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ABSTRACT OF THE DISSERTATION

A Statistical Modeling Approach to Selection and Study of Galaxies at Different Phases of
their Star-Formation Activity at High Redshift

by

Abtin Shahidi

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2021

Dr. Bahram Mobasher, Chairperson

This thesis focuses on the selection and study of galaxies based on their star formation activ-

ity at high redshift. I use multiple selection techniques from the traditional color selection to

a Bayesian model averaging approach with Bayesian SED fitting to select the massive qui-

escent galaxies at z ≥ 3 in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy

Survey (CANDELS). I compare predictions from empirical to the latest cosmological hy-

drodynamical simulations and find that number and stellar mass density are higher than

predictions. I estimate their halo mass using abundance matching, which results in massive

enough halos that shock heating for some fraction of the gas can explain part of their quench-

ing process. But as cold streams are expected to be significant even for massive halos at

these redshifts, other quenching mechanisms such as AGN feedback must have the dominant

role. I then develop models for selecting these objects using a statistical learning approach

to allow a robust and computationally efficient selection in the upcoming extensive surveys.

I train and validate different methods using the mock catalog from the semi-analytic models

for the CANDELS. Many of these techniques outperform the generic SED-fitting approach

viii



applied on the large catalogs and make more robust samples in terms of completeness and

purity. Finally, I build a probabilistic model for jointly describing the galaxies’ stellar mass,

star-formation rate, and local density contrast, using a mixture model while accounting for

different sources of uncertainties. I find that the effect of the environment on the prediction

of a galaxy’s star-formation activity is different when moving towards higher redshifts. The

impact of the environment on the odds of being quiescent versus star-forming has small in-

teraction with stellar mass at low redshift but shows strong interaction at high redshift (> 1)

such that the effect of the environment is larger for more massive galaxies. The effect of the

mass also depends on the environment and becomes larger in a denser environment. This is

partly consistent with the picture that galaxies with halted cosmological gas accretion can

become quiescent by depleting their gas reservoir through star-formation and outflows.
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Chapter 1

Introduction

Within the past fifty years the standard model of cosmology have been developed

with enormous success in describing the geometry and material content of the universe as a

whole. This model is capable of reproducing the observed spatial structures in the universe

that span wide range of scales from galactic scale to galaxy groups, clusters, and the cosmic

web, starting from an initial condition set after the Hot Big Bang which is close to being

homogeneous and carry the small quantum fluctuations imprints from the inflation (Frenk

and White 2012). Perhaps the most astonishing prediction of this model, is the prediction

of the angular power spectrum of anisotropies in cosmic microwave background which is one

the greatest achievements of physical cosmology (Planck Collaboration et al. 2018).

Within the framework of the standard model, baryons fall into the dark matter

potential through gravity and start to form the matter structure of the universe, and these

structure grow through hierarchical clustering and merging of the smaller structure to form

larger structures (White and Rees 1978). In the original picture of galaxy formation the
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primordial gas get shock heated to the virial temperature of the halo and cools down by losing

its internal energy through radiative processes (e.g., Rees and Ostriker 1977; Silk 1977). The

effectiveness of this cooling depends on the temperature, density, and composition of this

gas. Gas in the most inner regions of the halo where the density is higher, cool down more

efficiently, and by losing its pressure support form a disk, which grow through later accretion

of the gas from outer region with longer cooling time. However, Birnboim and Dekel (2003)

showed that these virial shocks do not form at low mass halos, and it does not develop for

most halos at high redshift, in addition, Kereš et al. (2005) showed that most of the low

mass galaxies get their gas through “cold mode” accretion where the gas does not heat up to

the virial temperature of the halo. Only for the massive galaxies and at dense environment

the effect of the from shock heating of the gas seems to become relevant. In this revised

picture the amount of cold to hot mode accretion of the gas depends on the halo mass and

which is related to local environment of the galaxies.

Even within the original picture, White and Rees (1978) showed that if only radia-

tive cooling processes and gravity are involved the galaxy formation is too efficient and most

of the gas must cool and form stars, which overpredict the number of low mass galaxies.

This means that some additional baryonic physical process must be invoked to solve this

“overcooling” problem. However, the problem seems to be much more complex as have been

shown that solving the low mass end through star-formation related feedback and outflows,

can produce very massive galaxies at the high mass end (Benson et al. 2003). Solving these

problems requires better understanding of the complex baryonic physical processes involved

in the galaxy formation. Study of their effectiveness and timescales over which they interact

2



with galaxy to shape the the overall properties of the galaxy population, is one of the most

complex problems in the field.

One of the main questions to answer is how early one could find population of qui-

escent galaxies. One piece of evidence comes from archaeological study of stellar population

in the sample of local early type and quiescent galaxies located in massive clusters, which

shows that galaxies form anti-hierarchically in the sense that the massive galaxies have

formed earlier compared to the low mass galaxies and they seem to have formed rapidly

during a short time scale though vigorous star-formation and must have quenched rapidly

as well (e.g., Thomas et al. 2005). This result shows that we could expect to find these

massive quiescent galaxies at high redshift particularly at high density regions. Finding

these galaxies especially at higher redshift, when the timescales of the physical process are

bounded by the age of the universe. Population of massive galaxies, which build up their

mass sooner and at higher pace, have been found to higher and higher redshifts (z > 3) with

little or no ongoing star-formations, in the universe that has plenty of gas and most galaxies

are going through vigorous star-formation (e.g., Straatman et al. 2014). The physical model

of galaxy formation must provide a reasonable avenue to form sufficient number of these

massive objects with correct physical properties, and ways to make them quiescent when

the universe was only 1− 2 Gyr old.

In the second chapter of this thesis, I provide a robust sample of these objects in

the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), using

different methods from traditional color selection schemes either in the rest frame optical or

in the observed Near IR, to Bayesian modeling of the Spectral Energy Distributing (SED)
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using different modeling assumptions and combining them using Bayesian model averaging. I

will provide a comparison of their number and stellar mass densities with the latest prediction

of some semi-empirical to latest cosmological hydro-dynamical simulations.

In the third chapter, I use the mock catalogs from semi-analytical models to show

that many statistical learning methods can provide more robust sample of these objects

compared to generic SED-fitting to the whole catalog. I provide an argument from a decision

theory perspective that selection of any class of galaxies involves using a loss function and

based on that I provide two pathways to find the optimal decision based on the application

at hand, one that involves probabilistic modeling of the class labels given their observed

quantities, and the other is an empirical approach. First, I provide a framework to handle

missing values in the data through an iterative conditional modeling approach, and then by

simulating the observational conditions of the CANDELS on the mock catalog from semi-

analytic models, I build probabilistic or empirical models that can select the population of

quiescent galaxies at high redshift from the observed photometeric data, in the presence of

noisy, censored, and missing data. I will provide a analysis of the resulting models in terms

of their ability to recover galaxies as a function of their stellar mass and redshift.

In the fourth chapter, I use the latest physical estimates in the CANDELS field

including: photometric redshift measurements, star-formation rate using UV+IR calibra-

tion, and local density field measurements, in addition to our estimate of the stellar mass

using SED-fitting. Then using a mass complete catalog across redshift of 0.5 to 3, I build

a probabilistic model for the joint probability distribution over stellar mass, star-formation

rate, local density field, and galaxy type, while taking into account the measurement uncer-
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tainties and biases such as Eddington-Jefferys bias. I assume that the true stellar masses

are following a Schechter distribution, and the star-formation rate is a function of stellar

mass and galaxy type using a mixture modeling approach, in which, I model the mixture

proportions of galaxy type as a function of stellar mass and local density. Using this model,

I do an inference for all the model parameters including the relation on the mixture propor-

tions, star-formation rate versus mass, and stellar mass function, in addition to the latent

variables of the model which are the “true” values of the physical measurements. Using this

model one can allow a consistent flow of information from the noisy measurements to our

model parameters. I will provide the results in terms of the evolution of the effects of the en-

vironment, and stellar mass in determining the location of the galaxies in the star-formation

rate versus stellar mass plane across cosmic time. I then provide an possible extension of

the model to limits below the completeness limit of the survey in order to put a better

constraints on the parameters of the model.
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Chapter 2

Selection of Massive Quiescent

Galaxies at High Redshift in

CANDELS

2.1 Introduction

In the standard ΛCDM paradigm, most of the mass in the universe resides in

structures known as dark matter halos. These provide the gravitational well within which

cold gas collapses, forms stars, and at a larger scale forms progenitors of the galaxies we

observe today. (e.g., White and Rees 1978; Fall and Efstathiou 1980; Blumenthal et al.

1984; Frenk and White 2012; Wechsler and Tinker 2018). The dark matter halo itself

forms from the gravitational collapse of initial perturbations in the density field at the

very early universe (e.g., van Albada 1960; van Albada 1961; Peebles 1970; White 1976).
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The emergence of the hierarchical model of structure formation (Press and Schechter 1974;

Gott and Rees 1975; White and Rees 1978) supported by cosmological hydro-dynamical

simulations and semi-analytical models suggest a bottom-up scenario, in which massive halos

formed from a sequence of mergers (so-called merger trees) and mass accretion as opposed

to initial rapid collapse models (e.g., White and Frenk 1991; Navarro and Benz 1991; Katz

et al. 1992; Kauffmann et al. 1993; Lacey and Cole 1993; Somerville and Primack 1999).

Discovery of very massive galaxies at high redshifts (Ms ≥ 1010M�), which constitute most

of the luminous baryonic component inside the dark matter halos, however, suggest a rapid

build-up of the bulk of their stellar mass at z > 2, with intense star formation activity at

early times. Observations at submillimeter further confirm the starburst populations with

star formation rates exceeding hundreds of solar masses per year (e.g., Blain et al. 2002;

Capak et al. 2008; Marchesini et al. 2010; Smolčić et al. 2015). There have been many

recent spectroscopic confirmations of such sources at high redshift galaxies experiencing

suppressed star formation activity (e.g., Whitaker et al. 2014b; Belli et al. 2014; Newman

et al. 2015; Schreiber et al. 2018a; Newman et al. 2018a; Belli et al. 2017b; Belli et al. 2017a;

Glazebrook et al. 2017; Belli et al. 2019; Forrest et al. 2020a). To use these systems to

constrain galaxy formation and evolution scenarios and to study feedback and quenching

mechanisms at early times requires a robust photometric selection of these objects followed

by deep spectroscopic observations.

Searching for massive evolved galaxies at high redshifts is challenging due to the

faint nature of these galaxies and their small number density, requiring multi-waveband

deep imaging data over large areas. The Cosmic Assembly Near-infrared Deep Extragalactic
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Legacy Survey (CANDELS) (Koekemoer et al. 2011; Grogin et al. 2011), is a treasury pro-

gram on the Hubble Space Telescope (HST) providing deep multi-waveband imaging data,

allowing detection of such massive systems when the universe was 1-2 Gyrs old. Studying

these massive systems, with relatively small star formation activity, can help us understand

the mass assembly of galaxies at very early times and estimate the baryonic content of the

universe that turned into stars as well as studying primary physical processes responsible for

the rapid star formation activity experienced by progenitors of these galaxies. Also, since

the universe has a more cold gas reservoir at an early time, we would expect a high level of

star-formation that persist longer. Therefore, the low star-formation activity of the massive

evolved galaxies requires an explanation about physical mechanisms involved in quenching

seen in these galaxies and perhaps other mechanisms for maintaining their low star formation

activity. Measuring the evolution of the number/stellar mass density of these systems with

relatively high stellar mass (i.e. Ms ≥ 1010M�) and low specific star formation rate (i.e.

sSFR ≤ 10−10 yr−1 for z ∼ 3 targets) will shed light on some of the outstanding questions

regarding early evolution of galaxies.

Over the last two decades, different techniques had been developed to identify

different populations of high redshift galaxies (Cimatti et al. 2002; Roche et al. 2002; Daddi

et al. 2004; Reddy et al. 2005; Mobasher et al. 2005; Lane et al. 2007; Daddi et al. 2007;

Wiklind et al. 2007; Rodighiero et al. 2007; Grazian et al. 2007; Mancini et al. 2009; Fontana

et al. 2009; Williams et al. 2009; Caputi et al. 2012; Arnouts et al. 2013, Whitaker et al.

2013; Barro et al. 2014; Nayyeri et al. 2014; Straatman et al. 2014; Fumagalli et al. 2016;

Pacifici et al. 2016; Siudek et al. 2017; Fang et al. 2018; Merlin et al. 2018; Carnall et al.
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2018; Carnall et al. 2019b; Carnall et al. 2020). However, different methods optimized to

find the same population of high redshift galaxies, often result in different samples with

varying levels of contamination when applied on the same data set.

This paper compares different techniques used for the selection of massive evolved

galaxies at high redshifts. Here, we apply these methods to the same data set and compare

the results. We then quantify the degree of confidence for each of the detected sources to

be a member of the galaxy population in question.

In Section 4.2, we present the data. Different selection techniques are introduced

in section 2.3 and applied on the CANDELS data to identify massive evolved galaxies. In

Section 2.4, we compare these methods and analyze the effect of photometric errors on each

of them. In Section 2.5, we compare the number and stellar mass densities of the quiescent

galaxies with previous values reported from observations and cosmological simulations. We

discuss our results in Section 2.6. We present our final catalog of massive evolved galaxies

in the appendix 2.7.

We assume a standard cosmology with H0 = 70 kms−1Mpc−1, Ωb = 0.0486, Ωm =

0.3089, and ΩΛ = 0.7 from Planck Collaboration et al. (2016) unless it is stated otherwise.

All magnitudes are in the AB system where mAB = 23.9− 2.5log(fν/1µJy) (Oke and Gunn

1983).

2.2 Data

We use the latest photometric catalogs from the CANDELS with consistent multi-

waveband photometry, and physical parameters for all galaxies to the flux limit of the
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sample 1. Details about the selection and photometry at different bands were carried out

for all the CANDELS fields consisting of: GOODS-South (Guo et al. 2013; Santini et al.

2015), UDS (Galametz et al. 2013; Santini et al. 2015) , COSMOS (Nayyeri et al. 2017) ,

EGS (Stefanon et al. 2017), and GOODS-North (Barro et al. 2019). These catalogs contain

observed photometry from the UV to near and mid-infrared wavelengths in many broadband

and narrowband filters (Table 3.1), as well as inferred physical parameters.

The optical (HST/ACS) and near-IR (HST/WFC3) data were consistently com-

bined with the mid-IR data (Spitzer/IRAC) and ground-based observations. For each of the

CANDELS fields, the photometric catalogs were selected in HST/WFC3 F160W band using

SExtractor (Bertin and Arnouts 1996). For low-resolution images, Template FITting (Tfit;

Laidler et al. 2007) was performed to smooth the high-resolution image to low resolution

and fit the best flux consistent with the HST data. Tfit creates a template using prior

information on the position and light distribution profile of sources in the high-resolution

to more robustly measure photometries from the lower resolution data. Table 2.2 lists the

limiting magnitudes and survey areas covered for each of the CANDELS fields.

In this study, we use an improved version of the original Dahlen et al. (2013) pho-

tometric redshifts. The new catalogs are based on the probability density functions (PDF)

measured by six groups using different template-based methods applied on the CANDELS

photometric catalogs. The methods are different either in their choice of parameters or

the code used. The PDFs from different groups were corrected and optimized for bias

(optimal shift) and their variance (optimal scaling of the width of the PDF). After re-
1http://arcoiris.ucolick.org/candels/
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Table 2.1: The observed bands from UV-to-NIR SEDs of galaxies across the five CANDELS
fields

Field Filter set

Blanco/CTIO U, VLT/VIMOS U,
HST/ACS F435W, F606W, F775W, F814W, F850LP,

GOODS-S (Guo et al. (2013)) HST/WFC3 F098M, F105W, F125W, F160W,
VLT/ISAAC Ks, VLT/Hawk-I Ks,

Spitzer/IRAC 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm

KPNO U, LBC U,
HST/ACS F435W, F606W, F775W, F814W, F850LP,

GOODS-N (Barro et al. (2019)) HST/WFC3 F105W, F125W, F140W, F160W, F275W,
MOIRCS K, CFHT Ks,

Spitzer/IRAC 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm

CFHT/MegaCam u, Subaru/Suprime-Cam B, V, Rc, i′ , z′ ,
HST/ACS F606W, F814W, HST/WFC3 F125W, F160W,

UDS (Galametz et al. (2013)) VLT/Hawk-I Y, Ks,
WFCAM/UKIRT J, H, K,

Spitzer/IRAC 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm

CFHT/MegaCam U∗, g′ , r′ , i′ , z′ ,
HST/ACS F606W, F814W, HST/WFC3 F125W, F140W, F160W,

EGS (Stefanon et al. (2017)) Mayall/NEWFIRM J1, J2, J3, H1, H2, K,
CFHT/WIRCAM J, H, Ks,

Spitzer/IRAC 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm

CFHT/MegaCam u∗, g∗, r∗, i∗, z∗,
Subaru/Suprime-Cam B g+, V, r+, i+, z+,

HST/ACS F606W, F814W, HST/WFC3 F125W, F160W,
COSMOS (Nayyeri et al. (2017)) Subaru/Suprime-cam IA484, IA527, IA624, IA679, IA738, IA767, IB427,

IB464, IB505, IB574, IB709, IB827, NB711, NB816,
VLT/VISTA Y, J, H, Ks, Mayall/NEWFIRM J1, J2, J3, H1, H2, K,

Spitzer/IRAC 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm

calibration, the PDFs were combined based on the minimum Frechet distance Alt and Godau

(1995), which tracks the similarity between any pair of PDF curves, among the independent

photo-z PDFs (analogous to the median of a set of numbers). The final catalog consist of

the spectroscopic/3D-HST grism redshifts and the combined photometric redshifts (Kodra

2019). The point estimate redshifts used in this work show a normalized median absolute
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Field Area (arcmin2) F160W 5σ Limiting Magnitude (AB)

GOODS-North 170 27.80

GOODS-South 170 27.36

COSMOS 216 27.56

UDS 202 27.45

EGS 206 27.60

Table 2.2: The survey area and WFC3 F160W limiting magnitude for different CANDELS
fields

deviation of σNMAD ∼ 0.02. The stellar masses were measured through SED fitting by

keeping redshifts at their best values.

2.3 Selection Methods

Here we use a combination of several near-infrared selection techniques to identify

massive quiescent galaxies at a redshift of 3 ≤ z ≤ 4.5 in the CANDELS fields. This is

the redshift interval that most of the galaxies exist; however, the full sample of galaxies is

at a redshift of 2.8 ≤ z ≤ 5.4. We define the massive quiescent population as those with

Ms ≥ 1010M� and sSFR(z) ≤ 0.2/tH(z) Gy−1 in which tH(z) is the age of the universe at

redshift z in Gyrs. The results are cross-compared and used to compile a reliable catalog

for the study of the number density and mass function of these systems in the redshift

range mentioned. This comparison also allows a better understanding of the strengths and

shortcomings of each method.

First, we use the color-selection technique based on rest-frame or observed colors for

classification. Then, we explore selection methods based on the inferred physical properties

of galaxies from their best-fitted model Spectral Energy Distributions (SEDs).
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A serious source of uncertainty in these techniques is the choice of the somewhat

subjective parameters that could significantly affect the outcome. These include the S/N in

the flux in a particular band, color cuts in the color-space occupied by galaxies, flux limits,

and parameters used to generate template SEDs. Galaxies that are close to the decision

boundaries are most likely to be affected by the choice of these parameters. Therefore, to

minimize the effect of these cuts for each technique, we define a likelihood function between

zero and one that identifies the likelihood a given galaxy is a real member of the massive

quiescent population within our specified redshift range. We then consistently combine

all these measures to find a final value associated with individual galaxies to quantify the

degree of confidence for each selection method and to compare different galaxies resulted

from a particular selection. Then we estimate the uncertainty in number/stellar mass density

measurements coming from the selection thresholds. We refer the reader to the Appendix

for more details. Following this procedure, we select 5− 10% more candidates than using a

step-function selection that misses galaxies close to the selection boundary. This difference

is significant enough to affect the measurement of their number and mass densities. In the

following section, we describe each selection method.

2.3.1 Rest-frame UVJ selection

This method uses rest-frame U, V, and J bands to select the quiescent population,

as the rest frame U − V probes the prominent Balmer break (3646) seen in post-starbursts.

The V − J color used to break the degeneracy between dusty star-forming and quiescent

galaxies. We can classify galaxies using a color cut that separates the quiescent and star-

forming regions in the UVJ plane. This method has been developed and extensively used
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for classifying galaxies in photometric surveys (e.g., Labbé et al. 2005; Wuyts et al. 2007;

Williams et al. 2009; Arnouts et al. 2013, Whitaker et al. 2013; Barro et al. 2014; Straatman

et al. 2014; Fumagalli et al. 2016, Siudek et al. 2017 Fang et al. 2018). However, measuring

UVJ colors for galaxies at high redshifts is challenging, making the selection less reliable. A

typical method to infer rest-frame UVJ colors is from the best-fitted model SED. The model

SEDs are generally built assuming a τ model star formation history, which also becomes

less reliable at high redshifts since the galaxy model needs more time to evolve into the

quiescent regions (Merlin et al. 2018) and more generally suffer from other uncertainties

associated with SED fits used to infer rest-frame colors. Therefore, the boundaries of the

UVJ criteria are modified at different redshift bins (Whitaker et al. 2013). However, this

can introduce contamination from the dusty star-forming galaxies, given the similarity of

their rest-frame U − V color. Nevertheless, given the overlap in the wavelength coverage,

including medium-band data, can ameliorate some of these problems when selecting high-z

galaxies (e.g., Spitler et al. 2014).

To measure the rest-frame UVJ colors, we employ the prescription described by

Wolf et al. (2003) for the COMBO-17 survey, where the rest-frame colors are estimated from

the best fit template SED. Rest-frame UVJ colors can also be measured by interpolating the

observed bands which track the redshifted UVJ (e.g., Rudnick et al. 2003, Taylor et al. 2009,

Williams et al. 2009). In the latter case, data from many bands outside of the UVJ region

of the spectra is left unused while in constraining the best fit model SED, these data are

beneficial (Brammer et al. 2011). We investigate the effect of the star-formation histories on

the UVJ colors, when analyzing the effects of the photometric uncertainties in Section 2.4.
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Figure 2.1: The rest-frame UVJ plane and colors from the best-fitted models for every
galaxy are shown. The artificial patterns seen are from the limited number of models that
do not span the total dynamic range of the UVJ colors of galaxies. Also, since we have
imposed another criterion on the F125W-band, we do not select the low-z dusty solution
counterparts. The color bar shows the likelihood grading for each selection. Redder data
points are more likely to be quiescent.
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SPS model τ Gyr E(B − V )

BC03 (Bruzual and Charlot (2003a)) (0.01, 30) (0, 1.1)

IMF Dust attenuation law Metallicity

Chabrier (2003) Calzetti et al. (2000) {0.02, 0.008, 0.004}

Table 2.3: The range of the parameter used in the Le Phare code for exponentially declining
star formation history, as well as the initial mass function and dust attenuation law used for
fitting all the CANDELS.

We combine the selection criteria on the rest-frame UV J plane employed in Muzzin

et al. (2013), Whitaker et al. (2012a), and Straatman et al. (2014) (Figure 2.1). We define

the grading scheme by giving a weight to individual galaxies based on their distance from

the boundary defined in Table 2.6. (Figure 2.1). The combination of these selections is done

by finding the likelihood that each galaxy is a member of the union of selected populations

from different criteria. To find the rest-frame UVJ colors of CANDELS galaxies, we use the

Le Phare SED fitting code (Arnouts et al. 1999, Ilbert et al. 2006) with standard libraries

defined in Table 2.3 (Chartab et al. 2020).

In addition to the criteria on the UVJ plane, we impose a mild detection constraint

on the observed J-band (S/N > 2), which probes blueward of the Balmer break for the

highest redshift bins. This reassures that the break lies redward of the J-band, reducing the

contamination from low-z interlopers. The results are presented in Figure 2.1.

2.3.2 Observed-color selection

The most commonly used methods for identifying the population of high redshift

galaxies are variations of the drop-out technique, based on the observed colors of galaxies.

This uses well-known features in the galaxy SEDs and follows them as they move to redder
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passbands when galaxy is redshifted. Examples of this are the Lyman break features used

for the selection of UV bright Lyman break Galaxies (Steidel and Hamilton 1993; Steidel

et al. 1995; Steidel et al. 2003; Reddy et al. 2005; more recently Stark et al. 2010; Bouwens

et al. 2011; Bouwens et al. 2014; Roberts-Borsani et al. 2016; Oesch et al. 2016) and evolved

systems using Balmer break features (Cimatti et al. 2002; Roche et al. 2002; Franx et al.

2003; van Dokkum et al. 2003; Daddi et al. 2004; Reddy et al. 2005; Mobasher et al. 2005;

Lane et al. 2007; Daddi et al. 2007; Wiklind et al. 2007; Rodighiero et al. 2007; Caputi et al.

2012; Nayyeri et al. 2014; Girelli et al. 2019).

This technique uses the fact that magnitudes and colors are sensitive to redshift

and the shape of their SEDs, which follows the physical properties of their stellar population

and their interstellar medium. For example, for post-starburst galaxies, we can use Balmer

break features from 3648 Balmer limit. Therefore, the observed colors can help us find

the candidate galaxies directly from photometric measurements using a few photometric

bands. For the redshift range of interest here, Balmer break features redshift towards near-

IR wavelengths.

We use the observed colors to select candidates in the CANDELS fields with the

color selection criteria from Nayyeri et al. (2014) (Figure 2.2). This selection was initially

developed by finding the color criteria in the color-color space for a sample of old (low-

z) quiescent, dusty starburst, and post starburst populations, using Bruzual and Charlot

(2003a) stellar population synthesis evolutionary tracks and considering an IGM absorption

following Madau (1995). In the redshift range of interest (3 ≤ z ≤ 4.5), H −K color will

constrain the presence of the Balmer break, accompanied by a Y − J or J −H constraint
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Figure 2.2: Observed color selection based on the criteria in Nayyeri et al. (2014) in 3
dimensions is shown (The gray dashed line shows these selection boundaries on the 2D
planes of the colors). The redness of the points indicates the degree to which each galaxy
is a member of the quiescent population. The error bars are plotted for sources with a
likelihood higher than 0.5.
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which can discriminate between dusty-starburst and quiescent galaxies. Also, we impose a

non-detection requirement on the U and B bands since they fall blueward of the break. By

doing this, we reduce the contamination from the low redshift interlopers.

Another likely source of contamination is due to the absence of nebular emission

lines. These affect the selection based on broadband photometry since they can mimic a

Balmer break feature, which can mislead the classification scheme (see Nayyeri et al. 2014;

Straatman et al. 2014; Merlin et al. 2018). To minimize the effect of these lines, we perform

the SED-fitting procedure described in Section 2.3.3 using libraries with and without the

nebular line emissions.

We assign likelihoods to the selected sources, based on their proximity to the

selection boundaries to reduce the dependence on the chosen selection boundaries (More

details are presented in the Appendix 2.7). The final likelihood will be the average likelihood

for all of the realizations of a galaxy within its error bars (Section 2.4.2).

2.3.3 Selection based on SED fitting

Here we discuss another method used for finding quiescent candidates based on

the inferred physical properties measured from their SEDs. The advantage of this method

is that it makes use of all the photometric data available and, therefore, imposes stronger

constraints on the selection process.

Furthermore, it predicts the physical parameters for each galaxy. The disadvantage

is that the method is model dependent and is based on the star formation history and

extinction used to generate SED templates (Grazian et al. 2007; Fontana et al. 2009; Pacifici

et al. 2016; Merlin et al. 2018; Carnall et al. 2018; Carnall et al. 2019b; Merlin et al. 2019).
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We fit template SEDs for the candidates between 2.8 < zphot < 5.4 with masses

larger than 1010M� using CANDELS photometric and spectroscopic redshifts (where avail-

able), and catalog of the physical properties. We rely only on the mass measurements since

the stellar masses are less susceptible to the parameters chosen in the template libraries

of galaxies, particularly the star formation history used for SED fitting (compare to the

inferred SFRs)(Mobasher et al. 2015; Papovich et al. 2001; Shapley et al. 2001; Wuyts et al.

2009; Muzzin et al. 2009).

However, the presence of the nebular lines can affect stellar mass measurements.

Hence, we treat the stellar mass as a free parameter (although we made a prior mass selection

on the sub-sample) when fitting the sub-samples photometric measurements to keep the

stellar mass uncertainty of this type limited to the initial selection.

We find the physical properties using Bayesian Analysis of Galaxies for Physical

Inference and Parameter EStimation (Bagpipes), a Bayesian SED fitting code (see Carnall

et al. 2018). Bagpipes uses 2016 version of the Bruzual and Charlot 2003a, and Multi-

nest (Feroz and Hobson 2008; Feroz et al. 2009) for multimodal nested sampling algorithm

(Skilling 2006).

The multimodal nested sampling algorithm employed is a huge improvement over

a simple χ2 fit, which is incapable of producing a reliable error estimate. Moreover, the

Markov chain Monte Carlo (MCMC) algorithm employed in some SED-fitting procedures

for finding the posterior of the physical properties can be problematic when sampling from

multimodal posterior. These include models with large degeneracy, which is often the case

when modeling a complex system such as a galaxy under large photometric uncertainties.
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We fixed redshifts to their photo-z, and where available, the spec-z values. We built

separate model libraries based on three prescriptions for SFHs: exponentially declining, top-

hat, and double power-law forms (Behroozi et al. 2013b), assuming Chabrier (2003) IMF,

dust attenuation based on Calzetti et al. (2000), and IGM absorption from Inoue et al.

(2014) which is a revised version of the Madau (1995) model. Knowing that nebular lines

emission can mimic a Balmer break-like feature and for controlling their effects on the

physical properties and, consequently, the selection made based on them, we run the code

with and without the nebular emission (since the target population is expected to have

little to no nebular emissions). The priors used for physical parameters in the SED fitting

are listed in Table 2.4. We then find the posterior distribution for each model parameter.

Following Carnall et al. (2018), we define ψSFR as the ratio of the SFR at any given time

(SFR(t)) to the average SFR over the age of a given galaxy (< SFR(t) >):

ψSFR =
SFR(t)

< SFR > (t)
=

SFR(t)
1
t

∫ t
0 SFR(t′)dt′

(2.1)

and we define the quiescent population as those with ψSFR less than 0.1 at the observed age

of the galaxy. In other words, the quiescent galaxies are those with average SFR over the

last 100 Myrs to be less than 10 percent of the average SFR over its lifetime.

The Bayesian nature of the SED fitting code allows us to have the posterior distri-

bution for each galaxy and all the parameters associated with it. We apply the selection on

the sample from the posterior and count the number of selected samples from the posterior

versus the total count to find the expected value of the selection criteria under the posterior.
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Table 2.4: The priors used for different free physical parameters and the fixed parameters
used in the fit.

Star Formation History Free Parameter Prior Limits Fixed Parameter Value

AV
1 Uniform (0, 2) SPS models BC03

Double Power Law: log10(Mformed / M�)2 Uniform (1, 13) IMF Chabrier (2003)
Z / Z�3 Uniform (0.2, 2.5) zobs zphot/spec

SFR(t) = C[(t/τ)α + (t/τ)−β ]−1 τ / Gyr4 Uniform (0, t(zobs)) log10(U)5 -3
α6 Logarithmic (10−2, 103)
β7 Logarithmic (10−2, 103)

AV Uniform (0, 2) SPS models BC03
Exponentially Declining: log10(Mformed / M�) Uniform (1, 13) IMF Chabrier (2003)

Z / Z� Uniform (0.2, 2.5) zobs zphot/spec

SFR(t) = C exp (−t/τ) τ / Gyr8 Uniform (0.05, 10) log10(U) -3
Age Uniform (0, t(zobs))

AV Uniform (0, 2) SPS models BC0311

Top-Hat: log10(Mformed / M�) Uniform (1, 13) IMF Chabrier (2003)
Z / Z� Uniform (0.2, 2.5) zobs zphot/spec

SFR(t) =

{
C t ∈ [Agemin,Agemax]

0 otherwise
Agemin

9 Uniform (0, t(zobs)) log10(U) -3

Agemax
10 Uniform (0, t(zobs))

1Av is the Attenuation at 5500Å
2Mformed is the mass formed

3Z is the metallicity
4τ is the peak time for double power law SFH

5log10 U is the ionization parameter
6α is the rising power
7β is the falling power

8τ is the exponential decay timescale in τ model SFH
9Agemin is the initial time for Top-hat SFH

10Agemax is the final time for the Top-hat SFH

C is the normalization constant

11BC03 is the Stellar population synthesis at the resolution of 2003 (Bruzual and Charlot (2003b))
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Figure 2.3: Shows the Bayes factor for models with different SFHs and with/without nebular
emissions for the redshift and mass-selected sample of galaxies. TH, τ , and DP stand for
Top-Hat, exponentially declining, and double power-law model for SFH, respectively. The
top panel shows the Bayes factor for models that include nebular emission to those with the
same SFH but without emissions. The bottom left shows the relative evidence for Top-hat
SFH to τ models and double power law. The bottom right shows the relative evidence for
τ models and double power law. The data points show the median, and the error bars are
20, and 80 percentile of the sample. ζ1 and ζ2 are evidence for top and bottom models (in
each figure). The grey area shows Inconclusive to Weak evidence, the lighter shade shows
Weak to Moderate evidence, and darker shade shows Moderate to Strong evidence (Jeffreys
1961). In the case of top hat models, there is strong evidence against the top-hat models
when compared with τ and double power law.
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We use the Bayesian evidence (marginal likelihood) on different models used for

SED-fitting. By doing so, we find the relative evidence for different models according to the

data. The definition of the Bayesian evidence is:

ζ = p(D|H) =

∫
p(D|θ,H)p(θ|H)dθ (2.2)

where D, H, and θ represent the data, hypothesis (model), and model parameters, respec-

tively. The p(D|H) is the probability of getting the data D under the assumption of the

validity of a specific hypothesis H, which is the Bayesian evidence for H.

We adopt Jefferey’s criteria (Jeffreys 1961; also see Kass and Raftery 1995) for

interpretation of the relative evidence (Bayes factor) calculated for each galaxy and different

models. We use the same prior for fixed parameters such as redshift, and for the rest of

the parameters, we use non-informative priors (Kass and Wasserman 1996) across different

models. By doing so, the Bayes factor represents the posterior odds of the models (p(H2|D)
p(H1|D) =

p(D|H1)
p(D|H2)). In other words, we impose no prior judgment about the validity of a certain

model. Results presented in Figure (2.3) express that statistically, none of the models

show substantially more evidence. However, the Bayes factors support models that include

nebular lines and generally favor double power-law over τ -models. This is consistent with

Reddy et al. (2012) regarding the inability of the τ models in reproducing star formation rates

from UV+IR measurements in the star-forming population at higher redshifts. Pacifici et al.

(2016) showed that double power-law is the best model to describe the SFHs of their samples.

Carnall et al. (2019a) also confirmed that a double power-law model could produce relatively

stronger evidence. As Figure 2.3 depicts, similar to Belli et al. (2019) investigation of the
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effect of SFH on age measurements, top-hat models generally fail to produce a comparable

level of evidence from data. Therefore, we do not use the results from the Top-Hat models

for making a selection.

2.3.4 AGN Contamination

We cross-matched the potential candidates for high redshift massive evolved sys-

tems with the publicly available Chandra X-ray catalogs and used Spitzer MIPS 24 µm

to detect possible dusty AGNs. We excluded any candidates with a counterpart (shows

detection) in either X-ray or MIPS. For the X-ray catalogs we looked for any counterparts

closer than 5 arcsec which is 10 times the resolution of the Chandra X-ray Observatory

(cross-matched with Laird et al. 2009; Evans et al. 2010; Xue et al. 2016; Nandra et al.

2015; Cappelluti et al. 2016; Civano et al. 2016; Masini et al. 2018) and for Mid-IR we used

the catalog published in Barro et al. (2019) for finding any counterpart and flux measure-

ments in the mentioned MIR bands. About 30% of the candidates have an X-ray or MIR

counterpart, which were removed from the final sample and not included in the number and

stellar mass density measurements.

2.3.5 Final sample

To each galaxy, we assigned a likelihood measure that is the median of the like-

lihoods estimated for that galaxy from each of the three techniques: the UVJ selection

(Section 2.3.1); Observed color selection (Section 2.3.2) and SED fitting method with and

without the nebular emission contribution (Section 2.3.3). We combine the results from

the SED fitting under different assumptions using the weighted average of the likelihoods
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for each galaxy using the marginal likelihood calculated for a particular model as their

corresponding weights. By doing this, we make sure that we have put more emphasis on

likelihoods calculated from the models with higher marginal likelihoods. Then we take the

median of all these methods as our final indicator. We select the final sample as those with

the median likelihood higher than 0.5. However, we use the 0.3 and 0.7 criteria as our

least and most conservative samples, respectively. By using the median indicator, we limit

our sample to those galaxies that were assigned at least by two of the methods mentioned

to have a high likelihood of being a massive evolved galaxy. Figure 2.8 shows how this

threshold changes the number density measurements of each selection method as well as the

median value which is taken as the final indicator. The final selected galaxies with their

assigned likelihoods and estimated physical parameters are listed in Table 2.7. The galaxies

that were selected with the median likelihood higher than 0.3, constitute the most inclusive

sample and the one used for finding the upper bounds on the number/mass densities. Also,

we control the possible contamination in our final sample, since, we rely on the composite

indicator compared to a single measure. Figure 2.4 shows a comparison between different

selection methods and how they relate to each other (All the highlighted points are galaxies

in our final sample). For example, the selection in the sSFR vs. Ms plane is generally con-

sistent across different methods since the objects with higher BBG/UVJ likelihood are close

or inside the selection boundary. For selection in the UVJ colors, we have several candidates

that are far from the boundary but show much higher BBG/SED likelihood. This shows

the sensitivity of final results to the libraries used, and by changing the SED fitting code

and/or the libraries used, we are not necessarily searching through the same part of the
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models’ parameters space. In terms of the selection based on the observed colors, we tend

to have higher UVJ/BBG likelihood, but there are a couple of candidates that show higher

UVJ/SED likelihoods but fall outside of the criteria. This shows the importance of using

information from other bands as well.

2.4 Photometric Uncertainty

All the methods discussed in the previous section are sensitive to uncertainties in

photometry at different levels. To quantify the sensitivity of each of the selection methods

to photometric uncertainties, we use the Monte Carlo resampling and produce different real-

izations of each galaxy’s photometries. We quantify the confidence level for each candidate

galaxy selected from different methods, and the error estimates that propagated into the

selections.

Assuming a Gaussian error distribution for each band, we produce realizations for

each galaxy by perturbing the photometric measurements within their assigned uncertain-

ties. In other words, we build a bootstrap resampled ensemble of photometric measurement

distribution of a galaxy. Then we perform the methods for selecting candidate galaxies and

study how these perturbations affect our selections and how sensitive the selected sample

is to changes in photometric measurements within their uncertainties. In the case of the

selection based on the observed color technique, we only look at several bands, so the un-

certainties on the other bands (not used in the selection) are not crucial, but in the case of

the UVJ and SED we use all the photometric data which means that the uncertainties in

every band can potentially be imperative.
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Figure 2.4: The top panel shows the sSFR vs Ms, (from Bagpipes) the bottom left shows
the rest-frame UVJ colors (from LePhare), and the bottom right shows the observed colors
for the candidate galaxies. The grey points are the CANDELS galaxies (with 2.8 ≤ z ≤ 5.4),
and the candidates are color-coded with three assigned likelihoods. The green, blue, and red
color scales reflect the likelihood measured based on UVJ, SED, and the observed colors,
respectively. In order to show the contrast in different selections, we plotted likelihoods on
top of each other. So those that have two colors show high likelihood in two methods, and
from those, the ones that also fall inside the respective criteria show a higher likelihood in
all of the mentioned methods. The shaded area shows the selection in the corresponding
plane with the same color-code as mentioned. In the top panel, different limiting sSFR for
SED based selection is shown at different redshifts.
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2.4.1 Uncertainty of selection based on UVJ

Here we consider the effect of the photometric uncertainties in finding UVJ colors

and how that could affect the final selected sample. We first choose a subset of the selected

galaxies, construct 50 realizations of each, and run SED fitting on the resampled galaxies.

Then we quantify how these uncertainties propagate into our inferred rest-frame colors and

how they change the result from the UVJ selection in Section 2.3.1.

Figure 2.5 shows the effect of photometric uncertainty on the UVJ selection. It is

clear how the choice of the SFH and whether to include the nebular emissions are pivotal in

selecting the quiescent population. We find the UVJ colors from the Bagpipes SED fitting

code since we are interested in understanding the effect of the photometric uncertainty on

the inference from the SED, which makes a Bayesian posterior estimate more reliable given

the clear uncertainty definition based on the posterior. For all but a small subset of galaxies

fitted with τ models and nebular lines, the posterior UVJ of the resampled galaxies falls

around the posterior from the true photometry with considerable scatter. For a small subset

of galaxies (5 out of 28) fitted with τ models, the locus of the posterior varies dramatically,

and with higher scatter than the posterior UVJ from the true photometry. The double

power-law model is found to be more immune to the photometric uncertainties, as is also

the case for physical parameters used in SED based selection.

2.4.2 Uncertainty of selection based on observed colors

To find the effect of photometric uncertainties on the selection based on the ob-

served colors, we generate 105 realization for every galaxy and assign a likelihood based on
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Figure 2.5: The UVJ plane for galaxies resampled ensemble (Monte Carlo simulated pho-
tometry). The UVJ colors from the unperturbed photometry are drawn with larger points,
and the dimmer points represent the posterior UVJ color for the disturbed photometries
on the UVJ color plane. This is a zoomed-in version of the UVJ plot showing the separa-
tion of different models. This figure shows how the change in the model assumptions (i.e.,
star formation histories, including nebular emission) can change the UVJ colors posterior
distribution, which can affect our selection based on the UVJ colors.
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Figure 2.6: The figure shows J −H vs. H −K, and Y − J vs. H −K plane of CANDELS
in the GOODS-South field. The larger and more yellow data points show more chances of
being quiescent given the photometry measurements and their uncertainties. Here we show
just the effect of the photometric uncertainty.

the number of realizations that fall into the hard selection criteria to the total number of

realizations. The results for the GOODS-S galaxies are shown in Figure 2.6, where they

are colored and resized based on the assigned likelihood. Few candidates fall outside of the

selection criteria, but when we include the photometric uncertainties, we find realizations

that fall in the selected region. On the other hand, few galaxies fall inside the criteria, but

because of their photometric uncertainties do not show a clear indication of being quiescent.

2.4.3 Uncertainty of SED fitting based selections

With having a posterior distribution of every physical parameter, we can estimate

the uncertainties of these parameters. We use the resampling method mentioned above to

get even more reliable error estimates. (more details on the effect of the sampling error in

Higson2018). Here we used the same sample from the SED fitting results for finding the

sensitivity of the UVJ colors on photometric uncertainties.
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We follow the effect on the posterior ψSFR, which is the critical parameter in the

SED based selection discussed in Section 2.3.3. As Figure 2.7 shows, for most of the sample

used, the τ -model SFH is more susceptible to photometric uncertainties than double power-

law, which has more stable results under photometric perturbations similar to the UVJ

colors. Also, including the models’ nebular emission leads to models with UVJ colors that

are further away from the quiescent region and hence reduce the number densities of the

quiescent population.

In this section, we found the effect of the photometric uncertainties on each method’s

assigned likelihood. As mentioned in Section 2.3.2, for finding the likelihood based on the

observed colors for all the galaxies in the CANDELS fields, we assign a likelihood to every

photometric realization of a galaxy based on their proximity to the selection boundary, then

we take the average of these as the observed color likelihood for that galaxy. By doing this,

we can take into account both the photometric uncertainties and closeness to the selection

boundary. Since we only calculated the effect of the photometric uncertainties on likeli-

hoods based on the UVJ and SED based selection for a sub-sample of galaxies, we did not

incorporate the photometric uncertainties in the final assigned likelihood of these methods.

2.5 Number and Stellar Mass Densities

Using the final sample of massive and evolved galaxies, as presented in Table 2.7,

we now estimate their number and mass density across the CANDELS fields. We divide

the candidates based on their redshifts into two bins 2.8 ≤ z < 4.0 and 4.0 ≤ z < 5.4,

approximately representing the same comoving volumes. To find the most reliable candi-
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Figure 2.7: Here we show the dependence of the likelihood assigned in the SED selection
on photometric uncertainties. ψSFR likelihood for several galaxies and their bootstrapped
photometries assuming Gaussian uncertainties. For each galaxy, the top left and right is τ
model without and with nebular emission respectively, and the bottom left and right is dou-
ble power-law without and with nebular emission, respectively. The histograms show boot-
strapped sample photometries, and the curve is their simple kernel density estimate. The
black line shows the quiescent likelihood from SED from true photometry. The likelihood
estimate from τ models show to be more sensitive to possible variations under photometric
uncertainties.
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dates, we need to assign a threshold for our likelihood. However, in order to follow this

threshold’s effect, we impose three different values on the final likelihoods. These thresholds

are shown as error bars in Figure 2.9. The upper limits are for galaxies with an assigned

likelihood of more than 0.3, the lower limits are for those with likelihood more than 0.7,

and the measurement points are for those more than 0.5. The variation caused by changing

the selection threshold is larger than the typical Poisson noise. However, we take into ac-

count the Poisson noise as an independent source of uncertainty (Figure 2.8). We find the

number/stellar mass densities after taking into account the incompleteness of our sample,

as discussed in the next section.
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The error bars show the uncertainty as upper and lower bounds. The shaded rectangular
correspond to variations in the number densities due to variation in the selection threshold
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2.5.1 Completeness

To estimate the completeness of the sample used, we follow the prescription adopted

in Pozzetti et al. (2010). We divide the CANDELS galaxies into two redshift bins mentioned

above. We find the 20% of the galaxies with the faintest apparent magnitude in H Band,

with specific star formation rates lower than 75% of galaxies in that redshift bin. We

calculate the Mlim defined as the mass which the galaxy would have if it were at the survey

limiting magnitude (Hlim = 26) (assuming a constant mass-to-light ratios); in other words,
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we find log(Mlim/M∗) = 0.4(H − Hlim). Then we define the fraction of the sample with

log(Mlim/M�) > 10 as the completeness of the quiescent galaxies with that mass range.

The effective volume of the survey at each redshift bin is defined to be Veff = Vcoη(z);

where Vco is the comoving volume at each redshift bin and η(z) is the completeness of the

sample for log(M∗/M�) > 10 at each redshift bin of the quiescent population.

2.5.2 Comparison to models predictions

In this section, we find the target population predicted from the several existing

models listed below and compare their number and stellar mass densities with the sample

found in this study.

• Simulated Infrared Dusty Extragalactic Sky: We use the simulated catalog

presented in Béthermin et al. (2017), which uses the abundance matching technique

for occupying dark matter halos from the Bolshoi-Planck simulation (Klypin et al.

2016; Rodríguez-Puebla et al. 2016) and uses an updated version of the 2SFM (two

star-formation modes) galaxy evolution model (Sargent et al. 2012; Béthermin et al.

2012 from which a lightcone covering 2 degrees squared was produced.

• Universe Machine: We employ the available CANDELS lightcones produced by the

Universe Machine semi-empirical model, which uses the same Bolshoi-Planck simula-

tion for halo properties and mass assembly histories. There are eight realizations for

each field in CANDELS, and we use all of these realizations. (Behroozi et al. 2019)

• Eagle Simulation: We use the Eagle cosmological hydro-dynamical simulations

of a box with L = 50 and 100 co-moving mega-parsec (cMpc) on each side. We
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use RefL0050N0752, RefL0100N1504, and AGNdT9L0050N0752 in which the

first two are the reference physical model used and the last one has higher AGN

heating temperature and lower sub-grid black hole accretion disc viscosity. All of

these simulations have the same mass resolutions. (Schaye et al. 2015; Crain et al.

2015; McAlpine et al. 2016; The EAGLE team 2017)

• IllustrisTNG Simulation: We use the latest IllustrisTNG cosmological hydro-

dynamical simulations of a box with L = 100 and 300 co-moving mega-parsec (cMpc)

on each side. There are three resolutions for each simulation box, and here we used

the highest resolution. (Nelson et al. 2018; Springel et al. 2018; Pillepich et al. 2018;

Marinacci et al. 2018; Naiman et al. 2018; Nelson et al. 2019)

To identify the quiescent galaxies in the simulations and to be consistent with

observation of the massive evolved galaxies at z > 2 which has been known to be quite

compact Re ≤ 2.5 kpc (Daddi et al. 2005; Trujillo et al. 2006; Trujillo et al. 2007; van

Dokkum et al. 2008; Newman et al. 2010 Damjanov et al. 2011; van der Wel et al. 2014), we

use the stellar mass and star formation rates within the twice of half-mass radius. Donnari

et al. (2019) has shown that the star-formation main sequence in the Illustris-TNG 100

for z > 2 is quite identical when assuming physical properties within an aperture of 5kpc

compare to the twice the half-mass radius definition for both 10, 1000 Myr timescale of SFR

measurements. Also, following Merlin et al. (2019) and staying consistent in our comparison

within simulations, and since the physical properties of the Eagle simulations are available

within certain apertures in the range 1 to 100 kpc, we use the physical properties within

an aperture that is closest to four times the half-mass radius. For all the models we select

37



Redshift bin Completeness Number Density (Mpc−3) Upper bound (Mpc−3) Lower bound (Mpc−3)

2.8 ≤ z < 4.0 0.8 1.2× 10−5 3.1× 10−5 2.8× 10−6

4.0 ≤ z < 5.4 0.5 4.1× 10−6 8.2× 10−6 2.7× 10−7

2.8 ≤ z < 5.4 0.7 8.1× 10−6 1.9× 10−5 1.7× 10−6

Table 2.5: The number density measurements and calculated upper and lower bounds (before
completeness correction) used in the Figure 2.9 and 2.8. Lower bound and upper bound
correspond to the selection threshold of 0.7 and 0.3 respectively. Poisson errors are included
in the bounds.

galaxies with stellar masses log(M∗/M�) > 10, and specific star-formation rate within the

half-mass radius lower than the evolving sSFR constraint employed in the Pacifici et al.

(2016), as sSFRlim = 0.2/tU (z), where tU (z) in Gyrs is the age of the universe at redshift

z. Carnall et al. (2019a) showed this to be consistent with the ψSFR measure used in this

work across different redshifts.

Figure 2.9 shows the comparison between the observed number density of the quies-

cent galaxies within the corresponding comoving volumes, corrected for their completeness.

The observed and predicted counts from the numerical simulations and empirical models

of galaxy evolution are in generally good agreement. However, at the higher-end of the

redshift distribution, there are more observed candidates than predicted by models by a

factor of ∼ 5. Nevertheless, it is somewhat consistent with the uncertainties shown in Fig-

ure 2.9 (especially in the case of Universe Machine). Additionally, the presence of possible

contaminants in the sample can ameliorate the tension.

Figure 2.9 further shows the stellar mass density for our sample compared to the

simulations and empirical models. We used the mass catalog from CANDELS to measure

the stellar mass density. The tension between the stellar mass density for our sample with
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(a) The comoving number density (b) The comoving stellar mass density

Figure 2.9: The comoving number and stellar mass density of the massive quiescent galaxies
(defined as those with Ms ≥ 1010M� and sSFR ≤ 0.2/tH(z) Gyr−1 in which the tH is the
age of the universe at the redshift of z) in two redshift bins from this work are overplotted
as red data points on those from the Illustris TNG, and EAGLE simulations for different
volumes are shown. Measurements from Behroozi et al. (2019) and Béthermin et al. (2017)
is shown with the orange and deep brown dashed line respectively. Measurements from
Muzzin et al. (2013), Straatman et al. (2014), Schreiber et al. (2018a), and Merlin et al.
(2018) are shown as purple, violet, orange, and blue data points, respectively. The error
bars show one σ uncertainty in measurements, except for the error bars of this work, which
are upper and lower limits of the measurements, taking into account the dependence of the
measurement on artificial selection thresholds and the one σ Poisson uncertainty.
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Figure 2.10: Shows the Stellar Mass distribution of the candidates found here compared
with semi-analytical models and hydro-dynamical simulations. The y-axis shows the kernel
density estimate of the relative frequency. (Using Gaussian kernel and Scott’s rule for
bandwidth selection)

the simulations seems to be worse; however, the argument above for the number density

applies here as well. The stellar mass measurements from the SED fitting results when

including nebular line emission can also mitigate the tension as the presence of the nebular

lines can reduce the contribution from the continuum part of the SED, which can result in

lower inferred stellar masses.

Also, by looking at the mass distribution of the selected samples from models and

our CANDELS candidates (Figure 2.10) shows that the CANDELS candidates are relatively

more massive than their counterparts in models except for those from the TNG simulations.

The TNG100-1 sample shows to be more massive and using the fact that the stellar

mass density at the highest redshift bins is lower than what we found here, we argue that

the sample galaxies from the TNG tend to build their stellar mass later and at a higher

40



20.0 12.0 10.0 9.0 8.0 7.2 6.5 5.8 5.2 4.7 4.2

Redshift

109

1010

1011

1012

M
su
b/
M
�

10−2

10−1

100

101

102

S
F

R
H
M

10−2

10−1

100

101

102

S
F

R
2H

M
Quiescent at z ≥ 4

20.0 12.0 10.0 9.0 8.0 7.2 6.5 5.8 5.2 4.7 4.2 3.7 3.3 2.9

Quiescent at 3 ≤ z < 4

20.0 12.0 10.0 9.0 8.0 7.2 6.5 5.8 5.2 4.7 4.2 3.7 3.3 2.9

Redshift

Figure 2.11: Shows the history of total subhalo mass assembly, star formation rate within
the half-mass radius (SFRHM ), and within twice the half-mass radius (SFR2HM ) from the
IllustrisTNG100-1 simulation merger trees and following the most massive progenitor
branch for the selected sample of quiescent galaxies based on the stellar mass and SFR
measurements defined within the half-mass radius. The solid lines show the median history
with the shaded area corresponding to the 20% and 80% percentiles. As the figure shows, the
higher redshift bin candidates show that the SFR within the half-mass radius is decreasing
more rapidly than the star-formation within twice the half-mass radius as they evolve.

rate than what is suggested from the CANDELS observations similar to what Fontana et al.

(2009) has found.

Also, by looking at the merger tree information of the selected sample (Rodriguez-

Gomez et al. 2015) and following their history back to their formation epoch, we find the

mass assembly and star formation histories of the selected sample to check whether it is

consistent with their selection as quiescent galaxies. Figure 2.11 shows the median and

(20%, 80%) percentile of the mass assembly and star formation rate history of the sample

selected. Star formation histories were calculated from two SFR measures, one within the

half-mass radius and one within twice the half-mass radius. Figure 2.11 reveals that the
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TNG sample at the lowest redshift bin is consistent with quenching even within the twice

of the half-mass radius. Although the higher redshift sample shows evidence of quenching

within the half-mass radius, the star formation seems to continue outside of the twice of the

half-mass radius.

2.6 Discussion and Conclusion

In this study, we used three methods of selecting quiescent galaxies at high redshift.

Using the grading scheme explained in Section 2.3, we minimized the effect of selection

criteria by assigning a likelihood measure to each galaxy under each selection method. Figure

2.8 shows the number density measurements from different methods and the composite

indicator (median) we used in the final selection and their dependence on the selection

thresholds. We also investigated the effect of the photometric uncertainties to understand

the degree to which the result represented here could be affected. We combined these

likelihoods by taking the median across different methods. The results from this study are

consistent with similar investigations in CANDELS fields. Nayyeri et al. (2014) found 16

candidates in the GOODS-South of which seven are the same as what we found as candidates.

Also, Merlin et al. (2019) found 102 candidates across all the CANDELS, with 36 being the

same as those found here. More than half of the proposed candidates that are missing from

our sample but reported in Merlin et al. (2019) showed more substantial Bayesian evidence

when they were fitted with τ SFH, and double power-law SFH compared to the constant

star-formation histories employed in Merlin et al. (2019). This indicates the selection is

sensitive to the form of the SFH assumed.
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We do not expect a significant difference between the two methods since UVJ colors

are expected to follow the sSFR of the model galaxies. However, they react differently to

somewhat arbitrary criteria either on the UVJ plane or on the sSFR. Moreover, we showed

the classification based on the UVJ colors and SEDs to be strongly dependent on the choice

of the star formation history and, in the case of τ model library, are particularly susceptible

to photometric uncertainties.

We found no strong evidence in favor of any star-formation history, similar to

what found in Carnall et al. (2019a). However, double power-law showed more substantial

evidence, with less sensitivity to photometric uncertainties. Also, models that included

nebular emissions showed stronger evidence.

However, in the grading scheme defined here, we weighted each galaxy’s likelihood

by its respective evidence so that different models contribute to the likelihoods based on

their relative Bayesian evidence.

The selection based on observed colors only uses a few passbands and does not

require a search through the parameter space to find the best-fitted model. Therefore, it

is computationally more feasible than SED or UVJ based selections when a measure of the

sensitivity to photometric uncertainties is needed. Hemmati et al. (2019b) has proposed a

faster method of measuring the physical properties of galaxies and their uncertainties using

Kohonen’s Self-Organizing Map (SOM) (Kohonen 1982). SOM is a neural network that

maps the entire color space of galaxies into lower dimensions while preserving the topology

of the input space (Kiviluoto 1996; Villmann 1999). This feature ensures that we can have

measurements with stable behavior under photometric uncertainties.

43



We find that the number and stellar mass densities of the candidates are gener-

ally consistent with the prediction of the numerical simulations. However, the agreement

becomes less pronounced at higher redshifts, where numerical simulations underpredict the

number/stellar mass densities of the quiescent galaxies. However, the predictions from nu-

merical simulations are subject to significant Poisson uncertainties.

Although final sample purity requires spectroscopic observations, we employ a con-

servative approach for the completeness correction used in our number and stellar mass

density measurements. In the sense that, if we had used the model galaxies with a quiescent

stellar population with Fsps (Conroy et al. 2009; Conroy and Gunn 2010) 2, we get com-

pleteness levels that would make the number and mass densities even higher than what we

showed here, especially at higher redshift bin. Using the number densities found here and

an abundance matching technique, we predict an upper limit for the lowest halo masses of

these galaxies and the corresponding lower limit for the highest efficiency of galaxy forma-

tion (Vale and Ostriker 2004; Wiklind et al. 2008; Conroy and Gunn 2010; Guo et al. 2010;

Moster et al. 2010; Behroozi et al. 2010; Trujillo-Gomez et al. 2011; Reddick et al. 2013;

Moster et al. 2013).

Here, we use the abundance matching technique described in Behroozi et al. (2013a),

which matches galaxies in the order of decreasing stellar mass to the decreasing peak histor-

ical halo mass, according to their accretion history. Therefore, we find the peak historical

halo mass corresponding to the number density of candidates, using cumulative peak histori-

cal mass function from Behroozi et al. (2013c) at a given redshift. We find the corresponding
2Using τ model star-formation histories with τ = 0.2 Gyr and the age equal to the age of the universe at

each redshift bin, with solar metalicities.

44



dark matter halos of mass Mh ≈ 4.2, 1.9, 1.3 × 1012M� at different redshift bins in Table

2.5 centered at z = 3.4, 4.1, 4.7 and Mh ≈ 6.5, 4.7, 4.5× 1012M� for the lower bound of the

number densities, respectively. The estimated halo masses are similar to the critical shock-

heating halo mass at these redshifts (Birnboim and Dekel 2003; Kereš et al. 2005; Cattaneo

et al. 2006), at which the transition from cold-mode accretion into partly hot-mode accretion

happens Dekel et al. (2009). This transition could explain part of the quenching mechanism

simply by shutting off the accretion of most of the cold gas into the halo. Although the

fraction of the cold/hot mode accretion is higher than in the halos of the same size at a

lower redshift, the halo masses found here suggest a relatively lower fraction of cold/hot

mode accretion than the less massive halos at the same epoch.

This agrees with the “cosmological starvation” scenario as a quenching mechanism,

that suggests there is a tight correlation between the star-formation rates and the mass

accretion rate onto the halo (e.g., Larson et al. 1980; Balogh et al. 2000; Van Den Bosch

et al. 2008) and was shown to be able to explain the relatively quick quenching time for

massive central galaxies at high redshift (Argo simulations, Feldmann and Mayer 2015).

The relatively high star formation rate required for building the stellar mass within a short

timescale is consistent with sub-millimeter galaxies, that exhibit high star-formation rate

of order of few 100 M� (e.g., Marchesini et al. 2010; Swinbank et al. 2013), as a potential

progenitor of these post-starburst systems (e.g., Toft et al. 2014; Wild et al. 2016; Wild

et al. 2020).

Therefore, we suspect that a part of the quenching scenario of these systems could

be that there was a phase of high accretion of gas into halos, which leads to high levels
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of star-formation rates and the subsequent mass build-up. Then the accretion of cold gas

declines as the starvation phase begins, possibly by transiting to hot-mode accretion of the

gas into the halo, followed by an “over-consumption” phase (McGee et al. 2014; Balogh

et al. 2016), in which massive galaxies at high redshift use their gas in a depletion time

scale which leads to their relatively fast quenching (in ∼ few 100 Myrs). Similarly, Estrada-

Carpenter et al. (2019) found that massive galaxies at z ∼ 1 − 2 enriched quite rapidly to

approximately solar metallicities as early as z ∼ 3. However, radio mode AGN feedback are

still required for keeping the galaxy quiescent and suppressing any residual star formation

by driving out the remaining gas as well as possible later accretion of a cold gas stream that

penetrated the hot halo (Best et al. 2005; Croton et al. 2006; Bower et al. 2006; Feldmann

and Mayer 2015; Man et al. 2019; Falkendal et al. 2019). Similar to what has been observed

at lower redshift, we find the quiescent sample found here to be consistent with the green

valley (quenching) transition stellar mass (log(Ms/M�) ∼ 10.7) going all the way out to

z ∼ 5. This points to the importance of this stellar mass scale in quenching of the galaxies

even at higher redshifts. To find the most important quenching mechanism of these galaxies

need additional consideration such as their morphology to find if there are consistent with a

compaction phase that was driven by the gas rich major mergers or counter rotating streams

from cosmological accretion, which might deliver gas more effectively to the supermassive

blackholes and cause phases of AGN activity which could have quenched these galaxies and

are mostly have mass scale in which AGN outflows shown to be of great importance (Förster

Schreiber et al. 2019).
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2.7 Appendix: Quiescent Selection function

To quantify the effect of decision boundaries, we use an extended logistic function

to differentiate between points closer to boundaries and those reside well beyond the bound-

aries. A transformation which takes the distance from the selection boundary and produces

a value between [0, 1] in which the value closer to zero represent a galaxy which resides in

the star-forming section and far from the selection boundaries and the values close to one

is the counterpart inside the quiescent region. However, any squashing function that takes

a value from (−∞,∞) and maps it to [0, 1] with the limiting behavior discussed above can

do the job. We use a generalized logistic function defined below:

Y (x) = A+
K −A

(C +Qe−B(x−M))

in which A,K,B,C,Q,M are free parameters. However, we can fix several of them without

losing the needed features, and by the fact that we are interested in maps from (−∞,∞) to

[0, 1]. Changing the parameters of this function can change the values we use to distinguish

between different candidates. However, the utility of this method is to compare different

candidates given a set of chosen selection parameters, and we do not care about a particular

value. A “reasonable” choice of these parameters only generalizes the selection methods

without losing information compared to applying a hard selection function.

To combine different criteria consistently, we assume that the function Y (xi) is the

membership likelihood of the ith galaxy in the fuzzy set defined for specific criteria:

A = {(u,m) | u ∈ U & m = µA(u)}
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in which U is the set of all galaxies, and µA is the membership likelihood of the galaxies

to criterion A. Also for combining different criterion, we use the following rules for t-norm

(intersection) and t-conorm (Union):

A ∩B = {(u,m) | u ∈ U & m = µA∩B(u)}

A ∪B = {(u,m) | u ∈ U & m = µA∪B(u)}

µA∩B(x) = µA(x)µB(x)

µA∪B(x) = µA(x) + µB(x)− µA(x)µB(x)

Using the above equations and the parameters are fixed according to the Table 2.6.
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Selection Criteria Source Set Likelihood function Final criteria

x1 = 3.44− (Y − J)− 3.40× (H −K) A1 µ1(x1)

x2 = −1.03 + (Y − J) + 0.67× (H −K) A2 µ1(x2)

x3 = 0.83 + (Y − J)− 0.67× (H −K) A3 µ1(x3) ((A1 ∩A2 ∩A3)

Observed colors x4 = 2.48 + (J −H)− 2.80× (H −K) Nayyeri et al. (2014) A4 µ1(x4) ∪
x5 = −1.70 + (J −H) + (H −K) A5 µ1(x5) (A4 ∩A5 ∩A6))

x6 = 0.16 + (J −H)− 0.43× (H −K) A6 µ1(x6) ∩
x7 = S/N(U)− 2 A7 µ2(x7) (A7 ∩A8)

x8 = S/N(B)− 2 A8 µ2(x8)

y1 = (U − V )− 0.88× (V − J)− 0.59 B1 µ1(y1)

y2 = (U − V )− 1.2 Whitaker et al. (2012a) B2 µ1(y2)

y3 = 1.4− (V − J) B3 µ1(y3) ((B1 ∩B2 ∩B3)

y4 = S/N(J)− 2 B4 µ2(y4) ∪
UVJ y1 = (U − V )− 0.88× (V − J)− 0.59 C1 µ1(y1) (C1 ∩ C2 ∩ C3)

y2 = (U − V )− 1.3 Muzzin et al. (2013) C2 µ1(y2) ∪
y3 = 1.5− (V − J) C3 µ1(y3) (D1 ∩D2 ∩D3))

y1 = (U − V )− 0.88× (V − J)− 0.56 D1 µ1(y1) ∩
y2 = (U − V )− 1.3 Straatman et al. (2014) D2 µ1(y2) B4

y3 = 1.6− (V − J) D3 µ1(y3)

Likelihood functions Logistic parameters

µ1 A : 0, K : 1, C : 1, Q : 3, B : 20, M: 2

µ2 A : 1, K : 0, C : 1, Q : 50, B : 1.4, M: 0.25

Table 2.6: The table shows the choice of criteria for the selection functions. Sets A and B
are defined {(u, µ(u)) | u ∈ U}, in which A is the selected fuzzy set and U is the set of all
galaxies. The logistic parameters chosen for each likelihood function is specified.
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Table 2.7: Table of the candidate galaxies and their likelihood measures from different
methods. The ∗ and + next to the IDs show the candidates found in the primary and
secondary samples reported in Merlin et al. (2019), respectively. The ∗ next to the redshift
indicates those with available spectroscopic redshifts. The BBG, UVJ, and SED stand for
likelihood based on the observed color, UVJ, and SED fitting, respectively. MIPS and X-ray
columns correspond to the detection in the MIPS 24 µm and X-ray. M∗ is log (Ms/M�),
and Age is the age of the candidate galaxy in Gyrs. The galaxies that show a detection in
MIPS 24 µm and X-ray are excluded from the number/stellar mass densities measurements
(i.e., Figure 2.9).

Field ID RA DEC BBG UVJ SED M∗ Age redshift MIPS X-ray

COSMOS 3871 150.0839297 2.2235337 0.13 0.97 0.99 10.79 1.61 2.83 False False
COSMOS 13639 150.0685942 2.3427211 0.35 0.98 0.95 10.86 1.46 2.93 False False
COSMOS 14284 150.1060909 2.3510462 0.01 0.88 0.73 10.29 1.38 3.51 False False
COSMOS 14403 150.109033 2.3523803 0.0 0.91 0.56 10.45 1.47 3.73 False False
COSMOS 14528 150.1033018 2.3536424 0.0 0.46 0.35 10.63 1.11 3.12 False False
COSMOS 14788 150.0543714 2.356883 0.07 0.33 0.78 11.2 1.11 4.02 False False
COSMOS 16676∗ 150.0614902 2.3786845 0.01 0.99 0.56 11.26 1.26 4.13 False True
COSMOS 16726 150.102881 2.3794029 0.01 0.99 0.56 11.01 0.87 3.65 True False
COSMOS 16948 150.0667157 2.3823608 0.04 0.91 0.43 10.8 0.87 3.70 False False
COSMOS 18735 150.1557627 2.4044776 0.0 0.46 0.63 10.27 1.07 3.30 False False
COSMOS 19502∗ 150.1308597 2.4135984 0.22 0.86 0.58 10.78 0.84 3.87 False False
COSMOS 21794 150.1707301 2.4442981 0.1 0.95 0.54 10.51 1.32 3.63 False False
COSMOS 26635 150.0634065 2.5151526 0.13 0.92 0.61 10.43 1.08 3.24 False False
COSMOS 26858 150.1648286 2.5190274 0.0 0.47 0.48 10.28 1.94 3.08 True False
COSMOS 27856 150.0823166 2.5345944 0.18 0.95 0.67 10.79 0.87 4.08 True True
COSMOS 31823 150.0597769 2.2810259 0.0 0.97 0.41 10.73 1.52 3.72 True False
COSMOS 32689 150.2035188 2.3120491 0.0 0.55 0.73 10.62 1.47 3.64 False False
COSMOS 33389 150.1758211 2.3387828 0.0 0.91 0.52 10.37 0.93 4.46 False False
COSMOS 33927 150.0539523 2.3578909 0.0 0.46 0.4 10.04 1.26 3.25 False False
COSMOS 33970 150.0799589 2.3592574 0.0 0.9 0.35 10.13 1.04 4.42 False False
COSMOS 34944 150.0534942 2.3927052 0.0 0.42 0.58 10.19 1.66 3.53 False False
COSMOS 35033 150.0530481 2.3964053 0.0 0.34 0.92 10.23 1.38 3.67 False False
COSMOS 35098 150.0530811 2.3992994 0.0 0.46 0.84 10.14 1.54 3.19 False False
COSMOS 35162 150.0536619 2.4022545 0.01 0.95 0.71 10.38 0.92 4.30 False False
COSMOS 36674 150.1204151 2.4658729 0.0 0.48 0.84 10.18 1.86 3.19 False False
COSMOS 37304 150.1030456 2.4952038 0.0 0.93 0.49 10.16 1.6 3.57 False False
COSMOS 38150 150.0825841 2.5312043 0.0 0.99 0.35 10.2 0.99 4.29 False False
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Field ID RA DEC BBG UVJ SED M∗ Age redshift MIPS X-ray

EGS 16431 215.191335 53.074718 0.0 0.96 0.5 10.45 1.09 3.49 False False
EGS 21158 214.746219 52.783393 0.0 0.98 0.44 11.0 1.34 3.90 True False
EGS 21351∗ 214.673655 52.732542 0.3 0.96 0.5 10.59 0.88 3.61 False False
EGS 22706 215.122517 53.058015 0.0 0.98 0.51 10.5 1.22 3.25 False False
EGS 23036∗ 214.879114 52.88807 0.0 0.73 0.46 10.22 0.98 3.56 False False
EGS 23572 215.144538 53.078392 0.0 0.98 0.44 10.07 1.64 3.15 False True
EGS 24177∗ 214.866081 52.884232 0.0 0.92 0.58 10.98 1.78 3.42 True False
EGS 24356+ 214.620084 52.70959 0.06 0.92 0.47 10.66 1.53 3.43 False False
EGS 24948 214.767294 52.81771 0.0 0.75 0.52 10.38 1.38 3.44 False False
EGS 25724∗ 214.997776 52.986129 0.0 0.96 0.5 10.6 1.43 3.80 False False
EGS 27491+ 214.617755 52.724101 0.56 0.92 0.46 10.55 1.18 3.34 False False
EGS 29547∗ 214.695306 52.796871 0.16 0.97 0.51 10.54 1.59 3.15 False False
EGS 30198 214.966237 52.983055 0.0 0.49 0.42 10.03 1.26 3.01 False False
EGS 30619 214.981814 52.991238 0.0 0.94 0.57 10.56 1.95 3.07 False False
EGS 32592 215.080479 52.921568 0.0 0.97 0.53 10.2 0.97 4.28 False False
EGS 33316 215.252837 53.055545 0.0 0.96 0.54 10.47 1.04 3.70 False False
EGS 35080 214.922243 52.854748 0.0 0.79 0.59 10.53 0.9 4.00 False False
EGS 35459 215.231097 53.079181 0.0 0.88 0.32 10.0 1.31 3.95 False False
EGS 36375 214.778097 52.774151 0.0 0.46 0.34 10.51 1.6 3.27 False False
EGS 38679 214.692609 52.753274 0.0 0.96 0.65 10.92 1.36 3.91 False False
EGS 41385 214.701834 52.812333 0.0 0.35 0.33 10.37 0.96 3.63 True False

GOODSN 599 189.22477876 62.12097508 0.0 0.98 0.37 10.7 1.3 3.77 False False
GOODSN 3225 188.99068993 62.16051335 0.13 0.45 0.94 10.04 1.98 3.18 False False
GOODSN 4004∗ 189.26573822 62.16839485 0.54 0.77 0.63 10.31 1.03 3.81 False False
GOODSN 4572 189.32906181 62.17385428 0.56 0.63 0.53 10.37 1.0 4.15 True True
GOODSN 4691+ 189.10990126 62.17519651 0.88 0.99 0.48 10.7 1.64 3.18 False False
GOODSN 5059∗ 189.1623096 62.17823976 0.01 0.98 0.51 10.79 1.08 3.69 False False
GOODSN 5744∗ 189.10012474 62.18362694 0.05 0.98 0.51 10.39 1.11 3.46 False False
GOODSN 6989 189.22148283 62.19241118 0.48 0.98 0.98 10.22 1.65 2.80 False False
GOODSN 8074 189.15625504 62.19909581 0.48 0.93 1.0 11.86 0.63 5.11 True False
GOODSN 8109 189.26660705 62.19930947 0.01 0.47 0.89 10.63 1.68 3.41∗ True False
GOODSN 9083 189.33429106 62.20610777 0.69 0.58 0.2 10.11 1.53 3.62 True False
GOODSN 9545 188.98263204 62.20890348 0.16 0.34 0.36 10.41 1.42 4.27 False False
GOODSN 24582 189.40615811 62.34785252 0.5 0.35 0.0 9.2 1.95 2.87 False False
GOODSN 27305 189.21770656 62.31096041 0.0 0.98 0.51 10.18 2.03 3.01 False False
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Field ID RA DEC BBG UVJ SED M∗ Age redshift MIPS X-ray

GOODSS 2032 53.2293854 -27.8977318 0.0 0.96 0.48 10.07 1.09 3.08 False False
GOODSS 2717∗ 53.1893272 -27.8884506 0.0 0.99 0.48 10.92 1.48 3.03 False False
GOODSS 2782∗ 53.0835724 -27.8875294 0.75 0.92 0.49 10.48 1.53 3.58 False False
GOODSS 3912∗ 53.0622215 -27.8749809 0.35 0.89 0.04 10.17 1.34 3.90 False False
GOODSS 4503+ 53.1132774 -27.869875 0.0 0.86 0.42 10.91 1.29 3.59 False False
GOODSS 4821 53.0825539 -27.866745 0.04 0.75 0.51 10.24 1.5 3.10 False True
GOODSS 5479 53.0784645 -27.8598576 0.83 0.71 0.26 11.07 1.15 3.66∗ True False
GOODSS 6131 53.0916061 -27.8533421 0.47 0.96 1.0 11.74 1.1 5.06 True False
GOODSS 6235 53.1199837 -27.8519554 0.36 0.32 0.0 10.19 1.66 3.50 False False
GOODSS 7526+ 53.0786781 -27.8395462 0.25 0.97 0.44 10.14 1.32 3.32 False False
GOODSS 8785∗ 53.0818481 -27.8287373 0.61 0.98 0.48 10.23 1.47 3.85 False False
GOODSS 9209∗ 53.1081772 -27.8251228 0.31 0.63 0.49 10.65 1.2 4.49 False False
GOODSS 12178+ 53.0392838 -27.7993088 0.87 0.79 0.04 10.36 1.62 3.29 False True
GOODSS 12407 53.2218704 -27.7976608 0.0 0.97 0.34 11.06 1.03 4.24 True False
GOODSS 13299 53.2072105 -27.7913475 0.53 0.43 0.0 10.22 0.91 4.05 False False
GOODSS 16671 53.1901817 -27.7691402 0.51 0.98 0.77 10.46 1.59 2.87 False False
GOODSS 17258 53.1411247 -27.7643566 0.31 0.32 0.0 10.4 1.31 4.52 False False
GOODSS 17749∗ 53.1968956 -27.7604523 0.99 0.99 0.49 10.69 1.69 3.70 True False
GOODSS 18180∗ 53.1812248 -27.756422 0.98 0.96 0.46 10.62 1.01 3.65 False False
GOODSS 19883∗ 53.0106544 -27.7416039 0.0 0.97 0.42 10.87 0.97 3.57 True True
GOODSS 20111 53.0944252 -27.7392502 0.0 0.32 0.56 10.82 1.08 3.13 True False
GOODSS 22085∗ 53.0738754 -27.7221718 0.0 0.92 0.48 10.36 1.17 3.47 False False
GOODSS 32527 53.0305367 -27.7529354 0.0 0.96 0.35 10.48 0.83 4.28 True False

UDS 164 34.3170586 -5.2759099 0.0 0.44 0.38 10.46 0.92 3.53 False False
UDS 416 34.5199471 -5.2747688 0.0 0.98 0.46 11.39 1.33 3.38 True False
UDS 635 34.5062943 -5.273128 0.0 0.99 0.53 11.0 0.92 4.14 False False
UDS 918 34.2661095 -5.2721262 0.0 0.77 0.44 10.88 1.09 3.17 True False
UDS 1244∗ 34.2894669 -5.269805 0.32 0.89 0.01 10.77 0.99 3.79 False False
UDS 1408 34.5122528 -5.2688479 0.0 0.96 0.49 10.77 0.98 4.16 False False
UDS 2571∗ 34.290432 -5.2620749 0.7 0.8 0.08 10.52 1.39 3.70 False False
UDS 3752 34.5192871 -5.2553701 0.0 0.73 0.52 10.1 1.5 3.11 False False
UDS 4319 34.4653702 -5.2520308 0.23 0.99 0.51 11.69 0.89 4.48 True False
UDS 4332+ 34.4656906 -5.2519188 0.01 0.93 0.57 10.98 1.7 3.18 True False
UDS 5256 34.2441864 -5.2458172 0.0 0.34 0.89 10.89 1.86 3.31 False False
UDS 6218 34.3409538 -5.2405558 0.61 0.76 0.01 10.89 0.93 4.07 False False
UDS 7520∗ 34.2558746 -5.23383 0.57 0.96 0.46 11.1 1.48 3.17 True False
UDS 7779+ 34.2588844 -5.2323041 0.54 0.48 0.29 10.66 1.75 3.14 False False
UDS 8682+ 34.2937317 -5.2269621 0.82 0.92 0.26 10.44 1.58 3.46 False False
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Field ID RA DEC BBG UVJ SED M∗ Age redshift MIPS X-ray

UDS 13988 34.3857307 -5.1989851 0.36 0.05 0.63 11.45 1.95 3.03 True False
UDS 15748 34.5302429 -5.1890779 0.0 0.46 0.36 11.26 2.05 3.08 True False
UDS 17344 34.3231277 -5.179821 0.35 0.16 0.44 10.88 1.87 3.03 True False
UDS 17790 34.5422859 -5.1774998 0.34 0.33 0.0 10.54 1.58 3.31 True False
UDS 18672 34.5668411 -5.1726952 0.92 0.51 0.0 10.32 1.32 3.79 False False
UDS 19849 34.3381882 -5.1661878 0.07 0.98 0.41 10.41 1.66 3.53 True False
UDS 20843∗ 34.4961014 -5.161037 0.64 0.65 0.19 10.76 0.88 3.74 False False
UDS 22354 34.4276466 -5.1524191 0.72 0.38 0.03 10.93 1.9 3.15 False False
UDS 23628∗ 34.2425995 -5.1430721 0.97 0.63 0.21 10.73 0.83 4.25 False False
UDS 24501 34.5228386 -5.1288252 0.0 0.82 0.34 10.43 1.55 3.40 False False
UDS 24734 34.5229988 -5.1295991 0.0 0.88 0.49 10.36 1.55 3.47 False False
UDS 25688∗ 34.5265884 -5.1360388 0.25 0.99 0.53 11.21 1.33 3.08 False False
UDS 25893∗ 34.3996353 -5.1363459 0.08 0.99 0.55 11.05 1.24 4.49 False False
UDS 32698 34.5237198 -5.1804299 0.0 0.36 0.61 10.99 1.29 4.30 True False
UDS 35635 34.3170319 -5.127574 0.0 0.93 0.36 10.58 1.36 3.72 False True
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Chapter 3

Statistical Learning Application on

the Simulated Lightcones

Multiwavelenght Catalog

3.1 Introduction

A serious challenge in astronomy today is to handle the extensive data acquired

from multi-waveband galaxy surveys from the ground or space-based observatories. That

is, to extract optimum information from the data and look for new statistical trends and

correlations within the data in multi-dimensional space, essential to address the scientific

questions that instigated these surveys. Given the diversity and the large volume of the

data in question, this requires innovative and sophisticated statistical modeling techniques

(e.g., Djorgovski et al. 2012; Ménard et al. 2013; Leistedt and Hogg 2017a; Leistedt and

54



Hogg 2017b; Hogg et al. 2019; Leistedt et al. 2019; Cranmer et al. 2019; also see Ball and

Brunner 2010; Baron 2019 and references therein).

Increases in computational power combined with sophisticated algorithms and more

realistic modeling of the physics involved have allowed more accurate simulations of galaxies’

statistical properties (see Somerville and Davé 2015; Naab and Ostriker 2017 for a review).

These simulations can be constrained using the observed data and then used to find hidden

complex relations between different physical parameters. The resulting statistical models

can be used to define many inference problems, which can then be applied to real data and

compared to find potential differences between different models.

For example, simulated data are used to build light cones similar to those observed

in photometric surveys of galaxies by matching the geometry, magnitude distributions, lim-

iting magnitudes, and associated uncertainties. Since the outputs from these simulated

surveys are known, they are essential to test and compare the models used to predict the

observable parameters. The typical approach for measuring galaxies’ physical parameters

(redshift, mass, star formation rate, metallicity, extinction) is to search in the parameter

space of theoretical libraries of the Spectral Energy Distributions (SEDs). The physical pa-

rameters of any galaxy are calculated using maximum likelihood method or sampling from

the posterior distributions.

However, in this conventional approach, one does not usually consider information

from the population-level properties of galaxies. For example, priors are usually chosen

to be least informative to avoid imposing any unnecessary constraint on the parameters.

Therefore, the resulting posterior distribution on the model parameters only depends on
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the simplistic priors and input measurements, missing additional information that can be

incorporated in the prior, such as conditional probabilities (e.g., probability of observing

a star-forming versus quiescent galaxy at the center of a galaxy cluster). The posterior

distribution of a parameter can be found using the extra information within the popula-

tion produced from models, including much more complex and realistic physics but lacking

tractable likelihood. In other words, finding the optimal model is done through a Maximum

Likelihood Estimate (MLE) or sampling from the parameter space of the explicit models for

every galaxy and imposing some selection criteria. Instead, one can approximate the func-

tion from the observable to that parameter directly from a large enough simulated sample

produced by an implicit and high-fidelity statistical modeling involved in galaxy formation

simulations.

Using the simulated data, a decision function is defined based on the physical

parameters such as stellar mass, star-formation rates, redshift by calculating/modeling an

approximated posterior distribution without having to marginalize over all the simulation

internal physical states (i.e., stellar mass, star-formation rates) explicitly through the likeli-

hood. This technique has now been developed using hydrodynamic simulations (Davidzon

et al. 2019) and semi-analytic models (SAMs) (Simet et al. 2019).

This work investigates the statistical and machine learning abilities to classify sub-

populations of galaxies defined based on their physical properties under realistic conditions

for an actual galaxy photometric catalog similar to a combined catalog based on the extensive

upcoming surveys. There have been large number of works investigating the use of statistical

approaches in variety of applications in astronomy (see Ivezić et al. 2019; Baron 2019 for
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recent overviews) such as estimating photometric redshifts (e.g., Firth et al. 2003; Vanzella

et al. 2004; Collister and Lahav 2004; Carliles et al. 2010), morphological classification (e.g.,

Storrie-Lombardi et al. 1992; Lahav et al. 1995; Odewahn et al. 1996; Bazell and Aha 2001;

Ball et al. 2004; Lintott et al. 2008), and star-galaxy classification (e.g,. Odewahn et al.

1992; Bertin and Arnouts 1996; Henrion et al. 2011; Fadely et al. 2012; Kovács and Szapudi

2015; Kim and Brunner 2017; Sevilla-Noarbe et al. 2018; Beck et al. 2021). Here, we start

by statistical decision theory argument for selecting a particular class of galaxies that leaves

us with either making a probabilistic model or taking an empirical approach. We start by

employing a probabilistic modeling approach with varying degree of assumptions on the joint

probability distribution of galaxies magnitude and their labels and move to more empirical

approaches without an explicit probabilistic model.

As an example, we focus on a population of high redshift quiescent and relatively

massive galaxies. During the last decade, the presence of this population of galaxies has been

established (e.g., Cimatti et al. 2004; Labbé et al. 2005; Rodighiero et al. 2007; Grazian et al.

2007;Fontana et al. 2009; Straatman et al. 2014; Nayyeri et al. 2014; Glazebrook et al. 2017;

Schreiber et al. 2018b; Merlin et al. 2018; Merlin et al. 2019; Carnall et al. 2019a; Santini

et al. 2019; Girelli et al. 2019; Santini et al. 2020); and particularly within the past few

years, there was a growing number of confirmations primarily using photometric selection

and follow up from near-infrared spectroscopy to sub-mm imaging at progressively higher

redshift (e.g., Gobat et al. 2012; Glazebrook et al. 2017; Schreiber et al. 2018b; Schreiber

et al. 2018c; Tanaka et al. 2019; Valentino et al. 2020; Forrest et al. 2020b; Forrest et al.

2020c; Santini et al. 2019; Santini et al. 2020; Saracco et al. 2020; D’Eugenio et al. 2021).
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The presence of these galaxies at high redshift, and particularly their mass assem-

bly and fast quenching, are challenging to reproduce in the theoretical models of galaxy

formation and evolution (e.g., Fontana et al. 2009; Steinhardt et al. 2016; Schreiber et al.

2018c; Santini et al. 2020; Forrest et al. 2020b). Studies of these galaxies and possibly their

dust and gas content can put constraints on the efficiency of star formation, and relative

effectiveness of different quenching mechanisms and their timescale at early epochs of galaxy

evolution within massive dark matter halos (e.g., Schreiber et al. 2018c; Belli et al. 2019;

Merlin et al. 2019; Forrest et al. 2020b; Carnall et al. 2020; Whitaker et al. 2021). How-

ever, drawing a more general picture of the possible evolutionary pathways of these galaxies

requires a statistically representative sample.

While we focus on this specific sample of galaxies, the methods can also be gener-

alized to other objects. We will compare the performance of different techniques with the

“ground truth” and, hence, each technique’s accuracy and ability in identifying this popu-

lation of galaxies. The results are compared with those from the conventional SED fitting

method applied on the same dataset. In addition, one can turn this problem around to find

the most informative parts of the spectrum to observe to maximize the number of interesting

objects in question. To address this, a method is used to measure the importance of different

photometric bands for selecting a particular class of galaxies. The method can be extended

to different categories of objects and has wide applications within astronomy.

§3.2, present details of the SAM used to generate the simulated galaxies and their

multi-waveband data. The use of the observed multi-wavelength catalog to add realistic un-

certainties and missing values to the simulated counterparts is discussed. Then an estimator
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for every artificially injected missing value in the dataset is made, and its accuracy and

performance are measured based on the actual values in the SAM. In §3.3 the classification

problem is defined as a statistical decision problem, and several classification techniques are

used on the galaxies’ color space with different assumptions and levels of complexity from

linear and quadratic to non-linear and non-parametric decision boundaries. In §3.4, the per-

formance of the classification based on SED-fitting is compared to all these methods. The

last section provides an overview of the results, possible drawbacks, and ways to improve.

We assume a standard cosmology with H0 = 70 kms−1Mpc−1, Ωm = 0.3, and

ΩΛ = 0.7. All magnitudes are in the AB system where mAB = 23.9− 2.5log(fν/1µJy) (Oke

and Gunn 1983). We use bold notation for vectors (x) and matrices (C) throughout the

paper.

3.2 Simulated Galaxy Catalog

3.2.1 The Semi-analytic Model

The light cones that are generated for the Cosmic Assembly Near-IR Deep Ex-

tragalactic Legacy Survey (CANDELS) fields (Grogin et al. 2011; Koekemoer et al. 2011)

from an updated version of the Santa Cruz semi-analytic modeling framework are used here

(Somerville and Primack 1999; Somerville et al. 2001; Somerville et al. 2008; Somerville

et al. 2012; Yung et al. 2019a; Yung et al. 2019b; see Somerville et al. 2021).

The SAM framework uses dark matter merger histories either from dissipationless

N-body simulations or Extended Press-Schecter (EPS); Press and Schechter 1974; Lacey

and Cole 1993) using formalism described in Somerville and Kolatt (1999) and Somerville
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et al. (2008). Each branch of the merger tree is traced back in time to the minimum

progenitor mass (referred to as the simulation’s mass resolution). The SAM used in this

study uses the root dark matter halos from the “Bolshoi-Planck" high-resolution cosmological

simulation (Klypin et al. 2011) along the past lightcones created to match the CANDELS’

field’s sky location while covering a significantly larger area. However, the halo merger trees

are constructed using the EPS formalism as described in Somerville et al. (2008). The dark

matter halos then were populated with galaxies using the SAM framework.

In the merger of dark matter halos, the most massive galaxy is defined as “central”

and others are called “satellites". The satellite galaxies lose their angular momentum because

of dynamical friction and lose about 30-40 percent of their mass per orbit through tidal

stripping (Somerville et al. 2008). Through this process, a galaxy can be tidally destroyed

before merging into the central galaxy, in which case the stars are added to the diffuse stellar

halo.

Gas accreted onto the halos is shock-heated to the newly formed halo’s virial tem-

perature. The gas is cooled down with a cooling rate consistent with a smooth and spherically

symmetric model for density profile (White and Frenk 1991). A cooling radius (rcool) is de-

fined as the radius within which the hot gas has enough time to cool within the dynamical

timescale. Gas accretion is divided into two regimes: a “hot mode" defined as rcool < rvirial,

and a “cold mode" as rcool > rvirial, where the gas is accreted within the dynamical timescale.

There are two modes of star-formation, quiescent star-formation (or disk mode)

and merger-driven starburst. The disk star-formation mode uses an updated version of the

classic Kennicutt-Schmidt (KS) relation (Schmidt 1959; Kennicutt 1989; Kennicutt 1998),
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where instead of the total cold neutral gas surface density, a recipe based on only the H2

surface density is used (Popping et al. 2014; Somerville et al. 2015). This model predicts

an earlier formation time for massive galaxies than that based on the classic KS relation,

which is particularly necessary for this study.

The merger-driven starbursts are based on the binary galaxy merger simulations

(i.e. Robertson et al. 2006; Hopkins et al. 2009a), and the description of their timescale and

amplitude is modeled based on the merger mass ratio and the gas fraction of their progenitors

(i.e. Somerville et al. 2008; Somerville et al. 2012; Somerville et al. 2012). The merger is

also responsible for the galaxies’ morphological evolution by removing angular momentum

from the disk and building up the spheroid. This is modeled based on the simulations in

Hopkins et al. (2009b). It is updated from the original model described in Somerville et al.

(2008).

The production of heavy elements is assumed to follow the simple, instantaneous

recycling approximation and is assumed to mix with cold gas in the disk. These elements

can be removed by the supernova winds and deposited in the hot gas or outside the halo,

which later can re-accrete on the galaxy (see Somerville et al. 2008; Somerville et al. 2015).

Stellar feedback from massive stars and supernovae can drive the cold gas out of the

galaxy. The resulting outflow rate is modeled based on the star formation rate (SFR) and

the galaxy’s escape velocity. The fraction of this outflow deposited into the hot gas reservoir

versus the outside of the halo is modeled based on the halo’s circular velocity (Somerville

et al. 2008), such that lower mass halos lose a higher fraction of their gas compared to their

massive counterpart.
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Every galaxy is assumed to have a seed central black hole, which can grow in two

modes. One is the “quasar/bright/radiatively efficient mode", which is driven by mergers

and disk instabilities, and after each merger, the black holes merge instantaneously. The

resulting black hole will accrete cold gas and grow at Eddington rate until the pressure-driven

outflows deposit enough energy into the central region of the galaxy that significantly slow

(or halt) the accretion (Somerville et al. 2008). Additionally, it produces winds that can

remove cold gas from the halo. The other mode is the ‘radio mode" and is considered

responsible for the luminous jets observed in the radio wavelengths. This growth mode is

driven by accretion of hot halo gas assuming the Bondi-Hoyle-Lyttleton model (Hoyle and

Lyttleton 1939; Bondi and Hoyle 1944; Bondi 1952), which results in a much lower accretion

rate (2-3 orders of magnitudes slower than the Eddington rate) and is assumed to produce

radio jets that couple effectively only to the hot halo gas, which heats the gas and increases

the cooling timescale.

Finally, the resulting model’s free parameters are fixed to match a set of z ∼ 0

observations (e.g. see Yung et al. 2019a; Somerville et al. 2021). Using the star-formation

and metalicity history of galaxies produced by SAM, synthetic spectral energy distributions

(SED) are created by convolving these histories with simple stellar population models of

Bruzual and Charlot (2003a) and the models from Padova 1994 isochrones (Bertelli et al.

1994) and Chabrier (2003) initial mass function. The unattenuated synthetic SED is then

attenuated by the dust model, assuming a prescription for the V-band optical depth. This

depends on the metallicity of the cold gas as well as the mass and radius of the cold gas

disk. It also depends on the inclination of each galaxy (that is assigned randomly) and a free
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parameter that is a function of redshift that is tuned to match the observational constraints

imposed by the bright-end of the luminosity functions at z = 4 − 10 (Yung et al. 2019a;

Somerville et al. 2021). After including the IGM absorption from Madau (1995), the SEDs

are convolved with the filters response functions to find the flux/magnitude at each band.

Using the final synthetic SEDs, we then create galaxy magnitudes catalogs with

magnitudes uncertainties and missing values fractions resembling the distributions observed

in the CANDELS, which we discuss in detail in §3.2.2.

Training, Testing, and Validation Datasets

There are eight publicly available SAM lightcone realizations for every field in

the CANDELS from SAM. Throughout this paper, the GOODS-S field is used, and the

"realization zero", and "realization seven" are treated as the Training and Testing

dataset. Keeping a large amount of data in the validation and testing set ensures that the

results are robust to variations in the random selection of the volume for each realization

within the larger simulations. One can choose different sets, for example, by combining

the realization and separating the training and testing sets afterward; however, different

realizations naturally produce this division.

Since many of the theoretical models tend to produce lower number densities of

these objects (e.g., Brennan et al. 2015; Santini et al. 2020; Shahidi et al. 2020) and from

an observational perspective, their number densities can have significant uncertainties due

to lack of extensive and complete spectroscopic sample, we allow a considerable variation in

their number densities by artificially introducing these objects from other realizations. We

create an additional training set with oversampling of these objects and add the quiescent
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population from other realizations (one to five) to introduce more examples of this rare

population to the training set. However, when applying prior probabilities, the original

fraction in the realization zero is used, and when testing on the original test data, there are

no such added examples. When this oversampled version of the training set is used to train

the model, it is explicitly mentioned.

In all the methods used in the following sections, whenever there is a hyperparam-

eter in the model, 5-fold cross-validation on the “realization six" as the validation set

is employed to find the optimal hyperparameter (lowest error rate on the validation set).

Then these values are fixed, and a model is trained on the training set.

3.2.2 CANDELS observations

Latest photometric catalogs from the CANDELS are used with multi-waveband

photometry and measurement of the physical parameters for all galaxies to the survey’s

flux limit. CANDELS consists of five fields: GOODS-South (GS) (Guo et al. 2013), UDS

(Galametz et al. 2013), COSMOS (Nayyeri et al. 2017), EGS (Stefanon et al. 2017), and

GOODS-North (Barro et al. 2019).

Photometric catalogs contain observed photometry from the UV to near and mid-

infrared wavelengths. Table 3.1 presents the filters used for the GOODS-S field. For each of

the CANDELS fields, the photometric catalogs were selected in HST/WFC3 F160W band

using SExtractor (Bertin and Arnouts 1996). For low-resolution images, Template FITting

(Tfit; Laidler et al. 2007) smooths the high-resolution image to low resolution and fit the

best flux consistent with the HST data (Grogin et al. 2011; Koekemoer et al. 2011). In this

study, we focus on the GOODS-South field, which has the most Hubble Space telescope
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(HST ) high-quality imaging data available in nine out of seventeen filters, four of which are

in the Near-Infrared.

First, galaxies are selected in the CANDELS GS catalog with ‘FLAGS = 0’, which

are non-contaminated sources in the F160W band and ‘CLASS_STAR ≤ 0.9’, to avoid con-

tamination from stars based on the F160W SExtractor Star/Galaxy classifier output. Then

a subset from all of the available bands is chosen based on the number of the available/not

missing photometry for the galaxies in the survey (shown with bold font in Table 3.1). For

the U-band, the VIMOS photometry is used; in the K-band, ISAAC Ks is used. WFC3

F098M is removed due to a large number of missing values (those without any observed

flux), and only IRAC channels 1 and 2 are employed since the longer wavelength channels

are not as deep (∼ 3 magnitude shallower).

3.2.3 Flux Uncertainties

The SAM photometric catalog does not have any associated uncertainty model

for the flux measurements. To make the magnitude distributions as close as possible to the

CANDELS data, for every galaxy, an uncertainty of each band photometry is assigned based

on their flux measurement, using the uncertainties in the CANDELS GS.

CANDELS GS observed photometric catalog is used to find the “typical” uncer-

tainties in each band. First, all forms of missing/non-detection values of the CANDELS GS

data are separated into two groups:

1. Set the flux to the limiting flux for that band for galaxies with negative fluxes.

2. Bands with no observations are labeled missing.
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Table 3.1: The observed bands from UV to Mid-IR SEDs of galaxies in CANDELS GOODS-
South field

Field Filter set

Blanco/CTIO U, VLT/VIMOS U,

HST/ACS F435W, F606W, F775W, F814W, F850LP,

GOODS-S (Guo et al. 2013) HST/WFC3 F098M, F105W, F125W, F160W,

VLT/ISAAC Ks, VLT/Hawk-I Ks,

Spitzer/IRAC 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm

GOODS-S Bands used Missing values fraction Censored values fraction

1: VLT/VIMOS U 0.0 0.12

2: HST/ACS F435W 0.045 0.04

3: HST/ACS F606W 0.007 0.01

4: HST/ACS F775W 0.019 0.01

5: HST/ACS F814W 0.028 0.01

6: HST/ACS F850LP 0.003 0.1

7: HST/WFC3 F105W 0.37 0.04

8: HST/WFC3 F125W 0.001 0.04

9: HST/WFC3 F160W 0.0 0.0

10: VLT/ISAAC Ks 0.089 0.17

11: Spitzer/IRAC 3.6 µm 0 0.1

12: Spitzer/IRAC 4.5 µm 0 0.1

Doing this is to make sure that the missing values are missing completely at random

and their missingness is independent of these galaxies’ properties. Since galaxies with values

below the detection limit because of their physical properties are assumed to be censored

at the limiting magnitude of the survey. An observed magnitudes catalog is created for the

SAM in the following steps:

1. Select SAM galaxies using the H-band limiting AB Magnitude ≤ 27.

2. For flux measurements smaller than the flux corresponding to the limiting magnitude

66



in the CANDELS GS observation of that band, the limiting magnitude/flux for that

particular band is used based on the CANDELS GS limiting magnitude at that band.

3. To take into account the heteroscedasticity of flux measurements uncertainties (i.e.,

those with smaller flux measurements have higher uncertainties), we follow the ap-

proach in Simet et al. 2019. AB magnitudes are divided into bins of width 0.1, and

the median of the multiplicative uncertainties1 is found associated with each bin. A

simple linear interpolation is applied to estimate the multiplicative uncertainties at a

given AB magnitude for a given band (δF ). Based on the flux in the SAM catalogs, a

noise is added to each flux is assigned by sampling from a Gaussian distribution with

a standard deviation of δF .

4. Assuming the non-observed/missing values in each band are missing completely at

random, the flux value at each band based is randomly removed based on the frac-

tion of non-observed values in the CANDELS catalog in that band. In other words,

the fraction of missing values at each band is made similar to the CANDELS (GS)

observations. Table 3.1 shows the fraction of the missing and censored values in the

CANDELS (GS) photometric catalog.

The training, test, and validation samples are treated the same way, using the

above procedure.
1Multiplicative uncertainties δF is defined as F̂ = (1 + δF )F , with F being true flux and F̂ being the

perturbed flux.
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3.2.4 Estimation of the non-observed values

The methods used in this study, like many other learning algorithms, cannot handle

the missing values on their own, which means that either the band or galaxy with non-

observed value should be removed or some estimates for these missing data points must be

made. One can use basic summary statistics such as median/mean or linear interpolation

approximation in each band as the simplest estimates. However, here using the information

in the data set, these missing magnitudes are estimated as a function of the galaxy’s non-

missing magnitudes. By finding these estimates for the SAMs catalog’s missing data points

and using the correct values, the performance of the estimators is measured.

There are many approaches for handling the missing data (Little and Rubin 2019)

from using mixture models and expectation maximization (EM) technique2 to find an ap-

proximated probability distribution of the missing data given the observation (?), to directly

estimating the missing values using different estimators (KNNimpute, Troyanskaya et al.

2001; MissPALasso, Städler et al. 2014; MICE, van Buuren and Groothuis-Oudshoorn 2011;

MissForest, Stekhoven and Bühlmann (2011)).

Here the iterative multivariate modeling framework of the missing values is used

called Multivariate imputation by chained equations (MICE, van Buuren and Groothuis-

Oudshoorn 2011). This estimates the conditional regression model of a specific variable

(band) given the rest of the variables in the data using a “pseudo-Gibbs sampling” approach

which cycles through each variable conditioned on the rest of the variables. Although this

approach does not necessarily lead to consistent conditional distributions, it can be useful
2Look at Bishop 2006 section 9.4, and Do and Batzoglou 2008
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in practice (see Gelman and Raghunathan 2001 for more detailed discussion). We have a

total of twelve photometric bands in the SAM and CANDELS GS catalogs. From these, we

sort the bands based on the frequency of missing values (SAM and CANDELS GS have very

similar sorted bands since we set the SAM missing values proportions using CANDELS GS

observations; see §3.2.3). Then the following steps are taken:

1. Start with the bands with the greatest number of missing values, and treat it as a

“target quantity” (quantity of interest).

2. The data points with observed values in the target are kept as the complete dataset.

If these data points have missing values at other bands, a linear approximation in

log(wavelength/) between the nearest observed bands is used.

3. An estimator using a regression model is set for the target variable and trained for the

target quantity based on the complete dataset.

4. The missing values of the target quantity are estimated based on the trained model.

5. Go through the first step, but for the band with the next most missing values.

6. Go through these steps until every band with missing values has a model and estimates

for its missing values. Stop iterating when these estimates converge within some

threshold.

For modeling the target quantities at each step, a Random Forest of 50 decision

tree regressor is trained (see §3.3.2), which is very effective in estimating the missing values

(Stekhoven and Bühlmann 2011; Allingham 2018). The estimated values converge for all
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the datasets after about 15 iterations (fluctuation in estimated magnitudes is < 0.001 of

the standard deviation of that particular band). Figure 3.1 shows the performance of the

collection of regression models on the test set in estimating the missing values of the SAM

galaxies.

It should be noted that using this Random Forest will require the estimated values

from the regression to have smaller values than the limiting magnitudes of each band. In

other words, the estimator is a sampling from a distribution similar to the observed dis-

tribution where the data are censored at the limiting magnitudes for larger magnitudes.

Figure 3.1 presents the effect of this censoring in that there are no predictions larger than

the limiting magnitudes, and the regression imposes the limiting magnitude3. One can use

other censored regression models to allow the prediction of higher values and impose the

limiting magnitude afterward.

Using these procedures, estimates of the missing values are made for each magni-

tude in the training, testing, and validation datasets, as well as the CANDELS GS observa-

tion catalog4.

3.3 Finding the optimal classifier

To address specific questions, it is a common practice that one need to identify and

study a particular population of galaxies (e.g., star-forming, Lyman Break galaxies, quies-
3The Random Forest regression model will learn the distribution similar to the input which has some

data censored at the limiting magnitude compared to the true distribution where these censored data are
extended to higher values.

4One can apply the estimator trained on the training set to estimate the missing values on the other
datasets. However, this introduces a risk of adding bias from the training dataset into our testing and
validation dataset, which we later use to assess different classifiers’ performance and their optimal hyperpa-
rameter.
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Figure 3.1: Top: Estimated AB magnitudes for the missing values using iterative modeling
with Random Forest regressors. The RMSE and MAE are the root mean squared error and
mean absolute error of the given band, respectively. The y-axis is the estimated magnitude,
and the x-axis is the true magnitude after adding the errors to the SAM lightcones and
removing the values artificially. The plot shows those bands with missing values according
to the CANDELS GOODS-S photometric catalogs. The shaded regions are the part of the
magnitude space where the larger magnitudes are censored due to the limiting magnitudes
imposed on the catalog. Bottom: The relative residual of the estimated magnitudes with
∆AB = estimated AB - true AB.
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cent, massive quiescent). This section aims to study the effectiveness of different statistical

learning algorithms in identifying a specific population of galaxies and comparing them with

those from the conventional method. The simulated catalogs that were generated in the last

section will be used for this purpose. As a test example here, we focus on the population

of relatively massive quiescent galaxies at high redshift and use statistical learning

techniques to identify them in the simulated catalogs. We also identify these systems using

the established technique based on SED-fitting of the observed galaxies’ fluxes and compare

results.

Identifying a particular population of galaxies such as the quiescent population is a

decision problem which requires a decision boundary based on the observed quantities such

as colors and fluxes (Cimatti et al. 2002; Daddi et al. 2004; Reddy et al. 2005; Mobasher

et al. 2005; Wiklind et al. 2007; Nayyeri et al. 2014), or rest-frame UVJ colors (Labbé

et al. 2005; Wuyts et al. 2007; Williams et al. 2009; Whitaker et al. 2013; Barro et al.

2014; Straatman et al. 2014; Merlin et al. 2018) or imposing some criteria on the inferred

physical quantities such as star formation rate history (Fontana et al. 2009; Pacifici et al.

2016; Carnall et al. 2018; Carnall et al. 2019b). Given the choices of the decision criteria,

one can build a sample of objects. There have been many other approaches to defining the

quiescent population in the literature from the original color-magnitude bimodality (e.g.,

Baldry et al. 2004) to fitting a mixture of Gaussian in the bins of stellar mass for sSFR

(e.g., Bisigello et al. 2018; Hahn et al. 2019), and modeling the probability density over the

SFR versus Ms plane instead and comparing those directly to simulation and circumvent

this definition altogether (e.g., Leja et al. 2021). This study takes a practical approach for
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defining this population, which helps build large enough candidates for further spectroscopic

studies from an extensive photometric catalog.

The population of relatively massive evolved galaxies at high redshift (Q) is defined

based on the following criteria on their physical properties:

• log10(Ms/M�) ≥ log10(Mlim) = 9.5

• sSFR ≤ sSFRlim = 0.2
tU (z)

• z ≥ 2.5

where Ms is the stellar mass, sSFR is the star-formation rate per unit stellar mass (in

Gyr−1), tU (z) is the age of the universe at redshift z (in Gyr). We use the evolving sSFR

threshold definition based on Pacifici et al. (2016) to find the quiescent population at different

epochs, which is consistent with having the current star-formation rate of the galaxy to be

less than 10% of its average over galaxy’s history.

Using these criteria, we select 286 massive and quiescent galaxies at z ≥ 2.5 out

of a sample of 447,060 galaxies in the simulated catalog. An oversampled training set is

made by adding the selected galaxies (based on the above criteria) from magnitude limited

realizations one to five to the training set, which results in a dataset with 2159 high-z massive

quiescent out of 448,933 galaxies (see section §4.2). The original training set is used unless

we state otherwise. The testing and validation sets contain 412 and 330 high-z massive

quiescent out of 431,500 and 425,561 galaxies, respectively.

Considering all the galaxies in the catalog, G, and the set of massive quiescent

galaxies, Q, the problem of identifying any high-z massive quiescent galaxies at high-z, g,

73



can be formulated by finding the function h,

yg = h(xg) =

{
1 if g ∈ Q
0 otherwise

where xg ∈ Rd is the d-dimensional column vector for galaxy g ∈ G’s magnitudes from

the Galaxy’s SED. In the following subsections, by applying different statistical learning

techniques, this function is either modeled or approximated based on the multi-waveband

photometric catalog with all the estimated values for the missing data points in the photo-

metric catalog.

3.3.1 Bayesian Posterior Expected Loss

Selecting a particular type of galaxy is fundamentally a decision problem. This

requires quantification of a notion of loss and its dependence on possible decisions h, the

data X, and outcomes Y . The loss function depends on two unknown, which are the possible

data X and possible outcomes Y , and one wants to find the decision that minimizes the

loss. Because of these fundamental constraints, one must make assumptions about the

distribution over these random variables and try to minimize the expectation of loss under

these models and their assumptions.

One approach to this decision problem is to approximate the Bayes classifier defined

as the classifier (ĥ) that has the minimum expected loss/Bayes risk, r(h, πY ) as the following:

r(h, πY ) = EY (EX|Y (loss(h(X), Y )|Y ))

ĥ = argmin
h
{r(h, πY )}
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with πY as the prior probability distribution of the unknown parameter (here is the class

label) and pX|Y as the conditional distribution of the galaxies’ magnitudes given the labels

where (X, y) are random variables associated with possible sets of observations {(xg, yg)}.

And EY , EX|Y are the expectation over the πY and pX|Y respectively. However, instead of

finding the optimal decision rule, one could equivalently find the optimal decisions/actions

for every single observation. This translates to finding decisions that minimize the posterior

expected loss with the expectation taken over the following posterior probability (Berger

1985):

p(yg | xg) =
pX|Y (xg | yg)πY (yg)∑
y′
pX|Y (xg | y′)πY (y′)

ĥ(xg) = arg min
h(xg)
{
∑
y′

loss(h(xg), y
′)p(y′ | xg)}

where xg is the column vector of the magnitudes of the galaxy (g), yg is the label of the

galaxy g, and the summation is over y′ which are the possible labels for the galaxy g(i.e.,

whether it is a high-z massive quiescent galaxy or not).

However, since the actual posterior distribution of classifications is unknown, one

needs to find an approximation of the posterior by modeling the joint probability distribution

pX,Y . Knowing the posterior probability distribution, one can employ the loss function that

is most suitable for the application at hand. For the binary decision here, one needs a

two-by-two matrix that provides all the losses under different decisions for different classes

and can choose the optimal decision by minimizing the expected loss under the posterior

according to the above expression.
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The other approach is to approximate the Bayes risk as the empirical risk estimated

from some known data and outcome, called the training set (i.e., some samples from the

underlying joint distribution) and defining the optimal classification based on minimizing

the empirical risk (Vapnik 1992):

h∗ = argmin
h
{ 1

N

N∑
i=1

loss(h(xi), yi)}

In this study, we start by finding approximations to the posterior distribution of class labels.

Then we move on to find different approximate mappings from the inputs to the class labels

directly assuming some loss function by minimizing the empirical risk with some appropri-

ate regularization (i.e., without making explicit probabilistic models). The performance of

different approaches is compared using these notions of uncertainties in each classifier for

unseen examples5 and using different thresholds for what can be accepted as target popu-

lation, which translate directly to the use of different loss functions/matrices for the binary

decision problem at hand.

In the following subsection, we model the Bayes classifier by modeling/estimating

the posterior distribution over the classes using the following techniques:

• Spectral Energy Distribution fitting

• Discriminant Analysis

• Gaussian Naïve Bayesian

• Bayesian Logistic Regression
5Using an empirical estimate of the true error rate of the classifier
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Spectral Energy Distribution fitting

Fitting the observed SED of galaxies to a theoretical library of model SEDs is used

to predict galaxies’ physical characteristics to identify the high-z quiescent population. Here

a library of model galaxies SED is made from Bruzual and Charlot (2003a)) assuming a

delayed exponentially declining star formation history with an e-folding parameter in the

range of 0.02 ≤ τ ≤ 30 (Gyr) (20 uniformly sampled from the logarithmic scale). Models

with three metalicities (0.02, 0.008, 0.004) and dust attenuation law from Calzetti et al.

(2000) with 20 E(B − V ) sampled uniformly between 0 to 1.2 are used with the LePhare

SED-fitting code (Arnouts et al. 1999; Ilbert et al. 2006).

The SAM flux catalog is used after adding the proper noise with the uncertainty at

each band based on the uncertainty scale for sampling the additive flux measurements noise.

To control for how much information is lost due to the missing values, the SED-fitting is

performed once on the complete data set and once on the incomplete data set after removing

the missing values.

The SED fitting results are found on the test sample while fixing the redshift to

their values taken from the SAM catalog (we use the redshift that includes the effect of the

peculiar velocities). The median of the marginalized likelihood over nuisance parameters is

used to estimate the star formation rates and stellar masses. Fifty realizations are sampled

from flux uncertainties as explained in §3.2.3 for every galaxy. The posterior probability

p(yg|xg) here is defined as the fraction of the realizations that fall into the high-z massive

quiescent definition6.
6In principle, one can find this probability utilizing the joint posterior distribution over the related

parameters and finding the fraction of this joint distribution which falls into the selection criteria.
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In order to find have a more representative libraries of galaxies, a SAM-based

SED-fitting approach is performed, where the galaxies in the training set are treated as the li-

braries and fifty closest galaxies in the training set defined based on the χ2 =
∑

band

(
Ftest−Ftrain

σtest

)2

are found for every galaxy in the testing set. Then the weighted count of the number of

high-z quiescent solutions based on the χ2 is used to assign the probabilities. It should be

noted that this method will have the advantage compared to the SED-fitting simply because

the libraries are by design more closely follows the testing set.

Discriminant Analysis

In this section, we explain Linear Discrimination Analysis (LDA) and Quadratic

Discriminant Analysis (QDA) to select the population of quiescent galaxies (Fisher 1936;

Duda and Hart 1973; Hastie et al. 2009). In both methods, the likelihood is modeled as a

Gaussian distribution:

p(xg | yg = k) =
exp (−1

2(xg − µk)TC−1
k (xg − µk))

(2π)
d
2

√
| Ck |

where Ck is a d×d covariance matrix of magnitudes for class k and | Ck | is its determinant:

Ck =
1

Nk − 1

∑
g∈Gk

(xg − µk)(xg − µk)T{
Gk = {g ∈ G | yg = k} : Set of galaxies in class k
Nk = |Gk| : Number of galaxies in class k

where xg is the magnitude vector for galaxy g, and µk is the average magnitude vector for

78



class k. Now the following posterior distribution is formed:

p(yg = k | xg) =
p(xg | yg = k)p(yg = k)∑
i p(xg | yg = i)p(yg = i)

which gives the probability of each class given the galaxy’s magnitudes.

Assuming the same covariance matrix for all the classes changes the classifier to

Linear Discriminant Analysis (LDA), which has a linear decision boundary:

C =

∑
k

(Nk − 1)Ck∑
k

(Nk − 1)

To ensure enough samples for the quiescent population, all the quiescent galaxies

from realizations zero to five is used to calculate the quiescent population covariance ma-

trix. However, only the realization zero is used for calculating the prior probabilities to be

consistent with the rest of the classifier trained.

Naïve Bayesian

The Naïve Bayesian is another generative classifier with a likelihood function con-

sisting of independent variables (Zhang 2004; Hastie et al. 2009)7. Here we find the colors

calculated from the adjacent bands’ magnitudes perform much better than the magnitudes

themselves.
7One should note that the above assumptions put heavy constraints on the joint probability distribution

of galaxy colors given its class. This is not a valid assumption in general since we know that the colors of
galaxies are dependent. However, even with this naïve assumption on the independence structure of the
colors given the class, one can build a useful/competitive classifier.
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For a given galaxy with colors cg = (c1, c2, . . . , cd−1), the likelihood is the following:

p(cg | yg) =
∏

j∈{1,2,...,d−1}

p(cj | yg)

assuming a Gaussian function over each color dimension normalized and centered by average

µjk and standard deviation of σjk over color j of the class k (y = k), the posterior distribution

over the galaxies class label is formed after multiplying the class prior and normalizing the

posterior probability. Also, one can show that the decision boundary of the Gaussian naïve

Bayes binary classifier is quadratic (similar to QDA) if different covariance matrices for each

class are used similar to what is done here8.

Here all the high-z quiescent candidates in the realizations zero to five are used for

calculating the likelihoods, but for finding the prior probabilities, only the realization zero

is used.

Bayesian Logistic Regression

Another way to model the Bayes classifier is to use a Bayesian Logistic Regression

model. Using logistic regression, one can model the probability of interest using a linear

combination of the variables. However, one can also introduce higher-order interaction

terms between these variables by introducing two-way, three-way, and higher-order terms to

capture non-linear structures.

Here we discuss the scaling of the input features, introductions of the higher term

interaction, and finally, the full probabilistic model employed for finding the posterior pre-
8Assuming the same covariance matrices for both classes, results in the posterior with a logistic functional

form with a linear decision boundary.
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dictions for the testing data averaged over the posterior of the model parameters (averaging

over uncertainties of parameters).

First, to make the computations more stable and the specification of the prior in

our model easier, we transform the galaxy magnitudes within samples to have a mean of

zero and a standard deviation of one in any given band.

Second, the following probabilistic model is created in order to identify higher

most important second-order interaction between galaxies magnitudes at different bands

(e.g., terms such as xg,jxg,l) using average F-score (harmonic mean of the purity and com-

pleteness9) for the quiescent galaxies across 5-fold cross-validation based on the predictions

of the following model:

βi ∼ Normal(i)(0, 1), i = 0, . . . d+ 1

log(
pg

1− pg
) = β0 +

d∑
i=1

βixg,i + βd+1xg,jxg,l

p(yg | pg) = Bernoulli(yg|pg)

∼ means that the random variable on the left side is sampled from the probability distribu-

tion on the right side. The pg is the parameter of the Bernoulli trial.

For finding the optimal weights β = (β0, β1, . . . , βd+1) in every cross-validation,

the Maximum A Posteriori estimate (MAP) given the data is used. Because of the choice of

the Gaussian prior, which is equivalent to classical logistic regression with l2 regularization
9The purity is defined as the number of true quiescent galaxies selected by the classifier (true positive)

to all the galaxies selected as quiescent (true positive + false positive). The completeness is defined as the
number of truly quiescent galaxies selected by the classifier (true positive) to all the truly quiescent galaxies
(true positive + false negative). The F-score is the harmonic mean of the purity and completeness which is
2×purity×completeness
purity+completeness .
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on the parameters, one can find the MAP estimates using optimization techniques. Then

the following prediction ŷ is made on each validation set based on the MAP estimates:

ŷ = argmax
k
{p(yg = k | xg,βMAP )}

Using this, we calculate the average F-score of the 5-fold cross-validation sets and

identify those interaction terms that lead to a better F-score. We note that this approach

could be less than optimal if there is a significant correlation between some of the interaction

terms; however, we use this simple approach since the number of possible models can get

combinatorially large. Introducing some interaction terms, mainly those that include bands

near the Balmer break significantly increases the score. Therefore the fifteen most essential

interaction terms {zg,i}pi=d+1 (out of seventy eight possible second-order terms) are included

in the following probabilistic model:

β0 ∼ Student-t(ν = 5, µ = 0, σ2 = 4)

βi ∼ Student-t(ν = 5, µ = 0, σ2 = 1), i = 1, . . . p

log(
pg

1− pg
) = β0 +

d∑
i=1

βixg,i +

p∑
i=d+1

βizg,i

p(yg | pg) = Bernoulli(yg|pg)

where ν is the degree of freedom10, µ and σ are the location and scale parameters, respec-

tively. A Student’s t-distribution for the prior probabilities over the regression coefficients is

used following Gelman et al. (2008). These priors allow for larger absolute values of regres-
10ν = 1 is the Cauchy–Lorentz distribution, and ν →∞ is the Gaussian distribution.
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sion coefficients than a Gaussian distribution but still have enough weight near zero that

can lead to regularization of the regression coefficients where needed. Also, using the scaling

only for the original inputs (i.e., magnitudes) and using the same prior across the regression

coefficients, including the interactions, makes the effects of the interactions more minor on

average compared to the original variables. The parameters of the priors are selected to be

weakly informative on the transformed data scales (see Gelman et al. 2008, and Ghosh et al.

2018 for a thorough discussion on using different priors for logistics parameters).

Stan probabilistic programming language (Carpenter et al. 2017) is utilized to

sample from the posterior distribution of the above model. Stan uses a Dynamic Hamiltonian

Monte Carlo algorithm with no-U-turn adaptive samplers. Here four Markov chains are

made according to the model above, each consisting of 4000 posterior samples after 2000

warm-up samples. The resulting posteriors are insensitive to the specific choice of the prior

parameters, as long as they are not highly restrictive or have a hard constraint that excludes

some possible value of the parameters, which is expected given a large number of examples

for this model.

Using the posterior probability of the model parameters θ = (β0, β1, . . . , βp) given

the training data, a prediction can be made on the testing data by finding the predictive

posterior distribution:

p(yg|xg, training set) =

∫
dθp(yg|xg,θ)p(θ|training set)

where p(θ|training set) is the posterior distributions over all the parameters. In order to

calculate the above expression, the average of the p(yg|xg,θ) using the posterior samples is
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found, and, the predictive posterior probability of the testing data are calculated and used

to measure the performance.

3.3.2 Approximating the True Classification Function

In the following subsection, instead of estimating the Bayes classifier by modeling

the posterior distribution over the classes, the function h is directly learned from the data

by empirical risk minimization using the following techniques:

• Random Forest of Decision Trees

• Support Vector Machines

• Feed Forward Neural Network

Random Forest of Decision Trees

Here we use a structure called Decision Tree (Breiman et al. 2017, for reviews see

Murthy 1998; Loh 2011; Kotsiantis 2013; Loh 2014) that is trained to classify simulated

galaxies in the Semi-analytic models.

When dividing the galaxies into sub-populations, a decision tree separates the pop-

ulation based on each feature’s importance (i.e., observed magnitudes). The most important

feature is found by computing the Gini impurity, Entropy (equivalently Information Gain cri-

terion), or some other metric for deciding which band/feature is more effective in separating

the sub-populations. This method is similar to imposing a threshold on the observed colors

and magnitudes to separate the population. However, every decision is made based on the

84



quantitative measure of how each decision at every step could separate the sub-populations

more clearly.

The decision tree’s basic structure divides the input (feature) space into small

parts and allows us to find a simple model in each of these regions. In other words, it turns

the problem of finding a global and often complicated decision function into the problem

of finding many simple decisions for small and local regions in the data. To reduce the

overfitting caused by using a single tree, we employ an ensemble method called Random

Forest (Tin Kam Ho 1995; Breiman 1996; Amit and Geman 1997; Tin Kam Ho 1998;

Breiman 2001; Hastie et al. 2009) that uses multiple decision trees to make the same decision.

This is demonstrated to outperform results based on a single tree (Breiman 2001; Hastie

et al. 2009).

In this approach, for every model decision tree, a random sample of galaxies in the

training data is drawn with replacement (bagging or bootstrap aggregating; Breiman 1996)

as well as some random subset of its bands (random subspaces; Tin Kam Ho 1998).

Here is the step-by-step process of implementing the Random Forest method:

1. Randomly select a sample of the galaxies in the training data (two-third of the training

data with replacement) using bootstrap resampling. Then at every step we find the

most important feature (j∗) in a subspace of bands, randomly chosen from full set of

bands11 and a threshold (t∗) from a set of possible magnitudes threshold {tij} (which

is at most as large as the number of the galaxies in our sample, and these possible

thresholds are enumerated by subscript i) that splits the space into two regions defined

11The dimension of the random subspace of bands are set following the rule of thumb of p = b
√
dc from

Hastie et al. 2009, where p is dimension of the subspaces, and d is the dimension of the space.
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as R1 = {g ∈ G | xgj∗ ≤ t∗} and R2 = {g ∈ G | xgj∗ > t∗}:

(j∗, t∗) = arg min
j∈{1,...,d},t∈{tij}

{C(R1) + C(R2)}

where the xgj∗ is the j∗ th feature of the galaxy g ∈ G, and C is the cost function

which for this study, we use entropy:

C(R1) = −
∑

k∈{0,1}

πk(R1) ln (πk(R1))

πk(R1) = p(y = k | g ∈ R1) =
1

|R1|
∑
g∈R1

δyg ,k

where δyg ,k is the Kronecker delta function. And the same equation applies for R2.

In the regression used for finding the missing values in section 3.2.4, the following

cost/lost is used:

C(R1) =
1

|R1|
∑
g∈R1

(yg − ȳ)2

ȳ =
1

|R1|
∑
g∈R1

yg

The most important features and the corresponding thresholds (j∗, t∗) is found using

these cost functions.

2. By doing the above splits consecutively, the tree is grown until any further split in a

leaf (region) results in a leaf with the number of training data smaller than some value

Nmin. The resulting structure (tree T ) is one of the many models in our ensemble.
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3. The new data points are classified by assigning the data to a leaf of the tree that cor-

responds to a class by going through the tree structure. This defines the classification

function as ŷ = ĥT (xg). m trees are made following the same steps to get the Random

Forest ({Ti}mi=1).

Using m decision trees ensures that the final classifier does not depend on some

superficial set of features or examples in the training data. The final estimator is calculated

using the average of the classification decision made by each of these m trees, basically, what

fraction of the decision trees classifies particular galaxies into specific sub-populations:

p(yg = 1 | xg) =
1

m

m∑
j=1

ĥTj (xg)

To find the optimal hyperparameters m and Nmin, a grid search is performed

according to the Table 3.2 and use a 5-fold cross-validation on the validation set. We find

the m = 200, Nmin to have optimal performance in terms of F-score of the classifier.

Table 3.2: Table of variables used for grid-search in various models for finding the best
hyper-parameter for the model using the average of 5-fold cross-validation. m represents
the number of decision trees used in a Random Forest, Nmin is the minimum number of
samples allowed at the end leaf of the tree structure. C controls the trade-off between the
miss-classification permitted rate and the distance of the hyper plane’s margins defined by
support vectors. γ is the parameter that controls the width of the Gaussian kernel used in
the Support Vector Machines.

Model Hyper-parameter Values

Random Forest
m 5, 10, 25, 50, 100, 200, 300, 400, 500

Nmin 1, 2, 5, 10, 20, 50, 100

Support Vector Machine
C 0.01, 0.1, 1, 10, 100, 500, 1000, 10000

γ 0.0001, 0.001, 0.01, 0.1, 1, 10, 100
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Support Vector Machines

There are several approaches to find the decision boundary necessary for classifying

massive quiescent galaxies at high redshift. However, the true selection function in question

could be highly non-linear. To capture full variability, one can search for decision boundaries

in the higher dimensional space than the original magnitudes’ space by creating a feature

map that takes the input space into higher dimensions. Finding a linear decision boundary in

this high-dimensional space (hyper-plane) is analogous to finding a curved decision manifold

in lower dimensions. Using a kernel function (i.e., a similarity measure) of our data points in

the lower dimension, we find the decision hyperplane in higher dimensions without explicitly

mapping the data points to a higher dimension (for a review, see Cristianini et al. 2000;

Hofmann et al. 2008).

Using a Support Vector Machine (Support Vector Machines), one defines the prob-

lem as finding a linear hyperplane that separates the two classes of the galaxies while maxi-

mizing the margin based on each class’s closest instances to the hyperplane. However, since

there is no guarantee that the classes are linearly separable even in the high-dimensional

space, a method called soft-margin Support Vector Machines is used (Boser et al. 1992;

Cortes and Vapnik 1995). This method can deal with linearly non-separable classes by

adding a parameter for each instance called the slack parameter (ξg). The hyperplane for

the binary classification can be found by solving the following optimization problem and

forming the corresponding Lagrangian:
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Q(w, ξ) =
1

2
wTw + C

∑
g∈G

ξg

arg min
w,w0,~ξ

Q(w, ~ξ)

Subject to:
1− ξg − (−1)1−yg(wTxg + w0) ≤ 0, ∀g ∈ G
−ξg ≤ 0, ∀g ∈ G

where ξg is the slack parameter that allows misclassification of data points, (w, w0) deter-

mines the normal vector of the separating hyperplane (x, 1), and C is the regularization

parameter which controls the trade-off between the importance of the misclassification ver-

sus larger margins for the hyperplane (1/ || w ||)12. In other word the above Lagrangian

equation consist of two terms: wTw controls the size of the margins (lower the value, larger

the margins) and
∑

g∈G ξg is the allowed misclassification of some galaxies and C controls

the importance of each term. For the points that are classified correctly but are inside the

margin of the hyperplane, we have 0 < ξi ≤ 1, and for misclassified points, we have ξi > 1,

and for correctly classified, we have ξi = 0, which is considered in the above optimization as

the constraints. The Lagrangian of the problem is as the following:

L(w, w0, {ξg}g∈G, {αg}g∈G, {βg}g∈G) =
1

2
wTw + C

∑
g∈G

ξg −
∑
g∈G

βgξg

+
∑
g∈G

αg(1− ξg − (−1)1−yg(wTxg + w0))

12The equation wTx+ w0 = 0 defines the hyper-plane and since one can always re-normalize the hyper-
plane (one can multiply this equation by any scalar without changing the hyper-plane), and redefine the
margins hyper-planes to be wTx+ w0 = ±1. Therefore, the distance between these margins is (2/ || w ||)
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in which βg, αg ≥ 0 are the Lagrange multipliers (or dual variables). The optimization

problem becomes:

min
w,w0,ξg

max
βg ,αg≥0

L(w, w0, {ξg}g∈G, {αg}g∈G, {βg}g∈G)

This is the primal form of the problem however using the max-min inequality we

can form the dual problem by switching the order of optimization:

max
βg ,αg≥0

min
w,w0,ξg

L(w, w0, {ξg}g∈G, {αg}g∈G, {βg}g∈G)

And one can find the optimization for the dual problem and since the primal

optimization is a case of quadratic programming problems (quadratic optimization with

linear constraints) and the Slater’s condition holds, we have a strong duality which means

that the solution to the primal problem is also the solution to the primal problem (duality

gap is zero). Now we can find the dual optimization problem:

∂L
∂w

= w −
∑
g∈G

αg(−1)1−ygxg = 0

∂L
∂w0

= −
∑
g∈G

αg(−1)1−yg = 0

∂L
ξg

= C − αg − βg = 0

90



The optimal optimization problem can be rewritten using the above:

Q({αg}g∈G) =
∑
g∈G

αg −
1

2

∑
g∈G

∑
g′∈G

αgαg′(−1)1−yg(−1)1−yg′xTg xg′
argmax

{αg}
Q({αg}g∈G)

s.t.
∑
g∈G

αg(−1)1−yg = 0

s.t. 0 ≤ αg ≤ C, ∀g ∈ G

This is a quadratic programming optimization problem that can be solve using standard

CVXPY python library (Diamond and Boyd 2016; Agrawal et al. 2018). After finding the

solution we use the following equation to find the classification:

ŷ =
1 + sign(w0 +wTxg)

2
=

1

2
+

1

2
sign(w0 +

∑
g′∈G

αg′(−1)1−yg′xTg′xg)

A kernelized version of the optimization problem is used, which employs an implicit

map to higher dimensional space prior to optimization in order to be able to find a non-linear

decision boundary, using the following Gaussian kernel:

K(x,x′) = exp(−γ|x− x′|2)

where γ is the constant determining the width of the Gaussian kernel and x,x′ ∈ Rd. Using

the kernel changes the above linear decision boundary and classification estimate into the
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following (based on the solution of the optimization problem):

f(xg) = w0 +
∑
g′∈G

αg′(−1)1−yg′K(xg′ ,xg)

ŷ =
1 + sign(f(xg))

2

where {αg}g∈G are the solutions to the dual problem formed from the constrained optimiza-

tion problem.

In order to have a measure for the probability assigned by this solutions we use a

heuristic technique proposed by Platt (1999) in which we assume f(xg) = log(
p(yg=1|xg
p(yg=0|xg ) to

have a logistic regression problem with the following posterior:

p(yg = 1 | xg) = σ(Af(xg) +B) (3.1)

where σ is the logistic function, and we can find the optimal value for A and B by maximum

likelihood estimation on the validation set.

For the classification problem presented here, we find a Gaussian kernel to perform

the best, and the hyperparameters are set to γ = 0.1 and C = 100 by 5-fold cross-validation

on the training data. However, the final model, which uses the above parameters, uses all of

the training data. Also, for finding the function f in the algorithm, we use all the candidates

in the realizations zero to five, and since the algorithm itself is only sensitive to those critical

points in which ξg 6= 0, this does not bias the results in terms of the massive quiescent and

high-z population relative abundance. Therefore, by adding more candidates, we learn a

more effective hyperplane that separates the classes. Also, for finding the constant A and
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B, we use another 5-fold cross-validation on the training set, and we find an estimate for

f(xg) in which xg are in the 5th set. We do this all possible five models, and then use the

unions of all these estimates to find and make a set {f(xg) | xg ∈ G}. We find the best fit

to the expression above (3.1) based on these values and the maximum likelihood estimates,

which resulted in A = −3.7 and B = −1.8.

Feed-Forward Neural Network

The Feed-Forward Neural Network (Multi-layer perceptron), is a universal function

approximator (e.g., Cybenko 1989; Hornik et al. 1990; Hornik 1991) that has been extensively

used in a range of applications in astronomy from morphological classification to photometric

redshift estimation and measurement of the physical parameters in galaxies.

The neural network is a multilayer perceptron (McCulloch and Pitts 1943; Rosen-

blatt 1958; Minsky and Papert 1969) that mimics the multilayered logistic regressions (if

the activation function is logistic). In a fully connected neural network, we build a layered

structure, and at layer i, we have a set of neurons with edges that connect them to every

neuron in the previous (i − 1) and next layer (i + 1). We find the linear combinations of

inputs to layer i− 1, considering their assigned weight to every associated neuron to layer i.

Then we apply a non-linear function (σ) to this value, which gives us the value for neurons

in layer i, and we move through the network layer by layer. We start by assigning random

weights and then passing the input through the network. We can find values in the last

layer (output layer), and based on the task at hand, whether we have a classification or

regression problem, we define a loss function that is calculated using the training data. The

final value depends on every single weight in the network. One could use back-propagation
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to find the gradient of the cost function with respect to the weights to find the weights that

minimize the function (e.g., Rumelhart et al. 1986; Hastie et al. 2009) in an iterative process.

This means we can find the weights up to the last layer, and we update the weights layer

by layer using gradient descent by moving in the opposite direction of the gradient of the

cost function. At the final layer, we use the following Boltzmann distribution (also called

softmax activation function) to convert the final layer output to probabilities:

p(yg = 1 | xg) =
exp(z1)∑

k∈{0,1}
exp(zk)

zk = fk(xg; {wnm, Cn, an}nm)

where z1, z0 are inputs of the last layer of the network consisting of two neurons representing

high-z quiescent classes and otherwise, respectively, and {fk} represent the function from

the input layer to each output neuron of the network. wnm is the weight of the input at n’th

layer, for m’th neuron, anm is the activation function at n’th layer, and Cn is the bias node

for the n’th layer other than the output, which acts as a scalar value that offset the input

of the activation functions in the next layer (similar to intercept term in linear regression),

and is only connected to the next layer (opposed to other neurons which have both incoming

and outgoing connections). We set this bias term to have a value of one, which can produce

different offsets for the neurons’ input in the following layer when multiplied by its associated

weights to the next layer.
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We use the cross-entropy loss function as:

J(w; {(xg, yg)}g∈G) = − 1

Nbatch

Nbatch∑
i=1

{yi log(p(yi = 1|xi))

+(1− yi) log(1− p(yi = 1|xi))}

where Nbatch is the number of training data used for calculating the cost function, and yi

is the true label of the galaxy. We divide the training set into several mini-batches, and we

find the cost function for this subset. For the next update, another mini-batch is used until

all the training data are used once.

To find the best structure for the neural network, we start with two hidden layers

with 16 neurons at each layer, and we increase the depth of the network and the number

of neurons until we do not see any significant change in the network’s performance. Here

we find the architecture with 12 Neurons in the first layer (dimension of the magnitudes’

space), 32 Neurons in the second layer + one bias node, 16 Neurons in the third layer + one

bias node, 16 Neurons in the fourth layer + one bias node, 16 Neurons in the fifth layer +

one bias node, 2 Neurons in the output layer (corresponding to the binary outcome) to be

sufficient.

All of the neurons except the last layer use the rectifier linear unit or “ReLu”

activation function, defined as max(x, 0) for input x, which does not suffer from the vanishing

gradient problem since its gradient is either zero or one opposed to other activation functions

such as logistic and tanh. Furthermore, we use an adaptive stochastic gradient descent

algorithm for minimizing the cost function called “Adam”, which is a very effective method
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for stochastic optimization (Kingma and Ba 2014). We use the default configuration of Adam

proposed in Kingma and Ba (2014). At each iteration, we use batches of 4096 examples from

the data. We find that the validation loss function (a surrogate for the unknown true error

rate) become stable after 150 iterations through the data. For building the neural network

and training it, we use the TensorFlow python package (Abadi et al. 2015).

3.3.3 Dimensionality Reduction Techniques

Here we present dimensionality reduction techniques to approximate the structure

in high dimensional magnitudes’ space and convert it into lower-dimensional representations

optimized to conserve the original space’s structure. The lower-dimensional representations

can be used to identify any class of galaxies or even estimate their physical properties.

The dimensionality reduction techniques have shown to be effective for finding the physical

properties of galaxies (e.g., Hemmati et al. 2019c; Davidzon et al. 2019) and photometric

redshift measurements (i.e, Masters et al. 2019; Hemmati et al. 2019a).

In the following sections, we use the following algorithms to find a lower-dimensional

representation of the data, and we train a classifier on these lower-dimensional embedding:

• Supervised Principal Component Analysis

• t-distributed Stochastic Neighbor Embedding

• Uniform Manifold Approximation and Projection
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Supervised Principal Component Analysis

This section explores supervised principal component analysis (S-PCA; Barshan

et al. 2011). PCA is used for finding the transformation that maximizes the variance of the

data. S-PCA extends this idea to find the transformation that maximizes the statistical

dependence of the transformed data and target variables, which could be of any dimension.

For finding the maximum dependence between transformed data and the target

variable, S-PCA uses the Hilbert-Schmidt Independence Criteria (HSIC) (Gretton et al.

2005), which is a tool to find how independent two random variables are. HSIC is defined

as the sum of the squared singular values of the cross-covariance operator.

This algorithm can be applied directly to the original data or their transformation

to a Hilbert space (kernel S-PCA) for the ability to capture non-linear structures and allow

a much more flexible notion of independence. The empirical definition of the HSIC for the

sample of {(UTxi, yi)}Ni=1 in which U is the transformation matrix applied to the original

input data {xi}Ni=1:

HSIC({(UTxi, yi)}Ni=1,K,L) = (N − 1)−2 tr(HKHL)

in which Kij = k(UTxi,U
Txj) and Lij = l(yi, yj) are kernels on the transformed input

and target data respectively, also Hij = δij −N−1 is the centering matrix.

The supervised PCA algorithm maximizes the Hilbert-Schmidt Independence Cri-

teria, or, in other words, maximizes the dependence of the transformed data (UTX in which

Ud×d is the transformation matrix and Xd×N is the data matrix) and the target variable

which could have any dimensions.
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Using the following optimization and assuming K = XTUUTX, the optimal

transformation is found:

{
argmax

U
{tr(HKHL) = tr(UTXHLHXTU)}

Subject to: UTU = I

This optimization problem and kernelized version can be solved analytically using

its Lagrangian, which yields a closed-form solution (p largest eigenvectors of theXHLHXT ,

for p dimensional representation of the data). We use the kernelized version of this algo-

rithm, in which we use an implicit map to a Hilbert space, similar to what we used in

Support Vector Machines, before finding the optimal transformation. For the kernel on the

input variables, we use a Gaussian kernel with γ = 0.1, and on the binary target variable,

we have chosen the following linear kernel:

L(y,y′) = yTy′

where y is the vector of labels in the dataset.

Finding the kernel and eigenvectors can become computationally expensive as the

number of data points increases. In order to circumvent this problem, we use the Nyström

approximation for both calculating the kernel and finding the eigenvectors for constructing

the transformation U (i.e. Eckart and Young 1936; Williams and Seeger 2001; Bach and

Jordan 2005; Drineas and Mahoney 2005; Nemtsov et al. 2013). This approximation uses

the reasonable assumption that the rank of the full kernel matrix K(N×N) is much smaller

than N , which allows us to approximate the full matrix without having to use N ×N kernel
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Figure 3.2: Embedding of the training and testing data set under the Kernel Supervised
PCA transformation into two dimensions.

matrix. For the problem presented here, we use the m = 5000 randomly chosen data points

(we only need m×N values of the original matrix to approximate the full N ×N matrix).

We use this approximation to calculate the kernel and solve the eigenvector problem using

the singular value decomposition (SVD).

Figure 3.2 shows the two-dimensional representation of the data using S-PCA,

colored by whether they are part of the target population. As seen in the figure, the S-PCA

tries to maximize the dependence between magnitude representation and the class labels

of galaxies and correctly separate many of the galaxies with the correct trend, in which

the galaxies on the left side of the embedding are not high-z quiescent galaxies. However,

many galaxies near every high-z quiescent galaxies are not part of this population, leading

to contaminants in a classifier’s predictions trained on this space.
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t-distributed Stochastic Neighbor Embedding

The t-SNE technique can separate quiescent and dusty star-forming populations

efficiently (Steinhardt et al. 2020). The basic idea here is to define a similarity measure on the

original data space and then optimize some distribution on a lower-dimensional space that

conserves that similarity measure as much as possible. This is a variation of the Stochastic

Neighbor Embedding technique (Hinton and Roweis 2003). In the t-SNE, the similarity

measure for any pair of (xi,xj) ∈ Rd is defined as:

pj|i =
(1− δij) exp(− |xi−xj |

2

2σ2
i

)∑
k 6=i exp(− |xi−xk|2

2σ2
i

)
, pij =

pi|j + pj|i

2N

which defines the asymmetric probability measure pj|i that the xi has xj as its neighbor, N

represent the number of data points, and the pij is the symmetric version of this probability

measure. Here σi is the standard deviation of the Gaussian distribution around the point

xi, which is set by finding the value that makes the entropy of the above distribution equal

to log k with k defined as the “effective neighbors” or “perplexity”. The “perplexity” is one

of the hyperparameters of this technique and, based on its definition above, controls the

trade-off between preserving the global representation versus the local representation of the

data13.

In its original version, the same probability distribution is defined on the low-

dimensional representation, and the standard deviation of the Gaussian distribution is kept

the same globally. However, in student’s t-distributed Stochastic Neighbor Embedding

(Maaten and Hinton 2008), the similarity measure of any pair of (zi, zj) ∈ Rp in the low
13Higher perplexity results in a more global picture of the data compared to the lower values that tends

to preserve the local structures of the data
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dimensional representation is defined by student’s t-distribution with one degree of freedom

(i.e., Cauchy–Lorentz distribution):

qji =
(1 + |zi − zj |2)−1∑
k 6=i(1 + |zi − zk|2)−1

(3.2)

The above, heavily tailed student’s t-distribution of the lower dimensional embed-

ding allows more accessible volume in the space, which allows the dissimilar data points in

the higher dimensional space to be separated more efficiently in the final representation.

Since we define the similarity measure in terms of the probability distributions, we

can define an optimization problem based on the distance between these two probability

distributions. The cost function used here is the Kullback-Leibler (KL) divergence14, also

called the relative entropy, between the joint distribution in the original space P and the

joint distribution in the low dimensional space Q, which is defined as follows and needs to

be minimized:

Ct-SNE = KL(P ||Q) =
∑
i,j

pij log(
pij
qij

)

The above optimization problem can be solved by finding the gradient of the cost

function with respect to all zi. Here, we use the openTSNE python package developed in

Poličar et al. 2019 to find the best transformation, with 600 iterations for optimization and

perplexity of 15 for t-SNE. Choosing lower values means one wants to preserve the local

structure versus larger values in which more of the global structure is preserved. Here the
14One feature of this embedding understood based on the asymmetric nature of the KL divergence. Here

the optimization tries to find the optimal solution that keeps the original space’s similarities’ structure but
might introduce artificial similarities in the lower dimensional space that do not represent the original space’s
intrinsic structure.
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perplexity is set to maximize the F-score of the classifier trained to separate the high-z

massive quiescent population. The new data is transformed based on a learned embedding

without running the entire optimization problem (only calculate and optimize probabilities

for the new data points concerning the learned embedding without changing the learned

embedding).

Figure 3.3 shows the resulting two-dimensional embedding of the training and

testing set projected onto the embedding, colored with different datasets’ physical properties.

There are locations with a higher probability of finding the target galaxies, which allows the

construction of a classifier. The physical properties have relatively structured distribution

over the embedding, which shows that this embedding is learning some of the underlying

structure of the data and can be used to estimate physical properties such as redshift, stellar

mass, and star-formation rates.

Uniform Manifold Approximation and Projection

Another dimensionality reduction technique is the Uniform manifold approxima-

tion and projection (UMAP) (McInnes et al. 2018). UMAP finds an approximation of the

manifold that represents the data in xg ∈ IRd at every point (local approximation) and,

based on this, builds a local fuzzy simplicial set15, where every simplex has an associated

measure from zero to one (Figure 3.4 shows a depiction of such construction).

A similar simplicial set is constructed over the lower-dimensional representation,

assuming a manifold for the lower-dimensional representation of the data. The dimension-
15Simplicial set are combinatorial objects which can represent (model) the topological structure of the

data
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t-SNE transformation into 2 dimensions

(a) Embedding of the training and testing data set
under the t-SNE transformation with the

perplexity of 15 into two dimensions. The x-axis
and y-axis are embedding components of the data

trained.
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UMAP transformation into 3 dimensions

(b) Representation of the training and testing data
set under the UMAP transformation (with 20
nearest neighbors graph) into three dimensions.
The axes are embedding components of the data

trained.

Figure 3.3: Dimensionality Reduction using t-SNE, and UMAP
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Figure 3.4: Shows the construction of graph in UMAP in 2-dimension and how the position
of each point affect its sphere of influence. The upper left figure shows the original data
points, and as we move across the figures, we show the neighborhood graph of more data
points. The opacity of each edge in the graph is the based on the fuzzy union of the fuzzy
simplicial sets on the data defined based on the 5 nearest neighbors. The spheres around
each point is based on the value of σ solved for that point and the decrease in its opacity
shows the decrease in the similarity measure.

ality reduction aims to minimize the cross-entropy between the topological structure in the

high and low dimensions.

UMAP assumes a uniform distribution of the data over the manifold with its in-

trinsic (unknown) metric to find the manifold’s best local approximation. Furthermore, this

assumption implies that there should be the same number of data points around any given

data points within the same volumes (defined based on the intrinsic metric). Using this

and choosing k’th nearest neighbor of each point, a geodesic distance from the data xg to

its neighbors can be approximated. However, this implies a family of N (number of data
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points) metric spaces, which then can be combined using the fuzzy simplicial sets. This is

done by making a fuzzy simplicial set for every metric space and finding their resulting fuzzy

set union16, which results in a final fuzzy simplicial set representation of the data. Moreover,

similar to t-SNE, a similarity measure, which is the local fuzzy simplicial set membership,

can be defined based on the metric:

pj|i = exp(
ρi − di(xj)

σi
), pij = pi|j + pj|i − pi|jpj|i

in which the asymmetric probability measure pj|i is the membership of the outgoing graph

edge from the point i to j, di(xj) is the distance between xj from point i (metric defined

based on the point i), ρi is the distance of point i from its nearest neighbor, and σi is set

similar to the perplexity defined in t-SNE. Furthermore, the similarity in the low-dimensional

representation is defined:

qji = (1 + a|zi − zj |2b)−1

where zi, zj are the lower-dimensional representation of each point, and a, b are the positive

and constant hyperparameter, which we set to a = 1.4 and b = 0.9 for finding the resulting

embedding. If we assume a = 1, b = 1, we have the student’s t-distribution used in t-SNE.

Assuming only 1-skeleton for the fuzzy simplicial set representation, which means

considering a graph with membership grade for its edges, high and low dimensional rep-

resentation is reduced to fuzzy sets of graph edges. Given these fuzzy sets, the following
16probabilistic t-conorm
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cross-entropy cost function is defined and minimized:

CUMAP =
∑
i 6=j
{pij log(

pij
qij

) + (1− pij) log(
1− pij
1− qij

))}

The first term in the cost function is very similar to the KL divergence, used in

t-SNE, representing the clustering of similar points. However, the second term, missing from

the t-SNE cost function, introduces cost for making the originally dissimilar points similar in

the lower-dimensional embedding. Also, similar to t-SNE, the optimization problem can be

solved using gradient descent algorithms. The algorithm described above is unsupervised.

However, it can be turned into a supervised (or even semi-supervised) by adding a term that

describes the simplicial set over the target variables. Here we use the unsupervised version,

with k = 20 to build the k nearest neighbor graph of the data using the Euclidean metric. We

use the UMAP python package (McInnes et al. 2018) to find the three-dimensional embedding

of the data with Euclidean metric on the three-dimensional space with 500 iterations for the

optimization problem.

Figure 3.3 shows the resulting three-dimensional embedding of the training and

testing set projected onto the embedding, colored with different physical properties of the

galaxies. Similar to t-SNE, we find structures based on the values of different physical

properties, which shows the utility of this embedding in estimating these physical properties.
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K-Nearest Neighbors Classifier

To classify galaxies in the lower dimensional embedding produced from S-PCA,

t-SNE, and UMAP, we use the K-Nearest Neighbor (KNN) algorithm17 on these representa-

tions of the original data. Based on the fraction of these k neighbors that are high-z massive

quiescent galaxies in the training set, a probability is assigned to data from the testing set.

Also, to find the optimal number of nearest neighbors, we use 5-fold cross-validation on the

validation set, assuming a Euclidean metric for all of the lower dimensional representations.

k ∼ 50 was found to be optimal based on the F-score for the high-z massive and quiescent

class of galaxies. The notion of dissimilarity/distance on the embedding depends on the

hyperparameters used and is not usually well defined. For example, one of the main draw-

backs of the t-SNE algorithm is that the cluster size and distances between each cluster are

not a well-defined notion (Wattenberg et al. 2016). However, as the embedding results from

Figure 3.3 show, the compression of the galaxy magnitude space is approximately continuous

and is not separated into multiple clusters. Therefore, we assume that the KNN classifier

can be applied since we do not deal with multiple clusters.

3.4 Results

After training the statistical procedures on the semi-analytic model, their perfor-

mances are compared on the test set using multiple criteria. The first criterion used is

the Receiver Operating Characteristic (ROC) curve, which is defined as an empirical curve
17The KNN classifier on the lower-dimensional embedding is chosen because of its simplicity based on the

distance measure and its similarity to the t-SNE and UMAP algorithms way of building the embedding;
however, one can choose different classifiers which can have different performances.
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showing the True positive rate (those with correct classification as quiescent) dependence

on the False positive rate (those classified as quiescent but are not). This curve shows how

many of the actual quiescent galaxies we can recover at the expense of having falsely clas-

sified galaxies. Since the best-case scenario is that our classifier is always selecting all the

quiescent galaxies at any false positive rate, we expect better models to have a higher area

under the ROC curve (ΣROC).

According to this measure, all the statistical methods used outperform the SED-

fitting on the complete and incomplete data. Figure 3.5 shows the ROC curves for different

models. It should be noted that in a problem in which one class of galaxies is infrequent

compared to the other class (very imbalanced), this curve is not going to distinguish between

models since the false positive rate can be small compared to the total number of galaxies,

but the number of misclassified galaxies could be much higher than those classified correctly.

To distinguish the models further than their performance on the ROC curve, we

look at the Purity-Completeness curve18 of the quiescent population. The purity is defined

as the number of true quiescent galaxies selected by the classifier (true positive) to all the

galaxies selected as quiescent (true positive + false positive). Completeness is defined as

the number of truly quiescent galaxies selected by the classifier (true positive) to all the

truly quiescent galaxies (true positive + false negative). This performance measure shows

the trade-off between purity versus completeness of the sample. The perfect scenario is to

have the highest purity at all the completeness rates.

We find that the Gaussian Naive Bayes and LDA classifier perform worse than

SED-fittings on the incomplete data. However, the uncertainty in redshifts can change this
18precision-recall curve
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conclusion since we only focused on the SED-fitting procedures at a fixed and accurate

redshift. The KNN classifiers trained on the lower dimensional embedding of the data

showed very similar results in terms of their performance based on the purity-completeness

and ROC curves to SED-fitting on incomplete data other than S-PCA, which performed

worse based on the purity-completeness curve. However, the SED-fitting on the complete

data performs better than these methods. We also find that the QDA classifier performs

somewhere between the SED-fitting on the complete and incomplete data sets. Bayesian

Logistic Regression, SAM-based SED-fitting, Random Forest, Support Vector Machines, and

neural network classifier perform better than both SED-fitting procedures reflected from the

area under purity-completeness and ROC curves are shown in Table 3.3.

As shown in the left panel of Figure 3.5, the SED-fitting on the complete data

can be a better classifier than Bayesian Logistic Regression at very high completeness rates

(about 0.8), but it fails at other regimes. Overall, we find that the Random Forest, Neural

network, and Support Vector Machines classifiers have higher purity than the SED-fitting

on complete data with fixed and accurate redshift at almost every completeness rate. The

Bayesian Logistic Regression classifier has better purity than the SED-fitting on incomplete

data up to the completeness rate of 0.819.

Figures 3.6, and 3.7 show the result of the classification on the SFR versus stellar-

mass plane and UVJ plane respectively. The SED fitting results on the complete data

(i.e., no non-observed values) show that the SED-fitting can correctly classify most of the
19Given that there are uncertainties in determining a redshift for a galaxy survey, we would suspect that

Bayesian Logistic Regression, Random Forest, Support Vector Machines, and neural network classification
widen their superiority over SED-fitting that uses generic libraries of SEDs. On the other hand, a reliable
training set becomes essential for these models.
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Figure 3.5: The purity-completeness curve on the left and Receiver operating characteristic
(ROC) is on the right. The figure inside the ROC curve is zoomed in to distinguish the
models better. As both figures show, some of the statistical models used here are superior
compared to SED-fitting. The dashed orange line is a random classifier that assigns the labels
at random. The ΣPR and ΣROC are the areas under purity-completeness and ROC curves,
respectively, and for both figures, the higher values translate roughly into a better model.
However, for a specific application, one can select the model based on the performance at a
certain level (e.g., the best model with the highest purity at a completeness rate of 80%).
As the figure suggests, the Neural Network, Support Vector Machines, Random Forest, and
Bayesian Logistic Regression have the best performance and outperform the generic SED-
fittings-based classification, with Bayesian Logistic Regression and Random Forest matching
the performance of the SAM-based SED-fitting classification procedure.
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target galaxies; however, many candidates are far from the decision boundary, including

some dusty star-forming galaxies, and are classified as the high-probability objects, which

introduces many contaminants into the sample. In SED-fitting on the incomplete data,

SED-fitting misses a higher fraction of the high-z quiescent galaxies and suffers from more

contamination.

The SAM-based method improves this shortcoming to a large degree. It can remove

the majority of the contaminant but still misclassify some of the galaxies and, for many of

the target population, underestimate the probability of being from the target population.

The out-performance of the SAM-based method reveals the importance of using a more

diverse set of SED libraries and the information from the population distribution of the

galaxies that are not shared with the generic individual-based SED-fitting.

LDA does a reasonable job in classification compared to the SED-fitting given

the simplicity of its assumption and the fact that it has a linear decision boundary in the

magnitude space. However, the LDA has a high error rate for very dusty galaxies apparent

on the UVJ plane (redder U − V and V − J colors). The QDA model does not show such

behavior and can distinguish dusty versus quiescent galaxies better. Both of these models

have contaminants that are relatively close to the boundaries compared to classification

based on the SED-fitting results; however, they miss many of the target galaxies near the

boundaries.

Gaussian Naïve Bayesian classifier can assign non-zero probabilities to the target

galaxies in the testing data set; however, there is significant contamination from the dusty

star-forming population, as seen in the UVJ plane, similar to the behavior of the LDA.
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Figure 3.6: Classification performance of the models on star-formation rate vs. stellar mass
plane for the galaxies with z ≥ 2.5 in the test set. The color bar shows the probability
of being a high-z quiescent. The boundaries shown with green dashed lines in the SFR vs.
stellar mass plane are from the imposed criteria for selecting the sample defined in §3.3. The
first figure on the top left shows the true label of the galaxies in the testing set.
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Overall, both SED-fitting approaches are superior in selecting the target galaxies compared

to the Naive Bayes. However, one should note that the Gaussian Naïve Bayesian classifier

is a simplistic model but still can capture some of the underlying structures of the actual

posterior distribution.

The Bayesian Logistic Regression, Random Forest, Support Vector Machines, and

Neural Network can separate the massive quiescent galaxies quite well. The classification

probabilities for Bayesian Logistic Regression and Random Forest continuously change from

low to high when moving towards the region of interest in the UVJ and SFR vs. Ms planes,

which shows more uncertainty near the selection boundary as expected. Also, there is a

significant reduction in contaminants from the star-forming population compared to SED-

fitting and other approaches studied here.

In order to further analyze the performance of the most optimum models compared

to the SED-fitting based procedures, the purity-completeness of different models as a func-

tion of redshift and stellar mass are shown in the Figure 3.8. According to the top panel, the

overall trends in the redshift show that the models are performing worse when we go to the

higher redshift. However, the performance of the SED-fittings for the highest redshift bin

does not drop significantly for completeness rates of less than 0.5, which some of it might

be explained by availability of the accurate redshifts during the SED-fitting. On average,

the models have more trouble in the highest redshift. This is expected since the higher

redshifts sources are systematically dimmer, and have lower number densities (i.e., lower

representations in the sample), and the effect of the uncertainties and censoring becomes

more significant.
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Figure 3.7: Classification performance of the models on the UVJ plane for the galaxies with
z ≥ 2.5 in the test set. The color bar shows the probability of being a high-z quiescent. The
boundaries shown with green dashed lines on the UVJ plane are from selection criteria in
Straatman et al. (2014). The first figure on the top left from the left shows the true label of
the galaxies in the testing set.
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A similar trend is seen in the bottom panel of Figure 3.8 showing the purity-

completeness as a function of stellar mass, where the lower stellar masses are more difficult

to predict even though there are more numerous compared to the highest mass bins. The

SED-fitting approach works quite well on the galaxies with stellar masses of more than

log10(Ms/M�) > 10.5, only slightly worse than Bayesian Logistic Regression, Support Vector

Machine and Neural Network performance, but for the lower mass objects performance

significantly drops and makes the overall performance of the SED-fitting much worse. This

again points us to the importance of the flux, flux uncertainties, and censoring for the

dimmer objects which are much more numerous than the very massive objects.

In order to find the different classifiers ability to recover the overall properties

of the target population, we investigate their predictions for the quiescent fraction as a

function of redshift and stellar mass for galaxies with a stellar mass larger than 109.5M�

and 2.5 ≤ z ≤ 3.75. The top panel in Figure 3.9 shows the quiescent fraction as a function

of redshift for a given completeness level. This fraction is compared to what is expected

from the true fraction in the testing set and the variations across different SAM realizations.

For completeness lower than 0.5, the models underpredict quiescent fraction, and at the

same time, the SED-fitting overpredict this value which reflects the lower purity of the

classification at given completeness. For completeness higher than 0.6, all the methods

over predict the quiescent fraction, which is expected from the lower purity of the resulting

sample at high completeness.

The lower panel in Figure 3.9 shows the quiescent fraction as a function of stellar

mass for a given completeness level. For completeness level lower/higher than 0.4/0.6, all the
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methods under/over predict the quiescent fraction. However, for the completeness between

0.4-0.6, all the methods reasonably predict the quiescent fraction. The SED-fitting on the

incomplete data overpredicts this fraction at lower masses.

We note that the resulting samples from different models have different purity levels

at given completeness, so the resulting quiescent fractions include those contaminations

as well. However, on average, for completeness level of around 0.5 for Bayesian Logistic

Regression, SAM-based SED-fitting, Random Forest, Support Vector Machines, and Neural

Network can recover the behavior of the quiescent fraction as a function of redshift and

stellar mass.

Table 3.3: Performance of the models based on the area under the Receiver operating
characteristic (ΣROC), and purity-completeness (ΣPC) curves. The best four performances
on each measure are identified in bold.

Model ΣPC ΣROC

Random Classifier 0.001 0.5

SED-Fitting with missing values 0.2569 0.9731

SED-Fitting w/o missing values 0.4193 0.9948

SAM-based SED-Fitting 0.4843 0.9974

Linear Discriminant Analysis 0.1855 0.9934

Quadratic Discriminant Analysis 0.3146 0.9959

Gaussian Naïve Bayesian 0.1664 0.9927

Bayesian Logistic Regression 0.4764 0.9983

Random Forest 0.5072 0.9984

Support Vector Machines 0.6053 0.9976

Feed Forward Neural Network 0.6200 0.9990

k-Nearest Neighbors on S-PCA 0.1680 0.9783

k-Nearest Neighbors on t-SNE 0.2422 0.9775

k-Nearest Neighbors on UMAP 0.2328 0.9795
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Figure 3.8: Top panel: The performance of the models seen as the purity-completeness
curves as a function of redshift. Bottom panel: The performance of the models seen as the
purity-completeness curves as a function of stellar mass.
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Figure 3.9: Top panel: The performance of the models in recovering the true quiescent
fraction as function of redshift in bins of 0.25 at a given completeness. Bottom panel: The
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3.5 Discussion

In this study, we use statistical learning techniques and build statistical models to

classify galaxies using simulations from the Santa Cruz semi-analytical modeling framework.

We then use these models to identify high redshift massive quiescent galaxies. First, we en-

sure that the semi-analytical model’s lightcone is similar to the CANDELS GOODS-S by

assigning limiting magnitudes to each band to match the observations. We artificially create

missing values for each flux at random to replicate the fraction of the data without obser-

vation in that particular waveband in CANDELS GOODS-S. To replicate the uncertainties

in the flux measurements, we add random noise at levels that were interpolated from the

CANDELS GOODS-S observations.

We introduced and used a method named MICE to estimate the missing magni-

tudes using an iterative approach by finding an estimate for missing magnitudes conditional

on the known magnitudes at every iteration. We show that this method can recover the

missing values with reasonable accuracy compared to the ground truth. Then we trained

the models using the training set and applied 5-fold cross-validation to set each model’s

hyperparameters where needed.

We compared the models’ performances based on the ROC and purity-completeness

curves. We find that the Bayesian Logistic Regression, Random Forest, Support Vector Ma-

chines, and neural network classifier do a much better job than the usual SED-fitting tech-

nique in identifying the high-z massive quiescent population, even when we fix the redshifts

and do not include any missing values (the noise where included). Bayesian Logistic Regres-

sion and Random Forest have similar performance to the SAM-based SED-fitting procedure.
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This result is similar to that from Steinhardt et al. (2020), that the t-SNE algorithm applied

on the UltraVISTA catalog (McCracken et al. 2012) was able to classify quiescent galaxies

better than UVJ and sSFR selection. Here, we find Gaussian naive Bayes, LDA, QDA,

and the KNN classifiers trained on three different lower-dimensional data representations

to be sub-optimal compared to the SED-fitting without missing values. However, we find

the KNN classifiers on t-SNE and UMAP have a similar performance as the SED-fitting

with missing values, and we find that QDA outperforms the SED-fitting in this case. Given

the posterior probabilities of all these models, one can decide on what threshold to use to

minimize the posterior expected loss after properly calibrating the posterior probabilities

and using a loss function appropriate for the particular application.

There are many possible reasons behind the lack of high purity in the SED-fitting

model. One of the most probable reasons is that we use simplified models for star-formation

histories when fitting the galaxies compared to the much more complex star-formation histo-

ries present in the SAM catalog. This problem with the SED-fitting classifier is exacerbated

by the fact that the population of the galaxies we are interested in are either became quies-

cent recently or are in the final process of this transition, which means that the SED is more

susceptible to recent star-formation episodes (type A stars still significantly contribute to the

total SED). The importance of using a more complex set of libraries can be seen in simply

treating the galaxies in the training set as a library, and performing the “fitting” will signifi-

cantly improve the classifier’s performance. In work presented here, we did not use Bayesian

SED-fitting codes (e.g., Carnall et al. 2018; Johnson et al. 2021) that can be more robust

given their posterior over physical parameters, which can directly turn into a classifier and
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improve the results presented here. Some codes also consider more realistic star-formation

histories using SAMs or hydrodynamical simulations or having a non-parametric approach

to model the star formation history and have star-formation at different stages as free pa-

rameters inferred from the data, enhancing the results from the SED-fitting method (e.g.,

Iyer and Gawiser 2017; Iyer et al. 2019; Leja et al. 2019). However, they become increasingly

computationally demanding as the number of sources and the dimensions of the physical

parameter grows and including more physical parameters can lead to more significant un-

certainties in the inferences of these physical parameters and down the line classification,

especially if only limited photometric bands are available.

Results show that learning a classifier directly from a population either by mod-

eling the Bayes classifier or approximating it using empirical risk minimization can provide

much more robust samples, mainly when dealing with a rare population of galaxies, by cir-

cumventing the estimation of the physical properties. There are some advantages to these

models compared to the case-by-case classification used based on SED fitting results. One

is that some of these models incorporate an implicit prior on the population level for a

given galaxy classification, which means that we can provide the model a baseline for how

much we should expect for the classification of a given galaxy during the learning process.

Another advantage comes from the fact that the models trained on the entire training data

can share information about the relevance of a given band at the population level so that

a band with little information about the labels (at the population level) will have a more

negligible contribution to the classifier compared to the SED-fitting which can only access

the individual flux measurements and their uncertainties. Also, the modeling and optimiza-
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tion done with these models are precisely set to make the best classification decision based

on the labels we provide for the whole population rather than inferring the physical proper-

ties and classifying a galaxy. In other words, the problem of classifying galaxies presented

here is more straightforward than inferring the joint probability distribution of the relevant

physical properties that fall into the selection criteria after marginalizing over the rest of

the nuisance parameters correctly.

However, we note that some fraction of this improvement comes from the fact that

the testing set and training set for the SAM-based method and other learning-based models

are coming from having the same population distribution in the training and testing set,

which is not necessarily expected when applied on the real galaxy population.

3.5.1 Prediction on CANDELS GOODS-S observation

As a general test, we apply the trained model to the CANDELS GOODS-S magni-

tudes catalogs. After applying the procedure detailed in §3.2.4, we estimate all the missing

values in the CANDELS observation. The models were then used to classify galaxies in the

CANDELS GOODS-S field to quiescent and star-forming populations and assign a probabil-

ity to each galaxy from a given model. In the models trained on the lower-dimensional data

embeddings, the embedding trained on the SAM catalog is used to transform the CANDELS

data and apply the K-Nearest Neighbors to classify the galaxies. Then we compared the

results with the previous studies done on the CANDELS fields. Merlin et al. (2018), and

Merlin et al. (2019) use an approach based on the SED-fitting of the galaxies using constant

star formation histories and putting some constraint on the probability of the star-forming

versus quiescent solutions. Shahidi et al. (2020) uses a combination of UVJ, observed col-
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ors, and SED-fitting selection, in which different star-formation histories are assumed and

combined using Bayesian model averaging.

We find a general agreement with candidates selected in those studies, and most of

the models used here assigned a non-zero probability to many of the galaxies chosen in those

studies (with many having ALMA confirmations; see Santini et al. 2019; Santini et al. 2020);

however, there are some cases in which the models assign a high probability, where they are

not selected in their expected categories and vice versa. There is also a general consistency

between the models’ predictions in the sense that if one predicts a higher probability, the

other will do so similarly.

Table 3.4 shows the probability assigned by the models with best performances

to the set of the candidates that are confirmed based on the upper bound in their ALMA

fluxes from Santini et al. (2020). We find that 7/17 of the objects studied in Santini et al.

(2020) have very high probability across different models, 6/17 objects were not selected

in Shahidi et al. (2020), and 4/17 were selected in both of those studies and are assigned

a low probability based on the models here. Nevertheless, it is difficult to draw a general

conclusion on the true error rate of the classifiers discussed here, and a larger and more

complete sample of spectroscopic confirmation of these populations is required to better

calibrate the models used here.

3.5.2 Importance of each photometric band

In addition to the classification task, we use the Random Forest to measure the

relative importance of different bands in classifying the galaxies.
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Table 3.4: Prediction of the Bayesian Logistic Regression (BLR), Random Forest (RF),
Neural Network (NN), and Support Vector Machine (SVM). The last columns indicate if a
given candidate was selected in Shahidi et al. (2020).

Candidate ID BLR RF NN SVM SH20

GOODSS-2782 0.34 0.42 0.96 0.80 Y

GOODSS-3897 0.00 0.00 0.00 0.00 N

GOODSS-3973 0.99 0.24 0.99 0.73 N

GOODSS-4503 0.33 0.72 0.99 0.98 Y

GOODSS-7526 0.01 0.03 0.05 0.02 Y

GOODSS-7688 0.17 0.59 0.02 0.45 N

GOODSS-9209 0.00 0.08 0.00 0.02 Y

GOODSS-10578 0.80 0.59 0.99 0.90 N

GOODSS-12178 0.00 0.07 0.02 0.01 Y

GOODSS-13394 0.00 0.00 0.00 0.00 N

GOODSS-16526 0.00 0.00 0.00 0.00 N

GOODSS-17749 0.69 0.29 0.99 0.93 Y

GOODSS-18180 0.89 0.28 0.99 0.99 Y

GOODSS-19301 0.04 0.08 0.01 0.03 N

GOODSS-19446 0.01 0.00 0.00 0.00 N

GOODSS-19505 0.00 0.00 0.00 0.00 N

GOODSS-19883 0.00 0.03 0.00 0.00 Y
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In the first approach, we use the entropy decrease at every decision node in the tree

calculated during the training. For finding the importance of some band xj , the weighted

average of the reduction of entropy summed over all the nodes related to the band xj

is calculated. The weights are simply the number of training examples that reach the

particular node. We do this for all the trees in Random Forest {Ti}mi=1, and find the average

and standard deviations for the importance of the band xj .

In the second approach, we first predict the labels and find the testing dataset’s

misclassification rates. We then go through each magnitude xj one by one and randomly

permute the values of magnitude xj , which effectively removes its relevance in the classi-

fication task. Then the increase in the mean squared error of the predicted probabilities

compared with the actual labels of the galaxies is calculated20 (binary labels of 0 and 1)

for all the bands. We go through these steps fifty times and find the average and standard

deviation of the increase in this measure. This procedure underlines the importance of each

magnitude in reducing the classifier’s predicted probabilities error and can be applied to any

classifier.

Figure 3.10 shows the relative importance of each variable (magnitude) in learning

the model that predicts the training set classification. We find that the bands: IRAC2, IRAC1,

Y,K, J,H are the most important. As the figure shows, the second approach tends to pro-

duce more uniform importance measures21, however, the ranking of the importance of the

features does not change significantly. The result is somewhat expected since these are the

bands mainly used for the photometric selection of the high-z quiescent population (e.g.,
20This is called the Brier score loss
21This is a generic behavior of the permutation method, compared to the decrease in entropy (See Hastie

et al. 2009 section 15.3).
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Figure 3.10: Left: Shows the ensemble average of each band’s importance defined based on
the decrease in entropy. The error bar indicates the standard deviation within the ensemble
of decision trees. Right: Shows the average increase in the error of probability predictions
after 50 permutations for each band. The error bar indicates the standard deviation of this
measure over permutations. As expected, the bands to which the Balmer break is shifted to
(at the observed redshift of the galaxy) are more critical. The feature/variable importance
measures for each band shown here are relative and normalized to sum up to one.

Nayyeri et al. 2014; Shahidi et al. 2020) and the importance of the IRAC2, IRAC1,K has

been discussed before with details in Merlin et al. (2019) and Santini et al. (2020).

3.5.3 Caveats and possible improvements

One of the central assumptions needed for reproducing the techniques’ enhanced

performance is to have a representative training set. Although the application of the models

trained on the SAM and applied on the CANDELS GOODS-S observation can give us confi-

dence that using a training set made from the simulations is successful to a degree, a better

approach would be to have a confirmed representative sample for a subset of observations

and using those in training. Then one can use these models to apply on the more extensive
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survey where careful selection and confirmation of these objects using comprehensive checks

would not be feasible. An easier way to increase the confidence in the trained models would

be to use and check catalogs from different simulations to validate and test the trained

models.

Also, it should be noted that we have not employed all the simulated lightcones for

the training, since, we wanted to use more of this rare population of galaxies (by oversampling

from other lightcones) and their number density is not very well calibrated because of the lack

of complete spectroscopic samples, due to their faint nature and lack of prominent emission

lines (see i.e., Newman et al. 2018b; Valentino et al. 2020; Forrest et al. 2020b; Forrest

et al. 2020c). Therefore, including all these lightcones and oversampling from different error

realizations rather than different lightcones could increase the classifier’s performance, at

least on the testing set.

The t-SNE and UMAP algorithms are originally unsupervised learning algorithms

that can be used as a general preprocessing step for other estimators because of their ability

to learn the lower-dimensional representation of the manifold the data is sampled from.

This makes them good knowledge discovery tools. However, they can turn into supervised

algorithms by adding the relevant terms based on their labels to the cost functions. One can

further improve the resulting embedding in favor of particular labeling. Besides, the S-PCA

algorithm can be used to find the embedding that maximizes the dependence of magnitudes

and physical properties, which can be the high dimensional set of physical properties. By

defining a meaningful kernel (similarity measure), one can use this transformation as another

alternative to the SED fitting techniques for finding any set of physical properties. One
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should note that this algorithm strongly depends on the notion of dissimilarity/distance,

and changing those can affect the final embedding, resulting in the classifiers with different

performances.

We have also used different neighbors to construct the neighbor graph in UMAP

and different perplexities for t-SNE (from 5 to 50). We do not find any substantial struc-

tural changes in the resulting maps in their topology, probably because of the simplicity

of the underlying manifold that allows the global structure to be captured with even a few

neighbors.

3.6 Conclusion

This work investigates statistical learning techniques to classify galaxies based on

their direct observables (i.e., magnitudes) using a simulated catalog from a semi-analytical

model after including observational effects such as measurement uncertainties and the pres-

ence of censored and missing values. We defined the true classification based on galaxies’

actual physical properties and turned our focus on the rare population of high-z massive

quiescent galaxies as an example.

Two SED-fitting procedures are performed utilizing LePhare code with 50 real-

izations of the Gaussian noise for galaxies’ photometry, assuming known redshifts, and one

with and one without missing values in the catalog. Then classification is made on the space

of the inferred physical properties similar to the original definition of the class.

We demonstrated that modeling conditional distributions for missing bands using

an iterative sampling approach can be useful for estimating the missing values. Furthermore,
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after estimating these missing values, the completed catalog was used for learning different

classifications.

The K-nearest neighbors (KNN) classification on the lower-dimensional represen-

tation of the data based on t-SNE and UMAP transformations perform similar to the

SED-fitting with missing values, and classification based on the linear discriminant anal-

ysis, Gaussian naïve Bayes, and KNN on the supervised-PCA representation showed to

perform worse than SED-fitting according to the area under the purity-completeness curve.

According to the area, under the purity-completeness and ROC curves, Bayesian Logistic

Regression, Random Forest, Support Vector Machines, and neural network classifications

outperform both SED-fitting classification procedures. The Support Vector Machines and

neural network classifiers have better purity at almost every completeness rate.

In short, we have demonstrated the application of several statistical learning al-

gorithms trained on the SAMs lightcones as a powerful tool, which can provide many ap-

plications involving classification or inferring physical properties, particularly for upcoming

extensive surveys where SED-fitting methods can be very time-consuming. Using the meth-

ods discussed in this study, one can select a sub-sample of the candidates for spectroscopic

follow-ups or perform more suitable SED-fitting using more informative prior information

based on their classifications.
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Chapter 4

Probabilistic Modeling of

Star-Forming Sequence: Quiescent

Fraction Dependence on Mass and

Environment

4.1 Introduction

Observations of the population of galaxies at high redshifts, combined with predic-

tions from the standard ΛCDM models have helped us understand the complex process of

galaxy evolution (Thoul and Weinberg 1995; Benson et al. 2003). Galaxies build up their

stellar masses over time with a rate that largely depends on the amount of available cold

gas, which is determined by the cosmological accretion rate, the efficiency in cooling of the
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gas, the baryonic effects involved with delivering these gas reservoirs from halo size scale to

much smaller scales of the galaxies, in addition to feedback processes.

Feedback processes make galaxies only relatively efficient at forming stars within

relatively narrow range of the halo mass (Moster et al. 2010; Behroozi et al. 2013b). At the

lowest mass regime of the mass function, the photoionizing UV radiation during and after the

reionization suppresses the galaxy formation (e.g., Rees 1986; Quinn et al. 1996; Efstathiou

1992; Barkana and Loeb 1999; Bullock et al. 2000; Shaviv and Dekel 2003; Gnedin and

Kravtsov 2006); at more intermediate stellar mass, the stellar feedback processes decrease

the efficiency of galaxy formation (e.g., Larson 1974; Dekel and Silk 1986; White and Frenk

1991; Cole 1991; Dekel and Woo 2003; Hopkins et al. 2014). Finally, at higher masses,

the effects of the virial shock heating of the accreted gas onto the massive halo (Rees and

Ostriker 1977; Silk 1977; Binney 1977; White and Rees 1978; Birnboim and Dekel 2003;

Kereš et al. 2005; Cattaneo et al. 2006; Dekel and Birnboim 2006) and the Active Galactic

Nuclei (AGN) (Silk and Rees 1998; Haehnelt et al. 1998; Granato et al. 2004; Croton et al.

2006) becomes important that can suppress the star-formation rate by halting the accretion

of the gas to the galaxy and/or remove the gas from the galaxy or halo (Fabian 2012;

Harrison et al. 2018).

Despite the non-linearity of these processes and complex interaction between them,

the observed star-forming galaxy population appears to be in a quasi-equilibrium state on

the star formation rate-stellar mass plane. This implies an emergent feedback process that

scales the star formation rate to its stellar and halo mass to keep galaxies along the sequence

(Bouché et al. 2010; Davé et al. 2011; Davé et al. 2012; Lilly et al. 2013; Dekel and Mandelker
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2014). However, not all galaxies live on the star-forming sequence, and other than a few

bursts of star formation and up and down of the sequence, they evolve to build up the

quiescent population with little or no ongoing star formation rate.

Additionally, the local environment has been shown to affect the galaxy properties

in addition to the in situ evolution (Dressler 1980; Balogh et al. 2004; Kauffmann et al. 2004;

Blanton et al. 2005). There have been many studies showing the amount of star-formation

rate in different environments is not showing any trend (e.g., Peng et al. 2010; Wijesinghe

et al. 2012; Muzzin et al. 2012; Darvish et al. 2014; Darvish et al. 2016; Leslie et al. 2020)

or a modest trend was reported (e.g., Patel et al. 2011; Haines et al. 2013; Old et al. 2020).

However, the probability of finding a quiescent galaxy increases in the densely populated

regions mostly attributed to the external quenching mechanism for the satellite galaxies

(e.g., Balogh et al. 2004; Baldry et al. 2006; Peng et al. 2010; Darvish et al. 2014; Darvish

et al. 2016).

In this study, an empirical model for the “quiescent/transitioning” fraction as a

function environment and stellar mass is used that consistently model the star-formation

rate as a function of stellar mass and galaxy type based in the presence of the noisy and

censored measurements.

The multi-waveband data and the observed catalog is discussed in §4.2. In §4.3

the probabilistic model is defined, and different constituents of this model is described. In

§4.4, the result of the inference on the model parameters is represented. In §4.5 an overview

of the results are discussed in addition to possible drawbacks, and ways to improve.
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4.2 Data

We use the latest photometric catalogs from the Cosmic Assembly Near-infrared

Deep Extragalactic Legacy Survey (CANDELS) (Koekemoer et al. (2011); Grogin et al.

(2011)) with consistent multi-waveband photometry, and physical parameters for all galaxies

to the flux limit of the sample 1. Details about the selection and photometry at different

bands for all the CANDELS fields are given in the following: GOODS-South (Guo et al.

(2013); Santini et al. (2015)), UDS (Galametz et al. (2013);Santini et al. (2015)) , COSMOS

(Nayyeri et al. (2017)) , EGS (Stefanon et al. (2017)), and GOODS-North (Barro et al.

(2019)). These catalogs contain, for each galaxy, the observed photometry from the UV to

near and mid-infrared wavelengths in many broadband and narrowband filters as well as

inferred physical parameters.

Galaxies are selected in the CANDELS catalog with ‘FLAGS = 0’, which are non-

contaminated sources in the F160W band and ‘CLASS_STAR ≤ 0.9’, remove potential

stellar objects using the SExtractor Star/Galaxy classifier output.

We use an approach introduced by Pozzetti et al. (2010) to find the mass complete

sample of galaxies at different redshift bins. This method find the limiting mass (Mlim)

defined as the mass if an individual galaxy, if it were at the limiting magnitude of the survey

with the same mass-to-light ratio (M/L).

Therefore, for any galaxy, i, we keep the Mi/Li ratio constant and use it to find

the mass-to-flux ratio and hence, the magnitude of the galaxy. Using this procedure, one

can find the limiting mass for all galaxies in the survey, using the relation: log(Mlim,i) =

1http://arcoiris.ucolick.org/candels/
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log(M̂i) + 0.4 × (mi − mlim), where mi, and mlim are the magnitude of the galaxy and

limiting magnitude of the survey respectively.

4.2.1 Star-formation Rates Estimates

The star formation rate (SFR) estimations are from Barro et al. (2019), which

uses a consistent empirical approach using emissions in ultraviolet, mid-infrared, and far-

infrared. The IR fluxes in Spitzer MIPS, Herschel PACS, and SPIRE sources were consis-

tently matched to the WFC3-F160 sources in the CANDELS.

The UV SFR is based on the monochromatic luminosities and the total emission

from UV after bolometric correction and estimated using Kennicutt (1998) relation. Two

different methods were used to measure infrared-based SFRs: (1). for sources with detection

in MIPS and at least one Herschel band, thermal IR emission were fitted to dust emission

models from libraries and after integrating the IR luminosity in best fitted model the bolo-

metric IR calibration of the Kennicutt (1998) was used. (2). For galaxies with only a MIPS

detection, the total IR emission were estimated using the Wuyts et al. (2008) and Wuyts

et al. (2011) and from which the SFRs were calculated. The total SFR for each galaxy is

then estimated as the sum of the UV-based and IR-based SFRs. If no IR data were avail-

able, the UV-based SFR was used after applying correction for dust extinction using were

used after correcting for the dust using the UV spectral index (i.e., βUV ). We assume that

the SFR measurements are censored at the lowest possible values one can estimate (i.e.,

have upper limits) from the limiting magnitude of the observations based on the bands that

covers the rest-frame UV for each redshift bin.
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4.2.2 Redshift Estimates and Stellar Mass Estimates

The redshifts are taken from the photometric redshift catalogs for all the CAN-

DELS fields from Kodra 2019. The redshifts for galaxies in each field, were estimated from

six independent measurements using template-based methods. The probability density func-

tions (PDFs) for individual galaxies from each method were estimated and were corrected

for bias and their variance. The corrected PDFs were then combined using the minimum

Frechet distance. The final catalog consist of the spectroscopic/3D-HST grism redshifts and

the photometric redshifts (Kodra et al. in prep.). The redshifts used in this work show a

normalized median absolute deviation of σNMAD ∼ 0.02.

The stellar masses were measured through SED fitting by fixing the redshifts at

their best values. A library of model galaxies SED is made from Bruzual and Charlot

(2003a)) assuming an exponentially declining star formation history with an e-folding pa-

rameter in the range of 0.02 ≤ τ ≤ 30 (Gyr) (20 uniformly sampled from the logarithmic

scale). Models with three metalicities (0.02, 0.008, 0.004) and dust attenuation law from

Calzetti et al. (2000) with 20 E(B − V ) sampled uniformly between 0 to 1.2 are used. We

use the LePhare SED-fitting code (Arnouts et al. 1999; Ilbert et al. 2006) which include

the nebular emission as described in Ilbert et al. (2009).

4.2.3 Local Density Estimates

To estimate the local density contrast where each of the galaxies reside, we use the

catalog from Chartab et al. 2020 for the CANDELS field. These catalogs construct a two-

dimensional structure within a narrow redshift slice in the redshift catalog and the density
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field is estimated using a non-parametric weighted kernel density estimation. The density

field is defined as a weighted mixture of von Mises kernel that is fixed at every galaxy’s

position. The weights were assigned to each galaxy as the integral of their redshift PDF

within the redshift bin. For finding the overall bandwidth of the kernel at a given redshift

bin, a likelihood cross-validation method is used. These bandwidth are then adapted locally

to reduce the bias of the densely populated regions by reducing the bandwidths and over-

smoothing using the local density. Also, the variance in the under-dense regions is reduced

by increasing the bandwidth to avoid under smoothing in these regions. The measurements

of the density at the boundary of the survey is underestimated and for correcting this

a boundary correction is calculated and applied to the density measurements for all the

galaxies. Throughout this work we use the density contrast measurements defined as the

ratio of the local number density to background number density at a given redshift bin minus

one.

4.3 Probabilistic Model

To describe the multi-dimensional joint distribution, we find the joint probability

over all the galaxies within the population observed in our sample; assuming that the full dis-

tribution over the population can be separated2 into the individual probability distributions

as the following:
2identical and independently distributed (i.i.d)
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p({Mi, ψi, M̂i, ψ̂i,∆i, ηi}Ni=1obs|θ) =

Nobs∏
i=1

p(Mi, ψi, M̂i, ψ̂i,∆i, ηi|θ)

where {M̂i, ψ̂i,∆i}Nobsi=1 is the set of observed physical properties of Nobs galaxies in the sample

with M̂i, ψ̂i,∆i being respectively the stellar mass, star-formation rate, and local density

contrast of galaxy i respectively. ηi is a categorical variable that indicates the galaxy type of

the i-th galaxy (i.e., star-forming, star-burst, quiescent). θ refers to all the parameters used

in the model and {Mi, ψi} are the latent variables of the model for true physical properties

of the galaxies that are not directly observed and we only have access to them through a

noisy measurements and need to be evaluated within the probabilistic model.

In order to find the likelihood of the parameters based on some conditional inde-

pendence of physical properties to specify our model as the following:

p(M,ψ, M̂, ψ̂,∆, η|θ) = p(M̂, ψ̂|M,ψ)p(ψ|M,η, ξ)p(η|M,∆, ζ)p(M |α)p(∆|µ)

p(M̂, ψ̂|M,ψ) describes the measurement process (i.e., the relation between the measured

and true physical properties) and can modeled using the full covariance of the measurement

uncertainties, p(ψ|M,η, ξ) is the conditional probability distribution of the galaxies true

star-formation rate given their true stellar masses and galaxy type which can be modeled by

some set of parameter ζ, p(η|M,∆, ζ) is the conditional probability of a galaxy type given

their stellar mass and local density which can be modeled using parameters ζ, p(M |α) is the
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probability distribution over the true stellar masses and can be modeled using a Schechter

distribution (Schechter 1976) with some parameters called α, and finally p(∆|µ) is the

distribution of the local density parameterized by µ.

For modeling the joint distribution of the p(M,∆), we have chosen to assume

an independent assumption which is not necessarily true (see van der Burg et al. 2020;

Weigel et al. 2016) and this choice was to make the full model well specified. Consequently

one can drop from the likelihood and condition on their observed values since we do not

have a measure of uncertainties over these. The parameters of the model are encoded as

θ = {ζ, ξ,α} after dropping the probability distribution over the local density contrast.

We define the likelihood function of the parameters for the observed galaxies after

marginalizing the categorical variable of galaxy type:

Lobs = p({Mi, ψi, M̂i, ψ̂i}Nobsi=1 |{∆i, }Nobsi=1 θ) =

Nobs∏
i=1

∑
η

p(Mi, ψi, M̂i, ψ̂i, ηi = η|∆i,θ)

Now we can describe the joint probability distribution as their individual con-

stituents.

4.3.1 Galaxy Types and the Quiescent Fraction

In order to model galaxies on the star-formation rate and stellar mass plane, we

assume that the galaxies can be modeled separately given their type. The formulation of the

above model can be used to model galaxies within distinct groups of star-burst, star-forming,

and “quiescent”. Here we refer “quiescent” to all galaxies that are not part of the star-forming
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sequence and have lower star-formation given the stellar mass. These class of galaxies

will include all the objects that are in middle of transition to fully quiescent population,

however, there are indication on some of these galaxies are in the bursting phase and not

necessarily becoming quench (see Martin et al. 2017; Darvish et al. 2018). This problem can

be alleviated by using an asymptotic relation in SFR vs. Mass. The simultaneous modeling

of different galaxy types is known as mixture model where we describe each galaxy type

as a component of the larger model. This modeling approach to the SFR vs Mass plane is

closely related to the method introduced in Renzini and Peng (2015), with the difference

of using explicit probabilistic modeling. Here we need to model two parts, one for the

description of each component and one for the probability of belonging to each galaxy type.

The probability of belonging to each component in the mixture of three component model

is equivalent to modeling the Multinomial distribution3 parameter (i.e., the fraction of star-

burst, star-forming, and quiescent). We assume that the parameter for star-forming and

quiescent depends on the stellar mass and local density of each galaxy, while the star-burst

are modeled simply as outliers because of their rarity which makes a more detailed model

to become unidentifiable without strong prior.

Using a generalized linear model with Gibbs distribution, one can parameterize the

Multinomial parameter πQ in terms of the log-odds as the following:
3Generalization of the Bernoulli distribution for more than two outcomes
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πSB + πQ + πSF = 1

πSB = p(η = Star-Burst|M,∆, ξ) = p(η = Star-Burst),

πQ = πQ(M,∆) = p(η = Quiescent|M,∆, ξ)

ln(
πQ
πSF

) = ξ0 + ξ1 log(
M

1010M�
) + ξ2 log(1 + ∆) + ξ3 log(

M

1010M�
)× log(1 + ∆)

This is a simple model describing the log odds of quiescent to star-forming given

the galaxy stellar mass and local density in terms of their linear combination as well their

first order interaction. This parameterization, similar to what was proposed in Baldry et al.

2006, and Peng et al. 2010, is capable of producing the behaviour of quiescent fraction seen

in the plane of stellar mass and local denisty for SDSS sample. However, since the quenching

efficiency of SDSS sample showed little to slight dependence of the mass quenching efficiency

on environment and environment quenching efficiency on the stellar mass, they proposed a

complementary log-log link function to model the quenching efficiency. Since there has been

couple of studies showing that these quenching efficiency might have noticeable dependence

on each other at high redshift (e.g., Lin et al. 2014; Balogh et al. 2016; Kawinwanichakij et al.

2017; Chartab et al. 2020), we use a logit link function that can produce such dependency

on top of the behavior seen on the stellar mass and local denisty plane.

4.3.2 Star-formation rate versus Stellar Mass

The observed relation between the SFR and stellar mass has been extensively

studied particulary when describing the star-forming sequence, where a linear relation with
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an intrinsic scatter has been used to model them (e.g., Noeske et al. 2007; Salim et al. 2007;

Elbaz et al. 2007; Daddi et al. 2007; Santini et al. 2009; Whitaker et al. 2012b; Speagle et al.

2014; Schreiber et al. 2017; Pearson et al. 2018). There have been many studies suggesting

that the slope of this relation depends on the stellar mass particularly at higher mass end and

lower redshifts, which led to use of quadratic form, piecewise linear, and asymptotic relations

(e.g., Whitaker et al. 2014a; Schreiber et al. 2015; Lee et al. 2015; Leslie et al. 2020). Also,

there is evidence that the galaxies below the star-forming sequence linear relation at higher

masses to be in bursting phase defined as the time derivative of the NUV − i color (Martin

et al. 2017; Darvish et al. 2018). However, after trying to model our galaxies using these

models, we find that at higher redshift the solutions prefer the linear part of the model and

the asymptotic part falls outside of the data, which might behave differently if additional

data is available. In order to have a homogeneous modeling for all of our redshift bins we

limit this study to a simple linear relation, while noting its possible drawbacks.

µSF = ζ0,SF + ζ1,SF log(
M

1010M�
)

µQ = ζ0,Q + ζ1,Q log(
M

1010M�
)

µSB = ζ0,SB + ζ1,SB log(
M

1010M�
)

p

(
log(

ψ

M�/yr
)

∣∣∣∣M,η = Star-forming
)

= N
(

log(
ψ

M�/yr
)

∣∣∣∣µSF , σ2
int,SF

)
p

(
log(

ψ

M�/yr
)

∣∣∣∣M,η = Quiescent
)

= N
(

log(
ψ

M�/yr
)

∣∣∣∣µQ, σ2
int,Q

)
p

(
log(

ψ

M�/yr
)

∣∣∣∣M,η = Star-burst
)

= N
(

log(
ψ

M�/yr
)

∣∣∣∣µSB, σ2
int,SB

)
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where ζ0 is the intercept in SFR at 1010M�, ζ1 is the slope of the mean relation, and

σint,SF , and σint,Q are the intrinsic scatter of the log( ψ
M�/yr

) from it’s mean relation for

star-forming and quiescent population respectively. It should be noted that whenever we

change the variable in the model, a proper Jacobian factor is introduced into the larger

model to transform the volume element in which the probability density is defined.

4.3.3 Probability distribution over the stellar mass and over-densities

Another way to describe the overall properties of the galaxy population is through

the study of number density of the galaxies given their stellar masses i.e., the stellar mass

function. There any many different approaches used to measuring this distribution (see

Weigel et al. 2016 for a recent overview of the methods). The 1/Vmax method (Schmidt

1968), a parametric maximum likelihood method (Sandage et al. 1979 and a non-parametric

maximum likelihood method (Efstathiou et al. 1988)) are some of the main approaches.

Different approaches employ different methods for correcting the Malmquist bias (Malmquist

1922, Malmquist 1925) and the Eddington-Jefferys bias (Eddington 1913; Jeffreys 1938). In

this study the measurement uncertainties is consistently modeling the Eddington-Jeffery

and given the mass completeness condition the Malmquist bias should be minimal.

To model the stellar mass probability distribution, we adopt the Schechter pa-

rameterization (Schechter 1976) after turning it into a proper probability distribution using

incomplete gamma function:
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Φ(M) =
N

V
p(M |α)

where the V =
∫ zj+1

zj
dV
dz dz is the volume of the survey within the adopted redshift bin (i.e.,

[zj , zj+1]) in which we assume the stellar mass function parameters do not evolve, and N is

the number of galaxies in the population above some mass Mmin
4, where we truncate the

probability distribution to make it proper for values of α ≤ −1. The probability distribution

of the galaxies stellar mass follows a Schechter distribution is defined as the following:

p(M |α,M∗) =

(
M
M∗

)α
e−

M
M∗

M∗Γ(α+ 1, Mmin
M∗

)

where the parameters {α,M∗} which are the lower mass slope (shape parameter) and expo-

nential cut-off scale parameter respectively. Γ(α+ 1, Mmin
M∗

) is the upper incomplete gamma

function defined as the following:

Γ(s, x) =

∫ ∞
x

ts−1e−tdt

The conditional distribution of galaxy’s stellar mass is calculated given the galaxies

overdensity and type as the following:

p(M |∆, η,α, ζ) =
p(η|M,∆, ζ)p(M |α)∫
p(η|M,∆, ζ)p(M |α)dM

4The lowest stellar mass in the observed catalog at a given bin.
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To model the distribution over the over-densities needed for taking averages over

density, the following skew normal distribution is adopted:

p(log(1 + ∆)|µ) = Skew-N (log(1 + ∆)|µ∆, σ∆, α∆)

where µ = {µ∆, σ∆} are the location, scale, and shape parameters of the skew normal

probability distribution over log(1 + ∆) defined as the following:

Skew-N (x|µ, σ, α) =
2

σ
√

2π
e−

(x−µ)2

2σ2

∫ α(x−µσ )

−∞

1√
2π
e−

t2

2 dt

One can adopt a more general approach for modeling the distribution over the den-

sity such as a mixture of normal distribution, however, we find the skew normal distribution

to be adequate for this model.

4.3.4 Measurements Uncertainties

To account for measurement uncertainties, one can use the full joint probability

distribution from the posterior distribution of the SED-fitting to encode all these information

from the inferred properties. However, in this work we use SFR estimate from the UV+IR

calibration and the stellar masses which are determined from the SED-fitting. Therefore,

we make an additional assumption that measured quantities for an individual galaxy are

independent and follow a Gaussian distribution in log space. The following shows the con-

ditional joint probability distribution of the measured properties given their true unknown

values:
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p(M̂i, ψ̂i|Mi, ψi) = p(M̂i|Mi)p(ψ̂i|ψi)

p

(
log(

M̂i

M�
)

∣∣∣∣∣log(
Mi

M�
)

)
= N (log(

Mi

M�
), σ2

M,i)

p

(
log(

ψ̂i
M�/yr

)

∣∣∣∣∣log(
ψi

M�/yr
)

)
= N (log(

ψi
M�/yr

), σ2
ψ,i)

where the σM,i and σψ,i are the stellar mass and SFR measurement uncertainties of the

observed galaxy i in their log-space.

Using the above approximation and the fact that the distribution of the true SFRs

given their stellar mass and galaxy type is also modeled as a Gaussian distribution we can

marginalize over the true SFRs analytically.

Also, for the data with only upper limit (U), we marginalize over the possible

values through the following:

p

(
log(

ψ̂i
M�/yr

) ≤ U
∣∣∣∣∣Mi, η

)
=

∫ U

−∞
N
(
y
∣∣µi,η, σ2

int,η + σ2
i

)
dy

and subsequently replace these terms in the likelihood.

4.3.5 Prior specification and inference

To find the posterior distribution over the latent variables and the model param-

eters, a probabilistic programming language called Stan (Carpenter et al. 2017) is used.

Stan uses a Markov chain method called Hamiltonian Monte Carlo to randomly draw a
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sequence from the posterior distribution of the latent variables and parameters (Neal et al.

2011). Hamiltonian Monte Carlo is very efficient in exploring the high dimensional geome-

try of the posterior exploiting the gradient information about the geometry of the posterior

distribution using the gradient information of the model (see Betancourt 2017).

To make inferences about the model’s parameters one have to assume prior distri-

butions and to make sure that the prior distributions are relevant for the problem at hand,

we make prior predictive check to make sure that the possible values of the parameters can

cover the span of the observation through generating data and comparing it with what is

observed. However, we make sure that the prior distributions are not restrictive/strongly

informative. After the inference we compare the standard deviation of the marginal distri-

bution of the posterior to prior and this ratio is at most 0.15, which means that the prior is

at most weakly informative.

Table 4.1 describes the model parameters and the prior distribution used in the

inference.

Also, since the model used in this work involves a mixture models, the posterior

distribution over the parameters becomes multimodal since the parameters of each mixtures

are fully exchangeable and the labeling of the different galaxy types becomes arbitrary. Also,

since we are modeling the proportion of the quiescent to star-forming galaxies, we need to

make sure that we are sampling from part of the posterior geometry that is consistent with

this. To make sure that inference does not suffer from this inherent non-identifiablity of the

mixture models, we transform the location parameters to be ordered through the Stan code,

which resolves this issue in practice by limiting the parameter space.
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Table 4.1: Prior Probability distributions for the model’s parameters.

Quantity Prior Distribution Definition
πSB Beta(1, 3) The proportion of the Star-burst

ξ0 Normal(0, 22) Constant term in log-odds of quiescent to star-forming

ξ1 Normal(0, 22) Slope of Stellar Mass in log-odds of quiescent to star-forming

ξ2 Normal(0, 22) Slope of Density Contrast in log-odds of quiescent to star-forming

ξ3 Normal(0, 22) Slope of Mass and Density interaction in log-odds of quiescent to star-forming

ζ0,SB Normal(2, 32)Θ(ζ0,SB − ζ0,SF − σint,SF − σint,SB) intercept in log(SFR) vs log( Ms
1010M�

) relation for Star-burst (linear relation)

ζ0,SF Normal(1.5, 32) intercept in log(SFR) vs log( Ms
1010M�

) relation for Star-forming (linear relation)

ζ0,Q Normal(1, 32)Θ(ζ0,SF − ζ0,Q − σint,SF − σint,Q) intercept in log(SFR) vs log( Ms
1010M�

) relation for Quiescent (linear relation)

ζ1,SB Normal(1, 12)Θ(ζ1,SB − ζ1,SF ) Slope in log(SFR) vs log( Ms
1010M�

) relation for Star-burst (linear relation)

ζ1,SF Normal(1, 12) Slope in log(SFR) vs log( Ms
1010M�

) relation for Star-forming (linear relation)

ζ1,Q Normal(1, 12)Θ(ζ1,SF − ζ1,Q) Slope in log(SFR) vs log( Ms
1010M�

) relation for Quiescent (linear relation)

σint,SB Half-Normal(0, 22) Intrinsic scatter in SFR vs M relation for Star-burst.

σint,SF Half-Normal(0, 22) Intrinsic scatter in SFR vs M relation for Star-forming.

σint,Q Half-Normal(0, 22) Intrinsic scatter in SFR vs M relation for Quiescent.

α Normal(-1, 22) The shape parameter of Schechter Stellar Mass Function.

M∗ log-Normal(ln(5× 1010), 22) The scale parameter of Schechter Stellar Mass Function.

µ∆ Normal(0, 22) The location parameter of Density contrast distribution.

σ∆ Half-Normal(0, 22) The scale parameter of Density contrast distribution.

α∆∗ Normal(0, 52) The shape parameter of Density contrast distribution.

To make sure that the model used in this work is well specified and the algorithm

is able to infer the true parameters, we use few simulations drawn from the model prior and

infer the posterior distribution over the parameters which are showed to provide a reasonable

estimate of the parameters (i.e., simulation based calibration Cook et al. 2006; Talts et al.

2018). Given that the description of the single model for capturing all the variability of the

galaxies in transition to quiescent galaxies is not adequate, we use it as a model to capture

the galaxies that are not part of the star forming sequence. Given these consideration, we

also use samples from predictive posterior to simulate the observed space and compare it

directly to observed properties to ensure that resulting predictive posterior is consistent with

the observations and can reasonably reproduce the structure seen in the observation.
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4.4 Results

In this section, we discuss the results from the inference on the discussed proba-

bilistic model, and Figure 4.1 shows the resulting posterior distribution of the parameters

at highest redshift bin. The inference on the resulting model can be separated into three

parts: 1. Inference on the parameters of the star-forming sequence using the mixture of three

components. 2. Inference of the population parameters such as the stellar mass probability

distribution. 2. Inference on the modeling parameters of the galaxy type probability given

their stellar mass and environment.

4.4.1 Star-Formation Rate versus Stellar Mass

Using the samples from the posterior distribution of the model’s parameters and

latent variables, one can find the parameters of the model for the mean of the log(SFR), and

intrinsic scatter around the mean relation by marginalizing over the rest of the parameters

in the entire joint probability distribution.

The known overall evolution of the mean relations is consistent with that galaxies

have higher SFR on average at higher redshift. The Intrinsic scatter around the SFR forming

the main sequence are 0.28, 0.24, 0.23, 0.24, 0.18 dex from the lowest redshift bin to the

highest. The intrinsic scatter around the quiescent and starburst are more diverse and

have values as high as 0.44 dex for the starburst at the lowest redshift bin. However, upon

further investigation, we find that these galaxies have much higher SFR than their SED

fitting predictions. The rest of the intrinsic scatters about 0.2-0.3 dex. However, we note

that the intrinsic scatter around the quiescent can be relied on to a small degree as these
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Figure 4.1: Posterior distribution of model parameters for the highest redshift bin.
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galaxies can have SFRs so low that modeling them with a single line and scatter around it

would be meaningless, and one should separate them as a different class.

Figure 4.2 shows the distribution of the data, and 30 posterior draws of the mixture

model for the mean and two sigmas scatter. The galaxies are colored according to their

posterior probability of belonging to each group. This shows an agreement with the overall

mixture of these mean relations with intrinsic scatter compared to data and can describe

the overall distribution reasonably well. We note that the galaxies are not assigned to each

relation and have a probability of belonging to each of these mixtures and these uncertainties

flow through the rest of the model in consistent way (i.e., especially near the boundary and

for those with high SFR uncertainties).

4.4.2 Stellar Mass Functions

Using the inference results, one can easily translate the probability distribution over

the masses to the stellar mass function using its definition. Figure 4.3 shows the evolution

of the stellar mass distribution of the galaxies as a function of redshift. As the figure shows,

we find a good agreement for the stellar mass function compared to the previous result in

the literature. However, due to the lack of very massive galaxies in the high depth survey

such as CANDELS, the massive end of the mass function does not have much support from

the data as one would get from a wider field. We note that the stellar mass uncertainties are

consistently considered here without any requirement for the binning in the stellar mass.

To calculate the stellar mass function for different galaxy types, we need to consider

the probability of the galaxy type given its stellar mass and density contrast. However, since
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Figure 4.2: Star-formation versus Stellar Mass over cosmic time: The data points are colored
with (Red, Green, Blue) proportional to their probability simplex (pQ, pSB, pSF). Lines and
opaque regions show random draws from the posterior distribution of the mean and 2-σ
intrinsic scatter around it. The hatched grey area shows the mass completeness limit.
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Figure 4.3: Stellar Mass function of the Galaxies: The Left panel shows the stellar-mass
function calculated based on the probability distribution over the galaxies masses and the
survey volume. The Middle/Right panel shows the stellar mass function of different galaxy
types calculated using the probability of galaxy type given their stellar mass and density
contrast and after integrating over the density contrast distribution.

we are interested in the overall shape of the mass functions averaged over their densities, we

integrate over all values of the density contrast multiplied by the chance of the being in each

class and the overall stellar mass probability. For doing that, we use the posterior draws,

and after integrating the density contrast, we show the resulting posterior distribution of the

galaxies as a function of their stellar mass after translating it to the stellar mass function.

The middle panel in Figure 4.3 shows the inferred stellar mass function of the star-

forming galaxies that are on the star-forming sequence. The right panel shows the stellar

mass function for the transitioning/Quiescent part of the SFR vs. stellar mass and their

rapid build-up as we move toward lower redshift. It should be noted that this definition of the

galaxy population is not necessarily equivalent to the population one might get using various

color-color separation schemes or putting a hard threshold on their specific star-formation

rates.

152



4.4.3 Quiescent Probability versus Stellar Mass and Local Density

The probability of a given galaxy to belong to a transitioning/quiescent population

compared to the star-forming sequence, given their physical properties, can shed light on

some of the processes involved in this transition. Here we describe the inferred probability

that a given galaxy to have a certain type as a function of its stellar mass and environment

traced by the density contrast. As the Figures 4.6 and 4.5 shows, we find that the probability

of quiescent increases with the stellar mass at every environment probed here and across

cosmic time. We also find that the galaxies with stellar masses higher than ∼ 1010.5M� have

a higher chance of being in transition if they are in a dense region. These are all consistent

with many previous studies (e.g., Peng et al. 2010; Darvish et al. 2016; Kawinwanichakij

et al. 2017). For galaxies below this mass, this probability increase up to the redshift ∼ 1.2

and after that starts to decrease gradually. This points to a possible reversal of transitioning

probability with the density contrast at low masses, in the sense that low mass galaxies are

less likely to be transitioning/quiescent if they are in the denser environment.

Figure 4.4 shows the evolution of the coefficient in the log odds of quiescent to

star-forming relation and their marginal distribution, which encodes the behavior of the

probability seen in the Figures 4.6, and 4.5. We find that the slope of the mass in this

relation at log (1 + ∆) = 05 increases gradually going to higher redshift, meaning that the

effect of having a mass one dex higher changes the log-odds of finding a galaxy in the

transitioning region compared to star-forming sequence from ∼ 1 to ∼ 2 from the redshift

of 0.5 to 2.5. The slope of the density contrast at the mass of 1010 in this relation shows a
5when the interaction term is zero by construct
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Figure 4.4: Coefficients of the relation describing the log-odds defined as the natural log-
arithm of the probability of being transitioning/quiescent to probability of being on the
star-forming sequence as function of stellar mass and local density contrast or ln(

πQ
πSF

). One
should note that these coefficients have different physical units and should be compared to
each other separately.
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Figure 4.5: Quiescent Probability versus Stellar Mass

significant evolution from the redshift of 0.5 to 2.56. We find that moving a galaxy with a

mass of 1010 by one unit in the log (1 + ∆) changes the log-odds of being in transition from

∼ 2.5 to ∼ −1 from the redshift of 0.5 to 2.5. This shows that the effect of the environment

alone in increasing this log-odds evolves rapidly from being very large at low redshift to a

decreasing effect at the highest bin (although the marginal are consistent with being zero

given its uncertainties).

The effect of the interaction term between the density contrast and stellar mass

shows almost opposite trends and qualitatively follows the evolution of the mass. The

interaction parameter changes the slope in quiescent probability as a function of mass for

different environments and the slope for this probability as a function of environment for

galaxies of different masses. In other words, a non-zero interaction shows that the slopes of

the environment and mass in log-odds relation depend on each other. This shows that the
6One should note, however, that these slopes all have physical units inverse of what they are being

multiplied to and the physical range of environment and stellar mass in the log space is not the same, i.e.,
one dex in log density covers almost all the available range of environment probed in this study
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Figure 4.6: Quiescent Probability versus Density Contrast

effects of mass and environment are acting separately on how much they change the log-odds.

However, this scenario changes as one moves to a higher redshift. At redshift higher than

1.2, the effect of the environment alone seems to have a small and negative contribution to

the log-odds, but the interaction between the mass and environment becomes significantly

more important. This means that the effect of the environment depends on the stellar

mass (i.e., change of slope as a function of stellar mass), and higher stellar masses lead to

increases in the effect of the density on the log-odds, and lower stellar masses decrease the

effect of the environment. On the other hand, the effects of the stellar mass, traced by

its slope in log-odds, depends on the environment and increases from under-dense to over-

dense regions. The overall result could suggest that the increase in the log-odds of transition

galaxies compared to star-forming might be related to differences in the underlying physical

processes in the environmental quenching of the galaxies at a redshift of higher than ∼ 1

in comparison to below it, however, only from higher abundances, we cannot pin down how

many of these objects are in transition because of the environmental processes, how many
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were accreted onto denser environment as in transition galaxies 7, and how many are in

transition because of the change in the efficiency of their internal mechanism at different

environment.

This change in the importance of the interaction term that affects the slope of

the environment is greater for more massive galaxies could imprint a particular behavior

on the quantity called environmental quenching efficiency. This is the ratio of the excess of

the fraction of quenched (in our case transitioning and quiescent) galaxies in the over-dense

region compared to the under-dense region to the fraction of the star-forming galaxies in

the under-dense region. Similarly, one can define a mass quenching efficiency as well. Here

are the definitions based on our probabilistic model:

εenv(M) =
p(η = Q|M,∆ > ∆75)− p(η = Q|M,∆ < ∆25)

1− p(η = Q|M,∆ < ∆25)

εmass(M) =
p(η = Q|M,∆ < ∆75)− p(η = Q|Mmin,∆ < ∆75)

1− p(η = Q|Mmin,∆ < ∆75)

We used our definition of the probability of being quiescent/transitioning given

the stellar mass and density contrast. We use the average of this probability over the lower

%25 quantiles of the density distribution (∆25) as the quiescent probability in the under-

dense region8, and the average over-densities higher than %75 quantiles (∆75) the quiescent

probability in the over-dense region.
7which would imply that the observed fraction would be highly dependent on the fraction of these galaxies

within the over-density, before accretion
8same definition for star-forming in under-dense regions
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Figure 4.7: Quenching efficiency of Environment and Mass as function of Stellar Mass.

However, we only find a positive effect from the environment at high redshift on

increasing the odds of a galaxy to be at quiescent/transition region for massive galaxies,

and the less massive galaxies are found to get zero or negative effect from the environment.

Given the limited dynamic range of galaxies’ stellar mass and the significant uncertainties

on the parameters, this can only be suggestive.

As the Figure 4.7 shows, we find that the environmental quenching efficiency in-

crease as a function of redshift at lower masses and becomes more important than the mass

quenching efficiency at lower masses, similar to what have been reported before (e.g., Darvish

et al. 2016; Kawinwanichakij et al. 2017; Chartab et al. 2020). The uncertainties in this

relation is quite large at high stellar mass but given that its evolution seems to indicate that

the environmental quenching efficiency increases with stellar mass, and it is a steep relation

at redshift higher than 1 but tends to flatten out towards the lower redshift. For example

this efficiency increases from about 0 to 20 − 30% when comparing galaxies of 1010M� to

1011 for redshift higher than 1.5 but for the lowest redshift bins this value decrease to only
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0 − 10%. The fact that the environmental quenching efficiency increases with stellar mass

shows another way expressing the consistency with the “overconspumption” scenario (McGee

et al. 2014), which were reported in previous studies as well (e.g., Kawinwanichakij et al.

2017; Chartab et al. 2020). In this scenario, galaxies that are accreted onto a larger halo

lose their gas given the lack of fresh gas accretion and deplete their remaining gas through

star-formation and its related outflows. This scenario predicts that since the galaxies with

higher masses have higher star-formation rate, they tend to deplete their gas faster and start

the transition to becoming quiescent faster.

However, Belli et al. 2017b have found that the quiescent galaxies at high redshift

seem to go through two distinct quenching processes in terms of their time scale, and fast

quenching is likely happening after violent gas-rich mergers that lead to their compaction and

going through the blue nugget phase and turning to the red nugget (see Dekel et al. 2019).

Another quenching channel is related to the depletion of their gas reservoir through star-

formation, which is similar to the overconsumption scenario discussed here. Additionally,

there seems to be growing evidence of such galaxies with a low amount of gas at redshift

higher than ∼ 1.5 (Bezanson et al. 2019; Whitaker et al. 2021), which is consistent with this

picture.

We note that in this study, the measurements uncertainties have been treated con-

sistently through the model; however, there are significant systematic uncertainties in the

data that are not considered within the model, such as: 1. Measurement uncertainties in

the photometric redshifts, 1. density contrasts are assumed to be exact and without any

uncertainties, 3. The SFR and Mass measurements could have significant systematic un-
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certainties, and their associated estimation of uncertainties might not be accurate, which

is especially true for the quiescent population where the UV+IR overestimates the SFR

because of the older stellar population heating the dust and the subsequent contribution

to longer wavelengths (e.g., Fumagalli et al. 2014). Also, the model used here is a very

simplistic representation of reality and has some major missing parts, such as the indepen-

dence assumption between the stellar mass distribution and density contrast. We note that

the independence assumption was made after trying to model the stellar mass distribution

parameters as a function of density contrast, which resulted in a dependence that was hardly

constrained by the data. Also, we note that given these limitations of the model and the

quality of the data, and the fact that we have a wide posterior distribution of the coefficient,

particularly for the environment term and interaction between environment and stellar mass,

the result presented here should be interpreted as only suggestive and accurate under these

significant assumptions.

4.5 Discussion and Conclusion

In this study, we use the latest available catalogs of physical measurements in

the CANDELS, including homogeneous photometric redshift, local environment measure-

ments, and star-formation rate measurements from UV+IR, to build a consistent proba-

bilistic model for the dependence of the star-formation activity of the galaxies on their local

environment and stellar mass in the presence of the noisy and censored data. We simul-

taneously model the star-forming versus mass plane using a mixture of three components

consisting of 1. star-burst, 2. star-forming, 3. transitioning/quiescent. We also model the
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probability that a given galaxy belongs to a quiescent or star-forming population based on its

environment and stellar mass. In order to take into account the effect of noisy measurements

in stellar mass, we simultaneously model the stellar mass distribution for the CANDELS

galaxy population and find these relations between the “true” physical parameters of the

galaxies by treating them as latent variables within the model and marginalizing over those

consistently.

We find a general agreement between the probability of transitioning/quiescent

galaxies (i.e., quiescent fraction) given their stellar mass and local environment to what has

been found in the literature. Some of these are that at all redshifts and for all environ-

ments, an increase in the stellar mass increases the probability of being in the transition-

ing/quiescent population. We also find that out to a redshift of ∼ 3 at masses larger than

∼ 1010M�, higher density contrasts increase the chance of being in transition/quiescent pop-

ulation. At lower masses, the situation seems to be reversed around the redshift of ∼ 1−1.5,

and for galaxies with lower stellar masses, a denser environment lowers the chance of being

a quiescent galaxy, but this is a small effect.

We find that the effects of the environment traced by its slope in the log-odds

of the quiescent to star-forming have significant evolution, and the environment by itself

is an essential factor to determine what fraction of the galaxies are in transition at all

redshifts, but its importance depends on the stellar mass above redshift of ∼ 1.2. At lower

redshifts, the slope seems independent of the stellar mass, and galaxies of different stellar

mass experience the same environmental factor in their log-odds. However, at high redshift,

there is a positive correlation between the slope of the environment as a function of stellar
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mass that the effects of the environment are more significant for more massive galaxies. For

the low-mass galaxies, this slope becomes negative in the sense that moving to a denser

environment at a given stellar mass decreases the odds of being quiescent.

For the slope of the stellar mass in the model for the log-odds, we find that this

slope is constant at lower redshift in the sense that different environments do not change the

effect from the stellar mass in making them quiescent more likely to be quiescent. At higher

redshift, this slope depends on the local environment such that the effect of the stellar mass

increases at the denser environment, and in an over-dense environment, increasing the mass

increases the odds of being in transition faster than under-dense.

The strong interaction between the effects from the environment and stellar mass at

high redshifts, which makes more massive galaxies move off from the star-forming sequence

more efficiently if located in a denser environment, can be interpreted as consistent with

the “overconsumption” scenario McGee et al. 2014) for the quenching of the most massive

galaxies. In this scenario, those galaxies that cannot get refueled through cosmological

accretion either as they become a satellite of a larger halo or because their halo grows and is

subsequently more susceptible to shock heating of the accreted gas. These galaxies deplete

their remaining gas through star-formation and outflows. The effect of the environment in

this setting depends on the galaxies’ stellar mass and redshift as more massive galaxies tend

to have a higher star-formation rate and this rate increases with redshift. This is consistent

with the growing evidence of such a population of quiescent galaxies with low gas content

at a redshift of above ∼ 1.5 (e.g., Bezanson et al. 2019; Whitaker et al. 2021). Also, as

we find that the effect of the mass in determining the log-odds of being quiescent compare
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to star-forming is larger in denser environment, it might suggest that the mass quenching

mechanisms such as AGN feedback can work more efficiently at denser environment. And

if the effect of environment is related to the amount of gas accretion, we speculate that

increase in this effect for more massive galaxies at denser environment comes from the AGN

that can keep the gas in the halo hot and increase the cooling time more efficiently.

However, one needs to consider other physical properties of galaxies, such as their

morphology and how this changes in a different environment in order to rule out other sce-

narios such as mergers as primary mechanism. For example, what fraction of the quiescent

galaxies go through a fast morphological transformation through mergers and subsequently

stop their star-formation following the compaction and possibly a quasar phase, in compar-

ison to less eventful evolution such as depleting their gas reservoir through star-formation

and outflows. For example, Darvish et al. (2016) has argued that the increase in the ef-

ficiency of environmental quenching with stellar mass and increase in the mass quenching

efficiency at denser environment can be explain by mergers, and is consistent with the results

from this study. Also, Kawinwanichakij et al. (2017), has found that the quiescent galax-

ies in the denser environment tend to have similar morphology to the field quiescent, and

since the overconsumption scenario does not change the morphology of a galaxy, another

process must be invoked to change the morphology of the quiescent. On the other hand,

there seems to be an indication from the spatially resolved kinematic studies of gravitation-

ally lensed quiescent galaxies at redshift > 2, that they are rotationally supported (Toft

et al. 2017; Newman et al. 2018b), which can separate the quenching mechanism from their

morphological transformation at least in some galaxies.
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Putting a better constraint on these effects requires a more extensive set of data.

Understanding the complex interactions between different galaxies’ properties requires de-

tailed modeling of observed quantities, which requires enough high-quality data over a va-

riety of physical properties. Future surveys allow us to build much better constraints on

the simplistic observational model used here and consider the effects of other physical prop-

erties of galaxies and their interactions simultaneously by modeling their joint probability

distribution while accounting for different types of noise in the measurements.

4.6 Future Extension

One way to extend this analysis and provide a better constraints on the param-

eters of the model, such as the interaction term in the log-odds would be to use all the

data available by modeling the selection effects consistently. Here we discuss the model in

such a scenario where we can extract extra information by modeling the selection effects in

photometrically selected catalogs.

4.6.1 Extension of the Probabilistic Model

To describe the full probabilistic joint distribution, we start with the joint probabil-

ity over all the galaxies within the population where some of them happened to be observed

in our sample and some are missing (see Gelman 2004; Kelly et al. 2008; Mantz 2019; Little

and Rubin 2019, chapter 15); assuming that the full distribution over the population can be

separated into the observed and unobserved probability distributions as the following:
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p({Mi, ψi, M̂i, ψ̂i,∆i, Ii, ηi}Ni=1|θ, N) =(
N

Nobs

)
p({Mi, ψi, M̂i, ψ̂i,∆i, Ii = 1, ηi}Nobsi=1 |θ)× p({Mi, ψi, M̂i, ψ̂i,∆i, Ii = 0, ηi}Ni=Nobs+1|θ, N)

where the {M̂i, ψ̂i,∆i}Nobsi=1 is the set of observed physical properties of Nobs galaxies in

the sample same as before but now we use the full sample instead of limiting to mass

complete sample with M̂i, ψ̂i,∆i are the stellar mass, star-formation rate, and local density

contrast of galaxy i respectively. Ii is the indicator binary variable that shows whether

galaxy i has ended up in the sample (i.e,. Ii = 1). {M̂i, ψ̂i,∆i}Ni=Nobs+1 is the set of

physical properties of N −Nobs galaxies within the population that has not been observed

and we have to marginalize over them (i.e., population has N galaxies and we observed

Nobs). The binomial factor comes in since we have an exchangeable sequence of observed

galaxies9 selected through a random process from a larger population. This random process

can depend on the physical properties of the galaxies and the survey detection efficiency.

ηi is a categorical variable that indicates the galaxy type (i.e., star-forming, star-burst,

and quiescent). θ stands for all the parameters used in the model and {Mi, ψi} are the

latent variables of the model for true physical properties of the galaxies that are not directly

observed and need to be evaluated within the probabilistic model.

Since, the latent variables and the unobserved galaxies are not known we need to

marginalize over them in order to find the likelihood of the parameters based only on the

actual observations.
9Different ways that a galaxy can be permuted within the population and end up in the sample.
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First we describe the conditional independence of physical properties to specify our

model as the following:

p(M,ψ, M̂, ψ̂,∆, I, η|θ) = p(I|M̂, η)p(M̂, ψ̂|M,ψ)p(ψ|M,η, ξ)p(η|M,∆, ζ)p(M |α)p(∆|µ)

where p(I|M̂, η) is the probability that a galaxy with a given stellar mass and galaxy type

has been observed in the sample or not and must be estimated through modeling the survey

detection probability.

We define the likelihood function of the parameters for the observed galaxies as

the following after marginalizing the categorical variable of galaxy type and assuming that

the galaxies are independent and identically distributed according the joint distribution over

their individual physical properties:

Lobs = p({Mi, ψi, M̂i, ψ̂i,∆i, Ii = 1}Nobsi=1 |θ) =

Nobs∏
i=1

∑
η

p(Mi, ψi, M̂i, ψ̂i,∆i, Ii = 1, ηi = η|θ)

To marginalize over the unobserved part of the joint probability distribution we

need to sum over all the nuisance parameters which gives us the overall probability of not

selecting a galaxy in the sample:

p(I = 0|θ) =
∑
η

∫
p(M,ψ, M̂, ψ̂,∆, I = 0, η|θ)dMdψdM̂dψ̂d∆

In order to make these integrals numerically tractable, we impose some major

assumptions. First, we assume that the measurements uncertainties are independent and
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can be separated p(M̂, ψ̂|M,ψ) = p(M̂ |M)p(ψ̂|ψ). This allows applying the law of total

probability over the ψ̂ and ψ, which reduces the integral dimensions from five to three.

Furthermore, we assume that only for the unobserved galaxies the distribution of the stellar

mass measurement given the true stellar masses can be described as the delta function,

which reduces the three dimensional integral into an integral over two dimensions which can

be numerically estimated during the inference as a function of model parameters. The final

probability of not been selected in the sample is:

p(I = 0|θ) =
∑
η

∫
p(I = 0|M,η)p(η|M,∆, ξ)p(M |α)p(∆|µ)dMd∆

Now we can describe the joint probability distribution over the population after

marginalizing the physical properties of the unobserved galaxies as the following:

p({Mi, ψi, M̂i, ψ̂i,∆i, Ii = 1, ηi}Nobsi=1 , {Ii = 0}Ni=Nobs+1|θ, N) =

(
N

Nobs

)
p(I = 0|θ)N−NobsLobs

In order to make the above model fully based on the observed only variables we

make some assumption about the number of objects within the population and some prior

over their parameters. In reality, this number is regulated by the cosmology and astrophysi-

cal processes involved and should be properly modeled. However, one can make an ignorance

assumption about this number and try to infer this number within the model. One simple

assumption is to model this number as a Poisson distributed random variable with rate λ.
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These allows the marginalization over the possible number of galaxies within the population

as the following (look at Mantz 2019 for full derivation):

L =

∞∑
N=Nobs

(
N

Nobs

)
p(N)p(I = 0|θ)N−NobsLobs =

∞∑
N=Nobs

(
N

Nobs

)
e−λλN

N !
p(I = 0|θ)N−NobsLobs

∝ e−λp(I=1|θ)λNobsLobs

In addition, assuming a gamma distribution with the shape and rate parameters

α, β that is the conjugate prior for Poisson distribution yields an analytical solution for

marginalizing the Poisson parameter. The resulting marginalization is shown as the following

(see Mantz 2019 equation 8):

Lf =

∫ ∞
0

dλp(λ)L ∝ (p(I = 1|θ) + β)−(Nobs+α)Lobs

For fitting the model one can further assume the parameters of the gamma dis-

tribution are β → 0, and α = 1/2, which yields a Jeffreys prior (invariant under different

parametrization by construction) over the Poisson parameter that is p(λ) ∝ 1/
√
λ. The Lf

is the final likelihood function that take into account the selection function as well as the

likelihood of the parameters given the observations.

Also one can easily extend the stellar mass distribution to better capture the full

shape of the stellar mass function using a double Schechter distribution. In order to build

the double Schechter mass function, one can employ a mixture model of two Schechter
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distribution component as the following:

p(M |α) = Υp(M |α1,M∗) + (1−Υ)p(M |α2,M∗)

where the parameters are grouped as α = {α1, α2,M∗,Υ} which are the lower mass slope

for two component, their shared exponential cut-off scale parameter, and overall probability

of the first component respectively.

For extending this for all the available galaxies and not only those that are mass

complete, we need to model that as a function of stellar mass, which can be done using either

mock observational catalogs or having access to a deeper survey to build an empirical model.

However, in order to make use of the very efficient Hamiltonian Monte Carlo sampler, one

needs to make a accurate enough selection function that at least has first order differentiable

function.
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Chapter 5

Summary and Conclusions

The focus of this thesis is on the selections and study of the galaxies at different

stages of their star-formation activity at high redshift. In chapters 2, and 3 we focused

on selection of massive quiescent galaxies at redshifts higher than 3, starting from more

traditional approach for their selections in 2 to the use of statistical learning approach in 3

that can provide a robust sample of these galaxies while being more computationally efficient.

In chapter 4, we turned our focus on the galaxies below the redshifts of 3 and provide

a probabilistic modeling framework that can simultaneously take into account sources of

measurement uncertainties, without having to use a pre-defined notion of galaxy types based

on their star-formation activity to extract information about the role of environment in

shaping the evolution of galaxies, something that are not usually considered when studying

these environmental effects.
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5.1 Summary of Chapter 2

Using the CANDELS photometric catalogs for the HST/ACS and WFC3, we iden-

tified massive evolved galaxies at 3 < z < 4.5, employing three different selection methods.

We find the comoving number density of these objects to be ∼ 2×10−5 and 8×10−6Mpc−3

after correction for completeness for two redshift bins centered at z = 3.4, 4.7. We quantify

a measure of how much confidence we should have for each candidate galaxy from differ-

ent selections and what are the conservative error estimates propagated into our selection.

Then we compare the evolution of the corresponding number densities and their stellar mass

density with numerical simulations, semi-analytical models, and previous observational es-

timates, which shows slight tension at higher redshifts as the models tend to underestimate

the number and mass densities. However, a larger simulation volume is needed, since the

estimates of these values in simulation at high redshift are subject to significant Poisson

uncertainties, in addition to the need for a larger sample of these objects, which are going

to be available through the upcoming surveys.

5.2 Summary of Chapter 3

This chapter investigates the ability of statistical learning techniques applied to

simulated photometric catalogs to identify a sub-population of galaxies based on their mul-

tiwavelength photometric measurements. We use the simulated catalogs from the Santa Cruz

semi-analytical model of galaxy formation created to match CANDELS GOODS-South ob-

servations. We further modified the catalog to match the observations in terms of their

uncertainties in photometries and the fraction of the missing values at different bands and
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colors. We use an ensemble of random forest regressors for different bands using an iterative

approach called Multiple Imputation by Chained Equations (MICE) to find an estimate

of all the missing values, which we show to be very effective using the knowledge of the

ground truth. We then use massive quiescent galaxies at high redshift as an example sub-

population, and we find several decision boundaries varying in their complexity. We also

find the selection based on the physical properties inferred from LePHARE’s Spectral En-

ergy Distribution fitting to compare all these methods based on their ability to recover the

actual population and their robustness to contaminants. We find that Bayesian Logistic Re-

gression, Random Forest, Support Vector Machines, and Neural Network outperform SED

fitting on the complete data with known redshifts. Given the computational cost of more

robust approaches to SED-fitting for the extensive incoming multiwavelength surveys, the

statistical learning techniques trained on the high-fidelity simulated catalogs offer great po-

tential for selection and further studies (e.g., spectroscopic) of specific sub-populations of

galaxies.

5.3 Summary of Chapter 4

Using the latest measurements of star-formation rates, photometric redshifts, and

local density in the CANDELS, we provide a probabilistic modeling framework for extracting

the role of galaxies local environment in dictating the galaxies type based on their star-

formation activity, while taking into account the measurements uncertainties as well. We

find that the odds of a galaxy being below the star-forming sequence versus on it, depends

on their stellar mass out to the redshift of 3 and the effect of the stellar mass alone is higher
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at denser environments. This odds depends on the environment out to the redshift of 1 and

at higher redshift this dependence become much smaller. However, this dependence show

strong dependence on the stellar mass and more massive galaxies (M > 1010.5M�) are more

likely to be quiescent of they move to a denser environment. Overall, we find that the effect of

the stellar mass independent of the environment in changing this odds is strong at all redshift

considered (0.5 < z < 3), but for the environment this effects is mostly mass independent at

redshift. We also find that the mass quenching efficiency depends strongly on the stellar mass

at all redshift, and we find small evolution of this efficiency with redshift particularly for

higher stellar masses. We also find that the environmental quenching efficiency depends on

the stellar mass at all stellar masses above the mass in which our sample is mass complete

for redshift below ∼ 1 and at lower masses this efficiency is higher than mass quenching

efficiency. At redshift higher than ∼ 1, however, the environmental quenching efficiency

grows with increasing the stellar mass only for galaxies with M > 1010.5M�.
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