

and if so we iterate through again; if not the algorithm terminates. We also terminate

the algorithm when a maximum number of iterations is reached, although in practice the

procedure typically terminates after only a few iterations.

The coordinate exchange algorithm finds a design matrix that is a local optimum within the

neighborhood of the starting design. Since this local optimum may not be a global optimum,

it is common to re-run the algorithm from multiple starting designs and select the best. For

the purposes of our example, we run it from 100 different starting designs, after which we

have identified the following design, which we discuss in more detail in Section 2.4:
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Intercept Methanol Ethanol Propanol Butanol pH Time

1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00

1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00

1.00 1.00 -1.00 -1.00 1.00 1.00 1.00

1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00

1.00 1.00 -1.00 1.00 1.00 -1.00 -1.00

1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00

1.00 -1.00 1.00 1.00 1.00 -1.00 1.00

1.00 1.00 1.00 1.00 -1.00 1.00 1.00

1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00

1.00 1.00 -1.00 1.00 1.00 -1.00 -1.00

1.00 1.00 -1.00 -1.00 -1.00 1.00 -1.00

1.00 1.00 1.00 -1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 -1.00 -1.00 1.00

1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00

1.00 -1.00 -1.00 1.00 1.00 1.00 1.00

1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00

Recall that the ranges of the chemical concentration factors are 0 to 10 mg/ml, while the

pH can range from 6 to 9 and the time from 1 to 2 hours. All design variables are linearly

transformed to map these intervals to the range [−1, 1].

2.3 A Bayesian Approach

We now consider how we would solve our experimental design problem from a Bayesian

perspective. First, we should define a prior distribution over our model parameters, θ, which

encodes our current knowledge about the parameter values before conducting the experiment.
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We select a weakly informative prior centered at zero, as we do not know whether each

factor may increase or decrease the yield amount. Specifically, we select a multivariate

normal distribution with zero mean and diagonal covariance with 5 on the main diagonal,

p(θ) ∼ N (0, 5I), where I is the 7× 7 identity matrix and 0 denotes the 7 dimensional vector

of all zeros. We have already assumed that our random error is normally distributed with

mean 0 and standard deviation 1, so that our likelihood is yi ∼ N (0, σ). Recall that we

assume σ = 1 is known. We can then apply Bayes rule to compute the posterior distribution

over our parameters, representing our state of knowledge after conducting the experiment

and observing the results:

p(θ|Y,D) =
p(Y |θ,D)p(θ)

p(Y |D)
. (2.5)

Normally the posterior distribution is intractable to compute, the central challenge being

the marginal likelihood p(Y |D). In this case, however, we can actually solve for the posterior

distribution analytically thanks to the conjugate nature of the the normal likelihood with

normal prior. Carrying out this calculation is more or less an exercise in patience and

completing the square, but after doing so we find the posterior distribution:

p(θ|Y,D) = N
(
σ−2
(
σ−2DTD +

1

5
I
)−1

DTY,
(
σ−2DTD +

1

5
I
)−1/2

)
. (2.6)

Assuming we had conducted our experiments on design D and observed yields Y , we could

measure the amount of information the experiment gave, by subtracting the entropy of the

posterior distribution from the entropy of the prior distribution. This difference corresponds

to a quantity called the information gain (IG):

IG(Y,D) = H[p(θ)]−H[p(θ|Y,D)], (2.7)
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where H(·) is the (differential) entropy function, a common measure of the uncertainty for

a distribution. The entropy for a probability mass function, p(x), is defined to be:

−
∑
x

p(x) log p(x) (2.8)

and the differential entropy of probability density function, p(x), is defined to be:

−
∫

p(x) log p(x) dx (2.9)

. However, our purpose is to choose the most informative design before conducting the

experiment and observing Y . We cannot evaluate the information gain directly without the

value of Y ; instead our score should depend only on the design, D. We can achieve this by

taking the expectation of the information gain with respect to p(Y |D), giving the expected

information gain (EIG):

EIG(D) = Ep(y|d)
[
H[p(θ)]−H[p(θ|Y,D)]

]
. (2.10)

The EIG is a widely used utility function for Bayesian optimal experimental design, and has

been shown to be an optimal choice; see Bernardo and Smith [2009, Chapter 2].

Unfortunately, the expected information gain is typically intractable to compute, and much

of this thesis will focus on proposing approximation strategies that are both accurate and

computationally efficient. However, for our current example, it turns out that the EIG can

be computed analytically. The differential entropy of a multivariate normal distribution with

dimension N , mean µ and covariance Σ is given by:

H
[
N (θ|µ,Σ)

]
=

1

2
log
(
(2πe)N det(Σ)

)
. (2.11)

Here we can see that the entropy calculation only depends on the covariance matrix of the
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normal distribution, and as we can see from Eq. (2.6), the posterior distribution’s covariance

depends only on the proposed design D and the prior covariance, both of which are known

before conducting the experiment. Thus we can analytically calculate the differential entropy

of the posterior distribution for any proposed design. For analogous reasons the differential

entropy of the prior can also be easily calculated. Thus for our current example, we can

analytically calculate our utility function, the expected information gain:

EIG(D) =
1

2
log
[ det

(
5I
)

det
(
(σ−2DTD + 1

5
I
)−1
) ]. (2.12)

. We again apply the coordinate exchange algorithm with 100 random starts, but now using

the expected information gain as our utility function, and achieve the following design:
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Intercept Methanol Ethanol Propanol Butanol pH Time

1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

1.00 1.00 -1.00 -1.00 1.00 -1.00 -1.00

1.00 -1.00 1.00 1.00 1.00 -1.00 -1.00

1.00 1.00 1.00 -1.00 -1.00 1.00 -1.00

1.00 -1.00 -1.00 -1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 -1.00 1.00

1.00 1.00 -1.00 -1.00 -1.00 -1.00 1.00

1.00 -1.00 -1.00 1.00 1.00 1.00 -1.00

1.00 -1.00 -1.00 1.00 -1.00 1.00 1.00

1.00 1.00 -1.00 1.00 1.00 -1.00 1.00

1.00 -1.00 1.00 -1.00 -1.00 -1.00 1.00

1.00 -1.00 1.00 -1.00 1.00 1.00 1.00

1.00 1.00 1.00 -1.00 1.00 1.00 -1.00

1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00

1.00 -1.00 1.00 1.00 -1.00 -1.00 -1.00

1.00 1.00 1.00 1.00 -1.00 1.00 1.00

2.4 Analysis

Observe that both designs found form orthogonal matrices, meaning that DTD is a diagonal

matrix. In our classical approach this would mean that there is no covariance between our

effect estimates; in the Bayesian approach it means that (assuming our prior covariance is

diagonal), our posterior covariance remains diagonal. In fact, both designs fall within the

Plackett-Burman class of designs, which are optimal for this problem, which we could have

chosen from a pre-computed table of designs. In light of this point it would be reasonable

to ask, why go through all of the trouble of defining the D-optimality criterion or expected
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information gain and solving a mathematical optimization problem, when the designs we

produced could have been found from a table with minimal effort? The answer, of course,

is that we were lucky – our experimental constraints matched the conditions for which a

Plackett-Burman design (or other standard design) could be generated. For example, if the

number of experimental runs available to us was not a multiple of 4, then a Plackett-Burman

design would not have existed; or, if we needed to consider higher order effects such as

quadratic terms or interaction terms, then a Plackett-Burman design may not have existed

for the number of runs in our budget. Had we possessed more complex prior knowledge,

resulting in a prior distribution with non-diagonal covariance matrix, then Plackett-Burman

designs would no longer be optimal. Employing more complicated distributional assumptions

or a more complicated process model (e.g., not linear in the effects) would again mean that

no standard design would be available. This example illustrates that the utility functions we

selected can be used to generate standard designs from statistical tables when our experiment

matches the conditions for them to apply. But taking an optimization perspective allows us

to be far more general, and can help us select the best (or better) designs even when (as is

common) our experimental conditions fail to conform to any typical, standard case.

We were also fortunate in this example that evaluating our utility functions could be per-

formed analytically, and that we had a robust optimization algorithm available for finding

an optimal design. In practice, this is rarely the case and evaluating these utility functions

is computationally intractable. The next three chapters focus on developing approximation

algorithms to evaluate and optimize the expected information gain. We show that our pro-

posed methods greatly advance the state of the art, producing more accurate approximations

while improving efficiency (in both samples required and total computational time).
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Chapter 3

Variational Inference for Bayesian

Optimal Experimental Design

I think that it is a relatively good

approximation to truth—which is

much too complicated to allow

anything but approximations—that

mathematical ideas originate in

empirics.

John von Neumann

In this chapter we introduce variational techniques for approximating and optimizing the

expected information gain. We start by formally stating the Bayesian OED problem, which

is general enough to encompass a wide variety of controlled experiments and even some

observational studies. This framework has been used by scientists and engineers in many

fields to help design their studies to be as informative as possible. Next, we give a general

discussion of variational inference, an approximate inference technique which has helped

make Bayesian methods more practical and usable by researchers. In particular, we show

how variational techniques can be used to approximate the expected information gain. We
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use these approximation strategies in the subsequent two chapters to achieve state-of-the-art

results in terms of both accuracy and efficiency.

3.1 Problem Setup

3.1.1 Bayesian Model

In our work we adopt a Bayesian approach to experimental design, and so we start by defin-

ing our Bayesian model, which could cover a broad number of circumstances. We denote

the design variables (which are under the experimenter’s control) as d; in the example from

Chapter 2 this would represent the concentrations for the different solvents, pH, and time

for all experimental units. As another example, suppose we plan to conduct an observational

study in the field of ecology to better understand how environmental conditions (e.g., eleva-

tion, tree coverage, or temperature) affect the breeding habitats of a certain species in the

region, information which we have for our region, which we divide up into plots of 1km2. The

design d could then represent which plots we observe, how often, and at what time. We could

potentially update d on a daily basis to account for the information we have already received

over the duration of the study. Note that in these examples and in any other use case of

optimal experimental design we will also have constraints on what designs are feasible and

may have additional objectives we wish to optimize for. In chapter 5 we will show how the

methods we propose benefit the use of a wide variety of optimization algorithms facilitating

their use in a wide variety of practical use cases.

Next, we denote our experimental observations as y. These are the quantities we directly

observe after setting our design variables d and running the experiment. From the example

in Chapter 2, y corresponds to the yields we measure for all our experimental units. In our

ecology example, y would represent the number of individuals of the species counted in the
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plots we decide to observe.

Finally we denote our latent variables by θ, corresponding to the quantities we cannot di-

rectly observe but are interested in studying. Learning more about these variables is typically

the reason for conducting our experiment. We assume that we are given some functional

form that relates our latent variables θ and design variables d to the observations of the

experiment. In the microbiology example, we assumed a linear model with Gaussian error;

the latent variables comprised the factor effects that mediate how the setting of the design

variables influences the yield y. In the ecology example, we would have some other func-

tional relationship from theory, or could use a more generic statistical model to relate the

environmental conditions of each plot of land to the presence or frequency of the species of

interest being on the plot. We quantify this relationship via a likelihood function p(θ|y, d)

which consists of the assumed functional form, often called the process model, and a random

component. In our microbiology example, the process model was a linear model and the

random component was the Gaussian noise. For the ecology study, the process model would

consist of whatever functional form we assume, and the random component would likely be

a Bernoulli or Poisson distribution (for event or count measurements, respectively) parame-

terized by the process model. In addition to the likelihood, we also have prior knowledge on

our latent variables which is encoded in our prior distribution p(θ). Then, via Bayes rule, we

can write the posterior distribution, which represents our state of knowledge in the latent

variables after conducting the experiment:

p(θ|y, d) = p(y|θ, d)p(θ)
p(y|d)

(3.1)

These relationships are shown pictorially in figure 3.1. Note that the design setting, d, is

selected by the experimenter, and thus non-random. In this sense, it is trivially independent

of the true parameter value θ.
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d θ

y

Figure 3.1: Experimental Setup. Our observations y (shaded) are the result of a random
process that depends on both the latent random variables θ and our (to be selected) exper-
imental design d. Note that the design setting, d, is selected by the experimenter, and thus
non-random. In this sense, it is trivially independent of the true parameter value θ.

Of course, it is possible we may not possess an analytic form of the likelihood, but instead

resort to running simulations that implicitly describe the relationship between the three

quantities d, θ, and y. This is a fairly common situation in many fields such as population

genetics, astrophysics, and systems biology, in which more is known about the random

process leading to a result than about the distribution of the result itself. Inference techniques

in this context are often called likelihood-free or approximate Bayesian computation (ABC)

methods. At least one of the variational forms we discuss can still optimize experimental

design in this more difficult setting, although we do not directly investigate such models in

this thesis.

3.1.2 The Expected Information Gain

In this work we focus on evaluating the expected information gain, a commonly used utility

function in Bayesian optimal experiment design [Chaloner and Verdinelli, 1995, Ryan et al.,

2016]. Assuming we have conducted our experiment at design variables d and observed

outcome y, we can quantify the amount of information we received from our experiment via
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the information gain,

IG(y, d) = H
[
p(θ)

]
−H

[
p(θ|y, d)

]
(3.2)

whereH[·] is the (differential) entropy function. Further the conditional (differential) entropy

of the far right is often not possible to compute in closed form due to the intractability of

the posterior distribution in most cases. However, the information gain cannot be evaluated

before conducting the experiment, since it requires knowing the outcomes y. To remove

the dependence on y, we take the expectation of the information gain with respect to the

outcomes, p(y|d), giving us the expected information gain:

EIG(d) = Ep(y|d)
[
H[p(θ)]−H[p(θ|y, d)]

]
(3.3)

The EIG has sound theoretical justifications, and is proven to be optimal in certain settings

[Sebastiani and Wynn, 2000, Bernardo and Smith, 2009, chapter 2].

The experimenter next seeks the solution to argmaxd∈D EIG(d), where D is the set of all

feasible designs. The set of all feasible designs is defined by the points, d, at which the

experiment can be run. In the case of our microbiology example this is the space of all

16× 6 matrices with entries falling in interval [−1, 1]. In general, different experiments have

their own unique constraints, but all experimental design problems boil down to solving a

mathematical optimization problem.

Both the evaluation of the expected information gain and the optimization problem are often

intractable, so that approximation strategies need to be used. One of the most common ap-

proximation strategies used for evaluating the EIG is nested Monte Carlo (NMC) [Rainforth

et al., 2018], which can then be used in many different optimization algorithms [Ryan et al.,

2016]. We will discuss and build off this estimator shortly showing a broader framework for
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approximate inference for the EIG. The intractability of evaluating the expected information

gain can be viewed as a consequence of its dependence on the posterior distribution, which

itself is often intractable to compute exactly. Even more difficult, we must compute the pos-

terior distribution for every possible y in the expectation, so that the expected information

gain is often called ”doubly intractable”. Intuitively, the optimization problem is intractable

for two reasons: (1) the intractability of the its utility function, the EIG; and (2) because the

constraints defining the feasible set of designs could result in having to solve a combinatorial

optimization problem, or more generally some other type of NP-hard optimization problem.

However, as we discuss in the sequel, variational methods can provide efficient and accurate

approximation techniques for both evaluation and optimization.

3.2 Variational Inference

As discussed in the preceding section, the expected information gain is often intractable to

evaluate, and one of the primary focuses of this thesis is to investigate variational meth-

ods for approximating expected information gain. Variational methods are a broad class

of techniques that are widely used to make efficient and accurate approximations to in-

tractable inference problems [Wainwright et al., 2008, Blei et al., 2017]. They generally

follow the pattern of first proposing a parameterized function meant to approximate an in-

tractable quantity of interest, for example the posterior distribution or marginal likelihood,

then deriving a bound to an estimator objective, such as the maximum likelihood, and finally

optimizing the parameters of the variational function with respect to the derived bound. Af-

ter the optimization, we can use the variational form in place of the intractable quantity to

perform tasks such sampling or evaluating samples.

We give a concrete example by deriving the so-called evidence lower bound, which is the

most commonly used variational bound in Bayesian statistics [Blei et al., 2017]. In this
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setting, we would like to approximate the posterior distribution p(θ|y, d). We first define

a family of densities Q over the latent variables, θ. Each point in this set, qϕ(θ) ∈ Q, is

indexed by parameters ϕ; for example, if θ is continuous, unbounded and one dimensional,

Q could be the set of all normal distributions and ϕ = {µ, σ2}, the mean and variance of a

specific normal distribution. We would then like to find the qϕ that best approximates the

true posterior. We use the Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951] to

quantify the quality of the approximation. This turns our inference problem into the task of

solving the optimization problem,

q∗ϕ(θ) = argmin
qϕ∈Q

KL(qϕ(θ)||p(θ|y, d)). (3.4)

Unfortunately, solving Eq. (3.4) is still intractable in the general case: it requires us to eval-

uate the posterior distribution. However, by applying the definition of conditional densities

to the posterior we obtain,

KL
(
qϕ(θ)||p(θ|y, d)

)
= E

[
log qϕ(θ)

]
− E

[
log p(θ, y|d)

]
+ log p(y|d), (3.5)

and by rearranging terms we can define a tractable lower bound to the marginal likelihood

or evidence, called the evidence lower bound (ELBO):

log p(y|d) = KL(qϕ(θ)||p(θ|y, d)) + E [log p(θ, y|d)]− E [log qϕ(θ)]

≥ E [log p(θ, y|d)]− E [log qϕ(θ)]

def
= ELBO (qϕ(θ))

(3.6)

.

Since log p(y|d) is fixed, we can see that maximizing the ELBO is equivalent to minimizing

the forward KL-divergence, which defined our original training objective. This derivation

illustrates the essential steps in developing variational methods: first defining a set of den-
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sities meant to approximate an intractable quantity of interest, second deriving a bound to

a training objective that characterizes the closeness of our variational approximation to the

true quantity, and finally optimizing this bound within the defined set. The ELBO is the

most widely used training objective when applying variational methods to Bayesian infer-

ence; however,in the next section we discuss bounds proposed in Foster et al. [2019] that are

designed for directly approximating the expected information gain. These bounds will be at

the center of our investigation.

3.3 Variational Inference for Bayesian Optimal Experimental Design

In this section we study three different estimators for the expected information gain: nested

Monte Carlo, the posterior estimator and variational nested Monte Carlo. In addition,

both nested Monte Carlo and variational nested Monte Carlo have alternative forms, which

change the nature of the bound and which we also study. We start by rewriting the expected

information gain in a form that will expose the motivation behind these estimators. First

we expand out the entropy terms from equation (3.3) writing everything as integrals with

respect to the counting or the Lebesgue measure, with out loss of generality:

EIG(d) = −
∫∫

p(y|d)p(θ) log p(θ) dy dθ +
∫∫

p(θ|y, d)p(y|d) log p(θ|y, d) dy dθ

= −
∫

p(θ) log p(θ) dθ +

∫∫
p(y|θ, d)p(θ)p(y|d)

p(y|d)
log p(θ|y, d) dy dθ

= −
∫∫

p(y|θ, d)p(θ) log p(θ) dy dθ +
∫∫

p(y|θ, d)p(θ) log p(θ|y, d) dy dθ

=

∫∫
p(y|θ, d)p(θ) log p(θ|y, d)

p(θ)
dy dθ

(3.7)

Rewriting this as an expectation and applying the law of conditional probability we then get
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these convenient forms for the EIG:

EIG(d) = Ep(θ,y|d)

[
log
(p(θ|y, d)

p(θ)

)]
(3.8a)

= Ep(θ,y|d)

[
log
( p(y, θ|d)
p(θ)p(y|d)

)]
(3.8b)

= Ep(θ,y|d)

[
log
(p(y|θ, d)

p(y|d)

)]
(3.8c)

Nested Monte Carlo: One common approach to approximating EIG is to use a nested

Monte Carlo (NMC) estimator [Myung et al., 2013, Vincent and Rainforth, 2017, Rainforth

et al., 2018]:

µ̂NMC =
1

N

N∑
n=1

log
p(yn|θn,0, d)

1
M

∑M
m=1 p(yn|θn,m, d)

(3.9)

where θn,m ∼ p(θ) and yn ∼ p(y|θn,0, d)

The intuition behind the NMC estimator is to use a Monte Carlo sample-based estimator

for the outer expectation (the N samples θn,0 and yn), and then estimate the denominator

in Eq. (3.8c) by generating a set of M “inner” or “nested” samples θn,m for each “outer”

sample n, and use these inner samples to marginalize over θ and estimate p(y|d). Rainforth

et al. [2018] showed that NMC is a consistent estimator converging as N,M −→ ∞. They also

showed that it is asymptotically optimal to set M ∝
√
N , resulting in an overall convergence

rate of O(T− 1
3 ), where T is the total number of samples drawn (i.e., T = NM for NMC).

However, this is much slower than the O(T− 1
2 ) rate of standard Monte Carlo estimators

[Robert and Casella, 1999], in which the total number of samples is simply T = N .

The slow convergence of the NMC estimator can be limiting in practical applications of

BOED. The inefficiency can be traced to requiring an independent estimate of the marginal

likelihood, p(yn|d), for each yn. Inspired by this idea, Foster et al. [2019] proposed to em-
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ploy techniques from variational inference by defining a functional approximation to either

p(θ|y, d) or p(y|d), and allowing these estimators to amortize across the samples of yn for

more efficient estimation of the EIG. In this thesis we focus on two of the four estimators

they proposed: the posterior estimator and variational nested Monte Carlo.

Posterior Estimator: The posterior estimator is an application of the Barber-Agakov

bound to BOED, which was originally proposed for estimating the mutual information in

noisy communication channels [Barber and Agakov, 2003]. It requires defining a variational

approximation qϕ(θ|y, d) to the posterior distribution, resulting in a lower bound to the EIG:

EIG(d) ≥ Lpost(d) ≜ Ep(θ,y|d)

[
log
(qϕ(θ|y, d)

p(θ)

)]
≈ 1

N

N∑
n=1

log
qϕ(θn|yn, d)

p(θn)
where yn, θn ∼ p(y, θ|d).

(3.10)

By maximizing this bound with respect to the variational parameters ϕ, we can learn a

variational form to efficiently estimate the EIG. A Monte Carlo estimate of this bound

converges with rate O(T− 1
2 ), and if the true posterior distribution is within the class of

functions defined by the form qϕ, the bound can be made tight (also dependent on the

optimization) [Foster et al., 2019]. To prove this as a lower bound one simplly has to consider

the difference between the EIG and the posterior estimtor, which results in the expectation

of a KL-divergence.

Variational Nested Monte Carlo: The second bound we discuss is variational nested

Monte Carlo (VNMC). It is closely related to NMC, but differs by applying a variational

approximation qϕ(θ|y, d) as an importance sampler to estimate the marginal likelihood term

in NMC:

EIG(d) ≤ UV NMC(d,M) ≜ E

log p(y|θ0, d)
1
M

∑M
m=1

p(y,θm|d)
qϕ(θm|y,d)

 , (3.11)
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where the expectation is taken with respect to y, θ0:M ∼ p(y, θ0|d)
∏M

m=1 qϕ(θm|y, d).

By minimizing this upper bound with respect to the variational parameters ϕ, we can learn

an importance distribution that allows for much more efficient computation of the EIG. Note

that if qϕ(θ|y, d) exactly equals the posterior distribution, the bound is tight and requires

only a single nested sample (M = 1). Even if the variational form does not equal the

posterior, the bound remains consistent as M −→ ∞. Finally, it is worth noting that by

taking qϕ(θ|y, d) = p(θ), the estimator simply reduces to NMC.

It was further shown by Foster et al. [2020] that VNMC can be easily made into a lower

bound by including θ0 (the sample from the prior) when estimating the marginal likelihood,

a method we denote as contrastive VNMC (CVNMC):

EIG(d) ≥ LCoV NMC(d,M) ≜ E

log p(y|θ0, d)
1

M+1

∑M
m=0

p(y,θm|d)
qϕ(θm|y,d)

 , (3.12)

where the expectation is again taken with respect to y, θ0:M ∼ p(y, θ0|d)
∏M

m=1 qϕ(θm|y, d).

We can also employ this same technique to regular NMC to estimate both lower and upper

bounds.

Note that the upper bound (3.11) and lower bound (3.12) are particularly useful when

evaluating the performance of methods in settings where ground truth is not available. In

these cases we can examine the bound pairs produced by NMC and by VNMC to assess

which set more tightly constrains the true value.

In the next chapter we propose a variational form that is capable of amortizing over designs to

greatly improve computational efficiency. Furthermore, this form encompasses a broad and

flexible family of probability densities, leading to superior approximation quality compared

to the forms proposed in Foster et al. [2019] and Foster et al. [2020].
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Chapter 4

Design Amortization for Bayesian

Optimal Experimental Design

In this chapter we build upon successful variational approaches, which optimize a parame-

terized variational model with respect to bounds on the EIG. Past work focused on learning

a new variational model from scratch for each new design considered. Here we present a

novel neural architecture that allows experimenters to optimize a single variational model

that can estimate the EIG across the design space, including potentially infinitely or con-

tinuously many designs. To further improve computational efficiency, we also propose to

train the variational model on a significantly cheaper-to-evaluate lower bound, and show

empirically that the resulting model provides an excellent guide for more accurate, but ex-

pensive to evaluate bounds on the EIG. We demonstrate the effectiveness of our technique

on generalized linear models, a class of statistical models that is widely used in the analysis

of controlled experiments. Experiments show that our method is able to greatly improve

accuracy over existing approximation strategies, and achieve these results with far better

sample efficiency.

35



4.1 Practical Considerations

We apply the same flexible mathematical framework for Bayesian optimal experimental

design discussed in Section 3.3 and proposed by Foster et al. [2019]. However, Foster et al.

[2019] adopted a “classical” variational distribution setting, in which the variational form

qϕ is selected to take a standard, parametric form. They found this approach effective, but

tested only on very simple design problems, with only one experimental unit at a time. Their

variational models only incorporate the design implicitly, requiring a separate optimization

for every design to be considered1. Unfortunately, as we show in the experiments this

approach is not effective on more complex design problems. Instead, we propose a far

more flexible, deep learning based distributional form that incorporates the design explicitly,

allowing us to amortize training across and apply our trained model to evaluation of all

(potentially continuously many) designs in our feasible set.

4.2 Method

We are interested in learning a parameterized function, qϕ(θ|y, d), for approximating the

posterior distribution. In this section, we describe our proposed deep learning architecture for

amortizing over designs, which allows practitioners to train a single model that is capable of

supporting estimates of the EIG over potentially infinitely many designs. We also discuss how

we can efficiently train this model using the (simpler and cheaper) equation (3.10), then use

the resulting approximation in the more accurate bounds provided by VNMC, (3.11)–(3.12),

combining fast, efficient training with the accuracy and asymptotic guarantees of VNMC.

This advances the work in Foster et al. [2019] by providing a highly flexible variational form

that can be used in a wide variety of contexts and an inexpensive procedure to train it.

1Although subsequent work [Foster et al., 2020] considered evolving both the design and distribution q
simultaneously, even that work remains focused on a single (if evolving) design.
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4.2.1 Neural Architecture

Figure 4.1 shows a high level representation of our architecture. Broadly, it consists of two

major components. The first is a learnable function for taking in the design variables d and

simulated experimental outcomes from the model, y, and producing a design context vector,

cy,d, that will be used to define a conditional distribution. We focus on the common case

where the experimental units lack any meaningful order and our learnable function must

therefore be permutation invariant. We can incorporate this inductive bias into our model

by making our function follow the general form of set functions proposed in Zaheer et al.

[2017]. In the sequel, we denote this component as our set invariant model. The second

major component is a learnable distribution conditioned on the design context produced by

the set invariant model. In this work we use conditional normalizing flows, which consist

of a base distribution and sequence of invertible transformations with tractable Jacobian

determinants to maintain proper accounting of the probability density through the transfor-

mations. Both the base distribution and transformations are learnable and conditioned on

the design context.

Set Invariant Model. It is often the case that the individual units being experimented on

do not posses an inherent ordering – for example, subjects in a randomized controlled clinical

trial, or the petri dishes used to grow our culture from the example in 2. Suppose we would

like to find the optimally informative design for an experiment with S experimental units,

where di and yi denote the design variables and simulated outcomes of unit i, respectively.

In this setting we want our design context to be invariant to permutations in its inputs, e.g.,

reordering the individuals in the trial should not change our results. Learning permutation

invariant functions is an active area of research [e.g., Bloem-Reddy and Teh, 2020]. In this

work we follow the general form proposed by Zaheer et al. [2017], where our set invariant
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Figure 4.1: A high-level schematic of our architecture for amortizing over designs. The first
component (left) takes in the design variables and simulated observations and produces a
design context, cy,d. In many experiments the individual units being experimented on are
exchangeable, thus we use a set invariant architecture. The second (right) is a conditional
normalizing flow, conditioned on the design context produced by the first component. To-
gether, they define our variational posteriors qϕ(θ|y, d), amortized over designs.

model is defined as,

cy,d = EmitϕEmit

[
S∑

i=0

EncϕEnc
(yi, di)

]
. (4.1)

In particular, we define two learnable functions. The set encoder EncϕEnc
(yi, di) takes as

input the design variables and simulated outcomes for each individual experimental unit.

Its output is an intermediary representation for each experimental unit, which are aggre-

gated together by summation; the permutation invariance of the sum ensures invariance of

the overall function. The aggregated representation is then passed through the set emitter

function EmitϕEmit
(·), which creates the final design context used in the conditional normal-

izing flow. In our experiments we find substantially improved performance using attention

layers [Vaswani et al., 2017] in the set encoder, which allows for interactions between the
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experimental units before aggregation. In this case we should denote our set encoder as

EncϕEnc
(yi, di|y−i, d−i) where y−i and d−i denote all simulated outcomes and design vari-

ables except for the ith unit.

Structuring our design encoder function in this way gives two major advantages. First,

permutation invariance does not need to be learned by the function since it is already present

by construction; this can make learning more efficient and reduces the total number of weights

via weight sharing. Second, the function is able to encode designs with a variable number of

experimental units, S, as long as the di and yi have the same size for all units.

Note that not all experimental design problems are permutation invariant in the experimental

units. For example, in some settings there could be a temporal component in the design

variables, in which case we could replace our set invariant function with an order-based

model such as a recurrent neural network.

Conditional Normalizing Flow. Normalizing flows define an expressive class of learnable

probability distributions, which have been used in generative modeling and probabilistic

inference [Papamakarios et al., 2021, Kobyzev et al., 2020]. The main idea of normalizing

flow based models is to represent a random variable θ as a transformation θ = T (x) of a

random variable x sampled from a base distribution p(x). The key property is that the

transformation T must be invertible and differentiable. This allows us to obtain p(θ) via a

change of variables,

p(θ) = p(x) | det JT (x)|−1 (4.2)

where x = T−1(θ) and det JT (x) is the determinant of the Jacobian at x. Both the trans-

formations and base distribution may have learnable parameters. This provides a highly

flexible class of distributions that can be both sampled and efficiently evaluated.

In our setting we would like to learn not just a single distribution, but rather a conditional
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distribution given design variables and experimental outcomes. This conditioning on d is key

to allowing us to amortize over all possible designs. To this end, we learn a sequence of K

conditional transformations Tϕi
(·|cy,d) and a conditional base distribution pϕ0(x|cy,d) which

together define our variational approximation to the posterior distribution amortized over

designs,

qϕ(θ|cy,d) = pϕ0(x0|cy,d)
K∏
i=1

| det JTϕi
(xi|cy,d)|−1, (4.3)

where θ = TϕK
◦TϕK−1

◦. . . Tϕ1(x0), with all transformations and base distribution conditioned

on the design context (4.1). The full architecture, including the set invariant model and

conditional normalizing flow is trained end-to-end.

4.2.2 Variational Posterior Training

The posterior estimator and the (contrastive) VNMC bounds all require learning a varia-

tional approximation to the posterior distribution. In both Foster et al. [2019] and Foster

et al. [2020] each bound was trained separately, learning its own variational approximation.

However in all cases the variational approximation produced by training one of the bounds

can be used for evaluating any other bound, since they all require only an approximate pos-

terior distribution. Ideally, we would like to train using only the posterior estimator since

it is much cheaper – a total cost of only O(N) – whereas both VNMC bounds have a total

cost of O(NM). However, it is not obvious that training on the (also less accurate) bound

should still provide good EIG estimates when used in the VNMC bounds. Our experiments

show that it is surprisingly effective across a broad range of models. Intuitively speaking,

this is possible because all bounds share the same optimum – the true posterior distribu-

tion. Moreover, because the posterior estimator takes its expectation with respect to the

model p(y, θ|d), the variational approximation qϕ(θ|y, d) will in general be wider than the

true posterior distribution, akin to variational inference using the “forward” Kullback-Liebler

(KL) divergence, and in contrast to the more commonly used “reverse KL” variational op-
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timization methods that result in underdispersed and mode-seeking optima. This property

also makes the posterior estimator’s qϕ an excellent choice for importance sampling (as in

VNMC), in which a too-narrow proposal distribution can lead to high variance in the impor-

tance weights, causing a small number of samples to dominate the estimator [Owen, 2013,

Chapter. 9].

4.3 Related Work

Our approach builds on the framework for BOED developed in Foster et al. [2019], which

proposed four variational bounds for estimating EIG. The framework itself is quite flexible,

capable of accommodating a wide variety of models (e.g., implicit vs explicit likelihoods),

sequential experimentation (of arbitrary batch size) and arbitrary variational forms q. How-

ever, their experiments were limited to only single experimental units, and used simple vari-

ational forms that cannot amortize over designs (requiring a separate training procedure for

each proposed design). In this work we propose a deep learning architecture which can easily

be scaled to approximate arbitrarily complex distributions. In addition, our architecture can

amortize over designs, allowing us to train a single variational model capable of estimating

the EIG for potentially infinitely or continuously many designs. We also show that we can

train our model using the cheaper posterior bound, then use its optimized approximate pos-

terior within the VNMC bounds for a more accurate final approximation. We show that,

using our proposed variational form, we can achieve highly accurate EIG estimates across

a spectrum of complex design problems. While a few other EIG approximations have been

proposed (see, e.g., Foster et al. [2019], Ryan et al. [2016]), in light of the experimental

results of Foster et al. [2019] we mainly compare our experimental performance relative to

NMC.
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4.4 Experiments

We perform three types of experiments: amortization, model and architecture experiments.

Our amortization experiment shows the dramatic increase in efficiency from amortization,

and better EIG estimation provided by our more complex variational forms compared to

those used in Foster et al. [2019]. Model experiments examine how the benchmark method,

NMC, breaks down as model complexity grows while our methods remain reliable for accu-

rately estimating the EIG. Architecture experiments measure the impact of key componets

in our variational approximation and serve as a guide to using our method effectively.

In all experiments we focus on estimating designs for different types of generalized linear

models (GLMs) [McCullagh and Nelder, 1989]. GLMs are a very common model class

used to analyze controlled experiments and are regularly used in applications of optimal

experimental design [Goos and Jones, 2011]. Our GLMs have the general pattern,

θ ∼ N (µp,Σp)

r = g−1(Dθ)

y ∼ Exponential Family Distribution(r).

(4.4)

Here, θ is a Np +1 dimensional parameter vector, where Np is the number of predictors (+1

for the intercept term). D is a NE × (Np + 1) design matrix, where NE is the number of

experimental units. The inverse link function, g−1, defines the type of GLM. Finally, µp and

Σp are the prior mean and covariance of the parameters. Our experiments cover six GLMs:

normal (known observation noise), normal unknown (unknown observation noise), logistic,

binomial, categorical and multinomial. For the normal model with known observation noise

we take σ = 1; for the normal model with unknown observation noise2 we use the prior

σ ∼ InverseGamma(ap, bp) with ap = bp = 3.5. For the binomial model, we assume 10

2In this case, the observation noise is included as the standard deviation in the normal distribution that
samples y.
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Figure 4.2: Comparing our method and the (non-amortized) variational form used by Foster
et al. [2019] on the normal (linear) model with 5 predictors and 5 on the diagonal of the
prior covariance (similar to the AB model in Foster et al. [2019]). For clarity we only show
the posterior estimator values. Our method is > 3× faster (293s vs. 920s) and significantly
more accurate. See text for further analysis.

random trials; we use 3 classes for the categorical model, and 10 trials and 3 classes for the

multinomial model. All experiments in the sequel are run for designs with 5 experimental

units. Our implementations made significant use of Pyro [Bingham et al., 2019] to implement

the inference procedures and NFlows [Durkan et al., 2020] to construct our conditional

normalizing flows. All training was done on a single Nvidia 2080TI and evaluation was done

on an Intel I7-9800X with 64 GB of RAM.

4.4.1 Amortization Experiments

While providing an excellent theoretical framework, from a practical point of view the vari-

ational forms used in Foster et al. [2019] are too simple to be effective on the GLM models

43



we consider. Additionally, their work required training a new variational model for every

design being approximated, while we propose a method that can amortize over designs. Our

closest model to those tested in Foster et al. [2019] is our normal (linear) model, similar to

their “AB model”; we can apply their variational form for the AB model in order to perform

a comparison. The variational form is:

qϕ(θ|y, d) = N (Ay,Σ), (4.5)

where the variational parameters are ϕ = {A,Σ} with A being a NE × (Np + 1) matrix and

Σ a (Np + 1) × (Np + 1) positive definite matrix. As we can see this form incorporates the

design d only implicitly, and so cannot amortize over designs. Recall that NE is the number

of experimental units and Np is the number of predictors (adding 1 for the intercept). We

train using the AdamW optimizer for 5000 steps with a learning rate of .001 with β0 = .9

and β1 = .999.

We set Np = 5 and Σp = 5I, i.e., diagonal with variance 5. We generate 50 random designs

with NE = 5 experimental units and compare the quality of EIG approximations given

by the posterior estimator as well as total wall clock time. The precise architecture and

training procedure we use are described in Section 4.4.4. Figure 4.2 shows the results of this

experiment: our method produces a much tighter lower bound that is highly correlated with

the true values; selecting the highest estimate would pick the design with highest true EIG

in the set. In contrast, the variational form used in Foster et al. [2019] yields a much looser

and less correlated bound, which would select the 6th best design if used. Moreover, our

method is more than 3× faster (293 seconds compared to 920 seconds), showing the benefit of

amortizing over designs. In fact, this speed-up understates how much more computationally

efficient our method is, given that it leaves us with a model that can estimate the EIG for

arbitrarily many designs without additional training. Training took 291 of our method’s 293

seconds; evaluating an additional 50 designs, then, would take virtually the same amount
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of time, compared to double the time required for the non-amortized approach. The non-

amortized training is prohibitively slow, and moreover, for our other GLM models it is often

not clear what variational form from Foster et al. [2019] could be applied; for these reasons,

in the rest of the experiments we compare only to standard NMC.

4.4.2 Model Experiments

In our model experiments we vary the GLMs in two ways: the number of predictors (not

including the intercept) and the diagonal components of the prior covariance (all off-diagonal

terms are zero). The number of predictors Np is varied from 1 to 5 and the diagonal of the

prior covariance varied in {1, 5, 25}. For the neural network architecture we use attention

layers for the set encoder, a residual network for the set emitter [He et al., 2016], a full rank

Gaussian distribution for the conditional base of the normalzing flow and four affine coupling

layers each parameterized with a residual network. The precise architecture and training

procedure we use are described in Section 4.4.4. In all experiments we train the variational

approximation using the posterior estimator. During training, new designs are generated

randomly from a multivariate normal distribution with identity covariance in dimension

Np + 1. For final evaluation we generate 50 new random designs and estimate the posterior

bound with N = 5000 samples, while the VNMC bounds are estimated with N = 1000 and

M = 31 samples and nested samples, and the NMC bounds are estimated with N = 30000

and M = 173 samples and nested samples. The number of samples for VNMC and NMC

were selected based on the maximum number of samples that fit into memory (64 GB RAM)

for the largest model (multinomial with 5 predictors).

Figure 4.3 shows EIG evaluations for 50 randomly generated designs for the 5 estimators:

posterior, VNMC upper, VNMC lower (contrastive VNMC), NMC upper and NMC lower

(contrastive NMC). Since this figure pertains to the linear model we can calculate the ground

truth EIG exactly, shown in solid black. For visual clarity we sort the designs in order of
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Figure 4.3: Results for estimating EIG in the linear model with known observation noise.
The x-axis ranges over the index of 50 randomly selected designs, each with 5 experimental
units. Due to the dimensionality, the designs lack a meaningful order; for visual clarity
we plot them in the sorted order of the true EIG. The rows vary the number of predictors
(Np ∈ {1, 5}) while columns show changes in the diagonal of the prior covariance matrix,
{1, 5, 25}, from informative to uninformative. NMC and VNMC methods can estimate both
upper and lower bounds, while the posterior estimator only provides a lower bound. Our
proposed method gives much tighter bounds on the truth than the competing NMC (with
167× fewer samples). The shading shows one standard deviation of our estimates over 20
runs.

ground truth EIG value. We see that all estimators perform reasonably well on the easiest

form of the model (1 predictor with unit prior covariance). However, even in this case the

VNMC bounds (upper and lower) more tightly constrain the ground truth – in fact both

are nearly exact. In addition the posterior bound (a lower bound) is consistently above the

NMC lower bound and closer to the truth. These trends become magnified as the prior

covariance and number of predictors increase. In all cases the VNMC bounds are nearly

exact, while the performance of NMC degrades rapidly with problem difficulty. Again, the
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Figure 4.4: Same as Figure 4.3, but for the linear model with unknown observation noise.

posterior estimator remains above and closer to truth than the NMC lower bound.

Figure 4.4 shows exactly the same set of experiments, but for the linear unknown model. In

this case we can calculate a high-quality Monte Carlo estimate of the ground truth thanks to

conjugacy, and sort the designs to be evaluated in order of this ground truth. The results are

largely consistent with those from the linear model with known observation noise: the VNMC

bounds constrain the ground truth much more tightly than the NMC bounds. However in

this case the posterior estimator is only above the NMC lower bound in the two hardest

cases (5 predictors and 5 or 25 diagonal covariance).

Figures 4.5, 4.6, 4.7 and 4.8 show the same set of experiments but for the logistic, binomial,

categorical and multinomial models. In none of these cases can we calculate ground truth,

so all plots order their designs by the benchmark NMC (upper). Even without ground truth

we still clearly see the lower and upper bounds of VNMC are much closer together and
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Figure 4.5: Same as figure 4.3, but for the logistic model. For this model we cannot compute
ground truth, but we can still infer superior performance for our methods by observing how
VNMC produces tighter bounds (both lower and upper) compared to NMC. Designs are
ordered on the x-axis via the baseline NMC.

below/above their NMC counterparts in practically all cases. One exception is the logistic

model, where as long as the model only contains one predictor variable, the NMC bounds are

as tight as the VNMC bounds; however by 5 predictors the VNMC bounds are tighter. In

fact the VNMC lower and upper bounds closely agree with each other in all cases, suggesting

they are also closely estimating the true EIG. We also see that the VNMC lower and upper

bounds are touching across all settings of the binomial model and all but the hardest in

the categorical and multinomial models (where they are still much tighter than NMC),

again suggesting that our VNMC estimators are nearly exact. The results for the posterior

estimator are more mixed – sometimes it is above (and presumably more accurate than)

the NMC lower bound, while sometimes it is below (and presumably worse). It is worth

noting, however, that since the VNMC estimates shown here use a variational distribution q
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Figure 4.6: Same as figure 4.3, but for the binomial model. For this model we cannot compute
ground truth, but we can still infer superior performance for our methods by looking at how
VNMC produces much tighter bounds, both lower and upper.

trained on the posterior estimator objective, the posterior estimator can be effective in this

role despite its uneven final estimate quality.

Our experiments show that training a single variational posterior, amortizing over designs,

we can calculate the EIG much more accurately than the competing NMC benchmark,

nearly calculating ground truth exactly. Moreover, the experiments show that training on the

posterior estimator can provide a variational distribution that remains effective for estimation

using the more costly VNMC bounds (see Section 4.2.2). Not only does VNMC provide far

more accurate estimates, it does so with many fewer samples – 1000 × 31, compared to

30000 × 173 for NMC, i.e., more than two order of magnitudes (167×) fewer samples than

NMC.
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Figure 4.7: Same as figure 4.3, but for the categorical model. For this model we cannot
compute ground truth, but we can still infer superior performance for our methods by looking
at how VNMC produces much tighter bounds, both lower and upper.

4.4.3 Architecture Experiments

We next investigate the importance of architectural decisions for the neural networks defining

qϕ(θ|y, d). We compare using attention layers vs. residual layers in the set encoder, and the

effect of the transform type and number in the normalizing flow. We compare using 4 vs. 8

transforms, and test affine coupling transforms [Dinh et al., 2017], rational quadratic (RQ)

splines [Durkan et al., 2019], and no transform (just the conditional base distribution). We

run all combinations for the linear unknown and binomial model with 5 predictors and 25

on the diagonal of the prior covariance. Note that the true posterior for the linear unknown

model is t-distributed, while the binomial is not analytically expressible, so we expect the

use of normalizing flows to be advantageous over just the normal base distribution. The rest

of the architecture components are the same as the Model Experiments and full details can
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Figure 4.8: Same as figure 4.3, but for the multinomial model. For this model we cannot
compute ground truth, but we can still infer superior performance for our methods by looking
at how VNMC produces much tighter bounds, both lower and upper.

be found in section 4.4.4.

Figure 4.9 shows the loss curves of the experiments for the linear unknown model. The inset

plot on the top right shows the loss curves across all epochs, while the main plot shows a detail

of the last 50 optimization steps. Each optimization step is run on a batch of 50 designs,

so this plot indicates final performance on 2500 randomly generated designs. Specifically

the loss is −
∑N

i=1 log qϕ(θi|yi, d) where yi, θi ∼ p(y, θ|d) and N = 50 – the cross entropy of

the variational posterior. Empirically, we see that using attention layers in the set encoder

is the most important architectural decision (lower 5 curves vs. upper); all networks using

attention layers achieved superior performance to all networks using ResNets regardless of

the other architectural settings. Beyond this, we see that using an affine coupling layer is also

important, but see little difference between 4 and 8 transform layers. Surprisingly, the RQ
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Figure 4.9: Results for our architecture experiments on the linear unknown model with 5
predictors and diagonal prior covariance 25. We vary the architecture of the set encoder
(attention vs. resnet), the normalizing flow transform type (affine coupling, affine spline, or
no transform), and the number of transforms (4 or 8). The main plot shows the loss for the
posterior estimator over the last 50 steps of training; each step is performed over a batch of
50 random designs (2500 designs total). The inset plot shows the loss curves over all 5000
training steps, indicating all architectures have converged. Further discussion is given in the
text.

transforms perform no better than having no transform. This is because the RQ transforms

are restricted to the range of (0, 1), with linear tails outside. Even after training, almost all

parameter samples are outside this range by the time they reach the spline; the linear tails

effectively skip the flow layers completely, explaining why its performance is comparable to

models with no transform layers. Figure 4.10 shows the performance of a subset of these

models at evaluating the EIG for 50 random designs, highlighting that the loss curves’ values

are directly related to the accuracy and sample efficiency of the EIG estimate. Figures 4.11

and 4.12 show the same plots for the binomial model and further support these conclusions.

52



Figure 4.10: Here we show that the loss values in figure 4.9 provide meaningful difference
in the quality of EIG approximation. For a subset of the architectures trained we estimate
the two VNMC based and the posterior bound using the same number of samples. We can
see that the architectures that achieved lower loss values during training achieve greater
estimation accuracy given the number of samples.

4.4.4 Full Architecture Details

For the design amortization experiments and the model experiments in sections 4.4.1 and

4.4.2 we used a common neural network architecture across all models types, which we specify

in detail for reproducibility. Note that, between all neural network layers described in the

sequel is a ReLU activation function.

For a given experimental design matrix D of size NE × (Np+1) we simulate from the model

the expected outcomes y, a vector of size NE. We concatenate these together to construct
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Figure 4.11: Same as figure 4.9, but for the binomial model.

an input matrix, C, of size NE × (Np + 1 + 1) to our Set Invariant Model. Each row of this

input matrix is then passed through an embedding network, which is a residual network with

two residual blocks of dimension 64 (we define a residual block as two linear layers where the

input to the first is added to the output of the second), creating an internal representation R

of size NE×120. We now pass R through two attention layers with 12 heads (head dimension

is 10). Each attention layer is followed by a dropout layer, then a linear projection with 32

dimensions and another dropout layer; each dropout layer has a dropout probability 0.1.

This completes the set encoder, creating an internal representation for each experimental

unit. These representations are then passed through the permutation invariant aggregator

function, for which we use summation.

Aggregation produces a single vector, regardless of the number of experimental units. This

representation is then passed through the Emitter Network of the Set Invariant Model. The

Emitter Network is simply a residual network with two residual blocks each with linear layers

of dimension 128. This completes the Set Invariant Model which creates the design context
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Figure 4.12: Same as in figure 4.10, but for the binomial model.

cy,d.

We next provide the details of our conditional normalizing flow, following the sampling

direction from the base distribution to the transforms. For the base distribution, we use

a full rank multivariate normal distribution conditioned on the design context cy,d. This

distribution is parameterized by a residual network with two blocks and linear dimension

of size 64. The last layer produces the mean vector of the normal distribution, and the

entries of a lower triangular matrix that represents the Cholesky decomposition of the the

covariance matrix. This lower triangular matrix is then left-multiplied with its transpose

to creating the covariance of the base distribution. We can sample from this distribution

straightforwardly.
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The samples are then passed through four conditional affine coupling layers (unless stated

otherwise in the chapter). Each affine coupling layer contains a residual neural network

consisting of two residual blocks with linear layers of dimension 128. The residual network

takes as inputs the samples produced from the base distribution, concatenated with the

context cy,d. The network outputs the parameters for an affine transformation that is applied

to the samples, which are then passed through a random permutation before the next affine

coupling layer. The final affine coupling layer outputs the samples θ from our variational

model qϕ(θ|y, d).

The forward procedure produces samples from our variational model, q(θ|y, d). In order to

evaluate q(θ|y, d) on samples simulated from the model, p(y, θ|d), we simply pass y and d

through the set invariant model to compute the design context, cy,d, and then pass the simu-

lated samples θ back through the inverse of the affine coupling layers to the base distribution,

which can be evaluated. This now defines both directions of our variational model.

This completes the architecture details used in the Model Experiments. In the architecture

experiments, we use the same architectural skeleton, but alter it as necessary. Specifically,

we test using a ResNet within the Set Encoder instead of the attention layers; this ResNet

consists of four residual blocks with linear layers of dimension 64. We also test using rational

quadratic coupling splines in place of the affine coupling layers; these spline transformations

also use ResNets with two residual blocks of 128 dimensions for the linear layers which output

the parameters of an RQ spline with 20 buckets and linear tails.

All models are trained with the AdamW optimizer [Loshchilov and Hutter, 2019] with a

learning rate of 5 × 10−4 and β0 = 0.9 and β1 = 0.999 for 5000 steps, where each step

consists of a batch of 50 randomly generated designs. During training we use the posterior

estimator to define the loss, and set N = 50 for the Monte Carlo estimator. We found no

meaningful variation over the random seeds.
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4.5 Conclusion

In this chapter we expand on the work of Foster et al. [2019], which proposed variational

bounds for estimating the EIG for Bayesian optimal experimental design. In particular we

propose a deep learning architecture incorporating set invariance and conditional normal-

izing flows that allows us to train a single model capable of estimating the EIG across the

design space. Our experiments show that this architecture is highly effective at estimating

EIG, and that design amortization provides significant computational speed ups. For cases

where ground truth can be calculated, our model’s VNMC bounds are nearly exact, while in

cases without ground truth our VNMC upper and lower bounds are often sufficiently tight

to suggest they are exact. These estimates are significantly more accurate than those of

standard NMC while requiring far (167×) fewer samples, as well as far more accurate and

efficient than the simpler, non-amortized variational forms used in Foster et al. [2019]. We

also demonstrate that we can train our model using the much cheaper posterior estimator

bound, with cost O(N), then evaluate using this fitted model within the more accurate but

costly VNMC bounds, O(NM). Together, we provide a method for faster and more accurate

approximation of the EIG across many possible designs. In the next chapter we extend our

approach to design optimization tasks.
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Chapter 5

Amortized Optimization for

Variational BOED

5.1 Introduction

In this chapter we focus on the problem of optimizing the EIG with respect to the design

variables. In any application of OED the experimenter is confronted with constraints that

determine the space of feasible designs, D, that can be run. The constraints may pertain to

the values of the design variables, d, that are allowed, the total number of experimental units

that can be used, the total cost of the experiment and many other constraints which reflect

the practical hurdles faced when operating an experiment. We seek to find the design that

optimizes the EIG over the feasible region. In this chapter, We show how the variational

form introduced in the preceding chapter facilitates the use of a wide variety of optimization

algorithms, making it possible for experimenters to apply and flexibly adapt variational

approaches to BOED to suit their specific needs. In particular we extend and improve

the state of the art optimization methods from Foster et al. [2020], and show how design

amortization can greatly improve the efficacy of “black box” optimization methods, which

may have significant benefits to experimenters in certain settings.
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We start in section 5.2 with a broad discussion of optimization algorithms, which we divide

into two broad categories. “Two stage” optimization algorithms first train a variational

model, which is then fixed and used to compute the evaluation objective in “black box”

methods such as the coordinate exchange algorithm and Bayesian optimization. Then, we

discuss algorithms that simultaneously optimize the variational parameters, ϕ, and design

variables, d, in particular a gradient based approach for optimizing both d and ϕ, and deep

adaptive design (DAD), an approach introduced in Foster et al. [2021] which is analogous to

applying reinforcement learning to BOED. DAD provides a competitive benchmark to test

our other methods. In Section 5.3 we extend the methods of Foster et al. [2020] and provide

experiments demonstrating our method’s improvements over the start of the art. Finally, in

Section 5.4 we show head to head experiments comparing the performance of all algorithms

discussed.

5.2 Optimization Frameworks for BOED

In general, there are two high-level paradigms for searching for an optimal design d. We can

perform a local optimization approach, in which we adapt d in very small ways, for example

estimating the gradient of the EIG with respect to the design d and taking a step (gradient-

based BOED). Or, we can propose more significant changes to d, altering one or more of the

experimental units in a non-local manner. Examples include the classic coordinate exchange

(CE) algorithm [Meyer and Nachtsheim, 1995b], and modern Bayesian optimization (BO)

[Frazier, 2018] techniques that use the history of evaluated designs to propose a new design

to evaluate. We call these methods two stage optimization, since the design evaluation

and optimization processes are effectively decoupled, iterating between the two steps of

proposing new design values and then evaluating them. Within these two frameworks, Foster

et al. [2020] suggests significant advantages for gradient-based optimization of designs. As
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discussed in the previous chapter, variational techniques for estimating the EIG operate by

training a variational distribution q to be used in the estimation process, and this training

processes can be a significant part of the computational cost. Further as the design changes

so too does the optimal choice of q; however, the small design updates of gradient methods

allows the previous q to be re-used as initialization, effectively amortizing the training of q

across the optimization path of the the designs. In contrast, the distant designs proposed

by two-stage methods change q in significant ways. However, using our design-amortized

model, we can share work across designs even in the two-stage setting, leading to significant

improvements.

5.2.1 Two Stage Optimization Algorithms

Our two-stage algorithms generally follow the pattern of first training a variational posterior,

qϕ(θ|y, d) that can be used to approximate the EIG over the entire set of feasible designs.

Subsequently this trained model can be used as the objective function in any applicable

optimization algorithm. Here, we consider the coordinate exchange algorithm (CE) and

Bayesian optimization (BO). Note that this framework can also support algorithms that use

gradient information, but we do not explore them here.

Coordinate Exchange Algorithm: The CE algorithm is widely used across OED, and

supported in many popular software libraries used in industry [Goos and Jones, 2011]. The

CE algorithm is based on searching local neighborhoods, starting with a random initial

design d, then iteratively traversing each component di and considering a predetermined

set of values for that component, selecting the value that achieves the highest EIG. The

algorithm terminates when an entire traversal is completed with no changes to the current

design settings, ensuring that we converge to a local maximum of the EIG. CE is often run

with multiple random starts. Although a relatively simple optimization method, the CE

algorithm also has some advantages: for example, the CE algorithm is the only algorithm
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we consider that works on discrete design variables with no adjustments. Although discrete

designs are frequently encountered in real world problems (e.g., categorical data), prior work

on variational methods for optimizing EIG has only considered continuous design variables

[Foster et al., 2020, 2021, Ivanova et al., 2021]. For a more detailed discussion on the CE

algorithm see [Meyer and Nachtsheim, 1995a, Goos and Jones, 2011, Chapter 2].

Bayesian Optimization: BO is a widely used class of optimization algorithms for objective

functions that are expensive to evaluate and may be noisy [Brochu et al., 2010]. It builds a

surrogate to the objective function, including a noise model capturing its confidence in the

surrogate function in different regions of the design space; Gaussian processes [Rasmussen

and Williams, 2005] are commonly used as surrogate functions. BO then defines an acquisi-

tion function that determines the next point in the design space to evaluate, and updates the

surrogate based on this evaluation. Note that the acquisition function used by BO is different

from the EIG, which is the objective we are trying to optimize. BO has been highly success-

ful and works well with multi-objective and multi-fidelity optimization problems [Frazier,

2018]. This is of particular importance for BOED, as there are often multiple criteria that

experimenters must consider when designing their experiments, and multi-fidelity techniques

can be used to tune the number samples for stochastic estimates of the objective (such as our

variational approaches) [Frazier, 2018]. BO techniques are also flexible, with the ability to

incorporate gradient information or be adapted to discrete optimization problems [Wu et al.,

2017, Luong et al., 2019]. Finally, there are many excellent software libraries for BO that can

be easily used by experimenters; in this work we use Balandat et al. [2020]. Thus, BO would

seem to be one of the most promising optimization algorithms for BOED. Although Foster

et al. [2020] concludes that BO is outperformed by gradient methods and is not competitive,

we show that by using design amortization, BO can be made as or more effective (both in

computational expense and accuracy) than the gradient based algorithms discussed in the

sequel.
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5.2.2 Gradient Based Algorithms

Gradient BOED: We discuss gradient-based BOED methods in detail in the next section,

including a generalization of the work in Foster et al. [2020] and experimental assessments.

Broadly, this class of algorithms apply stochastic gradient methods that simultaneously

optimize the variational parameters, ϕ, and design variables, d. Gradient-based BOED can

be very effective for optimizing continuous designs; moreover, with design amortization we

can optimize multiple starting designs using only a single variational model and optimization

process, significantly improving efficiency. The main drawback of gradient-based BOED is

that it is not applicable to discrete design variables, which can be common in practice. An

interesting direction for future work could be to study the applicability of straight-through

estimators and other relaxation techniques for discrete design variables.

Deep Adaptive Design: Proposed in Foster et al. [2021], deep adaptive design (DAD) takes

a different approach to optimizing the EIG. Instead of learning a variational approximation

to the posterior, qϕ(θ|y, d), it trains a model that takes as input a history of design observa-

tion pairs, (d1, y1), (d2, y2), . . . , (dt, yt) and outputs the next design, dt+1 under which to run

an experiment. It is trained on simulated trajectories of these histories, using bounds similar

to those in Chapter 4 as the loss function. Although training time can be significant, espe-

cially for longer trajectories, once trained DAD is very efficient at suggesting future designs.

Moreover, since it is trained on entire trajectories, it can learn to make non-myopic sequen-

tial design decisions, without requiring, e.g., backwards induction. Like gradient BOED, the

main drawback of DAD is that it can only be run for continuous design variables. Addi-

tionally, it is not clear how to handle many complex constraints. For example, consider a

budget constraint – although costs can be incorporated into the loss function, it is difficult

to ensure that the deep learning model does not recommend designs that go over budget. In

real experiments, the feasible region may be dictated by any number of practical constraints

that could be hard to enforce in the network outputs. Such issues are far more studied in the
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other algorithms (which have a much longer application history), but could make for inter-

esting future work on DAD. Ivanova et al. [2021] also extended DAD for implicit likelihood

models.

5.3 Generalizing Gradient Based BOED

Foster et al. [2020] proposed a stochastic gradient algorithm that simultaneously optimizes

the variational parameters, ϕ, and design variables, d. In that work, the authors showed

significant computational gains over two-stage approaches, placing gradient-based VBOED

as a state-of-the-art technique. In this section we discuss how their stochastic gradient

algorithm can be generalized when amortizing over designs. We first start by showing that

our variational distribution from Chapter 4, which incorporates designs explitcly, is far more

effective at estimating the EIG. We then analyze the impact of this change – specifically,

once q depends on the design, the gradient update to d is Foster et al. [2020] is no longer

correct, and we re-derive the correct gradients. This is followed by experiments that show

the efficacy and advantages of our generalized approach. In our experiments, we use the

same classes of GLM models evaluated in Chapter 4.

5.3.1 Evaluation for Fixed Designs

We first study the importance of including the design variables as input to the variational

model when estimating the EIG for a single, fixed design. For each GLM type we vary

the model in two ways: the number of predictor variables in the model (1 vs. 5) and the

number of experimental units in the design (1 vs. 5). We then select a design at random,

and train two different variational forms for estimating the EIG of the selected design: one

that includes the design variables as inputs, qϕ(θ|y, d) (labeled “Design Encoded”) and a

variational form that does not, qϕ(θ|y) (labeled “Design Not Encoded”). Otherwise, the
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Figure 5.1: Effects of directly encoding design variables as inputs to our variational posterior
on evaluation quality. We generate 15 random designs (x-axis) and train two variational
models to estimate its EIG: one that encodes d directly, and the other without access to
d. For each model, we plot the posterior estimator using 5000 samples. We can see that
for designs with one experimental unit, encoding d has little effect, but for designs with 5
experimental units, encoding d results in substantially better accuracy. We also vary the
number of predictors (columns) and find this has much less impact on estimation quality
than the number of experimental units. Error bars reflect one standard deviation over 20
runs.

variational forms are the same and as described in Kennamer et al. [2022]. Figure 5.1 shows

the posterior estimator for 15 randomly selected designs for each combination of number of

predictors and number of experimental units. We clearly see that both variational forms are

successful when the number of experimental units is one, but in the more complicated case

of evaluating designs with five experimental units, the variational form that directly encodes
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Figure 5.2: Same as figure 5.1, but for the logistic model.

the design variables performs substantially better than the form that does not. Figures 5.2,

5.3, 5.4, and 5.5 show the same experiment for the other GLM types. In the latter settings,

we cannot compute ground truth but can use the fact that the posterior estimator is a lower

bound to the EIG to gauge improvement. We again find that for a single experimental unit,

both variational forms perform similarly, but once the experimental units are increased to

five, the variational form that encodes the design performs substantially better across all

GLM types.

In principle, both variational forms should be able to perform well in this case, since we

are only trying to evaluate a single, fixed design. However, empirically we can see for

complex designs it is much easier to achieve good performance by directly encoding the

design variables. This suggests the importance of this modeling decision for any future work

developing variational forms for BOED, and also helps explain why we see much better

optimization performance from our generalized gradient algorithm compared to the gradient

training proposed in Foster et al. [2020].
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Figure 5.3: Same as figure 5.1, but for the binomial model.

0.5

0.6

0.7

0.8

EI
G(

D
es

ig
n)

N_Units=1 N_pred=1

0.6

0.7

0.8

N_Units=1 N_pred=5

Design

1.4

1.6

1.8

2.0

2.2

EI
G(

D
es

ig
n)

N_Units=5 N_pred=1

Design
1.0

1.5

2.0

2.5

3.0

N_Units=5 N_pred=5

Categorical Model (Single Fixed Design)

d Encoded
d Not Encoded

Figure 5.4: Same as figure 5.1, but for the categorical model.
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5.3.2 Unified Stochastic Gradients

For concreteness the following discussion is formulated with respect to the posterior esti-

mator; however it is easily adapted to other estimators like ACE. Foster et al. [2020] only

considered variational models of the form qϕ(θ|y), in which information about the design

is encoded implicitly in y due to forward sampling through the model: θ ∼ p(θ), then

y ∼ p(y|θ, d). In this paradigm, the assumption is that this indirect signal is strong enough

to effectively learn variational parameters ϕ that can be successful at evaluation and opti-

mization. However, as demonstrated in the preceding subsection, this assumption does not

hold as the complexity of the designs increases. Using variational models of this form, Foster

et al. [2020] derived gradients with respect to both ϕ and d, in which the gradients with

respect to d pass only through the likelihood, p(y|θ, d) (since the variational model is not

differentiable with respect to d).

In the preceding chapter we proposed variational models of the form qϕ(θ|y, d), directly

encoding the design variables as input into the variational model. We have seen that these

models are highly effective at estimating the EIG, both in settings in which we amortize over

many designs, and even evaluation of a single complex design. However, this form requires

us to re-derive the gradients from Foster et al. [2020] in order to incorporate the fact that

qϕ(θ|y, d) now explicitly depends on and is differentiable with respect to d.

We first consider the case where the likelihood, p(y|θ, d) can be re-parameterized with respect

to an independent random variable, i.e., we can write y = g(ϵ, d, θ) where ϵ ∼ p(ϵ). Then, we

obtain stochastic gradients of the posterior estimator [Kingma and Welling, 2013, Rezende

et al., 2014]:

∂Lpost

∂ϕ
≈ 1

N

N∑
n=1

∂

∂ϕ
log qϕ(θn|yn = g(ϵn, d, θn), d)

∂Lpost

∂d
≈ 1

N

N∑
n=1

∂

∂d
log qϕ(θn|yn = g(ϵn, d, θn), d)
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where ϵn, θn ∼ p(θ)p(ϵ).

Re-parameterized gradient estimators are typically lower variance than alternative approaches,

but is not always possible – say, when our likelihood is a discrete distribution. For this set-

ting, we derive a score function estimator for the gradients with respect to d [Schulman et al.,

2015].

∂Lpost

∂ϕ
≈ 1

N

N∑
n=1

∂

∂ϕ
log qϕ(θn|yn, d) (5.1)

∂Lpost

∂d
≈ 1

N

N∑
n=1

log qϕ(θn|yn, d)
∂

∂d
log p(yn|θn, d) +

∂

∂d
log qϕ(θn|yn, d) (5.2)

where yn, θn ∼ p(y, θ|d). These equations are direct generalizations of Eq. (9)–(10) in Foster

et al. [2020].

Generalizing the stochastic gradient algorithm of Foster et al. [2020] has two major advan-

tages. First, we can optimize many designs simultaneously using a single variational model,

whereas in Foster et al. [2020] each optimization process could optimize only a single design;

multiple starting points require completely separate runs. Multiple starts is a common tech-

nique in mathematical optimization, and we show that integrating it in a single run yields

significant computational savings. Second, our experiments show that directly encoding the

designs gives far better performance, both in evaluation and optimization, with increasing

benefits in more complex design spaces.

5.3.3 Gradient BOED Experiments

In these experiments we use the same GLM models from last chapter with 5 predictors and

either 1 or 5 experimental units. We then optimize the design in a feasible region where

each design variable can be varied continuously in the range [−1, 1]. This reflects a common

parameterization where design variables are linearly transformed to reside in a common

coded region [Goos and Jones, 2011, Montgomery, 2017]. For the linear models, we can
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Figure 5.6: We compare two stochastic gradient algorithms for simultaneously optimizing
the variational parameters ϕ and design variables d: the method proposed in Foster et al.
[2020] and our generalized version, both using the BA bound as the objective. We generate
50 random starting designs and optimize them in parallel with our generalized approach.
When not encoding d, we optimize the first 10 independently. For the linear GLMs we
report the ground truth EIG, while for other GLM types we use the VNMC and ACE upper
and lower bounds. Each designs consists of 5 experimental units. We see that our generalized
algorithm achieves much better optimization performance.

calculate the ground truth exactly and use this value to plot the EIGs of the optimized

designs. For the nonlinear models, we estimate the EIG using the VNMC and ACE bounds

(with 1000 and 31 outer and nested samples, respectively) from an independently trained

variational posterior amortized over the entire feasible region.

We compare our generalized stochastic gradient algorithm of Section 5.3 with its counterpart

proposed in Foster et al. [2020]. Both algorithms simultaneously optimize the variational

parameters and design variables using the BA bound; they differ in whether the variational

form includes the design variables as input and is differentiable to it: qϕ(θ|y, d) vs qϕ(θ|y).

We start with 50 random designs, which our generalized algorithm optimizes simultaneously.
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Model Type generalized grad (s/# d) grad (s/# d)

Linear 12.5 194.4
Linear Unk 12.4 195.3
Logistic 10.2 195.2
Binomial 10.4 200.4
Categorical 10.5 199.8
Multinomial 10.8 200.3

Table 5.1: Times for gradient BOED with d encoded vs d not encoded, Number of experi-
mental units = 5

When not including d, we must perform a separate run for each starting design; due to the

heavy computational burden, we elect to only optimize the first 10. For each GLM variant

with 5 experimental units in the design, Figure 5.6 shows the EIG of the starting designs

and the EIG of the final designs from both optimization algorithms, and Table 5.1 shows

the seconds per design for each optimization process. Figure 5.7 and Table 5.2 show the

corresponding plots for 1 experimental unit. From these experiments we see that with

more complex designs (more experimental units), only our generalized stochastic gradient

algorithm is able to optimize substantially above the initial designs, while the version of

Foster et al. [2020] fails to meaningfully optimize at all. In contrast, when only optimizing

designs with one experimental unit, both algorithms achieve roughly the same optimization

quality. In both cases our generalized version was much faster, with a roughly 40 − 45×

speed-up for designs with one experimental unit and 15 − 20× speed up for designs with 5

experimental units. Note that these numbers are dependent upon the number of starting

designs – as this number increases so does the efficiency of our proposed generalized stochastic

gradient algorithm.
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Figure 5.7: Here we compare two stochastic gradient algorithms for simultaneously optimiz-
ing the variational parameters ϕ and design variables d. The method proposed in Foster et al.
[2020], labeled “optimized no d” with our generalized version labeled “optimized with d”.
We generated 50 random starting designs (brown) and were able to optimize them in parallel
with our generalized approach and had to optimize them one at a time when not encoding
d (here we only optimized the first 10 random starts due to the computational burden).
For the linear based GLMs we could compute the ground truth of the EIG exactly and for
the other variants we used the VNMC and ACE upper and lower bounds. Each designs
consists of 1 experimental units and we can see both algorithms achieved roughly the same
performance. Contrasting this to figure 5.6 we can see using our generalized approach is very
important for complex designs with more experimental units and less so for simpler designs.
However our generalized approach does result in substantial computational savings in both
cases, see tables 5.2 and 5.1.

Model Type generalized grad (s/# d) grad (s/# d)

Linear 5.0 199.9
Linear Unk 5.0 209.5
Logistic 4.5 205.3
Binomial 4.6 202.3
Categorical 4.5 199.7
Multinomial 4.7 200.2

Table 5.2: Times for gradient BOED with d encoded vs d not encoded, Number of experi-
mental units = 1

71



Global Optima Experiments
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Figure 5.8: In this figure we show the results of our gradient-based algorithms for optimizing
the design when the global optima is known. We consider the linear model with 8 and 12
experimental units and show that our model successfully optimizes to the global optima.

For the case of the linear model where the number of experimental units is a multiple of 4
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that is greater than the total number of effects, the globally optimum design is known to be

the orthogonal array designs [Goos and Jones, 2011, Montgomery, 2017]. Figure 5.8 shows

the results of our optimization algorithm for the linear model with 5 predictors using 8 and

12 experimental units. We simultaneously optimize 50 designs and show that in both cases

we successfully optimize to the global optima.

5.4 Head-to-Head Experiments
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Figure 5.9: For designs of 5 experimental units we show the EIG of the optimized design
for each optimization algorithm. For the linear models we use the ground-truth EIG, while
for the others we use VNMC and ACE to compute lower and upper bound estimates of the
EIG. Error bars are one standard deviation estimates from 5 independent runs.

We now present head-to-head optimization experiments of all the algorithms discussed in

Section 5.2. For the two-stage methods (BO and CE), we first train a design-amortized

variational model using the posterior estimator. Once trained, we use the variational model
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Figure 5.10: Run times for each optimization algorithm from figure 5.9. Error bars represent
one standard deviation estimates from 5 independent runs for each optimization algorithm,
except for the gradient methods where multiple starting designs were optimized in parallel
using the same model.

and VNMC bound as the objective function to be optimized. For BO, we try two acquisition

functions: expected improvement (EI) and trust region Bayesian optimization (TURBO),

and test at three different fidelity levels: outer sample sizes N =300, 500, and 1000 (inner

sample size M is set to M =
√
N) [Frazier, 2018, Eriksson et al., 2019]. For CE we use

fidelity levels 300 and 500, and each run is trained with 3 random restarts with maximum

10 iterations for each trial. For the generalized stochastic gradient algorithm (Section 5.3)

we try 5000 and 10000 optimization steps with design learning rates of 0.1, 0.01, and 0.001.

We also compare to DAD using PCE as a our loss function [Foster et al., 2021] and train for

5000 steps. In order to keep the design suggested by DAD within the coded region of -1 to

1 we use the inverse hyperbolic tangent function at the last layer of its neural network (full

details of the network used are in Section ?? of the appendix to the chapter). As a baseline,
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we report the best design generated from a sequence of Sobol samples using the same number

of samples that was used by TURBO. Figure 5.9 shows the estimated EIG of the maximum

design for each optimization algorithm when optimizing over designs with 5 experimental

units, and Figure 5.10 shows the total time for each optimization algorithm, including the

time to train the variational model in the case of the two-stage methods. Each optimization

algorithm was run for 5 independent trials and we include one sigma error bars for each EIG

value (truth or estimator) computed. Figures 5.11 and 5.12 show the corresponding plots

when optimizing designs with one experimental unit.

With the exception of the Sobol sampling method, all optimization algorithms are reasonably

competitive with one another in terms of their best EIG design. When optimizing designs

with 5 experimental units, DAD under-performs all other methods for the binomial model,

while CE and BO are the top performers for the logistic and categorical models. We also

observe that for designs with one experimental unit, BO, CE and DAD are the fastest

performing methods, while gradient-BOED is somewhat slower (although this is dependent

upon the number of optimization steps). For designs with 5 experimental units, DAD is

consistently the fastest. One important observation is that the two-stage methods, BO and

CE, are competitive with the gradient based methods both in terms of optimization quality

and computational efficiency. This contradicts the experiments in Foster et al. [2020], which

showed major advantages for gradient-BOED. The difference is attributable to their lack

of design amortization when running two-stage algorithms, which is critical for remaining

efficient under large or non-local changes in the design. This result is very encouraging, since

gradient-based methods are less widely applicable in many real-world settings compared to

two stage algorithms (see Section 5.2).

Figure 5.10 shows the wall-clock times for our head to head experiments of designs with

5 experiment units. As discussed in the main text all algorithms (except Sobol) received

similar optimization performance with a slight edge to the CE algorithm for the logistic

75



and categorical model and with DAD performing noticeably worse on the binomial model.

However DAD consistently achieves the fastest run-time for all GLM variants in this setting.

Figures 5.11 and 5.12 show the corresponding plots for designs with one experimental unit.

Here we see in terms of optimization performance all algorithms (except Sobol) are compet-

itive in terms of optimization performance and with BO, CE and DAD achieving the fastest

run times.
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Figure 5.11: Here we show the EIG of the optimized design for each optimization algorithm
for designs consisting of 1 experimental unit. For the linear and linear unknown GLMs
we can calculate the EIG exactly, for the other GLM variants we use VNMC and ACE to
calculate lower and upper bound estimates of the EIG. Error bars are one standard deviation
estimates from 5 independent runs of each optimization algorithm.
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Figure 5.12: Run times for each optimization algorithm from figure 5.11. Error bars represent
one standard deviation estimates from 5 independent runs for each optimization algorithm,
except for the gradient methods where multiple starting designs were optimized in parallel
using the same model.
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5.5 Conclusion

In this work we demonstrate how design amortization yields significant benefits for varia-

tional methods in BOED. Our work builds on and extends that of Foster et al. [2020], which

proposed a stochastic gradient algorithm for simultaneously optimizing the variational pa-

rameters ϕ and design variables d. We generalize this approach to a variational approxima-

tion that amortizes over designs, allowing us to optimize multiple starts, and propagate the

design gradient through both the likelihood and variational approximation. Our approach

gives both improved performance and significant computational savings, especially when op-

timizing “harder” designs with multiple experimental units. In addition we show that design

amortization can significantly benefit two-stage optimization algorithms, where we first fit

a variational model to estimate the EIG over the entire space of feasible designs, then use

the resulting estimator in a wide variety of optimization algorithms, including discrete opti-

mization algorithms such as the coordinate exchange algorithm. Design amortization allows

two-stage algorithms to perform competitively compared to gradient methods, in contrast

to previous comparisons [Foster et al., 2020]. This finding is important in practice, since it

shows that variational methods can be used effectively in a wide variety of settings, includ-

ing experiments with discrete design variables, and multi-objective optimization problems.

This work builds on the variational forms proposed in the last chapter, extending them to

perform design optimization, rather than simply evaluation. Taken together, this and prior

work [Foster et al., 2019, 2020, 2021, Ivanova et al., 2021, Kennamer et al., 2022] provide

strong evidence of variational methods’ flexibility and effectiveness for BOED, so that these

methods merit serious consideration by researchers when designing their experiments.
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5.6 Appendix

Gradient Components

In our generalized gradient algorithm for simultaneously optimizing the variational parame-

ters, ϕ, and design variables, d, there are two gradient paths influencing the design variables.

The path through the likelihood, p(y|θ, d), and the path through the variational posterior,

qϕ(θ|y, d). We now try to understand the effects of these components on the optimization of d.

In figures 5.13, 5.14, 5.15, 5.16, 5.17, and 5.18 we plot the results of our generalized gradient

optimization algorithm using the BA bound considering three alternatives: taking gradients

through both the likelihood and variational posterior (labeled “model q diff”), taking gradi-

ents with respect to the design through just the likelihood (labeld “model diff”) and taking

gradients through just the variational posterior (labeled “d diff”). For each GLM variant we

try three different learning rates on the design variables of .1, .01 and .001 (columns) and

consider designs with 1 and 5 experimental unit(s) (rows) and train for 5000 steps. We can

see that in the majority of cases most of the optimization comes from the gradients that

come through the likelihood while the gradients coming through the variational posterior

contribute very little on their own. There are some note able exceptions to this, for the

binomial, categorical and multinomial models we see that only taking gradients through the

variational posterior results in better optimization performance when we use larger learning

rates.

We investigate this further using the linear model where ground truth can be calculated

analytically with little computational cost. In figure 5.19 we optimize 50 starting designs

and vary the number of experimental units between: 1, 5, 24, and 32 (rows of figure) for

1000 steps and compute the EIG of the optimized designs every 100 steps. We do this for

the case where we use gradients through both the likelihood and through the variational

posterior and for the case where we only use gradients through the likelihood to optimize
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the designs (columns of figure). We can see that for the cases with smaller number of

experimental units per designs (1 and 5) there is little difference between the two methods

however for the designs with larger number of experimental units (24 and 32) we see much

better performance, both in terms of rate of convergence and final optimization status, for the

case that we use gradients through both the likelihood and variational posterior to optimize

the design variables.

The two sets of experiments above suggest that in simpler cases it is probably fine to only

take gradients through the model provided we have tuned our learning rate correctly, but

both paths of the gradient signal become important as the complexity of the design variables

being optimized increases.
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Figure 5.13: Here we compare the effects of the possible gradient paths on design optimization
for the linear model. We consider taking gradients with respect to the design through both
the likelihood and variational posterior (labeled “model q diff”), through just the likelihood
(labeled “model diff”) and taking gradients through just the variational posterior (labeled
“d diff”). We vary both the number of experimental units per designs between 1 and 5 and
the learning rate used to optimize the design variables between 0.1, 0.01, and 0.001. We plot
ground truth EIG for the optimized and starting designs.

80



1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

EI
G

(d
es

ig
n)

LR=0.1 Num_Units=1 LR=0.01 Num_Units=1 LR=0.001 Num_Units=1

design

5

6

7

8

EI
G

(d
es

ig
n)

LR=0.1 Num_Units=5

design

LR=0.01 Num_Units=5

design

LR=0.001 Num_Units=5

Linear_unknown

starting
model_diff
q_diff
model_q_diff

Figure 5.14: Same as figure 5.13 for the linear unknown model.
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Figure 5.15: Same as figure 5.13 for the linear unknown model.
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Figure 5.16: Same as figure 5.13 for the binomial model. Here we cannot compute ground
truth so plot the the VNMC and ACE upper and lower bounds with 1000 outer samples and
31 nested samples.
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Figure 5.17: Same as figure 5.13 for the categorical model. Here we cannot compute ground
truth so plot the the VNMC and ACE upper and lower bounds with 1000 outer samples and
31 nested samples.
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Figure 5.18: Same as figure 5.13 for the multinomial model. Here we cannot compute ground
truth so plot the the VNMC and ACE upper and lower bounds with 1000 outer samples and
31 nested samples.

83



1.5

2.0

2.5

3.0

EI
G

(d
es

ig
n)

Nu
m

 U
ni

ts
: 1

Model Diff: True, Q Diff: True Model Diff: True, Q Diff: False

8

10

12

14

EI
G

(d
es

ig
n)

Nu
m

 U
ni

ts
: 5

14

15

16

17

18

EI
G

(d
es

ig
n)

Nu
m

 U
ni

ts
: 2

4

design

15

16

17

18

EI
G

(d
es

ig
n)

Nu
m

 U
ni

ts
: 3

2

design

Linear Design LR: 0.1

Figure 5.19: Here we optimize 50 starting designs for the linear model and vary the number
of experimental units between: 1, 5, 24, and 32 (rows of figure) for 1000 steps and compute
the EIG of the optimized designs every 100 steps (from purple to red). We do this for the
two cases: first we use gradients through both the likelihood and through the variational
posterior and for the case where we only use gradients through the likelihood to optimize
the designs (columns of figure). We plot ground truth EIG of each design.
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DAD Architecture

Given that in our experiments the experimental units within a design have no inherent

ordering we used a set invariant architecture of the form presented in Zaheer et al. [2017] for

our DAD network. It consists of an encoding network receiving as input a history of design

and observation pairs, (D1, y1), (D2, y2), . . . , (Dt, yt) whereDi is a matrix of shapeNE×Np+1

and yi is a vector of NE dimensions. for each time step the designs are concatenated with the

observations column wise and all time-steps are concatenated together row-wise. We first

use a residual embedding network with 2 residual blocks (2 linear layers with 64 neurons)

to encode each row to a vector of 120 dimensions. We then pass through this through 2

attention layers followed by dropout a linear projection with 32 neurons with a final dropout

layer (dropout prob of 0.1). This completes the set encoder giving a vector representation

for each row which are then aggregated together using the sum function. This aggregated

representation is passed through an emitter network, which is a residual network with 2

residual blocks where the final output layer is sized according to the number of design

variables and passed through the inverse tangent function constrain design variables within

the coded region between -1 and 1. To start the process, before any designs were run, we

follow the procedure from Foster et al. [2021] and encode the input as single vector of zeros

of size Np + 1 + 1 to match what will be the number of design variables and size of single

units output (1 in our case). In our experiments we consider only optimizing a single design

and set t = 0 meaning that our network always takes this zero vector as input.

85



Chapter 6

Active Learning for

Spectroscopic Follow Up

The researcher hoping to break new

ground in the theory of experimental

design should involve himself in the

design of actual experiments. The

investigator who hopes to revolutionize

decision theory should observe and

take part in the making of important

decisions.

George E. P. Box

In this chapter we discuss an applied active learning project to the field of astronomy. This

work was started in 2017 at the Cosmostastics Initiative’s (COIN) fourth resident program

in 2017 held in Clermont-Ferrand France. COIN is an organization aimed at fostering col-

laborations between scientists in the astrophysical sciences and in the statistical sciences

and has produced many successful interdisciplinary projects. This work is no exception and

has benefited from the expertise of a diverse group of scientist with specialities in observa-

tional astronomy, supernova physics, machine learning and statistics. My contributions to
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the project were centered around developing and implementing many of the active learning

techniques used in this work. This chapter is closely based on our published work in Ishida

et al. [2019] and Kennamer et al. [2020].

The chapter is organized by first introducing the problem and motivating the use of active

learning for spectroscopic follow up in section 6.1. We then discuss the dataset, feature

extraction and evaluation metrics for all experiments in sections 6.2 and 6.3. In section

6.4 we cover the various active learning strategies used throughout this project. Our early

work in Ishida et al. [2019] used rather simple active learning techniques and ignored some

important realistic constraints; this was done to reduce complexity as we built our pipeline

and began our initial investigation of active learning in this setting, which was very novel at

the time. We then expanded this initial investigation in Kennamer et al. [2020], adding in

a great deal of real world complexity while also investigating more advanced active learning

techniques. We present the experiments in this chapter in order of increasing complexity,

starting with the experiments in Ishida et al. [2019]: this begins with a static full light curve

analysis in section 6.5 followed by a real-time analysis in section 6.6 and finally examining

batch selection for fixed batch sizes in section 6.7. We then discuss the experiments of

Kennamer et al. [2020] in section 6.9, first discussing the additional real world constraints and

experimental design, and finally presenting our experimental results which incorporate all of

these constraints. We end with a concluding discussion in section 6.10. Code reproducing

this work can be found here 1

6.1 Introduction

The standard cosmological model rests on three observational pillars: primordial Big-Bang

nucleosynthesis [Gamow, 1948], the cosmic microwave background radiation [Spergel et al.,

1https://github.com/COINtoolbox/RESSPECT
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2007, Planck Collaboration et al., 2016], and the accelerated cosmic expansion [Riess et al.,

1998, Perlmutter et al., 1999] – with Type Ia supernovae (SNe Ia) playing an important role

in probing the last one. SNe Ia are astronomical transients that are used as standardiz-

able candles in the determination of extragalactic distances and velocities [Hillebrandt and

Niemeyer, 2000, Goobar and Leibundgut, 2011]. However, between the discovery of a SN

candidate and its successful application in cosmological studies, additional research steps are

necessary.

Once a transient is identified as a potential SN, it must go through three main steps: i) clas-

sification, ii) redshift estimation, and iii) estimation of its standardized apparent magnitude

at maximum brightness [Phillips, 1993, Tripp, 1998]. Ideally, each SN thus requires at least

one spectroscopic observation (preferably around maximum – items i and ii) and a series of

consecutive photometric measurements (item iii). Since we are not able to get spectroscopic

measurement for all transient candidates, soon after a variable source is detected a decision

must be made regarding its spectroscopic follow-up, making coordination between transient

imaging surveys and spectroscopic facilities mandatory. From a traditional perspective, tak-

ing a spectrum of a transient that ends up classified as a SNIa results in the object being

included in the cosmological analysis. On the other hand, if the target is classified as non-Ia,

spectroscopic time for cosmology is essentially considered “lost”2.

In the last few decades, a strong community effort has been devoted to the detection and

follow-up of SNe Ia for cosmology. Classifiers (human or artificial) on which follow-up de-

cisions are based have become increasingly efficient in identifying SNe Ia from early stages

of their light curve evolution – successfully targeting them for spectroscopic observations

[e.g. Perrett et al., 2010]. The available cosmology data set has grown from 42 [Perlmutter

et al., 1999] to 740 [Betoule et al., 2014] in that period of time. This success helped build

2This is strictly for cosmological purposes; spectroscopic observations are extremely valuable, irrespective
of the transient in question, though for different scientific goals.

88



consensus around the paramount importance of SNe Ia for cosmology. It has also encour-

aged the community to add even more objects to the Hubble diagram and to investigate the

systematic uncertainties which currently dominate the dark energy error budget [e.g. Conley

et al., 2011]. Henceforth, SNe Ia are major targets of many current - e.g. Dark Energy

Survey3 (DES), Panoramic Survey Telescope and Rapid Response System4 (Pan-STARRS)

- and upcoming surveys - e.g. Zwicky Transient Facility5 (ZTF) and the Rubin Observatory

Legacy Survey of Space and Time6 (LSST).

LSST will produce measurements of flux (brightness) within broad regions of the electro-

magnetic spectrum (filters). These photometric observations can be obtained in seconds to

minutes for all sources within the telescope field of view, in effect providing a snapshot of

that region of the sky at that moment in time. The survey is expected to cover the entire

southern sky every three days for a total period of ten years. Nevertheless, to obtain reliable

classifications, it is necessary to scrutinize each object with high resolution spectroscopic

observations. These allow the astronomer to identify the presence of individual chemical

elements, which facilitates assigning it to the correct group within the astronomical zoo.

This labeling process requires more telescope time (on the order of hours), a different type of

instrument, and sometimes significant effort from an experienced observational astronomer

who can reduce the data and translate it into a label. Although the availability of spectro-

scopic resources is also expected to increase during the next decade, it will always be orders

of magnitude lower than its photometric counterpart.

Full cosmological exploitation of wide-field imaging surveys necessarily requires a frame-

work able to infer reliable spectroscopically-derived features (redshift and class) from purely

photometric data. Provided a particular transient has an identifiable host, redshift can be

3https://www.darkenergysurvey.org/
4https://panstarrs.stsci.edu/
5http://www.ptf.caltech.edu/ztf/
6https://www.lsst.org/
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obtained before/after the event from the host observations (spectroscopic or photometric)

or even from the light curve itself [e.g. Wang et al., 2015]. On the other hand, classification

should primarily be inferred from the light curve7. This work concerns itself with the latter.

It is important to keep in mind that, regardless of the method chosen to circumvent these

issues, photometric information will always carry a larger degree of uncertainty than those

from the spectroscopic scenario. Photometric redshift estimations are expected to have

non-negligible error bars and, at the same time, any kind of classifier will carry some con-

tamination to the final SNIa sample. Nevertheless, if we manage to keep these effects under

control, we should be able to use photometrically observed SNe Ia to increase the statistical

significance of our results. The question whether the final cosmological outcomes surpass

those of the spectroscopic-only sample enough to justify the additional effort is still debat-

able. Despite a few reports in this direction using real data from the Sloan Digital Sky

Survey8 [SDSS - Hlozek et al., 2012, Campbell et al., 2013] and Pan-STARRS [Jones et al.,

2017], the answer keeps changing as different steps of the pipeline are improved and more

data become available. Nevertheless, there seems to be a consensus in the astronomical

community that we have much to gain from such an exercise.

The vast literature, with suggestions on how to improve/solve different stages of the SN

photometric classification pipeline, is a demonstration of the positive attitude with which

the subject is approached. For more than 15 years the field has investigated attempts relying

on a wide range of methodologies: colour-colour and colour-magnitude diagrams [Poznanski

et al., 2002, Johnson and Crotts, 2006], template fitting techniques [e.g. Sullivan et al., 2006],

Bayesian probabilistic approaches [Poznanski et al., 2007, Kuznetsova and Connolly, 2007],

fuzzy set theory [Rodney and Tonry, 2009], kernel density methods [Newling et al., 2011]

and more recently, machine learning-based classifiers [e.g. Richards et al., 2012a, Ishida and

7Although, see Foley and Mandel 2013.
8http://www.sdss.org/
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de Souza, 2013, Karpenka et al., 2013, Lochner et al., 2016b, Möller et al., 2016, Charnock

and Moss, 2017, Dai et al., 2017].

In 2010, the SuperNova Photometric Classification Challenge [SNPCC - Kessler et al., 2010]

summarized the state of the field by inviting different groups to apply their classifiers to the

same simulated data set. Participants were asked to classify a set of light curves generated

according to the DES photometric sample characteristics. As a starting point, they were

provided with a spectroscopic sample enclosing ∼ 5% of the total data set, and for which

class information was disclosed. The organizers posed three main questions: full light curve

classification with and without the use of redshift information (supposedly obtained from

the host galaxy) and an early epoch classification – where participants were allowed to use

only the first 6 observed points from each light curve. The goal of the latter was to access

the capability of different algorithms to advise on spectroscopic targeting while the SN was

still bright enough to allow it. A total of 10 groups replied to the call, submitting 13 (9)

entries for the full light curve classification with (without) the use of redshift information.

No submission was received for the early epoch scenario.

The models competing in the SNPCC were quite diverse, including template fitting, sta-

tistical modelling, selection cuts and machine learning-based strategies [see summary of all

participants and result in Kessler et al., 2010]. Classification results were consistent among

different methods with no particular model clearly outperforming all the others. The main

legacy of this initiative however, was the updated public data set made available to the

community once the challenge was completed. It became a test bench for experimenta-

tion, specially for machine learning approaches [Newling et al., 2011, Richards et al., 2012a,

Karpenka et al., 2013, Ishida and de Souza, 2013].

One particularly challenging characteristic of the SN classification problem, also present in

the SNPCC data, is the discrepancy between spectroscopic and photometric samples. In
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a supervised machine learning framework, we have no alternative other than to use spec-

troscopically classified SNe as training. This turns out to be a serious challenge, since the

training set is is over a different distribution of objects compared to the test set. Due to the

stringent observational requirements of spectroscopy, the distributions between spectroscopic

and photometric astronomical samples will never align. But the situation is even more dras-

tic for SNe, where the spectroscopic follow-up strategy was designed to target as many Ia-like

objects as possible. Albeit modern low-redshift surveys try to mitigate and counterbalance

this effect (e.g. ASASSN9, iPTF10), the medium/high redshift (z > 0.1) spectroscopic sam-

ple is still heavily under-represented by all non-Ia SNe types. Spectroscopic observations are

so time demanding, and the rate with which the photometric samples are increasing is so

fast, that the situation is not expected to change even with dedicated spectrographs [OzDES

- Childress et al., 2017]. This issue has been pointed out by many post-SNPCC machine

learning-based analysis [e.g. Richards et al., 2012a, Karpenka et al., 2013, Varughese et al.,

2015, Lochner et al., 2016b, Charnock and Moss, 2017, Revsbech et al., 2017]. In spite of the

general consensus being that one should prioritize faint objects for spectroscopic targeting,

as an attempt to increase representativeness [Richards et al., 2012a, Lochner et al., 2016b],

the details on how exactly this should be implemented are yet to be defined.

Thus the question still remains: how do we optimize the distribution of spectroscopic re-

sources with the goal of improving photometric SN identification? Or, in other words, how

do we construct a training sample that maximizes accurate classification with a minimum

number of labels, i.e., spectroscopically-classified SNe? The above question is similar in con-

text to that addressed by an area of machine learning called active learning [Settles, 2012,

Balcan et al., 2009, Cohn et al., 1996].

Active Learning (AL) iteratively identifies which objects in the target (photometric) sample

9http://www.astronomy.ohio-state.edu/ãssassin/index.shtml
10https://www.ptf.caltech.edu/iptf
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would most likely improve the classifier if included in the training data – allowing sequen-

tial updates of the learning model with a minimum number of labelled instances. It has

been widely used in a variety of different research fields, e.g. natural language processing

[Thompson et al., 1999], spam classification [DeBarr and Wechsler, 2009], cancer detection

[Liu, 2004] and sentiment analysis [Kranjc et al., 2015]. In astronomy, AL has been suc-

cessfully applied in multiple tasks: determination of stellar population parameters [Solorio

et al., 2005], classification of variable stars [Richards et al., 2012b], optimization of telescope

choice [Xia et al., 2016], static supernova photometric classification [Gupta et al., 2016], and

photometric redshift estimation [Vilalta et al., 2017]. There are also reports based on similar

ideas by Masters et al. [2015], Hoyle et al. [2016].

In this work, we show how active learning enables the construction of optimal training

datasets for SNe photometric classification, providing observers with a spectroscopic follow-

up protocol on a night-by-night basis. The framework respects the time evolution of the

survey providing a decision process which can be implemented from the first observational

nights –avoiding the necessity of adapting legacy data and the consequent translation be-

tween different photometric systems. As a case study, we focus on the problem of active

learning for the binary classification problem of Type Ia vs non-Ia, but the overall structure

can be easily generalized for multi-classification tasks.

6.2 Data

All experiments are conducted on the data released from the SNPCC. This is a simulated

data set constructed to mimic DES observations. The sample contains 20216 supernovae

(SNe) observed in four DES filters, {g, r, i, z}, among which a subset of 1103 are identified as

belonging to the spectroscopic sample. This subset was constructed considering observations

through a 4m (8m) telescope and limiting r-band magnitude of 21 (23.5) [Kessler et al., 2010].
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Figure 6.1: Comparison between simulated peak magnitudes in the SNPCC spectroscopic
(red - training) and photometric (blue - target) samples. Violin plots show both distributions
in each of the DES filters.

Thus, it resembles closely biases foreseen in a realistic spectroscopic sample when compared

to the photometric one. Among them, we highlight the predomination of brighter objects

(figure 6.1) with higher signal to noise ratio (SNR, figure 6.2), and the predominance of SNe

Ia over other SN types (figure 6.3). Hereafter, the spectroscopic sample will be designated

SNPCC spec and the remaining objects will be addressed as SNPCC photo.

6.3 Preprocessing and Metrics

6.3.1 Feature extraction

For each supernova, we observe its light curve, i.e., the evolution of brightness (flux) as a

function of time, in four DES filters {g, r, i, z}. For most machine learning applications,

this information needs to be homogenized before it can be used as input to a learning algo-
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Figure 6.2: Distribution of mean signal to noise ratio (SNR) in the SNPCC spectroscopic
(red - training) and photometric (blue - target) samples.

rithm11. There are many ways in which this feature extraction step can be performed: via

a proposed analytical parametrization [Bazin et al., 2009b, Newling et al., 2011], compar-

isons with theoretical and/or well-observed templates [Sako et al., 2008] or dimensionality

reduction techniques [Richards et al., 2012a, Ishida and de Souza, 2013]. The literature has

many examples showing that, for the same classification model, the choice of the feature

extraction method can significantly impact classification results [see Lochner et al., 2016b,

and references therein].

In what follows, we use the parametrization proposed by Bazin et al. [2009b],

f(t) = A
e−(t−t0)/τf

1 + e(t−t0)/τr
+B, (6.1)

where A, B, t0, τf and τr are parameters to be determined. We fit each filter independently

11Exceptions include algorithms able to deal with a high degree of missing data [e.g. Charnock and Moss,
2017, Naul et al., 2018].
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Figure 6.3: Populations of different supernova types in the SNPCC spectroscopic (training)
and photometric (target) samples. The spectroscopic sample holds 599 (51%) Ia, 144 (13%)
Ibc and 400 (36%) II, while the photometric sample comprises 4326 (22%) Ia, 2535 (13%)
Ibc and 12442 (65%) II.
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Figure 6.4: Example of light curve fitted with the parametric function of Bazin et al. [2009b]
- equation (6.1). The plot shows measurements for a typical well-sampled type Ia at redshift
z ∼ 0.20, in each one of the 4 DES filters (dots and error bars) as well as its best fitted
results (lines).

in flux space with a Levenberg-Marquardt least-square minimization [Madsen et al., 2004].

Figure 6.4 shows an example of flux measurements, corresponding errors and best-fit results

in all 4 filters for a typical, well-sampled, SN Ia from SNPCC data.

Although not optimal for such a diverse light curve sample, the parametrization given by

equation (6.1) was chosen for being a fast feature extraction method. Moreover, as any

parametric function, it returns the same number of parameters independently of the number

of observed epochs, which is crucial for dealing with an inhomogeneous time-series which

changes on a daily basis. We stress that a more flexible feature extraction procedure still

holding the characteristics described above would only improve the results presented here.
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6.3.2 Metrics

Our choice of a metric to quantify classification success goes beyond the use of classical

accuracy (equation (6.2)) – especially when the populations are unbalanced (figure 6.3). In

order to optimize information extraction, this choice must take into account the scientific

question at hand.

In the traditional SN case, the goal is to improve the quality of the final SNIa sample for

further cosmological use. In this context, a false negative (a SNIa wrongly classified as non-

Ia) will be excluded from further analysis posing no damage on subsequent scientific results.

On the other hand, a false positive (non-Ia wrongly classified as a Ia) will be mistaken by

a standard candle, biasing the cosmological analysis. Thus, purity (equation (6.4)) of the

photometrically classified SNIa set is of paramount importance. At the same time, we wish

to identify as many SNe Ia as possible (high efficiency – equation (6.3)), in order to guarantee

optimal exploitation of our resources. Taking such constraints into consideration, Kessler

et al. [2010] proposed the use of a figure of merit which penalizes classifiers for false positives

(equation (6.5)). Throughout our analysis, classification results will be reported according

to these 4 metrics:

accuracy =
Nsc

Ntot

, (6.2)

efficiency =
Nsc,Ia

Ntot,Ia

, (6.3)

purity =
Nsc,Ia

Nsc,Ia +Nwc,nIa

, (6.4)

figure of merit =
Nsc,Ia

Ntot,Ia

× Nsc,Ia

Nsc,Ia +WNsc,nIa

, (6.5)

where Nsc is the toal number of successful classifications, Ntot the total number of objects in
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the target sample, Nsc,Ia the number of successfully classified SNe Ia (true positives), Ntot,Ia

the total number of SNe Ia in the target sample, Nwc,nIa the number of non-Ia SNe wrongly

classified as SNe Ia (false positives) and W is a factor which penalizes the occurrence of false

positives. Following Kessler et al. [2010] we always use W = 3.

In the AL framework we propose, the metrics above are used to quantify the classification

results in the target sample. They were calculated after the classifications were performed

and had no part in the decision making algorithm (further details in Section 6.4.

6.4 Active Learning

The label constrained environment described above is a prime candidate to benefit from

active learning. However due to real world constraints there are a number of practical chal-

lenges that are often not considered in other studies of active learning. First, the population

that can be spectroscopically observed will always differ from the target population. This

requires active learning to perform well when the pool set (the set that can be queries) is

not representative of the validation and test sets. Second, we must choose to label a light

curve before fully observing it – since the object must be observed near maximum brightness.

Finally we must also include non-constant costs in the selection of our batch sizes. Most

active learning strategies assume constant costs and thus restrict the queried batch to a fixed

size per iteration – these are known as cardinality constraints. In our case, each object has

a different cost (time necessary to get a label) and our total budget is constrained by the

number of hours of spectroscopic telescope time available per night. These are known as

knapsack constraints and have been studied in the context of discrete optimization Krause

et al. [2008], Krause and Golovin [2014]. These challenges make our work an excellent case

study to stress test how standard and commonly used active learning algorithms hold up to

real world conditions and using modern machine learning classifiers. These contraints will
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Figure 6.5: Schematic illustration of the Active Learning (AL) workflow in the context of
photometric light curve classification. Starting at the top left, the training set (spectroscopic
sample, grey circles), is used to train a machine learning model; the resulting model is then
applied to the unlabelled data (photometric light-curves, yellow pentagons). This initial
model returns a classification for each data point of the unlabelled set (now represented as
red squares and blue triangles). The AL algorithm is then used to choose a data point from
the unlabelled data with highest potential to improve the classification model (identified by
the grey arrow). The label of this point is then queried (a spectrum is taken). Once the true
label of the queried point is known, it is added to the training set (converted into a grey
circle), and the process is repeated.

100



be further studies in section 6.9.

We formulate our problem in terms of pool-based active learning pictorially represented in

figure 6.5, coupled with uncertainty sampling driven techniques Settles [2012].

In the first set of experiments from Ishida et al. [2019] we employed uncertainty sampling

on a single random forest classifier with 1000 trees. For each query-able light curve the

classifier outputs its probability estimate of it being a Type Ia supernova and we queried

the object with probability closest to 0.5 (most uncertain). This simple choice of classifier

and AL strategy was useful to reduce complexity as we implemented the pipeline and ran

experiments on this new application for active learning. In Kennamer et al. [2020] we added

a great deal of complexity taking into account more realistic constraints and employing more

advanced AL methods, which are described below.

Specifically we used query by committee by performing bagging over a random forest classi-

fier Freund et al. [1997], Seung et al. [1992], Breiman [1996]. Query by committee is a known

active learning strategy that invokes a set of classifiers (committee) for each object’s label

estimation. In this context, the queried object will be the one that exhibits strong disagree-

ment between the members of the committee. In bagging, the training data is sub-sampled

with replacement and each subset is used to train a different model (using Random Forests)

– each of these models is then considered a member of the committee. The criteria used

to quantify the disagreement between the output of committee members is called a query

selection strategy. In all experiments presented here we considered a committee of size 10,

each composed of 100 trees, and only varied the query selection strategy.

Let (x, y) denote feature and label pairs where in our case x corresponds to the concatenated

best fit parameters (Equation (6.1)) for the 4 DES filters, measured from a single object and

y is a binary label identifying Ia/non-Ia SNe. Let Pθ(y|x) denote the predictive probability

output from a single committee member, where θ encompasses the parameters of the learning
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model. Since each member of the committee generates a predictive probability over the

estimated class, we can define the average committee predictive probability as

PC(y|x) =
1

NC

∑
c

Pθc(y|x), (6.6)

where NC is the committee size and the sum runs over all committee members. We use this

distribution to build all other selection strategies.

One of the most common selection strategies is the soft vote entropy Settles [2012]. In infor-

mation theory, entropy measures the expected (average) amount of information uncovered

by identifying the outcome of a random trial MacKay et al. [2003]. In this context, if a given

object has a high probability of belonging to a given class, it is unlikely that labeling it will

add new information to the model. On the other hand, if an object has equal probability of

belonging to all possible classes, labeling it will uncover currently missing information and

certainly improve our model. Considering the prediction of each committee member as a

vote, this strategy will choose to query the object with highest entropy among all committee

members. Mathematically, we have

x∗ = argmax
x

(
−
∑
y

PC(y|x) logPC(y|x)

)
, (6.7)

where x∗ is the queried object.

We also use the average Kullback-Leibler (KL) divergence between the individual committee

members and the average committee probability as a query selection strategy Kullback and

Leibler [1951], Settles [2012],

x∗ = argmax
x

(
1

NC

∑
c

KL(Pθc(y|x)||PC(y|x))

)
. (6.8)
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Thus, selecting the objects with the most disagreement among the committee members.

This selection strategy is equivalent to the one defined by Bayesian Active Learning by

Disagreement (BALD) Houlsby et al. [2011].

6.4.1 Batch Strategies

The query strategies described above target one individual object per active learning cycle.

When moving to batch queries (targeting multiple objects per night), these strategies can

face serious challenges, such as querying redundant data points Settles [2012]. The problem

of querying diverse batches can typically be framed as a discrete optimization problem and is

known to be computationally challenging. However, in practical applications, selecting mul-

tiple queries at a time is a requirement. Here we assume constant cost of acquisition across

all data points; this requirement will be relaxed in the next subsection. An efficient approach

if the query selection strategy is monotonic submodular, is to use a greedy algorithm which

provides batches with a (1 − 1/e) approximation to the optimal solution Nemhauser et al.

[1978], Krause et al. [2008]. Both of the query strategies given above are monotonic submod-

ular Kirsch et al. [2019]. While in Kirsch et al. [2019] this technique was called BatchBALD,

we refer to it as BatchKL since our technique for approximating the disagreement region is

not Bayesian.

Let the sets x1, ..., xb and y1, ..., yb be denoted as x1:b and y1:b, where b is the batch size.

Using the definition of mutual information, I, for two sets of random variables we have,

I(y1:b, θ|x1:b,Dtrain) = H(y1:b|x1:b,Dtrain)− Ep(θ|Dtrain)H(y1:b|x1:b, θ,Dtrain), (6.9)

where H refers to the entropy, Dtrain the training data and E is an expectation. The mutual

information can be seen as the intersection of the information content between two sets of

random variables Yeung [1991]. This strategy accounts for overlaps in the information con-
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tent between different data points, x1:b, and model parameters, θ. By accounting for these

overlaps we can avoid querying redundant data points. This function is monotonic submod-

ular and thus, when optimized with a greedy algorithm, provides a (1− 1/e) approximation

to the optimal solution Kirsch et al. [2019]. We use equation (6.9) to define the BatchKL

strategy as:

x∗
1:b = argmax

x1:b

I(y1:b, θ|x1:b,Dtrain). (6.10)

Note that the first term on the right hand side of equation (6.9), the joint entropy, is also

monotonic submodular. We use it to define the strategy we call BatchEntropy:

x∗
1:b = argmax

x1:b

H(y1:b|x1:b,Dtrain). (6.11)

In addition to these two batch strategies we will also test a strategy that takes the top b

points from equation (6.7). We will refer to this strategy as Uncertainty Sampling Entropy

(USE).

6.4.2 Non-Constant Cost

As mentioned, each object in our pool sample has a different cost (in our setting, the telescope

time required for labeling). In addition, our budget (in terms of telescope time) is very

limited and needs to be used as efficiently as possible. We assume we have access to 6 hours

of observation in 4m-class telescopes and 6 hours in 8m-class telescopes per night. The batch

strategies defined in the last section assumed cardinality constraints where all objects had

identical costs. We now consider the case where each object has different cost and we have

a fixed budget each night (knapsack constraints [see, e.g., Krause and Golovin, 2014]). We

show results where we fill up objects to each telescope, without considering their individual

cost, until the budget of each telescope is full. We first assign objects to the 4m telescope
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until the budget is exhausted, at which point objects are assigned to the 8m telescope. We

also tested strategies where we scale the query metrics by the cost of each object and greedily

select objects after scaling12. However, we do not include these results as they were nearly

identical to the simpler approach.

6.5 Static Full Light Curve Analysis

We begin by applying the complete framework described in the previous subsections to

static data. This is the traditional approach, where we consider that all light curves were

completely observed at the start of the analysis. Although this is not a realistic scenario

(one cannot query, or spectroscopically observe, a SN that has already faded away), it gives

us an upper limit on estimated classification results.

For each light curve and filter, all available data points were used to find the best-fit param-

eters of equation (6.1) following the procedure described in section 6.3. Best-fit values for

different filters were concatenated to compose a line in the data matrix. In order to ensure

the quality of fit, we considered only SNe with a minimum of 5 observed epochs in each

filter; this reduced the size of our spectroscopic and photometric samples to 1094 and 20193

objects, respectively.

Sub-samples

The iterative framework presented above corresponds to the AL strategy for choosing the

next object to be queried. In this description, we have 2 samples: labelled and unlabelled.

In case we wish to quantify the performance of the ML model after each iteration, the

recently re-trained model must be used to predict the classes of objects in a third sample

–one that did not take part in the AL algorithm. Classification metrics are then calculated,

12For more detail on these approaches see Krause [2008], Chapter 5.
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Figure 6.6: Evolution of classification results as a function of the number of queries for the
static full light curve analysis.

after each iteration, from predictions on this independent sample. In this scenario we need 3

samples: training, query, and target. The query sample corresponds to the set of all objects

available for query upon which the model evolves13. On the other hand, the target sample

corresponds to the independent one over which diagnostics are computed. In the results

presented in this sub-section, SNPCC photo was randomly divided into query (80%) and

target (20%) samples.

Finally, we quantified the evolution of the classification results when new objects are added

to the training sample according to the canonical spectroscopic follow-up strategy, by con-

structing a pseudo-training sample. For each element of SNPCC spec, we searched for its

13Not to be confused with the set of queried objects, which comprises the specific objects added to the
training set (1 per iteration).
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nearest neighbour in SNPCC photo14. This allowed us to construct a data set which follows

very closely the distribution in the parameter space covered by the original SNPCC spec.

Thus, randomly drawing elements to be queried from this pseudo-training sample is equiv-

alent to feeding more data to the model according to the canonical spectroscopic follow-up

strategy.

Results

In this section we present classification results for the static full light curve scenario according

to three spectroscopic targeting strategies: canonical, passive learning and active learning

via uncertainty sampling. In all three cases, at each iteration one object is queried and

added to the training sample. We allow a total of 1000 queries, almost doubling the original

training set.

Figure 6.6 shows how classification diagnostics evolve with the number of queries. The red

inverse triangles describe results following the canonical strategy (random sampling from

the pseudo-training sample), yellow circles show results from passive learning (random sam-

pling from the query sample), and blue triangles represent results for AL via uncertainty

sampling. We notice that the canonical spectroscopic targeting strategy does not add new

information to the model – even if more labelled data is made available. Thus there is al-

most no change in diagnostic results after 1000 queries. On the other hand, the canonical

strategy is very successful in identifying SN Ia (approximately 92% efficiency); however, by

prioritizing bright events, it fails to provide the model with enough information about other

SN types. Consequently, its performance in other diagnostics is poor (∼ 60% accuracy, 36%

purity and a figure of merit of 0.15). At the same time, passive learning and AL via un-

certainty sampling show very similar efficiency results up to 400 queries. Accuracy levels

14This calculation was performed in a 16 dimensions parameter space: type, redshift, simulated peak
magnitude, and mean SNR in all 4 filters. For all the numerical features we used a standard euclidean
distance.
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Canonical Passive learning AL: Uncertainty sampling
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Figure 6.7: Simulated i-band peak magnitude distribution as a function of the number of
queries for the static full light curve scenario. The yellow (blue) region shows distribution for
the training (target) samples, while the red curves denote the composition of sample queried
by AL. Lines go through 10 to 900 queries (from top to bottom). Different columns corre-
spond to different learning strategies: canonical, passive and active learning via uncertainty
sampling (from left to right).

stabilize quickly (84%/87% after only 200 queries), followed closely by purity results (73%

after 600 queries). The biggest difference appears on efficiency levels. We can recognize an

initial drop in efficiency up to 400 queries. This is expected, since both strategies prioritize

the inclusion of non-Ia objects in the training sample: passive learning simply led by the

higher percentages of non-Ia SNe in the target sample (figure 6.3), and AL by aiming at

a more diverse information pool. This implies that high accuracy and purity levels are ac-
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Figure 6.8: Evolution of the classification results as a function of the survey duration for the
time-domain AL considering the SNPCC training set as completely given in the beginning
of the survey.

companied by a decrease in efficiency (from 92% to 68% at 200 queries). After a minimally

diverse sample is gathered, passive learning continues to lose efficiency, stabilizing at 63%

after 700 queries, while AL is able to harvest further information to stabilize at 72% after 800

queries. Thus, after 1000 new objects were added to the training sample, passive learning

achieves a figure of merit of 0.32 (2.1 times higher than canonical), while AL via uncertainty

sampling achieves a figure of merit of 0.39 (2.6 times higher than canonical).

Figure 6.7 illustrates how the distribution of peak i-band magnitude in the set of queried

elements evolves with the number of queries. For the sake of comparison, we also show the

static distributions for the training (yellow) and target (blue) samples. As expected, the

canonical strategy consistently follows the spectroscopic sample distribution. Meanwhile,
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passive learning completely ignores the existence of the initial training –consequently, its

initial queries overlap with regions already covered by the training sample, allocating a

significant fraction of spectroscopic resources to obtain information already available in the

training. The AL strategy, even in very early stages, takes into account the existence of

the training sample, focusing its queries in the region not covered by training data (higher

magnitudes). At 900 queries, the set of queried objects chosen by passive learning (red

line, middle column) follows closely the distribution found in the target sample (blue), but

this does not translate into a better classification because the bias present in the original

training was not yet overcome. On the other hand, the discrepancy in distributions between

the target sample (blue region) and the set of objects queried by AL (red line, right-most

column) at 900 queries is a consequence of the existence of the initial training15. The fact

that AL takes this into account is reflected in the classification results (figure 6.6).

These results provide evidence that AL algorithms are able to improve SN photometric clas-

sification results over canonical spectroscopic follow-up strategies, or even passive learning

in a highly idealized environment16. However, in order to have a more realistic description of

a SN survey, we need to take into account the transient nature of the SNe and the evolving

aspect of an observational survey.

Although we chose to illustrate non-representativeness between samples in terms of peak

brightness in different bands (e.g. figures 6.1, 6.7 and 6.12), these features are absent in the

input data matrix. Our goal is to emphasize that the underlying astrophysical properties are

tracked differently by the AL and passive learning strategies – even if these are not explicitly

used.

15The reader should keep in mind that after 1000 queries the model is trained in a sample containing the
complete SNPCC spectroscopic sample added to the set of queried objects.

16A result already pointed out by Gupta et al. [2016].
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6.6 Real Time Analysis

In this section, we present an approach to deal with the time evolving aspect of spectroscopic

follow-ups in SN surveys. This is done through the daily update of:

1. identification of objects allocated to query and target samples,

2. feature extraction and

3. model training.

We begin considering the full SNPCC spectroscopic sample completely observed at the begin-

ning of the survey; this allows us to have an initial learning model. Then, at each observation

day d, a given SN is included in the analysis if, until that moment, it has at least 5 observed

epochs in each filter. If this first criterion is fulfilled, the object is designated as part of the

query sample if its r-band magnitude is lower than or equal to 24 (mr ≤ 24 at d); otherwise,

it is assigned to the target sample17. Figure 6.9 shows how the number of objects in the

query (yellow circles) and target (blue triangles) samples evolves as a function of the number

of observing days. Although the survey starts observing at day 1, we need to wait until day

20 in order to have at least 1 object with a minimum of 5 observed epochs in each filter.

From then on, the query sample begins with 666 objects (at day 20) and shows a steady

increase until it almost stabilizes ∼ 2100 SNe (around day 60). On the other hand, the

target sample shows a steep increase until d ∼ 80 (hereafter, build-up phase) and continuous

to grow from there until the end of the survey, although at a lower rate. This behaviour

is expected since, in this description, the query sample corresponds to the fraction of pho-

tometric objects satisfying the magnitude threshold (mr ≤ 24) at a specific time. Notice

that as the survey evolves, an object whose detection happened in a very early phase will be

17We consider an object with r-band magnitude of 24 to have the minimum brightness necessary to allow
spectroscopic observation with a 8-meter class telescope.
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Figure 6.9: Number of objects in the query (yellow circles) and target (blue triangles) samples
as a function of the days of survey duration. The grey region highlights the initial build-up
phase of the survey, where there is a steep increase in the number of objects in the target
sample.

assigned to the target sample during its rising period, but if its brightness increases enough

to allow spectroscopic targeting it will move to the query sample, where it will remain for a

few epochs. After its maximum passes, the SN will eventually return to the target sample as

soon as it fades below the magnitude threshold, remaining there until the end of the survey.

Thus, it is important to keep in mind that, despite its size being practically constant after

the build-up phase, individual objects composing the query sample might not be the same

for consecutive days.

The feature extraction process is also performed on a daily basis, considering only the epochs
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Figure 6.10: Evolution of classification results as a function of survey duration in the real
time analysis, with a random initial training of 1 object.

measured until that day. This clarifies why we consider an analytical parametrization a sim-

ple, and efficient enough, feature extraction procedure. It reasonably fast and encompasses

prior domain knowledge on light curve behaviour while returning the same number of pa-

rameters independently of the number of observed epochs. Moreover, it avoids the necessity

of determining the time of maximum brightness or performing any type of epoch alignment

[see e.g. Richards et al., 2012a, Ishida and de Souza, 2013, Revsbech et al., 2017]. Thus, we

are able to update the feature extraction step as soon as a new epoch is observed and still

construct a homogeneous and complete low-dimensionality data matrix. The only constraint

is the number of observed epochs, which must be at least equal to the number of parameters

in all filters.
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Figure 6.11: Evolution of classification results as a function of survey duration for the batch-
mode real time analysis with N = 5 and a random initial training of 5 objects.

Finally, at the end of each night, the model is trained using the features and labels available

until that point. The AL algorithm is allowed to query only the objects belonging to the

query sample. Once a query is made, the targeted object and corresponding label are added

to the training sample, the model is re-trained and the result applied to the target sample

(figure 6.5). Given the time span of the SNPCC data, we are able to repeat this analysis for

a total of 180 days.

Figure 6.8 shows the evolution of classification results considering the complete SNPCC

spectroscopic sample as a starting point. Here we can clearly see the effect of the evolving

sample sizes: accuracy and efficiency results oscillate, while purity and figure of merit remain

indifferent to the learning strategy, during the build-up phase (grey region). Once this phase
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is over, results start to differ and the AL with uncertainty sampling clearly surpasses the

other two, achieving 80% accuracy, 55% purity and a figure of merit of 0.23, while the

passive learning only goes up to 72% accuracy, 45% purity and figure of merit of 0.18. The

canonical strategy continues to output better efficiency, but its loss in purity does not allow

it to overcome even passive learning in figure of merit levels.

6.6.1 No initial training

This leaves one open question: what should we do at the beginning of a given survey, when

a training set with the same instrument characteristics (e.g. photometric system) is not yet

available? Or even more drastically: if the algorithm is capable of building its own training

sample, do we even need an initial training at all? The answer is no.

Figure 6.10 shows how the classification results behave when the initial model is trained

in 1 randomly selected object from the query sample, meaning we start with a random

classifier. In this context, diagnostics are meaningless until around 100 days (a little after

the build-up phase) when all samples involved are under construction. After this period,

AL with uncertainty sampling starts to dominate purity and, consequently, figure of merit

results. After 150 observation days (or after 130 objects were added to the training), the

active and passive learning strategies achieve purity levels comparable to the one obtained

in the unrealistic full light curve scenario (∼ 80%). Thus, at the end of the survey, AL

efficiency results (27%) are 80% higher than the one obtained by passive learning (15%),

which translates into an almost doubled figure of merit (0.14 from AL and 0.08 from the

canonical strategy). Compare these results with the initial state of the full light curve

analysis: figure 6.6 (accuracy 60%, efficiency 92%, purity of 35% and 0.15 figure of merit)

was obtained using complete light curves for all objects, all SNe in the original SNPCC

spectroscopic sample surviving the minimum number of epochs cuts (1094 objects) and

the same random forest classifier. Final results of the real-time AL analysis (figure 6.10)
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surpasses the full light curve initial state accuracy results in 33%, more than doubles purity

and achieves comparable figure of merit results. All of these while respecting the time

evolution of observed epochs of only 161 SNe in the training set, or 15% the number of

objects in the original SNPCC spectroscopic sample.

Accuracy levels of real time AL with (figure 6.8) and without (figure 6.10) the full initial

training sample are comparable, while efficiency and figure of merit are higher for the former

case. However, purity levels are 45% higher without using the initial training. This is a

natural consequence of the higher number of SNe Ia in the SNPCC spectroscopic sample

(figure 6.9), which requires the algorithm to unlearn the preference for Ia classifications

before it can achieve its full potential in purity results. Figure 6.10 also shows that regarding

purity, passive learning is able to achieve the same results as those obtained with uncertainty

sampling while efficiency is severely compromised –exactly the opposite behaviour shown by

the canonical strategy. This is a consequence of the populations targeted by each of these

strategies. By prioritizing brighter objects, the canonical strategy introduces a bias in the

learning model towards SNIa classifications. On the other hand, by randomly sampling

from the target, passive learning adds a larger number of non-Ia examples to the training,

introducing an opposite bias, at least in the early stages of the survey.

In summary, given the intrinsic bias present in all canonically obtained samples, we advocate

that the best strategy for a new survey is to construct its own training during the firsts

running seasons. Letting its own photometric sample guide the decisions of spectroscopic

targeting. This is specially important if one has the final goal of supernova cosmology in

mind, where the main objective is to maximize purity (minimize false positives) as well as

many other scientific SN objectives.

116



6.7 Fixed Batch Analysis

In this section, we take another step towards a more realistic description of a spectroscopic

follow-up scenario. Instead of choosing one SN at a time, spectroscopic follow-up resources

for large scale surveys will probably allow a number of SNe to be spectroscopically observed

per night. Thus, we need a strategy which allows us to extend the AL algorithm, optimizing

our choice from one to a set (or a batch) of objects at each iteration. We focus on two meth-

ods derived from the notion of uncertainty sampling: N-least certain and Semi-supervised

uncertainty sampling.

The N -least certain batch query strategy uses the same machinery described in the sequen-

tial uncertainty sampling method but, instead of choosing a single unlabelled example, it

selects the N objects with highest uncertainties, and queries all of them. This tactic carries

a disadvantage, since a set of objects whose predictions exhibit similar uncertainties will

probably also be similar among themselves (i.e., will be close to each other in the feature

space). Thus, querying for a set of labels is not likely to lead to a model much different than

the one obtained by adding only the most uncertain object to the training set. In dealing

with a batch mode scenario, we should also require that the elements of the batch be as

diverse as possible (maximizing their distance in the feature space).

Semi-supervised uncertainty sampling [e.g. Hoi et al., 2008], in contrast, avoids the need

to call the oracle at each individual iteration by using the uncertainty associated to each

predicted label as a proxy for class assignment. The model must be trained in the available

initial sample in order to create the first batch. The object with the greatest classification

uncertainty is then identified. Suppose this object has a probability p of being SN Ia. A

pseudo-label is then drawn from a Bernoulli distribution, where success is interpreted as

“Ia” label (with probability p) and failure as “non-Ia” (with probability 1− p). The object

features and corresponding pseudo-label are temporarily added to the training sample and
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the model is re-trained. This is repeated until we reach the size of the batch.The benefit of

using the model to produce pseudo-labels comes with the inevitable uncertainty attached to

model predictions: they come unwarranted. However, the problem attached to the N -least

certain strategy is here, to a certain degree, overcome. Similar unlabelled instances are less

likely to be included in the same batch.

The optimum number of elements in each batch, N , is highly dependent on the particular

combination of data set and classifier at hand. At each iteration, we are actually stretching

the capabilities of the learning model in a feedback loop that cannot be expected to perform

well for large batches. For the SNPCC data, our tests show that semi-supervised learning

outperforms the N-least certain strategy for N ∈ [2, 8] with maximum results obtained with

N = 5.

Figure 6.11 shows classification results for canonical and passive learning (both at each iter-

ation drawing 5 random elements from the pseudo-training and target sample respectively),

AL via N-least certain and semi-supervised uncertainty sampling, when the initial training

consists of 5 randomly drawn objects from the query sample and N = 5. We see that in

this scenario semi-supervised AL is able to achieve the same figure of merit (∼ 0.22) as

sequential uncertainty sampling when the entire initial training sample is available (figure

6.8). However, it does so using only 63% of the number of objects for training (or 800 SNe in

the training after 180 days, against 1263 SNe in the full training case). Moreover, although

efficiency results show a steady increase until the end of the survey, purity achieves satu-

ration levels (∼ 0.8 – the same as the final results obtained with the static full light curve

scenario, figure 6.6) after only 100 days (corresponding to a training set with 405 objects).

A numerical description of the final classification results and corresponding training size is

shown in table 6.1.

From figure 6.11 we see that samples containing the same number of objects lead to different
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classification results. Moreover, considering that the query sample only contains objects with

mr ≤ 24, we should not expect the set of objects queried by AL to be representative of the

target sample, despite the improvement in classification results driven by AL. This is clearly

shown in figure 6.12, where we compare distribution of maximum observed brightness in

each filter for the SNPCC spectroscopic (red) and photometric (blue) samples with the set

of objects queried by AL (dark grey). The latter provides a slight advantage in coverage when

compared to the original spectroscopic sample, but it is still significantly different from the

photometric distribution. A similar behaviour is found when we compare the populations

of different SN types (figure 6.13) and redshift distribution (figure 6.14). These results

confirm that, although a slight adjustment is necessary in order to optimize the allocation

of spectroscopic time, a significant improvement in classification results may be achieved

without a fully representative sample.

6.8 Telescope allocation time

As a final remark, we must address the question of how much spectroscopic telescope time

is required to obtain the labels queried by the AL algorithm – in comparison to the time

necessary to get all labels from SNPCC spectroscopic sample (canonical strategy). This will

be more thoroughly addressed when present the experiments from Kennamer et al. [2020].

In the realistic case of a survey adoption of the framework proposed here, a term taking into

account the telescope time needed for spectroscopy observations must be added to the cost

function of the AL algorithm. This was not explicitly taken into account in our paper Ishida

et al. [2019], but we considered a constraint on magnitudes for the set of SNe available for

spectroscopic follow-up (rmag ≤ 24). We were able to estimate the integration time required

for each object to achieve a given SNR by considering its magnitude and typical values

119



static, full LC time domain time domain
time domain

initial training initial training initial training
UNC UNC BATCH 5 BATCH 5

training
2093 1255 1093 810

size
accuracy 0.89 0.80 0.85 0.83
efficiency 0.73 0.78 0.69 0.44
purity 0.78 0.55 0.69 0.76

figure of merit 0.39 0.23 0.31 0.22

Table 6.1: Classification results for the AL by uncertainty sampling (UNC) and semi-
supervised batch mode (BATCH 5) strategies.

for statistical noise of the sources18. In the SNPCC spectroscopic sample, we considered

the spectra taken at maximum brightness. For the set of AL queried objects, we used the

magnitude at the epoch in which the object was queried. Considering a SNR of 10 (more

than enough to enable classification) the ratio between the total spectroscopic time needed

to get the labels for the SNPCC spectroscopic sample and the set of objects queried by

semi-supervised AL is 0.9992. This indicates that the set of objects queried by AL would

require less than 2.9s more time than the SNPCC spectroscopic sample to be observed at

each hour. Also, if a more realistic estimation had been performed considering instrumental

overheads, the set of objects queried by AL would have significant advantage, as it contains

26% less objects than the SNPCC spectroscopic sample. This gives us the first indication

that AL-like approaches are feasible alternatives to minimize instrumental usage and, at the

same time, optimize scientific outcome of photometrically classified samples.

For the specific case studied here, the high purity values achieved in early stages of the batch-

mode AL, accompanied by the steady increase in efficiency (figure 6.11) renders our final

SN Ia sample optimally suited for photometric classification in cosmological analysis –albeit

being smaller in number of objects and requiring almost the same amount of spectroscopic

resources to be secured.

18Namely, counts in the sky, ≈ 13.8 e−/s/pix and read-out noise, ≈ 8 e−[e.g. Bolte, 2015].
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Figure 6.12: Distributions of maximum observed brightness, in all DES filters, for the set
of objects queried by AL via batch-mode semi-supervised uncertainty sampling with N = 5
(dark grey). This is compared to distributions from SNPCC spectroscopic (red - top) and
SNPCC photometric (blue - bottom) samples.
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Figure 6.13: Populations of different supernova types in the original SNPCC spectroscopic
and photometric samples, and in time domain batch mode (N = 5) semi-supervised AL
query sample after 180 days of observations. The composition of the SNPCC samples are
the same as shown in figure 6.3. The AL query sample holds 390 (48%) Ia, 122 (15%) Ibc
and 298 (37%) II.
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Figure 6.14: Redshift distribution of the original SNPCC spectroscopic (red - dotted) and
photometric (blue - dashed) samples, superimposed to the redshift distribution of the AL
query set for the time domain semi-supervised batch mode AL strategy without the use of
an initial training (dark blue - full). In each observation night, the algorithm queried for 5
SNe. The distribution shows redshift for the query sample after 180 observation nights.
.

Based on the experimental results from Ishida et al. [2019] we can see that active learning

is a promising technique for optimizing spectroscopic follow up for astronomical surveys.

Following this work we endeavored to make our experiments much more realistic to real

world constraints. Incorporating the constraints into our existing framework resulted in the

work presented in Kennamer et al. [2020], which we now discuss.
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6.9 Realistic Constraints Analysis

The task of classifying astronomical transients poses extra challenges beyond those faced

by gathering different types of observations. We describe below some relevant issues that

were considered in our experiments. Although this is not an exhaustive list, it is, to our

knowledge, a more realistic description than any other found in the literature to date.

Labeling window of opportunity

Once a new source is identified as a supernova candidate, we expect its brightness to evolve

and, eventually, fade away. Any spectroscopic analysis should ideally be performed when

the transient is near its maximum brightness; this commonly leads to a more reliable, and

less time consuming, spectroscopic confirmation. Moreover, distant or intrinsically faint

targets may only be bright enough to allow spectroscopic measurements close to maximum

brightness, which imposes a small time window during which labeling is possible (typically

a few days). Additionally, the decision of labeling one particular target needs to be made

with partial information – when one has seen only a few points in the light curve.

Evolving samples

In adapting the supernova classification problem to a traditional machine learning task,

we build the initial training and validation/test samples using full-light curves. Our goal

is to use active learning to construct a model that performs well when classifying the full

light curve test sample. However, the pool sample unavoidably contains partial light curves

(Section 6.9). Considering, for the moment, a simplified case of fixed batches containing

only 1 object: at each iteration an object is queried and sent for spectroscopic observation.

Assuming the labeling process was successful, the chosen object is likely to be close to
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its maximum brightness phase. As a consequence, its light curve has only been partially

observed. This partial light curve and its corresponding label are transferred from the pool

to the training sample, which is now formed by a number of full light curve objects and one

additional partial light curve. Since we expect the following day to bring some additional

photometric measurements (points in the light curve) for a subset of the objects in the initial

pool sample, the result is a continuous update and evolution of the training and pool samples

during the entire duration of the survey.

Sources of budget

In our case study, the labeling process is extremely expensive and requires coordination

between different telescopes. The power of astronomical telescopes is proportional to the area

of their primary mirror. A larger primary mirror means the telescope is able to target fainter,

and consequently more distant, sources. We consider the scenario where two spectroscopic

telescopes are used for labeling purposes: one telescope with a primary mirror of 4m in

diameter and another with 8m. At each night, we considered 6 hours of available observation

time per telescope19 (budget). Since spectroscopic observations of the same object require a

different amount of observation time for each of the telescopes, each telescope is considered

a distinct budget source.

Evolving costs per object and budget source

For each queried object, the time necessary to take a spectrum (which in turn can be used

for labeling) depends on the characteristics of the available spectroscopic telescope and the

brightness of the target object, among other factors. As an illustration, an object with a

brightness that requires t minutes of spectroscopic analysis using a 4m telescope is also a

viable target for the 8m – in which case it would require only a fraction of t to complete the

19This is an optimistic estimation of the nightly budget.
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observation. On the other hand, a fainter object which can be observed by the 8m telescope

given a large enough observation time, might not be a viable target for the 4m. Moreover,

as the brightness (measured flux) of each supernova evolves with time, this cost will also

depend on the time the query is made. In our case, we update the cost of each queried

object for the two different sources of budget (telescopes) at each active learning iteration

(night). The maximum allowed observation time for any given object is set to 2 hours. Our

exposure time calculator is heavily based on Förster et al. [2016], developed for the High

Cadence Transient Survey (HiTS).

6.9.1 Experiment design

We separated our data set into 3 groups: the full training sample, identified as spectroscop-

ically confirmed by the SNPCC data set and formed by 1,103 objects (hereafter, original

training); the validation and test samples formed by 1,000 objects each, taken from the

20,216 light curves tagged as purely photometric by the SNPCC data set and following its

sub-population distribution; and the pool sample comprising the remaining 18,216 objects.

Since our pre-processing step (Section 6.9.2) requires a minimum of 5 observed points in

each filter to deliver meaningful best-fit parameters, a complete input data matrix is only

available starting from the 20th day of the survey. This leaves only 160 active learning cycles

(days) that we can use to build an optimal training sample. In order to probe the impact of

the biases present in current spectroscopic samples, we also considered the situation where

the initial training set is formed by only 10 objects (5 SNe Ia and 5 non-Ia) randomly chosen

from the original training. This experimental configuration is also a more direct test of our

active learning algorithms given that we have limited data and can only simulate the process

for a small number of days.

To establish a baseline for comparison of our results, we also created a randomly sampled

126



training set which follows closely the distribution of the validation/test sample. Results

obtained when using this sample to train our learning model correspond to the best possible

scenario we can achieve given our data set, labeling budget and classifier combination. The

entire SNPCC data was rearranged to build this set of randomly selected training, test

and validation samples (each containing 1,000 objects). The remaining objects were then

allocated to a pool sample. This configuration was used to provide an upper bound to the

performance.

6.9.2 Pre-processing

We followed the feature extraction procedure described in the previous experiments. All

light curves with at least 5 flux observations in each filter, were fit to the parametric function

suggested by Bazin et al. [2009a] in equation (6.1).

The fit was performed independently for each filter. Objects with less than 5 observed points

per filter or for which the parametric fit did not converge were not included in the analysis.

Best fit parameter values for pX = {A, B, t0, τf , τr} were concatenated according to the

effective wavelength of its corresponding filter, X = [g, r, i, z], to form one line of the input

matrix per object.

Since the initial training, validation and test samples contain full light curves, their distri-

bution does not change. Figure 6.15 shows the distribution of best-fit parameters in r-band

for 3 of the features considering the original training, validation and test samples.

For the initial pool sample the number of points observed in each light curve changes with

time, thus for each day we performed the feature extraction procedure considering all light

curve points observed until then. To calculate the cost of labeling, we need to estimate the

brightness of the object in each day of the survey. If the last observed light curve point was

measured within the last 2 days, we used that measurement as a good estimate of its current
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Figure 6.15: Comparison between light-curve features extracted from the original training
(top orange) and validation/test (bottom grey) samples in DES r-band.

brightness. Otherwise, we use the result of the parametric fit to estimate its brightness

today and use this estimate to calculate the cost of labeling with both telescopes (4m and

8m), as described in Section 6.9. Objects bright enough to be queried by at least one of

the two available telescopes form the pool sample for that day. For the 3 example features,

Figure 6.16 shows how the distribution of the complete pool sample (orange) changes with

the evolution of the survey in comparison with the static validation/test samples (gray) in

r-band.

6.9.3 Methodology

Once the training, pool, validation and test samples were properly set up (Sections 6.9.1

and 6.9.2), we recorded the performance of different active learning strategies using Ran-

dom Forests Breiman [2001]. For the purpose of this work, we will only consider a binary

classification problem (SN Ia/non-Ia). For all the experiments described in Section 6.9.1, we

applied a naive Random Sampling (RS) strategy, where objects were randomly chosen from

the pool without any selection criteria. This will serve as a lower bound for comparison with

active learning techniques.
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Figure 6.16: Distribution in feature space for the validation/test (filled grey area, fixed)
and complete pool (solid orange line, evolving) samples as a function of the days since the
beginning of the survey (20 to 180, from bottom to top). All distributions correspond to
features extracted from r-band measurements.

Table 6.2: Performance metrics for the different active learning strategies when the entire
SNPCC spectroscopic (training, 1103 objects) sample is given at the beginning of the survey.
The table show results metric values 180 days after the start of the survey.

Metric Learning Strategy

RS BatchEntropy BatchKL USE

Accuracy 0.87 0.87 0.87 0.88
Efficiency 0.57 0.59 0.56 0.66
Purity 0.78 0.77 0.82 0.77

Figure of Merit 0.31 0.32 0.34 0.35

6.9.4 Results

For our first experiment we started from the idealized case of a randomly sampled training,

validation and test samples, each containing 1,000 objects. The goal of this exercise was

to quantify a set of optimal results given our data, classifier and labeling resources. We

used a RS strategy for the entire duration of the survey. After 160 iterations (180 days of

observation), we obtained {acc, eff, pur, FoM} = [0.88, 0.62, 0.82, 0.37].
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Table 6.3: Performance metrics for the different active learning strategies beginning from a
random initial training sample of 10 objects (5 SNe Ia, 5 non-Ias). The table shows results
180 days after the start of the survey.

Metric Learning Strategy

RS BatchEntropy BatchKL USE

Accuracy 0.85 0.87 0.87 0.87
Efficiency 0.42 0.54 0.50 0.55
Purity 0.85 0.84 0.83 0.80

Figure of Merit 0.27 0.34 0.31 0.32

We then considered the case where the original SNPCC spectroscopic sample was completely

available at the beginning of the survey, thus starting with a training sample of 1,103 objects.

We applied RS, BatchEntropy, BatchKL and USE strategies and ran them through all avail-

able observation days. The behavior of the diagnostic metrics as a function of the number

of active learning iterations (days since the beginning of the survey) is shown in Figure 6.17

(left column). Numerical values for the final state of these models are reported in Table 6.2.

After 160 iterations, the final training sample had grown by ≈ 1800 objects (for a total

of ≈ 2900). Observing the behavior of different strategies in Figure 6.17 (left column), we

see an improvement in all metrics. However, the difference in FoM results between RS and

the best performing active learning strategy (USE) is merely ≈ 13% (0.04); active learning

strategies struggle to outperform RS.

In order to test if this behavior is derived from the biases known to exist in the original

training, we applied the same learning strategies to the case where the initial training sample

is composed of only 10 objects randomly chosen from the original SNPCC spectroscopic

sample (5 SNe Ia and 5 non-Ia). The evolution of all metrics is shown in Figure 6.17 (right

column) and numerical values for their final state are given in Table 6.3. In this scenario,

the initial classifier does not contain much information; accuracy, purity and FoM start

with lower values. Nevertheless, they quickly improve with each iteration, achieving results

as good as those obtained in the previous case. At the final stage, the training samples
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Figure 6.17: Evolution of different performance metrics as a function of the number of
days since survey started (active learning iterations) for different learning strategies. All
strategies shown here considered non-constant costs. Left: initial training corresponding to
the original SNPCC spectroscopic sample. Right: initial training containing only 10 objects
(5 SNe-Ia, 5 SNe-nonIa) randomly chosen from the original SNPCC spectroscopic sample.

contain ≈ 1,810 objects. Since a small initial training is less biased and more sensitive

to the addition of new data, the active learning strategies clearly outperforms RS. The

best performing active learning strategy (BatchEntropy) achieved a FoM of 0.34, while RS

delivered a FoM of 0.27, a difference of ≈ 26% (0.07) and an increase of 75% when compared

to the difference between USE and RS in the previous case case (0.04). This increase comes

from a 28% increase in efficiency delivered by BatchEntropy over RS. Figure 6.18 shows the

evolution in feature space of the samples queried by RS and BatchEntropy in comparison to

the validation/test samples. Comparing Figures 6.16 and 6.18 it is clear that both strategies

(RS and BatchEntropy) evolve the queried sample towards the validation set but subjected
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grey), Random Sampling (dotted filled brown), and BatchEntropy (solid dark blue line) as
a function of days since the start of the survey (20 to 180, from bottom to top). This results
correspond to an initial training of 10 objects.

to the constraints of the available pool sample at each iteration.

6.10 Conclusion

Active learning strategies are promising techniques used to construct optimal training sam-

ples given scarce labeling resources. Nevertheless, stress tests probing their robustness under

realistic conditions are largely missing in the literature. In many real world situations, the

assumptions of sample representativeness or stability between samples are hard to meet,

though the necessity to optimize the allocation of labeling resources is paramount.

In this work we focus on the classification of a subclass of extragalactic astronomical tran-

sients: supernovae. While this issue has received great attention in the last decade Kessler

et al. [2010], Ishida and de Souza [2013], Lochner et al. [2016b], Ishida [2019], Möller and de

Boissière [2020], the community is still far from developing a completely automated system
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able to optimize the allocation of spectroscopic follow-up resources. In this work, we build

upon the efforts reported in Ishida et al. [2019], presented in sections 6.5-6.7, and present

for the first time a simulated data environment which simultaneously takes into account:

1) the necessity to estimate the current brightness of an object in order to make a decision

about spectroscopic follow-up (only partial information is available at the time of labeling),

2) the evolution of training and pool samples with time, 3) the spectroscopic time required

to observe each object in 2 different telescopes as a function of time (different labeling costs

per day, object and budget source) and 4) the limited telescope time available per night

(knapsack constraints).

We tested the performance of random sampling (RS) as well as three batch active learning

strategies based on uncertainty sampling. When using the original training sample provided

within the SNPCC data set (1,103 objects) as a starting point, active learning strategies did

not significantly improve upon RS. This is a direct consequence of the biases known to exist

between spectroscopic and photometric samples, combined with the large size of the initial

training set, and the limited number of available nights (active learning iterations). Given

these constraints, we constructed a second data scenario with a very small initial training

set (10 objects). This initial state contained a negligible amount of information, but it

was unbiased and highly sensitive to additional samples. Here, all active learning strategies

clearly outperformed RS results. The best strategy (BatchEntropy) improved by 26% the

results delivered by RS. The small initial training set achieved the same figure of merit using

1,093 fewer spectroscopically confirmed light curves (labels).

Such results emphasize the importance of planning, in advance, the construction of training

samples for machine learning applications. By delegating the complete construction of the

training sample to the active learning algorithm, we can ensure optimal classification results

and obviate the use of legacy data or the need to model discrepancies between traditional

spectroscopic and photometric samples.
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Moreover, we showed that active learning strategies are robust in the presence of complex

and realistic constraints on data collection. However, the fact that different batch strategies

presented similar behavior indicates that our current techniques for acquiring diverse com-

mittees can be improved. This is an important issue which will be addressed in a future

work.

Finally, we recognize that the scenario presented in this work is still incomplete. We failed

to take into account issues such as: uncertainties due to our feature extraction method and

the extrapolated brightness used to calculate the cost of each observation20; the probability

that a labeling request is not fulfilled or that it may be incorrect; the impact of the resulting

classifications in further scientific results and observational effects like airmass (position of

a given source in the sky) and weather conditions (e.g. seeing, cloud cover). This complex

environment makes the classification of transient astronomical sources an excellent test bench

for developing learning algorithms. These are all crucial issues which will shape the scientific

results from the next generation of large scale astronomical surveys and, consequently, our

understanding of the Universe.

20This can be generalized as uncertainty in our data points, which has been studied mainly from a
theoretical perspective with very ideal types of classifiers and noise models Nowak [2009, 2011].

134



Chapter 7

ContextNet: Deep Learning for Star

Galaxy Classification

In this final chapter we discuss a standalone project to build a star vs. galaxy classification

model, which could be used in astronomical pipelines. As we discuss in the sequel, for ground-

based observations this involves designing a model capable of reasoning over a spatially and

temporally varying confounding factor. We treat a single exposure as a set of images with

one object per image and an arbitrary number of objects within the set. Building a classifier

to operate over this set connects directly to work in preceding chapters of this thesis, in

which we construct a variational posterior distribution conditioned on a set of objects with

permutation invariance. In this setting, we do not require permutation invariance, but there

remains a common structure between the two architectures. Both models consist of an

encoder network that is applied to all objects within the set; an aggregation function, which

in previous chapters was simply a sum function, but in this chapter takes the form of another

neural network which creates an aggregated representation for all objects within the set; and

finally an emitter function which in the preceding chapter was only applied to the aggregated

representation, but in this chapter is applied to both the aggregated representation and the

individual representation of each object, to produce a distinct classification decision for

each object within the set. Both structures exploit the concept of weight sharing to reduce
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computation; however, as noted the intermediary network in the model of this chapter allows

us to reason over a confounding factor that is necessary to achieve accurate results.

This chapter is based on our published work in Kennamer et al. [2018], and the author would

like to thank his collaborators David Kirkby, Javier Sánchez and Alex Ihler.

7.1 Introduction

The Large Synoptic Survey Telescope (LSST) is a ground-based photometric survey that

will commence in early 2022 and will observe for 10 years. It will image the entire available

sky every three nights and produce over one petabyte of data a year. The science goals of

the survey are vast, ranging from the detection of dark energy and dark matter signatures

to mapping small objects in the Solar System such as near-Earth asteroids LSST Science

Collaboration et al. [2009]. The scale of the data and the types of measurements require

sophisticated data analysis methods and present a great opportunity for machine learning

scientists to work with domain scientists on fundamental science questions. Conversely, the

astronomical data that is collected creates new challenges for the machine learning com-

munity and promotes the development of new methods. Collaborations between machine

learning scientists and astronomers have been steadily growing and diverse in methods and

applications, including a deep learning approach for analyzing strongly lensed systems Heza-

veh et al. [2017], a probabilistic graphical model for processing astronomical images Regier

et al. [2015], an ensemble approach for classification of supernova Lochner et al. [2016a], and

many others. These projects have contributed to both fields, which is also the aim for our

work. In this chapter we present the specific application of star galaxy classification, for

which we develop a novel framework for composing neural network models in order to make

advances in the field of astronomy.
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Figure 7.1: Left is an example of a single exposure with pixel values plotted on a log scale.
To the right are 16 cutout images of detected sources in this exposure. The entire exposure
has 1273 detected sources.

Star galaxy classification is one of the first processing steps in the data analysis pipeline of any

astronomical survey; its foundational nature means that it affects almost every subsequent

step of the pipeline Jurić et al. [2015]. The inputs to star galaxy classification are a collection

of small, cutout images of detected sources in a single exposure, and the outputs are the

predictions for each detected source in that exposure. A single exposure records the photon

counts of each pixel of a CCD exposed for a short period of time. For LSST, each exposure

is a 16 megapixel grid with an exposure time of 15 seconds. The entire telescope is made up

of 189 of these CCD detectors Kahn et al. [2010]. It is expected that approximately 1200

sources will be detected and thus need to be classified for each exposure. Figure 7.1 shows

a single exposure on a log scale with 16 representative cutouts to the right. Note that this

exposure contains 1273 detected objects.

In an ideal world for astronomers (one without an atmosphere), this is a rather simple
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problem. Stars can be thought of as point sources of light, while galaxies have some spatial

distribution. Thus in order to make an accurate prediction all one has to do is measure

the size of a source and, if it is greater than a certain threshold, it can be safely classified

as a galaxy. However with a turbulent atmosphere and imperfect optics, light is spread

out before it reaches the detector. This spreading function is often called a point spread

function and it changes both spatially and temporally. Thus one cannot make predictions

assuming that the sources are IID across exposures. Instead one must use a model that that

is capable of handling the confounding factor of the point spread function (PSF) in order to

make accurate predictions. Figure 7.2 shows an example star and an example galaxy with

and without the PSF.

In the last several years there have been tremendous advances in computer vision, especially

regarding the use of convolutional networks for classification Krizhevsky et al. [2012]. One of

the main motivators of this work is to take advantage of this progress by applying it to the

field of astronomy. However this cannot be done without significant modification. Section

7.2 will show how this problem is currently being solved by astronomers and why current

vision models from machine learning need to be extended in order to tackle this problem.

Section 7.3 details the framework we have developed for composing neural network models

to predict on non IID instances and to predict simultaneously for a variable number of

instances. Our empirical studies are presented in Section 7.4, showing how our model is able

to achieve better results than what is currently used in astronomy. We present our results

on simulations of LSST observations using the GalSim image simulation package Rowe et al.

[2015], which was designed and developed by a large group of domain scientists. GalSim

is designed to meet the stringent requirements of high precision image analysis applications

such as weak gravitational lensing, for current datasets and for future astronomical surveys

including LSST. In Section 7.5 we discuss future work, focusing on how our compositional

framework can be further generalized to handle even greater diversity in inputs.
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Figure 7.2: Example images of a star and galaxy with and without the point spread function
(PSF). The first row shows a star and the second row shows a galaxy. The first column is
the object without a PSF applied and the second column shows the object with the PSF
applied. As we can see Without the PSF a star is a point like source of light but becomes
spatially distributed when the PSF is applied. Thus making the problem of discriminating
between stars and galaxies more challenging. Note the difference in noise level between the
star and galaxy has to do with the galaxy being sampled at a dimmer magnitude. Stars at
similar magnitude will have a similar noise level.
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7.2 Related Work

In this section we describe how astronomers currently solve star galaxy classification, and

why machine learning models that assume independence between cutouts are inadequate.

7.2.1 Measuring Extendedness

When classifying a cutout as a star or galaxy, the most important signal is whether the object

is “extended” or not. Objects that are unextended are thought to be stars (point-like sources

of light), while objects that are extended are galaxies. Astronomers have several different

methods of measuring extendedness, but as shown by Garmilla [2016], they all achieve similar

performance and are closely related. Thus we focus on only one of these related techniques.

To measure the extendedness astronomers fit two models to a single cutout object: one for

the point spread function and the second a galaxy model. Both of these fits are based on a

discrete set of templates and parameterized profiles, a statistical test is performed to identify

the best fit for both models. From these two models we can than separately measure, Magpsf ,

the magnitude of the object weighted by the fitted model of the point spread function and,

Maggmodel
, the magnitude measured from the galaxy fitted model. Note the magnitude of an

object is a log measure of the brightness of the object: smaller magnitudes means brighter

objects and larger magnitudes mean dimmer objects (inverse scale). We can then measure

the extendedness of a single object as Magpsf −Maggmodel
. Typical numbers for magnitudes

for modern sky surveys are 15-25. Intuitively, a star being a point like source of light, the

only process responsible for spreading out its light as it travels through the atmosphere is the

PSF. Thus the PSF will be the best fitted model andMagpsf−Maggmodel
should measure zero

for a star. On the other hand, for galaxies Magpsf −Maggmodel
should differ from zero, since

galaxies have an inherent size and the best fitted model will not be Magpsf Garmilla [2016].

An example of a typical size magnitude plot for a single exposure can be seen in Figure 7.3.
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Figure 7.3: A size magnitude plot for a single exposure. In this figure we illustrate how
star galaxy classification is typically solved by measuring the size and magnitude of each
object in an exposure and making a classification cut on the size. The blue dots indicate
galaxies and the red dots stars. We use a popular method used by the Dark Energy Survey
Jarvis et al. [2016] to measure size, originally developed by Hirata and Seljak [2003] and
improved by Mandelbaum et al. [2012]. A representative classification cut is shown by the
black horizontal line . As we can see, this method achieves strong performance for bright
objects, but the performance degrades for dim objects.

As this example shows, this method does very well for bright objects (low magnitude), but

the star predictions are highly contaminated by galaxies for lower magnitudes.

Astronomers have used the preceding argument to create classifiers based on thresholds of

extendedness to determine if an object is a star or galaxy. This method was used for the Sloan

Digital Sky Survey (SDSS) Lupton et al. [2001] and has also been adopted by subsequent

141



Table 7.1: Models like AlexNet achieve excellent performance on standard image classifica-
tion datasets. However, these models are not well suited to handle non-IID data. This table
shows the performance of an AlexNet-like architecture for star galaxy classification. If all
objects are blurred with the same PSF, the model does remarkably well, and only degrades
slightly when the PSF changes spatially but is held constant across exposures (temporal
variation). However, if the PSF varies between exposures the model fails completely, even
when the amount of training data is doubled.

PSF Spatial Variation PSF Temporal Variation Training Size Accuracy

Constant Constant 5000 exposures 0.97
Varying Constant 5000 exposures 0.92
Varying Varying 5000 exposures 0.49
Varying Varying 10000 exposures 0.51

surveys including Hyper Suprime-CAM (HSC) Bosch et al. [2018], Dark Energy Survey

(DES) Jarvis et al. [2016] and is intended to be used for LSST Jurić et al. [2015]. However

as sky surveys push deeper into space, gathering data on dimmer objects, this method

becomes less effective and is unable to distinguish dimmer objects Garmilla [2016]. Thus

there is a significant need for new methods that are not just better overall, but well suited

to dimmer objects. The method we will discuss in Section 7.3 achieves better performance

both overall and specifically on dimmer objects, as shown in Section 7.4.

7.2.2 Non-IID Data and the Role of Context

Deep learning has prompted rapid progress in computer vision especially in regards to ob-

ject classification and object detection Krizhevsky et al. [2012], Girshick et al. [2014]. This

progress provides ample motivation to apply deep learning methods to star galaxy classi-

fication. However, it turns out that these methods cannot be applied effectively without

significant modification.

In particular, the point spread function acts as a confounding factor on the input data, creat-

ing a significant and correlated source of uncertainty. The high variation of the PSF makes it
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entirely possible, even common, for a star in one exposure with a large PSF to appear bigger

(be more extended) than a galaxy in another exposure with a smaller PSF; this situation

can be see in the example in Figure 7.2. The PSF can vary both across exposures and within

different spatial regions of the same exposure. However, the only available evidence of the

PSF is its effect on this and nearby objects in the exposure (particularly stars).

Thus, the nearby objects in an exposure provide “context” that is necessary to the prediction

task: here, information about the possible magnitude and shape of the PSF. However, this

information is entangled with the information of interest, i.e., whether the objects are stars

or galaxies. We contend that extracting and sharing this contextual information is critical

to effective star galaxy classification.

This assertion is borne out empirically: when we evaluate the performance of a standard

classifier framework modeled after AlexNet [Krizhevsky et al., 2012], except using only one

output neuron for a binary classifier, on the datasets described in Section 7.4 we find that the

PSF has a major and deleterious effect. The results are reported in Table 7.1. If we apply

a fixed PSF to all objects, the deep convolutional model achieves a strong performance; this

is degraded slightly if we allow the PSF to vary over the exposure (“spatial variation”) but

keep it constant across exposures (“temporal variation”). However, if we move to the more

realistic setting of a PSF that varies both spatially in a single exposure and across different

exposures, we see performance degrade to random guessing, with little improvement even as

the data set size grows.

In our initial work we also tested an R-CNN model Girshick et al. [2014], which solves the

slightly more general problem of simultaneously detecting and classifying objects in an image.

In star galaxy classification, detection is typically done by an earlier processing step in the

pipeline. And star galaxy detection is a much easier problem than general object detection.

Unfortunately the R-CNN achieved poor performance on both detection and classification,
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perhaps because of the low signal to noise ratio in the data, which is characteristic of the

problem. In addition, images are quite large and the vast majority of pixels view empty

space (background), suggesting there may be issues due to class imbalance.

These impediments of standard classifier frameworks motivate us to develop a framework

for composing neural network models to capture non-IID data effects while also allowing for

varying number of objects in a given exposure.

7.3 ContextNet

The question we are trying to solve is thus not a straightforward classification question,

but what we call a contextual classification question: the classification of one object cannot

be determined without taking into account the context of the surrounding objects. We

address this problem by dividing up the modeling procedure into three consecutive steps:

local modeling, global modeling and predicting. Each of these steps is associated with its

own neural network. The local network is designed to capture local features about each

individual object in a single exposure, independent from all other objects in the exposure.

It is then replicated for however many objects exist in an exposure. The global network is

designed to take in all of the local features and produce global features that describe the

exposure as a whole. Finally, the prediction network takes in the local and global features to

produce a class prediction; like the local network, it is replicated as many times as there are

objects and applied independently to each. A pictorial overview of the model can be seen in

Figure 7.4.

We define a cutout of a single object X = (x1, x2, ..., xn) where xi is the value of a single

pixel. We define an exposure E = {Xj}mj=1 as collection of cutout images where there are

m cutouts in each exposure. (In the sequel we show how our architecture can be extended
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       Cutouts

star / galaxy?

local

global

local

Figure 7.4: High level overview of the ContextNet architecture. Each color represent a
different network and a different step in the modeling process. Blue is the local network
that takes in cutouts and produces local features for each object. It is replicated as many
times as there are objects in the exposure. Yellow is the global model that takes in all the
local features and distills that into global features corresponding to entire exposure. Red is
the prediction network that takes in both the local and global features and makes the final
prediction for each object. It is also replicated as many times as there are objects.

to exposures containing more than m cutouts.) A single input to our model corresponds to

one exposure.

The local network LN is a neural network that takes in a single object (cutout image) and

outputs a vector of local features:

Yj = (y1, y2, ..., yk) = LN(Xj) (7.1)

Note that, for our specific application, we also include the two coordinates representing the
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position of the object in the sky as a local feature in Y . The local network is replicated and

applied m times to each cutout in the exposure.

The input to the global network, GN , are the concatenated outputs of the local network:

G = GN(Y1, . . . , Ym) (7.2)

The output of GN is a single vector representing the contextual information in the exposure.

Finally, the prediction network, PN , takes in a single object’s local feature vector and the

global context vector, and is replicated and applied m times for each cutout image in the

exposure:

Pi = PN(Yi, G) (7.3)

This results in m predictions, one for each object in the exposure. All three models are

trained simultaneously using a binary cross entropy loss for each prediction and propagating

the gradients through all three networks. Figure 7.4 shows a high level layout of the model.

Varying numbers of objects. In practice, the number of objects (cutout images) varies by

exposure. While our basic model assumes a fixed number of objects per exposure, it is easily

extended to predict on exposures with N > m objects. Intuitively, we define a minimum

number of predictions, np, to make on each cutout. We then create Sn = ⌈np ∗N/m⌉ sets of

size m cutouts each. These sets are simply filled with a random selection of cutouts, making

sure no cutout is duplicated within the same set, and that each cutout occurs at least np

times total. We then predict on each of these sets of (fixed) size m, and the predictions are

averaged for each cutout. In this setup, as long as we set our minimum m small enough that

there will never be an exposure with less than m objects, we can predict on exposures of

variable size.
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Another important note is that the architectures of the three different neural networks are

quite flexible and can be mixed and matched. In our setting, we select to use a convolutional

network for the local network and fully connected networks for the global and prediction

network. However, it is also possible to construct multiple types of local networks – for

example, if there were cutouts of different sizes, there could be a local network for each

size as long as the produced local features, Yj, have the same dimensions among all local

networks. Thus ContextNet is not only capable of handling non-IID data, but also a variable

number of inputs and inputs of different dimensions and types.

7.4 Experiments

As the start of the LSST survey approaches, simulations are being produced by a variety of

teams and collaborations in order to test and calibrate all components of the data manage-

ment (DM) pipeline. This includes the current star galaxy classifier within the DM stack. It

is this simulated data on which we test, and compare to a classifier based on the DM stack.

With respect to the domain science, this is the most important comparison since the DM

based classifier is what will be used if no superior method is produced. The DM classifier

has been inherited and modified from the one used in SDSS and is of the form discussed in

Section 7.2. The use of simulated data, while not ideal, is necessary since ground truth on

real astronomical data is not possible to obtain.

The architecture of our model is as follows: The local network takes in a cutout of dimension

(28, 28) and the layers are Conv(Filters=64, kernel=(3, 3)→ Elu → Conv(Filters=128,

kernel=(3, 3) → Elu → Flatten → Dense(20) → Elu. We chose only 20 local features

because cutouts of galaxies are not complex images, but essentially noisy, elliptical objects

positioned in the center of the image (as illustrated in Figure 7.1). The global network takes

in the concatenation of the local features from 1000 objects in the exposure, and processes

147



Table 7.2: Overall comparison of ContextNet with the size magnitude based classifier in the
DM stack. ContextNet does significantly better on accuracy and precision and worse on
recall. Achieving a high precision sample of stars is important for down stream processing
tasks.

Model Recall Precision Accuracy

ContextNet 0.96 0.88 0.93
DM Classifier 0.92 0.82 0.85

with layers Dense(1000) → Elu → Dense(1000) → Elu → Dense(1000) → Elu. We chose

1000 objects as the minimum number per exposure, which is approximate for LSST. Each

exposure will have anywhere from 1200 - 2200 detected sources and anything less than 1000

most likely indicates that something has gone catastrophically wrong with the instruments.

The prediction network takes in the local features for a single object and the global features

and has the following architecture: Dense(100) → Elu → Dense(100) → Elu → Dense(1) →

Sigmoid. The final output is the probability that the object is a galaxy, and we use binary

cross entropy to train.

Our training set consists of 5000 exposures each containing 1000 sources. The test set

consists of 1000 exposures and each contain anywhere from 1200-2200 objects. The results

are presented in Table 7.2.

As can be seen from Table7.2 and Figure 7.5, ContextNet not only achieves much better

overall performance it also achieves even better performance for dim objects. Dim objects

are especially important for LSST and future surveys as they image deeper into sky capturing

dimmer objects than have previously been measured.

Even though it is not ideal to use simulated data, one of its advantages is that we can use the

parameters that defined the objects in the simulation to better understand the predictions

being made. This is especially important for deep models where interpretability is hard and
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Figure 7.5: Left: The magnitude distribution of the data set used for testing. The color blue
is the distribution for all objects. Red is the distribution for galaxies only and green is for
stars only. As we can see galaxies tend to be dimmer than stars. Right: Accuracy for the
two models binned by magnitude. ContextNet in blue and the DM based classifier in Red.
As we can see the two models are competitive for brighter objects, but ContextNet starts
to achieve much better performance for dimmer objects. Performance in this dim region is
becoming increasingly important as ground-based astronomical surveys image deeper into
the sky.

Figure 7.6: In these four plots galaxies are colored purple and stars are pink. The y-axis
is the probability of classifying the object as a galaxy. From left to right: the first figure
compares the probability of detecting a galaxy with the size of each object, the second with
the magnitude, the third with the eccentricity and the last with the amount it was rotated
from -90 to 90. Using the simulation parameters can help us interpret the predictions of the
model.
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Figure 7.7: The top panel shows the size on each object on the x-axis and the probability of
classifying the object as a galaxy on the y-axis; each object is colored by its magnitude. The
yellow-red colors are galaxies and the blue-green colors are stars. The bottom panel shows a
detail of the leftmost region in the top panel, focusing on smaller objects and with the stars
removed.

often not possible. It is also necessary to develop a strong understanding our our model

to convince domain scientists to adopt this approach. The main parameters used in the

simulation to define stars and galaxies are their brightness or magnitude, size, eccentricity

and the amount it is rotated. Stars are modeled as perfectly round objects with negligible

size. Galaxies on the other had have distributions over each of these parameters. Figure

7.6 shows the parameters plotted against the probability of being predicted a galaxy by

ContextNet. Intuitively the size of the object is the biggest signal for being predicted a

galaxy. This is expected when considering that state of the art models for this problem only
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use the size of the object to make a prediction. We can also see that the amount the object

is rotated or stretched (eccentricity) seems to play a very little role in the prediction. This

is somewhat surprising considering that galaxies are the only objects that are rotated and

stretched. However this is due to the fact that the PSF can cause stars to appear rotated or

stretched making this a much weaker signal. From these plots we can see that the magnitude

of the object also appears to be a strong signal for the prediction of ContextNet. This is also

a reasonable result given that stars and galaxies have very different magnitude distributions,

as seen in Figure 7.5.

We examine the relationship between predictions and magnitudes further in Figure 7.7. Here

we plot the probability of being classified as a galaxy on the y-axis and the size of each object

on the x-axis. We color each object by its magnitude. The top figure shows all objects and

the bottom plot zooms in on just the smaller objects. From this we can see an interesting

relationship where small bright galaxies can be classified correctly as galaxies or incorrectly

as stars. The incorrect classification of these small bright objects makes sense physically

given that small bright galaxies do look very much like stars. But the fact that not all of

these objects are classified incorrectly tells us that the model is making classifications based

on more than just the size and magnitude of the object.

7.5 Conclusion

In this chapter we presented ContextNet, a framework for composing neural network models

to make predictions for non-IID data as well as being able to take in a variable number of

inputs and possibly different types of data. We showed that our model achieved better per-

formance for an important problem in astronomy, obtaining superior performance compared

to a model that LSST intends to use. Our model does particularly better for dim objects,

which are becoming increasingly important. We also are able to partially interpret our re-
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sults by relating parameters of the simulated objects with predictions made by the model.

This is a necessary analysis when trying to convince domain scientists to adopt new models.

In addition we discussed why standard computer vision techniques fail at this problem and

need to be extended for contextual classification. We intend to extend this model by not

just having one type of local network, but incorporating several for various cutout sizes. We

also plan to extend this work to estimate properties of the stars and galaxies in addition to

classifying them.
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Chapter 8

Conclusion

Don’t adventures ever have an end? I

suppose not. Someone else always has

to carry on the story.

Bilbo Baggins

This thesis covered three projects spanning several interconnected areas of machine learning

and statistics.

8.1 Variational Methods for BOED

We showed how variational methods can be highly effective for evaluating and optimizing

an intractable objective function commonly used in Bayesian optimal experimental design.

We proposed a novel variational form that was capable of amortizing across designs allow-

ing us to train a single model that was capable of estimating the EIG across the entire

feasible region of designs. We showed how design amortization leads to substantially im-

proved computational efficiency compared to prior work. In addition our use of flexible

modeling building components from deep learning, in particular set-invariant architectures

and conditional normalizing flows allowed our form to more accurately approximate complex
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distributions leading to improved accuracy of our EIG estimates compared to prior work.

Going beyond evaluation we showed how our variational form was highly effective at opti-

mizing the EIG over the space of feasible designs and facilitates the use of a broad variety

of optimization algorithms, which empowers experimenters to use variational methods for

BOED in a wide variety of practical settings. This includes two stage algorithms which

first trained an amortized variational posterior and then uses it to make approximations to

the EIG during optimization. This included the use of the coordinate-exchange algorithm,

which is a commonly used algorithm in OED able to be used with discrete design variables,

which are commonly encountered in practical applications of OED. A second two stage al-

gorithm we studied was Bayesian optimization, which is a incredibly popular optimization

algorithm when working with expensive to evaluate objective functions and is robust to noise

in its estimation. In addition Bayesian optimization is well studied in multi-objective and

multi-fidelity settings as well as work work on how it can be used in discrete settings or with

gradient information. In addition there are number of excellent software libraries implement-

ing Bayesian optimization that can be immediately used by experimenters in the context of

BOED. We showed how training a design amortized variational posterior can significantly

improve computational performance for two stage algorithms making them competitive with

gradient based methods.

In addition we also generalized the stochastic gradient algorithm proposed in Foster et al.

[2020] for simultaneously optimizing the variational parameters and design variables. We

generalized this algorithm in the case when our variational posterior is differentiable to

the design variables, this results in significantly improved computational performance by

allowing us to optimize many designs in parallel using just a single variational posterior. In

addition we show that this dependence on the design variables also significantly improves

both evaluation and optimization performance.
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We believe that this is a promising area for future work and that the work in this thesis

provides an excellent foundation to build off of. One area that we believe is particularly

interesting and under-studied is how to optimize experimental designs when the experimenter

is concerned with functions over their latent parameters. Essentially gerneralized the EIG

as follows:

EIG(d) = Ep(y|d) [H[p(f(θ))]−H[p(f(θ)|y, d)]] (8.1)

where f(·) is some arbitrary function over our latent variables. We believe that the posterior

estimator is particularly suited to handle this generalization and requires almost no adjust-

ments from what was presented in this thesis. The other estimators are most likely not as

easy to adapt, including nested Monte Carlo. The elegance at which the posterior estima-

tor handles this case can be a significant win for experimenters in all areas of science and

engineering who wish to precisely define how they want their experiments to be optimized

in terms of functions over their latent variables. In particular this more general formulation

allows experimenters to specify and optimize designs for exactly the latent variables they

care about while ignoring nuisance parameters when considering what designs are optimal.

It is often the case that not all model parameters are cared about equally by experimenters

and this more general formulation of the EIG would give them greater flexibility in defining

different classes of model parameters when designing experiments.

Further work on variational forms is another promising area for future work. In particular

variational forms that accommodate hierarchical models or models with mixed variable types

would be very useful.

We also presented two applied projects in the field of astronomy, one focused on optimizing

spectroscopic follow-up for astronomical survey and the second was on building a classifica-
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tion model for star galaxy classification from ground-based observations.

8.2 Optimizing Spectroscopic Follow-up

As discussed large photometric surveys provide valuable data about the universe, but need

to be augmented with more precise spectroscopic information on a subset of the objects.

In our work the goal was to use spectroscopic resources to provide accurate labels for the

observed object. These spectroscopically labeled objects define a training dataset to train a

classification model for the rest of the data. The goal then is to select objects for spectroscopic

labeling that will gives us the most informative training dataset. This question broadly falls

under the field of active learning, which is a specific form of optimal experimental design.

With an amazing team of international scientists we developed and investigated the efficacy

of active learning techniques in this domain under realistic constraints. We found that

active learning can be a successful strategy for approaching this problem and also produced

a software library that can be used by astronomers over the course of their survey.

8.3 ContextNet

In this work we addressed a fundamental challenge in all astronomical data analysis pipelines,

classifying objects as stars or galaxies. As discussed in space-based observations this is a

relatively easy problem with stars appearing as point sources of light while galaxies have a

spatial extent. However terrestrial observations are confounded by the atmospheric effects

which acts to convolving all incoming sources of light with a point spread function. Further

due to atmospheric turbulence this point spread function is constantly changing in both

space and time making the problem of star galaxy classification difficult. We proposed a

deep learning model that compensated for this confounding factor by structuring our model
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to produce both a local representation for each object in the image and a global representation

for the image as a whole. This structure is closely related to how we built our models to

satisfy permutation-invariance in our variational BOED work. Structuring our model in this

was allowed us to produce a classification model that could deal with the confounding effects

of the atmosphere and achieve state of the art performance.
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