
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
DEEP LEARNING IN PERSONALIZED MEDICINE: APPLICATIONS IN PATIENT SIMILARITY, 
PROGNOSIS, AND OPTIMAL TREATMENT SELECTION

Permalink
https://escholarship.org/uc/item/14v265fb

Author
Norgeot, Beau

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/14v265fb
https://escholarship.org
http://www.cdlib.org/


 

 

 
 
 
by 
 
 
 
 
Submitted in partial satisfaction of the requirements for degree of 
 
 
in 
 
 
 
in the 
 
GRADUATE DIVISION 
of the 
UNIVERSITY OF CALIFORNIA, SAN FRANCISCO 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 
 
______________________________________________________________________________ 

       Chair 
 
 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 
Committee Members 

DOCTOR OF PHILOSOPHY

DISSERTATION

Pharmaceutical Sciences and Pharmacogenomics

DEEP LEARNING IN PERSONALIZED MEDICINE: APPLICATIONS IN PATIENT 

SIMILARITY, PROGNOSIS, AND OPTIMAL TREATMENT SELECTION

Beau Norgeot

Atul Butte

Cucina, Russ

Jinoos Yazdany



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

Acknowledgments 

This short page will never be able to adequately express how grateful I am. 

 

None of the work in the following pages would have happened without the incredible 

determination and support of my wife, Sara, who was willing to put her entire life on hold… for 

years…. while I pursued something that I thought “was really important”. 

My entire family, from mother to father(s), brothers and sisters, half, whole, and in-law, lent 

their support in many forms, assuring me that I was not, at least entirely, crazy for choosing to 

follow this path. Adoptive Uncle Dick kept me fed and looked out for me in many more ways 

than he needed to. 

 

My primary mentor, Atul J. Butte, has taught me that research with real-world impact is more 

important than fancy research, that new research is only valuable as far as you can communicate 

its value to the rest of the world, and to always consider the biggest picture possible. Atul may 

not have taken me as a student if Ted Goldstein hadn’t been willing to read my undergraduate 

thesis. Ted put academia in perspective for me and provided invaluable career coaching. Marina 

Sirota, welcomed me into the Lab, helped direct me through my rotation, focus me through 

quals, and acted as an experienced sounding board as I tried to figure out ‘what next’. Jinoos 

Yazdany and Gabriela Schmajuk brought me into their research community; the mentoring that 

they have provided has been largely responsible for the successes, however modest, that I have 

had. Russ Cucina helped me to understand the larger healthcare landscape and that there’s 

always time for coaching. Boris Oskotsky, Ben Glicksberg and Dima Lituiev kept me from 

coding alone, provided friendship, and made me a better informatician. I have benefited 



 iv 

tremendously from the conversation and insights from Esteban Burchard and Michael Keiser. 

My dear friend Timothy Patrick made all of this possible in so many ways. Last, but 

unquestionably not least, are my cohort members, friends, colleagues, and brothers-in-arms; 

Jasleen Sodhi and Julia Cluceru. Without the two of you to complain to, to bounce ideas off, to 

share dreams and commiserate with, I probably would have dropped out; because while science 

is wonderful, the path to a PhD is not.  

 

Deanna Kroetz, Dexter Hadley, Idit Kosti, Milena Gianfrancesco, Dana Ludwig, Tom Peterson, 

Deb Datta, Vivek Rudrapatna, Charlotte Nelson, Matthew Kan, Sharmila Majumdar, and John 

Witte, as well as my entire PSPG cohort, the Burchard Lab, and the Keiser Lab shaped the 

thinking and experiences that have become my degree. There are many people who made really 

important contributions to my PhD whose names do not appear here. 

 

From the outside, a PhD seems like an incredible individual accomplishment. From my own 

experience, the successes that I’ve had have had at least as much to do with the people that I’ve 

been fortunate enough to become involved with than any vision or talent that I have had.  

 

 



 

v 

Abstract 

DEEP LEARNING IN PERSONALIZED MEDICINE: APPLICATIONS IN PATIENT 

SIMILARITY, PROGNOSIS, AND OPTIMAL TREATMENT SELECTION 

Beau Norgeot 

 

Two information technology revolutions are colliding in medicine. The first revolution has been 

the digitalization of health data, specifically Electronic Health Records (EHR). These records 

contain the details of who we are as patients, our ailments, treatments, and outcomes. Tragically, 

despite billions of dollars in investment from the US government, hardly any of this data is being 

utilized to better understand medicine or improve healthcare. This is largely because the data is 

voluminous, sparse, complex, and poorly formatted; making it unsuitable for traditional analytics 

methods. However the second revolution, modern Artificial Intelligence, specifically deep 

learning, provides tools, in the form of algorithms, to address exactly these problems. The 

primary difference between these modern algorithms and older ones is that the former are able to 

learn, more or less on their own, how to transform large complex data into a format that makes it 

easier to use and learn from.  

In this dissertation, I have developed methods to apply deep learning to digital health data. Doing 

so, I have shown that we can predict the future health of individual patients with highly complex 

diseases, produced approaches to understand and leverage what these complex models are 

learning, and provided a framework for how healthcare systems of the near future could 

automatically learn to improve care daily.  

For the first time in history, we are in a position to learn from the combined knowledge of tens of 

thousands of physicians and their experiences caring for hundreds of millions of patients. The 



 

vi 

potential transformations to healthcare are difficult to fully fathom, but certainly include safer, 

more powerful and efficient medicine, and a rapid speed up in new medical discoveries and 

treatments. Despite the promise, we must proceed carefully, balancing the great need to 

collectively use our data for better medicine with the individual right to privacy.  

 

  



 

vii 

Table of Contents 

Chapter 1 ........................................................................................................................................1 

Desideratta ......................................................................................................................................1 

1.1. Readme .................................................................................................................................1 

1.2. The Checklist ........................................................................................................................1 

1.3. The Following Chapters........................................................................................................2 

Chapter 2 ........................................................................................................................................4 

Towards A Deep Learning Healthcare System ...........................................................................4 

2.1. Permissions ...........................................................................................................................4 

2.2. Call For A Deep Learning Healthcare System .....................................................................4 

References .......................................................................................................................................9 

Chapter 3 ......................................................................................................................................10 

Modeling Longitudinal Electronic Health Records ..................................................................10 

3.1. Permissions .........................................................................................................................10 

3.2. Time aggregation and model interpretation for deep multivariate longitudinal 

patient outcome forecasting systems in chronic ambulatory care .............................................10 

3.2.1. Introduction ..................................................................................................................11 

3.2.2. Methods ........................................................................................................................12 

3.2.2.1. Population Differences..........................................................................................13 

3.2.3. Results ..........................................................................................................................13 

3.2.3.1. Time Aggregation .................................................................................................13 

3.2.4. Interpretability ..............................................................................................................14 

3.2.4.1. Longitudinal Permutation Importance Scoring .....................................................14 



 

viii 

3.2.4.2. Confusion Plot ......................................................................................................14 

3.2.5. Discussion and Conclusions.........................................................................................15 

3.3. Supplementary Methods .....................................................................................................17 

3.3.1. Data ..............................................................................................................................17 

3.3.1.1. Primary Cohort (UCSF) ........................................................................................17 

3.3.1.2. Replication Cohort (ZSFG)...................................................................................18 

3.3.1.3. Variables Utilized in Model ..................................................................................18 

3.3.1.4. Modeling Input Formats .......................................................................................19 

3.3.1.5. Longitudinal Modeling using Deep Learning .......................................................21 

3.3.1.6. Overview of Relevant Deep Learning Layer Types .............................................22 

3.3.1.7. Model Training .....................................................................................................23 

3.3.1.8. Transfer Learning and Fine Tuning ......................................................................27 

3.3.2. Supplemental Discussion .............................................................................................27 

3.3.3. Supplementary Tables ..................................................................................................28 

3.3.4. Supplementary Figures ................................................................................................30 

References .....................................................................................................................................32 

Chapter 4 ......................................................................................................................................34 

Predicting the Future ...................................................................................................................34 

4.1. Permissions .........................................................................................................................34 

4.2. Forecasting Individual Rheumatoid Arthritis Patient Outcomes Using Deep 

Learning on EHR Data ..............................................................................................................34 

4.2.1. Abstract ........................................................................................................................34 

4.2.2. Introduction ..................................................................................................................36 



 

ix 

4.2.3. Methods ........................................................................................................................38 

4.2 3.1. Data Sources .........................................................................................................38 

4.2.3.2. Definition of RA cohort ........................................................................................38 

4.2.3.3. RA Disease Outcome Metric ................................................................................39 

4.2.3.4. Variables Utilized in Model ..................................................................................41 

4.2.3.5. Modeling ...............................................................................................................41 

4.2.3.6. Comparative Baselines..........................................................................................42 

4.2.3.7. Evaluation Criteria ................................................................................................42 

4.2.3.8. Model Explanation and Interpretability ................................................................43 

4.2.3.9. Statistical Analysis ................................................................................................43 

4.2.3.10. Performance in a Distinctly Different Cohort .....................................................43 

4.2.4. Results ..........................................................................................................................44 

4.2.4.1. Clinical Cohort Comparison .................................................................................44 

4.2.4.2. Primary cohort (University Clinic) results ............................................................45 

4.2.4.3. Sensitivity and Model Explanation .......................................................................46 

4.2.4.4. Safety Net Cohort Results .....................................................................................48 

4.2.5. Discussion ....................................................................................................................49 

4.2.5.1. Main Findings .......................................................................................................49 

4.2.5.2. Prior Work ............................................................................................................50 

4.2.5.3. Limitations ............................................................................................................50 

4.2.5.4. Summary and Implications ...................................................................................52 

4.2.6. Conclusion ...................................................................................................................54 

4.2.7. Additional Support .......................................................................................................54 



 

x 

References .....................................................................................................................................56 

Chapter 5 ......................................................................................................................................59 

MI_CLAIM ..................................................................................................................................59 

5.1. Minimum Information about Clinical Artificial Intelligence Modeling .............................59 

5.1.1. Abstract ........................................................................................................................59 

5.1.2. General Principles of the Claim Design .......................................................................59 

5.1.3. Discussion ....................................................................................................................64 

Chapter 6 ......................................................................................................................................65 

MAgEC .........................................................................................................................................65 

6.1. Understanding and Leveraging Complex Models: Framework for understanding, 

explaining, and comparing clinical AI models ..........................................................................65 

6.1.1. Introduction ..................................................................................................................65 

6.1.2. Methods ........................................................................................................................67 

6.1.2.1. Goal .......................................................................................................................67 

6.1.2.2. MAgEC .................................................................................................................67 

6.1.2.3. Cases .....................................................................................................................69 

6.1.2.4. Features .................................................................................................................70 

6.1.2.5. Population .............................................................................................................70 

6.1.2.6. Datasets .................................................................................................................71 

6.1.3. Results ..........................................................................................................................73 

6.1.4. Discussion ....................................................................................................................78 

6.1.4.1. Summary ...............................................................................................................78 

6.1.4.2. Comparison to Prior Work ....................................................................................79 



 

xi 

6.1.4.3. Limitations ............................................................................................................80 

6.1.4.4. Future Directions ..................................................................................................80 

6.1.5. Conclusion ...................................................................................................................81 

References .....................................................................................................................................82 

Chapter 7 ......................................................................................................................................83 

DeepMANN ..................................................................................................................................83 

7.1. Mann ...................................................................................................................................83 

7.2.1. Background/Introduction .............................................................................................83 

7.2.2. Methods (Reader's Digest Version) .............................................................................87 

7.2.3. Data Preparation & Model Fitting ...............................................................................87 

7.2.4. Results ..........................................................................................................................91 

7.2.5. Discussion ....................................................................................................................96 

7.2.6. Future Directions..........................................................................................................97 

Chapter 8 ......................................................................................................................................98 

Philter ............................................................................................................................................98 

8.1. Philter ..................................................................................................................................98 

8.1.1. Abstract ........................................................................................................................98 

8.1.2. Introduction ..................................................................................................................99 

8.1.3. Online Methods ..........................................................................................................101 

8.1.3.1. Corpora: UCSF Corpus .......................................................................................101 

8.1.3.2. I2b2 corpus..........................................................................................................102 

8.1.3.3. Evaluating De-identification Performance .........................................................102 

8.1.4. Algorithm ...................................................................................................................104 



 

xii 

8.1.4.1. Algorithm Concept and Overview ......................................................................104 

8.1.4.2. Algorithm Control, Customization, and Output .................................................104 

8.1.4.3. Algorithm Pipeline ..............................................................................................105 

8.1.4.4. Optimization .......................................................................................................109 

8.1.4.5. Comparators ........................................................................................................109 

8.1.4.6. Framework for secure de-identification and evaluation .....................................110 

8.1.4.7. Measuring compute time.....................................................................................111 

8.1.4.8. Sensitivity Analysis ............................................................................................112 

8.1.4.9. Open source code ................................................................................................112 

8.1.5. Results ........................................................................................................................112 

8.1.5.1. Sensitivity Analysis: Distribution of PHI and Philter Recall by Category .........115 

8.1.5.2. Philter Compute Time .........................................................................................116 

8.1.6. Discussion ..................................................................................................................116 

8.1.6.1. Principal Results .................................................................................................116 

8.1.6.2. Limitations ..........................................................................................................116 

8.1.6.3. Comparison with Prior Work ..............................................................................118 

8.1.7. Conclusions and Future Directions ............................................................................121 

8.1.8. Acknowledgements ....................................................................................................121 

8.2. Supplement .......................................................................................................................122 

8.2.1. Supplemental Background .........................................................................................122 

8.2.1.1. Motivation ...........................................................................................................122 

8.2.1.2. Existing De-Identification Corpora.....................................................................123 

8.2.2. Supplemental Methods: UCSF Corpora ....................................................................123 



 

xiii 

8.2.3. Sensitivity Analysis....................................................................................................129 

8.2.4. Supplemental Results .................................................................................................129 

References ...................................................................................................................................135 

Chapter 9 ....................................................................................................................................139 

Deep Cumulative Dosage Determination .................................................................................139 

9.1. Abstract .............................................................................................................................139 

9.2. Introduction .......................................................................................................................139 

9.3. Methods ............................................................................................................................140 

9.3.1. Data ............................................................................................................................140 

9.3.2. Data Processing ..........................................................................................................141 

9.3.3. Gold Standard ............................................................................................................141 

9.3.4. Base Model ................................................................................................................142 

9.3.5. Experiments ...............................................................................................................142 

9.4. Results ...............................................................................................................................143 

9.5. Discussion and Future Directions .....................................................................................144 

Chapter 10 ..................................................................................................................................146 

Medical Research Topic Labeling ............................................................................................146 

10.1. Introduction .....................................................................................................................146 

10.2. Methods ..........................................................................................................................147 

10.2.1. Goal ..........................................................................................................................147 

10.2.2. Data ..........................................................................................................................147 

10.2.3. Models ......................................................................................................................149 

10.3. Results .............................................................................................................................149 



 

xiv 

10.4. Conclusions and Future Directions .................................................................................150 

References ...................................................................................................................................151 

Chapter 11 ..................................................................................................................................152 

Conclusion ..................................................................................................................................152 

11.1. The Past: A Summary .....................................................................................................152 

11.2. The Future: A Roadmap .................................................................................................153 

 

  



 

xv 

List of Figures 

Figure 2.1: A Deep Learning Healthcare System ...........................................................................7 

Figure 3.1: Permutation Importance Scores .................................................................................14 

Figure 3.2: Confusion Plots ..........................................................................................................15 

Supplementary Figure 3.1: Architecture of Best Performing Longitudinal Deep 

Learning Model ..............................................................................................................................30 

Supplementary Figure 3.2: Sensitivity Analysis Comparing Forecasting Performance 

versus Training Size .......................................................................................................................31 

Figure 4.1: Inclusion Criteria and Study Design ..........................................................................40 

Figure 4.2: Forecasting Performance on Test Cohort at UH ........................................................46 

Figure 4.3: Confusion Plot, Learned Patient Trajectory Vectors .................................................47 

Figure 4.4: Forecasting Performance on Test Cohort at SNH ......................................................48 

Figure 6.1: MLP MagECs vs Logistic Regression Coefficients - Comparison of MLP 

MagEC Distribution and Logistic Regression coefficients directly from the model. ....................74 

Figure 6.2: PIMA MagECs from MLP for a single patient ..........................................................75 

Figure 6.3: MagEC Clustering of PIMA patients on BloodPressure ............................................76 

Figure 6.4: RA Results - Feature-Level RA MagEC ....................................................................77 

Figure 6.5: Individual RA Case MagEC .......................................................................................78 

Figure 7.1: GWAS Results ...........................................................................................................91 

Figure 7.2: FAst-LMM In Sample Performance ..........................................................................92 

Figure 7.3: FAst-LMM Out of Sample Performance ...................................................................93 

Figure 7.4: MLP2000 In sample ROC ..........................................................................................94 

Figure 7.5: MLP2000 Out of sample ROC ...................................................................................95 



 

xvi 

Figure 7.6: conv_500 out of sample .............................................................................................96 

Figure 8.1: Philter Algorithm pipeline ........................................................................................108 

Figure 8.2: De-identification Ecosystem ....................................................................................111 

Figure 9.1: Sig Word Count ........................................................................................................141 

Figure 10.1: Topic Labeling Architectures .................................................................................150 

 

  



 

xvii 

List of Tables 

Table 3.1: Time Aggregation Experiment Results........................................................................13 

Supplemental Table 3.1: Contrastive Comparison of Machine Learning Methods ....................28 

Supplemental Table 3.2: List of medications identified for RA treatment and considered 

DMARDs for the purposes of this work ........................................................................................29 

Table 4.1: Characteristics of Individuals with Rheumatoid Arthritis in the Two Health 

Systems Studied .............................................................................................................................45 

Table 5.1: The (Six) Parts of MI_CLAIM - A Schematic Representation of the 6 

Components of a Clinical AI Study ...............................................................................................62 

Table 6.1: Boston Housing Data: Comparison of MAgEC to Regression Coefficients in 

Linear Model - Direction of Effect Coefficients............................................................................73 

Table 6.2: PIMA Results - PIMA Model Performance ................................................................74 

Table 8.1: Performance Comparison of Tools and Corpora .......................................................113 

Table 8.2: Remaining PHI Analysis by Tool, UCSF Test Corpus .............................................114 

Table 8.3: Remaining PHI Analysis by Tool, I2B2 Corpus .......................................................115 

Supplemental Table 8.1: PHI Categories ..................................................................................123 

Supplemental Table 8.2: Distribution of 2500 training notes Across Departments ..................124 

Supplemental Table 8.3: Distribution of Testing Notes Across Departments ..........................127 

Supplemental Table 8.4: Recognizable PHI Analysis (PHIlter, UCSF Test Corpus) ...............130 

Supplemental Table 8.5: Recognizable PHI Analysis (PHIlter, I2B2 Corpus ..........................131 

Supplemental Table 8.6: False Positive Count by PHIlter Configuration File Element on 

the UCSF corpus ..........................................................................................................................132 

Supplemental Table 8.7: UCSF corpus TP/FN Counts .............................................................133 



 

xviii 

Supplemental Table 8.8: Overall Recall Per PHI Category (PHIlter, I2B2 Test Corpus) ........134 

Table 9.1: Pred-sigs Base Architecture .......................................................................................142 

Table 9.2: Initial Experimental Accuracy ...................................................................................143 

Table 9.3: Classification Report of Sig+Dosage Experiment .....................................................143 

Table 9.4: Sensitivity Analysis: Incorrect Predictions for Class “High” (2) Sig+Dosage ..........143 

 

 



 

1 

Chapter 1 

Desideratta 

 

1.1. Readme 

This chapter serves as a brief summary of the complete dissertation. Here I will discuss 

the elements of the problem at hand and provide a concise description of each chapter to follow. 

 

1.2. The Checklist 

The problem, in a nutshell, is that human health is highly individual and complex. We 

finally have a large amount of detailed health information (EHRs) to study, but we lack good 

tools to fully utilize it to improve care or learn more about human health and disease. 

Additionally, these data points that we do have are made up of living people who have both legal 

and human rights to privacy, so we must proceed carefully and respectfully. 

Given the above considerations, a checklist to launch this new field of Deep Learning 

Healthcare that would enable the systematic utilization of data on previous actions and outcomes 

to enable smarter ongoing choices, might look something like this: 

1. Identify deep learning approaches to modeling individual patients, which are 

characterized by sparse, lumpy, longitudinal data 

2. Apply those approaches to the simplest, safest task that addresses a meaningful clinical 

problem 

3. Explain how the models are making decisions to foster trust and expand knowledge 

4. Ramp up: Move beyond simple data to address deeper problems with greater granularity 
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1.3. The Following Chapters 

Chapter 2 “Towards a Deep Learning Healthcare System” describes the vision of how the 

intersection of digital health data with modern AI will empower healthcare systems in the near 

future to automatically learn to improve decisions and care daily.  

Chapter 3 “Modeling Longitudinal Electronic Health Records” presents the results of 

detailed algorithmic experiments to identify optimal deep learning approaches to represent 

longitudinal patient data. 

Chapter 4 “Predicting the Future” applies the methodology learned in the previous 

chapter and applies it to the problem of forecasting future individual health outcomes for patients 

with Rheumatoid Arthritis, a complex auto-immune disease.  

Chapter 5 “MI_CLAIM”, or Minimum Information for Clinical Artificial Intelligence 

Modeling studies, establishes a standard for designing, recording and reporting AI-based clinical 

informatics studies. This will, in turn, facilitate transparency and the establishment of trust and 

ultimately enable the utilization of such models in the clinical setting. 

Chapter 6 “MAgEC”, Model Agnositc Effect Coefficients, offers a single, easily 

interpretable, method to analyze how any machine learning model (from logistic regression, to 

random forests, to deep neural networks) is making decisions. It provides global and local 

explanations and enables the direct comparison of what multiple different models have learned 

from the same data. 

Chapter 7 “DeepMANN” is an inflection point, here we begin to move into data of 

greater complexity as I demonstrate that the combination of feature selection and relatively 

simple deep networks can be taught to identify clinical phenotypes from microarray data with 

accuracy that rivals or exceeds substantially more complex approaches. 
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Chapter 8 “Philter”, Protected Health Information Filter, opens up the potential to mine 

the richest information in the EHR, physician notes, by providing an algorithm that removes 

patient-specific information from each note, leaving only the relevant medical information about 

the patient’s condition, treatment, and response. 25,000 randomly selected notes (the largest such 

corpus in the world) were marked for PHI, word for word, by a team of trained expert annotators.  

Chapter 9 “Deep Cumulative Dosage Information” details the process by which deep 

learning can be used in the Natural Language Processing space to automatically determine the 

total cumulative dose of a steroid that a patient has received directly from the EHR ‘Sig’ field. 

Cumulative steroid use is associated with several serious health conditions and is also an 

important surrogate outcome for auto-immune treatments. 

Chapter 10 “Medical Research Topic Labeling” illustrates early successes of employing 

deep learning to automatically annotate complex medical datasets, making important information 

easier to find and reducing potential sources for labeling-error. 

Chapter 11 “Conclusions” provides the summary and concluding thoughts on the overall 

paper.  
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Chapter 2 

Towards A Deep Learning Healthcare System 

 

 

2.1. Permissions 

This Chapter was originally published in Nature Medicine (Nature Medicine volume 25, 

pages14–15 (2019) and is reproduced here with permission. 

 

2.2. Call For A Deep Learning Healthcare System 

We are currently witnessing two incredible information-technology revolutions colliding 

in medicine. Electronic health records (EHRs) are capturing the thoughts, orders, images, and 

outcomes of the best trained physicians. Advances in machine learning are beginning to 

supplement clinical medicine. But breakthroughs still remain fully unrealized because these 

revolutions are siloed. While the raw materials exist to learn from current actions and outcomes 

in medicine, they are not systematically utilized to improve the practice of medicine.  

Nearly every other industry uses data on previous actions and outcomes to enable smarter 

ongoing choices. Amazon targets product recommendations based on similar customers’ 

shopping patterns. Google updates its searches based on the outcomes of previous searches. 

Waze uses information on drivers traveling similar routes to optimize directions. 

Why is medicine, as an industry, still left out? 

The roadblocks to bringing medicine into the data-driven era are operational and cultural. 

While many have written about inefficiencies in the US medical system relative to rising 

healthcare spending1 and the challenges in improving quality2, the US medical system is a 
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competitive one, meaning competitors are incented not to fully share data, pricing, and costs. 

There is a significant room for improvement, and potential to better use the data we do have. 

While EHRs have known challenges3,4, they now represent the legal medical record and 

are complete enough to enable another physician to completely care for a patient. This data is 

perhaps among the most expensive in the US, given that physicians are paid to enter much of it. 

Of course, EHR data must only be used in safe respectful ways, but it will be a tragedy if this 

data is not used to improve the practice of medicine. 

Over ten years ago, Lynn Etheredge5 and others6 proposed the Learning Health System, 

where millions of EHRs could be used to inform medical practice and policy. But these 

visionaries were still proposing a system in which physicians mediate the learning. Now with 

nearly 80% of medication orders captured electronically and more than 1.7 billion prescriptions 

per year electronically tracked7, combined with 98% of hospital systems now using EHRs8, we 

can envision computer systems that learn how to improve the medical system by themselves. 

It is now time to safely bring huge medical data repositories and advanced learning 

algorithms together with physicians to make a Deep Learning Healthcare System (see Figure 

2.1). Deep learning (DL), the newest iteration of machine learning methodologies, is now 

performing at state-of-the-art levels in previously difficult tasks, including image analysis, 

language processing, information retrieval, and forecasting. DL is well suited for medical data as 

it can identify patterns in sparse, noisy data, and requires little input feature engineering. Current 

successes have shown performance that meets or surpasses experts, but perhaps more 

importantly, they can be run in real-time within or across entire hospital systems. We propose 

that future physicians will be armed with insights from models continuously trained and updated 
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on real-world clinical data to make more accurate diagnoses and individually optimized 

treatment decisions. 

Is there one optimal way to practice medicine? Imagine ten physicians faced with a single 

clinical conundrum (choice A, B, or C) on one patient. If these ten were provided with the 

maximum possible information about a patient in a clear format, from physical exam to 

preferences, the world’s literature, and data on similar patients, should all ten physicians reach 

the exact same choice for this clinical decision? We know today they probably would not, but 

shouldn’t they? If the answer is yes, then medicine is fundamentally machine learnable. 
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Figure 2.1: A Deep Learning Healthcare System 

 
Figure 2.1: (1) The EHR contains the record, in digital form, of the demographics, symptoms, vitals, labs, and 

diagnoses of each of the individual patients that have been seen as well treatment decisions made by their physician 

and often the resulting outcomes for the patient. (2) The amount of data that a physician must synthesize in one visit 

in order to make decisions is large and growing. Deep Learning can identify complex patterns in patients, 

treatments, and outcomes in an automated manner in near-real-time, distilling them into individualized 

recommendations for physicians based on real-world data. (3) Physicians can review the Deep-Learned 

recommendations, comparing it to their own knowledge and experience, then discussing the options with their 

patient before finalizing a decision. The system is iterative in nature, improving with every patient-physician 

interaction. 
 

Many health conditions present in heterogeneous ways, making it challenging to establish 

an accurate diagnosis over time. The treatment regimens for many complex conditions require 

physicians to stay aware of the latest options and evidence. A Deep Learning Healthcare System 

would enable all physicians to practice at the same level of expertise as a panel of the very best 
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physicians. Since deep learning models could be shared between hospitals without the privacy 

risks of sharing patient data, the potential is nearly limitless to create a new system of precision 

medicine learned from the decisions and outcomes of diverse physicians treating diverse 

patients. 

Fogel & Kvedar9 have insightfully noted that bringing AI to medicine will not sideline 

doctors, but will instead enhance their strengths. Physicians, empowered by patterns and 

evidence derived from large-scale real-world data, will be able to focus on the uniquely human 

elements of their profession for which they are best trained. Tasks which cannot be performed by 

a machine because they require emotional intelligence, such as asking careful questions of the 

patient to uncover more nuanced symptoms, and building trust through personal relationships by 

using human intuition, will still be unique qualifications of physicians to guide the 

implementation of the computationally optimized diagnoses and treatment plans of the future. 
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Chapter 3 

Modeling Longitudinal Electronic Health Records 

 

 

3.1. Permissions 

Portions of this chapter was originally published in NeurIPS 2018 and JAMA Network 

Open (JAMA Netw Open. 2019;2(3):e190606) and is available under a Creative Commons 

license.  

 

3.2. Time aggregation and model interpretation for deep multivariate longitudinal patient 

outcome forecasting systems in chronic ambulatory care 

Clinical data for ambulatory care, which accounts for 95% of the nations healthcare 

spending, is characterized by (relatively) small sample sizes of longitudinal data, unequal 

spacing between visits for each patient, with unequal numbers of data points collected across 

patients. While deep learning has become state-of-the-art for sequence modeling, it is unknown 

which methods of time aggregation may be best suited for these challenging temporal use cases. 

Additionally, deep models are often considered uninterpretable by physicians which may prevent 

the clinical adoption, even of well performant models. Using EHR data on a complex 

autoimmune disease from 2 hospital systems with highly diverse patient populations, we show 

that time-distributed-dense layers combined with GRUs produce the most generalizable models 

and we provide a framework for the clinical interpretability of the models. 
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3.2.1. Introduction 

Chronic ambulatory disease care is associated with the overwhelming majority of death, 

disability, and healthcare spending Buttorff et al. (2017), for Medicare & Medicaid Services et 

al. (2016) in the United States. Successful predictive modeling in this setting has the potential to 

significantly improve clinical care, patient quality of life, and healthcare efficiency. Identifying 

the best methods and functions for time aggregation will be a critically important part of building 

models that perform well in these types of settings. However, even well performant models may 

not be sufficient to warrant the clinical adoption of artificial intelligence (AI) to longitudinal 

patient care. Deep learning has traditionally been met with resistance in the clinical community 

due to a general sentiment that the models function entirely as uninterpretable black boxes. 

While we agree that the use of black boxes in clinical care should be avoided wherever possible, 

we posit that deep time series models need not be black boxes at all.  

By transferring and extending a traditional method to calculate variable importance in 

machine learning models known as Permutation Importance Scoring Breiman (2001) to deep 

time series modeling and by developing a method of visualizing the final model-learned patient 

representations as clusters we aim to show that it is possible to interpret the driving factors 

behind model predictions on both the patient and population levels. These methods can not only 

contribute to model interpretation but could be used in the future to generate and test medical and 

pharmaceutical hypotheses in this space in which individual progression and response to 

treatment for many of the diseases may not be well understood.  

We selected Rheumatoid Arthritis (RA) as a use case. RA is a common (1% nationwide) 

complex chronic autoimmune disease with unknown causes along with highly individualized 
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responses to therapeutics and disease progression. It is associated with significant morbidity and 

a high cost of care. Our goal was to examine the impact of time aggregation strategies on deep 

time series models which used a patient’s history of labs, medications, and disease activity along 

with their current Machine Learning for Health (ML4H) Workshop at NeurIPS 2018. 

arXiv:1811.12589v1 [cs.LG] 30 Nov 2018 treatment plan and current clinical measurements to 

forecast whether a patient’s disease activity would be controlled or uncontrolled at their next 

visit. The highest performing model was then examined for interpretation using the approaches 

described above.  

 

3.2.2. Methods 

Electronic Health Record (EHR) data were extracted from two rheumatology clinics with 

significantly different patient populations and provider treatment patterns, a University Clinic 

(UC) and a public Safety Net (SN). Patients from the larger UC cohort (n=578) were split into 

three groups [train (n=369), validation (n=93), test (n=116)] using stratified random sampling on 

the primary outcome which was the binary category of controlled or uncontrolled disease activity 

at their most recent clinical visit. Patients from the smaller SN cohort (n=242) were split into two 

groups, train (n=125) and test (n=117) using stratified random sampling as previously described. 

The patient data were grouped into three windows of one hundred days each (which corresponds 

to the median number of days between visits) to overcome unequal length of time between visits. 

Data within each window was further aggregated, se Relative Difference = (mean(permuted 

score) - original score) / (original score) 
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3.2.2.1. Population Differences 

We generated a graphic, which we have called a Confusion Plot, by extracting the final 

dense representation learned by the fully trained model for each patient and plotting them using 

T-SNE, colored by outcome category, to assess the coherence of the representations learned by 

the model. We performed this experiment for each cohort and compared the results side by side 

to determine the differences in patient representation for the model in each patient population. 

 

3.2.3. Results 

3.2.3.1. Time Aggregation 

Results from the time aggregation experiment can be found in Table 3.1. Using a Time 

Distributed Dense (TDD) layer as the input layer provides the single largest increase in 

predictive performance as seen by the relative difference between the TDD and Dense 

architectures. Using a convolutional layer with non-causal padding after the TDD provides a 

modest improvement over a dense layer, while using causal padding increases performance even 

further. The top performing architectures used a recurrent layer following the TDD with GRUs 

outperforming LSTMs.  

 

Table 3.1: Time Aggregation Experiment Results 

Function Dense 
TDD 

Dense 
TDD GRU 

TDD 

LSTM 
TDD CNN 

TDD 

Causal 

CNN 

AUC 0.778 0.817 0.845 0.838 0.821 0.832 

95% CI 
[0.683, 

0.864] 

[0.731, 

0.894] 

[0.753 

,0.914] 

[0.743 

,0.911] 

[0.727, 

0.897] 

[0.740, 

0.906] 
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3.2.4. Interpretability 

3.2.4.1. Longitudinal Permutation Importance Scoring 

More recent time windows are more important than more distant time windows. CDAI 

history is of greatest importance followed by steroid prescription (Prednisone, a reasonable 

surrogate for all steroids representing 55% of steroids prescribed in our data set). Changing a 

patient’s previous DMARD treatment strategy at the visit prior to the most recent visit was of 

significant performance as were the presence or absence of certain specific DMARDs (See 

Figure 3.1).  

 

Figure 3.1: Permutation Importance Scores 

 

3.2.4.2. Confusion Plot 

In both the UC and SN populations the final patient representations that the model 

learned formed a one-dimensional manifold (a curve). The model is clear in both clinics about 
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patients that will definitely be at one end of the disease activity spectrum or the other at their 

next clinical visit. However, the confusion plots are clearly different between the two 

populations. In the UC cohort (see Figure 3.2), the presence of Controlled and Uncontrolled 

patient representations mix in just one pocket of close proximity to each other in the middle of 

manifold, while within the SN Clinic cohort there are multiple of these highly proximus 

representations that begin to occur in pockets much closer to the tails. 

 

Figure 3.2: Confusion Plots 

 

3.2.5. Discussion and Conclusions 

In this study, we compared different time aggregation functions for ambulatory outcome 

forecasting and provided a framework for interpreting models in this setting. We found that 

using a time distributed dense layer (which uses the same function to re-weight input features 

across all time windows), followed by recurrent modeling of the re-weighted windows produced 

the best results. Longitudinal Permutation Importance Scoring reveals that newer time points are 
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most important, and that recent disease activity scores are important but that quantitative 

inflammatory markers are not. Prescription of new steroids at the current visit, which we 

interpret to clinically indicate currently uncontrolled disease, and maintaining or switching to a 

new DMARD, we interpret to act as surrogate for the patient and physician believing that the 

current DMARD is working, are also important. There are some findings such as the influence of 

certain DMARD changes and steroids additions that require further examination to determine 

whether these finding may lead to new treatment strategies or are the result of confounding by 

indication. A potential limitation of the Longitudinal Permutation Importance Scores as 

implemented in this paper is a lack of directional effect between future disease activity and each 

variable within each window. This could be solved be reporting the changes in probability 

instead of the changes in auROC associated with each permutation, though additional 

considerations will need to be made for the continuous variables.  

An additional straightforward application of directional longitudinal permutation 

importance scoring would be to permute medication choices to optimize probabilities for a 

successful outcome. Examining the Confusion Plots in the current study, the single mixed patient 

pocket at the UC seemed to indicate a natural transition between patients who have Controlled 

and Uncontrolled disease state at their next visit, while the multiple mixed pockets for the SN 

patients perhaps indicates that strong confounding factors are driving outcomes for many 

patients. Since the patients in the SN cohort, unlike those in the UC, are known to be 

predominantly non-White and be considerably less likely to have private insurance, these 

findings support suspected social determinants of health within the population that should be 

further examined.  
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In summary, Longitudinal Permutation Importance Scores can be extended from 

traditional machine learning approaches into longitudinal deep learning methodologies, 

providing insight into variable significance over time. Confusion Plots, which visualize model-

learned dense patient representation vectors, can used to search for sub-cohorts, indicate the 

presence of potential confounding factors, and examine differences between subgroups and 

populations. Taken together, we found that longitudinal deep learning can be successfully 

applied to ambulatory disease forecasting and that the resulting models can be interpreted in a 

straightforward manner. We expect that these methods will be used to facilitate the adoption of 

deep learning in the field of clinical medicine.  

 

3.3. Supplementary Methods 

3.3.1. Data 

3.3.1.1. Primary Cohort (UCSF) 

In order to use real-world longitudinal patient data to build and evaluate our models, we 

utilized the resources made available by the UCSF Clinical Data Research Consultations Team. 

Each day the team extracts the EHR data from Epic Chronicles into the Epic Clarity relational 

database (RDB). A subset of that RDB is used to update the Epic Caboodle data warehouse. The 

Caboodle data is then de-identified using the Safe Harbor method: Private information such as 

names and addresses are removed. Key personal identifiers are replaced with randomly assigned 

surrogate identifiers. Dates are shifted by a random number of days from 0 to -364 so that the 

true date is known no more precisely than the year, however date shifts are kept consistent for 

each patient so that their chronology is accurately maintained. Ages are adjusted so that patients 

> 90 years old are presented as 90 years old. Once a month, the de-identified data is extracted to 
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a set of delimited flat files, which our group stands back up into a SQL database. This database 

contains longitudinal information on over 900,000 individual patients dating from January 2014 

to the present. 

 

3.3.1.2. Replication Cohort (ZSFG) 

The IRB for ZSFG did not require de-identification of patient records. EHR data were 

directly accessed using the eCW product “eBO reports” which runs on an IBM Cognos platform. 

 

3.3.1.3. Variables Utilized in Model 

Given the relatively small number of patients available and the complexity of time series 

models, we chose to only include variables with known clinical significance in the models. These 

variables are known to be associated with disease activity, however no study that we are aware 

of has shown them to be predictive of future disease activity. This approach reduces the risks 

associated with including all variables in the EHR, including under-fitting (inability to separate 

signal from noise) or over-fitting (confusing noise for signal). We include the following: prior 

CDAI, ESR and CRP, DMARDs (Supplementary Table 3.2), oral and injected glucocorticoids, 

autoantibodies (presence of rheumatoid factor [RF] and/or anti-cyclic citrullinated peptides [anti-

CCPs]), and demographics (age, sex, race/ethnicity). Medication names were standardized by 

first using the R scripting library MetaMap1 and then programmatically removing any remaining 

characters associated with delivery or dosage. Medication names were then mapped to the list of 

DMARDs. Steroids were included if their pharmaceutical class was labeled as 

“glucocorticosteroid” in the EHR and their route of administration was either oral or injection. 

All patient medications that did not map to either a DMARD or steroid were dropped. Most 
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machine learning libraries, including the TensorFlow2 library that we planned to use for 

modeling, do not accept string values within tensors. Therefore, we encoded medications using a 

dictionary mapping the drug name to a unique integer value (e.g., Methotrexate= 1) in each 

patients record. We chose to include only the first occurrence of each medication given the lack 

of reliable medication stop dates in the EHR. 

 

3.3.1.4. Modeling Input Formats 

We considered two different formats for representing a patient’s longitudinal trajectory as 

input for modeling. The first method was a Sequential string of events. In this format each 

patient’s events follow the exact chronology in which they appear within the EHR. As an 

analogy, in this format a patient’s trajectory is like a sentence and the goal of the model is to 

predict the final word the sentence (always a CDAI score in this case of either controlled or 

uncontrolled). The potential advantages to this format are based on its flexibility: A patient’s 

trajectory is presented to the model in the exact order that it occurred in the hospital, each patient 

can have an arbitrary number of types of variables, time between patient events can be modeled 

with fidelity, differences in the numbers, types, and order of patient events can be easily 

represented for each individual patient. The potential disadvantage of this format is also related 

to its flexibility: different patients will have different numbers of events and therefore potentially 

drastic differences in the length of their trajectories which necessitates a more complex model 

capable of handling the longest and most complicated sequence. From a back-propagation 

perspective, longer sequences fed into an RNN increase the likelihood of encountering a 

vanishing gradient thus hindering the models ability to learn. Within this format the order of 

variables cannot be anticipated for each patient. Therefore, we prepended the raw values for each 
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variable with a string containing the name of the variable. For example a raw CDAI score of 10 

was converted into ‘cdai10’. Each unique string was then mapped to a unique index. To address 

the loss of ‘nearness’ introduced by converting continuous variables into uncorrelated strings, we 

added an embedding layer to all Sequential architectures. Ideally, this would not only allow the 

network to learn that cdai10 was more similar to cdai11 than cdai50, but also that low CDAI 

scores were more similar to high ESR or CRP values that appear in close longitudinal proximity 

for patients. 

 

Example Sequential format: 

• Conceptual: (event1_type_value, dT1, event2_type_value, dT2,eventn_type_value) 

• Using Real Variables: (ESR11, CRP22, ESR24, methotrexate, CDAI21, PROM50) 

 

The second input format that we explored was to force our data to conform to sliding 

time windows of a fixed interval as is done with traditional Time Series forecasting. In this 

format, a window interval is decided upon (for example, 3 months) and variables are decided (for 

example CDAI, Steroids, CRP). In each window, a single value is entered for each variable. This 

format is almost universally employed for fields in which variable recording can be guaranteed 

to be consistent at specific time intervals, such as the stock market or EKG measurements. 

Outpatient care is by nature inconsistent in the frequency of a patients visits to their care provider 

and the number of variables that are measured for the patient at each visit. This inconsistency is 

the result of a combination in patient adherence, the individual and cyclic nature of chronic 

disease and its severity, and provider preference the types and frequency of measuring patient 

variables and changing treatment strategies. When the sampling frequency and variable 
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measurement is inconsistent, such as for patients with RA (chronic disease), strategies must be 

employed to deal with the cases of either having no history of a variable within a given window 

or having more than one value present for a variable within a single window. Missing values 

were imputed with zeros since the field of deep learning has learned empirically that neural 

networks learn to ignore zero-values assuming that they do not legitimately occur as real input 

values, which is true for our data. Additionally, there is no sensibly accurate method for imputing 

the variables that we have selected as they can change drastically over time within a person and 

have only modest correlation to each other at best. Attempts at non-zero imputation were likely 

to induce spurious correlations, injecting noise into the signal, especially when considering our 

the relatively small size of our training cohort. Since our goal was to predict the most recent 

event, if multiple values occurred for a given variable within a single time window, we selected 

the most recent value. If a patient’s clinical history was too short to fill all windows for a 

particular experiment, all values for that patient’s window were replaced with zeros. 

 

3.3.1.5. Longitudinal Modeling using Deep Learning 

Since patients and their outcomes change over time, and deep RNNs have previously 

demonstrated superior performance to traditional machine learning methods for chronological 

EHR data3, we focused on deep learning models but experimented with many different possible 

ways to represent time dependencies. 

Unlike Random Forests, Support Vector Machines, or Linear Regression, there is no 

discrete Deep Learning algorithm. Deep Learning is a term used to describe machine learning 

models based on neural networks of multiple layers and algorithms for their optimization such as 

stochastic gradient decent and its derivatives. Each layer is composed of a varying number of 
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nodes. The manner in which the nodes operate and are connected to nodes in other layers 

determines the how the layer transforms the input it receives into the output that it generates. 

Deep Learning can be viewed as a hierarchical transformation of the input data, each layer acting 

as a distinct function changing the data in a different way, into the representation of the original 

input data that makes the predictive task as straightforward as possible. An architecture is an 

arrangement of layers placed together and representing either the modeler’s theory or an 

experimental finding about which functions will generate the best representation of the input for 

a given problem.  

 

3.3.1.6. Overview of Relevant Deep Learning Layer Types 

We considered 5 potential layer types to represent patient longitudinal trajectories: 

Dense, Time-Distributed, Convolutional, and Recurrent (LSTM, GRU). Each of these layers 

have distinct methods for generating representations of their input data. Dense layers have no 

representation of chronology or proximity. Therefore, neither the order of patient events nor 

which events happened close in time for a patient can be represented. In this way, models 

composed entirely of dense layers, known as Multilayer Perceptrons, are conceptually similar to 

Random Forests or kernelized regression. Time-Distributed layers learn a single dense mapping 

function that is applied to every timestep of the input data. In our case, this can be thought of as a 

generating one representation for each encounter or window. Convolutional layers can represent 

proximity but not chronology. Therefore, the representations that they generate can account for 

which events happened close in time for a patient, but not the global order of events for a 

patient’s trajectory. Models composed of Convolutional blocks, known as Convolutional Neural 

Networks, offer a distinct advantage in that they use a local pooling of proximity values to 
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reduce the size of the input space, thus reducing the complexity of the model and in-theory 

increasing its ability to generalize. Despite lacking an explicit ability to directly represent the 

order of sequences, CNNs have shown to work very well as language models4, including 

extracting information from clinical text5. LSTMs and GRUs are different variations of 

Recurrent Neural Networks (RNN), which are the family of architectures that explicitly model 

chronological sequences of events. LSTMs and GRUs have slightly different mechanisms for 

learning sequential representations which can lead to differences in performance on different 

data sets. In general, LSTMs are more robust but due to that they are slower to train. 

 

3.3.1.7. Model Training 

The UCSF cohort was divided into three sub-cohorts for model building and testing: 

training, validation, and testing. To ensure that the sub-cohorts were representative of the overall 

population, we calculated the proportion of patients in each CDAI outcome category (60% were 

Controlled, 40% were Uncontrolled). We then performed a Stratified Random Split, keeping 

20% (n = 116) of the patients aside for testing (these patients’ data were never trained on, the 

data was used only to test the final model) and using 80% for model training and development. 

We then performed an additional stratified random split on the patients assigned, allocating 80% 

for direct model training (n = 369) and the remaining 20% (n=93) for model validation. This 

validation cohort was used to assess the generalizability during the model selection process (by 

varying model architectures and hyperparameters). All continuous variables (CDAI, ESR, CRP) 

were then linearly scaled to range between zero and one with min/max scaling using the 

minimum and maximum values for each of these variables found in the training cohort. Thus, the 

training data were used for model optimization and the validation data were used to guard 
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against overfitting during model selection and hyperparameter tuning. Once a final model was 

produced, we combined the validation cohort with the training cohort to train the model on both 

cohorts before the final single evaluation on the test cohort.  

The ZSFG patient cohort was less than half the size of the UCSF cohort and we chose not 

to involve it in model selection. The ZSFG cohort was split in two, the test cohort was matched 

to the size of the UCSF test cohort as closely as possible (n=117) so that model performance 

could be evaluated across equally sized patient populations. A training cohort, comprised of the 

remaining patients (n = 125), was created from the remaining patients. Membership in the 

cohorts was assigned through a random stratified split as described above. 

The goal of any deep learning architecture is to learn a representation of the original input 

data that maximizes the success rate for the predictive task. In this case, the input data is each 

individual patients’ clinical RA trajectory and the task is to predict what each patients’ disease 

activity state will be at their next visit. The final representation that the architecture generates is 

captured by a vector which represents the patients chronology, which we have called a Patient 

Trajectory Vector (PTV). During training, the deep learning architecture is used to generate a 

PTV. The PTV is fed into a logistic classifier which makes a binary prediction (controlled, 

uncontrolled) of the patient’s disease state at the time of their next visit. The difference between 

the sigmoidal prediction of the outcome and the patient’s actual outcome is the error. The error is 

then back-propagated into the PTV and then into the architecture itself. The parameters for the 

architecture are then gently updated in directions that would have led to a better PTV 

representation for that patient resulting in a sigmoidal output closer to the ground truth (zero for 

Controlled, one for Uncontrolled). These updated transformations are then applied to next 

training patient sample and evaluated. In practice, models are updated based on the results of 
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batches of samples instead of single samples because batch-training has been shown to produce 

models that converge faster6.  

For models that included both patient variables that changed over time, such as lab values 

and CDAIs, and static variables that did not change over time, such as demographics, the 

variables were separated according to whether or not they were time-dependent. These separate 

inputs for each patient were fed into two independent deep networks; a recurrent network for the 

time-dependent variables and a purely dense network for static variables. The two network 

outputs were concatenated to form a final joint representation and passed to the logistic 

classifier. Back propagation flowed through both networks allowing joint learning of static and 

time-dependent representations. 

There are many different strategies that can be applied for model optimization. The most 

common methods for optimization include: experienced intuition, grid searches, random 

searches, or some form of Sequential Model-based Global Optimization (SMBO) techniques. 

Since, to our knowledge, no model architectures for multivariable time series deep learning to 

predict future health outcomes for a chronic disease have been published, there was no data to 

guide intuition for selecting the optimal variables. While grid searches are popular because they 

are easy to conduct, Bergstra and Bengio7 have shown that it is more efficient to randomly 

search through values while employing a method to intelligently narrow the search space than it 

is to loop over a fixed sets of hyperparameter values in a grid. SMBOs are algorithms that begin 

with a random search over the hyperparameter space, and then use the results of the models built 

with that search to fit one or more surrogate functions that describe the relationship between a set 

of possible hyperparameters and model generalization. The algorithm then begins optimizing the 
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surrogate function with the goal of identifying points in the hyperparameter space that will lead 

to improved model performance on data unseen by the model during training. 

Our goal was not only to identify the best performing single architecture and 

hyperparameters, but also to uncover trends in performance associated with different ways of 

representing patient trajectories and the types of patient variables that were most essential for 

accurate predictions of future patient outcomes. Therefore, we set up separate SMBO 

experiments for each combination of architecture family: dense, time-distributed, convolutional, 

and recurrent architecture as well as architectures combining different layer types. Once the best 

combination of patient value types and model architecture was identified, additional experiments 

were performed to determine the impact of the length of patient history to include as input on 

model performance. Overfitting, the substantial divergence of model log-loss performance 

between data used for training and unseen data, was rigorously monitored by comparing the 

model’s performance on the training cohort to that of the development cohort. Training for any 

model was stopped as soon as overfitting was detected. Models were ranked by their 

generalization or hold-out accuracy on the development cohort, their performance on the training 

data was never recorded. Model training, optimization, and selection were performed using the 

TensorFlow2 computational engine wrapped with Keras8 as a front end on Amazon Web 

Services Elastic Cloud (EC2) P2XLarge Linux GPU servers. Additional python libraries were 

used for data preprocessing and model evaluation including Pandas9, Matplotlib10, scikit-learn11, 

and Numpy12. 
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3.3.1.8. Transfer Learning and Fine Tuning 

Transfer Learning is the deep learning practice of taking a model that has been fully 

trained on one data set and updating the model’s parameters by retraining the final dense layer on 

data from a new data set while keeping the rest of the model parameters frozen. This is generally 

considered most appropriate when the two datasets are highly similar. For our work, that meant 

training the model on the UCSF data, then updating the weights for the PTV using the training 

cohort from ZSFG while keeping the Time-Distributed Dense and GRU layers frozen.  

Fine Tuning is a general case of Transfer Learning where layers other than the final dense 

layer of a model, including potentially all layers, are updated by training on a new data set. This 

approach is generally most applicable when the two data sets are part of the same general domain 

but are otherwise very different from each other. We experimented successively unfreezing one 

additional layer from the top down. 

 

3.3.2. Supplemental Discussion 

Deep Learning is notorious for requiring training sample sizes far above the number of 

EHR records for patients with most chronic diseases (even if patients at many large hospitals 

were aggregated). To overcome this, during our model building process we leveraged physician 

knowledge and experience to select a small number of raw variables with known clinical 

importance. This reduced the number of variables the model needed to sift through to learn from, 

and presumably reduced the number of patient samples necessary to properly train models, by 

many orders of magnitude. We found that beginning with a small number of clinically important 

variables, even if the consequences of their complex time-dependent interactions are not 

perfectly understood, has the added benefit of increasing model interpretability. 
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The deep neural architecture that performed best was constructed in a way in which a 

human might approach the problem. The time-distributed layer essentially creates a summary of 

each time-window for the patient. The recurrent units then look for longitudinal patterns in the 

chronological summaries from each patient. The dense PTV then generates a single 

representation of the patient’s overall trajectory. It is this complete trajectory representation that 

the logistic classifier uses to forecast the patient’s future CDAI category. The fact that this model 

also contained the smallest number of trainable parameters and utilized a high degree of 

regularization also makes sense intuitively, especially considering the relatively small size of the 

training cohort and the large differences between the two testing cohorts. 

 

3.3.3. Supplementary Tables 

Supplemental Table 3.1: Contrastive Comparison of Machine Learning Methods 

ML 

Method 

Models 

Time 
Interactions 

Unequal 

Length 

Inputs 

Can 

handle 

missing 

data 

Can handle 

high 

dimensions 

Number of 

training 

samples 

needed 

Potential 

to overfit 

Cox Yes No No No No Low Low 

Random 

Forest 
No Yes No Yes No Low Low 

LASSO No No No No Yes Medium Medium 

RNN Yes Yes Yes Yes Yes High High 
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Supplemental Table 3.2: List of medications identified for RA treatment and considered 

DMARDs for the purposes of this work  

Drug Name Class 

Methotrexate Small Molecule 

Sulfasalazine Small Molecule 

Hydroxychloroquine Small Molecule 

Leflunomide Small Molecule 

Azathioprine Small Molecule 

Auranofin Small Molecule 

Chloroquine Small Molecule 

Cyclophosphamide Small Molecule 

Cyclosporine Small Molecule 

Gold Small Molecule 

Minocycline Small Molecule 

Mycophenolate Small Molecule 

Penicillamine Small Molecule 

Myocrisin Small Molecule 

Abatacept Biologic 

Adalimumab Biologic 

Anakinra Biologic 

Certolizumab Biologic 

Etanercept Biologic 

Golimumab Biologic 

Infliximab Biologic 

Rituximab Biologic 

Tocilizumab Biologic 

Inflectra Bio-Similar 

Remsima Bio-Similar 

Benepali Bio-Similar 

Maball Bio-Similar 

Tofacitinib JAKs Inhibitor 
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3.3.4. Supplementary Figures 

 

Supplementary Figure 3.1: Architecture of Best Performing Longitudinal Deep Learning 

Model 
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Supplementary Figure 3.2: Sensitivity Analysis Comparing Forecasting Performance versus 

Training Size 

 

Forecasting performance increases non-linearly with the number of samples available for 

training. There is a sharp increase in performance between 50 and 100 samples. The net size of 

performance gains becomes smaller as the sample size is increased. It is important to note that 

these experiments are conducted post-hyperparameter-optimization. Therefore, they reflect the 

numbers necessary to train the optimal model but do not reflect the numbers necessary to 

identify the optimal model. 
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Chapter 4 

Predicting the Future 

 

4.1. Permissions 

Portions of this chapter was originally published in JAMA Network Open (JAMA Netw 

Open. 2019;2(3):e190606) and is available under a Creative Commons license.  

 

4.2. Forecasting Individual Rheumatoid Arthritis Patient Outcomes Using Deep Learning 

on EHR Data 

 

4.2.1. Abstract 

Importance: Knowing the future state of a patient would enable a physician to customize 

current therapeutic options to head off disease worsening, but predicting that future state requires 

sophisticated modeling and information. If artificial intelligence models were capable of 

forecasting future patient outcomes they could be used to aid clinicians and patients to 

prognosticate outcomes or simulate potential outcomes under different treatment scenarios. 

Objective: To engineer an artificial intelligence system to prognosticate the state of 

disease activity of patients with Rheumatoid Arthritis (RA) at their next clinical visit, and to 

quantify its ability.  

Design: A retrospective multi-cohort observational study ranging from Januray 2012 to 

February 2018.  
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Setting: Rheumatology clinics at two distinct health systems with different EHR 

platforms; a university hospital (UH), and a public safety net hospital (SNH). The UH and SNH 

had significantly different patient populations and treatment patterns. 

Participants: 578 patients at the university hospital and 242 patients at the safety net 

hospital met the inclusion criteria for RA, a complex systemic inflammatory disease with a 

variable course that may be difficult to predict. 

Exposure: Structured data was extracted from the Electronic Health Record (EHR) 

including exposures (medications) along with patient demographics, labs, and prior measures of 

disease activity. We developed a longitudinal deep learning method to predict disease activity for 

RA patients at their next rheumatology clinic visit and evaluated inter-hospital generalization and 

model interoperability strategies. 

Main Outcome(s) and Measure(s): Model performance was quantified using the Area 

Under the Receiver Operating Characteristic Curve (auROC). Disease activity in RA can be 

measured using a composite index score.  

Results: 578 patients at the UH were included, with a mean age of 57, 83% were female. 

At the SNH, there were 242 patients included with a mean of 60, 81% were female. Patients at 

the UH were seen more frequently (median time between visits 100 days vs 180 days at the 

SNH) and more frequently prescribed higher-class medications (biologics) (63% vs 29%). At the 

UH, the model reached an auROC of 0.912 (95% CI: [0.862, 0.960]) on a test cohort of 116 

patients. The UH-trained model had an auROC of 0.741 (95% CI: [0.649, 0.827]) in the SNH 

test cohort (n=117), despite marked differences in the patient populations. In both settings, a 

baseline prediction utilizing each patients’ most recent disease activity score had statistically 

random performance.  
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Conclusions: Building accurate models to forecast patient outcomes using EHR data in a 

complex disease is possible. Our findings suggest that these models can be shared across 

hospitals with diverse patient populations.  

 

4.2.2. Introduction 

Rheumatoid arthritis (RA) is a complex systemic inflammatory disease characterized by 

joint pain and swelling that affects approximately one in one hundred people world-wide1. A 

chronic autoimmune disease, it is associated with significant morbidity and high costs of care. 

Disease progression varies greatly between people, and while numerous treatment options exist, 

individual responses to treatment vary widely2. While advances in therapeutics and clinical 

disease management have greatly reduced the proportion of treated patients living with 

uncontrolled disease activity, remission and durable response are less common. Data from the 

American College of Rheumatology’s RISE registry indicates that 42% of patients nationwide 

had moderate or high disease activity at their most recent visit3. These data suggest that 

additional tools to facilitate and personalize disease management are needed. 

Given the volume of data available in EHRs, the number of possible patient treatment 

and outcome trajectories resulting from heterogeneous patient comorbidities, medications and 

other factors far out-number what a human, even an experienced physician, can fully utilize. 

Many machine learning methods have been applied to clinical data such as Cox Regression4, 

Random Forests5, and LASSO6. However, these are often not well-suited to forecast the future 

from EHR data, given unequal numbers of data points between patients, large amounts of 

missing data, and high variable dimensions with time-dependent interactions (Supplementary 

Table S1). Deep Learning, a sub-discipline of Artificial Intelligence, has redefined computer 
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vision7 and demonstrated multiple successes in clinical applications8 involving image data for 

melanoma9, retinopathy10, metastatic breast cancer11, and other biomedical12 and healthcare13,14 

domains. Deep Learning is being applied to a rapidly increasing number of EHR-related datasets 

(A survey of recent advances in deep learning techniques for electronic health record (EHR) 

Analysis.) and like the application of technology to any new field there are numerous 

opportunities and challenges (Opportunities and obstacles for deep learning in biology and 

medicine. Journal of The Royal Society Interface). A subfamily of deep learning called 

Recurrent Neural Networks (RNNs) have become state of the art in longitudinal predictions15, 

solving complex problems in sequence modeling fields such as language translation16 and self-

driving cars17. Longitudinal deep learning models have previously been applied to EHR data18 

(Opportunities and challenges in developing deep learning models using electronic health 

records data: a systematic review) classifying cardiovascular arrhythmias19 as well as predicting 

inpatient mortality and emergency department re-admissions20. To our knowledge, there have not 

been attempts to forecast RA disease activity for future visits using any deep or machine learning 

approach. 

Previous deep learning studies had tens of thousands of samples available for model 

training, far exceeding the number of samples that would be available for most outpatient 

conditions. To date, no study has investigated the generalizability of deep learning models using 

a smaller sample sizes typical of most complex chronic conditions cared for in the ambulatory 

setting. 

In the current work, we aimed to utilize structured data from the EHR to build a model 

that would most accurately predict future RA disease activity. If successful, the ability to forecast 

disease activity could be clinically utilized to inform the aggressiveness of treatment on an 
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individualized basis at each clinical visit. Models developed for predicting RA disease activity 

will be informative for other health conditions with quantifiable outcomes in the outpatient 

setting. 

 

4.2.3. Methods 

This study was approved by the UCSF Committee on Human Research (protocol number 

15-18282). 

 

4.2 3.1. Data Sources 

Data for this study were extracted from the EHRs of two different hospitals; a university 

rheumatology clinic, the University of California San Francisco (UH) and a safety net 

rheumatology clinic, Zuckerberg San Francisco General Hospital (SNH). UH uses an EPIC EHR 

system that contains records on approximately one million total patients and dates back to 

January 2012. The UH data for this study were accessed on July 1, 2017. SNH uses separate 

EHR vendors for inpatients and outpatients; eClinicalWorks is used for outpatients and the EHR 

contains records on 65,000 unique individuals and dates back to January 2013. SNH data for the 

study were collected on February 27, 2018. A detailed description of the methods of EHR access 

can be found in the Supplementary Methods. 

 

4.2.3.2. Definition of RA cohort 

Patients had to have (Figure 4.1): two RA-related ICD-9 diagnostic codes (any of 714.0, 

714.1, or 714.2) spaced a minimum of 30 days apart by a Rheumatologist and been prescribed at 

least one Disease Modifying Antirheumatic Drug (DMARD). These criteria have shown high 
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specificity in a recent RA cohort study (https://www.ncbi.nlm.nih.gov/pubmed/22623324). To 

further increase specificity, we required that each patient have a minimum of two Clinical 

Disease Activity Index (CDAI) scores, which are only assigned by Rheumatologists for RA 

patients at both clinics in this study. Additionally, we required patients to have one RA 

diagnostic laboratory value (either C-reactive protein [CRP] or erythrocyte sedimentation rate 

[ESR]). Together, we believe this verifies that included patients were being treated for RA at the 

clinic for a minimum of four months. Final cohort sizes that met inclusion criteria were 578 

patients at UH and 242 patients at SNH.  

 

4.2.3.3. RA Disease Outcome Metric 

The ACR endorses six different disease activity measures. The CDAI, a composite index of 

patient and physician assessments along with scoring of tender and swollen joints, is the most 

frequently used activity measure in the RISE registry and is the primary score used at both UH 

and SNH. CDAI is recorded as a raw score (0-72) but subsequently binned into four categories: 

Remission (< or =2.8), Low (2.9-10), Moderate (10-22), or High (>22) disease activity21,22 ,23. 

These four categories can then be further aggregated into a binary disease activity state, 

Controlled (Remission or Low activity, CDAI < 10) or Uncontrolled (Moderate or High activity, 

CDAI > 10). 
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Figure 4.1: Inclusion criteria and study 

design for predicting RA clinical 

outcomes using deep learning methods. 

A) Workflow and design of the current 

study. B) Clinical data manipulation of 

relevant variables for deep learning. 

Shapes refer to clinical variables that are 

contained with bins of equal lengths (i.e., 

windows). Shapes with dashed lines 

represent missing data that are set to 0. 

C) Replication cohort experimental 

design 

 

Figure 4.1: Inclusion Criteria and Study Design 
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4.2.3.4. Variables Utilized in Model 

Given the relatively small number of patients available and the complexity of time series 

models, we chose to only include variables with known clinical significance in the models. These 

variables are known to be associated with disease activity, however no study that we are aware 

of has shown them to be predictive of future disease activity. We included the following: prior 

CDAI, ESR and CRP, DMARDs (Supplementary Table S2), oral and injected glucocorticoids, 

autoantibodies (presence of rheumatoid factor [RF] and/or anti-cyclic citrullinated peptides [anti-

CCPs]), and demographics (age, sex, race/ethnicity). We chose to include only the first 

occurrence of each medication given the lack of reliable medication stop dates in the EHR. 

Considering each variable at each of four different time windows results in a reasonably large 

time-dependent total variable space of 165 total variables (29 possible DMARDs, eight possible 

Steroids, CDAI, ESR, and CRP at each time window in addition to the five static variables: 

demographics plus anti-CCPs and RF).  

 

4.2.3.5. Modeling 

Data were sorted chronologically by patient. The patient’s demographics and history of 

clinical and laboratory variables were used to predict their most recent disease activity (Figure 

4.1B). Extensive experimentation was performed to determine the optimal methods to format the 

chronological data as input and construct and train the most generalizable deep learning model 

for outpatient forecasting within this dataset. Complete information pertaining to model input, 

building, and selection are provided in the Supplemental Methods. A Transparent reporting of a 

multivariable prediction model for individual prognosis or diagnosis (TRIPOD) checklist is 
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included in the Supplement. The code to build and train the model can be found on github 

(https://github.com/beaunorgeot/deep_clinical_forecasting).  

 

4.2.3.6. Comparative Baselines  

As a first baseline, we built a classifier that uses a Bayesian prior on the likelihood of 

each outcome category (Outcome Posterior Classifier). For example, if the ratio of Controlled to 

Uncontrolled outcomes is 60:40 respectively, as in the case of the UH cohort, the model would 

assign a forecasting prediction of Controlled, 60 percent of the time. As a second baseline 

(Change Posterior Classifier), we built a classifier with two elements of prior knowledge. First 

was each individual patient’s previously recorded outcome. Second was the likelihood of 

changing outcome classes from one encounter to the next. We then built a model that considers 

each patient’s previous outcome class as well as the likelihood within the cohort to switch 

classes in order to forecast the patient’s future outcome class. For example, if the probability of 

switching outcome classes is 30 percent, the model would look at the previous outcome for each 

patient, and to forecast the patients future state, it would change the class of 30 percent of the 

patients while maintaining the class of the remaining 70 percent of the patients. 

 

4.2.3.7. Evaluation Criteria 

We chose the AUROC as our primary evaluation metric. In addition to AUROC, we 

performed sensitivity analyses in order to better evaluate the top model’s potential clinical utility. 

We assessed how often the model was confident and wrong, assuming a threshold at probability 

of Uncontrolled is equal to 0.50, and compared model performance between groups of patients 

whose CDAI score at the predicted visit was either Remission, Low, Moderate, or High Disease 
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Activity. We explored how forecasting models may be shared across institutions that may not be 

able to directly share patient data. We evaluated the impact of the number of training samples on 

the models’ performance to estimate the patient cohort size at which a hospital should decide to 

use a model trained at a different hospital, instead of building one of their own. 

 

4.2.3.8. Model Explanation and Interpretability 

We calculated Permutation Importance Score (PIS)24 to measure the contribution of each 

independent variable, including time, to the overall model performance measured by AUROC. 

We generated a graphic, which we have called a Confusion Plot, by collecting the final dense 

representation learned by the model for each patient and plotting them using T-SNE, colored by 

outcome category, to assess the coherence of the representations learned by the model. 

 

4.2.3.9. Statistical Analysis 

AUROC Confidence Intervals: AUROC confidence intervals (CI) were generated on UH 

validation cohort for model selection and for UH and SNH test cohorts for final performance 

assessment using the Delong Method (CITE ME). Models with an auROC CI spanning 0.5 are 

not statistically different from random performance. 

PIS Confidence Intervals: Variables at each time point whose PIS CI spanned the 

baseline AUROC were considered insignificant.  

 

4.2.3.10. Performance in a Distinctly Different Cohort 

We assessed three different methods of employing the model on patients from the second 

health system (SNH) (Figure 4.1C). First, we trained a model from scratch on the SNH training 
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cohort using the top-performing architecture selected via Bayesian optimization at UH. Second, 

we tested the UH model directly on the SNH test cohort. Third, we utilized model transfer-

learning and fine-tuning to update the fully trained UH model using the SNH training cohort. An 

explanation of theory of transfer-learning and fine-tuning as well as the methods that we applied 

can be found in the Supplementary Methods. 

 

4.2.4. Results 

4.2.4.1. Clinical Cohort Comparison 

The UH and SNH clinics contained substantially different patient populations based on a 

number of factors (Table 4.1). Comparatively, the UH population was larger, predominantly 

White and non-Hispanic, and seen by rheumatologists with nearly double the frequency 

compared to the population at SNH. UH patients were more than twice as likely as SNH patients 

to be prescribed higher-class medications (biologics) and were also on a broader spectrum of 

treatments. 
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Table 4.1: Characteristics of Individuals with Rheumatoid Arthritis in the Two Health Systems 

Studied 

Population 

Characteristic 

University Clinic 

N = 578 

Safety Net Clinic 

N = 242 

Age in years, Mean ± SD 57 (15) 60 (15) 

Female, n (%) 477 (83) 195 (81) 

Race/Ethnicity, n (%) 

White 

African American 

Hispanic 

Asian 

Other 

 

296 (51) 

33 (6) 

97 (17) 

101 (17) 

51 (9) 

 

30 (12) 

19 (8) 

89 (37) 

70 (30) 

34 (13) 

EHR System Epic eClinicalWorks 

Median Number of CDAI Scores per Patient 6 4 

Median Time Between CDAI 100 days 180 days 

DMARD, n (%) 

Conventional Synthetic 

Biologic 

Tofacitinib 

 

534 (94) 

364 (63) 

29 (5) 

 

191 (79) 

70 (29) 

0 (0) 

N: Number; SD: Standard deviation; EHR: Electronic Health Record, DMARD: disease 

modifying antirheumatic drug; CDAI: clinical disease activity index. DMARD numbers reflect 

patients prescribed a DMARD at the clinic prior to their index date. Supplementary Table S2 

provides a breakdown of medications considered for each DMARD category. 

 

4.2.4.2. Primary cohort (University Clinic) results 

The best performing model was small, highly regularized, and consisted of a time-

distributed layer, followed by recurrent GRU layers and a final dense layer (Supplementary 

Figure S1). Fixed time intervals of 120 days, random sampling during training, equal 

penalization of errors for both classes, use of a combination of clinical, medication, and 

laboratory variables, and one year of each patient’s history prior to their index date provided the 

best results. The best deep learning model (Figure 4.2) demonstrated excellent forecasting 

performance (AUROC= 0.912, 95% CI [0.862, 0.960]) on the University Clinic test cohort 
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(n=116). Both baselines demonstrated near random performance: Outcome Posterior Classifier: 

AUROC = 0.535, 95% CI [0.442, 0.630]; Change Posterior Classifier: AUROC = 0.554, 95% CI 

[0.460, 0.636]). 

 

 

 

 

 

Figure 4.2: Forecasting Performance on Test 

Cohort at UH. The distribution of outcomes 

from the training cohort at UH was 60 

percent ‘Controlled’ and 40 percent 

‘Uncontrolled’ according to the Clinical 

Disease Activity Index (CDAI). This prior 

was used to train the Outcome Posterior 

Classifier at UH (Green Line, 

AUROC=0.535). The likelihood of 

switching outcomes between visits within 

the training cohort was 25 percent. This prior 

was used to train the Change Posterior 

Classifier at UH (Olive Line, 
AUROC=0.554). Deep Learning produced 

the best results (Blue Line, AUROC=0.912). 

 

Figure 4.2: Forecasting Performance on Test Cohort at UH 

 

4.2.4.3. Sensitivity and Model Explanation 

A sensitivity analysis comparing forecasting performance to the number of samples 

available for training revealed a non-linear increase in performance with linear increases in 

sample size (Supplementary Figure S2). CDAI was important for forecasting performance in 

each time window (Combined PIS=40) followed by Time itself (PIS=11). ESR and CRP 

variables contributed small but significant predictive power to the two most recent time windows 

(Combined PIS = 2,3 respectively). Steroids, as a class, at the current time window had a PIS of 

4, with Prednisone alone having a PIS of 2, but were not significant in other windows. Multiple 
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DMARDs were significant but with PIS less than two. The model was confident (probability 

greater than 0.8 or less than 0.2) and incorrect only two times out of the 116 test samples, or 

1.5% of the time. These errors occurred for patients whose future visit CDAI score fell on the 

threshold between the outcome classes (CDAI =10) +/- 2. Performance was equal for patients 

whose future CDAI was clinically determined as either Remission, Low Activity, or High 

Activity. Predictive performance was lowest for patients whose future disease activity was 

Moderate; most of the incorrectly classified patients in this group had CDAI scores near the 

classification threshold (CDAI in the range of 10-14). The Confusion Plot (Figure 4.3) appears as 

a nearly one-dimensional manifold (a curve). Instead of dichotomous clusters for each outcome 

category, the model learned a continuous representation of the patients. Distinct decision 

boundaries based on the Confusion Plot can be seen. 

 

 

 

 

 

Figure 4.3: Confusion Plot consisting of 

the final embedding of the model, the 

Learned Patient Trajectory Vectors, 

visualized using t-SNE, colored by the 

ground truth of the patients outcome at 

their next visit. Yellow for uncontrolled . 

The model places observations onto a one-

dimension manifold with Controlled and 

Uncontrolled outcomes clustering along 

different ends of the manifold. 

 

Figure 4.3: Confusion Plot, Learned Patient Trajectory Vectors 
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4.2.4.4. Safety Net Cohort Results 

When the top-performing model architecture was trained from scratch on the Safety Net 

Clinic training cohort (Figure 4.4; n=125) it produced reasonable results (AUROC=0.623, 95% 

CI [0.522, 0.724]) on the Safety Net Clinic test cohort (n=117). Employing a model that was 

trained on all the UH patients (n=578) directly on the Safety Net Clinic test cohort dramatically 

increased forecasting performance (AUROC=0.741, 95% CI [0.649, 0.827]). Utilizing transfer-

learning and fine-tuning to update the UH-trained model using the Safety Net Clinic training 

cohort did not provide any additional improvements in performance (AUROC = 0.739). Both 

baselines demonstrated random performance: Outcome Posterior: AUROC = 0.507, 95% CI 

[0.391 - 0.615]; Change Posterior Classifier: AUROC = 0.544, 95% CI [0.460 - 0.622]).  

 

 

 

 

Figure 4.4: Safety Net Cohort Results. 

The distribution of outcomes from the 

training cohort at ZSFG was 50 percent 

‘Controlled’ and 50 percent 

‘Uncontrolled’. This prior was used to 

train the Outcome Posterior Classifier at 

ZSFG (Green Line, AUROC=0.507). 

The likelihood of switching outcomes 

between visits within the training cohort 

was 25 percent. This prior was used to 

train the Change Posterior Classifier at 

ZSFG (Olive Line, AUROC=0.544). 

Training the deep learning model 

exclusively on the ZSFG train cohort 

produced an AUROC that was 

substantially better than random (Purple 

Line, AUROC = 0.623). Training the 

deep learning model on the larger UH 

patient cohort produced the best overall 

results test cohort (Blue Line, AUROC 

=0.741) 

  

Figure 4.4: Forecasting Performance on Test Cohort at SNH 
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4.2.5. Discussion 

4.2.5.1. Main Findings 

In this study, we used deep learning to forecast future RA disease activity scores across 

two health systems and compared those results to prediction models that only used a patient’s 

most recent CDAI. Contrary to our expectations, a patient’s most recent CDAI alone was 

actually a very poor predictor of their index CDAI, as evidenced by the statistically random 

results of both Baselines. The history of disease activity, lab values, and medications all together 

were required to create the strongest predictor of the disease activity at the next visit. Just over 

20 variables were found to be significantly important for predictive accuracy, a relatively small 

number, however these variables have time-dependent interactions which adds considerable 

complexity. For example, the best deep learning model substantially outperformed the Multilayer 

Perceptron (which acted as a surrogate for Logistic Regression) (Supplemental Results Table 1) 

demonstrating the utility of more complex DL models for this task. 

Our results show that deep learning models can be trained on cohorts of only a few 

hundred patients to accurately forecast RA patient outcomes using EHR data. We also found that 

our model performed well when applied to a second health system with a distinct 

sociodemographic population and separate EHR system. Given the many differences in the 

demographics and social determinants between the patients in these centers, the ability of the 

model to function significantly above random is highly promising. By considering no more than 

the most recent year of each patient’s history but allowing patients to have as little as four 

months of history, the model could have utility for patients at all stages of their care. While the 

amount of data that a rheumatologist must synthesize in one visit in order to make decisions is 
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large and growing, the results presented here indicate that use of artificial intelligence models to 

assist with this in the near future is promising. 

 

4.2.5.2. Prior Work 

Early successes in the application of deep learning to clinical forecasting19,20 ,25 

demonstrated that longitudinal deep learning models outperformed traditional machine learning 

approaches and that reasonable predictive performance was possible. However, these studies 

were limited in their clinical utility by the inclusion of patients without clinical risk indicators for 

the outcomes being predicted, the sheer numbers of patients used for training, and a lack of 

evaluation of model performance across hospitals with diverse patient populations. This work 

addresses these open questions by focusing on a clinically relevant patient population and 

outcome at both a large university hospital and an associated safety-net clinic. The model trained 

on the larger UH population produced the best results on the SNH population, demonstrating the 

power of larger training sizes and the interoperability of models between hospitals with diverse 

patient populations. While it is perhaps discouraging that utilization of transfer-learning and fine-

tuning methods to update the fully trained UH model using the SNH training cohort did not 

provide any additional improvements in performance, we suspect that this is due to the fact that 

the SNH training cohort was probably too small and thus suffered from over-fitting. 

 

4.2.5.3. Limitations 

With data from two distinct hospital systems and just over 800 total patients, inferences 

about large scale generalizations cannot be made. Accordingly, this work is limited to being a 

promising proof-of-concept. There are numerous inherent biases in medicine, perhaps most 
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notably are those relating to sicker patients generally having a great number of data points. We 

sought to address this bias at multiple levels. Most notably, by giving all patients the same 

number of time windows and setting that to be equal to the smallest median number of visits in 

either cohort (Table 4.1) and then by dropping all but the most recent values within each window 

for a patient. Additionally, including fewer variables in the model lessens the risk of spurious 

associations between variables. However, the potential for theses biases runs deep. For example, 

physicians may choose to order or not order labs for a given patient at a given time point based 

on factors that are not modeled here, including physician preference. Similarly, some physician-

patient combinations may be more or less likely to switch a patient’s treatment strategy. 

Intimately tied to these challenges is the decision about what to do when the value of a patient’s 

variable is missing from a time window. Our choice to replace missing continuous variables with 

a value never observed in our data set (zero) is not perfect, as the replaced value more closely 

resembles healthy patients than sick ones, but it does seem to be the replacement option that is 

least likely to reinforce this bias. Statistical imputation or forward filling are likely to introduce 

or reinforce bias for a health condition that varies so much between individuals and within a 

person over time and where most patients’ disease activity is uncontrolled. While we strove to 

reduce biases in our data and modeling, we cannot fully eliminate them. Using the treating 

physician as variable to model, while not possible with this current study, could potentially 

reduce bias further in the future. To the best of our knowledge, there are no clinical methods for 

explicitly forecasting individual patient disease activity states at future visits nor has any 

methodology for this ever been employed in a clinic. While this underscores the need for the 

work introduced in this study, it leaves us without any clinical baseline to compare machine 

learning results to.  
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Finally, the performance of the UH-trained model on the SNH test cohort 

(AUROC=0.741) is too low to be of immediate clinical utility, however the performance is 

evidence that the model learned something robust and transferable. Given the notable differences 

in the two clinical populations, a method of exploring whether the differences in model 

performance between the populations was due exclusively to the differences in the treatment 

populations would have added clarity to the study. However, while the patient populations are 

different in many ways that we can measure (Table 4.1), we know that they are also different in 

many ways that we cannot reliably measure (other socioeconomic factors, environment, social 

structure, insurance coverage, and more) making an actual patient matching algorithm 

impossible given the relatively small sizes of both populations. For complex chronic diseases 

like RA, patient populations that number in the hundreds are unlikely to capture enough clinical 

or social variation to adequately represent the complete disease spectrum. Our sensitivity 

analysis revealed that increasing the training set size lead to non-linear increases model 

performance. Thus, adding EHR data from other institutions seems likely to result in additional 

gains in predictive power as well as insights into the subtler factors responsible for the model’s 

performance. 

 

4.2.5.4. Summary and Implications 

The future decision support that we envision will involve aggregating data from multiple 

institutions, training the model on all of that data, and then deploying the model in small clinics 

as well as large hospital systems giving everyone access to the most robust models trained on 

largest and most diverse patient populations possible. Using such a forecasting model will help 

clinicians and patients understand predicted disease trajectories. This in turn, will help inform the 
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aggressiveness of treatment. We find that there are many clinical situations where there is 

equipoise about whether and how to augment therapy for RA. Patients may have been stable for 

some time, but come to the current visit with a CDAI score just over the threshold of moderate 

disease activity. Alternately, they may have been in moderate disease activity over several visits 

and have been experiencing adverse effects related to their current DMARD regimen. In 

situations like these, where waiting until the next visit to consider any medication changes seems 

like a reasonable option, having a prediction from the algorithm that indicates that the CDAI 

score at the next visit will likely be worse may push a provider and patient to action. These 

situations "at the margin" are the ones that are most likely to benefit from the algorithm. Given 

the algorithm’s already strong performance at identifying patients that will have controlled 

disease activity at their next visit, probability thresholds could be analyzed to specifically 

improve outcomes for these patients “at the margin”. As a patient’s health status and other 

variables change, the model will adapt its predictions, allowing both patients and clinicians to 

use this information to inform treatment changes dynamically. As we move toward personalized 

medicine, such models can be used to simulate trajectories given different treatment scenarios. 

The addition of molecular, genomic, and other types of data to EHR data to generate treatment 

response trajectories would allow a more personalized medicine approach to RA care. 

With large national registries, such as the American College of Rheumatology’s RISE 

registry, now available for rheumatic and other diseases, we see a rich future in the application of 

deep learning to longitudinal patient care. Model performance is nearing the point where they are 

good enough to warrant launching a prospective clinical trial to evaluate their usefulness in 

aiding clinicians and patients to prognosticate RA outcomes or simulate outcome trajectories 

under different treatment scenarios.  
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4.2.6. Conclusion 

In the current study, we built an accurate longitudinal deep learning model to forecast 

patient outcomes in two distinctly different rheumatoid arthritis populations that numbered in the 

hundreds, much smaller than what once believed to be necessary for DL. These models can be 

shared across hospitals with different EHR systems and diverse patient populations. In the future, 

models built from large pooled patient populations are likely to be the most accurate, giving 

everyone access to the most robust models trained on largest and most diverse patient 

populations possible. The methods used to develop models for predicting RA disease activity 

will be informative for other health conditions with quantifiable outcomes. 
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Chapter 5 

MI_CLAIM 

 

5.1. Minimum Information about Clinical Artificial Intelligence Modeling 

5.1.1. Abstract 

Artificial Intelligence (AI) models have become widely used tools for the generation of 

clinical insights, prognostics, diagnostics, and classification. Although many significant results 

have been derived from clinical AI studies, one limitation has been the lack of standards for 

presenting and exchanging the results from such models. Here we present a proposal, the 

Minimum information for Clinical Artificial Intelligence (MI_CLAIM), that describes the 

minimum information required to ensure that the performance of clinical AI models can be easily 

interpreted and that results derived from model analysis can be independently verified in similar 

settings. The ultimate goal of this work is to establish a standard for designing, recording and 

reporting AI-based clinical informatics studies, which will in turn facilitate transparency and the 

establishment of trust and ultimately enable the utilization of such models in the clinical setting.  

With respect to MI_CLAIM, we concentrate on defining the content and structure of the 

necessary information rather than the technical format for capturing it. 

 

5.1.2. General Principles of the Claim Design 

As a starting point, we propose that for the results from clinical AI models to have the 

most value, they should satisfy the following requirements: (i) the recorded information about 

each study should be sufficient to interpret the clinical utility of the results and should be detailed 

enough to enable comparisons to similar studies and permit replication in similar settings and (ii) 
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the code to build, train, and evaluate an identical model (including examples of expected input 

data formats) should be openly provided to enable external validation and utilization of 

successful models (See Table 5.1). The Figure 5.1 further shows the interconnection of these 

parts/components of clinical AI study. 

 

Figure 5.1: The (Six) Parts of MI_CLAIM - A Schematic Representation of the 6 Components 

of a Clinical AI Study 

 

The first requirement recognizes that overfitting is a primary concern when dealing with 

flexible models and clinical data, while transparency about the distribution of clinical variables 
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and demographics present in the model building and testing cohorts is essential to properly 

assess fairness/bias for all groups and the overall clinical utility.  

The second requirement addresses the truth that sharing clinical data often is neither 

possible due to institutional patient privacy policies, nor would it be advisable to share even at 

institutions without such safeguards in place. Clinical data is much more sensitive than other 

data, such as microarray data, and should only be handled by people with proper training (which 

is currently decided at the institution level). In any case, the validation of the exact results is 

generally of less interest than whether or not the results validate in a new cohort of patients, 

which researchers at different institutions can do with their own data using security features 

determined by their institution. Therefore in the space of clinical AI models, the limiting factor 

for validation is not the raw data itself but replication of the exact model building pipeline 

(including any feature engineering or transformations). The code for complete pipelines, 

beginning with a few examples of the raw input data (in it’s proper format, but populated with 

random numbers) and ending w/ performance evaluation should be provided as well-documented 

scripts or notebooks, including exact environment requirements, such that a new researcher can 

run the pipeline end to end, without any modifications necessary to the code. This provides the 

new researcher with everything necessary to rapidly validate the results in their own cohorts and 

will additionally facilitate the transfer of pipelines across clinical use-cases.  
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Table 5.1: The (Six) Parts of MI_CLAIM - A Schematic Representation of the 6 Components of 

a Clinical AI Study 

Part/Component 

of Clinical AI 

Study 

Description 

Part 1: 

Experimental 

Design  

 

This section describes the study as a whole. Normally, this can be broken down into four 

subsections: The clinical setting, performance measures, population composition, and 

baselines. (a) The clinical problem and the workflow in which a successful model would be 

employed, and in what ways, if any, the experimental design in which the model will be 

trained and tested differ from that (including the acquisition of data). (b) The Performance 

Measurements that will be used to evaluate the results and how do those measurements 

would translate to successes and failures in the clinical setting. (c) The composition or 

makeup of the population available for training and testing and how representative that 

sample is of a real-world populations for the clinical question at hand. Additionally, 

whether performance among certain sub-groups of the population is important or if 

aggregate performance statistics across the population is all that matters. (d) Are there any 

current solutions employed in the clinic that can act as baselines? 

 

Part 2: 

Establishment of 

Out of sample 

validation 

 

This section is tightly coupled to Section 3 and builds upon the Experimental Design by 

detailing the steps that will be taken to prevent information leakage, overfitting, 

generalization out of sample, and therefore a meaningful interpretation of the study results. 

Of paramount importance is the splitting of all available samples into two groups at the 

very beginning of the study, one for development and an independent test cohort. Truly 

appreciating the importance of this simple task requires an intuitive understanding of three 

fundamental statistical concepts: populations, samples, and parameters (aka: measurements, 

features, variables). To briefly discuss these concepts, let's imagine that we're talking about 

type 2 diabetes. In truth the Population is the total of all patients anywhere w/T2D. This is 

the population that we'd really like to learn about. But since we don't have access to all of 

the them, we have to use all the people/patients that we do have access to as a surrogate for 

the true population. But it is crucial that we always keep in mind that our 'population' is not 

the true Population. All of our best practices are set up to maximize the inferences that we 

can draw about the true population using our surrogate population. Samples are the groups 

of individual people that we draw from our surrogate population. The most common 

sample types that we talk about in machine learning are training, validation, and testing 

cohorts. Cross-validated splits are also examples of samples drawn from our (surrogate) 

population. In any given sample there is an exact correlation between independent variables 

and the dependent variable(s). But that correlation tells you absolutely nothing about the 

TRUE-ASSOCIATION between variables and outcomes in the TRUE POPULATION. 

Parameters (also known as Features or variables) are things that you have measured about 

each of the people in your sample or population. For example: height, medications 

prescribed, BMI, or eye color. If you build models or conduct statistical tests on the entirety 

of your surrogate population (all the data you have), you will have turned your 'population' 

into a sample and YOU WILL LOSE ANY AND ALL ABILITY TO MAKE ANY 

CLAIM AT ALL about how your model performs in the population that you care about or 

the predictive importance or association of your variables and the outcome. You instantly 

move from predictive to descriptive statistics. 

 

Members of the test cohort should reflect the population and distribution of the clinical 

outcomes of interest. We recommend stratified sampling where possible, and reporting a 

comparison of statistics describing the distribution of variables and outcomes within 

training and testing populations otherwise. The development cohort may be used in any 

manner that facilitates data engineering and model selection. The two most common 
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Part/Component 

of Clinical AI 

Study 

Description 

approaches are either cross-validation, which is typically used for smaller datasets, or sub-

dividing the development cohort into training and internal validation set for large sample 

sizes. Under no circumstances can cross-validation be used as a replacement for an 

independent test cohort. Validation at a separate clinic or hospital system is necessary to 

make any claims about generalization. 

 

Part 3: Data 

Engineering and 

Model Selection 

 

With an independent test set established, the development cohort can now safely be used to 

estimate the best (a) format of data and (b) type of model to solve the clinical problem. For 

all studies this section should begin with data providence, clearly specifying where the data 

in its most raw form came from and how it was formatted. It should then (a) describe any 

transformations that were done to the data prior it being fed into the model as input. For 

traditional machine learning studies, these transformations will typically be feature 

engineering, for deep learning models this frequently involves the normalization of 

continuous variables and one-hot, or integer, encoding of categorical variables. Next, the 

section should describe the type of models that were evaluated and how a top performing 

combination of model and data formatting will be selected. Typically these two elements of 

optimal data format and model are highly interdependent and therefore the process to arrive 

at the best combination is often iterative. An example statement might look like: “5-fold 

cross-validation on the development cohort was used to evaluate the results of a grid search 

comparing number of input features, number of variables to consider at each split, number 

of splits, and number of trees for random forest models. No other model types were 

considered. The top performing approach was selected on the basis of median AUC.” This 

section should also describe the process preparing the baseline methods for use, if any were 

available. 

 

Part 4: Out of 

Sample 

Evaluation 

 

With the optimal model selected and comparative baselines tuned from Section 3 it is time 

to evaluate them once, and only once, against the test cohort. This section will include a 

typical results table with the performance of the baselines and models tested along with 

appropriate statistics for significance. If any important sub-groups of patients were 

identified in Section 1, performance of the baseline and model in each of those subgroups 

should also be provided in an identically formatted table. 

 

Part 5: Model 

Explanation/Inte

rpretation 

 

Having some intuition of how complex models are behaving is relevant to most clinical 

problems and typically serves one, or more of three purposes. First, it may provide a sanity 

check that the model reached its accuracy by focus on relevant inputs and not unanticipated 

artifacts of the data. Second, it can uncover bias which model users should be aware of. 

This bias could relate to fairness or anticipated points of failure. Third, there are many 

potential tasks that clinical AI models might be applied to that no human is definitively 

capable of performing well. In these cases, it may be useful to harness what the model has 

learned to generate testable hypotheses to move those fields forward.  

 

We agree with Spiegelhalter that useful explanations should contain at least two elements; 

Global explanations consisting of what the model learned overall about the relationship 

between the independent and dependent variables, and local explanations, consisting of 

why the predictions for specific cases were arrived at. 

 

SHAPs and MAgEC provide two alternative approaches for both the global and local 

examination and interpretation of most models. 
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Part/Component 

of Clinical AI 

Study 

Description 

 

If no explanation methods are available important insights into model behavior can still be 

gleaned by a more detailed examination of its performance. For classification models a 

description of the top-5 cases where the model was most confident and correct, most 

confident and incorrect, and least confident is a good starting point. The same philosophy 

can be applied to regression models by examining the cases where the model had the 

largest error above the true answer, the largest error below the true answer, and the number 

of times it predicted the median value. 

 

Part 6: 

Reproducible 

Pipeline 

 

The code for complete pipelines, beginning with a few examples of the raw input data (in 

its proper format, but populated with random numbers) and ending w/ performance 

evaluation should be provided as well-documented scripts or notebooks, including exact 

environment requirements, such that a new researcher can run the pipeline end to end, 

without any modifications necessary to the code. This provides the new researcher with 

everything necessary to rapidly validate the results in their own cohorts and will 

additionally facilitate the transfer of pipelines across clinical use-cases. The goal here is not 

for a new researcher to replicate the results but the exact process by which the results were 

generated. This enables the new researcher to determine whether the results validate in their 

own clinical settings and facilitates the transfer of pipelines from one clinical task to 

another rapidly speeding up prototyping and helping the entire field to develop best 

practices. 

 

 

5.1.3. Discussion 

My goal is to develop a standard that can serve both clinical scientists and data scientists. 

To that end, I hope that this description will stimulate discussion of the proposed MI_CLIAM 

standards and I encourage the clinical community, as well as the AI community, to provide me 

with their views on how this standard can be improved. For this purpose an e-mail discussion 

group has been set up with the release of this manuscript as an independent document outside of 

my dissertation. 
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Chapter 6 

MAgEC 

 

6.1. Understanding and Leveraging Complex Models: Framework for understanding, 

explaining, and comparing clinical AI models 

 

6.1.1. Introduction 

In medicine, and indeed in many other fields, the information needed to understand and 

intelligently act within the overall landscape is comprised of 3 overlapping hierarchies of 

understanding: Cases, or what variables/factors about a specific individual contribute to or drive 

their outcome; Features, or the average effect of each variable across many cases; and 

Populations, patterns in cases that allows them to be logically grouped together. Therefore, any 

attempt to examine and understand a model in these types of settings must address what the 

model has learned in regards to each of these hierarchical elements of information. However, 

historically methods for examining models have generally addressed only one or at most two 

elements in the hierarchy which has lead to an incomplete understanding of the models which 

has lead to an inability to adequately assess true model performance including examining it for 

bias and anticipating it’s performance in future uses; as well as an ability to completely leverage 

what models have to learned to generate new knowledge in imperfectly understood fields such as 

medicine.  

 Further, many methods for understanding models has been model-specific which has 

lead to two deep challenges;:first it has made model builders make decisions for trading off the 

model types that they would like to employ to best solve the current problem with the types of 
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methods that they would like to use examine what the model has learned and potentially explain 

it to other stakeholders; second, it has made it difficult/impossible to objectively compare what 

multiple different types of models trained to do the same task have learned. Since there has not 

been a direct way of comparing what different types of models have learned about the same data 

and task, this has lead to an often unaddressed and insidious oversight in the field which is 

confusing what a specific model has learned about the association of input and response 

variables with some underlying truth about the nature of the actual association between the 

inputs and the responses.  

There are two broad reasons that understanding what a model has learned is important. In 

some areas, the task for which a model is trained for is well understood (such as 

radiology/pathology/lending) in which case models should be examined in order to verify that 

they are indeed focusing on plausibly causal variables and not artifacts and that they are 

behaving fairly and ethically. In other areas (such as forecasting outcomes or selecting optimal 

treatment strategies in complex disease) it may be that no human is definitively capable of 

performing the task for which the model is being trained, in which case it is critical to harness 

what the model has learned to generate testable hypotheses to move those fields forward (and the 

model examination tasks discussed prior become more of a sanity check in these less understood 

tasks).  

Here we present a unifying framework for understanding and explaining clinical AI 

models that address the above desiderata and additionally provide a method to implement it. We 

present these through two relevant examples; a well understood task using the public Pima 

Indians Diabetes Dataset, and a very new task of using longitudinal model to forecast future 
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outcomes for patients with Rheumatoid Arthritis. Source code, Jupyter Notebooks, and data (for 

one of the tasks) are made available.  

 

6.1.2. Methods 

6.1.2.1. Goal 

To develop a simple and intuitive method for explaining models of arbitrary complexity 

to an audience that are not experts with the inner workings of gradient-based models. The 

method must and be able to generate local and global explanations in a unified manner.  

 

6.1.2.2. MAgEC 

Conceptually, what our method does is to linearize a model around a given feature and 

time point (if using a longitudinal model). This is intuitive. Complex functions often behave 

linearly in the very near vicinity of a given point. This can be thought of as a local partial 

derivative.  

Each patient can be represented with a two dimensional table, where each row is a 

variable and each column is a time point. Each cell in the table is the value for each variable at 

each time point.  

The first step in the method is to calculate the predicted outcome for each case(patient) 

using the original/observed data. The predicted outcome is either a probability for classification 

tasks or a real number for regression tasks. The next step is to iteratively alter the value for each 

cell in each patient’s table, while maintaining the original data values for all other cells, run each 

patient with the updated cell value through the model, and calculate how that single alteration 

affects the predicted outcome. For example, in a binary classification task, a particular 
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case/patient ‘A’ may have a predicted probability of having outcome == 1 as .68 using the 

original data. After perturbing a single variable,X, and re-running the patient-A through the 

model, we might observe that the patient-A’s probability of outcome==1 has changed from .68 

to .72. To compare the effect of variable X on the outcome, for patient-A, we take the difference 

of the logits between the observed data and the perturbed data. The result then (the difference of 

logits: new_logit - baseline_logit) can be interpreted identically to the coefficient in a linear or 

logistic regression model (the constant/linear effect of X on the outcome). Indeed, we show that 

in the case of a regression model, DECs exactly recover the variable coefficients when applied to 

the mean of the sum of the individual cases for each variable/timepoint.  

The nature of the perturbation within a cell is determined by the original data type of the 

variable, continuous or categorical. Continuous variables are perturbed by increasing their value 

by a marginal amount, such as 1e-3, which represents the logit for that variable as the limit goes 

to zero. This can be described as the change in the predicted outcome with a nearly zero increase 

in the given variable. The amount of the change is technically a hyperparameter of the method, 

which we refer to as epsilon by convention, however our initial experiments have shown the 

method results to be extremely robust to changes in epsilon (see supplement) and we currently 

leave it as a fixed parameter. Categorical variables are assumed to be one-hot encoded. The state 

of categorical variable is altered by switching the encoding from 0 to 1 if the original state was a 

0, and vice-versa if the original state was a 1. Categorical variables with more than two levels are 

treated cohesively. For example, each level is altered iteratively, one at a time, within the 

category to ensure that invalid combinations of variables do not occur.  

We then apply the process for each cell in each case/patient’s two-dimensional 

representation table. Therefore, this method takes in a two-dimensional table for each case where 
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the cell values are the feature values and it outputs a two-dimensional table for each case where 

the cell values are the differences between the logit generated by the original feature and the logit 

generated by the perturbed data.  

 

6.1.2.3. Cases 

To understand what the model has learned about how changes in each variable will affect 

the outcome for individual cases (case heatmaps) this is the end of the technical process all that 

remains is interpretation of the results. For a given case, if a given feature was present in their 

original input data, and the logit for that feature is positive and the case’s actual outcome was 

positive, then model attributes a portion of the case’s improvement to that feature. If a given 

feature was not present in the original input data for a case, then the logit represents the model’s 

prediction of the change in the case’s outcome if that feature was added. ((Probably belongs in 

Discussion: Care should be taken to ensure a realistic interpretation of these results in each 

situation. In particular, in medicine it may be important to bin your model’s variables into 

categories of potentially actionable/testable (such as treatment choices) and non-actionable (such 

as diagnoses, vitals, demographics). While this method may provide an implicit treatment 

recommendation, for example in the form of a predicted response to each possible treatment 

option, these recommendations should be considered for research purposes only and not for 

actual clinical care. The recommendation comes from the explanation, which is developed from 

what the model has learned. Not only is it likely that a given model is imperfect from a 

prediction perspective, and indeed all explanations should be interpreted in the context of a 

model’s overall ability to perform the task for which it was trained, but model’s are also subject 

to the same sampling bias that physicians are. Controlled, real-world, trials will be necessary to 
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validate any insights or promising approaches discovered through model 

explanation/examination. )) 

 

6.1.2.4. Features 

To understand what the model has learned about the ‘big picture’ of how a particular 

variable influences the outcome, on average, a coefficient for each feature (at each timepoint) 

can be generated by calculating the mean of the logits for all of the individual cases for that 

feature/timepoint. We call these Directional Effect Coefficients (DECs). As with logistic 

regression, DECs are a linearization of the outcome to the input feature and (keep the following 

here, or put it with Cases??),they provide the constant association between the feature and the 

outcome, and can be interpreted as the model’s (average) sensitivity to the input feature for each 

patient. 

 

6.1.2.5. Population 

Populations are defined on the basis of similarity or distance. For example, similarity 

could mean living in a similar region or it could mean having traits in common. To identify 

populations or subgroups, one must first define what measure of similarity they will use for 

comparison. For me, an appealing metric of similarity in the clinical setting is the association 

between independent variables and dependent variables, or the effect of an input variable on the 

patients outcome. Applying this metric we can say that two patients are similar with regards 

Variablei if, while accounting for all other variables, a similar change in Variablei for both 

patients results in a similar change in their clinical outcome. For example, if the outcome of 

interested in is hA1C at their next visit, two patients may be considered similar with respect to 
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BMI if, while accounting for all other variables such as medications and demographics, changing 

each person’s BMI by a set amount results in a nearly identical change in their hA1C at the next 

visit. In addition to providing a convenient measure of similarity between patients, this approach 

could also serve as a method for treatment recommendation. If we can identify patients that have 

similar responses to a particular drug, while accounting for all of their other variables, we could 

use that to select an optimal treatment for them. Using MAgEC, this similarity score can be 

generated by simply plotting coefficients against patients, ordered by coefficient magnitude, to 

identify those patients who are most similar. 

 

6.1.2.6. Datasets 

(1) The Boston Housing Dataset was used to generate a linear regression model to which 

MAgEC was applied to. The coefficients from the model itself were compared to the MAgEC 

coefficients to assess the fidelity of MAgEC coefficients in a purely linear model.  

(2) The Pima are a group of Native Americans living in Arizona. A genetic predisposition 

allowed this group to survive normally to a diet poor of carbohydrates for years. In the recent 

years, because of a sudden shift from traditional agricultural crops to processed foods, together 

with a decline in physical activity, made them develop the highest prevalence of type 2 diabetes. 

For this reason they have been subject of many studies. 

The dataset includes data from 768 women with 8 medical diagnostic predictor variables 

and one target variable, Outcome 
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Variables: 

• Number of times pregnant 

• Plasma glucose concentration a 2 hours in an oral glucose tolerance test 

• Diastolic blood pressure (mm Hg) 

• Triceps skin fold thickness (mm) 

• 2-Hour serum insulin (mu U/ml) 

• Body mass index (weight in kg/(height in m)^2) 

• Diabetes pedigree function (see the paper) 

• Age (years) 

• The last column of the dataset indicates if the person was diagnosed with diabetes within 

5 years (1) or not (0) 

 

Source: The diabetes data containing information about PIMA Indian females, near 

Phoenix, Arizona has been under continuous study since 1965 due to the high incidence rate of 

Diabetes in PIMA females. The dataset was originally published by the National Institute of 

Diabetes and Digestive and Kidney Diseases, consisting of diagnostic measurements pertaining 

to females of age greater than 20.(Smith et al, 1988) 

 

(3) Data and Model from Assessment of a Deep Learning Model Based on Electronic 

Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis 

(Norgeot et al, 2019) 
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6.1.3. Results 

MAgEC coefficients perfectly match regression coefficients on linear models (Table 6.1). 

All three models that were developed to fit the Pima Indians dataset (logistic regression, random 

forest, MLP) achieved comparable results on the test set (~79%, See Table 6.2) which is 

consistent with published results. Interestingly, when compared on the basis of coefficients, 

either regression or MAgEC, the models learned different magnitudes of effect for the variables 

and sometimes different directions of effect (Figure 6.1: MLP MagECs vs Logistic Regression 

Coefficients).  

 

Table 6.1: Boston Housing Data: Comparison of MAgEC to Regression Coefficients in Linear 

Model - Direction of Effect Coefficients 

Our Method  

Actual Linear Coefficients 

from Linear Regression 

Model 

 0   Coefficients 

features   features  

NOX -17.795759  NOX -17.795759 

DIS -1.475759  DIS -1.475759 

PTRATIO -0.953464  PTRATIO -0.953464 

LSTAT -0.525467  LSTAT -0.525467 

CRIM -0.107171  CRIM -0.107171 

TAX -0.012329  TAX -0.012329 

AGE 0.000751  AGE 0.000751 

B 0.009393  B 0.009393 

INDUS 0.020860  INDUS 0.020860 

ZN 0.046395  ZN 0.046395 

RAD 0.305655  RAD 0.305655 

CHAS 2.688561  CHAS 2.688561 

RM 3.804752  RM 3.804752 

Note: Boston Housing Data 
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Table 6.2: PIMA Results - PIMA Model Performance 

Model Accuracy AUC 

Logistic Regression 78.6  

Random Forest 79.2  

MLP 79.2  

  

 

Figure 6.1: MLP MagECs vs Logistic Regression Coefficients - Comparison of MLP MagEC 

Distribution and Logistic Regression coefficients directly from the model.  
 

Box and Whisker plot (and all black dots) show the distribution of MAgEC coefficients for each case within the test 

set. Red dots represent the logistic coefficients learned by the logistic regression model.  
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Figure 6.2: PIMA MagECs from MLP for a single patient  
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Similar patients: changes in bloodpressure expected to have similar changes in the probability of 

developing diabetes within 5 years, given all other variables  

 

 

Figure 6.3: MagEC Clustering of PIMA patients on BloodPressure 
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Figure 6.4: RA Results - Feature-Level RA MagEC 
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Figure 6.5: Individual RA Case MagEC 

 

 ** Table showing case number (randomized), case outcome, MagEC, and variables that were 

actually present for that case.  

 

6.1.4. Discussion 

6.1.4.1. Summary 

MAgEC provides an intuitive explanation of arbitrarily complex models for anyone that 

is familiar with regression coefficients. It provides explanations on both the global and local 

levels and also adds in a population level (or similarity between cases) explanation. While it is 

perhaps most useful in the context of deep learning, MAgEC can also be used to extend utility of 
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Random Forests and SVMs and allowing what many different model types have been learned to 

be compared directly. When MAgECs are visualized as a heatmap for temporal models they 

make it possible to understand complex temporal trends from a single image.  

 

6.1.4.2. Comparison to Prior Work 

SHAPs and LIME are existing methods in this space. LIME functions by generating 

surrogate data for a particular patient and then fitting a linear model to the surrogate data to 

generate an explanation. As such, it is currently limited to generating local explanations only. 

LIME is known to be highly sensitive to its methodological hyperparameters. I hve found it to 

generate non-sensical results on the data for this study, assigning direction and magnitudes of 

effect that did not align with classification labels. This was verified independently by a 

collaborator.  

SHAPs functions by comparing gradient changes between cases and some background, 

essentially yielding how the current case differs from the average case with respect to each 

variable. I found this method well implemented and the results to be logically consistent. While 

it does not currently support global explanations, it could be directly extended to do so. SHAPs, 

while flexible is not truly model agnostic, it only supports models that learn via gradient descent. 

As such, it is not possible to compare deep learning models to random forests or regression 

models, two models that are highly utilized in clinical research, to determine if what they have 

learned is similar or divergent. A greater challenge of the SHAPs method is the explanation 

method itself, explaining complex models using gradients is simply not intuitive for most non-

ML experts. Thus it may not facilitate trust and transparency to non-expert audiences. We 
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consider MagEC an alternative, not an improvement over SHAPs, useful for a different set of 

practitioners and potentially a different set of problems.  

Both SHAPs and LIME have demonstrated utility in images data and NLP, in addition to 

tabular data. At the moment MAgEC only supports tabular data.  

 

6.1.4.3. Limitations 

Currently there is no mathematically rigorous way to set epsilon, the unit of change, for 

continuous variables. Different values of epsilon have been shown to generate slight changes in 

the MAgECs. This is intuitive and its relevance is unclear. Choosing a value between 1e-3 and 

1e-6 produces reasonably stable results in practice.  

MAgEC has been designed initially for clinical models, which have traditionally used 

exclusively tabular data. At the moment MAgEC has no application extensions for images or 

NLP. Extensions for NLP models are fairly straightforward and are planned. Image extensions 

are not currently on the roadmap, I feel like SHAPs does an excellent job in that space already 

and there is no need for an alternative.  

 

6.1.4.4. Future Directions 

Predicted ‘best treatments’ can be assigned by generating MAgECs for a patient, 

extracting only the coefficients for potential treatment options and ranking them in ascending 

order. The highest rank is presumably the best option. This assertion could be strengthened for 

each patient by identifying prior patients who actually got that drug and had similar coefficients 

for that drug and checking their outcomes.  



 

81 

An approach to setting epsilon, either as one exact number or calibrating it for each 

model, should be explored. 

Currently, MAgECs provide direction and magnitude of effect for single variables while 

accounting for all other variables. Ideally, coefficients or something equivalent to directly 

describe interactions (like a DEC for age*preg*glucose that is LEARNED not feature 

engineered) would be desirable. In theory, this could currently be done within the current 

MAgEC framework by perturbing combinations of features simultaneously, but the 

computational cost for most models would be prohibitive.  

 

6.1.5. Conclusion 

MAgEC provides an intuitive explanation of arbitrarily complex models for anyone that 

is familiar with regression coefficients. It provides explanations on both the global and local 

levels and also adds in a population level (or similarity between cases) explanation. While it is 

perhaps most useful in the context of deep learning, MAgEC can also be used to extend utility of 

Random Forests and SVMs and allowing what many different model types have been learned to 

be compared directly. When MAgECs are visualized as a heatmap for temporal models they 

make it possible to understand complex temporal trends from a single image. 
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Chapter 7 

DeepMANN 

7.1. Mann 

A Deep Learning Pipeline to predict phenotype from microarray data 

 

7.2.1. Background/Introduction 

The ability to predict phenotype from genotype is extraordinarily valuable. 

Diagnostically, it could be used to determine which treatment regime is best suited to an 

individual. Prognostically, it could be used to begin interventions long before a phenotype was 

visible, thus potentially improving or even preventing disease states. Pharmaceutically, it could 

be used to select the drug or combination of drugs most likely to maximize effect and minimize 

adverse reactions. 

Microarrays provide a fast and inexpensive way to sample the genome of an individual 

by checking to see how many copies of the most commmon nucleotide that individual posses at 

each of ~500k positions. Since humans are generally assumed to be exclusively diploid, theses 

arrays record 1 or 3 possible values at each position: 0 (the nucleotide at neither chromosome 

matches the reference), 1 (a nucleotide on 1 chromsome matches but the other does not), 2 (both 

match).  

Genome Wide Association Studies (GWAS) seek to identify genetic differences between 

individuals that possess (cases) or lack (controls) a phenotype of interest by collecting 

microarray data on large numbers of individuals and then looking at each position on the 

microarray and comparing the prevelence of the number of zero's one's and two's between the 
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cases and controls. The phenotye of interest is most often the presence of a particular disease or 

medical condition, or its absence.  

The initial goal of GWAS was to increase biological understanding and discover targets 

for potential treatments by identifying a small number of powerful driver mutations (Single 

Nucleotide Polymorphisms or SNPs) that controlled a given phenotype. This was based on the 

assumption that most phenotypes possessed a small number of genetic determinants whose state 

determined the phenotype. The search was for a small number of drivers, each with an enormous 

effect size. 

This approach necessitates that individual mutations be both relatively common in the 

population (so that they can be discovered among cohorts of thousands) and capable of 

dramatically altering the phenotype.  

Studies over the last two decades have increasingly shown that the genetic contribution to 

human phenotypes is influenced by a large number of polymorphisms, most of which have a 

relatively small effect size. Given this knowledge, new approaches were developed that modeled 

phenotype as the additive effect of an increasing larger number of polymorphisms. Theses 

approaches search for a large number of drivers, each with a small effect. Some methods, such as 

Fast-LMM can even look at the entire set of microarray data to approximate the effect of each of 

the ~500k SNPs on an array.  

The short coming of these approaches is the fundamental assumption that mutations have 

a linear relationship with a phenotype. Biology is fundamentally complex: each stage in central 

dogma inolves multiple pathways, and a single gene (coded by thousands of nucleotides) within 

one pathway is often involved in multiple other pathways. Thus, while there are a small number 

of exceptions where a single mutation is so disruptive that it's effect is synonymous with a 
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change in phenotype, the rule is that there is an extraordinarily complex and non-linear 

relationship between DNA (nucleotides) and phenotype.  

For nearly all common or complex diseases, it is not possible to predict phenotype from 

genotype at a clinically useful level. However, microarray data is extremely plentiful. A 

methodolgy capable of overcoming the shortcomings of GWAS and additive effect assumptions 

by capably modeling the complex non-linear relationship between genotype and phenotype could 

have significant clinical impact.  

Deep Neural Networks (DNNs) have come to prominence in many different fields over 

the last 5 years because they are remarkably capable of identifying complex non-linear patterns. 

This capability comes from applying a series linear mappings followed by non-linear 

transformations which allows heirarchical learning of features. In the space of genetics this could 

allow the equivalent of using nucleotide mutations as raw inputs, combining those mutations into 

pathways, then learning pathway interactions, and finally determining which set(s) of pathways 

and pathway interactions are associated with healthy or disease states. (Obviously important to 

note that a DNN isn't going to re-create a biological pathway, it's going to create a function that 

models something equivalent to a pathway.) 

DNNs are not magical, they learn slowly and require a large number of samples to 

effectively train. Empiracally, this often necessitates tens of thousands of samples per class. 

Furthermore the complexity of a DNN is directly limited by the relative number of input features 

to the number of samples presented for learning. This means that number of input features must 

be kept reasonably small and can only grow as the number of sample grows.  

DNNs may be well suited for GWAS/microarray data since studies already exist that 

contain the tens of thousands of samples nessary to train a network capable of modeling complex 
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non-linear relationships. Conducting further microarray studies is inexpensive and DNNs can be 

updated with new knowledge one sample at a time, there's no need to retrain the entire network 

when new data becomes available. 

 

**Scope** 

 

Complex diseases are by definition complex. Not only with complex genetic components, 

but also with complex environmental components, and even complex gene-environment 

components. Currently, deepMANN considers only the genetic contribution to phenotype and 

therefore it's predictive power is thresholded at a maximal upper bound set by each disease's 

heredity. Thus, while we hope the approach will be equally successful at uncovering the genetic 

patterns underlying diverse diseases, the ability to predict phenotype given genotype should be 

expected to vary considerably from disease to disease. Additionally, the true genetic contribution 

the overwhelming majority of human phenotypes is unknown. While this makes it difficult to 

quantify the method's absolute performance, it is fairly simple to determine its relative 

performance by comparing its predictive power to the current best practices. 

Here we assess the predictive power of DNNs using a small number of SNPs and highly 

complex non-linear functions and compare it to Fast-LMM which uses the additive effects of all 

SNPs on the microarray. 
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7.2.2. Methods (Reader's Digest Version) 

Microarray data was downloaded from the Welcome Trust Inflammatory Bowel Disease 

(IBD) cohorts comprised of 14925 individuals of which there were approximately 1800 cases 

and 13125 controls. The data came divided into a BED file containing the polymorphism data 

and a text file containing the phenotype information for each inidividual; labeling them as either 

a case or control.  

The order of the individuals was shuffled so that cases and controls were randomly 

interspersed. The complete dataset was then split the into a training cohort comprised of 80% of 

the individuals (12000 members) and a testing cohort comprised of the remaining 20% of 

individuals (2925 members).  

Due to the large class imbalance, the primary metric that was used to assess model 

performance was area under the receiver operating curve (auc_roc).  

 

7.2.3. Data Preparation & Model Fitting 

**FAst-LMM** 

The FAast-LMM model was fit on the training cohort using all 360,000 SNPs present 

within the BED file. The model was first tested on the training cohort to ensure that the fit had 

occurred correctly and then tested on the testing cohort to determine the predictive power of the 

model out of sample.  

 

**Deep Neural Networks** 

Since the DNNs would be unable to effectively learn using all 360k SNPs, initial feature 

selection was done by performing GWAS on the training cohort using linear regression from the 



 

88 

FAst-LMM package. The top-N SNPs (where N was either 500 or 2000) were selected and the 

genotypes for each SNP were collected on all individuals. The SNPS were then arranged in order 

by chromosome number and chromosome position. Different models were built using different 

types of DNNs including Convolutional Networks and Multilayer Perceptrons each both 500 and 

2000 SNPs.  

The models were first tested on the training cohort to ensure that the fits had occurred correctly 

and then tested on the testing cohort to determine the predictive power of the model out of 

sample. 

 

**DNN Architecture Logic** 

Three different DNN architectural structures were developed representing two 

conceptually different approaches and a middle ground between them.  

1. Pure Convolutional Network 

2. Convolution followed by Neural Network 

3. Multilayer Perceptron 

 

Convolutional networks (convNet) have defined the success of Neural Networks in recent 

years. They comprise the architecture that has resulted in ultra-human performance on image 

recognition tasks and are also used in state of the art speech recognition and streaming vision 

such as that used by self-driving vehicles. Conceptually, convNets operate by searching for 

localized patterns within the input. An eye is an eye, regardless of whether it appears in the top, 

bottom, or middle of a picture. At the next level in the heirarchy, two eyes next to each other 

with a nose in the middle can make up a face. ConvNets were used as a deepMANN architecture 
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for two reasons; as a potential filter for linkage disequilibrium (LD) and to capture any localized 

patterns in mutation. ConvNets have recently been showing success when employed on DNA 

sequence data, however since microarrays do not sample the genome at equa-distance positions it 

is unlikely that deep convNets will be the optimal solution as convNets discard all but the most 

powerful local signals.  

Multilayer Perceptrons (MLPs) consist of multiple fully connected layers of neurons. 

They care nothing about locality and instead search for global patterns using the entirty of the 

data from the previous layer in the current layer. In general, MLPs are capable of modeling much 

more complex functions than convNets can, but this comes at the expense of requiring much 

more computational resources and raw input in order to effectively learn. The additional 

computation necessary is primarily memory: MLPs have considerably more absolute parameters, 

additionally no parameters within an MLP are redundant as is the case for convNets, and finally 

MLPs do not discard any information during forward propogation while convNets generally 

discard the majority of their data. The fact that MLPs have more absolute parameters to learn is 

what necessistates the greater volume of raw input.  

A middle ground between the convNet and the MLP was reached by effectively attaching 

a deep MLP to a relatively shallow convNet with goal of using convolution primarily to filter LD 

and then using the MLP to model the heirachrical global complex non-linearity by which 

genotype becomes phenotype.  

 

**Optimization Choices** 

Binary cross-entropy was selected as the loss function to optimize. The class imbalance, 

which at only 8:1 is much smaller than that observed in most biological settings, initially 



 

90 

prevented the DNNs from being to learn anything at all. The solution was to modify the loss 

function so that it more heavily penalized mistakes made on the under represented class by 

multiplying the loss for that class by the ratio of the class imbalance. This proved sufficient to 

allow the maximum network performance. Penalizing the loss at a ratio greater than the class 

imbalance did not result in additional gains in the prediction of the under represented class (even 

when the penalty was 10x the class ratio, or ~80x normal). 

ADAM (Adaptive Moment Estimation) was chosen as the learning alogrithm; it is one of 

the current best performers in the industry and literature (as of Aug 2016) and does especially 

well if the input data is sparse (such as when using one-hot encoding for the convolutional 

networks). ADAM does per parameter optimization. Nodes that receive large gradients will see 

their effective learning rate reduced. Nodes that receive small or infrequent updates will see their 

effective learning rate increased. Adam accomplishes this by storing a running average of 

gradients (1st and 2nd momentum). So the downside is that it requires more memory. The 

enormous benefit is that it converges very quickly which not only speeds up training but also 

reduces the liklihood of being trapped in a local minima.Additionally, ADAM requires no user 

adjustment of learning rate or momentum to achieve optimal performance.  

 

**Architecture Development Process** 

Initial network structure was decided by considering the size of the raw input and 

attempting to adapt and combine the best practices from the fields of regulartory genomics and 

computer vision. Initially the training process was manually monitored and architecture 

adjustments were made to identify the number, type, and order of layers that resulted in 

reasonable performance. This was followed by grid searches to optimize the network’s 
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hyperparameters such as number samples to use prior to gradient descent update, number of 

training cycles, strength and type of regularization, the number and size of filters and pooling 

sizes for the convolutional layers, and number of neurons in each layer.  

 

7.2.4. Results 

#### GWAS Results 

This is included only for reference purposes. It's the results of the simple regression and 

shouldn't be treated too seriously. 

 

Figure 7.1: GWAS Results 

 

#### FAst-LMM 
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 Figure 7.2: FAst-LMM In Sample Performance 
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Figure 7.3: FAst-LMM Out of Sample Performance 

 

 

 

 

 

 

 

 

 



 

94 

 #### DNNs 

There were multiple different architectures, each with very different parameters that all 

converged to the same ROC scores. These are representative examples that reached the peak roc.  

 

**MLP** 

 

 

Figure 7.4: MLP2000 In sample ROC 
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Figure 7.5: MLP2000 Out of sample ROC 

 

Parameters: 

* initialization = random uniform distribution 

* dropout_rate = 0.5 

* l2_regularization amount = 0.4 

* input_layer_neurons = 2000 

* neuronsfc1 = 300 

* neuronsfc2 = 1500 

* neuronsfc3 = 1500 

 

**ConvNet + DNN** 
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Figure 7.6: conv_500 out of sample 

 

Parameters: 

* dropout_rate = 0.5 

* neurons = 100 in each dense layer 

* zero padding used preseve dimensions 

* 16 filters, each 3x3 

* Pooling Size = 1x2 (max of 2 nearest) 

 

**Quick Summary:** 

The linear model had zero recall out of sample. Multiple architectures of DNNs outperformed 

had an roc_auc of .63 (Overall accuracy was between 69:71%).  

 

7.2.5. Discussion 

The DNNs reached a clear limit at .63 roc_auc, although the conv+NN converged to it 

using only 500 SNPs as input, while the MLP required 2000 to reach it.  

This limit is likely to have been caused by either of 2 factors (or a combination): 
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1. *Not enough samples to learn additional complexity*: Class imbalance aside, with only 

~1600 examples in the positive class to learn from the network is severely hampered. 

Reasonably complex DNNs empirically require a minimum of around 10,000 examples 

per class. Having a greater number of samples, even while maintaining the class 

imbalance, could allow exploitation of a more complex architecture which could provide 

greater predictive power. 

2. *Genetic signal reached*: It is possible that SNP data is only capable of .63 roc_auc for 

IBD. 

 

7.2.6. Future Directions 

1. Use deepMANN on more interesting phenotypes with larger sample sizes 

2. The ultimate medical goal is not to predict phenotype from genotype, but to create the 

most accurate prediction possible using all of the available data. DNNs have proven to be 

well suited to build strong multi-modal models. The current approach sets a foundation 

that be easily expanded upon. 
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Chapter 8 

Philter 

 

8.1. Philter 

8.1.1. Abstract 

There is a great and growing need to ascertain what exactly is the state of a patient, in 

terms of disease progression, actual care practices, pathology, adverse events, and much more, 

beyond the paucity of data available in structured medical record data. Ascertaining these harder-

to-reach data elements is now critical for the accurate phenotyping of complex traits, detection of 

adverse outcomes, efficacy of off-label drug use, and longitudinal patient surveillance. Clinical 

notes often contain the most detailed and relevant digital information about individual patients, 

the nuances of their diseases, the treatment strategies selected by physicians, and the resulting 

outcomes. However, notes remain largely unused for research because they contain individually 

identifying data, or Protected Health Information (PHI). Previous clinical note de-identification 

approaches have been rigid and still too inaccurate to see any substantial real-world use, 

primarily because they have been trained with too small medical text corpora. To build a new de-

identification tool, we created the largest manually annotated clinical note corpus for PHI and 

develop a customizable open-source de-identification software called Philter (“Protected Health 

Information filter”). Here we describe the design and evaluation of Philter, and show how it 

offers substantial real-world improvements over prior methods. 

Keywords: Natural Language Processing (NLP); Electronic Health Records (EHR); De-

identification; Clinical Notes; Protected Health Information (PHI);  
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8.1.2. Introduction 

Structured EHR fields, primarily comprised of elements such as high-level demographics 

and billing codes (ICD), are currently the most utilized in determining the state of a patient, in 

terms of clinical care details or disease state. Many of these fields are often used in clinical 

research, and are now starting to be used to determine human phenotypes1 for genome-wide 

association studies, and can be used to facilitate automated improvements of healthcare decision 

making2. However in many cases this information is not detailed enough to provide appropriate 

insights. Additionally, procedural, diagnostic, and medication billing coding are often 

incomplete, inconsistent, subjective, and inaccurate (often due to the needs of billing prioritizing 

over the needs of science), and this could even lead to false insights3,4. Clinical notes often 

contain the richest and most relevant information available about disease phenotypes, treatments, 

and outcomes as well as the clinical decision-making process. This written medical narrative 

frequently captures patient experience and event ordering timelines. To date, there have been 

many studies that have successfully used data from clinical notes for discoveries, including 

detection of drug adverse outcomes5, identification of off-label drug use6, surveillance of disease 

states7, and identification of clinical concept relatedness8.  

With nearly the entire United States healthcare system now adopting electronic health 

records (EHRs), but with most of the actual clinical details captured in these free-text notes, 

transforming information contained within clinician notes into a computable resource is essential 

for medical research and improving patient care. However, clinical notes contain legally 

Protected Health Information (PHI), which prevent their use in most research applications.  

Removal of PHI from clinical notes is a challenging task because the potential number of 

words that could be PHI are limitless. There are many different methods for recording and 
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formatting patient note data across the health system landscape, and each health system serves a 

distinct patient population resulting in differences in the distribution of types of PHI across 

health systems9 and the probability that a given word is PHI or a medical term (e.g.: ‘MA’). 

The current state-of-the-art in de-identification systems still have real-world weaknesses 

because there are only a small number of corpora openly available for algorithm development 

and testing10-14. Priorities around de-identification software performance in recent years have 

been driven largely by de-identification competitions, most notably the Integrating Biology and 

the Bedside (i2b2) competitions in 2006 and 2014, which have emphasized a balanced approach 

of information retention and patient privacy, instead of national guidelines 

(https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-

identification/index.html) which focus exclusively on privacy. It is clear that real-world 

performance is generally still below the threshold of compliance regulations for removing PHI, 

resulting in a lack of broader use of these tools to de-identify notes for research9,15 ,16. Every 

piece of PHI not identified and removed represents a potential violation of patient privacy and 

also a potentially expensive lawsuit. Even at 95% recall (i.e., percent of PHI removed), the 

amount PHI still remaining across millions of clinical notes would be staggering. 

With an incredibly diverse patient population being treated at the University of 

California, San Francisco (UCSF), yielding over 70 million clinical notes collected within our 

Electronic Health Records (EHR), we required an efficient, accurate, and secure method for 

removing PHI from notes in order to make these data usable by researchers while minimizing the 

risk of PHI exposure. We developed a privacy-centric approach to removing PHI from free-text 

clinical notes using both rule-based and statistical NLP approaches. The algorithm utilizes an 

overlapping pipeline of methods that are state-of-the-art in each application including: pattern 
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matching, statistical modeling, blacklists, and whitelists. We built this software tool as a self-

contained system that could be deployed on any major computing platform and can operate 

without an internet connection, allowing it to be run in secure environments. 

We have called this algorithm Philter (Protected Health Information filter). In this work, 

we describe the engineering of Philter and its evaluation against other systems. As we have 

discovered most existing tools in this field do not have actual open source availability, we have 

released Philter as open source code, and envision tens of thousands of health systems finding it 

useful. 

 

8.1.3. Online Methods 

8.1.3.1. Corpora: UCSF Corpus 

To create the UCSF corpus of clinical notes, 4,500 notes were randomly selected from 

over 70 million notes from all departments at UCSF by assigning a hash identity to each note ID, 

randomly permuting the order of the hashed ID, then randomly selecting 4,500 hashed note IDs. 

Words were then manually annotated for PHI-categories by one of our three trained annotators. 

The annotators used Multi-document Annotation Environment (MAE)17. The MAE tool was 

configured with PHI elements following the HIPAA Safe Harbor guidelines with a couple of 

additional categories to identify provider information (Supplemental Table 8.1). 4,500 notes 

were annotated twice, with a second annotator reviewing and correcting the mark-up of the first 

annotator and Inter-Rater Reliability was calculated. When in doubt, annotators chose the more 

conservative option, for example marking an unclear name as belonging to a patient vs a 

physician. We generated a distribution of the randomly sampled notes and found more than one 

hundred note categories, note types, departments of origin, and provider specialties. We 
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randomly assigned 2,500 notes to use for the development of a new de-identification algorithm 

(see Supplemental Table 8.2 for a distribution of the departments represented) and 2,000 notes to 

test algorithm performance (Supplemental Table 8.3). 

The UCSF Committee on Human Research approved our study protocol [study # 16-

20784]. 

 

8.1.3.2. I2b2 corpus 

The i2b2 2014 de-identification challenge test corpus consists of 514 notes and was 

downloaded on July 18, 201710,11. However, annotations of words as either safe or PHI within 

this corpus do not exactly follow the HIPAA guidelines for Safe Harbor, specifically in regards 

to locations and dates18. We therefore changed the annotations for words from the following 

categories: years in isolation, seasons (e.g. winter, spring), days of the week, patient/doctor 

initials in isolation, country names and ages under 90 from PHI to safe. The i2b2 2014 corpus 

replaced real PHI with surrogates. In a few instances, the surrogate values are for patient 

identification numbers were unrealistic, being four digits or less. These were removed.  

 

8.1.3.3. Evaluating De-identification Performance 

If PHI is allowed through a de-identification system, that yields a recall error, in that the 

PHI was not found. If safe words are obfuscated, that yields a precision error, in that extra text 

was unnecessarily removed. Since preventing exposure of PHI is our highest priority, we wanted 

to devise a system that minimized recall errors, even at the expense of greater precision errors. 

Each PHI word that evades detection increases the risk of patient re-identification. 

Therefore, we evaluate performance at the word-level. In this analysis, we count as True 



 

103 

Positives (TP) those PHI words that were correctly labeled as PHI while the False Positives (FP) 

are non-PHI words that were incorrectly labeled as PHI. Likewise, True Negatives (TN) are non-

PHI words correctly labeled as non-PHI while False Negatives (FN) are PHI words incorrectly 

labeled as non-PHI.  

Since we chose to optimize our method to maximally maintain patient privacy, we chose 

recall as our primary measure of performance (Equation 1), which represents the portion of PHI 

words that were identified correctly:  

 

 Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁⁄  (1) 

 

 

However, de-identified clinical notes only have value if they retain as much non-PHI 

information as possible. Thus, we also measure precision (Equation 2), which represents the 

portion of filtered words that were non-PHI: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃⁄  (2) 

 

To account for precision, we selected the F2 score (Equation 3) as our secondary 

performance measure, which is a weighted average of recall and precision that values recall 

twice as much as precision: 

 

 𝐹2 = 5 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
(4 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙⁄  (3) 
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8.1.4. Algorithm 

8.1.4.1. Algorithm Concept and Overview 

The categories of PHI, the values of PHI, and the context surrounding PHI within a note 

can change drastically between types of notes, between departments within a health system, and 

between different health systems. In contrast to this, we believe that words that are not PHI have 

considerably less variability. Therefore, we started with an approach of identifying words that 

are not likely to be PHI. Approaches to identify words that are likely to be PHI were then 

incorporated into the algorithm for additional security and precision.  

 

8.1.4.2. Algorithm Control, Customization, and Output 

To optimize ease of use and modularity, while ensuring that the complete algorithm 

performs as expected, the pipeline is controlled by a simple text configuration file in the JSON 

format. We store the position of each character in memory so that tokens identified as PHI may 

be replaced with an obfuscated token of exactly the same length (e.g.,: ‘John Smith’ becomes 

‘**** *****’). Therefore, the original structure of the note is perfectly preserved, with the 

exception that asterisks in the original note are replaced with spaces. The priority with which a 

token is marked as PHI or safe is dictated by the order of processes in the configuration file and 

is entirely customizable. We built an evaluation script that automatically compares de-identified 

notes to annotated gold-standards at the character level to quantify global and PHI category-

specific performance.  
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8.1.4.3. Algorithm Pipeline 

At the beginning of the pipeline, a custom script tokenizes individual words within each 

note by separating them on whitespace and symbols (i.e., -, /, #, &, periods, etc). Next, short 

phrases that have a high probability of not being PHI are identified using pattern matching with a 

custom library of 133 “safe” regular expressions. Then, a custom library of 171 regular 

expressions is used to identify predictable PHI entities such as salutations, emails, phone 

numbers, dates of birth, social security numbers, and postal codes. In both cases, the regular 

expressions search for specific words, phrases, and/or numbers and utilize the immediate context 

surrounding each word to identify matches. For example, if a number appears adjacent to the 

word ‘age’ or ‘years old’, that number is interpreted as an age and is PHI if it is greater than or 

equal to ninety, as per HIPAA guidelines for Safe Harbor methods. On the other hand, a number 

referring to dosage (e.g., 50 mg) is not interpreted as PHI.  

At this stage, the Python NLTK module is used to tag each word with a part of speech 

(POS) to address the challenge of dealing with words that could be either safe or PHI, using 

statistical modeling to determine the structure of each sentence and document. For example, the 

word ‘White’ in the context of ‘White fluid found at...’ is an adjective and therefore safe, while 

‘Patient John White presents with...’ is a proper noun and is PHI.  

We assembled a blacklist of names using last names occurring 100 or more times in the 

2010 U.S. census, and first names occurring five or more times for each year of birth between 

1879-2017 from the U.S. Social Security website. To minimize occurrences of names that are 

also common words (i.e. new, walks, knee, home, child, etc.) in the blacklist, we removed a total 

of 855 words from the blacklist that were the greatest contributors to precision errors during 

training (complete documentation of blacklist creation is available on the public github 
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repository). All names added to the final blacklist were tokenized on whitespace and symbols, 

and converted to lowercase. The blacklist was separated into a first names blacklist and a last 

names blacklist, and the two lists were incorporated into the full pipeline in succession. During 

the blacklist stage of PHI-searching, if a token is in at least one of the blacklists and is labeled as 

a proper noun by NLTK (e.g.POS tag = NNP), it is marked as PHI. 

Next, an additional name removal step is implemented using a combination of regular 

expression and blacklist matching. We created a custom library of 4 regular expressions that 

search for common last name patterns in clinical notes (e.g. Jane Doe or Doe, Jane), and 

potential names are marked as PHI if an adjacent token was previously marked as PHI by a 

blacklist.  

At this point, the pipeline employs a safety mechanism to catch PHI that occurs in 

unexpected formats, such as previously unseen names, words with incorrect POS tags, or 

misspellings. This is accomplished by identifying previously unlabeled (label = PHI/Safe) tokens 

that are most likely not PHI. This is accomplished using a custom whitelist of ~195,000 tokens 

comprised of medical terms and codes extracted from common medical word banks and 

ontologies (e.g., UMLS, SNOMED, MeSH, etc.), common medical abbreviations, the 20,000 

most common English words and an additional list of common English verbs with varied tenses. 

All Social Security and 2010 Census names were removed from the whitelist, and some common 

English and medical words were then added back to the whitelist to maintain acceptable 

precision measurements (Complete whitelist documentation can be found on the github 

repository). All tokens that have not already been categorized as PHI or Safe by an earlier 

portion of the pipeline, with the exception of tokens with numeric POS tags, are passed through 

the whitelist. 
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A final active filtering process is used to identify patient and provider initials. We created 

a single regular expression that searches for initials patterns in clinical notes (e.g., Doe, J. or Jane 

S. Doe), and these regex matches are marked as PHI if one or more adjacent tokens were 

previously marked as PHI by a blacklist. 

At the conclusion of the pipeline a token can have one of three possible labels: marked 

for exclusion, marked for inclusion, or unmarked. To maximize patient privacy, only words 

marked for inclusion are retained (Figure 8.1). 
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Figure 8.1: Philter Algorithm pipeline 

 

 

 

 

 

 

Mr. John Wayne consulted Drs. Susan A. Wallice nd Nick White for his 

headache on 04/23/16, complaining of 10/10 pain.

Mr. John Wayne consulted Drs. Susan A. Wallice nd Nick White for his 

headache on **/**/**, complaining of 10/10 pain.

Mr. **** ***** consulted Drs. Susan A. Wallice nd Nick White for his 

headache on **/**/**, complaining of 10/10 pain.

Mr. **** ***** consulted Drs. ***** A. ******* nd **** White for his headache 

on **/**/***, complaining of 10/10 pain.

Whitelist to keep 

medical terms and 

common English 

words

Mr. **** ***** consulted Drs. ***** A. ******* nd **** **** for his headache 

on **/**/**, complaining of 10/10 pain.

Mr. **** ***** consulted Drs. ***** *. ******* ** **** **** for his headache on 

**/**/**, complaining of 10/10 pain.

Mr. John Wayne consulted Drs. Susan A. Wallice nd Nick White for his 

headache on 04/23/16, complaining of 10/10 pain.

Regex to keep 

medical results found 

in a verifiably safe 

context

Regex for removing 

words following 

patient  salutations

Regex for removing 

common date 

patterns

Blacklists to remove 

names that are 

proper nouns (NNP)

Safety net: remove 

any unmarked word 

tokens

Regex to catch 

initials adjacent to 

words marked by 

Blacklist

Regex to catch 

names adjacent to 

words marked by 

Blacklist

Mr. **** ***** consulted Drs. ***** A. ******* nd **** ***** for his headache on 

**/**/**, complaining of 10/10 pain.

Mr. **** ***** consulted Drs. ***** *. ******* nd **** **** for his headache 

on **/**/**, complaining of 10/10 pain.
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8.1.4.4. Optimization 

2500 notes in the UCSF development corpus were used to develop the optimal Philter 

algorithm. Each portion of the pipeline, as well as the overall ordering of the pipeline, was 

modified to obtain the greatest overall performance metrics. Examples include changes to regular 

expression patterns, the tokens present in the White and Black lists, and the POS tags used to 

match against the lists. Optimization was done iteratively, developing against 500 notes at a time 

from the development set, testing against the next 500 notes in the development set, then 

repeating, growing the size of the development set by the previous 500 notes each time.  

 

8.1.4.5. Comparators 

Ferrandez et al.9, performed a head-to-head comparison of multiple de-identification 

systems on multiple corpora, which revealed that the PhysioNet de-identification tool11, had the 

best out-of-the-box performance. To identify PHI, the PhysioNet algorithm uses a combination 

of regular expressions and three types of lookup dictionaries (known names of patients and 

hospital staff, generic names of people and locations, and common words along with UMLS 

terms considered by their team unlikely to be PHI).  

We selected the PhysioNet de-identification tool as the strongest comparator that met our 

criteria and downloaded the source code from PhysioNet ’s14 website (https://www.PhysioNet 

.org/physiotools/deid/) on February 12, 2017. 

The National Library of Medicine’s Scrubber tool, first published in 201319 takes the 

approach of maximizing recall and valuing real-world generalization over public challenge 

competition results. It has been continually revised and improved since its initial creation and 

investigators have even launched a trial20 with updates as recent as 2018. The tool makes use of 
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other public tools, including Apache’s cTAKES21 and UIMA projects22, to compare the 

likelihood of words being PHI based on their relative frequency of appearance in public 

documents such as medical journals and LOINC codes to private physician notes under the 

reasonable assumption that words that appear in public documents are unlikely to be PHI. We 

selected the NLM Scrubber tool as our second comparator and downloaded the most recent 

version (v.18.0928) from the NLM website (https://scrubber.nlm.nih.gov/files/). Unfortunately, 

NLM Scrubber software does not maintain the original character alignment of scrubbed notes 

and comes with no method to automatically evaluate its performance against annotated notes. 

We had to design an evaluation script for this software and have made the script available to the 

community on our GitHub repository.  

 

8.1.4.6. Framework for secure de-identification and evaluation 

Figure 8.2 outlines the environment we designed to build and run Philter on clinical notes 

while ensuring security of the original notes and providing a framework for reporting PHI that 

was not filtered by the algorithm.  

To ensure security, clinical notes were kept on a server with an encrypted drive protected 

behind an institutional firewall and through access-controlled VPN at all times from initial 

software development through institutional release. Access to the server was only permitted via 

password-protected SSH protocol from points inside the VPN, and only from devices which 

themselves had encrypted stores or hard drives. The raw clinical notes were loaded onto the 

server through a Clarity-level text document extraction from UCSF's Epic EHR system. 
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Figure 8.2: De-identification Ecosystem 

 

 

8.1.4.7. Measuring compute time 

We calculated the run time of our pipeline using batches of 500 notes on a 32 core Linux 

machine with 16GB of RAM using the native Linux Time function, ‘time’, to estimate the 

feasibility of running Philter at a large scale. We conducted two experiments. First, a single batch 
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of 500 notes, with a total size of 2.2Mb, was run as single process and timed. Second, 20 batches 

of the 500 notes were run simultaneously as multiple processes and timed. 

 

8.1.4.8. Sensitivity Analysis 

In addition to Recall and F2 performance, we were interested in we were interested in the 

distribution of PHI across each category of PHI along with the number of TPs and FPs resulting 

from the best de-identification tool.  

 

8.1.4.9. Open source code 

The Philter package is written in machine-portable Python. The package can be installed 

via PIP, the Python package installer, and the source code along with detailed design descriptions 

as well as installation and use instructions can be obtained through the public repository open-

sourced, under an MIT License (https://github.com/beaunorgeot/philter-ucsf-beta).  

 

8.1.5. Results 

The Inter-Rater Reliability, for PHI vs Safe tokens, between first and second pass 

annotators in the UCSF corpus was greater than 99.99%, with the second annotator identifying 

an average of 39 additional PHI tokens and converting an average of 21 tokens from PHI to Safe 

per 500 notes.  

We compared overall recall and precision and per-PHI-category Recall across the three 

algorithms (Physionet, Scrubber, and Philter) on two corpora; the 2,000 note UCSF test corpus 

mentioned above and the publicly available 514 note 2014 i2b2 test corpus. 
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Primary and Secondary result metrics on both corpora are displayed in Table 8.1, with 

precision listed as a reference. On the UCSF test corpus: Physionet had a recall of 85.10% and an 

F2 of 86.15%, Scrubber had a recall of 95.30% and an F2 of 91.59%, and Philter had a recall of 

99.46% and an F2 of 94.36%. On the 2014 i2b2 test corpus: Physionet had a recall of 69.84% 

and an F2 of 73.05%, Scrubber had a recall of 87.80% and an F2 of 85.22%, and Philter had a 

recall of 99.92% and an F2 of 94.77%.  

 

Table 8.1: Performance Comparison of Tools and Corpora 

 UCSF I2B2 

 P R F2 P R F2 

PHIlter 78.28 99.46 94.36 78.58 99.92 94.77 

Physionet 90.62 85.10 86.15 89.49 69.84 73.05 

Scrubber 79.24 95.30 91.59 76.26 87.80 85.22 

Note: P = Precision, R=Recall.  

 

Philter also outperformed both of the other algorithms for each category of PHI on both 

corpora, in addition to having the highest overall recall (See Table 8.2). 
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Table 8.2: Remaining PHI Analysis by Tool, UCSF Test Corpus 

PHI Category 

Instances of 

PHI 

remaining 

(PHIlter) 

Instances of 

PHI 

remaining 

(Physionet) 

Instances of 

PHI 

remaining 

(Scrubber) 

Age >= 90 0 0 0 

Patient_Vehicle_or_Device_Id 0 18 0 

Patient_Account_Number 0 35 4 

Patient_Medical_Record_Id 0 445 0 

Patient_Social_Security_Number 0 0 6 

Patient_Phone_Fax 0 0 1 

Patient_Initials 2 120 132 

Patient_Name_or_Family_Member_Name 6 211 93 

Patient_Address 7 25 16 

Patient_Unique_ID 20 442 34 

Email 0 1 1 

URL_IP 4 20 153 

Date 7 257 269 

Provider_Certificate_or_License 0 276 99 

Provider_Name 12 546 90 

Provider_Initials 12 236 217 

Provider_Address_or_Location 43 1597 210 

Provider_Phone_Fax 45 49 43 

Note: PHI counts for PHIlter, Physionet and Scrubber performance on the UCSF corpus. 

Instances of PHI represent single tokens within the span of multiple or single-token items of PHI. 

Patient-only PHI is highlighted in blue, provider-only PHI is highlighted in yellow, and 

patient/provider PHI is highlighted in green. 
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Table 8.3: Remaining PHI Analysis by Tool, I2B2 Corpus 

PHI Category 
Instances of PHI 

remaining (PHIlter) 

Instances of PHI 

remaining 

(Physionet) 

Instances of PHI 

remaining 

(Scrubber) 

AGE 0 1 0 

DEVICE 0 6 0 

MEDICALRECORD 0 524 18 

PATIENT 2 154 92 

DATE 0 4590 1587 

FAX 0 2 0 

PHONE 0 31 67 

ZIP 0 3 1 

USERNAME 1 92 92 

STREET 2 27 21 

LOCATION-OTHER 2 9 12 

IDNUM 2 297 206 

CITY 2 14 52 

DOCTOR 5 197 186 

PHI counts for PHIlter, Physionet and Scrubber performance on the I2B2 corpus  

 

8.1.5.1. Sensitivity Analysis: Distribution of PHI and Philter Recall by Category 

The raw count of PHI varied noticeably between the two corpora, but Philter’s recall 

consistently generalized across the categories for each corpus (Supplemental Tables 4 and 5).  

Results of additional sensitivity analyses regarding the precision errors caused by each 

element of the algorithm pipeline (Supplemental Tables 6) and the impact of partial PHI removal 

(Supplemental Tables 7 and 8) and can be found in the Supplement.  

 

 



 

116 

8.1.5.2. Philter Compute Time 

The amount of real (wall-clock) time necessary to run 500 notes as a single process was 

323 seconds. The amount of real time necessary to simultaneously process 20 batches of 500 

notes, 10,000 notes total, was 401 seconds. 

 

8.1.6. Discussion 

8.1.6.1. Principal Results 

In this study we developed an algorithm, Philter, that utilizes an overlapping pipeline of 

multiple state-of-the-art methods and compared it to the two strongest real-world competitors on 

the basis of recall. Philter demonstrated the highest overall recall on both corpora, had the 

highest recall in each category of PHI on both corpora, and generalized well between the 

corpora. Philter’s recall on the 2014 i2b2 test corpus is the highest reported in the literature. A 

key design decision was the use of rules to separate PHI from Safe words while using a statistical 

method to improve precision. The overall size of the UCSF corpus at 4,500 manually annotated 

notes is the largest in the world that we are aware of. Likewise, the UCSF test corpus, at 2,000 

notes, is the largest corpus to be tested and reported in the literature.  

 

8.1.6.2. Limitations 

Despite Philter’s strong performance, with recall values equal to or greater than 99.5%, 

recall still was not perfect. The portions of PHI that were not identified were edge cases around 

existing patterns. For example, there were six total tokens that were missed for patient names in 

the UCSF test corpus. These tokens actually came from one single patient, whose name was six 

tokens long. The 6 token name appeared twice in one note, and each time Philter successfully 
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removed three of the names, likely making the actual patient’s name difficult or impossible to re-

identify. The solution to this and similar problems are almost trivially easy to fix but they 

underscore the need to test de-identification systems on very large and diverse corpora to 

continually discover and refine edge cases.  

The statistical portion of the pipeline was the most problematic from a precision 

perspective. The POS tagger frequently confused capitalized words, either at the beginning of 

sentences or all-capital words within sentences, as proper nouns. We found a very high overlap 

between common English words and medical terms (See, Whitelist) with names taken from the 

Census and Social Security. Precisely 16,095 names were found to be either medical terms or 

common English words. Therefore, an incorrect POS tag of NNP frequently resulted in a False 

Positive.  

The decision not to include institution-specific information, such as a map between 

patient names and note identification numbers, could be considered a limitation. At the time of 

development, we chose not to include such information for numerous reasons. First, our lists of 

patient names are messy (it was not uncommon for drug names to appear as patient names in our 

databases). Second, even after rigorous initial cleaning, our patient name lists only detected 80% 

of name PHI within the corpus. This is in part due to the fact that patient family member names 

frequently appear within notes and in part due to misspellings of names. Third, relying on the use 

of inside data would not produce an algorithm that was generalizable out of the box. We believe 

that patient name-to-note maps could make a small but valuable addition to the pipeline and we 

envision placing it prior to the Names Blacklist steps. However, at the time of this writing, 

despite extensive development, we still are not ready to incorporate them. If we find that doing 
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so improves performance in the future, we will provide the steps necessary to reproduce our 

process at other institutions on our github README. 

 

8.1.6.3. Comparison with Prior Work 

With more EHR systems being deployed across the world, there is still an incredible need 

for text processing tools, and de-identification is a key utility that can enable many readers and 

programmers to access those notes in a safer manner. While challenges and competitions have 

been run for nearly 10 years, there is still a pragmatic need for safe, efficient, open-source de-

identification tools. 

The field has been dominated by two separate approaches to designing de-identification 

algorithms. The first uses a rule-based system to detect PHI, while the second approach uses 

statistics to assign probabilities of PHI to words. Rule-based systems primarily use regular 

expressions and/or blacklists of words to tag PHI. Statistical methods employ machine learning, 

traditionally Conditional Random Fields and increasingly Recurrent Neural Networks, to learn 

patterns based on words and their context. Rule-based systems typically have better recall, while 

statistical methods typically have better precision. Rule-based systems are inherently predictable 

allowing their success and failures to be anticipated. Statistical systems are much faster to build; 

however, they are often difficult to interpret and performance on new data is more unpredictable. 

For example, the organizers of the 2006 i2b2 challenge discovered that the best performing 

algorithm in the competition, which utilized a statistical approach, suffered serious failures when 

de-identifying notes that came from the same hospital but were not drawn from the competition 

corpus23. 
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The sparsity of available notes for de-identification system development and testing has 

provided a tremendous challenge to developing robust de-identification approaches because the 

nature of PHI contained within a note may differ significantly depending on the hospital or 

department they were generated from. Ferrandez et al.9 demonstrated this by showing different 

proportions of categories of PHI distribution between the VHA, i2b2, and the Swedish 

Stockholm corpora. For example, Provider Names comprised only nine percent of the overall 

PHI in the VA corpus, but were nineteen percent of the PHI in i2b2, while there were no 

occurrences of Provider Names in the Stockholm corpus. Conversely, Patient Names make up 

only four and five percent of the VA and i2b2 PHI, respectively, but over 20 percent of the 

Stockholm corpus. ID Numbers were barely present in the VA corpus, totaling less than half of 

one percent of the PHI, but were responsible for more than twenty four percent of the PHI in the 

i2b2 corpus.  

Between the systems selected as comparators for this study, the Physionet tool is the 

oldest and most 'proven'; it has great precision but does not effectively remove PHI. Scrubber is a 

newer software and the designers traded precision to get much improved recall. Unfortunately, 

neither of these approaches can be easily modified. Since PHI varies widely from corpus to 

corpus and the needs of those performing de-identification are diverse, the lack of 

customizability of these tools presents real-world usability challenges. 

The NLM Scrubber software assumes that words appearing frequently in public 

documents are unlikely to be PHI, and although this assumption appears reasonable, it is not 

justifiable given our own findings. As mentioned above, we found over 16,000 names in the 

census and Social Security data that were either common English words or medical terms. This 
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may explain the 20X difference between Scrubber and Philter in the number of patient name 

tokens that remained after filtering.  

In addition to outperforming the comparators selected for this study, Philter sets new 

state-of-the-art recall results on the 2014 i2b2 corpus. The challenge winner, the Nottingham 

system, had a recall of 96.29 (Table 6: micro-averaged, token-wise, HIPAA category)12. Philter 

also demonstrates higher recall than the results reported for the more modern deep learning based 

de-identification systems (Dernoncourt et al.24 i2b2 recall 97.38; Lui et al.25 recall 93.8). 

Interestingly, the only publically available de-identification system used in the aforementioned 

competition, MITRE’s MIST tool26, faired quite poorly (HIPAA token recall of .805) even when 

supplemented with the well regarded Stanford NER tagger and pre-trained on an additional 

private corpus from Kaiser. 

It is fair to note that the i2b2 Challenge systems and the deep learning systems mentioned 

in this manuscript attempted to maximize F1 rather than recall. While we believe that this is a 

flawed approach within the de-identification community (considering recall is the primary 

concern from a patient privacy standpoint), we acknowledge that tuning these systems to 

maximize PHI removal could potentially improve their recall performance. 

As mentioned above, the POS tagger portion of the pipeline was the most problematic 

element from a precision perspective. Despite having lower recall and being subject to several 

statistical system challenges, such as lack of transparency and great risk of poor generalization to 

new corpora, we are excited by the very high precision of the deep learning approaches 

previously referenced24,25. We can imagine replacing the current NLTK POS tagger in the Philter 

pipeline with a deep learning version of the same. 
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8.1.7. Conclusions and Future Directions 

In summary, Philter providers state-of-the-art de-identification performance while 

retaining the majority of relevant medical information. We envision that PHI removal can be 

further optimized using a crowd-sourcing approach with lots of exposure to many hospitals and 

notes. For this reason, we have made Philter open-source and highly customizable. We believe 

the system is capable of 100% recall with enough exposure and community involvement. The 

simple to use software will accept any text file as input, is fully modular to allow the community 

to improve the algorithm or adapt it to each users’ specific needs, easy to evaluate, and 

executable in a secure environment. The software comes pre-configured, as the pipeline 

described in this manuscript, to produce the de-identification results that most closely follow 

HIPAA Safe Harbor guidelines. 
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8.2. Supplement 

8.2.1. Supplemental Background 

8.2.1.1. Motivation 

Initially, our plan was to identify a pre-existing de-identification system that we could use 

for this task. The number of open-source publicly available de-identification software systems is 

very small. We began the search for such a system by examining the HIPAA-defined, token-

based, recall results of the i2b2 2014 de-identification challenge12. Unfortunately, the top 

performing entry, Nottingham system27, was specifically fine-tuned for both the i2b2 dataset as 

well as the i2b2 evaluation script (using a post-processing script to modify tokens to maximize 

scoring), potentially limiting its generalization and resulting in over-optimistic assessment of 

performance. Additionally, the Nottingham system is not publicly available for use. 

Interestingly, the only publicly available de-identification algorithm that was used in the 

competition, MITRE’s MIST tool26, faired quite poorly (HIPAA token recall of .805) even when 

supplemented with the well regarded Stanford NER tagger and pre-trained on an additional 

private corpus from Kaiser.  

A wider literature review of post-i2b2 challenge identified a couple of potentially 

promising candidates that used Deep Recurrent Neural Networks and reported results on the i2b2 

2014 corpus for comparison24,25. However, the Lui et al.25 system is not publicly available in any 

form, and while the Dernoncourt et al.24 team have made available a Named Entity Recognition 

tagger based on their work, the de-identification system reported in their paper is not available.  
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8.2.1.2. Existing De-Identification Corpora 

There are a very small number of public corpora that have been labeled for PHI and are 

available to develop or test de-identification algorithms. The Informatics for Integrating Biology 

and the Bedside (i2b2) program, released a corpus of 889 discharge summaries as part of a 

challenge in 2006 to evaluate state-of-the-art systems for automatically targeting and removing 

PHI14. In 2008, PhysioNet released a corpus of 2,434 nursing notes that they used to build a 

software de-identification tool10,11. In 2014, i2b2 released another corpus as part of a new 

challenge consisting of 1,304 longitudinal clinical narratives derived from 295 hand-selected 

diabetic patients at risk for coronary artery disease 12,13. 

 

8.2.2. Supplemental Methods: UCSF Corpora 

Supplemental Table 8.1: PHI Categories 

PHI Categories 

Age >= 90 

Patient_Vehicle_or_Device_Id 

Patient_Account_Number 

Patient_Medical_Record_Id 

Patient_Social_Security_Number 

Patient_Initials 

Patient_Name_or_Family_Member_Name 

Patient_Address 

Patient_Unique_ID 

Email 

URL_IP 

Date 

Phone_Fax 

Provider_Certificate_or_License 

Provider_Name 

Provider_Initials 

Provider_Address_or_Location 

Note: Supplemental Table 8.1 Distribution of 2500 training notes Across Departments 
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Supplemental Table 8.2: Distribution of 2500 training notes Across Departments 

Department_Specialty                              Count  

 Gastroenterology                                    233  

 Obstetrics                                          225  

 Radiology                                           181  

 General Internal Medicine                           177  

 Pulmonology                                         161  

 Pulmonary Function and Bronchoscopy                 133  

 Ophthalmology                                       128  

 Obstetrics and Gynecology                           121  

 Emergency Medicine                                  117  

 Family Medicine                                     103  

 Dermatology                                          82  

 Cardiology                                           75  

 Reproductive Endocrinology and Infertility           60  

 Kidney Transplantation                               54  

 Endocrinology and Metabolism                         51  

 Urologic Oncology                                    50  

 Hepatology                                           48  

 Primary Care                                         46  

 General Pediatrics                                   43  

 Neurology                                            40  

 Orthopedic Surgery                                   39  

 Liver Transplant                                     38  

 Neurosurgery                                         38  

 Anesthesiology                                       35  

 Pediatric Gastroenterology                           35  

 Otolaryngology, Head and Neck Surgery                33  

 Radiology MR                                         30  

 Rheumatology                                         27  

 Radiology CT                                         26  

 Hematology and Oncology                              25  

 Urology                                              25  

 Lung Transplant                                      20  

 Breast Care - Cancer Center                          19  

 Pediatric Nephrology                                 19  

 Psychiatry                                           19  

 Allergy and Immunology                               15  

 Interventional Radiology                             15  

 Pediatric Cardiology                                 15  

 Geriatric Medicine                                   13  

 Lab                                                  13  

 Nephrology                                           13  

 Pediatric Endocrinology                              13  

 Pediatric Neurology                                  13  
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Department_Specialty                              Count  

 Gastrointestinal Oncology                            12  

 Physical Therapy                                     12  

 Dysplasia                                            11  

 HIV Program                                          10  

 Infusion and Transfusion                             10  

 Pediatric Oncology                                   10  

 Pediatric Rheumatology                               10  

 Gynecologic Oncology                                  9  

 Prenatal Diagnosis                                    9  

 Pain Medicine                                         8  

 Radiation Oncology                                    8  

 Anticoagulation                                       6  

 Heart Transplant                                      6  

 Nuclear Medicine                                      6  

 Pathology                                             6  

 Adolescent Medicine                                   5  

 Employee Health Services                              5  

 Pediatric Hematology                                  5  

 Pediatric Otolaryngology, Head and Neck Surgery       5  

 Thoracic Oncology                                     5  

 General Surgery                                       4  

 Genetics - Cancer Center                              4  

 Investigational Therapy                               4  

 Optometry                                             4  

 Pediatric Pulmonology                                 4  

 Plastic Surgery                                       4  

 Executive Health                                      3  

 Home Health Services                                  3  

 Orthotics                                             3  

 Pediatric Immunology                                  3  

 Pediatric Urology                                     3  

 Sleep Medicine                                        3  

 Audiology                                             2  

 Colorectal Surgery                                    2  

 Endocrine Surgery                                     2  

 Orthopedic Surgical Oncology                          2  

 Pediatric Anesthesiology                              2  

 Pediatric Orthopedic Surgery                          2  

 Pediatric Physical Medicine and Rehabilitation        2  

 Pediatric Surgery                                     2  

 Respiratory Therapy                                   2  

 STOR Immunizations Converted                          2  

 Surgical Oncology                                     2  

 Thoracic Surgery                                      2  
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Department_Specialty                              Count  

 Vascular Lab                                          2  

 Cardiothoracic Surgery                                1  

 Clinical Research                                     1  

 Craniofacial Anomalies                                1  

 Diabetes Services                                     1  

 Hospice and Palliative Medicine                       1  

 Hospital Medicine                                     1  

 Infectious Diseases                                   1  

 Interpreting Services                                 1  

 Melanoma                                              1  

 Pediatric Bone Marrow Transplant                      1  

 Pediatric Infectious Disease                          1  

 Pediatric Infusion and Transfusion                    1  

 Pediatric Occupational Therapy                        1  

 Pediatric Pulmonary Function                          1  

 Social Services                                       1  

 Support Service - Cancer Center                       1  

 Vascular Surgery                                      1  
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Supplemental Table 8.3: Distribution of Testing Notes Across Departments 

Department_Specialty                          Count  

 Obstetrics                                      95  

 Radiology                                       73  

 Pulmonology                                     71  

 General Internal Medicine                       70  

 Gastroenterology                                69  

 Ophthalmology                                   66  

 Pulmonary Function and Bronchoscopy             64  

 Emergency Medicine                              60  

 Endocrinology and Metabolism                    51  

 Obstetrics and Gynecology                       51  

 Family Medicine                                 50  

 Kidney Transplantation                          38  

 Cardiology                                      34  

 Dermatology                                     30  

 Hepatology                                      27  

 Primary Care                                    26  

 Reproductive Endocrinology and Infertility      26  

 General Pediatrics                              22  

 Liver Transplant                                20  

 Neurosurgery                                    19  

 Pediatric Gastroenterology                      19  

 Urologic Oncology                               18  

 Hematology and Oncology                         17  

 Neurology                                       17  

 Orthopedic Surgery                              17  

 Radiology CT                                    15  

 Otolaryngology, Head and Neck Surgery           13  

 Radiology MR                                    13  

 Urology                                         13  

 Rheumatology                                    12  

 Anesthesiology                                  11  

 Gastrointestinal Oncology                       10  

 Interventional Radiology                        10  

 Breast Care - Cancer Center                      9  

 Lung Transplant                                  9  

 Nephrology                                       8  

 Pediatric Endocrinology                          8  

 Geriatric Medicine                               7  

 Lab                                              5  

 Pediatric Nephrology                             5  

 Anticoagulation                                  4  

 Dysplasia                                        4  

 Executive Health                                 4  
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Department_Specialty                          Count  

 Pediatric Cardiology                             4  

 Pediatric Rheumatology                           4  

 Psychiatry                                       4  

 Radiation Oncology                               4  

 General Surgery                                  3  

 Interpreting Services                            3  

 Investigational Therapy                          3  

 Neuro-Interventional Radiology                   3  

 Pathology                                        3  

 Pediatric Neurology                              3  

 Respiratory Therapy                              3  

 Thoracic Oncology                                3  

 Adolescent Medicine                              2  

 Allergy and Immunology                           2  

 Employee Health Services                         2  

 Gynecologic Oncology                             2  

 Heart Transplant                                 2  

 HIV Program                                      2  

 Infusion and Transfusion                         2  

 Orthopedic Surgical Oncology                     2  

 Pediatric Pulmonology                            2  

 Prenatal Diagnosis                               2  

 Surgical Oncology                                2  

 Audiology                                        1  

 Endocrine Surgery                                1  

 Endocrinology                                    1  

 Hospital Medicine                                1  

 Integrative Medicine                             1  

 Melanoma                                         1  

 Nuclear Medicine                                 1  

 Optometry                                        1  

 Pain Medicine                                    1  

 Pediatric Diabetes                               1  

 Pediatric Hematology                             1  

 Pediatric Oncology                               1  

 Pediatric Orthopedic Surgery                     1  

 Physical Therapy                                 1  

 Plastic Surgery                                  1  

 Sleep Medicine                                   1  

 Social Services                                  1  

 Symptom Management                               1  
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8.2.3. Sensitivity Analysis 

In addition to Recall, F2 performance, and our primary sensitivity analysis, we were 

interested in two additional sensitivity analysis. First, we were interested in determining the 

impact of partial de-identification successes, specifically, were there instances where only a 

portion of the PHI was removed that made the changed remaining associated tokens from PHI to 

safe. An example would be obscuring part of a date (eg: 1/1/2018 → */*/2018) or most of a 

name (eg: John A Smith → **** A *****). Second, while not emphasizing Precision as a de-

identification metric, we wanted to catalog which elements of the Philter pipeline were the 

greatest contributors to precision errors to better anticipate which types of non-PHI words were 

most likely to be erroneously removed. 

 

8.2.4. Supplemental Results 

Supplemental Sensitivity Analysis One: What PHI Actually Remains after de-

identification. Even when de-identification failed to completely remove an entire PHI entity, 

approximately 20% of the time it removed enough of the entity to make it no longer recognizable 

as PHI  

 

Supplemental Sensitivity Analysis Two: Precision Errors 

The portions of the pipeline that search for names were the most significant contributors to 

precision errors.  
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Supplemental Table 8.4: Recognizable PHI Analysis (PHIlter, UCSF Test Corpus) 

PHI Category Recognizable PHI 

Age >= 90 0 

Patient_Vehicle_or_Device_Id 0 

Patient_Account_Number 0 

Patient_Medical_Record_Id 0 

Patient_Social_Security_Number 0 

Patient_Phone_Fax 0 

Patient_Initials 0 

Patient_Name_or_Family_Member_Name 6 

Patient_Address 4 

Patient_Unique_ID 11 

Email 0 

URL_IP 0 

Date 6 

Provider_Certificate_or_License 0 

Provider_Name 11 

Provider_Initials 6 

Provider_Address_or_Location 40 

Provider_Phone_Fax 45 

Supplemental Table 8.4. Recognizable PHI counts for PHIlter performance on the UCSF corpus. 

We defined “recognizable PHI” as any annotated identifier that was not PHI according to 

HIPAA after surrounding PHI was removed. There were 158 total FNs for Philter on the UCSF 

corpus initially, with 129 recognizable as PHI by human analysis after de-identification. Refer to 

the “Not Recognizable PHI” column in Supplemental Table 8.3 for detailed information on 

criteria used for determining recognizable PHI. 
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Supplemental Table 8.5: Recognizable PHI Analysis (PHIlter, I2B2 Corpus 

PHI Category Recognizable PHI 

AGE 0 

DEVICE 0 

MEDICALRECORD 0 

PATIENT 2 

DATE 0 

FAX 0 

PHONE 0 

ZIP 0 

USERNAME 0 

STREET 2 

LOCATION-OTHER 2 

IDNUM 0 

CITY 2 

DOCTOR 4 

Supplemental Table 8.5. Recognizable PHI counts for PHIlter performance on the i2b2 test 

corpus. There were 16 total FNs for Philter on the UCSF corpus initially, with 12 recognizable as 

PHI by human analysis after de-identification. 
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Supplemental Table 8.6: False Positive Count by PHIlter Configuration File Element on the 

UCSF corpus 

Filter False Positive Count 

Last Names Blacklist (lastnames_minus_fps.json) 1830 

Whitelist 1725 

First Names Blacklist (firstnames_minus_fps.json) 1236 

'filters/regex_context/names_regex_context3.txt' 649 

'filters/regex_context/initials.txt' 508 

'filters/regex/dates/mm_yy_transformed.txt' 366 

'filters/regex/addresses/hospital2.txt' 356 

'filters/regex/dates/mm_dd_transformed.txt' 301 

'filters/regex_context/names_regex_context2.txt' 252 

'filters/regex/addresses/in_city_transformed.txt' 242 

'filters/regex/ucsf_regex/ucsf_neighborhoods.txt' 226 

'filters/regex/contact/xxx_xxx_xxxx.txt' 191 

'filters/regex/salutations/post_salutations_2chars.txt' 172 

'filters/regex/dates/dd_mm_transformed.txt' 161 

'filters/regex/dates/month_name_transformed.txt' 108 

'filters/regex/dates/mm_dd_yy_transformed.txt' 102 

'filters/regex/salutations/pre_salutations_2chars.txt' 101 

Supplemental Table 8.6. Each row name corresponds directly a file process within the pipeline 

and its relative location on the software filepath. False positive (FP) counts for PHIlter 

configuration file elements with FP counts >=100. Because multiple filters matched some FPs, 

FP counts do not reflect total number of FPs generated by PHIlter, but rather the total number of 

times each filter matched any FP.  
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Supplemental Table 8.7: UCSF corpus TP/FN Counts 

PHI Category TPs FNs Recall 

Age >= 90 11 0 100.00% 

Patient_Vehicle_or_Device_Id 550 0 100.00% 

Patient_Account_Number 35 0 100.00% 

Patient_Medical_Record_Id 471 0 100.00% 

Patient_Social_Security_Number 30 0 100.00% 

Patient_Initials 721 2 99.72% 

Patient_Name_or_Family_Member_Name 1579 6 99.62% 

Patient_Address 3996 7 99.83% 

Patient_Unique_ID 652 20 97.02% 

Email 120 0 100.00% 

URL_IP 468 4 99.15% 

Date 13396 7 99.95% 

Phone_Fax 1469 45 97.03% 

Provider_Certificate_or_License 369 0 100.00% 

Provider_Name 5045 12 99.76% 

Provider_Initials 721 12 98.36% 

Provider_Address_or_Location 3998 43 98.94% 

Supplemental Table 8.7. TP/FN counts and recall per PHI category for PHIlter performance on 

the UCSF test corpus. The following annotated PHI categories were not considered PHI for 

performance evaluation purposes, and not included in performance analysis:. 
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Supplemental Table 8.8: Overall Recall Per PHI Category (PHIlter, I2B2 Test Corpus) 

PHI Category TPs FNs Recall 

AGE 7 0 100.00% 

DEVICE 12 0 100.00% 

MEDICALRECORD 721 0 100.00% 

PATIENT 1445 2 99.86% 

DATE 11880 0 100.00% 

FAX 6 0 100.00% 

PHONE 407 0 100.00% 

ZIP 143 0 100.00% 

USERNAME 91 1 98.91% 

STREET 414 2 99.52% 

LOCATION-OTHER 12 2 85.71% 

IDNUM 377 2 99.47% 

CITY 338 2 99.41% 

DOCTOR 3231 5 99.85% 
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Chapter 9 

Deep Cumulative Dosage Determination 

 

9.1. Abstract 

Glucocorticoids, one of the most common classes of steroids, are prescribed with a great 

variety of cumulative dosages, often including complex tapers, due to their wide utility across a 

large number of health conditions. Cumulative steroid use is associated with several serious 

health conditions and is also an important surrogate outcome for auto-immune treatments. 

Currently, determining cumulative dosage is done through manual chart review which is both 

time consuming and error-prone. Here, I detail the process by which deep learning can be used in 

the Natural Language Processing space to automatically determine the total cumulative dose of a 

steroid that a patient has received directly from the EHR ‘Sig’ field. 

 

9.2. Introduction 

Glucocorticoids are one of the most commonly prescribed classes of medications in the 

United States. They are essentially immune-suppressors, most common administered as pills, and 

are primarily indicated for inflammatory conditions ranging from Asthma, COPD, and allergies 

to Rheumatoid Arthritis, Tendinitis, and Multiple Sclerosis. Glucocorticoids are generally 

considered safe for short term use but long term use is associated with potentially serious risks 

including Osteoporosis, cardiovascular complications, and diabetes. For many of the health 

conditions in which they are used, these steroids serve as secondary treatments, taken during 

acute attacks when front line treatments fail. For example, the frontline treatment for 

Rheumatoid Arthritis are a group of drugs collectively known as Disease Modifying 
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Antirheumatic Drugs (DMARDs). DMARDs are designed to specifically treat RA, however if a 

patients disease suddenly ‘Flares up’, glucocorticoids may be additionally prescribed to suppress 

the entire immune system. In this way, glucocorticoid usage can also be a surrogate for efficacy 

of frontline treatments (such as DMARDs).  

Deep Learning has become state-of-art for many Natural Language Processing (NLP) 

tasks, including sentiment analysis and document classification which both closely mirror the 

task of assigning cumulative dosage, a discrete number, from a string of text.  

 

9.3. Methods 

9.3.1. Data 

Two fields were extracted for patients who had received Prednisone, the most common 

glucocorticoid, prescriptions: “Sig” and “Dosage” 

Sig fields within the EHR contain the physicians short hand written instruction to the 

patient about what dosage of the drug to take, when, and for how long, including information on 

potentially tapering the dosage taken over time.  

The Dosage field contains the volume of prednisone contained within each pill (not the 

cumulative dosage).  

The data itself varies widely in terms of sig length, complexity, and quality 
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Figure 9.1: Sig Word Count 

 

Figure 9.1: Length of sig, in words, on the x-axis. Count of the number of sigs that contained that 

word-count on the y-axis. 

 

9.3.2. Data Processing 

The clinical researchers have determined that exact cumulative dosage is less relevant 

binning the raw cumulative dosage into categories which describe levels of use. These categories 

were determined to be: ‘low’ if the cumulative dose was less than 5mg, “moderate” if the 

cumulative dosage was between 5-10mg, “high” if the cumulative dosage was between 10-20mg, 

and “very high” if the cumulative dosage was greater than 20mg.  

 

9.3.3. Gold Standard 

To assign gold standard labels, 845 charts were manually reviewed by trained clinical 

researchers and assigned one of the four labels. 25% of these, or 212 total samples were held 

aside for testing, the remaining samples were used to conduct three experiments 
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9.3.4. Base Model 

I was initially most interested in the type of data, as opposed to model architecture, that 

would best solve this type of problem. Therefore, for prototyping purposes I chose a simple 

single architecture that seemed to perform well initially on this task and multiple related tasks.  

 

Table 9.1: Pred-sigs Base Architecture 

Layer (type) Output Shape Param # 

embedding_1 (Embedding) (None, 20, 64) 18368 

conv1d_1 (Conv1D) (None, 18, 32) 6176 

max_pooling1d_1 (MaxPooling1) (None, 9, 32) 0 

dropout_1 (Dropout) (None, 9, 32) 0 

lstm_1 (LSTM) (None, 32) 8320 

dropout_2 (Dropout) (None, 32) 0 

dense_1 (Dense) (None, 16) 528 

dropout_3 (Dropout) (None, 16) 0 

dense_2 (Dense) (None, 4) 68 

Total params: 33,460 

Trainable params: 33,460 

Non-trainable params: 0 

 

9.3.5. Experiments 

1. Sig field alone into the base architecture 

2. Language model built using all labeled training sigs, then transferred to the classification 

task 

3. Dual input model using sig field and dosage 

 

For all experiments, sig length was treated as a hyperparameter.  
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9.4. Results 

Table 9.2: Initial Experimental Accuracy 

Experiment Test Set Accuracy 

Sig Field Alone 70% 

Lang Model + Sig Field 68% ** 

Sig + Dosage 77% 

 

Table 9.3: Classification Report of Sig+Dosage Experiment 

 precision recall f1-score support 

0 0.76 0.93 0.84 86 

1 0.81 0.61 0.70 62 

2 0.62 0.60 0.61 35 

3 0.88 0.79 0.84 29 

avg/total 0.77 0.76 0.76 212 

 

Table 9.4: Sensitivity Analysis: Incorrect Predictions for Class “High” (2) Sig+Dosage 

  Sig Dosage Pred_class/True_Class 

34 

mg total by mouth daily take 20mg a day for 

one month then decrease by 5mg every 2 

weeks until you reach 10mg a day 

10.0 690 1        2 

52 take 5 mg by mouth 4 four times daily 1.0 706 0        2 

56 
generic for deltasone take 2 tablets by mouth 

daily 
10.0 715 0        2 

57 

mg total by mouth daily take 2 tablet 20 mg 

total by mouth for 3 days then decrease to 1 

tablet 10 mg total daily 

10.0 649 1        2 

73 

tablet 5 mg total by mouth daily 30mg d x 1 

week 20mg d x 1 week 15mg d x 1 week then 

10mg d 

5.0 642 1        2 
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  Sig Dosage Pred_class/True_Class 

106 
take 1 tablet 2 5 mg total by mouth daily for a 

total of 12 5mg 
2.5 641 0        2 

111 

mg x 5 days take 3 tabs 30mg x 5 days take 2 

tabs 20mg x 5 days then take 1 tab 10 mg 

thereafter 

10.0 696 0        2 

133 take 2 tablet by mouth every day 10.0 675 0        2 

157 take 1 5 tablets daily 10.0 598 1        2 

158 

day for 1 week then reduce to 40 mg for 4 days 

then reduce to 20 mg for 4 days then reduce to 

10 mg 

10.0 704 1        2 

161 
take 1 tablet 1 mg total by mouth daily please 

take 16 mg total per day 
1.0 708 0        2 

171 
2 16 2 22 then 55 mg 2 23 2 29 then 50 mg 3 1 

3 7 then 45 mg 3 8 3 14 
10.0 707 1        2 

177 
take 5 mg by mouth daily taking 15 20mg 

daily 
5.0 606 3        2 

188 
30mg d x 1 week 20mg d x 1 week 15mg d x 1 

week then 10mg d 
10.0 686 1        2 

Columns from left to right: ‘signature’, ‘dosage’ , ‘sample_index’, ‘predicted class label’, ‘true 

class label’. 

 

 

9.5. Discussion and Future Directions 

This is a difficult problem. Even as person with a background in clinical research, it is 

often impossible to tell what the dosage is, just looking at the sigs themselves. Examples of this 

can be seen in the Sensitivity Analysis table above. Often times context that is known to a 

clinical chart reviewer but is not present in the sig or dosage information itself is necessary to 

determine the cumulative dosage. Additionally, the writing of the Sigs sometimes appears to be a 

language puzzle of sorts, for example “take 1 tablet 1 mg total by mouth daily please take 16 mg 

total per day”. Was the answer 1mg total by mouth daily or 16mg?  
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In fact, not all of the errors were caused by the machine, throughout the development 

process we consistently found examples that the machine had labeled correctly but had been 

mislabeled by the expert human annotators. Additionally, there are pure data errors. We have 

encountered multiple sigs which clearly contain two different sigs that have been concatenated, 

probably as a result of copy/pasting by the physician or a bug within the Epic EHR system.  

Despite all of these challenges, and the relatively short amount of time that has been 

dedicated to the project so far, the initial results are quite promising. Result of the top-

performing approach are already hovering in the range of results offered by a commercial 

software company to UCSF at 6-figure licensing cost.  

The target accuracy in order to reach research utility is approximately 85%. To that end, 

next steps are fairly straight forward. First, Python scripts to identify and rectify double sigs will 

be implemented. I am also in the process of designing some ‘helper’ functions to crawl through 

the Sigs, in an attempt to provide the context known to experts but not present in the data itself. 

This helper context will be passed in as a separate input to the network. Finally, I will re-do 

Experiment Two, using all 50k glucocorticoid sigs instead of just the 800 that were part of the 

initial dataset.  

The task is difficult and unlikely to ever reach above 90% accuracy due to the inherent 

noise, errors, and ambiguity in the data itself. However, tasks such as this highlight the power of 

current deep networks in the NLP space. In the space of a few hours of development time I was 

able to achieve current state-of-the-art results that had been developed by teams of people over a 

substantial period of time using older techniques.  
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Chapter 10 

Medical Research Topic Labeling 

 

10.1. Introduction 

The NIH and other agencies are funding high-throughput genomics (‘omics) experiments 

that deposit digital samples of data into the public domain at breakneck speeds. This high-quality 

data measures the ‘omics of diseases, drugs, cell lines, model organisms, etc. across the complete 

gamut of experimental factors and conditions. The importance of these digital samples of data is 

further illustrated in linked peer-reviewed publications that demonstrate its scientific value. 

However, meta-data for digital samples is recorded as free text without biocuration necessary for 

in-depth downstream scientific inquiry. Deep learning is revolutionary machine intelligence 

paradigm that allows for an algorithm to program itself thereby removing the need to explicitly 

specify rules or logic. Whereas physicians / scientists once needed to first understand a problem 

to program computers to solve it, deep learning algorithms optimally tune themselves to solve 

problems. Given enough example data to train on, deep learning machine intelligence outperform 

humans on a variety of tasks. Today, deep learning is state-of-the-art performance for image 

classification, and, most importantly for this proposal, for natural language processing.  

This proposal is about engineering Crowd Assisted Deep Learning(CrADLe) machine 

intelligence to rapidly scale the digital curation of public digital samples. We will first use our 

NIHBD2K-funded Search Tag Analyze Resource for Gene Expression Omnibus 

(STARGEO.org)to crowd-source human annotation of open digital samples. We will then 

develop and train deep learning algorithms for STARGEO digital curation based on learning the 

associated free text meta-data each digital sample. Given the ongoing deluge of biomedical data 
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in the public domain, CrADLe may perhaps be the only way to scale the digital curation towards 

a precision medicine ideal. Finally, we will demonstrate the biological utility to leverage 

CrADLe for digital curation with two large-scale and independent molecular datasets in: 1) The 

Cancer Genome Atlas(TCGA), and 2) The Accelerating Medicines Partnership-Alzheimer’s 

Disease (AMP-AD). We posit that CrADLe digital curation of open samples will augment these 

two distinct disease projects with a host big data to fuel the discovery of potential biomarker and 

gene targets. Therefore, successful funding and completion of this work may greatly reduce the 

burden of disease on patients by enhancing the efficiency and effectiveness of digital curation for 

biomedical big data. 

 

10.2. Methods 

10.2.1. Goal 

We sought to develop two independent deep learning models with large-scale human 

curation of GEO, and we would combine that intelligence to facilitate most accurate automated 

digital curation.  

 

10.2.2. Data 

 Currently, STARGEO catalogues 1,122,750 digital samples drawn from 31,379 

experiments that can be curated. Therefore, to curate all the experiments with human curation at 

about 3 minutes (2.17 minutes for primary curation + 48 seconds or secondary curation) an 

experiment means about 20 validated experiments can be produced an hour between a primary 

and secondary curator. This proposal to develop deep learning models of human curation is 

justified because it will take about 65 days to curate all of STARGEO and validate it among two 
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curators, but only 17 days if accurate machine digital curation can make an accurate primary 

annotation, given an on-demand Upwork crowd can provide rapid biocuration validation. Given 

increased training data generally improves DL classification models. our CrADLe approach to 

annotate STARGEO with human and machine intelligence is not only feasible, but likely a 

cheaper, faster, more accurate and most importantly a much more scalable than other annotation 

efforts.  

Given large enough datasets to train on, DL has proved superior for learning patterns in 

medical imaging for prognosis of Alzheimer’s disease and mild cognitive impairment, organ 

segmentations and detection, ultrasound interpretation, etc. For computer vision applications, 

convolutional neural network (CNN) models have skyrocketed to state-of-the-art performances 

as open architectures such as Google’s Inception v3, Inception v4, and the Google/Microsoft 

hybrid Inception-Resnet accuracyrates greater than 97% that outperform humans for image 

recognition. Most recently, Google developed and validated a best-in-class DL model of diabetic 

retinopathy in retinal fundus photographs had 90.3% sensitivity and 98.5% specificity for 

detecting referable disease. Using 128 175 retinal images, which were graded 3 to 7 times for 

diabetic retinopathy, diabetic macular edema, and image gradability by a crowd of 54 US 

licensed ophthalmologists, google created a best-in-class labeled imageset to achieve state-of-

the-art performance in diagnosing diabetic retinopathy. Most applicable to this project to deep 

learn patterns of free text, recursive Neural Networks (RNNs) for sentiment analysis of free text 

pushes the state of the art in single sentence positive/negative classification from 80% up to 

85.4%. RNNs are the only model that can accurately capture the effects of negation and its scope 

for both positive and negative phrases. Given that state-of-the-art sentiment analysis of free text 

is not precise with any method, combining state of the art deep learning of NLP with a large-
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scale on demand crowd validation as we propose here to ensure precision, is both justified and 

warranted to effect intelligent machine curation of digital samples.  

 

10.2.3. Models 

For preliminary analysis, we built two different deep learning frameworks, one GeneDL 

model based on a CNN of gene expression of 26 genes, and the other Words DL model based on 

free text Recurrent Long Short Term Memory (LSTM) framework state-of-the-art sentiment 

analysis of free text. Our training set was based on STARGEO crowd-annotated samples of 1903 

breast cancer vs 1045 breast tissue controls across 41 experiments run on 26 different platforms.  

 

10.3. Results 

The original LTSM achieved 0.96 area under the ROC performance, by using word 

embeddings as the initial layer in the prediction model to explicitly learn representations in 

relation to the specific prediction task thereby utilizing every sample in the training corpus to it’s 

maximum potential and further improving accuracy of predictions. Furthermore, a modification 

of the LSTM model that included CNN features performed best with complete perormance of out 

of sample AUC. In stark contrast to the LTSM architectures for words, Gene model achieved 

only AUC of 0.81under the ROC performance. This is because of a paucity of the input feature 

space of genes given the diversity of platforms and gene configurations measured in the public 

data as only 26 genes were measures across ALL digital samples across every platform. 

Nonetheless, we selected a batch normalized, fully connected, feed-forward framework with 

dropout for predicting labels from gene expression data to take complete advantage of potential 

effect of gene-gene interactions while forcing the network to learn patterns instead of 
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memorizing them. Rectified Linear Units used for activation to prevent neural saturation and a 

vanishing gradient. During our initial research the top performing model reached 11 layers 

arranged into triple repeated blocks of full connectivity, normalization, activation, then dropout.  

 

10.4. Conclusions and Future Directions 

Deep learning approaches to medical data curation are extremely promising, already 

equaling human performance but at a fraction of the time and cost. Increasing AUC from current 

measures of approximately 0.95 up to >0.999 could potentially be achieved by ensembling 

predictors.  

 

 

 
 

 

 

 

 

 

 

 

Figure 10.1: Simple DL models to compare DL 

techniques based on STARGEO crowed-annotated 

digital samples of 1903 breast cancer vs 1045 breast 

tissue controls across 41 experiments run on 26 

different platforms. Gene DL curation model (left) 

is trained from data on 26 genes that comprises 11 

layers utilizing dropout and maxnorm for 

regularization, batchnormalization, Rectified Linear 

Units (ReLU) for activation. The simpler Words DL 

curation model uses recurrence of word embeddings 

to classify samples based on free text of arbitrary 

lengths.   

 

Figure 10.1: Topic Labeling Architectures 
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Chapter 11 

Conclusion 

11.1. The Past: A Summary 

Where my work has diverged from that of other founders in this field, it has been 

primarily on the types of problems that interest us. Many have made significant contributions to 

the automation of tasks that humans already have some competency in, such as radiological and 

pathological diagnostics, and differential diagnosis. Here they have sought to make processes 

that already work, work even better, reducing error rates and the burden of repetitive tasks. My 

own work has been driven by the motivation to create methods that might enable doctors and 

healthcare systems to systematically perform tasks that are not possible today. I find myself most 

excited by tasks primarily related to predicting, and directing, the course of future. 

Looking back at the checklist of requirements from Chapter 1 that I argued were 

necessary to establish a new field of healthcare that utilizes data on previous actions and 

outcomes to enable smarter ongoing choices; the groundwork that has been laid in this short time 

is actually quite impressive. Approaches for modeling individual patients have been identified 

and validated on the clinically meaningful task of forecasting disease activity for individuals 

with Rheumatoid Arthritis; a task for which no current clinical standard previously existed. 

Furthermore, I have shown that these models can be trained in one hospital system and still 

function effectively on dramatically patients in a different hospital system, providing evidence 

that the models were able to learn something robust and transferable about individual disease 

trajectories. I have provided simple and intuitive methods to dissect what any model has learned 

about the relationship between clinical input variables and outcomes, as well as explanations for 

model predictions on a case by case basis. I have shown how the method can be extended to 
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identify patients that are similar on the basis of how input variables, such as treatments, will 

affect their outcomes, providing a method for data-driven individualized treatment selection. 

Philter, will enable the large-scale automated learning from clinical notes, which have previously 

been inaccessible to researchers due to the sensitivity of the information within them, unlocking 

the insights of the physicians that generate them. Perhaps most importantly, I have established a 

standard for designing, recording and reporting AI-based clinical informatics studies, which will 

in turn facilitate transparency and the establishment of trust and ultimately enable the utilization 

of such models in the clinical setting. 

 

11.2. The Future: A Roadmap 

The field, of course, is still in its infancy. The exciting proof-of-concepts that I have 

described above are exactly that: proofs-of-concept. The application of modern AI to health data 

is evolving so rapidly that my own research has made my manuscripts somewhat outdated before 

they were even published. This can result in a temptation to constantly strive for improvement of 

methods in the research setting at the expense of translating and testing reasonable approaches in 

real-world clinical settings. From my perspective, the next step is obvious. We must demonstrate 

whether physicians armed with insights gleaned from AI trained on relevant patients can provide 

better care for their own patients than physicians acting alone. We need not expect dramatic 

improvements initially, incremental improvements, like interest in a bank account, when 

compounded daily eventually yields remarkable changes.  

My primary hypothesis, one that is shared by every statistician, informatician, and data 

scientist in the world, is that the more completely we sample from the true population of 

individuals to build our models, the more accurate those models will become. Said more simply, 
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humans have a lot of individual variation in every aspect, health and disease are no exception. A 

single physician, no matter how experienced or gifted is only able to see a small portion of that 

variation in their career, therefore the model that their mind builds of the disease and response to 

treatment is inherently quite incomplete. AI models built using the intersections of thousands of 

doctors and millions of patients are likely to capture much more of the true variation and will 

therefore be more robust and reliable. It follows then that the best model would be one trained on 

all of the patients in the world. While philosophically correct, this line of thinking has recently 

lead to demands among researchers for the open sharing of patient data across all institutions and 

strong criticisms of the policies currently which prevent it. Many of those fighting for the public 

sharing of health data are informaticians who are quite divorced from the intimate nature of this 

data. Many people would rather share their financial information than the health information of 

themselves and their families; and no one is arguing for the open sharing of financial data. In 

short; of course we must facilitate the safe sharing of data but first we must earn trust through 

patient engagement over the use of their data, and rock-solid protocols for how data can be 

accessed, for what reasons, and by whom.  

I’d like to part with a final thought about forests and trees. It is so easy to get swept up in 

the excitement about algorithms crunching big data to determine optimal treatments at an 

individual level (trees) that it’s tragically easy to forget that disease is much easier to prevent 

than to cure (forest). According the CDC, 90% of American healthcare spending is on chronic 

diseases, 70% of which are completely preventable with healthy lifestyle practices. In fact, the 

prevention of nearly all health conditions currently effecting the first-world can summarized so 

simply that it is almost laughable: don’t smoke, eat a balanced diet of natural foods, exercise 

vigorously in safe age-appropriate manner for an hour a day 5 days a week, sleep 7-9 hours a 
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night, and don’t sweat the small stuff. The reason that these simple practices are not followed by 

all are complex. The poor do not have access to natural foods or education about the true risks of 

the ‘typical American lifestyle’. Curing lung cancer, or developing the perfect diabetes drug, is 

just sexier than convincing people not to smoke or to eat right and exercise more; attention and 

investment dollars are allocated accordingly. Finally, humans, like nearly all other species, 

evolved in environments of scarcity; we’re naturally gluttonous when possible. Those interested 

in applying AI for the maximal possible impact on the future health of the country would be 

remiss to ignore the forest for the trees. In addition to curing cancer and finding the optimal drug, 

AI must also be used to develop methods to engage people of all backgrounds about their 

lifestyles, empower them to make healthy changes, and provide better access to healthier 

nutrition.  
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