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ABSTRACT
The quasar target selection for the upcoming survey of the Dark Energy Spectroscopic Instrument (DESI) will be fixed for the
next five years. The aim of this work is to validate the quasar selection by studying the impact of imaging systematics as well as
stellar and galactic contaminants, and to develop a procedure to mitigate them. Density fluctuations of quasar targets are found
to be related to photometric properties such as seeing and depth of the Data Release 9 of the DESI Legacy Imaging Surveys.
To model this complex relation, we explore machine learning algorithms (Random Forest and Multi-Layer Perceptron) as an
alternative to the standard linear regression. Splitting the footprint of the Legacy Imaging Surveys into three regions according
to photometric properties, we perform an independent analysis in each region, validating our method using eBOSS EZ-mocks.
The mitigation procedure is tested by comparing the angular correlation of the corrected target selection on each photometric
region to the angular correlation function obtained using quasars from the Sloan Digital Sky Survey (SDSS) Data Release 16.
With our procedure, we recover a similar level of correlation between DESI quasar targets and SDSS quasars in two thirds of the
total footprint and we show that the excess of correlation in the remaining area is due to a stellar contamination which should
be removed with DESI spectroscopic data. We derive the Limber parameters in our three imaging regions and compare them to
previous measurements from SDSS and the 2dF QSO Redshift Survey.

Key words: survey - cosmology: observations – large-scale structures – dark energy

1 INTRODUCTION

The Dark Energy Spectroscopic Instrument1 (DESI) will conduct a
spectroscopic survey of a third of the sky (i.e. 14,000 deg2) over a
period of 5 years (DESI Collaboration et al. 2016). At the end of
the survey, DESI is expected to produce a catalogue of 35 million
objects covering redshifts up to∼ 4. This will be the largest catalogue
of spectroscopic sources ever observed, increasing by an order of

★ E-mail: edmond.chaussidon@cea.fr
1 https://www.desi.lbl.gov/

magnitude the number of sources observed by the Sloan Digital Sky
Survey2 (SDSS; Ahumada et al. 2020).
The DESI survey will provide the most detailed 3D map of the

matter distribution in the Universe as traced by four different target
classes: galaxies from a Bright Galaxy Survey (BGS) in the redshift
range 0.05 < 𝑧 < 0.4, Luminous Red Galaxies (LRGs) in the range
0.4 < 𝑧 < 1.1, EmissionLineGalaxies (ELGs) in the range 0.6 < 𝑧 <

1.6 and quasars or quasi-stellar objects (QSOs) at 𝑧 > 0.8. The DESI
collaboration will use these datasets to perform analyses of baryon
acoustic oscillations and redshift space distortions to constrain the

2 https://www.sdss.org/dr16/
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expansion history of theUniverse and the growth of structure. Similar
studies were conducted on the final SDSS dataset (Data Release 16;
DR16) by Gil-Maŕin et al. (2020); Wang et al. (2020); Bautista et al.
(2021) (using LRGs), Tamone et al. (2020); Raichoor et al. (2021);
DeMattia et al. (2021) (using ELGs), Neveux et al. (2020); Hou et al.
(2021) (using QSOs) and du Mas des Bourboux et al. (2020) (using
the Ly-𝛼 forest). DESI should also enable precise measurements of
the sum of the neutrino masses, as well as investigations of modified
gravity and theories of inflation.
A promising approach to probe inflation is through the tiny imprint

left on the matter power spectrum by inflation-induced primordial
non-Gaussianity. As noted for instance in Ross et al. (2013);
Castorina et al. (2019); Mueller et al. (2021) this measurement is
known to be limited by systematic effects on large scales, most of
which are due to imaging systematics imprinted on the density of
spectroscopic targets. To prepare for upcoming clustering analyses
with DESI, it is therefore crucial to study and be able to mitigate the
imaging systematics that impact target selection.
The aim of this paper is to mitigate systematics for the DESI

QSO target selection. We compute the angular clustering properties
of the QSO targets in order to validate the selection method and to
provide a control sample of QSO targets stripped of residual biases
from imaging systematics or selection criteria. This is particularly
important as the QSO target selection is known to be strongly
contaminated by stars in addition to being impacted by imaging
systematics. This work also serves as a crucial input to the selection
of the QSO targets for DESI, which will soon be finalized for the
five-year duration of the survey, in order to avoid strong imprints into
the spectroscopic QSO sample due to imaging systematics that occur
during the target selection. Finally, it is also a proof of concept. Since
the stellar contamination of the target selection will be removed after
the spectroscopic survey, the same method could be used to mitigate
systematics in the DESI spectroscopic QSO sample.
Different strategies have been developed to deal with imaging

systematic effects and improve the reliability of clustering studies.
In this work, we follow the approach that was used for SDSS studies
(Myers et al. 2006; Ross et al. 2011; Ho et al. 2012; Ross et al.
2017, 2020; Raichoor et al. 2021) and for Dark Energy Survey (DES
Collaboration et al. 2021) studies (Leistedt et al. 2016; Elvin-Poole
et al. 2018). This method models the variation of target density as
a linear function of imaging features (see, e.g. Myers et al. 2015;
Prakash et al. 2016) in order to removefluctuations caused by imaging
systematics. A correction weight is then computed and applied to the
data. Since this method smooths density fluctuations, one needs to
check to what level the mitigation procedure affects the cosmological
signal. Another less common approach is based on mode projection
(Rybicki & Press 1992; Tegmark et al. 1998; Leistedt et al. 2013;
Elsner et al. 2016; Kalus et al. 2019): Modes (in Fourier space) or
pixels (in configuration space) are assigned increased variance where
the systematics map exhibits large values, such that the covariance
matrix has larger values in the presence of systematics. This is a
robust method, which, however, only mitigates systematics using
also a linear combination of the imaging maps. It cannot model the
non-linear effects that are now observed, as illustrated in Ho et al.
(2012). The correction-weights and mode-projection strategies can
be combined in a common framework as explained in Weaverdyck
& Huterer (2021).
To circumvent the assumption that only known features can

completely explain all imaging systematics, one can also use a
forward-modeling approach (Suchyta et al. 2016; Burleigh 2018;
Kong et al. 2020). Such an approach accounts for source detection and
target selection processes in an end-to-end fashion, by injecting fake

galaxies into raw images, running source detection on the images,
and applying target selection algorithms to the resulting sources.
Some studies of how imaging systematics affect DESI target

selection have already been undertaken. For instance, Kitanidis et al.
(2020) gave a first overview of imaging systematics for different
DESI target classes selected from Data Release 7 (DR7) of the DESI
Legacy Imaging Surveys (see e.g. Dey et al. 2019), and found that
the DESI QSO target sample suffered from strong contaminating
effects. In another study of DR7 of the the Legacy Imaging Surveys,
Rezaie et al. (2020) analysed how imaging systematic affect the
eBOSS-like ELG selection, and used an artifical neural network to
mitigate non-linear effects.
The aimof thiswork is to analyse the finalQSO target selection that

will be used for the next five years by DESI. The selection is based
on the ninth data release (DR9) of the Legacy Imaging Surveys,
which is greatly improved compared to prior data releases. For
instance, DR9 covers the full footprint of the Legacy Imaging Surveys
(about 20,000 deg2), incorporates improved background-fitting, and
uses the latest definition of bright-star and large-galaxy masks. To
mitigate systematic effects on the QSO selection, we will explore
machine-learning approaches based on Random Forests (RFs) and
Neural Networks (NNs), which we will compare to each other as well
as to a traditional linear treatment.Wewill test our mitigation process
by measuring the angular properties of the QSO target selection,
before and after applying the weights derived from these techniques.
The density fluctuation of the QSO target selection is non-linear with
respect to imaging properties due to significant stellar contamination.
We account for this contamination by including the Milky way and
Sagittarius Stream stellar distributions as additional inputs to our
mitigation procedure.
This paper is organised as follows. In Section 2, we outline the

DESI DR9 Legacy Imaging Surveys and introduce the strategy used
QSO target selection. The observational features we study and the
method used to mitigate systematics are detailed in Section 3. In
Section 4, we show the results of our systematic mitigation and
discuss how density fluctuations in the QSO target sample are
related to observational features. In Section 5, we analyse the angular
clustering properties of the DESI QSO target sample, illustrating the
efficiency of our methods. Finally, our conclusions are presented in
Section 6.
All magnitudes in this paper will be quoted on the AB system,

including magnitudes from the Wide-field Infrared Survey Explorer
which are often given on the Vega system. In addition, except when
mentioned otherwise, all computationswith HEALPix pixels are done
with 𝑁side = 256 (a pixel area of∼0.05 deg2) and all maps are plotted
in a Mollweide projection with a HEALPix resolution of 𝑁side = 64.

2 QUASAR TARGETS IN LEGACY IMAGING SURVEYS

In this section, we introduce the Legacy Imaging Surveys that are
used to perform the DESI QSO target selection. We then present the
QSO target selection method itself, and finally discuss areas of the
DESI footprint that have particularly high target density.

2.1 Data Release 9 of Legacy Imaging Surveys

To select targets for the DESI spectroscopic survey, the Legacy
Imaging Surveys3 program was conducted over more than 14,000

3 https://www.legacysurvey.org/dr9/
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Angular clustering properties of the DESI QSO TS 3

Table 1.Median values of the PSF depth and PSF size (cf. Section 3.1.1) for
the three imaging surveys that together constitute the DR9 Legacy Imaging
Surveys. DECaLS is split according to the DES region since the quality of
the photometry inside this region is significantly better.

PSF Depth [mag] PSF Size [arcsec]
𝑔 𝑟 𝑧 𝑔 𝑟 𝑧

DECaLS (non DES) 24.7 24.2 23.3 1.51 1.38 1.31
DES 25.2 25.0 23.8 1.42 1.24 1.14
BASS 24.2 23.7 1.89 1.67
MzLS 23.3 1.24

Figure 1. Distribution of the PSF Depth 𝑟 (cf. Section 3.1.1) in the DR9
Legacy Imaging surveys footprint. The 𝑟 -band is used to define themagnitude
limit for DESI QSO target selection. The solid black line shows the Galactic
plane. Three different imaging footprints are highlighted. The blue region is
the combination of BASS and MzLS (designated North in this paper). The
red region is the DES part of DECaLS (designated DES). The green region,
which excludes the red and the blue regions, is the non-DES part of DECaLS
(designated South).

deg2 of sky from the Northern hemisphere, in three optical bands :
𝑔 (470 nm), 𝑟 (623 nm) and 𝑧 (913 nm). The optical surveys were
complemented by two infrared bands from the custom “unWISE”
coadds (e.g. Meisner et al. 2017) of the all-sky data of theWide-field
Infrared Survey Explorer (WISE) satellite (Wright et al. 2010),
namely: 𝑊1 (3.4 `m) and 𝑊2 (4.6 `m). A full description of the
Legacy Imaging Surveys is available in Dey et al. (2019). The optical
bands were collected via three independent programs:

I The Beĳing-Arizona Sky Survey (BASS; Zou et al. 2019)
observed ∼5,100 deg2 of the North Galactic cap (NGC) in 𝑔 and 𝑟
using the 2.3-meter Bok telescope. The area surveyed corresponded
to approximately Dec. > 32.375 deg.

I The Mayall z-band Legacy Survey (MzLS; Silva et al. 2016)
provided 𝑧-band observations over the same footprint as BASS using
the 4-meter Mayall telescope. Because the median value of the PSF
size is significantly better than in the BASS data, the MzLS data are
critical for deblending sources and deriving source morphology.

I The Dark Energy Camera Legacy Survey (DECaLS) was
performed with DECam (the Dark Energy Camera; Flaugher et al.
2015) on the 4-meter Blanco telescope. DECaLS observed the bulk
of the Legacy Imaging Surveys footprint in 𝑔, 𝑟 and 𝑧. DECam
was initially built to conduct the Dark Energy Survey (DES) and
DECaLS expanded the DES area using publicly available DECam
time. However, DES imaging is significantly deeper than standard
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Figure 2. Magnitude distribution of the QSO targets in the 𝑟 , 𝑧, 𝑊 1 and
𝑊 2 bands. These distributions are shown for the three independent imaging
footprints in Figure 1. Blue is for the North, green for the South and red for
DES. Each grey histogram depicts the magnitude distribution for the parent
sample of sources (PSF sources with 𝑟 < 23) from which QSO targets are
selected.

DECaLS observations as it is covered by more exposures (more than
4 in each band).

The median values of the PSF depth and PSF size that quantify the
quality of the photometry, as explained in Section 3.1.1, are given
in Table 1 for each program. Figure 1 shows the PSF Depth 𝑟 in the
Legacy Imaging Surveys and highlights three distinct regions:

(i) In blue, the combination of BASS and MzLS covering the
northern part (∼5,100 deg2) of the DESI footprint (designated North
hereafter).
(ii) In red, the DES part of DECaLS covering ∼4,600 deg2

(designated DES).
(iii) In green, the non-DES part of DECaLS covering∼9,900 deg2

(designated South).

The region around the Large Magellanic Cloud (R.A.,Dec. in the
ranges [52◦, 100◦] and [−70◦,−50◦] respectively) is excluded from
our study as it is heavily contaminated by stars.

2.2 QSO target selection

The QSO selection used in this study is an updated version of the
preliminary selection described in Yèche et al. (2020). It follows the
same general principles but is now based upon Legacy Surveys DR9
instead of DR8. We briefly summarize below the key properties of
the selection.
QSOs are galaxies where a central supermassive black hole

accretes large amounts of relativistic gas. The accreting region
usually outshines the host galaxy by a large factor while being
too small to be resolved, making these distant objects appear to
us as point sources. The QSO selection therefore focuses solely on
non-extended sources (i.e. sources with point source morphology)
in the DR9 catalogue to avoid an almost 10-fold contamination by
galaxies. The QSO selection then uses colours to distinguish the

MNRAS 000, 1–21 (2021)



4 E. Chaussidon et al.

Figure 3. Density map of the DR9 QSO target selection. The solid black line indicates the Galactic plane and the blue dashed line indicates the plane of the
Sagittarius Stream.

QSOs from other point-sources (i.e. typically stars). We restrict the
selection to magnitudes in the range 16.5 < 𝑟 < 23.0 to reduce
the stellar contamination at the bright end and limit to sources with
reliable colours at the faint end. In addition, cuts on the WISE bands
(𝑊1 < 22.3 and𝑊2 < 22.3) are used to further limit contamination
by stars. We only consider sources that are not near bright stars,
galaxies or globular clusters, i.e. excluding objects with MASKBITS
1, 12 or 13 set in the Legacy Surveys catalogues4.
In the absence of 𝑢 band, we cannot apply a selection that relies

upon the UV excess of quasars (e.g. Myers et al. 2015). In DESI,
the main discrimination between quasars and stars is therefore
obtained from the fact that quasars are about two magnitudes
brighter in the near-infrared at all redshifts than stars of comparable
magnitudes and colours in the optical. The selection method uses a
Random Forest classification taking as input the 𝑟-band magnitude
and all colours from two-band combinations of 𝑔𝑟𝑧𝑊1𝑊2. The
selection then identifies QSO candidates as sources that have a
probability exceeding an 𝑟-dependent threshold. To take into account
the differences in the photometry, the probability thresholds are
tuned independently over the three imaging footprints in Figure 1
to produce a median density of 300 targets per deg2 in weakly stars
contaminated regions. For the North (resp. South), the median is
computed in box of R.A.,Dec. ∈ [120◦, 240◦] × [32.3◦, 40◦] (resp.
[120◦, 240◦] × [24◦, 32.2◦]), and over all of the DES footprint. Since
DES is less contaminated by stars than the other regions, the target
density is on average smaller than 300 targets per deg2. Themedian in
DES is 285 targets per deg2. The heat map of the resulting selection
is illustrated in Figure 3.
Figure 2 shows themagnitude distribution of theQSO targets in the

𝑟, 𝑧,𝑊1 and𝑊2 bands and demonstrates that these distributions are
similar for each of the imaging footprints highlighted in Figure 1. The
three magnitude limits imposed on the selection are clearly visible
on the corresponding histograms. Note that the 𝑟 < 23.0 limit also
affects the 𝑧-band distribution, producing a sharp drop-off at the faint
end for objects in the top-right panel. The two Gaussian distributions

4 https://www.legacysurvey.org/dr9/bitmasks/

for 𝑊1 and 𝑊2 (bottom panels) demonstrate that the selection of
a QSO target is not limited by the depth of the optical imaging
(DECaLS or BASS/MzLS) but is sensitive to the determination of
the fluxes in the WISE imaging.
To help contextualize which bands guide the DESI QSO target

selection, it is worth noting that the colours that carry the largest
weight in the selection are first 𝑧 −𝑊2 and 𝑧 −𝑊1 and then 𝑔 − 𝑟 ,
𝑊1 −𝑊2 and 𝑔 − 𝑧.

2.3 Overdensity and contamination

Figure 3 exhibits several regions with higher density of QSO targets
than average:

I The overdensity near the Galactic plane: the stellar density is
higher near the Galactic plane (the black line in Figure 3), which
increases the stellar contamination in the QSO target selection.
This effect is not obvious in the region bounded by R.A.,Dec. ∈
[120◦, 140◦] × [−10◦, 15◦], because the lower 𝑊1/𝑊2 PSF depth
counters the excess of targets caused by the higher stellar density.

I The overdensity in the Sagittarius Stream (see also
Section 3.1.2): the stellar population of the Sagittarius Stream (which
tracks the blue line in Figure 3) is different from the Galactic stellar
population. Most of the stars in the stream are bluer than Galactic
stars and tend to have similar colours to the bulk of QSOs. Since there
is little available data at magnitudes as faint as the stream, these stars
cannot be efficiently rejected and end up contaminating our selected
sample of QSO candidates.

I The overdensity in the North: the DESI QSO target density
increases with declination. This could be due to the poorer PSF
depth in the 𝑧 band in this region. This is likely caused by imaging
depth decreasing at higher declination due to increasing airmass that
was not compensated for by additional exposure time in the MzLS
observing strategy. Since the 𝑧 band plays a crucial role in the QSO
selection, the discriminating power between stars and DESI QSO
targets is reduced at higher declinations.

MNRAS 000, 1–21 (2021)
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Angular clustering properties of the DESI QSO TS 5

I The DES footprint is the least contaminated region, as expected
from the high quality of the photometry in this region. Note that DES
region is even so contaminated in the region of the crossing of the
Sagittarius Stream.

3 METHODOLOGY

All the density and feature maps discussed in this section will be
pixelized using HEALPix5 (Gorski et al. 2005) with 𝑁side = 256. All
HEALPix operations are done using the healpy6 package (Zonca
et al. 2019). The choice of 𝑁side (i.e. the size of the pixelization) is
justified in 5.2.3.

3.1 Features

The aim of the systematic mitigation is to correct for spurious
density fluctuations in the target selection without suppressing the
cosmological signal contained in the targets’ clustering. We restrict
our study to “features” directly linked to the observational properties
such as imaging quality and physical properties that could altered
the observations as the stellar density. We are careful to avoid
incorporating parameters that relate to specific positions in the sky.
For instance, we do not use the Modified Julian Date (MJD) as a
feature (as in, e.g. , Rezaie et al. 2020), since the date of an observation
directly translates into the position observed on that date.

3.1.1 Observational Features from DR9

We use ten observational features to describe the systematic effects
in the DESI QSO target selection. Whether our features are sufficient
to describe spurious density fluctuations will be verified after the
mitigation procedure by checking the isotropy of the corrected target
selectionmap (see Section 4.3). The impact of mitigating systematics
on the observational features themselves will be presented in
Section 4.1.
The feature maps are generated using the script
bin/make_imaging_weight_map from the desitarget
package7. The maps, which we describe below, are extracted
from the random catalogues provided as part of DR9 of the Legacy
Imaging Surveys8, with the exception of the stellar density map:

I Stellar density (Stardens) [deg−2]: Density of point sources
from Gaia DR2 (Gaia Collaboration et al. 2018) in the magnitude
range: 12 < PHOT_G_MEAN_MAG < 17.

I E(B-V) [mag]: Galactic extinction from Schlegel et al. (1998)
as modified by Schlafly & Finkbeiner (2011).

I PSF Depth [1/nanomaggies2] in 𝑟, 𝑔, 𝑧, 𝑊1, 𝑊2: PSF depth
is the 5-sigma point-source magnitude depth9. The dependence of
target selection on PSF depth is governed by two competing effects.
On the one hand, the number of resolved objects increases with PSF
depth. On the other hand, the determination of the flux is better

5 http://healpix.sf.net
6 https://healpy.readthedocs.io/en/latest/
7 https://github.com/desihub/desitarget
8 https://www.legacysurvey.org/dr9/files
9 For a 5𝜎 point source detection limit in band 𝑥, 5/

√
𝑥 gives the PSF Depth

as flux in nanomaggies and −2.5
(
log10 (5/

√
𝑥) − 9

)
gives the corresponding

magnitude (see https://www.legacysurvey.org/dr9/catalogs/).

for brighter objects, which means that contaminants are more easily
rejected, resulting in a reduced number of targets. In this study, the
𝑧 depth does not limit the target selection (cf. Section 2.2): it only
affects the measurement of the 𝑧 flux. Therefore, the target density
decreases with increased 𝑧 PSF Depth. In contrast, fluxes in𝑊1 and
𝑊2 are obtained with forced-photometry. This allows fluxes to be
measured for fainter objects that are detected at marginal significance
in the WISE imaging (see Dey et al. 2019). Because such fluxes are
noisy, the resulting colours scatter in regions of insufficient depth.
Corresponding objects are rejected by the target selection not because
they are not quasars but because their colours are not in the region
populated by QSOs. Conversely, when the PSF Depth in𝑊1 or𝑊2 is
higher, the colours are more precise, and a greater number of targets
are selected as genuine QSOs.

I PSF Size [arcsec] in 𝑟, 𝑔, 𝑧: Inverse-noise-weighted average
of the full width at half maximum of the point spread function,
also called the delivered image quality. A small value of PSF size
corresponds to a good image resolution, which leads to more precise
fluxes and improved target selection.

Figure 4 shows 5 of the 10 observational feature maps from DR9.
It is important to note that these 10 features are correlated, and the
level of correlation depends on the imaging footprint (North, South,
DES). Stellar density and E(B-V) are positively correlated across the
entire sky but E(B-V) contains additional information. This can be
seen by comparing the top two left panels in Figure 4 in the region
near (R.A.,Dec.) = (0◦, 15◦). The 𝑊1 and 𝑊2 PSF Depths are
highly correlated in all of the three imaging footprints of interest.
However, we include both as our analysis will show that the 𝑊2
PSF Depth is particularly heavily weighted by the Random Forest in
the North, indicating that this feature has extra information which is
not contained in the 𝑊1 PSF Depth. For the optical observational
features, two cases are of particular note. In the North, the 𝑔 and 𝑟
bands were collected by the same camera and so their observational
features are positively correlated, but these features are not correlated
with the 𝑧-band, which was independently obtained by MzLS. In the
South and in DES, the three bands were collected with the same
camera and therefore are all positively correlated. Finally, the𝑊1/𝑊2
PSF Depths are more correlated with the other features in the DES
region, as compared to the North and the South, since all the feature
maps are more uniform in the DES footprint.

3.1.2 Sagittarius Stream Model

The target density map (Figure 3) shows a significant excess in the
Sagittarius Stream region. The Sagittarius galaxy is one of the closest
galaxies orbiting around the Milky Way. The gravitational forces
create two tidal arms called streams wrapping the Milky Way with
the same orbit (Newberg et al. 2002; Majewski et al. 2003).
The Sagittarius contamination (see the blue dashed line in

Figure 3) occurs mainly in the South footprint but also touches the
DES footprint. However, none of the feature maps discussed so far
contain a pattern matching this contamination. Thus, an additional
feature is required in our analysis. To model this feature, we use the
Sagittarius Stream catalogue derived in Antoja et al. (2020). This
catalogue is built from the Gaia DR2 catalogue, identifying stars
in the Stream via their proper motions. Matching the Antoja et al.
catalogue to the SDSS DR16 QSO catalogue (Lyke et al. 2020) on
position, we find that some of the stars are actually known QSOs.
To generate the Stream feature shown in Figure 4 (top right panel),
we remove the known QSOs and apply an 𝑟 > 18 cut to only select

MNRAS 000, 1–21 (2021)

http://healpix.sf.net
https://healpy.readthedocs.io/en/latest/
https://github.com/desihub/desitarget
https://www.legacysurvey.org/dr9/files
https://www.legacysurvey.org/dr9/catalogs/


6 E. Chaussidon et al.

Figure 4. Maps of the most important features used in our systematics mitigation. The difference between the three imaging footprints highlighted in Figure 1
is clearly visible in the PSF Depth z and PSF Size g feature maps.
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Figure 5. Density distribution of the PSF Size 𝑧 and PSF Depth 𝑟 for the
three imaging footprints shown in Figure 1. These two histograms show that
a joint analysis on the three footprints is difficult since some features share
the same support and others do not.

faint stars. A fainter cut would better match the QSO selection, but
the Antoja et al. catalogue does not contain a sufficient number of
objects faint in 𝑟-mag to apply a fainter cut.

3.1.3 Three imaging footprints

The three footprints of the Legacy Imaging Surveys (North, South,
DES; as defined in Section 2.1), exhibit distinct imaging properties.
As shown in Figure 5, while the PSF size in the 𝑧 band is similar in
the North and South, the 𝑟-band depth distributions are very different
in the North, South and DES footprints. For instance, a PSF depth
of 24.7 in 𝑟 leads to a small overall target overdensity in DES (cf.
Figure 9) while it corresponds to an underdensity in the South (cf.
Figure 8). The imaging properties in the South footprint are similar in
the North (NGC) and South (SGC) Galactic Cap. There is therefore
no reason to split the South footprint in two.
In addition, the selection threshold in the QSO target selection

is set independently in each of these three footprints. We therefore
model systematic effects in the three footprints independently.

3.2 Systematic Model

Wewill identify each position on the skywith the corresponding pixel
number 𝑖 from a HEALPix pixelization. For each imaging footprint,
we only consider pixels that contain at least one object from the
random catalogues. The density of selected targets inside a pixel 𝑖 is
noted 𝑁𝑖 . It is derived from the observational target density as

𝑁obs𝑖 = 𝑓𝑖 × 𝑁𝑖 , (1)

where 𝑓𝑖 is the observed fractional area of pixel 𝑖 calculated as the
number of random targets inside the pixel divided by the nominal
density of randoms, and 𝑁𝑖 is the true number of quasars in the pixel
in the absence of any systematic effects. 𝑁𝑖 is related to the mean
target density 𝑁0 by

𝑁𝑖 = 𝑁0 (1 + 𝛿𝑖) , (2)

where 𝛿𝑖 is the overdensity that contains the cosmological
information.

𝑁0 is unknown and has to be estimated from the target selection
as the mean of the pixel density over the footprint weighted by
𝑓 : 𝑁0 = 〈𝑁𝑖〉𝑖 = 〈 𝑓 −1

𝑖
× 𝑁obs

𝑖
〉𝑖 . Since the target selection is

contaminated by stars, we choose different regions known to be
less contaminated to perform this estimation in the three footprints.
We use the same region used to tune the probability selection
during the quasar target selection, which was a box of R.A.,Dec. ∈
[120◦, 240◦] × [32.2◦, 40◦] for the North footprint, a box of
R.A.,Dec. ∈ [120◦, 240◦] × [24◦, 32.3◦] for the South footprint
and the entire footprint for DES. Note that even these regions are
contaminated by stars, such that the actual QSO target density is
smaller.
Systematic effects will be taken into account using an additional

term 𝐹𝑖 such that

𝑁𝑖 = 𝑁0 (1 + 𝛿𝑖) × 𝐹𝑖 . (3)

The aim of the imaging systematics mitigation is to describe 𝐹𝑖 as
a function of a set of observational features. These features must not
depend on the sky position, to avoid suppressing the cosmological
signal. We assume that the imaging systematics can be completely
explained by our set of observational features. This assumption can
be validated by the uniformity of the target selection density map
after mitigation (cf. Section 4.3).
The features in the pixel 𝑖 are denoted 𝑠𝑖 which is an 𝑛-dimensional

vector where 𝑛 is the number of features (𝑛 = 11 in our case: 10
observational features from Section 3.1.1 and the Sagittarius Stream
feature from Section 3.1.2). 𝐹 should depend only on these features
and not on the pixel number. We thus rewrite 𝐹𝑖 as 𝐹 (𝑠𝑖), and 𝑁 now
also depends on the observational features:

𝑁𝑖 (𝑠𝑖) = 𝑁0 (1 + 𝛿𝑖) × 𝐹 (𝑠𝑖). (4)

We denote 𝐴(𝑆) to be the subset of pixel numbers which belong
to the same region 𝑆 in the space of the feature maps. Averaging over
many pixels will suppress the density contrast: 〈𝛿𝑖〉𝑖∈𝐴(𝑆) = 0. Thus,
if 𝑆 is sufficiently large, the contamination signal is given by

𝐹 (𝑆) =
〈𝑁𝑖 (𝑆)〉𝑖∈𝐴(𝑆)

𝑁0
. (5)

This averaging is controlled by hyper parameters of the different
regressionmethods. For instance in the particular case of the Random
Forest (see Section 3.3.3), the averaging is controlled by theminimum
number of objects in a leaf.
The systematic correction will be modelled by a weight to apply

in each pixel, defined as

𝑤
sys
𝑖

=
1

𝐹 (𝑠𝑖)
. (6)

The correction is only efficient on scales at least as large as the typical
size of the pixel at 𝑁side = 256, i.e. about \ = 0.22 deg. Hence, the
correction is constant within each pixel.
The regression is performed using only reliable pixels, which we

choose to be pixels with 𝑓𝑖 > 0.9, and is then applied to all pixels.
This criterion removes pixels that contain too few targets,which could
bias the regression. The pixels that are excluded represent only about
3.8% of the DR9 footprint, lying mainly at the edges of the footprint
and in the region south of Dec. < −10◦ in the NGC. For studies with
a smaller pixel size, e.g. 𝑁side = 512, the nominal density of the
randoms would have to be increased to limit the Poisson noise when
determining 𝑓𝑖 .

3.3 Regression Methods

We test different methods, utilizing the same feature set, to perform
the regression presented above. The initial correction, obtained
with a linear regression, turns out to be insufficient (as illustrated

MNRAS 000, 1–21 (2021)



8 E. Chaussidon et al.

in Figure 7 – 9), necessitating non-linear regression approaches.
We therefore test two classical machine-learning methods based on
scikit-learn (Pedregosa et al. 2011), namely, the Random Forest
and Neural Network methods.

3.3.1 Linear

The contamination function 𝐹 is described as a linear function of the
observational features: 𝐹 (𝑠𝑖) = 𝑎0 +

∑11
𝑗=1 𝑎 𝑗 𝑠𝑖 𝑗 . The coefficients 𝑎 𝑗

will be estimatedwith a least squareminimization using the iminuit
package (Dembinski et al. 2020). The 𝜒2 used for the minimization
is defined as

𝜒2 =
∑︁
𝑖

1
𝑁𝑖

(
𝐹 (𝑠𝑖) −

𝑁𝑖

𝑁0

)2
+ 𝑐reg × (〈𝐹 (𝑠𝑖)〉𝑖 − 1)2 , (7)

where
√
𝑁𝑖 is an estimate of the error for the object count inside a

pixel and 𝑐reg is a penalty term to regularize the regression. Since the
distribution of 𝑁𝑖/𝑁0 is not symmetric around 1, the higher number
of pixels with 𝑁𝑖/𝑁0 < 1 forces the contamination function to not
be centered around 1. We therefore use a penalty term to flatten
the density map around the chosen mean density. The value of the
penalty term depends on the number of pixels used to build 𝜒2. In
our configuration, we use 𝑐reg = 2𝑒6 and we check that as long as
𝑐reg is sufficiently large, its value does not change the result of the
regression.

3.3.2 K-fold training

Machine learning methods tend to overfit the data and have to be
used carefully. Since we cannot create a training sample independent
of the data set, we have to use a K-fold training to avoid over-training.
A K-fold training is a method that splits the data into K folds. For

each fold, the method is trained with the remaining K-1 folds then the
regression is performed on the isolated fold. This method guarantees
that no data used for the regression is used for the training. A small
value of K ensures no overfitting but the mitigation will be inefficient
since the training set would not contain enough information. A
high value of K ensures an efficient mitigation but is more prone
to overfitting. In our case, we choose to work with 6 folds in the
North and the DES footprint and with 12 folds in the South. Each
fold has an area of about 830 deg2.
The locations of the folds have to be carefully chosen, since the

contamination has distinct causes. For example, if all the borders of
the Galactic plane in the South footprint were to be put in the same
fold, the machine learning algorithm would not be able to explain
related contamination with the K-1 remaining folds, since all the
relevant information would have been removed from the training set.
Therefore, we construct folds from small patches of the sky to spread
the information across all folds. Such folds can be constructed easily
in the HEALPix “nested” scheme using the scikit-learn function
GroupKFold. The size of the patch matters, as patches that are too
small lead to overfitting since all the information is present in all the
folds. We use patches (groups in scikit-learn language) of 1000
pixels, which corresponds to an area of ∼52 deg2 for each patch.
The patch distribution is shown in Figure 6, which demonstrates

that no particular region is described by a single colour. We checked
that the estimated weight remains stable if we slightly vary the
number of folds or the size of the patch, and used mocks (cf.
Appendix A) to ensure that no overfitting occurs.

Figure 6. Distribution of folds across the three imaging footprints. There are
6 folds in the North (blue region), 12 in the South (green region) and 6 in
DES (red region). Folds were split into small patches so the specific effects
that contaminate target selection are always spread across several folds. The
area of each patch is ∼52 deg2.

3.3.3 Random Forest (RF)

The first machine learning method used in our regression analysis is
the well-known Random Forest algorithm. It is easy to parameterise
and gives a helpful classification of the features as a function of their
importance during the regression.
For the regression, we use the same set of hyper-parameters for

each footprint and we do not normalise the data set. We choose
a forest of 200 trees and we fix the minimum number of samples
contained inside a leaf at 20. This means the average to estimate
𝐹 (𝑆) (cf. Eq. (5)) is computed with at least 20 pixels. The mean
number of pixels in each leaf is 80. We checked that the minimum
sample size in a leaf has no strong impact on the regression during
the K-fold training.

3.3.4 Neural Network (NN)

We also use the Multi-layer Perceptron (MLP) algorithm, a fully
connected type ofNeuralNetwork. Finding the best hyper-parameters
for a neural network is difficult. We base our choice on the result of a
grid search performed on simulated QSO samples (i.e. mocks). The
mocks used for this study are described in Appendix A.
For the regression, we use the same set of hyper-parameters for

each footprint, butwhen dedicatedmocks forDESI become available,
different hyper-parameterisations will be possible. We use an MLP
with 2 hidden layers, comprising 10 neurons for the first layer and 8
for the second (i.e. a (10, 8) formalism). The data are normalised on
each fold dividing each feature by the standard deviation estimated in
the considered fold. We hyper-parameterise the MLP with a sigmoid
activation function, a batch size of 1000 and a tolerance of 1e-5.
We use the Adam solver (Kingma & Ba 2015) to perform the
minimization during the training.

4 SYSTEMATICS MITIGATION

We apply the method presented in Section 3 to correct for
observational systematics in the DESI QSO target selection. We first
describe the origin of these systematics and explain the role of the
most important features. We then present the target density after it
has been corrected by our systematic mitigation method.
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4.1 Systematic Plots

To illustrate our method, we plot the relative QSO target density as
a function of each observational feature. We will refer to these plots
as “systematic plots”. In our systematic plots, we center the relative
density around 0. The goal of the correction is to obtain a relative
density that is independent of the value of the observational feature.
We produce systematic plots for the North (see Figure 7), the South
(see Figure 8) and for DES (see Figure 9).
Below, we give a brief description of the systematic plots in each

footprint:

I North (Figure 7): 𝑧 and 𝑊1/𝑊2 are crucial for the DESI QSO
target selection. The plot of the relative density as a function of the
PSF Depth 𝑧 or the PSF Size 𝑧 shows that when the 𝑧 observational
feature values are for bad observational conditions (small PSF Depth
and high PSF Size), the discriminating power of the target selection
algorithm is poorer and the relative density higher. In addition to the
importance of the 𝑧 band for the target selection, the 𝑧 band benefits
from better image quality (smaller PSF Size and higher PSF Depth)
than 𝑔 or 𝑟 . The fluctuation of the relative density as a function of
the 𝑔/𝑟 observational features are therefore weaker but they follow
the same general pattern. As explained in Section 3.1.1, the impact
of the 𝑊1/𝑊2 PSF Depths differs from the 𝑔/𝑟/𝑧 depths since the
depth of the WISE colours are crucial for selecting QSOs. Hence,
the number of targets increases with𝑊1/𝑊2 PSF Depth. In addition,
the 𝑧 PSF Depth is smaller in regions where the𝑊1/𝑊2 PSF Depth
is larger, as shown in the bottom panels of Figure 4. The combined
effect increases the target density in this region.

I South (Figure 8): the plots as a function of the 𝑧 and 𝑊1/𝑊2
PSF depths at high values exhibit similar behaviour as in the North.
However, the effect is less significant since it is mainly visible in the
R.A.,Dec. ∈ [210◦, 270◦] × [15◦, 30◦] region. In comparison to the
North, the plots as a function of the 𝑔/𝑟/𝑧 features all show similar
trends to each other since these bands were collected with the same
camera. The 𝑧-band dependence is the strongest, as expected since it
is one of themost important bands for the QSO selection. The plots as
a function of the 𝑊1/𝑊2 PSF Depth exhibit seemingly unexpected
behaviour at low values of the PSF Depth, where the relative density
is almost flat. As explained in Section 2.3, the excess of stars near
the Galactic plane or the Sagittarius Stream counteracts any expected
decrease of targets due to lower values of the𝑊1/𝑊2 PSFDepth (cf.,
in particular, the R.A.,Dec. ∈ [120◦, 150◦] × [−10◦, 15◦] region).
The plots in the top panel of Figure 8 (stellar density, dust and
Sagittarius Stream) indicate a higher relative density due to the
presence of stars. These features explain the stellar contamination
near the Galactic plane and inside the Sagittarius Stream. Some stars
have similar colours to QSOs and are therefore selected as QSO
targets. More stars thus enter the QSO selection in regions of higher
stellar density.

I DES (Figure 9): The fluctuations of the relative density aremuch
lower than in the two other footprints. The observational features for
𝑔/𝑟/𝑧, and especially for the 𝑧 band, are better in DES than in both
the South and the North (cf. the median value of these features
in Table 1 and the distribution of the PSF Depth Size 𝑧 and the
PSF Depth 𝑟 in Figure 5). This results in excellent discrimination
of QSOs from stars in the target selection process. So, DES is the
least contaminated region and exhibits smaller fluctuations in relative
density as a function of the observational features.

In Figures 7 – 9, we also plot the three different regressionmethods
we apply for each footprint: RF in green, NN in yellow and Linear in

black. These plots show that the mitigation works well and correctly
flattens each feature. The difference in efficiency between the Linear
and the non-linear methods is particularly obvious for the North and
South footprints, where the contamination is stronger. For example,
the linear correction fails when the relative density as a function
of the PSF depth 𝑧 is large, as shown in Figure 7. This illustrates
the non-linearity of the contamination and justifies the use of the
machine learning methods. Both the RF and the NN perform well in
correcting the non-linear systematics, although small differences can
be found between these two methods. A more detailed comparison
between the RF and NN will be done in Section 5.2.2.

4.2 Importance Features

The Random Forest algorithm includes a specific tool called
importance features. Importance is a measure of which features
most affect the regression. The importance features metric for the
RF implemented in scikit-learn is based on the mean decrease
in impurity (MDI), which is also called the Gini importance. The
metric corresponds to averaging (over all the trees of the forest) the
impurity reduction of each node weighted by the ratio of the training
set passing through each node. The permutation importance was
also tested and yields similar result in our data set than the Gini
importance.
A feature with a higher importance value is more discriminating

than a feature with a lower importance value, so the importance
values are useful to identify the observational features that lead to
contamination, to first order. It is worth noting that a feature with a
low importance value is not necessarily useless and can still improve
the training compared to a case where we remove it. For instance, the
Sagittarius Stream feature is necessary to correct the over-density in
the Sagittarius region but it is not a high-value importance feature
since it is useful only for a small number of pixels that vary in
a manner that is quite different from other pixels in the footprint.
This well-known bias can be circumvented using the permutation
importance, where the Sagittarius Stream feature is ranked as one of
the most important in the South.
In Figure 10, we plot the importance for each feature. We only

plot the six most important features for each footprint, since the
other features have about the same value as the sixth most important
feature. We recover the expected most important features described
in Section 4.1:

I North: The importance feature analysis makes it clear that
the PSF Depth 𝑧 and the PSF Depth 𝑊2 play a key role in the
contamination of the target selection in the North.

I South: The South region is strongly contaminated by stars
from the Galactic plane as highlighted by the importance of the
stardens and EBV features. The Sagittarius Stream feature has a low
importance even if it is crucial to correct the Sagittarius Stream region
(as explained above). The PSF Depth 𝑧 plays an important role in
this overdensity, as already noted. Surprisingly, the 𝑊2 PSF Depth
does not appear as an importance feature, even though it explains the
under-density near the anti-Galactic pole.

I DES: No clear importance feature emerges, as expected given
that the DES region is the least contaminated, most uniform, region.
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Figure 7. Relative QSO target density in the North footprint as a function of each observational feature. The relative QSO target density is a mean value after
rejecting outliers i.e. pixels with a coverage lower than 90%. The blue lines depict the raw DESI QSO target selection. The green (resp. yellow / black) lines
depict the QSO target selection after correcting for systematic effects using the RF (resp. NN / Linear) regression. The histogram represents the fraction of
objects in each bin for each observational feature and the error bars are the estimated standard deviation of the normalized target density in each bin. The three
methods all successfully flatten the relative QSO target density as a function of each observational feature. However, the linear method is less efficient than the
other two methods.

4.3 Quasar target selection after correction

We construct a pixel weight map to correct the over or under densities
of the target selection. Figure 11 shows the weight map obtained with
the RF regression. We then multiply the density of the DESI QSO
target selection by the weight on a pixel-by-pixel basis. Figure 12
shows the corrected QSO selection. The map is almost completely
uniform at this resolution. The largest overdensities vanish after
mitigation, which confirms that the set of observational features that
we considered suffices to explain most of the observed large-scale
target density variations.
The density distribution of the QSO target selection is shown in

Figure 13. The full histograms are before applying the systematic
mitigation and the lines are for after. The systematic mitigation acts
on the width of the histograms removing the over or under-density
pixels. This effect is smaller in DES than in the North and in the
South which confirms the visual inspection of the Figure 3 and 12.
The difference in mean density between DES and the two other
photometric footprints was mentioned in Section 2.2

5 ANGULAR CORRELATION AND CLUSTERING

Our systematic mitigation method is able to correct fluctuations in
density as a function of our observational features. In this section,
we measure the impact of the systematic mitigation on the angular
correlation function.

5.1 2-point Correlation function

5.1.1 Definition

The 3-dimensional 2-point correlation function b (r) describes the
excess probability to find a pair of objects inside two infinitesimal
volumes 𝑑𝑉1 and 𝑑𝑉2 separated by r:

𝑑𝑃(r) = �̄�2 (1 + b (r)) 𝑑𝑉1𝑑𝑉2, (8)

where �̄� is the mean density. It is related to the contrast density by
b (r) = 〈𝛿(x)𝛿(x + r)〉x. The cosmological principle ensures that b
depends only on 𝑟 .
The same definition can be extended to the 2-dimensional case i.e.
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Figure 8. Same as Figure 7 but for the South imaging footprint.

the angular correlation where volumes are replaced by solid angles
and distances by angular distances:

𝑑𝑃(\) = 𝑛20 (1 + 𝜔(\))𝑑Ω1𝑑Ω2, (9)

where 𝑛0 is the mean angular density.

5.1.2 2-point correlation function estimator

We estimate the angular correlation function 𝑤(\) using the
Landy-Szalay estimator derived in Landy & Szalay (1993):

�̂�(\) = 𝑎𝐷𝐷 − 𝑏𝐷𝑅 + 𝑅𝑅

𝑅𝑅
, (10)

where 𝐷𝐷, 𝐷𝑅, 𝑅𝑅 refer to the weighted pair counts 𝑑𝑎𝑡𝑎 − 𝑑𝑎𝑡𝑎,
𝑑𝑎𝑡𝑎 − 𝑟𝑎𝑛𝑑𝑜𝑚 and 𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑟𝑎𝑛𝑑𝑜𝑚 with an angular separation
\. The normalization terms are

𝑎 =

∑
𝑖≠ 𝑗

𝑤𝑅
𝑖
𝑤𝑅

𝑗∑
𝑖≠ 𝑗

𝑤𝐷
𝑖
𝑤𝐷

𝑗

and 𝑏 =

∑
𝑖≠ 𝑗

𝑤𝑅
𝑖
𝑤𝑅

𝑗∑
𝑖
𝑤𝐷
𝑖

∑
𝑗
𝑤𝑅

𝑗

, (11)

where 𝑤𝐷
𝑖
(resp. 𝑤𝑅

𝑖
) is the weight for the data (resp. random).

The Landy-Szalay (LS) estimator is known to be unbiased and to
have minimal variance in the limit of an infinitely large random

catalogue with a volume greater than the scales considered, and for
weak correlations (𝑤(\) << 1).
We use the package CUTE10 (Alonso 2012) to perform the

estimation. CUTE is a fast implementation written in C and using
OpenMP and MPI.

5.2 Angular correlation of the DR9 quasar target selection

The systematic mitigation method is checked to avoid over-fitting.
This is done in Appendix A by applying the mitigation method to
contaminated mocks. Then, we compute the angular correlation of
the DR9 quasar target selection corrected by the systematic weights
that we calculated in Section 4.

5.2.1 Comparison with SDSS DR16

Wecalculate the angular correlation function of the raw and corrected
(RF method) QSO target densities for the three different imaging
footprints. For comparison, we also calculate the angular correlation
function of SDSS DR16 quasars. Note that the correlation with

10 https://github.com/damonge/CUTE
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Figure 9. Same as Figure 7 but for the DES imaging footprint.

SDSS quasars cannot be computed at angles smaller than 62 arsec
due to fiber collisions (e.g. Dawson et al. 2016). For SDSS DR16
quasars, we use the systematic weights provided in Rezaie et al.
(2021) based on a neural network treatment (see Ross et al. 2020,
for the standard treatment). The results are shown in Figure 14. Note
that the error bars shown in Figure 14 are the standard deviation of
the LS estimator (Landy & Szalay 1993) except for the correlation
function of SDSS quasars, for which the errors are estimated using
the standard deviation across 100 EZ-mocks from Zhao et al. (2021).
After mitigating for systematics, the angular correlation in the

North and in the DES region (again, see Figure 1 for the definition
of these regions) are comparable with the correlation computed with
the SDSS DR16 sample. The SDSS DR16 sample has been carefully
corrected for systematic effects (as derived in previous work), and so
is expected to be largely free from any contamination. In the South,
even after mitigating for systematics, we do not recover the same
level of correlation as for the SDSS DR16 sample. Reasons for this
difference are discussed further in Appendix B.
It is worth noting that the correction is larger at larger angles, i.e.

the impact of systematic effects is higher on large scales. Therefore,
mitigation of photometric systematics is critical for studies that
require information from large scales, such as studies of primordial
non-Gaussianity.

5.2.2 Regression method comparison

Figure 15 shows the difference between the three methods introduced
in Section 4 on the North, on the South and on DES. As expected,
the linear method is less effective than the other two in the
highly contaminated North (top panel), highlighting the necessity
of our more complex machine-learning-based regressions. The two
machine-learning-based methods give similar results in the North.
None of the three methods properly correct for the contamination in
the South (middle panel); this is discussed further in Appendix B.
The information in Figure 9 suggests that all three methods

introduced in Section 4 are quite effective at mitigating systematics in
theDES region.However, the bottompanel of Figure 15 demonstrates
that the linear method and the NNmethod less effectively correct the
angular correlation function in the DES region as compared to the
RF method. The difference between the linear and the RF methods
comes from the non-linear part of the contamination in this region.
The systematics plots show that in the highly contaminated regions,
the linear method corrects less than the RF.
The difference between the NN and the RF is more subtle since the

training information, i.e. the area and the chosen folds in that area, is
similar. The explanation comes from the difference between the two
algorithms. The NN method is less efficient to correct small, highly
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Figure 10. Feature importance calculated using the Random Forest method.
Only the 6 most important features are plotted for each footprint. Each dot
represents the feature importance value found with one decision tree. The
box plot is assembled across all the trees of the forest. The values of the
importance’s cannot be compared between the three regions.

Figure 11. Distribution of the systematic correction weights (weight - 1)
across the Legacy Imaging Surveys footprint.

contaminated regions. The RF creates boxes in feature space and
separates themost contaminated regions from the rest. The estimation
of the correction weight is then possible everywhere.
To solve this problem, a regularization term can be introduced

to force the NN to also consider small regions. The choice of the
regularization value strongly depends on the size of the small regions

Figure 12. Density map of the QSO target selection after mitigating
systematics using the RFmethod. The densitymap is quasi-uniform compared
to the initial density map shown in Figure 3. The solid black line depicts the
Galactic plane and the blue dashed line depicts the plane of the Sagittarius
Stream.
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Figure 13. Density distribution of the QSO target selection for non corrected
(full histogram) and corrected (line) cases in the three photometric footprints.
After the correction, the width of the histogram is smaller in each photometric
footprint. As mentioned in Section 2.2, the density in DES is lower than in
the North or in the South.

and on their location in feature space. Without realistic mocks for the
DESI QSO sample, this additional hyper-parameter cannot be easily
optimized. The training time for the NN also varies considerably
as a function of the value of the tolerance chosen to sample the
NN hyper-parameters, whereas, with our parameterisation, the RF
method is quicker to train. Since the RF correction already obtains
good results in DES, we do not need to improve the current NN
method. We leave fine optimizing of the NN method for future work
when realistic DESI QSO mocks become available.

5.2.3 Resolution of the correction

The size of the pixels used when determining weights to mitigate
systematics is critical, because it gives the scale at which the
correction is most effective. We perform all the analysis above with
𝑁side = 256 corresponding to a characteristic angle of ∼0.22 deg i.e.
12.6 ℎ−1Mpc at 𝑧 ∼ 1.7 (Planck 2015; Ade et al. 2016). This pixel
size is chosen such that there are sufficient targets inside each pixel
to learn about contamination without introducing significant Poisson
noise in the mitigation.
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Figure 14. The angular 2-point correlation function of the DR9 QSO targets.
The dashed lines represent the nominal DESI QSO target selection. The solid
lines are for the corrected QSO target selection with RF method. The black
line is the angular correlation function from SDSS DR16 (which cannot
be calculated at angles smaller than 62 arcsec, due to fiber collisions). The
grey region despicts the error for SDSS DR16 estimated as the standard
deviation across 100 EZ-mocks. The black dotted line corresponds to the
typical resolution of our regression analyses i.e. the pixel size at 𝑁side = 256.
The solid green line is discussed in detail in Appendix B.

For the DESI QSO target selection, a pixel with a size of 𝑁side =
256 typically contains a median of ∼16 QSO targets. At a size of
𝑁side = 512, the number of targets decreases to ∼4. With such a
small number of targets, the per-pixel density is too noisy for machine
learning methods to relate fluctuations in density to observational
features. For the same reason, we needed to increase the pixel-size
used in our analysis to 𝑁side = 128 when studying eBOSS mocks,
since the density of the eBOSS mocks was lower than the DESI QSO
target selection density (see Appendix A).
Other DESI targets, such as ELGs and LRGs, will have a higher

density and it will be possible to decrease the size of the pixels used
to estimate correction weights by a factor of 2–4.

5.2.4 Systematic checks: restrictive QSO target selection

Since theDESIQSO targets are selectedwith anRF classification, the
stellar contamination depends on the value of the selection threshold.
This dependence propagates into the angular correlation, since we
broadly expect a lower 𝑟0 for a less contaminated sample.
Figure 16 shows the angular correlations in the North for DESI

QSO targets with different values of the selection threshold (dashed
lines) and of the corresponding corrected samples (full lines). The
systematic weights are generated with the RF method for each target
selection. The nominal probability in the North footprint used in the
QSO selection depends on 𝑟 and is given by 𝑝(𝑟) = 0.88 − 0.04 ×
tanh(𝑟 − 20.5). This threshold is lower than for the other regions.
When the threshold increases, the selection is less contaminated
since the RF will select a higher fraction of bonafide QSOs.
The amplitude of the angular correlation in Figure 16 decreases as

the probability threshold is increased, suggesting that the excess of
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Figure 15. The angular correlation function for the three different methods
introduced in Section 4 for the three regions highlighted in Figure 1.
The Linear method is less effective than the two machine-learning-based
methods, especially in the most strongly contaminated region (the North).
The correction in the South does not improve properly the correlation for
any of the three methods. The RF and NN methods produce similar results
in the North but slightly different results in DES. This is because the RF is
more robust to sampling high levels of contamination from a small number
of pixels.

correlation is mostly due to stellar contamination. This also confirms
that our method to mitigate the systematics does not over-fit the data
since when the contamination is removed, the correlation converges
to the same level as the SDSS QSO correlation (cf. Figure 14).
Finally, we note that the excess correlation in the South is not

reduced when the probability threshold of the RF selection is
increased. This is because many stars in the Sagittarius Stream have
selection features that resemble QSOs. These stars are assigned near
unit probability by the DESI QSO targeting algorithm, such that they
are not removed by a more restrictive selection.
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Figure 16. Evolution of the angular correlation function in the North region
when the probability threshold of the quasar target selection is increased. The
nominal probability in the North is 𝑝 (𝑟 ) = 0.88−0.04× tanh(𝑟 −20.5) . The
dashed lines depict raw target selections with different probability thresholds.
The solid lines show the corrected versions of the same selections. The black
dotted line corresponds to the typical resolution of the correction i.e. the pixel
size at 𝑁side = 256.

5.3 Limber parameters

5.3.1 Limber approximation

The angular correlation function 𝑤(\) is related to the 3D one b (𝑟)
through:

𝑤(\) =
∫ ∞

0

∫ ∞

0
b (𝑟12)𝑆(𝑟1)𝑟21𝑑𝑟1𝑆(𝑟2)𝑟

2
2𝑑𝑟2, (12)

where 𝑟12 =

√︃
𝑟21 + 𝑟22 − 2𝑟1𝑟2 cos(\) and 𝑆(𝑟) represents the

probability for an object at distance 𝑟 to be observed by the survey.
It is defined from the selection function 𝑆(𝑟) by

𝑆(𝑟) = 𝑆(𝑟)∫ ∞
0 𝑆(𝑟)𝑟2𝑑𝑟

. (13)

We will estimate 𝑆(𝑟) by multiplying the Quasar Luminosity
Function from Palanque-Delabrouille et al. (2013) by the
completeness of the DESI QSO target selection.
Adopting the approximation that the correlation function is

non-negligible only for small values of 𝑟 i.e. that the angular
correlation function is non zero only for small values of \, one can
assume that 𝑥 = 𝑟2−𝑟1 and 𝑦 = (𝑟1+𝑟2)/2, and hence derive Limber’s
equation valid only for small angles (for an explicit derivation, see
for instance Kurki-Suonio 2019):

𝑤(\) '
∫ ∞

0
𝑆(𝑦)2𝑦4

∫ ∞

−∞
b

(√︃
𝑥2 + 𝑦2\2

)
𝑑𝑥𝑑𝑦. (14)

Assuming a power-law for the correlation function:

b (𝑟) =
(
𝑟

𝑟0

)−𝛾
, (15)

the angular correlation function becomes:

𝑤(\) =
√
𝜋

Γ

(
𝛾−1
2

)
Γ

(
𝛾
2

) 𝑟
𝛾

0 \
1−𝛾

∫ ∞

0
𝑆2 (𝑦)𝑦5−𝛾𝑑𝑦 (16)

where Γ is the gamma function.
The integral calculation requires a fiducial cosmology. We choose

a Λ cold dark matter (ΛCDM) cosmology following the Planck 2015
parameters from Ade et al. (2016): Ω𝑚,0 = 0.308, ΩΛ,0 = 0.691,
Ω𝑏,0 = 0.048, ℎ = 0.677, 𝜎8 = 0.815, 𝑛𝑠 = 0.967.

5.3.2 Fitting of Limber parameters

As explained in Section 5.3.1, the power-law parameterisation of
the correlation function b (𝑟) can be constrained by the angular
correlation function 𝑤(\) at small angles. We proceed by estimating
these power-law parameters and comparing them to previous
measurements done with SDSS data by Myers et al. (2009) and
with 2dF data by Croom et al. (2005).
The Limber parameters are estimated in the three imaging regions

highlighted in Figure 1 and also in the DES region with only Dec. >
−30, which we will refer to as DES(Dec. > −30). This region will
almost correspond to the intersection between DES and the expected
nominal DESI footprint. The results are shown in Table 2 and fit for
the correctedDESIQSO targets inDES region is plotted in Figure 17.
The correlation function is fitted from 1𝑒−3 to 0.8 deg, corresponding
to a transverse separation of 0.045 to 45 h−1Mpc at redshift 1.7. The
mean redshift of the DESI QSO targets (∼ 1.7) is obtained tanks to
the selection function introduced in Section 5.3.1 which corresponds
to the estimated redshift distribution of the sample.
The errors on the parameters 𝑟0 and 𝛾 are estimated using a

sub-sampling method: 10 (resp. 18, 10, 4) sub-regions of similar
area (∼ 450 deg2) are used for the North (resp. South, DES, DES
Dec. > −30)). Sub-sampling is used to probe the variability of
the angular correlation function in different areas of the footprint,
where stellar contamination and systematic effects should differ. If
the systematics are properly mitigated, the error of each parameter
should be reduced i.e. the corrected angular correlation functions
over each sub-region should be more similar.
The value 𝑟0, which parameterises the amplitude of the correlation

function, captures the offset of differentmeasured angular correlation
functions. For instance, the fact that the angular correlation in the
South is higher than in DES, manifests in a value of 𝑟0 that is higher
in the South than in DES. As systematics tend to lead to an increase
in amplitude, 𝑟0 tends to be higher when systematics are dominant.
For example, the fact that the value of 𝑟0 that we measure in the DES
footprint is generally comparable to the values found for previous
measurements (Croom et al. 2005; Myers et al. 2009), suggests that
systematics have been mitigated well in the DES region.
The parameter 𝛾 describes the slope of the angular correlation. A

higher value of 𝛾 means a steeper slope. It is worth noting that since
the relevant correction scales of the systematic weights are larger
than the pixel size used for our analyses (∼ 0.2 deg), the angular
correlations of the corrected targets have a steeper slope than for the
raw target samples. The comparison of 𝛾 between the DESI QSO
targets and previous measurements is not particularly relevant since
any excess correlation caused by systematics on small scales, i.e.
below the typical angular resolution of our corrections, cannot be
removed with our mitigation procedure.
Though no spectroscopic confirmation of DESI QSO targets is

available across a significant fraction of the footprint used in our
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Table 2. Limber parameters for the DESI QSO target selection in the imaging footprints depicted in Figure 1. The errors are estimated using a sub-sampling
method. We provide the measurements for both the non-corrected and corrected cases. The correction is performed with the RF method. �̄� is the mean redshift
of the sample.

𝑟𝑝 min [h−1Mpc] 𝑟𝑝 max [h−1Mpc] �̄� 𝑟0 [h−1Mpc] 𝛾 𝑟0 [h−1Mpc] 𝛾

Croom 1.0 25 1.35 - - 5.84 ± 0.33 1.64 ± 0.04
Myers 1.6 40 2 - - 4.56 ± 0.48 1.5 (fixed)

DESI QSO Targets Corrected

North 0.045 45 1.7 10.15 ± 0.70 1.61 ± 0.03 7.49 ± 0.57 1.89 ± 0.02
South 0.045 45 1.7 12.88 ± 0.95 1.64 ± 0.03 10.33 ± 0.84 1.80 ± 0.02
DES (Dec. > −30) 0.045 45 1.7 6.76 ± 0.58 1.78 ± 0.04 6.15 ± 0.45 1.88 ± 0.04
DES 0.045 45 1.7 7.19 ± 0.34 1.79 ± 0.03 6.47 ± 0.31 1.89 ± 0.02
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Croom (5.84, 1.65)
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Figure 17. Fit of the Limber parameters in the DES region for the corrected
DESI QSO targets (red line). The Limber parameters (𝑟0, 𝛾) are given in each
case. The black (resp. grey) dashed line shows the Limber function measured
by Croom et al. (2005) (resp.Myers et al. 2009). The parameters for the other
regions are given in Table 2.

study, our correction for angular systematics enables us to provide a
Limber amplitude parameter 𝑟0 which is consistent with those found
by Croom et al. (2005); Myers et al. (2009) using spectroscopic
data. Nevertheless, the fitting of the Limber parameters will be
greatly improved by information from theDESI spectroscopic survey.
Follow-up spectroscopy will enable us to remove stars from the DESI
QSO target sample, so any clustering analyses will be free of the
stellar contamination that increases the amplitude of the angular
correlation measurements.

6 CONCLUSION

The QSO target selection for the five-year DESI survey, which is
based on the ninth Data Release (DR9) of the Legacy Imaging
Surveys, has recently been finalized. This study illustrates imaging
systematic effects and stellar contamination in the DESI QSO
selection, with a view to studying and correcting for large-scale
density fluctuations that will impact DESI clustering measurements.
After a brief description of the current QSO target selection for

DESI, we explain the different effects that cause density variations in
the target sample. These effects can be separated into three categories:

I Stellar contamination from the Milky Way. This occurs mainly

near to the Galactic plane and is caused by the large excess of stars
in this region.

I Impact of the depth of the observations in the 𝑧 and𝑊2 bands.
These two bands are crucial for DESI QSO target selection. Hence,
𝑧-band systematics and above-average𝑊2 PSFDepth produce strong
over-densities, which aremost pronounced in the North of the Legacy
Surveys imaging. The impact of the depth in the𝑊2 band is hidden
in the South by the numerous stars from the Milky Way.

I Stellar contamination from the Sagittarius Stream. These stars
have similar colours to QSOs and thus heavily contaminate the DESI
QSO target selection. A map of the Sagittarius Stream enables
us to remove the contamination to first-order but is insufficient
to correct for higher-order effects, as demonstrated by the angular
correlation function of DESI QSO targets in this region. The part
of the remaining correlation which comes from Sagittarius Stream
stars cannot currently be removed with imaging maps alone, neither
by improving the QSO target selection method nor by improving the
Sagittarius Stream map. This is because many stars in the Stream
are too faint to have been previously observed. These stars prevent
us from properly analyzing the impact of other imaging features on
target selection and the excess correlation observed in this region.
However, this analysis will be done once these stars are removed by
spectroscopy with DESI.

The QSO target selection, incorporating weights to correct for
systematics, was validated by computing the angular correlation
function in each imaging region of the DESI Legacy Imaging
Surveys. We show that after mitigating for systematics, the angular
correlation function from the target selection is comparable to the
angular correlation function of SDSSDR16 quasars, except for in the
Sagittarius Stream region (as explained above). Our results are very
encouraging for the upcoming DESI spectroscopic survey, since our
analysis can produce similar angular correlation functions as derived
for SDSS spectroscopic data, despite utilizing only information from
imaging.
The method described in this paper was built and optimized

specifically for the DESI QSO target selection. In particular, the
hyper-parameters for theNN and the RFmethods are specific toDESI
QSO targets. Nevertheless, our approach could readily be adapted to
any DESI target class. In particular, the form of the K-fold training
was developed independently of the target class.
Once the DESI survey progresses, we will apply the method

outlined in this paper to compute imaging systematic correction
weights for the DESI spectroscopic QSO catalogue. We expect
these corrections to be smaller for future DESI samples, since many
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first-order systematic effects that are caused by stellar contamination
will be removed by spectral information.
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APPENDIX A: VALIDATION WITH MOCKS

To validate the systematic mitigation method and avoid overfitting,
we use a set of 100 QSO EZ-mocks from eBOSS (Zhao et al. 2021).
They have a smaller density than the nominal target selection density
and a smaller area. However, it will not impact the analysis since the
surface and the density are enough for our test. Besides, since our
analysis for the legacy survey is different for the three photometric
footprints, we will mimic one footprint only, similar to a sub-region
of the North footprint.
Themocks contain a cosmological signal but no systematic effects.

They are contaminated using the inverse weight estimated previously
and this contamination will be mitigated with our method using the
same observational features.
We present here contamination estimated with the RF method

(it is the inverse of the map shown in Figure 11). We test the
method in two different ranges of contamination: one describing
a weakly contaminated case (extracted from the R.A.,Dec. ∈
[100◦, 270◦] × [32◦, 60◦] box) where all the methods work well;
a second describing a strongly contaminated case (extracted from
the R.A.,Dec. ∈ [120◦, 290◦] × [55◦, 90◦] box) where the linear
method is inefficient as shown in the systematics plots of Figure 7.
To compare the method efficiency and avoid biasing the results, we
also applied an NN-based estimation for the strong contaminated
case.
The validation pipeline is shown Figure A1. There are two

different tests (dashed lines). The first one is to check whether our
method overfits the data. We apply the mitigation method to the
initial (uncontaminated) mocks such that no correction is expected.
The angular correlations of the uncontaminated mocks and of the
corrected uncontaminated mocks should be identical. The second
test is to validate our mitigation. We apply the mitigation method
to the contaminated mocks, expecting to recover the same angular
correlation as for the initial mocks.
Some subtleties have to be considered. First, the density of these

mocks (70 deg−2) is lower than that of the quasar targets (300 deg−2).
Thus, the size of the correction cannot be the same since the number
of objects inside a pixel of 𝑁𝑠𝑖𝑑𝑒 = 256 is too small. We therefore
downgrade the contamination and the observational feature maps to
𝑁𝑠𝑖𝑑𝑒 = 128.
Secondly, the footprint of these mocks is different from the North

footprint. The size of the training sample is here twice smaller as the
data. We, therefore, use only 3 folds instead of 6 for the DR9 North
training. It is worth noting that we need to change the position of the
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Figure A1. Pipeline validation with mocks. The initial mocks (blue) are
uncontaminated and contain a cosmological signal. They are contaminated
with systematic weights (green). Then, they are corrected with the mitigation
presented above (red). We compare the corrected mock to the initial mock to
verify if we recover the correct initial state. As a sanity check, we also applied
the mitigation to the initial mock (purple) to verify whether our mitigation
technique overfits target density variations. These tests are represented by the
two black dashed lines.

folds to cover the footprint correctly as explained in 3.3.2, especially
for the strongly contaminated case.
Nevertheless, the training conditions are slightly different and we

expect some differences for the second test.
The angular correlation functions for the weakly contaminated

case are shown in the Figure A2. Each correlation function is the
average of the angular correlations of the 100 mocks and the error
bars are the standard deviation between all the realizations. We show
the correlation function up to \ ∼ 3.5 deg, which corresponds to
a comoving angular distance of ∼ 250 Mpc h−1 at 𝑧 = 1.7, the
maximum size of the eBOSS analysis. The result for each regression
method is shown in the three panels.
The purple lines are the angular correlations of the initial mocks

mitigated with our methods. In the three cases, they lie on top of
the blue lines that show the angular correlations of the initial mocks.
This indicates no sign of overfitting compare to the significance of the
correction. The green lines are the angular correlations for the mocks
after contamination. The red lines are the angular correlations for the
contaminated mocks after mitigation. The red line exactly recovers
the blue line in the case of the RF method. In the two other cases, the
red lines recover more or less the blue lines and the slight difference
stems from the contamination was done from an estimation of the
systematics by the RF method which benefits the RF case.
The angular correlations for the strongly contaminated case are

shown in Figure A3 for the RF-based contamination and in Figure A4
for the NN-based one. The two figures are similar, indicating that the
contaminated method does not benefit the RF or NN mitigation.
The result from the same contamination method can be compared
together.
Here again, there is no indication of overfitting for the NN and

Linear method. For the RF method, the purple line is slightly below
the blue one above 1 deg indicating tiny overfitting. Note that the
mocks that we used here cover a smaller area than the DESI QSO
sample, thereby making our method more prone to overfit for this test
case. Optimization of the hyper-parameters to reduce overfitting on
the DESI footprint will be pursued with DESI mocks. However, this
tiny overfitting is much less significant than the level of systematic
corrections validating that most of the impact of RF weights on
the angular correlation function of the DESI QSO sample is real
systematics mitigation and not overfitting.
The angular correlation of contaminated mocks is higher as a
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Figure A2. Weakly contaminated case: Mean on 100 eBOSS EZ-mocks of
the angular correlation functions. The error bars are the standard deviation
between all realizations. Colours follow the same scheme as in Figure A1.
The systematic contamination is done with a RF estimation of a weakly
contaminated area (R.A.,Dec. ∈ [100, 270] × [32, 60]) of the DR9 legacy
survey. The method does not overfit the data and recovers the initial
correlation. Note that the contamination was estimated with the RF method
which explains the small residual systematics with the NN and Linear
correction.

consequence of the stronger contamination compared to the previous
case. The red lines do not perfectly recover the blue lines even
in the case of the RF regression. Indeed, the smaller size of the
training sample and the modification of the fold form prevent the
NN and RF methods to learn all the information needed to fully
correct this contamination. In addition, the NN method is less
efficient to correct small contaminated regionswithout any additional
hyper-parametrization like regularization terms. The RF approach is
more robust than the NN one to variations in the training sample
and less dependent on hyper-parametrization. For the linear method,
the correction is less efficient: in the region of extreme observational
features, the systematic effects are less corrected, as shown in Sec.
4.1.
This set of mocks and the second test are used to optimize the

hyper-parameters of the NN and perform the grid search method
(3.3.4). Given the subtleties presented above, however, it is expected
that the hyper-parameters used here are not the best one for the
DR9 training. More optimized parameter tuning will eventually be
achieved with mocks matching the DESI QSO samples.
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Figure A3. Strongly contaminated case: Same as FigureA2 but the systematic
contamination depicts strong contaminated area (R.A.,Dec. ∈ [120, 290] ×
[55, 90]). The correction is not perfect since the training sample is smaller
than the Legacy Surveys case and cannot contain the same information in
each fold. Besides, the correction is done with a higher 𝑁𝑠𝑖𝑑𝑒 which can
explain that we do not fully recover the initial state.

APPENDIX B: SOUTH FOOTPRINT AND SAGITTARIUS
STREAM CONTAMINATION

As shown in Figure 14, even after the systematic mitigation, we do
not recover the same level of correlation in the South footprint as
in the two other regions. To analyze the excess of correlation in the
South footprint, we divide it into 4 zones, represented in Figure B1.
These zones are:

I Zone 1 near the anti-galactic pole shows less over-density than
the other regions near the Galactic plane. Its lower density is due to
the lower value of the PSF Depth𝑊2 in this zone.

I Zone 2 contains the Sagittarius Stream and it is strongly
contaminated by stars.

I Zone 3 and zone 4 show strong over-density due to stars from
the galactic plane. In addition, zone 4 describes the SGC part of the
South footprint and we considered also zone 13 combining zone 1
with zone 3 which describes the NGCwithout the Sagittarius Stream
part of the South.

The angular correlation functions for these different zones are
shown in Figure B2. Here each mitigation is performed with the RF
method. The top panel shows the correction done with training on all
the South footprint. The bottom panel shows the correction where the
training was done individually on each consider zone. We add also
the angular correlation for the corrected targets in South (in green)
and in DES (in black) for reference. The correlations of the corrected
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Figure A4. Strongly contaminated case: Same as FigureA3 but the systematic
contamination which depicts strong contaminated area (R.A.,Dec. ∈
[120, 290] × [55, 90]) is estimated with the NN method.

Figure B1. The South region is split in four distinct zones to analyse the stars
contamination. Zone 1 near the anti-galactic pole shows less over density than
the three others. Zone 2 contains the Sagittarius Stream. Zone 3 and Zone 4
shows strong over density due to stars from the galactic plane.

targets on each zone are lower than on all the South footprint but it
is not the average on zones due to the missing cross-terms.
The excess of correlation at small scales cannot be removed by our

method. It is due to either stars or non-considered features. The part
causes by a non-considered feature is left for a future study with the
spectroscopic sample. The excess causes by the stellar contamination
will be removedwith the spectroscopic data as explained in Sec. 5.2.4.
Hence, we will discuss the excess of correlation at large scales
compared to the correlation in DES.
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Figure B2. The angular correlation for the four zones which are represented
in Figure B1. Dotted lines are the correlations of DR9 targets, the solid ones
are for the corrected targets. For comparison, we also plot the correlation in
the South region (green line) and in the DES region (black line) which is
known as the least contaminated region. On the top panel, corrections are
calculated on all the South footprint. On the bottom panel, corrections are
calculated in each zone independently.

The correction estimated with the training on all South footprint is
not sufficient to recover the same level of correlation as in DES after
mitigation for all zones. The correction in zone 2 is more efficient
than in the other zones since the Sagittarius Stream feature separates
the Sagittarius Stream from the rest during the training. This zone
does not recover the same angular correlation at large scales as in
DES since the Sagittarius Stream feature is built as the spatial average
of candidates stars suppressing the angular correlation information
contained in this feature.
The angular correlation in zone 1 without systematic mitigation

is lower than those in the three other zones since this region does
not show strong over-density. However, the systematic mitigation is
inefficient in this region when the training is done on all the South
footprint. This is not the case when we apply the mitigation from the
training only on zone 1. Our method is unable to extract the correct
information for this zone in all the South. Zone 4 and zone 13 are
better when the training is performed only on each zone, recovering
a level of correlation that is in more agreement with that of DES at
large scales.
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Figure B3. Same as Figure 10 but the feature importance plotted are estimated
with the training only on the consider zone. The different behaviors on
each zone are highlighted by the different features which are qualified as
important. In particular, the density of stars from the galactic plane prevents
the regression to learn correctly the role of the PSF Depth𝑊 2 as expected.

The inefficiency of the regression in all the South can be explained
by the numerous stars in this region which bias the information about
the observational systematic effects preventing the regression to learn
correctly the true observational features dependency of the relative
target density. For instance, the PSFDepth𝑊2 is not characterized as
an important feature (cf. Sec. 4.2) while it explains the lower density
observes around the anti-galactic pole. Figure B3 shows the feature
importance estimatedwith the training on the consider zone only. The
feature importance for all the zone used are plotted. PSF Depth𝑊2
is almost uniform (cf. Figure 4 for its distribution) in zone 1 and zone
3 and so does not appear as an important feature when the training
is done in each region. However, it is found as the most important
feature in the training on zone 13 illustrating that the stars in zone
2 and in zone 4 bias the training, e.g. the fluctuation of the relative
density in the function of the PSF Depth𝑊2 in zone 2 is masked by
the presence of numerous stars from the Sagittarius Stream.
Even if the training in an individual zone is more effective,

especially at large scales than the training in all the South, we do
not recover the same level correlation as in DES at intermediate
scales. This can be explained still by the presence of numerous stars
in each zone. The stellar contamination is mixed with the imaging
systematics and the two effects are not easily separable. Then, the
excess of correlation can be caused either by the stellar contaminant
or by an additional unconsidered imaging feature.
This analysis could be performed once the spectroscopic survey

is done since the stellar contamination will vanish. The impact of
imaging features can be then studied without any significant bias.
If the set of features introduced during this analysis contains all
the information, our systematic mitigation method will be able to
correctly learn the true dependence on the observational features as
in DES or the North and recover the correct angular correlation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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