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ARTICLE

Harmonizing Genetic Ancestry
and Self-identified Race/Ethnicity
in Genome-wide Association Studies

Huaying Fang,1,2 Qin Hui,3,4 Julie Lynch,5,6,14 Jacqueline Honerlaw,7 Themistocles L. Assimes,2,8

Jie Huang,7,9,19 Marijana Vujkovic,10,11 Scott M. Damrauer,10,12 Saiju Pyarajan,7,13

J. Michael Gaziano,7,13 Scott L. DuVall,14,15 Christopher J. O’Donnell,7,9 Kelly Cho,7,13

Kyong-Mi Chang,10,16 Peter W.F. Wilson,4,17 Philip S. Tsao,2,8 the VA Million Veteran Program,
Yan V. Sun,3,4,18,* and Hua Tang1,2,*

Large-scale multi-ethnic cohorts offer unprecedented opportunities to elucidate the genetic factors influencing complex traits related to

health and disease among minority populations. At the same time, the genetic diversity in these cohorts presents new challenges for

analysis and interpretation. We consider the utility of race and/or ethnicity categories in genome-wide association studies (GWASs)

of multi-ethnic cohorts. We demonstrate that race/ethnicity information enhances the ability to understand population-specific genetic

architecture. To address the practical issue that self-identified racial/ethnic information may be incomplete, we propose a machine

learning algorithm that produces a surrogate variable, termed HARE. We use height as a model trait to demonstrate the utility of

HARE and ethnicity-specific GWASs.
Introduction

Genome-wide association studies (GWASs) have become a

powerful approach for exploring the genetic basis of com-

plex phenotypes. While earlier studies focused on popula-

tions of predominantly European descent, recent efforts

have aimed to substantially expand racial and ethnic diver-

sity. The Million Veterans Program1 (MVP) represents a

multi-ethnic cohort, which has enrolled more than

750,000 veteran volunteers, completed genotyping in

more than 350,000 participants to date, and includes a

wealth of phenotypes and health outcomes. Questions

have arisen while performing GWASs in a multi-ethnic

cohort regarding the definition and the use of an individ-

ual’s ancestry. Dense genotype data have enabled accurate

estimation of individual ancestry,2–4 which has been

shaped by reproductive isolation and admixture through

human history. At the same time, many studies also obtain

racial/ethnic information on participants through ques-

tionnaires or electronic health records (EHR). In this paper,

we will refer to this latter information as self-identified

race/ethnicity (SIRE) to distinguish from genetically in-

ferred ancestry (GIA). A primary goal of multi-ethnic
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GWASs is to characterize ethnicity-specific trait loci or het-

erogeneous genetic effect across populations. An example

of ethnicity-specific locus is CD36 (MIM: 173510) for

high-density lipid cholesterol (HDL), for which the puta-

tive causal variant (rs2366858) is only polymorphic in

populations of African descent.5 A well-known example

of heterogeneous genetic effect is the APOE (MIM:

107741) e4 allele, which is polymorphic in many popula-

tions but confers greater risk of Alzheimer disease in Asians

compared to other populations.6,7 Themechanisms under-

lying such heterogeneity are not well understood and may

include unaccounted-for causal variants nearby or interac-

tion with environmental or genetic factors that vary across

populations. With the goal of effectively characterizing

ethnicity-specific trait loci and interpreting heterogeneous

genetic effects, we investigate the analytic issues related to

ancestry, race, and ethnicity in multi-ethnic GWASs.

To date, most GWASs stratify on SIRE and adjust GIA

within SIRE as covariates. The stratification by SIRE often

implicitly occurs at the recruitment or genotyping stages,

which focus on populations described by a single SIRE,

such as Hispanics, Europeans/European Americans, Afri-

can Americans/Afro-Caribbean, or East Asians, among
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others. Within each race/ethnicity, GIA is adjusted as cova-

riates to account for genetic structure within a SIRE.4,8

Results from these ethnicity-specific studies are combined

through meta-analysis within an ethnicity or through

trans-ethnic analysis across ethnicities.9,10 In contrast, in

recent Biobank-based multi-ethnic cohort studies, partici-

pants are recruited, phenotyped, and genotyped according

to a uniform protocol. For such studies, two analytic strate-

gies can be considered. One approach, which we will refer

to as mega-analysis, performs association mapping on the

entire cohort, adjusting for population structure in the

entire cohort using GIA. While simple to implement, re-

sults from such an analysis are difficult to interpret: a sig-

nificant trait locus may be relevant in one racial/ethnic

group, a few groups, or all groups. When the representa-

tion of ethnicities is unbalanced, the association results

are likely driven by the group with the largest sample

size. Furthermore, we show through simulation and ana-

lyses of real data that, compared to stratified analysis,

mega-analysis often loses statistical power when the causal

variant is minority specific or its allelic effect varies be-

tween populations.

The alternative approach performs stratified analyses

for each racial/ethnic group. In addition to the interpret-

ability of association findings, this approach enables

meaningful comparison between studies and meta-anal-

ysis across studies. However, the question remains how

strata should be defined in a multi-ethnic cohort, in

which participants are enrolled without restrictions

based on race or ethnicity. We reason that SIRE and

GIA have complementary strengths. In epidemiologic

studies, there is a long history of stratifying on SIRE.

This is because SIRE acts as a surrogate to an array of so-

cial, cultural, behavioral, and environmental variables,

many of which are correlated with trait variation or

disease risk.11–13 Hence, stratifying on SIRE has the po-

tential benefits of reducing heterogeneity of these non-

genetic variables and decoupling the correlation between

genetic and non-genetic factors. For genetic association

studies, the SIRE categories recapitulate the continen-

tal-level genetic ancestry structure;14–16 therefore, popu-

lation-specific trait variants are likely to be enriched in

one or a few SIRE groups. However, SIRE can be incom-

plete and of varying accuracy depending on the source.

In MVP, SIRE is derived from direct responses to survey

questionnaires and from text mining of the Department

of Veterans Affairs EHR. This leaves 3.67% of the partic-

ipants without any SIRE information; additionally,

inconsistency occurs when consolidating multiple sour-

ces. The missing and imperfect SIRE is expected in

most multi-ethnic EHR-based biobank cohorts. In

contrast, GIA—in the form of principal components or

admixture proportions—can be estimated for every

GWAS participant. Previous population genetic studies

have demonstrated that GIA and self-identified racial/

ethnic information have a high correlation, but one

does not unambiguously determine the other. Specif-
764 The American Journal of Human Genetics 105, 763–772, Octobe
ically, in admixed groups such as African Americans

and Hispanics, genetic ancestries vary continuously

among individuals along axes that represent admixture

proportions; defining strata based on GIA requires

thresholds that are often ad hoc.17 Conversely, the distri-

bution of ancestry proportions may partially overlap

between different racial/ethnic groups and cannot be

separated based on GIA alone.18,19

Motivated by these practical challenges, we propose a su-

pervised learning algorithm that defines a categorical strat-

ification variable in a multi-ethnic GWAS. The variable,

termed HARE (harmonized ancestry and race/ethnicity),

uses GIA to refine SIRE for genetic association studies in

three ways: identify individuals whose SIRE is likely inac-

curate, reconcile conflicts among multiple SIRE sources,

and impute missing racial/ethnic information when the

predictive confidence is high. We describe the relationship

between HARE, racial/ethnic, and genetic ancestry inMVP,

a representative US-based multi-ethnic cohort. Using

HARE as the stratifying variable, we investigate the effec-

tiveness of detecting ethnicity-specific trait loci through

simulation as well as analysis of height as a model trait

in the MVP.
Material and Methods

HARE
The goal of HARE is to define strata for ethnicity-specific GWAS an-

alyses. The computation of HARE consisted of two components:

first, in the ‘‘training’’ step, a support vector machine (SVM)model

was built, which learned the correspondence between GIA and

SIRE; second, in the ‘‘assignment’’ step, HARE was determined

based on SIRE, GIA, and the output from the SVM. The assignment

follows the decision tree of Figure 1.

Training of SVM

The SVM used GIA, the top 30 PCs in our analysis, as predictors

and SIRE as response. Because SIRE is a multi-class categorical

variable, we first trained a one-versus-one classifier with a radial

basis function kernel for every pair of categories. These binary

classifiers were then combined using a pairwise coupling model

to produce a multi-class probability vector for each individual.20

The individual classifiers had two tuning parameters: the inverse

variance of the kernel, g, controls the radius of influence exerted

by a single training sample, while the regularization constant,

C, encourages sparse models. These parameters were optimized

by searching a two-dimensional grid and using a 5-fold cross-

validation. More details are given in the caption of Figure S1.

In the MVP analysis, SIRE took four values: Hispanic, non-

Hispanic Asian, non-Hispanic black, and non-Hispanic white,

as described below.

Assignment of HARE

Given an individual’s genetic PCs, the multi-class SVM outputs a

probability vector, ðP1; .; PKÞð
PK
l¼1

Pl ¼ 1Þ, representing the pre-

dicted membership probability for each of the K distinct cate-

gories. Let L1 denote the stratum corresponding to the highest

predicted probability, L2 be the stratum corresponding to the sec-

ond highest predicted probability, and so on, such that

PL1
RPL2

R.RPLK . For individuals whose SIRE is non-missing
r 3, 2019



Figure 1. Decision Tree for HARE Assign-
ment
For each individual, PL1RPL2R.RPLK
denote the support vector machine pre-
dicted probabilities, arranged in decreasing
order from the most likely stratum, L1, to
the least likely stratum, LK. If the individ-
ual’s SIRE is not missing, PSIRE denotes the
support vector machine predicted probabil-
ity corresponding to SIRE; otherwise PSIRE is
undefined. For analyses reported in this
study, t1 ¼ 40 and t2 ¼ 20.
and consistent across records, let PSIRE denote the predicted prob-

ability corresponding to SIRE. For each individual, HARE is

assigned according to the decision tree in Figure 1, or equiva-

lently, as:

HARE¼

8>>>>>><
>>>>>>:

SIRE; if SIRE is non�missing; and
PL1

PSIRE

%t1;

L1; if SIRE is missing; and
PL1

PL2

> t2;

Missing; otherwise:

Note that when SIRE is non-missing and strongly contradicts GIA,

we set HARE as missing rather than re-assigning the individual ac-

cording to the predicted stratum L1.

HAREmay be unassigned (missing) for some individuals. We set

t1 ¼ 40 and t2 ¼ 20; lower t1 and higher t2 will result in more indi-

viduals with missing HARE, through removing more outliers and

assigning fewer individuals, respectively.

User-Selected Parameters

All results presented in this paper used the SVM trained on top 30

PCs. Comparing the assignment using 30 PCs versus 20 PCs re-

vealed a discordance rate of 1.3%. This level of consistency is

not surprising, because as higher PCs tend to describe finer-level

populations structure, they are less informative for the four ma-

jor HARE groups. On the other hand, if a PC were entirely unin-

formative, it will be ignored during the SVM training. Naturally,

including many unnecessary PCs will increase computation

burden. Therefore, we recommend using an upper limit of the

PCs that are relevant; specifically, for major race/ethnicity strata,

30 PCs suffice. The two thresholds, t1 and t2, control the strin-

gencies with which the outliers are removed and individuals

without SIRE are assigned a HARE. Varying these parameter

values in a wide range from 0 to 100, we found that the HARE

assignment was quite stable (Figure S2). This analysis also pro-

vides practical guidance in choosing the thresholds. In our study,

we chose the values of 40 and 20, respectively, based on the vi-
The American Journal of Human G
sual inspection that the slope of the curves

is fairly shallow at these values.

SIRE and GIA in the Million Veteran

Program (MVP)
The MVP, launched in 2011 by the Depart-

ment of Veteran Affairs Office of Research

and Development, was a nation-wide

research program aiming to acquire new

biological insights and to elucidate the ge-

netic basis of diseases, with the ultimate

goal of further refining precision medicine
to Veteran Affairs health care.1 MVP participants consented to a

blood draw and to have their DNA extracted for genomic profiling

and linked to their full electronic health record within the VA.

Both MVP Biobank and this analysis were approved by the VA

institutional review boards.

Unless otherwise noted, analyses presented in this paper

included 351,820 MVP participants, who were genotyped using

a customized Affymetrix Axiom Biobank array of 723,305 variants.

For GIA, the top 30 PCs were computed using program FlashPCA21

on an extended genotype dataset that included all MVP partici-

pants and an additional 2,504 individuals from the 1000 Genomes

Phase 3 data.22 To aid interpretation, we also estimated individual

ancestry proportions using the programADMIXTURE23 with K¼ 5

and augmented the MVP participants with individuals from 1000

Genomes Phase 3 data that approximated European (GBR), Afri-

can (YRI/LWK), East Asian (CHB), South Asian (GIH/PJL), and

Native American (PEL) ancestral populations. We note that this

admixture analysis was designed to qualitatively complement

the PCA analysis: as the 1000 Genomes individuals included in

this analysis did not fully represent ancestry diversity in MVP,

various model assumptions in ADMIXTURE were violated; there-

fore, we caution quantitative interpretation of the estimated

admixture proportions.

SIRE in MVP was derived based on information collected from

the VA Corporate Data Warehouse (CDW) and the MVP Baseline

Survey (MVP-BS). Overall, �60% of participants had consistent

SIRE, while the remaining participants either had no SIRE or had

multiple and inconsistent responses among two or more SIRE de-

terminations in CDW and the MVP-BS. Because our goal was to

define ethnicity-specific strata for subsequent GWAS analyses,

we focused on defining four groups—Hispanics, non-Hispanic

Asian, non-Hispanic black, and non-Hispanic white—which

havemoderately large sample sizes for adequately powered genetic

association analysis. For this reason, we set the SIRE of individuals

whose responses were not in one of these four categories as
enetics 105, 763–772, October 3, 2019 765



Table 1. Comparison between HARE and SIRE among 351,820 MVP Participants

HARE

SIRE

Non-Hispanic White Non-Hispanic Black Hispanics Non-Hispanic Asian Missing Total

Non-Hispanic White 163,267 0 0 0 85,240 248,507

Non-Hispanic Black 0 25,830 0 0 42,325 68,155

Hispanics 0 0 10,306 0 15,541 25,847

Non-Hispanic Asian 0 0 0 1,449 1,605 3,054

Missing 400 110 546 23 5,178 6,257

Total 163,667 25,940 10,852 1,472 149,889 351,820
‘‘missing,’’ which included American Indian, Alaska Native, Native

Hawaiian, Other Pacific Islanders, and multi-race/ethnicity

responses.

To train the SVM model described above, we constructed a

training dataset that included 201,931 individuals whose SIRE

was unambiguous and was one of the four groups. The top 30

PCs were used as predictors. To reduce the influence of a few out-

liers on the SVM model, we repeated the SVM training step once

after removing 1,547 individuals, for whom the predicted most

likely group is not the same as SIRE. Thus, the final SVM model

used to compute the predicted probability vectors was based on

200,384 individuals. The assignment of HARE followed the deci-

sion tree in Figure 1. Because our training dataset did not include

American Indian, Alaska Native, Native Hawaiians, and Pacific Is-

landers, the HARE for individuals reporting SIRE entirely from one

of these populations were set to missing. Altogether, 6,257 indi-

viduals had missing HARE.

As an assessment of its statistical accuracy, we applied the SVM

trained on the 201,931 individuals, described above, to a non-

overlapping set of 27,974 MVP participants, for whom SIRE was

available and genotyping was completed on the same Affymetrix

array at a later date. PCs of these individuals were calculated

by projecting onto the axes determined based on the main

cohort.21 Thus, these individuals were not used in any step during

the training of the SVM model. We then assigned strata assuming

either their SIRE is known or unknown, and we compared these

assignments with the actual SIRE.
Simulation
We performed simulation studies to characterize the statistical

power for detecting minority-specific trait variants using HARE-

stratified analysis as compared to that of a mega-analysis

approach. In brief, we first selected a minority-specific causal

variant as described below. A quantitative phenotype was then

simulated using program GCTA24 and the MVP genotype data, ac-

cording to the genotype at the causal variant and assuming that it

explains a specific proportion of the phenotypic variance, h2. The

causal variant was then removed from the dataset, and SNPs

within a 5 100K base pair (bp) window of the causal variant

were scanned for association using PLINK.25 Thus, the genotype

data used for the association analysis represented realistic LD pat-

terns both within ethnicity and between ethnicities. For each

causal variant, a total of 100 phenotypes were simulated for each

specific h2, and power was defined as the proportion of simula-

tions, in which at least one tag SNP near the causal variant was

associated with the phenotype at p < 5 3 10�8. This process was

repeated for ten different values of h2 ranging from 0.0001 to
766 The American Journal of Human Genetics 105, 763–772, Octobe
0.01. To eliminate population stratification, in HARE-stratified

analysis, the top 10 PCs calculated within a HARE stratum were

adjusted as covariates. For the mega-analysis, the top 20 PCs

computed on the entire cohort were adjusted as covariates.

To select causal variants, we considered rare and common causal

variants separately because the LD pattern around these causal var-

iants are likely to differ. For rare causal variants, we randomly

selected 125 unlinked SNPs such that the minor allele frequency

(MAF) was less than 1% in one HARE minority strata while absent

in all other HARE strata; these included 105 variants that were

polymorphic only in non-Hispanic black and 20 that were poly-

morphic only in Hispanics. Requiring a causal variant to have an

MAF > 10% in one minority population while monomorphic in

all other strata yielded very few SNPs. Therefore, we relaxed the

population-specific criterion and instead looked for relatively

common variants that preferentially occur in one stratum.

Specifically, we selected (1) 103 variants with MAF > 0.1 in non-

Hispanic black, MAF % 5 3 10�4 in non-Hispanic white and

MAF % 1 3 10�2 in Hispanics and (2) 3 variants with MAF > 0.1

in Hispanics, MAF % 5 3 10�4 in non-Hispanic white, and MAF

% 2 3 10�3 in non-Hispanic black.

GWAS for Height in MVP data
Of 351,820 MVP participants, 342,883 had height measurements

after excluding extreme outliers (height < 48 or > 99 inches) and

amputees. We then took the average of measurements that were

made within 3 years from an individual’s enrollment date,

excluding measures more than 3 inches from the individual’s

average height. A multi-ethnic GWAS using both stratified and

mega-analysis were performed within each HARE stratum and in

the entire cohort, respectively, using the same strategy to control

for population stratification as described in the Simulation section

above. We also performed fixed-effects, inverse-variance weighted

meta-analysis combining four HARE groups using PLINK.25 Signif-

icant SNPs within 1 Mb were considered as the same locus. For

validation, we compared GWAS results in MVP with UKB

GWAS26 for height in 452K individuals of European ancestry,

and to WHI, which included 8,149 African American women.27
Results

HARE in the MVP

Of 351,820 individuals, all but 6,257 (1.78%) were as-

signed to one of the four non-overlapping HARE groups:

Hispanics, non-Hispanic white, non-Hispanic black, and

non-Hispanic Asian (Table 1). Figures 2 and 3 compare
r 3, 2019



Figure 2. The First Two Principal Compo-
nents of Genetically Inferred Ancestry and
HARE Assignments for Individuals, whose
SIRE Is Non-missing and Consistent across
Records
Colored points represent individuals whose
HARE agrees with SIRE. Black points high-
light individuals whose genetically inferred
ancestry strongly disagrees with SIRE; subse-
quently HARE for these individuals is set to
missing. All other MVP participants are de-
noted in gray. The gold triangle indicates a
hypothetical individual whose HARE could
be non-Hispanic European, Hispanic, or
missing, depending on her SIRE. Shown
are non-Hispanic white (A), non-Hispanic
black (B), Hispanic (C), and non-Hispanic
Asian (D).
GIA and HARE; the interpretation of the genetic PCs is as-

sisted using a model-based admixture analysis, which

included Europeans, Africans, Native Americans, East

Asians, and South Asians as the ancestral individuals (see

Material and Methods). The first two PCs, computed using

the genotypes of the entire MVP cohort, represented the

variation of African (PC1) and Native American/Asian

(PC2) ancestry. As expected, the ancestries of individuals

in the non-Hispanic black group varied along PC1 that

described the difference among European ancestry and Af-

rican ancestry (Figures 2B, 3B, and S3B). Likewise, Hispanic

individuals showed varying proportions of European, Afri-

can, and Native American ancestry (Figures 2C, 3C, and

S3C). The non-Hispanic Asian group consisted of two com-

ponents, corresponding to the East and South Asian popu-

lations, respectively, according to the admixture analysis

(Figures 2D, 3D, and S3D). Interestingly, European admix-

ture (greater than 20%) were inferred in 12% (n ¼ 364) of

the individuals in the HARE non-Hispanic Asian group.

Among this group, 46% (n ¼ 166) individuals had ‘‘Asian’’

as the only SIRE information; an additional 25% (n ¼ 91)

indicated both Asian and European ancestries. This likely

reflected recent admixture between Asian Americans and

European Americans. Although it would have been feasible

to train the support vector machine to learn East Asian and

South Asian as two separate HARE categories, we chose to

group them into one stratum because the statistical power

of subsequent genetic association analysis would likely

be low in this group due to relatively small sample size

(n ¼ 3,054).

Among nearly 202,000 individuals with SIRE, 1,079

(0.53%) had GIA strongly indicating a different racial/

ethnic group. These individuals are highlighted in Figure 2
The American Journal of Human G
(black points) and appear as genetic

outliers compared to others with the

same SIRE (colored points). As it was

not possible to resolve the source of

the discrepancy, we set HARE of these

individuals to missing. Among the

nearly 150,000 individuals whose SIRE
was missing or not used in the training procedure,

144,711 (96.55%) were assigned into one of four HARE

groups. It should be emphasized that the assignment of

HARE depended on both the individual’s GIA and whether

the individual has known SIRE. Consider a hypothetical

individual with PC coordinate marked by the triangle on

Figure 2. The ancestry of this individual was estimated to

derive 62.8%, 12.9%, 15.7%, 2.4%, and 6.1% from Euro-

pean, African, Native American, East Asian, and South Asian

ancestral populations, respectively. The predicted most

likely stratum by the support vectormachinemodel was Eu-

ropean, followed by Hispanic. Suppose the individual’s SIRE

was European, HARE would be non-Hispanic white because

the prediction agrees with SIRE

�
P1
PSIRE

¼ 1

�
. If, on the other

hand, the SIRE of this individual were Hispanic, the proba-

bility ratio between European and Hispanic would not be

large enough to reject SIRE

�
PEur
PHisp

< t1 ¼ 40

�
; hence the

HARE of this individual would be assigned as Hispanic.

Finally, if the individual’s SIRE were missing, HARE would

remain missing because the most likely stratum (European)

and the secondmost likely stratum (Hispanic) would be too

close to call

�
P1
P2

< t2 ¼ 20

�
. A consequence of the asym-

metric decision is that a comparison between Figures 2

and 3 indicates that the HARE clusters representing the

four major groups are slightlymore diffused among individ-

uals with SIRE (Figure 2) compared to the corresponding

clusters among individuals with missing SIRE (Figure 3).

To assess its statistical accuracy, we applied the support

vector machine model to an independent ‘‘test cohort,’’

consisting of 27,974 veteran participants, whose SIRE
enetics 105, 763–772, October 3, 2019 767



Figure 3. The First Two Principal Compo-
nents of Genetically Inferred Ancestry and
HARE Assignments for Individuals, whose
SIRE Is Missing or Inconsistent across Re-
cords
Colored points represent individuals,
whose HARE is assigned to one of the strata.
Shown are non-Hispanic white (A), non-
Hispanic black (B), Hispanic (C), and non-
Hispanic Asian (D).
was known and whose genotype became available in a sec-

ond stage. Genotypes of these individuals were not used

in any part of model training. Because the SIRE of these in-

dividuals was known, their HARE followed the left branch

of the decision tree in Figure 1. In total, 0.4% (117/27,974)

outliers (strong disagreement between genetic ancestry

and SIRE) were detected, comparable to the outlier propor-

tion observed in themain cohort (1,079/201,931) (Tables 1

and S1). Alternatively, assuming the SIRE informationwere

unknown, we defined pseudo-HARE for these individuals

following the right branch of the decision tree. Consid-

ering SIRE as the gold standard strata assignment, the off

diagonal in Table S2 provides an estimate of prediction

error (0.46%); however, 116 of the 130 ‘‘mis-classification’’

were among the outliers detected in Table S1. Hence, we

estimated a statistical ‘‘error’’ rate between 0.05% and

0.46%.

Detecting Population-Specific Trait Variants

To gain an intuition about the difference between mega-

analysis GWASs and stratified GWASs for identifying

ethnicity-specific trait variant, we first considered a simple

model that permitted analytic comparison. Let SNP G be

the true functional variant influencing a trait, Y, where G

is only polymorphic in a minority population. A common

scenario is that G is not genotyped, but instead

association is tested between the phenotype and a nearby

tagging SNP, M. The stratified approach tests the associa-

tion at M in the minority population using the linear

model, Y ¼ aþ bM þ e. Alternatively, mega-analysis tests

the model, Y ¼ aþ bM þ gZþ e, where Z adjusts for pop-

ulation structure. By analytically deriving the distribution

of the test statistics for each model, we identified factors

that determined the relative efficiency of the two ap-
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proaches (Supplemental Material and

Methods). As expected, the advantage

of the stratified analysis over mega-

analysis was more apparent when

the LD between M and G was high

or the minor allele frequency of M in

the non-minority cohort was high,

because the presence of both alleles at

M added noise. In addition, we showed

that the stratified analysis tended to

outperform mega-analysis when the

heritability attributable to the causal
variant, h2, was low or the representation of the specificmi-

nority population, as a fraction of the entire cohort, was

low. These observations are important: first, the genetic ar-

chitectures of complex traits and diseases are likely to be

highly polygenic, and thus the contribution of any single

variant to the overall phenotypic variation is expected to

be low; second, in population cohorts that are recruited

without over-sampling a specific race/ethnicity, the repre-

sentation of minority populations is expected to be low.

In other words, the analytic consideration suggested that

mega-analysis may lose substantial power in identifying

ethnicity-specific trait variants in realistic settings.

In reality, the power of detecting an ethnicity-specific lo-

cus depends on the linkage disequilibrium (LD) between

the causal variant and its best tagging-SNP in the neighbor-

hood, and the covariates, Z, take on continuous values

representing multi-dimensional ancestry variation. To

compare mega-analysis and ethnicity-specific analysis in

a more realistic setting, we performed simulation using

real genotype data, which preserved realistic LD patterns

and tag SNP allele frequencies near the causal variants.

Because the power to detect the un-genotyped causal

variant depended on the LD pattern around the causal

variant, which varied widely across the sampled causal var-

iants, power also varied broadly at any given level of h2

(Figure S4). Figure 4 compares the power of the stratified

and mega-analysis by choosing the smallest h2 value, at

which at least one of the two models reached a power of

50%. For rare variants (MAF % 0.01), 36 variants were de-

tected at a higher power using stratified analysis, 3 variants

were detected at a slightly higher power under the mega-

analysis, and 3 variants had equal power (in 100 simula-

tions). The remaining variants had an observed detection

rate of 0 or 1, for both approaches and in all the values



Figure 4. Simulation Results Comparing
Statistical Power for Detecting Minority-
Specific Causal Variants usingMega-analysis
(x axis) versus Stratified Analysis (y axis)
Black dots indicate causal SNPs predomi-
nantly occurring in non-Hispanic blacks;
red triangles indicate causal SNPs predomi-
nantly occurring in Hispanics. Shown are
(A) rare variants with MAF % 0.01; (B) com-
mon variants with MAF R 0.1. Causal SNPs
detected by both methods with power of
0 or 1 are omitted. Comparison of power
for fixed levels of genetic variance explained
by the causal variants can be found in
Figure S4.
of h2 considered (0.0001–0.01). Thus, consistent with the

analytic derivation, for rare causal variants, minority-strat-

ified analysis almost always outperforms mega-analysis,

the gain can be substantial, and the trend is consistent

for the range of h2 considered (Figures S4). Furthermore,

even for causal variants that were relatively common in

minority populations and not completely monomorphic

in Europeans, stratified analysis was never much worse,

but could be considerably more powerful, compared to

the mega-analysis (Figure 4B).

GWAS for Height in MVP

A total of 372 distinct loci reached genome-wide signifi-

cance for height in one of the HARE groups; as expected,

the number of significant loci was positively related to

the sample size28 (Figure 5). Of these, 21 loci were found

in exactly one HARE group and would have been missed

in the mega-analysis of the entire MVP cohort (Table S3).

Nineteen of these loci were found in the non-Hispanic

white group; at a Bonferroni corrected level of 0.05/19 ¼
0.002, all loci were replicated by the UK Biobank

(UKB).26,29 It was more challenging to validate the

remaining two loci that were only significant in MVP

non-Hispanic black and not in the mega-analysis due to

the unavailability of large-scale minority cohorts. The in-

dex SNP (rs1560489) at the locus on chromosome 4 was

replicated in an African American cohort of the Women’s

Health Initiative SNP Health Association Resource (WHI-

SHARe, p ¼ 1.07 3 10�3, N ¼ 8,149),27 whereas the locus

on chromosome 2 did not show evidence of association

in that study (p ¼ 0.23). Curiously, the index SNP

(rs6719889) at this locus reached a suggestive association

in the UKB with the allelic effect in the same direction

(p ¼ 8.37 3 10�6); as the region has not been previously

implicated for human height, it is a candidate region for

future studies. Meta-analysis across the four HARE strata

yielded 63 additional loci, bringing the total to 416

genome-wide significant loci; the corresponding number

of genome-wide significant loci, using mega-analysis, is

410. Taken together, these results demonstrate that

HARE-stratified analysis yielded ethnicity-informative

association findings, which could be meaningfully meta-
The America
analyzed with other multi-ethnic cohorts; this kind

of meta-analysis could not be done if each multi-ethnic

cohort simply performed mega-analysis because the

ethnicity representation may vary substantially across

cohorts.
Discussion

HARE aims to maximize discoveries and enhance interpre-

tation in multi-ethnic GWAS cohorts. By leveraging self-

identified race/ethnicity and genetically inferred ancestry,

HARE offers a working definition for partitioning a multi-

ethnic cohort into non-overlapping strata, which, in our

application to MVP, approximate race/ethnicity that is

used to characterize existing GWASs. This definition en-

ables most, if not all, individuals to be included in the

GWAS analyses, regardless of whether self-identified race/

ethnicity is available. Simulation and height analyses

demonstrate that, compared to mega-analysis, HARE-strat-

ified analysis provides added benefits of identifying trait

loci that occur predominantly in one stratum. Addition-

ally, HARE-stratified analysis enables discovering and

characterization of trait-associated variants with allelic het-

erogeneity across ethnicities. Taking into consideration

such heterogeneity is important for estimating the genetic

risk of diseases for minority individuals.30–32 Furthermore,

GWAS results based on a HARE stratum can be incorpo-

rated into meta-analyses with other studies of similar

ancestry background, thereby improving the power for de-

tecting minority-specific trait variants with low-frequency

or moderate allelic effects.

HARE combines genetic ancestry and race/ethnicity in-

formation and is motivated by the empirically observed

correlation between continental level genetic ancestry

and major race/ethnicity. Yet HARE differs from both GIA

and SIRE, and it is not intended to replace either. For indi-

viduals with unambiguous SIRE, HARE is identical as SIRE

with few exceptions. These exceptions may arise simply

due to data entry error or it may reflect the distinction be-

tween an individual’s social identity and his/her genetic

ancestry. In the MVP cohort as well as previous studies,
n Journal of Human Genetics 105, 763–772, October 3, 2019 769



Figure 5. Number of Genome-wide Sig-
nificant Height Loci in Each HARE Group
Due to the relatively small sample size of
non-Hispanics Asians, no genomic region
reached genome-wide significance in this
group, and therefore this HARE group is
not included. SNPs with p < 5 3 10�8 are
considered significant; SNPs within 1 Mb
are grouped into a single locus.
such occurrence is generally rare; in our implementation,

HARE becomes missing. Effectively this is equivalent to

the current practice of excluding individuals as genetic

outliers from ethnicity-specific GWASs. For an individual

whose SIRE is ambiguous, either because there is no data

or there are inconsistent responses from multiple sources,

we use genetic information to identify the stratum that

most resembles the individual with respect to genetic

ancestry. This, however, should not be considered as pre-

dicting an individual’s SIRE, as the ambiguity and themiss-

ingness of SIRE may not be random. Furthermore, for

studies that examine the effects of social identities in a trait

or disease, we recommend restricting the analyses to indi-

viduals with SIRE. For this reason, we emphasize that

future studies should continue to obtain SIRE information

whenever possible.

Likewise, HARE differs from the often-adopted popula-

tion genetic structure approaches used to study human

demographic history, which model a number of ances-

tral, reproductively isolated, populations; genomes of a

contemporary individual can be attributed entirely to

one of the ancestral populations, or as a mixture from

several ancestral populations.3,16,23,33 In contrast, HARE

strata do not correspond to these ancestral populations.

Moreover, each HARE stratum is not genetically homoge-

neous: the within-HARE genetic structure reflects variation

in admixture proportions and/or geographic cline. There-

fore, GWASs within each HARE stratum need to account

for genetic structure by adjusting PCs, ancestry propor-

tions, or genetic relationship matrix.

Our study focuses on stratified analysis by major race/

ethnicity (as defined by the US Census), currently the

most commonly adopted stratifying unit used in multi-

ethnic GWASs. It is well appreciated that finer-scale struc-
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ture exists within each race/ethnicity;

researchers may wish to focus on

strata defined within a race/ethnic

group. For example, Conomos et al.

aims to perform association studies

within the Hispanics by defining strata

corresponding to Cuban, Dominican,

Puerto Rican, Mexican, Central Amer-

ican, or South American.13 By training

a support vector machine classifier

based on individuals self-identified as

members of these groups, the analytic

framework we describe here can be
used to assign Hispanic individuals without self-identified

information. While from a method point of view this is

possible, we offer two pieces of practical advice: first, there

is a trade-off between the homogeneity and sample size

within each stratum. Therefore, when the primary role of

the stratum variable is to assist genetic association studies,

it is important to focus on strata that are likely to achieve

adequate sample sizes. Second, in a multi-ethnic Biobank

cohort, we recommend characterizing population struc-

ture in a hierarchical fashion by first defining major race/

ethnic strata (HARE). Subsequently each HARE stratum

can be further characterized to reflect finer-scale structure,

by using PCs computed within the HARE. This approach

will not only reduce the computational cost but will also

lead to more interpretable stratum definition and reduce

statistical uncertainties. We have developed HARE in the

context of MVP, in which the proportion of closely related

individuals is low and has little influence on the top PCs.

If a cohort consists of high proportions of relatives,

modified algorithms can be adopted to characterize popu-

lation structure while reducing the effects of related

individuals.34

Lastly, we note that the observations of heterogeneous

association across HARE strata, or other population units,

does not automatically inform the mechanisms underly-

ing the heterogeneity, which may or may not be genetic.

To date, the mechanism that underlies the heterogenous

allelic risk of ApoE e4 allele on Alzheimer disease across

ethnicities—biological or otherwise—remains poorly un-

derstood. This observation also argues against approaches

that stratify on the ancestry of genomic segments, because

themodifier of the allelic effect may reside elsewhere in the

genome or it may not be genetic at all. Despite such uncer-

tainty, the knowledge of heterogeneous allelic effect allows



more precise and individualized utilization of genetic in-

formation in disease prediction, prevention, or interven-

tion. To probe into the cause of the heterogeneity, much

more comprehensive genetic, environmental, and lifestyle

risk factors need to be measured and investigated.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.08.012.
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