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Abstract 

Essays on the Health Effects of Pollution in China 

by 

Guojun He 

 
Doctor of Philosophy in Agricultural and Resource Economics 

 
University of California, Berkeley 

 
Professor Jeffrey M. Perloff, Chair 

 
This dissertation consists of three chapters that analyze the health effects of pollution in 
China. The first chapter investigates the effect of air pollution on cardiovascular mortality 
in the urban areas of China. The second chapter estimates the effect of water pollution on 
infant mortality. The third chapter studies the relationship between water pollution and 
cancer among the elderly.  
 
The first chapter entitled “The Effect of Air Pollution on Cardiovascular Mortality: 
Evidences from the Beijing Olympic Games”. I explore the exogenous air pollution 
variations induced by the 2008 Olympic Games to estimate the effects of air pollution on 
cardiovascular mortality in China. I use the regulation status during the Olympic Games 
as an instrument for air pollution. In the fixed-effects instrumental variable model, I find 
that air pollution has a robust and significant effect on cardiovascular mortality. In 
contrast, estimates from the conventional associational models are not robust. I estimate 
that decreasing current !!!" concentration by 10% will save more than 67,000 lives 
(from cardiovascular diseases) in the urban areas in China each year. 
 
China’s surface water system has been severely polluted in the process of rapid 
industrialization. The second chapter investigates how this water pollution affects infant 
mortality. I find that surface water pollution has a significant, nonlinear effect on infant 
mortality. As surface water quality deteriorates, infant mortality first increases and then 
decreases. Moderate levels of pollution are the most dangerous. People’s avoidance 
behavior may explain the results: as water becomes more polluted people reduce the 
consumption of surface water. The ordered-probit selection model is applied to estimate 
the effects, and precipitation and wastewater dumping are used as the instruments for 
surface water quality.  
 
China also witnessed a dramatic increase in cancer rate in the past thirty years. In the 
third chapter, I investigate whether this high cancer rate is caused by water pollution. The 
difficulty in estimating the long-run health effects of pollution is that the lifetime 
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exposure to pollution is hard to measure. However, China provides an ideal setting to 
estimate the long-run health effects of pollution because the Household Registration 
System (Hukou) effectively stopped people from migrating for many years. I focus on the 
elderly people (Age>60) because their mobility is extremely restricted by the System, so 
their life-time exposure to water pollution is more likely captured by the water quality 
data in recent years. I find that water pollution has large, significant, positive effects on 
all cancer mortality rate, digestive cancer mortality rate, urinary cancer mortality rate, 
liver and stomach cancer mortality rate. I also find that water pollution has no impact on 
cancer mortality rates for the younger adults (Age from 20-50), which may partially 
justify our argument that pollution exposure for the younger people cannot be accurately 
measured because they migrate.  
 
�
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Chapter 1  

The Effect of Air Pollution on Cardiovascular Mortality: 
Evidences from Beijing Olympic Games 
1.1 Introduction 
To fulfill its international commitment to maintain high air quality during the 2008 
Beijing Olympic and Paralympic Games, the Chinese government implemented a set of 
stringent policies to reduce local and regional emissions in the greater Beijing 
metropolitan area. These aggressive controls include setting higher emission standards, 
reducing traffic, halting large-scale construction projects, and shutting down polluting 
factories, etc. The combination of these measures resulted in dramatically improved air 
quality in Beijing and its neighboring cities.  
 In this study, I use a fixed-effects instrumental variable model to estimate how the 
anthropogenic improvement in air quality during the Olympic Games affects 
cardiovascular mortality in 34 urban city-districts of China. A city's regulatory status 
during the Olympic Games is used as the instrument for air quality. In the first stage, I 
estimate how the regulation affects air quality after controlling for a set of local 
characteristics. Then in the second stage, I estimate how air quality influences 
cardiovascular mortality in urban China.  
 This research has several attractive features. First, the Olympic-induced 
regulatory pressure is very likely orthogonal to city-district level changes in health 
outcomes, except through its impact on air pollution. Thus the relationship estimated 
using the instrumental variable approach has a causal interpretation. Second, this study 
uses less aggregated (monthly) data in many city-districts (34 cities) for a relative long 
period (5 years). It allows me to check the robustness of different models. Third, 
presumably, the health effects of air pollution is highly nonlinear and very small below 
certain thresholds, so studies focusing on severely polluted regions, such as China, will 
help us understand the health effects of severe air pollution.  
 Section 1.2 discusses the literature on the health effects of air pollution. Section 
1.3 summarizes the government’s interventions on air pollution during 2008 Beijing 
Olympic Games. Section 1.4 discusses the research design and estimation strategy. 
Section 1.5 describes the datasets and provides summary statistics. Section 1.6 presents 
the main results. Section 1.7 checks the robustness, Section 1.8 compares our results with 
previous non-experimental studies, and Section 1.9 concludes. 

1.2 Health Effects of Air Pollution 
An association between high levels of air pollution and human illnesses has been known 
for more than half a century. For example, during the London fog incident of 1952, 
extreme elevations of air pollution were found to be associated with markedly increased 
mortality rates. So far several hundred published epidemiological studies have linked air 



 

 2 

pollution with morbidity and mortality both in the short run and in the long run (see 
Brunekreff and Holgate, 2002; Pope, 2000; and Brook et al, 2003 for literature reviews). 
These studies can be roughly divided into the following categories: (1) time-series 
studies; (2) cross-sectional studies; (3) cohort-based and panel-data studies; and (4) 
natural- or quasi-experiments studies.  
 Time-series studies investigate whether daily or weekly fluctuations in air 
pollution are associated with changes in health outcomes (such as hospital admissions or 
deaths), and most of these studies find that temporary elevation in air pollution is 
associated with worse health outcomes (see Dockery and Pope, 1996). However, whether 
the association in time-series studies indicates causality is controversial. Sharp changes in 
air pollution levels are often driven by local weather conditions rather than by changes in 
polluting activities (Chay et al., 2003). If weather conditions cause health problems 
through other channels, it is not clear whether the worse health outcomes are actually 
caused by elevated air pollution or other risk factors. For example, Beijing’s thick 
smoggy days in 2013, which were intensively documented by the mass media, largely 
resulted from the impacts of a combination of temperature, humidity and wind. Most of 
these smoggy days happened on less windy days during the winter. If people are more 
likely to die on the cold or windy days, without controlling for temperature and other risk 
factors, the association between air pollution and increased mortality can be misleading. 
Moreover, there is no an adequate control group, it is difficult to rule out alternative 
explanations in virtually all time-series studies.  
 Cross-sectional studies compare the health outcomes across locations and 
examine how air pollution is associated with the health outcomes after controlling for 
potential confounding factors. However, this type of research design is plagued with 
omitted variables bias. Since people’s health status and local air quality are usually 
simultaneously determined by many other social-economic factors, a correlation between 
air pollution and health status does not necessarily indicate that there is a causal 
relationship. In practice it is usually infeasible to control for all potentially confounding 
factors. As a consequence, the estimates of the health effect of pollution may be biased.  
 Cohort-based longitudinal studies (Dockery et al, 1993) may suffer from similar 
problems as cross-sectional studies. In principle, longitudinal studies can accurately 
estimate the loss of life expectancy associated with higher levels of pollution because 
they collect data on long-term exposure to air pollution. However, to some extent, 
exposure to different levels of pollution is an outcome of people’s selection process. 
People migrate and endogenously choose which a level of air pollution. For example, 
wealthy people, whose health status is good for other reasons, can migrate to clean 
regions while poor people have to stay in the polluted regions. The observed association 
between air quality and mortality may be the consequence of factors other than air 
pollution. As suggested by Chay and Greenstone (2003a, 2003b), these associational 
approaches tend to produce unreliable estimates.  
 Many recent studies have utilized fixed-effects models. Fixed-effects models 
(Currie and Neidell, 2005; Currie et al., 2009) remove permanent sources of bias and are 
particularly useful when time-invariant factors explain much variation in an outcome 
variable. The assumption required for identification is that there are no unobserved 
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shocks to air pollution levels that co-vary with unobserved shocks to health outcomes. 
However, since changes in air quality depend on similar factors as health outcomes do 
(such as temperature, humidity, and factory polluting activities), this assumption may not 
hold. Moreover, fixed effects model tends to exacerbate measurement error bias 
(Griliches and Hausman, 1986). 
 In contrast, natural or quasi- experiments provide more convincing identification 
strategies. Among them, most existing studies focus on infant or child health because 
they are the most vulnerable to air-borne diseases and the effects are immediate. For 
example, Chay and Greenstone (2003a) explored how air quality improvement induced 
by the 1981-1982 recession affected infant mortality in the United States. They found that 
a 1 percent reduction in Total Suspended Particulates (TSPs) resulted in a 0.35 percent 
decline in the infant mortality rate at the county level. Chay and Greenstone (2003b) also 
analyzed how Clean Air Act Amendments affected infant mortality. They used 
nonattainment status as an instrument for TSPs changes and estimated that a 1 percent 
decline in TSPs resulted in a 0.5 percent decline in the infant mortality rate. Jayachandran 
(2009) analyzed how air quality (particulate matter) changes caused by the wildfires in 
Indonesia affected infant and child mortality.  She found that the pollution led to 15,600 
missing children. Luechinger (2010) investigated the effect of !!! on infant mortality in 
Germany. He studied the natural experiment created by the mandated desulfurization at 
power plants, with wind directions dividing counties into treatment and control groups. 
As for China, Tanaka (2012) estimated the effect of air pollution on infant mortality, 
using air quality variations induced by the !!! and acid rain control zone in the 1990s. 
 Even though almost all the associational studies suggested that air pollution is 
positively and significantly associated with adult mortality rates, Chay et al. (2003) 
challenged these results. Again, they used the Clean Air Act as an instrumental variable 
for air quality, and found that even though the regulatory status was associated with large 
reduction in total suspended particulates but had little effect on either adult or elderly 
mortality. The reason that Chay et al. (2003) could not find the effects of air pollution on 
adult mortality may be due to over aggregation on diseases. Since some diseases are 
sensitive to air pollution while others are not, it is very likely that air pollution only 
affects some specific disease mortality. As for morbidity, Schlenker and Walker (2011) 
estimated the health effects of air pollution induced by airline network delays in the 
United States. They found that carbon monoxide (!") exposure led to significant 
increases in hospitalization rates for asthma and respiratory diseases, and heart related 
emergency room admissions that were an order of magnitude larger than conventional 
estimates. The effects were statistically significant for infants, the elderly and the adult 
population.  
 This paper relates air pollution to cardiovascular mortality in China. Over the last 
decade, a growing body of epidemiological and clinical evidence has led to a heightened 
concern about the potential harmful effects of ambient air pollution on cardiovascular 
diseases. 1 For example, Peters et al. (2000) found that air pollution is associated with 
cardiac arrhythmia. Dockery et al. (2005) found that air pollution is associated with 

                                                
1 For recent reviews, see Brook et al. 2004; Raun and Ensor, 2012. 
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increased incidence of ventricular tachyarrhythmia. Forastiere et al. (2005) found that air 
pollution was associated with out-of-hospital coronary deaths. Xu et al. (2008) found that 
bad air quality was associated with more cardiorespiratory hospitalizations. De Hartog et 
al. (2009) found associations between !!!.! and heart rate variability. For China, Guo et 
al. (2010) found that air pollution was associated with cardiovascular mortality in Tianjin. 
Rich et al. (2012) found association between air pollution levels during the Beijing 
Olympics and biomarkers of inflammation and thrombosis in healthy young adults. 
 Many studies found that air pollution is statistically significantly associated with 
cardiac arrests, which almost always lead to deaths without prompt intervention. 
Silverman et al. (2010) conducted a case-cross-over analysis of air pollution and out-of-
hospital cardiac arrests (OHCA) and found that !!!.! was associated with an increase in 
OHCA. Dennekamp et al. (2010) found similar association between !!!.! and OHCA. 
Ensor et al. (2013) found a significant association between OHCA and ozone. Since 
many cardiac arrests happened to the people who have no pre-existing cardiac conditions, 
if air pollution actually caused them to die, the loss of life expectancy could be very 
large.  

1.3 Air Pollution Regulations during the Olympics 
Beijing started to regulate its air pollution in the 1990s. In 1998, Beijing initiated its first 
Environmental Cleaning Plan. Four years later, by the end of 2002, the government 
reported that it had converted approximately 1,500 coal furnaces into clean fuel, retired 
more than 23,000 old automobiles, decreased the industrial emission by 30,000 tons and 
increased the green area by 100 square kilometers (Chen, et al., 2011).  
 In the following years, Beijing continued its efforts to improve air quality, 
especially after being selected to host the 2008 Olympic Games. On July 13, 2003, the 
International Olympic Committee granted Beijing the privilege of hosting the 2008 
Games. The Chinese government immediately established the Beijing Organizing 
Committee for the Games of the XXIX Olympiad (BOCOG) and “Clean the Air” became 
a major task. From 2003 to 2004, it was reported that industrial coal use decreased by 10 
million tons; in 2005 and 2006, desulfurization, dust removal and denitrification facilities 
were installed in two of the largest power plants in Beijing: the Beijing Thermal Power 
Plant and Power Plant of the Capital Steel. 
 In order to guarantee good air quality in 2008, radical interventions were 
implemented in late 2007. In October 2007, the State Council of China issued the 
“Measures to Ensure Good Air Quality in the 29th Beijing Olympics and Paralympics”. 
The Measures provided guidelines to regulate air quality before and during the Games. 
The Measures defined November 2007 - July 20th 2008 as the pre-Olympic 
Comprehensive Regulation period, and July 20th – September 20th in 2008 as the 
Olympic Games Temporary Emission Control period.  
 During the pre-Olympic Comprehensive Regulation period, multiple regulations 
were implemented simultaneously. For example, all the coal-fired power plants in Beijing 
installed desulfurization, dust removal and denitrification facilities. Even though these 
plants had already met the national emission standards, they were required to reduce their 
emissions by 30 percent from their previous emission levels. More than 150 polluting 



 

 5 

factories had to restrict their production substantially to meet the new emission standards. 
The Second Beijing Chemical Plant, Beijing Eastern Petrochemical Company, 27 Cement 
Production factories, more than 140 Concrete Mixing Plants, and more than 100 lime 
production factories were completely shut down. In late 2007, the largest plant relocation 
action took place in the Capital Steel Company. Its production of steel decreased to 
200,000 tons per month, which was less than 1/3 of its normal production level.  
 Besides, the public sector (public transit, environment and health agencies, etc.) 
replaced all the heavy-emission vehicles. In November 2007 and June 2008, the 
government increased gas prices to discourage the use of private vehicles.  Motor vehicle 
exhaust emissions are the major air pollution sources in big cities. To ensure good air 
quality, Beijing Municipal Government implemented temporary traffic control before and 
during the Games. From July 1 to September 20, vehicles with yellow environmental 
label (vehicles that failed to meet the European No. I standards for exhaust emissions) or 
test license plates were banned from Beijing’s roads. As a consequence, more than 
300,000 heavy-emission vehicles (mostly trucks, tractors, low-speed cargo trucks, tri-
wheeled motor vehicles, motorcycles ) were no longer allowed on the roads. 
 From July 20 July to September 20, vehicles with plates ending with odd numbers 
were only allowed on the road on odd dates and those with plates ending with even 
numbers were only allowed on even dates. Only a few exceptions, such as police 
vehicles, public transports, vehicles with Olympic passes, etc. were exempted from the 
odd-even plate rule. More than two million auto vehicles were pulled off Beijing’s roads 
depending on their license plate number every day. According to the report of the 
committee of the Olympic Games and the Ministry of Environment Protection in China 
(2008), the total vehicle exhaust emissions reduced by more than 60 percent. Traffic 
controls significantly decreased the concentration of fine particulate, ozone, nitrogen 
oxide and other pollutants generated by auto vehicles in Beijing. To further reduce the 
particulate matter pollution, the Chinese government also required that all construction 
projects were halted during the Games. 
 Since air quality in Beijing was affected by its neighbors, several cities and 
provinces (Tianjin, Hebei, Liaoning, Neimeng, Shanxi) around Beijing were also required 
to enforce the central government’s emission control plans. All these provinces were 
required to retire outdated production facilities in the power plants and install 
desulfurization facilities. Factories were forced to reduce their production or temporarily 
shut down if they could not meet the national standard before Jun 2008. Some soccer 
games were held in Tianjin, Shenyang and Qinhuangdao, similar air pollution controls 
were implemented in those cities as well. For example, Tianjian shut down many 
polluting factories before the Games and enforced temporary traffic control during the 
Games. Shenyang, replaced all the old buses before the Olympics and increased greenbelt 
in the construction facilities. Qinhuangdao built shelter forests along the piers to reduce 
dust, swept streets with water and dumping garbage everyday.  
 The combination of these regulations effectively improved air quality in and 
around Beijing. For example, during the 17 days of the Olympic Games, all the indicators 
of air quality in Beijing met the national standards.  
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 Figure 1.1 shows the monthly average pollution index (API) in Beijing from 2006 
to 2010. A higher API indicates a worse air quality. The yearly average pollution index 
(API) in Beijing decreased from 101 to 87, which approximately corresponds to a fall in 
the concentration of particulate matters (!!!") from 152 !"/!! to 124 !"/!! (an 18 
percent decrease). The air quality improvement is particularly striking during the summer 
period (June-August). In 2007 the average summer API in Beijing was 98; one year later 
in 2008, average summer API decreased to 75. The corresponding !!!" concentration 
decreased from 145 !"/!!  to 101 !"/!!  (a 30 percent decrease) during the same 
period. 

1.4 Research Design and Model 
The major concern in estimating the health effects of air pollution is that air pollution 
may be often correlated with a number of omitted variables in the cross-sectional model 
and even in some panel (fixed-effects) models.  
 Many studies relied on estimates from cross-sectional models. In our setting, a 
cross-sectional model can be written as: 

               !!" = !!!!" + !!"! !! + !!" ,!!" = !! + !!"                                 (1) 
where !!" is a health outcome in city ! at time !, !!" is the air pollution levels and !!" is a 
set of control variables. !!" are unobservable disturbances.  
 !! captures the effect of air pollution on the health outcome if it is not correlated 
with the unobservable disturbance,  ! !!"!!" = 0. However, since air quality is not 
randomly assigned across locations, this condition my not hold. For instance, if higher air 
pollution is associated with higher level of other pollution (water pollution, hazardous 
waste), the estimates will be upwardly biased. On the other hand, if polluted areas are 
also wealthier and have better medical treatment and sanitation, the cross-sectional 
estimates will be downwardly biased. 
 In a fixed-effects model, we impose time independent effects for each city that are 
possibly correlated with air pollution. Then Equation (1) becomes: 

  !!" − !! = !!(!!" − !!)+ (!!"! − !!!)!! + !!"                               (2) 
where !! = !!"/!!

!!! , !! = !!"/!!
!!! , and !! = !!"/!!

!!! . 
 Fixed-effects models remove permanent sources of bias and are particularly 
useful when time-invariant factors explain much variation in an outcome variable. 
However, if changes in air pollution are correlated with changes in other unobserved 
factors (such as temperature, water pollution and hazardous waste) that also affect health 
outcomes, the fixed-effects estimates will be biased, too. Moreover, since our measure of 
city-district level monthly air quality is averaged across different monitoring sites and 
aggregated from daily data, we may suffer from slight measurement error bias.  This bias 
will be exacerbated in fixed effects models. 
 The biases in the cross-sectional model and fixed-effects model can be alleviated 
if there exists an instrumental variable (IV) that is correlated with changes in air quality 
but have no direct impact on the health outcome. Such a variable would purge the biases 
caused by both measurement error and omitted variables.  
 Our instrument is a city’s air quality regulatory status during the Olympics. In 
particular, we estimate the follow two equations: 
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    !!" = !!!!" + !!"! !! + !! + !! + !!"                                              (3) 
       !!" = !!!!" + !!!!" + !!"! !! + !! + !! + !!"                                (4) 

where !!" is a regulation status indicator of city i at time t. If city i was regulated at time 
t, !!" = 1, otherwise it is 0. !!" is the traffic control status indicator,  If city i enforced 
traffic control during the Olympic Games, !!" = 1, otherwise it is 0. 
 We focus on a 5-year window, from 2006 January to 2010 December. As 
discussed in the previous section, radical air pollution controls were implemented from 
November 2007, so we treat this month as the starting point of the regulation.  
 Even though most of the air pollution regulations were abandoned after the 
Olympic Games, the good air quality could last for a few more months longer, so we also 
include the last 3 months (October, November, and December) in 2008 as the regulation 
period. Thus, !!" = 1 if a city was in a regulated province from November 2007 to 
December 2008, otherwise it is 0.   
 Beijing and Tianjin faced more stringent air quality regulations than other cities. 
Both cities enforced temporary traffic controls from July-September, 2008. To capture 
the treatment intensity differences, we include a traffic control dummy !!" (served as 
another instrumental variable), which is equal to 1 during July-September 2008 for 
districts in Beijing and Tianjin.2  
  “Being-regulated” is associated with a sharp decrease in average pollution index 
(API) in 2008. Figure 1.2 presents the trends of the monthly average pollution index 
(API) for both the regulated (9 city-districts) and non-regulated cities (25 city-districts) in 
our sample during 2006-2010. We observe strong seasonality in the trends of air quality 
for both treated and control group. In both groups, air quality is better in summer than in 
winter. In the control group, air quality from year to year is relatively stable. In contrast, 
air quality was significantly improved in 2008 in the treated group. The average API in 
the treated group is higher than that in the control group, but both groups follow similar 
trends before 2008. Compared to 2008, air quality in 2009 and 2010 in the treated group 
became slightly worse, suggesting that the effects of the regulations on air pollution 
diminished as time elapsed.  
 In the first stage, we estimate how the air quality regulations affect air pollution, 
using Equation (4). The coefficient !! is a Difference-in-Difference estimator, capturing 
the difference in the changes in air pollution levels in regulated periods (November 2007 
to December 2008) and non-regulated periods (January 2006 to October 2007, January 
2009 to December 2010), between the localities that are and are not regulated. !! has 
similar interpretations. We expect both !! and !! to be negative. In the second stage of 
the IV regression, we take the estimated pollution level !!" from the first stage into 
Equation (3). If air pollution harms people's health, we expect that less people die from 
cardiovascular diseases in the good air quality episodes in the regulated cities and that !! 
is positive. 

                                                
2 The point estimate and significance of the effect of air pollution on cardiovascular mortality is essentially unchanged 
if we only use one instrument variable, !!". However, using two instrumental variables improves the significance of the 
first stage. 



 

 8 

1.5 Data and Descriptive Statistics 
This study combines several data sets to address our research question for China. We are 
able to trace out the evolution of cardiovascular mortalities and air quality across cities 
over time, linked with various local characteristics including weather.  

1.5.1 Air Quality Data 
Air Quality data comes from the monitoring sites in the State Environment Protection 
Agency (SEPA). It provides daily air quality information for 82 major urban cities in 
China from 2000 to present. Our air quality data has the following information: daily air 
pollution index (API), primary pollutant and air quality level.  
 Unfortunately we do not have information on the concentrations of various air 
pollutants. However, the way that SEPA calculates API allows us to approximately 
recover the concentration of the primary pollutant. 
 The API score is constructed based on the concentrations of 5 atmospheric 
pollutants, namely sulfur dioxide (!!!), nitrogen dioxide (!!!), suspended particulates 
of 10 micrometers or less (!!!"), carbon monoxide (!"), and ozone (!!) measured at 
the monitoring stations throughout each city. API is calculated according to the 
maximum concentration of these pollutants. It is a proxy measure of the ambient air 
quality. Table 1.1 shows the relationship between API and the concentration of the five 
air pollutants. 
 The construction of API takes four steps. First, measure the daily average 
concentration of each pollutant. Second, for each pollutant, find out its corresponding 
concentration interval in Table 1.1. Third, calculate the Pollution Index of each pollutant 
linearly. Finally, take the maximum of all pollution indices and define it as API.  
 For example, assume the concentrations of the 5 pollutant are:!!!!! = 0.07!"/
!! , !!!! = 0.10!"/!! , !!!!" = 0.30!"/!! , !!" = 8!"/!! and !!! = 0.18!"/
!!;  then use Table 1.1 we find that the concentration of   !!!, !!!, !", and !! is in the 
interval [50,100] while the !!!" concentration falls into the interval [100,200]. Within 
each interval we can calculate pollution index of each pollutant linearly: 

!!!!! =
100− 50
0.15− 0.05 ∗ 0.07− 0.05 + 50 = 60 

!!!!! =
100− 50
0.12− 0.08 ∗ 0.10− 0.08 + 50 = 75 

!!!!!" =
200− 100
0.35− 0.15 ∗ 0.30− 0.15 + 100 = 175 

!!!" =
100− 50
10− 5 ∗ 8− 5 + 50 = 80 

!!!! =
100− 50
0.2− 0.12 ∗ 0.18− 0.12 + 50 = 87.5 

 
 Then !"# = max{!!!!! ,!!!!! ,!!!!!" ,!!!" ,!!!!} = 175, , and !!!!" is called 
the primary pollutant. According to the standard of SEPA, an API below 50 is defined as 
“excellent” air quality, 50-100 as “good”, 100-200 as “slightly polluted”, 200-300 as 
“moderately polluted” and above 300 as “severely polluted.” 
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 In the daily data, !!!"  is the primary pollutant in most of the time (89.58 
percent); !!! is the primary pollutant in 10.19 percent of all time; and !!! is the primary 
pollutant in 0.23 percent of all time. The other two pollutants,  !" and !!, are never 
primary pollutants. Due to the dominant share of !!!" as the primary pollutant, we can 
approximately recover the concentration of !!!".  
 Airborne particulate matter consists of a heterogeneous mixture of solid and 
liquid particles suspended in air. Primary particles are emitted directly into the air, such 
as diesel soot, whereas secondary particles are created through physicochemical 
transformation of gases. There are many sources of particulate matter, such as motor 
vehicle emissions, power generation and other industrial combustion, smelting and other 
metal processing, construction, wood burning, forest fires and combustion of agricultural 
debris, etc. Largely because of the complex nature of PM, it has been measured and 
regulated based primarily on mass within defined size ranges.  
 We aggregate daily API to monthly and match it with the death data. In our 
sample, the average monthly API is 74.45, with a standard deviation of 20.58.  The 
average API for regulated cities is 78.98, with a standard deviation of 19.81. In contrast, 
the average API in the control cities is lower, 72.81, with a standard deviation of 20.61  
 The recovered concentration of !!!" for the regulated, control, and the whole 
sample is 108.10, 96.07, and 99.25, respectively. The corresponding standard deviations 
are 39.39, 39.28 and 39.66. 
 The reliability of the Chinese official air quality data has been questioned by both 
mass media and researchers, and the government’s unwillingness to publicize specific 
concentrations of different pollutants further imposes difficulties for the researchers to 
verify its reliability. Wang et al. (2009) compared measures of pollutant concentrations 
collected by themselves with SEPA’s, and found that there is very strong association 
between their own air quality data with the official data, but the absolute value of the 
official data is about 30 percent lower. So it is likely that Chinese government 
manipulated the data to some extent. However, the evidences in Wang et al. (2009) and 
similar studies also have their own drawbacks: the sampling methods and the choice of 
monitoring locations are not identical to SEPA’s, so the discrepancy does not necessarily 
indicate a true data manipulation. Moreover, in our quasi-experimental approach, the 
estimations will be based on differences instead of levels. So even if the Chinese 
government underrates the pollution level, as long as the bias is proportional, our 
estimates shouldn't be affected. 
 Chen et al. (2011) evaluated the impact of the Olympics on Beijing’s air quality. 
They found that the regulations effectively reduced API in Beijing by 29.65 percent 
during the Games as compared to one year before any Olympic-motivated action. They 
also used the satellite based AOD data, acquired from NASA, confirms that air quality 
improvement in Beijing during 2008 was real.  

1.5.2 Death Data 
Death data comes from the Disease Surveillance Point System (DSPS) in China Center 
for Disease Control and Prevention (CDC).   
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 DSPS was initiated in 1978, covered 71 counties in 29 provinces 1980 to 1989, 
and 145 counties in 31 provinces from 1990 to 2000, and 161 counties from 2003 to now. 
The system adopts a multi-stage cluster population probability sampling method in order 
to represent the population and death trends countrywide.  
 Our primary dependent variable is the monthly age-adjusted cardiovascular 
mortality, which is defined as the number of deaths caused by cardiovascular diseases per 
month at a given city-district per 100,000 people, adjusted by age distribution.  
 We calculated monthly number of deaths caused by cardiovascular diseases and 
by age group from 2006 to 2010 based on their death records. People are divided into 19 
age groups. 0, 1, 2-5, 6-10, 11-15…, 75-80, 81-85, and older than 85.  
 Age-group specific mortality rate in a specific death surveillance point is 
calculated as:  

!"#_!"#$_!!!"#$%! =
100,000 ∗ !"#$ℎ!"#$!!
!"#$%!!"#$%&'("!!"#$!!

 

 Age-adjusted mortality rate for a specific death surveillance location is calculated 
as: 

!"#_!"#_!" = ! (!"#$%&'(")!!"#$ℎ!!"#$!! ∗ !"#_!"#$_!!!"#$!!
!

 

 The population weights are calculated using China’s 2000 Census. Age 
adjustment allows us to compare communities with different age structure.  
 We aggregated daily air quality data to monthly level and matched it with the 
death records data. Thirty-four city-districts in urban cities of China were matched using 
the two datasets, sampled from January 2006 to December 2010. 
 The DSPS recorded nine categories of death causes: cancer, cerebrovascular 
diseases, digestive system diseases, cardiovascular diseases, injuries, perinatal diseases, 
respiratory system diseases, urine and procreative systems diseases, and other diseases.  
 Our study focuses on the cardiovascular mortality. Cardiovascular diseases are the 
No. 3 cause of death in China. In our sample, the leading cause of deaths is cancer. 
Roughly 28 percent people die from cancer. The second leading cause of death is 
cerebrovascular diseases, accounting for 20 percent of all deaths. The share of deaths 
caused by cardiovascular diseases is 17 percent. The sample covers roughly 76,000 
deaths caused by cardiovascular diseases. The monthly average age-adjusted 
cardiovascular mortality is 5.94 deaths per month per 100,000 people in our sample, with 
a standard deviation of 3.37. 

1.5.3 Weather and social-economic data 
The data on rainfall and temperature are drawn from the Global Historical Climatology 
Network (GHCN) project. GHCN provides monthly average precipitation and 
temperature for given longitudes and latitudes with the minimum cell size of 0.5 degree 
by 0.5 degree. 
 We first identified the coordinates of the 34 sampled city-districts. For each city-
district, we collected rainfall and temperature data for its 4 nearest points in the GHCN 
data. We calculated a weighted average precipitation and temperature using the inverse 
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squared distance as the weights. For example, an interpolated precipitation of location j 
using the nearest four points k, k =1, 2, 3, 4 is given by: 

!"#$%!! =
!"#$%!! ∗ !"#$%&'!!"!!

!"#$%&'!!"!!!
!!!

!

!!!
 

where !"#$%!! is the precipitation at point j, and !"#$%&'!!"
!! is the distance between j   

and k.  
 Both rainfall and temperature may affect the air pollution level as well as people’s 
health status. Rainfall may be negatively correlated with air pollution, as rain can wash 
away pollutants in the air. More importantly, rainfall changes the concentration of water 
pollutants, which may contribute to worse health outcomes. The relationship between 
temperature and air pollution may be non-monotone. Air pollution may increase in both 
extreme hot and cold days due of excessive energy consumption. People are more likely 
to die on extreme hot or cold days. The summary statistics of the key variables are in 
Table 1.2.  

1.6 Main Results 

1.6.1 Results from Cross Sectional Models 
We first estimate the relationship between API and cardiovascular monthly mortality rate 
using cross-sectional models. We run cross-sectional regressions separately for each year 
with three different specifications: without any control variables, with temperature and its 
square, and with temperature, precipitation and their squares. Then we stack the 5 years 
of data and estimate a pooled regression model.  
 The regression results are reported in Table 1.3. Without any control variables, 
API is positively and statistically significantly associated with higher cardiovascular 
mortality rates in each year. However, they become insignificant as we include the 
control variables in most years. The estimated coefficients are sensitive to the weather 
variables, suggesting that temperature and rainfall are correlated with air pollution levels, 
and they also affect mortality.  
 In the pooled regression, columns 16-18 show that API is positively and 
statistically significantly associated with the cardiovascular mortality rate in all three 
specifications. As we include the weather controls, the estimated coefficients of API 
change substantially (from 0.036 to 0.008). These results suggest that we face omitted 
variables problems: as we control for more confounding factors, the estimates of API are 
affected so API is very unlikely to be exogenous.  

1.6.2 Results from Fixed Effects Models 
In Table 1.4, we summarize the regression results for fixed effects models. In columns 1-
3, we control for city-district fixed effects. In columns 4-6, we also control for fixed 
effects for each month (59 dummies for 60 months).  
 If we only control for city-district fixed effects, API is positively and statistically 
significantly associated with higher cardiovascular mortality, and the estimated 
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coefficient is 0.0263. When we also include the fixed effects for each month, the 
estimated coefficient decreases to 0.0115 but is still statistically significant.  
 However, including the weather variables has a very large impact on the estimates 
of API. Both in the city fixed effects model and the city and time fixed effects model, the 
significant relationship between API and cardiovascular diseases disappears after we 
control for weather conditions. These results suggest that changes in air pollution 
fluctuations are still correlated with the weather conditions and that weather conditions 
may affect cardiovascular mortality directly or through channels other than affecting air 
pollution. Temperature plays a very important role in determining mortality in the fixed 
effects model. More people died on the cold days.  
 The results from the fixed-effects models suggest that API variations from month 
to month and from location to location cannot be treated as exogenous even after we 
control for city fixed effects and month fixed effects. The results are very sensitive to 
including weather conditions. There may exist other unobserved variables (such as 
winds) that co-vary with both API and cardiovascular mortality. The estimates from 
fixed-effects models are very likely to be biased as well.  

1.6.3 Results from Fixed-Effects Instrumental Variable Model 
We now turn to the natural experiment research design. We estimate the relationship 
between air pollution and cardiovascular mortality using a fixed-effects instrumental 
variable model.  
 In the first stage, we estimate the relationship between the regulatory status and 
API using Equation (4). Then we take the predicted air pollution index into Equation (3) 
and estimate the relationship between cardiovascular mortality and API. In both stages, 
we control for both city-district fixed effects and fixed effects for each month. We report 
the regression results in Table 1.5.  
 The regulatory status variable is a valid instrument if (1) the regulatory status 
affects air pollution levels, and (2) these regulations affect cardiovascular mortality only 
through its impacts on air pollution.  
 The first condition can be justified by looking at the relationship between the 
instrumental variables and API. In columns 1-3, we report the effect of the two treatments 
(general air regulation !!"  and traffic control !!" ) on API. Both instruments are 
statistically significantly associated with API at 5% level. On average !!"  decreases 
monthly API by about 3.2 ug/m3, and !!"  decreases monthly API by 8.56 ug/m3, 
conditional on city-districts fixed effect, month fixed effects, temperature, precipitation 
and their squares. 
 Even though we cannot directly test the second condition, the regression results 
suggest both instruments are likely to be exogenous. In the first stage, including the 
weather controls does not affect the point estimates of the two instruments but reduces 
their standard errors, suggesting that those two instrumental variables are exogenous. At 
the same time, the estimated effect of API on cardiovascular mortality is statistically 
significant in all three specifications. Without including any weather or social-economic 
controls, the estimated coefficient of API on cardiovascular mortality is 0.192, as 
reported in column 4 of Table 1.5. Including the weather controls slightly decreases the 
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estimates of API, and the change of magnitude is small. In other words, these control 
variables are not correlated with API variations induced by the regulation. If the API 
variations induced by the regulation are not correlated with these observable potential 
confounding factors, it is also likely that they are not correlated with other potential 
unobserved confounding factors.  
 In the most restrictive specification, where we include city fixed effects, month 
fixed effects and weather conditions, the effect of API on cardiovascular mortality is 
0.161 and the relationship is statistically significant at 5 percent level. The 95 percent 
confidence interval is [0.015, 0.307]. If we increase API by 10 point, monthly 
cardiovascular mortality would increase by 1.61 per 100,000 people. The estimates from 
this natural experiment design are substantially larger than the estimates from cross-
sectional and fixed-effects models.  

China has more than 690 million urban people; a rough calculation suggests that each 
year more than 133,300 people would be saved from cardiovascular diseases if monthly 
API increases by 10 point.   

1.6.4 Results for PM10 
Since API is an index, it is very hard to compare our estimates with findings in other 
studies. We thus recover the !!!" concentrations based on API. !!!" is the primary 
pollutant for most of the time (roughly 90 percent), so the recovered concentration should 
be a good proxy for the actual !!!" concentrations. 
 Though not reported, we find that estimated coefficient of !!!" is sensitive to the 
inclusion of weather conditions in both cross-sectional and fixed effects models.3 
However, in the instrumental variable setting, the relationship is robust. The effects of 
!!!" on cardiovascular mortality are reported in Table 1.6. 
 The estimated coefficient of !!!" on cardiovascular mortality is 0.081 in the 
most restrictive model and is statistically significant. The 95 percent confidence interval 
is [0.008, 0.154]. Given that the average monthly !!!" concentration is 99.25!!"/!!, if 
!!!"  concentration decreases by 10 percent (approximately 10 !"/!! ), monthly 
cardiovascular morality would roughly decrease by 1 per 100,000 people. In other words, 
a 10 !"/!!  decline in !!!"  roughly leads to a 13.6 percent reduction in monthly 
cardiovascular mortality in China. Based on our estimation, more than 67,000 lives in 
urban China may be saved from cardiovascular death if !!!" concentration decreases by 
10 !"/!! from its current level.  

1.6.5 Falsification Test Using Deaths by Injuries 
Last, we conduct a falsification test using deaths caused by injuries. Injury mortality is an 
ideal comparison group because air quality levels should not affect injuries. If our 
findings are an artifact resulting from the unobserved death patterns, similar patterns 
should occur on other mortalities as well.   
 In Table 1.7, we report the regression results for monthly injury mortality. We 
summarize the results for API in columns 1-3 and the results for !!!" in columns 4-6. 

                                                
3 The results are not reported and are available upon requests. 
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We find that the estimates are close to zero and not statistically significant in all the 
specifications. The estimated coefficients of air pollution on injury mortality are negative 
and the standard errors are large.  The results indicate that there is no relationship 
between air pollution and injury mortality. In other words, air pollution does not affect 
injury mortality. In case the Olympic Games somehow affected injury mortality (for 
example, traffic controls might reduce car accident deaths) during the Olympic Games, 
we check the same set of specifications excluding the traffic control months and the 
findings are the same.   

1.7 Robustness Checks 

1.7.1 Migration and Other Potential Threats 
One threat of the findings is temporary migration. If there exists temporary migration 
during the Olympic Games, our estimates may be biased. The bias may go both ways. On 
the one hand, if healthier people migrate into Beijing and other regulated cities during the 
Olympics (perhaps to watch the games), the health effects of air pollution will be over-
estimated.  
 On the other hand, the Olympics Games created more jobs in the construction and 
service industries, and thus it could attract more rural migrant workers to migrate in. 
Presumably, people in the rural areas are less healthy in China. If  more unhealthy people 
migrate into the regulated cities, the health effect of air pollution will be under-estimated.  
 We check the robustness of our results by excluding the data in 2008 July and 
August. As shown in Figure 1.1 and 1.2, the largest air quality improvement occurred in 
July, and air quality was the best in August. The Olympics Games were held between 
August 8th and August 24th.  
 If there was no migration at all or the migration didn’t affect the population health 
structure, we should expect fewer deaths in these two months because of the improved air 
quality. Dropping the two months data would result in smaller estimated coefficients of 
API or!!!!", since some observations that are prone to identify a larger effect are 
missing.  
 In contrast, if dropping the July-August sample has a large impact (either positive 
or negative) on the estimates, migration or other factors that occurred during the 
Olympics might potentially confound our results. 
 The regression results excluding 2008 July and August observations are reported 
in Table 1.8. In columns 1-3 we summarize the results for API; and in columns 4-6 we 
summarize the results for !!!". As expected, the estimated coefficients of API and !!!" 
are slightly smaller than those in the Table 1.5 and Table 1.6. The estimated coefficient of 
API ranges from 0.157 to 0.165 and is statistically significant in all three specifications at 
5 percent level, and the estimated coefficient of !!!" ranges from 0.079 to 0.83 and is 
statistically significant, too.  
 The findings suggest that even if there might exist temporary migration during the 
Olympic Games, this migration does not have a large impact on our estimates. The robust 
results also ruled out the possibility that other temporary activities during the Olympics 
had a large effect on cardiovascular mortality. Such possibilities include, for example, 
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people’s exposure to outdoor air pollution being changed during the Games due to 
watching Games, people being too excited and thus experiencing more heart attacks, and 
medical treatment becoming more available because of less traffic.  

1.7.2 City-specific Trends 
Another concern is that cardiovascular mortality and air quality in different cities may 
have different trends. We check if our findings are sensitive to including city-specific 
trends. In Table 1.9 we report the regression results. Once again, the relationship between 
cardiovascular mortality and air pollution is robust and is statistically significant at 10 
percent level.  
 This set of specifications is more restrictive. However, including city-specific 
trends would unfavorably absorb too much variation in air pollution, some of which were 
caused by the air pollution regulations. Consequently, including city-specific decreased 
the point estimates of API and !!!" by about 0.2.  
 Even though not reported, we also conducted other robustness checks such as 
including the cubic terms for the temperature and precipitation, and including some 
yearly social-economic variables that are not apparently endogenous.4 Our findings are 
the same and the results are robust.  

1.8 Comparison with Previous Estimates 
The relationship observed in this study between air pollution and cardiovascular mortality 
is consistent with findings in many epidemiological time-series and cross sectional 
studies. We compare our results with previous studies in this section. 
 Many epidemiological studies have focused on short-term relationships between 
pollution exposure and adverse health outcomes. These studies often adopt time-series 
models to estimate acute health effects of air pollution using daily death and air pollution 
data.5 Since our study evaluated relatively long-term exposure, quantitative comparisons 
with daily time-series studies are difficult to make. 6 Instead, we compare our results with 
several noteworthy long-term cohort studies here. 
 The first large cohort study that demonstrated an adverse health impact of long-
term air pollution exposure was the Harvard Six Cities study by Dockery et al (1993). In 
a cohort of 8111 adults with 14 to 16 years of follow-up, they found that the adjusted 
overall mortality rate ratio for the most-polluted city versus the least-polluted city was 
1.26, and cardiovascular deaths accounted for the largest single category of the increase 
mortality. However, direct comparison between our results with theirs is also hard to 
make since they used mortality rate ratios as outcome variables.  

                                                
4 The results are essentially unchanged when we include per capita GDP, per capita fixed-asset investment, the share of 
agricultural production, and the share of industrial production. However, due to concerns of endogeneity of these yearly 
variables, we decide not to include them in the regressions.  
5 See for example, Samet et al. (2000) and Dominici et al. (2003) for the NMMAPS study; Katsouyanni et al. (2001) 
for the APHEA2 study.  
6 Researchers have found that high-frequency time-series studies have reported substantially smaller health effect of air 
pollution than are indicated by the long-term cohort studies. For example, Schwartz (2000) showed that as data became 
more aggregated the effects of air pollution on ischemic heart disease mortality and all-death mortality became larger, 
suggesting a greater effect of long term exposure, possibly due to development of chronic disease. 
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 Pope et al (2002) conducted another large prospective cohort study of the long-
term health effects of air pollution using data from the ACS Cancer Prevention II project. 
In approximately 500,000 adults in all 50 states in the United States, chronic exposure to 
multiple air pollutants was linked to mortality statistics for a 16-year window. They 
showed that each 10 !"/!! increase in annual fine particulate matter (!!!.!) mean 
concentration was associated with increases in all-cause, cardiopulmonary, and lung 
cancer mortality of 4 percent, 6 percent, and 8 percent, respectively. Pope et al (2004) 
further looked into the association between specific cardiopulmonary diseases to explore 
potential mechanistic pathways linking exposure and mortality. They found that long-
term particulate matter exposures were most strongly associated with mortality 
attributable to ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. For 
these cardiovascular causes of death, a 10 !"/!! elevation in fine particulate matter was 
associated with 8 percent to 18 percent increases in mortality risk, with larger risk being 
observed for smokers relative to nonsmokers.  
 Clancy et al (2002) analyzed the effect of air pollution control on death rates in 
Dublin, Ireland. In September 1990, the Irish Government banned the marketing, sale and 
distribution of bituminous coals within the city of Dublin. The effect of this intervention 
resulted in an immediate and permanent reduction in particulate concentrations. They 
found that the average black smoke concentration in Dublin declined by 35.6 !"/!! 
after the ban; and that the reduction of air pollution is associated with 10.3 percent 
decline of standardized cardiovascular death rates.  
 In our “natural-experimental” design, we estimate that a 10 !"/!! decline in 
!!!" results in a 13.6 percent reduction in monthly age-adjusted cardiovascular mortality 
in China. Giving that !!!.! concentration is only a fraction of !!!" concentration, our 
estimate is substantially larger, compared to previous cohort studies. This result suggests 
that associational studies may have underestimated the effect of air pollution on 
cardiovascular mortality. 

1.9 Conclusion 
We investigate the potential causal relationship between air pollution and cardiovascular 
mortality in China. We use the 2008 Beijing Olympic Games as a natural experiment, and 
estimate the effect of air pollution on cardiovascular mortality. 
 We use death data from China CDC and air quality data from SEPA. We collect 
social economic data and weather data from various sources. We matched these datasets 
and investigate how air pollution is associated with cardiovascular mortality in 34 urban 
cities in China. We show that results from the traditional cross-sectional models and fixed 
effects models are not robust, suggesting that there exist omitted variable problems in 
those approaches. 
 Instead, we use a fixed-effects instrumental variable model. We split the matched 
34 city-districts into two groups based on their regulatory status during the Olympic 
Games. In the first stage, we estimate how the regulations affect air quality using a 
difference in difference model (control for both city-district fixed effects and fixed effects 
for each month). In the second stage we estimate the relationship between cardiovascular 
mortality and the predicted air pollution levels.  
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 We find that air pollution has a robust and significant effect on cardiovascular 
mortality. Increasing API by 10 points is associated with 1.61 increase in monthly 
cardiovascular mortality. We also estimate the effect of !!!"  on cardiovascular 
mortality. Our measure of !!!"  is an approximate measure of the actual !!!" 
concentration. If !!!" mean concentration decreases by 10 !"/!!, more than 67,000 
lives will be saved in the urban areas of China each year.  
 Our results are not sensitive to including weather and social-economic control 
variables, suggesting that the instrumental variable is not correlated with the observed 
factors. We rule out the possibility that temporary migration or other activities during the 
Olympic Games might confound our estimates by examining the data without 2008 July 
and August. We conduct a falsification test and show that air pollution does not affect 
injury mortality. All these results show that the relationship between air pollution and 
cardiovascular mortality is very likely to be causal.  
 Our estimate of the effect of air pollution on cardiovascular mortality is larger 
than the conventional estimates in previous studies, indicating the associational studies 
underestimate the health effect of air pollution. The findings are in keeping with 
Schlenker and Walker (2011) study. Schlenker and Walker (2011) found that estimates 
from natural-experimental design are much larger than the conventional estimates.  
 In the literature, some researchers concerns about “harvesting”. “Harvesting” is 
also called mortality replacement, which refers to the advancement of death by a few 
days or weeks for severely ill individuals. If elevated air pollution hastens the death of 
people who are already dying, life expectancy saved from slightly better air pollution will 
be rather small. However, it should not be a big issue in this study because our treatment 
period is fairly long (roughly one year).  
 This study has several limitations. First, we do not have the exact concentrations 
of different pollutants. Our measurement of air quality, API, is based on a calculation of 
different pollutant concentrations. We estimate the effect of !!!" on cardiovascular 
mortality using the recovered approximate concentration. However, the magnitude of the 
inaccuracy is unknown, so the results should be interpreted with caution. 
 Second, different air pollutants decreased dis-proportionally in the regulated 
period.7 Previous literature mostly suggests that !!!.! and Ozone are risky factors of 
cardiovascular diseases. However, due to data limitation, we are not able to investigate 
how different pollutants affect cardiovascular mortality.  
 Third, we should emphasize that the estimated results are only locally valid. The 
effects of air pollution on cardiovascular can be highly non-linear and negligible under 
certain threshold. We cannot generalize the results to less polluted areas, and to rural 
areas in China.  

                                                
7 For example, Rich et al. (2012) monitored daily air quality from July 20 to September 17 in 2008 in Beijing, and 
observed differentiated reductions in the mean concentration of different air pollutants: sulfur dioxide (−60 percent), 
carbon monoxide (−48 percent), nitrogen dioxide (−43 percent), elemental carbon (−36 percent), !"_2.5 (−27 
percent), organic carbon (−22 percent), and sulfate (−13 percent) from the pre-Olympic to the during-Olympic period. 
In contrast, ozone concentrations increased (24 percent). They also found that pollutant concentrations generally 
increased substantially from the during- to post-Olympic period for all the pollutants (21 percent to 197 percent) except 
ozone (−61 percent) and sulfate (−47 percent).  
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 Fourth, we ignore people’s response to changes in air quality and the Olympics 
itself. An individual’s level of pollution exposure is determined by ambient air quality, 
indoor air quality and the time split between indoor and outdoor activities. People may 
adjust their behaviors in response to changes in air pollution. Those who are at risk of 
being negatively affected by pollution usually have stronger incentive to adopt 
compensatory/avoidance behaviors. For example, Neidell (2009) found that people 
responded to information about air quality, and that smog alerts significantly reduced the 
attendance at major outdoor facilities in Los Angeles. The Olympic Games might have 
changed people’s preferences between indoor and outdoor activities. The consequences 
of this behavior change on cardiovascular mortality require further investigation.  
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Chapter 2 

Death By Ignorance? Surface Water Quality and Infant 
Mortality in China 
2.1 Introduction 
China’s rapid industrialization, which brought significant economic prosperity over the 
last thirty years, led to severe water pollution in many areas due to massive industrial 
wastewater discharges and extensive use of agricultural fertilizer. This water pollution 
endangers everyone’s health, especially infants. Even though about 60 to 70 percent of 
river water is unsafe for human consumption (World Bank, 2006), many people in poor 
areas rely on the surface water systems for daily use, including drinking. Using surface 
water quality data from monitoring sites in 19 provinces and county-level infant mortality 
data from the 2000 Census, we estimate the effects of surface water quality on infant 
mortality in China.  
 We hypothesize that if surface water becomes slightly degraded, people do not 
notice the pollution and continue consuming it. Consequently, infant mortality initially 
rises as water pollution increases. However as the pollution gets worse, people begin to 
notice the pollution using visual and other clues and reduce their consumption of surface 
water. As water pollution becomes very pronounced, infant mortality falls. 
 We discuss the literature and background on the effects of surface water quality 
on health in Section 2.2. In Section 2.3, we describe the dataset, define the key variables 
and provide summary statistics. In Section 2.4, we estimate the effects of surface water 
quality on infant mortality using an ordered-probit selection model. The selection rule in 
based on surface water quality: people choose where they live and hence the local level 
of water pollution. We use wastewater dumping and precipitation as instruments for 
surface water quality, and estimate the selection model using a two-step approach. 
Section 2.5 concludes. 

2.2 The Effects of Water Pollution on Health 
Studying the effects of water pollution on people’s health has been an important research 
topic in environmental science, epidemiology, environmental economics and health 
economics for decades if not centuries. The earliest research in this area dates to the 
1850s (see Freedman, 1991). Using a natural experiment on water supply distribution in 
London, John Snow demonstrated that unsanitary water caused cholera outbreaks. He 
found that the death rates for dirty-water users were over eight times higher than that for 
the clean-water users. 
 Many recent studies have found various connections between water pollution and 
diseases and other public health measures. Some studies focused on water pollution and 
water-borne diseases, such as typhoid (Cutler and Miller, 2005) and diarrhea (Jalan and 
Ravalion, 2003). Other studies explored the relationship between water pollution and 
cancer, such as Cantor (1997), Davis and Masten (2004), Chen et al. (2005), and 
Ebenstein (2012).  
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 Much of the research focuses on infant and child mortality. Galiani et al. (2005) 
found that privatizing water service improves water quality, and reduces child mortality. 
Merrick (1985), Lavy et al. (1996), and Lee et al. (1997) found positive associations 
between water quality and infant health. Greenstone and Hanna (2011) investigated the 
effects of air quality and water quality on infant mortality in India, and found no 
significant relationship between infant mortality and water quality. Brainerd and Menon 
(2012) found a negative effect of fertilizer agrichemicals in water on infant and child 
health in India. Currie et al. (2013) found that contaminated drinking water has large and 
statistically significant effects on birth weight and gestation of infants born to less 
educated mothers.  
 This study investigates the relationship between surface water quality and infant 
mortality in China. The surface water system broadly covers rivers, lakes and reservoirs. 
China’s surface water system has been severely polluted in the process of 
industrialization. However, none of the existing studies has explored how this pollution 
affects infant’s health. We argue that the relationship between surface water pollution and 
infant health status can be non-monotonic. In the face of water pollution, people’s 
avoidance behaviors may greatly mitigate the pollution’s negative impacts on human 
health. As surface water becomes very polluted, people stop using it and search for 
alternatives, such as bottled water. The avoidance behaviors have been empirically 
supported by a few previous studies. For example, Neidell (2009) found that when smog 
alerts were issued, attendance at major outdoor facilities in Los Angeles would 
significantly decrease. As for water, Zivin et al. (2011) found that bottled water sales 
would significantly increase as a result of tap water violations in Northern California and 
Nevada.  
 In China, the overall surface water quality is graded based on various chemical 
pollutant indicators, which include the pH-value and the concentrations (measured by 
mg/L) of dissolved oxygen, biochemical oxygen demand, ammonia, and nitrogen, etc. 
The overall surface water quality is graded on a 6-degree scale, where Type I water is the 
best quality water and Type VI is the worst.  
 According to the China Ministry of Water Resources, Type I water is an 
“Excellent” source of potable water. Type II water is a “Good” source of potable water. 
Type III water is “Fair.” Pathogenic bacteria and parasites ova can sometimes be found in 
Type II and III water so drinking it may cause diseases. Thus, Type II and III water 
should be purified and treated (such as by boiling) before drinking. Type IV water is 
polluted and unsafe to drink without advanced treatment, which is only possible at water 
supply plants. Type V is seriously polluted and can never been used for human 
consumption. Type VI water is called “Worse than Type V Water,” and any direct 
contact with it is harmful to humans. 
 Individuals can easily distinguish clean water from heavily polluted water, such as 
Types V and VI. Very polluted water is murky and smelly and sometimes has algal 
blooms on the surface. However, distinguishing “excellent” water from “good” or “fair” 
water can be challenging. Figure 2.1 gives a visual illustration of different types of water. 
People may not be aware of the potential health risks as water quality falls from 
“excellent” to “good” or “fair”, so it is not surprising that people consume good or fair 
water and their health status is damaged by the ignorance. As water quality further 
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deteriorates, people typically avoid consuming polluted water, avoid serious health risks. 
Thus the relationship surface water quality on infant mortality may be non-monotonic.  
 Not all the harms from consuming polluted water are immediately apparent. Some 
effects occur at once, while others appear only after toxins have accumulated in the body. 
For example, consuming contaminated water can cause malaria outbreaks within days, 
but it may take decades for water pollution to cause cancers. In this study, we focus on 
infant mortality, which includes only fatal effects that occur within one year.  
 Infant mortality rate is the annual number of deaths among infants less than one 
year old per thousand live births. Neonatal death is the major component of infant deaths. 
In China, about 60 to 70 percent of infant deaths occurred within the first month after 
they were born. Most of the deaths during the neonatal period are due to endogenous 
causes (inherited defects), such as congenital anomalies, gestational immaturity, birth 
complications, and other physiological problems. Lack of proper care during the 
pregnancy can cause neonatal deaths. For example, if pregnant women drink polluted 
water, the neonatal mortality may rise. The post-neonatal mortality rate is the death rate 
of infants from one month to one year. The vast majority of post-neonatal deaths are 
from exogenous causes, such as injuries, environmental and nutritional factors, especially 
as they interact with infectious disease like gastroenteritis and pneumonia. Thus water 
pollution may cause both neonatal and post-neonatal mortality. 
 To consistently estimate the effects of water pollution on health, we need to avoid 
sample selection bias. It would be inhuman to randomly assign one group of people to 
live in a polluted area while assigning another group to a less polluted area. Even if we 
could assign people to various areas, we could not stop people from moving. Because 
poor people are less able to move from the polluted area than are rich people, it is 
possible that poor people, whose health status is very bad for other reasons, gather in 
polluted areas, and rich people, whose health status is already good, stay in clean areas. 
Many previous studies have ignored this potential selection problem, so their estimates 
may be biased. 
 Ebenstein (2012) suggests that China provides an ideal context to estimate the 
health effects of water pollution because of the Household Registration System (Hukou). 
This system prevents people from moving from rural to urban areas. It also makes it 
relatively difficult to move within rural and urban areas. A variety of benefits, such as 
health care and social security, are associated with the Household Registration System. If 
the system has effectively stopped people from migrating, we may treat people’s location 
and thus water quality as predetermined and estimate the effects of water pollution using 
ordinary least squares.  
 However, this argument may have held in the past, the share of people migrating 
has increased by an order of magnitude over the last two decades. According to the 
Census, only 0.66 percent of the total population migrated in 1982 compared to 7.9 
percent in 2000. Given that many rural migrant workers are of childbearing age, if the 
migration decision is correlated with water pollution levels, a selection problem may 
exists.  
 We formally address the potential sample selection problem using a Heckman-
like selection model. In the first step, we estimate the relationship between the 
endogenous water pollution on the instrumental variables. Conditional on the estimates 
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from the first step, we estimate the effects of water pollution on infant mortality in the 
second step.  
 We use wastewater dumping and precipitation as instruments for surface water 
quality. Industrial wastewater dumping degrades surface water quality. We use the 
amount of untreated wastewater discharged into the water system at the prefectural level 
as an instrument for the water quality at a given county. We treat the prefecture-level 
wastewater dumping as an exogenous variable at the county level because a county takes 
the total amount of discharged wastewater as given.8 
 Precipitation is one of the most important factors that influence surface water 
quality. Where rainfall is heavy, surface water quality is typically good. Precipitation 
affects surface water quality through two primary channels. First, rain directly dilute the 
concentration of water pollutants, and thus improves water quality. Second, rain causes 
the river to flow faster, which carries away water pollutant quickly and makes the river 
less prone to eutrophication (Zhong et al., 2005).  
 China has seven major river basins: Changjiang (Yangtze) River Basin, Huang 
River Basin, Zhujiang River Basin, Huai River Basin, Songhuajiang River Basin, Liao 
River Basin and Hai River Basin. Surface water quality in the southern river basins is 
better than that in the northern river basins because southern China has more rain. In our 
sample, the average yearly precipitation in the northern provinces (Beijing, Tianjin, 
Hebei, Liaoning and Ningxia) is 458 mm, with a standard deviation of 148 mm. In 
contrast, the average precipitation in the rest of the provinces is 1,286 mm with a 
standard deviation of 417 mm.  
 In Figure 2.2, we show the proportion of the river segments that were seriously 
polluted (Type IV, V, and VI) from 1991−2005. Roughly 60 to 70 percent of rivers in 
northern China (Huai River, Hai River, Songhuajiang River, Liao River) were severely 
polluted. In contrast, in southern river basins, such as the Changjiang River basin and 
Zhujiang River basin, the proportion of polluted river segments was much lower.  
 Although precipitation has a large effect on surface water quality, for it to be a 
valid instrument, it must affect infant mortality only through its impact on surface water 
quality. Our primary concern is that rainfall fluctuations may affect infant health through 
other channels besides surface water effects. For example, some studies have argued that 
an increase in rainfall increases agricultural production, lowering food prices, and 
increasing nutrient intake and hence health.9 This is a potential threat to the validity of the 
rainfall instrument. However, after careful investigation, this argument does not seem 
hold in this study.  
 First, small shocks in agricultural production induced by rainfall variations do not 
necessarily cause infant to die, unless the households are extremely poor and heavily 
depend on the food or the resulting income to survive. We summarize the main results 
from a series of recent studies that directly evaluate the relationship between rainfall and 
health outcomes in Table 2.1. Not surprisingly, we find a mixture of positive, negative, 

                                                
8 A prefecture usually includes dozens of counties. Ideally, we would like to use the total wastewater discharged in all 
other counties within the same prefecture as the instrumental variable for a particular county. Unfortunately, we cannot 
obtain county-level wastewater data. 
9 The link between rainfall and agricultural income has been investigated in the literature. For example, Levine and 
Yang (2006) showed that more rainfall increases rice output in Indonesia. Duflo and Udry (2004) looked at how men 
and women’s income and spending change when the yields of different crops vary due to their different sensitivity to 
rainfall. 
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and non-significant results. More importantly, the studies that found a significant effect 
of rainfall fluctuations (within its usual range) on infant mortality always focused on poor 
and arid or semiarid regions. In our study, the sampled counties are all located near large 
rivers, lakes and reservoirs, which by nature are relatively water-abundant. The irrigation 
process mainly relies on the surface water system instead of rainfall. So it is unlikely that 
rainfall affects infant mortality through its impact on agricultural production. When we 
regress agriculture production per capita on precipitation, the estimated coefficient on 
precipitation is –0.245 (a 1 mm increase in precipitation is associated with a 0.245 Yuan 
decrease in per capital agricultural production) with a t-statistic of -0.99. Thus, we 
conclude that rainfall is not correlated with agriculture production in our sample.  
 Second, even in arid and semiarid regions, where water scarcity reduces 
agricultural production, the primary channel by which rainfall affects infant mortality is 
not through its impact on agriculture production. For example, Bhalotra (2007) found that 
in rural areas of India income shocks have significant negative effects on infant mortality. 
However, when he controlled for rainfall, the income effect did not change, suggesting 
that the effect of aggregate income on rural infant mortality is not driven by agriculture 
income. In Rocha and Soares’s (2012) study, irrespective of how they introduced 
agricultural production in the regression, the impact of rainfall variations on health at 
birth was not affected, also suggesting that agricultural income does not affect infant 
mortality. Instead, they found that the negative impact of rainfall on infant mortality 
would be greatly reduced by using piped water. Thus if people no longer use 
contaminated water, rainfall itself would not harm infant health.  
 Ebenstein (2012) investigated the effects of water pollution on digestive cancer in 
China and found that precipitation has only a very weak relationship with other disease 
mortality rates except for digestive and lung cancer rates, and found almost no 
relationship between rainfall and cancer rates in areas with high rate of tap water. His 
results also showed that the effect of rainfall variations on people’ health is primary due 
to its impact on the surface water.  
 In this study, if we include per capita agriculture production as a control variable, 
we find that it is not statistically significant and that the estimates of the effect of water 
quality on infant mortality are unchanged. Thus, we believe that precipitation is a valid 
instrument and that rainfall affects infant health through its impact on surface water 
quality. We also verified that in 1999 and 2000 no catastrophic natural disaster such as 
severe droughts or floods occurred in the sampled counties. 

2.3 Data and Summary Statistics 
China established a nationwide water quality monitoring system in the 1980s. Each year, 
the Ministry of Water Resource publishes the China National Water Resource Yearbook, 
which provides water quality information for major lakes, rivers and reservoirs. Many 
provinces also publish province-level water-body quality measures. The national and 
provisional publications are the sources of water quality data used in this paper.  
 We identified each water quality monitoring site’s location and matched it with 
the 2000 Census data at the county-level.10 Our sample includes 461 counties in 19 
                                                
10 There are five administrative levels in China. The highest level is the provincial level, which include provinces, 
autonomous regions, direct-controlled municipality, and special administrative regions (Hongkong and Macao). The 
second highest level of government is the prefecture level, which includes prefectures, autonomous prefectures, 
prefecture-level cities and Leagues. Next is the county level, which includes counties, autonomous counties, county-
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provinces. The sampled provinces include Anhui, Beijing, Chongqing, Fujian, Guangxi, 
Guizhou, Hianan, Hebei, He’nan, Jiangsu, Jiangxi, Liaoning, Ningxia, Shandong, 
Shanghai, Sichuan, Tianjin, Yunnan and Zhejiang. Guangxi and Ningxia are in the 
Autonomous Region; Beijing, Chongqing, Shanghai and Tianjin are directly controlled 
municipalities; and the rest are governed at the provincial level. Northern provinces are 
relatively under-sampled because we could not find water quality data for several 
Northern provinces.  
 The distribution of the six types of water quality is presented in Table 2.2. Nearly 
half (47 percent) of the rivers and other bodies of water in our sample are seriously 
polluted (Types IV, V, and VI).  
 The overall Chinese infant mortality rate has been decreasing at a rapid pace over 
the past forty years, from about 150 per thousand in the 1960s to around 20 per thousand 
in the 2000s. In our sample, the average infant mortality across counties is 19.2 per 
thousand. The variation in infant mortality rates is large, with a standard deviation of 
15.8. The distribution of infant mortality rate is skewed to the left, with a few counties 
out in the tail with considerably higher infant mortality rates than the average. The lowest 
infant mortality rate in our data is less than 1 per thousand, while the highest infant 
mortality rate is 81.2 per thousand. The summary statistics of infant mortality are 
presented in Table 2.3.  
 In general, female infants are more likely to die than male infants in China. 
Female infant mortality is about 22 per thousand, and male infant mortality is about 17 
per thousand. The difference is striking because male infants are usually more vulnerable 
and thus more likely to die than female infants on purely medical grounds. This 
difference is consistent with the popular argument that rural Chinese people prefer boys 
to girls so they invest more on male infants’ health. The variance of female infant 
mortality is also higher than that of male infant mortality.  
 To isolate the effect of water pollution on health, we include a set of explanatory 
variables from the 2000 Census of China: the percentage of the population that is non-
agricultural, illiteracy rate, average rooms per home, and per capita housing area (square 
meters). We also include a few social-economic variables in the 2000 China Statistical 
Yearbook: per capita GDP (Chinese Yuan), per capita government expenditure, and the 
number of beds in medical institutions per 10,000 people. We show the summary 
statistics of these variables in Table 2.4.  
 The percentage of the population that is non-agricultural is the share of the 
population (including the temporary and mobile population) that lives in non-agricultural 
areas to the total population. It measures the degree of urbanization. Urbanization has 
both positive and negative health effects, and the net impact on population is not obvious 
(see, for example, Van de Poel, O’Donnell and Van Doorslaer, 2009). It is generally 
believed that the positive consequences of urbanization outweigh the negative ones for 
infants’ health. Urbanization is associated with better sanitation and medical treatments, 
easier access to tap water and infant care, all of which play important roles in improving 
infant health. So we expect a negative association between the percentage of non-
agricultural population and infant mortality.  

                                                                                                                                            
level cities, and city districts. Below the county is the township level and the (informal) village level. The Census data 
are not available for these last two levels. 
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 The illiteracy rate variable is the share of the total population over 15 who are 
illiterate (have not completed an elementary-school education). Many studies have found 
that infants are less likely to die the more educated are their parents, especially their 
mothers (Delgado et al. 2002; Behrman et al. 2003; Basu and Stephenson, 2005; Frost et 
al. 2005; Miguel, 2005; Boyle, 2006; Cowell, 2006; Cutler and Lleras-Muney, 2006). 
Poor housing and overcrowding are negatively associated with infant health (Martin, 
1967; Brennan and Lancashire, 1978; Victora, et al, 1988). We expect that as either of 
our measures of living conditions—the average number of rooms per household and the 
per capita housing area (square meters)—increases, infant mortality falls.  
 We expect that per capita county GDP to be negatively correlated with infant 
mortality. We use per capital government expenditure to approximate the local 
government’s investments on social welfare programs, such as public health insurance, 
sanitation maintenance, tap water provision, waste management, and pollution treatment. 
We expect it to be negatively correlated with infant mortality. We use the number of beds 
per 10,000 people in medical institutions as a measure of the availability of medical 
treatment. In regions where hospitals are readily available, infant mortality should be 
lower. 
 The reliability of the data collected by Chinese government is often questioned by 
academic researchers. Particularly because local governments in China have been 
criticized for hiding news from the public about water pollution accidents, we might 
question the reliability of the water quality data. Consequently, we examined the 
consistency of the data in three ways. 
 In China, multiple agencies (e.g. the Ministry of Water Resource, the 
Environment Protection Agency, and the Center for Disease Control and Prevention) 
collected data on surface water quality. Since we don’t know the raw data sources of 
different water quality reports, we first checked for consistency between reports of water 
quality data between national water resources reports and provincial water resources. We 
found that 98 percent of these paired reports are consistent, and the few differences are all 
within 1 water quality level. In the few case where they differ, we rely on the data from 
the provincial water resource reports.11 
 Second, we compared a subsample of the 2004 water quality data from the 
yearbooks with 2004 water quality data provided by the World Bank, which is used in 
Ebenstein (2012) paper. The data are almost always identical for comparable monitoring 
sites. Third, several monitoring sites’ data are reported in the River Basin Water Quality 
Reports. Again, we found no substantial difference between these and other sources. 
 Thus, the various reports on water quality are consistent. Hopefully, they are 
accurate. In the past several years, the government has trumpeted its efforts to promote 
the transparency of surface water quality information. For example, the central 
government started to release weekly water quality report for 100 national monitoring 
sites to the public in 2004, and it started to publicize real-time water quality data in 2009. 

                                                
11 If we drop these observations, we obtain the same qualitative results as reported below. 
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2.4 Models and Estimations 

2.4.1 Ordered-Probit Selection Model 
We use a two-step sample selection model to estimate infant mortality conditional on 
surface water quality. In the first step, we estimate the water quality using an ordered 
probit model. If people move in response to the local water quality, the water pollution 
level is endogenous.  
 Because the number of observations of Type I water is relatively small (Table 
2.2), we aggregate Type I and Type II water into a single group, which leaves us with 
five water quality categories. Each County i has water quality in Category 1 (Type I and 
Type II), Category 2 (Type III), …, or 5 (Type VI), ranging from good quality to bad, We 
estimate the water quality using an ordered-probit: 

!"#$%!∗ = !!!! + !! !                                                                 (1) 

!"#$%! =

1!!!" −∞ < !"#$%!∗ ≤ !!,
2!!!"!!!!!!! < !"#$%!∗ ≤ !!,
3!!!"!!!!!!! < !"#$%!∗ ≤ !!,
4!!!"!!!!!!! < !"#$%!∗ ≤ !!,
5!!!"!!!!!!! < !"#$%!∗ < ∞!!

!                                 (2) 

where !"#$%!∗ is the unobserved latent selection variable (actual water quality), !! are a 
set of variables that affect water quality, !!  is a normal disturbance; !"#$%!  is the 
observed 5-degree water quality scale, and the unobserved cutoffs satisfy !! < !! <
!! < !!.  
 The observed infant mortality rate !"#!  is a linear function of observed 
independent variables !!, the demographic, social-economic variables, conditional on the 
observed water quality level. We estimate separate coefficients of !!  for each 
category!!"#$%!: 

!"#! =

!!!!! + !!! !!!"!!"#$%! = 1,
!!!!! + !!! !!!"!!"#$%! = 2,
!!!!! + !!! !!!"!!"#$%! = 3,
!!!!! + !!! !!!!"!!"#$%! = 4,
!!!!! + !!! !!!"!!"#$%! = 5

!                                  (3) 

where for each water quality category j, !!"  has mean 0 and variance !!!, and is bivariate 
normal with !!. The correlation between !!"  and !! is !! for group j. We assume that !!"  
and !! are independently and identically distributed across observations. 
 We estimate this model using a two-step estimation procedure that has been 
described by Greene (2002) and is a generalization of Heckman’s (1979) estimator for 
the binary case. 12 Define: 

                                                
12 There are two popular approaches in estimating the probit selection model: the full information maximum likelihood 
(FIML) approach and the two-step approach. In a binary selection case, Puhani (2000) found that FIML is usually more 
efficient than the two-step estimator. However, in an ordered probit selection model, such as we use, Chiburis and 
Lokshin (2007) found that the two-step estimator is more robust and is the better choice for almost all practical 
applications.  
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!! ≡ ! !! !"#$%! , !! =
!"#$%!∗!!!!! ! !"#$%!∗!!!!! !!"#$%!∗

!!!!
!!

! !!!!!!!!! !! !!!!!!!
= ! !!!!!!! !! !!!!!!!!!

! !!!!!!!!! !! !!!!!!!
                                               

(4) 
where ! is the standard normal density function, and ! is the standard normal cumulative 
distribution function. Then the expectation of infant mortality rate, conditional on all the 
observed factors, is 

     ! !"#! !"#$%! , !! , !! = !!!!! + ! !!" !"#$%! = !, !! = !!!!!+!!!!!!       (5) 
 Thus if we only regress !"#! on !! over the subsample {i: !"#$%! = !}, without 
taking into account of !!, the estimation will be inconsistent if !! ≠ 0.  
 For the ordered-probit selection model to be identified, ! must contain at least one 
variable that is not in !.13 That is, we must have at least one instrument ! for the selection 
variable !"#$% (observed water quality) that is a significant determinant of water quality 
yet satisfies the exclusion restriction !"# !, !! = 0  for all j. We use wastewater 
dumping, rainfall, and their squares as instruments for water quality level. 
 In the first step, we estimate (2) by an ordered probit of !"#$% on!!, yielding the 
consistent estimates ! and !!. Define !"#$%!∗ = !′!!. Using (4), we consistently estimate 
!! by 

!! =
! !! − !"#$%!∗ − ! !!!! − !"#$%!∗
! !!!! − !"#$%!∗ − ! !! − !"#$%!∗

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(6) 
for ! = !"#$%!.  
 By using the observations ! for which !"#$%! = !, we can consistently estimate !!! 
with OLS regression of IMR on x and !.  
 Moreover, !! can be estimated by:  

            !! ≡ !
!!

!""! − !!! !!!
!!"#$%!∗!:!!!   

= !""!
!!

− !!!

!!
!!!!"#$%!∗ ! !!!!"#$%!∗ ! !!!!!!"#$%!∗ ! !!!!!!"#$%!∗

! !!!!!!"#$%!∗ !! !!!!"#$%!∗
!!!!! 7   

where !!  is the number of observations in which equation j is observed, !!  is the 
coefficient on !,  and !""! is the residual sum of squares for the regression. Since !!  is a 
consistent estimator for !!!!, we have a consistent estimator for !!:  

!! ≡
!!
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(8) 

2.4.2 Estimations 
Table 2.5 reports the mean values of selected variables by water quality type. We see 
pronounced water type patterns. Infant mortality is the highest in the Type III regions. In 
the polluted regions, infant mortality is substantially lower. These summary statistics 
already show a non-monotonic relationship between infant mortality and water pollution. 
We also see that in more polluted regions, the share of non-agricultural population is 
higher, suggesting that pollution is accompanied by urbanization. Type IV and V water is 
associated with the highest per capita GDP and government expenditure. These patterns 
suggest that water quality is not randomly assigned to different regions and cannot be 
                                                
13 Otherwise the identification will solely rely on the functional form of the ordered-probit model.  
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treated as exogenous. People may sort into different regions and thus a regression of 
infant mortality on water pollution will give a biased estimate.  
 We report the regression results of the ordered-probit selection model in Table 
2.6. In the first step, we regress water quality on the explanatory variables !!, which 
include our four instrumental variables (precipitation, wastewater dumping and their 
squares) and all the demographic, social-economic !!. The estimated coefficients of the 
four instrumental variables are all statistically significant. Both precipitation and 
wastewater dumping have strong effects on surface water quality. In the second step, we 
estimate the relationship between !"#!  and the independent variables !! , taking into 
account the first-step estimates !.  
 The estimated coefficients of !! vary across different groups. The percentage of 
non-agricultural population is statistically significant in Type I or II, Type IV and Type V 
areas. It is negatively correlated with infant mortality, as expected. On average a 10 
percent increase in non-agricultural population is associated with roughly a 1.9 per 
thousand drop in infant mortality in Type I or II areas. The estimated coefficients for 
Type IV and V areas are 1.6 and 2.4 per thousand, respectively.  
 A higher illiteracy rate statistically significantly increases infant mortality in all 
regressions. As the illiteracy rate increases by 1 percent, infant mortality falls by roughly 
1 per thousand.  
 Housing and living conditions are typically negatively correlated with infant 
mortality. Both the average number of rooms per household and the per capita housing 
area are statistically significantly associated with infant mortality. For example, if each 
household in Type I or II areas has one more room at home, infant mortality will fall by 
3.8. If per capita housing area in Type I or II areas increases by 10 square meters, infant 
mortality will decrease by 4.0 per thousand. As per capita GDP goes up, infant mortality 
goes down. An increase of one thousand Yuan (about 150 US dollars) in per capita GDP 
is associated with a 0.17 to 0.64 per thousand fall in infant mortality, depending on which 
group is chosen.  
 The importance of taking into account selection bias can be seen from the 
statistical significance of the selection terms (!!). These significant selection effects (in 
the Type IV and VI regressions) indicate that if we did not explicitly treat the levels of 
exposure to water pollution as endogenous, our estimates of the effects of water pollution 
on infant mortality using OLS would be biased.  
 We can predict the expected infant mortality !"#! = !!!!!  for each category 
(water type), and calculate the unconditional averages and differences of the predicted 
infant mortality for each category. This is a prediction of infant mortality without taking 
into account the influence of the selection. Using the estimates in Table 2.5, we find the 
average predicted infant mortality !! for the five types of water are respectively 20.3, 
24.0, 14.9, 12.1 and 5.8 per thousand. That is, the highest infant mortality is associated 
with Type III water. In the cleanest areas (Type I or II) and most polluted areas (Type IV 
V and VI), infant mortality is lower. The relationship between water quality and infant 
mortality is non-monotonic, and the most polluted areas (Type VI) have the lowest infant 
mortality. On average, infant mortality in the Type I or II areas is 3.7 per thousand lower 
than that in the Type III areas; and infant mortality in the Types IV, V and VI areas are 
respectively 9.1, 11.9, and 18.2 per thousand lower than that in the Type III areas.  
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 Our goal is to estimate the effects of water quality on infant mortality. An 
alternative, perhaps better, method is to estimate the counterfactual !"#! for the given 
equation j, if all observations were to switch to category j, but taking into account the 
category that was actually chosen. Particularly, conditional on sorting into Type k water 
quality, the infant mortality equation in county i can be written as: 

!"!!" = !!!!!+!!!!!!" + !!"                                        (9) 
 If observation i in category k were to switch to category j, conditional on that 
category k is actually chosen, the predicted counterfactual infant mortality is: 

!"#!" = !!!!!+!!!!!!"                                              (10) 
where !!" is calculated as in (6), using the actual !"#$%!".  
 We repeat this calculation for all the observations in category k, where ! ≠ !, to 
get the counterfactual infant mortality rate if these observations were to switch to 
category j. Then we repeat the process for all j, j = 1,2,...,5.  
 The predicted counterfactual average infant mortalities are reported in row 1 in 
Table 2.7. If all observations were to switch to the Type I or II area, the average infant 
mortality would be 18.7 per thousand; if all were to switch to the Type III area, the 
average infant mortality would be 24.8 per thousand; the value would be 16.9 per 
thousand if all were to switch to the Type IV area; it is 15.1 for Type V area and 4.6 for 
Type VI area.  
 We use the Type III areas as the reference group, and compare its infant mortality 
with that in other groups. The differences are reported in row 2 in Table 2.7, and they tell 
us the estimated effects of water quality on infant mortality in the selection model. If 
water quality changes from Type I or II to Type III, infant mortality will increase by 
about 6.0 per thousand. Changing water quality from Type III to Type IV decreases 
infant mortality by 7.9 per thousand. The lowest infant mortality is found in the most 
polluted areas (Type VI). If water quality deteriorates from Type III to Type VI, infant 
mortality would drop by 20.2 per thousand.  
 We also estimated the ordered probit selection model by gender. We calculated 
the counterfactual average infant mortality for each category and the differences between 
them, using Type III areas as the reference group. The results for male infants are 
reported in rows 4-5 in Table 2.7. Changing water quality from Type I or II to Type III 
would increase male infant mortality by roughly 9.7 per thousand. As water quality 
deteriorates from Type III to Type IV, V and VI, male infant mortality will drop by 7.1, 
8.1 and 15.1 per thousand, respectively. The estimates for female infants are reported in 
rows 7-8 in Table 2.7. The results are slightly different. Changing water quality from 
Type I or II to Type III wouldn’t significantly increase female infant mortality; the 
difference is only about 1.1 per thousand. However, as water quality becomes more 
polluted, changing from Type III to Type IV, V and VI, female infant mortality would 
drop dramatically, with the respective estimated magnitudes of -8.8, -11.6 and -26.3 per 
thousand. The estimates of water pollution on female infant mortality are larger than male 
infant mortality. Female infants benefit more than males from water quality falling from 
fair to polluted.  
 We compared our sample-selection model results to those estimated using OLS. 
In the OLS regressions, we estimate the following model:  

!"#! = !! !+ !!!1! !+ !!!2! !+ !!!3! + !!!4! + !!!!!! !+ !ɛ!          (11) 
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where !"#! is infant mortality rate in county i, !! is a vector of covariates, D1,…,D4 are 
dummies indicating whether a county has Type I or II water (D1=1), Type IV water 
(D2=1), Type V (D3=1) water, and Type VI (D4=1) water. Type III water is still used as 
the reference group.  
 The regression results from OLS are reported in Table 2.8. The non-monotonic 
relationship between water quality and infant mortality is robust in the OLS regressions. 
Based on the OLS estimates, changing water quality from Type I or II to Type III is 
associated with 4.0 per thousand drop in infant mortality; and as water quality 
deteriorates from Type III to Type IV, V, and VI, the associated infant mortality would 
drop by 5.7, 7.7 and 8.0 per thousand, respectively.  
 The OLS model underestimates the effects of water pollution on infant mortality, 
especially for the more polluted areas. For example, as water quality deteriorates from 
Type III to Type VI, OLS indicates the infant mortality would only decrease only by 8 
per thousand, whereas it would drop by 20 per thousand in the ordered probit selection 
model.  
 Assuming that people cannot perceive water quality changes between Type I or II 
and Type III, the associated 6.0 per thousand increase in infant mortality can be 
interpreted as the pure health effect of water pollution. In other words, we find that one-
degree deterioration of water quality leads to about 30% increase in infant mortality. Is 
this plausible? To answer this question, we conduct a crude calculation on the magnitude 
to water quality changes from Type I or II to Type III.  
 According to the Environmental Surface Water Quality Standard in China, a 
deterioration of water quality from Type I to Type III approximately corresponds to 
(using Type I as reference) a 33-percent decrease in the concentration of dissolved 
oxygen (DO), a 200-percent increase in the concentration of Potassium permanganate 
(KMnO4), a 33-percent increase in the concentration of chemical oxygen demand 
(COD), a 560-percent increase in the concentration of Ammonia Nitrogen (NH3-N), a 
900-percent increase in the concentration of Total phosphorus (TP), a 400-percent 
increase in the concentration of Total nitrogen (TN). The changes in the concentrations 
for other pollutants are even more pronounced. For example, the maximum allowed 
number of fecal coliform for Type I water is 200 per liter, and it is 2,000 per liter for 
Type II water, and this maximum number increases to 10,000 per liter for Type III water. 
Thus, the actual change in water quality from Type I to Type II to Type III, even though 
cannot be easily detected by eye-browsing, is significant and potentially harmful.  
 The large effect of water pollution on infant mortality in China is in-keeping with 
the findings in several studies. In particular, Cutler and Miller (2005) argued that the 
adoption of clean water technologies such as filtration and chlorination was responsible 
to up to 75 percent of infant mortality in early twentieth century America. Galiani et al. 
(2005) found that privatization of water supply in Argentina reduced the mortality of 
children under age 5 by 26 percent. Brainerd and Menon (2012) found that 10 percent 
increase in the average of fertilizer chemicals in water in the month of conception 
increased infant mortality by 4 percent, and neo-natal mortality by 7 percent.  
 

2.5 Conclusion and Policy Implication 
The relationship between surface water quality and infant mortality is not monotonic in 
China. As surface water quality deteriorates, the infant mortality increases at first then 
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decreases. Infant mortality is the highest in areas where surface water quality is neither 
too good nor too bad. This pattern is robust to a variety of specifications and models.  
 Our explanation is that, as surface water deteriorates, initially it is difficult to 
detect a quality change, so it harms infants. As the water pollution becomes more 
obvious, people reduce their consumption of polluted water so their health status 
improves. We find evidences supporting this argument. In both the OLS and the orderd-
probit selection models, the regression results show that infant mortality is the highest 
when water quality is fair. In both cleaner and more polluted regions, infant mortality is 
lower. The lowest infant mortality is associated with the most severe water pollution.  
 The selection issue has been well recognized in labor economics and other related 
fields, however, few studies investigating the health effects of pollution considered this 
problem. We formally address the endogeneity of water pollution using a generalized 
Heckman selection model. Explicitly incorporating sorting across water pollution levels 
into the infant mortality equations allows us to produce unbiased estimates of 
differentials in infant mortality with respect to water pollution levels. Furthermore, by 
running the infant mortality functions separately for different water types we allow the 
structure of the infant mortality functions vary across water pollution level.   
  The policy implication is straightforward. Since moderate level of water pollution 
is most dangerous, public provision of clean drinking water is most urgent in these 
regions. The government should pay more attention to these regions, instead of the most 
polluted areas. We find the statistically significant relationship between illiteracy rate and 
infant mortality for all water quality types, suggesting that providing health program 
about water pollution may be an economically effective way to reduce infant mortality. 
Better housing conditions also reduce infant mortality, which may primarily due to better 
sanitation.  
 We find an interesting differential effect of water pollution on male and female 
infants. Male infants are more likely to die if water quality changes from Type I or II to 
Type III; however, as water quality further deteriorates, female infants seem to benefit 
more from the avoidance behaviors. The gender-preference may partially explain this 
pattern; however, this relationship clearly requires further investigation and more 
evidences.  
 The avoidance behavior argument will be much more compelling if we know the 
share of people consuming/contacting surface water in each county. Unfortunately, due to 
data availability, we cannot test this hypothesis directly. In the past years, water pollution 
accidents took places from time to time in China. A direct consequence of these water 
pollution accidents is the “panic purchasing” of bottled water. If we search “water 
pollution”, “bottled water”, “panic purchasing” in Chinese on the largest Chinese search 
engine, Baidu.com, it gives us more than 133,000 related entries. If similar inquiries are 
done through Google.com, more than 292,000 related entries are found.14 Thus the 
avoidance behaviors in response to water pollution are very common. 
 One drawback of this study is that we cannot control for other pollutants, such as 
air pollution. Since other pollutants are presumably correlated with water pollution levels, 
our estimated effects for surface water may reflect the combined effects of exposure to a 
range of environmental pollutants and risks. However, the non-monotonic relationship 

                                                
14 These inquires were made in May 2013. 
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between surface water quality and infant mortality makes it less likely that the effects of 
water and other pollutants are confounded. People have fairly easy and low costs ways to 
protect themselves from being harmed by polluted water (such as by using boiled water, 
tap water and bottled water); while it is not easy to avoid the harm from other pollutants, 
such as air-borne diseases and toxin accumulation through food chain. Since most of 
these pollutants are positively correlated, if what we captured was the combined effects 
of all environmental contaminants, we should not expect to see infant mortality falling in 
areas with poor water quality.  
 
  



   

44 

 
 

Table 2.1 The Effects of Rainfalls on Infant Mortality 
Study Outcome  Explanatory Variables Data Conclusions 
Aguilar and 
Vicarelli 
(2011) 

Cognitive 
tests, 
anthropometric 
variables, 
health 
indicators 

Exogenous excessive 
rainfall shocks. 

Individual 
survey data from 
506 rural 
communities in 
Mexico 

Children born in years and regions 
affected by excessive rain 
experience slower anthropometric 
growth and cognitive development. 

Baird, et al. 
(2007) 

Infant 
Mortality 

Rainfalls, per capita 
GDP, characteristics of 
women, conflict, quality 
of institution, etc. 

Birth data in 59 
developing 
countries 

Rainfall shocks have no significant 
effect on infant mortality. 

Friedman 
(2010) 

Infant 
Mortality 

Daily temperature and 
rainfalls 

Birth data in 47 
South African 
countries 

Excess rainfall is both detrimental 
and protective depending on the 
timing in which it occurs. 

Kovats and 
Wilkinson 
(2004) 

Morality by 
Age and by 
Cause of 
Death 

Daily rainfalls, 
temperature, and 
season, trend, holidays 
and air pollution. 

Birth data in 
New Delhi 

Any increase in rainfall increases the 
risk of infectious disease mortality in 
the near term. 

Kim (2010) Infant 
Mortality 

Monthly Rainfalls, 
mother’s characteristics, 
child’s characteristics, 
religion, region, etc. 

Birth data in 9 
West African 
countries 

There is no association between 
rainfall and infant mortality on 
average. But rainfall shocks have an 
adverse effect on the survival of 
young children that were born in the 
rainy season. 

Kudamastsu, 
et al. (2010) 

Infant 
Mortality by 
Area, by 
Household 
Type 

Monthly rainfalls, 
season, drought 
indicator, household 
type, area (endemic, 
epidemic, non-
malarious, rainy and 
arid) 

Birth data in 28 
African 
countries 

Increased rainfall is associated with 
higher mortality by malaria in 
epidemic, but not in endemic areas. 

Rocha and 
Soares 
(2012) 

Gestation, 
Birth Weight 
and Infant 
Mortality 

Monthly rainfall, 
drought indicator, 
temperature, trend, etc. 

Birth data in 
Semiarid 
Northeast Brazil 

Negative rainfall fluctuations lead to 
higher incidences of low birth 
weight, preterm gestation and infant 
mortality rates, in particular due to 
intestinal infections and 
malnutrition. 

Skoufias et 
al. (2011) 

Child height-
for-age 

Rainfall, household and 
individual 
characteristics. 

Mexico Family 
Life Survey and 
National 
Nutrition Survey 
of Mexico 

The effects of rainfall on height-for-
age is heterogeneous. A positive 
rainfall shock during the wet season 
is associated with shorter children in 
the North, but not in the 
Centre/South regions. 
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Table 2.2 Water Quality Distributions 
Water Quality Type I Type II Type III Type IV Type V Type VI Total 
Frequency 23 132 90 60 59 97 461 
Percent 4.99 28.63 19.52 13.02 12.80 21.04 100 
 
 
 
 
 
 
 
 

Table 2.3 Summary Statistics of Infant Mortality 
 Infant Mortality (per thousand) 
 All Male Female 
Mean 19.23 16.97 21.97 
Std. Dev. 15.82 13.44 20.42 
25% Quantile 8.64 7.89 8.61 
50% Quantile 14.62 13.63 15.17 
75% Quantile 25.31 21.81 29.47 
 
 
 
 
 
 
 
 

Table 2.4 Summary Statistics of the Explanatory Variables 
 Mean Std. Dev. Min Max 
Non-Agricultural Population (%) 19.23 15.83 0.89 81.24 
Illiteracy Rate (%) 16.98 13.45 0.00 76.00 
Average Rooms per Household 21.98 20.42 0.00 125.00 
Housing Area per capita (sq.m.) 30.16 26.55 4.38 97.40 
GDP per capita (1000 Yuan) 9.52 6.15 1.57 48.34 
Government Expenditure per capita 2.60 0.58 1.50 4.92 
Hospital Beds per 10,000 people 23.47 6.48 9.47 45.64 
 
 
 
 
 
 
 
 

Table 2.5 Mean Values of the Key Variables by Water Quality Type 

 Type I and II Type III Type IV Type V Type VI 
Infant Mortality (per thousand) 21.26 23.82 16.47 13.60 16.88 
Male Infant Mortality (per thousand) 17.75 21.41 14.84 12.16 15.88 
Female Infant Mortality (per thousand) 25.61 26.71 18.35 15.31 18.09 
Non-Agricultural Population (%) 25.23 27.25 36.74 36.40 32.87 
Illiteracy Rate (%) 9.78 9.84 9.94 8.00 9.48 
Average Rooms per Household 2.57 2.69 2.56 2.55 2.61 
Housing Area per capita (sq.m.) 24.21 24.45 24.73 22.67 21.10 
GDP per capita (1000 Yuan) 7.87 9.92 12.02 11.01 8.06 
Government Expenditure per capita 0.60 0.72 1.09 1.07 0.75 
Hospital Beds per 10,000 people 27.55 36.97 35.14 33.61 33.12 
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Table 2.6 Ordered-Probit Selection Model: Infant Mortality and Water Quality 
First Step (Water Quality) Second Step (Infant Mortality by Water Type) 

 I or II III IV V VI 

Precipitation (100mm) -0.271*** - - - - - 

 (0.048) - - - - - 

Precipitation Sq. 0.006*** - - - - - 

 (0.002) - - - - - 

Wastewater Dumping 0.033** - - - - - 

 (0.015) - - - - - 

Wastewater Dumping Sq. -0.001*** - - - - - 

 (0.0003) - - - - - 

Non-Ag Population (%) 0.006** -0.185*** -0.007 -0.164* -0.243*** -0.023 

 (0.003) (0.065) (0.110) (0.094) (0.072) (0.057) 

Illiteracy Rate (%) 0.022** 0.925*** 1.330*** 1.053*** 1.296*** 1.000*** 

 (0.011) (0.199) (0.349) (0.278) (0.368) (0.183) 

Ave. Rooms per Household 0.236** -3.813* 1.005 0.251 -5.964** -0.734 

 (0.113) (2.310) (3.121) (3.932) (2.602) (2.063) 

Housing Area per capita -0.008 -0.401*** -0.597** -0.580* -0.586** -0.330 

 (0.011) (0.150) (0.280) (0.305) (0.256) (0.306) 

GDP per capita (1000 Yuan) 0.021* -0.323 -0.644* -0.260 -0.169 -0.463* 

 (0.011) (0.212) (0.368) (0.328) (0.144) (0.282) 

Gov. Exp. per capita 0.004 -2.223 2.134 -1.585 -0.934 -0.872 

 (0.080) (2.449) (5.502) (2.638) (0.970) (2.072) 

Hospital Beds per 10,000 people -0.002 0.040 -0.025 0.204 0.224** 0.008 

 (0.003) (0.054) (0.104) (0.138) (0.109) (0.069) 

 - -0.994 -0.106 9.552*** 3.309 10.20*** 
 - (3.044) (2.935) (3.397) (2.058) (2.781) 
Number of Observations 460 =-0.091 =-0.008 =0.661 =0.373 =0.788 
Note: *** Significant at 1% level;  
** Significant at 5% level; 
* Significant at 10% level 
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Table 2.7 The Effects of Water Quality on Infant Mortality 
   Type I or II Type III Type IV Type V Type VI 

Overall 

(1) Counterfactual Average 18.733 24.758 16.894 15.093 4.570 

(2) Differences -6.025 - -7.864 -9.666 -20.188 

(3) OLS Estimates -3.964 - -5.682 -7.683 -7.956 

Male 
Infant 

(4) Counterfactual Average 12.793 22.458 15.364 14.403 7.375 
(5) Differences -9.666 - -7.095 -8.055 -15.083 

(6) OLS Estimates -4.552 - -5.304 -6.699 -6.018 

Female 
Infant 

(7) Counterfactual Average 26.426 27.548 18.674 15.956 1.284 

(8) Differences -1.122 - -8.874 -11.592 -26.264 

(9) OLS Estimates -3.102 - -6.187 -8.895 -10.28 
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Table 2.8 OLS Regression Results on Infant Mortality 
 Infant Mortality 

 Overall Male Female 

Type I or II -3.964** -4.552*** -3.102 

 (1.742) (1.556) (2.258) 

Type IV -5.682*** -5.304*** -6.187** 

 (2.194) (1.987) (2.729) 

Type V -7.683*** -6.699*** -8.895*** 

 (1.980) (1.661) (2.686) 

Type VI -7.956*** -6.018*** -10.28*** 

 (1.883) (1.738) (2.270) 

Non-Agricultural Population (%) -0.128*** -0.081*** -0.187*** 

 (0.028) (0.024) (0.038) 

Illiteracy Rate (%) 1.054*** 1.026*** 1.066*** 

 (0.130) (0.112) (0.167) 

Ave. Rooms per Household -2.678** -1.883** -3.586*** 

 (1.016) (0.907) (1.391) 

Housing Area per capita -0.356*** -0.166** -0.587*** 

 (0.084) (0.071) (0.122) 

GDP per capita (1000 Yuan) -0.356*** -0.352*** -0.367*** 

 (0.087) (0.079) (0.112) 

Gov. Exp. per capita (1000 Yuan) -0.339 -0.226 -0.439 

 (0.561) (0.514) (0.706) 

Hospital Beds per 10,000 people 0.007 0.033 -0.023 

 (0.026) (0.021) (0.039) 

F-Statistics 36.81 31.76 35.28 

R Square 0.493 0.484 0.428 

Number of Observations 460 460 460 
Note: Robust Standard errors are in the parenthesis. 
** Significant at 1% level; 
** Significant at 5% level; 
* Significant at 10% level 
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Figure 2.1 Different Types of Water Quality 
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Figure 2.2 Polluted Segment of the Main Water System in China 
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Chapter 3 

Surface Water Pollution and Cancer Mortality among the 
Elderly in China 
3.1 Introduction 
Massive industrial wastewater discharges and extensive use of agricultural fertilizer have 
destroyed the surface water system in most places of China in the past thirty years. At the 
same time, China witnessed a dramatic increase in cancer rate. For example, according to 
the National Bureau of Statistics of China, the total number of new cancer cases 
increased by 14.6 percent from 2000 to 2005. By 2009 cancer has become the leading 
cause of death in urban and Rural China, and roughly a quarter of all deaths countrywide 
died from cancer. It is believed that the rise of cancer rates in China is driven by the 
deteriorations of the environment. The emergence of “cancer villages” in recent years has 
shown that the relationship between water pollution and cancer is very likely to be causal. 
These communities—where an unusually high number of residents are struck by the same 
types of cancer—tend to cluster in poorer areas along polluted waterways or downstream 
from industrial parks (Liu, 2010). 
 The poisoned water and soil are devastating to local residents in the poor areas 
since most villages are largely self-sufficient. The young and healthy people can leave 
and seek income elsewhere. Those too old, too poor, or too sick to leave have to stay. 
 Many recent studies have found various connections between water pollution and 
diseases and other public health measures. Some studies focused on water pollution and 
water-borne diseases, such as typhoid (Cutler and Miller, 2005) and diarrhea (Jalan and 
Ravallion, 2003). Some studies investigated how water pollution affects infant and child 
mortality, such as Galiani et al. (2005), Merrick (1985), Lavy et al. (1996), and Lee et al. 
(1997), Greenstone and Hanna (2002), and Brainerd and Menon (2012). As for China, He 
(2012) found that water pollution has a non-monotone impact on infant mortality and that 
slightly polluted water is the most dangerous to infants. 
 A limited but growing literature has linked water pollution to particular cancer 
types such as liver cancer (Lin et al., 2000) or gastric cancer (Morales-Suarez-Varela et 
al., 1995). Similar studies investigating water pollution and cancer include Cantor (1997), 
Davis and Masten (2003), and Chen et al. (2005). Ebenstein (2012) was the first study 
trying to estimate the causal relationship between water pollution and digestive cancer in 
China. He argued that China provides an ideal context to estimate the health effects of 
water pollution because of the Household Registration System (Hukou). Since a variety 
of benefits, such as health care and social security, were associated with the Household 
Registration System, this system prevented people from moving from Rural to urban 
areas, and also made it relatively difficult to move within Rural and urban areas. 
Therefore, he claimed “the location of residents at the time of observation in the data will 
likely reflect their true lifetime surface water pollution exposure”. Based on this 
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assumption, he estimated that a deterioration in water quality by a single grade increases 
the digestive cancer death rate by 9.7 percent in China.  
 Our study differs from Ebenstein (2012) in several important ways. First, 
Ebenstein used death data from 1991-2000 but water quality data in 2004. The 
inconsistency of these two datasets creates substantial measurement errors. That is, water 
quality in 2004 cannot represent water quality during the 1991-2000. Figure 2.2 shows 
the proportion of the river segments that were seriously polluted (Type IV, V and VI) 
from 1991-2005. It is obvious that water quality is not the same in different years, and 
that water quality in 2004 is not an ideal measure of the long-term water quality. Thus his 
estimates might be biased, and the magnitude of the bias was unknown. In our study, we 
use matched datasets so that the deaths data and the water quality data cover the same 
period.    
 Second, while the migration restriction argument clearly held in the past, in the 
last two decades, the share of people migrating has increased dramatically. According to 
the Census, only 0.66 percent of the total population migrated in 1982 compared to 7.9 
percent in 2000, and 17 percent in 2010. The results based on the overall population can 
be misleading because young and healthy people in the rural areas migrate to the urban 
cities. The level of pollution exposure for the total population has changed because of 
migration. In our paper, we focus on the elderly people, whose mobility is extremely 
restricted. Thus their life-time exposure to water pollution will be more accurately 
captured by our water quality data.   
 Third, to isolate the effect of water pollution on cancer, we collect comprehensive 
control variables from the statistical year books at the county level, such as per capita 
GDP, the share of agricultural output, the share of manufacture output, per capita 
government expenditure, per capita investment, and number of doctors per 10,000 
people, etc.15  
 The remainder of this paper is structured as follows. Section 3.2 discusses the 
details of our data. To investigate the effects of water pollution on cancer, we combine 
rich datasets on water quality, death, weather and social-economic conditions. Section 3.3 
presents the model and estimation. Section 3.4 presents the main results and robustness 
checks. Section 3.5 concludes.  

3.2 Data and Summary Statistics 

3.2.1 Water Quality Data 
The surface water system broadly covers rivers, lakes and reservoirs. The overall surface 
water quality is graded using the concentrations of different chemical pollutants 
indicators, which include the pH-value and the concentrations (measured by mg/L) of 
dissolved oxygen, biochemical oxygen demand, ammonia, and nitrogen. The overall 
surface water quality is graded on a 6-degree scale, where Type I water is the best quality 
water and Type VI is the worst. According to the China Ministry of Water Resources, 
Type I water is an “Excellent” source of potable water. Type II water is a “Good” source 
                                                
15 In comparison, for example, Ebenstein (2012) used four dummies (from poorest to richest) to measure the relative 
richness of difference counties. 
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of potable water. Type III water is “Fair.” Pathogenic bacteria and parasites ova can 
sometimes be found in Type II and III water so drinking it may cause disease. Thus, Type 
II and III water should be purified and treated (such as by boiling) before drinking. Type 
IV water is polluted and unsafe to drink without advanced treatment, which is only 
possible at water supply plants. Type V is seriously polluted and can never been used as 
for human consumption. Type VI water is called “Worse than Type V Water,” and any 
direct contact with it is harmful to humans. 
 China established a nationwide water quality monitoring system in the 1980s. 
Both the State Environmental Protection Agency (SEPA) and the Ministry of Water 
Resource (MWR) in China collect surface water quality data. Our datasets come from 
both agencies.  
 Starting from 2004, SEPA publishes weekly water quality readings for its 100 
monitoring sites countrywide on their website. This is the primary water quality data we 
use in this study. We aggregate the weekly data to yearly.  
 We collected water quality data for 59 major water sources from MWR. Water 
sources are usually reservoirs with good water quality. They provide the population in 
major cities with clean water (after treatment). The water quality readings for water 
sources are reported every 10 days, and are available from 2001 to 2009. We also 
aggregate the data to yearly.  
 For the year of 2004, we obtained yearly water quality data through the World 
Bank.16 The dataset was collected from MWR’s 484 monitoring points. The number of 
observations is significantly larger. We use this dataset for cross-validation and 
robustness check. 

 3.2.2 Cancer Mortality Data 
The cancer data comes from the Disease Surveillance Point System (DSPS) in Center for 
Disease Control and Prevention of China. DSPS was initiated in 1978, covered 71 
counties in 29 provinces 1980 to 1989, and 145 counties in 31 provinces from 1990 to 
2000, and 161 counties from 2003 to now. The system adopts a multi-stage cluster 
population probability sampling method in order to represent the population and death 
trends countrywide. Roughly 70 million people are covered by DSPS. 
 Seven categories of diseases were recorded in the DPSP data set: cancer, 
cerebrovascular diseases, respiratory system diseases, heart diseases, digestive system 
diseases, urine and procreative systems diseases, and prenatal diseases. Cancer death rate 
among the old (age>60), adjusted by age distribution, is our primary dependent variable. 
People older than 60 are divided into six age groups: 60-64, 65-69, 70-74, 75-79, 80-84, 
and older than 85. Age-group specific mortality rate in a specific death surveillance 
location is calculated as: 

!"#!!"#$%&%$!!"#$%&'$(!!"#!!"#!!"#$!! =
100000×!"#$ℎ!"#!!"#$!!
!"#$%!!"#$%&'(")!"#!!"#$!!

 

 Age-adjusted mortality rate for a specific death surveillance location is calculated 
as: 

                                                
16 This dataset was previously used in Ebenstein (2012). 
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!"#!!"#$%&'"!!"#$%&'$(!!"#$
= !"#$%&'(")!!"#$ℎ!!"#!!"#$!!

!
×!"#!!"#$%&%$!!"#$%&'$(!!"#!!"#!!"#$!! 

 Table 3.1 shows the age-adjusted mortality rate among the senior citizens in 
China. The average all-cancer mortality rate is 1157 per 100,000 people per year from 
2006-2009. Female cancer mortality rate (737 per 100,000) is substantially lower than 
male cancer mortality rate (1642 per 100,000).  The average digestive cancer mortality 
rate is 724 per 100,000 people, urinary cancer mortality rate is 26 per 100,000 people, 
and respiratory cancer mortality rate is 373 per 100,000 people. In particular, we 
calculate liver cancer mortality and stomach cancer mortality, which are 202 and 300 per 
100,000 people, respectively. 

3.2.3 Precipitation Data 
We draw rainfall data from the Global Historical Climatology Network (GHCN) project. 
GHCN provides average precipitation and temperature in mm for given longitudes and 
latitudes with the minimum cell size of 0.5 degree by 0.5 degree.  
 For each county, we identified its coordinates, then calculated a weighted average 
precipitation using the inverse squared distance as the weights. For example, an 
interpolated precipitation of grid j using the nearest four points k, k =1, 2, 3, 4 is given 
by: 

 

where  is the precipitation at point j, and  is the distance between j   
and k.  

3.2.4 Control Variables 
We collect a rich set of control variables from the statistical yearbooks at the county 
level: per capita GDP, the share of agricultural output, the share of manufacture output, 
per capita government expenditure, per capita investment, and number of doctors per 
capita. The summary statistics of these control variables are reported in Table 3.2.  
We match the DSPS data with water quality data by water basins supplemented by 
distance. That is, we first match water quality data with DSPS data based on whether they 
locate at the same river basin. If not, we match the DSPS point to its nearest water quality 
monitoring site.  

3.3 Model and Estimation 

3.3.1 OLS Regression 
A typical panel-data model estimates the following equation 

!!" = !! + !!!!" + !!"! ! + !! + !!"     (1) 

Precipj =
Precipk *Distancejk

2

D
k=1

4

 istancejk
2k=1

4


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where !!" is cancer death rate among the elderly (age>60) in county i at year t, !!" is the 
level of water quality in county i at year t. !!"  is a set of control variables, !! is county-
specific fixed effects and !!" is noises.  
 Before making the assumptions necessary for estimation, we know that whatever 
the properties of !! and !!", if Equation (1) is true, it must also be true that 

!! = !! + !!!! + !!!! + !! + !!     (2) 
where y! = y!"! /T!, Q! = Q!"! /T! and X! = X!"! /T!.  
 Subtracting Equation (2) from Equation (1), we get 

(y!" − y!) = β! + β! Q!" − Q! + (X!"! − X!!)δ+ ε!"   (3) 
 These three equations provide the basis for estimating β!. In particular, Equation 
(3) is known as the fixed-effects estimator, and Equation (2) is the between estimator. 
The random-effects estimator is a weighted average of the estimates produced by the 
fixed-effects estimator and the between estimator, which is equivalent to estimation of 

(y!" − θy!) = (1− θ)α+ β! Q!" − θQ! + (X!"! − θX!!)δ+ (1− θ)v! + (ε!" − θε!)  
(4) 

where θ is a function of σ!! and σ!!.  
 In most cases, the fixed-effects estimator, Equation (3), is preferred, since it 
removes all permanent bias v!. The estimation of β! utilizes variations on time. That is, 
β! is the effect of changes in water quality on changes in cancer rates. However, since it 
may take decades for water pollution to cause cancer, the year-to-year variations in water 
quality may only have limited/negligible impact on cancer death rates. The fixed-effects 
model unfavorably absorbs all the cross-sectional variations and thus cannot be applied to 
this (long-term relationship) study. 
 The between estimator of Equation (2), on the contrary, utilizes the cross-
sectional variations and completely discards the over-time variations. To consistently 
estimate β!, we require that conditional on X!, v! and Q! are not correlated: E v!,Q! X! =
0. Since the elderly cannot easily migrate to other places in the face of severe water 
pollution, the water pollution exposure (measured by Q!) is exogenous to them. Thus Q! 
is likely not correlated with other (unobservable) variables v!. Even though this condition 
cannot be directly tested, we can check this condition by including a rich set of control 
variables X!: were v! and Q! correlated, the inclusion of extra control variables X! will 
change the point estimate of β!. If including extra control variables don't have substantial 
impact on the estimation of β!, it is likely that Q! is not correlated with v!. 
 The random-effects estimator of Equation (4) requires the same no-correlation 
assumption. Compared to the between estimator, the random-effects estimator produces 
more efficient results. The between estimator is less efficient because it completely 
discards the over-time information in the data; the random-effects estimator uses both the 
within and the fixed-effects information. 

3.3.2 Instrumental variable Estimator 
We compare our results from OLS regressions with that from using the between-
estimator instrumental variable (IV) regression. In the IV model, we estimate the 
following equations 



   

56 

y! = β! + β!Q! + X!!δ+ ϵ!     (5) 
Q! = α! + α!Z! + X!!γ+ω!     (6) 

 In the first stage of IV regression, Equation (6), we estimate how the instrument 
Z! affect water quality Q!. In the second stage, we take the estimated water quality Q! 
from the first stage into Equation (5). The identification assumption is that Z! affects y! 
only through its impact on water quality:  E Z!ϵ! = 0  and E Z!Q! = 0.   
 We use precipitation as an instrument for water quality. Precipitation is one of the 
most important factors that influence surface water quality. Where rainfall is abundant, 
surface water quality is typically good. For example, southern China has more rain than 
northern China. As shown in Figure 2.2, the proportion of the river segments that were 
seriously polluted (Type IV, V, and VI) is much higher in Northern China rivers basins 
(Huai River, Hai River, Songhuajiang River, Liao River) than that in Southern China 
river basins (the Changjiang River basin and Zhujiang River basin). 
 Precipitation affects surface water quality through two primary channels. First, 
rain directly dilutes the concentration of water pollutants, and thus improves water 
quality. Second, rain causes the river to flow faster, which carries away water pollutant 
quickly and makes the river less prone to eutrophication (Zhong et al., 2005). Arguably, 
rainfall doesn't cause cancer except through its impact on water pollution.17 

3.4 Regression Results and Robustness Checks 

3.4.1 Main Findings 
 Our main findings are summarized in Table 3.3. We focus on five measures of 
cancer mortality rate. “All Cancer” indicates the by age-group (5-year increment) all-
cancer mortality rate for the elderly population (age>60), adjusted by age distribution.18  
We investigate digestive cancers and urinary cancers because they are directly related to 
water pollution. We didn’t analyze respiratory cancers because proper controls on air 
quality are not available at the county level in China. 
 Digestive cancers include cancers in anus, colon, esophagus, liver, oral cavity, 
pancreas, pharynx, other oral\pharynx, rectum, salivary glands, small intestine, stomach, 
and tongue. Urinary cancers include cancers in bladder, kidney, renal pelvis, and ureter, 
etc. We specifically investigate how water pollution affects liver cancer and stomach 
cancer because the mortality rates for these two cancers are particularly high.  
 In Panel A of Table 3.3, we reported the regression results from the between 
estimator without any controls. Water pollution is statistically significantly associated 
with all cancer mortality rates at the conventional level. One degree deterioration of water 
quality is associated with an increase of 8.46 in all-cancer mortality rate for one age 
group (i.e. 60-65 years old). Since there are six age groups, a rough calculation shows 
that water quality degrading by one degree will cause 50 more people to die from cancers 

                                                
17 For details, please see Ebenstein (2012) and He (2012). Both studies have demonstrated that precipitation is a valid 
instrument for water quality in China. 
18 Without further clarification, all cancer mortality rates used in this paper are age-group specific age-adjusted death 
rate per 100,000 people. Weights for age adjustments are based on China’s 2000 Census data. The results from crude 
mortality rate are similar and available upon request.      



   

57 

among the old per 100,000 people. The average cancer mortality among the old is 1157 
per 100,000 people, thus one-degree deterioration of water quality will roughly increase 
cancer mortality rate by 4.3 percent. 
 We find similar relationship between water pollution and digestive cancer to that 
of Ebenstein’s (2012) study. The effect of water pollution on digestive cancer is 
statistically significant at 1 percent level. As water quality deteriorates by one degree, the 
by age-group digestive cancer mortality rate increases by 3.9. By calculation, if water 
quality becomes one-degree worse, around 25 people will die from digestive cancers 
among the old, which is equivalent to 3.45 percent increase in digestive cancer mortality 
rate.  
 Water pollution also has significant effects on urinary cancers, liver cancer and 
stomach cancer. The estimated coefficients are 0.187, 1.08 and 1.085, respectively. 
Correspondingly, the elderly’s urinary cancers mortality rate, liver cancer mortality rate, 
and stomach cancer mortality rate will increase by 4.3 percent, 3.2 percent, 2.2 percent, 
respectively. 
 In Panel B of Table 3.3, we report regression results with control variables. The 
R-square of each regression significantly increases. The estimated coefficients of water 
pollution slightly decease but are still statistically significant in all specifications.  
 We include a rural dummy to control for the rural-urban differences. Rural areas 
have higher cancer mortality rates than urban areas. GDP per capita is negatively 
associated with all-cancer mortality rate and is statistically significant at 10 percent level. 
The relationship is not significant for the liver cancer regression. Richer regions have 
statistically lower digestive, urinary, and stomach cancer mortality rates.  
 The share of agricultural and manufacture output value measures the structure of 
local economy.  The share of agricultural output has mixed relationships with different 
cancers. It is negatively associated with all-cancer mortality rate but it is not statistically 
significant, negatively and significantly associated with digestive cancers and stomach 
cancer, and positively associated with liver cancer. The relationship between the share of 
manufacture output and the cancer mortality rate are positive. Thus the higher the share 
of manufacture output in GDP, the more likely people get cancers.  
 Government expenditure per capita is negatively associated with cancer mortality 
rates but the relationship is not statistically significant for stomach cancer. Investment per 
capita is positively associated with all-cancer death rate, digestive cancer death rate and 
urinary cancer death rate. In regions where the number of doctors per 10,000 people is 
high, cancer death rates tends to be high but the relationship is not statistically significant. 
In Table 3.4, we estimate the same set of regressions separately for males and females. 
The coefficients for males are always larger than that for females. For digestive cancer 
urinary cancer and stomach cancer, the coefficients for males are about twice larger as 
that for females. The results may suggest that males are more likely engaged in risky 
activities than females.  

3.4.2 Robustness Checks 
We run a wide array of regressions to check the robustness of our results. First, we run 
between estimator instrumental variable regressions, where precipitation is used as an 
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instrument. The results are summarized in Table 3.5. The positive associations between 
water pollution and cancer mortality rates are statistically significant at 1 percent level in 
all the regressions.  
 As water quality decreases by one degree, by age-group all-cancer mortality rate 
increase by 28.32. If we multiply this number by 6 (age groups) then divide it by the 
average cancer mortality rate 1157, we conclude that water quality becoming worse by 
one degree will increase all-cancer mortality rate among the old by roughly 14.7 percent. 
For digestive cancers, the estimated coefficient is 26.05, suggesting that water quality 
deteriorating by one level will raise digestive cancer mortality rate by roughly 21.6 
percent. Similar calculations show that urinary cancer mortality rate will increase by 4.3 
percent, liver cancer mortality rate will increase by 7.6 percent, and stomach cancer 
mortality rate will increase by 26.1 percent. 
 Compared to the results from OLS between estimators, the estimated coefficients 
of water pollution on cancer mortality rates are much larger for some groups in the IV 
models.  
 Second, we run regressions using a subsample, where we match water quality data 
and DSPS data only by river basins. Matching only by river basins reduces the 
measurement errors for each observation. However, due to data availability, the matching 
process leaves us with only about half of the observations. The results are presented in 
Table 3.6. The relationships between water pollution level and by age-group all-cancer 
mortality rates are still statistically significant. The estimated coefficient is also 
statistically significant in the digestive cancer regression and the liver cancer regression, 
but no longer significant in the urinary and stomach cancer.  
 We also compare our results with that using the 2004 water quality data from the 
World Bank (same dataset as Ebenstein, 2012). The 2004 water quality data has larger 
sample size and therefore provides substantial larger cross-sectional variations. However, 
it still suffers the problem that water quality in 2004 cannot represent the long run water 
quality in the monitoring sites. For robustness check, we crudely treat water quality from 
2006-2009 the same as water quality data in 2004, and match the 2006-2009 DSPS data 
with water quality data in 2004 by distance. The findings are very similar, as reported in 
Table 3.7. We find that the estimates are a little bit smaller than that using our matched 
dataset.  
 To justify our migration hypothesis, we estimate the relationship between water 
pollution and by age-group cancer mortality rate using the younger adults (age: 20-50). 
The results are arranged in Table 3.8. We find that the relationship between water 
pollution and cancer mortality rates disappears for those younger people. Sometimes the 
estimated coefficients become negative. The only exception is that cancer mortality rate 
in urinary system is still significantly positively associated with water pollution. 
 Lastly, we run a falsification test. We estimate the relationship between water 
pollution and the mortality rate caused by all other diseases. We find that water pollution 
is still positively associated with the all-but-cancer morality rate for the elderly people, 
but the relationship is no longer statistically significant. For the younger adults group, the 
results are mixed, as shown in Table 3.9.  
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3.5 Conclusion 
We estimate the effects of water pollution on cancer mortality rate among the elderly 
(Age>60) in China. We focus on the elderly people because their mobility is extremely 
restricted by the Household Registration System. Their life-time exposure to water 
pollution is more likely captured by our data in recent years.  
 We find that water pollution has large, significant, positive effects on by age-
group all cancer mortality rate, digestive cancer mortality rate, urinary cancer mortality 
rate, liver and stomach cancer mortality rate. The results are robust to a variety of 
specifications, such as including more control variables, using IV estimator, focusing on 
a subsample, and using other water quality data. We also find that water pollution has no 
impact on cancer mortality rates for the younger adults (Age: 20-50), which may partially 
justify our argument that pollution exposure for the younger people cannot be accurately 
measured because they migrate. Besides, water pollution is not statistically significantly 
associated with all-but-cancer mortality rates.  
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Table 3.1 Age-Adjusted Death Rate 2006-2009 

 
Source: Chinese Death Surveillance Points System (DSPS). The sample includes 161 locations selected to represent 
Chinese population. The reported death rates are the average rates for the 161 locations: each entry in the table is age-
adjusted death per 100,000 people per year. Note that all cancer mortality rate for women is much lower because breast 
cancer data is not included in the sample.  
 
 
 

 All  Females  Males 

All cancer 1157  737  1642 

    Digestive 724  472  1015 

    Urinary 26  14  40 

    Respiratory 373  219  551 

    Other 34  32  35 

Liver 202  125  290 

Stomach 300  198  417 
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Table 3.2 Summary Statistics 
Variable Obs Mean Std. Min Max 

Rural                                  620 0.59 0.49 0.00 1.00 

GDP per capita (log)                   612 9.85 0.90 7.60 11.99 

Agricultural industry (%)              600 15.60 14.10 0.36 61.30 

Manufacture industry (%)               600 45.34 14.81 11.31 88.76 

Government expenditure per capita(log) 616 7.82 0.76 6.12 10.00 

Investment per capita(log)             615 8.98 1.13 5.34 11.23 

# of doctor per 100000                 599 19.98 12.46 1.37 82.83 

East 620 0.34 0.47 0.00 1.00 

Middle 620 0.32 0.47 0.00 1.00 

West 620 0.34 0.47 0.00 1.00 
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Table 3.3 OLS Regression (Water Basin Match Supplement with Distance Match) 
  All Cancer Digestive Urinary Liver Stomach 

      
Water Pollution 8.462*** 3.945*** 0.187*** 1.080*** 1.085** 

 (1.555) (0.998) (0.0529) (0.292) (0.477) 

Constant 88.47*** 51.54*** 1.764*** 14.43*** 23.03*** 

 (5.058) (3.271) (0.173) (0.957) (1.563) 

      
Observations 3,744 3,672 3,672 3,672 3,672 

R-squared 0.030 0.017 0.013 0.015 0.006 

Number of panel ID 948 930 930 930 930 

      
Water Pollution 6.375*** 3.152*** 0.164*** 0.860*** 1.004** 

 (1.268) (0.849) (0.0516) (0.232) (0.421) 

Rural 34.82*** 27.06*** 0.173 5.639*** 10.41*** 

 (8.420) (5.626) (0.342) (1.537) (2.791) 

GDP per capita (log) -10.43* -10.29*** -0.576** 1.007 -7.526*** 

 (5.499) (3.929) (0.239) (1.073) (1.949) 

Agricultural industry (%) -0.368 -0.671*** -0.00582 0.204*** -0.643*** 

 (0.252) (0.178) (0.0108) (0.0487) (0.0884) 

Manufacture industry (%) 0.660*** 0.358*** 0.0104 0.106*** 0.129* 

 (0.179) (0.134) (0.00816) (0.0367) (0.0666) 

Government expenditure per capita(log) -10.56** -3.418 -0.169 -3.515*** 1.045 

 (4.819) (3.245) (0.197) (0.886) (1.610) 

Investment per capita(log) 9.817** 8.131*** 0.476*** 0.942 2.211* 

 (3.913) (2.666) (0.162) (0.728) (1.322) 

# of doctor per capita 0.353 -0.313 0.0420*** 0.0653 -0.226** 

 (0.308) (0.221) (0.0134) (0.0603) (0.109) 

Regional dummy Yes Yes Yes Yes Yes 

Age group dummy Yes Yes Yes Yes Yes 

      
Observations 3,492 3,432 3,432 3,432 3,432 

R-squared 0.428 0.362 0.217 0.442 0.309 

Number of panel ID 918 900 900 900 900 
The sample only includes senior Chinese citizens (>60 years old) to minimize the confounding effect of migration. 
Panel A represents the between estimator regressions of the death rate of a cause on the average water pollution level of 
the river basin in which the DSPS site is located. If the river basin in which the DSPS site is located does not have a 
water quality monitor site, we use the nearest water quality monitor site. Panel B adds control variables to the between 
estimator regressions. The water pollution level measure at each DSPS site reflects the average weekly water quality of 
the monitoring site in the same river basin. Standard errors are in parenthesis. Asterisks, ** and *, indicate the 1%, and 
5% significance level, respectively.  
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Table 3.4 OLS Regression (Water Basin Match Supplement with Distance Match) 

 Female   Male  

 Coef. S.E.  Coef. S.E. 

      
All Cancer 5.240*** (0.951)  7.229*** (1.763) 

Digestive 2.133*** (0.612)  4.152*** (1.209) 

Urinary 0.111** (0.0473)  0.219*** (0.0809) 

Liver 0.710*** (0.185)  1.029*** (0.351) 

Stomach 0.515* (0.295)  1.498** (0.625) 

      
The sample only includes senior Chinese citizens (>60 years old) to minimize the confounding effect of migration. 
Each entry represents a between estimator of the death rate of a cause on the average water pollution level of the river 
basin in which the DSPS site is located. If the river basin in which the DSPS site is located does not have a water 
quality monitor site, we use the nearest water quality monitor site. All regressions include control variables. The water 
pollution level measure at each DSPS site reflects the average weekly water quality of the monitoring site in the same 
river basin. Standard errors are in parenthesis. Asterisks, ** and *, indicate the 1%, and 5% significance level, 
respectively. 
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Table 3.5 Instrumental Variable Regression 
  All Cancer Digestive Urinary Liver Stomach 

Water Pollution 28.32*** 26.05*** 0.884*** 2.549*** 13.09*** 

 (5.896) (4.393) (0.218) (0.915) (2.244) 

Rural 30.57*** 23.35*** 0.0564 5.365*** 8.455** 

 (9.783) (7.628) (0.379) (1.589) (3.896) 

GDP per capita (log) -10.12 -9.924* -0.565** 1.034 -7.334*** 

 (6.348) (5.306) (0.264) (1.105) (2.710) 

Agricultural industry(%) -0.829*** -1.129*** -0.0202 0.170*** -0.885*** 

 (0.314) (0.255) (0.0127) (0.0532) (0.130) 

Manufacture industry(%) 0.198 -0.114 -0.00442 0.0714* -0.120 

 (0.239) (0.201) (0.0100) (0.0419) (0.103) 

Government expenditure per capita(log) -8.201 -2.403 -0.137 -3.440*** 1.581 

 (5.597) (4.387) (0.218) (0.914) (2.240) 

Investment per capita(log) 8.387* 6.347* 0.420** 0.811 1.269 

 (4.533) (3.615) (0.180) (0.753) (1.846) 

# of doctor per capita 0.246 -0.397 0.0393*** 0.0590 -0.271* 

 (0.356) (0.298) (0.0148) (0.0621) (0.152) 

Regional dummy Yes Yes Yes Yes Yes 

Age group dummy Yes Yes Yes Yes Yes 

      
Observations 3,492 3,432 3,432 3,432 3,432 

Number of panel ID 918 900 900 900 900 
 
The sample only includes senior Chinese citizens (>60 years old) to minimize the confounding effect of migration. 
Each entry represents an instrumental variable between estimator of the death rate of a cause on the average water 
pollution level of the river basin in which the DSPS site is located. If the river basin in which the DSPS site is located 
does not have a water quality monitor site, we use the nearest water quality monitor site. All regressions include control 
variables. The water pollution level measure at each DSPS site reflects the average weekly water quality of the 
monitoring site in the same river basin. Instrumental variable is the annual precipitation of the DSPS location. Standard 
errors are in parenthesis. Asterisks, ** and *, indicate the 1%, and 5% significance level, respectively. 
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Table 3.6 OLS Regression (Water Basin Match Only Without Distance Match Supplement) 
  All Cancer Digestive Urinary Liver Stomach 

Water Pollution 4.448*** 3.459*** 0.00835 0.639** 0.438 

 (1.528) (1.068) (0.0613) (0.309) (0.521) 

Rural -14.37 -1.281 -0.464 -1.085 -4.026 

 (10.22) (7.145) (0.410) (2.068) (3.485) 

GDP per capita (log) -8.076 -13.62*** -0.537** 2.462* -10.98*** 

 (6.712) (4.694) (0.269) (1.358) (2.290) 

Agricultural industry(%) -0.455 -0.585** -0.00320 0.301*** -0.618*** 

 (0.325) (0.227) (0.0130) (0.0658) (0.111) 

Manufacture industry(%) 0.442* 0.481*** 0.00856 0.105** 0.214*** 

 (0.242) (0.169) (0.00970) (0.0490) (0.0825) 

Government expenditure per capita(log) -3.784 -0.820 0.0189 -2.729* 4.654* 

 (7.099) (4.964) (0.285) (1.437) (2.422) 

Investment per capita(log) -3.534 2.683 0.148 -2.002** 0.312 

 (4.780) (3.342) (0.192) (0.967) (1.630) 

# of doctor per capita 1.428*** 0.304 0.0885*** 0.229*** -0.0653 

 (0.421) (0.294) (0.0169) (0.0852) (0.144) 

Regional dummy Yes Yes Yes Yes Yes 

Age group dummy Yes Yes Yes Yes Yes 

 98.15*** 52.04*** 17.98*** 19.01*** 17.98*** 

      
Observations 2,004 2,004 2,004 2,004 2,004 

R-squared 0.496 0.429 0.223 0.498 0.372 

Number of panel ID 522 522 522 522 522 
The sample only includes senior Chinese citizens (>60 years old) to minimize the confounding effect of migration. 
Each entry represents a between estimator of the death rate of a cause on the average water pollution level of the river 
basin in which the DSPS site is located. If the river basin in which the DSPS site is located does not have a water 
quality monitor site, the DSPS site is not used in the regression. All regressions include control variables. The water 
pollution level measure at each DSPS site reflects the average weekly water quality of the monitoring site in the same 
river basin. Standard errors are in parenthesis. Asterisks, ** and *, indicate the 1%, and 5% significance level, 
respectively. 
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Table 3.7 OLS Regression (Ebenstein(2012) Water Quality Match) 
  All Cancer Digestive Urinary Liver Stomach 

Water Pollution 4.994*** 2.545*** 0.137*** 0.177 1.156*** 

 (1.042) (0.700) (0.0422) (0.193) (0.347) 

Rural 36.93*** 28.17*** 0.312 6.256*** 10.75*** 

 (8.320) (5.562) (0.335) (1.533) (2.753) 

GDP per capita (log) -11.25** -10.69*** -0.673*** 1.063 -7.694*** 

 (5.510) (3.948) (0.238) (1.088) (1.954) 

Agricultural industry(%) -0.230 -0.593*** 0.00223 0.226*** -0.620*** 

 (0.250) (0.177) (0.0107) (0.0488) (0.0877) 

Manufacture industry(%) 0.846*** 0.452*** 0.0206** 0.127*** 0.156** 

 (0.178) (0.135) (0.00811) (0.0371) (0.0666) 

Government expenditure per capita(log) -11.44** -4.138 -0.153 -3.468*** 0.752 

 (4.814) (3.245) (0.196) (0.894) (1.606) 

Investment per capita(log) 10.92*** 8.726*** 0.504*** 1.031 2.537* 

 (3.892) (2.655) (0.160) (0.732) (1.314) 

# of doctor per capita 0.347 -0.282 0.0430*** 0.0597 -0.206* 

 (0.311) (0.223) (0.0135) (0.0616) (0.111) 

Regional dummy Yes Yes Yes Yes Yes 

Age group dummy Yes Yes Yes Yes Yes 

      
Observations 3,516 3,456 3,456 3,456 3,456 

R-squared 0.431 0.364 0.229 0.436 0.316 

Number of panel ID 912 894 894 894 894 
The sample only includes senior Chinese citizens (>60 years old) to minimize the confounding effect of migration. 
Each entry represents a between estimator of the death rate of a cause on the average water pollution level of the river 
basin in which the DSPS site is located. We use the water quality data in Ebensten (2002). Standard errors are in 
parenthesis. Asterisks, ** and *, indicate the 1%, and 5% significance level, respectively. 
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Table 3.8 OLS Regression (20-50 Years Old) 
  All Cancer Digestive Urinary Liver Stomach 

Water Pollution 0.0277 -0.0316 0.00736*** -0.0331 -0.0197 

 (0.0647) (0.0409) (0.00263) (0.0279) (0.0150) 

Rural -0.473 0.0368 -0.0276 0.0631 -0.167* 

 (0.429) (0.271) (0.0175) (0.185) (0.0997) 

Agricultural population(%) 0.697 0.554 -0.0111 -0.134 0.687*** 

 (0.730) (0.470) (0.0303) (0.321) (0.173) 

GDP per capita (log) -0.323 -0.231 -0.00190 -0.0283 -0.163** 

 (0.280) (0.189) (0.0122) (0.129) (0.0696) 

Agricultural industry(%) 0.0269** 0.000569 0.000242 0.0149** -0.0115*** 

 (0.0128) (0.00858) (0.000553) (0.00586) (0.00316) 

Manufacture industry(%) 0.0181** 0.00271 0.000511 0.00285 -0.00192 

 (0.00913) (0.00647) (0.000417) (0.00441) (0.00238) 

Government expenditure per capita(log) -0.569** -0.312** -0.00696 -0.463*** 0.161*** 

 (0.246) (0.156) (0.0101) (0.107) (0.0575) 

Investment per capita(log) 0.307 0.193 -0.00176 0.164* 0.0159 

 (0.200) (0.128) (0.00827) (0.0876) (0.0472) 

# of doctor per capita 0.0217 -0.000946 -0.000450 0.000143 -0.00535 

 (0.0157) (0.0106) (0.000684) (0.00725) (0.00391) 

Regional dummy Yes Yes Yes Yes Yes 

Age group dummy Yes Yes Yes Yes Yes 

      
Observations 3,492 3,432 3,432 3,432 3,432 

R-squared 0.725 0.679 0.155 0.570 0.565 

Number of panel ID 918 900 900 900 900 
The sample only includes younger Chinese citizens (20-50 years old). Each entry represents a between estimator of the 
death rate of a cause on the average water pollution level of the river basin in which the DSPS site is located. If the 
river basin in which the DSPS site is located does not have a water quality monitor site, the DSPS site is not used in the 
regression. All regressions include control variables. The water pollution level measure at each DSPS site reflects the 
average weekly water quality of the monitoring site in the same river basin. Standard errors are in parenthesis. 
Asterisks, ** and *, indicate the 1%, and 5% significance level, respectively. 
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Table 3.9 Falsification Test for All Death except Cancer (OLS Regression) 
  >60 Years Old  20-50 Years Old 

  All Females Males  All Females Males 

Water Pollution 0.575 0.684 0.217  -0.0273 -0.103*** 0.0473 

 (0.430) (0.509) (0.501)  (0.0462) (0.0396) (0.0630) 

Rural -0.904 -0.0684 -2.642  -0.340* -0.0423 -0.571** 

 (1.864) (2.209) (2.172)  (0.200) (0.172) (0.273) 

Agricultural population(%) 0.0850 0.0357 0.109  0.000541 -0.00416 0.00422 

 (0.0853) (0.101) (0.0995)  (0.00917) (0.00786) (0.0125) 

GDP per capita (log) 0.139** 0.0938 0.195***  0.00191 -0.000301 0.00250 

 (0.0607) (0.0720) (0.0708)  (0.00652) (0.00559) (0.00890) 

Agricultural industry(%) 4.532*** -4.494** -4.823**  0.902*** 0.684*** 1.100*** 

 (1.633) (1.936) (1.904)  (0.176) (0.151) (0.239) 

Manufacture industry(%) 0.960 0.928 1.042  -0.0255 -0.122 0.0397 

 (1.326) (1.572) (1.546)  (0.143) (0.122) (0.194) 

Government expenditure per capita(log) 0.0934 0.100 0.123  -0.00947 0.0277*** 0.00723 

 (0.104) (0.124) (0.121)  (0.0112) (0.00961) (0.0153) 

Investment per capita(log) 37.28*** 55.55*** 22.20***  6.208*** -3.744*** 8.576*** 

 (1.933) (2.291) (2.253)  (0.208) (0.178) (0.283) 

# of doctor per capita 28.12*** 47.24*** 12.30***  5.907*** -3.509*** 8.207*** 

 (1.933) (2.291) (2.253)  (0.208) (0.178) (0.283) 

Regional dummy Yes Yes Yes  Yes Yes Yes 

Age group dummy Yes Yes Yes  Yes Yes Yes 

        

Observations 3,492 3,492 3,492  3,492 3,492 3,492 

R-squared 0.447 0.504 0.296  0.632 0.479 0.635 

Number of panel ID 918 918 918  918 918 918 
Standard errors are in parenthesis. Asterisks, ** and *, indicate the 1%, and 5% significance level, respectively 
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Appendix A: Types of Cancer 
 

 Cancer Type 
1 Bladder cancer 
2 Nasopharyngeal cancer 
3 Sinus and other cancer (Paranasal Sinus Cancer) 
4 Tonsil cancer 
5 Lip cancer 
6 Gallbladder and other cancer 
7 Liver cancer 
8 Anal cancer 
9 Bone cancer 
10 Throat cancer 
11 Laryngopharynx cancer 
12 Colon cancer 
13 Mouth cancer 
14 Other oropharyngeal cancer 
15 Other urinary organs cancer 
16 Other thoracic cavity organs cancer 
17 Tracheobronchial lung cancer 
18 Tongue cancer 
19 Kidney cancer 
20 Pelvic cancer 
21 Esophageal cancer 
22 Ureteral cancer 
23 Salivary gland cancer 
24 Stomach cancer 
25 Small intestine cancer 
26 Pharyngeal (parts unknown) cancer 
27 Pancreatic cancer 
28 Rectal cancer 
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Appendix B: Water Quality Standard 
 
The water quality classification system is based on Environmental Quality Standard 
GB3838-2002 in China.  
 
Type I – Mainly applicable to the source of water bodies and national nature preserves.  
Type II – Mainly applicable to class A water source protection area for centralized 
drinking water supply, sanctuaries for rare species of fish, and spawning grounds for fish 
and shrimps.  
Type III – Mainly applicable to class B water source protection area for centralized 
drinking water supply, sanctuaries for common species of fish, and swimming zones. 
Type IV – Mainly applicable to water bodies for general industrial water supply and 
recreational waters in which there is not direct human contact with the water. 
Type V – Mainly applicable to water bodies for agricultural water supply and for general 
landscape requirements. 
Type VI - Essentially useless. 
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Appendix C: Annual Precipitation 

 
http://www.chinamaps.org/china/china-map-of-precipitation-annual.html 
 
 
  
 

 
 




