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Abstract

Deep learning applications in wildlife recognition

by

Zhongqi Miao

Doctor of Philosophy in Environmental Science, Policy, and Management

and the Designated Emphasis in

Computer and Data Science and Engineering

University of California, Berkeley

Professor Wayne M. Getz, Co-chair

Professor Stella X. Yu, Co-chair

Deep learning has attracted much attention from the ecological community for its capability
of extracting and generalizing patterns from data sets with highly complicated structures,
such as images, audios, and motion signals. However, despite the promising cases, deep
learning is complicated in terms of application and has shortcomings when applied to real-
world ecological data sets. In this dissertation, we focus on: 1) demystifying the hidden
mechanisms of deep learning in terms of wildlife recognition, 2) identifying the challenges
of deep learning applications in wildlife recognition, and 3) proposing a generic recognition
framework that can be practically deployed in the fields.

In the first chapter, we examine how deep learning recognizes wildlife through Convolutional
Neural Network feature deconstruction and interpretation. The objective is to demystify
aspects of artificial intelligence and facilitate wildlife recognition research.

The second chapter identifies three major challenges to automatic wildlife recognition through
an avian recognition case study and provides preliminary solutions addressing each challenge.
This chapter aims to increase awareness in the ecological community of these challenges,
bridge the gap between ecological applications and state-of-the-art computer science, and
open doors to future research.

In the third chapter, we propose a hybrid recognition system of machine learning and human-
in-the-loop that overcomes two challenges discussed in the second chapter: imbalanced data
distribution and continuous data expansion. Moreover, with the self-updating mechanism of
our approach, the system can be practically deployed in the fields.
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Introduction

Background
The world is undergoing rapid global climate change and loss of biodiversity [42, 6, 104,
31]. Capturing responses of wildlife to environmental and anthropogenic perturbations has
become crucial to understanding long-term patterns, drivers, and consequences of species
declines and extinctions [121, 102]. Imagery-based, long-term, and large-scale remote sensing
with devices such as motion-sensitive cameras (camera traps) [77, 97] and aerial devices (e.g.,
aircraft and satellites) [142, 80] is one of the most widely adopted, non-invasive, and cost-
efficient methods for wildlife monitoring. However, the most significant drawback of this
method is the amount of human labor needed to annotate wildlife images for ecological
analysis in order to keep pace with continuous data collection at a management-relevant
timescale [101, 3, 124, 86, 85].

Artificial Intelligence (AI), particularly deep learning algorithms that employ convolu-
tional neural networks (CNNs), is the breakthrough technology of the current half-decade
and provides promising solutions for rapid and high-accuracy image recognition, including
wildlife recognition [65, 86, 127, 145]. Therefore, it may significantly increase the efficiency
of associated ecological studies [137, 85]. In the interest of ecologists being able to ap-
ply deep learning methods more effectively and more efficiently to their particular fields of
investigation, in this dissertation, we focus on:

1. Demystifying the hidden mechanisms of deep learning in terms of wildlife recognition.

2. Identifying the challenges of deep learning applications in wildlife recognition.

3. Proposing a generic recognition framework that addresses the challenges and can be
practically deployed in the fields.

Related works
Automatic wildlife image recognition has been attempted in various directions in the past [125,
33, 149]. Before the deep learning era, most methods rely on hand-crafted image features
for animal detection and species classification tasks. For example, Swinnen et al. [125] and
Figueroa et al. [33] used similar approaches by calculating average pixel changes in images to
detect the existence of animals. However, simple animal detection cannot fulfill the require-
ments for practical wildlife applications because it cannot provide detailed species-level infor-
mation. Yu et al. [149], on the other hand, successfully applied conventional computer vision
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methods such as Scale-Invariant Feature Transform (SIFT) [76] and Histogram of Oriented
Gradients (HOG) [24] to convert wildlife images into linearly classifiable features. Despite
the promising results (∼ 80% species-level test accuracy), hand-crafted visual features like
SIFT and HOG usually require clear images of animals with distinctive body marks (e.g.,
black spots of leopards) to produce high-quality features for classification [149]. However,
automatically collected wildlife images usually do not have clear views of animals, limiting
the quality of hand-crafted features. Moreover, hand-crafted features require independent
parameter tuning for every category to produce optimal results, which is time-consuming
and relies on domain expertise [109, 149].

Deep learning methods have proven to have good generalization abilities without relying
on hand-crafted features [65]. It can automatically learn linearly classifiable features through
a large quantity of training data. Chen et al. [18] and Gomez et al. [37] are the two earliest
studies that applied deep learning techniques to classify wildlife from real-world camera
trap images with limited image quality. However, the model from Chen et al. [18] did not
perform well at species-level classification (∼ 40% test accuracy) because of the limitations
of shallow networks they used in their experiments and the lack of training data (only 20,000
training images). On the other hand, Gomez et al. [37] only reported experiments of binary
classifications between birds and mammals, which did not provide detailed species-level
information.

Gomez et al. [137] and Norouzzade et al. [85] are the first two studies that had successful
results of deep learning applications in wildlife recognition from large-scale camera trap
data sets. Gomez et al. achieved ∼ 80% test accuracy on a 26-class wildlife data set, and
Norouzzade et al. achieved over 90% test accuracy on a 48-class wildlife data set. Norouzzade
et al. also proposed to use deep learning to coarsely classify animals behaviors and count
the number of individuals in images that contain multiple animals [85].

After these two successful approaches, deep learning has been extensively discussed on
possible applications to all sorts of ecological data with complicated structures, such as
overhead images [50, 72], bio-acoustics [54, 1], earthquake signals [112], thermal signals [21]
and time-frequency signals [16, 52]. However, despite the success in experiments of previous
studies, it is still rare to see deep learning being deployed in the fields and providing reliable
automatic recognition results that can be used for further downstream tasks such as wildlife
population modeling. We identify two major reasons that are hampering the deployment of
deep learning methods in practice:

1. The lack of background knowledge in machine learning and deep learning makes it
difficult for the ecological community to understand the mechanisms of deep learning
methods in wildlife recognition. Therefore, it is hard for people in the fields to figure
out the reasons for failures (i.e., misclassifications) and make meaningful adjustments
to previous models to adapt to specific requirements of different studies and data sets.

2. Most of the previous deep learning studies mainly focus on reporting the performance of
their approaches while ignoring the challenges from real-world data sets that can limit
the model performance. For example, in Norouzzade et al. [85], the data set in their
experiments were artificially balanced. Likewise, in Gomez et al. [137], the authors
excluded classes with limited training images to preserve the model performance. This
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is especially true in the computer vision community, where most of the studies only
focus on the performance of standard benchmarks (e.g., ImageNet [27] and Microsoft-
Common Object data set [70]), which usually have artificial properties like balanced
class distributions and high image quality. However, the challenges in real-world data,
such as imbalanced distribution, low image quality, and long-term data expansion,
are often the limiting factors of the deployment of deep learning models and require
extensive discussion.

In contrast to previous studies, in this dissertation, we focus on three questions that lack
enough discussion:

1. How can we interpret the hidden mechanisms behind deep learning, particularly in
wildlife recognition?

2. What are the challenges that limit the performance of deep learning in practice?

3. Considering the practical challenges, how can we build a deployable wildlife recognition
system in the fields?

Summary of chapters
In the first chapter, we explain how deep learning models recognize wildlife from imagery.
First, we deconstructed the features used by a CNN that we trained to identify 20 different
species in more than 100,000 annotated wildlife images obtained from a national wildlife
park in Mozambique. Through this deconstruction, we show that the features used by AI
models in wildlife recognition were similar to, but in some cases, different from those used
by humans. We also provide visualizations of feature space structures in the form of a visual
similarity tree that presents a clear view of how the AI model in our experiment perceived
similarities and differences among species.

After discussing the mechanisms of deep learning, in the second chapter, we identify three
major challenges faced in automatic wildlife recognition: 1) extremely imbalanced data dis-
tribution, 2) annotation uncertainty in categorization, and 3) continuous data expansion. We
also present solutions addressing these challenges through a case study of avian recognition
with data collected from two over-water study sites, the Atlantic Ocean near Cape Cod, MA
and Lake Michigan, MI. Our objective is to demystify the affecting factors of AI recognition
performance and demonstrate the flexibility of deep learning methods.

Finally, in the third chapter, we propose an iterative human and automated recognition
framework that makes AI systems deployable with efficient human-in-the-loop and imperfect
classification models. We address two challenges discussed in the second chapter with our dy-
namic recognition framework: imbalanced data distribution and continuous data expansion.
As a case study, this framework was applied to a long-term, large-scale camera trap project
from Gorongosa National Park, Mozambique. Because of the necessity of human annotation
for novel species, the goal of our framework is to minimize the need for human intervention
by applying human annotation solely on difficult images or novel species while maximizing
the recognition performance of each model update procedure when new data are collected.



4

With a synergistic collaboration between humans and machines, the role of deep learning
is transformed from a remote tool that does all the work to an adaptive tool that vastly
relieves the burden of human annotation. In return, the incorporation of human-in-the-loop
enables efficient and constant model updates.
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Chapter 1

Insights and approaches using deep
learning to classify wildlife
Zhongqi Miao1,2, Kaitlyn M Gaynor1, Jiayun Wang2,3, Ziwei Liu2,
Oliver Muellerklein1, Mohammad Sadegh Norouzzadeh4, Alex
McInturff1, Rauri C K Bowie5, Ran Nathan6, Stella X Yu2,3, Wayne
M Getz1,7,

This chapter is published in Scientific Report [82] and is included as a dissertation
chapter with permission from co-authors.
1Dept. Env. Sci., Pol. & Manag., UC Berkeley, CA, United States
2International Comp. Sci. Inst., UC Berkeley, 1947 Center St, Berkeley, CA,
United States
3Vision Sci. Grad. Group, UC Berkeley, CA, United States
4Dept. Comp. Sci., U. Wyoming, WY, United States
5Dept. Integr. Biol. & Museum of Vertebrate Zoology, UC Berkeley, CA, United
States
6Dept. EEB, Alexander Silberman Inst. Life Sci., Hebrew U. Jerusalem, Givat Ram,
Israel
7Sch. Math. Sci. Univ. KwaZulu-Natal, South Africa
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Abstract

The implementation of intelligent software to identify and classify objects and individuals in
images is a technology of growing importance to operatives in many fields, including wildlife
conservation and management. However, to non-experts, the methods can be abstruse and
the results mystifying. Here, in the context of applying cutting-edge methods to classify
wildlife species from camera trap data, we shed light on the methods themselves and the
types of features these methods extract to make classifications. The current state of the art
is to employ deep learning with convolutional neural networks (CNNs). We outline these
methods and present results obtained in training a CNN to classify 20 African wildlife species
with an overall accuracy of 83.0% from a dataset containing 111,467 images. We demonstrate
the application of a class activation mapping procedure to extract the most salient pixels
in the final convolution layers. We show that in our experiment, these pixels highlight
features in particular images, in some cases, were similar to those used to train humans to
identify animal species. Further, we used Mutual Information to identify the neurons in the
final convolution layers that consistently responded most strongly across a set of images of
one particular species. We then interpret the features in the images where the strongest
responses occurred and present dataset biases revealed by these extracted features. We also
used hierarchical clustering of feature vectors associated with each image to produce a visual
similarity dendrogram of identified species. Finally, we illustrate the relative unfamiliarity
of test images (i.e., relative feature distances to the feature centroids of known species) to
demonstrate the capacity of CNNs to recognize unknown species.



7

Acknowledgements
Thanks to T. Gu, A. Ke, H. Rosen, A. Wu, C. Jurgensen, E. Lai, M. Levy, and E. Silverberg
for annotating the images used in this study and to everyone else involved in this project.
Data collection was supported by J. Brashares and through grants to KMG from the NSF-
GRFP, the Rufford Foundation, Idea Wild, the Explorers Club, and the UC Berkeley Center
for African Studies. We are grateful for the support of Gorongosa National Park, especially
M. Stalmans, in permitting and facilitating this research. ZM was funded in part by NSF
EEID Grant 1617982 to WMG, RCKB, and RN and was also supported in part by BSF
Grant 2015904 to RN and WMG. Thanks to Z. Beba, T. Easter, P. Hammond, Z. Melvin,
L. Reiswig, and N. Schramm for participating in the feature survey.



8

Introduction
Collecting animal imagery data with motion-sensitive cameras (camera traps) is a minimally
invasive approach to obtaining relative densities and estimating population trends in animals
over time [77, 97]. It enables researchers to study their subjects remotely by counting animals
from the collected images [13]. However, images are not readily analyzable in their raw form
due to their complexity, and relevant information must be visually extracted. Therefore,
human labor is currently the primary means to recognize and count animals in images. This
bottleneck impedes the progress of ecological studies that involve image processing. For
example, in the Snapshot Serengeti camera trap project, it took years for experts and citizen
scientists to manually label millions of images [85].

Deep learning methods [65] have revolutionized our ability to train computers to recognize
all kinds of objects from imagery data, including faces [129, 73] and wildlife species [85, 128,
140]. It may significantly increase the efficiency of associated ecological studies [137, 85].
In our quest to demystify the methods, it would be useful to have machines articulate the
features they employ to identify objects [94, 17]. This articulation would not only allow
machines to communicate more intelligently with humans but may also allow machines to
reveal the weakness of the methods, dataset biases, and cues that humans are currently
not using for object identification, which could then make humans more effective at such
identification tasks. However, we must identify the human-understandable visual features
machines use to classify objects before we can do this. To the best of our knowledge,
none of the existing studies that use deep learning for animal classification concentrate on
this issue. As such, they lack the necessary transparency for effective implementation and
reproducibility of deep learning methods in wildlife ecology and conservation biology.

To identify such features in the context of classification of wildlife from camera trap data,
we trained a standard Convolutional Neural Network (CNN) [64, 140] using a deep learning
algorithm on a fully annotated dataset from Gorongosa National Park, Mozambique, that
has not previously been subjected to machine learning. After training, we interrogated our
network to understand better the features it used to make classifications by deconstructing
the features on the following three aspects of our implementation: 1) localized visual features,
2) common within-species visual features, and 3) interspecific visual similarities (Figure 1.1).

We used Guided Grad-CAM (GG-CAM)—a combination of Guided Back-propagation
(GBP) [119] and gradient-weighted class activation mapping (Grad-CAM) [111]—on the
last convolutional layer of our trained network to extract localized visual features of single
images. We can obtain indirect reasons for the CNN classifications by inspecting the results.
In addition, we conducted a relatively informal experiment that compared extracted features
with visual descriptors used by human annotators to identify species in our image sets of
corresponding animal species. We found that, to some extent, the features used by the CNN
to identify animals were similar to those used by humans. Next, we used Mutual Information
(MI) [8, 78] to generalize within-species features as an extension of the localized visual
features of single images. These generalized features revealed inner biases of the dataset.
Then, we used hierarchical clustering [105] on the CNN feature vectors to further inspect
the visual similarities between animal species learned by the CNN. Again, we found that
the relative visual similarities that emerged during the training process were similar to how
humans perceived animal visual similarities. Finally, we measured the relative unfamiliarity
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Figure 1.1: Overview of training and interpretations. We trained a standard CNN (VGG-
16) on a camera trap dataset collected from Gorongosa National Park, Mozambique, to clas-
sify/recognize animals species. To interpret the mechanisms behind the recognition, first, we used
Guided Grad-CAM (GG-CAM) to find the localized visual features extracted by the CNN from the
images. Next, we used Mutual Information (MI) on the neurons of the last convolutional layer to
generate common within-species features of each species. Finally, we used hierarchical clustering
on the feature vectors to study the relative interspecific visual similarities of each species in the
dataset.

of both known and unknown (i.e., novel) animals species to the CNN. The results imply
that visual similarities can be used to identify visually distinct unknown animal species. In
the Discussion section, we provide a brief example of how interpretations of CNNs can help
understand the causes of misclassification and make potential improvements to the method.
We also present results using a different CNN architecture (ResNet-50 [46]) to demonstrate
the generalization of our observations.
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Background

Camera trapping

Camera trapping has become an increasingly popular tool for remote wildlife monitoring [79].
It is a low-cost method for gathering data on an entire wildlife community and is especially
useful for studying rare, cryptic, or nocturnal species, including many species of conserva-
tion concern [10]. Long-term camera trap datasets can be useful for monitoring trends in
populations over time, and further analyses enable the estimations of relative densities and
abundances across time and space [122]. Camera traps set across spatial gradients of envi-
ronmental heterogeneity can also be used to understand environmental and anthropogenic
drivers of wildlife distributions. Analyses can range from simple statistical tests (e.g., Anal-
ysis of Variance of relative activity across habitat types) to complex models (e.g., Bayesian
hierarchical occupancy models that account for imperfect detection and incorporate multiple
predictors of occupancy and detection [59, 103]). Finally, images or videos from camera traps
provide insights into animal behavior, including movement and migration patterns, foraging
and anti-predator vigilance, or reactions to experimental stimuli [13]. However, in all of these
cases, camera trap studies are limited by the inefficiencies of manual data processing. Deep
learning with CNNs has proven to improve the efficiency of relevant studies drastically. In
this chapter, we interpret the mechanisms of deep learning in detail.

Deep learning in camera trap classification

Deep learning is a subdomain of machine learning that uses algorithms inspired by biological
neural networks [65]. It has gained much attention among ecologists in recent years [144],
with animal species identification from camera trap images using CNNs being one of the most
popular applications [18, 85, 137, 114, 123, 140]. Chen et al. [18] made the first attempt
to classify camera trap images with deep learning methods automatically. They achieved
only 38% test accuracy on their 20,000-image dataset and suggested that, with enough
training data, deep learning can surpass other methods. Gomez et al. [137] harnessed deep
learning with transfer learning, a method of model fine-tuning, to identify animal species in
the Snapshot Serengeti dataset [148, 124] and achieved over 80% test accuracy using large
amounts of data. Further, Norouzzadeh et al. [85] trained multiple CNN architectures on a
similar dataset as Gomez et al. and achieved a test accuracy of over 90%. However, to our
knowledge, there are no studies explicitly explaining the mechanisms of deep learning that
facilitate the classification of animals.

Basic mechanisms of CNNs

Convolutional neural networks (CNNs) are one of the most frequently used deep networks in
computer vision and deep learning. From AlexNet [60] to VGG [115] and ResNet [44], the
capacity of modern CNN architectures has advanced rapidly, resulting in high recognition
performance that makes various real-world applications possible. Modern CNN architectures
typically have three types of layers—-convolutional layers, pooling layers, and fully-connected
layers-—which gradually transform an input image into a predicted category label. For in-
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stance, the VGG-16 network (the architecture used in this paper) has 13 convolutional layers,
5 pooling layers, and 3 fully-connected layers. Convolutional layers in CNNs consist of lo-
cal filters or neurons and are designed to capture spatially-distributed local traits such as
edges, parts, and textures [150]. Pooling layers account for the larger receptive fields of the
deeper convolutional layers, i.e., the subsequent convolutional layers assemble the previously
learned local traits into more globally-perceived shapes and configurations [153]. Finally,
fully-connected layers abstract all of the local and global traits/features into high-level se-
mantic concepts like categories and attributes [73]. All the parameters in the CNNs are
learned by minimizing the errors between predictions and ground-truthed labels through a
layer-by-layer updating process called back-propagation. In this chapter, we focus on inter-
preting the inner representations of CNNs and examining the relationship between neurons
and ecological data.

Interpretable deep learning

Though deep learning has achieved impressive performance on many visual recognition tasks,
its “black-box” mechanism makes it hard for users to understand the underlying recognition
process. To alleviate these drawbacks, researchers have developed various methods towards
interpretable deep learning by decomposing and organizing the internally learned features.
Representative works include GG-CAM [111] and network dissection [152], which localize
and extract meaningful parts and regions that are coherent to human perception and rea-
soning [63]. The interpretable deep learning techniques have been successfully applied to face
analysis [73], scene understanding [153], chest radiograph diagnosis [98], and plant species
identification [110, 141]. In this chapter, we leverage the recent advances in interpretable
deep learning to shed light on deep learning-based wildlife recognition and provide useful
practices and new insights for future deployment in ecological fields.

Data
The dataset used in this chapter was collected from Gorongosa National Park, Mozambique.
It contains a total of 30 animal species. We used data from the 20 most commonly pho-
tographed mammal species to train our model for higher training performance and more
accurate feature extraction. The 20 species include:

1. Buffalo (African buffalo, Syncerus caffer)

2. Elephant (African elephant, Loxodonta africana)

3. Hare (African savanna hare, Lepus microtis)

4. Baboon (Papio cynocephalus)

5. Wildebeest (Blue wildebeest, Connochaetes taurinus)

6. Bushpig (Potamochoerus larvatus)

7. Bushbuck (Cape bushbuck, Tragelaphus sylvaticus)
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8. Civet (Civettictis civetta)

9. Reedbuck (Southern reedbuck, Redunca arundinum)

10. Porcupine (Crested porcupine, Hystrix cristata)

11. Kudu (Greater kudu, Tragelaphus strepciseros)

12. Impala (Aepyceros melampus)

13. Genet (Large-spotted genet, Genetta tigrina)

14. Hartebeest (Lichtenstein’s hartebeest, Alcelaphus buselaphus)

15. Nyala (Tragelaphus angasii)

16. Oribi (Ourebia ourebi)

17. Sable Antelope (Hippotragus niger)

18. Vervet Monkey (Chlorocebus pygerythrus)

19. Warthog (Phacochoerus africanus)

20. Waterbuck (Kobus ellipsiprymnus).

The total number of images of the 20 most common animal species is 111,467, and the
distribution of the 20 species is illustrated in Figure 1.2. There are 6,596 images (around
6% of the dataset) with multiple animal species in the same scene (i.e., multi-labeled). We
do not have specific preprocessing for the multi-label images because we want the whole
training process to be as realistic as possible, where misclassifications caused by current
data storage protocols of multi-label data can happen. Details of data background and
training-validation-testing split are reported in Appendix A.

The rest of 10 species were used solely for performance evaluation purposes. These 10
species are:

1. Aardvark (Orycteropus afer)

2. Bushbaby (Brown greater galago, Otolemur crassicaudatus)

3. Eland (Taurotragus oryx )

4. Honey Badger (Mellivora capensis)

5. Lion (Panthera leo)

6. Samango (Cercopithecus albogularis)

7. Serval (Leptailurus serval)

8. Ground Hornbill (Southern ground hornbill, Bucorvus leadbeateri)

9. Pangolin (Temminck’s ground pangolin, Smutsia temminckii)

10. Rodent (multiple rodent species).
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Figure 1.2: Distribution of the 20 most abundant animal species. More than 60% of the
images are from the first three species.

Model interpretations
Before interpreting a CNN, we firstly trained a standard CNN (VGG-16 [115]) on the 20 most
abundant species. Figure 1.3 shows the test performance of our trained model. The average
per-class test accuracy was 83.0%, ranging from 95.2% for Civet to 54.3% for Reedbuck.
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Figure 1.3: Animal classification accuracy and data distribution per-species. Reedbuck
and Kudu are the two species that had the lowest test accuracy (54.3% and 67.0%, respectively).
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Interpretation 1: Localized feature visualization

After the model was trained, we used GG-CAM, a method that combines the outputs of
GBP [119] and Grad-CAM [111], on the last convolutional layer of our model (see Appendix
A for implementation details). Specifically, in our experiment, Grad-CAM captured the most
discriminative image patches, GPB captured visual features both within and outside of the
focal Grad-CAM patches, and, in combination, GG-CAM captures the features most salient
to the actual recognition process (Figure 1.4). When making correct classification, the CNN
could extract species-specific features from the input images, such as the white spots and
the white stripes of the Nyala image in Figure 1.4.

Figure 1.4: Comparison of outputs from Grad-CAM, GBP, and GG-CAM. Once trained,
any image (leftmost panel) can be overlaid with its Grad-CAM heat map (left center panel) to
identify the region of interest to the CNN. GBP identifies the most important visual features in
the pixel space to our CNN (center right panel), and its output can be weighted by the Grad-CAM
heat map to produce GG-CAM output seen in the rightmost panel. Note that in this Nyala image,
GBP is less discriminative than GG-CAM: both highlight the stripes of the nyala, whereas GPB
includes non-species-discriminative tree branches and legs.

Next, we inspected the GG-CAM outputs in order to obtain information on the reasoning
of deep learning classification [153, 151]. We conducted a relatively informal assessment of
similarity matching of the features extracted by GG-CAM to those most salient to human
experts (i.e., visual descriptors, Figure 1.5). The matching was agreed upon by at least
2 of 4 authors (ZM, KMG, ZL, and MSN). Details of the generation of the human visual
descriptors are reported in Appendix A. Figure 1.5 shows that to some extent, the trained
CNN used features similar to those used by experts to identify animal species in our images.
Specifically, Figure 1.5-Baboon shows that our CNN used faces and tails to identify Baboon
images. Both of the two features were also used by human experts to identify Baboon.
In Figure 1.5-Impala, besides the black streaks on the back ends, the line separating the
colors of the upper body from the white underbelly, and the S-shaped horns, the CNN also
considered the black spots between the rear legs and bellies of Impala as a discriminative
feature. Although not included as one of the most-used human visual descriptors, this feature
is a good example of a feature traditionally overlooked by humans but now identified by our
CNN as salient. More challenging examples of Reedbuck can be found in Figure 1.6. They
indicate that the poor test performance of Reedbuck (54.3%) can be caused by the lack of
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discriminative visual features. We also calculated the Dice Similarity Coefficient (DSC) [118]
between machine extracted features and human visual descriptors to provide a quantitative
sense of how similar these two sets of features are for each species. The closer the DSC
value is to 1, the more similar machine extracted features are to human visual descriptors.
(Figure 1.5 and 1.6; Appendix A).
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Figure 1.5: GG-CAM generated localized discriminative visual features of randomly
selected images of Baboon and Impala. For Baboon, the CNN focused on faces and tails. For
Impala, the CNN used the contrast between the white underbelly and dark back, black streaks
on the rear, and black spots between the rear legs and underbelly. Most of the features extracted
by the CNN had counterparts (similar focal visual components) in the human visual descriptors
(indicated by the colors and agreed upon by at least 2 of 4 authors).
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Figure 1.6: Localized features of Reedbuck. The extracted features of Reedbuck images (e.g.,
ungulate body shape, black circular patches under ears, white underbelly, and dark lines on legs)
were not as discriminative compared with features of other species, such as the black stripes of
Impala and white stripes of Nyala. This might also be the reason why the class accuracy of
Reedbuck was relatively poor.
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Interpretation 2: Common within-species features

Next, we used Mutual Information (MI) [8, 78] to extend the features of single images to
within-species features of each animal species. We calculated the MI scores for each of the
neurons in the last convolutional layer of our CNN to indicate their importance to all images
of one of the selected species (implementation details are reported in Appendix A). In short,
for each of these neurons, we obtained 20 species-specific MI scores from 6,000 randomly
selected training images (300 images of each species). For each species, we identified the 5
neurons in the last convolutional layer that produced the 5 highest scores. We then identified
the top 9 “hottest” 60x60 pixel patches (within-species features) to which each of these top
5 neurons responded in each image (e.g., Figure 1.7). These features generalized across all
images within the same species (see Appendix A for examples of common within-species
features of all species). Most results were associated with distinguishable visual features of
the animals, for example, black spots of Civet, trunks of Elephant, quills of Porcupine,
and white stripes of Nyala.

However, visual similarities of animal species are not the only information our CNN
used to identify species. The CNN also used information such as trees in the background
to identify species frequenting woodlands, especially when most of the images were from
similar environments or the same camera trap locals (e.g., image patches of the top 1 neuron
of Porcupine in Figure 1.7). Reedbuck in Figure 1.7 is another good example. Image patches
of the top 4 neuron are mostly the same. This is because many of the Reedbuck images were
taken by the same camera, which produced common backgrounds. This information reflects
the inner bias of the dataset. For example, when most of the images of a class were taken
from similar camera locals (i.e., backgrounds of the images could be similar), our model did
not have to learn species-specific features during training, and the generality of the CNN was
largely degraded [131]. Enhancing CNN’s ability to focus more on target objects/animals is
a future direction to improve the generality of animal classification.
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Figure 1.7: Image patches that responded most strongly to the 5 neurons with the
highest MI scores of Porcupine and Reedbuck. For each row/species, the leftmost set of 9
60x60-pixel patches was extracted from 9 camera trap images that include a species of interest
and had the highest responses to the corresponding neuron. In each of the 9 cases, the extracted
patches were centered around the “hottest” pixel (i.e., highest response) of the neuron (in the last
convolutional layer of our CNN) that had the highest MI score for the said species class. The MI
scores were calculated using 6,000 randomly selected training images (300 images per class). The
remaining 4 sets of 9 patches were equivalently extracted for the neurons with the next 4 highest MI
scores. These patches provide a sense of the within-species features to which the neuron in question
responded. The higher the class accuracy, the more closely correlated these image patches are for
the species of interest. For example, in the relatively accurately classified Porcupine images (89.2%
test accuracy), the first neuron (Top 1 of the upper row) responded to palm plants that appeared in
most of the training images that also contained porcupines. The second neuron (Top 2) responded
to the quills, while the third neuron (Top 3) responded most strongly to bodies with faces. On
the other hand, in a much less accurately identified Reedbuck set, the first neuron (Top 1 of the
lower set) responded to branch-like structures, including tree limbs and horns. The patterns in these
patches are less consistent than the Porcupine patches. Note that some sets of patches are primarily
backgrounds (e.g., Top 1 upper row and Top 4 lower row), from which we can infer that our CNN
learned to associate certain backgrounds with particular species. Such associations, however, only
arise because particular cameras produce common backgrounds for all their images, thereby setting
up a potential for a camera-background and species correlation that can well disappear if additional
cameras are used to capture images. Similar sets of images are illustrated for all other species in
Appendix A.
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Interpretation 3: Interspecific visual similarities

Then, we generated a visual similarity dendrogram for all species by applying hierarchical
clustering [105] to the CNN feature vectors of 6,000 randomly selected training images,
i.e., the outputs of the last fully-connected layer (which is of dimension 4,096 in Euclidean
space) of our trained CNN (see Appendix A for implementation details). This dendrogram
(Figure 1.8) is an abstract representation of how images of species are separated in the
feature space of our CNN. It also provides a means for quantifying how visually similar the 20
animal species are to our trained CNN. In the dendrogram, similar animals are measurably
closer together than visually distinct ones (e.g., striped versus spotted; long-tailed versus
no-tail), irrespective of their phylogenetic distance. Thus, though most of the antelopes are
grouped (from Sable Antelope to Reedbuck), the large bull-like herbivores (Wildebeest
and Buffalo) and pig-like mammals (Warthog, Porcupine, and Bushpig) are also grouped
together even though they may belong to different families or orders (Figure 1.8).

A well-learned feature vector space can also help identify images that differ in some way
from those on which the CNN has been trained (i.e., known v.s. unknown) [62, 138]. To ex-
amine the difference between known and unknown species to our CNN, we incorporated the
10 excluded rarer animal species (i.e., unknown species) into the testing data. Then we im-
plemented a 10-round random selection of each species to measure the relative unfamiliarity
of both known and unknown species to our CNN. Specifically, in each round, we randomly se-
lected 20 testing images of the 30 animal species and then calculated the Euclidean distances
of their feature vectors to the 20 feature centroids of known species (calculated using training
samples). The relative unfamiliarity of each class was calculated as the mean distance of
the 20 testing images to their closest feature centroids across the 10-round random selection
(Fig. 1.9). The intuition is that the more familiar the species are to the network, the closer
the average distances are to 1 of the 20 feature centroids of training data. The known species
had relative unfamiliarity values ranging from 0.95 to just over 1.1, with Elephant being the
largest at 1.14. We set this Elephant value to be our nominal unfamiliarity threshold and
found that 7 of the 10 species fell above it (i.e., were less familiar to our trained CNN than
any of the known species; viz., Pangolin, Honey Badger, Serval, Bushbaby, Rodent, Ground
Hornbill, and Lion). Three of the unknown species (viz., Samango Monkey, Aardvark, and
Eland) that were considered familiar to our model appear to share features with the 20
known species (e.g., monkeyness: Samango Monkey unknown and Vervet Monkey known;
antelopeness: Eland unknown, Hartebeest, Wildebeest, and Sable Antelope known).
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Figure 1.8: Visual similarity dendrogram/tree of the feature space of our trained CNN.
The similarity tree is based on hierarchical clustering of the feature vectors of the last fully-connected
layer of our CNN. The leaves represent feature vector centroids of 300 training images of each species,
and their relative positions in the tree indicate the Euclidean distances between these centroids in
the feature space. In the similarity tree, the more similar two species are to our CNN, the more
tightly coupled they are in the tree. For example, green, purple, and brown branches correspond
to three primary clusters that appear to be a small to medium-sized antelope cluster, an animal-
with-prominent-tail or big-ears cluster (though Baboon seems to be an outlier in this group), and
a relatively large body-to-appendages group (with Waterbuck as the outlier in this group). When
the feature vectors of unknown animal species are placed in the tree (e.g., the red branch of Lion),
sometimes they can differ significantly from those of the known species.
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Figure 1.9: Relative unfamiliarity of the 30 species (including the 10 unknown species)
to the CNN. 20 species were used to train the CNN (known species—see Fig. 1.8), and then 10
additional species (unknown species) were tested to see how their average feature vectors (averaged
across 20 different exemplar photographs for each species) fell within the feature vector space. 7 of
the 10 unknown species had average feature vectors yielding a relative unfamiliarity value above our
nominal unfamiliarity threshold. The threshold is defined as the known species having the highest
relative unfamiliarity value (Elephant in our experiment).
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Discussion

Misclassifications

Understanding the mechanisms of deep learning classifications of camera trap images can help
ecologists determine the possible reasons for misclassifications and develop intuitions of deep
learning, which is necessary for method refinement and further development. For example,
Figure 1.3 shows that Reedbuck was the least accurately classified species by the CNN. The
classification confusion matrix [32] (see Appendix A) reveals that many Reedbuck images
were classified as Oribi (8%), Impala (12%), and Bushbuck (12%). On the other hand,
Figure 1.8 shows that Reedbuck is close to Oribi, Impala, and Bushbuck in the dendrogram,
which partly explains the reasons for the misclassifications because the CNN considered these
4 species similar to each other. Further, the localized visual features of the misclassified
images can provide more detailed information on possible reasons for misclassifications. For
example, Figure 1.10 shows that although the CNN could locate the animals in most of the
images, it was challenging for the CNN to classify the images correctly when the distinctive
features of the species were obscured or multiple species were in the same scenes.

Comparisons with ResNet-50

Finally, we present the results using ResNet-50 [45], another widely used CNN architecture
in computer vision with much more layers but fewer parameters than VGG-16, to demon-
strate the generalization of our observations. The classification performance is reported in
Table 1.1, where ResNet-50 was slightly better than VGG-16, with a 0.5% improvement on
the micro accuracy and a 0.2% improvement on the macro accuracy.

Table 1.1: Test accuracy of ResNet-50 and VGG-16

Metric Accuracy (ResNet-50) Accuracy (VGG-16)
Overall micro accuracy: 88.1 % 87.5 %
Overall macro accuracy: 83.2 % 83.0 %

Next, we performed the GG-CAM analysis using the trained ResNet-50 model on the
same input images in Figure 1.5. From Figure 1.11, we observe that both ResNet-50 and
VGG-16 extracted similar visual features. ResNet-50, as mentioned in the original paper
[45], was more sensitive to edges compared to VGG-16, and for the Baboon images, it was
less sensitive to the warm colors.

Then, we used the same set of images for the VGG-16 MI experiments to generate the
MI results for ResNet-50. By comparing the image patches (Figure 1.12), we observe that,
although different by appearance, ResNet-50 also identified quills (Top 3 and Top 5) and
heads (Top 1) of Porcupine. For Reedbuck images, the extracted features were relatively
random, and the class accuracy was 1.2% lower than VGG-16.

Finally, we used the same set of images used for interspecific similarity experiments to
generate hierarchical clustering results for ResNet-50. ResNet-50, however, appears to be
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Figure 1.10: Examples of Reedbuck images that were misclassified as Oribi, Impala, and
Bushbuck, with corresponding localized visual features. These examples show that although
the CNN could locate the animals in most images, it was hard for the machine to find distinctive
features from: 1) images with animals that were far away in the scene; 2) over-exposed images;
3) images that captured only parts of the animal; and 4) images with multiple animal species. In
many of these images, the misclassified species are indeed present in the scenes and are often in the
foreground. This problem is an artifact of the current labeling process and remains to be resolved
in the future. For example, the animal in the leftmost image on the second row that was classified
as Impala is an Impala. The CNN correctly classified this image based on the animal. However,
this image was labeled as Reedbuck because the extremely small black spots far in the background
are Reedbuck. When two species appear in the same scene, the same image was saved twice in the
dataset with different labels corresponding to different species in the scene. This labeling protocol
is common in camera trap programs but can confuse CNNs and remains a problem that must be
resolved in the future.

not as good as VGG-16 in forming an antelope group (red branches) of species since both
Baboon and Warthog are in this antelope group.

These three comparative scenarios show that ResNet-50 and VGG-16 did not have
markedly different performances in learning the visual features for wildlife classification.
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Figure 1.11: Comparison of localized features of VGG-16 and ResNet-50. Although both
models extracted similar features from the same images, ResNet-50 was more sensitive to the edges
of target objects.
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Figure 1.12: Comparison of the MI results of VGG-16 and ResNet-50. ResNet-50 was
also able to extract quills and heads of Porcupine. For Reedbuck images, ResNet-50 focused on
relatively random elements in the images.



27

Figure 1.13: Comparison of hierarchical clustering results of VGG-16 and ResNet-50. The
composition of the classes is somewhat different between the VGG-16 and ResNet-50 dendrograms,
with the former having a more coherent antelope group (red branches) than the latter.

Conclusion
Deep learning has become a core component of data science and fields using big data. Ecol-
ogy has been no exception [55, 99]. This shift requires that new methods, including models
from machine learning and artificial intelligence, are accessible and usable by ecologists [22].
This chapter provides practical steps in model interpretation to help ecologists take advan-
tage of deep learning as a cutting-edge approach for future research and overcoming major
methodological roadblocks. The interpretations described in this chapter are steps toward
a more informed use of deep learning methods. For example, future research involving the
training of CNNs to identify individuals in ecological studies, whether for purposes of species
classification, conservation biology, sustainability management, or identification of specific
individuals in their own right [51, 61] (e.g., in behavioral studies) can follow the methods
presented here to identify the sets of features being used to classify individuals. This infor-
mation may then be used in creative ways yet to be imagined to improve CNN training and,
hence, raise the level of performance of CNNs as an aid to analyzing ecological data.
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Abstract

Remote aerial sensing provides a non-invasive, large-geographical-scale technology for avian
monitoring, but the manual processing of images limits its development. Artificial intel-
ligence methods can be used to mitigate this manual image processing requirement. The
implementation of AI methods, however, is limited by several challenges: 1) imbalanced (i.e.,
long-tailed) data distribution, 2) annotation uncertainty in categorization, and 3) dataset
discrepancies across different study sites. Here we use aerial imagery data of waterbirds
around Cape Cod and Lake Michigan to examine how these challenges limit avian recog-
nition performance. We review existing solutions and demonstrate as use cases how meth-
ods like Label Distribution Aware Marginal Loss, hierarchical classification, and FixMatch
address the three challenges. We also present a new approach to tackle the annotation un-
certainty challenge using a soft-fine pseudo-label methodology. Finally, we aim with this
chapter to increase awareness in the ecological remote sensing community of these challenges
and bridge the gap between ecological applications and state-of-the-art computer science,
thereby opening new doors to future research.
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Introduction
Aerial remote sensing technologies are being increasingly used to monitor and survey wildlife
populations [142, 133]. They provide non-invasive tools for detecting, classifying, and as-
sessing the abundance of target sites [80]. Traditional wildlife aerial surveys employ human
observers to conduct visual counts, often from low-flying aircraft. While these methods can
be efficient in surveying large geographic regions, visual observations from low-flying aircraft
are risky (i.e., observation personnel can face life-threatening risks because of low-flying al-
titudes) [107] and are subject to various observer biases such as count bias [100, 34]. In
contrast, aerial remote sensing is a relatively safer alternative that allows flying at a higher
altitude, and the method offers the potential for consistent and reproducible population
survey with the addition of an accurate geo-referenced digital format. In addition, aerial im-
agery surveys conducted at higher altitudes may also reduce animal disturbance [107]. The
major disadvantage of using remote sensing for aerial surveys is that covering large areas can
generate hundreds of thousands of images, thus hundreds of terabytes of data. Therefore,
manually processing remote sensing aerial survey data is time consuming and prohibitively
expensive for many researchers and natural resource agencies [15].

Ecologists are increasingly looking to cutting-edge artificial intelligence (AI) methodology,
such as deep learning and computer vision technologies, to mitigate the need for extensive
manual processing of digital aerial imagery and to improve monitoring efficiency. For ex-
ample, deep learning has now been applied to aid in digital aerial surveys conducted with
various sensor systems, including RGB [50, 72], thermal [21], and other sensor systems [142].
However, real-world digital aerial imagery applications of AI methods must address several
challenges limiting recognition performance. These include: the imbalanced distribution
challenge—extremely imbalanced data distributions that generally lead to poor recognition
performance; the annotation uncertainty in categorization challenge—uncertainty in annota-
tion caused by various reasons such as varying image resolutions of avian individuals; and the
dataset discrepancy challenge—images collected from different study sites (i.e., geographies)
that have different characteristics and classes.

To examine these challenges in detail, we use a case study of two real-world digital aerial
survey datasets of waterbird species: one collected from the Atlantic Ocean near Cape Cod,
Massachusetts, and the other from Lake Michigan near Manitowoc, Michigan, USA. We also
present solutions, accompanied by brief literature reviews for each challenge, focusing on
how the computer science community has previously addressed these types of challenges.
We aim to increase awareness of these challenges within the ecological community, clarify
the factors affecting AI recognition performance, demonstrate the flexibility of deep learning
methods, and promote future research in AI and digital aerial surveys.

Avian recognition

Aerial images of birds may include a few or many individuals depending on resources being
used by those birds and flocking behavior displayed by species-specific bird groups. Thus
implementation of AI methods for identifying the species consists of two distinct tasks (Fig-
ure 2.1): 1.) identifying and cropping out (also referred to as detecting and bounding) all
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the individuals in the image; and 2.) recognizing species and type (e.g., male or female,
sub-adult or adult).

AI cropping methods of birds in aerial images remains to be better developed, although
AI counting of the number of individuals in large aggregations exist [29], automated methods
for delineating trees in aerial images of forests is quite well developed [25], and deep learning
methods have been developed for segmentation of various types of geographical objects (e.g.,
land cover and land use types) from aerial images [139].

In this chapter, we focus on task 2 because task 1 has been addressed by studies like [50].
In other words, we consider only sets of data that consists of images of individuals that have
already been cropped out either manually or through the application of AI procedures. The
task at hand then is to build an AI model that automatically recognizes (i.e., classifies) avian
species from aerial image segments cropped to include only one individual, often at relatively
low levels of resolution.

Figure 2.1: This example shows how a raw aerial image is processed into final species
classification in our case study. Once the raw aerial images are collected, potential objects in
the raw images are detected and bounded with boxes either manually or by automatic detection
tools [50]. We used manual bounding boxes from human annotators in our case study. Once the
potential objects were cropped around the bounding boxes, our task was to build a deep learning
classification model to recognize the actual avian species from these cropped images.

Dataset

For our case study, we used an aerial imagery dataset collected from two study sites over
bodies of water: the Atlantic Ocean near Cape Cod, Massachusetts and Lake Michigan
near Manitowoc, Michigan, USA. After data collection, wildlife experts manually annotated
and cropped images of individual birds (i.e., targets; Figure 2.1). These images were then
passed to a classification algorithm for species classification [72, 40]. The 10,682 individuals
identified in the Cape Cod dataset and 236 identified in the Lake Michigan dataset were
annotated by experts into the six different classes illustrated in Figures 2.2 and 2.3:

1. Unknown Scoters (scoter individuals that human annotators could not distinguish to
the species level)

2. Black Scoter (M. americana)

3. White-winged Scoter (M. deglandi)
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4. Common Eider (Somateria mollissima)

5. Long-tailed Duck (Clangula hyemalis)

6. Non-target Species (all other avian or non-avian individuals not belonging to the
previous classes).

Figure 2.2: The distribution of our dataset is imbalanced. The classes are sorted by the sample
sizes of each class in Cape Cod. The blue, orange and green colors represent training and testing
images from Cape Cod and testing images from Lake Michigan, respectively. In Cape Cod, the
largest class, Common Eider, has over 6,246 training images, while the smallest class, Long-tailed
Duck, only has 17 training images. In other words, the imbalance ratio of the Cape Cod dataset is
367:1. Lake Michigan dataset only has two classes, Long-tailed Duck and Non-target Species,
and it is also imbalanced in terms of class sizes. Long-tailed Duck from Lake Michigan has 231
images, while there are only 5 images for Non-target Species.

Our model was mainly trained on the Cape Cod dataset. Lake Michigan data were used
to evaluate the model’s generalization ability. In other words, we used Lake Michigan data
to examine whether the model trained on the Cape Cod dataset could generalize well on the
Lake Michigan dataset. The details of data pre-processing for the experiments are reported
in the Data Section of the Appendix.

Challenges of avian recognition in aerial imagery

Training with a standard deep learning classification model

We started by applying a standard six-class classification model (i.e., the fundamental clas-
sification model without any additional components designed for tasks other than classifi-
cation) to our Cape Cod dataset because there are six classes (i.e., we treated the Unknown
Scoter and the other two scoter classes as three separate classes). The model we used was
ResNet-50 [46], a common deep learning Convolutional Neural Network (CNN). The test
results from this model are reported in Table 2.1. The implementation and hyperparameter
tuning details are in the Appendix Methods section.

Table 2.1 shows that in the Cape Cod test set, except for the largest class (i.e., most
frequently observed class), Common Eider, which had a 99.0% test accuracy, the remaining
classes did not produce accurate recognition performance with the standard classification
model. Specifically, the two smallest classes (i.e., least observed classes), Long-tailed Duck
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Figure 2.3: The 6 classes in the Cape Cod dataset have a hierarchical relationship. Firstly
Non-target plus 3 target classes—Scoter Super-class, Common Eider, Long-tailed Duck; and
Scoter Super-class could further be categorized/annotated as Black Scoter, White-winged
Scoter, and Unknown Scoter. The reason not all Scoter Super-class images could be further
categorized to the species level was related to image resolution in our dataset—low resolution im-
ages posed significant difficulties for human annotators to make accurate annotations of whether
some images were Black Scoter or White-winged Scoter. Specifically, the average image dimen-
sion of Unknown Scoter was 56×61, while the average image dimensions of Black Scoter and
White-winged Scoter were 100×107 and 96×103, respectively. Unknown Scoter can be consid-
ered a coarse annotation of Black Scoter and White-winged Scoter because it contains images
of either one of the two scoter classes but without species-level annotations. On the other hand,
we note that the Non-target Species class includes images that do not belong to the other five
classes. In other words, images between Target and Non-target Species are mutually exclusive
in our datasets. Class labels used for classification are colored in red.
Table 2.1: The standard classification model trained on the Cape Cod training set
performed poorly on the Cape Cod and the Lake Michigan test sets.

Test accuracy (%)

Species Cape Cod Lake Michigan Cape Cod Lake MichiganTrain # Test # Test #
Unknown Scoter 466 114 - 69.3 -
Black Scoter 341 108 - 55.6 -

White-winged Scoter 45 21 - 9.5 -
Common Eider 6,246 3,172 - 99.0 -

Long-tailed Duck 17 5 231 0.0 0.0
Non-target Species 108 38 5 18.4 20.0

Average accuracy (%) 41.9 10.0

and White-winged Scoter, had only 0.0% and 9.5% test accuracy. This performance in-
consistency is negatively related to the training size of each class. In other words, the fewer
training images a class had, the less accurate the model was. We also tested our model on the
Lake Michigan data, and the performance were also poor. These results indicate that directly
applying a standard classification model on our avian datasets is insufficient to produce good
recognition performance. Next, we discuss the causes of this performance inconsistency in
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the context of the imbalanced distribution, annotation uncertainty in categorization, and
the dataset discrepancies challenges.

Challenge 1: Avian imagery data are naturally imbalanced

Data collected during multi-species surveys tend to have an imbalanced species distribution
(i.e., long-tailed distribution) because of the natural composition of animal communities [93].
Several dominant species are often observed along with many infrequent species that are
sparsely represented in datasets. As illustrated in Figure 2.2, in the Cape Cod dataset, the
largest class had 6,246 training images, while the smallest class only had 17 training images.
This training data distribution imbalance leads to a significant recognition performance
inconsistency. The fewer training images of a particular species that the model has, the
lower the accuracy for that species. In our experiment, the performance was particularly
poor for species with smaller training datasets, such as Long-tailed Duck (17 training
images) and White-winged Scoter (45 training images), which only had 0.0% and 9.5%
test accuracy, respectively (Table 2.1). However, Common Eider, the largest class in the
dataset (6,246 images), had a 99.0% test accuracy.

Challenge 2: Annotation uncertainty in categorization

Sometimes aerial data can be collected from aircraft at various distances from the ground
surface, resulting in varying spatial resolutions as measured by Ground Sampling Distances
(GSD; i.e., the ground distance between the centers of neighboring image pixels), and thus,
the same species may appear at different image resolutions within a dataset. For example,
in the Cape Cod dataset, the average image dimension of Unknown Scoter images was
56×61, while the average image dimention of Black Scoter and White-winged Scoter
were 100×107 and 96×103, respectively. In other words, Unknown Scoter images contain 3-4
times fewer pixels on average. Low resolution images increase human annotators’ difficulties
in making accurate classifications resulting in a coarse annotation rather than individual
species annotation of scoter images. Unknown Scoter is one example of coarsely annotated
class.

Directly incorporating this coarsely annotated class as an independent class confused
the classification models significantly because the model was forced to distinguish similar-
looking avian objects as different classes. In other words, since Unknown Scoter contains
images that can be either Black Scoter or White-winged Scoter, although most Unknown
Scoter images were difficult for human annotators to determine the exact scoter species,
they still share similar visual features with Black Scoter and White-winged Scoter. For
example, Figure 2.4 shows that even though Unknown Scoter and Black Scoter had rel-
atively sufficient training images (466 and 341 training images, respectively), 40.7% Black
Scoter images were misclassified as Unknown Scoter, and 23.7% Unknown Scoter images
were misclassified as Black Scoter. In addition, 61.9% White-winged Scoter were mis-
classied as Unknown Scoter.
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Figure 2.4: On the Cape Cod test set, the model generally performed poorly because
of the imbalanced data distribution and there exist substantial recognition confusion
among the three scoter classes. This is the confusion matrix of the standard model we trained on
the Cape Cod dataset. The rows of the matrix represent the actual classes, the columns represent
the predicted classes, and the values represent the percentages of predictions of each class. The
matrix shows that our model did not perform well on smaller classes like Long-tailed Duck and
White-winged Scoter. In addition, as shown in the top left corner, the three scoter classes were
confused with each other.

Challenge 3: Dataset discrepancies often arise among different study sites

Besides the imbalanced distribution and annotation uncertainty challenges, in practice, eco-
logical monitoring projects often expand over time [121]. New monitoring and study sites are
added, leading to discrepancies among datasets in lighting conditions, background environ-
ment, atmospheric conditions, image capturing distances, and animal species compositions.
For example, in our case study, Cape Cod and Lake Michigan datasets have different GSDs,
which result in different image resolutions and appearances of avian individuals from the
same species (Figure 2.5). The Long-tailed Duck images have 3-4 times the resolution
(number of pixels) of Lake Michigan images and thus contain more visual details and fea-
tures. As a result, a classification model trained on low resolution images (Cape Cod) may
perform poorly on images with higher resolution (Lake Michigan). For example, the stan-
dard model trained on Cape Cod dataset only had a 10.0% test performance on the Lake
Michigan dataset (Table 2.1). We demonstrate in the following Methods and results Section
that this poor performance did not only come from imbalanced distribution.

In addition to image appearance discrepancies in datasets from different study sites, ex-
panding surveys or monitoring programs can also change the composition of animal species
recorded [58]. For example, as data collections continue over time, previously undetected
species may also be encountered [96] (e.g., less frequent species [93], recolonizing species [81],
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Figure 2.5: Long-tailed Duck images from Lake Michigan are 3-4 times larger than those
from Cape Cod.

reintroduced animals [130, 101], or invasive species that are harmful to the ecosystem [20,
14]). When novel species are introduced, our standard classification model is no longer effec-
tive because conventional AI methods require datasets to have fixed numbers of classes [5].
Therefore, novel species are typically unrecognizable.

Methods and results
In this section, we provide brief literature reviews of how the computer science community
addresses the challenges mentioned in the previous section and present solutions to each
challenge.

Solutions for the imbalanced distribution challenge

Imbalanced recognition and long-tailed recognition are areas of machine learning and com-
puter vision research that address imbalanced classification problems [74, 12, 143]. Common
methods include:

1. Training data resampling: artificially balancing training datasets by either sampling
more images from smaller classes (i.e., up-sampling) or sampling fewer images from
larger classes (i.e., down-sampling) [43].

2. Training loss re-weighting: assigning different weights (i.e., training focus) to the
training loss functions based on the numbers of training images of each class such that
the model can focus more on smaller classes [69, 23, 12].

3. Knowledge transfer: transferring information (such as semantic and visual knowl-
edge) from larger classes to smaller classes such that data from smaller classes can
provide more distinguishable information for better classification performance [74, 56,
154]. For example, Liu et al. [74] proposed a method that utilized information learned
from larger classes to enhance the distinguishability of smaller classes.

4. Model ensemble: ensembling outputs from multiple expert models (i.e., sub-models)
for optimal performance [154, 143, 11].



38

Specifically, Routing Diverse Distribution-Aware Experts (RIDE) and Ally Complementary
Experts (ACE) [143, 11] are the two state-of-the-art methods using modern multi-expert
ensembling methods and have the highest performance on standard imbalanced benchmarks
(such as ImageNet-LT [74]). However, the tuning of multiple expert models involves many
hyperparameters and these methods tend to work better with a larger number of classes
(e.g., species).

For a relatively smaller scale classification task (e.g., six-class classification in our case
study), we used a light-weighted loss re-weighting method called Label Distribution Aware
Marginal loss (LDAM) [12] to address the imbalanced data distribution. Generally speaking,
LDAM calculates class-specific margins (i.e., classification certainty) based on class sample
sizes of each class. In other words, the fewer training samples a class has, the larger the
class-specific margin is, and vice versa. Details of the LDAM we used are reported in the
Method Section of the Appendix.

The classification model with a imbalanced component (LDAM in our experiments) sub-
stantially improved the recognition performance on the Cape Cod dataset over the standard
classification model (Table 2.2). The average class accuracy improved from 41.9% to 75.8%.
The largest gain came from the two smallest classes, Long-tailed Duck and White-winged
Scoter, from 0.0% to 100.0% and 9.5% to 81.0%, respectively. Despite the improvement
in the less abundant classes, the performance of Common Eider dropped by 7.1%, which is
a common phenomenon of imbalanced methods where the performance of large classes is
sacrificed [74, 143].

Table 2.2: The imbalanced model substantially improved the test performance from the
standard model on the Cape Cod test set.

Test accuracy (%)
Species Train # Test # Standard Imbalanced

Unknown Scoter 466 114 69.3 41.2
Black Scoter 341 108 55.6 59.3

White-winged Scoter 45 21 9.5 81.0
Common Eider 6,246 3,172 99.0 91.9

Long-tailed Duck 17 5 0.0 100.0
Non-target Species 108 38 18.4 81.6

Average accuracy (%) 41.9 75.8

The confusion matrices (Figure 2.6) show that the imbalanced model cleared most of the
confusion in Long-tailed Duck and White-winged Scoter because LDAM assigned larger
margins to these classes with limited training samples. However, the imbalanced model still
struggled to perform well on Unknown Scoter and Black Scoter, with only 41.2% and 59.3%
test accuracy, respectively. From Figure 2.6 column (b), it is clear that the confusion within
the three scoter classes was still significant. For example, the imbalanced model misclassified
44% of Unknown Scoter as either Black Scoter or White-winged Scoter. Meanwhile, 31%
Black Scoter and 19% White-winged Scoter were misclassified as Unknown Scoter.
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Figure 2.6: On the Cape Cod test set, the imbalanced model cleared the confusion in
smaller classes, but the confusion among the scoter classes persisted. Specifically, com-
pared to the standard model, the imbalanced model cleared most of the confusion in the lower right
parts of the matrices (especially for Long-tailed Duck, which had limited training images), but
the confusion in the top left corner (where the three scoter classes are located) was still significant.
In other words, the use of the imbalanced component only helped the model to have better per-
formance on classes with limited training samples, such as Long-tailed Duck and White-winged
Scoter.

Solutions for the annotation uncertainty in categorization challenge

Because Unknown Scoter introduced significant confusion to the model and the recognition
of Unknown Scoter does not provide species-level information for downstream tasks like
population modeling, it is more practical to exclude these coarsely annotated data from model
training to eliminate the confusion. However, directly excluding coarsely annotated data is
a sub-optimal solution because images with different resolutions can provide complementary
information that ultimately improves the generalization abilities of classification models [68].
Since Unknown Scoter in our dataset is believed to be the class of relatively low resolution
images of either Black Scoter or White-winged Scoter, these images may still provide
information to improve model performance at the species level, especially when ground-
truthed annotations (i.e., human annotations in this context) are limited. For example,
though the imbalanced model vastly improved the test accuracy of White-winged Scoter
from 9.5% to 81.0% (Table 2.2), there is still space for performance gain by exploiting
information contained in Unknown Scoter.

Hierarchical classification

Classifications using hierarchical classification methods is one of the common options ad-
dressing uncertain and coarse annotations [28]. To demonstrate the effects of hierarchical
classification methods, we split the training process into two stages. In the first stage,
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we merged Unknown Scoter, Black Scoter, and White-winged Scoter data into one sin-
gle super-class, Scoter Super-class, and trained the classification model on 4 indepen-
dent classes (Scoter Super-class, Common Eider, Long-tailed Duck, and Non-target
Species). Then, we trained a separate classifier to classify only Black Scoter and White-winged
Scoter in the second stage (i.e., the same classification model as in the first stage but for
two-class classification). As a result, separate classifiers with grouped Scoter Super-class
in the first stage removed considerable confusion among the scoter classes because the model
did not have to distinguish images among the scoter classes (Table 2.3). In the first stage, the
imbalanced model had a 94.2% test accuracy on the grouped Scoter Super-class. In addi-
tion, the imbalanced model in the second stage produced an average of 92.5% test accuracy
on Black Scoter and White-winged Scoter, which was significantly improved compared
to the six-class experiment (70.2% averaged accuracy on Black Scoter and White-winged
Scoter; Table 2.2 under Imbalanced column).

Next, we combined the two-stage evaluations to examine the effective performance of
Black Scoter and White-winged Scoter because practically, the evaluation performance
of second-stage models depend on the performance of Scoter Super-class in the first-stage
evaluation. We thus considered predictions of Black and White-winged Scoter positive
only when the positive prediction was also positive in the first-stage Scoter Super-class
predictions. As a result, when the evaluation was combined, the average test performance
of the Black and White-winged Scoter significantly dropped from 77.3% to 56.3% using
the standard model and from 92.5% to 51.5% using the imbalanced model (Table 2.3 under
Combined columns).

Further, when the model had imbalanced components (see column Imbalanced under
Combined in Table 2.3), the performance of White-winged Scoter was significantly worse
than the separate evaluation (9.5% when combined versus 90.5% when separate). Because
White-winged Scoter is a class with limited training samples, it did not benefit from the Im-
balanced component when merged with Black Scoter and Unknown Scoter. In other words,
because of the lack of training images, the model could not generalize on White-winged
Scoter and misclassified most of the images in the first stage. Therefore, there were not
enough images for the second-stage model to recognize, even though the second-stage model
performed well separately.

Table 2.3: On the Cape Cod test set, two-stage models performed well separately, but
the combined effective performance was poor.

Test accuracy (%)

Species Train # Test # Separate Combined
Standard Imbalanced Standard Imbalanced

Stage 1

Scoter Super-class 852 242 93.8 94.2 93.8 94.2
Common Eider 6,246 3,172 99.1 93.0 99.1 93.0

Long-tailed Duck 17 5 0.0 100.0 0.0 100.0
Non-target Species 108 38 23.7 68.4 23.7 68.4

Stage 2 Black Scoter 341 108 92.6 94.4 88.8 93.5
White-winged Scoter 45 21 61.9 90.5 23.8 9.5

Average accuracy of Black and White-winged Scoter(%) 77.3 92.5 56.3 51.5

In addition, training with multiple stages can quickly become a scaling and model man-
agement problem if the dataset has multiple super-classes. Each super-class requires an
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independent second-stage model and training process. As the number of super-classes in-
creases, the number of models grows as well, such that the overall training time and model
management efforts are significantly increased.

A novel solution: Soft-fine Pseudo-labels

A better solution is to exploit additional information from coarsely annotated Unknown
Scoter images without including it as an independent class and keep the imbalanced com-
ponent effective on White-winged Scoter at the same time. Therefore, we applied a novel
solution called Soft-fine Pseudo-Labels (SPL) to address the coarse/uncertain annotation
problem that relied only on one stage of training. The method is derived from pseudo-
label techniques, a set of techniques in machine learning that utilize model predictions (i.e.,
pseudo-labels) to improve the generalization ability of machine learning models [66, 117].
Common approaches in this area include:

1. Pseudo-labels with confidence metrics: generating pseudo-labels with arbitrary
confidence metrics, where only high confidence predictions are accepted as pseudo-
labels [66] to train the models.

2. Consistency regularization: models are trained to produce consistent outputs of
the same input (image in this context) with different perturbations (e.g., data augmen-
tation [35] and stochastic regularization like content dropout [120]). In other words,
model outputs of the same input should be the same regardless of the perturbation
such that the models can produce higher prediction confidence and thus pseudo-labels
with better quality [117, 147, 146].

Figure 2.7 illustrates the differences of treating the three scoter classes using our SPL
approach compared to standard and two-stage models. Unlike conventional pseudo-label
approaches that generate pseudo-labels for all possible classes, in our approach, we only use
Unknown Scoter images to generate finer-grained Black and White-winged Scoter pseudo-
labels that are beneficial to model generalization. Specifically, we first normalized the outputs
of the classification model (5 dimension vectors) with a Softmax function [48]. Then we
normalized the values that represent Black Scoter and White-winged Scoter to 1 and set
the other three values to 0 (Figure 2.8). We used these normalized Softmax values as our
soft-fine labels on Unknown Scoter images with an Averaged Binary Cross-entropy (ABCE)
loss, a loss function traditionally used for samples with multiple co-occurring labels [132].

Our SPL approach forces the model to distinguish between scoter versus non-scoter im-
ages because the training signals (i.e., the generated soft-fine pseudo-labels) have zeros on
the dimensions that represent non-scoter classes. In addition, since the generated soft-fine
pseudo-labels had co-occurring labels for both Black Scoter and White-winged Scoter
that were treated independently by ABCE loss, the confusion between these two scoter
classes was also suppressed. The implementation details can be found in the Appendix
Methods section, and the results for our case study are reported in Table 2.4.

If Unknown Scoter is excluded, the task becomes a five-class classification problem. In
our experiment, the average class accuracy of fully excluding Unknown Scoter from training
and testing improved from 41.9% to 53.2% on the standard model and 75.8% to 89.5% on
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Figure 2.7: We graphically depict how the three scoter classes can be classified using dif-
ferent approaches. Under the standard approach, Unknown Scoter is treated as an independent
class. Under the two-stage setting, the three scoter classes are firstly grouped into one super-class,
Scoter Super-class, and then a separate model is trained solely for Black and White-winged
Scoter classification. With our SPL approach, coarsely annotated Unknown Scoter images are
converted to finer-grained pseudo-labels and used to improve model generalization. US. is Unknown
Scoter. BS. is Black Scoter. WS. is White-winged Scoter. SP. is Scoter Super-class.

Figure 2.8: A diagram of our SPL approach to solving the annotation uncertainty chal-
lenge using a novel soft-fine pseudo-labeling method. The soft-fine labels are generated
by normalizing the Softmax outputs of Unknown Scoter images. To generate the soft-fine pseudo-
labels for coarsely annotated Unknown Scoter images, first, we normalized the two values repre-
senting Black Scoter and White-winged Scoter from the Softmax outputs to 1 and set the other
values to zero. Then, the new vectors were used as the pseudo-labels with soft supervision (i.e.,
the supervision values are less than 1) on either Black Scoter or White-winged Scoter. With
this approach, the supervision from Unknown Scoter is not as strong as independent classes but
still relevant to force the model to recognize the images as scoters with higher probabilities than
the other classes. Further, this framework does not rely on multiple stages of training and class
merging, such that the imbalanced model can still be effective on White-winged Scoter.

the imbalanced model compared to the six-class classification results because there was no
confusion from Unknown Scoter (Tables 2.2 and 2.4). On the other hand, incorporating
Unknown Scoter for complementary information with our SPL approach further improved
the test accuracy of White-winged Scoter from 85.7% to 90.5% compared to the imbalanced
model, which did not use Unknown Scoter data during training (column Imbalanced +
SPL in Table 2.4). In addition, performance on classes other than the two scoter classes
was also improved, especially Non-target Species, which increased from 78.9% to 81.6%
compared to the imbalanced model. These improvements indicate that the use of SPL with
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coarsely annotated data not only relieved the confusion among the scoter classes (Black
Scoter and White-winged Scoter) but also among other classes (Figure 2.9). However,
in hierarchical classification, the performance of other classes was almost the same, if not
worse, compared to the six-class classification results (Tables 2.2 and 2.3). Further, the only
additional components to the imbalanced model are the SPL normalization and ABCE loss,
making this approach scalable without requiring multiple stages of training.

Table 2.4: On the Cape Cod test set, our soft-fine pseudo-labeling (SPL) approach
improved the performance of White-winged Scoter from the imbalanced model by ex-
ploiting Unknown Scoter.

Test accuracy (%)
Species Train # Test # Standard Imbalanced Imbalanced + SPL (Ours)

Black Scoter 341 108 96.3 91.7 89.8
White-winged Scoter 45 21 33.3 85.7 90.5

Common Eider 6,246 3,172 99.4 91.2 91.5
Long-tailed Duck 17 5 0.0 100.0 100.0

Non-target Species 108 38 36.8 78.9 81.6
Average accuracy of the two scoter classes (%) 64.8 88.7 90.1

Average accuracy (%) 53.2 89.5 90.7

Figure 2.9: Our SPL approach further reduced the confusion within Black Scoter and
White-winged Scoter from the imbalanced model within the Cape Cod test set. Compar-
ing the top-left corners of the confusion matrices, most of the misclassified White-winged Scoter
images in the imbalanced model were correctly classified with our SPL approach. However, addi-
tional uncertainty can still be introduced to the model because SPL did not provide ground-truthed
supervision (i.e., only model-produced pseudo-labels were provided), which can be the reason of the
slightly degraded performance for Black Scoter, from 91.7% to 89.8%.

Despite the scalability and the exclusion of coarse annotation confusion, the proposed SPL
can sacrifice some performance in the two scoter classes (Black Scoter and White-winged
Scoter) compared to hierarchical classification. For example, the effective test accuracy
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of Black Scoter was 93.5% using two-stage training, while it was only 89.8% using our
soft-fine label approach (Tables 2.3 and 2.4). The uncertainty during SPL training was the
leading cause of this performance drop because the model was trained to identify all species
at once with pseudo-labels (i.e., labels that are not ground-truthed).

Unknown Scoter evaluation

On the other hand, in our five-class classification experiments, we only focused on the test
performance of samples with finer-grained annotations. With our SPL approach, although
we were able to exploit Unknown Scoter data during training, they were also excluded
from testing because of the lack of finer-grained annotations. In addition, since some of
the Unknown Scoter images are too blurry to be recognized, directly applying classification
models to provide fine-grained predictions can be an issue as well (Figure 2.10). How to
efficiently address these blurry images during test time is one of the future research directions.

Figure 2.10: Examples of Unknown Scoter test images predicted as Black Scoter and
White-winged Scoter. Although we can apply our model to assign fine-grained predictions to
Unknown Scoter test images of Cape Cod, it is difficult to evaluate the performance because of the
lack of ground-truthed annotation and low-resolution.

Solutions for the dataset discrepancy challenge

Visual discrepancies

Next, we tested the performance of our SPL model trained from the Cape Cod dataset
on the Lake Michigan dataset. Because of the visual discrepancies between the Cape Cod
and Lake Michigan datasets, the average accuracy of the two classes dropped substantially
from 90.8% to 65.1% (Tables 2.4 and 2.5). Only 50.2% of the Long-tailed Ducks in Lake
Michigan data were correctly classified when the test accuracy on the Cape Code dataset
was 100.0% (Table 2.5 under Imbalanced + SPL column). These results also show that after
the imbalanced distribution challenge was addressed, the model still did not perform well on
Long-tailed Duck from Lake Michigan.

One of the most common approaches to address the challenge of incorporating data from
new study sites is to fine-tune existing models (i.e., transfer learning) with new annota-
tions [148]. In our example, we need to provide sufficient annotated Lake Michigan data to
fine-tune our Cape Cod model such that the model can recognize targets from both study
sites. Although the total image number of the Lake Michigan dataset is relatively small (236
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images in our case study) and thus easy to annotate, the effort and resources needed for
human annotation on larger datasets are not trivial.

Two machine learning techniques that can help an AI classification model adapt to new
sets of data that look different without human annotations are the following:

1. Domain adaptation: this technique adapts models trained from one domain (study
sites in this context) to other domains either with or without annotations [106, 136,
92]. Although they can be recognized as the same classes by humans, images from dif-
ferent domains tend to have different distributions in terms of color, texture, and visual
appearances. These differences result in distribution discrepancies of the learned fea-
ture/latent vectors at the end of CNN models. Thus, distribution confusion is the most
commonly adopted domain adaptation technique. The technique confuses the feature
vector distributions of each domain (usually without class annotations) such that the
models cannot distinguish which domain the feature vectors come from and learn to
utilize more fundamental information (e.g., structural similarities) to make recogni-
tion [134, 49, 75]. While domain adaptation approaches with distribution confusion
may perform better than most other methods, they usually require complicated dis-
tribution matching and confusion techniques. For example, the state-of-the-art Open
Compound Domain Adaptation (OCDA) [75] method requires four stages of training
and tuning and largely relies on considerable training data, which can be too compli-
cated for smaller datasets with a limited number of classes and training data.

2. Semi-supervised learning: This technique is an alternative option and is usually
more straightforward in terms of implementation [66, 117]. Semi-supervised learn-
ing uses unannotated data to improve the generalization ability of AI models, usually
through the generation of pseudo-labels [155]. Intrinsically, similar to the mecha-
nisms of advanced domain adaptation approaches with distribution confusion, semi-
supervised learning also expands the feature vector distribution by learning from unan-
notated data [155]. In practice, when data are collected from new study sites, they
are treated as unannotated data, and pseudo-labels are then generated for fine-tuning
existing models.

Here, we explored how a relatively easy-to-implement semi-supervised learning method,
FixMatch [117], adapted our Cape Cod model to Lake Michigan images. FixMatch is light-
weight because the only extra component required by FixMatch is a two-branch training data
augmentation procedure. It can be easily plugged into our SPL model and other existing AI
models. The details of this method are provided in the Appendix Methods section.

In Table 2.5 we report results of applying FixMatch as the adaptation component to
fine-tuning the Cape Cod model on the Lake Michigan data. Although FixMatch was not
initially designed for domain adaptation (i.e., only for semi-supervised learning tasks), it still
substantially improved the classification accuracy on the Lake Michigan Lake dataset without
any annotations. Compared to our SPL approach without the adaptation component, the
class averaged accuracy went from 65.1% to 80.5%. Most of the improvements came from
Long-tailed Duck, which increased its accuracy from 50.2% to 80.9%.
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Table 2.5: With FixMatch as the adaptation component, our model trained on the
Cape Cod dataset performed substantially better than methods without the adaptation
component.

Test accuracy (%)
Species Test # Standard Imbalanced + SPL Imbalanced + SPL + Adaptation

Long-tailed Duck 231 0.0 50.2 80.9
Non-target Species 5 20.0 80.0 80.0

Average accuracy (%) 10.0 65.1 80.5

Novel species

When novel species are introduced, domain adaptation and semi-supervised learning methods
are no longer effective because conventional AI recognition methods require datasets to
have fixed numbers of classes [5]. Therefore, novel species are typically unrecognizable.
Similar to adapting models to new domains, model fine-tuning through transfer learning
with annotated data is also one of the most widely adopted methods to expand the models’
recognition capacity [148]. However, since it is uncertain which individuals in the newly
collected datasets are of novel species, a complete annotation (i.e., a considerable amount of
human effort) is necessary for model fine-tuning.

In such circumstances, improving the efficiency of human annotation becomes a challenge.
Ideally, it is possible to automatically identify all the images of novel species, and human
effort can focus solely on these images rather than all the newly collected data. Out-of-
distribution detection (OOD) [108, 30] is one of the related research areas in machine learning
that attempts to discover novel samples during test time.

Modern OOD approaches for deep learning usually apply prediction confidence calibra-
tion to separate known and novel samples [67, 71]. In other words, since traditional SoftMax-
based deep learning models are often overly confident (even on novel samples) [41], calibrating
the confidence of sample predictions can be effective at separating known and novel samples.
Common approaches include:

1. Output smoothing: smoothing the model outputs (e.g., Softmax output smoothing)
to reduce the overconfidence of model predictions such that it is easier to find an ef-
fective prediction confidence threshold that separates known versus novel samples. [41,
67, 53, 126, 39, 71].

2. Novel sample generation: generating artificial novel samples (through data aug-
mentation and generative models) to train AI models to produce lower confidence
predictions on novel samples during testing [38, 47].

A more straightforward approach can be applied when there are non-target species in the
dataset. In most real-world datasets, especially aerial imagery of small-bodied animals with
uncertain human annotations, there are often instances of non-target animal species. When
we treat these non-target instances as a single class, we can train AI models to classify target
versus non-target animal species. Then all the images that are classified as non-target during
test time can be sent to human experts for verification. Intrinsically, target versus non-target
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classification is an OOD technique. For example, Figure 2.3 shows that target versus non-
target species are usually mutually exclusive, and a classifier can be learned between these
two sets of classes. Thus, during test time, AI models are very likely to classify images of
novel species as non-target species.

In comparing the methods listed in Table 2.5, we set an independent class in both Cape
Cod and Lake Michigan datasets for non-target species. In the Lake Michigan data (Ta-
ble 2.5), our model successfully identified most of the non-target species (with 80.0% test
accuracy), even though non-target species in Lake Michigan did not necessarily overlap with
those in the Cape Cod dataset. However, when there are insufficient training data for non-
target species, it can be difficult for classification models to generalize well on novel species,
and thus, more advanced OOD methods may be necessary.

Conclusion
In this chapter, we tackled three challenges of automatic avian recognition in aerial imagery
datasets and how various methods can be applied to addressing these challenges. We eval-
uated how well existing and our novel SPL approach performed with respect to these three
challenges using data from Cape Cod and Lake Michigan.

First, we demonstrated that the classification performance of standard models is severely
curtailed by an imbalance of the number of images of particular species. We showed that this
imbalanced distribution challenge can be significantly mitigated by applying a light-weight
imbalanced recognition method (LDAM), especially on classes with limited training samples
like Long-tailed Duck and White-winged Scoter.

Second, we demonstrated that the classification performance of both standard one-stage
and hierarchical classification methods was poor on data that included uncertainty in human
annotations because of low resolution issues. This annotation uncertainty in categorization
challenge results in some images being assigned to a coarse annotation (Unknown Scoter).
We then demonstrated that classification performance could be much improved using our
novel SPL approach that provides a link between coarse and fine-grained annotations. In
particular, our approach generated soft-fine pseudo-labels from coarse Unknown Scoter an-
notations to improve the model’s generalization ability on Black Scoter and White-winged
Scoter classes. With our approach, we were able to exploit coarsely annotated data for bet-
ter model generalization and keep the imbalanced component effective on White-winged
Scoter, which had poor performance using hierarchical models because of the lack of train-
ing samples.

Third, we demonstrated that the test performance could be significantly improved using
FixMatch when adapting models from data at one site to classifying data at another site.
The dataset discrepancies challenge may often cause inconsistent classification performance.
In our experiments, we attached FixMatch onto our SPL approach to address resolution
discrepancies between datasets from Cape Cod and Lake Michigan and achieved better per-
formance than baselines on the Lake Michigan data without additional annotations. We
also experimented with the possibility of using a non-target class, Non-target Species, to
detect novel species during testing. Our results show that the model could identify most of
the Non-target Species images from the Lake Michigan dataset.
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Although each solution we have discussed has its intrinsic limitations, these methods are
often flexible and can be combined to accommodate specific requirements. For example, the
imbalanced model with LDAM was combined with SPL and FixMatch to address imbalanced
distribution, coarse annotations, and domain discrepancies. We have also demonstrated that
existing methods can be easily adjusted for specific tasks. For example, our SPL approach
is derived from pseudo-label and multi-label classification.

In addition, the solutions can be easily replaced by more advanced methods in the future
if necessary. For example, when the number of training classes gets bigger, the imbalanced
ratio within classes gets larger, and the data distribution get more long-tailed (i.e., a larger
proportion of classes have limited training samples), LDAM can be replaced by methods like
RIDE to produce optimal results. When the domain discrepancies among datasets get more
complicated, such as multiple types of backgrounds, FixMatch can be replaced by domain
adaptation methods like OCDA for unlimited possibilities of target domains.

On the other hand, some of the challenges we have listed are not specific to aerial
avian recognition. For example, imbalanced and long-tailed distribution exists in ecolog-
ical datasets derived from other sensor systems such as camera traps [83] and bio-acoustic
monitors [19] because natural animal communities are imbalanced [93]. Through the exam-
ples presented here and the literature cited, we hope to demonstrate the flexibility of deep
learning methods, open doors to the ecological community, and promote further research.
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Abstract

Camera trapping is increasingly being used to monitor wildlife, but this technology typically
requires extensive data annotation. Recently, deep learning has substantially advanced au-
tomatic wildlife recognition. However, current methods are hampered by the dependence
on large static datasets, whereas wildlife data are intrinsically dynamic and involve long-
tailed distributions. These drawbacks can be overcome through a hybrid combination of
machine learning and human-in-the-loop. Our proposed iterative human and automated
identification approach is capable of learning from wildlife imagery data with a long-tailed
distribution. Additionally, it includes self-updating learning, which facilitates capturing the
community dynamics of rapidly changing natural systems. Extensive experiments show that
our approach can achieve ∼90% accuracy employing only ∼20% of the human annotations
of existing approaches. Our synergistic collaboration of humans and machines transforms
deep learning from a relatively inefficient post-annotation tool to a collaborative, ongoing
annotation tool that vastly reduces the burden of human annotation and enables efficient
and constant model updates.
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Introduction
In our rapidly-changing world, continuous monitoring of natural systems is essential to un-
derstand and mitigate the impacts of human activity on ecological processes [121, 102, 7].
Recent technological innovations allow for the rapid collection of ecological data across vast
spatial and temporal scales. However, the resulting information deluge creates a bottleneck
for researchers who must process the data at management-relevant timescales [3]. Artificial
Intelligence (AI) offers promising solutions for rapid and high-accuracy data processing [86,
82]. The dynamic nature of ecological systems, however, poses unique challenges when devel-
oping accurate algorithms [74, 75]. For example, in the last chapter, we have discussed three
challenges of AI applications in real-world avian recognition. To overcome these hurdles,
in this chapter, we showcase how the integration of limited human labor into the machine
learning workflow can significantly increase both efficiency and accuracy of data processing.

Long-term camera trapping

As discussed in Chapter 1, motion-activated remote cameras (henceforth camera traps) are
popular non-invasive tools for monitoring terrestrial vertebrate communities [87, 9, 57]. The
decreasing cost and increasing reliability have recently led to the application of camera traps
for long-term, continuous deployment aiming at monitoring the entire wildlife communities
across multiple seasons and years [124, 121, 2, 116]. Compared with conventional one-time
or annual surveys, continuous monitoring reveals new insights into wildlife responses to local,
regional, and global environmental changes and to conservation interventions. This scale of
monitoring is particularly valuable for capturing responses to environmental perturbations
as they occur [121, 102]. The ‘Snapshot Serengeti’ project (www.snapshotserengeti.org),
which has operated continuously since 2010, is a flagship example of a long-term camera
trap monitoring program. Over the last decade, this survey has gathered unprecedented
longitudinal data that have significantly enhanced our understanding of the seasonal and
inter-annual dynamics of the Serengeti ecosystem [124, 4, 88]. Projects of this magnitude
have recently become increasingly common across eastern and southern Africa [116] and
around the world [121].

Like short-term camera trap projects, the greatest logistical barrier to long-term monitor-
ing with camera traps is also the overwhelming amount of human labor needed to annotate
thousands or millions of wildlife images for ecological analysis [101, 3, 124, 86]. This anno-
tation bottleneck creates a considerable mismatch between the pace of data collection and
data processing, significantly curtailing the usefulness of camera trap data for ongoing con-
servation and monitoring efforts [3]. For example, a relatively modest camera trap survey
(∼80 camera traps; [121]) captures millions of images a year. We estimate that it would take
a single trained expert around 200 full-time workdays to annotate one million images. As
such, hundreds of human annotators (e.g., experts, trained volunteers, and citizen scientists)
are required to keep pace with image accumulation. This need is likely to grow exponentially
over the coming decades as more monitoring sites are set up. While only one or two experts
are needed to validate each wildlife image, it is common practice that multiple (5-20) volun-
teers or citizen scientists look at each image in order to produce a high-accuracy “consensus”
classification (∼97% accurate compared to expert IDs; [124]). This duplication of effort
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needed to generate accurate results using volunteers further perpetuates the classification
bottleneck.

Automatic image recognition systems

As discussed in Chapter 1 and Chapter 2, the application of deep learning has the potential to
improve the efficiency of processing wildlife imagery significantly, as a trained deep learning
model can classify millions of images in a single day on a desktop computer [86, 127, 145].
However, before it becomes feasible to rely on deep learning to handle the mass of image data
from large-scale long-term camera trap projects, several impediments must be overcome.
In Chapter 2, we have discussed three challenges in avian recognition. While super-class
challenge is relatively rare in camera trap datasets, the other two challenges also exist in
long-term camera trap projects: 1) temporal changes in species composition at study sites due
to migration, invasion, re-introduction, and extinction and 2) the long-tailed distribution of
records across species (i.e., extreme imbalance in the number of images of different species).
As discussed below, these issues also limit the ability of current AI models to accurately
recognize species in camera trap datasets that are of significant interest to conservation
practitioners.

Changing species composition

The first challenge for long-term surveys is that new species may be detected on cameras
in subsequent seasons or years, either because the species are rare and undetected in the
previous survey periods [58] or because they are new to the system. Additionally, the species
composition of ecological systems naturally varies through time through the process of suc-
cession [96]. Novel species are often of particular conservation concern, as they may represent
recolonizing populations [81], reintroduced animals [130, 101], or harmful invasive species [20,
14].

In conventional deep learning, researchers focus on the performance of existing testing
data while ignoring the potential for future changes in data composition [5]. In other words,
deep learning models typically require datasets to be fixed in the number of categories
(i.e., static), while in reality, long-term camera trap datasets are not constrained to certain
numbers of species (i.e., dynamic).

Fine-tuning models through transfer learning is currently the best solution when new
species populate a study area [148]. However, this process requires full annotation of newly-
collected datasets, requiring considerable new human effort. This defeats the purpose of
deep learning to reduce manual labor for long-term camera trap monitoring.

Data from wildlife communities are long-tailed

As discussed in Chapter 2, wildlife communities typically contain many individuals of several
common species and few individuals of many rare species, resulting in camera trap data with
a long-tailed distribution. For example, in the dataset used in this chapter from Gorongosa
National Park, Mozambique, ∼50K images (> 60% of the animal images) are of Baboon,
Warthog, and Waterbuck, while only 22 images are of Pangolin (a rare and protected
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species). This imbalance creates performance inconsistencies because deep learning success
is derived from balanced training datasets (e.g., ImageNet [27]). For the Gorongosa dataset,
a traditional deep learning approach (i.e., standard model) resulted in only 60% accuracy for
a category with only 41 images (Serval) versus 88.8% performance for a species with 17,938
images (Waterbuck). This is a major issue because animals of particular conservation concern
are typically rare [93], producing fewer images and therefore worse classification accuracy
than common species. If such species are always misclassified, AI’s practical benefits are
limited.

An iteratively updating recognition system

To overcome these two major issues of 1) changing species community composition and 2)
long-tailed species distributions, we designed a deep learning recognition framework that is
updated iteratively using limited human intervention. Human annotation is needed whenever
images of species novel to the AI model appear in the data. Our goal, therefore, is to minimize
the need for human intervention as much as possible by applying human annotation solely
on difficult images or novel species while maximizing the recognition performance/accuracy
of each model update procedure (i.e., update efficiency).

Traditionally, a deep learning model is applied to new batches of unannotated data
collected during each time period to predict species classes. In our approach, we actively
flag images that our model predicts with low-confidence as novel or unknown species. These
low-confidence predictions are then selected for human annotation, while high-confidence
predictions are accepted as accurate and used as pseudo-labels for future model updates.
Then, the model is updated (i.e., retrained) based on both human annotations and pseudo-
labels. To accommodate changing species communities, this procedure of active annotation
and model update repeats each time new data are added to the collection (Figure 3.1).
In terms of long-tailed distribution, we use the Open Long-tailed Recognition (OLTR)[74]
method in our approach to balance the learning between abundant and scarce species. This
component can reduce the number of predictions with low-confidence from scarce species.

As a case study, we trained a model on a camera trap dataset collected from Gorongosa
National Park, Mozambique (an extension to the dataset used in Chapter 1) using this new
method and produced significantly improved model update efficiency over traditional transfer
learning approaches. Specifically, more than 80% of human effort was saved on annotating
new data without sacrificing classification performance using our approach.

The dynamic nature of our algorithm maximizes learning and recognition efficiency by
taking the best from both humans and machines within a synergistic collaboration. To the
best of our knowledge, our model is the first framework that can be practically deployed for
long-term camera trap monitoring studies.
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Figure 3.1: a) Dynamic recognition loop. In real-world applications, machine learning models
do not stop at one training stage. As data collection progresses over time, there is a continuous
cycle of inference, annotation, and model update. Every time a tranche of new data is added,
pretrained models are applied to classify these data. When there are novel and difficult samples,
human annotation is required, and the model needs to be updated to reflect the newly added data.
b) The progression of a realistic animal classification system. Even if the trained model
has high accuracy for the previous validation sets, there may be a difference in the classes between
previous validation sets and current inference data (e.g., there may be novel categories in the newly
collected data that do not exist in previous training and validation sets). Models, therefore, need
to be updated over time. Here, we present a more practical procedure that can both maximize the
utility of modern image recognition methods and minimize the dependence on manual annotations
for model update. This procedure incorporates an active learning technique that actively selects
low-confidence predictions for further human annotation while highly-confident predictions are kept
as pseudo labels. Models are then updated according to both human annotations and pseudo labels.
∗Symbols: T is time step. CNN is convolutional neural network. N is the total number of classes
at time step Tn−1. CNovel is the number of novel classes at time step Tn.
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Data

Data Categories

The dataset used in this chapter is an extension of the data used in Chapter 1, which only
had 30 categories. For this chapter, we manually identified a total of 55 categories (i.e.,
species) in our data, including non-animal categories, such as Ghost (i.e., misfired images
lacking animals), Setup (i.e., images with humans setting up the cameras), and Fire. There
are 630,544 images in total. The complete list of these categories is in Figure 3.2, along with
the number of images associated with each category. Some “vague” categories that human
annotators were unable to accurately label because of the varying quality of camera trap
images are also present, such as Unknown Antelope and Unknown Bird.

Two groups of training and validation sets

To ensure sufficient training and validation data, we initially identified 41 of the most abun-
dant categories in our camera trap dataset. The remaining 14 of the 55 categories were
all tagged as Unknown and used to improve and validate the model’s sensitivity to novel
and difficult samples. Unlike the approach we did in Chapter 2, in this chapter we did not
use these Unknown samples as an independent class during training. We randomly split the
41 categories (by trigger events) into two groups of training and validation sets (26
categories in the first group of data and 41 in the second group) to mimic periodical data
collection from two sequential time periods (Figure 3.3). Detailed training and validation
split information can be found in Appendix C.
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Figure 3.2: The distribution of images across species in the entire camera trap dataset.
There are 55 categories in total. 14 categories were tagged as Unknown (colored in orange) and used
to improve and validate our model’s sensitivity to novel and difficult samples.
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Figure 3.3: The distribution of species across the two groups of data. We split the dataset
into two groups to mimic two sequential data collection seasons. In the first group, there are 26
categories (colored in blue). The second group has 41 categories. Group 1 was used in the first
period experiment to train a baseline model, and Group 2 was used in the second period experiment
to test and update the model.
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Methods

Algorithm overview

Our approach has two major components: 1) active selection with human-in-the-loop and
2) model update using active data annotations. Specifically, at each time period when new
data are collected, categories of images are predicted by deep learning models trained from
previous periods with corresponding confidence levels. The model actively picks out low-
confidence predictions for human annotation, while we accept high-confidence predictions as
accurate. These predictions are used as pseudo-labels for further model updates or ecological
analyses. Next, the model is updated (retrained) using both pseudo-labels and the newly
acquired human annotations.

In our experiment, after updating the model, we evaluated model update efficiency and
sensitivity to novel categories on a validation set. Specifically, we examined:

1. The overall validation accuracy of each category after the update (i.e., update perfor-
mance).

2. The percentage of high-confidence predictions on the validation set (i.e., saved human
effort for annotation).

3. The accuracy of high-confidence predictions.

4. The percentage of novel categories that were detected as low-confidence predictions
(i.e., sensitivity to novelty).

The optimization of the algorithm aims to minimize human efforts (i.e., to maximize high-
confidence percentage) and to maximize model update performance and high-confidence
accuracy.

Detailed pipeline for experiments

For experimental purposes, we divided our identification pipeline into two steps representing
two time periods of data collection and the two groups of data curated in this chapter. The
evaluation was focused on the second period when model update occurred. The overall ex-
perimental pipeline is illustrated in Figure 3.4. There are three major technical components
in the framework: 1) energy-based loss [71] that improves the sensitivity to possible novel
and difficult samples for active selection, 2) a pseudo-label-based semi-supervised proce-
dure [66] for efficient model update from limited human annotations, and 3) open long-tailed
recognition (OLTR) [74] that balances the learning of long-tailed distribution.

Period 1

In the first period, we pre-trained an off-the-shelf/standard model (ResNet-50 model [46])
using the first group of data. After training, we adopted the energy-based loss [71] and data
from the 14 “left-out” categories to fine-tune the classifier so it is more sensitive to novel and
difficult samples.
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Period 2

In the second period, we first used the fine-tuned model from Period 1 to produce high-
and low-confidence predictions from the group 2 training dataset, which were considered to
be “newly collected.” The confidence was calculated based on the Helmholtz free energy of
each prediction [71]. Novel and difficult samples were distinguished using a preset energy
threshold. Then, low-confidence predictions were annotated by humans while high-confidence
predictions were accepted as pseudo-labels.

To update the model, we applied semi-supervised learning and OLTR, using both hu-
man annotations and pseudo-labels. Generally speaking, pseudo-label-based semi-supervised
approaches iteratively update both classification models and pseudo-labels until the best
performance on the validation sets is achieved [66]. The use of pseudo-labels also enables
classification models to learn from the whole dataset instead of human-annotated data only.
On the other hand, the OLTR approach balances the learning between abundant and scarce
categories through an embedding space memory-based mechanism, where embedding memo-
ries of abundant categories are utilized to enhance the distinguishability of scarce categories
that do not have enough samples to otherwise provide discriminative features [74]. See
Appendix C for implementation details.

After the model was updated, the training samples from the 14 “left-out” categories were
added to fine-tune the model’s sensitivity to novel and difficult samples using energy-based
loss as in Period 1.

Future Periods

Because the framework is designed to aid long-term data collection and monitoring projects,
the framework does not stop at Period 2. As time progresses, new data are collected. Users
simply have to repeat the steps in Period 2 to pick out and annotate difficult/novel samples
to update the model. In addition, since the framework is fully modular, when new techniques
are developed, parts of the framework can be easily replaced for better performance. For
example, if there are better methods for novel-category-detection, energy-based loss and
confidence calculation can be replaced with no effect on the conceptual framework.
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Figure 3.4: The overall experimental pipeline of our framework. In the first time step/period,
a baseline model was trained using the group 1 training data with only 26 categories. Next, the
classifier was fine-tuned using the 14 unknown categories and energy-based loss to increase the
sensitivity to out-of-distribution categories. After the classifier was fine-tuned, the classifier was
then used to classify the group 2 training data. Here, high-confidence predictions were trusted,
while low-confidence predictions were flagged for human annotation. In the final step, both machine
and human annotations were used to update the previous model with OLTR and semi-supervised
techniques. Once the model was updated, the classifier was fine-tuned using energy-based loss again
for out-of-distribution sensitivity.
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Results
Period 1

In the first period, the model achieved an 81.2% average class accuracy on the validation
set of group 1. 79.5% of the predictions were high-confidence, and of these predictions,
the accuracy was 91.1% (Table 3.1 and Table 3.2). In terms of novel categories, in the
validation phase, the model successfully detected 90.1% of the novel samples belonging to
the 14 categories that were “left-out” of the training phase. In other words, 90.1% of the
novel samples were predicted with low-confidence. In contrast, direct Softmax confidence
(the most conventional way of calculating prediction confidence [48]) achieved a similar high-
confidence accuracy as our model (91.5%) but only detected 59.3% novel samples.

Table 3.1: Classification performance comparisons on validation sets of periods 1&2.

Periods Methods Class Avg.
Acc. (%)

Class Avg. Acc.
On New Classes.

(%)
1 Standard Model 81.2 -

2
Traditional transfer learning w/ full human ann. 75.8 63.9
Our framework w/out semi-supervision and OLTR 69.2 61.2
Our framework (Semi-OLTR) 77.2 68.1

Red color means higher performance on the same inference set.
w/ : with.
ann : annotation.
Avg. : Average.
Acc. : Accuracy.

Table 3.2: Active selection performances of Period 1&2 with and without energy based
function.

Periods Inference sets Confidence
Metrics

High
Conf.
Ratio
(%)

High
Conf.

Acc. (%)

Novel
Detect
Ratio
(%)

1 Group 1 Val. Softmax 80.9 91.5 59.3
Group 1 Val. Energy (Ours) 79.5 91.1 90.1

2
Group 2 Train Energy (Ours) 78.7 92.4 75.7
Group 2 Val. Softmax 71.2 90.1 70.5
Group 2 Val. Energy (Ours) 72.2 90.2 82.6

Red color means higher performance on the same inference set.
Conf. : Confidence.
Acc. : Accuracy.
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Period 2

In the group 2 training dataset, the model pretrained from Period 1 predicted 78.7% images
with high-confidence, where the accuracy was 92.4%. 75.7% of the new categories in the
group 2 training dataset were detected as low-confidence predictions (Table 3.2). As high-
confidence predictions are trusted, 78.7% human effort was saved from annotating the group
2 training dataset because high-confidence predictions were accepted as accurate in our
framework.

To update the model, group 2 training data predicted with low-confidence were checked
by human experts and provided with manual annotations, and high-confidence samples were
assigned model-predicted pseudo-labels. Overall, on the validation set of group 2, the model
updated on both human annotations and pseudo-labels had an average class accuracy of
77.2% over the 41 categories. Compared to our method without human annotation (69.2%;
second to the last row in Table 3.1), there was an 8% improvement. The model had 72.3%
high-confidence predictions at a 90.2% accuracy in the validation set (see Table 3.1, Ta-
ble 3.2). In addition, it had an 82.6% novel sample detection rate (i.e., flagged as low-
confidence predictions) in the validation data of the 14 “left-out” categories (see the last
column of Table 3.2).

Comparison with traditional transfer learning

Our model was significantly more data efficient (i.e., fewer data required for similar perfor-
mance) than traditional transfer learning methods in several respects. Compared to tradi-
tional transfer learning, which used full human annotations of the group 2 training dataset,
our method only involved human annotation of 21.3% of the group 2 samples. Even with less
human annotation, our method still achieved better overall class average accuracy (77.2%
vs. 75.8% for traditional transfer learning; Table 3.1, Table 3.2, and Figure 3.5). Our model
also performed better than direct transfer learning for classifying the 15 new categories from
Group 2 (with an average of 4.2% accuracy improvement; Table 3.1 and 3.2).

Practical deployment

Our new framework showcases the powerful potential of deep learning for long-term ecological
applications while employing a novel practical approach that greatly reduces the manual
annotation burden. To validate the practical benefits, we deployed the model to classify a
new set of data gathered from the same camera trap monitoring sites (Gorongosa National
Park, Mozambique) after the group 1 and 2 datasets were collected (see Appendix C for
details). The new dataset was unannotated, unanalyzed, and contains 623,333 images in
total. Images were predicted with the same active selection procedure, and 78.7% of the
predictions were considered high-confidence. Thus only 21.3% of these newly-collected data
required human annotation (or 78.7% of the human effort, and ultimately annotation cost,
was saved).

To validate the robustness of model performance, two experts (KMG and MSP) confirmed
the accuracy of 1000 randomly-selected high-confidence predictions (i.e., those that were
accepted as accurate). As a result, our model predictions were 88.6% accurate with respect
to expert classifications. Statistically, ∼88% automatic accuracy is already sufficient to
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Figure 3.5: Label efficiency comparison with transfer learning on Group 2 vali-
dation set (ordered with respect to training sample size). To examine label ef-
ficiency (a measure of accuracy given the number of annotations) after we updated our
model in Period 2, we calculated validation accuracy over the percentage of used train-
ing annotations of each category. In other words, we define label efficiency: Efficiencyi =
Validation Accuracyi/(# of training annotationi/# of full annotationi), where i is the category in-
dex. The higher the value is, the more efficient the model is at learning corresponding categories,
and the less training data are needed to achieve comparable if not better performance of full manual
annotations. In the figure, we illustrate label efficiencies of all categories that exist in the Group 2
training and validation set. The blue bars represent our model’s label efficiencies of each category.
The orange bars represent baseline efficiencies for comparison, where full annotations were used with
the traditional transfer learning method (i.e., # of training annotationi/# of full annotationi = 1).
The blue and orange lines are annotation counts of each category, where orange represents full
annotations, and blue represents used human annotations in our Period 2 model update proce-
dure. For categories that exist in both the Group 1 & 2 training sets (i.e., known categories; on
the left, with a blue background), the efficiency was significantly higher than the baselines across
all categories. For categories that only exist in Group 2 datasets (i.e., they were absent in the
Group 1 training and validation set; novel categories; on the right, with orange background), be-
cause the model is designed to use as many annotations as possible the novelty of these categories,
# of training annotationi/# of full annotationi of these categories were close to 1. However, our
model still had relatively higher efficiency than the full annotation transfer learning model across
all the novel categories because our model had higher validation accuracy with a similar amount of
training annotations.

help alleviate the data bottleneck encountered in typical camera trap monitoring projects
compared to expert accuracy.

In terms of future model update, the model can be further updated and validated on new
datasets using the same procedure as Period 2, where a new validation set can be created
using a mix of previous validation sets (validation of groups 1 & 2) and the newly acquired
human annotations. In addition, the same random verification by human experts on high-
confidence predictions can also be applied to avoid performance corruptions (i.e., increased
misclassifications in high-confidence predictions).
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Invasive and recolonizing species

One of the significant advances made by our framework is the ability to flag new or rare
species that may have particular conservation importance. Our new dataset contains two
novel species (Leopard and African Wild Dog) to test the model’s sensitivity to novel cat-
egories. The former naturally re-colonized the study area while the latter was re-introduced
as a part of ongoing conservation efforts. There are 24 and 5 images for African Wild Dog
and Leopard, respectively. The model successfully detected 20 (83.3%) African Wild Dog
images and 4 (80.0%) Leopard images, demonstrating its capacity to recognize important
novel species in continuous monitoring periods.

Discussion
Misclassifications

Two types of misclassifications/failures occurred in our experiments: 1) low-confidence pre-
dictions that were not novel species, and 2) high-confidence predictions that differed from
human-supplied annotations.

First, there are several ways in which our model was unable to accurately identify samples
from known species with high-confidence (Figure 3.6a). A common reason for low-confidence
predictions was the difficulty of distinguishing animals from the background. For example,
Figure 3.6a.i depicts an antelope obscured by darkness at night, making it difficult for the
model to classify confidently. However, rather than making misclassifications as would occur
in traditional AI approaches [46], our model considered the prediction low-confidence and
flagged the image for review. In our approach, most of these difficult samples are more likely
to be flagged as low-confidence predictions for further human evaluation (annotation) rather
than assigned random labels—a practice that can potentially bias further data analysis and
inference.

In the second type of model failure, predictions of images predicted with high-confidence
differed from the original annotations (Figure 3.6b). We note that these images were ini-
tially classified by trained volunteers who may not have correctly annotated all samples as
accurately as wildlife experts. Surprisingly, most of the confident predictions are proven
correct after human experts’ re-evaluation (KMG and MSP). For example, Figure 3.6b.iv
was originally labeled as Warthog, although there is no warthog present. However, there is a
vervet monkey in the lower left of the frame that was missed by the human classifiers. The
model not only detected the previously unobserved animal but also correctly identified the
species.

Thus, these “failures” actually demonstrate the robustness and flexibility of our frame-
work. As both human annotations and machine predictions can be wrong, a mutual inter-
action between humans and machines can benefit long-term performance of the recognition
system. For example, picking out low-confidence samples like the ones in Figure 3.6b pre-
vents producing low quality predictions that can cause bias in camera trap analyses. Further,
applying validated human annotations on these samples can help improve the identification
capacity of the model as it needs to recognize more difficult samples during model updates.
On the other hand, when the model is highly confident, it can be more accurate than aver-
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age human annotators, as evidenced by the examples given in Figure 3.6b.ii, iv, and v. In
other words, some of the human mistakes are prevented, such that the annotation quality
for future model update and camera trap analyses are improved. On the other hand, as we
acknowledge that in some cases the model will make high-confidence misclassifications, we
can apply random periodical verification by human experts on high-confidence predictions
(similar to what we did in the Practical deployment section) to ensure that these errors do
not propagate through repeated training.

The need for human-in-the-loop

Our framework demonstrates the unique merit of combining machine intelligence and human
intelligence. As Figure 3.6c illustrates, machine intelligence, when trained on large datasets
to distill visual associations and class similarities, can quickly match visual patterns with
high confidence [27]. Human intelligence, on the other hand, excels at being able to recognize
fragmented samples based on prior experience, context clues, and additional knowledge. In-
creasingly, we are moving towards applying computer vision systems to real-world scenarios,
with unknown classes [74], unknown domains [75], and constantly-updating environments.
It is, therefore, crucial to develop effective algorithms that can handle dynamic data streams.
Human-in-the-loop provides a natural and effective way to integrate the two types of percep-
tual ability (i.e., human & machine), resulting in a synergism that improves the efficiency of
the overall recognition system.

Extensions and future directions

Our framework is fully modular and can be easily upgraded with more sophisticated model
designs. For example, models with deeper networks can be employed for better classification
generalization, more sophisticated semi-supervised training protocols can be adopted for
better learning from pseudo-labels, and better novelty detection techniques can be used for
better active selection.

Future directions include extending our framework to handle multi-label and multi-
domain scenarios. The current approach was developed for single-label recognition (i.e.,
each image only represents one single species). However, it would be desirable to recognize
multiple species within the same view in real-world camera trap setups. Further, our frame-
work is expected to be deployed in diverse locations with different landscapes. Therefore,
our methodology can be more scalable with the ability to handle multiple environmental
domains than existing methodologies. In addition, our method will be incorporated in a
user-friendly interface, such that users without knowledge of Python can use it.
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Figure 3.6: (a) Examples of low-confidence predictions. In most of the cases, the model
had low-confidence predictions on images with distorted, partially visible (panel ii∼v) or obscured
animals (panel i). It can be incredibly difficult, if not impossible, for both humans or machines
to accurately identify the animal species. (b) Examples of high-confidence predictions that
did not match the original annotations. Many high-confidence predictions that were flagged
as incorrect based on validation labels (provided by students and citizen scientists) were correct
upon closer inspection by wildlife experts (KMG and MSP). For example, in Panel (i), an empty
image originally mislabeled as Baboon, was correctly classified by our method as empty. In panel
(ii), although the animal is distant from the camera in a dark environment, the model successfully
identified Hartebeest, while the human-supplied label was Unknown Antelope. In panel (iii), the
model successfully identified the elephant only based on the trunk and leg, while human volunteers
originally classified the image as Unknown. In panel (iv), a vervet monkey was correctly detected
and classified in an image originally (incorrectly) labeled as Warthog by human annotators. Panel
(v) was originally labeled as Unknown by human annotators, but based on the body shape and white
markings on the rear, the model correctly recognized the animal as Bushbuck. Panel (vi) is an
example of multiple species in the same scene. Although the model did not have the capacity to
deal with multi-species samples, as Baboon is obviously the major component of this image, the
prediction is reasonable. On the other hand, these examples above do not mean that the model
always makes correct predictions when highly confident. Panels (vii) and (viii) are two typical
examples where the model made mistakes due to the obscured nature of these images. Red text
indicates “wrong” classification, and green text indicates correct classification. (c) Two examples
of image retrieval based on feature space similarity. Machine intelligence largely depends
on visual similarity associations learned from large-scale datasets to classify animal species. These
two examples illustrate image retrieval based on the Euclidean distances of the feature vectors (i.e.,
outputs of the global average pooling layer of the ResNet model used in this Chapter, which is of
dimension 2,048 in Euclidean space). For each anchor image (the leftmost image of each row), we
show five closest (i.e., most similar) samples in terms of Euclidean distance within the validation
set of Group 2. Green color means correct predictions, and red color means “wrong” predictions
(based on the original annotations). For example, in sequence (i), samples with similar visual
appearances are usually from the same species (Waterbuck). However, in sequence (ii), the two
most similar images (according to our model) to the Banded Mongoose anchor image are actually
not Banded Mongoose but Slender Mongoose. The model misclassified these two samples based on
their similarities to the other Banded Mongoose images.
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Appendix A: Supplementary material for
Chapter 1

Data

Data background

The camera trap data come from a long-term research program in Gorongosa National Park,
Mozambique (18.8154◦S, 34.4963◦E). The data set used in Chapter 1 was collected from June
to November of 2016. The goal of this program is to examine the spatial distribution of large
mammal species in the park and to monitor the restoration of the park’s wildlife following
decades of civil war. The 3,700 km2 park encompasses a range of habitats, including a mix
of grassland, open woodland, and closed forest. KMG placed 60 motion-activated Bushnell
TrophyCam and Essential E2 cameras in a 300 km2 area in the southern area of the park.
Each camera was mounted on a tree within 100 meters of the center of a 5 km2 hexagonal
grid cell, facing an animal trail or open area with signs of animal activity. To minimize
false triggers, cameras were set in shaded, south-facing sites that were clear of tall grass.
Cameras were set to take 2 photographs per detection with an interval of 30 seconds between
photograph bursts.

Trained researcher classification and visual descriptors

The species in all images were manually classified and annotated independently by 2 different
researchers trained on a list of example images and corresponding visual descriptors of each
species; this list was created by KMG before the manual annotation and was iteratively
updated as the annotation progressed. All classifications were confirmed by KMG prior to
this project.

We conducted a survey to determine the features regularly used by humans to identify
each of the 20 species in this study. For each species, respondents were asked to select
features that they regularly look for and/or use as clear diagnostic features that identify
the species and could select as many descriptors as they wanted. We provided respondents
with KMG’s list of all visual descriptors used in training materials and included an option
of adding additional descriptors not mentioned. The survey had 13 respondents who have
extensive experience classifying camera trap images from Gorongosa National Park, including
those used in this study. KMG selected the participants, and they included 5 undergraduate
research apprentices, three other researchers affiliated with Gorongosa National Park, and
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three trained citizen scientists. KMG and ZM also completed the survey. We considered
a feature to be regularly used by humans if at least 5 of the 13 respondents selected it
(Table A.3).

Data preprocessing

We first grouped the images by camera shooting events. In our camera trap program, when
the motion sensors detect motion at each shooting event, the cameras capture 2 sequential
images within 1 second. Therefore, image pairs of the same shooting events often are similar
in appearance, and the training performance of the model can be overestimated if images
from the same image pair are separated into training and test sets. Thus, we maintained
the image pairs in the analysis to prevent a negative bias of the CNN learning process. We
then randomly split the image groups into training, validation, and testing sets with 85%,
5%, and 10% of the data sets.

Methods and implementation details

Model implementation

We trained a VGG-16 [115] CNN architecture to classify camera trap images with class-
aware sampling [113]. The output of the CNN classifier is a 20-dimension vector, with
each dimension representing the classification probability for an animal species (classification
score). The use of class-aware sampling helps to improve the classification accuracy for
imbalanced data sets.

We made use of PyTorch [89], a deep learning framework, to implement and train the
CNN. The weights were initialized from an ImageNet [26] pretrained model. The initial
learning rate was 0.01, which decreased every 15 epochs. The best model was obtained at
epoch 40, where the classification accuracy on the validation data set was the highest. The
loss function used to train the CNN was Softmax cross-entropy loss. All the input images
for training were first downsized to 256x256, then were randomly cropped to 224x224 with
a random horizontal flip at a rate of 0.5. Values of the hyperparameters used for training
are listed in Table A.1.

Guided Grad-CAM (GG-CAM)

GG-CAM is a method that combines the outputs of Grad-CAM and GBP [111]:
Grad-CAM generates coarse, discriminative regions according to animal species. It is

calculated as the rectified linear units (i.e., max{0, x}) of the weighted sum of the response
maps from the last convolutional layer (Eq. 3.1). The weighted sum is based on the impor-
tance value αk (importance value of the kth neuron) of each neuron (neuron importance)
in that layer of the response map, Ak, where its ijth element is Ak

ij, for a total number of
element Z. If y is the prediction score of animal A before the Softmax layer, then Grad-CAM
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Table A.1: Hyperparameters

Parameters Values
Input image size: 256x256
Random crop size: 224x224
Random horizontal flip rate: 0.5
Batch size: 256
Training epoch: 40
Initial learning rate: 0.01
Momentum: 0.9
Learning rate reduce at: every 15 epochs
Learning rate reduce by: 0.1
Regularization: None

is computed using the following equations:

Grad-CAM = max
{
0,
∑

kαkA
k
}

(3.1)

αk =
1

Z

∑
i

∑
j

∂y

∂Ak
ij

(3.2)

GBP is a method that captures non-class-discriminative details of visual components
that are important to the network overall. It is calculated as the gradient of the output
response maps of the last convolutional layer with respect to the input images, with only
positive gradients and positive response elements (Eq. 3.3). Suppose Rl is the GBP product
of the lth layer, then it is calculated in terms of the response maps f l of the lth layer, and the
response maps f out of the last convolutional layer. Specifically, defining f l′ = max{0, f l},
the equation is:

Rl = f l′ ×max

{
0,

∂f out

∂f l′

}
× ∂f out

∂f l′
(3.3)

After training the model, we can fix the model weights and use Eq. 3.1 to calculate the
Grad-CAM of the input. We can also use (Eq. 3.3) to generate the GBP results of the input
with the trained model. Once Grad-CAM and GBP are generated, we can calculate the
Hadamard product (a.k.a. element-wise multiplication) of Grad-CAM and GBP. GG-CAM
is the normalized output of the Hadmard product (Figure 1.4).

Similarity between extracted features and human visual descriptors

We also calculated the Dice similarity coefficient [118] of the extracted features and the
corresponding visual descriptors to get a quantitative sense of how similar the model was to
humans when making classifications. To calculate the similarity between extracted features
and human descriptors, we first did the feature matching, which was agreed upon by up to
4 authors (ZM, KMG, ZL, and MSN). Then we used the Dice similarity coefficient (DSC
∈ [0, 1]) to calculate the similarity between the 2 sets of features. Suppose MC and HC are
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machine-extracted feature set and human descriptor set of animal C, the DSC is calculated
as:

DSC =
2 · |MC ∩HC |
|MC |+ |HC |

(3.4)

| · | is the cardinality of the sets.

Mutual information

Next, we demonstrate our approach to inspecting within-species animal discriminative fea-
tures based on common neuron importance. Each neuron in the network has a response to
certain parts of the input images. Classification of images is based on a combination of neu-
ron responses. In addition, certain neurons are more important than others for classification
per species. We assume that the responses from these neurons can be regarded as common
within-species features.

We use Mutual Information (MI) [78], a method commonly used to find information
shared between variables [8, 91], on the neuron importance (Eq. 3.2) (normalized from 0 to
1) from the last convolutional layer across the data (Eq. 3.5). We calculated I(U < C), the
MI for neuron U and animal species C, as follows. Suppose N11 and N01 are the number of
images of C, where U has neuron importance > 0.5 and ≤ 0.5, respectively. Further suppose
N10 and N00 are the number of images that are not C, where U has neuron importance > 0.5
and ≤ 0.5, respectively. Defining N1· = N10 + N11, N·1 = N11 + N01, N0· = N00 + N01,
N·0 = N00 +N10, and N = N00 +N01 +N10 +N11 it then follows that

I(U,C) =
N11

N
log2

NN11

N1·N·1
+

N01

N
log2

NN01

N0·N·1

+
N10

N
log2

NN10

N1·N·0
+

N00

N
log2

NN00

N0·N·0

(3.5)

We calculated the class-wise MI scores using 6000 randomly selected images (300 images
per class). Each neuron has 20 different MI scores for each class. After the calculation, we
selected 9 images of each class that had the highest responses to each neuron. The results
are illustrated in Figure A.1 for image patches with the highest responses to the neurons
with the top 1 to top 5 mutual information scores of each species.

Interspecific visual similarities and species unfamiliarity

To inspect visual similarities between animal species, we generated a visual similarity tree of
all species by implementing hierarchical clustering on the feature vectors before the classifier
layer (i.e., the output of the last fully-connected layer before the classifier layer). Firstly,
we extracted the feature vectors of 6000 randomly selected training images and applied
Principal Component Analysis (PCA) to compress the 4096-dimension feature vectors to
128 dimensions for computational simplicity. We then computed the average interspecific
Euclidean distances between every pair of the feature centroids of the 20 species. Finally, we
processed the interspecific distances using a hierarchical clustering method with the Ward
variance minimization algorithm [84]. The leaves in the dendrogram can be regarded as the
feature vector centroids of the 20 classes (Figure 1.8).
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To calculate the relative unfamiliarity of 30 animals species, we first incorporated images
of the 10 excluded species into the testing data set and performed a 10-round random se-
lection. In each round, we randomly selected 20 images. This was because we only had 28
images for the rarest species (Pangolin), and we wanted to keep the testing data balanced.
We calculated the Euclidean distances of the feature vectors of these images to the 20 feature
centroids that constructed the dendrogram. Then the relative unfamiliarity was calculated
as the mean distance of these feature vectors to their closest centroids across the 10-round
random selection.

Additional results

Confusion matrix

The confusion matrix of the test results of our VGG-16 is reported in Table A.2. We can see
that classes with a dominant amount of data (e.g., Baboon, Waterbuck, and Warthog) had a
high recall but a low precision. This is because the model cannot generalize discriminative
features from classes with a limited amount of training data, and thus data from these classes
are more likely to be classified as dominant classes and cause higher false-positive rates. This
pattern has been discussed in detail by imbalanced classification and long-tail distribution
studies such as [135].

Table A.2: Confusion matrix in percentage (%), where the rows represent actual classes
and columns represent predicted classes [95]. The numeric column headings represent:
0: baboon, 1: buffalo; 2: bushbuck; 3: bushpig; 4: civet; 5: elephant; 6: genet; 7: hare;
8: hartebeest; 9: impala; 10: kudu; 11: nyala; 12: oribi; 13: porcupine; 14: reedbuck;
15: sable Antelope; 16: vervet Monkey; 17: warthog; 18: waterbuck; 19: wildebeest.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 90.2 0.2 0.5 0.1 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.8 0.6 0.0 0.1 0.0 0.4 2.9 2.3 0.0
1 4.7 79.1 2.0 0.0 0.0 4.7 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.7 0.0 2.7 0.0 0.7 4.1 0.7
2 2.6 0.0 86.5 0.2 0.3 0.4 0.5 0.6 0.0 1.6 0.3 0.8 1.5 0.5 0.4 0.0 0.0 1.2 2.5 0.0
3 2.9 0.0 5.3 78.7 0.0 0.0 0.8 0.0 0.0 0.8 0.4 0.0 2.0 1.6 0.0 0.0 0.0 4.1 2.5 0.4
4 0.7 0.0 1.1 1.1 95.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0
5 2.6 0.0 1.3 0.2 0.0 89.6 0.2 0.3 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.3 0.0 3.0 1.8 0.2
6 0.0 0.0 2.9 0.6 1.0 0.0 88.6 1.1 0.0 0.4 0.0 0.2 1.3 1.5 0.4 0.2 0.0 1.0 1.0 0.0
7 0.0 0.0 5.7 0.0 0.0 0.0 2.3 86.2 0.0 0.0 0.0 0.0 2.3 1.1 0.0 0.0 0.0 0.0 2.3 0.0
8 1.1 1.1 1.1 0.0 0.0 0.0 0.0 0.0 80.9 4.5 1.1 2.2 0.0 0.0 1.1 0.0 0.0 0.0 6.7 0.0
9 3.7 0.0 1.4 0.2 0.0 0.1 0.0 0.0 0.0 85.1 0.1 0.6 2.1 0.0 0.5 0.0 0.7 1.2 4.1 0.1
10 9.2 0.0 1.1 1.1 0.0 0.0 0.0 0.0 0.0 3.2 67.0 3.8 1.1 0.0 0.0 0.0 0.0 3.8 9.2 0.5
11 4.1 0.0 6.9 0.0 0.0 0.5 0.0 0.0 0.0 3.9 1.4 76.0 0.0 0.2 0.0 0.5 0.2 0.2 5.8 0.2
12 2.4 0.0 3.4 0.0 0.0 0.0 0.3 0.2 0.2 2.6 0.3 0.0 85.5 0.2 0.5 0.0 0.0 1.7 2.8 0.0
13 0.8 0.0 3.5 1.1 0.0 0.3 1.9 0.5 0.0 0.8 0.0 0.0 0.0 89.3 0.0 0.0 0.0 0.5 1.3 0.0
14 1.1 0.0 11.4 0.0 0.0 0.0 1.7 0.0 0.0 11.4 0.6 0.6 8.0 0.0 54.3 0.0 0.0 0.6 10.3 0.0
15 1.7 3.3 3.3 0.8 0.0 0.8 0.0 0.0 1.7 1.7 0.8 0.8 0.0 0.0 0.0 73.6 0.0 1.7 9.9 0.0
16 8.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.9 0.3 0.0 0.0 0.0 84.3 1.2 3.1 0.0
17 4.8 0.1 0.9 0.2 0.1 0.3 0.0 0.0 0.0 0.9 0.0 0.2 0.8 0.0 0.1 0.0 0.4 89.1 1.9 0.1
18 2.3 0.1 1.2 0.0 0.0 0.2 0.0 0.1 0.0 2.0 0.1 0.1 0.5 0.0 0.2 0.1 0.4 3.2 89.1 0.1
19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.9 4.5 91.0
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Mutual information results of all animal species

(a)
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(b)
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(c)
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(d)

Figure A.1: Common within-species features for all 20 species. Following Figure 1.7 in
Chapter 1 for the case of Porcupine and Reedbuck, here the extracted patches are centered around
the hottest pixel of the 5 most responsive neurons in the last convolutional layer of our CNN that
had the highest MI score (Methods) for all 20 species.
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Dice similarity between extracted features and visual descriptors

Figure A.2 shows the DSC scores of all the 20 species, where the mean DSC across species
was 0.69 with a standard deviation of 0.13. The closer the score is to 1, the more similar the
extracted features are to the human visual descriptors.
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Figure A.2: Similarities between extracted features and corresponding visual descroptors
mostly used by human experts. The extracted features were agreed upon by up to 4 experts
(ZM, KMG, ZL, and MSN), who scored 9 randomly selected images of each species. The similarities
were calculated using the DSC between extracted features and human visual features. The scores
seem to have no relationship with the class distribution.
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Full visual descriptors

Table A.3: Full visual descriptors used by humans to identify the 20 most common
species from camera trap images. These features were identified through a survey of people
with extensive experience in classifying camera trap data from Gorongosa. The features below were
selected by at least 5 of the 13 survey respondents.

Baboon primate body type

tail curving upward at base

long, dark snout

Buffalo horns that curve to the side of head

stocky barrel-shaped body

dark coat

Bushbuck thick ring of short, dark fur along neck

parallel, slightly spiraled horns

rounded rump

ungulate body type

white spots along the rump

Bushpig pig body type

silver-colored mane

Civet nocturnal

small carnivore body type

black spots

rounded back

short, black legs

crest of black hair from head to tail

Elephant stocky, rectangular body shape

gray to brownish wrinkled skin
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long trunk

huge ears that are wide at base and narrow at bottom

thick, round legs

white tusks

Genet slender body

long, narrow tail

banded tail

black spots

small carnivore body type

Hare round body

long ears that point up

Hartebeest curved horns

ungulate body type

uniform dark brown coat

Impala S-shaped horns of male

tri-colored body

black streaks on the rear

Kudu long horns with large spirals (males)

hump on back of neck

thin, white stripes on back

white band between the eyes

light gray/brown color

ungulate body type

long, slender legs

Nyala thin, white stripes on back

golden fur of female, dark brown fur of male

white spots on face and nose of male
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spiral horns of male

ungulate body

white and yellow leg markings

Oribi short, straight horns of male

white abdomen

short, black tail

black circular patches under ears

conical head shape

ungulate body type

Porcupine nocturnal

long black and white quills

stout, rounded body shape

Reedbuck forward-curving horns of male

black circular patches under ears

uniform coloration

ungulate body shape

Sable antelope long, backward-curving horns

horse-like body type

white striped facial markings

white underbelly

chestnut coat of female and dark brown color of male

Vervet primate body type

black face

long tail, held out straight

white brow

Warthog pig body type

two pairs of upward-pointing tusks
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mane from top of head to middle of back

thin tail with tuft of hair at the bottom

flat, wide snout

Waterbuck ribbed horns, curved out and forward (male)

white circular ring of fur on rump

shaggy, coarse, red-brown fur

black nose

ungulate body type

Wildebeest curved horns that are wider than they are tall

horse-like body type

long, rectangular face

black beard

black mane along back

black vertical stripes on neck
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Appendix B: Supplementary material for
Chapter 2

Data

Data background

Imagery for this study was collected by the U.S. Fish and Wildlife Service at Nantucket
Shoals (Cape Cod), Massachusetts, in February 2017 and Lake Michigan near Manitowoc,
Michigan, USA, in October 2016. Pixel resolution for the Nantucket Shoals dataset ranged
from 0.18 to 1.47 cm and 0.14 to 0.32 cm for the Lake Michigan dataset. The average image
dimension of the Cape Cod dataset is 75×79, and the average image dimension of the Lake
Michigan dataset is 91×108.

Data pre-processing

We used cropped images of individual birds for the experiments in this project. The images
were manually cropped and annotated by human experts. There are 10,682 cropped images
in the Cape Cod dataset and 236 images in the Lake Michigan dataset. There are six different
classes (Figure 2.2), one of which is an unknown class only for scoters (Unknown Scoter) and
a general unknown class (Non-target Species) that contain instances for species that were
not germane to the initial objectives of the data collection. The overall class distribution is
illustrated in Figure 2.2.

We randomly split the Cape Cod dataset into training and testing sets. Detailed numbers
of the split are recorded in Table B.1 and Figure 2.2. All the images were resized to 256×256
pixels before being input into the AI models.

Table B.1: Details of Cape Cod training-testing split, and Lake Michigan testing set.

Cape Cod Lake Michigan
Species Train # Test # Test #

Unknown Scoter 466 114 -
Black Scoter 341 108 -

White-winged Scoter 45 21 -
Common Eider 6,246 3,172 -

Long-tailed Duck 17 5 231
Non-target Species 108 38 5
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Methods and implementation details

Classification model

We used ResNet-50 [43], a widely applied Convolutional Neural Network (CNN), as our
backbone classification model (i.e., basic classification model without any extra modules for
tasks other than pure classification). All the other components for specific experiments were
added to this ResNet-50 backbone.

The basic training hyperparameters are recorded in Table B.2. In terms of hyperpa-
rameter tuning and validation, we further randomly split the training data into pre-train
versus validation sets with a 90%-10% split. All hyperparameters were validated on the 10%
validation set. For example, the best number of training epochs used to train the model was
obtained when the highest validation performance occurred on the validation set. Once the
hyperparameters were validated, we use all the pre-train and validation sets to re-train a
model and report our test results on the testing sets with this final model. This way of train-
ing produces optimized models that utilize all training data without sacrifices with validation
sets and save training efforts from multiple training procedures such as cross-validations.

Table B.2: List of hyperparameters used in the baseline experiments.

Parameters Values
Baseline architecture ResNet-50
Starting training epochs 85
Batch size 128
Initial learning rate 0.001
Learning rate decay Epochs 30
Learning rate decay Ratio 0.1
Momentum 0.9
Weight decay 0.0005

LDAM

As our training dataset was extremely imbalanced (i.e., the most abundant species has 6,246
training samples whereas the least frequent species has only 17 training samples), we added
a Label Distribution Aware Marginal (LDAM) training loss function [12] to our model to
balance the learning across all species. LDAM is a light-weighted loss re-weighting method
for imbalanced recognition (Eq. 3.6). It calculates class-specific margins (∆y) based on class
sample sizes (ny) to regularize the training focus of each class. The more training instances
for a species (i.e., class), the smaller the class-specific margin is, and vice versa.
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LLDAM(x, y) = − log
ef(x)y−∆y

ef(x)y−∆y +
∑

j ̸=y e
f(x)j

∆y =
C

n
1/4
y

, y ∈ {1, ..., C}
(3.6)

where x is the input to the classification model. y is corresponding class label. f(·) is
the classification model (i.e., ResNet-50 in this project). ∆y is the margin of class y. ny is
the total number training samples of class y. C is total number of classes.

Soft-fine Pseudo-labels

The next component in our model is a soft-fine label approach that utilizes coarsely annotated
images to enhance the generalization of corresponding sub-classes. Specifically, during train-
ing, we use Unknown Scoter images to help the model learn more discriminative features of
scoters and to have better recognition performance on both Black Scoter and White-winged
Scoter images.

To implement this soft-fine label approach, we first normalize the outputs of the ResNet-
50 model (5 dimension vectors) with a Softmax function. Then we normalize the values
that represent Black Scoter and White-winged Scoter to 1 and set the other three values
to 0 (Figure 2.8). Finally, we use these normalized softmax values as our soft-fine labels
on Unknown Scoter images with an Averaged Binary Cross-entropy (ABCE) loss, a loss
function traditionally used for samples with multiple co-occurring labels [132] (Eq. 3.7).

LABCE(x, y) =mean(l1, ..., lC)
ln =− yn · log(f(x)n −∆y)

− (1− yn) · log(1− (f(x)n −∆y))

(3.7)

where y is class label. ln is a binary cross-entropy loss of each class. ∆y is the same
margin of class y calculated in LDAM loss. C is total number of classes.

The final training loss is a combination of LDAM and soft-fine label ABCE loss:

Lfinal(x, y) = 1(y ̸= SP.) · LLDAM(x, y) + µ · LABCE(x, y) (3.8)

where SP. is super-class.

Domain adaptation to Lake Michigan

Finally, we have a domain adaptation component that adapts our model trained on Cape Cod
data to Lake Michigan data. Because the species composition in Cape Cod and Lake Michi-
gan overlap, the most straightforward adaptation method without complicated components
is Semi-supervised learning with pseudo-labels [66] to fine-tune the pre-trained model. In
this project, we use FixMatch [117], a state-of-the-art semi-supervised learning method. In
FixMatch, the only required extra component is a two-branch data augmentation procedure.
One data augmentation is called weak augmentation, which only applies random crop and
random horizontal flip on the input image. We use the predictions on the weakly augmented
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images as pseudo-labels. The second data augmentation is strong augmentation, which
has a random selection of augmentation from a pool of multiple augmentation methods.
Table B.3 has all the augmentation selections in our augmentation pool. We use strongly
augmented Lake Michigan images with their corresponding pseudo-labels to fine-tune our
pre-trained model (Eq. 3.9).

LFixMatch(x, ŷ) = LLDAM(α(x), argmax(f(A(x)))) (3.9)

where ŷ is pseudo-label. α(·) is weak augmentation. A(·) is strong augmentation.

Table B.3: Augmentation pool for FixMatch fine-tuning

Type Pool

Strong

Random contrast, color, and brightness enhancement
Random color equalizing, posterizing, sharpening, and
inversion
Random rotating, shearing, fliping, and translate
Random image cut out

Weak Random flipping
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Appendix C: Supplementary material for
Chapter 3

Data

Data background

The camera trap data come from the WildCam Gorongosa long-term research and monitoring
program in Gorongosa National Park, Mozambique (18.8154, 34.4963) [36], the same project
introduced in Chapter 1. The data used in Chapter 3 were collected from 2016 to 2019.
There are 630,544 images in total.

Data split and preprocessing

The data set was randomly split into two groups of training and validation sets to mimic
periodical data collection from two sequential time periods, along with an additional Unknown
set for improving and validating the model’s sensitivity to novel and difficult samples. To
reduce bias, we split the data set based on camera trigger events, such that both images in a
paired trigger event were either both in the training or validation set. The training-validation
split did not account for camera locations (i.e., images from a given camera were present
in both testing and training sets). For large-scale, long-term projects, it is more likely that
the camera locations are stable, and in our study, the cameras cover most of the landscapes
in the monitoring area and include a diversity of background types that change seasonally
throughout the year. Possible distribution shifts in our data set solely come from temporal
animal community changes instead of spatial landscape/ecosystem changes.

The first group contains the 26 most abundant categories, and the second period contains
all 41 categories. We randomly divided each period into training (80% of samples) and
validation (20% of samples) sets. For scarce categories that had fewer than 80 images (e.g.,
Crested Guineafowl, Eland, Lion, and Serval), we randomly selected 20 samples instead
of 20% of the data to ensure the quality of validation. The labels and distributions of these
two groups of data are illustrated in Figure 3.3.

Within the 14 categories that were tagged Unknown, we randomly selected 80% data to
fine-tune the model’s sensitivity to novel and difficult samples. We then used the rest of the
sample from the 14 categories as an extra validation set to evaluate the model’s novel image
detection capacity.



88

All of the images used in Chapter 3 were first resized to 256x256. For training inputs,
these images were randomly cropped and resized to 224x224. For validation and inference
inputs, images were center cropped to 224x224. Table C.1 reports the list of data augmen-
tations used for training and corresponding hyper-parameters.

Methods and implementation details
In this section, we report the implementation details of our method. It was developed with
Python as the programming language and Pytorch [90] as the deep learning framework. The
detailed experimental pipeline is illustrated in Figure 3.4.

Period 1 and baseline model training

There are two steps in this period: 1) baseline model training on the group 1 data, and
2) classifier fine-tuning using the 14 “left-out” categories for better sensitivity to novel and
difficult samples.

Baseline model

We used ResNet-50 [46] as our baseline model. It was pre-trained on ImageNet [27], a
generalized object oriented data set for model weight initialization. The pre-trained model
was then trained on the group 1 training data with 26 categories. All the hyperparameters
can be found in Table C.2. Model weights with the best validation performance on group 1
validation data were saved as the best model.

Energy-based fine-tuning

After training on group 1 data, we used energy-based loss [71] and the 14 “left-out” categories
(tagged as Unknown) to fine-tune the classifier for better sensitivity to novel and difficult
samples. The energy-based loss was calculated as Eq. 3.10:

Lenergy = Exknown∼Dtrain
known

(max(0, E(xknown)−mknown)
2

+Exunknown∼Dtrain
unknown

(max(0,munknown − E(xunknown))
2

(3.10)

E(x) = −T · log
N∑
i

e(f(xi)/T ) (3.11)

where E is expectation, xknown and xunknown are samples from group 1 and the 14 Unknown
categories, respectively. Dtrain

known and Dtrain
unknown represents data sets of group 1 and 14 “Un-

known” categories. E(·) is Helmholtz free energy, calculated as the log sum of outputs from
the network. f(·) : RD×D → RK is the network that maps D ×D images to K dimensional
vectors. T is the temperature that regularizes the energy. mknown and munknown are two
margins applied on known and unknown energy.
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During fine-tuning, both cross-entropy loss and energy-based loss are tuned. Eq. 3.12 is
the final loss, where w is the weight applied on energy-based loss.

L = Lcross_entropy + w · Lenergy (3.12)
All hyperparameters are reported in Table C.2.

Period 2 and model update

Active selection and confidence calculation

Following [71], prediction confidence for active selection is calculated based on Helmholtz
free energy (Eq. 3.11). Based on a preset energy threshold τ , predictions are separated into
high- and low-confidence. In other words, predictions are considered confident if −E(x) > τ
and vice versa. Based on prediction confidence, low-confidence predictions are assigned
human annotations, and high-confidence predictions are utilized as initial pseudo-labels for
semi-supervised learning.

Pseudo-labels and semi-supervised learning

Pseudo-label semi-supervision utilizes both human annotations and pseudo-labels to update
the model. In the original approach, where models are randomly initialized, pseudo-labels
get updated throughout training iterations [66]. In other words, at each iteration, the model
predicts samples without human annotations and uses these predictions as pseudo-labels
to train the same samples with a stronger set of data augmentations. In our approach, as
the pseudo-labels usually have higher quality than random predictions, we set three semi-
update repeats and only updated the pseudo-labels at the beginning of each repeat using
the best model from the last repeat. Specifically, within each semi-update repeat, the model
was updated with a fixed set of pseudo-labels and a number of training epochs. Model
weights with the best validation performance were saved, and at the end of the repeat, the
best model was used to predict samples without human annotations to produce a new set
of pseudo-labels, and a new repeat started. Only model weights with the best validation
performance throughout the three repeats were saved, and the number of repeats is a hyper-
parameter that can be tuned using validation data. Other hyper-parameters can also be
found in Table C.2.

OLTR

OLTR is an additional component in our framework targeting the long-tailed distribution of
classes in the data sets. Generally speaking, it uses embedding level memory of each category
to enhance the distinguishability of scarce categories. It is based on the idea that a lot of the
mid-level visual features (i.e., feature embedding) are shared between similar categories (e.g.,
most of the antelopes share similar body shapes). Since the model can usually learn high
quality feature embeddings from abundant species, through memory selection techniques,
the model is able to select relevant feature embedding to help improve the distinguishability
of scare categories. We directly apply OLTR to our framework. For a detailed explanation
of OLTR, please refer to the original paper [74].
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Table C.1: List of the augmentation methods and corresponding parameters we used on
our training data.

Augmentations Parameters Values

Random resize crop
Dimension 224× 224
Range of crop scale 0.08 ∼ 1.0
Range of crop aspect ratio 0.8 ∼ 1.2

Random gray scale Probability 0.1
Random horizontal flip Probability 0.5

Random rotation Probability 0.5
Rotation degree 45

Color jittering

Brightness jittering 0.4
Contrast jittering 0.4
Saturation jittering 0.4
Hue jittering 0.1

Normalization Mean [0.485, 0.456, 0.406]
Std [0.229, 0.224, 0.225]
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Table C.2: List of hyperparameters of our framework used in the two-period experi-
ments.

Period Parameters Values

Period 1. Training

Baseline architecture ResNet-50
Training epochs 40
Batch size 64
Initial learning rate (feature) 0.001
Initial learning rate (classifier) 0.01
Learning rate decay Epochs 10
Learning rate decay Ratio 0.1
Momentum 0.9
Weight decay 0.0005

Period 1. Energy
Fine-tuning

Training epochs 10
Batch size 96
Known : Unknown ratio 1:2
Energy loss weight 0.01
Initial learning rate (feature) 0.00001
Initial learning rate (classifier) 0.0001
Confidence threshold (τ) 13.7
Energy temperature 1.5

Period 2. Updating

Baseline architecture ResNet-50 +
OLTR

Semi-repeats 3
Epochs in each repeat 30
Batch size 64
Pseudo-label % 50%
Initial learning rate of each repeat
(feature) 0.0001

Initial learning rate of each repeat
(classifier) 0.01

Initial learning rate of each repeat
(memory) 0.0001

Learning rate decay Epochs 10
Learning rate decay Ratio 0.1
Momentum 0.9
Weight decay 0.0005

Period 2. Energy
Fine-tuning

Training epochs 10
Batch size 96
Known : Unknown ratio 1:2
Energy loss weight 0.01
Initial learning rate (feature) 0.000001
Initial learning rate (classifier) 0.00001
Initial learning rate (memory) 0.000001
Confidence threshold (τ) 6.7
Energy temperature 0.06
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Additional results
We report detailed results of model update performance by category in Table C.3.

Table C.3: Classification performance comparisons of Period 2 by category between our
method and fully annotated transfer learning.

Traditional transfer learnig w/
full human ann. Our framework (Semi-OLTR)

Species # of Human
Ann. Acc. (%) # of Human

Ann. Acc. (%)

Exist in
Group1&2

Ghost 20500 96.2 4248 90.2
Waterbuck 17938 88.8 2079 82.4

Baboon 15660 87.3 2335 81.1
Warthog 17400 87.4 4224 79.7
Bushbuck 6622 84.5 2179 72.3
Impala 7153 84.0 1306 77.1
Oribi 3832 83.8 966 76.7

Elephant 2471 88.2 470 85.1
Genet 1976 85.5 888 84.0
Nyala 1569 73.9 434 75.1
Setup 1229 87.4 389 86.0

Bushpig 1040 83.1 377 83.1
Porcupine 1152 83.9 300 88.3

Civet 699 82.9 123 83.9
Vervet 739 73.2 263 81.0

Reedbuck 740 65.8 203 75.3
Kudu 556 70.9 161 77.2

Buffalo 479 89.0 63 84.8
Sable_antelope 323 85.2 48 86.1

Duiker_red 370 86.8 116 89.6
Hartebeest 394 91.2 63 84.6
Wildebeest 303 83.5 44 82.4

Guineafowl_helmeted 304 64.6 250 74.4
Hare 214 78.8 166 80.8

Duiker_common 194 62.7 92 80.4
Fire 160 100.0 14 100.0

Exist in
Group2
Only

Mongoose_marsh 343 70.6 287 71.8
Aardvark 235 77.6 128 81.0

Honey_badger 234 60.3 190 63.8
Hornbill_ground 203 80.0 161 72.0
Mongoose_slender 165 68.0 157 72.0
Mongoose_bushy_tailed 161 74.0 106 72.0

Samango 99 58.0 48 70.0
Mongoose_white_tailed 84 52.0 79 64.0
Mongoose_banded 70 38.0 62 52.0
Mongoose_large_grey 63 44.0 54 48.0

Bushbaby 39 36.0 31 50.0
Guineagowl_crested 46 95.0 35 100.0

Eland 44 90.0 31 70.0
Lion 42 70.0 32 75.0

Serval 41 45.0 32 60.0
Red color means higher performance.
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