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Abstract

Quantitative Access Control Policy Analysis and Repair Using Model Counting

by

William Eiers

Due to ubiquitous use of software services, protecting the confidentiality of private

information stored in compute clouds is becoming an increasingly critical problem. Al-

though access control specification languages and libraries provide mechanisms for pro-

tecting confidentiality of information, without verification and validation techniques that

can assist users in writing policies, complex policy specifications are likely to have errors

that can lead to unintended and unauthorized access to data, possibly with disastrous

consequences. Current state-of-the art approaches focus on either assertion checking

which requires manual specification of assertions (which may not be available or difficult

to write) or compare existing policies and report binary results (such as policy 1 is more

permissive than policy 2). These techniques however cannot perform quantitative anal-

ysis on policies (how much more permissive is policy 1 than policy 2?). It is crucial to

develop automated approaches for quantitatively assessing properties of access control

policies.

Model counting is an emerging area with applications in quantitative analysis. A

model counting constraint solver computes the number of solutions for a given constraint

within a given bound. Recently, model counting constraint solvers have also been applied

to automating quantitative software verification, analysis and security tasks. The goal

in quantitative program analysis is not to just give a “yes” or “no” answer, but to also

quantify the result. For example, rather than answering if there is information leakage

in a program with a “yes” or “no” answer, quantitative analysis techniques can compute

viii



the amount of information leaked.

In this dissertation, we first discuss state-of-the-art techniques for model counting

using automata-theoretic techniques and its applications in quantitative program anal-

ysis. We then introduce the revamped model counting constraint solver ABC2. Next,

we discuss how model counting techniques can be combined with traditional policy anal-

ysis approaches to perform quantitative analysis of access control policies, culminating

in the open-source policy analysis tool quacky. At the end, we introduce a quantita-

tive symbolic analysis approach for automated policy repair for fixing overly permissive

policies.
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Chapter 1

Introduction

Modern software services run on compute clouds. Among the most popular cloud ser-

vice providers are Amazon Web Services (AWS), Microsoft Azure, and Google Cloud

Platform (GCP), each of which lets customers secure their services by writing access

control policies. Access control policies specify rules that allow authorized access while

denying unauthorized access to cloud data. Policies can be written using many access

control specification languages, like the AWS Identity and Access Management (IAM) [1]

language or the eXtensible Access Control Markup Language (XACML) [2]. In con-

trast, libraries such as CanCan [3] and Pundit [4] provide support for specification of

policies at the implementation level. By themselves, these are useful languages and li-

braries; however, without verification and validation techniques that can assist in writing

policies, policy specifications are likely to have errors that can lead to unintended and

unauthorized access to data. In fact, incorrect specification of access control policies

in cloud storage services has resulted in the exposure of millions of customers’ data to

the public. For example, it was reported that [5] data records for more than 2 million

Dow Jones & Co. customers were exposed due to an access control error. Exposed data

included names, addresses, account information, email addresses, and last four digits of
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Introduction Chapter 1

credit card numbers of subscribers. The exposed data was in a publicly accessible AWS

Simple Storage Service (s3) bucket. This is a disastrous error in the policy specification

for cloud storage buckets. A similar error resulted data exposure of 50 thousand Aus-

tralian employees that included full names, passwords, salaries, IDs, phone numbers, and

credit card data [6]. Yet another error exposed the account records of 14 million Verizon

customers [7]. A vulnerability in Microsoft’s Azure Cosmos DB service [8] allowed public

access to accounts and databases of thousands of customers.

These examples highlight the urgent need to develop techniques to protect cloud

data. Automatically finding access control issues would prevent exposure of private data,

protecting the privacy of millions of people. Hence, it is necessary to develop automated

verification techniques that can analyze access control policies for compute clouds.

1.1 Security in the Cloud

As compute clouds store the majority of data used by modern software services,

the security both in these compute clouds and of these compute clouds is of utmost

importance. In this dissertation, we focus on security in the cloud - i.e., protecting the

privacy of data stored in the cloud. Securing how data is accessed is done through the

concept of access control. Access control involves determining how data is accessed by

specifying who can access what data under which conditions, often through access control

policies. Access control policies consist of a set of rules which govern access. When a

request is made by an entity to access data within the cloud, an access control policy

determines if the request is allowed or denied. The request is allowed if and only if

the access control policy specifies that the request is specifically allowed and not denied

through any of its rules. Modern compute clouds such as Amazon Web Services, Google

Cloud Platform, and Microsoft Azure use specific policy languages for their access control

2
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1 {

2 "Version": "2012-10-17",

3 "Statement": [{

4 "Effect": "Allow",

5 "Principal": "*",

6 "Action": "S3:ListBucket",

7 "Resource": "cs130b",

8 "Condition": {

9 "StringEquals": {

10 "aws:userId": [

11 "user0",

12 "user1"

13 ]},

14 "StringLike": {

15 "s3:prefix": "roster*"

16 }}}]}

Figure 1.1: AWS policy specifying access to the cs130b S3 bucket

policies, and in Chapter 2 we detail how these policies are formed.

In this dissertation, we specifically address how access control policies can be quanti-

tatively analyzed and repaired using model counting techniques. For example, in Chap-

ter 6 we show how to quantitatively assess the permissiveness of real world Amazon Web

Services access control policies. We extend this work to the popular Google Cloud Plat-

form (GCP) and Microsoft Azure access control policies. Together with AWS, GCP and

Microsoft Azure account for a large majority of the cloud computing services currently

used. Automated analysis approaches such as the ones we introduce in this disseration

are essential to the privacy and security of the cloud and data within the cloud.

1.2 Formal Verification in Access Control Policies

Access control policies specify who can do what under which conditions. Figure 1.1

shows an example AWS policy. AWS policies contain lists of statements, each specifying

whether access is allowed or denied. Within each statement, the policy specifies who

access is being granted or denied through the principal field. In this case, the principal

3
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field is the wildcard character "*", which is a shorthand for specifying anyone. The action

field specifies what action is being done, which in this policy is the S3:ListBucket

action, a common S3 action for listing the contents S3 buckets. The resource field specifies

what is being accessed, in this case being the "cs130b" bucket. Lastly, this policy features

additional conditions, which further restrict access through the environmental attributes

"aws:userid" and "s3:prefix". While the exact fields of an access control policy varies

throughout policy languages and platforms (Azure, GCP), they all adhere to a similar

structure: specifying who can access what under which conditions.

When a request is made to a resource or service, the request context is checked against

the policy. An example request for the policy in Figure 1.1 is:

{principal: John,

action: s3:ListBucket,

resource: cs130b,

condition: {aws:userId: user0, s3:prefix: rosterSummer2020}}

This request specifies that "John" is trying to perform the S3:ListBucket action on the

"cs130b" resource with the environmental attributes "aws:userId: user0", and "s3:prefix:

rosterSummer2020". The request is checked against the policy to see if it is allowed by

the policy, and in this case the request is allowed by the policy since the statement in

the policy explicitly allows this request.

We can translate the policy semantics into a Satisfiability Modulo Theories (SMT)

formula representing the requests allowed by the policy:

match(principal , (.*)) ∧ action = "S3:ListBucket" ∧ resource = "cs130b"

∧ aws : userIdExists ∧ (aws : userId = "user0" ∨ aws : userId = "user1")

∧ s3 : prefixExists ∧match(s3 : prefix , roster.*)

4
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Given a request, the request context gets input into the above formula. If the formula is

satisfiable, then the request is allowed. By translating the semantics of the policy into

a logical formula, we can analyze the permissiveness of a policy: that is, reasoning over

what is allowed by a policy.

In order to check for correctness of a policy, it is necessary to have a specification

of correctness properties, but writing correctness properties manually can be challenging

and time consuming. Moreover, writing expected properties of the policy is error-prone.

Hence, when an inconsistency between a property specification and a policy is identified,

it does not necessarily mean that the policy has an error; the property specification itself

could be erroneous. Instead, one could reason about correctness of the policy by reasoning

over the requests allowed by the policy. To do so, one can specify what is allowed by the

policy by translating the policy semantics into a logic formula. The satisfiability of that

formula then corresponds correctness of that property.

A differential policy analysis approach removes the need to manually specify policy

properties; instead, it compares different policies and identifies inconsistencies among

them. Basic policies can be compared to a complex policy to verify that the latter

does not have unintended consequences. For example, we may want to verify that a

complex policy specification is not more permissive than a simple policy that specifies

common sense access rules. Moreover, differential policy analysis techniques can identify

differences between different versions of a policy. When a policy specification is modified,

it would be worthwhile to know how the permissiveness of the policy has changed.

Consider the policies in Figure 1.2. Both policies consist of two statements. The

first statement of each policy is the same: it specifies that any sns action is allowed

on any resources. Note that this policy does not specify a principal - policies such as

these are attached to roles or entity, so specifying the principal is not required. On first

glance, the second statement for each policy seems to be the same. However, they are

5
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Figure 1.2: Two AWS policies showing a common misconception that NotAction and
Allow/Deny are equivalent

vastly different. The semantics of the second statement in the first policy specify that the

attached role or entity is allowed to access any resource with any action that does NOT

begin with sns:Delete. However, the second statement in the second policy specifically

denies access to any resource if the action begins with sns:Delete. A differential policy

analysis can be used to compare both policies to determine which is more permissive or

if both adhere to some specified property.

However, a binary answer to a question that compares two policies may be insufficient.

For example, it may not suffice that we know if one policy is more permissive than

another. We may want to know how much more permissive a policy is than another, i.e.,

we may want to quantify the relative permissiveness of different policies.

To illustrate the importance of quantifying the permissiveness, let us consider a real

world example. Amazon Web Services Support has automated systems which routinely

modiy policies for various reasons. One such policy is the AWSSupportServiceRole-

Policy. In December 2021, this policy was inadvertently modified to allow the action

s3:getobject [9], which can greatly increase the requests allowed by the policy. The

6
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1 "Statement": [{

2 "Effect": "Allow",

3 "Action": [

4 "s3:GetAccelerateConfiguration", ...,

5 "s3:ListBucketMultipartUploads"],

6 "Resource": "*"}]}

1 "Statement": [{

2 "Effect": "Allow",

3 "Action": [

4 "s3:DescribeJob", ...,

5 "s3:GetAccelerateConfiguration", ...,

6 "s3:GetObject",

7 "s3:GetObjectLegalHold", ...,

8 "s3:ListBucketMultipartUploads"],

9 "Resource": "*"}]}

1 "Statement": [{

2 "Effect": "Allow",

3 "Action": [

4 "s3:DescribeJob", ...,

5 "s3:GetAccelerateConfiguration", ...,

6 "s3:GetObjectLegalHold", ...,

7 "s3:ListBucketMultipartUploads"],

8 "Resource": "*"}]}

Figure 1.3: Initial (topmost, (a)), modified (middle, (b)), and fixed (bottom, (c)), versions
of a policy used by AWS Support

7
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change was only noticed when a bot detected a change and posted a file diff to github,

where users noticed the change and raised concerns about getobject [10]. Normally

such policy modifications are unimportant, but in this case humans who had substantial

AWS knowledge were able to notice that this modification should not have been made.

Typical binary differential analysis would be insufficient to automatically determine the

modification was excessive, as changing a policy to add more actions would clearly in-

crease permissiveness, regardless of if getobject was one of those actions. In this

case, a more sophisticated analysis such as quantitative approaches introduced in this

dissertation are necessary.

AWS eventually fixed the policy, removing getobject. Initial, modified, and fixed

policies adapted from AWSSupportServiceRolePolicy are shown in Fig 1.3. Note that

the fixed policy does not allow getobject.

In Chapter 7, we introduce the quacky tool which implements the quantitative

permissiveness approach for access control policies from Chapter 6. Using quacky we

can quantify the permissiveness of the policy in Figure 1.3(a) in terms of how many

actions and requests are allowed by the policy. In this case, assume that resources are no

more than 100 characters long. quacky reports that 24 actions and 4.09×10138 requests

are allowed by the policy. This result is with respect to the set of valid AWS s3 actions

and all possible resources, not the set of resources in the user’s organization. If the set

of resources is known, they can be added as a constraint and then our approach would

count the requests allowed by the policy with respect to the set of known requests.

Using quacky, We can also quantify the permissiveness of policies in Figure 1.3(b)

and Figure 1.3(c). quacky reports that 47 actions and 2.22× 10205 requests are allowed

by the policy Figure 1.3(b). By removing getobject from the policy in Figure 1.3(b),

quacky reports that 46 actions and 1.78 × 10205 requests are allowed by the policy in

Figure 1.3(c). Note that both policies are identical except that the policy in Figure 1.3(c)

8
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does not contain getobject. If the action (s3:describejob) was removed from the

policy in Figure 1.3(b) instead of getobject, then quacky reports that 46 actions

and 2.22 × 10205 requests (as opposed to 1.78 × 10205 requests) are allowed by the re-

sulting policy. This is a significant change and highlights the importance quantitative

permissiveness techniques in automated verification approaches.

1.3 Contributions

The quantitative techniques we use within this dissertation depend on constraint solv-

ing and model counting in order to quantify properties such as permissiveness. Both the

constraint solving and model counting approaches are automata-based and use automata

to represent the solutions for constraint formula. By casting the model counting problem

to a path counting problem in graphs, we can answer the model counting problem by

counting the number of accepting paths in the automata. This allows us to perform

quantitative analysis of access control policies by formulating quantitative questions into

model counting queries.

By developing a state-of-the-art constraint solver and model counter for strings, we

can perform quantitative analysis and repair of access control policies in a precise and

efficient manner. We make the following claims about as novel research contributions

contained in this dissertation:

1. Multi-track automata-based constraint solving and model counting. We

developed and implemented multi-track automata for more efficient and precise

constraint solving and model counting. Constraint solving and model counting

techniques are used in a variety of verification and quantitative analysis approaches.

My contributions enable these approaches to handle a wider set of programs by

being able to handle an expressive set of constraints.
9
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2. Subformula and automata caching. Constraint solving and model counting

queries are expensive. Formula caching is one method for speeding up analysis

times by reusing results from prior queries. We introduce novel sub-formula and

automata caching techniques which allow subformulas and intermediate automata

to be reused throughout the solving and counting process.

3. Quantitative analysis of access control policies. Automated policy analysis

techniques cannot quantify properties of access control policies. We developed a

sound policy analysis framework for quantifying properties, such as permissiveness,

of access control policies by utilizing model counting techniques. Being able to ac-

curately determine the permissiveness of a policy is an essential part of determining

the vulnerability and risk assessment of the policy.

4. Quantitative policy repair for access control policies. Using quantitative

analysis techniques, one can quantify the permissiveness of access control policies.

We developed an automated approach for repairing overly permissive policies. By

using model counting techniques to localize the faults in the policy and a regular

expression generalization technique for generating a repair, our approach is the first

quantitative policy repair algorithm for access control policies in the cloud.

1.4 Dissertation Outline

In Chapter 2, we provide background information on access control policies for the

cloud, discuss modern policy analysis techniques, and introduce the concept of model

counting constraint solving. We introduce access control policies using the Amazon Web

Services policy language, and detail how constraint solving has been used for policy

analysis.

10
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In Chapter 3 we present an automata-based model counting constraint solving ap-

proach for both constraint solving and model counting formulas containing mixed string

and numeric constraints. Automata-based model counting and constraint solving lies at

the core of the quantitative analysis techniques we discuss in this dissertation.

In Chapter 4 we discuss how model counting techniques can be improved using sub-

formula and automata-based caching techniques. Leveraging caching techniques allows

for reusing results from prior satisfiability and counting queries.

In Chapter 5 we introduce the ABC2 tool, a precise model counter and efficient

satisfiability checker for string constraints. The ABC2 tool builds off of its predecessor

ABC (discussed in Chapter 3).

In Chapter 6 we discuss quantifying the permissiveness of access control policies using

model counting techniques. Prior policy analysis approaches aim to answer binary yes/no

analysis queries, such as “does a Policy allow this request”. In the quantitative analysis

introduced in this Chapter, we aim to answer the questions such as “how much is allowed

by a Policy”, “how permissive is a Policy” or “how much more permissive is Policy 1 than

Policy 2”.

In Chapter 7 we introduce the quacky tool for analyzing the permissiveness of access

control policies in the cloud. quacky implements the quantitative policy techniques

previously discussed into an open-source policy analysis tool.

In Chapter 8 we introduce the policy repair problem and discuss methods for auto-

matically repairing overly permissive access control policies. Similar to program repair,

policy repair aims to repair incorrect or erroneous policies. However, in the context of

permissiveness, the definition of incorrectness is different for access control policies than

it is for programs. The repair problem and automated repair approach focuses on policies

which work but allow too many requests, i.e., policies which are overly permissive.

In Chapter 9 we discuss the related work for policy analysis and model counting

11
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techniques.

Finally, in Chapter 10 we conclude the dissertation.

12



Chapter 2

Access Control Policies and Analysis

In this chapter we first introduce access control policies for the cloud and discuss existing

policy analysis techniques based on constraint solving which can be used to verify the

correctness of a policy specification. We then discuss model counting and its applica-

tion to quantitative program analysis techniques such as quantitative information flow

analysis.

2.1 Access Control Policies for the Cloud

Modern software services run on compute clouds. Among the most popular cloud

service providers are Amazon Web Services (AWS), Microsoft Azure, and Google Cloud

Platform (GCP), each of which lets customers secure their services by writing access

control policies. Access control policies specify rules that allow authorized access while

denying unauthorized access to cloud data. Policies can be written using many access

control specification languages.

13
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1 {

2 "Statement": [{

3 "Effect":

4 "Allow",

5 "Principal":

6 "*",

7 "Action":

8 "s3:GetObject",

9 "Resource":

10 "arn:aws:s3:::myexamplebucket/*",

11 "Condition": {

12 "StringLike": {

13 "aws:userId": [

14 "AWSUSERID:*",

15 "JOHNDOE1111"

16 ]}}}]}

Figure 2.1: Example of an AWS policy

Amazon Web Services Policies Amazon Web Services (AWS) uses a shared re-

sponsibility security model where AWS guarantees security of the cloud, but users are

responsible for security in the cloud. AWS lets users control who has access to their

resources with access control policies written in the AWS policy language. Access re-

quests are evaluated against policies and a dynamic environment context within a policy

evaluation engine that either allows or denies access.

AWS defines a policy language where policies either allow or deny access through

declarative statements. A statement is a 5-tuple (Principal , Effect , Action, Resource,

Condition) where

• Principal specifies a list of users, entities, or services

• Effect = {Allow ,Deny} specifies whether the statement allows or denies access

• Action specifies a list of actions

• Resource specifies a list of resources

• Condition is an optional list of conditions further constraining how access is allowed
14
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or denied

Figure 2.1 shows an example AWS policy. Each condition consists of a condition operator,

condition key, and condition value on elements of the request context. Full details of the

language can be found in [11]. Note that while most of the elements of a policy are strings,

certain condition keys specify other types of constraints (e.g., s3:max-keys expects an

integral number). Additionally, the AWS policy language allows the use of two special

characters within strings: ‘*’, or wildcard, represents any string, and ‘?’ which represents

any single character. Given an access request and associated policy, permission is granted

if and only if, for the given principal, action, resource, and condition key values in the

request context, a statement in the policy allows access and no statement in the policy

explicitly denies access.

Microsoft Azure Policies Like AWS, Azure uses a shared responsibility security

model, where security in the cloud is achieved by role-based access control (RBAC).

Azure RBAC defines a policy language consisting of role definitions and role assignments.

A role definition is a set of allowed actions

(Actions ∪ DataActions) \ (NotActions ∪ NotDataActions)

where

• Actions is a list of allowed management actions

• DataActions is a list of allowed data actions

• NotActions ⊆ Actions is a list of denied management actions

• NotDataActions ⊆ NotActions is a list of denied data actions.
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A role assignment is a tuple (principalId, roleDefId, scope, condition) where

• principalId identifies a Principal granted access

• roleDefId identifies the role definition

• scope identifies a set of Resources granted access

• condition is an optional expression for granting access

The scope is a path in Azure’s resource hierarchy, rooted at ‘/’. Resources rooted at the

path are granted access. Unlike in AWS, the Azure condition is an infix logical expres-

sion. Azure has logical operators and relational operators on strings and integral numbers,

but it also supports cross product relational operators on sets, like ForAnyofAllVal-

ues:StringEquals. Like AWS, Azure allows wildcards in strings (except scope). Given

an access request, role definition, and role assignment, permission is granted if and only

if, both the role definition and role assignment explicitly allow the principal and action

under the scope and condition.

2.2 Policy Analysis using Constraint Solving

Given an IAM policy, we can semantically represent the policy as a set of tuples

⟨P,A,R,C⟩ which denote that the principles/users P can execute the actions A on the

resources R if the condition C holds. For simplicity of the presentation, let us assume

that all the actions that are not allowed are denied by default. It is easy to extend this

semantic model to also capture explicit deny rules.

In order to conduct differential policy analysis [12], we need to compare two policy

specifications

S1 = ⟨P1, A1, R1, C1⟩ S2 = ⟨P2, A2, R2, C2⟩. We can define an ordering for each field

of a policy, where
16
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P1 ⪯ P2 if and only if the set of users in P1 is a subset of the set of users in P2

A1 ⪯ A2 if and only if the set of actions in A1 is a subset of the set of actions in A2

R1 ⪯ R2 if and only if the set of resources in R1 is a subset of the set of resources in R2

C1 ⪯ C2 if and only if the condition C1 implies the condition C2, i.e., C1 ⇒ C2. Now,

we can define an ordering among policy specifications using these definitions. Given

S1 = ⟨P1, A1, R1, C1⟩ and S2 = ⟨P2, A2, R2, C2⟩

S1 ⪯ S2 if and only if P1 ⪯ P2 ∧ A1 ⪯ A2 ∧R1 ⪯ R2 ∧ C1 ⪯ C2

If S1 ⪯ S2, then S2 is at least as permissive as S1, i.e., S1 is not more permissive than S2

and any action denied by S2 is also denied by S1. Note that S1 ⪯ S2 ∧ S2 ⪯ S1 means

that S1 and S2 are equivalent policies. And, it is also possible for two policies to be

incomparable with each other with respect to this order.

The order defined by ⪯ is a partial order and it defines the permissiveness order

among policies, where S1 ⪯ S2 means that policy S2 is at least as permissive as policy

S1. We can use the permissiveness order for differential policy analysis. For example, we

can write a general policy SG that can specify access restrictions that all other policies

should obey, and then we can check, if for any given policy S ⪯ SG. As another example,

assume that a policy S1 is modified with the goal of restricting the access condition for

a user. Let us assume that the new version of the policy is S2. Then, we can check if

S2 ⪯ S1 holds. If not, there must be an error either in the original policy S1 or in the

modified policy S2.

Policy Analysis via Constraint Solving: The question is, given two policies S1 and

S2, can we automatically check if S1 ⪯ S2 or S2 ⪯ S1? Given two policy specifications S1

and S2 we can automatically generate two logical formulas F1 and F2, such that S1 ⪯ S2
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if and only if F1 ⇒ F2. With a constraint solver, we can automatically check if F1 ∧¬F2

is satisfiable. If it is, then we know that S1 ̸⪯ S2 and this may point to a bug in one of

the policies.

The developments in the area of Satisfiability-Modulo-Theories (SMT) [13] and the

implementation of powerful SMT solvers [14] that solve expressive constraints involving

multiple theories, have resulted in effective constraint-based software analysis and testing

techniques [15]. The key concept in constraint-based software analysis is to reduce a

software verification query to a query about a constraint and then to use constraint

solvers.

Let us give a policy example to demonstrate how constraint-based analysis can be

applied to policy analysis. Consider the policy statement below:
1 "Statement":[

2 {

3 "Effect":"Allow",

4 "Principal":"*",

5 "Action":"s3:GetObject",

6 "Resource":"arn:aws:s3:::mybucket/*",

7 "Condition": {"StringLike": {"s3:prefix": ["home/buckets/*"]}}

8 }

9 ]

This policy allows any principle (using the wild-card symbol "*") to execute the

S3:GetObject action on a resources in "arn:aws:s3:::mybucket/*" as long as its under

the path "home/buckets/". Let us call this policy specification S1 Now, assume that

someone modified this policy and changed the condition field as follows:

"Condition": {"StringLike": {"s3:prefix": ["home/*"]}}

Let us call this modified policy S2. If the goal of the modification was to have a more

permissible policy, then we should check if S1 ⪯ S2. If the goal of this modification was

to have a less permissible policy, then we should check if S2 ⪯ S1. Both of these queries

can be converted to satisfiability checking for constraints. Below we give the query for

checking if S2 ⪯ S1 which corresponds to a formula F2 ∧ ¬F1:
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1 (declare-variable s3 String)

2 (declare-variable f1 Bool)

3 (declare-variable f2 Bool)

4 (assert (= f1 (begins s3 "home/buckets/")))

5 (assert (= f2 (begins s3 "home/")))

6 (assert (and f2 (not f1)))

7 (check-sat)

8 (get-model)

We used the Satisfiability-Modula-Theories (SMT) syntax for specifying the resulting

formula. Note that since S1 and S2 only differed in their conditions, the generated formula

is only checking the condition field. If this formula is satisfiable, then we know that

S2 ̸⪯ S1. I.e., if the developer was not intending to make the policy more permissible,

then there is an error in the policy specification. For this simple example, it is easy to

see that the modified policy uses a more permissive condition, however, this is not at all

easy to check manually for complex policies that consist of many statements and with

multiple conditions.

2.3 Model Counting

Recall the classic boolean SAT problem: Given a formula ϕ from propositional logic,

is it possible to assign the variables T (true) or F (false) so that the formula is true? For

example, consider the following formula:

ϕ ≡ (x ∨ y) ∧ (¬x ∨ z) ∧ (z ∨ w) ∧ x ∧ (y ∨ v)

ϕ is satisfied by setting

(x, y, z, w, v) = (T, F, T, F, T )

A satisfying assignment is called a model for ϕ. Let us now discuss the model counting
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problem: Given a formula ϕ over some theory (Boolean, Linear Integer Arithmetic,

Strings, etc...), how many models are there for ϕ? For example, consider the following

formula:

ϕ ≡ (x > 5) ∧ (x < 10)

ϕ can be satisfied by setting x = 6, x = 7, x = 8, or x = 9. Thus, ϕ has 4 models,

or satisfying assignments. Note that model counting is at least as hard as a satisfiability

check:

|ϕ| > 0 ↔ ϕ is satisfiable

Model counting constraint solvers have previously been used for quantitative program

analysis. To demonstrate how model counting can be used in quantitative information

flow analysis, consider the following example based on a security vulnerability known as

“Compression Ratio Info-leak Made Easy” (CRIME) [16, 17]. Many web server requests

are compressed and encrypted for efficiency and security before transmission as a network

packet. Despite the encryption, a malicious attacker who can observe network packet

sizes can use the compression size to learn secret web-session information. Assume an

attacker can inject and concatenate his own text with the secret text prior to compression.

The smaller the resulting packet, the more compression must have occurred prior to

encryption, and so the attacker-controlled input must contain substrings which match

substrings of the secret text. In the CRIME attack, encryption does not significantly

change the size of the packet, as many encryption protocols are size-preserving. Thus,

by carefully crafting injected inputs, an attacker can incrementally reveal the secret text.

For instance, suppose the secret is the text: “sessionkey:21620” If the attacker is

able to inject the text string: “sessionkey:12345” he will observe less compression than
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if he injects: “sessionkey:21600” because there is a longer prefix match between the

attacker string and the secret string. In this way, the attacker is able to make repeated

guesses and incrementally learn more information about prefixes of the secret.

Consider a simple method for compressing the concatenation of two strings. For

strings s and t, we compress their concatenation, s · t, by checking if t is a prefix of s, and

if so, encoding their concatenation as s; [k] where k is the length of t. If t is not a prefix

of s they are simply concatenated. The notation s; [k] is interpreted as a pointer which

indexes into s, indicating how many characters of s to expand in order to recover t. For

example, if s is the string “Hello, World!” and t is the string “Hello”, s · t is encoded as

“Hello, World!;[5]”. The following is a simple Java function for performing this combined

concatenation and compression:

public String compress(String s, String t) {

if(s.startsWith(t)) return s + ";[" + t.\length() + "]";

else return s + t; }

This function results in an exploitable vulnerability similar to the CRIME attack.

Suppose that s is a secret string of 5 numeric characters, and a malicious adversary has

control over t. If the adversary is able to observe the size of the resulting compression,

he can learn information about s by varying t.

We will assume that the alphabet for s and t is the set of numeric characters: ‘1’,

. . . , ‘9’. By performing symbolic execution of compress(s,t), we can determine path

constraints which lead to different possible observations on the size of the result. For

example, (using the constraint language we define in Section 2) we can see that if

(length(s) = 5) ∧ (begins(s, t) ∨ length(t) = 4) then the length of the resulting string

is 9. One may verify that there are 10, 005 possible pairs of strings (s, t) that satisfy this

constraint. If ¬begins(s, t)∧length(s) = 5∧length(t) = 5 then the resulting string will
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have length 10, and there are 99, 999 possible (s, t) which satisfy this constraint. Assum-

ing that s is uniformly distributed, we can compute the probability of each observation

by dividing the number of solutions by the total domain size.

Prior work in quantitative information flow has proposed using entropy as a measure

of information leakage [18, 19, 20, 21, 22]. Given a probability distribution over program

observables, the Shannon entropy of the distribution is defined as H(p) = −
∑n

i=1 pi log pi.

Applying this to the probabilities computed using a model counting constraint solver,

we can quantify the amount of information leaked for our example as 0.52 bits. Note

that, in addition to a standard symbolic execution tool, all we need in order to be able to

perform this kind of quantitative information flow analysis is a model counting constraint

solver, and for this particular example, we need a model counting constraint solver that

can handle string constraints and numeric constraints together.
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Chapter 3

Parameterized Model Counting for

String and Numeric Constraints

In this chapter, we present a model counting constraint solver that can handle both

numeric and string constraints and their combinations. Given a constraint, we construct

a multi-track deterministic finite automaton (DFA) that accepts tuples of values that

correspond to the solutions of the given constraint. For numeric constraints, we focus

on linear integer arithmetic constraints, and the constructed automaton accepts a binary

encoding of the numbers that satisfy the given numeric constraint. Since some string

constraints can have non-regular solution sets, our automata construction approach over-

approximates the solution set in such cases. Hence, our model counting constraint solver

provides a sound upper-bound for the number of solutions for a given constraint.

Since we use multi-track DFA, we can represent relational constraints that specify

relationships among variables. Moreover, our approach handles interactions between

numeric and string constraints in the presence of operations such as string length which

can be used together with numeric variables in a constraint.

Automata-based constraint solving reduces the model counting problem to path
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counting. To count the number of values that satisfy the given constraint within a

given domain bound, we count the number of accepting paths in the automaton within

the path length bound that corresponds to said domain bound. We use techniques from

algebraic graph theory to solve the path counting problem.

We implemented the techniques we present in this chapter in a tool called Multi-

Track Automata Based model Counter (MT-ABC). We experimented on a large set of

constraints generated during symbolic execution of Java and JavaScript programs and

compared MT-ABC with five existing model counting constraint solvers [23, 24, 25, 26,

27]. Our experiments demonstrate that MT-ABC is as efficient and as or more precise

than existing tools. More importantly, MT-ABC is the only tool can handle the union

of all constraints that existing tools can handle, and MT-ABC is the only tool that

can handle mixed numeric and string constraints that contain both string and integer

variables.

3.1 Constraint Language

We define our constraint language using the grammar shown in Fig. 3.1, where φ

denotes a formula, β denotes a numeric term, γ denotes a string term, φZ denotes a

numeric constraint (an atomic formula) constructed from terms and expressions, φS de-

notes a string constraint (an atomic formula) constructed from terms and expressions, ρ

denotes a constant regular expression, n denotes an integer constant, ⊤ and ⊥ denote

constants true and false, and vi and vs denote integer and string variables, respectively.

We use α to denote φ, φZ, φS, β, or γ.

Given alphabet Σ, s ∈ Σ∗ denotes a string value and ε denotes the empty string. A

character is a string that has length one. The string operations “·", “ p", and “∗" corre-

spond to regular expression operations concatenation, alternation, and Kleene closure,
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φ −→ φ ∧ φ | φ ∨ φ | ¬φ | φZ | φS | ⊤ | ⊥

φZ−→ β = β | β < β | β > β

φS −→ γ = γ | γ < γ | γ > γ | match(γ, ρ) | contains(γ, γ)
| begins(γ, γ) | ends(γ, γ)

β −→ vi | n | β + β | β − β | β × n
| length(γ) | toint(γ) | indexof(γ, γ) | lastindexof(γ, γ)

γ −→ vs | ρ | γ · γ | reverse(γ) | tostring(β) | charat(γ, β) |
| substring(γ, β, β) | replacefirst(γ, γ, γ) | replacelast(γ, γ, γ)
| replaceall(γ, γ, γ)

ρ −→ ε | s | ρ · ρ | ρ p ρ | ρ∗

Figure 3.1: Constraint language grammar

respectively. Comparators “<” and “>” on string terms correspond to lexicographical

comparisons. An atomic constraint refers to a formula without any boolean connectives.

Notice that an integer term produced from the production rule β may contain string

terms γ and vice versa; a constraint produced in this way is called a mixed constraint.

The constraint language from Fig. 3.1 is rich enough to capture common constraints that

appear in Java and PHP programs. Formal semantics of this constraint language is

described in [28].

The set of variables present in φ is given by V(φ). A model for φ is an assignment

of all variables in V(φ) where φ evaluates to true. The truth set of a formula φ, denoted

JφK, is the set of all models of φ. The goal of model counting is to determine the size of

JφK.

3.2 Constraint Solving via Automata

A multi-track DFA A is a 5-tuple (Q, Σ⃗, δ, q0, F ), where Q is the set of states, Σ⃗ =

(Σ ∪ {λ})k is the k-track input alphabet where Σ is the set of alphabet symbols for

one track, λ /∈ Σ is a padding symbol that appears only at the end of a string in each
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track, δ : Q × Σ⃗ → Q is the transition relation, q0 ∈ Q is the initial state, and F ⊆ Q

is the set of accepting states. Multi-track DFA are closed under intersection, union and

complement [29]. With each track of A, we associate a unique identifier vi, which we

refer to as the variable for track i. The set of track variables for A is denoted V(A). The

language of all strings recognized by A is denoted L(A) where L(A) ⊆ Σ⃗∗. Given a word

w ∈ L(A), we use w[vi] ∈ Σ∗ to denote the value of track i. Hence, w ∈ L(A) denotes a

tuple of values (w[v1], w[v2], . . . , w[vk]), one value for each variable in V(A).

Given a formula φ, our goal is to construct an automaton A, such that L(A) = JφK,

where the tracks of A correspond to the variables of φ. We call this DFA the solution

automaton for φ. Some mixed constraints and some pure string constraints have non-

regular truth sets [29]. For such constraints we provide a sound over approximation by

constructing an automaton A such that JφK ⊆ L(A).

During our construction, in addition to having one track for each variable of the

formula in the multi-track automaton, we also create one track for each string term

(shown as γ in Figure 3.1) and one track for each numeric term (shown as β in Figure 3.1).

Actually, for the terms that correspond to addition, subtraction and multiplication with

a constant we do not create separate tracks as we discuss in Section 3.2.3. Given a term

γ or β, we use t(γ) and t(β) to denote the tracks that those terms are associated with.

We define a projection operation π such that, given an automaton A and a variable

set V , π(A, V ) is an automaton A′ where V(A′) = V . Let x1, . . . , xn ∈ V \ V(A) be the

variables in V but not in V(A) and y1, . . . , ym ∈ V(A) \ V be the variables in V(A) but

not in V . That is, we wish to add new unconstrained xi tracks to A and remove yj tracks

from A. Then, we define π(A, V ) to be a multi-track DFA A′ with V(A′) = V such that:

w′ ∈ L(A′) ⇔ ∃w ∈ L(A), ∀v ∈ V(A′) ∩ V(A), w[v] = w′[v].
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Algorithm 1 Solve(A,α)
Procedure operates on an automaton A which is passed by reference and has a track for each
variable and term in α.
α is one of the following: a conjunction of numeric and string constraints, a string constraint, a
numeric constraint, a string term, or a numeric term.
⋆ ∈ {=, ̸=, <,≤, >,≥,match,¬match, contains,¬contains,
begins,¬begins, ends,¬ends}
⊙ ∈ {−,+,×, length, toint, indexof , lastindexof , reverse, tostring,

charat, substring, replacefirst, replacelast, replaceall}
1: if α ≡ α1 ∧ α2 then
2: Solve(A,α1); Solve(A,α2);
3: Propagate(A,α1); Propagate(A,α2);
4: else if α ≡ α1 ⋆α2 then
5: Solve(A,α1); Solve(A,α2);
6: Refine(A, ⋆,t(α1),t(α2)) ▷ modifies tracks t(α1) and t(α2)
7: Propagate(A,α1); Propagate(A,α2);
8: else if α ≡ ⊙(α1, . . . , αn) then
9: for all αi ∈ {α1, . . . , αn} do

10: Solve(A,αi);
11: end for
12: Restrict(A,t(α),⊙,t(α1), . . . ,t(αn)); ▷ modifies track t(α)
13: end if

3.2.1 Automata Construction

Since the negation operator is non-monotonic and since we sometimes over-approximate

the solution sets of subformulas, before the automata construction, we convert the input

formula to negation normal form by pushing negations to atomic formulas.

We first describe our automata construction algorithm for constraints which are con-

junctions of numeric and string constraints (i.e., φZ and φS in Fig. 3.1, respectively). We

describe how we handle combinations of conjunctions and disjunctions later.

Let φ be a formula which is a conjunction of numeric and string constraints. The

automata construction procedure Solve (Algorithm 1) recursively constructs a multi-

track automaton A such that, when A is projected to the variables of φ (i.e., V(φ)), it

accepts an over approximation of φ solutions set, i.e., JφK ⊆ L(π(A,V(φ))).

Procedure Solve passes the automaton A by reference, so there is a single automaton

27



Parameterized Model Counting for String and Numeric Constraints Chapter 3

Algorithm 2 Propagate(A,φ)
Procedure operates on an automaton A which is passed by reference and has a track for each
variable and term in φ.
⊙ ∈ {−,+,×, length, toint, indexof , lastindexof , reverse, tostring,

charat, substring, replacefirst, replacelast, replaceall}
1: if φ ≡ ⊙(α1, . . . , αn) then
2: Refine(A,t(α),⊙,t(α1), . . . ,t(αn)); ▷ modifies tracks t(α1) to t(αn)
3: for all αi ∈ {α1, . . . , αn} do
4: Propagate(A,αi);
5: end for
6: else if φ ≡ φ1 ∧ φ2 then
7: Propagate(A,φ1); Propagate(A,φ2);
8: else if φ ≡ φ1 ∨ φ2 then
9: Aφ1

= A ∩Aφ1
; Aφ2

= A ∩Aφ2
;

10: Propagate(Aφ1 , φ1); Propagate(Aφ2 , φ2);
11: end if

A that is being modified. Before the first call to the Solve procedure, A is initialized so

that all tracks accept all strings, i.e., initially, L(A) = Σ⃗∗.

The procedure Solve uses three other procedures during the construction of au-

tomaton A: Restrict, Refine and Propagate. Again, the automaton A is passed by

reference, so all these procedures modify the same automaton A during construction.

The procedure Restrict is used to compute the result of a string or numeric op-

erator. Note that, there is a track in A for each term in φ, so the result of each string

or numeric operator has a track reserved for the corresponding term. Let us denote

the string or numeric operator with the symbol ⊙, where α ≡ ⊙(α1, . . . , αn). Then,

Restrict(A,t(α),⊙,t(α1), . . . ,t(αn)) restricts the track in A that corresponds to the

term ⊙(α1, . . . , αn) based on the tracks of the arguments α1, . . . , αn in A. For this to

work, we need to make sure that the arguments’ tracks are processed first, and this is

done in the for loop before Restrict is called.

Consider the term charat(v, i). Restrict(A,t(charat(v, i)), charat,t(v),t(i)) re-

stricts track t(charat(v, i)) in A to string values that correspond to characters that can

appear at location i of string v, where possible values for v and i are specified by the
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values recognized by tracks t(v) and t(i), respectively.

The procedure Refine is used to reflect the constraint imposed by a string or numeric

predicate or its negation to its arguments. Let us denote the string or numeric predicate

with the symbol ⋆, where α1 ⋆ α2 and α1 and α2 are string or numeric terms. Then,

Refine(A, ⋆,t(α1),t(α2)) reflects the constraint imposed by the predicate α1 ⋆ α2 to

the tracks t(α1) and t(α2). Before Refine is called arguments of the predicate ⋆ are

processed.

Consider the predicate charat(v, i) = "a", Refine(A,=,t(charat(v, i)),t("a"))

restricts the set of values for track t(charat(v, i)), to the string "a". Note that, since

"a" is a constant, we do not actually need a track for it, but for simplicity of presentation,

let us assume that constants are also assigned a track which accept just the value that

corresponds to the constant.

After Refine is called, the set of strings recognized by the arguments’ tracks may

have changed and must be propagated to the other tracks (as arguments can be terms

constructed from other arguments). This is done using the Propagate procedure. For

example, once we refine the set of values for track charat(v, i) based on the predicate

charat(v, i) = "a" we have to propagate this change to the arguments of the operator

charat and refine the values for t(v) and t(i). We call Propagate(A, charat(v, i)) to

do this.

In general, we use the Propagate procedure when the result of a string or numeric

operator is refined due to a string or numeric predicate, and this refinement has to be

propagated to the arguments of the operator. As shown in Algorithm 2, Propagate(A,

⊙(α1, . . . , αn)) first calls Refine(A,t(α),⊙,t(α1), . . .t(αn)) which refines the tracks for

the arguments of the operator ⊙ based on the track for the ⊙ term. After this refinement,

it recursively calls the procedure Propagate on the arguments of the ⊙ term to further

propagate the refinement.
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Algorithm 3 Solve(A,φ)
Procedure operates on an automaton A which is passed by reference.
Disjunctions create a separate automaton for each disjunct.
Conjunctions use a single automaton for all conjuncts.
1: if φ ≡ φ1 ∨ φ2 then
2: Solve(Aφ1

, φ1); Solve(Aφ2
, φ2) ;

3: A = Aφ1
∪Aφ2

▷ Union computed using automata product
4: else if φ ≡ φ1 ∧ φ2 then
5: Solve(A,φ1); Solve(A,φ2);
6: Propagate(A,φ1); Propagate(A,φ2);
7: Solve(A,φ1); Solve(A,φ2);
8: end if

0 1 2
(0, 1)

(1, 0)
(1, 1)

(0, 1)

(0, 0)

(0, 0)(i, j)

0 1 2
b

a, b

a a, bv

Figure 3.2: Automata constructed for Example 3.1

As shown in Algorithm 3, we extend the Solve procedure to combinations of conjunc-

tions and disjunctions. For conjunctions we use a single automaton. After a conjunction

is solved, it is necessary to propagate the result to the children of the conjunction. After

propagation, the conjunction is solved again so that the final automaton captures all the

refinements.

For disjunctions, each disjunct has its own automaton. Then, the automaton for the

disjunction corresponds to the automaton that accepts the union of sets accepted by each

disjunct automaton. We compute the union automaton using automata product.

Let us consider the following example constraint:

charat(v, i) = "a" ∧ i = 2× j (3.1)

We show the resulting automata in Figure 3.2. Note that, to make the example more

readable, we split the automaton to two, one for string variables and one for integer

variables. In fact, in our implementation we also split the automata to multiple automata

based on the dependencies among variables, which we discuss later with other heuristics.

30



Parameterized Model Counting for String and Numeric Constraints Chapter 3

3.2.2 String Constraint Solving

We now discuss how Algorithm 1 handles atomic constraints α ≡ α1 ⋆ α2, when α is a

φS term, ⋆ is a string predicate, and α1 and α2 are string terms (γ). In particular, we will

focus on the Restrict and Refine procedures on string terms and string predicates,

and discuss a representative subset of string terms and string predicates.

Let us use the notation introduced in Figure 3.1 where β denotes integer terms, γ

denotes string terms, and ρ denotes regular expression terms. Given an automaton A,

function t(α) represents the possible values of the term α that is encoded as a track in

the given automaton. Let t′(α) represent the result of a Restrict or Refine procedure

call on the corresponding track. The prefixes : Σ∗ → Σ∗ function computes the set of

prefixes for a given set of strings and the suffixes : Σ∗ → Σ∗ function computes the set of

suffixes for a given set of strings. Both functions can be implemented using projection,

determinization, and minimization operations on DFAs.

Let us consider the operations length, indexof , substring, charat, and “·” (string

concatenation) operations.

Restrict(A,t(length(γ)), length,t(γ)):

t′(length(γ)) = {i | ∃s ∈ t(γ) : i = |s| ∧ i ∈ t(length(γ))}

Restrict(A,t(indexof(γ1, γ2)), indexof ,t(γ1),t(γ2)):

t′(indexof(γ1, γ2)) = {i | ∃s ∈ prefixes(t(γ1)), u ∈ t(γ2),

v ∈ Σ∗ : suv ∈ t(γ1) ∧ ∄s1 ∈ suffixes(prefixes(s)) :

s1 = u ∧ i = |s| ∧ i ∈ t(indexof(γ1, γ2))}
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Restrict(A,t(substring(γ, β1, β2)), substring,t(γ),t(β1),t(β1)):

t′(substring(γ, β1, β2)) = {s | ∃t ∈ t(γ) : ∃t1 ∈ prefixes(t),

t2 ∈ Σ∗ : t = t1t2 ∧ |t1| ∈ t(β1) ∧ ∃v ∈ prefixes(t2) :

|v| ∈ t(β2) ∧ s = v ∧ s ∈ t(substring(γ, β1, β2))}

Restrict(A,t(γ1 · γ2), ·, γ1, γ2):

t′(γ1 · γ2) = {s | ∃s1 ∈ t(γ1), s2 ∈ t(γ2) : s = s1s2 ∧ s ∈ t(γ1 · γ2)}

Note that charat operation can be rewritten as substring(γ, β, 1) where the last

parameter is the length of the substring, hence the Restrict and Refine for charat

can be computed using corresponding operations for substring.

Let us now discuss the Refine procedure. Consider the string predicates =, match,

and contains. Predicate operations create a boolean relation between the input tracks.

We define the relation with tuples of strings that correspond to values from input tracks.

Refine(A,=,t(γ1),t(γ2)) : {(s, t) | s ∈ t(γ1) ∧ t ∈ t(γ2) ∧ s = t}

We can implement the semantics of the equality predicate using the multi-track DFAs

precisely. Procedure Propagate must be called when tracks represent terms that include

string term operations.

Refine(A,match,t(γ),t(ρ)): {s | s ∈ t(γ) ∧ s ∈ t(ρ)}

Note that match operation takes a constant regular expression as an argument. We do

not need to create a relation between a string term and a constant regular expression

constant. Hence, we only refine the string term in the match predicate.

Refine(A, contains,t(γ1),t(γ2)): {(s, t) | s ∈ t(γ1) ∧ t ∈ t(γ2) ∧ s ∈ Σ∗t(φ2)Σ
∗ ∧ t ∈

suffixes(prefixes(t(γ1))}
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Here, semantics of the contains operation does not enforce the relation between the

input tracks’ values. In other words, if one of the tracks is updated by another operation,

we need to propagate that update back to the contains operation. The Propagate

procedure calls after conjunctions make sure that refinement for the contains operation

is executed again once there is an update.

Next, we define the Refine semantics for the string term operations. Let us consider

the operations length, indexof , substring, charat, and “·” again.

Refine(A,t(length(γ)), length,t(γ)):

t′(γ) = {s | ∃t ∈ t(length(γ)) : |s| = t ∧ s ∈ t(γ)}

Refine(A,t(indexof(γ1, γ2)), indexof ,t(γ1),t(γ2)):

t′(γ1) = {s | ∃t, u, v ∈ Σ∗ : |t| ∈ t(indexof(γ1, γ2)) ∧

u ∈ t(γ2) ∧ s = tuv ∧ s ∈ t(γ1)} ∧

t′(γ2) = {s | ∃t, v ∈ Σ∗ : t ∈ t(indexof(γ1, γ2)) ∧

tsv ∈ t(γ1) ∧ s ∈ t(γ2)}

Refine(A,t(substring(γ, β1, β2)), substring,t(γ),t(β1),t(β1)):

t′(γ) = {s | ∃t, u ∈ Σ∗, v ∈ t(substring(γ, β1, β2)) :

|t| ∈ t(β1) ∧ |v| ∈ t(β2) ∧ s = tvu ∧ s ∈ t(γ)} ∧

t′(β1) = {i | ∃t, u ∈ Σ∗, s ∈ t(γ), v ∈ t(substring(γ, β1, β2)) :

|v| ∈ t(β2) ∧ s = tvu ∧ i = |t| ∧ i ∈ t(β1)} ∧

t′(β2) = {i | ∃t, u ∈ Σ∗, s ∈ t(γ), v ∈ t(substring(γ, β1, β2)) :

|t| ∈ t(β1) ∧ s = tvu ∧ i = |v| ∧ i ∈ t(β2)}
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Refine(A,t(γ1 · γ2), ·,t(γ1),t(γ2)):

t′(γ1) = {s | ∃t ∈ t(γ1 · γ2), v ∈ t(γ2) : t = sv ∧ s ∈ t(γ1)} ∧

t′(γ2) = {s | ∃t ∈ t(γ1 · γ2), v ∈ t(γ1) : t = vs ∧ s ∈ t(γ2)}

The algorithms for the Restrict and Refine procedures are based on pre- and

post-image computation in string analysis similar to the ones used in [30, 31, 32].

Let us consider the string constraint example charat(v, i) = "a" again. Initially t(v)

and t(i) are unconstrained. Based on the semantics, Restrict(A,t(charat(v, i)),Σ∗,Σ∗)

computes the set for t′(charat(v, i)) as Σ∗. Next, the Refine(A,=,Σ∗,"a") refines

t(charat(v, i)) as {"a"}. Note that, we are not able keep the relation between charat(v, i),

v, and i once they are computed. As equality predicate updates the t(charat(v, i)), we

need to propagate the result back to v and i. In the final step, Refine(A, {"a"}, charat,Σ∗,Σ∗)

is called to refine v and i. The final refinement sets the t(v) as Σ∗"a"Σ∗ and t(i) as

{i | i >= 0}.

3.2.3 Integer Constraint Solving

We now focus out attention to the branch of Algorithm 1 for α ≡ α1 ⋆ α2, when α is a

φZ term, ⋆ is an integer term comparison operator, and α1 and α2 are linear combinations

of atomic integer terms. Any such integer term constraint can be rewritten by moving

all terms to one side of ⋆ and decomposing it into a semantically equivalent conjunction

of constraints in which ⋆ is ≤. Thus, without loss of generality, we focus on integer term

constraints of the form

φZ ≡ 0 ≤
n∑

i=1

ciβi (3.2)

where ci denotes an integer constant coefficient and βi is an atomic integer term.

Algorithm 1 is written in a way that it would process each binary + term separately.
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Figure 3.3: Automaton built for the constraint φ1 ≡ i = 2× j

However, in the case of integer constraints of the form in expression 3.2, we construct a

DFA for all terms of φZ at once. That is, when we call Refine(A,≤,t(β1), . . . ,t(βn))

we use an automaton construction that updates all βi tracks simultaneously. This au-

tomata construction method is based on algorithms that construct a binary adder state

machine [33]. Given φZ as in expression 3.2, we use those algorithms to directly con-

struct a multi-track automaton A over the binary alphabet {0, 1} such that each track

corresponds a βi, and L(A) is the set of tuples of satisfying assignments for (β1, . . . , βn),

encoded as binary integers in 2’s complement form, reads from least to most significant

bit.

For instance, consider the constraint i = 2 × j for integer variables i and j. The

binary DFA for this constraint is depicted in Figure 3.3. One possible accepting sequence

of states is 0, 2, 3, 0, 1. By taking the right-hand concatenation (as the DFA reads least

significant bits first) of the pairs of bits along the corresponding transitions, we get

(0110, 0011) in binary which is (6, 3) in decimal. The DFA captures all possible integer

solutions in this way, with leading 1’s indicating negative numbers in the standard 2’s

complement encoding.

3.2.4 Binary and Unary Encodings

A string term can have integer sub-terms and a integer terms can contain string

sub-terms. As described in the earlier discussion of Algorithm 1, we call Propagate,

Refine, and Restrict to update the relationship between the string and integer vari-
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ables. However, our binary integer arithmetic representation is not directly compatible

with automaton operations over standard string automata.

As just described, we can precisely solve multi-variable linear integer arithmetic con-

straints by constructing a multi-track binary integer automaton that recognizes tuples of

solutions. However, integer variable solutions can be related to string variables through

operations that have both string and integer parameters such as length or indexof .

Given the DFA representing the solutions for integer variables, we must propagate the

constraints imposed by the integer solutions to each related string variable. We do so by

first converting the binary DFA solution representation A for an integer variable i to a

set comprehension representation S.

Our conversion from binary integer DFA A to a set comprehension S uses algorithms

from [34, 35, 36], which show how to construct a description of a semilinear set from a

binary DFA, which we now describe at a high level. A linear set Li is given by {a0 +

a1k1+ . . . ankn : kj ∈ Z} where the aj constant integers are called the periods of the linear

set. A semilinear set S is a finite union of linear sets, S = ∪iLi. For any binary integer

DFA A constructed from linear integer arithmetic constraints, the accepted integers for

each track of A form a semilinear set. Furthermore, for any track (which corresponds

to an integer term), we can recover a set comprehension for the semilinear set S that it

represents [34, 35, 36]. Intuitively, this works by examining the periods of the loops in

the strongly connected components of the binary DFA in order to find the periods for a

linear set Li ⊆ L(A). A DFA representing the set Li is then subtracted from A using

DFA complement and intersection, and we iterate this procedure until L(A) = ∅.

Once we have S, for a single track of the binary DFA A, which corresponds to a

single integer terms, we then convert S into a unary DFA A′, which for any integer

m ∈ S accepts all strings of length m. The unary DFA A′ is then compatible with string

automata and can be used to restrict or refine the set of string models. For example, if
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0 1

a, b
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Figure 3.4: Final automata constructed for Example 3.3

S = {2 + 5k1 + 4k2} the corresponding unary DFA is shown below, which has an initial

segment of length 2 and two interleaved loops of periods 4 and 5.

0 1 2 3 4 5 6
Σ Σ Σ Σ Σ Σ

Σ
Σ

We described how to propagate solutions from binary integer DFA to string DFA.

In order to propagate solutions from string DFA to binary integer DFA, we reverse this

process by converting a string DFA into a unary length DFA, extracting the semilinear

set, and constructing the corresponding binary integer DFA.

Consider the following example constraint:

i = 2× j ∧ length(v) = i (3.3)

Example 3.3 is a conjunction of an atomic integer constraints φ1 ≡ i = 2 × j and

φ2 ≡ length(v) = i. The constraint φ2 is also a mixed constraint as it contains both a

string and an integer variable.

Figure 3.4 shows the final automata constructed for the input formula φ ≡ i =

2 × j ∧ length(v) = i. The auxiliary variable vl represents bitwise encodings of the

lengths of the strings that are represented with the variable v.

3.3 Model Counting

In this section, we describe how to perform parameterized model counting by making

use of the automata constructed by our constraint solving procedure. The model counting
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problem is to determine the size of JφK, which we denote #JφK. While a formula can

have infinitely many models, we can count the number of models in an infinite space of

solutions restricted to a finite range for the free variables. Hence, we perform parameter-

ized model counting for string and integer constraints, where #JφK(bS, bZ) is a function

over parameters bS, which bounds the length of string solutions, and bZ, which bounds

the bit-length representation of integer solutions.

The constraint solving procedure produces a final DFA, A, that contains multi-track

solution sub-automata AS and AZ. The separation of string and integer automata may

lose some relational information between string and integer variables; we can multiply the

model counts for each automaton in order to give a sound upper bound on the number of

models for tuples of integer and string variables. We use functions #FAS(k) and #fAZ(k)

to count string and integer models respectively.

We rely on the observation that counting the number of strings of length k in a

regular language, L, is equivalent to counting the number of accepting paths of length

k in the DFA that accepts L. That is, by using a DFA representation, we reduce the

parameterized model counting problem to counting the number of paths of a given length

in a graph. In a DFA, there is exactly one accepting path for every recognized string.

Thus, if we are interested in computing only string models or only integer models, there

is no loss of precision due to the the model counting procedure; any loss of precision

for strings comes from the over-approximations of non-regular constraints in the solving

phase, and for pure integer constraints, the model counting procedure is precise because

integer solution automata construction is precise.

Given a string automaton AS, computation of #fAS(k), the number of accepted strings

of length k, can be done by constructing the transfer matrix of the automaton based on

its transition relation [37, 38]. Let AS be a DFA with n states. The transfer matrix T

of A is a matrix where Ti,j is the number of transitions from state i to state j. The
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number of paths of length k that start in state i and end in state j is given by (T k)i,j.

Then the number of strings of length k accepted by A can be computed using matrix

multiplication. We compute uT kv, where u is the row vector such that ui = 1 if and only

if i is the start state and 0 otherwise, and v is the column vector where vi = 1 if and only

if i is an accepting state and 0 otherwise. Note that for relational string constraints, the

transition alphabet is over tuples of characters and the method described here will count

the number of tuples of solutions of a given length. Our counting method is parameterized

in the following sense: after a constraint is solved, we can count the number of solutions

of any desired size k by computing uT kv, without re-solving the constraint.

The method described above computes #fAS(k), the number of string solutions of

length exactly k. It is of interest to compute #FAS(k), the number of solutions within

a given bound. This is accomplished easily using a known “trick” often used to simplify

graph algorithms. We add an artificial accepting state sn+1 to AS, resulting in a new

DFA A′
S, with λ-transitions from each accepting state to sn+1, and a λ-cycle on sn+1.

Then one can see that #FAS(k) = #fA′
S
(k + 1), and so we apply the transfer matrix

method on A′
S.

The method for counting strings of a given length allows us to perform model counting

for linear constraints as well. However, we must interpret the bound k in a slightly

different manner. A solution DFA AZ for a set of integer tuples encodes the solutions

as bit-strings. Thus, paths of length k in an integer automaton correspond to bit string

of length k. Since we are using a 2’s complement representation with leading sign bits,

bit strings of exactly length k correspond to integers in the range [−2k−1, 2k−1). Thus,

the transfer matrix method allows us to perform model counting over integer domains

parameterized by intervals of this form by computing #fAZ(k). To count models for

arbitrary intervals (a, b), we intersect AZ with the DFA representing a ≤ xi ≤ b for any

variable xi, and then count paths in the resulting DFA.
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The methods described above allow us to compute #FAS(k) and #fAZ(k) indepen-

dently. Now, we can compute #φ(bS, bZ) = #FAS(bS) ·#fAZ(bZ).

3.4 Implementation and Experiments

We implemented the techniques we presented in this paper in a tool called Multi-

Track Automata Based model Counter (MT-ABC)1 by extending an existing tool called

Automata Based Model Counter (ABC). We evaluated the precision and performance

of MT-ABC using three types of constraints: constraints solely on string variables, con-

straints solely on integer variables, and constraints that contain both string and integer

variables.

We experimentally compared MT-ABC with five existing model counting constraint

solvers: (1) ABC [23], a single-track automata-based model counter for strings, (2)

S3# [25], a model counter for strings with some capability of handling relations between

strings and integers, (3) SMC [24], a string model counter, (4) LattE [26, 39], a model

counter for linear arithmetic constraints, and (5) SMTApproxMC [27], an approximate

model counter for the theory of fixed-width words.

Our experiments show: 1) MT-ABC is as or more precise with comparable efficiency

than existing string model counters. 2) Multi-track automata enables MT-ABC to cap-

ture relations between variables more precisely than single-track automata used in ABC.

3) Parameterized model counting enables MT-ABC to compute multiple length bounds

for the same formula efficiently without re-solving. 4) MT-ABC and S3# are the only

tools that support mixed constraints with string and integer variables. MT-ABC is as or

more precise than S3# for model counting constraints involving relations between string

and integer variables, MT-ABC can handle a richer set of constraints than S3#, and S3#
1available at https://github.com/vlab-cs-ucsb/ABC
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Table 3.1: Experiments with MT-ABC, ABC, S3#, and SMC on security benchmark.
Unsound results are highlighted.

Program Len SMC ABC MT-ABC S3#
Lower/Upper Bound Time Upper-Bound Time Upper-Bound Time Exact Count Time Count Scale

ghttpd 620 [10626.2;1031904473.2] 26.07 – – 1031904473 21.69 1031904472.8 0.54 × 101465

11 [256;767] 0.49 767 0.56 767 0.029 767 0.49

ghttpd wo_len 620 [10626.2;1031904473.2] 25.99 1031904473 0.55 1031904473 0.14 1031904472.8 0.52 × 101465

11 [256;767] 0.49 767 0.57 767 0.069 767 0.49
nullhttpd 500 [2.9;1369.8] 9.78 – – 0 0.032 0 0.47 × 101129

csplit 629 [5.9 ∗ 101460;3.1 ∗ 101481] 98.01 – – 0 0.024 0 0.54
grep 629 [0.7 ∗ 101408;0.1 ∗ 101435] 150.97 2.0 ∗ 101473 5.1 0 3.94 0 0.56
wc 629 [0.979;8.0] 153.93 – – 0.979 9.05 0.979 3.35 × 101289

obscure1 10 [11.2;11.6] 0.45 11.2 0.013 11.2 0.023 11.2 0.46 × 1023

obscure2 6 [2.8;2.8] 0.47 2.8 0.075 2.8 0.077 2.8 0.46 × 1014

strstr1 5 [196608;196608] 0.45 1099511431168 0.017 1099511431168 0.002 1099511431168 0.45
strstr2 5 [16776960;16776960] 0.45 16776960 0.026 16776960 0.004 16776960 0.46
regex 4 [0;0] 0.52 16 0.004 16 0.002 16 0.45
contains 5 [67108096;67108096] 0.45 67108096 0.007 67108096 0.002 67108096 0.46

produces unsound results.

All experiments, other than those involving S3#, were done on an Ubuntu 16.04

machine with Intel i5 3.5GHz X4 processors and 32GB of memory. We were unable to

run S3# on Ubuntu 16.04; all experiments involving S3# were done on the same machine

but within an Ubuntu 14.04 virtual machine with 8 GB of memory.

3.4.1 String Constraints

Security Benchmark: Constraints in this benchmark are taken from various secu-

rity contexts [25, 24]. For example, two constraints extracted from string manipulation

utilities within the BUSYBOXY v.1.21.1 package (wc and grep), and one constraint ex-

tracted from a utility in the COREUTILS v.8.21 package (csplit) are used to quantify

information leakage for homomorphically encrypted inputs.

Table 3.1 shows the results of MT-ABC, ABC, S3#, SMC for the security benchmark.

Second column shows the string length value used for model counting (i.e., the tools count

the number of solution strings with the specified length), last column indicates scale for

larger lengths. Both MT-ABC and ABC report an upper bound on the number of

solutions, while both SMC and S3# give both lower and upper bounds (S3# reports an

exact count when the bounds are the same). Both MT-ABC and S3# generate bounds
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which are as or more precise than those reported by SMC. In all cases, MT-ABC is as

or more precise than ABC. The bounds generated by both MT-ABC and S3# agree for

all constraints except ghttpd and ghttpd_ wo_len, where ghttpd_ wo_len is derived

from ghttpd by removing the part of the constraint that uses the string length function.

For solution strings of length 620, the two solvers give different counts. We could not

confirm the model count for these constraints as they are too complex to manually count.

However, while experimenting with variations of these constraints, we found out that S3#

computes an erroneous count for a simplified version of these constraints. So, we believe

that the count that S3# reports is erroneous.

The running times for all four model counters are comparable for small constraints

(obscure, strstr, regex, contains). For large constraints (ghttpd, wc, csplit, nullhttpd),

ABC either times out after 20 minutes or runs out of memory, while both MT-ABC

and S3# produce results faster than SMC. When the input constraint contains a high

concrete value for the string length (ghttpd, wc, grep), MT-ABC generates a large au-

tomaton, which leads to a higher running time, whereas without the length constraint

(ghttpd_wo_len), both MT-ABC and ABC produce results quickly.

Simplified Kaluza Benchmark: Simplified Kaluza benchmark is a set of satisfiable

constraints generated via symbolic execution of JavaScript and originally solved with

the Kaluza string solver [40]. The authors of SMC simplified the Kaluza benchmark

by replacing integer variables with constants and by removing disjunctions, since SMC

cannot handle integer variables and loses precision for disjunctive constraints. Then,

they translated these constraints into their input format and separated them into two

sets: SMCSmall and SMCBig. We translated them from SMC format to MT-ABC

input format. The SMCSmall set contains 17544 constraints and SMCBig contains 1342

constraints. Each constraint contains a query variable to model count on. We compared

the performance and upper bounds produced by MT-ABC, ABC, and SMC using this
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Table 3.2: ABC (uABC), MT-ABC (uMT−ABC) and SMC (uSMC) upper bounds compari-
son.

Benchmark #Constraints uMT−ABC < uSMC uMT−ABC = uSMC uMT−ABC > uSMC

SMCSmall 17544 166 (0.9%) 17388 (99.1%) 1 (0.0%)
SMCBig 1342 1019 (75.9%) 323 (24.1%) 0 (0.0%)

uMT−ABC < uABC uMT−ABC = uABC uMT−ABC > uABC

SMCSmall 17544 1025 (6%) 16529 (94%) 0 (0.0%)
SMCBig 1342 1046 (78%) 296 (22%) 0 (0.0%)

benchmark.

Table 3.2 compares MT-ABC to ABC and MT-ABC to SMC for solution strings less

than or equal to 50. We did not include S3# in this comparison since S3# can only

model count solution strings having length exactly equal to the given given length.

For SMCSmall constraints ABC takes 0.0036s per constraint, SMC takes 0.42s per

constraint, and MT-ABC takes 0.011s per constraint, on average. For SMCBig con-

straints ABC takes 6.09s per constraint, SMC takes 4.08s per constraint, and MT-ABC

takes 1.35s per constraint, on average. For SMCSmall constraints, MT-ABC generates a

more precise count than ABC for 6% of the constraints, and MT-ABC generates a more

precise count than SMC for 0.9% of the constraints. For SMCBig constraints, MT-ABC

generates a more precise count than ABC for 78% of the constraints, and MT-ABC gen-

erates a more precise count than SMC for 75.9% of the constraints. MT-ABC reported

a higher count than SMC for one constraint; we manually determined MT-ABC reports

the exact count in this case and concluded that the count reported by SMC is erroneous.

In summary, for small constraints the performance of all three solvers are comparable,

but for big constraints, MT-ABC is more efficient than ABC and SMC and produces

more precise counts than ABC and SMC for more than 75% of the big constraints.
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3.4.2 Integer Constraints

Comparison with LattE: We compare the performance of MT-ABC with LattE

for model counting linear arithmetic constraints on benchmarks containing constraints

generated during reliability [41] and side-channel analyses of Java programs using the

symbolic execution tool SPF [22, 42]. We extended the reliability benchmark by adding

Merge sort, Quick sort, and Binary search functions. Password, LawDB, and CRIME

come from side-channel analysis [22, 42]. Password, LawDB and Binary have 7,8, and 13

constraints respectively; the others range from 600-2000 constraints each.

Some of the constraints (e.g., the constraints coming from the sorting functions)

require a data structure with a certain size in order to enable symbolic execution. We

fixed the size of such structures to 6. We counted solutions to the path constraints

given bit-lengths 4, 8, 16, and 32. MT-ABC and LattE return identical counts for all

constraints as both model counters are precise in counting linear arithmetic constraints.

We focus on the timing comparison between MT-ABC and LattE. As a side note, the

LattE input format does not support disequalities and thus needs a preprocessing step

when such constraints arise. The LattE integration with SPF uses Omega [43]; we refer

the reader to [41, 22, 42] for integration details.

Figure 3.3 shows that in general MT-ABC performs better than LattE, though there

are exceptions (such as LawDB, Binary). Note that MT-ABC always outperforms Lat-

tEwhen counting multiple bit-lengths. Since MT-ABC is a parameterized model counter,

it first solves a constraint without constraints on bit length, and then reuses the gener-

ated automaton to count for multiple bit-lengths. In contrast, LattE needs to be called

separately for each bit-length.

Comparison with SMTApproxMC: We compare the performance of MT-ABC

with SMTApproxMC using the same program analysis benchmarks we used in comparison
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Table 3.3: MT-ABC and LattE average time (seconds) per numeric constraint for dif-
ferent bit-lengths. The last two columns denote the combination of all lengths (columns
for lengths 4,16 omitted for space). For each bit-length, the execution time of the faster
tool is in bold.

Bit-length = 8 Bit-length = 32 Bit-length = 4,8,16,32Benchmark MT-ABC LattE MT-ABC LattE MT-ABC LattE
LawDB 0.0218 0.0118 0.0223 0.0144 0.0227 0.0408
Heap 0.0165 0.0214 0.0209 0.0217 0.0212 0.0868
Booking 0.0104 0.0133 0.0106 0.0133 0.0107 0.0534
Bubble 0.0184 0.0218 0.0264 0.0221 0.0268 0.0879
Binary 0.0246 0.0250 0.0409 0.0256 0.0410 0.1036
DaisyChain 0.0128 0.0359 0.0138 0.0361 0.0140 0.3571
Selection 0.0171 0.0217 0.0224 0.0219 0.0228 0.0878
Crime 0.0143 0.2628 0.0151 0.2604 0.0153 0.9873
Merge 0.0183 0.0215 0.0262 0.0216 0.0266 0.0868
Flap 0.0094 0.0308 0.0094 0.0308 0.0096 0.1234
Quick 0.0173 0.0219 0.0236 0.0224 0.0239 0.0891
Insertion 0.0190 0.0218 0.0270 0.0220 0.0273 0.0880
RobotGame 0.0113 0.1408 0.0113 0.1397 0.0114 0.5717
AlarmClock 0.0095 0.0121 0.0096 0.0121 0.0097 0.0487
Password 0.0102 0.0542 0.0102 0.0542 0.0102 0.2185

of MT-ABC with LattE. Since SMTApproxMC targets the theory of fixed-width words,

we translated each benchmark into the SMT2-BitVector format that SMTApproxMC is

able to handle. We ran both MT-ABC and SMTApproxMC using bit-lengths of 2 and

3 since SMTApproxMC does not scale to larger bit-lengths. As some of the benchmarks

contains constants which require more than 2 or 3 bits to be represented in bitvector

format, we omit them from our comparison. Table 3.4 shows the execution time of both

tools. For both bit-lengths and all benchmarks, MT-ABC is significantly faster than

SMTApproxMC. MT-ABC produces an exact count in every case, while SMTApproxMC

reports an approximate count which varies in precision. The average difference in model

count as percentage of the domain size between the two tools is 3.7% and 4.2%, for

bit-lengths of 2 and 3, respectively, with a maximum difference of 23.4% and 25.7% for

bit-lengths of 2 and 3 for the FlapController. For every constraint in these benchmarks,
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Table 3.4: MT-ABC and SMTApproxMC average time (seconds) per numeric constraint
for different bit-lengths. For each bit-length, the execution time of the faster tool is in
bold.

Bit-length = 2 Bit-length = 3Benchmark MT-ABC SMTApproxMC MT-ABC SMTApproxMC
Bubble 0.011 0.502 0.011 1.046
Booking 0.019 0.530 0.018 24.09
Selection 0.017 0.518 0.017 14.29
Password 0.011 47.28 0.011 1680.67
Merge 0.018 0.528 0.018 24.08
FlapController 0.793 1.487 0.791 158.81
Binary 0.009 0.656 0.009 4.525
Insertion 0.019 0.531 0.019 24.05
Heap 0.017 0.513 0.017 10.33
Quick 0.017 0.521 0.017 16.97
Alarm 0.009 0.472 0.010 0.99

MT-ABC significantly outperforms SMTApproxMC while producing as or more precise

counts.

3.4.3 Mixed String and Integer Constraints

For our final tool comparison we use the unmodified SMT2 Kaluza benchmark, used

in [44], which requires constraint solvers to reason about constraints over mixed string

and integer variables. In [25] this benchmark was used by the authors to demonstrate

that S3# can handle mixed string and integer constraints. However, for these constraints,

no model counting was performed, only a satisfiability check was done in [25]. When we

used S3# to model count (by giving a string length) we found out that S3# reported

erroneous results for many constraints.

We focused on a subset of the SMT2 Kaluza benchmark. We compared MT-ABC and

S3# on 28059 of the smaller constraints within the benchmark, given a query variable

and a string length bound of 50 (solutions for the query variable must have an exact
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length of 50 characters). MT-ABC and S3# agree on 24317 (87%) of the constraints.

In each of these cases, S3# was able to give an exact count, matching the upper bound

given by MT-ABC. In the other 3742 (13%) constraints, S3# reported both a lower and

upper bound, neither of which matched the upper bound reported by MT-ABC.

For the constraints where MT-ABC and S3# produce different counts, the lower

bound reported by S3# was between 1-3 models, while the upper bound seemed entirely

random, fluctuating either below or above the count reported by MT-ABC. In the SMT2

Kaluza benchmark, there are many sets of constraints which are essentially equivalent

to each other, some differing only in variable naming. We manually confirmed the upper

bound returned by MT-ABC for many of the constraints was the exact count, while the

upper bound reported by S3# between identical constraints varied wildly, with many of

them being unsound. Additionally, we found that S3# gives different results for identical

files with different names. Consider a constraint from the SMT2 Kaluza benchmark,

length(s) = i, where s is an string variable, i an integer variable. We created three files

each containing this single constraint, differing only in name. For query variable s and

query length 5, the number of models is 2565 = 1099511627776, or 240. While MT-ABC

gives the exact count for all three files, S3# reports three different upper bounds, all

unsound (1.840133, 1.856730, 1.855426). We observed similar behavior from S3# given

different constraints from the Kaluza dataset.

We reached out to the developer of S3# ([25]) for a possible explanation. One issue is

that they assumed that constraints from the Kaluza data set could be transformed into

their solved form, but they did not verify this, nor the soundness of their results for this

dataset in [25]. Thus, it is possible that either the Kaluza constraints cannot all be trans-

formed into solved form, or S3# has a faulty implementation. Additionally, the authors

of S3# were unable to explain why their tool was producing non-deterministic unsound

upper bounds when the input constraint cannot be transformed into their solved form.
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Our experiments suggest that the techniques presented in [25] and their implementation

in S3# are not able to handle mixed numeric and string constraints with both string

and integer variables. Hence, to the best of our knowledge, MT-ABC is the only model

counting constraint solver that can handle this class of constraints.

3.5 Chapter Summary

In this chapter, we showed that, using automata-based constraint solving, one can con-

struct a model counting constraint solver that is able to handle both string and numeric

constraints and their combinations. Our experiments on a large set of constraints gener-

ated from Java and JavaScript programs indicate that, automata-based model counting

approach is as efficient and as precise as domain specific model counting methods, while

it is able to handle a richer set of constraints than any other model counting constraint

solver.
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Chapter 4

Subformula Caching for Quantitative

Program Analysis

In this chapter we focus on improving the performance of model counting constraint

solvers. We present a novel approach for formula caching that combines features of

caching techniques that are based on syntax and canonical representations (building off

of work done in Cashew [45]). Our approach has the following features that separates

it from all prior results in this domain: First, our caching approach caches intermedi-

ate subformulas that arise in the pre-order traversal of the full formula enabling cache

hits for common subformulas. Second, our approach combines syntax-based caching,

with caching via a canonical representation in order to reduce the cost of caching while

increasing the number of cache hits. Third, our approach uses an automata-based con-

straint representation which enables us to have a canonical representation of string and

numeric constraints and their combinations.

Techniques we present in this chapter aim to improve the performance of model count-

ing queries generated during quantitative program analysis. In particular, we focus on

automata-based model counting constraint solvers. Given a formula, the main difficulty
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Figure 4.1: DFA that accepts the solution sets of the formulas charat(v0, 0) = “a” and
begins(v0, “a”).

in automata-based model counting is constructing a DFA accepting all solutions to that

formula. Automata construction is exponential in the worst case as it may require deter-

minization of an intermediate result automaton. Our caching techniques try to minimize

the number of calls to automata construction operation.

We use two types of caching, which we call syntactic caching and automata caching,

to characterize the way the keys are generated for the intermediate results we cache. In

both cases the result we are caching is an automaton constructed for a given formula. In

syntactic caching the key for storing the automaton constructed for a formula is generated

based on the formula syntax. In automata caching we generate a key for each constructed

automaton based on the structure of the automaton. We use minimized deterministic

finite automata (DFA) which are a canonical representation. Hence, formulas with the

same set of satisfying solutions are mapped to equivalent automata and the keys generated

for them match if and only if the formulas are semantically equivalent.

Consider the following formulas:

length(x) ≤ 10 ∧ charat(x, 0) = “b” (4.1)

begins(s, “d”) ∧ length(s) ≤ 10 ∧ s = t (4.2)
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Existing syntax-based formula caching techniques can be used to normalize these

formulas in order to detect equivalent formulas. Normalization involves transformations

such as variable renaming, character renaming, and sorting of the operations. Let us

assume that the normalized form for the above formulas are:

length(v0) ≤ 10 ∧ charat(v0, 0) = “a” (4.3)

length(v0) ≤ 10 ∧ begins(v0, “a”) ∧ v0 = v1 (4.4)

Note that, syntactic normalization enables us to detect that formulas (1) and (2)

have a common subformula length(v0) ≤ 10. However, with full formula caching, since

these formulas (1) and (2) are not equivalent, the fact that they share a subformula will

not be exploited during automata construction or model counting. In this paper, we

demonstrate that subformula caching, which stores automata constructed for intermedi-

ate subformulas during evaluation of the model counting queries, enables the reuse of the

result for subformula length(v0) ≤ 10.

For the above example, if model counting query for constraint (1) is processed before

the model counting query for constraint (2), then based on syntactic subformula caching,

we can detect that the subformula length(s) ≤ 10 is equivalent to length(x) ≤ 10 and

use the stored automaton constructed for length(x) ≤ 10 rather than constructing a

new (and equivalent) automaton for length(s) ≤ 10.

Above discussion explains our motivation for syntactic subformula caching, however

it does not explain why we need automata caching. In syntactic caching we generate

keys for the intermediate results using normalized syntax of the formulas. By automata

caching we refer to generation of keys based on the structure of the automata, not the

syntax of the corresponding formula. For example, the formulas charat(v0, 0) = “a”

and begins(v0, “a”) are syntactically different but they are semantically equivalent. The

51



Subformula Caching for Quantitative Program Analysis Chapter 4

set of solutions to both of these formulas is characterized by the automaton shown in

Figure 4.1.

Again, assume that a model counting query for formula (1) is processed before

a model counting query for the formula (2). The automata constructed for subfor-

mulas length(x) ≤ 10 and charat(x, 0) = “b” and the full formula length(x) ≤

10 ∧ charat(x, 0) = “b” will be stored in the cache. If we process a model count-

ing query for formula (2) next, then, syntactic caching will report a hit on subformula

length(s) ≤ 10 and will return the cached automaton for length(x) ≤ 10 instead of re-

constructing an equivalent one. Then, the syntactic caching will report a miss for the sub-

formula begins(v0, “a”) and an automaton for that subformula will be constructed. Next

step is to construct the automaton for the subformula length(v0) ≤ 10∧ begins(v0, “a”).

Now, syntax based caching will report a hit for the first argument of the conjunction oper-

ation and the automata based caching will report a hit for the second operand of the con-

junction operation. Then, instead of reconstructing the automaton corresponding to the

conjuction, the cached automaton for the formula length(v0) ≤ 10∧charat(v0, 0) = “a”

will be returned. Then, the automaton for the subformula v0 = v1 will be constructed,

followed by the construction of the automaton for the second conjunction. Note that

syntax-based caching is necessary to reduce the number of calls to automata construc-

tion, and automata caching is necessary to catch the cases where syntax based caching

is not able to detect equivalent formulas. In the following sections we will discuss the

implementation of this caching approach.

4.1 Caching for Model-Counting

Formula caching benefits quantitative program analyses by improving the perfor-

mance of their enabling technology, model-counting constraint solvers. Formula caching
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frameworks allow model counters to reuse previously computed results and avoid per-

forming expensive model counting. In the past, formula caching has been shown to

improve the performance of model-counting constraint solvers by more than 10x [45].

Simple formula caching only attempts to reuse the results for the complete query

(F, V, b). We instead integrate caching into the automata construction process of the

model-counting constraint solver. This increases the potential for reuse. When con-

structing the automata for a formula F , we can reuse the automata of subformulas of

F . For example, as we discussed earlier, in constructing the automata for the formula

begins(s, “d”) ∧ length(s) ≤ 10 ∧ s = t we can reuse the automata constructed for the

formula length(x) ≤ 10 ∧ charat(s, 0) = “b”.

Extending formula caching with subformula caching allows us to avoid expensive

construction steps by reusing results. To determine when results can be reused, caching

frameworks must be able to quickly detect when two queries are equivalent with respect

to model-counting. A formula F is said to be equivalent to formula G with respect to

model counting if the cardinality of satisfying solutions to F matches that of G for any

length bound b. Note that two formulas might be equivalent according to this criterion

even if they do not possess the same solution set. Determining if two formulas satisfy

this criteria is non-trivial. Syntactic caching and automata caching are two different

normalization techniques to determine the equivalence of formula, both of which we use

in conjunction with subformula caching.

4.1.1 Syntactic Caching

Under syntactic caching, the formulas of queries are transformed according to syn-

tactic rules into a normal form. This normal form is then used as a key to the cache

under which to store the automata. The constraint normalization procedure given in [45]
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provides an effective, albeit incomplete method of determining if two formula are equiva-

lent with respect to model counting. The normalization procedure takes a query (F, V, b)

and produces a normalized query F, V, b, with variables V and bound b. Two queries

normalize to the same form only if they are equivalent with respect to model counting,

that is, only if the cardinality of their solution sets match for every length bound.

We adopt the syntactic normalization procedure given in [45]. A query is normalized

according to four sub-procedures which act on its formula. First, the formula conjuncts

are sorted. Then the variable names are normalized in order of appearance in the sorted

formula. Third, alphabet constants are normalized again in order of appearance, and

finally, arithmetic constraints are shifted by an integral amount to center them about the

origin. Note that normalized alphabet characters are still treated as characters, regardless

of which character they are normalized to.

As an example, consider formula F :

b = “.com” ∧ contains(b, url)

and formula G:
contains(s, link) ∧ s = “.net”

After sorting and renaming, both F and G normalize to the same form:

v0 = “abcd” ∧ contains(v0, v1)

which means that the automata constructed for one formula can be found in the cache

and reused should a query be made on the other.

We use syntactic caching for both full-formula queries and sub-formula queries. When

we receive a query on formula F , we first syntactically normalize F and use its normal

form as a key to query the cache as given in Algorithm 6. When a hit occurs, we use the
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stored automata for path counting. If a miss occurs, we turn to subformula caching to

determine if we can reuse intermediate results during automata construction of F . If F ≡

op F1 . . . Fn where op is any n-ary operator, then we perform two queries to the cache.

One is on the syntactically normalized op F1 . . . Fn−1 or if n = 2, F1. The other is on Fn.

When a hit occurs, the cached automata is used and the construction of op F1 . . . Fn−1 or

F2 bypassed. If a miss occurs, querying continues recursively to op F1 . . . Fn−2 and Fn−1

until an atomic1 formula is reached. When an atomic formula is reached, the automaton

is constructed. Each time an automaton is constructed, we store the automaton in the

cache under its syntactic key for future use.

In the example given above, the constraint F has two subformulas: b = “.com" and

contains(b, url). In the case where the normalized form of F is not found in the cache,

the normal forms of these two subformulas would be queried. b = “.com" normalizes to v0

= “abcd" and contains(b, url) normalizes to contains(v0, v1). During the construction

of G we get a hit since, after normalization, the key generated for G matches the key for F

which means that the two formulas are equivalent as far as model counting is concerned.

4.1.2 Automata Caching

Formulas that are semantically equivalent can have different syntactic normal forms.

To capture additional equivalent formulas, we use automata caching. Under this caching,

the normal form of a formula is its automaton itself. For deterministic and minimized

automata, two formula have the same automaton if and only if they are semantically

equivalent formulas. This is true since minimized deterministic DFAs provide a canonical

form for regular languages. Unlike syntactic caching, this type of equivalence check

captures all semantically equivalent formulas.

When syntactic caching results in a cache hit, it is preferable to automata caching
1For the definition of atomic formula, see [46]
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Figure 4.2: DFA constructed for the formula match(s, (a|b)c∗). (a) DFA with ASCII
alphabet, (b) DFA with binary encoding of the ASCII symbols, (c) Multi-terminal BDD
that encodes the DFA.
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as its normalization is less expensive. We use automata caching when syntactic caching

has failed on a query on a formula F ≡ op F1 . . . Fn where op is any n-ary operator. We

construct the automata for each Fi. We then generate a key based on those automata

and the operator op and query the cache with this key. If the resulting automaton for

op has been previously constructed, we can reuse the result. This procedure is given in

Algorithm 7. In cases where constructing the automaton for op is costly, the overhead of

the caching queries is a beneficial trade-off. Each time we construct an automaton for a

formula F = op F1 . . . Fn, we generate its key for automata caching and store the result.

In our implementation of the automata caching we use the automata package provided

by the MONA tool [47]. Generation of keys for deterministic finite automata require us to

encode the automaton as a string. Consider the formula match(s, (a|b)c∗) which states

that string variable s can take any value that matches the regular expression (A|b)c∗. In

Fig. 4.2, we show the automaton constructed for this constraint. Fig. 4.2(a) shows the

minimized DFA with the ASCII alphabet. Initial state is 0, 2 is an accepting state and

1 is the sink state. Transitions are labeled with character ranges for readability.

In order to improve the efficiency of automata manipulation, MONA uses a symbolic

DFA representation. The basic idea is to represent the transition relation of the automata

symbolically using Multi Terminal Binary Decision Diagrams (MTBDDs) [48]. In order

to do this, we first have to use a binary encoding of the set of characters that can appear

in a string. Fig. 4.2(b) shows the DFA that is equivalent to the DFA shown in Fig. 4.2(a)

where the ASCII symbols are encoded using 8-bit binary numbers (X denotes a “don’t

care” value). Finally, Fig. 4.2(c) shows the symbolic DFA representation based on the

MTBDD data structure. The second row in the table at the top represents the DFA

states while the first row in that table represents state types which are either accepting

state 1 or rejecting state -1. The circle-shaped nodes are the BDD nodes. Each circle-

shaped node has a number n that represents its level i.e., which BDD variable n (in other
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{["{-1|<0> 0}|{-1|<1> 1}|{1|<2> 2}"];
node; 0 [idx="0"]; 2 [idx="1"]; 3 [idx="2"]; 4 [idx="3"];
5 [idx="4"]; 6 [idx="5"]; 7 [idx="6"]; 8 [idx="7"];
10 [idx="7"]; 11 [idx="0"]; 12 [idx="1"]; 13 [idx="2"];
14 [idx="3"]; 15 [idx="4"]; 16 [idx="5"]; 17 [idx="6"];
terminal;1 ["1"];9 ["2"];

s:0 -> 0; s:1 -> 1; s:2 -> 11; 0 -> 2 [lo];
0 -> 1 [hi];2 -> 1 [lo];2 -> 3 [hi];3 -> 1 [lo];3 -> 4 [hi];
4 -> 5 [lo];4 -> 1 [hi];5 -> 6 [lo];5 -> 1 [hi];6 -> 7 [lo];
6 -> 1 [hi];7 -> 10 [lo];7 -> 8 [hi];8 -> 9 [lo];8 -> 1 [hi];
10 -> 1 [lo];10 -> 9 [hi];11 -> 12 [lo];11 -> 1 [hi];
12 -> 1 [lo];12 -> 13 [hi];13 -> 1 [lo];13 -> 14 [hi];
14 -> 15 [lo];14 -> 1 [hi];15 -> 16 [lo];15 -> 1 [hi];
16 -> 17 [lo];16 -> 1 [hi];17 -> 1 [lo];17 -> 10 [hi];}

Figure 4.3: Key generated for the automaton in Figure 4.2 based on its multi-terminal
BDD representation.

words, which bit n in an alphabet symbol it corresponds to. Each rectangle-shaped leaf

node has a number n that represents the destination state that the node corresponds to.

Dashed line represents a BDD variable (bit) value of 0 while a regular line represents a

BDD variable (bit) value of 1.

In Fig. 4.3 we show the key generated from the symbolic automata representation

shown in Fig. 4.2(c). The key is a string that represents the nodes and the transitions in

the MTBDD representation of the minimized DFA. Since minimized DFA representation

is a canonical representation, given two formulas, the keys generated for them are identical

if and only if the DFAs generated for them are identical.

4.1.3 Formula Caching Algorithm

Algorithm 5 outlines how we leverage syntactic caching and automata caching in

conjunction with subformula and full-formula caching. Given a formula F , we first query

whether the full formula F can be found in the cache through syntactic caching. This is

the cheapest normalization scheme and would provide the most benefit, so we check it

first. If this check fails and F is atomic, the cache can be of no further use to us, so we

construct the automata and store it in the cache under the syntactic normal form of F .
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Otherwise, F is of the form F ≡ op F1 . . . Fn where op is some n-ary operator. In this

case, sub-formula caching may benefit our construction process. As described above, we

first syntactically query for the normalized form of op F1 . . . Fn−1 or if n = 2, F1 and

Fn. This querying continues recursively until either an atomic formula is reached or a

cache hit occurs. Once the two automata have been either retrieved or constructed and

stored under the syntactic normal form of the subformula, we use automata caching to

potentially avoid an expensive construction of the op automata. We query using a key

generated from the two automata and the op operator and either use the stored result

or construct and store the automata.

Algorithm 4 ModelCounting(F, V, b):

Input: A formula F , set of variables V , and bound b
Output: The number of solutions to V that satisfy F within bound b.

1: AF = AutomataConstruction(F )
2: return PathCount(AF , V, b)

Algorithm 5 AutomataConstruction(F ):

Input: A formula F .
Output: An automata accepting all solutions of F .

1: AF = SyntaxCaching(F )
2: if AF is not NULL then
3: return AF

4: end if
5: if IsAtomic(F ) then
6: AF = ConstructDFA(F )
7: Store(Normalize(F ), AF )
8: return AF

9: else
10: F = op F1 . . . Fn

11: A1 = AutomataConstruction(op F1 . . . Fn−1)
12: A2 = AutomataConstruction(Fn)
13: AF = AutomataCaching(op, A1, A2)
14: Store(Normalize(F ), AF )
15: return AF

16: end if
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Algorithm 6 SyntaxCaching(F ):

Input: A formula F .
Output: A cached automata that accepts all solutions of F or NULL.

1: KF = Normalize(F )
2: if Hit(KF ) then
3: return AF = Load(KF )
4: end if
5: return NULL

Algorithm 7 AutomataCaching(A1, A2, op):

Input: Two automata A1, A2 and an operator, op.
Output: Automata for A1 op A2.

1: KF = GenerateKey(op, A1, A2)
2: if Hit(KF ) then
3: return A = Load(KF )
4: end if
5: A = ConstructDFA(A1 op A2)
6: Store(KF , A)
7: return A

4.2 Applications of Model Counting

In this section, we describe three different quantitative program analysis scenarios

which use model-counting constraint solvers. For each scenario, we introduce the exper-

imental benchmark we use to evaluate the effectiveness of our caching technique for the

scenario.

4.2.1 Model Counting Constraints

The most straightforward application of model counting is, given a set of constraints,

to simply count the number of accepting solutions for each. This is common in symbolic

execution, where model counting queries are generated for full path constraints after

symbolic execution has completed. For this scenario we consider two sets of full path

constraints, each generated from a different symbolic execution engine.
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Kaluza Benchmark. The Kaluza benchmark is widely used benchmark for evaluating

constraint solvers and model counting constraint solvers. The benchmark is a set of

satisfiable constraints generated via symbolic execution of JavaScript programs and were

originally solved by Kaluza string solver [49]. The constraints in this benchmark require

a constraint solver to be able to reason over string and numeric constraints and their

combinations. All the constraints from this benchmark were later divided into two sets:

KaluzaSmall and KaluzaBig. The input format of these constraints were translated

into the SMTLib2 input format by the authors of ABC [46, 23]. The KaluzaSmall set

contains 28059 constraints, while KaluzaBig 7061 constraints. Each constraint contains

a query variable for which to model count. We evaluate the performance of different

caching techniques on this benchmark, comparing the time taken to count the number

of solution strings of length less than or equal to 50 for each constraint.

Sorting Constraints. We investigate the performance of our approach on constraints

generated from symbolic execution of four different Java sorting programs: Quicksort,

Bubblesort, Insertionsort, and Selectionsort. We fixed the array size of each to 7 elements

and symbolic execution to a depth of 30. Each consists solely of numeric constraints,

with the total number of constraints 12856, 5041, 5041, and 5041, respectively.

4.2.2 Reliability Analysis

One measure of program reliability is the probability that the program executes suc-

cessfully. Symbolic execution provides a means to compute program reliability. One run

of symbolic execution generates a series of path constraints characterizing complete pro-

gram paths. Because symbolic execution requires a depth bound, it is possible that not

all complete program paths will be generated. Performing model counting over the gen-

erated path constraints and dividing the count by the domain size gives the probability
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that a randomly chosen input will execute that particular program path. By computing

this probability for each complete program path, we can determine what percentage of

the input space is captured by the path constraints generated by symbolic execution and

therefore provide a lower bound on the reliability of the program.

As an example, consider the password checking function in Figure 4.4. If this function

were symbolically executed with length bound 4 for h, five path constraints would be

generated. These constraints are given in Table 4.1. The probability of a given path can

be computed by diving the model count of the path constraint by the size of the domain.

The bound of 4 on h is a small bound. In general, we have no guarantee on the length

of h, meaning symbolic execution will require a depth bound to terminate. However,

by leveraging model counting, we can execute a bounded symbolic execution and then

compute what percentage of the input space leads to a program path that terminates

within our depth bound. This gives us the percentage of input space we can confidently

say will execute without failure and thus provides a lower bound on the reliability of the

program. For the PasswordChecker example, imagine we limit the search depth so

that the loop symbolically executes only 3 times. In this case, all program paths for which

the first three characters match would not complete their symbolic execution. Covered

probability pc for reliability analysis will be then the summation of the probability of

path constrains 1, 2 and 3 from Table 4.1.

In practice, we are also often interested in guaranteeing a lower bound for program

reliability. In this case, we can perform model counting at each step of symbolic execution

to determine what percentage of input follows which path. This would allow us to guide

the symbolic execution along the most probable paths in order to increase coverage

most efficiently and stop execution once a certain coverage is reached. Conversely, one

could also guide symbolic execution towards highly improbable paths in order to test

corner cases. This can be alternatively calculated by doing model counting for each
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branches during symbolic execution and once it reached depth 3, counting constraint

charat(l, 0) = charat(h, 0) ∧ charat(l, 1) = charat(h, 1) ∧ charat(l, 2) ̸= charat(h, 2)

will provide the probability of covered reliability. More over, in this fashion we can keep

calculating the probability of covered program paths and stop the process once we reach

a desired reliability. For example, by calculating up to 3 iterations of the loop we can

achieve a coverage of more than 99 percent.

Table 4.1: Path constraints for program in Figure 4.4

i Path Constraint Observation Probability
1 charat(l, 0) ̸= charat(h, 0) 63 0.9000
2 charat(l, 0) = charat(h, 0)∧ 78 0.0900

charat(l, 1) ̸= charat(h, 1)
3 charat(l, 0) = charat(h, 0)∧ 93 0.0090

charat(l, 1) = charat(h, 1)∧
charat(l, 2) ̸= charat(h, 2)

4 charat(l, 0) = charat(h, 0)∧ 108 0.0009
charat(l, 1) = charat(h, 1)∧
charat(l, 2) = charat(h, 2)∧
charat(l, 3) ̸= charat(h, 3)

5 charat(l, 0) = charat(h, 0)∧ 123 0.0001
charat(l, 1) = charat(h, 1)∧
charat(l, 2) = charat(h, 2)∧
charat(l, 3) = charat(h, 3)

Reliability Analysis Benchmark. This benchmark is a modified version of the experi-

mental benchmark used in [50]. The original benchmark consists of numeric constraints

only. We add more example programs involving string constraints. Examples with nu-

meric constraints cover couple of sorting algorithms plus DaisyChain, a small program

simulating a simplified flap controller of an aircraft and RobotGame, a program to de-

termine and execute robot movements. Examples with string constraints cover several

string manipulating methods: PasswordCheck compares secret password and user’s in-

put, StringEquals is a string library function which checks if two strings are equal or not,

StringInequality checks lexicographical order of two strings character by character, Edit-

Distance checks minimum edit distance of two strings, IndexOf is another string library

function and Compress is a simple string compression function.

63



Subformula Caching for Quantitative Program Analysis Chapter 4

pub l i c Boolean PasswordCheck ( St r ing h , S t r ing l ) {
f o r ( i n t i = 0 ; i < h . l ength ( ) ; i++)

i f (h . charAt ( i ) != l . charAt ( i ) )
r e turn f a l s e ;

r e turn true ;
}

Figure 4.4: Password Checking example.

4.2.3 Attack Synthesis

We focus on adaptive attack synthesis for side-channel vulnerabilities. Attack syn-

thesis techniques generate inputs in an iterative manner which, when fed to code that

accesses the secret, reveal information about the secret based on the side-channel observa-

tions [51, 52, 53]. Symbolic execution is used to extract path constraints, automata-based

model counting is used to estimate probabilities of execution paths, and optimization

techniques are used to maximize information gain based on entropy. Consider the pass-

word checking function in Figure 4.4. The function has a timing side-channel and one

can reveal the secret by measuring execution time. If h and l have no common prefix, the

program will have the fastest execution since the loop body will be executed only once; If

h and l have a common prefix of one character, a longer execution will be observed since

the loop body executes twice. The case when h and l match completely, the program has

the longest execution. An attacker can choose an input and use the timing observation

to determine how much of a prefix of the input has matched the secret. Adaptive attack

synthesis approach starts by automatically generating the path constraints using sym-

bolic execution. It then uses these constraints to synthesize an attack which determines

the value of the secret (h). Based on Shannon entropy, the remaining uncertainty of h

can be computed to measure the progress of an attack.

At each step of an adaptive attack, attacker learns new information about h repre-

sented as a constraint on h based on the observed execution time. Suppose that the

secret is “1337”. The initial uncertainty is log2 10
4 = 13.13 bits of information (assum-
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ing uniform distribution). Attack synthesis generates input “8229” at the first step and

makes an observation with cost 63, which corresponds to constraint charat(h, 0) ̸= 8.

Similarly, a second input, “0002”, implies charat(h, 0) ̸= 0. At the third step the input

“1058” yields a different observation leading to updated constraint on h as below:

charat(h, 0) ̸= 8 ∧ charat(h, 0) ̸= 0 ∧ charat(h, 0) = 1 ∧ charat(h, 1) ̸= 0

The updated constraint at an attack step has subformula from the previous step. For

example, at attack step 2, constraint charat(h, 0) ̸= 8 ∧ charat(h, 0) ̸= 0 has subfor-

mula charat(h, 0) ̸= 8 from earlier step and at attack step 3, constraint charat(h, 0) ̸=

8∧charat(h, 0) ̸= 0∧charat(h, 0) = 1∧charat(h, 1) ̸= 0 has subformula charat(h, 0) ̸=

8 ∧ charat(h, 0) ̸= 0. A model counting tool without caching will re-count a number

of formulas which was counted in the earlier steps. This is redundant and reduces the

efficiency of attack synthesis. Results can be reused from prior iterations. Model count-

ing is in the core of the attack synthesis process as it is repeatedly used to calculate

information gain and progress of attack synthesis. Reusing model counting query results

from earlier steps should improve the effectiveness of attack synthesis by reducing attack

synthesis time.

Attack Synthesis Benchmark. This benchmark was previously used in [54, 53] to

synthesize attacks for programs vulnerable to side-channels. Example functions used in

this benchmark includes different string manipulation and arithmetic operations, setting

different sizes and lengths to define the domain of secret value. The function PCI is an

implementation of password checker comparing a user input and secret password but

inducing a timing side channel due to early termination optimization. SE is a method

from the Java String library to check equality of two strings and known to be vulner-

able to timing side-channel [55]. A similar side-channel was discovered in indexOf (IO)

method from the Java String library. Function ED is an implementation of a dynamic
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programming algorithm to compute minimum edit distance between two strings. Func-

tion CO is a basic compression algorithm which collapses repeated sub-strings within two

strings. SI, SCOI and SCI functions check lexicographic inequality (<,>=) of two strings

whereas first one compares the strings, second one includes concatenation operation with

inequality and third one compares characters in the strings.

4.3 Implementation and Experiments

We implemented2 the caching techniques presented in this paper into the Automata

Based Model Counter (ABC) [46, 23]. Internally, automata within ABC are represented

as multi-terminal binary decision diagrams, implemented using the tool MONA [47].

Given the constraint formula F in SMTLib2 format, ABC first constructs the abstract

syntax tree (AST) in negation normal form representing F where the root node rep-

resents the satisfiability of F , leaf nodes correspond to variables and constants, and

intermediate nodes represent string or integer terms with boolean connectives (and, or).

The AST is simplified before DFA construction using several heuristics. Dependency

analysis identifies independent components which may be solved separately. Equivalence

class generation detects equivalent variables through equality clauses and chooses a sin-

gle representative for the class, and term re-write rules eliminate redundant terms and

propagate constants. ABC then performs post-order traversal on the simplified AST,

where the DFA for each node is constructed from the DFAs of its children nodes.

We modify the constraint solving algorithm of ABC with support for both syntactic

and automata caching on the nodes of the AST. In our implementation, we use the

popular open source in-memory database store Redis [56] as the cache. We set the

maximum database size to 8 GB, with a least recently used eviction policy (LRU). Note
2subformula caching implementation and dataset available at https://github.com/

vlab-cs-ucsb/ABC
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that the LRU algorithm Redis uses approximates the LRU set using sampling, 3 in this

case. Given a constraint formula, ABC constructs the simplified AST representing the

formula using the approach mentioned above. Prior to the post-order traversal for DFA

construction, the cache is recursively queried for a smaller subset of the original formula

until either an atomic formula is found, or a DFA is returned from a cache hit. Note that

the key for each query is simply the string representation of the AST corresponding to the

normalized form of a particular subformula. In either case, ABC begins its post-order

DFA construction traversal from the corresponding AST node. For each subformula

solved from this point, ABC stores the solution DFA into the cache. By exploiting

the natural post-order traversal of ABC’s constraint solving algorithm we maximize the

probability of a cache hit while minimizing the number of cache queries.

4.3.1 Experimental Setup

We evaluate our caching technique across the three different quantitative program

analysis scenarios described above. For each experimental scenario, we evaluate four

different caching approaches. The NoCaching or NC approach performs the analysis

with no caching of model-counting queries and serves as a baseline for comparison. The

FullFormula or FF approach is an identical re-implementation of Cashew performs

only syntactic normalization and only queries the cache for hits of the full formula of the

model-counting query. The SubFormula or SF approach is also limited to syntactic

normalization but performs recursive queries on the sub-formulas of the query formula

when the full formula is not found in the cache. Finally, the SubFormula + Automata

or SFA approach extends the SF approach with automata caching. The SFA approach is

the most expressive caching scheme. We report the time in seconds for each benchmark

program to complete (end-to-end) across these four caching scenarios. We also report the
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speedup demonstrated by the SFA approach versus both the NC and FF approaches.

For all experiments, we use a desktop machine with an Intel Core i5-2400S 2.50 GHz

CPU and 32 GB of DDR3 RAM running Ubuntu 16.04, with a Linux 4.4.0-81 64-bit

kernel. We used the OpenJDK 64-bit Java VM, build 1.8.0 171.

4.3.2 Experimental Results

We discuss how each of the four caching approaches perform across the three different

quantitative program analysis scenarios. We evaluate under what kinds of analyses the

SF and SFA approaches prove highly beneficial versus FF and NC and examine cases

where the improvement was only marginal.

Model Counting. The results for model counting constraints generated by symbolic

execution are given in Table 4.2. We show results the simplified Kaluza benchmark and

linear arithmetic constraints generated from running symbolic execution on a suite of

sorting benchmarks. We found that out of 28059 of the constraints in KaluzaSmall,

647 were unique constraints after normalization, with the other 27412 being trivially

satisfiable. KaluzaBig contained 376 unique constraints out of 7061 constraints, with the

other 6685 constraints being of reasonable complexity. For both cases, SFA outperforms

NC and FF. For the numeric constraints, SFA outperforms FF and NC in only one case.

For the other three cases, the overhead of subformula caching outweighs any benefits

gained due to the simplicity of the numeric constraints.

Table 4.2: Experimental Results for Model Counting Constraints

Benchmark NC Time(s) FF Time(s) SF Time(s) SFA Time(s) SFA Speedup v NC SFA Speedup v FF

QuickSort 195.4 195.2 220.2 225.6 0.87x 0.87x
BubbleSort 124.1 123.8 127.1 133.2 0.93x 0.93x
InsertionSort 129.9 125.3 119.1 123.4 1.05x 1.02x
SelectionSort 122.2 121.8 131.6 144.4 0.85x 0.84x

KaluzaSmall 1173.6 1075.2 1065.3 990.6 1.18x 1.09x
KaluzaBig 5730.7 1247.3 1193.3 1176.1 4.87x 1.06x
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Reliability Analysis. The results on the reliability analysis benchmark are given in

Table 4.3. The upper half of the table shows the results on programs that produce

only numeric constraints and the bottom half on programs that also contain string and

mixed string and numeric constraints. We found no caching approach to be significantly

beneficial in the benchmarks where only numeric constraints are encountered. In fact,

because of the additional overhead of the FF and SFA approaches, we even observed a

slight slowdown versus the NC or the more light-weight FF approach on some benchmark

programs. Nevertheless, the additional overhead was never hugely debilitating and the

SFA approach never took more than 15% longer than the NC or FF approaches.

On benchmarks with string or mixed string and numeric constraints, the SF approach

demonstrated notable improvement over both the NC and FF approaches, and the SFA

approach was even more successful. In some cases, the SFA approach was more than

four-fold faster than either the NC or FF approaches. In all cases, some improvement

was observed with the SFA approach. The reason for the significant improvement ob-

served on benchmarks with string and mixed constraints lies in the expensive automata

constructions demanded by those constraints. Numeric constraints, however, do not

require expensive automata constructions making the effects of caching less beneficial.

From these experiments, we learned that the SFA approach potentially provides enor-

mous benefit when string or mixed constraints are encountered during the course of the

analyses and does not significantly degrade performance when only numeric constraints

are encountered. From this, we believe that enabling SFA caching is generally beneficial

for reliability analysis but also note that the analyst could make an informed choice to

enable should they have suspicions about the type of constraints likely to be encountered.

Attack Synthesis. The results on the attack synthesis benchmark are given in Ta-

ble 4.4. As shown in the execution time under the NC approach, this quantitative

program analysis is the most expensive of the three with some benchmark programs tak-
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Table 4.3: Experimental Results for Reliability Analysis

Benchmark SE Depth NC Time(s) FF Time(s) SF Time(s) SFA Time(s) SFA Speedup v. NC SFA Speedup v FF

BubbleSort 20 4573.4 2364.8 2372.3 2335.1 1.96x 1.01x
InsertionSort 15 4183.6 4364.3 4303.9 4311.1 0.99x 1.01x
DaisyChain 30 106.4 107.7 108.3 122.1 0.87x 0.88x
RobotGame 30 80.7 80.7 79.2 80.8 1.00x 1.00x

PasswordCheck 50 830.9 836.0 932.9 648.9 1.29x 1.29x
StringEquals 50 1142.2 1196.8 1269.7 893.1 1.28x 1.34x
StringInequality 10 319.2 324.1 251.6 89.7 3.56x 3.61x
EditDistance 8 19241.7 19876.6 15764.1 8384.4 2.29x 2.37x
IndexOf 15 25451.2 26116.3 21457.1 8384.6 3.04x 3.11x
Compress 30 5342.2 5435.9 1868.9 1213.8 4.40x 4.48x

ing 5 hours to run when no caching is enabled. In all cases, the SF approach improved on

the NC and FF approaches, even reducing a run-time of five hours to less than eighteen

minutes for the SCI benchmark program. The SFA approach was able to even further

improve these already impressive results. On some benchmarks, SFA demonstrated a

more than twenty-fold improvement versus the NC and FF approaches. In all cases, the

SFA approach was the fastest evaluated caching approach.

All benchmark programs evaluated under this program analysis scenario contain

string constraints. Based on our observations from the reliability program analysis bench-

marks, we think that the more expensive automata construction required for these con-

straints is part of the reason the SF and SFA approaches are so successful for these

benchmarks.

Table 4.4: Experimental Results for Attack Synthesis

Benchmark NC Time(s) FF Time(s) SF Time(s) SFA Time(s) SFA Speedup v NC SFA Speedup v FF

PCI 8227.5 2936.6 1363.7 1013.8 8.12x 2.90x
SE 7386.3 2968.7 3186.1 2283.2 3.24x 1.30x
SI 232.9 178.7 88.7 54.6 4.27x 3.27x
ED 18000.0 24126.2 8000.1 1652.2 10.89x 14.60x
IO 11167.8 3719.9 3603.1 1163.4 9.60x 3.20x
CO 1908.5 2239.9 1273.1 92.2 20.7x 24.30x
SCOI 320.3 207.1 75.1 56.8 5.64x 3.65x
SCI 18000.0 11155.6 1076.6 617.9 29.13x 18.05x
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4.4 Chapter Summary

In this chapter we introduced sub-formula caching to improve the efficiency of quan-

titative program analysis techniques. We focused on automata-based model counting for

string and numeric constraints. We used both syntactic and automata-based caching in

order to reduce the number of times automata are constructed. We evaluated our ap-

proach in different scenarios and demonstrated that subformula caching can significantly

improve the performance of quantitative program analysis techniques.

71



Chapter 5

ABC2: Precise Model Counting and

Efficient Satisfiability Checking for

Strings

In this chapter we present the Automata-Based model Counter 2 (ABC2), a new automata-

based model counter for string and numeric constraints. ABC2 builds off of the ideas

from ABC [23, 46] but uses new algorithms and approaches for string and numeric con-

straints and combinations thereof. ABC2 implements specialized automata constructor

functions to construct automata representing satisfying solutions to string and numeric

constraints. It uses multi-terminal binary decision diagrams to symbolically represent

automata. The novel research contributions I make to ABC2 are as follows: (1) Full sup-

port for string and numeric constraints specified in SMTLib2.6; (2) New algorithms for

mixed string and numeric constraints, and constraint formula optimization and solving

strategies; (3) Projected subset model counting; (4) Regression analysis for estimating

model counts; and (5) An extensive experimental evaluation on over 55,000 constraints

for both satisfiability and model counting capabilities which show that ABC2 satisfia-
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F ::= F ∧ F | F ∨ F | ¬F | Fs | Fi| ite(F, F, F )

Fs ::= ts = ts | ts < ts | ts > ts | ts ∈ RE | prefixof(ts, ts)
| suffixof(ts, ts) | contains(ts, ts)

Fi ::= ti = ti | ti < ti | ti > ti

ts ::= vs | s | charat(ts, ti) | substr(ts, ti, ti) | replace(ts, ts, ts)
| ts ◦ ts | tostring(ti)

ti ::= vi | n | ti + ti | ti − ti | ti ∗ n | length(ts) | indexof(ts, ts, ti)
| toint(ts)

RE ::= ϵ | s | RE ◦RE | RE ∪RE | ¬RE | RE∗

Figure 5.1: Base constraint language for ABC2. vs and vi denote string and integer
variables, respectively. s and n denote string and integer constants, respectively.

bility performance is comparable to the state-of-the-art SMT solver Z3str3RE and that

ABC2 is the best solver for model counting counting queries on string constraints

5.1 ABC2 Algorithms and Extensions

In this section we discuss the novel contributions we make to automata-based con-

straint solving and model counting techniques, and how we incorporate them into the

ABC2 tool.

5.1.1 Extended Expressiveness

Similar to ABC, ABC2 supports string constraints and numeric constraints and

their combinations. The core constraint language accepted by ABC2 is based on the

SMTLib2.61 and is summarized in Figure 5.1. While ABC and ABC2 support the same

core set of constraints (i.e., basic string functions and linear integer arithmetic), ABC is

limited in its capability to handle complex combinations of string constraints, or must
1http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
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overapproximate constraints the set of solutions to the constraints. Additionally, ABC2

can handle a wider set of constraints than ABC, which we discuss below.

We will show in our experimental evaluation that the increase in expressiveness in

ABC2 over other existing state of the art string model counters allows ABC2 to handle

more complex constraints in benchmarks collected from real world program analysis.

Constraints with Boolean Variables and Implications Aside from string and

linear integer arithmetic constraints, ABC2 also supports constraints containing boolean

variables. When values of boolean variables can be determined syntactically, their values

are propagated throughout the constraint formula. Otherwise, boolean variables are

translated to integer variables which can take on values {0, 1}. Constraint implication,

F ⇒ F ′, is used often in constraint formulas. For automata-based constraint solving in

ABC2, we first translate F ⇒ F ′ into ¬F ∨ F ′. Then, we construct automata for F , F ′,

and ¬F and combine the automata using automata product.

Enhanced Integer-String Automata Construction We enhance automata-based

techniques for constraint solving and model counting to cases where integer variables

are used within more complex string functions such as substring and toint. As DFAs

cannot precisely capture the set of solutions to the generalized form of these constraints,

in the worst case the automata construction generates an overapproximation (sound

upper bound) of the set of solutions.

Recall that for string constraints we use a typical ASCII encoding (each transition

in the DFA is an ASCII character) and for linear integer constraints we use a binary

encoding (each transition is a 0 or 1). For constraints which contain both string and

integer variables, such as s = len(i) or i = toint(s), in addition to the construction

methods shown here, we use a translation algorithm to convert string automaton to
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Algorithm 8 ToInt

Input: Automata as for string term ts
Output: Binary integer automata representing the set of digits from the input string term

1: aneg1 = ConstructBinaryInt(−1)
2: ar = ConstructRegexAutomaton([0-9]∗)
3: ai = Intersect(as, ar)
4: ad = Difference(as, ai)
5: if ai ≡ then return aneg1
6: else if IsCyclic(ai) then
7: if not ad ≡ ∅ then return Union(ConstructPositiveInts(), aneg1 )
8: end if
9: return ConstructPositiveInts()

10: else
11: S = GetAcceptingStrings(ai)
12: aints = ∅
13: if not ad ≡ ∅ then aints = aneg1
14: end if
15: for str ∈ S do
16: int = StringToInt(str)
17: aints = Union(aints , ConstructBinaryInt(int))
18: end for
19: return aints
20: end if

binary integer automaton and binary integer automaton to string automaton (based on

[46]).

The automata construction algorithm for toint is shown in Algorithm 8. On lines 2-3

we extract the strings corresponding to possible numeric values from subject automaton

as. If there are none, then −1 is returned (per SMTLib2.6 specs). On lines 6-9, we check

if there are infinitely many such strings, and if so, we return all possible positive integers

(an overapproximation). Otherwise, there are finitely many possible numeric values from

the subject automaton. On lines 15-18 we construct the automaton representing all

such numbers. Note that regardless of if there are infinitely many strings, if the subject

automaton contained strings corresponding to non-numeric values (from line 4) then we

also return −1.

Algorithm 9 shows the automata construction for substring. Given the automata as
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Algorithm 9 Substring

Input: Automata as for string term s, ai for integer term ti, aj for integer term tj
Output: Automata representing possible substrings of s at index i of length j

1: asuffixes = GetSuffixesAtIndex(as, ai)
2: aprefixes = GetPrefixes(asuffixes)
3: aend = ToStringAutomaton(aj)
4: aprefix_end = GetPrefixes(aend)
5: as1 = Intersect(aprefixes , aend)
6: as2 = Intersect(asuffixes, aprefix_end)
7: ass = Union(as1 , as2 )
8: if HasNegativeValues(ai) or HasNegativeValues(aj) then
9: return Union(ass ,MakeEmptyString())

10: end if
11: return ass

for subject string term ts, automata ai for starting indices term ti and automata aj for

lengths term tj, substring returns the set of substrings of s beginning at possible indices

i of possible lengths j. After getting the suffixes asuffixes from as, on line 2 we construct

aprefixes corresponding to the prefixes of the suffixes. On lines 3 and 4 we construct

aend and aprefix_end , corresponding to possible strings up lengths aj and at lengths aj,

respectively. The union of these two is returned, which corresponds to set of possible

substrings of as at indices ai up to and including lengths aj. Note that we also return

the empty string if either ai or aj contain negative values.

5.1.2 ITE Branch Elimination

A common occurrence in constraint formulas is the if-then-else expression

ite(cond , Fthen , Felse) which returns Fthen if cond evaluates to true, or returns Felse if cond

evaluates to false. Automata-based approaches such as ABC2 cannot directly construct

an automaton for the expression ite(cond , Fthen , Felse). Rather, the if-then-else must be

translated into logical formulas using the well-known identity

ite(cond , Fthen , Felse) ≡ (cond ∧ Fthen) ∨ (¬(cond) ∧ Felse)
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Algorithm 10 ITE Branch

Input: Parent formula F and If-then-else formula ite(C,Fthen, Felse), where F, Fthen, Felse are
formulas and C is a condition which evaluates to true or false,
Output: Formula without the if-then-else

1: if F ≡ F0 ∧ ... ∧ Fn then
2: for Fi ∈ F0 ∧ ... ∧ Fn do
3: Fpos = Fi ∧ C
4: Fneg = Fi ∧ ¬C
5: if IsSAT(Fpos) and not IsSAT(Fneg) then
6: return (cond ∧ Fthen)
7: else if not IsSAT(Fpos) and IsSAT(Fneg) then
8: return ((¬cond) ∧ Felse)
9: end if

10: end for
11: end if
12: return (cond ∧ Fthen) ∨ (¬(cond) ∧ Felse)

In some cases, ite terms can be simplified. For example if the ite condition must

always evaluate to true for the constraint formula to be satisfied, then the else branch

can be removed, simplifying the resulting formula. For example,

ite(x ≥ 0, Fthen , Felse) ∧ (x ≥ 4) ≡ (x ≥ 0) ∧ Fthen ∧ (x ≥ 4)

Algorithm 10 shows how if-then-else conditions are handled in ABC2. Prior to trans-

lating ite terms, ABC2 attempts to simplify the ite terms by syntactically analyzing each

term in the parent constraint formula. If the parent constraint formula is not a boolean

AND formula, then ABC2 cannot optimize the if-then-else expression and instead re-

turns the translation (cond ∧ Fthen) ∨ (¬(cond) ∧ Felse) (line 1). If the parent constraint

formula is a boolean AND formula, then we look at each child term Fi of the parent AND

formula. Note that for simplicity, we assume that AND terms can have more than two

children. On lines 3 and 4, Fpos and Fneg are constructed. If Fpos is satisfiable but Fneg is

not, then it must be the case that if the condition were to be false the else branch must

be unsatisfiable. Consequently, if Fneg is satisfiable but Fpos is not, then it must be the
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case that if the condition were to be true the then branch must be unsatisfiable Thus, in

either of these cases one of the branches is eliminated.

To check Fpos and Fneg ABC2 constructs the automata for the condition and automata

for each child term and reasons about their satisfiability. This means that this optimiza-

tion can be costly if there are many child terms, or if the child terms are more complex

than atomic constraints. In practice, we only perform this optimization for specialized

cases in which we can quickly check satisfiability (i.e., atomic constraints, linear integer

arithmetic constraints).

5.1.3 Formula and Solving Strategy Optimizations

Here we discuss the approaches we use to make automata-based constraint solving

faster and more precise. These heuristics allow ABC2 to solve large constraints in an

efficient and more precise manner, as we demonstrate later in our experimental evaluation.

Formula Optimizations Automata construction and operations can be costly in both

time taken and memory, particularly determinization and multi-track operations. In ad-

dition to converting the formala to negation-normal-form (i.e., pushing negations down)

ABC2 performs several preprocessing steps on the constraint formula prior to automata

construction. We call these preprocessing steps formula optimizations, which often times

simplifies the formula and reduces both the number of automata constructed and the

number of automata operations. Additionally, our optimizations can result in a more

precise upper bound reported by ABC2.

1. Regular expression constant term checking

2. Constant term propagation

3. Duplicate constraint removal
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4. Constraint Sorting

ABC2 uses multi-track automata where each track corresponds to a string variable. The

number of tracks corresponds to the number of string variables in the formula. The more

variables there are, the greater the complexity of the automaton. Converting constant

regular expressions into string constants combined with constant propagation reduces the

number of string variables within the formula: e.g., if a formula contains the constraint

X = "foo" then every instance of X is replaced by the string constant "foo". Generally

ABC2 solves constraints in the order in which they appear in the formula. To provide

a more precise sound upper bound, constraints which can be solved more precisely than

other should be solved first. ABC2 uses constraint sorting to prioritize the order in which

imprecise constraints should be solved.

Optimizing Solving Strategy Recall that automata-based constraint solving and

model counting techniques like those used in ABC2 solve and model count constraint

formulas by constructing deterministic finite state automata (DFA) which represent the

satisfying solutions to the constraint. The expressive power of DFAs allow precise cap-

turing of regular languages, but in general string constraints can be non-regular. In

such cases, ABC2 computes an over approximation of the constraint, and thus computes

a sound upper bound on the number of solutions to the constraint, and thus an upper

bound on the satisfiability of the constraint. Consequently, the order in which constraints

are solved even AFTER constraint sorting affects the level of approximation computed.

The solving strategy of ABC2 prioritizes solving constraints which can be solved

precisely using DFAs first, then solving those which result in an overapproximation.

Recall that ABC2 can handle string and linear integer arithmetic constraints with boolean

variables. The solving strategy is as follows:

1. Eliminate boolean variables
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2. Solve linear arithmetic constraints first using multi-track binary integer automata

3. Solve regular string constraints using multi-track string automata

4. Solve non-regular constraints

In the first step, linear integer arithmetic constraints are solved first by constructing

binary integer automata and combining them using automata product. Then string

constraints which are regular such as X ∈ regex , X ̸= c, or regular word equations

X = Y ◦ c (where X is a string variable and c is a string constant. Then constraints

which ABC2 overapproximates the solution set for are solved (according to the constraint

order from the constraint sorting).

5.1.4 Regular Expression Extensions

ABC supports limited functionality when handling regular membership constraints

ts ∈ RE and requires ts to be a single variable and RE to be a regular expression con-

taining only basic regular expression operators (concatenation, union, negation). Many

program analysis techniques create constraints using more complex regular expression op-

erations, such as re.loop(r, n1, n2), representing the union of regular expressions r ◦ ... ◦ r

repeated at least n1 times but no more than n2 times. E.g, for some regular expression

r, re.loop(r, 1, 3) = r ∪ (r ◦ r) ∪ (r ◦ r ◦ r). Other regular expression extensions include

string variables within regular expressions, regular expression option (e.g., ?(a|b)), and

regular expression range (e.g., [0-9] meaning any digit from 0 through 9). Due to space

limitations, we mainly focus on re.loop (which is featured prominently in the experiments

section).

Algorithm 11 shows how the automaton for the regular expression re.loop(r, n1, n2)

is created. We assume that n1, n2 are positive concrete integers. If n1 > n2 then the
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Algorithm 11 RegexLoop

Input: Regular expression r, Integers n1, n2

Output: Automata for regex loop

1: if n1 > n2 then return ConstructEmptyAutomaton()
2: end if
3: ar = ConstructRegexAutomaton(r)
4: ai = ConstructEmptyString()
5: for j ∈ 0...n1 do
6: ai = Concat(ai, ar)
7: end for
8: for j ∈ n1...n2 do:
9: ai = Union(Concat(ai, ar), ai)

10: end for
11: return ai

result is the empty set. Otherwise, an automata is constructed by first concatenating the

automaton ar for regular expression r n1 times (lines 3-7). Then, the final regular ex-

pression is constructed by iteratively concatenating and unioning the previous automata

with ar (lines 8-10).

Repeated Concatenation Optimization Some constraints require concatenation of

an automaton a specific number of times. One such example is when constructing the

automaton for re.loop(r, n, n) which requires n automata concatenation operations. For

large n this leads to a significant amount of time spent on automata concatenation.

We use a strategy similar to exponentiation by squaring for decreasing the number of

concatenations. Consider a common scenario where the re.loop constraint is used to

express a regular expression in which a pattern is repeated many times. For example,

re.loop(a|b, 64, 64) which corresponds to the set of all strings of length 64 where each

character is either a or b. One can first construct the automaton for a|b then perform

63 automata concatenation operations. A more efficient construction is recursively com-
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puting smaller re.loop terms and concatenating them together:

re.loop(a|b, 64, 64) = re.loop(a|b, 32, 32) ◦ re.loop(a|b, 32, 32)

This leads to a significant reduction in the number of automata concatenation oper-

ations required. In general:

re.loop(r, n, n) = (re.loop(r, ⌊n/2⌋, ⌊n/2⌋)) ◦ (re.loop(r, ⌈n/2⌉, ⌈n/2⌉))

and given a concatenation operations that is repeated n times ABC2 constructs the

resulting automaton using O(log n) concatenation operations rather than O(n) concate-

nation operations.

5.2 Projected Model Counting

Given a formula F , the goal of ABC2 is to construct an automaton AF such that

L(AF ) = JF K. The number of solutions to the formula is the number of accepting

paths in the automaton. ABC2 uses multi-track automata which accept tuples of strings

where each track corresponds to the values for a single variable. To count the number

of solutions for all variables within the formula, ABC2 counts the number of accepting

tuples of strings accepted by the multi-track automata. This is called tuple counting.

Each element of the tuple corresponds to an accepting string for a particular variable.

For example, consider the formula

X ∈ (a|b)∗ ∧ Y = cd∗

One solution to the formula is the tuple (X, Y ) = ("aa","cd"). For length less than or

equal to 2, the tuple count for this formula is 14. Model counting queries are often over

a single variable, or a subset of variables within a formula. This can be different for than
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Algorithm 12 Projected Model Counting

Input: Formula F , Variables VF Count variables VC , Bound b
Output: Projected model count of F for count variables V

1: MF = ConstructMultitrackAutomaton(F, VF )
2: for v ∈ VF do
3: if v /∈ VC then
4: MF = ProjectAwayVariableTrack(MF , v)
5: end if
6: end for
7: return CountModels(MF , b)

the tuple count for a formula: for length less than or equal to 2, the number of strings

for the variable X is 7. This count is called the projected model count. This idea can be

extended to counting a subset of the variables for a given formula. That is, if the formula

contains variables (X, Y, Z,W, V ) one may want to know the number of accepting tuples

for variables (X,Z). We discuss how generalized projected model counting is done in

ABC2.

Algorithm 12 shows how ABC2 computes the projected model count for a formula F .

Given formula F , variables in formula VF , set of count variables Vc, and length bound

b, the algorithm returns the projected model count of formula F for count variables

Vc ∈ VF where each accepting string for variable v ∈ VC is of length less than or equal

to b. The algorithm works by first constructing the multi-track automaton MF for the

given formula F and then iteratively projecting away the tracks corresponding to each

variable v /∈ VC .

5.3 Regression Analysis

In this section we discuss how ABC2 finds regression equations that model how a

given formula’s projected model count for some variable varies with respect to its bound.

These can be reused to quickly estimate the counts for arbitrary bounds without the
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overhead of model counting.

Regression analysis is a statistical process for estimating how one or more independent

variables (in this case, the bound) affect a dependent variable (i.e. count for a variable).

Regression analysis entails choosing the models to estimate, and applying optimization

techniques to choose the parameter values that minimize the error [57]. We discuss how

this is implemented in ABC2.

5.3.1 Regression Parameters and Models

We define three parameters a, b, n ∈ R and three models which use some subset

of those parameters. When evaluated with parameter values β, each model yields a

regression equation which is a function f : N → R that maps bounds to predicted

variable counts. We apply a logarithmic (base 2) transformation to the variable count

because of limitations of popular curve fitting libraries on input datapoints with large

numbers, such as on constraints with Kleene operators. That is, the models are used to

yield regression equations that predict the log of the variable count, not the raw count

itself. The models we define are as follows:

Constant Equation 5.1 best models a variable whose count (in log scale or otherwise)

does not vary with the bound.

log2 count ≈ b (5.1)

For example, consider a variable s with a single constraint (s = “a”). For all bounds

greater than 1, its count is constant at 1.
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Linear Equation 5.2 best models a variable whose log-count grows linearly with the

bound, or equivalently, whose raw count grows exponentially with the bound.

count ≈ 2a×bound+b =⇒ log2 count ≈ a× bound+ b (5.2)

For example, consider a variable s with a single constraint given by match(s, (a|b)+).

Its variable count is given by

bound∑
k=0

2k ≈ 2bound+1

and its log-count is estimated by bound+ 1.

Logarithmic Equation 5.3 best models a variable whose log-count grows logarithmi-

cally with the bound, or equivalently, whose raw count grows polynomially with the

bound.

count ≈ β0 + β1 × bound+ · · ·+ βn × boundn (5.3)

To generalize the model to any degree of polynomial and to avoid overfitting with

many parameters, we approximate the polynomial in Equation 5.3 using a binomial

expansion.

count ≈ (a× bound+ b)n (5.4)

As a corollary of the binomial theorem, not every polynomial can be represented like

Equation 5.4; however, the loss in accuracy using this model is mitigated because only

the highest degree terms (e.g. βn ∗ boundn = an) dominate the growth in the variable

count and also because we apply a log-transformation. Therefore, in log scale, Equation
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5.4 is

log2 count ≈ n log2(a× bound+ b)

Consider a variable s that has a single constraint match(s, a+). Its variable count

is given by count = bound. Moreover, consider a variable t that has a single constraint

match(t, a+b∗). For all bounds greater than 1, the variable count is

bound∑
k=1

k = Θ(bound2)

5.3.2 Choosing the Best Regression Equation

We choose the best regression equation in two steps. First, for each model, we get

a regression equation by finding the parameter values that minimize the least squares

error. Second, among all models, we choose the regression equation with the lowest root

mean square error (RMSE). We use the Python Scipy library in our approach.

For the first step, we use Scipy’s LeastSquares function which implements the

Levenberg-Marquardt algorithm for nonlinear least squares curve fitting [58]. Given some

datapoints and an initial guess of the parameter values β0, the algorithm iteratively finds

the ideal parameter values β̂ that minimize the sum of the squares of the residuals [59]:

β̂ = argmin
β

n∑
i=1

countsi −model(β, boundsi)
2

where

• β ∈ Rk are the k parameters

• bounds1, . . . , boundsn are n input bounds

• counts1, . . . , countsn are n input counts
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• model(β, boundsi) is the predicted variable count when the regression equation is

evaluated at boundsi

For the second step, we use β̂ to compute a root mean square error (RMSE) for each

regression equation. The RMSE, which is commonly used in regression analysis, is defined

as the standard deviation of the residuals. That is, for a given regression equation,

RMSE =

√∑n
i=1 countsi −model(β̂, boundsi)2

n

We compare the RMSE for each regression equation from above, and output the

regression equation with the lowest RMSE.

5.3.3 Regression Analysis Workflow

The ABC2 regression analysis workflow is shown in Algorithm 13. It takes as input

the SMT formula F , a variable s which is declared in F , and a range of bounds specified

by lower and upper bounds klo, khi and step size ∆k. First, it calls ABC for each bound in

the range, gathering a set of (bound, count) pairs to input to the curve fitting algorithm.

Then, for each model in the implemented set of models, it initializes the parameter values

β0, and it calls Scipy to get the parameter values β̂ that minimize the least squares error.

For each model, it calculates the root mean squared error (RMSE) by applying β̂ to the

model and stores the regression equation with the lowest RMSE.

To demonstrate the workflow, consider a formula with a variable s that must match

a regular expression for valid email addresses below:

[A-Za-z0-9_!#$%&’*+/=?‘{|}~^.\-]+@[A-Za-z0-9.\-]+[A-Za-z]{2,6}

We count s for bounds 4 through 10 (for bounds 1 through 3, there are no models).

The RMSEs for the constant, logarithmic, and linear regression equations are 2.098,
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Algorithm 13 RegressionAnalysis

Input: formula F , variable s, lower/upper bounds klo, khi, step size ∆k
Output: Regression equation eqn

1: bounds = []
2: counts = []
3: k = klo
4: while k ≤ khi do
5: bounds.append(k)
6: counts.append(ProjectedModelCount(F, k, s))
7: k = k +∆k
8: end while
9: RMSEmin = ∞

10: eqn = null
11: for model ∈ models do
12: β0 = 1⃗
13: β̂ = LeastSquares(model, β0, bounds, counts)

14: RMSE =

√∑
i Residual(model(β̂,boundsi),countsi)2

|bounds|

15: if RMSE < RMSEmin then
16: RMSEmin = RMSE
17: eqn = model(β̂)
18: end if
19: end for
20: return eqn

0.241, and 0.002, respectively. The linear regression shown below has the lowest RMSE:

log2 count ≈ 8.000607 × bound − 8.240978

5.4 Experiments

In this section, we discuss the empirical evaluation of ABC2. We evaluate the ef-

ficiency and correctness of ABC2 in the context of satisfiability checking and model

counting. In order to evaluate ABC2, we aim to answer the following research questions:

RQ1: How does ABC2 perform on satisfiability queries against the state-of-

the-art SMT solver Z3str3RE?

RQ2: How does ABC2 perform on model counting queries against existing
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Table 5.1: Comparison with ABC2 and Z3str3RE on three benchmarks. Time is in
seconds.

Automatark RegExp-Collected StringFuzzRegex
Total 19,979 21,954 14,852

ABC2 Z3str3RE ABC2 Z3str3RE ABC2 Z3str3RE
Sat 14,405 (72.1%) 14,456 (72.4%) 12,212 (55.6%) 10,259 (46.7%) 7,974 (53.7%) 7,051 (47.5%)
Unsat 5,470 (27.4%) 5,410 (27.1%) 8,510 (38.8%) 9,726 (44.3%) 6,871 (46.3%) 6,683 (45.0%)
Timeouts 104 (0.5%) 113 (0.5%) 1,232 (5.6%) 1,969 (9.0%) 7 (0.0%) 1,119 (7.5%)
ABC2 sat, Z3str3RE unsat 0 (0.0%) 1,010 (4.6%) 0 (0.0%)
ABC2 unsat, Z3str3RE sat 0 (0.0%) 1 (0.0%) 0 (0.0%)
ABC2 sat, Z3str3RE timeout 18 (0.1%) 1,363 (6.2%) 925 (6.2%)
ABC2 unsat, Z3str3RE timeout 95 (0.5%) 119 (0.5%) 193 (1.3%)
ABC2 timeout, Z3str3RE sat 69 (0.3%) 487 (2.2%) 2 (0.0%)
ABC2 timeout, Z3str3RE unsat 35 (1.8%) 326 (1.5%) 5 (0.0%)
ABC2 timeout, Z3str3RE timeout 0 (0.0%) 487 (2.2%) 0 (0.0%)
Time w/out timeouts 871.3 812.6 29,655.1 4,319.5 2,616.4 6,892.6
Time total 2,951.3 3,072.6 54,295.1 43,699.5 2,756.4 29,272.6

state-of-the-art model counters ABC, S3#, and SMC?

RQ3: How does regression analysis compare with repeated model counting

calls to ABC2?

We discuss below the benchmarks we used in our experiments, how we compared the

tools, and the results of the comparison between ABC2 and Z3str3RE, ABC, and S3#.

5.4.1 Experimental Setup

We experimentally compared ABC2 with the state-of-the-art SMT solver Z3str3RE [60],

and compared the precision and performance of ABC2 with ABC [23, 46], S3# [61],

and SMC [24]. For our experiments, we use three suites of benchmarks containing ap-

proximately 55,000 constraints. The three benchmarks, Automatark, StringFuzz, and

RegExp-Collected, have been widely used to compare the performance of SMT solvers;

a detailed discussion of their contents can be found in [60]. We conduct five experiments:

(1) a satisfiability comparison with ABC2 and the state-of-the-art Z3str3RE SMT solver,

(2) a model counting comparison between ABC2 and ABC, (3) a model counting com-

parison between ABC2 and S3#, (4) a model counting comparison between ABC2 and

SMC, and (5) a regression analysis experiment. For the satisfiability experiment, we

show the number cases for which each tool reported a satisfiable or unsatisfiable result
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for each constraint, as well as the number of timeouts and total time. For the model

counting comparison experiments, we report on the precision and timing results from

each tool. A 20s timeout is used for all experiments. The experiments comparing ABC2,

ABC, and Z3str3RE were run on a machine running Ubuntu 20.04 with Intel i5 3.5GHz

X4 processors and 32GB of memory. Due to compatibility issues, the experiment for S3#

was run on a virtual machine running Ubuntu 14.04 with 8GB of memory, on the same

machine. The experiments comparing ABC2 with SMC was done on an Ubuntu 18.04

desktop machine with an Intel i7 3.6GHz processor, 128GB DDR4 RAM, with a Linux

4.4.0-210-generic 64-bit kernel.

Satisfiability Comparison The results comparing ABC2 and Z3str3RE are shown in

Table 5.1. For the Automatark benchmark, ABC2 performed comparably to Z3str3RE

in both execution time and number of constraints solved. For the RegExp-Collected

benchmark, ABC2 and Z3str3 solved a comparable number of constraints, but Z3str3RE

was significantly faster for the majority of constraints, and ABC2 overapproximated

and reported sat for 1010 constraints which Z3str3RE reported as unsat. There was

1 constraint in which ABC2 reported unsat and Z3str3RE reported sat. We manually

determined that ABC2 was correct and Z3str3RE was unsound for that constraint. For

the StringFuzzRegex benchmark, ABC2 significantly outperformed Z3str3RE in terms

of both number of constraints solved and total execution time. These results show that

ABC2 is comparable with the state-of-the-art constraint solver Z3str3RE for satisfiability

queries on string constraints.

Model Counting Comparison with ABC2 and ABC We compare the model

counting performance of ABC2 with ABC on the three benchmarks, for solution strings

on a given query variable with length less than or equal to 50. For the majority of the
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Table 5.2: ABC2 compared with ABC. The percentages for timeouts and precision results
are out of the cases where ABC worked correctly. Time is in seconds.

Automatark RegExp-Collected StringFuzzRegex
Total 19,979 21,954 14,852
ABC cannot handle 14,049 (70.3%) 1,547 (7.1%) 2,961 (20%)
ABC is incorrect 125 (0.6%) 3583 (16.3%) 646 (4.3%)
Cases ABC works correctly 5,805 (29.1%) 16,824 (76.6%) 11,245 (75.7%)

ABC2 ABC ABC2 ABC ABC2 ABC
Total 5,805 16,824 11,245
Timeouts 0 (0.0%) 0 (0.0%) 1,463 (8.7%) 1,172 (6.9%) 7 (0.0%) 341 (3.0%)
ABC2 more precise than ABC 1,008 (17.4%) 1917 (11.4%) 634 (5.6%)
ABC2 as precise as ABC 4,797 (82.6%) 12,557 (74.6%) 10,270 (91.3%)
ABC2 less precise than ABC 0 (0.0%) 170 (1.0%) 0 (0.0%)
sat time w/out timeouts 401.8 549.7 7,009.4 22,092.3 1,253.2 1,149.2
count time w/out timeouts 210.1 207.8 9,036.1 468.0 1,388.0 1,072.2
sat + count time w/out timeouts 611.9 757.5 16,045.5 22,560.3 2,641.2 2,221.4
time total 611.9 757.5 45,305.5 46,000.2 2,781.2 9,041.4

RegExp-Collected benchmark there is a designated query variable in the formula. For

all other constraints a query variable was chosen at random (but was chosen consistently

between the tools). The results are shown in Table 5.2. ABC could not handle 14,049

(70%) of constraints in the Automatark benchmark, 1,484 (7%) of constraints in the

RegExp-Collected benchmark, and 2,961 (20%) of constraints in the StringFuzzRegex

benchmarks. ABC2 could handle all of the constraints. We compare the model count

for constraints which ABC could handle, and where neither tool timed out. Note that

ABC2 can handle all the constraints which ABC2 could not handle.

Out of the 33,874 constraints that ABC could handle (ABC could not handle or was

incorrect/unsound on the rest) ABC2 was more precise for 3,559 constraints, and only in

170 of the constraints did ABC2 give a less precise result than ABC. Additionally, ABC

gave incorrect results for 4,354 constraints. These results show that ABC2 is as or more

precise in the majority of constraints and handles a more expressive set of constraints

than ABC.

Model Counting Comparison with ABC2 and S3# We compare the model count-

ing precision and performance of ABC2 with S3# on the three benchmarks. S3# can
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only count the number of solutions for lengths equal to the given bound, not less than or

equal to the given bound. We compare the upper bound of S3# with the upper bound

reported by ABC2. The results of this comparison are in Table 5.3. S3# could not han-

dle 19,979 (100%) of the constraints in the Automatark benchmark, 1,255 (5.7%) of the

constraints in the RegExp-Collected benchmark, and 11,549 (77.6%) of the constraints

in the StringFuzzRegex benchmark. Additionally, S3# reported unsound results for 51

constraints. Of the constraints which S3# could handle, ABC2 reported a more precise

count in a 5208 (21.7%) of constraints, while S3% reported a more precise count for only

322 (1.3%) of constraints. The constraints where S3# reported a more precise bound

were UNSAT and ABC2 reported SAT (a sound upper bound/approximation).

For S3# to generate the count for strings less than or equal to 50, one would have to

run the S3# tool 51 times, one for each bound k ∈ [0, 50]. S3# took a total of 16,832.4

seconds, or 4.7 hours to model count the 23,951 constraints for strings of length equal

to 50. If we ran S3# 51 times for all the constraints to generate the count for strings

of length less than or equal to 50, it could take 51 × 16, 832.4 = 858, 452.4 seconds, or

238.5 hours. In contrast, for ABC2, computing the number of strings of length less than

or equal to 50 takes the same amount of time to compute the number of strings of length

equal to 50. This is a substantial difference in model counting time.

Figure 5.2 shows a summary of the comparison between ABC2 and S3#. S3# could

not handle 57.7% of the constraints within the benchmarks, and when factoring in time-

outs, only gave a more precise bound in 5.6% of constraints. ABC2 gave a more precise

result in 8.8% of constraints and handled significantly more constraints than S3#.

Model Counting Comparison with ABC2 and SMC We compare the model

counting precision and timing of ABC2 with the string model counter SMC. As shown

in Table 5.4 the SMC algorithm can handle roughly 50% of the constraints within the
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Table 5.3: ABC2 compared with S3#. The results for the three benchmarks are for
model counting strings of length equal to 50. The percentages for timeouts and precision
results are out of cases where S3# works correctly. Time is in seconds.

Automatark RegExp-Collected StringFuzzRegex
Total 19,979 21,954 14,852
S3# cannot handle 19,979 (100%) 1,255 (5.7%) 11,549 (77.6%)
S3# incorrect/unsound 0 (0.0%) 15 (0.1%) 36 (0.2%)
S3# works correctly 0 (0.0%) 20,684 (94.2%) 3,267 (22.2%)

ABC2 S3# ABC2 S3# ABC2 S3#
Total 0 20,684 3,267
Timeouts N/A 2,981 (14.5%) 6 (0.03%) 0 (0.0%) 0 (0.0%)
ABC2 more precise than S3# N/A 5,198 (25.1%) 10 (0.3%)
ABC2 as precise as S3# N/A 12,181 (58.9%) 3,253 (99.6%)
ABC2 less precise than S3# N/A 318 (1.5%) 4 (0.1%)
time w/out timeouts N/A 13,559.6 13,435.3 718.7 3,287.1
time total N/A 73,179.6 13,545.3 718.7 3,287.1

benchmarks. This is because SMC cannot handle integer variables, extended regular

expressions, and more complex functions such as toint and tostring, which are featured

in many of the constraints. For the rest of the constraints, we were unable to run

the SMC tool on them as the tool was not functioning for regular expressions (nearly

every constraint within the benchmark contained at least one regular expression). We

contacted the authors but they explained that the tool has not been updated since release

and were not able to make any fixes. So, we instead compared ABC2 with SMC on a

benchmark composed by the SMC authors called SMCKaluza. SMCKaluza is from the

SMC authors and contains approximately 19,000 constraints which contained simplified

versions of the constraints from the RegExp-Collected benchmark (used in our other

experiments). The SMC authors simplified constraints to not contain integer variables

or complex constraints their tool could not handle. We refer the reader to [24, 46] for

more information on the benchmark.

The SMCKaluza benchmark is split into two parts: SMCBig (large complex formulas)

and SMCSmall (small simple formulas). The result of ABC2 and SMC on the SMCKaluza

benchmark is shown in Table 5.5. ABC2 takes 1.2s and SMC takes 4.6s per constraint in

SMCBig. ABC2 takes 0.01s and SMC takes 0.96s per constraint on SMCSmall. ABC2
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Figure 5.2: Summary of S3# comparison.

Table 5.4: Percentage of constraints which SMC can handle

Automatark RegExp-Collected StringFuzzRegex
Total Constraints 19979 21954 14852
SMC algorithm cannot handle 10638 (53%) 20093 (91%) 1814 (12%)
SMC tool cannot handle 19979 (100%) 21954 (100%) 14852 (100%)

is as or more precise than SMC in all cases, and is overwhemingly more precise for

constraints in SMCBig. ABC2 is also significantly faster than SMC for all constraints.

Regression Analysis Efficiency and Accuracy We invoked ABC2’s regression anal-

ysis on a dataset of constraints for a single variable. We used odd bounds from 1 through

19 (inclusive) as inputs to the regression analysis. We then predicted the count at bounds

20, 30, 40, and 50, as well as called ABC2 to get the actual counts for those bounds for

comparison. We measured the time taken to do the regression analysis using Algo-
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Table 5.5: ABC2 compared with SMC

SMCBig SMCSmall
Total 1341 17554
ABC2 more precise than SMC 1,020 (76.1%) 186 (1.1%)
ABC2 as precise as SMC 321 (23.9%) 17386 (98.9%)
ABC2 less precise than SMC 0 (0.0%) 0 (0.0%)
ABC2 total time (s) 1,580.5s 241.1s
SMC total time (s) 6,117.7s 16,832.7s

rithm 13, the time taken to evaluate the regression equation versus call ABC2 for an

arbitrary bound, and the relative error (not to be confused with the RMSE) between the

predicted and actual counts. The results are in Table 5.6.

For the entire dataset, the regression analysis took under 0.5s. Furthermore, after

spending the overhead of the analysis, the average prediction time using the regression

equation for an arbitrary bound took under 1
500

the time taken to call ABC2 for that

bound. If we called ABC2 for 50 bounds for final_regex-023.smt2, then that would take

about 50 × 8.46 = 423ms, but if we predicted for 50 bounds, then it would only take

about 61.10 + 50 × 0.02 = 62.1ms. The regression analysis yielded average errors of

no more than 15%. By tweaking the input bounds, the error can be reduced for some

constraints, especially if the variable count was 0 for low bounds.

To visualize the accuracy of the regression equations, consider instance291.smt2 and

instance3483.smt2, which respectively had the least and greatest average relative error

in the dataset we used. The predicted and actual log variable counts are plotted in

Figure 5.3. The red circles are the predicted counts from the regression, and the blue X’s

are the actual counts from ABC2. The linear regression equation for instance291 fits the

actual counts well, hence the low error of ≈ 0. The logarithmic regression equation for

instance3483 does not fit as well (hence the error of 14.22%) because the chosen input

bounds do not adequately represent the growth in the count; for bounds ≤ 7, the count is

0 and for bounds ≥ 17, the count becomes constant at approximately 4.28×109 or 31.994

in log scale.
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Figure 5.3: Regression equation plots for sample constraints. We used bounds < 20 to
find the regression equation (shown by the red line) and bounds ≥ 20 to validate its
accuracy.

(a) instance291.smt2 (b) instance3483.smt2

Table 5.6: Regression analysis results on a dataset of constraints. We used odd bounds
from 1 to 19 (inclusive) as inputs, and we predicted counts for bounds 20, 30, 40, 50.

Constraint Name Analysis
Time (ms)

Avg. Prediction
Time (ms)

Avg. ABC2
Call Time (ms) Avg. Error (%)

final_regex-023.smt2 61.10 0.02 8.46 6.94
instance3483.smt2 87.82 0.02 10.74 14.22
instance60.smt2 65.39 0.01 7.18 0.03
instance1043.smt2 161.70 0.01 15.07 1.34
instance291.smt2 151.15 0.01 14.65 0.00
instance8092.smt2 43.54 0.01 5.79 0.00
instance576.smt2 36.90 0.01 4.14 0.00
instance3286.smt2 180.84 0.01 19.07 0.96
instance8724.smt2 90.01 0.00 8.77 0.78
instance6941.smt2 255.07 0.01 24.07 12.19
instance4761.smt2 85.01 0.02 11.39 0.30

5.5 Chapter Summary

In this chapter we presented the Automata-Based Model Counter 2 (ABC2). ABC2

supports model counting string and numeric constraints and their combinations. ABC2

has been applied to several quantitative program analysis problems such as probabilistic

symbolic execution, quantitative information flow analysis and adaptive attack synthesis.

We introduced novel algorithms and techniques for more precise handling of relational

string constraints, and implemented them in ABC2. ABC2 can also find regression

equations which model a given formula’s projected model count which can be reused

for quickly estimating counts for arbitrary bounds. Our experimental evaluation showed
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that ABC2 is as efficient as the state-of-the-art Z3str3RE solver for satisfiability queries

over string constraints, and that ABC2 is the most precise and efficient model counting

constraint solver for strings. We also showed that ABC2 can handle a richer set of

constraints than current state-of-the-art model counters over string constraints.
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Chapter 6

Quantifying Permissiveness of Access

Control Policies

In this chapter we present a framework to quantify permissiveness of access control poli-

cies using model counting constraint solvers. Our research contributions include: 1) A

formal model for access control policies. 2) A formalization of access control policy per-

missiveness. 3) An automated approach for quantifying permissiveness of access control

policies by translating a policy to a SMT formula and using a model counting constraint

solver to quantify its permissiveness. 4) An extension of the formal model and automated

approach to quantify relative permissiveness between policies. 5) A heuristic that trans-

forms formulas extracted from policies for improving model counting performance. 6) An

open-source tool, quacky, that implements the automated approach to analyze policies

written in AWS Identity and Access Management (IAM) and Azure policy languages. 6)

A publicly available policy dataset consisting of dozens of real-world policies from AWS

forums and Azure documentation, as well as hundreds of policies synthesized by applying

mutation techniques to the real-world policies.
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6.1 Policy Model

In this section, we introduce our policy model which forms the basis of our framework.

Our model is designed to be expressive enough to model complex policy specifications that

can be efficiently and precisely analyzed by modern verification and validation techniques.

We use an approach similar to [11] in defining our policy model. An access control

policy specifies who can do what under which conditions. We define an access control

model in which declarative policies field access requests from a dynamic environment, and

all requests are initially denied. An access request is a tuple (δ, a, r, e) ∈ ∆×A×R×E

where ∆ is the set of all possible principals making a request, R is the set of all possible

resources which access is allowed or denied, A is the set of all possible actions, and E

is the environment attributes involved in an access request. An access control policy

P = {ρ0, ρ1, ...ρn} consists of a set of rules ρi where each rule is defined as a partial

function ρ : ∆× A× R× E ↪→ {Allow,Deny}. The set of principals specified by a rule

ρ is

ρ(δ) = {δ ∈ ∆ : ∃a, r, e : (δ, a, r, e) ∈ ρ} (6.1)

ρ(a) for a ∈ A, ρ(r) for r ∈ R, ρ(e) for e ∈ E are similarly defined.

Given a policy P = {ρ0, ρ1, ...ρn}, a request (δ, a, r, e) is granted access if

∃ρi ∈ P : ρi(δ, a, r, e) = Allow ∧ ∄ρj ∈ P : ρj(δ, a, r, e) = Deny

The policy grants access if the request is allowed by a rule in the policy and is not revoked

by any other rule in the policy. Explicit denies overrule explicit allows (if a request is

allowed by one rule and denied by another rule, the request is ultimately denied). The

99



Quantifying Permissiveness of Access Control Policies Chapter 6

set of allow rules and deny rules for P are defined as:

PAllow = {ρi ∈ P : (δi, ai, ri, ei) ∈ ρi ∧ ρi(δi, ai, ri, ei) = Allow} (6.2)

PDeny = {ρj ∈ P : (δj , aj , rj , ej) ∈ ρj ∧ ρj(δj , aj , rj , ej) = Deny} (6.3)

Given a policy P, the requests allowed by the policy are those in which a policy rule

grants the access through an Allow effect and is not revoked by any policy rule with a

Deny effect:

Allow(P) = {(δ, a, r, e) ∈ ∆× A×R× E

: ∃ρi ∈ P : (δ, a, r, e) ∈ ρi ∧ ρi(δ, a, r, e) = Allow

∧ ∄ρj ∈ P : (δ, a, r, e) ∈ ρj ∧ ρj(δ, a, r, e) = Deny}

(6.4)

The set of principals, resources, or actions allowed by a policy is

Allow(P,∆) = {δ ∈ ∆ : (δ, a, r, e) ∈ Allow(P)} (6.5)

Allow(P, A) = {a ∈ A : (δ, a, r, e) ∈ Allow(P)} (6.6)

Allow(P, R) = {r ∈ R : (δ, a, r, e) ∈ Allow(P)} (6.7)

6.2 Permissiveness Analysis

In this section we discuss how the permissiveness of our policy model is analyzed.

Given a policy, the goal is to determine what requests are allowed by the policy, and

if the policy is more or less permissive than another policy. This is done by reducing

policies to logic formulas, similar to the approach used in [62, 11].
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6.2.1 SMT Encoding of a Policy

The permissiveness of a policy is determined by the number of requests that it allows:

the more requests allowed by a policy, the higher its permissiveness. The policy allowing

all possible requests is the most permissive policy, and the policy which denies all requests

is the least permissive policy. It follows that, given a policy, reasoning over all possible

requests allowed by the policy determines the permissiveness of the policy.

We encode the set of possible requests by introducing variables {δsmt ∈ ∆, rsmt ∈

R, asmt ∈ A, esmt ∈ E} in the generated SMT formula.

JPK =
( ∨

ρ∈PAllow

JρK
) ∧

¬
( ∨

ρ∈PDeny

JρK
)

(6.8)

JρK =
( ∨

δ∈ρ(δ)

δsmt = δ

) ∧ ( ∨
a∈ρ(a)

asmt = a

) ∧
( ∨

r∈ρ(r)

rsmt = r

) ∧ ( ∨
e∈ρ(e)

esmt = e

) (6.9)

The SMT encoding of a policy P is given by JPK and represents the set of requests

allowed by P. Policy rules are encoded as values for sets of (δ, a, r, e), where each value

set potentially grants or revokes permissions. Satisfying solutions to JPK correspond to

requests allowed by the policy, i.e.,

Allow(P) = {(δ, a, r, e) : (δ, a, r, e) |= JPK} (6.10)

6.2.2 Relative Permissiveness of Policies

For a single policy, equations 6.8, 6.9 provide a way to model the semantics of a policy

in isolation. Below, we provide a policy analysis framework that, given two policies,

determines the relative permissiveness between the two.
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Intuitively, given two policies P1 and P2 we can determine whether one is more per-

missive than the other by analyzing formulas JP1K ⇒ JP2K and JP2K ⇒ JP1K. However, it

is possible that both policies allow different sets of requests, or the set of requests overlap.

In general, there are four possible outcomes:

1. Allow(P1) ⊂ Allow(P2)

2. Allow(P1) ⊃ Allow(P2)

3. Allow(P1) = Allow(P2)

4. P1 and P2 do not subsume each other

The relative permissiveness of P1 and P2 directly follows from each scenario: P1 is less

permissive than P2, P1 is more permissive than P2, P1 and P2 are equally permissive, or P1

and P2 are incomparable. The calculation involves satisfiability checks of two formulas:

JP1K ⇏ JP2K and JP2K ⇏ JP1K

• If JP1K ⇏ JP2K is not satisfiable, then P1 cannot be more permissive than P2 (P2 is

at least as permissive as P1).

• If JP2K ⇏ JP1K is not satisfiable, then P2 cannot be more permissive than P1 (P1 is

at least as permissive as P2).

• If both JP1K ⇏ JP2K and JP2K ⇏ JP1K are not satisfiable, then P1 and P2 are

equivalent.

• Otherwise, P1 and P2 do not subsume each other.

Note that the formula JP1K ⇏ JP2K can be simplified as

JP1K ⇏ JP2K = JP1K ∧ ¬JP2K (6.11)
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which can be checked using an SMT solver.

6.3 Quantifying Permissiveness

Translating an access control policy into an SMT formula for satisfiability checking

allows some permissiveness analysis, but it does not give insight as to how permissive a

policy is. In this section, we introduce a novel approach for more precise reasoning in

determining the permissiveness of a single policy or the relative permissiveness of two

policies.

Given P, Allow(P) is the set of all requests allowed by P. Let |Allow(P)| denote

the number of such requests. The permissiveness of P is given by

|Allow(P)| = |JPK| (6.12)

Where |JPK| denotes the number of models for formula JPK. Using a model counting

constraint solver, we can automatically compute the value of |JPK|. Larger values for

|JPK| indicate a more permissive policy; lower values indicate a less permissive policy.

A metric for analyzing permissiveness of a policy is to consider the likelihood that a

randomly generated request is allowed by the policy. Let D be the set of all possible

requests, with |D| being the number of all possible requests. If |JPK| = 0 all requests are

denied by P, if |JPK| = |D| all requests are allowed by P. Let σ = (δ, a, r, e) be a request

chosen uniformly at random from the set all possible requests. The probability that σ is

allowed by P is

p(σ |= JPK) =
|JPK|
|D|

(6.13)

This effectively gives permissiveness of a policy with respect to its domain. Higher prob-

abilities indicate more permissive policies, lower probabilities indicates less permissive
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policies. A probability of 0.5 indicates the policy allows half of all possible requests.

Note that a probability of 0 indicates a policy which denies all requests while a proba-

bility of 1 indicates a policy allowing all requests.

This approach can be extended for quantifying relative permissiveness between poli-

cies. Given policies P1, P2, the number of requests allowed by P1 and not allowed by P2

is:

|JP1K ⇏ JP2K| = |{(δ, a, r, e) : (δ, a, r, e) |= JP1K ∧ ¬JP2K}| (6.14)

The number of requests allowed by P2 and not allowed by P1 is:

|JP2K ⇏ JP1K| = |{(δ, a, r, e) : (δ, a, r, e) |= JP2K ∧ ¬JP1K}| (6.15)

Recall that when calculating relative permissiveness there are four possible outcomes: P1

is equivalent to P2, P1 is more permissive than P2, P1 is less permissive than P2, or P1

and P2 are incomparable. Using equations 6.14, 6.15:

• If P1 is more permissive than P2 then |JP1K ⇏ JP2K| quantifies how much more

permissive P1 is than P2

• If P2 is more permissive than P1 then |JP2K ⇏ JP1K| quantifies how much more

permissive P2 is than P1

• If P1 and P2 do not subsume each other, |JP1K ⇏ JP2K| and |JP2K ⇏ JP1K| can

be used to determine which policy is objectively more permissive (total requests

allowed)
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6.4 Constraint Transformation

In this section we present a heuristic that transforms a set of equality and inequality

constraints for a string variable to a set of range constraints on an ordered set. We do

this by mapping a set of string constants to an ordered set of values. As we discuss below,

this enables us to compactly encode constraints on policy actions extracted from access

control policies.

In practice, there are a finite number of valid actions in an access control policy.

For example, s3:GetObject is a valid action, but the fictitious action s3:FooBar is

not. For our analysis to be precise, constraints specifying valid actions must be specified.

Recall that JPK is the constraint formula extracted from policy P. I.e., JPK ≡ F where F

is an SMT formula. In a formula F extracted from an access control policy, we observe

three types of terms that involve actions

asmt = c asmt ̸= c asmt ∈ regex (6.16)

where c is a string constant and regex is a regular expression. We first consider cases

where only the first two types of terms are present in a formula, and then discuss how

the transformation handles regular expression constraints. Consider the formula:

F ≡ (asmt = s3:ListBucket)

∨ (asmt = s3:ListBucketVersions)

∨ (asmt = s3:ListBucketMultipartUploads)

(6.17)

By mapping s3:ListBucket 7→ 0, s3:ListBucketVersions 7→ 1,
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Algorithm 14 TransformActions(F,M):

Input: SMT formula F , map M
Output: SMT formula with mapping applied to actions

1: if F ≡ F1 ∨ F2 then
2: return TransformActions(F1,M) ∨ TransformActions(F2,M)
3: else if F ≡ F1 ∧ F2 then
4: return TransformActions(F1,M) ∧ TransformActions(F2,M)
5: else if F ≡ (asmt = c) then return (asmt = M(c))
6: else if F ≡ (asmt ̸= c) then return (asmt ̸= M(c))
7: else if F ≡ (asmt ∈ regex) then
8: F ′ = False
9: for ci ∈ GetActionsFromRegex(regex) do

10: F ′ = F ′ ∨ (asmt = ci)
11: end for
12: return TransformActions(F ′,M)
13: end if
14: return F

s3:ListBucketMultipartUploads 7→ 2, F can be rewritten as

F ≡ (asmt ≥ 0 ∧ asmt ≤ 2) (6.18)

The use of range constraints gives a more compact encoding for constraints on policy

actions, particularly when there is a large number of constraints on policy actions (such

as the constraints specifying the set of all valid actions). We introduce a constraint

transformation which transforms the constraints on valid actions into a much smaller

set of range constraints. Let V (a) be the set of all valid actions. The key insight is

that the set V (a) can be mapped to a totally ordered set V ′(a) which can be compactly

represented using a combination of equality and inequality constraints. The mapping

and V ′(a) are straightforward to construct: each valid action a ∈ V (a) is mapped to a

unique integer i ∈ [0, |V (a)| − 1], and V ′(a) is the set of all such integers.

The constraint transformation heuristic consists of two phases: the first applies the

mapping to constraints on actions, the second transforms disjunction constraints into
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Algorithm 15 DisjunctionToRange(F ):

Input: SMT formula F with mapped actions
Output: Transformed SMT formula with disjunctions collapsed into range constraints when possible

1: if F ≡ F1 ∨ ... ∨ Fn then
2: FR = False
3: F ′ = False
4: S = {}
5: for Fi ∈ {F1, ..., Fn} do
6: if Fi ≡ (asmt = c) then
7: FR = FR ∨ Fi

8: S = S ∪ {c}
9: else

10: F ′ = F ′ ∨ DisjunctionToRange(Fi)
11: end if
12: end for
13: if size(S) ≥ 2 and size(S)− 1 = max(S)− min(S) then
14: return F ′ ∨ (asmt ≥ min(S) ∧ asmt ≤ max(S))
15: else
16: return F ′ ∨ FR

17: end if
18: else if F ≡ F1 ∧ ... ∧ Fn then
19: F ′ = True
20: for Fi ∈ {F1, ..., Fn} do
21: F ′ = F ′ ∧ DisjunctionToRange(Fi)
22: end for
23: return F ′

24: end if
25: return F

range constraints. Given a constraint formula in negation normal form and the action

mapping, Algorithm 14 first transforms constraints containing action variable asmt so it

is consistent with the mapping. For constraints asmt = c or asmt ̸= c where c is some

string constant, c is replaced by the integer according to the mapping. For regular expres-

sion constraints on action asmt ∈ regex, the function GetActionsFromRegex(regex)

returns all valid actions satisfied by the regex (the number of valid actions is finite)

and a disjunction on all possibilities is returned: e.g., if the constraint is (asmt ∈

s3:ListB∗) (where ∗ corresponds to a wildcard) then GetActionsFromRegex returns

the only valid actions matching the regex, s3:ListBucket, s3:ListBucketVersions,
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s3:ListBucketMultipartUploads. After the action constraints have been mapped,

Algorithm 15 attempts to transform equality constraints on actions under a single dis-

junction into range constraints (such as in equation 6.18). If the transformation is not

possible (e.g., the constants are not contiguous) the input formula is returned.

6.5 Analyzing AWS and Azure Policies

Based on our proposed notion of policy permissiveness and our approach for quan-

tifying permissiveness, we have developed a differential policy analysis framework for

permissiveness analysis of access control policies. Our framework is general enough to

be applied to a variety of policies written in multiple policy languages. To demonstrate

the effectiveness of our approach, we show that it can be applied to existing real world

access control models: policies for AWS IAM and Microsoft Azure.

6.5.1 Translation and Implementation

Scope and Translation of the AWS Policy Language The AWS policy language

is enormous, with each service having its own rules on actions and resources. We con-

sider three of the most popular AWS services: Elastic Compute Cloud (ec2), Identity

and Access Management (iam), and Simple Storage Service (s3). We consider two levels

of constraints for each service. First, actions are constrained to the set of actions defined

by the service. s3:ListBucket or s3:PutObject are valid s3 actions but s3:FooBar

is not. Second, actions and resource types are constrained by each other: certain ac-

tions can act only on certain resource types; e.g., action S3:ListBucket operates on

resource arn:aws:s3:::bucket. Additionally, resource types are constrained by naming

requirements; e.g., length of bucket names is between 3 and 63 characters

An AWS policy is a list of statements, each statement allowing or denying access for
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a given set of principals, actions and resources. For each statement, we create a rule ρ

capturing its semantics. Principals, actions, and resources within a statement map to

∆, A,R in ρ. Modeling conditions into environment attributes of E is more complex.

Each condition key together with a condition operator specifies values for which access

is allowed or denied. The environment attributes are thus a set of tuples specifying the

condition key and their respective values, where the number of tuples depends on the

condition operator. For wildcard or anychar (‘∗’,‘?’) symbols, we use regular expressions

to capture the set of allowed strings. For example, resource = bucket∗ translates to

(match resource /bucket.*/) where ‘.’ corresponds to anychar, ’/’ denotes the start and

end of a regular expression, ‘*’ represents Kleene star. We handle condition operators

such as StringLike similarly.

Scope and Translation of the Azure Policy Language. Like AWS, each Azure

service has its respective set of rules on actions and resources. We consider Azure VMs

and Blob Storage, which are analogous to ec2 and s3. We consider the same two levels

of constraints as we do for AWS.

An Azure “policy” is given by a list of role definitions and a list of role assignments.

We join them together on the roleDefId into rules ρ. For each ρ, we map principalId to ∆,

(Actions ∪DataActions) \ (NotActions ∪NotDataActions) to A, and scope to R. The

condition is parsed into a tree whose leaves specify condition keys and their respective

values; these are the environment attributes. Like for AWS, we use regex for wildcards.

Translating Action and Resource Type Constraints Let T be the set of con-

straints representing action and resource type restrictions. Equation 6.12 now becomes

|JPK| = |JPK ∧ T| (6.19)
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For comparing multiple policies, equations 6.14, 6.15 become

|JP1K ⇏ JP2K| = |(JP1K ⇏ JP2K) ∧ T| (6.20)

|JP2K ⇏ JP1K| = |(JP2K ⇏ JP1K) ∧ T| (6.21)

We implement translation for T for AWS by scraping the AWS resource and property

types reference webpages to identify the resource types each action can operate on. For

Azure, we generate constraints by reading a CSV file from the Azure Portal that relates

actions to resource types. Note that prior work [11, 63] does not consider type constraints

in their analysis of access control policies.

Policy Translator. Based on our approach, we implemented an open-source tool called

quacky that quantifies permissiveness or relative permissiveness by translating policies

into SMT formulas and passing the formulas to a model counting constraint solver. Our

implementation uses the popular Automata-based Model Counter (ABC) [23, 46] which

uses automata-theoretic to model count string and numeric constraints. ABC counts

satisfying solutions to the formula by constructing automata for an SMT formula and

performing path counting on the automata. SMT formulas from quacky can also be

fed into other SMT-LIB-conformant constraint solvers, such as Microsoft Z3.

quacky translates a policy P into a SMT formula JPK by translating each rule ρ, as

shown in Algorithm 16. To quantify the permissiveness of a policy P, quacky translates

P, appends the type constraints T, and calls ABC to count the solutions satisfying JPK∧T,

as shown in Algorithm 17. To analyze the relative permissiveness between two policies

P1 and P2, quacky produces two SMT formulas JP1K ⇏ JP2K and JP2K ⇏ JP1K and calls

ABC to check their satisfiability and to count models, as shown in Algorithm 18.
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Algorithm 16 TranslatePolicy(P):

Input: policy P
Output: SMT formula JPK encoding P

1: JPAllow K = False
2: JPDenyK = False
3: for rule ρ in P do
4: JδK = Encode(ρ(δ))
5: JaK = Encode(ρ(a))
6: JrK = Encode(ρ(r))
7: JeK = Encode(ρ(e))
8: JρK = JδK ∧ JaK ∧ JrK ∧ JeK
9: if ρ ∈ JPAllow K then JPAllow K = JPAllow K ∨ JρK

10: else JPDenyK = JPDenyK ∨ JρK
11: end if
12: end for
13: return JPK = JPAllow K ∧ ¬JPDenyK

Algorithm 17 Permissiveness(P, b):

Input: policy P, bound b
Output: permissiveness of P

1: JPK = TranslatePolicy(P)
2: T = GetTypeConstraints()
3: if IsSAT(JPK ∧ T) then return CountModels(JPK ∧ T, b)
4: else return 0
5: end if

6.6 Experimental Evaluation

Below, we first describe our methodology for gathering policies; then we discuss

the four experiments we conducted to evaluate our approach and its implementation

in quacky 1. The first experiment benchmarks quacky, and it evaluates quacky’s

performance and identifies which factors influence the analysis. The second experiment

evaluates how effective quacky is at reasoning about the relative permissiveness of ac-

cess control policies. The third experiment compares the performance of quacky with

an enumerative model counting approach based on SMT solvers. The fourth experiment
1Tool and benchmarks available at https://github.com/vlab-cs-ucsb/quacky
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Algorithm 18 RelativePermissiveness(P1,P2, b):

Input: policies P1,P2; bound b
Output: relative permissiveness of P1, P2

1: JP1K = TranslatePolicy(P1)
2: JP2K = TranslatePolicy(P2)
3: T = GetTypeConstraints()
4: F1 = JP1K ∧ ¬JP2K ∧ T
5: F2 = JP2K ∧ ¬JP1K ∧ T
6: if IsSAT(F1) and not IsSAT(F2) then
7: return "P1 is more permissive", CountModels(F1, b)
8: else if not IsSAT(F1) and IsSAT(F2) then
9: return "P2 is more permissive", CountModels(F2, b)

10: else if not IsSAT(F1) and not IsSAT(F2) then
11: return "P1 and P2 are equivalent"
12: else if IsSAT(F1) and IsSAT(F2) then
13: return "P1 and P2 do not subsume each other",
14: CountModels(F1, b), CountModels(F2, b)
15: end if

demonstrates that our approach can be applied to Azure policies. Unless otherwise noted,

all experiments use the constraint transformation heuristic, and include type constraints.

In the experiments reported below we assume string variables (principal, action, re-

source, condition keys) contain any of the 256 ASCII characters and at most 100 char-

acters long, unless otherwise specified. We report permissiveness as number of requests

allowed (a request is a tuple (δ, a, r, e)). Results are reported in log-scale. For all exper-

iments, we use a desktop machine with an Intel i5 3.5GHz X4 processor, 128GB DDR3

RAM, with a Linux 4.4.0-198 64-bit kernel, Z3 v4.8.11, and the latest build of ABC 2.

6.6.1 Policy Datasets

Due to security implications of making access control policies that are used in an

organization public, policies that are both publicly available and representative of real-

world policies are practically non-existent. We are unaware of any such dataset for neither
2https://github.com/vlab-cs-ucsb/ABC
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AWS (those in [64, 11] were not released to the public) nor Azure policies. To evaluate

our approach, a comprehensive dataset is required. We use two AWS policy datasets

collected from users and argue these datasets are representative of real-world policies

and comprehensive enough to show that our approach is effective. We also compile a

dataset of Azure role definitions from Microsoft Docs.

Obtaining AWS Policies from Users. The lack of publicly available policy datasets

for AWS means that finding quality policies is a cumbersome task. AWS users tend not to

share policies possibly containing sensitive data (policies can leak organization structure).

However, we found this to not be the case when users needed assistance designing and

debugging their policies. AWS policies can be complex and unwieldy, especially to those

unfamiliar with access control. Consequently, AWS provides forums where users needing

assistance often post their policies and other users (and AWS employees) can provide

assistance. Such policies are usually sanitized and vary in complexity, making the AWS

forums a good source for compiling a dataset.

AWS Policy Selection Criteria and Breakdown. As of 2021, AWS offers more than

200 services, many of which use access control policies and all of which have dedicated

forums. We searched for policies based on several criteria. We focused on iam, s3, and

ec2 as they are among the most popular services and are more likely to yield the best

sample of policies. Our goal was to have a good balance of simple and complex policies

as well as policy sets, and we only included policies that are semantically valid.

Out of several hundred forum posts dating back several years, we identified 30 posts

containing a total of 41 well-formed policies (the vast majority of posts either contained

no policies or fragmented/invalid policies): from ec2 9 posts with single policies and 2

posts with multiple policies (4 policies), from iam 2 posts with single policies and 3 posts
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with multiple policies (6 policies), from s3 9 posts with single policies and 5 posts with

multiple policies (11 policies). From our observations, we found that when users sought

assistance via the forums, they often only posted a single policy in isolation. Only 10

posts contained either multiple versions of the same policy or multiple policies combined

together in a policy set (multiple AWS policies can be combined into a single policy).

Synthesizing AWS Policies Through Mutations. We synthesize AWS policies

through mutations for two reasons. First, we want a larger dataset on which to evaluate

our policy analysis framework and tool. Second, we want to mimic realistic scenarios

where the semantic meaning of a policy is slightly modified by an employee within some

organization. Modifications to a policy can alter the permissiveness of a policy in ways

indiscernible without intensive manual inspection. A simple modification could allow

one more user access to a resource or it could allow one thousand more users access to

a resource; in either case, the modified policy is more permissive but clearly differs in

magnitude. Synthesizing policies through mutation is one approach for modeling such

scenarios.

We use ideas from mutation testing to synthesize policies [65, 66]. Mutation testing is

a widely used software testing technique for measuring test suite strength. The technique

applies mutations to a program under test to generate variations of the program, and

evaluates them against a test suite. A faulty program, or mutant, is killed if at least one

test in the suite fails. The more mutants killed, the higher the confidence in the test

suite.

We synthesize mutants of a policy with mutations intended to alter the permissiveness

of a policy, which we use to evaluate the effectiveness of our approach. We implement

three types of mutations which mimic realistic scenarios and generally yield more per-

missive mutants:
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1. If a statement’s Effect is Deny, change it to Allow and negate the statement’s

Action and Resource keys to NotAction and NotResource or vice versa.

2. If a statement’s Action or Resource values are lists, change them to a single string

containing a wildcard. For example, an Action list containing s3:ListBucket and

s3:GetObject is changed to a single string s3:*.

3. If a statement contains any Conditions, remove them.

For each statement of a given policy, we create a set of applicable mutation types. For

example, consider a statement with an Allow effect, a list of Action values, and a Con-

dition. The set of applicable mutations is {type 2, type 3} because the type 1 mutation

does not apply to the Allow effect. The power set of applicable mutation types represents

combinations of mutations that can be applied to that statement. Thus, we create such

a powerset for each statement. By choosing one set from each powerset and applying

the mutation types in that set to its respective statement, we output a mutated policy.

From 9 original ec2 policies, we generated 240 mutants. From 6 original iam policies,

we generated 26 mutants. From 14 original s3 policies, we generated 280 mutants. In

total, from 29 original policies, we generated 546 mutants.

Obtaining Azure Policies from Microsoft Docs As of 2021, Azure comprises more

than 200 services and 120 built-in roles. We are unaware of any forums where users post

custom role definitions, so we searched Microsoft Docs for built-in role definitions. We

focused on Azure VMs and Blob Storage because they are analogous to ec2 and s3. We

obtained 2 policies from VMs and 3 from Blob Storage for our proof of concept.
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Table 6.1: Times for each AWS service, with and without the constraint transformation
heuristic. Times are in seconds.

Without Transformation With Transformation
Min Max Avg Min Max Avg

ec2 2.08 880.18 128.98 0.50 33.41 10.11

iam 0.26 8.65 1.50 0.16 0.71 0.27

s3 0.06 29.60 3.64 0.05 7.37 0.77

Table 6.2: Results for each AWS service, with and without type constraints. Permissive-
ness is the number of requests allowed. AM is Arithmetic Mean, GM is Geometric Mean.

Avg exec time (s) log2(AM) log2(GM)
No Type Type No Type Type No Type Type

ec2 0.65 10.11 1,705.65 1,579.70 1,308.86 918.49
iam 0.05 0.27 1,598.60 1,321.92 827.41 669.75
s3 0.52 0.77 2,494.85 2,344.58 1,499.67 1,432.77

6.6.2 quacky Benchmarking

The goal of these experiments is to evaluate quacky’s performance and identify

which factors influence the effect of the analysis (in terms of counts and time taken). We

evaluate the performance and effectiveness of quacky on 41 policies taken from AWS

forums. First we evaluate the effectiveness of the constraint transformation heuristic

from Section 5 by analyzing each policy, with type constraints, twice, both without

the heuristic and with the heuristic enabled. Then, we analyze each policy twice, once

without type constraints and once with type constraints.

Effectiveness of Constraint Transformation The results, separated by AWS ser-

vice, are shown in Table 6.1. The decrease in minimum times with the constraint transfor-

mation heuristic was between 16% for s3 to 76% for ec2. The maximum times decreased

between 75% for s3 to 96% for ec2. The results for average times were similar, with a
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decrease of between 78% for s3 to 92% for ec2. The heuristic reduced the minimum,

maximum, and average times by about an order of magnitude for ec2, but not as much

for iam and s3. This may be because ec2 has more actions (311 as of writing) than both

iam (183) and s3 (223), and thus it may reap more benefits from range constraints as

opposed to equality constraints.

Impact of Type Constraints The results for each AWS service are shown in Ta-

ble 6.2. Out of the 41 policies, 1 policy allowed no request both with and without type

constraints; 1 policy allowed requests without type constraints but allowed none when

type constraints were present. Without type constraints, quacky analyzed each pol-

icy in under a second. Type constraints slow the analysis considerably but drastically

effect permissiveness, decreasing the number of allowed requests by hundreds of orders

of magnitude. This is due to type constraints restricting the set of possible actions

and constraining actions to only act on specific resource types. Type constraints repre-

sent all possible action and resource type restrictions and must be explicitly enumerated

within the constraint, slowing down the analysis. For every policy, the presence of type

constraints resulted in a more precise analysis. Without type constraints to model the

semantics of the policy language, quacky gives an overapproximation of the permissive-

ness for a policy.

6.6.3 Relative Permissiveness Quantification

The goal of this experiment is to evaluate how effective quacky is at reasoning about

the relative permissiveness of access control policies, and to showcase the effectiveness of

quantifying relative permissiveness in general. We evaluate the effectiveness of quacky

in quantifying relative permissiveness between a policy and its synthesized mutants. We

record the average times and differences in permissiveness between the mutants and the
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Table 6.3: Results for AWS policies compared with their mutants. Arithmetic/Geometric
Mean (AM/GM) for number of requests allowed (log-scale, ⊥ used when the count is 0)
are reported when the mutant is less or more permissive than its original policy.

Policy Avg exec #Pm Less #Pm More # Equivalent # Neither Pm Less permissive Pm More permissive
time (s) permissive permissive subsumes log2(AM) log2(GM) log2(AM) log2(GM)

[ec2] P1 30.23 0 (0%) 60 (93.8%) 4 (6.3%) 0 (0%) ⊥ ⊥ 1823.2 1614.7
[ec2] P2 85.18 0 (0%) 28 (87.5%) 4 (12.5%) 0 (0%) ⊥ ⊥ 1361.5 1162.8
[ec2] P3 57.79 0 (0%) 6 (75%) 2 (25%) 0 (0%) ⊥ ⊥ 1331.8 993.2
[ec2] P4 71.64 0 (0%) 12 (75%) 4 (25%) 0 (0%) ⊥ ⊥ 461.8 431.6
[ec2] P5 24.48 0 (0%) 12 (37.5%) 4 (12.5%) 16 (50%) ⊥ ⊥ 1197.7 788.9
[ec2] P6 45.68 4 (25%) 8 (50%) 0 (0%) 4 (25%) 461.4 292.7 123.1 123.1
[ec2] P7 47.29 0 (0%) 28 (87.5%) 4 (12.5%) 0 (0%) ⊥ ⊥ 1361.5 1008.3
[ec2] P8 170.28 8 (25%) 0 (0%) 24 (75%) 0 (0%) 154.1 154.1 ⊥ ⊥
[ec2] P9 3.11 0 (0%) 0 (0%) 8 (100%) 0 (0%) ⊥ ⊥ ⊥ ⊥

[iam] P10 1.38 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 486.7 486.7
[iam] P11 4.71 0 (0%) 6 (75%) 2 (25%) 0 (0%) ⊥ ⊥ 1385.0 1288.9
[iam] P12 1.05 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 486.6 486.6
[iam] P13 6.13 0 (0%) 0 (0%) 2 (100%) 0 (0%) ⊥ ⊥ ⊥ ⊥
[iam] P14 0.92 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 5.6 5.6
[iam] P15 3.60 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 2124.9 2124.9

[s3] P16 2.28 6 (37.5%) 4 (25%) 4 (25%) 2 (12.5%) 628.9 628.9 684.7 684.7
[s3] P17 1.37 0 (0%) 6 (75%) 2 (25%) 0 (0%) ⊥ ⊥ 2287.3 1953.9
[s3] P18 1.02 0 (0%) 6 (75%) 2 (25%) 0 (0%) ⊥ ⊥ 800.4 536.2
[s3] P19 10.22 2 (25%) 4 (50%) 2 (25%) 0 (0%) 1484.7 1484.7 1276.9 1276.9
[s3] P20 3.46 0 (0%) 0 (0%) 16 (100%) 0 (0%) ⊥ ⊥ ⊥ ⊥
[s3] P21 1.38 0 (0%) 12 (75%) 4 (25%) 0 (0%) ⊥ ⊥ 684.7 684.7
[s3] P22 10.56 16 (25%) 40 (62.5%) 8 (12.5%) 0 (0%) 2192.0 2192.0 2294.7 2268.8
[s3] P23 2.51 0 (0%) 8 (50%) 8 (50%) 0 (0%) ⊥ ⊥ 5.6 5.6
[s3] P24 2.83 0 (0%) 0 (0%) 4 (100%) 0 (0%) ⊥ ⊥ ⊥ ⊥
[s3] P25 2.06 0 (0%) 4 (50%) 4 (50%) 0 (0%) ⊥ ⊥ 2144.0 2144.0
[s3] P26 0.67 0 (0%) 10 (62.5%) 6 (37.5%) 0 (0%) ⊥ ⊥ 1479.1 1435.1
[s3] P27 5.06 6 (18.8%) 20 (62.5%) 4 (12.5%) 2 (6.3%) 2056.0 2056.0 2378.8 2273.9
[s3] P28 2.57 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 684.7 684.7
[s3] P29 76.08 8 (12.5%) 24 (37.5%) 24 (37.5%) 8 (12.5%) 2076.9 2076.9 2268.9 2268.9

original policy.

Each policy P is compared against every one of its mutants Pm twice: once to quantify

the number of requests allowed by P but not Pm and once to quantify the number of

requests allowed by Pm but not P. We used type constraints, constraint transformation,

and a timeout of 10 minutes for each pair of comparisons. The results are shown in

Table 6.3. The third column shows the average time across all pairs of comparisons.

Columns 3-6 of Table 6.3 show the distribution of permissiveness between each policy

and its mutants. The majority of mutants were either less permissive, more permissive,

or equivalent to the original policy. Columns 7-10 show the results of quantifying the

difference in permissiveness whenever a policy and its mutant were not equivalent and

did not subsume each other. For each policy and its set of mutants, columns 7 and 8

report the arithmetic and geometric means for the number of requests allowed by P but
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Figure 6.1: Counts for the enumerative approach as percentage of the count from quacky
on a simple policy over a 20 minute period, for bounds 18 (left) and 19 (right).

Table 6.4: Average model counting rates for the enumerative approach and quacky,
with type constraints. The former’s average model counting rates in the first half (0-5
min.) and second half (5-10 min.) of the 10 minute timeout interval are reported.

Average models counted per second
Enum. (0-5 min.) Enum. (5-10 min.) quacky

ec2 2.33 1.32 10474.53

iam 4.02 2.30 10398.54

s3 0.94 0.76 10705.92

not by Pm. Conversely, columns 9 and 10 report the means for the number of requests

allowed by Pm but not by P.

6.6.4 Comparison with Enumerative Model Counting

SAT/SMT solvers have been used in prior access control policy analysis techniques

to resolve queries about policy behavior (e.g., Zelkova, Margrave [67, 11, 68]). This

often involves enumerating the set of solutions to the query, through repeated calls to a

constraint solver. In each call, the constraints are revised by appending the negation of

all prior solutions. Our approach differs fundamentally as we do not rely on enumerating

solutions by repeatedly calling a constraint solver, but rather we use a model counting

constraint solver (ABC) that can count all solutions in a single call.

In these experiments we compare our approach to an enumerative approach using the
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Z3 SMT constraint solver [69, 70]. First, we analyze a simple policy allowing 2 s3 actions

on 2 resources: arn:aws:s3:::foo* and arn:aws:s3:::bar. We varied the string bound

from 16 to 21 to let the wildcard match 0 to 5 characters (resp.), and we set a 20 minute

timeout. For bounds 16 and 17, both approaches finished counting 4 and 516 models

in 0.15 and 16.77 seconds (resp.) for the enumerative approach and in 0.03 and 0.03

seconds (resp.) for quacky. For bounds 18 to 21, the enumerative approach timed out

after counting 3446, 3217, 3340, 3125 models (resp.), whereas quacky finished counting

1.3× 105, 3.4× 107, 8.6× 109, 2.2× 1012 models (resp.) within one second. The results

for bounds 18 and 19 are shown in Fig. 6.1.

We also analyze the 41 AWS policies using both approaches. The results are shown

in Table 6.4. For each namespace, quacky yielded an astronomically greater average

model counting rate than the enumerative approach. Moreover, the average rate of the

enumerative approach decreased between the first and second halves of the 10 minute

timeout interval. These results show that quantifying permissiveness using an enumer-

ative approach for policy analysis (such as [68]) based on an off-the-shelf SMT or SAT

solver is not a viable option for quantitative permissiveness analysis.

6.6.5 Microsoft Azure Policies

The goal of this experiment is to demonstrate that our approach can be used to ana-

lyze Azure policies. Like we did for AWS, we evaluate the performance and effectiveness

of quacky on the 5 policies taken from Microsoft Docs. We analyze each policy twice,

once without type constraints and once with type constraints. Because many string vari-

ables in Azure policies are more than 100 characters long, we assume that they are at

most 250 characters long.

The results are shown in Table 6.5. Like previous experiments, there is a tradeoff
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Table 6.5: Results for Azure VM and Blob Storage policies, with and without type
constraints. Permissiveness is the number of requests allowed and is reported in log-scale
(base 2)

Time (s) Permissiveness
No Type Type No Type Type

[VM] LoginUser 0.73 8.73 3096.01 1046.57
[VM] LoginAdmin 0.79 8.79 3096.01 1047.57

[BS] DataReader 0.36 1.43 1409.59 806.57
[BS] DataContributor 0.63 2.04 1411.18 808.89
[BS] DataOwner 0.37 3.76 2944.01 810.03

between time and permissiveness. Without type constraints, the two VM policies seem

to have the same permissiveness in log scale (base 2), but with type constraints, it is

clear that more distinct requests are allowed by LoginAdmin than by LoginUser. The

Blob Storage DataReader, DataContributor, and DataOwner policies are increasingly

permissive. Without type constraints, DataOwner seems much more permissive than

DataReader and DataContributor. With type constraints, we see that 2810.03 distinct

requests are allowed by DataOwner, whereas 2806.57, 2808.89 distinct requests are allowed

by DataReader, DataContributor (resp.).

6.7 Chapter Summary

In this chapter we presented a new approach for modeling and quantifying permissive-

ness of access control policies. Our approach relies on model counting constraint solvers

to assess the permissiveness of a given policy. We implemented this approach for AWS

policies and experimentally evaluated its effectiveness on AWS policies we collected from

discussion forums. Our results demonstrate that our quantitative permissiveness analysis

approach is applicable in practice.
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Quacky: Quantitative Permissiveness

Analyzer for Access Control Policies

In this chapter, we introduce the open-source tool quacky for quantitatively assessing

the permissiveness of access control policies in the cloud. quacky is based on the

technical approach presented in Section 6. We extend this approach into a full-fledged

open source tool, add support for GCP policies, and build a web interface to improve

usability. quacky quantifies permissiveness of policies written in the AWS Identity

and Access Management (IAM), Azure, and GCP policy languages. Using quacky, we

analyze 41 real-world AWS policies, 5 Azure policies, and 5 GCP policies, showcasing its

ability to analyze real-world policies.

The envisioned users of quacky include researchers, software engineers, cloud

solutions architects, system administrators, and others who write or use access control

policies in the cloud and want to ensure their policies do not allow unintended access to

private data. The challenge we propose to address involves understanding the permis-

siveness of an access control policy.

122



Quacky: Quantitative Permissiveness Analyzer for Access Control Policies Chapter 7

Frontend

Azure Role Definition &
Assignment Visitor

GCP Role & Bindings
Visitor

AWS Policy Visitor

Policy
Sanitizer

Backend

S-expression BuilderPolicy Model Visitor

Online Action Encoder Online Resource Type
Constraint Builder

Action Encoding Resource Type & Action(s)
Map

Model Counter or SMT Solver

ABC

Z3

Figure 7.1: Architecture of Quacky (online)
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Figure 7.2: Architecture of Quacky (offline)

7.1 quacky

Figure 7.1 shows the core framework of quacky. quacky takes in policies written

in the AWS IAM, Microsoft Azure, or GCP policy languages into its frontend, which

encodes policies into an intermediate policy model. The backend translates the policy

model into one or more SMT formulas, depending on whether the analysis is on a single

policy or on multiple policies. The solver component analyzes the SMT formulas through

queries to a constraint solver or model counter and outputs the desired permissiveness

result. The analysis is supplemented by an offline resource type constraint generator,

shown in Figure 7.2, which prepares resource type constraints for the SMT formulas

(discussed in more detail below).

123



Quacky: Quantitative Permissiveness Analyzer for Access Control Policies Chapter 7

1 {

2 "Statement": [{

3 "Effect":

4 "Allow",

5 "Principal":

6 "*",

7 "Action":

8 "s3:GetObject",

9 "Resource":

10 "arn:aws:s3:::myexamplebucket/*",

11 "Condition": {

12 "StringLike": {

13 "aws:userId": [

14 "AWSUSERID:*",

15 "JOHNDOE1111"

16 ]}}}]}

1 ...

2
3 ; Resource: p0.s0.r

4 (declare-const p0.s0.r Bool)

5 (assert

6 (= p0.s0.r

7 (in resource /arn:aws:s3:::myexamplebucket\/.*/)))

8
9 ; Condition: p0.s0.cStringLikeaws.userId

10 (declare-const p0.s0.cStringLikeaws.userId Bool)

11 (assert

12 (= p0.s0.cStringLikeaws.userId

13 (and

14 aws.userId.exists

15 (or

16 (in aws.userId /AWSUSERID:.*/)

17 (= aws.userId "JOHNDOE1111")

18 ))))

19
20 ...

Figure 7.3: Sample policy (top) and a snippet from its SMT encoding (bottom)
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1 (assert (and

2 (in resource /arn:aws:ec2:...:instance\/i-[0-9a-f]{17,17}/)

3 (or (= action "ec2:associateaddress")

4 (= action "ec2:associateiaminstanceprofile")

5 (= action "ec2:attachclassiclinkvpc") ... )))

1 (assert (and

2 (in resource /arn:aws:ec2:...:instance\/i-[0-9a-f]{17,17}/)

3 (and (>= action 4066) (<= action 4106))))

Figure 7.4: Snippet from the resource type constraint for EC2 instances without (top)
and with (bottom) action encoding

quacky Frontend The frontend takes access control policies as input and outputs

instances of our formal policy model, implemented as tree data structures. The input

depends on the cloud provider. For AWS, the input is 1 or 2 policies, saved as serialized

JSON. Figure 7.3(a) shows an example policy written in the AWS IAM policy language.

The AWS Policy Visitor checks and makes sure the JSON files are well-formed. For Azure,

the input is 1 or 2 pairs of role definitions and role assignments, which are also JSON. The

Role Definition and Assignment Visitor opens the files and checks if they are well-formed.

If a role definition and a role assignment both refer to the same RoleId, the visitor joins

them on that role ID, producing an AWS-like policy. GCP’s input is similar to that of

Azure, except its versions of role definitions and role assignments are called roles and

role bindings, respectively. The Role and Bindings Visitor joins the role(s) with the role

binding(s) on any common role name(s), producing an AWS-like policy. Visitors’ outputs

are passed to the Policy Sanitizer, which rewrites keys and action values in lowercase and

replaces scalar values with lists. Then, the frontend transforms each policy into a tree

by doing a post-order, depth-first traversal of the JSON policy and constructing nodes

at each key, such as Policy (root), Statement, Principal, etc.

quacky Backend The backend takes in 1 or 2 trees representing policies. Figure 7.2

shows the architecture of the background of quacky. It outputs SMT formulas that
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encode the semantics of each policy. The Policy Model Visitor builds the SMT formula

incrementally. It visits each node in the tree in a post-order, depth-first traversal. For

each node, it appends a set of constraints to the SMT formula. These constraints are

built by the S-expression Builder, which takes in operands and an operator and returns a

constraint conforming to the SMT-LIB standard. Figure 7.3 shows a policy and its SMT

encoding.

For a more precise analysis, the backend can add resource type constraints, which

capture a cloud service provider’s valid resource types, actions, and pairings thereof, to

the formula. The Online Resource Type Constraint Builder builds constraints on valid

resource type and action pairs. A map of each resource type to the actions operating on it

is pre-built offline (discussed below). The Constraint Builder takes a set of actions from

an Action node, reads the map, identifies the relevant types, and builds constraints on

those types and their actions. An example is shown in Figure 7.4. Note that this process

is online; that is, the constraints are built during translation, based on actions in the

policy. Irrelevant constraints are not built, reducing the size and complexity of the SMT

formula.

Adding resource type constraints may significantly slow down model counting. To

mitigate it, the backend does action encoding. The Action Encoder replaces action names,

which are strings, with a numeric encoding. The encoding is specified by a JSON map

that is pre-built offline. Action encoding replaces constraints with disjunctions of action

names with more compact constraints with ranges of numbers. An example is shown in

Figure 7.4.

Model Counter quacky uses the Automata Based model Counter (ABC) [23, 46],

which can model count string and numeric constraints. ABC takes a SMT formula F as

input, and it returns the number of models satisfying F , up to a bound k. It implements
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model counting by constructing automata for F and counting paths to accepting states

of the automata. The SMT formulas produced by the quacky backend can be sent to

other SMT-LIB-conformant constraint solvers. For example, Microsoft’s Z3 [69, 70] can

be used to get a model (i.e. an allowed request).

Offline Resource Type Constraint Generator Figure 7.2 shows the offline re-

source type constraint generator. In the backend, the Online Resource Type Constraint

Generator and Action Encoder depend on pre-built maps, as we discussed earlier. These

are pre-built offline to avoid repeating work every time quacky is run. The valid

resource type and action pairings are specified in the cloud service provider’s documen-

tation, which are scraped and processed into a JSON map. The Action Encoder assigns

numbers to actions, where a set of actions for a given resource type is assigned to a con-

tiguous set of numbers. This enables the online action encoder to build more compact

range constraints.

7.1.1 Support for GCP Policies

We handle policies written in GCP’s policy language by extending quacky’s fron-

tend, backend, and offline resource type constraint generator (see Figures 7.1 and 7.2). In

the frontend, we implemented the GCP Role and Bindings Visitor, which specifies how

roles and role bindings are transformed into the formal policy model. In the backend, we

added routines to translate GCP-specific conditions to SMT-LIB. In the offline resource

type constraint generator, we wrote a new scraper to get the GCP resource type con-

straints from GCP’s online documentation, and we generated a new resource type and

actions map and a new action encoding.

quacky can support other policy languages by further extending the aforementioned

components. Note that the formal policy model need not be extended as long as the
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Figure 7.5: Results summary tab on the quacky web app

input(s) for that language can be transformed into the model.

7.1.2 Usage

quacky1 has a command-line interface and a web-based interface2. quacky’s command-

line arguments include the input file name(s), the output file name(s), the model counting

bound, and the timeout. There are flags to use resource type constraints, action encoding,

and the PCRE regular expression syntax (which ABC can parse). For AWS, the input

files are AWS policies; for Azure, the input files are role definitions and role assignments;

for GCP, the input files are roles and role bindings. For all, the input files are in JSON,

and the output files (the SMT formulas) are in SMT-LIB.

The quacky web app takes a subset of these arguments as input. The input form

on the web app has textareas for policies, a number for bound, and checkboxes for the

resource type constraints and action encoding flags. To reduce CPU, memory, and disk
1The tool’s source code, policy datasets, experimental results, and documentation are publicly avail-

able at https://github.com/vlab-cs-ucsb/quacky
2The web app’s source code and documentation are publicly available at https://github.com/vlab-

cs-ucsb/quacky-web-app
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Table 7.1: Real AWS, Azure, and GCP policy analysis results. The average permissive-
ness and time, grouped by service, are reported. Permissiveness is in log scale.

Provider Service Avg. Perm. Avg. Time (s)
AWS EC2 3879.71 30.8
AWS IAM 3721.92 0.96
AWS S3 5787.7 2.3
Azure Blob Storage 809.07 1.07
Azure Virtual Machines 1047.15 5.4
GCP Cloud Storage 1202.81 1.75
GCP Compute Engine 1190.67 2.18

usage, the web app has a fixed timeout and does not store SMT formulas; consequently,

there are no timeout or regex syntax arguments.

Both the command-line and web interfaces output satisfiability, solve time, model

count, and count time for each SMT formula. Figure 7.5 is a screenshot of a results

summary tab on the web app. In addition to the aforementioned outputs, it shows a

status (success) and relative permissiveness. The variables tab (not shown) outputs the

model counts for individual string and numeric variables, like action, resource, and

aws:userId.

7.2 Evaluation

We evaluated quacky using a dataset of 41 real AWS policies from forums, 5 Azure

policies from Microsoft Docs, and 5 GCP policies from GCP documentation. We selected

well-formed policies that varied from simple to complex. For all experiments, we used

a desktop machine with an Intel i5 3.5GHz X4 processor, 128GB DDR3 RAM, with a

Linux 4.4.0-198 64-bit kernel, Z3 v4.8.11, and the latest build of ABC 3.

To evaluate quacky’s performance, we quantified the permissiveness of our original

AWS, Azure, and GCP policies. We used a model counting bound of 250. The average
3https://github.com/vlab-cs-ucsb/ABC
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Table 7.2: GCP policy analysis results. Each policy’s permissiveness and each pair’s
relative permissiveness are reported. All numbers are in log scale (⊥ means the result
was zero).

P1 P2 |JP1K| |JP2K| |JP1K ⇏ JP2K| |JP2K ⇏ JP1K|
User Login Admin Login 1190.44 1190.86 ⊥ 1188.86
Obj Creator Obj Viewer 1201.07 1202.07 1201.07 1202.07
Obj Creator Obj Admin 1201.07 1203.88 ⊥ 1203.65
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Figure 7.6: The number of actions allowed by each mutant that are not allowed by the
original policy

permissiveness and analysis time, grouped by cloud service, are shown in Table 7.1. For

most services, the average time was on the order of a few seconds. The exception was

AWS Elastic Compute Cloud (EC2), which generally has the most complex real-world

policies and resource type constraints.

Table 7.2 shows a closer look at quacky’s results for GCP’s Storage and Compute

services. We can see that the OS admin login policy is more permissive than the OS

user login policy, where the former allows 21188.86 distinct requests that the latter does

not. Moreover, object admin is more permissive than object creator by 21203.65 distinct

requests. Object viewer is incomparable to object creator, but individually, the former

allows more requests than the latter. These results make sense intuitively; we expect

admins to have absolutely more permissions than regular users, whereas we expect object

creators and object viewers to each have permissions that the other does not, according

to the GCP documentation.
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To demonstrate the usefulness of quantitative permissiveness analysis, we mutated

an original AWS policy to make 64 mutants. Figure 7.6 shows the number of actions

60 mutants allowed that the original policy denied (4 mutants are not shown because

they were equivalent to the original). By quantifying relative permissiveness, we see that

the mutants shown allow anywhere between 2 and 22 more actions than the original.

Without quantitative analysis, all mutants shown would simply be classified as “more

permissive" than the original, which is less insightful to policy authors.

7.3 Chapter Summary

We presented the quacky tool for quantifying permissiveness of access control poli-

cies in the cloud. We showed that quacky can handle a variety of policies written in the

most popular cloud policy languages. In the future, we aim to investigate how quacky

can be used to quantify properties of access control policies other than permissiveness.
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Chapter 8

Quantitative Policy Repair for Access

Control on the Cloud

In this chapter, we present a quantitative symbolic analysis approach for automated pol-

icy repair in order to reduce the permissiveness of access control policies. The repair

approach is sound, i.e., it guarantees that the repaired policy meets the given permissive-

ness constraints. Our research contributions include: (1) A formalization of the access

control policy repair problem; (2) A quantitative and symbolic policy repair algorithm

for automatically reducing the permissiveness of a given access control policy; (3) Access

control policy permissiveness localization and reduction techniques, including a regular

expression generalization technique for characterizing the set of resources based on a

given set of access control requests; and (4) An experimental evaluation of our quantita-

tive policy repair approach.
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8.1 Motivation and Overview

In this section we give an overview of the access control policy repair problem and

provide motivating examples. From a security perspective, access control policies should

grant only the permissions required to perform a task. Overly permissive policies, which

grant more permissions than necessary, can allow attackers unfettered access to secure

data if the associated role or users are compromised. Thus, overly permissive policies

should be modified, or repaired, to allow only those requests which are necessary.

8.1.1 Policy Repair Problem

Access control policies grant permissions to users or services by allowing requests. The

more permissions granted by a policy, the more requests it allows. The fewer permissions

granted by a policy, the lower the number of requests it allows. In this sense, we can think

of the number of permissions granted, or requests allowed, by the policy as defining the

permissiveness of the policy. A natural question then is, given an overly permissive policy,

is it possible to modify, or repair the policy so that it is no longer overly permissive?

This gives rise to the Policy Repair Problem: Given an access control policy, ensure that

it only allows the requests necessary to achieve its intended purpose. However, this is

difficult to ensure as complex policy specifications are difficult to craft and the set of

requests to be allowed or denied may not be explicitly defined or known.

In this work, we introduce and formalize the following variation of the access control

policy repair problem: Given a policy, a permissiveness bound, and a set of must-allow

requests, check that the policy meets the permissiveness bound while allowing all the

requests in the must-allow set, or repair it such that it meets the permissiveness bound

and allows all the requests in the must-allow set. Note that permissiveness bound puts

an upper bound on the desired level of permissiveness while the must-allow request set
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puts a lower bound on the desired level of permissiveness.

Permissiveness Bound. The permissiveness bound is a restriction on the permissive-

ness of the policy. That is, it is a restriction on the maximum number of requests allowed

by the policy. If the permissiveness of the policy (number of requests allowed by the

policy) is greater than the permissiveness bound, then we call this policy an overly per-

missive policy. Our approach aims to repair overly permissive policies by reducing the

permissiveness of the policy so that the permissiveness of the policy is less than or equal

to the permissiveness bound. While in this paper we assume that such a permissiveness

bound is given a priori, we also discuss methods for automatically finding permissiveness

bounds later in the paper.

Must-Allow Request Sets. The set of must-allow requests are requests which must

be allowed by the policy. Without a must-allow request set, a policy that does not

allow any requests would meet any permissiveness bound and would be a viable (but

meaningless) solution to the policy repair problem. The must-allow request set is used to

guide the algorithm towards a less permissive but still useful policy. In our approach, we

assume that the set of must-allow requests is given as input to the policy repair algorithm.

In our approach we assume that the policy developer has access to a set of must-allow

requests. We assume that the policy developer has knowledge of, and access to, what

kinds of requests should be definitely allowed by the policy. The concept of a must-allow

request set is analogous to the concept of whitelists from the security domain which

explicitly enumerate what should be allowed (e.g., a firewall only allowing requests from

a certain domain). Typically, policy developers have access to such a whitelist, and we

make the same assumption for the set of must-allow requests [71, 72, 73].
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1 "Statement": [{

2 "Effect": "Allow",

3 "Action": [

4 "s3:ListBucket",

5 "s3:GetObject",

6 "s3:PutObject",

7 "s3:DeleteObject"],

8 "Resource": [

9 "backend",

10 "backend/logs"]},

11 {

12 "Effect": "Allow",

13 "Action": "s3:GetObject",

14 "Resource": "backend/*"}]

15
16
17
18
19
20
21
22

1 "Statement": [{

2 "Effect": "Allow",

3 "Action": [

4 "s3:ListBucket",

5 "s3:GetObject",

6 "s3:PutObject",

7 "s3:DeleteObject"],

8 "Resource": [

9 "backend",

10 "backend/logs"]},

11 {

12 "Effect": "Allow",

13 "Action": "s3:GetObject",

14 "Resource": [

15 "backend/user44012/status.log",

16 "backend/user00000/status.log",

17 "backend/user12345/status.log",

18 "backend/user91232/status.log",

19 "backend/admin12/status.log",

20 "backend/admin02/status.log",

21 "backend/admin443/status.log",

22 "backend/admin3/status.log"]}]

Figure 8.1: Original (left, (a)), first repaired policy (right, (b))

8.1.2 Motivating Examples

The goal of the repair algorithm is to find a policy repair that satisfies both of the

above constraints (permissiveness bound and must-allow requests). To illustrate the

policy repair problem concretely, we discuss a couple of motivating examples below.

Consider the role of an automated log consolidator in the Amazon Web Services

(AWS) cloud, hereafter referred to as simply logger, which routinely gathers logs and

consolidates them into a single log file for further analysis. The permissions granted to

the logger role are given by the policy attached to the role. The initial policy attached to

the logger role is given in Figure 8.1(a). This policy gives varied access to the "backend"

AWS S3 bucket: The first statement allows the logger role to list objects within the

bucket and gives read and write access to the “logs” object, while the second statement

allows the logger role to read all objects within the “backend” bucket. Note that broad
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1 "Statement": [{

2 "Effect": "Allow",

3 "Action": [

4 "s3:ListBucket",

5 "s3:GetObject",

6 "s3:PutObject",

7 "s3:DeleteObject"],

8 "Resource": [

9 "backend",

10 "backend/logs"]},

11 {

12 "Effect": "Allow",

13 "Action": "s3:GetObject",

14 "Resource": [

15 "backend/user?????/status.log",

16 "backend/admin*/status.log"]}]

1 "Statement": [{

2 "Effect": "Allow",

3 "Action": [

4 "s3:ListBucket",

5 "s3:GetObject",

6 "s3:PutObject",

7 "s3:DeleteObject"],

8 "Resource": [

9 "backend",

10 "backend/logs"]},

11 {

12 "Effect": "Allow",

13 "Action": "s3:GetObject",

14 "Resource": [

15 "backend/user*/status.log",

16 "backend/admin*/status.log"]}]

Figure 8.2: Second repaired policy (left, (a)), third repaired policy (right, (b))

access is achieved through the use of the wildcard symbol ‘*’ (representing any string)

within the resource description “backend/*”. Though not present in this first policy, the

‘?’ symbol is used similarly to represent any character.

Essentially, this second statement allows the logger role to gather all logs in the

bucket, while the first statement allows the logger role to consolidate those logs into a

single logs file. This policy allows the logger role to accomplish its tasks. However, the

policy gives the logger role read access to all objects in the “backend” bucket using the

S3:GetObject action, regardless of whether or not the object is a log file. Ideally, the

policy should be repaired so that it only allows access to log files within the “backend”

bucket.

Repairing the permissiveness of the policy in 8.1(a) requires some information to be

known regarding the requests fielded (allowed or denied) by the policy. Without such

domain specific knowledge, the best repair would be to modify the policy to allow no

requests.

Suppose that the following requests, which specify action and resource pairs, should

be allowed by the policy:
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("s3:ListBucket", "backend"), ("s3:PutObject", "backend/logs")

("s3:DeleteObject", "backend/logs")

("s3:GetObject", "backend/logs")

("s3:GetObject", "backend/user44012/status.log")

("s3:GetObject", "backend/user00000/status.log")

("s3:GetObject", "backend/user12345/status.log")

("s3:GetObject", "backend/user91232/status.log")

("s3:GetObject", "backend/admin12/status.log")

("s3:GetObject", "backend/admin02/status.log")

("s3:GetObject", "backend/admin443/status.log")

("s3:GetObject", "backend/admin3/status.log")

These requests represent what kind of actions and resources should be allowed by the

original policy, which we refer to as the must-allow request set. Any repaired policy must

allow these requests.

The simplest way to repair the policy is to explicitly enumerate the allowed requests

within a statement in the policy, as shown in Figure 8.1(b). Instead of specifying “buck-

et/*” in the second statement (which specified all objects within the bucket), the list

of known resources is explicitly specified by explicitly enumerating them. While this is

a valid repair and does in fact reduce permissiveness, it does not handle other log files

which may exist but were not captured in the must-allow request set. It simply makes the

must-allow set the policy. In our approach, we remedy this by generalizing the allowed

requests using resource characterization techniques.

The policies in Figure 8.2 show two repairs which our quantitative repair approach

generates. Both policies reduce the permissiveness of the original policy. However, the

second and third repaired policies generalize the resources from the must-allow request

set. The second repaired policy (Figure 8.2(a)) generalizes requests containing the “user”
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1 "Statement": [{

2 "Effect": "Allow",

3 "Action": "s3:GetObject"

4 "Resource": "backend/*"]}

1 "Statement": [{

2 "Effect": "Allow",

3 "Action": "s3:GetObject"

4 "Resource":"backend/logs/user*"]}

1 "Statement": [{

2 "Effect": "Allow",

3 "Action": "s3:GetObject"

4 "Resource": "backend/logs/user?????"]}

Figure 8.3: Original policy (top left, (a)), partially repaired policy (top right, (b)), fully
repaired policy (bottom, (c))

and “admin” strings, but is more restrictive for resources containing the “user” string: It

allows resources such as bucket/user44012/status.log which is in the must-allow

request set, but does not allow bucket/user1234567/status.log which is not in

the must-allow request set. The third repaired policy (Figure 8.2(b)) also generalizes

requests containing the “user” and “admin” strings, but is equally as restrictive in both

cases. Based on the input permissiveness constraints and parameters, our approach can

generate repairs with different levels of permissiveness while meeting the permissiveness

constraints. We discuss this further in Section 8.2.

Permissiveness Bound Example. In this example we discuss the importance of the

permissiveness bound in the repair process. Recall that the permissiveness of a policy is

the number of requests allowed by the policy. Given a permissiveness bound, a policy

is determined to be overly permissive if the permissiveness of the policy is greater than

the permissiveness bound. For example, if the desired permissiveness bound is 1,000

(maximum of 1,000 distinct requests allowed), and the permissiveness of a given policy

is 10,000, then the permissiveness of the policy exceeds the permissiveness bound and is

in need of repair. While the permissiveness bound is a bound on the maximum number

of requests allowed by the policy, it can also be used to interpret the maximum number

of wild characters allowed within the policy; that is, the number of characters which are

138



Quantitative Policy Repair for Access Control on the Cloud Chapter 8

allowed to be unspecified in the policy.

Consider the policies in Figure 8.3 together with the following set of must-allow

requests:

("s3:GetObject", "backend/logs/user00102")

("s3:GetObject", "backend/logs/user94319")

("s3:GetObject", "backend/logs/user22212")

("s3:GetObject", "backend/logs/user30100")

("s3:GetObject", "backend/logs/user49763")

Let us assume that the desired permissiveness bound is 5 wild characters, which

corresponds to a maximum of 2565 = 1.1 × 1012 distinct requests which can be allowed

by the policy. Note that the number of wild characters can be obtained by taking

the log256 of the desired permissiveness (since each wild character corresponds to 256

possible characters). Additionally, assume only ASCII characters are allowed in the

resource field, and the length of resources can be at most 30 characters long. The first

policy (Figure 8.3(a)) has a permissiveness of 9.6 × 1052, or 22 wild characters, which

far exceeds the permissiveness bound. The second policy (Figure 8.3(b)) is a partially

repaired version of the first policy, which further restricts the requests allowed by the

policy. The permissiveness of this second policy is 2.0×1031, or 13 wild characters which

still exceeds the permissiveness bound. The third policy (Figure 8.3(c)) shows a fully

repaired policy with a permissiveness of 1.1× 1012, or 5 wild characters, which does not

exceed the permissiveness bound, and is thus repaired. In this case, note that the resource

field in the policy "Resource": "backend/logs/user?????" limits the number

of wildcard characters to 5, which meets the permissiveness bound.
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Figure 8.4: Flow of repair algorithm. The inputs are Initial Policy, Permissiveness Bound,
Must-Allow Request Set

8.2 Quantitative Policy Repair

Recall that policy repair has three inputs: 1) a permissiveness bound, 2) a set of

must-allow requests, and 3) a policy to be repaired. The goal is to create a revised

(repaired) version of the input policy in which all must-allow requests are allowed and

the permissiveness bound is not exceeded.

Our policy repair algorithm consists of three main stages: (1) Goal Validation, (2)

Permissiveness Localization, and (3) Permissiveness Refinement. Figure 8.4 shows the

overall flow of the repair algorithm. Algorithm 19 is the core repair algorithm corre-

sponding to the flowchart shown in Figure 8.4. Given a policy (consisting of one or more

rules), a permissiveness bound, and set of requests, the repair algorithm first checks if the

permissiveness goals are met using Goal Validation. If they are met, then the algorithm

stops and returns the policy. Otherwise, it finds the most permissive elements of the
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policy through Permissiveness Localization, then reduces permissiveness and refines the

policy elements through Permissiveness Refinement. The algorithm then goes back to

Goal Validation and repeats the process until the policy is successfully repaired meeting

the permissiveness constraints. In the following sections, we will discuss the algorithms

corresponding to each of the stages.

Algorithm 19 PolicyRepair

Input: Policy P, Permissiveness bound η, must-allow requests Q, length threshold α, depth threshold
ω, refinement threshold ϵ, map M
Output: Repaired Policy

1: P′ = P
2: ηr = GetPermissiveness(P′)
3: while (ηr > η)∧ HasUnrefinedResources(M) do
4: (ρ, aρ, rρ) = Localize(P′,M)
5: ρ∗ = ReduceRule(ρ, aρ, rρ)
6: P∗ = (P′ \ {ρ}) ∪ {ρ∗}
7: Q∗ = ValidateRequests(P∗, Q)
8: if Q∗ ̸= ∅ then
9: R∗ = GenerateResourceCharacterization(Q∗, α, ω)

10: ρrefined = GenerateRefinedRule(ρ, aρ, R∗)
11: Prefined = (P∗ \ {ρ∗}) ∪ {ρrefined}
12: if GetPermissiveness(Prefined) ≥ η − ϵ then
13: MarkRuleResourceAsRefined(M,ρ, rρ)
14: else P′ = Prefined
15: end if
16: end if
17: ηr = GetPermissiveness(P′)
18: end while
19: if ηr > η then P′ = EnumerateRequests(P′, Q)
20: end if
21: return P′

Since our repair approach uses a greedy strategy to quantitatively repair overly per-

missive policies, it is not guaranteed to produce an optimum repair. However, we believe

that a greedy repair strategy like ours that focuses on most permissive elements of the

policy first is a reasonable and practical approach.
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8.2.1 Repair Goal Validation

Recall that the main goal of policy repair is to reduce the permissiveness of the given

policy to meet the given permissiveness bound while preserving the set of must-allow

requests. Validating that the repair goal is reached requires two steps: (1) quantitatively

assessing that the permissiveness of the repaired policy is within the given permissive-

ness bound, and (2) verifying that the given set of must-allow requests are allowed by

the repaired policy. When both of these goal validation steps are achieved, the repair

algorithm stops and we return the repaired policy. Note that it may not be possible to

achieve the permissiveness bound without changing the policy to only allow the requests

that are in the must-allow set. In such a scenario we generate a policy that corresponds

to explicit enumeration of the requests in the must-allow set.

In cases where permissiveness bound cannot be reached without enumeration of the

must-allow set, our approach uses a stopping condition where only rules that have not

been previously refined (from the permissiveness refinement stage) are eligible for refine-

ment; the repair algorithm stops if there are no rules left to refine, regardless of whether

the permissiveness goal has been reached.

To simplify the presentation of our policy repair algorithm, we assume that the per-

missiveness level required by the must-allow set is not more than the input permissiveness

bound (which would correspond to an unsatisfiable set of permissiveness constraints), and

furthermore, we assume that the initial policy does allow all the requests in the must-

allow set. We can easily get rid of these assumptions with extra checks.

The permissiveness goal is checked on lines 2 and 3 in the repair Algorithm 19 through

the GetPermissiveness function. A policy P is first encoded into an SMT formula JPK

then sent to a model counter which returns number of satisfying solutions to JPK, which

corresponds to the number of requests allowed by policy P. Recall that the number of
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requests allowed by P corresponds to the permissiveness of P. If the permissiveness is

less than the bound, then the permissiveness goal has been reached and the algorithm

returns the current policy. Otherwise, it gets in the while loop starting in line 3 in order

to modify the current policy to reduce its permissiveness.

Algorithm 20 ValidateRequests

Input: Policy P, Request set Q ⊆ ∆×A×R× E
Output: Requests not allowed by policy P

1: Qallowed = ∅
2: JPK = Encode(P)
3: for (δ, a, r, e) ∈ Q do
4: if (δ, a, r, e) |= JPK then Qallowed = Qallowed ∪ {(δ, a, r, e)}
5: end if
6: end for
7: return Q \Qallowed

Algorithm 20 shows how the set of must-allow requests Q are checked against a

policy P. For each request (δ, a, r, e) in the must-allow set, we have to determine if

(δ, a, r, e) |= JPK, i.e., does P allow (δ, a, r, e)? This is done by generating the SMT

formula J(δ, a, r, e)K∧ JPK and checking if it is satisfiable using an SMT solver. Note that

J(δ, a, r, e)K corresponds to SMT encoding of the request (δ, a, r, e) and JPK is the SMT

encoding of all the requests allowed by P. So, if SMT solver reports that J(δ, a, r, e)K∧JPK

is satisfiable, then we know that the request (δ, a, r, e) is among the requests allowed by

P. If the SMT solver reports that it is not satisfiable, then we know that the request

(δ, a, r, e) is not allowed by P. By encoding requests and policies as SMT formulas, we can

implement the goal validation step using an SMT solver, and without requiring access to

an access control policy evaluation engine.

Algorithm 20 accumulates the requests in Q that are allowed by P in the set Qallowed.

At the end it returns the set difference Q \Qallowed, i.e., the set of requests in Q that are

not allowed by P. These requests are used in the permissiveness refinement step.
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8.2.2 Permissiveness Localization

We use a greedy strategy in repairing the permissiveness of a policy. We quantitatively

assess permissiveness by first finding the most permissive rule in the policy, then finding

the most permissive elements within the rule. This is done using calls to a model counter.

Permissiveness Analysis Recall from Section 6.1 that Allow(P) is the set of all

requests allowed by P. It follows then that |Allow(P)| is the number of such requests.

Following the work from [74], the permissiveness of P is the number of requests allowed

by P, which corresponds to the number of solutions to the formula encoding P, which

is JPK. I.e., |Allow(P)| = |JPK|. Thus, a lower permissiveness corresponds to a lower

number of allowed requests, while a higher permissiveness corresponds to a higher number

of allowed requests. Note that, although satisfiability of JPK can be computed using a

constraint solver, computing cardinality of JPK, i.e, computing |JPK|, requires a model

counting constraint solver.

Permissiveness Localization Similar to fault localization techniques in traditional

repair algorithms, we introduce the notion of permissiveness localization for policy re-

pair to find the most permissive sections of a policy. Our permissiveness localization

technique consists of a two-step process: (1) a course-grained approach which first finds

the most permissive rules in a policy, and (2) a fine-grained approach is used to find the

most permissive elements within each rule. In the course-grained approach each rule is

analyzed independently of other rules within the policy: each rule ρi ∈ P is treated as an

independent policy Pi = {ρi}. The permissiveness of each Pi is assessed using a model

counter, where the most permissive rule in P corresponds to the most permissive policy

Pi. A rule contains principals, actions, resources, and environment conditions. In order

to better analyze the permissive elements of the most permissive rule, we use a fine-
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grained approach to determine the greatest source of permissiveness. More specifically,

we analyze the actions and resources within the rule, as in our observations these tend

to be the most permissive elements. Once this is done, the repair algorithm refines the

permissiveness of the rule and its elements.

Algorithm 21 Localize

Input: Policy P, map M
Output: Most permissive rule and elements in policy

1: ρmax = ρempty
2: (amax, rmax) = ()
3: ηmax = 0
4: for ρ ∈ PAllow do
5: if IsRuleRefined(M,ρ) then continue
6: end if
7: η = GetPermissiveness({ρ})
8: if η > ηmax then
9: ηmax = η

10: ρmax = ρ
11: end if
12: end for
13: ηmax = 0
14: for (ai, ri) ∈ ρmax(a)× ρmax(r) do
15: if IsResourceRefined(M, ri) then continue
16: end if
17: ρ = CreateRule((ρmax(δ), ai, ri, ρmax(e)),Allow)
18: η = GetPermissiveness({ρ})
19: if η > ηmax then
20: ηmax = η
21: (amax, rmax) = (ai, ri)
22: end if
23: end for
24: return (ρmax, amax, rmax)

Algorithm 21 shows the how the repair is localized. First, in lines 4-12 the most

permissive rule is found by iterating through the allow rules (those that allow requests)

in the policy. Only rules which contain unrefined resources are considered; additionally,

we do not consider deny rules (those that deny requests) as by definition deny rules cannot

increase permissiveness. We keep track of which parts of a policy is already refined by

using a map M .
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The GetPermissiveness function encodes the given policy as a SMT formula us-

ing the techniques in Section 6.1 and calls the model counter on the formula. The

GetPermissiveness function is called on a policy consisting only of the given rule.

Next, on lines 14-23 the most permissive action, resource pairs are located within the

rule. This is done by iterating over all action, resource pairs and creating a new rule

where the action, resource pair is allowed with any combination of the principals and

environment attributes specified in the most permissive rule. Note that, as before, only

unrefined resources are considered. The permissiveness of the newly created rule is cal-

culated using the GetPermissiveness function. Once found, the most permissive rule

and its respective action, resource pair is returned. Note that Algorithm 21 involves nu-

merous calls to a model counter through the GetPermissiveness function, and calls to

a model counter can be expensive. This is a concern that we later discuss while presenting

our implementation and experiments.

8.2.3 Permissiveness Refinement

Once the most permissive rule and elements in the rule are found using permissiveness

localization, the rule is modified to reduce permissiveness. However reducing permissive-

ness has the possible effect that some requests in the set of must-allow requests are now

not allowed. In this situation, the denied requests are analyzed and the rule is then re-

fined using resource characterization and generalization techniques so that all must-allow

requests are allowed. Algorithm 19 shows how a rule is reduced and refined, while Al-

gorithm 22 and Algorithm 23 show how the resource characterization is generated from

the denied requests.

Permissiveness Reduction Within Algorithm 19, once the most permissive rule and

its permissive elements are located using Algorithm 21 on line 4, on line 5 the Reduc-
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eRule function modifies the rule so that permissiveness is reduced. Our approach for

reducing permissiveness greedily removes the most permissive element of the most per-

missive rule. The rule is only modified so that the permissive action and resource pair

is removed. On line 6, a new policy is created by removing the permissive rule from the

original policy and replacing it with the reduced rule from line 5.

While the permissiveness of the rule is clearly reduced using this approach, a clear

consequence is that some requests (possibly from the set of must-allow requests) that were

previously allowed are now denied. This is an intentional consequence of our approach. It

allows us to remove redundant elements of a policy while refining the rule (as we discuss

below). The goal is to generate a possibly less permissive characterization of resources

while keeping the must-allow requests still valid.

Permissiveness Refinement Lines 7-17 in Algorithm 19 details how permissiveness

is refined through the construction of a new policy. In the case that the permissiveness

reduction results in the set of must-allow requests being invalidated, we must refine the

permissiveness in order to fix the set of must-allow requests. On line 7, using Algo-

rithm 20 we determine which requests from the set of must-allow requests are denied

in the new policy. If the set of must-allow requests are still valid, the current repair

iteration ends and the next iteration starts with the modified policy as the policy to be

further repaired. Otherwise, the modified policy must first be repaired so that the set

of must-allow requests are valid. Lines 9-11 show how this is done. We first generate

a characterization of resources from the invalid requests in the must-allow request set.

This is done by extracting a regular expression from the finite-state automaton by state

elimination [75]. Once the characterization is obtained, the new resources are added into

the rule through the GenerateRefinedRule function which generates a new rule us-

ing the newly refined resource and the other existing elements within the rule. However,
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it can be the case that the newly refined rule does not decrease permissiveness, either at

all or by an appreciable amount. If the permissiveness of the refined policy does not ap-

preciably decrease (lines 12-15), the current repair is rolled back and the resource within

the rule is marked as not eligible for refinement.

Algorithm 22 GenerateResourceCharacterization

Input: Must-allow requests Q∗ ⊆ Q, length threshold α, depth threshold ω
Output: List of resources characterizing set resources from Q∗

1: AR = ∅
2: RQ∗ = GetResourcesFromRequests(Q∗)
3: for r ∈ RQ∗ do
4: Ar = ConstructDFA(r)
5: AR = AR ∪Ar

6: end for
7: reg = GetRegexFromDFA(AR)
8: reg∗ = GeneralizeRegex(reg, α, ω, 0)
9: Rreg∗ = EnumerateRegex(reg∗)

10: return Rreg∗

Resource Characterization from Invalid Requests To finish the permissiveness

reduction and refinement step, the modified policy must be further refined so that the

set of must-allow requests is valid. Trivially, this can be done by enumerating the invalid

requests and adding a new rule to the policy which allows only that specific requests.

However this does not generalize for requests not in the must-allow set but were intended

to be allowed, and can make the policy more complicated in the case that the must-allow

set is large. Thus, we aim to generate a characterization of the invalid requests, but

more specifically the resources in the requests, which can be added to the modified rule.

Ideally, this characterization will increase permissiveness to fix the invalid requests, but

still remain less permissive than previously. To do so, we generate a regular expression

characterizing the set of requests.

Algorithm 22 shows our regular expression and automata-based approach for resource
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Algorithm 23 GeneralizeRegex

Input: Regular expression reg, length threshold α, depth threshold ω, current depth d
Output: Generalization of regular expression reg

1: if reg ≡ (reg1 | reg2) then
2: reg′1 = GeneralizeRegex(reg1, α, ω, d+ 1)
3: reg′2 = GeneralizeRegex(reg2, α, ω, d+ 1)
4: if (reg′1 ∈ Σ∗) ∧ (reg′2 ∈ Σ∗) then
5: lreg′1 = Length(reg′1)
6: lreg′2 = Length(reg′2)
7: if (lreg′1 = lreg′2) ∧ (lreg′1 <= α) then
8: return MakeRegex(?, lreg′1) ▷ ‘?’ is regex for any character
9: end if

10: end if
11: if (d ≥ ω) ∨ (reg′1 ≡ Σ∗) ∨ (reg′2 ≡ Σ∗) then return Σ∗

12: else return (reg′1 | reg′2)
13: end if
14: else if reg ≡ (reg1 · reg2) then
15: reg′1 = GeneralizeRegex(reg1, α, ω, d)
16: reg′2 = GeneralizeRegex(reg2, α, ω, d)
17: return reg′1 · reg′2 ▷ ‘·’ is regex concatenation
18: else return reg
19: end if

characterization. The algorithm works by constructing a deterministic finite-state au-

tomaton (DFA) for each resource and then taking the automata union of all such DFAs

(lines 3-6). Each DFA constructed for a resource (line 4) is a DFA that accepts only that

resource, which is a constant. Thus, the union of all such DFAs is a DFA with no loops.

We then use the state elimination algorithm [75] to obtain a regular expression charac-

terizing the set of resources. It is well known that this regular extraction algorithm can

produce arbitrarily complex regular expressions which are often not useful in practice.

This is mainly due to the presence of loops within the DFA, and since our DFAs contain

no loops, the resulting regular expression contains only concatenation and unions.

Consider the resources from an example must-allow request set:

bucket/users/client155, bucket/users/client115,

bucket/users/client055, bucket/users/client200,
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Figure 8.5: DFA example. Resulting regex: bucket/(logs/client(((12|333)|
411)|544) |users/client((05|1(5|1))5|200))

bucket/logs/client544, bucket/logs/client333,

bucket/logs/client12, bucket/logs/client411

Figure 8.5 shows the DFA constructed from the union of these requests, and the initial

regular expression extracted from the DFA. The extracted regular expression however is

an enumeration of the input resources using disjunctions, and must be generalized.

The recursive GeneralizeRegex algorithm (Algorithm 23) takes the extracted reg-

ular expression and transforms the regular expression to a more general regular expression

which specifies a broader list of resources. The algorithm works to eliminate some dis-

junctions in a depth-first manner by replacing them with anychars (‘?’) and wildcards

(‘*’) when possible. The length threshold controls when strings of the same length should

be collapsed into anychar symbols: e.g., if the length threshold is 3, then "(123|456)" will

be simplified to "???", while "(1234|5678)" will remain the same. The depth threshold

controls when nested disjunctions get simplified into the wildcard (anystring) character:

the greater the threshold, the deeper the nesting of disjunctions is allowed. Once the gen-

eralized regular expression is obtained, the refined resources are gathered by enumerating

the leftover disjunctions within the general regular expression. Using a length threshold

of 3, depth threshold of 2, we obtain a more general, more permissive regular expression:

bucket/(logs/client*|users/client???)

Note that different values for the thresholds yield different regular expressions. For

example, length threshold of 3, depth threshold of 4 yields the less general, less permissive
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regular expression:

bucket/(logs/client(((12|333)|411)|544)|users/client???)

8.3 Policy Repair for the Cloud

Currently, our policy repair approach works on the policy model we introduced in

Section 6.1. This policy model abstracts away the implementation and intricacies of

modern policy languages used in the cloud. In this section, we show how our policy

model can be applied to one of the most popular policy languages for the cloud, that

of Amazon Web Services (AWS), and we demonstrate that our approach repairs such

policies.

8.3.1 Policy Transformations for Repair

Recall that our approach localizes permissiveness to the most permissive action, re-

source pair and then mutates it when possible. We cannot directly apply the approach to

AWS IAM policies that may contain NotPrincipals, NotActions, NotResources, and/or

negative condition operators like StringNotEquals because such elements let policy de-

velopers specify the complements of allowed values. If we directly applied our approach,

then removing policy elements would increase permissiveness, straying away from the

repair goal. To avoid this and to avoid complicating the repair approach, we transform

original policies, removing “negative” policy elements.

Algorithm 24 shows how an AWS statement ρ is transformed. In the algorithm,

ρ.keys refers to the Principal, Action, and Resource (or their negations) which exist in the

statement. This is done in two passes. In the first pass on lines 4-8, the NotPrincipals,

NotActions, and/or NotResources are removed (there is no NotCondition in the AWS

IAM policy language). This is not enough, because condition operators like StringNotLike
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1 {"Statement": [

2 {"Effect": "Allow",

3 "Principal": "foo",

4 "NotAction": "bar",

5 "Resource": "baz",

6 "Condition": {"StringNotEquals": {"key": "value"}}}]}

1 {"Statement": [

2 {"Effect": "Allow",

3 "Principal": "foo",

4 "Action": "*",

5 "Resource": "baz",

6 "Condition": {"StringLike": {"key": "*"}}},

7 {"Effect": "Deny",

8 "Principal": "foo",

9 "Action": "*",

10 "Resource": "baz",

11 "Condition": {"StringEquals": {"key": "value"}}},

12 {"Effect": "Deny",

13 "Principal": "foo",

14 "Action": "bar",

15 "Resource": "baz",

16 "Condition": {"StringNotEquals": {"key": "value"}}}]}

Figure 8.6: Original AWS IAM policy with one statement with NotAction and String-
NotEquals condition operator (top, (a)); Transformed policy with three statements (bot-
tom, (b)).

may be used to specify complements of allowed condition values. In the second pass on

lines 10-20, these negative condition operators are removed similarly. Figure 8.6 shows the

transformation applied to an AWS IAM policy. Figure 8.6(a) shows the original policy,

which has one statement with a NotAction element and a StringNotEquals condition

operator. Figure 8.6(b) shows the transformed policy after both passes are done.

The transformation has three limitations: (1) We do not transform deny statements

in the original policy. (2) We assume that the original policy does not have statements

allowing requests that the newly added statements deny. Otherwise, the transformed

policy is less permissive than the original policy because a statement denying a request

overrules one allowing it. (3) We currently support the case-sensitive string condition

operators only.

152



Quantitative Policy Repair for Access Control on the Cloud Chapter 8

Algorithm 24 TransformStmtPrincipalActionResource

Input: Statement ρ
Output: Transformed statement(s) P

1: P = ∅
2: K− = {k : k ∈ ρ.keys ∩ “Not” in k}
3: ρAllow = {“Effect” : “Allow”}
4: for k ∈ ρ.keys do
5: if k ∈ K− then ρAllow [Negation(k)] = “ ∗ ”
6: else ρAllow [k] = ρ[k]
7: end if
8: end for
9: P = P ∪ {ρAllow}

10: for k′ ∈ K− do
11: ρDeny = {“Effect” : “Deny”}
12: for k ∈ ρ.keys do
13: if k = k′ then ρDeny [Negation(k)] = ρ[k]
14: else if k ∈ K− then ρDeny [Negation(k)] = “ ∗ ”
15: else ρDeny [k] = ρ[k]
16: end if
17: end for
18: P = P ∪ {ρDeny}
19: end for
20: return P

8.3.2 Determining Permissiveness Bounds

Our approach can be used to automatically reduce the permissiveness of policies

while making sure that they allow what is necessary (based on the must-allow request

set). Even without a desired permissiveness bound, our approach can be used to find a

less permissive policy by using permissiveness of other policies as a bound or by giving

a permissiveness bound that is less than the current permissiveness of a policy as we

discuss below.

Inferring a Permissiveness Bound from Other Policies When the permissiveness

bound is not known, the permissiveness value of another policy can be used as the

permissiveness bound. Assume that a policy P is given and the policy developer wants

to determine if it is overly permissive, but the permissiveness bound is not known or is
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difficult to determine. In this instance, assume that the policy developer has another

policy P′ which is known to be not overly permissive. Let ηP′ be the permissiveness of P′.

Then, to determine if P is overly permissive, ηP′ can be used as the desired permissiveness

bound. If the permissiveness of P is greater than ηP′ then P is overly permissive and

should be repaired using our approach with the permissiveness bound being ηP′ . Note

that this approach assumes that the policy developer has access to another policy P′

whose permissiveness can be used as the permissiveness bound when repairing P; for

example, for a new role, a policy should be attached to the new role which has similar

permissiveness to policies attached to other roles. If such a policy P′ does not exist,

then an iterative approach for reducing the permissiveness of a policy can be used as we

discuss next.

Iteratively Decreasing Permissiveness Consider when the permissiveness bound

for a given policy P is not known but the policy developer wants to ensure that P is not

overly permissive. That is, the policy developer wants to ensure that P does not allow

more requests (permissions) than what is required. In this case, our repair algorithm can

be used to iteratively reduce the permissiveness of P

1. Let ηP be the permissiveness of P

2. Set the permissiveness bound as ηP′ = ηP − δ

3. Repair P using permissiveness bound ηP′ to obtain a repaired policy Pr

4. If Pr has the desired permissiveness level, halt; otherwise go back to step (1) with

P = Pr

where δ is a positive integer defining the step size which determines how much the

permissiveness bound should decrease in each step. This can be continued until a repaired
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policy with a desired level of permissiveness is produced, or the approach cannot further

repair the policy. In each step the permissiveness of P is decreased by δ.

8.4 Experiments

In order to evaluate our repair algorithm, we consider the following research ques-

tions:

RQ1: Does the policy repair algorithm successfully find repairs for policies collected

from user forums?

RQ2: How does the effectiveness of the algorithm change for varying permissiveness

bounds?

RQ3: What factors contribute to the overall performance (execution time/iterations/-

calls) of the repair algorithm?

We discuss below the policy dataset we use in our approach, how we set up our ex-

periments to answer the research questions, and the results of our experiments. For

quantifying the permissiveness, we use the model counter ABC [23, 46]; for validating

requests in the must-allow request set we use the SMT solver Z3 from Microsoft, and the

quacky tool for translating policies into SMT formulas. 1

8.4.1 Experimental Setup

AWS Policy Dataset. AWS offers over 200 services. Each service has its own actions

and resource types that can be allowed or denied in access control policies. For our repair

experiments, we used the policy dataset published in [74], which includes 43 real-world

policies collected from using forums from the most popular AWS services, namely iam,
1Our policy repair tool and policy and request datasets are publicly available at

https://github.com/vlab-cs-ucsb/policy-repair
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s3, and ec2.

Permissiveness Bounds. Recall that the policy repair problem specifies a permis-

siveness bound. In general, this permissiveness bound relates to the number of requests

allowed by the policy. In our repair algorithm, and in our experiments, we consider a more

restrictive permissiveness bound definition in which the permissiveness is determined by

the number of actions and requests allowed by a policy. The reason for this is that in

the policies we have observed, the most permissive element is the resource element, and

since the action and resource elements are tied very closely in the policy semantics (e.g.,

only S3 actions work on S3 resources) it makes sense to consider them together.

Because resources are strings, and strings can be infinitely long, we must bound the

maximum length of allowed resources (otherwise the permissiveness of a policy is infinite

due to wildcard characters). In our analysis, we bound the maximum length of any

resource to be 100. Note that actions are also strings, but there are a finite number

of actions (e.g., S3:GetObject is a valid action, S3:FooBar is not). Thus, the maximum

number of actions allowed by a policy is the number of possible actions, which in practice

is relatively small (a few hundred for the AWS services we consider). In our experiments,

we use the action constraint encoding from [74] which maps constraints on actions into

numeric range constraints to simplify the constraint formulas generated in our approach.

In our experiments, the permissiveness bound is given in terms of log256. Intuitively,

since resources are strings where each character in the string can be one of 256 ASCII

characters, this gives a measure of uncertainty regarding the number of unknown char-

acters in the resource. For example, the resource "foo12" has a log256 permissiveness of

0 (all characters in the string are known) while the resource "foo??" has a log256 per-

missiveness of 2 (2 characters in the string are unknown) since ‘?’ is a special character

denoting any possible character. We bound the maximum length of strings at 100 so giv-
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ing permissiveness bounds in terms of log256 gives a restriction on how many of characters

of the resource be unknown. Note that while this is just an approximate measure (strings

can be less than 100 characters) it nevertheless gives a useful measure for bounding the

permissiveness of a policy.

Allowed Requests. We augmented the policy dataset we used with sets of allowed

requests. We created requests containing only the action and resource field, as our repair

approach is currently tailored for reducing permissiveness based on action and resources.

Our metholodgy for sythensizing requests was to create requests which are likely to

resemble requests created by actual users. For actions, we focus on the most common ac-

tions for the AWS services in our policies (such as S3:GetObject and EC2:RunInstances).

For resources, we observed from the policy dataset and AWS online documentation that

resources generally have the following structure:

resource = service . prefix . middle . suffix

The service section consists of AWS service, region, and account number. The prefix

section corresponds to the resource type and is generally dependent on the action in

question: e.g., the prefix for s3 resources generally corresponds to the bucket name. The

middle consists of the intermediate directory structure (usually delimited using ’/’). The

suffix consists of the object, filename, or instance in question. Consider the following

resource

arn:aws:s3:::mybucket/folder1/folder2/clients.txt

where the service is “arn:aws:s3:::”, the prefix is “mybucket/ ”, the middle is “folder1/folder2 ”,

and the suffix is “clients.txt”. When synthesizing the requests, we observed that the ser-

vice and prefix parts of the resource were specific to services for the particular policy,
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Table 8.1: Results for 43 total policies with length threshold of 2 and depth threshold of
3. Policies are repaired using varying permissiveness bounds (given as log256, interpreted
as number of unknown characters allowed in a resource) .

Permissiveness Bound
30 40 50 60 70 80 90

without enumeration 29 29 31 33 39 43 43
with enumeration 14 14 12 10 4 0 0
% without enumeration 67% 67% 72% 77% 91% 100% 100%

Table 8.2: Results for varying length (α) and depth (ω) thresholds for a single permis-
sivness bound of 60 (i.e., log256(perm) ≤ 60)

α, ω thresholds Repaired without enum Repaired with enum Avg log256 Permissiveness Total time (s) # ABC calls # Z3 calls

2,3 33 (77%) 10 (23%) 17 597.9 780 1415
2,5 43 (100%) 0 (0%) 11.7 452.4 550 1001

0,3 33 (77%) 10 (23%) 20.2 602.3 786 1423
2,3 33 (77%) 10 (23%) 17 597.9 780 1415
5,3 37 (86%) 6 (14%) 17.7 518 679 1310

10,3 37 (86%) 6 (14%) 16.6 525 682 1310
15,3 37 (86%) 6 (14%) 16.5 515 686 1292

while the middle and suffix parts of the resource depended on the actions and service

being used. For each policy, we constructed 10-20 requests using the base policy as

reference, varying the relevant parts for each. An example request for S3 would be:

(S3:GetObject)

(arn:aws:s3:::bucket/production/user00000/status.log)

We ran all experiments on a machine with an Intel i5 3.5GHz X4 processor, 32GB

DDR3 RAM, a Linux 4.4.0-198 64-bit kernel, Z3 v4.11.1, the latest build of ABC 2, and

the latest release of quacky3.

8.4.2 Results

To answer our research questions, we conducted a wide variety of experiments on

43 policies collected from user forums using our quantitative repair algorithm. We now
2https://github.com/vlab-cs-ucsb/ABC
3https://github.com/vlab-cs-ucsb/quacky
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Figure 8.7: For all 43 policies and each permissiveness bound: total time taken (top (a));
total calls to ABC and Z3 (bottom (b)).

discuss the results and how they answer the aforementioned research questions.

RQ1: Does the policy repair algorithm successfully find repairs for policies

collected from user forums? Recall that the policy repair algorithm tries to find a

repair meeting the permissiveness bound through goal validation, permissiveness local-

ization, and permissiveness refinement, and if it cannot will begin enumerating requests

and replacing elements of the policy with these requests. Our repair algorithm will al-

ways successfully find repairs (so long as the initial assumptions are met, see Section 4).

Some of these repairs may require request enumeration, which is not ideal.

We ran the repair algorithm on the dataset of 43 policies with varying permissiveness

bounds to determine if the repair algorithm could generate a repair without request

enumeration and how often our repair was generated with request enumeration. Table 8.1
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shows the results. The permissiveness bounds ranged from 30 to 90, meaning that the

repair algorithm must generate a repaired policy with permissiveness less than the given

bound. For each permissiveness bound, we used a length threshold (α) of 2, depth

threshold (ω) of 3, and refinement threshold (ϵ) of 0.01.

For lower bounds, request enumeration was required to generate successful repairs,

with 14 of the 43 (67%) repairs requiring request enumeration for bounds 30 and 40.

As the permissiveness bound increases, the number of repairs generated which required

request enumeration decreases. For permissiveness bounds of 80 and 90, 100% of the

repairs generated by algorithm were generated without enumerating requests. Intuitively,

this makes sense as a lower permissiveness bound requires the policy to more concretely

specify the requests allowed by the policy; a higher permissiveness bound means that the

policy can be more generalized in what is allowed.

RQ2: How does the effectiveness of the algorithm change for varying per-

missiveness bounds? As the results in Table 8.1 show, while the repair algorithm

generates repairs for all policies for all given permissiveness bounds, lower permissiveness

bounds required the repair algorithm to resort to enumerating requests. This means

that while the permissiveness localization algorithm from Section 4 (Algorithm 21) was

able to localize where the most permissive elements were, the permissiveness refinement

algorithms (Algorithms 22,23) could not generate a resource characterization to reduce

the permissiveness enough to meet the permissiveness bound. This could be due to the

length (α) and depth (ω) threshold values used in Algorithm 23. Thus, we ran the repair

algorithm again on the 43 policies, but this time for a single permissiveness bound but

with different threshold values. Table 8.2 shows the results. We observed that, in general,

the length and depth threshold values did not have an appreciable impact on the total

time taken by the repair algorithm. However, we did observe that a higher depth thresh-
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old corresponded to more repairs not requiring explicit request enumeration. We believe

this is because a higher depth threshold results in a less generalized, more enumerative

regular expression characterization. Recall from Algorithm 23 that the depth threshold

corresponds to the maximum level of nested disjunctions within a regular expression.

When the level of nested disjunctions reaches the depth threshold, it gets “squashed”, or

generalized into a wildcard ‘*’ (anystring) regular expression. Thus, while the repair algo-

rithm with length threshold of 2 and depth threshold of 5 repaired all 43 policies without

explicit enumeration, it is likely that regular expression characterizations generated in

this case allowed more disjunctions, and thus were a more enumerative generalization.

RQ3: What factors contribute to the overall performance (execution time/it-

erations/calls) of the repair algorithm? The repair algorithm utilizes a constraint

solver (Z3) and model counter (ABC) for verifying the requests in the must-allow re-

quest set and for quantifying permissiveness. Both tools incur significant overhead in

the process. Figure 8.7(a) shows the time taken for various permissiveness bounds, while

Figure 8.7(b) shows the number of calls to Z3 and ABC for each permissiveness bounds.

As the permissiveness bound is increased, the total time taken for repairing the 43 poli-

cies significantly decreases. Looking at Figure 8.7(b), the number of calls to both Z3

and ABC decrease in a similar fashion. Both the number of calls and total time were

similar for the lowest few bounds. This may be due to the fact that those policies which

required enumeration during the repair process for the bounds of 30, 40, and 50 are the

ones which took more time to repair and more calls to Z3/ABC. For the depth and length

thresholds, we did not notice a significant increase or decrease in time taken or calls to

Z3/ABC when the thresholds were varied against a constant permissiveness threshold.
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8.4.3 Threats to Validity

Requests in the must-allow request set may not be representative of the what should

be allowed by the policy. We mitigate this threat as much as possible by synthesizing re-

quests not randomly but instead based on the common structure of actions and resources

we observed from both the policy dataset and AWS documention. In this way, the re-

quests were not randomly generated but were generated such that they aligned with the

user’s intention regarding the kinds of requests that should be allowed by the policy. As

the 43 policies did not have associated requests which should be allowed by the policy,

this was the most straightforward approach for generating a must-allow request set.

8.5 Chapter Summary

In this chapter we present a novel quantitative policy repair algorithm for repairing the

permissiveness of access control policies for the cloud. Given a permissiveness bound and

must-allow request set, our approach works by iteratively localizing the most permissive

elements of the policy using quantitative analysis techniques and reducing and refining

these elements using regular expression generalization techniques. Our experiments on

43 AWS IAM policies show that our repair algorithm successfully generates repairs for

the given policies and does so in a reasonable amount of time. As future work, we plan

to automate techniques we discussed for determining permissiveness bounds.
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Related Work

9.1 String and integer model counting

There has been significant amount of work on string constraint solving in recent

years [76, 77, 78, 40, 79, 80, 81, 82, 44, 83]; however none of these solvers provide model-

counting functionality. Meanwhile, due to the importance of model counting for quantita-

tive program analyses, model counting constraint solvers are gaining increasing attention.

SMC and S3# are model-counting constraints solvers for string constraints [25, 24]. Our

model counting approach is more precise and more expressive than SMC since SMC can-

not propagate string values across logical connectives and cannot handle complex string

operations such as replace. S3# handles string constraints involving length constraints,

but suffers a severe loss in precision when length constraints include symbolic integers.

Although the expressiveness of S3# is comparable to that of MT-ABC for string con-

straints, unlike MT-ABC S3# cannot handle pure numeric constraints, and it produces

unsound results for mixed constraints.

LattE [26] is a model counting constraint solver for linear integer arithmetic. LattE

uses the polynomial-time Barvinok algorithm [84] for integer lattice point enumeration.
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LattE cannot handle string constraints, so our approach is more expressive than LattE.

Automata-based constraint solving and model counting techniques we use in this

paper are not domain-specific like the approaches used in LattE, SMC, and S3# but

general in the sense that, they can handle any set of constraints that can be mapped to

automata. As we present in this paper, it is possible to map both numeric and string

constraints and their combinations to automata.

While linear algebraic methods for counting paths in a graph are well established,

this paper is the first to implement those methods for the purpose of parameterized

model counting for relational string and integer constraints. There has been earlier

work on integer constraint model counting by counting paths in numeric DFA [85], but

this earlier approach can only count models when there are finitely many models. We

built MT-ABC by extending an existing tool called Automata Based model Counter

(ABC) [23]. ABC uses a single-track automata representation. ABC cannot model

count relational constraints and numeric constraints as precisely as MT-ABC, and it

cannot handle constraints with integer variables. ABC has been integrated with Symbolic

PathFinder (SPF) and applied to side-channel analysis in [22].

SMTApproxMC [27] is a model counting constraint solver for the theory of fixed-

width words, and it uses a different approach for model-counting based on solution

sampling [86]. Since SMTApproxMC cannot handle string constraints, we compared

SMTApproxMC with MT-ABC on a set of numeric constraints. MT-ABC produces pre-

cise counts for linear arithmetic constraints whereas SMTApproxMC can only produce

approximations, and our experiments demonstrate that MT-ABC is significantly faster.
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9.2 Formula caching

Model Counting As the enabling technology for quantitative program analyses, model-

counting constraint solvers have received increasing focus from the research community.

SMC [24] and S3# [61] are two model-counting constraint solvers over the string domain.

LattE[26] is a model-counting constraint solver for linear integer arithmetic that uses the

Barvinok [84] algorithm. ABC, which can handle string, numeric and mixed constraints,

is more expressive than any of these model-counting constraint solvers and more precise

than either of the string model counters.

Caching Cashew [45] is a caching framework for model-counting queries which pro-

vides notable improvement on a variety of program analyses. Cashew is built atop

Green [87], an external solver interface for reusing the results of satisfiability or model

counting queries. Cashew introduces an aggressive normalization scheme and parameter-

ized caching, allowing it to outperform Green. We adopt the normalization scheme used

by Cashew, but introduce subformula caching into the automata construction process to

enable more reuse of computation. We also leverage automata caching, a normalization

technique guaranteeing completeness to leverage more information from the cache. We

show how both of these techniques benefits three different program analyses scenarios

with a direct comparison to the full-formula-only caching implemented by Cashew.

GreenTrie [88], another extension of Green, and Recal [89] are caching frameworks

that detect implication between constraints to improve caching for satisfiability queries.

Their techniques are specific to satisfiability queries and, in the general case, do not apply

to model-counting queries considered in this paper. Utopia [90] proposes a technique to

reuse results across formulas with similar solution sets but again, is specific to satisfiability

queries and would not aid in model counting.
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Incremental Solving Many modern SMT solvers have built-in support to expedite

the solving of similar constraints. CVC4 [91], Z3 [92], Yices [93] and MathSAT5 [94] are

SMT solvers with incremental capabilities. These tools learn lemmas which can later be

(re)used to solve similar constraints. During constraint solving, these solvers use a stack-

based approach to keep track of the current solver context, pushing and popping learned

lemmas as conjuncts are added or removed respectively. Incremental attack synthesis is

an alternative approach that enables reuse of intermediate results obtained during attack

synthesis [53]. However, incremental attack synthesis approach is a specialized heuristic

for attack synthesis, whereas the subformula caching approach we present in this paper

is general, and it is applicable to any quantitative program analysis technique that relies

on model counting queries.

9.3 Policy analysis and repair

Access control has been the subject of extensive research [95, 96, 97], many access

policy languages have been proposed [98, 99, 100, 101], and the problem with access

policies becoming large and difficult to reason about has been noted in the past [102].

There has been earlier work on verification of access control policies [103, 104], as well

as on assisting policy creation [105, 106]. Some earlier work analyze role based access

control schemas using the Alloy analyzer [107, 108].

The work most closely related to our work is that of Zelkova [11]. Zelkova is a closed-

source tool for analyzing properties of AWS policies which can automatically compare

two AWS policies and determine whether one is more permissive than the other. The

two crucial distinctions between Zelkova and our work is that (1) we provide a general

policy framework for analyzing access control policies which can be applied to other pol-

icy languages, and (2) we introduce a novel approach for quantifying the permissiveness
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of access control policies (rather than a binary yes/no answer in Zelkova). Both our work

and Zelkova build from ideas from the SAT-based checking of XACML [109]. In their

approach, Hughes et al use a bounded approach to analyze properties of XACML policies

with SAT solvers. Recent work has built upon Zelkova [64] but does not provide quan-

titative assessments of permissiveness. Margrave [110] is a tool that analyzes XACML

policies using a multi-terminal decision diagrams. Margrave goes beyond binary/ternary

differential analysis, allowing a user to write general-purpose queries over changes to a

policy. In a later work [68], Margrave uses a SAT solver to enumeratively produce sets

of solutions to queries. Our experiments show that this type of enumerative analysis

approach is not nearly scalable enough for meaningful quantitative analysis.

Verification techniques for analyzing access control policies embedded in programs

have been studied [111, 112, 113]. Derailer is interactive tool that let the developer

traverse the tree of all data exposed by an application and interactively generate a desired

policy [111]. RubyX [112] is a tool for symbolic execution for Rails that can be used to

find access control bugs. CanCheck [113] is an automated verification tool that uses

first order logic encoding and theorem proving for finding access control bugs in Rails

applications.

Differential analysis techniques have also been investigated in the past [114, 115, 116,

117, 118, 119, 120, 121, 122]. For example, in [115] differential symbolic execution is

used to find differences between original and refactored code by summarizing procedures

into symbolic constraints and then comparing different summaries using an SMT solver.

SYMDIFF [117] computes the semantic difference between two functions using the Z3

SMT solver [69, 70]. However, we are not aware of any prior work on quantitative

differential analysis.

In [123], the authors present Qlose, which uses a program repair approach based on

quantitative objectives. In [124], the authors present an approach for repairing XACML
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policies by fault localization and mutation-based repair. Our approach is significantly

different. We focus on policies and not programs, and our use of symbolic quantitative

permissiveness analysis and our iterative repair generation approach differ from both of

these prior approaches.
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Conclusions

Given the ubiquity of software services running on compute clouds, automated access con-

trol policy analysis techniques that can help administrators are critically important. In

this disseration we presented a quantitative policy analysis tool and framework for assess-

ing and automatically repairing access control policies using model counting constraint

solving techniques. The tool and framework can be applied to access control policies for

the cloud. We presented novel techniques for model counting constraint solving to enable

quantitative analysis and repair of policies.

Constraint solving and model counting techniques have been used in a wide variety

of verification and quantitative analysis approaches. To extend the usability of existing

approaches and for enabling quantitative analysis of access control policies, we developed

novel solving and counting techniques and implemented them in open-source tools. We

introduced techniques for advancing model counting constraint solving for string and

numeric constraints. We introduced a caching framework which uses subformula and

automata caching for reusing results from prior model counting queries. We developed

our novel model counting techniques into a tool called Automata-Based model Counter

2 (ABC2), which builds off its predecessor, the Automata-Based model Counter (ABC).

169



Conclusions Chapter 10

Our experiments show that ABC2 is the most precise model counter for string constraints

and is an efficient satisfiability checker for string constraints. Moreover, we showed that

automata-based model counting approaches perform better than existing model counters

for quantitative analysis techniques. Our approaches and tools allow quantitative tech-

niques to analyze a wider set of programs and policies than what has been previously

done.

In our approach, we quantitatively assess the permissiveness of a policy by reasoning

over what is allowed by the policy. Our policy model and framework is designed to

be expressive enough to model complex policy specifications that can be efficiently and

precisely analyzed by modern verification and validation techniques. We implemented

our approach in the quacky tool which can be applied to Amazon Web Services (AWS),

Microsoft Azure, and Google Cloud Platform (GCP) access control policies. quacky is

the first open-source tool for quantitatively analyzing the permissiveness of access control

policies. Our experiments show that quacky can analyze and repair real world policies

efficiently and in a timely manner.

In addition to quantitatively assessing permissiveness of a policy, we introduced a

quantitative policy repair algorithm and approach for automatically repairing the per-

missiveness of access control policies. By extending fault-based localization techniques

from program repair, with model counting from quantitative analysis techniques, our ap-

proach can automatically determine the most permissive elements of an overly permissive

policy and repair them so that the policy meets a permissiveness threshold. We imple-

mented our policy repair approach within the open-source policy analysis tool quacky.

In the future we plan on improving our quacky tool and policy analysis approach to

reason about properties of access control policies other than permissiveness. In addition

to improving our current analysis approach, we plan on extending our approach to verify

automated approaches for policy synthesis. Policies which are automatically generated
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using artificial intelligence techniques often lack formal guarantees. Providing formal

guarantees about the correctness of such policies is integral for the security of privacy of

the cloud and data in the cloud.

We also plan on improving model counting approaches by integrating automata-based

model counting techniques with DPLL and CDCL based constraint solving approaches.

This would result in a more precise model counting approach which could handle con-

straints from theories other than string and numeric. Another avenue we plan to inves-

tigate is extending quantitative analysis approaches to be able to handle cryptographic

functions and applications. Constraints risen from cryptographic functions and applica-

tions are difficult to solve and difficult to count, particularly for larger applications. Being

able to quantitatively analyze cryptographic functions would provide greater security and

confidence in how we handle our secret and important data.
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