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Abstract

We propose a novel method to study storage system pre-
dictability based on the visualization of file successor en-
tropy, a form of conditional entropy drawn from a file ac-
cess trace. First-order conditional entropy can be used as
a measure o f predictability. It is superior to the more com-
mon measures such as independent likelihood of data ac-
cess. For file access data, we developed a visualization
tool that produces 3D graphical views of the variation in
predictability of successive access events on a per-file ba-
sis. Our visualization tool provides interactive observation
of the variations in predictability according to some arbi-
trary criterion, e.g. time of day, program identifier, user
groups, or any other classification of files. Four entropy
data sets were extracted from various file system traces.
These four data sets are representative of the variability in
file access patterns for different machine use: server, per-
sonal workstation, large number of interactive users, and
heavy write activity. Visualization results show that there is
strong predictability among files and optimizations would
be profitable.

Key Words and Phrases: conditional entropy, file ac-
cess trace, data access patterns, caching effects

1. Introduction

I/O and storage systems are a major performance bottle-
neck [15], and this situation is growing more critical as pro-
cessor and bandwidth performance out-paces advances in
storage access speeds. In other words, with current proces-
sor and storage performance trends, access latency to stor-
age is a growing problem. Predictive techniques have been
applied to improve the performance of I/O systems, and are
an effective method of limiting the effects of this growing
performance gap. The viability of such optimization de-
pends heavily on the predictability of the specific workload.
It is therefore important to study the predictability of file

access patterns [10]. The usefulness or effectiveness of pre-
dictive prefetching and of other efforts at predicting file ac-
cess events would be encouraged for a particular workload
if there is an efficient mechanism for determining the pre-
dictability of a workload.

This study focuses on how to visualize the inherent pre-
dictability of file access sequences. Visualization of file ac-
cess predictability is highly desirable in itself, as it is gen-
erally difficult to demonstrate the dependency among files
given a large file system trace (i.e. a lengthy recording of
real world file access events), and such visualization is of di-
rect benefit to understanding the nature and structure of file
access events. Such visualization is also beneficial in eval-
uating the effect of different parameters on predictability.
For this purpose we have developed a system [12] to study
the variation of file access predictability across all files for
some arbitrary variable parameter. The predictability of the
traces is presented in terms of conditional entropy. That is,
given that a file was just accessed, how uncertain are you
about which file will be accessed next. For the purpose of
this work, we present visualizations of data from experi-
ments to study the temporal variation of file access entropy
over different observation periods (trace durations), as well
as results for experiments that evaluate the effects of caches
on modifying the predictability of workloads.

File and data accesses are driven by applications and
are known to be highly predictable, and yet the problem
of modeling a data access trace is far from solved [7]. Nu-
merous studies attempt to characterize and describe differ-
ent file and data access workloads [18, 19, 16, 17, 3, 14, 9],
but no consistent mechanism exists to quickly and visually
evaluate the nature of a workload across all files. Our sys-
tem is a novel approach to evaluating file system traces, and
has demonstrated considerable usefulness for file systems
research. Specifically, we allow the evaluation of a work-
load across all files and using different variable criteria, and
are capable of presenting two file and variable-specific da-
tums simultaneously. We introduce some background con-
cepts of entropy and how we calculate successor entropy
from file traces in Section 2. The visualization system it-
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self is described in Section 3. Experiments with traces of
file accesses extending up to a year were conducted, and the
resulting visualizations presented new insights into the long
term nature of file predictability. These results are discussed
in Section 4.

2. Entropy and Self-Information

Self-information, entropy and contextual predictability
are aspects of storage systems research that have appeared
very recently, most often under the context of data access
prediction for prefetching [11, 10, 21, 9, 8]. Entropy is
simply a measure of “disorder,” first proposed in 1865 by
Rudolf Clausius [5]. The concept was first described in
the context of chemistry and physics, specifically thermo-
dynamics. It was later defined in an abstract mathematical
sense by Claude Shannon [20], in a work that helped found
the field of information theory.

It is often the case that a file’s context (relative position)
in an access sequence is far more important than its fre-
quency of occurrence. Prior work on storage system opti-
mization, such as that of C. K. Wong [22],is heavily based
on an assumption of independent probability of access. It
was not until recent work by Krishnan et al. [21, 6] that
a more accurate look at file access probabilities was con-
sidered. Even more recent work on optimal placement for
tertiary storage [4], is also based on analytical arguments
that assume independent probability of access for each data
location.

2.1. Predictability & File Successor Entropy

Assuming a data source with an alphabet of m symbols,
the self-information, H, of a sequence of symbols, S, is of-
ten calculated as follows:

H = �
m

∑
i=1

ni
N
� log(

ni
N
) (1)

The value ni is simply the frequency of occurrence of
the ith symbol, si, of the alphabet in the sequence S, and N
is simply the sum of all such frequencies, i.e. the length
of the sequence. A more precise definition of the entropy
of the sequence S is based on the probability of occurrence
of symbol si, pi = P(si). In fact, the value ni

N is simply an
approximation of pi.

It is possible in many scenarios (and file accesses are ac-
tually an excellent example of this), that pi and

ni
N are very

different quantities. In particular, if we have somehow ac-
quired some knowledge about the sequence, resulting in our
being in a state of knowledge B, a more accurate measure
to apply would be the conditional entropy:

H = �
m

∑
i=1

P(sijB) � log(P(sijB)) (2)

Where P(sijB) is simply the probability of occurrence of
symbol si given the knowledge that we are in state B. A
definition of such a state B, and other features specific to a
file access sequence are the subject of the following section.

In this work, we have examined four sets of file access
traces. Each trace consists of a sequence of files that were
accessed. For each file f , all recorded successors of f are
candidates for a prediction. If file f is used as the condi-
tion in Equation 2, then we have H( f ) as a measure of the
amount of disorder among its immediate successors. The
higher this value, the less promising the possibility of an
accurate successor prediction. Simply plotting the values of
H( f ) for each file encountered in a trace would provide a
histogram that gives a good idea of the variation in condi-
tional entropy over the file space.

2.2. Data Sets

File access data was drawn from file system traces gath-
ered using Carnegie Mellon University’s DFSTrace sys-
tem [13]. These are actual recording of all file access re-
quests made on the systems being monitored, and the trace
period used covers more than a year of system activity. The
data sets used cover five systems for durations ranging from
a single day to over a year. The traces represent varied
workloads, particularlymozart a personal workstation, ives,
a system with the largest number of users, dvorak a system
with the largest proportion of write activity, and barber a
server with the highest number of system calls per second.

3. The Visualization System

Input to our system consists of file entropy data calcu-
lated from the file traces. Each conditional entropy value is
related to a file during a certain trace period. These data are
presented in 3D by mapping the file identifiers, sorted by
their conditional entropy, to the x-axis; the different dura-
tions to the y-axis; and the conditional entropy value to the
z-axis and possibly color. Color defaults to mirror the z-axis
information, but has also been used to represent a fourth di-
mension – file access frequencies. For the results we present
in x4, we study both the effect of different trace durations
and of different caches on the successor predictability of our
file access workloads.
1. Varying time scales – each point on the surface repre-

sents the successor entropy (in both height and color),
of a particular file (on x), for a particular trace duration
(varied on the y-axis).
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2. Varying cache sizes – each point on the surface again
represents the successor entropy (in height) and the
popularity (in color), of a particular file (on x), for a
particular intervening cache size (varied on the y-axis).

3.1 Varying Time Scales

Because we want to study the variability of file access
patterns for different durations, we keep a separate record
of the access patterns for each duration. For example,
over a one day period with 20,000 file access events, if
we want a granularity of 5,000 events, then we have 4 dis-
tributions of conditional entropies consisting of the: first
5,000 events, first 10,000 events, first 15,000 events, and all
20,000 events. Note that because there is a different num-
ber of files accessed for each of these string of events, and
because we are sorting the file identifiers on x by their con-
ditional entropy values, points with the same x coordinate
do not refer to the same file in general. For this reason it is
important to point out that points along the x-axis are ranked
by their conditional entropy, and not by their file identifiers.
This ensures an easy mechanism for visualizing the vari-
ation of predictability among files in general, and not be
limited to file identifications. Furthermore, we also want to
compare the patterns of different durations. Hence, we pro-
vide two views of the same data: unnormalized (e.g., Fig-
ure 1(a)) and normalized (e.g., Figure 1(b)). The normalized
view linearly interpolates and scales the distributions of dif-
ferent durations so that they all appear to be of the same
length.

The conditional entropy values are mapped to both
height and color. Whether they are presented as a surface
(e.g., Figure 1) or as a set of curves. we use a “temperature”
color map where “hotter” colors are used for high entropy
values (low predictability) , “cooler” colors are used for low
values (high predictability).

Algorithm 1 Calculate RGB value for graph point

Cni 
Ci�Cmin

Cmax�Cmin
Ri Cni

Bi 1�Cni
if Hni � 0:5 then

Gi Ri

else
Gi Bi

end if

Each data point is rendered in RGB, as described by Al-
gorithm 1, either based on its entropy value or based on a
fourth dimension of data if available, Ci is the value at this
point for which we wish to use color information. Cmin and
Cmax are the minimum and maximum entropy of the data
set. Cni is the normalized value, which ranges from 0 to

1. Ri, Bi and Gi are the RGB assignments for this point.
Therefore a point datum is represented with colors, high
values appear bright and red while lower values appear as
dark blue. We used this color information to distinguish
the frequency of file accesses performed for each file when
we evaluate the effects of caching on access predictability.
This is a particularly suitable choice, as the data represents
a fourth dimension of data points that vary widely, avoiding
any issues with the rainbow color scheme.

Because the number of files accessed can be very large
(over a million), in our visualization system, all three di-
mensions of data can be normalized, while still preserving
the property of relative file accesses predictability for ef-
fective evaluation. Finally, our system provides interactive
manipulation of the data set in 3D space to help the user
gain a better understanding of the visualized entropy.

3.2 Cache Effects & Popularity

Our second set of experiments looked at the effects of
intervening caches, and file popularity. When a file access
sequence is passed through a cache, we get a new “filtered”
workload, representing the original data requests with the
exception of those that could be satisfied by the cache. Such
a filtered workload is normally considered more difficult
to manage, as it often results in poor cache performance
(when the filtered workload is presented to another cache,
an increasingly common occurrence with today’s environ-
ments). To study the effect of such filtering, we used our
system to visualize file successor predictability using inter-
vening cache size as the optional parameter (instead of trace
duration, used in the time-scale experiments).

As with the time-scale experiments, each data point is
rendered in RGB according to Algorithm 1, but the color
is used to provide an additional dimension of information.
Specifically, we use the color to represent the popularity of
the files – the total number of times they are accessed. This
allows us to visually evaluate whether there is any corre-
lation between file access frequency and predictability. As
we shall see in x4, any such correlation is limited and totally
masked by increased caching.

4. Results and Discussion

In this section we will present sample results and analy-
sis from our experiments. We start with the experiments that
dealt with the effects of time scale on predictability, which
also includes a presentation of the usefulness of normaliza-
tion for comparing unequal histograms. We then go on to
present results for the effects of different cache sizes on pre-
dictability. This also includes the use of color to demon-
strate the lack of correlation between file access frequency
and predictability.
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4.1 Multiple Time Scales

To study the effect of time scale, the conditional en-
tropy of file accesses are calculated. The distributions of
the conditional entropy after every 100 thousand accesses
are recorded cumulatively, thereby producing a histogram
for the first 100 thousand accesses, then a histogram for the
first 200 thousand accesses, and so on. A one year trace
could thus divided into 30 histograms. We also used one day
file traces from the same systems, each one with around 20
thousand file accesses observed. For the one day file traces,
histograms of conditional entropy are produced after every
five thousand file access events.

Figure 1 shows entropy data extracted from a one day
trace of the workstation mozart. Since there are 20,000 ac-
cess events per day and we are studying the traces in incre-
ments of 5,000 access events, there are 4 curves represent-
ing durations of 5,000, 10,000, 15,000 and 20,000 file ac-
cess events. Each curve represents conditional entropy cal-
culated for a different fraction of the day long trace. These
are paired and tiled to generate the surface in Figure 1. Be-
cause this implies a different number of file identifiers at
each increment (Figure 1(a)), we have the option to normal-
ize file identifier numbers (along the x axis) to an adjustable
consistent range (Figure 1(b)). This allows us to evaluate
variations in the distribution of files with high and low en-
tropy, without surface variation introduced by variations in
the number of files. It is clear that the entropy curves de-
crease very fast and remain at low values for most of the
day.

More interesting observations can be made from a look
at the longer trace durations, which range up to a full year
(Figure 2). The most interesting observation from Figure 2
is the general similarity among the workloads, and their dis-
similarity with the single day trace of mozart. This simi-
larity true for all four workloads tested, though the figure
shows only mozart and barber. The entropy surfaces of
all four systems are very similar and most areas are blue.
This shows that the entropy stays at very low values and
the predictability doesn’t change much from system to sys-
tem. So we can conclude that successor predictability is
largely system independent. The second important obser-
vation is the reduced variation in a longer trace period (one
year of Figure 2(a) vs. one day of Figure 1(b)). This is a
very strong suggestion that file system predictability is very
high in general, but that file prefetching performance would
be improved with longer trace durations. Longer trace peri-
ods would allow more detailed conclusions to be drawn, as
more successor information can be gathered.

The even nature of this effect and the extended durations
over which it holds true, have been very informative for sys-
tems researchers using these traces. One particular work on
this subject involved the construction of a predictive cache

which utilized sets of successors of variable size. Larger
sets seemed to be of limited use for short multi-day sim-
ulations. Simulations of these larger sets over periods of
almost a year resulted in dramatic performance gains [2].
Knowledge of the behavior of the workload over extended
durations was directly responsible for demonstrating an al-
most 60% reduction in requests for out-of-cache files.

4.2 Caching Effects

For caching effects, we used our system to visualize the
effects of increasing cache sizes on the workload. This was
done by filtering the workloads through a simulated cache
of capacity ranging from 0 to 300, and plotting the condi-
tional file entropy histograms for each cache capacity. A
capacity of 0 is equivalent to the original access sequence,
while a cache of size 300 represents a large enough cache
capacity to render simple independent probability based
predictions useless.

We present the results of these experiments for access
sequences of approximately a month (Figure 3). Similar re-
sults were observed for longer durations. The most impor-
tant observation to be made from these figures is how the
most popular files are widely distributed across the range
of predictable files. Specifically, aside from the original
workloads (with cache size 0), there is limited correlation
between predictability and access frequency (we see light
points across the range of files). This is especially important
as it clearly demonstrates that many popular files are also
very predictable in their associated access behavior. These
observations support prior work that has demonstrated how
a succession-based predictive caching scheme can maintain
good performance in spite of intervening caches [1].

5. Conclusion and Future Work

We have presented a novel technique to view the inher-
ent relatedness of arbitrary file access sequences, and its
variability with respect to an arbitrary parameter. For this
case study, we looked at temporal variability, and the ef-
fects of intervening caches of varying sizes. Specifically,
we used groups of file successors and their conditional en-
tropy. We then used either increasing trace durations, or
increasing cache sizes as the parameter. The resulting 3D
entropy curves and surfaces demonstrated that subsequent
file accesses are highly predictable, and that variation in
this result diminishes as the duration of the observation pe-
riod increases. These observations were of direct benefit
to a current systems research project that shows promising
results in improving file caching performance. In general
being able to identify workloads with such a high depen-
dency among file accesses suggests great promise for the
application of predictive optimizations to those workloads.
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We were also able to demonstrate that some of the most fre-
quently accessed files are also among the most predictable,
an observation that remained undiminished by intervening
caches.

For the entropy data, we need to view data generated
with even more parametric conditions (mapped to y-axis).
It would be interesting to study entropy of user-classified
file access events, or program-classified access events. For
the time being we have only considered time variation, and
caching effects. Yet in doing so, we have been able to pro-
vide strong visual evidence for the consistently predictable
file accesses over widely varying time scales.

It is also important to demonstrate the generality of this
approach by testing, using different conditioning predicates
(the x-axis entries). For now we have limited these to
single file identifiers for the predicating condition. Can-
didates for predicating conditions include file groups and
sequences, accesses filtered through a cache, and physi-
cal storage blocks of varying sizes. Other possibilities for
parametric conditions (y-axis definitions) include different
count-decay policies, varying block, group, or sequence
sizes, and even competing predicating policies (e.g. context
modeling vs pattern detection vs program-based modeling).
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(a) unnormalized

(b) normalized

Figure 1. One day data from mozart

(a) mozart

(b) barber

Figure 2. Varying Time Scale Surface Visual-
ization

(a) mozart

(b) barber

(c) ives

(d) dvorak

Figure 3. Cache-Frequency Visualization –
Month
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