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Despite their potential unknown deficiencies and biases, the takeover of critical tasks by 

AI machines in different fields has created a demand for transparency alongside accuracy for these 

machines. Explainable AI (XAI) approaches have provided solutions by mitigating the lack of 

transparency and trust in AI and making these machines more interpretable to the lay users. This 

dissertation investigates the role of explanations for deep learning models in computer vision. This 

research explores new methods to produce more effective explanations for such models and 
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techniques to evaluate the efficacy of such explanations. The evaluation methods rely on extensive 

user studies as well as automated approaches. Throughout the study, we implement such XAI 

systems for complex tasks with potential for bias, such as Visual Question Answering (VQA) and 

face image classification. 

We present explainable VQA systems that generate interpretable explanations using spatial 

and object features driven by attentional processes such as transformers. Our user studies show 

that exposure to multimodal explanations improves lay user’s mental, mainly when AI is 

erroneous. In these studies, we demonstrate the role of object features in enhancing the 

explainability and interpretability of such models.  

Furthermore, we examine automated techniques to provide controlled counterfactual 

explanations more successfully than merely displaying random examples. To provide 

counterfactual examples, we compare an automated generating method versus a retrieval-based 

approach. Results indicate an overall improvement in users’ accuracy to predict answer change 

when shown counterfactual explanations. While realistically retrieved counterfactuals are the most 

effective at improving the mental model, this study shows that a generative approach can also be 

equally effective. 

For the task of face image classification, modern models tend to be prone to potential biases 

that can cause ethical issues in different applications despite their high accuracy. We introduce a 

novel method to search for causal yet interpretable counterfactual explanations using pretrained 

generative models. The proposed explanations show how different attributes influence the 

classifier output, with contrastive counterfactual images as local explanations and causal 

sufficiency/necessity scores as global explanations.
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INTRODUCTION 

 

The inevitable growth of AI in various fields, from medical to autonomous transportation, 

demands a clearer perception of how these machines operate. AI has successfully demonstrated 

strong competency on multiple tasks over the past years, beating its human counterparts by many 

standards. In this direction, AI users gradually demand a high level of trust and clarity to delegate 

their tasks to automated systems. On the other hand, AI technology embodies more complicated 

mechanisms and methods to meet the needs of their intricate jobs. 

AI algorithms can be so complicated that even their creators cannot explain their decisions. 

On the other hand, producing AI machines as black-box solutions raises questions about their 

fairness and bias. Under the European Union’s General Data Protection Regulation (GDPR), a 

business using personal data for automated processing must be able to explain how the system 

makes decisions (See Article 15(1)(h) and Recital 71 of GDPR). Individual data subjects (e.g., the 

person who was rejected for a loan by an AI banking system) have the right to ask the business 

why it made the decision it did. The businesses must then explain how the system came to its 

conclusion. If companies didn’t explain their decisions in response to an individual’s request, they 

would not be compliant with the GDPR. In the US, as part of the American AI Initiative, Federal 

agencies will foster public trust in AI systems by establishing guidance for AI development and 

use across different types of technology and industrial sectors. Insurance companies are good 

examples of these regulations as they are required to be able to explain their AI-based decisions 

like rate and coverage. 

The issue of black-box AI has previously exposed itself in many failure scenarios, and 

among them, the use of biased AI as risk assessment tools in the US criminal legal system is a 
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well-known case. An AI algorithm called COMPAS is supposed to help judges determine whether 

a defendant should be kept in jail or allowed out while awaiting trial. It trains on historical 

defendant data to find correlations between factors like someone’s age and history with the 

criminal legal system and whether the person was rearrested. As the law requires, COMPAS 

doesn’t include race in calculating its risk scores. In 2016, however, a ProPublica 

investigation(Angwin & Larson, 2016) argued that the tool was still biased against blacks. 

ProPublica found that among defendants who were never rearrested, black defendants were twice 

as likely as white ones to have been labeled high-risk by COMPAS.2. 

This research study is a step toward a deeper understanding of efficient decision-making 

explanations, particularly in deep learning-based AI machines that act as black boxes. Research in 

this area is critical to understanding how to address the challenges of using AI as a black box in 

sensitive applications such as medicine. These issues are fundamental to address because, in high-

risk tasks, the AI machines should be able to explain their decisions and be transparent about their 

processing as required by ethics and the law. We cannot create trust in using AI machines for 

critical tasks without transparent AI. Moreover, we cannot guarantee unbiased and fair decisions 

by AI models in the absence of explainability, and as a result, we cannot deploy them in sensitive 

applications. 

Among advanced AI technologies, deep learning models are notoriously opaque and 

difficult to interpret and often have unexpected failure modes, making it hard to build trust. While 

various explainable AI (XAI) approaches aim at mitigating the lack of transparency in deep 

networks, the evidence of the effectiveness of these approaches in improving usability, trust, and 

understanding of AI systems is still missing. This research investigates building, testing, and 

analyzing explanation systems for deep learning models with complex visual question answering 
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(VQA) and image classification tasks. In VQA, AI agents attempt to answer a question in a textual 

format based on an input image. This type of AI model is specifically an excellent target for XAI 

research due to its complicated architecture and feature space as they fuse word and image features 

and process them to produce accurate answers. For image classification, AI models are usually 

prone to hidden biases that lead to ethical issues and even socio-political concerns. We particularly 

look at the problem of face image classification, which has been a popular research topic in ethical 

AI. 

Our methodology includes devising novel explanation techniques and then implementing 

experiments to evaluate their effectiveness. We study the impact of explanations in human-AI 

collaboration and investigate the effectiveness of XAI systems in building trust and understanding 

for human users. This research effort addresses the challenge of modeling human understanding 

of AI and improving human interaction with AI. Uncalled trust in AI in cases where the machine 

does not have the competency to complete a specific task can lead to catastrophic results in many 

applications such as clinical diagnosis and military. This is a significant issue since, in most XAI 

systems, the output is only meaningful to AI experts and not the actual lay users of the system, 

which can be a radiologist or a soldier on the battlefield. Building the XAI systems requires an 

extra step of modeling the human response to it and optimizing the result for maximum human-AI 

collaboration efficacy. 

Unlike previous post-hoc saliency approaches, we generate a combination of explanation 

modalities based on AI attention and/or causal attributes that impact AI inference. We also 

investigate new modalities of explanation by combining AI attention with human-annotated data 

to produce more intuitive means of communication between black-box AI and lay users. We 

introduce the concept of explanation helpfulness to build users’ mental models and measure them 
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in a human-AI collaboration interface. Our work proposes quantitative groundings to measure 

explanation helpfulness. Our results show the strong correlation between these measures and the 

actual performance of subjects in predicting the AI agent behavior. We conduct extensive between-

subjects and within-subjects experiments to probe explanation effectiveness in improving user 

prediction accuracy, confidence, and reliance, among other factors. In the context of counterfactual 

explanations, we quantitative global explanations by generating sufficiency and necessity scores 

for causal attributes. Our explanation evaluation metric showed a strong correlation with the actual 

performance of users in our studies. 

Our results indicate that the explanations help improve human prediction accuracy, 

especially in trials when the AI system’s answer is inaccurate. Furthermore, we introduce active 

attention, a novel method for evaluating causal attentional effects through intervention by editing 

attention maps. Our research also assesses the impact of explanations on the user’s mental model 

of AI agent competency for the task. We introduce object-level attention mechanisms in the AI 

architecture that can invoke higher AI-competency awareness for the users.  

For the task of image classification, we aim to produce explanations for the causal effect 

of interpretable attributes on the final classification results. We present a method for creating 

contrastive counterfactuals for a classifier using just pretrained generative models. To explain the 

black-box image classifier, we offer contextual, contrastive, and causal explanations in the form 

of sufficiency and necessity scores.  

The rest of this dissertation is structured as follows. In Chapter 1, the experiment design 

evaluates multimodal explanations for the task of VQA. The experiment is expanded in Chapter 2 

to include newly postulated attention processes and the evaluation of competency explanations. 

Chapter 3 introduces and evaluates a unique way to make counterfactual changes as part of the 



5 

 

VQA job. We focus on the causality component of counterfactual explanations for face image 

classification tasks in Chapter 4 and present contrastive counterfactuals using pre-trained 

generative models. In the final chapter, we conclude the contributions in this dissertation and 

propose potential future directions under each discussed topic. 
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CHAPTER 1 ATTENTION-BASED EXPLANATIONS 

1.1 Abstract 

The explainability and interpretability of AI models are essential factors affecting the 

safety of AI. While various explainable AI (XAI) approaches aim at mitigating the lack of 

transparency in deep networks, the evidence of the effectiveness of these approaches in improving 

usability, trust, and understanding of AI systems is still missing. We evaluate multimodal 

explanations in the setting of a Visual Question Answering (VQA) task by asking users to predict 

the response accuracy of a VQA agent with and without explanations. We use between-subjects 

and within-subjects experiments to probe explanation effectiveness in improving user prediction 

accuracy, confidence, and reliance, among other factors. The results indicate that the explanations 

help improve human prediction accuracy, especially in trials when the VQA system’s answer is 

inaccurate. Furthermore, we introduce active attention, a novel method for evaluating causal 

attentional effects through intervention by editing attention maps. User explanation ratings are 

strongly correlated with human prediction accuracy and suggest the efficacy of these explanations 

in human-machine AI collaboration tasks. 

1.2 Introduction 

With recent developments in deep learning models and access to ever-increasing data in 

all fields, we have witnessed a growing interest in using neural networks in various applications 

over the past several years. Many complex tasks which require manual human effort are now 

assigned to these AI systems. To utilize an AI system effectively, users need a basic understanding 

of the system, i.e., they need to build a mental model of the system’s operation for anticipating 



7 

 

success and failure modes and develop a certain level of trust in that system. However, deep 

learning models are notoriously opaque and difficult to interpret and often have unexpected failure 

modes, making it hard to build trust. AI systems users do not understand, and trust is impractical 

for most applications, primarily where vital decisions are based on AI results. Previous efforts to 

address this issue and explain the inner workings of deep learning models include visualizing 

intermediate features of importance (Selvaraju et al., 2017; Zeiler & Fergus, 2014; Zhou et al., 

2014) and providing textual justifications (Huk Park et al., 2018), but these studies did not evaluate 

whether these explanations aided human users in better understanding the system inferences or if 

they helped build trust. Prior work has quantified the effectiveness of their explanations by 

collecting user ratings (Chandrasekaran et al., 2017; Lu et al., 2016) or checking their alignment 

with human attention (Das et al., 2017) but found no substantial benefit for the explanation types 

used in that study. 

To promote understanding of and trust in the system, we propose an approach that provides 

transparency about the intermediate stages of the model operation, such as attentional masks and 

detected/attended objects in the scene. Also, we generate textual explanations that are aimed at 

explaining why a particular answer was generated. Our explanations fall under the category of 

local explanations as they are intended to address inference on a specific run of the VQA system 

and are valid for that run. We offer extensive evaluations of these explanations in the setting of a 

VQA system. These evaluations are made by human subjects while performing a correctness 

prediction task. After seeing an image, a question, and some explanations, subjects are asked to 

predict whether the explainable VQA (XVQA) system will be accurate or not. We collect the data 

on subject prediction performance and their explanation ratings during and after each prediction 

run. 
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We also introduce active attention - an interactive approach to explaining answers from a 

VQA system. We provide an interactive framework to deploy this new explanation mode. The 

interface is used to conduct a user study on the effectiveness and helpfulness of explanations to 

improve users’ performance in user-machine tasks and their mental model of the system. The 

efficacy of explanations is measured using several metrics described below. We show that 

explanations improve VQA correctness prediction performance on runs with incorrect answers, 

thus indicating that explanations effectively anticipate VQA failure. Explanations rated as more 

helpful are more likely to help predict VQA outcomes correctly. Interestingly, the user confidence 

in their prediction substantially correlates with the VQA system confidence (top answer 

probability). This finding further supports the notion that the subjects develop a mental model of 

the XVQA system that helps them judge when to trust the system and when not. 

1.3 Related Work 

Visual Question Answering. In the VQA task, the system provides a question and an 

image, and the task is to answer the question using the image correctly. Combining both natural 

language and visual features, the multimodal aspect of the problem makes this a challenging task. 

The VQA problem was initially introduced in 2015 (Antol et al., 2015), and since then, multiple 

variations have been proposed and tested. A common approach is to use attentional masks that 

highlight specific regions of the image, conditioned on the question (Fukui et al., 2016; Jiang et 

al., 2018; Kazemi & Elqursh, 2017; Lu et al., 2016; Teney et al., 2018; Xu & Saenko, 2016). 

Explainable AI. The effort to produce automated reasoning and explanations dates to very 

early work in the AI field with direct applications in medicine (Shortliffe & Buchanan, 1984), 

education (Lane et al., 2005; Van Lent et al., 2004), and robotics (Lomas et al., 2012). For vision-
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based AI applications, several explanation systems focus on discovering visual features essential 

in the decision-making process (Hendricks et al., 2016; Jiang et al., 2018; Jiang et al., 2017; 

Selvaraju et al., 2017; Zeiler & Fergus, 2014). For visual question answering tasks, explanations 

usually involve image or language attention. Besides saliency/attention maps, other work has 

studied different explanation modes including layered attentions (Yang et al., 2016), bounding 

boxes around important regions (Anne Hendricks et al., 2018), or textual justifications (Huk Park 

et al., 2018; Shortliffe & Buchanan, 1984). 

This chapter proposes a multi-modal explanation system that includes justifications for 

system behavior in visual, textual, and semantic formats. Unlike previous work that suggests 

explanations primarily relied on information produced by the AI machine, our approach benefits 

from combining AI-generated explanations and human annotations for better interpretability. 

Human studies. As an attempt to assess the role of an explanation system in building a 

better mental model of AI systems for their human users, several previous efforts focused on 

quantifying the efficacy of explanations through user studies. Some of these studies were 

developed around measuring trust with users (Cosley et al., 2003; Ribeiro et al., 2016) or the role 

of explanations in achieving a goal (Kulesza et al., 2012; Narayanan et al., 2018; Ray, Burachas, 

et al., 2019). Other works measured the quality of explanations based on improving the 

predictability of a VQA model (Chandrasekaran et al., 2018). 

Despite their tremendous insights into the efficacy of various explanation modes, previous 

studies do not interactively involve human subjects in producing these explanations. In our 

research, we design an interactive environment for users to evaluate our multi-modal explanation 

system to help users predict the correctness of a VQA model. Moreover, the users generate 

explanations and receive online feedback from the AI machine. 
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1.4 The VQA Model 

VQA deep learning models are trained to take an image and a question about its content 

and produce the answer to the question. The core model extracts features from natural language 

questions and images, combines them, and generates a natural language answer. Among various 

methods to train VQA systems to accomplish this task, the attention-based approach is specifically 

of our interest. 

We use a 2017 SOTA VQA model with a ResNet (Szegedy et al., 2017) image encoder 

(Figure 1.1) as our VQA agent. The model is trained on the VQA2.0 dataset and uses an attention 

mechanism to select visual features generated by an image encoder and an answer classifier that 

predicts an answer from 3000 candidates. Moreover, we replaced Resnet with a Mask-RCNN (He 

et al., 2017) encoder to produce object attention explanations, similar to the approach used by 

(Ray, Burachas, et al., 2019). 

 

Figure 1.1 Attention-based VQA architecture 

 

As illustrated in Figure 1.1, our VQA model takes as input a 224 × 224 RGB image (𝐼) 

and question with at most 15 words. Using a ResNet, the model encodes the image to reach a 

feature representation (𝜑): 

𝜑 = 𝐶𝑁𝑁(𝐼) 1.1 
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where 𝜑 is a three-dimensional tensor with 14 × 14 × 2048 dimensions. The model also tokenizes 

the input question(𝑞) of length 𝑝 into word embeddings 𝐸𝑞 = {𝑒1, 𝑒1, . . . , 𝑒𝑝} and then encodes 

these embeddings to a feature vector of 512 dimensions (𝑠) using an LSTM model based on the 

GloVe (Pennington et al., 2014) embedding of the words: 

𝑠 = 𝐿𝑆𝑇𝑀(𝐸𝑞). 1.2 

The attention layer takes in the question and image feature representations and outputs a set of 

weights to attend to the image features. Inspired by the Stacked attention structure (Yang et al., 

2016), we compute the attention distribution over spatial dimensions of the image features: 

𝛼𝑐,𝑤,ℎ ∝  𝑒𝑥𝑝 𝐹𝑐(𝑠, 𝜑𝑤,ℎ)  ∋ ∑ ∑ 𝛼𝑐,𝑤,ℎ

𝐻

ℎ=0

= 1

𝑊

𝑤=0

  1.3 

where the attention mechanism 𝐹𝑐 is modeled with convolutional layers, and each image feature 

glimpse 𝑥𝑐 is the weighted average of visual features over the spatial locations < 𝑤, ℎ >: 

𝑥𝑐  =  ∑ ∑ 𝛼𝑐,𝑤,ℎ

𝐻

ℎ=0

𝜑𝑤,ℎ

𝑊

𝑤=0

 1.4 

A model 𝐺 with fully connected layers uses the weighted image features and the question 

representation to predict the final answer from a set of 3000 answer choices (𝑎𝑖): 

𝑃(𝑎𝑖 |𝐼, 𝑞)  ∝  𝐺(𝑥, 𝑠) 
1.5 

1.5 Explanation Modalities 

Our XVQA system aims at explaining the VQA agent’s behavior by combining the 

attention features generated in the VQA model with meaningful annotations from the input data. 

These annotations include labels, descriptions, and bounding boxes of entities in the scene and 

their connections with each other. 
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Our XVQA model either visualizes information from the inner layers of the VQA model 

or incorporates that information with annotations to explain the model’s inner work. The 

explanations are provided in different combinations to the subgroups of study participants to assess 

their effectiveness for accurate prediction. 

1.5.1 Spatial Attention 

The primary purpose of spatial attention is to show the parts of the image the model focuses 

on while preparing the answer. Attentions maps here are question-guided and more weighted in 

the areas of the image that make a higher contribution to the response generated by the model. The 

model computes the attention based on image features in ResNet (Szegedy et al., 2017) layers and 

the question input. The final values in the attention map are a nonlinear function of image and 

question feature channels (Figure 1.2). 

 

Figure 1.2 Attention maps generated based on the input features in the XVQA model. 

Users try to understand how the model analyzes an image based on the question by looking 

at these attention maps (Figure 1.3). 
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What sport is the woman playing? 

  

What are the kids riding? 

  
What are the girls skating inside of? 

  
 

Figure 1.3 Spatial attention explanations (Left: Original image, Right: Spatial attention). 
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1.5.2 Active Attention 

Our model provides this explanation mode for the users within a feedback loop. Users can 

utilize this feature to alter a model’s attention map to steer the model’s attention and the way the 

answer is generated. In this feedback loop, users first see the model’s answer based on the original 

attention map, and then they modify the attention to create a different response. Users provide the 

alternative attention by drawing it over the image in the interface. This active attention is then 

normalized and applied as an intervention in the feedback inference process: 

𝑥𝑐
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

=  ∑ ∑ 𝛼𝑤,ℎ
𝑎𝑐𝑡𝜑𝑤,ℎ

𝐻

ℎ=0

𝑊

𝑤=0

 1.6 

𝑃(𝑎𝑖
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

 |𝐼, 𝑞, 𝛼𝑤,ℎ
𝑎𝑐𝑡)  ∝  𝐺(𝑥𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 , 𝑠) 1.7 

 

The active attention trial has a two-step task to complete. The first step is similar to spatial 

attention trials, where users make predictions based on the attention map generated by the VQA 

model. The subject then observes the prediction results and realizes whether the system is accurate 

or not. The subjects are asked to draw a new attention map in the second step. Using the manually 

drawn attention map, the model processes the image and question one more time and produces a 

second answer. 

In the feedback loop, the model directly multiplies the user-generated attention map into 

the image feature map (Eq. 1.6 and Figure 1.4). This operation accentuates the image features in 

the highlighted areas and mitigates the features in irrelevant image regions. 
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Figure 1.4 The architecture of the active attention loop within the XVQA model. 

This operation aims to allow the subject to get involved in the inference process and 

provide feedback to the model interactively. In cases where the model answers the questions 

incorrectly, subjects attempt to correct the model’s response by drawing the attention map. 

Otherwise, for those cases where the model is already accurate, subjects try to create a different 

answer by altering the attention map. 

1.5.3 Bounding Boxes 

The bounding boxes in this model are generated based on the annotations in the Visual 

Genome dataset and can carry important information about the scene. A combination of the 

attention maps created by the model and these annotations can produce explanations of the system 

behavior on a conceptual level.  
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Figure 1.5 Bounding box explanations generated based on spatial attention weights for different questions. 

We calculate the average attention weight of the bounding boxes in the image based on the 

spatial attention maps and keep the top 𝐾 (𝐾 = 5 in our studies) bounding boxes. Hence, these 

bounding boxes indicate the most related objects in the scene contributing to the system’s answer 

(Figure 1.5). 

1.5.4 Scene Graph 

The bounding box annotations are completed by the scene graph information, which 

illustrates the relationships between different objects in the scene. The connections are in subject-

predicate-object phrases and can indicate object attributes or interactions. In the Visual Genome 

(VG) dataset, the object labels, their bounding boxes, and the scene graph connecting them provide 

a structured, formalized representation of components in each image (Krishna et al., 2017). For 

each question, we filter objects in the scene graph based on the attention weights of their bounding 
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boxes (Figure 1.6). The users can interactively locate active objects of the scene graph and see 

their bounding boxes in the input image. 

 

Figure 1.6 Left: input scene graph. Right: scene graph filtered based on the attention map weights generated by the 

model in response to a question. 

1.5.5 Object Attention 

Inspired by previous work (Ray, Burachas, et al., 2019), we added a MASK-RCNN image 

encoder to our model to produce explanations at the object level. This encoder is used explicitly 

by the XVQA model, as the VQA model still uses the ResNet encoder to deliver answers. 

The model creates object attention masks to highlight objects with more significant 

contributions to the inference process based on attention modules. As opposed to spatial attention 

explanations, object attention can segment certain entities in the scene to illustrate a more 

meaningful explanation for system answers (Figure 1.7). For more details on the implementation 

of this technique, please refer to (Ray, Burachas, et al., 2019). 
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What color is the train? 

  

What is this person 

holding? 

  

What type of room is this? 

  
Figure 1.7 Comparison between spatial attention (Left) and object-level attention (Right). 

1.5.6 Textual Explanation 

We also integrate natural language explanations with visual explanations in our XVQA 

system. Our technique is derived from the work done by (Ghosh et al., 2019), which uses the 

annotations of entities in an image (extracted from the scene graph), and the attention map 

generated by a VQA model while answering the question. 
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For a given question-image pair, our textual explanation module uses the visual attention 

map to identify the most relevant parts of the image. The model then retrieves the bounding boxes 

of entities that highly overlap with these regions. 

The model eventually identifies the most relevant entities to the answer based on their 

spatial relevance to the image and NL representation. The region descriptions for the most 

pertinent entities form the textual explanations. Figure 1.8 depicts a sample output obtained by this 

approach. 

 

Figure 1.8 Sample results from the NL module producing a textual explanation for the model’s answer. 

1.6 Experimental Design 

For a careful evaluation of all mentioned explanation modes, we implement an interactive 

interface where users can participate in a user-machine prediction task. The test starts with an 

introduction section and continues in the form of a series of trials where the task in each trial is to 

estimate the VQA system’s answer correctness. 

Within the introduction section, the subjects are also informed of their interaction with an 

AI system without any implications of its accuracy to avoid any prior bias in their mental model 
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of the system. The subjects are also provided with instructions to perform the tasks and work with 

the interface effectively. 

1.6.1 User task 

On each trial, users enter their prediction of whether they think the system would answer 

correctly or not and then declare their confidence level in their answer on a Likert scale. Afterward, 

the subjects view the ground truth, AI’s top-five answers, and their probabilities in order. The 

system also provides its overall confidence/certainty based on normalized Shannon entropy of the 

answer probability distribution. 

To prevent the effect of fatigue on performance in groups with longer trials, the test for 

each subject is limited to a one-hour session. Participants are asked to go through as many trials 

as possible within that period. 

1.6.2 Trials 

There are two types of trials in the experiment: no-explanation trials and explanation trials. 

In no-explanation trials, subjects estimate AI accuracy only based on the input image and question. 

In explanation trials, the subjects first see the inputs and system’s explanations. Before 

estimating the correctness of AI’s answer, subjects are asked to rate each explanation’s helpfulness 

in better predicting AI accuracy. At the end of each explanation trial, subjects rate their reliance 

on the explanations to predict AI accuracy. Figure 1.9 depicts our evaluation system's order of 

actions in a trial. 

Each test session starts with a practice block consisting of two trials. The practice trials are 

only purposed to familiarize the subjects with the test flow and are not considered in any of the 

results. The rest of the test is carried out in blocks with five trials. 



21 

 

 

Figure 1.9 Flowchart for a prediction evaluation task. The "Explanation trial?" conditional defines the type of trial as 

either explanation or control. The "Active attention?" conditional activates the feedback loop in the case of active 

attention explanations. 

1.6.3 Study Groups 

The study involves six groups of participants. The control group (NE) does not see any 

explanation modes, so its task is reduced to predicting the system’s correctness in trials. The 

explanation groups are exposed to either one or a combination of explanation modes before they 

predict the system’s answer. 

The control group (NE) only sees a block of no-explanation trials throughout the whole 

test. The blocks toggle between explanation and no-explanation modes for the groups with 

explanation modes. The no-explanation blocks in explanation groups act as control tests to assess 

prediction quality and mental model progress as the users see more trials (Figure 1.10). 

The explanation blocks view the explanations generated by the model before the users 

make their predictions and show the system's answer and the system’s confidence afterward. The 

no-explanation blocks only ask for the user’s prediction without exposing any explanations 

beforehand. 
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Figure 1.10 Structure of the test sessions in the control group (NE) and explanation groups. 

Group SA has an interactive workflow within which subjects first go through the spatial 

attention explanation and then modify the attention in a feedback loop. Each explanation group is 

dedicated to a specific explanation mode, except group SE which combines bounding box, scene 

graph, and textual explanations. The study was conducted with 90 participants and a total number 

of more than 10,000 trials. Table 1.1 shows the number of participants and the number of trials in 

each group. 

Table 1.1 User study statistics for multi-modal explanations 

Group Subjects Trials 

NE Control group 15 4124 

SP Spatial attention 15 1826 

SA Active attention 15 1021 

SE Semantic 15 1261 

OA Object attention 15 1435 

AL All explanations 15 846 

Total: 90 10513 

 

A total of 3969 image-question pairs were randomly selected from the overlap of the VG 

dataset (Krishna et al., 2017) and VQA dataset (Goyal et al., 2017) to be used in the trials. The 
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questions asked on each trial are selected from the VQA dataset, and the annotations used in 

generating the explanations are extracted from the VG dataset. In the selection, all yes-no and 

counting questions were excluded to draw the focus of the test to non-trivial questions and less 

obvious answers with higher levels of detail in explanations. 

1.7 Results 

After assigning different groups of participants to specific combinations of explanations 

(including a control group that received no explanations) and having them perform the VQA 

prediction task, we evaluated different hypotheses about the explanations’ impact on various 

aspects of human-machine task performance. The results are either based on the average of all 

trials within certain groups or the progress throughout the tests. Since each group and trial's task 

can be different from other groups and trials, the number of trials finished by subjects varies 

between groups and even within groups. 

1.7.1 Impact on User-machine Task Performance 

The first metric we used to assess user-machine task performance is the user’s accuracy for 

predicting the machine’s correctness and whether explanations affect this. We tested for any effect 

(positive or negative) between accuracy and the presence of explanations using a chi-squared test. 

The results from different groups show an overall accuracy increase in all explanation groups 

compared to the control group; however, this is statistically significant only for cases where the 

system’s answer is wrong (Figure 1.11). 



24 

 

 

Figure 1.11 The average values of user’s prediction accuracy (user performance) compared between different groups 

(system: right 𝑝 =  0.061, system: wrong 𝑝 <  0.0001, overall 𝑝 = 0.0001). 

The progress of prediction accuracy is also another metric to quantify subjects’ progress in 

understanding and predicting systems behavior. As subjects go through trials in different groups, 

we compare the improvement of their mental model based on their prediction accuracy (Figure 

1.12-left). Whether the system is right or wrong, the subjects in explanation groups show a steadier 

improvement in their prediction accuracy. 

1.7.2 User Explanation Helpfulness Ratings 

Before predicting the VQA model’s answer, users rate each explanation mode based on 

how much it helped them in the prediction task, a rating that we call "explanation helpfulness." 

Comparing these helpfulness ratings with the users’ prediction accuracy reveals a positive 

correlation with accuracy improvement (accuracy after minus accuracy before) and helpfulness of 

explanations, but only in cases where the system is right. Figure 1.13(right) implies that when 
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users find explanations helpful, they do better on the prediction task. On the other hand, a higher 

rating for explanations when the system is wrong (Figure 1.13-left) has lower human prediction 

accuracy. This observation shows the influential role of explanations in the process of decision-

making for users. 

  

Figure 1.12 Left: The user's prediction accuracy progress compared between the control group and all explanation 

groups. The results are separated based on the accuracy of the system. Right: Prediction accuracy progress in the 

Active Attention explanation group. Primary prediction is made based on the model's original attention map, and 

secondary prediction is based on the modified attention map that the subject provides. 

1.7.3 Active Attention Explanation 

Within-group SA, subjects view and interact with active attention explanations before 

making their prediction. Like spatial attention, users first make a prediction based on the attention 

map created by the VQA model. In the second step, subjects draw a new attention map for the 

model to change AI’s answers. Subjects can compare their attention with the model’s attention and 

answer that is created based on each of them. 

Figure 1.12(right) illustrates the trend of prediction accuracy progress as subjects interact 

with active attention maps. While the explanation helps subjects improve their primary prediction 

of AI correctness, they also substantially improve predicting AI when working with their modified 

attention (secondary prediction). 
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Figure 1.13 The average values of user's prediction accuracy for each explanation mode vs. user's ratings on 

explanations' helpfulness for cases where the system is right (left) and where the system is wrong (right). Overall 𝑝 <
 0.0001.  

1.7.4 Impact of Active Attention on User Confidence 

Active attention explanation provides users with a feedback loop to modify the system’s 

attention and see the result of attention changes in the model’s answer. In trials with active 

attention explanation, users make two predictions: one based on the original spatial attention 

provided by the user and a secondary prediction after they modify the attention map. We consider 

the accuracy of the primary prediction as an indicator of the user’s mental model state. The 

secondary prediction is more specifically dependent on users’ general mental model of the 

attention map. 

  

Figure 1.14 Left: User confidence progression comparison between the active attention group and other groups. 

Right: User confidence in prediction vs. system confidence in the answer. 
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Comparing results from different explanation groups with the active attention group shows 

that users in the active attention group have higher average confidence in their primary predictions 

than other explanation groups (Figure 1.14 left). 

While the increase in user confidence points out the confidence and trust built by the active 

attention explanation, the average prediction accuracy in this group of participants is lower than in 

other groups. These results suggest a higher potential for this technique to produce real insight into 

the model if used in multiple feedback loops instead of just one. 

1.7.5 Impact on Trust and Reliance 

Another essential purpose of explanation systems is to create user trust in AI machines so 

that they can rely on the outcome of the system. 

Our user study asks users about their level of reliance (in the Likert scale) on the 

explanation section while predicting AI performance. Comparing users' reliance concerning their 

performance indicates a correlation between the reliance and users' accuracy in those cases when 

the system is wrong (Figure 1.15 Left). 

  

Figure 1.15 Left: Users' prediction accuracy vs. their reliance on explanation divided by the system's accuracy. Right: 

Prediction accuracy growth in explanation groups compared between exp. Blocks and no-exp. Blocks. 

Moreover, users declare their confidence level in their prediction on a Likert scale. 

Generally, we can assume the users’ confidence level in their prediction as a function of user 
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confidence in the system and the system’s confidence in its answer. In the control group with no 

explanations, confidence mainly stems from system performance in previous trials (mental model). 

In contrast, in other groups, the explanations directly affect the level of confidence. 

Figure 1.14 (right) shows average user confidence compared with system confidence 

(provided to users after they make their predictions) in those cases when the user’s prediction is 

correct. The results indicate a consistent increase in user confidence when exposed to explanations 

against the control group with no explanations. 

1.7.6 Impact of Explanation Goodness 

As mentioned earlier, users go through blocks of trials in explanation groups. To assess the 

goodness of explanations in helping users predict systems to answer, each block of trials with 

explanations is followed by a block without explanations. Comparing the user prediction accuracy 

between these blocks illustrates the progress of users’ mental models in the presence of 

explanations (Figure 1.15 Right). Results indicate that users have built a better mental model to 

predict the system within explanation blocks and made progress in understanding system answers. 

1.8 Discussion 

The overall assessment of user performance reveals a substantial improvement in 

prediction accuracy in the presence of explanations while the system is not correct. Users also 

provide higher ratings for the explanations when they perform better and vice versa. This direct 

correlation in all explanation modes strongly suggests the effectiveness of these explanations 

within the prediction task. 

Among different modes, object attention (group OA) helped the users the most by a more 

precise segmentation of images and labeling of the relevant entities. Similarly, providing the labels 
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and bounding boxes of objects and semantic explanations (SE) yet did not offer the same level of 

insight as Object attention (OA). The difference in helpfulness between these two groups indicates 

how the coherency within the presented explanations can over-shadow the amount of information. 

Although the subjects viewed all explanation modes in group AL, we do not see a higher 

accuracy level than other groups. The feedback from the post-study interviews pointed out two 

possible reasons for such observation: 1) the overwhelming amount of information in the group 

decreased the performance level of the subjects; 2) those cases where explanation modes conflicted 

with each other confused some of the subjects. 

In cases where the system is right, the explanation groups do not reach the same accuracy 

level in prediction as to the control group. One reason can be the strong mental model shaped in 

the final trials of the control groups as the subject can traverse more trials compared to other 

groups. A closer look at the early trials in all groups reveals a higher accuracy for explanation 

groups in all cases (Figure 1.12 Left). 

The prediction accuracy progress under active attention explanations shows early 

improvement in primary and secondary predictions. On the other hand, users show higher levels 

of confidence when exposed to active attention within explanation groups. Nonetheless, the active 

attention group (SA) does not yet exceed the spatial attention group (SP). This drawback can be 

that active attention’s limited to only visual features and not question features. Possibly, multiple 

feedback loops can help users better understand the role of image features as only one of (and not 

all) the contributors in the final answer. 

In cases where the system is wrong, users’ accuracy correlates with users’ reliance. The 

subjects seem to do well either when they are significantly relying on the explanations or 

completely ignoring them. For those cases where the users ignore the explanations, post-study 
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interviews suggest that the subjects decide based on their mental model of the system and previous 

similar trials. 

1.9 Conclusion 

We designed an interactive experiment to probe explanation effectiveness in improving 

user prediction accuracy, confidence, and reliance in the context of a VQA task. The results of our 

study show that the explanations help improve VQA accuracy, and explanation ratings approve 

the effectiveness of explanations in human-machine AI collaboration tasks. 

To evaluate various modes of explanations, we conducted a user study with 90 participants. 

Users interactively rated different explanation modes and used them for predicting AI system 

behavior. The user-machine task performance results indicate improvements when users were 

exposed to the explanations. User confidence in predictions also improved when they viewed 

explanations that display the potential of our multi-modal explanation system in building user trust. 

The strong correlation between the users’ rating on explanation helpfulness and their 

performance in the prediction tasks shows the effectiveness of explanations in the user-machine 

task performance. Those explanations identified as more helpful helped users in cases where the 

system was accurate. On the other hand, in cases where the system was inaccurate, those 

explanations ranked as more helpful became more misleading. 

We also introduced an interactive explanation mode (Active attention) where users could 

directly alter the system’s attention and receive feedback. Comparing the user confidence growth 

between Active attention and other explanation groups shows a higher level of trust from the users, 

which shows the effectiveness of interactive explanations in building a better mental model of the 

AI system. 
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As a future direction, we may investigate other interactive explanation modes to maximize 

the performance in human-machine tasks. On the other hand, user feedback and ratings for the 

different modes explored in this study can guide us towards more effective explanation models in 

XAI systems. 
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CHAPTER 2 EXPLAINING AI COMPETENCY 

2.1 Abstract 

Explainability is one of the critical elements for building trust in AI systems. Among 

numerous attempts to make AI explainable, quantifying the effect of explanations remains a 

challenge in conducting human-AI collaborative tasks. Aside from the ability to predict the overall 

behavior of AI, in many applications, users need to understand an AI agent’s competency in 

different aspects of the task domain. In this chapter, we evaluate the impact of explanations on the 

user’s mental model of AI agent competency within the task of visual question answering (VQA). 

We quantify users’ understanding of competency, based on the correlation between the actual 

system performance and user rankings. We introduce an explainable VQA system that uses spatial 

and object features and is inspired by the transformer technology utilized in the BERT language 

model. Each group of users sees only one kind of explanation to rank the competencies of the VQA 

model. The proposed model is evaluated through between-subject experiments to probe 

explanations’ impact on the user’s perception of competency. Comparing two VQA models shows 

transformer-based explanations, and the use of object features improves the user’s prediction of 

the model’s competencies. 

2.2 Introduction 

Recent developments in AI, specifically deep neural networks (DNN), have brought them 

into various applications. DNNs have automated a wide range of human activities resulting in 

reduced complexity of many tasks. Users of AI systems, though, need to maintain at least a 
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minimal level of understanding and trust in the system, i.e., they need a proper mental model of 

the system’s internal operations for anticipating success and failure modes. 

While accuracy is well-known as the primary metric for AI efficiency, it cannot guarantee 

a collaborative human-machine interaction in the absence of trust. If the users do not trust a model 

or a prediction, they will not use it (Ribeiro et al., 2016). This mistrust escalates in the presence of 

adversarial attacks where imperceptible changes to the input lead to wrong outputs and the 

susceptibility of DNNs to non-intuitive errors. 

Explainable AI aims to gain users’ trust in two significant steps: interpretability and 

explainability. Interpretable models provide a basic comprehension of their inner processes 

through visual or textual cues. On a higher level, explainable models attempt to give reason and 

causality behind their decisions (Gilpin et al., 2018). 

The appearance of various methods of explanations calls for a parallel effort to evaluate 

and quantify their efficiency. While previous works introduce nominal visualizations and textual 

justifications of the inner features of DNN models, they do not assess the impact of explanations 

on various aspects of users’ understanding and trust. 

Evaluation techniques for explanations include automatic and human-based methods. 

Automated approaches provide quantifiable measures over relevant benchmarks, e.g., alignment 

with human attention datasets (Das et al., 2017); however, they still cannot propose a 

straightforward metric for trust in actual human-machine tasks. 

Furthermore, human-based approaches attempt to quantify explanation effectiveness by 

collecting user ratings (Chandrasekaran et al., 2017; Lu et al., 2016). Despite their insightful 

results, these methods do not measure the user’s perception of AI competency in the entire domain. 
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Users can benefit from AI systems more if they are familiar with the AI agent’s competency 

in the operational domain. The biases can impact the competency of AI in the training data or the 

limited representation of crucial features. An explanation system that provides case-by-case 

reasoning for AI behavior does not automatically produce a higher view of competency. Notably, 

deep learning models are notoriously opaque and difficult to interpret and often have unexpected 

failure modes, making it hard to build trust. 

As our prior work showed, explanations improve user prediction of system accuracy 

(Alipour, Schulze, et al., 2020). This chapter focuses on the user’s mental model of an AI system 

in terms of competency understanding. Specifically, we evaluate the importance of explanations 

to help users interpret how a VQA system performs with different types of questions. We model 

the users’ learning process under two explanation systems to identify the role of the attention-

based explanations in the users’ prediction of competency. For this purpose, we evaluate the 

impact of explanations on user learning rate and their ultimate score on the task of competency 

prediction. 

2.3 Related Work 

Visual question answering (VQA). Initially introduced by Antol et al.(Antol et al., 2015), 

the VQA problem involves answering questions about the visual content of an image. The VQA 

task is explicitly challenging due to the complex interplay between the language and visual 

modalities (Zhang et al., 2019). Limited labeled data and the complex feature space complicate 

developing VQA models. These challenges result in inconsistent outputs and profound logical 

contradictions (Ray, Sikka, et al., 2019). In such an environment, the choice of hyper-parameters 
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and architectural designs can drastically impact the performance of VQA models (Teney et al., 

2017). 

A common approach to VQA is to use DNNs with attention layers that select specific 

regions of the image, guided by the question for inferring an answer (Fukui et al., 2016; Teney et 

al., 2018; Xu & Saenko, 2016). Herein, we also study two attention-based VQA models with 

different attention structures. As a baseline, we use a model based on the approaches of Kazemi 

and Elqursh (Kazemi & Elqursh, 2017) and Teney et al.(Teney et al., 2018). We propose a new 

VQA architecture by replacing the attention mechanism with a transformer similar to the BERT 

model (Devlin et al., 2018) in the baseline VQA model. 

Previous work in VQA includes various attempts to optimize the attention mechanism. To 

improve the attention to the question, Lu et al.(Lu et al., 2016) utilize a co-attention model to 

reason about images and questions on hierarchical levels jointly. Anderson et al.(Anderson et al., 

2018) propose a combined bottom-up and top-down attention mechanism to calculate attention at 

the level of objects. The model is further upgraded and fine-tuned to win the VQA Challenge 

2018(Jiang et al., 2018). 

Despite all the advancements in the overall accuracy of VQA models, their unbalanced 

performance in different aspects of the task is overtly noticeable. Some prior approaches address 

this issue by focusing on tasks such as reading text in images (Singh et al., 2019) or counting 

objects (Zhang et al., 2018). Other studies introduce new datasets to reduce bias (Goyal et al., 

2017) or to enforce the logical consistency of models through visual commonsense reasoning 

(VCR) for challenging questions (Zellers et al., 2019). 

Explainable AI (XAI). The ever-increasing complexity of the modern AI machine 

demands a trustable source of explanation for all AI users. Generating automated reasoning and 
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explanations dates to very early work in the AI field with direct applications from medicine 

(Shortliffe & Buchanan, 1984) and education (Lane et al., 2005; Van Lent et al., 2004) to robotics 

(Lomas et al., 2012). In computer vision, several explanation systems focus on the importance of 

image features in the decision-making process (Hendricks et al., 2016; Jiang et al., 2018; Jiang et 

al., 2017; Zeiler & Fergus, 2014). 

AI explanations for the task of visual question answering usually include image and 

language attention (Kazemi & Elqursh, 2017; Lu et al., 2016). Besides saliency/attention maps, 

other studies investigated different explanation modes like layered attention (Yang et al., 2016), 

bounding boxes around important regions (Anne Hendricks et al., 2018), textual justifications 

(Huk Park et al., 2018; Shortliffe & Buchanan, 1984), or a combination of these modalities 

(Alipour, Schulze, et al., 2020). 

We propose an explainable VQA system that produces justifications for system answers in 

the form of an attention map. Unlike previous post-hoc saliency approaches such as GradCAM 

(Selvaraju et al., 2017), our method seeks causal explanations by providing attention as an inherent 

step of answer inference. Our proposed model uses visual features on both the spatial and object 

level. For better performance in a VQA task, our proposed model utilizes the transformer 

mechanism to process question features and visual features. 

Explanation evaluation. As AI enters our daily lives, a new interest has surged among the 

AI community to make AI algorithms more understandable to regular people without knowledge 

of AI (Drozdal et al., 2020). In this study, we choose the subjects for explanation evaluation from 

a group of individuals with minimum knowledge about AI and deep neural networks. 

The XAI literature widely discusses the impact of explanations on user mental models and 

human-machine performance. Some of the earlier work quantifies the efficacy of explanations 
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through user studies to assess the role of explanations in building a better mental model of AI 

systems for their human users. 

Some of the previous studies introduce metrics to measure trust with users (Cosley et al., 

2003; Ribeiro et al., 2016) or the role of explanations in achieving a goal (Kulesza et al., 2012; 

Narayanan et al., 2018; Ray, Burachas, et al., 2019). Dodge et al.(Dodge et al., 2019) investigated 

the fairness aspect of explanations through empirical studies. Lai and Tan (Lai & Tan, 2019) 

assessed the role of explanations in user success within a spectrum from human agency to full 

machine agency. Lage et al.(Lage et al., 2019) proposed a method to evaluate and optimize the 

human interpretability of explanations based on measures such as size and repeated terms in 

explanations. Other approaches measured the effectiveness of explanations in improving the 

predictability of a VQA model (Alipour, Schulze, et al., 2020; Chandrasekaran et al., 2018). 

Unlike prior approaches, our work is focused on evaluating human agents’ knowledge of 

AI competency. Specifically, we are interested in the user’s mental model of AI performance in 

different aspects of the VQA task. We conduct a user study to investigate the impact of 

explanations on the user’s mental model of system competency. In our study, subjects rank system 

performance among different input questions. The results indicate a positive influence on the 

accuracy of the user’s mental model in the presence of explanations. We show the overall and 

temporal effect of the explanations on the user’s interpretation in two explainable VQA models. 

2.4 Method 

Our approach aims at evaluating the role of attentional explanations in the user’s mental 

model of AI competency. We compare two explainable VQA models and test them through user 

studies to accomplish this task. This section covers the architecture details for these VQA models 
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and the differences in their attention mechanisms. The following section continues with sample 

cases from explanation models and their differences. 

2.4.1 Explainable VQA (XVQA) Models 

Our work compares two VQA agents: spatial attention VQA (SVQA) and spatial-object 

attention BERT VQA (SOBERT). Both agents are trained with the VQA 2.0 dataset. SVQA is 

based on a 2017 SOTA VQA model with a ResNet (Szegedy et al., 2017) image encoder (Figure 

2.1). The agent uses an attention mechanism to select visual features generated by an image 

encoder and an answer classifier that predicts an answer from 3000 candidates. 

 

Figure 2.1 The architecture of our explainable SVQA model. 

As shown in Figure 2.1, SVQA takes as input a 224 × 224 RGB image and questions with 

at most 15 words. A ResNet subnet encodes the image into a 14 × 14 × 2048 feature 

representation. An LSTM model, GloVe (Pennington et al., 2014), encodes the input question 

word embeddings into a feature vector of 512 dimensions. 

The attention layer in the SVQA model transfers the question and image features to a set 

of attention weights on the image features. The model convolves the concatenation of weighted 

image features and question features to produce the attention layer with 14 × 14 × 1024 

dimensions. The model predicts the probability of the final answer from a set of 3000 answer 
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choices using a multilayer perceptron (MLP). The attention layer also uses a convolution block to 

generate the spatial attention map. 

 

Figure 2.2 The architecture of the explainable SOBERT model. This model combines visual features from ResNet and 

FRCNN and question embeddings into a BERT model to produce answers and spatial attention. 

On the other hand, the SOBERT agent uses a combination of visual embeddings of the 

image from ResNet and Faster RCNN (FRCNN)(Ren et al., 2015) alongside question embeddings 

(Figure 2.2). SOBERT accepts questions with a maximum length of 30 words. The input question 

embeddings contain location and token information of words. The location features are encoded 

in both ResNet and question embeddings. 

The SOBERT agent employs a four-layer transformer module with 12 attention heads. This 

transformer converts hidden features (115 × 768) into spatial attention heads (12 × 7 × 7) and an 

output layer. An MLP translates the output layer to the final answer prediction of 3129 candidates. 

Based on their training process and characteristics, VQA agents can reach certain levels of 

accuracy in each type of question. We limit the cases into a subset of a VQA 2.0 validation set 

with questions about action, attribute, object, and count for our tests. We classify the questions 

using automated methods, including word matching in questions and their answers. Questions 

about activity inside an image are labeled as "Action." Questions about objects inside the image 
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are labeled as "Object." Questions that are specific about attributes of entities in the image (e.g., 

color) are labeled as "Attribute." 

 

Figure 2.3 Attention maps generated by the AI agents for questions in different question type categories. As illustrated 

by the results, the SOBERT model produces attention maps with more focus on the areas related to the question. 

Finally, questions about counting entities in the image are categorized as "Count." Table 

2.1 shows the accuracy of SVQA and SOBERT agents in these four categories. The models' 
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accuracy is calculated across the four categories of the VQA validation dataset. As Table 2.1 

shows, the two models produce a similar ranking between the four types of questions, while the 

SOBERT model can reach a higher accuracy than the SVQA model. 

Table 2.1 The accuracy of VQA agents in four selected types of questions. 

Model Action Attribute Object Count 

SVQA 81.21% 70.83% 64.46% 45.78% 

SOBERT 88.35% 86.63% 71.84% 60.14% 

2.4.2 Explanations 

The VQA agents can produce a spatial attention map to visualize focus areas while making 

the answer. The SVQA model convolves the attention tensor into a 14 × 14 spatial map. In the 

SOBERT model, the attention tensor is averaged over the 12 attention heads into a 7 × 7 spatial 

attention map. 

The attention maps generated by the VQA agents provide a causal explanation to the users 

as they illustrate AI spatial/object attentions as an inherent step in answer inference. Both models 

use spatial features from the images while gaining a general representation of the images’ content. 

The SOBERT model also incorporates object-level F-RCNN features into the process. 

One significant impact of including object-level attention emerges in the attention map outputs of 

the model. As shown in Figure 2.3, the attention from the SOBERT model covers broader areas 

associated with objects in the scene. Also, the averaging layer that generates attention produces 

smoother attention distributions in the SOBERT model compared to more localized and scattered 

attention in SVQA. 
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Table 2.2 The maximum learning rate of the users and the final correlation value in the competency ranking task. Both 

explanation models show an improvement in early learning rates. While explanations from the SOBERT model 

increase the learning rate as much as SVQA, SOBERT reaches a higher final learning rate. 

Model Condition Final ranking corr. Max. user learning rate (corr. / blocks) 

SVQA 
Baseline 0.757 0.0105 

Explanation 0.805 0.0769 

SOBERT 
Baseline 0.611 0.0253 

Explanation 0.921 0.0468 

2.5 Experiments 

We designed an interface for an in-person user study to evaluate the impact of explanations 

on the user’s understanding of AI agent competency among different question types. At the 

introductory section of each study session, subjects are reminded that the model competency and 

accuracy of the AI model are unknown to minimize their prior knowledge and judgment of the AI 

agent competency. 

In this user study, subjects go through a set of trial blocks where the AI agent answers 

questions about images. Each block consists of four trials with one image-question of each type: 

object, attribute, action, and count. In each trial, subjects first see the input image and question, 

and then they proceed to see the outputs of the AI agents. 

The study is divided into two groups for each model: baseline and explanation. Each study 

group contains ten subjects, and each subject goes through 100 trials (25 blocks). In all groups, 

users see the agent’s top five answers, their probabilities, and agents’ Shannon confidence in each 

trial. In the explanation group, subjects first view the attention map from the model and then see 
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the top answers and confidence value. The subjects are asked to rank the helpfulness of the 

attention maps for understanding the AI’s performance in that trial. 

At the end of each block, subjects rank the trials within the block based on system 

performance for each question type. These rankings reflect the subject’s opinion of AI 

competency. Comparing rankings between baseline and explanation groups measures the impact 

of explanations on subjects’ mental models (Figure 2.4). 

  

Figure 2.4 The average of all rankings entered by the subjects at the end of every block of trials (Left: SVQA model, 

Right: SOBERT model). 

In each block of trials, four question-images show up in randomized order. The AI agent’s success 

ratio in each block is also randomized. In the baseline group, users can only rely on the top answers 

and their probabilities to understand system performance for that question and image. On the other 

hand, subjects from the explanation groups have the extra information provided by the attention 

maps (Figure 2.5). 
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Figure 2.5 The workflow for user study groups: on the left is the baseline group, where the users only view the top 

five answers from the model and the probability of the answers. Shown on the right: users inside the explanation group 

also view the attention maps generated by the model. Each group considers blocks of trials. Users are requested to 

score the question-images at the end of each block based on how well they appear to be comprehended by the model. 
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2.5.1 Explanation Helpfulness 

In the explanation group, the subjects view the attention explanations before they see AI's 

final answers and accuracy. At this stage, the subjects rate the explanations based on their 

helpfulness in understanding the AI’s performance. 

The helpfulness rankings are specifically interesting for action and count question types 

within which the VQA agents show their highest and lowest competencies. The helpfulness 

rankings within these categories on SOBERT explanations show an increase compared to SVQA 

(Figure 2.7). While subjects ranked 17% of SVQA explanations as "not helpful" in count 

questions, this number is reduced to 7% when using SOBERT explanations. SOBERT also 

decreased unhelpful explanations from 8% to 3% in action questions. 

  

Figure 2.6 Temporal impact of attention maps on user rankings. Left: the growth of correlation in baseline and 

explanation groups is compared between baseline (blue) and explanation (orange) groups for two models, SVQA (left) 

and SOBERT (right). T-test p-values for SVQA and SOBERT data are 0.07 and 3.7𝐸 − 8 respectively. 

2.5.2 Competency Ranking 

We assess the accuracy of the subject’s rankings by measuring the correlation between that 

and the ground truth competency ranking of AI agents (Figure 2.5) and the collected rankings at 

the end of each block. Figure 2.7 illustrates this correlation between each study group's starting 
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and finishing blocks. The start and finish values of correlation are the average of 1-5 and 20-25 

blocks, respectively. 

 

Figure 2.7 Histogram of ratings of how “helpful” explanations are for the subjects. The subjects give these helpfulness 

ratings as they view the explanations before seeing the system's top 5 answers. Consequently, these ratings are not 

confounded by the accuracy of the AI. 

Overall, the ranking correlation shows an increase in both models with a slightly higher 

slope in the presence of explanations (Figure 2.8). To better picture the temporal impact of 

explanations on the users’ mental models, Figure 2.6 presents the progress of ranking correlation 

throughout the study. In the early blocks of both models, the explanation groups increase their 

ranking correlation at a higher rate than baseline. 

2.5.3 Competency Learning Curves 

We also investigate the temporal pattern of temporal ranking correlation by fitting curves 

into the data in baseline and explanation groups. This problem, in general, can be viewed as 

modeling a user learning curve for a particular task. 
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Figure 2.8 The overall correlation between the users' rankings and the system’s actual competencies. Comparing the 

results from the SVQA model (left) and our SOBERT model (right) suggests a better improvement of correlations in 

the presence of SOBERT attention maps. 

The modeling of a user learning curve is widely discussed in cognitive science. In previous 

work, researchers analyzed exponential learning equations to describe user improvement in the 

task (Heathcote et al., 2000; Ritter & Schooler, 2001). The assumption of a monotonically 

decreasing improvement is the main foundation beneath the exponential learning curves. 

Here, in the context of learning AI competency rankings, subjects start the study with no 

prior knowledge of the AI agent’s rankings. Also, the correlation metric cannot exceed a value of 

1.0. Considering these similarities to the general learning model, we also assumed an exponential 

curve with an upper bound as blocks grow to infinity. With this analogy, we considered the 

following curve to fit the ranking correlation trends: 

𝑐 = 𝛼 ⋅ 𝑒−𝛽⋅𝑏 + 𝛿 2.1 

where 𝑏 and 𝑐 are the block count and ranking correlation, respectively. In this setting, the ranking 

correlation approaches 𝛿 as the subjects continue the study. The value of 𝛿 is penalized for curves 

fitting to satisfy the condition 𝛿 ≤ 1.0. 

The slope of the curves in Figure 2.6 represents the growth rate of ranking correlations 

with respect to the number of blocks. Higher rates of correlation growth show faster learning by 
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the subjects. To compare the learning rates, we consider the maximum slope of each curve (Table 

2.2). 

The results indicate a higher rate of learning for users in the presence of an explanation. 

The explanation from the SVQA agent causes a higher increase in the learning rate compared to 

SOBERT. However, the ultimate value of ranking correlation in the SVQA model is bound to 𝛿 =

0.808, while the SOBERT model approaches the maximum correlation at 𝛿 = 1.0 (Figure 2.6). 

2.6 Discussion 

In our user studies, the overall progress of ranking correlations is measured as a metric to 

evaluate the users’ mental model of system competency. We tested the users’ mental model after 

seeing only 100 instances (trials) of the AI agent’s performance. However, the results strongly 

suggest that even with this limited view of system performance, the subjects learn the overall 

competency of AI agents throughout these tests. 

Adding the attentional explanations for both models results in a significant improvement 

over competency rankings. Comparing the early learning rates between baseline and explanation 

groups suggests a considerable improvement by attention map explanations, especially for the 

SVQA model. However, the SVQA learning curve suggests an upper bound to the correlation in 

the presence of explanations. On the other hand, the SOBERT model shows a higher learning rate 

with explanations than the baseline while still reaching the maximum correlation value. 

These results highlight the effect of input features on the information that the explanations can 

carry. The SOBERT model uses object and spatial features vs. the spatial features in the SVQA 

model. The SOBERT model also uses a transformer to construct the attention maps based on the 
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features. These changes compared to the SVQA have raised the upper bound on the maximum 

reachable competency prediction by the subjects. 

In our study, we control two factors: the presence or absence of explanation and the source 

of explanation. The comparison between control groups and explanation groups shows the impact 

of explanations in general. On the other hand, the comparison between the two models investigates 

the role of explanation quality on user predictions. The quality of explanations can impact the 

user’s mental model. For instance, the scattered/smooth attention maps may be construed as a sign 

of lower/higher competency in the eyes of lay users. To restrict the impact of such assumptions 

and comparisons, each person in our study can only participate in the study once and is only 

exposed to one AI agent. However, discovering the chain-of-thought and decision process can be 

investigated in future research to identify the explanation qualities that play a role in the subject’s 

prediction. 

2.7 Conclusion 

This chapter evaluates the role of attention map explanations on the user’s mental model 

of AI competency. We designed an experiment where subjects rank the performance of the VQA 

model among four different types of questions. To quantify the subjects’ mental model, we 

compute the correlation between user rankings and the AI’s actual ranking among the question 

types. 

We propose a new XVQA model that produces answers and attention maps from spatial and object 

features of the image. This explainable model uses a transformer attention module to better process 

the visual and textual embeddings of the input. The proposed model is compared with a baseline 

model to show the effect of input object features and the attention module. 
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Overall results from the experiment suggest an improvement in the user’s mental model 

when exposed to the attention map explanations. The progress of the user’s mental model (ranking 

correlations) throughout the experiments indicates a higher learning rate in the presence of 

explanations. Furthermore, the subject group interacting with the newly proposed model shows a 

higher ranking correlation rate than the baseline model. This improvement positively impacts the 

explanations by including the object feature and the transformer model. 
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CHAPTER 3 ATTENTION-BASED EDITS 

3.1 Abstract 

In the domain of Visual Question Answering (VQA), studies have shown improvement in 

users’ mental model of the VQA system when they are exposed to examples of how these systems 

answer certain Image-Question (IQ) pairs. This chapter shows that showing controlled 

counterfactual image-question examples is more effective at improving users' mental models than 

simply showing random examples. We compare a generative approach and a retrieval-based 

approach to show counterfactual examples. We employ recent breakthroughs in generative 

adversarial networks (GANs) to construct counterfactual images by removing and repainting 

certain regions of interest in the image. We then expose users to changes in the VQA system’s 

answer on those altered images. To select the area of interest for inpainting, we experiment with 

using both human-annotated attention maps and a fully automatic method that uses the VQA 

system’s attention values. Finally, we test the user’s mental model by asking them to predict the 

model's performance on a counterfactual test image. We note an overall improvement in users’ 

accuracy to predict answer change when shown counterfactual explanations. While realistic 

retrieved counterfactuals are the most effective at improving the mental model, we show that a 

generative approach can also be equally effective. 

3.2 Introduction 

With the growing application of AI in high-risk domains, it is crucial to understand the 

extent and limits of AI system competencies to ensure such systems' efficient and safe deployment. 

While deep neural networks have made impressive strides, they are notorious for being 
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unpredictable to a human user when they succeed or fail in producing correct outputs. Hence, we 

need practical approaches to improve the end user's mental model of the deep neural network-

based AI systems. 

There have been studies in the literature (Chandrasekaran et al., 2018) that show humans 

can improve their mental models by mere exposure to the system predictions for various inputs. A 

mental model is a person’s internal representation of the AI system she is interacting with and 

ideally builds a correct understanding of how that system works (Rutjes et al., 2019).  

This chapter explores the various ways we can present such explanatory additional input-

output examples to a user to maximize their mental model improvement. We ask the question: are 

specific examples of how the machine behaves better than other examples to teach humans when 

to trust the model and when not to? We examine the effect of exposing the users to explanatory 

examples where the inputs are controlled to observe better how the machine output changes to 

controlled changes in the input. We call these controlled changes in input “counterfactuals.” We 

hypothesize that such controlled changes in the examples shown are better for mental model 

improvement than showing random examples. 

Many approaches (Alipour, Ray, et al., 2020; Chandrasekaran et al., 2018; Ray, Burachas, 

et al., 2019) to improving mental models also focus on using explanations that aid the user in 

understanding how a deep network arrived at a particular conclusion. While many existing 

explanation approaches, such as attention maps, attempt to provide insights into the inner working 

of AI machines, they don’t necessarily convey the causal chain of inference that happens in the 

algorithm (Ray et al., 2021). As a result, the research community actively seeks novel explanation 

modalities to probe the causality of AI as this form of explanation can resonate better with human 

logic. Humans learn better from explanations that easily convey when a machine is about to be 
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correct and when not (Ray et al., 2021). Among different techniques, showing counterfactual 

examples is considered a human-friendly explanation because they are contrastive and selective 

when showing the feature changes (Molnar, 2020). Counterfactuals allow the user to explore the 

range of responses from AI as they manipulate certain features of the inputs and the conditions. 

In this chapter, we focus on improving users’ mental models by generating counterfactual 

explanations for the task of visual question answering (VQA) - answering natural language 

questions asked about images. Specifically, we compare various methods of generating 

counterfactual examples to maximize a user’s accuracy in predicting when a model will fail or 

succeed. 

 

Figure 3.1 While alternative real images may present a convincing counterfactual case for a visual question answering 

(VQA) model; they are expensive to harvest and often incapable of selecting specific features. In this sample, while 

the real-image counterfactual may suggest that the AI agent is correctly capturing the type of sport, the in-painted 

counterfactual indicates that the change in the answer is not necessarily correlated to the changes in the input. 

In this setting, given an image-question pair, a counterfactual explanation shows the 

model's output for the same question but on a different image where the answer should be different. 

For example, as shown in Figure 3.1, for the question “what sport is being played?" on the original 

image of playing tennis, the counterfactual examples could be showing the answer of the model 

on an image where someone is playing baseball (middle image), or where a tennis racket is absent 

(rightmost image). 
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Specifically, we compare a retrieval-based approach and a GAN-based approach to 

generate counterfactual images for a given question. For example, as shown in Figure 3.1, we can 

generate a counterfactual image (an image where the answer may be different from the original 

image) by either retrieving an image where the answer is different (middle image) or by removing 

the tennis racket using a GAN network (rightmost image). Our automated approach using a GAN 

provides the opportunity to produce counterfactuals at scale and evaluate their effectiveness on a 

large population of AMT workers. 

One major challenge of automatically generating counterfactual images is that the 

capability of current GAN models limits us. We chose to use an in-filling network (Chang et al., 

2018) to remove parts of the image since we observed that current networks could achieve this 

with a good performance. Limited by the capability of only being able to remove parts of images, 

we need to decide the most effective parts of images to remove to generate counterfactual examples 

that help users to learn the idiosyncrasies of the model to improve their mental model. In this 

regard, we experiment by using attention maps (heatmaps that point to where a machine looks 

while answering the question) to decide on relevant and irrelevant parts of the image to remove to 

generate counterfactual ideas. 

In summary, our contributions include: 

Proposing effective ways to generate counterfactual examples: We outline several ways of 

generating counterfactual images. Specifically, we compare a retrieval-based method and an 

automated GAN-based method to generate counterfactual images.  

We evaluate the effectiveness of counterfactual examples relative to providing random 

examples empirically. We improved users' mental model when offering controlled counterfactual 

examples compared to simply showing random or no examples at all. 
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In the following sections, we first look at the related work. We then discuss the 

methodology behind our approach. We then cover the details of our hypotheses and experimental 

designs. Finally, we provide the results from our studies and discuss our interpretations. 

3.3 Related Work 

VQA/Explanations. Our approach is based on interactions with a visual question 

answering (VQA)(Antol et al., 2015) machine. The use of attention-based layers and explanations 

in VQA has been a highly popular approach (Alipour, Ray, et al., 2020; Fukui et al., 2016; Teney 

et al., 2018; Xu & Saenko, 2016). Previous work in the attention-based VQA includes attempts to 

improve the attention mechanism through co-attention between image and question (Lu et al., 

2016) or a combined bottom-up and top-down to compute object-level attention (Anderson et al., 

2018). In recent work, Peng et al.(Peng et al., 2020) propose a Multi-modal Relation Attention 

Network (MRA-Net) model with textual and visual relation attention for higher performance and 

interpretability. Patro et al.(Patro et al., 2020) utilize adversarial training of the attention regions 

as a two-player game between attention and explanation. We adopted a VQA model similar to 

what was proposed by Alipour et al.(Alipour, Ray, et al., 2020), where the attention is derived 

from a transformer model (Devlin et al., 2018). 

Counterfactuals. Counterfactual examples have also been used to explain image 

classifiers (Chang et al., 2018; Goyal, Wu et al., 2019). They have also been used in an 

optimization process where Wachter et al.(Wachter et al., 2017) proposed a loss function to find 

the minimum changes in the input that results in a shift in the classifier's output. Using 

counterfactual images as explanations can also be thought of as the visual equivalent of observing 

VQA behavior by rephrasing the question and checking if the model responds consistently 
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(Agarwal et al., 2020; Ray, Sikka, et al., 2019; Selvaraju et al., 2020). Hence, such counterfactual 

images hint at how consistent these models are to users, which aids in their mental model 

improvement. 

Mental model evaluation. Some of the previous studies introduce metrics to measure trust 

with users (Cosley et al., 2003; Ribeiro et al., 2016) or the role of explanations in achieving a goal 

(Kulesza et al., 2012; Narayanan et al., 2018; Ray, Burachas, et al., 2019). Dodge et al. investigated 

the fairness aspect of explanations through empirical studies (Dodge et al., 2019). Lai and Tan (Lai 

& Tan, 2019) examined the role of explanations in user success within a spectrum from human 

agency to full machine agency. Lage et al. proposed a method to evaluate and optimize the human-

interpretability of explanations based on measures such as size and repeated terms in explanations 

(Lage et al., 2019). Other approaches measured the effectiveness of explanations in improving the 

predictability of a VQA model (Alipour, Schulze, et al., 2020; Chandrasekaran et al., 2018). 

In this chapter, we develop a series of user studies with a subject population of lay users 

with minimum knowledge about AI. The experiments are designed to investigate effective 

methods to produce counterfactuals that can improve the user’s mental model of a VQA system. 

3.4 Method 

This section describes our VQA model and then explains how we generate counterfactual 

images using a GAN. 

3.4.1 VQA Model 

Our VQA model is trained based on the VQA 2.0 dataset (Goyal et al., 2017) and can 

answer questions about images in textual format. The model is a transformer-based neural network 

that can parse a combination of visual and textual embeddings from an image and question. The 
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model encodes the image into a 49 × 512 feature map with the help of ResNet152(He et al., 2016). 

The objects in the image are also encoded separately into a 36 × 512 feature map using a Region 

Proposal Network (He et al., 2017). The model accepts questions with a maximum length of 30 

words, and all questions below this limit are padded with 0s. The question array is also embedded 

into a 30 × 512 vector of features. 

The model employs transformer-based attention layers that receive all the visual, object, 

and textual features in the concatenated shape of 115 (30 + 36 + 49) tokens. The transformer is 

comprised of four layers with 12 heads in each layer. Consequently, the model can provide an 

attention tensor between these tokens with a 4 × 12 × 115 × 115 dimension. The model offers its 

prediction as a SoftMax probability distribution over 3129 answer choices from the attention-

weighted feature values. 

We use a subset of the VQA 2.0 validation dataset for our experiments. We first show the 

VQA model’s answer to this subset's original images and questions. For each example, we also 

present the answer to two counterfactual images for the question to the user. We finally test the 

user’s mental model by asking the user to predict the correctness of the answer on a test image for 

the same question. We will now describe how we generate counterfactual images. 

3.4.2 Generating Counterfactual Images 

We generate counterfactual images to serve as examples of VQA behavior under differing 

inputs to improve users' mental models. For example, a user who sees a VQA not counting oranges 

correctly when changing the number of oranges in a picture and asking, “How many oranges?” 

will learn that the VQA model has a low accuracy for counting oranges. This sort of mental model 

improvement might not have been noticed if we presented the user with only one counting example 

and other random examples of images and questions. Our study focuses on altering objects in the 
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image for a particular question. Specifically, we use a GAN trained to in-paint areas of the image 

such that it looks natural (Chang et al., 2018). When asked to in-paint an area of a specific object 

in an image, such a GAN would usually omit the object and in-paint its content that matches the 

background/surrounding scenery. We use such an approach to remove objects from the scene. 

However, such methods are currently noisy, and we often note artifacts in the image that make it 

seem unnatural. Hence, we limit the size of all in-painting bounding boxes to 10% to 20% of the 

whole image area. 

3.4.3 How to Choose Objects to In-paint 

The goal of this algorithm is to generate counterfactual explanations that are helpful to the 

users in predicting AI’s response. Given the diverse combinations and interactions between objects 

in a real scene, it is not obvious how to define an algorithm to select and alter the objects from 

images to maximize mental model improvement. In our approach, we use attention maps - 

heatmaps that convey the essential regions of the image for answering the question - to decide on 

objects to remove from the image. We use two different sources of attention to identify the in-

paint candidates and then produce the counterfactual images based on them: 

• Human annotated attentions for the image-question pair, which come from the human 

attention dataset (Das et al., 2017). 

• The attention layers from the AI system. As described in Section VQA Model, our VQA 

system has multiple layers of attention that weigh the image and question features. We 

select the weights from the last layer (averaging over the transformer heads) to display the 

attention values over the image regions. The attention values over the image regions are 

also computed as the average weight over question tokens. 
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Based on the above-computed attention maps, we generate two counterfactual images- 1) 

we remove a box that falls in a region of high attention, and 2) we remove a box that falls in a 

region of low attention. This ensures we remove a relevant and irrelevant object in the image to 

introspect how the VQA model’s answer changes. Based on this observation, a user can 

hypothetically learn whether the VQA model is behaving rationally or not. To select the low and 

high attention boxes, we employ a threshold that first segments the attention map's high and low 

attention regions. The bounding boxes surrounding these regions provide the in-paint area. In cases 

where the bounding boxes are outside the limits (10% - 20% of the image area), the proposed box 

is scaled to a size within the range. 

3.5 Experimental Settings 

We conduct experiments to quantify the improvement in the mental model for users after 

being exposed to counterfactual explanations. We measure the user mental model by asking them 

to predict the answer-change or the correctness of the answer for a given image-question (IQ) pair, 

similar to concurrent studies on user mental model evaluation (Alipour, Schulze, et al., 2020; 

Chandrasekaran et al., 2018). We use the Amazon Mechanical Turk platform to recruit users for 

our study. We recruit workers located in the United States (due to IRB regulations) who exceed 

98% approval rating on at least 50 such human-intelligence tasks (HITs). 

In our study, each user goes through 1 HIT, consisting of 20 episodes of IQ pairs. In each 

episode, the users first see the VQA model’s response to the original Image-Question (IQ) pair. 

Based on their group configuration, then they may or may not see two counterfactual forms of the 

original image and AI’s response to the original question for those counterfactual images. In the 

evaluation section of each episode, users attempt to predict AI’s response to a test image for the 
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same question. We quantify users’ mental model states based on their accuracy in predicting AI’s 

response. 

We use two tasks to measure a user’s mental model - a) answer-change prediction to see if 

users can predict if the answer will change when a certain object is removed, and b) answer 

correctness prediction on a real test image based on the lessons learned from counterfactual 

examples. 

3.5.1 Answer Change Prediction 

In this setting, we show an IQ pair to a user, the VQA model’s answer to the original IQ. 

One group of users - Counterfactual Group (CF Group) - sees two examples of objects being 

removed from the image and the VQA model’s answer on these two altered images. The Control 

Group of users sees no such altered examples. Finally, both the groups of users are presented with 

another new object removed from the same image and are asked to predict if the VQA model’s 

answer for that image will change from the original image or not (Figure 3.3). 

In the experiment, the counterfactuals were generated based on human attention (Das et 

al., 2017) annotations from the VQA-HAT dataset. Note that the object removed in the test image 

is always different from the objects removed in the counterfactual examples shown. We do this by 

choosing separate regions of minimum (min), maximum (max), or medium (mid) attention based 

on the human-attention values on the image. While the Min and Max regions are determined by 

extracting the areas from the two sides of the attention spectrum (Figure 3.2), the Mid area is 

identified by avoiding the overlap with Min and Max and maintaining the minimum attention 

possible. This procedure of in-painting assures the minimum overlap among the sample and the 

test in-paintings and therefore minimizes the chance of overlap between counterfactual samples 
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and test images. While testing the users, we randomly choose to show two of min, mid, and max 

as counterfactual examples and test on the unseen third. 

 

Figure 3.2 Generating counterfactual images based on human annotation attentions. The algorithm first identifies the 

most attended and least attended bounding boxes in the image and then applies the generative adversarial networks 

(GAN) to in-paint those bounding boxes and produce the counterfactual images. 

The group CF-MinAtt shows mid and max attention as samples and tests on the image 

with the min attention region removed. Similarly, CF-MidAtt tests on the image with the mid 

attention region removed, and CF-MaxAtt tests on the image with the max attention region 

removed. 

 

Figure 3.3 The interfaces for the experiments that evaluate the impact of in-painted counterfactuals for the task of 

answer-change prediction. Users in both groups are evaluated based on the same in-painting patterns. While the users 

in the Counterfactual Groups can utilize the counterfactual samples in their prediction, the baseline group attempts to 

predict the answer-change merely based on the original image-question (IQ) response. For the input and sample 

images, users see AI's top answer along with its probability (blue bar beneath the answers). 
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3.5.2 Answer Correctness Prediction 

In the second set of experiments, we provide a more realistic setting to evaluate the user's 

mental model. Instead of predicting an answer change for a counterfactual test image, the users 

now attempt to predict whether the model will answer the same question correctly for a different 

test image. Since the test images are also selected from the IQ pairs in the VQA dataset, that 

guarantees that the test image is relevant for the question asked. 

We define four groups (shown in Table 3.1) to check whether counterfactual examples 

improve users’ mental models to be able to predict the model’s correctness on an unseen test 

image: 

• Control Group (CG-NoExp) sees no explanations and just the VQA model’s answer on an 

IQ pair. 

• The counterfactual group is either based on counterfactual images generated using human-

annotated attention (CF-HAT) or the VQA model’s attention (CF-AIAtt). These groups 

are to examine how the process of generating counterfactual images affects the mental 

model. 

• A group that sees retrieved real counterfactual images (CF-AltImg). In the VQA dataset, 

each question is correlated with multiple images that can be relevant to those questions. In 

an automated process, we randomly retrieve images that are relevant to the question but 

have a different answer. We can think of these as ideal counterfactual examples. The 

performance of this group compared to the CF-HAT and CF-AIAtt groups would tell us if 

generated counterfactuals (CF-HAT and CF-AIAtt) can be used in place of real 

counterfactual data to reduce dataset collection costs. 

• A group that sees random IQ pairs instead of counterfactuals (CG-RandIQ). This group 
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is to understand how much we gain from simply presenting two samples of random IQ 

pairs instead of two counterfactual IQ examples. 

 

Table 3.1 User study groups for answer correctness prediction. 

Group 

Samples 

Attention source Images Questions 

CG-NoExp - - - 

CG-

RandIQ 
Random images Random questions - 

CF-HAT 
Original image in-painted over least/most attended 

areas 
Original question Human annotations 

CF-AIAtt 
Original image in-painted over least/most attended 

areas 
Original question AI attention 

CF-AltImg Alternative real images Original question - 

 

 

Figure 3.4 The workflow for different groups of the study. While steps 1 and 3 are shared among groups, the 

explanation step differentiates between them. In in-painted counterfactuals, samples 1 and 2 are in-painted over the 

least attended and most attended areas, respectively. The real counterfactual images are sampled from the VQA 

dataset. 

Note that in all cases, we make sure all images are relevant to the question asked since VQA 

models are not trained to answer irrelevant questions about images (Ray et al., 2016). Figure 3.4 

visualizes the different interfaces used for the CG-NoExp group and the CF groups. 
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3.6 Results and Discussion 

In this section, we cover the results from the user studies conducted for the two major tasks 

described previously: answer change prediction and answer correctness prediction. 

3.6.1 Answer Change Prediction 

Table 3.2 provides detailed numbers on the user accuracy in all groups. We show the 

accuracy of users correctly predicting the system would be INCORRECT for the cases when the 

VQA model is INCORRECT and similarly for when the VQA model is CORRECT. In the last 

column, we finally present the normalized accuracy, which is the average of the accuracy for the 

CORRECT and INCORRECT cases. Since the number of correct cases is more than the number 

of incorrect cases for a VQA model, a normalized accuracy score mitigates potential spurious 

increases in the accuracy simply because a user always predicted a model would be correct. If a 

user always predicted a model would be correct, the recall for CORRECT cases would be 100% 

and 0% for the INCORRECT cases, resulting in a normalized accuracy of only 50%. 

Table 3.2 Normalized user accuracies in answer change prediction task. 

Group Baseline (%) Counterfactual (%) 

CF-MinAtt 54.23 62.52* 

CF-MidAtt 56.29 66.38** 

CF-MaxAtt 62.91 66.01** 

All 61.30 66.98** 

Note: Bold values mark higher accuracies in each group and asterisks reflect statistical significance 

based on p-value (* < 5%, ** < 1%, and *** < 0.1%). 

Users exposed to the counterfactual samples can predict the answer change better than the 

users in the baseline group. Moreover, we observe a consistent improvement in all subgroups 
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regardless of the in-painting patterns. Even in CF-MinAtt and CF-MidAtt, users tend to do better 

when exposed to the counterfactuals, although predicting an answer change for those cases can be 

inherently harder. These findings suggest a positive impact of the counterfactual samples on the 

mental model independent of the testing scenario. 

3.6.2 Answer Correctness Prediction 

Here, we evaluate the user’s accuracy in predicting whether a VQA model will be correct 

or not on an unseen test image. We conduct most of our experiments on this task since this task is 

more realistic and challenging. Our goal is to see if users can learn from counterfactual 

explanations to predict the model’s performance on unseen images. We divide the correctness 

prediction results into two subgroups based on cases where the VQA model is CORRECT and 

INCORRECT, as shown in Table 3.3.  

Table 3.3 User accuracy in answer correctness prediction task. 

Group 

AI correct  AI incorrect 

Norm. Acc. (%) N User Acc. (%)  N User Acc. (%) 

(a) CG-NoExp 2995 70.42  2605 45.60 58.01 

(b) CG-RandIQ 2921 78.26  2659 46.30 62.28 

(c) CF-HAT 3005 73.14  2625 54.48 63.81 

(d) CF-AIAtt 2942 77.16  2588 42.81 59.98 

(e) CF-AltImg 1643 85.88  917 43.84 64.86 

 Note: Bold values mark the highest user accuracies among groups categorized by AI correctness. 

Users tend to have an initial optimistic bias toward AI accuracy, and as a result, they are 

more inclined to predict that the AI machine would be correct. As described previously, to prevent 
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a spurious accuracy increase simply due to a user predicting a model will be correct more often, 

we compute the normalized user accuracy as an average between AI correct and AI incorrect cases. 

The data for the Answer Correctness Prediction can be found in the following directory: 

https://drive.google.com/drive/folders/1O4LKCJ4qA5FRRaquBiN-XoEsuX4sxf6_?usp=sharing 

the directory contains the input data used for the AMT studies as well as the feedback data which 

is the collection of responses from the study subjects. Each input datasheet contains the series of 

data for 20 episodes of trials. For each episode, the information such as image link, question, top 

answers and their probabilities can be found. 

In the following, we summarize our findings from the Answer Change and Answer 

Correctness prediction experiments: 

Counterfactual examples help over showing no examples: All CF groups - CF-AltImg, CF-

HAT, CF-AIAtt - show improvement over the control group where no explanations are shown for 

users’ mental model as shown in Table 3.3 row 𝑎 vs. rows 𝑐,𝑑,𝑒. This is hardly a surprising result 

since counterfactual examples provide more information. 

Counterfactual examples help over showing random examples: To check how much we 

gain in the mental model from simply providing more information, we check the performance of 

users when we show two random examples to the users. We see that the counterfactual groups CF-

AltImg and CF-HAT both improve the mental model by simply showing random examples, as 

shown in Table 3.3, row b vs. rows c and e. This shows that counterfactuals are indeed an effective 

form of showing examples of how a model behaves to users. 

Generated counterfactual images can be a close substitute for realistic counterfactual 

images: We see that a generated counterfactual image using an in-painting network (Chang et al., 

2018) based on human-annotated attention (row c of Table 3.3) can be almost as effective as a real 
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retrieved counterfactual image from the VQA dataset (row e). While human-attention annotation 

is still currently needed, it is a step towards automating the counterfactual generation process. 

Fully automating the generation process for counterfactual images can be tricky and 

currently does not seem to help mental model improvement: As seen from row 𝑑 of Table 3.3, if 

we use the model’s attention values to decide on objects to remove, the counterfactual images 

generated do not improve the user’s mental model significantly over no example cases or when 

random cases are shown. This suggests that further research is needed to automate the 

counterfactual generation process effectively. 

Overall, the results indicate that counterfactual explanations have a positive impact on the 

user's mental model. While studies on case-based explanations (Keane & Smyth, 2020; Kenny et 

al., 2021) have shown random examples can improve users’ mental models, our results indicate 

that controlled counterfactuals can better improve the mental model with the same number of 

examples shown. In certain application fields such as medicine, data is expensive, and hence, 

counterfactuals can help achieve an increase in mental models with fewer data points than showing 

random examples. We also see that GAN-generated counterfactual examples show comparable 

efficacy when evaluated against real retrieved counterfactual examples. However, our best-

performing GAN-generated counterfactual relies on human-annotated attention maps being 

available. Further research needs to be conducted to explore effective ways of generating GAN 

counterfactuals without the need for human attention for the GAN-based method to be scalable. 

3.7 Conclusion 

In this chapter, we demonstrated that showing counterfactual images is helpful for the 

mental model improvement of users in predicting a VQA model’s performance. We showed that 
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counterfactual examples are more effective than showing random examples or not showing any 

examples at all. We also showed that a generative approach to generating counterfactual images 

could also be effective at improving the mental model of users. Investigating different image 

editing methods and the impact of the counterfactual quality on users' mental models can serve as 

interesting topics for the next steps of this work. We hope these results can serve as a foundation 

to improve generative models for producing effective counterfactual explanations to improve user 

mental models for the safe and effective deployment of AI systems in the wild. 
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CHAPTER 4 CAUSAL COUNTERFACTUALS 

4.1 Abstract 

Despite their high accuracies, modern complex image classifiers cannot be trusted for 

sensitive tasks due to their unknown decision-making process and potential biases. Counterfactual 

explanations are very effective in providing transparency for these black-box algorithms. 

Nevertheless, generating counterfactuals that can consistently impact classifier outputs and yet 

expose interpretable feature changes is a very challenging task. We introduce a novel method to 

create causal and yet interpretable counterfactual explanations for image classifiers using 

pretrained generative models without any re-training or conditioning. The generative models in 

this technique are not bound to be trained on the same data as the target classifier. We use this 

framework to obtain contrastive and causal sufficiency and necessity scores as global explanations 

for black-box classifiers. On the task of face attribute classification, we show how different 

attributes influence the classifier output by providing both causal and contrastive feature 

attributions and the corresponding counterfactual images. 

4.2 Introduction  

Regardless of their accuracy, AI algorithms have yet to provide a level of interpretability 

to be accepted as trustable assets by their lay users in real-world applications. In recent years, XAI 

has made an outstanding effort to bring transparency to AI, focusing on fairness and bias. 

Counterfactual explanations have received much attention among different methods in this field 

due to their scalable, intuitive, and logical approach (Goyal, Wu et al., 2019; Mothilal et al., 2020; 

Verma et al., 2020; Wachter et al., 2017). 
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A counterfactual explanation for a black-box AI should provide transparency to the inner 

functionality of the algorithm through causal arguments and yet be interpretable to human users. 

Some methods specifically focus on generating counterfactuals with a very high chance of 

changing AI's output, such as adversarial examples (Goodfellow et al., 2014; Guo et al., 2019). On 

the other hand, studying the impact of interpretable attributes in the input on AI output usually 

goes as far as minimal correlations with model output. It fails to meet the following two steps in 

Pearl’s ladder of causation (Pearl, 2019): intervention and counterfactuals. 

 

Figure 4.1 We introduce a method to learn counterfactual generation for a black-box classifier 𝐶. In this process, a 

shift-predictor 𝑀 is trained to predict contrastive counterfactuals for a classifier in the latent space of a generative 

model 𝐺. The shift-predictor can produce shift directions for any combination of attributes that are predicted by the 

classifier. Sampling from these probabilistic contrastive counterfactuals provides a framework to explain the biases 

and interactions across different predicted attributes. 

While we acknowledge that AI machines are not necessarily trained to follow causal 

reasoning based on interpretable features, we are interested in attributes that can provide the best 

of both worlds: to be as interpretable and as causal as possible. Learning such attributes can bridge 
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the gap between causality and interpretability and generate counterfactual explanations by 

changing meaningful attributes and still have a strong causal influence on AI outcomes. 

Learning the interactions between causality and interpretability in feature space can bring 

us closer to the true definition of the explainability of AI. Such a framework can also provide us 

with means to measure whether an AI machine is following any human-understandable pattern to 

produce its output or not. 

Comparing and contrasting target points by observing their differences along a fixed set of 

understandable dimensions has been one of the primary ways humans have always explained and 

understood concepts (Gerstenberg et al., 2015; Morton, 2013). These notions are also a natural 

way of explaining image classifiers. We can see and understand the difference between a pair of 

images distinctly different from each other in specific known attributes. This enables us to reason 

how those differences may cause them to obtain different outcomes in some downstream tasks 

performed on them. Therefore, we aim to generate explanations of the following general form: 

“For images with attributes equal to <value> for which the algorithm made decision <outcome>, 

the decision would have been <foil-outcome> with probability <score> had the attribute been 

<counterfactual-value>” (Galhotra et al., 2021). This chapter seeks to bring this contrastive 

framework for counterfactual explanations for image classification. 

Notions of sufficiency and necessity build on this general form and allow us to reason about 

the necessary and sufficient conditions for a specific outcome. For an individual who received a 

positive outcome, necessity captures the importance of the current value of an attribute in obtaining 

this outcome. On the other hand, for individuals who received a negative outcome, sufficiency 

reflects the ability of an attribute to flip the negative result into a positive one by modifying its 

existing value to some new value. 
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 Using a probabilistic interpretation of contrastive counterfactuals, we quantify the 

sufficiency and necessity of attributes to compute their causal responsibility towards the classifier's 

output. Obtaining these probabilities of sufficiency and necessity is a challenging task. They 

require generating counterfactual images that reflect the exact changes we desire in a set of human-

understandable attributes. In our work, we formalize the definition of these scores in the context 

of images and traverse the latent space of generative models to obtain these counterfactual images, 

which correspond to user-defined values of the set of these interpretable attributes. This enables 

us to compute these scores efficiently. 

 An added benefit of our method is that instead of going through the expensive process of 

creating new datasets, it allows to sample many inputs through pre-trained generative models and 

estimate contrastive counterfactuals over this sub-population for explaining any black-box image 

classification model (Figure 4.1).  

In summary, the contributions of this work are as follows: 

1) We introduce a method to produce contrastive counterfactuals for an image classifier. 

2) Our method can use generative models pre-trained on any dataset independent of the 

classifier training dataset. 

3) We propose contextual, contrastive, and causal explanations in the form of sufficiency and 

necessity scores to explain the black-box model. 

4) We use our method to provide global explanations for a black-box classifier trained on the 

CelebA dataset (Liu et al., 2015). 
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4.3 Related Work 

Previous work in this area generally approaches the problem from several different 

perspectives. Some of the prior work take a fundamental approach and revolve around exposing 

the causal roots and achieving causal models. 

Recent studies take a more rigorous approach by implementing contrastive counterfactuals 

for various applications. On the other hand, some of the methods in the vision area are centered 

around the use of generative models such as auto-encoders or GANs to produce interpretable 

counterfactuals. These generative approaches are divided into supervised and unsupervised 

techniques based on whether they involve annotations or classifiers. 

Causality. When estimating the causal effect of annotations, it's essential to consider the 

confoundedness between these attributes for any intervention. In that regard, most previous work 

attempts to learn a form of a structural causal model (SCM)(Pawlowski et al., 2020; Sani et al., 

2020). 

 Parafita et al.(Parafita & Vitrià, 2019) use causal counterfactuals to provide explanations 

by obtaining attributions for known latent factors. Dash et al.(Dash et al., 2022) use a conditional 

GAN to generate counterfactuals. Bahadori et al.(Bahadori & Heckerman, 2020) use a prior causal 

graph and existing annotations to explain the predictions.  

Khademi and Honavar (Khademi & Honavar, 2020) compare different methods of causal 

effect estimation, such as CBPS and NPCBPS, to interpret predictive models and explain their 

prediction based on input average causal effect (ACE). In a different approach, Zaeem and Komeili 

(Zaeem & Komeili, 2021) introduce interpretable attributes as “concepts” and propose learning 

the presence of each “concept” in different layers of the classifier. Ghorbani et al.(Ghorbani et al. 

2019) also developed a systemic framework to automatically identify higher-level concepts which 
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are both human-interpretable and important for the ML model. However, these concepts are neither 

necessarily causal nor require any prior interpretable attributes as input. While these techniques 

provide comprehensive explanations of the causal effect of attributes on model output, the 

causality is often quantified over a population and in correlation metrics. Such correlations are 

represented as global explanations and satisfy the first step of Pearl’s ladder of causation (Pearl, 

2019); however, they cannot guarantee a causal impact on a case-by-case intervention (local 

explanation). This chapter aims to go beyond correlations and provide a framework for a complete 

implementation of the causation ladder. 

Contrastive counterfactuals. Contrastive counterfactuals have been the building blocks 

of ideas in philosophy and cognition that guide people's understanding and dictate how we explain 

things to one another (De Graaf & Malle, 2017; Morton, 2013) and have been argued to be central 

to explainable AI (Miller, 2019). To quantify these notions, probabilistic measures have been 

formalized and applied to various fields, including AI, epistemology, and legal reasoning 

(Greenland & Robins, 1999; Russell et al., 2017). Recent work has also focused on using them in 

the field of Explainable AI (Galhotra et al., 2021; Kommiya Mothilal et al., 2021; Watson et al., 

2021). 

Our work is following a trend of ongoing research into generating counterfactual 

explanations for AI algorithms (Bertossi et al., 2020; Karimi et al., 2020; Laugel et al., 2017; 

Mothilal et al., 2020; Stepin et al., 2021; Ustun et al., 2019; Verma et al., 2020; Wachter et al., 

2017). We are specifically interested in implementing this framework in the image classification 

problem. This topic is inherently challenging as it demands a probabilistic causal model based on 

the algorithm's output. 
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Explainable Autoencoders. Due to their strong abilities in representation learning, auto-

encoders have received a lot of attention in the XAI community. Variational auto-encoders (VAEs) 

have shown promising results in learning causal (O'Shaughnessy et al., 2020) and interpretable 

(An et al., 2021) representations or interception of interpretable attributes (Goyal, Feder, et al., 

2019). Similarly, Castro et al. (Castro et al., 2019) propose a framework to measure how much the 

latent features in a VAE represent the morphometric attributes in the MNIST images. Some studies 

propose a feature importance estimation based on Granger causality (Thiagarajan et al., 2020) 

(Schwab & Karlen, 2019). While auto-encoders are very strong in representation learning, they 

tend to lose detail in regenerating highly complex data. We focus our approach on using pre-trained 

generative models that can produce high-resolution counterfactuals with accurate shifts in 

interpretable features. 

Unsupervised disentanglement in GANs. Within recent related work in this area, several 

of them are dedicated to the unsupervised disentanglement of latent space of GAN models to 

interpretable feature spaces. Some approaches use fundamental techniques such as projection 

(Shen et al., 2020), PCA (Härkönen et al., 2020), and orthogonal regularization (Liu et al., 2022), 

while others use self-supervised techniques to learn interpretable representations (Nitzan et al., 

2020). Another popular approach is the unsupervised discovery of linear (Lu et al., 2020; Voynov 

& Babenko, 2020) or nonlinear (Tzelepis et al., 2021) directions that correlate with interpretable 

features. Moreover, adversarial methods (Yang et al., 2021) alongside contrastive learning-based 

and intervention-based approaches (Gat et al., 2021; Yüksel et al., 2021) have also been studied 

for interpretable direction discovery in GANs.  

Despite their impressive results, these techniques may combine multiple distinguishable 

attributes in one detected direction. On the other hand, the detected interpretable directions are not 
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always easy to label and hence cannot be used for any label correction or model improvement. In 

this study, we propose learning latent directions that correspond to actual labels so the explanation 

results can be used in improving datasets and training procedures. 

Supervised direction discovery. On the other hand, many contributions in this area are 

focused on the supervised discovery of interpretable directions in the latent space of generative 

models. The majority of these models are implemented for GANs such as StyleGAN (Karras et 

al., 2020) due to their resounding success and high quality. A classic solution in this area is finding 

the class boundary hyperplane in the latent space of GAN (Li & Xu, 2021). Some approaches 

attempt to find counterfactuals with the use of gradient descent in a GAN's latent space (Liu et al., 

2019). Some existing techniques train GANs to either apply residuals (Nemirovsky et al., 2020) 

or masked transformations (Samangouei et al., 2018) on images to generate counterfactuals. 

Moreover, some of the prior work experiments incorporated the classifier (Lang et al., 

2021) or contrastive language-image models (Patashnik et al., 2021) into GAN to accommodate 

attributes in the latent space. Another novel approach uses energy-based models (EBMs) for a 

controllable generation with GAN; however, this technique requires manual labeling of the latent 

samples (Nie et al., 2021). Styleflow (Abdal et al., 2021) introduces counterfactuals with 

conditional continuous normalizing flows in the latent space; however, their solution is tailored 

explicitly for the extended latent space of StyleGAN. In our proposed approach, we seek a minimal 

training process by utilizing only pretrained GANs. Our methodology follows a simple and 

scalable implementation to be compatible with different generative models. 
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4.4 Method 

In this section, we first discuss the kind of explanations obtained using contrastive 

counterfactuals and provide some necessary background. We then formalize the probability of 

sufficiency and necessity, which are at the core of our explanations. We also describe how we can 

compute those scores in the setting of image classifiers. 

 

Figure 4.2 A shift predictor learns to predict optimum shifts in the proximity of any input and manipulate the input 

for different attributes and different directions. Aside from the intended attribute that has changed in each direction, 

some other attributes also change, which shows the shift predictor's ability to sample from a more realistic distribution 

and be mindful of potential confoundedness across different attributes. 

We later explain the algorithm pipeline, which consists of a pretrained generative model 

(𝐺) to produce realistic images and introduce a shift predictor to achieve counterfactual latent 

vectors for (𝐺) (Figure 4.2). These allow us to compute the necessity and sufficiency scores for 

explaining black-box image classifiers. 
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4.5 Contrastive Counterfactual Explanations 

Contrastive counterfactuals play an essential role in the explanations generated and 

understood by humans. Our goal is to use probabilistic contrastive counterfactuals and develop a 

feature attribution method that generates an explanation for an image classifier. These feature 

attributions quantify the causal contribution of a set of interpretable attributes to the outcome of 

the classifier. Specifically, for an image classifier that predicts the output 𝑌 for input images with 

an interpretable attribute 𝐴, our framework generates explanations of the following form: “For an 

input image with an attribute 𝑎 for which the classifier outcome is 𝑦, the classifier outcome would 

be �̂� with probability 𝑠, had the input attribute been �̂� instead of 𝑎”.  

4.5.1 Sufficiency and Necessity 

To comprehend the function of distinct conjunctive causes in the framework of causal 

reasoning, it is required to define all causes as necessary or sufficient. Necessity is a more complex 

concept than sufficiency. Sufficiency is a more straightforward notion than necessity. In the case 

of sufficiency, one can simply test if the cause is always followed by the effect; however, in the 

case of necessity, two alternatives may be tested: does the cause always precede the effect, and 

can the effect exist without the cause? More importantly, these definitions have distinct structures: 

necessity is seen as an all-or-nothing trait, whereas sufficiency is regarded as a more permissive 

attribute (Verschueren et al., 2004). 

In the task of attractiveness classification for face images, these explanations pertain to 

images that had the positive outcome of being classified as attractive. For those cases, such 

explanations measure the probability that increasing an interpretable attribute such as baldness 

could lead to a negative outcome instead. Therefore, they measure the extent to which the original 
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value of the attribute is necessary for positive outcomes, hence called probability of necessity. 

Moreover, we provide sufficiency scores for input images that receive a negative output. Such 

explanations compute how changing an attribute is sufficient to flip a negative outcome to a 

positive one, hence called probability of sufficiency. 

In this study, we rely on Pearl's probabilistic causal models (Pearl, 2009) to formalize and 

evaluate the notions of the probability of sufficiency and necessity. Next, we briefly review 

probabilistic causal models and then build on that to mathematically define Necessity and 

Sufficiency scores. 

4.5.2 Causal Models and Counterfactuals 

 A probabilistic causal model (PCM) consists of (1) a set of observable endogenous 

attributes 𝒜, (2) a set of latent background (exogenous) variables 𝒰, (3) a set of structural 

equations ℱ that capture the causal dependencies between the attributes by associating a function 

𝐹𝐴 𝜖 ℱ to each endogenous attribute 𝐴 𝜖 𝒜 that expresses the values of each endogenous attribute 

in terms of 𝒰 and 𝒜, and (4) a probability distribution 𝑃(𝒖) over the exogenous variables 𝑈. Given 

a probabilistic causal model, an intervention on an endogenous attribute 𝐴 ⊆ 𝒜, denoted 𝐴 → 𝑎, 

is an operation that modifies the underlying causal model by replacing 𝐹𝐴, the structural equations 

associated with 𝐴, with a constant 𝑎. The potential outcome of an attribute 𝑌 after the intervention 

𝐴 ← 𝑎 in a context of exogenous variables 𝑢, denoted 𝑌 𝐴←𝑎(𝑢), is the solution to 𝑌 in the modified 

set of structural equations. 

The distribution 𝑃(𝒖) induces a probability distribution over endogenous attributes and 

potential outcomes. Considering proper PCMs, one can express counterfactual queries of the form 



80 

 

𝑃(�̂�𝐴←𝑎 = �̂�), or simply 𝑃(�̂�𝐴←𝑎); this reads as “What is the probability that we would observe 

𝑌 = �̂� had 𝐴 been 𝑎?” and is given by the following expression: 

𝑃(�̂�𝐴←𝑎) = ∑ 𝑃(�̂�𝐴←𝑎(𝑢))𝑃(𝑢).

𝑢

 

4.5.3 Probability of Necessity and Sufficiency 

 We are given a binary image classifier with the output 𝑌 = {𝑦, �̂�}, where 𝑦 = 1.0 and �̂�  =

0.0 denote the positive (favorable) and negative (unfavorable) outputs, respectively. We also have 

a binary attribute 𝐴 = {𝑎, �̂�} associated with the input images, where 𝑎 = 1.0 and �̂� = 0.0 

respectively denotes the presence or absence of the attribute. 

The probability of SUFficiency and NECessity of 𝐴 for 𝑌 measures are as follows: 

𝑁𝐸𝐶 =  𝑃(�̂� 𝐴←�̂�| 𝑎, 𝑦). 4.1 

𝑆𝑈𝐹 =  𝑃(𝑦 𝐴←𝑎| �̂�, �̂�). 4.2 

Given a sub-population of input images with attributes 𝑎, for which the classifier returns 

the positive output, the notion of probability of necessity (Eq. 4.1) captures the probability that on 

changing the attribute 𝐴 from its default value of 𝑎 to the intervened value of �̂�, the classifier will 

return a negative outcome instead. In other words, it  

measures the extent of positive classifications that are attributable to the original state of 

the attribute 𝐴 = 𝑎. The probability of sufficiency (Eq. 4.2) is the dual of the probability of 

necessity. It applies to the sub-population of input images with the default attribute value �̂�, for 

which the classifier produced a negative output. It measures the effect of changing the attribute by 

intervention to 𝑎 from its default state of �̂�. It computes the probability that this change could 

cause the classifier to return a positive outcome for these cases, which were initially handed out a 
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negative outcome. Hence, it measures the capacity of setting 𝐴 to 𝑎 to flip the negative outcome 

from the classifier. 

We can choose to change the attribute from its default state by moving in its direction of 

increase or decrease. This would allow us to measure the sufficiency and necessity of changing 

the attributes in both directions and give a more in-depth understanding of how features are 

influencing the outcome of the black-box classifier. We denote necessity scores of increasing the 

attribute with 𝑁𝐸𝐶+ and the necessity scores of decreasing the attribute with 𝑁𝐸𝐶−. We follow a 

similar notation for sufficiency scores.  

 

Figure 4.3 Causal model. 

4.5.4 Computing Necessity and Sufficiency 

As shown in Figure 4.3, we assume a causal model that has the following components. a) 

Unobserved attributes (𝒰) - These are all the attributes for which we have no observations and 

cannot account. They constitute the exogenous variable in our causal model. b) A set of 

interpretable attributes (𝒜) - This is a set of attributes for which we know the values. They are our 

endogenous variables in the causal model. c) A latent space (𝒁) - The unobserved (exogenous) 

attributes and observed set of interpretable attributes (endogenous) together directly affect the 
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value of the latent space. d) A generative model (𝐺) - It takes as input the above-mentioned latent 

space Z and transforms it into an image 𝐼. e) The classifier to be explained (𝐶) - It takes as input 

the image 𝐼 and produces the target label, 𝑌. 

We generate counterfactuals and pass the produced images (both originals and 

counterfactuals) to the black-box classifier to obtain the classifier's output. We use this information 

to compute the sufficiency and necessity scores. We generate counterfactuals by following Pearl's 

three-step procedure (Pearl, 2009): 

- Abduction Given the prior distribution of the latent variable of a generative model 𝐺 and 

the set of attributes 𝒜, train a model 𝑀 that estimates the updated probability of latent 

variable conditioned on any subset of attributes: 

𝑃(𝒛 | �̅� = 𝒂), �̅� ⊆ 𝒜. 4.3 

- Action Take a set of interpretable attributes �̅�. Based on the causal model, perform an 

intervention by setting a subset of attributes �̅� ⊆ 𝒜 to their determined values �̅�  ← �̂�.  

- Prediction Given the model 𝑀, obtain the modified latent vector probability corresponding 

to the new value of the attribute (s). Pass this modified latent vector into the generative 

model to obtain the corresponding image. Finally, run black-box classifier inference for 

this counterfactual image to obtain the target output: 

𝐼  =  𝐺(�̂�), �̂�  = 𝑀(𝒛, �̅� = �̂�), �̂�  =  𝐶(𝐼). 4.4 

4.6 Counterfactual Generation 

Conducting the three steps of counterfactual generation is a non-trivial task due to the 

complication that arises when setting the attributes in the Abduction and Prediction steps. 

Specifically, generative models tend to have very complex latent spaces, where finding a path from 



83 

 

𝒛 to �̂� for attribute change is intractable. To reconcile it, we propose training an MLP model 𝑀 

that serves as the shift predictor in our pipeline and can provide a prediction for �̂� = 𝑀(𝒛, �̅� =

𝒂). With the use of 𝑀, we can now update the probability of latent variable 𝑃(𝒛) to the probability 

of counterfactual latent variable 𝑃(𝒛 | �̅� = 𝒂) in the prediction step and follow Pearl's procedure. 

In the following, we provide the details on the generative model and shift predictor algorithm. 

Generative model. Generative models are vastly popular in different fields of AI, and their 

recent advancements in creating realistic images have made them a viable approach to producing 

a latent representation of an image dataset. In our experiments, we utilize StyleGAN2(Karras et 

al., 2020) as a state-of-the-art generative model which can be used to generate high resolution and 

realistic images in different domains. StyleGAN feeds the latent variable into a mapping network 

that transforms it into an intermediate latent variable. Aside from its ability to produce styles, this 

transformation also provides the intermediary latent space as a more regulated domain to learn and 

traverse through interpretable attributes. 

Shift predictor. A shift predictor model is an MLP model that can take the latent variable 

of an image from a generative model 𝐺 and generates the latent variable for its counterfactual 

based on the attributes produced by a classifier (Figure 4.4). For a generative model, 𝐺: ℛ𝑑 → ℛ𝑛 

that has a latent space with dimension 𝑑 and a classifier 𝐶: ℛ𝑛 → ℛ𝑚 that predicts 𝑚 attributes, 

we define our shift predictor as 𝑀(𝒛, �̂�): ℛ𝑑 × ℛ𝑚  →  ℛ𝑑, where 𝒛 𝝐 ℛ𝑑 is the latent variable for 

the input image and �̂� denotes the attributes for the intended counterfactuals.  
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Algorithm 4.1 Training a shift predictor for binary attributes 

Data: Classifier 𝐶. Generative model 𝐺. Counterfactual faithfulness ratio 𝛾. 

Result: Parameters 𝜃𝑀 for the shift predictor model 𝑀. 

init: 

𝜃𝑀 ← Random initialization 

For number of iterations do 

Sample a batch of 𝑏 noise variables and target outputs: 

{𝐳(𝟏), . . . , 𝐳(𝒃)} ← 𝑝(𝐳) ∼ 𝓝(𝟎, 𝐈) 

{�̂�𝒊
(𝟏)

, . . . , �̂�𝒊
(𝒃)

} ← 𝐵𝑒𝑟𝑛. (𝑝 = 0.5), ∀𝑖 = 1. . 𝑚 

Predict counterfactual latent codes: 

�̂�(𝑗) ←  𝑀(𝐳(𝑗), �̂�(𝑗)), ∀𝑖 = 1. . 𝑏 

Generate images from the noise variables and predict attributes by the classifier: 

𝐼(𝑗) ←  𝐺(�̂�(𝒋)), ∀𝑖 = 1. . 𝑏 

𝐲(𝑗) ←  𝐺(𝐼(𝑗)), ∀𝑖 = 1. . 𝑏 

Compute attribute conditioning and faithfulness loss: 

ℒ𝑎 ←
1

𝑏
∑ ∑ −

𝑚

𝑖=1

𝑏

𝑗=1
�̂�𝒊

(𝑗)
𝒍𝒐𝒈(𝑦𝑖

(𝑗)
) 

ℒ𝑓 ←
1

𝑏
∑ ||�̂�(𝒋)  −  𝐳(𝑗)||

𝑏

𝑗=1
 

Update the shift predictor parameters: 𝑀 ←  ∇𝜃𝑀(ℒ𝑎 + 𝛾ℒ𝑓) 

end 
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Figure 4.4 Examples of counterfactual images generated during the computation of the explanations scores. The first 

row shows the original images. Each subsequent row shows the original image modified to move towards the direction 

of increase and decrease of the labeled attribute. Along with necessity and sufficiency scores, these representative 

images are provided to the user as global explanations for the classifier. 

In the training process, the shift predictor learns the directions in the latent space of 𝐺 that 

correspond to changes in the attributes predicted by the classifier. Without any manual labeling, 

the training procedure only requires the latent variables of images from 𝐺 to input the shift 

predictor and supervise it with the labels generated by the classifier (see Algorithm 4.1). 

During the training, the shift predictor learns to produce a counterfactual latent variable 

that satisfies any combination of attributes defined by �̂�. In other words, if the classifier predicts a 
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set of attributes 𝒜 =  {𝐴1, 𝐴2, . . . , 𝐴𝑚}, shift predictor can provide a counterfactual latent variable 

compatible with any selected subset of attributes �̅�: 

�̂�  =  𝑀(𝒛, {𝐴𝑖 =  �̂�𝑖 | 𝐴𝑖 𝜖 �̅�}). 4.5 

Under the assumption of proper training, the shift predictor approximates latent variable 

distribution conditioned by the subset of attributes �̅�: 

�̂� ~ 𝑃(𝒛 | {𝐴𝑖 =  �̂�𝑖 | 𝐴𝑖 𝜖 �̅�}), �̅� ⊆ 𝒜. 4.6 

The loss function in the training process pursues two objectives: 1) minimizing the error in 

the prediction of attributes �̅� for the counterfactual image, 2) assuring a level of faithfulness and 

similarity between the original input image and its newly generated counterfactual. The attribute 

loss ℒ𝑎 is defined as a cross-entropy between the conditioned attributes and the attributes predicted 

by the classifier. In the training process, the conditioned attributes �̅� are distinguished from unset 

attributes so that the loss will be only calculated for them. On the other hand, the faithfulness loss 

ℒ𝑓 is calculated as the normal distance between the original latent variables and their 

counterfactuals. The overall loss in the training process is defined as a combination of these two 

losses with a faithfulness factor 𝛾 which establishes a balance between attribute accuracy of 

counterfactuals and their faithfulness to the original input: 

ℒ = ℒ𝑎 + 𝛾ℒ𝑓 = ∑ −𝐴𝑖∈�̅� ŷ
𝑖
𝑙𝑜𝑔(y

𝑖
) + 𝛾||�̂� − 𝒛||. 4.7 

4.7 Experiments and Results 

We run our experiments to explain black-box classifiers that are trained on the task of 

classifying face images. We have annotations for the set of interpretable attributes 𝐴 that we will 

choose to use to explain the model’s behavior. We train a multi-task classifier built on top of a 

pretrained VGG backbone to predict the set of interpretable attributes 𝐴 for new unseen images. 
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The CelebA dataset is used as the training set and provides 39 binary attributes, including 

attractiveness which we use as the target output 𝑌 for any black-box classifier of choice. As the 

set of interpretable explanatory attributes (𝐴), we choose six other labels: blonde hair, heavy 

makeup, baldness, mustache, youngness, and maleness. We make a simplifying assumption to use 

an underlying causal model in which the explanatory attributes are independent of each other. We 

model attractiveness as the positive class (𝑦 = 1.0) and unattractiveness as the negative class 

(�̂� = 0.0) for the black-box classifier to predict. In the set of interpretable attributes (𝐴), an 

attribute has its default value as (𝑎) when it is not explicitly set. Otherwise, during an intervention, 

it is set to value (�̂�) which can be +1 if we want to move in the direction of its increase and −1 if 

we want to move in the direction of its decrease. We intervene and set �̂� to 0 if we do not wish to 

modify the attribute. Our initial dataset consists of 200 images randomly produced by the 

generative model. We pass the images through the multi-task classifier to obtain the attribute 

values and the black-box classifier to obtain the target label. We seek to explain the behavior of 

the target output 𝑌 using the attributes 𝐴 on this dataset by performing the following experiments: 

• Linear baseline, we first consider an interpretable linear approximation of target label 

behavior w.r.t. the attributes as the underlying black-box model. We use this approximation 

as ground truth and assess the validity of necessity and sufficiency scores in capturing this 

ground truth linear behavior. 

• Black-box explanations, we consider a complex black-box classifier built on a pretrained 

VGG backbone and generate sufficiency and necessity scores to explain it. In conjunction 

with generated counterfactual images, we use these scores to analyze how increasing and 

decreasing the attributes affects the classification into attractive and not-attractive labels 

by the classifier. 
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4.7.1 Linear Baseline 

Our pipeline of generating counterfactual images and explanation scores is agnostic to the 

type of black-box model being explained. This implies that it is independent of the kind of machine 

learning or deep learning model used. However, one way to test the quality of our explanations is 

by generating explanations for a case where we have access to the decision-making rationale of 

the underlying black-box model. To this end, we choose a logistic regression classifier as the model 

whose decision we seek to explain. This classifier takes actual values corresponding to the feature 

attributes obtained from the multi-task classifier and predicts the target label of attractiveness using 

only these values. The coefficients of the logistic regressor corresponding to the different features 

indicate how the model is making its decisions. We compare this to sufficiency and necessity 

scores generated by our method, which explains this logistic regression model. 

 

Figure 4.5 Left: The coefficients of the known black-box logistic regressor. The sufficiency and necessity scores 

explain the logistic regressor behavior when attributes are increased (Center) and decreased (Right). 

We observe from Figure 4.5 that features that have negative attributions, such as those for 

male, mustache, and bald, in the logistic regressor model carry a significant value of necessity 

when we move in the directions of their increase. This high necessity score indicates that leaving 

them unset compared to increasing them is most important to allow attractive individuals to keep 
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their attractiveness score high. Similarly, for people classified as unattractive, the features that had 

high positive attributions in the logistic regressor, such as Young and Heavy Makeup, carry the 

highest values of sufficiency when we increase their values. This indicates that increasing heavy 

makeup and youngness are the two most important factors to flip the outcome from not attractive 

to attractive. We can interpret the 𝑆𝑈𝐹/𝑁𝐸𝐶− scores in a similar way. This contrastive and 

counterfactual analysis is not possible through simple coefficients obtained from the logistic 

regressor. This makes it essential to use these notions of sufficiency and necessity over standard 

coefficient-based attributions that have been observed to have multiple shortcomings due to their 

overly simplistic nature. These include issues like their dependence on feature pre-processing 

methods and instability due to different feature selections. 

4.7.2 Black-box Explanations 

We use our pipeline to generate global explanations for the black-box attractiveness 

classifier. Here, the black-box classifier is built on a pretrained VGG backbone. Our explanations 

are two-fold. First, we provide sufficiency and necessity scores on a population level for the six 

different attributes. In addition to this, we also give the users the counterfactual images that were 

generated by our shift predictor during the computation of the scores. The ability to have both 

feature attributions and the images that led to the calculation of those attributions allows the user 

to understand model behavior at a deeper level. 
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Figure 4.6 Sufficiency and necessity scores as global explanations. Left: Not increasing baldness and mustache are 

most necessary to remain classified as attractive. Increasing heavy makeup and youngness is most sufficient to flip an 

unattractive outcome to attractive. Right: Not decreasing youngness and heavy makeup is necessary to stay classified 

as attractive. Reducing maleness and baldness are most sufficient to reverse the outcome from unattractive to 

attractive. 

Figure 4.4 contains a set of representative images. We can see how the original image 

changes in the direction of decrease and increase of the explanatory attributes. Figure 4.6 shows 

the overall sufficiency and necessity scores of attributes in both positive and negative increase 

directions. This gives us a detailed analysis of how the features affect the classifier output. For 

instance, a high 𝑆𝑈𝐹+ value of the attributes Heavy Makeup, Blond Hair, and Young implies that 

moving in the direction of increase of these attributes is most sufficient to flip an outcome of 

unattractiveness to attractiveness. Similarly, a high 𝑆𝑈𝐹− value of the attributes Male, and Bald 

reflects that when moving in the direction of a decrease for these attributes, we are most likely to 

be able to flip our outcome from not attractive to attractive. The necessity scores inform us about 

the most important attributes to be left "unset" in their default state compared to increasing or 

decreasing them for a person classified as attractive to maintain that classification. A high 𝑁𝐸𝐶+ 

score of Baldness, Moustache, and Male is indicative of the fact that one should avoid increasing 

these attributes if they wish to remain classified as attractive by the classifier. Similarly, the high 

𝑁𝐸𝐶− scores of Young, Heavy Makeup, and Blond Hair are indicative of the fact that one should 
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avoid decreasing these attributes if they wish to remain classified as attractive by the classifier. 

With the generated counterfactual images as evidence, the necessity and sufficiency scores provide 

a holistic understanding of the black-box classifier to the end-user. 

4.8 Conclusion 

This chapter proposed an end-to-end pipeline that generated counterfactuals from a 

pretrained generative model and used that to help compute probabilistic causal counterfactual 

scores. These scores, along with the generated images, served as explanations for any underlying 

black-box image classifier. Our work also highlighted the need and advantages of these contrastive 

explanations over simple feature attributions. However, one of the drawbacks of our current 

method is that it does not effectively disentangle the effects between attributes. We would want to 

improve on that aspect by learning a structural causal model that can model the impact that 

attributes have on one another. This would also allow us to extend our analysis to compute the 

direct and indirect effects (Pearl, 2022) of attributes on the target label. Furthermore, we would 

like to apply this pipeline to detect and mitigate bias in image classification systems. 
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CONCLUSION AND FUTURE WORK 

In this dissertation, we introduce methods to generate explanations for AI machines and 

mechanisms to evaluate them effectively for complex computer vision tasks such as Visual 

Question Answering (VQA) and face image classification.  

Explanation Evaluation 

In Chapter 1, we create an interactive experiment to test explanations' effectiveness in 

boosting user prediction accuracy, confidence, and reliance in a VQA task. Our findings suggest 

that explanations aid in improving VQA accuracy, and explanation evaluations support the 

effectiveness of explanations in human-machine AI collaboration tasks. 

We performed a user survey with 90 participants to evaluate various modalities of 

explanation. Users rated different explanation modalities interactively and used them to predict AI 

system behavior. In the cases of inaccurate AI response, users had improved performance on user-

machine tasks when exposed to the explanations. When users read explanations that demonstrated 

the potential of our multi-modal explanation system in gaining user trust, their confidence in 

predictions increased. 

One of the critical aspects of explanations that can be further evaluated is the scalability of 

the explanation. Our study focused on the specific task of visual question answering and conducted 

extensive user studies to assess different modalities of explanation. While such an approach 

provides valuable lessons about the interpretability of that particular task, it cannot guarantee the 

scalability of results in other AI applications. We can conduct similar studies for a broader range 

of applications in future work or choose primary AI tasks (e.g., image classification) that can be 

arguably generalizable to different applications. 
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On the other hand, we inherently focused on the AI side during our human-AI collaboration 

experiments. However, another crucial control here would be the human factors. We applied soft 

controls to the recruitment process as well as the study guide to limit the impact of prior 

knowledge/biases. In future versions of the experiment, we can apply a more specific control in 

these areas and also extend the evaluations into qualitative analysis conducted by professionals. 

Attention-based Explanations 

Chapter 2 extends the explanation evaluation experiment to include competency 

measurements. We evaluate the role of attention map explanations on the user’s mental model of 

AI competency. We designed an experiment where subjects rank the performance of the VQA 

model among four different types of questions. To quantify the subjects’ mental model, we 

compute the correlation between user rankings and the AI’s actual ranking among the question 

types. 

We propose a new XVQA model that produces answers and attention maps from spatial 

and object features of the image. This explainable model uses a transformer attention module to 

better process the visual and textual embeddings of the input. The proposed model is compared 

with a baseline model to show the effect of input object features and the attention module. 

We also include an interactive explanation mode (Active Attention), in which users may 

guide the system's attention and get responses from it. When the user confidence development 

between active attention and other explanation groups is compared, the active attention explanation 

group exhibits a greater degree of trust from the users, demonstrating the efficiency of interactive 

explanations in constructing a better mental model of the AI system. For future improvements, we 

can look at more effective methods to intervene with the attention mechanisms of AI models so 
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that such interventions become more intuitive to the lay users and guarantee a causal effect on AI 

behavior. 

The experiment's overall findings indicate that the user's mental model improves when 

exposed to attention-based explanations. The strong correlation between users' evaluations of 

explanations and their performance in the prediction tasks demonstrates the efficacy of 

explanations in user-machine task performance. The evolution of the user's mental model 

throughout the studies suggests that the learning rate is faster in the presence of explanations. 

Furthermore, our experiments show that adding the object feature and the transformer model 

positively influences the explanations. While evaluating the explanations, we primarily relied on 

Likert scales and user input; we can improve this process with more enriched data acquisition 

techniques such as asking users to provide textual feedback on explanation modalities. Such 

feedback can be processed automatically into a more descriptive evaluation system. 

In our studies, we focused on models with attention mechanisms trained only based on 

accuracy objectives. In this setting, we attempted to improve the attention-based explanations 

either by upgrading the attention mechanism or by combining attention with interpretable 

annotations. Another direction worth investigating is modifying the training objectives for these 

models and considering human interpretability in their attention alongside accuracy. Analyzing 

the tradeoff between interpretability and accuracy in such models would be an interesting research 

topic. 

In Chapter 3, we demonstrate that showing counterfactual images is helpful for the mental 

model improvement of users in predicting a VQA model’s performance. We offer that attention-

based edits are more effective than showing random examples or not showing any examples at all. 

We also exhibit a generative approach to generating counterfactual images that can also be 
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effective at improving users' mental models. Investigating different image editing methods and the 

impact of the counterfactual quality on users' mental models can serve as interesting topics for the 

next steps of this work. These results can serve as a foundation to improve generative models for 

producing effective counterfactual explanations to improve user mental models for the safe and 

effective deployment of AI systems in the wild.  

In our current implementation, we limit the counterfactual edits to a specific size to avoid 

noise in the counterfactuals. In future versions of this technique, we can take a closer look at 

improving the algorithms that edit the images. Such algorithms need to minimize artifacts in their 

edits to avoid unwanted impact on AI’s performance and output. Also, with the newer generation 

of attention-based AI machines, such as vision transformers, we can define a more enriched 

attention mechanism to choose the counterfactual edit areas. 

Causal Counterfactuals 

In Chapter 4, we take a more fundamental look at the process of creating counterfactuals 

for explanation purposes. We introduce a method to produce contrastive counterfactuals for an 

image classifier. Our approach can use generative models pre-trained on any dataset independent 

of the classifier training dataset. We propose contextual, contrastive, and causal explanations in 

the form of sufficiency and necessity scores to explain the black-box model. We use our method 

to provide global and local explanations for a black-box classifier trained on the CelebA dataset.  

We present an end-to-end pipeline that utilizes a pretrained generative model and computes 

probabilistic causal counterfactual scores to produce contrastive counterfactuals. Together with 

the produced images, these scores are used to explain the underlying black-box image classifier. 

Our research also demonstrates the importance and benefits of contrastive explanations over 
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fundamental feature attributions. However, one disadvantage of our current strategy is that it does 

not adequately separate the impacts of qualities. We'd want to build on that by developing a 

structural causal model that can represent the impact these qualities have on one another. This 

would also allow us to broaden our study to calculate the direct and indirect effects of qualities on 

the target label. Furthermore, we would like to apply this pipeline to detect and mitigate bias in 

image classification. 

We propose an end-to-end pipeline that generated counterfactuals from a pretrained 

generative model and used that to help compute probabilistic causal counterfactual scores. These 

scores can be viewed as global explanations, while the generated images can serve as explanations 

for any underlying black-box image classifier. Our work also highlighted the need and advantages 

of these contrastive explanations over simple feature attributions.  

One of the main downsides of the proposed approach is a lack of disentanglement between 

explainer attributes. Learning a structural causal model that can model the potential 

confoundedness across these attributes can provide a more straightforward explanation. This 

perspective would also extend our analysis to compute attributes' direct and indirect effects on the 

target label.  

On the other hand, our method relies on existing labels to generate contrastive 

counterfactuals, while such annotations may not be readily available in so many applications. In 

future implementations of this approach, we can investigate techniques to learn and predict 

interpretable labels and use them in causal modeling. However, this objective is an open research 

question under the unsupervised causal interpretation that can impose its own challenges.
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