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Convergent evolution of alternative
developmental trajectories associated
with diapause in African and South
American killifish

Andrew I. Furness1, David N. Reznick1, Mark S. Springer1

and Robert W. Meredith2

1Department of Biology, University of California, Riverside, CA 92521, USA
2Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA

Annual killifish adapted to life in seasonally ephemeral water-bodies exhibit

desiccation resistant eggs that can undergo diapause, a period of develop-

mental arrest, enabling them to traverse the otherwise inhospitable dry

season. Environmental cues that potentially indicate the season can govern

whether eggs enter a stage of diapause mid-way through development or

skip this diapause and instead undergo direct development. We report,

based on construction of a supermatrix phylogenetic tree of the order Cyprino-

dontiformes and a battery of comparative analyses, that the ability to produce

diapause eggs evolved independently at least six times within African and

South American killifish. We then show in species representative of these

lineages that embryos entering diapause display significant reduction in devel-

opment of the cranial region and circulatory system relative to direct-

developing embryos. This divergence along alternative developmental path-

ways begins mid-way through development, well before diapause is entered,

during a period of purported maximum developmental constraint (the phylo-

typic period). Finally, we show that entering diapause is accompanied by a

dramatic reduction in metabolic rate and concomitant increase in long-term

embryo survival. Morphological divergence during the phylotypic period

thus allows embryos undergoing diapause to conserve energy by shunting

resources away from energetically costly organs thereby increasing survival

chances in an environment that necessitates remaining dormant, buried in

the soil and surrounded by an eggshell for much of the year. Our results indicate

that adaptation to seasonal aquatic environments in annual killifish imposes

strong selection during the embryo stage leading to marked diversification

during this otherwise conserved period of vertebrate development.
1. Introduction
There are several competing models purporting to explain patterns of embryonic

conservation, or lack thereof [1–6]. The most influential is the hourglass model of

development, which posits a phylotypic period (a bottleneck of reduced phenoty-

pic divergence that occurs mid-embryogenesis) bracketed by periods of increased

divergence earlier and later in development [1,4]. According to Raff [4], early

development is characterized by significant flexibility as initial axial patterning

is established via localized processes. Likewise, late development is readily modi-

fied as the body is already divided into separate modules or organ primordia,

which although complex within themselves, can operate relatively independently

of each other. During mid-development, when organogenesis occurs, there is an

increase in genetic and developmental interactions between developing modules,

which constrains evolutionary change and leads to a conserved phylotypic period

[4]. In the Origin of Species [7], Darwin emphasized that development, particularly

early on, tends to be conserved because embryos reside in an egg or their mother’s

womb and hence are not typically exposed to strong selection; however, he went
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on to note that any period can be modified and exhibit

adaptation if there is strong selection (see also [3,5]). This

view of embryology focuses on the role of selection rather

than constraint; developmental conservatism reflects a dearth

of selection rather than constraint per se.

The production of discrete alternative phenotypes from

the same genotype (polyphenism) provides an under-used

opportunity to contrast these alternative views of vertebrate

embryology and examine whether the phylotypic stage is con-

strained or can instead be subject to phenotypic divergence

along alternative pathways if there is selection for such diver-

gence. We show that, under the right circumstances, even the

narrow bottleneck of the hour glass (the phylotypic period)

can be subject to selection and, as a consequence, will evolve

to exhibit intraspecific divergence.

Aquatic organisms living in habitats that regularly or

periodically dry have a limited number of life-history strategies

[8,9]. Mobile organisms can leave a deteriorating environment

in search of better quality habitat patches, while those that do

not have this option must survive either as dormant adults

or by producing resilient embryos capable of withstanding

prolonged desiccation [8,9]. The production of embryos

(seeds, cysts and eggs) capable of traversing unfavourable con-

ditions uninhabitable by the adult stage is common in plants

and invertebrates but has only rarely evolved in vertebrates

[10–13]. Perhaps the most prominent adaptation of such

embryos is diapause—developmental arrest accompanied by

a reduction in metabolic rate [14]. Diapausing embryos face a

number of adaptive challenges including arresting cellular,

developmental and metabolic processes, conserving energy

for long-term survival on a limited pre-packaged nutrient

supply, maintaining homoeostasis in the face of diverse

environmental challenges (e.g. lack of water or oxygen, temp-

erature fluctuations), then resuming development and

hatching at the appropriate time and in the appropriate con-

ditions [13–16]. These challenges are predicted to impart

strong selective pressures on the embryo stage whenever

diapause has evolved.

Some killifish are able to persist in ephemeral aquatic

environments by producing diapausing eggs that remain

viable in the soil long after the ponds have dried and the

adult fish have perished. In habitats that have distinct wet

and dry seasons, where pools regularly dry and refill each

year, this has been referred to as an annual life cycle [13].

In annual killifish, eggs are capable of entering diapause at

specific stages during embryology—termed I, II and III [17].

Diapause I occurs early in development before the somite-

embryo has formed during a dispersed cell phase, which is

unique to annual killifish [17]. Although embryos have

been induced to enter this state through low temperatures

or hypoxia [17,18], embryos reared under our standard lab-

oratory conditions did not undergo diapause I. Diapause II

occurs after the formation of the embryonic axis, in embryos

possessing approximately 38 pairs of somites and the begin-

nings of several organ systems [13,17]. It is during this

diapause that embryos are most resistant to temperature

extremes, desiccation and oxygen deprivation [14]. Lastly,

diapause III occurs when the embryo is fully developed

and capable of hatching. The end result of arrest at one or

more of these three stages is that eggs can have a greatly

extended development that allows them to traverse the dry

season, when adult fish have perished. Embryos, even of

the same clutch, routinely follow different developmental
trajectories [13,18] which we term the diapause and direct-

developing pathways. Direct-developing eggs skip diapause

II and instead undergo continuous development until dia-

pause III is reached, whereas those that enter diapause II

exhibit developmental arrest and may not resume develop-

ment and reach diapause III for a variable length of time, in

some cases well over a year. Whether embryos follow the

diapause or direct-developing pathway is sensitive to a var-

iety of factors including maternal effects, temperature, light

levels and presence of adult fish, but also exhibits a measure

of intrinsic variability [14,18]. This strategy probably rep-

resents a combination of adaptive phenotypic plasticity to

prevailing environmental conditions that may indicate rela-

tive timing in the year and a risk-spreading strategy known

as bet-hedging [19–21].

Here, we address several inter-related questions on the

evolution of diapause and its developmental ramifications.

Annual killifish, found across large swaths of Africa and

South America, fall into several distinct clades [10,12,22]. It

has yet to be conclusively determined whether this pattern

is best explained by multiple independent origins of dia-

pause, one ancestral origin with multiple subsequent losses,

or a more complicated pattern involving both losses and

gains [10,12]. We address these alternative hypotheses

through construction of a supermatrix phylogeny of order

Cyprinodontiformes, character mapping of diapause II (the

most prominent stage of developmental arrest, and largely

synonymous with an annual life history), ancestral state

reconstructions and comparative analyses. Next, we formally

test the hypothesis that diapause evolves in response to the

colonization of seasonally ephemeral aquatic environments

by examining the correlation between diapause and ecologi-

cal habitat across the killifish phylogeny. We then ask

whether diapause is associated with the evolution of alterna-

tive developmental pathways [18] by characterizing the

embryology of representative annual and non-annual killifish

species. Lastly, we probe the adaptive significance of these

alternative developmental pathways in the annual species

Nothobranchius furzeri. Specifically, we test and find that phe-

notypic divergence associated with entrance into diapause II

reduces embryonic metabolic rate and increases long-term

survival prospects relative to embryos that follow the

direct-developing pathway.
2. Material and methods
(a) Tree construction
Killifish capable of producing diapause eggs (i.e. an annual life

cycle) are found within the order Cyprinodontiformes, suborder

Aplocheiloidei (637 currently recognized species). We generated

a molecular phylogeny of the group using supermatrix tree con-

struction methods [23]. First, we identified molecular sequence

data from 269 species of Apocheiloidei killifish and 42 outgroup

taxa from NCBI. We used GENEIOUS v. 5.4.6 [24] to download

seven mitochondrial and two nuclear genes from GenBank,

and constructed a 10 960 base pair supermatrix for these 311

taxa. Sequences were aligned using MUSCLE [25] in GENEIOUS v.

5.4.6 [24] followed by manual adjustment in SE-AL [26].

The concatenated dataset was analysed using nine partitions

(12Sþ 16S, D loop, Cox1, cytochrome b, ND1, ND2, tRNAs

Val-Ile-Gln-Met-Trp-Ala-Asn-Cys-Tyr, Rag1, 28S.). The maxi-

mum-likelihood (ML) tree was estimated using RAxML7.2.7

(CIPRES platform; [27]), with a GTRCATþ G model of molecular
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evolution for each of the nine partitions, 500 bootstrap replicates,

randomized maximum parsimony starting trees and the fast

hill-climbing algorithm with all free parameters estimated.

Methodological details regarding molecular dating (timetree)

analyses can be found in the electronic supplementary material.
ocietypublishing.org
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(b) Ancestral state reconstructions
Each species in the phylogeny was scored for presence or absence

of diapause II based upon direct observation (A.F.) or reporting

in the literature. We performed parsimony and ML ancestral state

reconstructions in MESQUITE v. 2.75 [28] using default settings.

Likelihood reconstructions were based upon categorical presence

or absence of diapause II with marginal probabilities estimated

with model Mk1. This model is a k-state generalization of the

Jukes–Cantor model in which all state changes are equally prob-

able [29]. Ancestral state reconstructions can positively mislead if

extinction or speciation rates are significantly correlated with the

evolution of the trait being reconstructed [30]. Diversification

rates were analysed using binary trait speciation and extinction

[31] in the R package DIVERSITREE [32] to discount this possibility

as a source of bias (electronic supplementary material).
(c) Correlation between diapause II and habitat
Each species in the phylogeny was scored for type of aquatic habi-

tat in which it typically resides (permanent, seasonal or marginal).

SIMMAP v. 1.5 [33] was used to determine whether diapause II and

habitat covary with each other across the phylogeny. This pro-

gramme implements Bayesian mutational mapping [34,35] and

estimates two statistics, dij and mij, each a measure of covariation

between character states i and j.
(d) Divergence associated with developmental
trajectory

Representative species were selected from several clades that

according to our ancestral state reconstructions independently

evolved diapause. These include species from the South American

Rivulidae (Austrofundulus leoghnei, Austrolebias nigripinnis and

Rivulus (Laimosemion) tecminae) and the African Nothobranchiidae

(Callopanchax occidentalis, Fundulopanchax deltaensis, N. furzeri and

Nothobranchius korthausae). In addition, we examined embryos

from five non-annual species that are distributed throughout the

tree (Fundulopanchax gardneri, Fundulopanchax scheeli, Rivulus
(Anablepsoides) hartii, Pachypanchax playfarii and Oryzias latipes).

Breeding adults of these 12 species were maintained in stock aqua-

ria and provided with spawning substrate. Embryos were

collected daily at regular intervals and incubated individually in

24 or 48 well tissue culture plates containing Yamomoto’s solution

[36] or compacted peat moss. Eggs were incubated at light and

temperature regimes such that (for annual species) some

eggs entered diapause and others followed the direct-

developing pathway, generally 258C and 12 L : 12 D cycle. Each

day embryos were transferred to a depression slide using a plastic

pipette and viewed under an Olympus BH-2 compound micro-

scope. The number of somite pairs were counted as a way of

staging embryos [17]. Embryo heart rate was measured (beats

per minute), and with the aid of a coverslip the embryo rotated

such that a clear flat image of the head region could be photo-

graphed with a Nikon D3100 camera attached to the

microscope. Measurements of embryo head morphology were

made with IMAGEJ software [37]. The variables measured were

head width at optic cups, head width at otic vesicles and head

length (electronic supplementary material, figure S5). Embryos

were tracked throughout development so that developmental

trajectory could be determined (direct-developing or diapause).
(e) Statistical analyses
We used linear mixed models implemented in the R [38] package

nlme [39] to examine the effect of developmental trajectory on

morphological and physiological divergence during embryology

for each of the studied species. Developmental stage (number of

somite pairs), developmental trajectory (diapause versus direct-

developing) and their interaction were entered as fixed effects.

Repeated measurements were taken on eggs as they progressed

through development (i.e. longitudinal dataset). To account for

this non-independence [40], random effects for egg identity (indi-

vidual intercept and slope allowed to vary) were included. In

electronic supplementary material, table S7, we report the fixed

effect parameter estimates produced by restricted ML estimation.

In cases where the full model failed to converge due to overpar-

ametrization, the random slope effect was excluded and the

model rerun with only random intercepts.

( f ) Measurement of egg metabolic rate (oxygen
consumption) in Nothobranchius furzeri

Eggs were obtained through natural spawning activity of males and

females held in stock tanks. Beginning 14 days post-fertilization

(approx. 20 somite stage) each batch of eggs was subdivided into

separate groups on the basis of developmental trajectory (diapause

versus direct-developing). Oxygen consumption was measured

on batches of 8–96 embryos (37.0+2.0 s.e.) of known age, deve-

lopmental stage and trajectory using a polarographic oxygen

microelectrode (Clark style, Instech Laboratories) connected to a

YSI Model 5300 Biological Oxygen Monitor (YSI Incorporated,

Yellow Springs Instrument Co., Inc.). The tip of the micro electrode

was secured inside a water-jacketed 600 ml closed-system respiro-

metry chamber (Batch Cell Chamber, Instech Laboratories) filled

with Yamamoto’s solution held to a constant temperature of 208C.

Oxygen readings were hand recorded in 1 min intervals. For each

trial, per cent O2 values were plotted as a function of time. The

slope (% O2 consumed min21) of the best-fit linear regression line

was converted to an absolute measure of O2 consumption

(pmol s21 embryo21) accounting for the volume of the respirome-

try chamber, the solubility of dissolved oxygen in Yamamoto’s

solution and the number of eggs in the trial.

(g) Long-term embryo survival
To determine whether developmental pathway influenced long-

term embryo survival, we performed a longitudinal laboratory

study. Nothobranchius furzeri embryos were collected daily and dis-

tributed individually into the wells of 48 well tissue culture plates

(n¼ 24) containing Yamamoto’s solution. These plates were incu-

bated under different combinations of light and temperature as

part of a study on phenotypic plasticity. Embryos were observed

once or twice weekly under a dissecting microscope and develop-

mental trajectory scored. Monitoring of developmental progress

was continued until all embryos either hatched or perished. For

the survival analyses, we excluded embryos that perished before

developmental trajectory could be determined, and embryos that

hatched during the course of incubation. Results are qualitatively

the same regardless of whether such groups of embryos were

included. We used the Kaplan–Meier model for survival analysis

and a Log Rank (Mantel–Cox) test to determine whether survival

distributions differed as a function of developmental trajectory

(diapause versus direct-developing).
3. Results
Our molecular phylogeny of killifish (figure 1) reveals that

taxa with diapause fall into at least six distinct clades in

the African family Nothobrachiidae and the South American



Figure 1. Timetree (independent rates, hard-bounded constraints) of Aplocheiloidei killifish with 42 teleost outgroup taxa. Species highlighted in red have embryos
capable of undergoing diapause II, while those in black do not. Parsimony and ML ancestral state reconstructions indicate multiple independent origins of diapause.
Branch colours correspond to likelihood ancestral state reconstructions, with red indicating diapause II ( proportional likelihood greater than 20 : 1, p , 0.05), black
absence of diapause II ( proportional likelihood greater than 20 : 1, p , 0.05), and orange equivocal reconstruction ( proportional likelihood less than 20 : 1 for either
state). The starred taxa are species (males and females pictured) in which embryo development was studied. Scale bar¼ millions of years before present.
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Rivulidae. Both ML and parsimony ancestral state recon-

structions support multiple independent origins of

diapause within killifish (figure 1 and electronic supplemen-

tary material, figure S1). Furthermore, diapause in killifish is

strongly tied to a certain selective environment—seasonally

ephemeral water bodies (SIMMAP 1.5, correlation analysis p ,

0.0000001; electronic supplementary material, table S6). We

measured embryo head size and heart rate as a function

of developmental stage (pairs of somites) and developmen-

tal trajectory (diapause or direct-developing) in seven

species that represent at least five independent origins of

diapause II, plus five species of killifish that lack diapause

II (figure 1 and table 1). In annual species, embryos that

entered diapause II became conspicuously different in

appearance from direct-developing embryos. This diver-

gence began during mid-embryogenesis, well before

diapause was entered, as originally reported for Austrofundu-
lus limnaeus [18]. For example, in N. furzeri direct-developing

embryos exhibit a significantly faster rate of head growth

and higher heart rate relative to embryos that become
committed to entering diapause (trajectory� somite inter-

action, all p , 0.0001). A nearly identical pattern of divergence

was observed in Austrofundulus leohgnei embryos (figures 2

and 3), N. korthause, Austrolebias nigripinnis and R. (Laimosemion)

tecminae (electronic supplementary material, figure S4). In the

annuals C. occidentalis and F. deltaensis, all embryos followed

the diapause trajectory (electronic supplementary material,

figures S4 and S6). These diapause embryos revealed head

dimension and heart rate trajectories similar to diapause

embryos from the other annual species; specifically, the relation-

ship between somite number and the measured variables

was relatively flat preceding diapause. Embryos of the five

representative non-annual species (F. gardneri, F. scheeli,
O. latipes, P. playfairii and R. (Anablepsoides) hartii) exhibited a

single pathway characterized by continuous development that

appeared equivalent to the direct-developing pathway found

in annual killifish (electronic supplementary material, figure

S5). Specifically, embryo heart rate, head width and head

length increased linearly as a function of stage of development

(somite pairs).



Table 1. Summary of evidence regarding the presence of diapause II and existence of alternative developmental pathways characterized by phenotypic divergence in
12 representative killifish species (phylogenetic placement indicated in figure 1). (Further details are provided in the electronic supplementary material.)

dspecies diapause II

alternative

developmental

pathways observed

significant

divergence in

head width

significant

divergence in

head length

significant

divergence

in heart rate

electronic supplementary

material

Austrofundulus leohoignei yes yes yes yes yes figures S3, S4 and table S7

Austrolebias nigripinnis yes yes yes yes yes figures S3, S4 and table S7

Callopanchax occidentalis yes noa — — — figures S3, S4 and table S7

Fundulopanchax deltaensis yes noa — — — figures S3, S6 and table S7

Fundulopanchax gardneri no no — — — figures S3, S5 and table S7

Fundulopanchax scheeli no no — — — figures S3, S5 and table S7

Nothobranchius furzeri yes yes yes yes yes figures S3, S4 and table S7

Nothobranchius korthausae yes yes yes yes yes figures S3, S4 and table S7

Oryzias latipes no no — — — figures S3, S5 and table S7

Pachypanchax playfairii no no — — — figures S3, S5 and table S7

Rivulus (Anablepsoides) hartii no no — — — figures S3, S5 and table S7

Rivulus (Laimosemion) tecminae yes yes yes yes yes figures S3, S4 and table S7

aAll embryos entered diapause II. See the electronic supplementary material for additional details.

rspb.royalsocietypublishing.org
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We tested the adaptive hypothesis that morphological

divergence preceding entry into diapause reduces investment

in structures that are energetically costly by measuring meta-

bolic rate (oxygen consumption) in groups of N. furzeri
embryos of known stage and developmental trajectory over

the time-course of development (figure 4). We found a pattern

of divergence in metabolic rate which mirrors that observed in

head dimensions and heart rate. The metabolic rate of embryos

entering diapause II remained low while that of direct-

developing embryos increased dramatically (figure 4). Lastly,

we demonstrate that under laboratory rearing conditions in

Yamamoto’s embryo incubation medium N. furzeri embryos

following the diapause II trajectory are able to survive for

significantly longer periods than those that follow the direct-

developing pathway (figure 5).
4. Discussion
Convergent evolution, when different lineages independen-

tly evolve similar phenotypic characteristics, is indicative of

adaptation by natural selection [41]. Is the evolution of diapause

in killifish due to convergence? Our ancestral state reconstruc-

tions strongly indicate multiple independent origins of

diapause within killifish and there are several reasons that

suggest the feasibility of this evolutionary scenario. There are

limited life-history solutions for fishes to survive in ephemeral

water bodies. The African lung fish (Protopterus), which across

much of their range coexist with annual killifish in the same

ephemeral pools, exhibits one such strategy—long-lived adults

bury into the soil, secrete a slime coat that hardens into a

cocoon and aestivate until the rainy season returns [42]. Annual

killifish exhibit the opposite life cycle, that of short-lived adults

with embryos that undergo diapause and survive the dry

season. Killifish are found in seasonally ephemeral aquatic habi-

tats scattered across large portions of Africa and South America

that have very different geologic histories [10,12]. Furthermore,

there are several instances of a single species or several species

with diapause nested within an otherwise non-annual clade

(figure 1). Taken together, this evidence suggests that the
evolution of diapause and transition to an annual life history

evolved repeatedly as killifish invaded waters that periodically

desiccate [10,22]. The developmental stages where diapause

occurs may represent the most stable or insensitive points in

the developmental process so that Aplocheiloidei killifish are

pre-adapted towards evolving diapause at these stages [13].

The direct-developing pathway in annual killifish is typi-

cal of non-annual killifish and teleosts in general, and thus

probably represents the ancestral condition. The morphological

and physiological divergence preceding diapause II is novel,

and in need of adaptive explanation. One prominent challenge

associated with remaining dormant for many months is energy

conservation, particularly when a finite and limited nutrient

supply (in the form of yolk) is available [15]. The heart and sen-

sory organs associated with the head (brain, eyes, etc.) are

anatomical structures that may be energetically costly to main-

tain for long periods [43], especially if development is arrested

at a stage where these structures are already partially devel-

oped, as is the case with arrest in diapause II. That embryos

following the diapause trajectory show a heart rate that

is undetectable, sporadic or significantly reduced and an under-

developed cranial region (relative to direct-developing

embryos) suggests that divergence may function to reduce

early investment in energetically costly structures in prepara-

tion for a long period of developmental arrest (i.e. a reduction

in maintenance costs). The pattern of extremely reduced meta-

bolic rate preceding and following entrance into diapause II is

consistent with this hypothesis (figure 4). The final piece of evi-

dence in general congruence with this interpretation is that

embryos which enter diapause II are able to survive for

longer periods than embryos which are direct-developing and

proceed directly to diapause III (figure 5).

Given a particular set of circumstances, including temporal

or spatial variation, an extreme case of adaptive developmental

plasticity—the evolution of discrete alternative phenotypes

or polyphenisms—can evolve [20]. In vertebrates, discrete

alternative phenotypes are often brought about by environ-

mentally induced triggers that cause changes in the timing of

developmental events in the larval, juvenile or adult phase.

Examples include the cannibalistic and omnivorous trophic
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Figure 2. The African species Nothobranchius furzeri (left column) and the South American species Austrofundulus leohoignei (right column) exhibit similar patterns
of embryological divergence depending upon developmental trajectory. In each species, diapause II is entered around the 38-somite stage, yet morphological
divergence in the head region is readily apparent well before this stage is reached. Figure design modified after [18].
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morphs in spadefoot toad tadpoles, paedomorphosis in tiger

salamanders and adult sex change in bluehead wrasse [44]. In

annual killifish, the transitory existence of ephemeral pools

and inherent uncertainty associated with pool duration and
beginning of the rainy season have selected for a develop-

mental system poised to generate significant variation in the

time-course of development and hatching [13]. Our results

emphasize the importance of natural selection in generating
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marked intraspecific diversification during embryology. The

alternative developmental pathways in killifish are remarkable

in that phenotypic divergence begins mid-embryogenesis,

during a period of development that is supposedly highly

conserved among vertebrates [1,4], but see [6], and is nearly

identical in phenotypic pattern among species that evolved

diapause independently in response to similar selective

environments (seasonal aquatic habitat) across two continents.

Divergence early in development in association with

alternative developmental pathways may be widespread,

particularly in invertebrates. Species that have diapause, exhi-

bit different morphs, display strong sexual dimorphism or

have alternative mating strategies may follow different
developmental trajectories that extend prior to birth or hatch-

ing. For example, in many taxa, chemical alarm cues can elicit

anti-predator behaviours [45] or inducible defences [46]. Most

studies have focused on the effect of exposure during the

juvenile or adult stage [45]. Yet, several recent studies indicate

that embryos may be just as responsive to environmental con-

ditions or cues, and this can lead to an adaptive matching

between phenotype and the (expected) future environment

via effects on post-embryonic behaviour [47] or morphology

[48]. Alternative developmental trajectories, or developmen-

tal plasticity in general, can induce post-hatching

phenotypic differences that have large effects on fitness and

are adaptive given predicted future environments [49], but
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may prove maladaptive if mismatched with environment

[50]. In annual killifish, divergence prior to diapause appar-

ently facilitates long-term egg survival, but it may be

beneficial to minimize the effect of developmental pathway

on post-hatching phenotype [51]. Embryos that enter dia-

pause eventually resume development, ultimately coming

full circle and reaching the same pre-hatching stage as

direct-developing embryos, albeit via an extended stop-over

in diapause that temporally separates the two groups of

embryos. Whether following different developmental path-

ways has lasting effects on post-hatching phenotype, or if

the developmental system has effectively buffered embryos

from potential negative consequences of remaining dormant

for long periods has recently been addressed. Polacik et al.
[52] have shown that the developmental pathway followed

has significant effects on fishes’ post-hatching life histories.

Darwin [7] proposed that adaptive diversification is the

product of selection and the conservation of some life

stages relative to others may be a by-product of the reduced

role that natural selection has played in shaping some phases

of development. The hourglass model [4] posits constraint is

the cause of a mid-embryonic phylotypic period character-

ized by reduced phenotypic divergence. Here, we have

shown that even if such constraints exist, they can be
repeatedly overcome given strong selection on the embryo

stage in harsh environments. More generally, our results

invite further consideration of the role of selection in shaping

different periods of embryology [3,5,6], particularly in species

that exhibit alternative phenotypes.
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