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Abstract

Learning and Pricing Algorithms for Human-Cyber-Physical Systems

by

Ahmadreza Moradipari

Nowadays with the growth of large-scale societal infrastructure systems, there has

been significant research attention on improving efficiency, guaranteeing safety, reducing

operational costs, and decreasing the carbon footprint of these systems. In particular,

this thesis is focused on Human-Cyber-Physical Systems (H-CPS) (e.g. smart grid, elec-

tric transportation networks, autonomous driving). An H-CPS is any physical system in

which a mechanism is controlled by both computer-based algorithms and human inputs.

With the increasing complexity of human-machine interfaces, the traditional engineering

and operating strategies are not adequate to manage. In fact, a mix of tools from stochas-

tic control, distributed optimization, machine learning, and game theory is required. For

example, in modern electric transportation systems, without appropriate demand man-

agement and coordination schemes, Electric Vehicle (EV) charging patterns could create

problems for power transmission and distribution networks, and hence reduce the envi-

ronmental benefits of transportation electrification.

Furthermore, when managing demand to reduce costs in a power system, it is nec-

essary to ensure that the operating constraints of the power grid are not violated as a

result of our actions. Additionally, because of the availability of real-time data from these

infrastructure systems, training a large-scale model over a vast amount of data requires

sophisticated techniques that accelerate the training of learning models. Therefore, it

becomes important to develop algorithms that are computationally efficient and consider

the critical safety requirements of these systems.
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The aforementioned problems are characterized by many challenges including: How

can we encourage customers to act in a way that is more likely to benefit society even when

it may conflict with their own interests? How do we make sure that the infrastructure

systems’ safety criteria are not disregarded while we are learning the proper procedures

to optimize customer behavior? How do we make sure that our proposed algorithms are

computationally efficient?

This thesis is focused on developing optimization and machine learning frameworks

that promote efficiency and flexibility in large-scale societal infrastructure systems with

the active involvement of humans. In the first part of the thesis, we focus on designing

optimal price and routing mechanisms for a public charging stations network in electric

transportation systems to coordinate customers (i.e., EV drives) towards a socially opti-

mal behavior given their heterogeneity. In the second part of the thesis, we provide two

theoretical learning guarantees for online decision-making problems in safety-constrained

unknown linear systems. Moving on to the third part, we develop two methods to speed

up the learning process of the online learning algorithms in new tasks based on their

limited past experience with unknown linear systems. We also support our theoretical

results in all three parts by significant improvement in numerical experiments.

x
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Chapter 1

Introduction

Large-scale societal infrastructure systems powered by artificial intelligence (AI) and

human input are shaping the future of our society. Unlike traditional engineering ap-

proaches, modern and adaptive operating strategies are required to handle these complex

systems. In fact, many large-scale societal systems with the active involvement of hu-

mans in the control loop require advanced methods to account for the stochastic behavior

of humans while considering critical infrastructure constraints. Furthermore, with the

availability of real-time data from these infrastructure systems, training a large-scale

model over a massive data set is computationally intensive, and hence it requires modern

strategies that speed up the training of learning models.

In this thesis, we focus on two frameworks: designing pricing and routing mechanisms

for demand management in electric transportation systems as well as designing machine

learning algorithms for systems with the active involvement of humans in the control loop,

with a shared goal in mind: how do we adapt recent advances in distributed optimization,

statistical learning theory, and control theory for efficient and safe data-driven decision-

making in such safety-constrained complex systems?
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Introduction Chapter 1

1.1 Motivation

Electric Vehicle Management in Public Charging Station Network

According to the U.S. Department of Energy, more than 2.2 million electric vehicles

(EVs) were on the road in 2021 and there are nearly 47,000 charging station locations

with more than 120,000 ports across the nation [1]. It is important to note that both

the EVs and stations are not evenly distributed throughout the country. There are cer-

tain regions where EV adoption rates are much higher than average yet the number of

charging stations are lacking. Additionally, the recharging process of an EV is signifi-

cantly slower than the refueling process for an internal combustion engine vehicle (ICEV),

meaning that EVs occupy chargers for long periods of time. As a result of the limited

infrastructure and long charging times, EV owners in populated urban areas are experi-

encing high levels of congestion at public charging stations during peak usage hours [2].

Therefore, without appropriate demand management schemes in place, Electric Vehicle

(EV) charging patterns could create problems for power transmission and distribution

networks, and reduce the environmental benefits of transportation electrification.

In this thesis, our objective is to guide EV drivers to drive into the right charging

station in a mobility-aware fashion, in order to 1) manage the effect of EVs on the

grid (e.g., on capacity-constrained feeders or integration of behind-the-meter solar) and

2) ensure fair service to customers with proper capacity allocation and short station

wait times (admission control), considering heterogeneous user preferences and needs.

In particular, we consider a Charging Network Operator (CNO) that owns a network of

EV public charging stations and wishes to offer a menu of differentiated service options

for access to its stations. This involves designing optimal pricing and routing schemes

for the setting where users cannot directly choose which station they use. Instead, they

choose their priority level and energy request amount from the differentiated service

2
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menu, and then the CNO directly assigns them to a station on their path. This allows

higher-priority users to experience lower wait times at stations and allows the CNO to

directly manage demand, exerting a higher level of control that can be used to manage

the effect of EVs on the grid and control station wait times. We consider the scenarios

where the CNO is a social welfare-maximizing or a profit-maximizing entity, and in both

cases, design incentive-compatible price-routing policies that ensure users reveal their

true private information to the CNO.

Bandit Algorithms for Safety-Critical H-CPS

Stochastic bandit optimization algorithms have long found applications in many fields

where some characteristics of the users’ responses are not known and can only be learned

through a limited number of noisy observations, including recommendation engines, ad-

vertisement placement, personalized medicine, etc. This shares a similar challenge to the

one in H-CPS due to the involvement of humans in the control loop. For example, bandit

optimization inherently maximizes a reward function (e.g., efficiency in societal systems)

where some characteristics are not known and have to be learned while interacting with a

user. This is similar to the electricity pricing in societal-scale infrastructure systems such

as power grids or transportation networks which minimize the operational costs with

a limited number of user interactions. However, the existing bandit algorithms might

not be directly applicable to these cases due to the existence of infrastructural safety

constraints that have to be met at each round of user interactions.

In this thesis, we formulate a linear stochastic bandit problem with safety constraints

that depend linearly on an unknown parameter vector. As such, especially in the earlier

rounds, there is a need to choose actions with caution, while at the same time making

sure that the chosen action provides sufficient learning opportunities about the set of

safe actions. For this bandit problem, we propose a Thompson-sampling algorithm,

3
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which includes necessary modifications to respect the safety constraints with provable

performance guarantees. Furthermore, we formulate related problem variations with

stage-wise baseline constraints, in which the learner must choose actions that not only

maximize cumulative reward across the entire time horizon but further satisfy a linear

baseline constraint taking the form of a lower bound on the instantaneous reward.

Model Selection in the Bandit Problem

With the availability of real-time data from the societal infrastructure systems, train-

ing a large-scale model over a massive data set is extremely computational, and hence it

requires modern strategies that speed up the training of learning models. One approach

is to leverage the similarity of the new online learning tasks with the previous experi-

ences and transfer proper information in order to adapt faster to the new situations. For

example, in autonomous driving research, accurately modeling the behavior of traffic par-

ticipants is essential for safely and efficiently navigating an autonomous vehicle through

heavy traffic. Using the previously recorded traffic data set, we could design/train dif-

ferent models for different driver behaviors (e.g., conservative or aggressive drivers) [3].

Then, we could use those offline trained models, in online decision-making scenarios with

a limited number of possible interactions to determine which model could be a good rep-

resentation for each of the traffic participants. In practice, the number of trained models

could be very large, which requires the online strategies to be efficient in the number of

models.

In this thesis, we discuss model selection in stochastic linear bandits (LB), where the

LB problem at hand is selected from a set of M models. The agent has information about

the models but does not know the identity of the one(s) that the new LB problem has

been selected. The goal of the agent is to identify the true model(s) and transfer its

(their) collected experience to speed up the learning of the task at hand. It is a common

4
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scenario in many application domains that the new task belongs to a family of models

that are either known accurately or with misspecification. For example, it is reasonable

to assume that the customers of an online marketing website, the users of an app, or

the patients in a medical trial belong to a certain number of categories based on their

shopping and browsing habits or their genetic signatures. It is also common these days

that websites, apps, and clinics have a large amount of information from each of these

categories that can be used to build a model. For another example, we could consider

different driving behaviors could belong to a certain number of categories in autonomous

driving research, and there exists an excessive amount of recorded traffic data that can

be used to build these categories.

1.2 Chapter Overviews

1.2.1 Chapter 1

Chapter 1 presents the motivation for this thesis and summary of main contributions.

1.2.2 Chapter 2

Chapter 2 presents our results on electric vehicle (EV) demand management in public

charging stations network.

In Section 2.2, we present a decision problem of a Charging Network Operator (CNO)

for managing EVs in a public charging station network through differentiated services.

In this case, EV users cannot directly choose which charging station they will charge

at. Instead, they choose their energy demand and their priority level, as well as their

traveling preferences (which stations they are willing to visit) from among a menu of

service options that are offered to them, and the CNO then assigns them to the charging

5
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stations directly to control station wait times and electricity costs. This is reminiscent of

incentive-based direct load control algorithms that are very popular in demand response.

Sections 2.3 and 2.4 present incentive-compatible pricing and routing policies for

maximizing the social welfare or the profit of the CNO. We first formulate the CNO’s

goal for choosing a routing policy that maximizes the social welfare in Section 2.3 as well

as a profit of the system in Section 2.4 of all EV users with access to the network, which

is generally a non-convex problem. We proposed an incentive-compatible pricing policy

that enforces the socially optimal routing policy as an equilibrium. Then, we propose

an algorithm that finds the globally optimal solution of the non-convex routing policy

problem in both social welfare and profit maximization scenarios in the special case of

hard capacity constraints. We also highlighted the benefits of our algorithms towards

behind-the-meter solar integration at the station level.

1.2.3 Chapter 3

Chapter 3 presents a brief summary of the Stochastic Linear Bandit (LB) problem.

Section 3.2 presents the LB problem setting. Then we present the two well-known

algorithms OFUL and Thompson Sampling for the LB problem with their regret bounds

in Sections 3.4 and 3.5, respectively.

1.2.4 Chapter 4

Chapter 4 presents our theoretical results on guaranteeing safety in H-CPS in certain

instances. Section 4.2 presents the setting for a linear stochastic bandit (LB) problem in

which the environment is subject to unknown linear safety constraints that need to be

satisfied at each round with a follow-up motivational example.

In Section 4.3, we present the first safe Linear Thompson Sampling (Safe-LTS) algo-

6
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rithm with provable regret guarantees for the linear bandit problem with linear safety

constraints. We also present the challenges risen by the presence of the safety constraints

in the traditional linear bandit problem and the mechanisms that Safe-LTS employs to

address these challenges. Moreover, in Section 4.4, we show that the Safe-LTS achieves

the same frequentist regret of order O(d3/2 log1/2 d · T 1/2 log3/2 T ) as the original LTS

without safety constraint. Hence, the dependence of our regret bound on the time hori-

zon T cannot be improved by modulo logarithmic factors. We also compare Safe-LTS

with several UCB-type safe algorithms in Section 4.5. We show that our algorithm has:

better regret in the worst-case (Õ(T 1/2) vs. Õ(T 2/3)), fewer parameters to tune and often

superior empirical performance.

1.2.5 Chapter 5

Chapter 5 presents another notation of safety among other applications. In partic-

ular, we study stage-wise conservative linear stochastic bandits: an instance of bandit

optimization, which accounts for (unknown) “safety constraints” that appear in appli-

cations such as online advertising and medical trials. At each stage, the learner must

choose actions that not only maximize cumulative reward across the entire time horizon

but further satisfy a linear baseline constraint that takes the form of a lower bound on

the instantaneous reward. For this problem, in Section 5.3 and C.7, we present two novel

algorithms, stage-wise conservative linear Thompson Sampling (SCLTS) and stage-wise

conservative linear UCB (SCLUCB), that respect the baseline constraints and enjoy

probabilistic regret bounds of order O(
√
T log3/2 T ) and O(

√
T log T ), respectively.

Notably, the proposed algorithms can be adjusted with only minor modifications

to tackle different problem variations, such as constraints with bandit feedback, or an

unknown sequence of baseline rewards. We discuss these and other improvements over

7
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the state-of-the-art. For instance, compared to existing solutions, in Section 5.4, we show

that SCLTS plays the (non-optimal) baseline action at most O(log T ) times (compared

to O(
√
T )). Finally, we make connections to another studied form of “safety constraints”

that takes the form of an upper bound on the instantaneous reward. While this incurs

additional complexity to the learning process as the optimal action is not guaranteed to

belong to the “safe set” at each round, we show that SCLUCB can properly adjust in

this setting via a simple modification in Appendix 5-Section C.8.

1.2.6 Chapter 6

Chapter 6 presents our results on model selection settings in stochastic linear bandits.

In Section 6.2, we study two model selection settings in stochastic linear bandits (LB).

In the first setting, which we refer to as feature selection, the expected reward of the LB

problem is in the linear span of at least one of M feature maps (models). In the second

setting, the reward parameter of the LB problem is arbitrarily selected from M models

represented as (possibly) overlapping balls in Rd. However, the agent only has access to

misspecified models, i.e., estimates of the centers and radii of the balls. We refer to this

setting as parameter selection.

For each setting in Sections 6.3 and 6.4, we develop and analyze a computationally

efficient algorithm that is based on a reduction from bandits to full-information problems.

This allows us to obtain regret bounds that are not worse (up to a
√
logM factor) than

the case where the true model is known. This is the best-reported dependence on the

number of models M in these settings. Finally, in Section 6.5, we empirically show the

effectiveness of our algorithms using synthetic and real-world experiments.
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Chapter 2

Pricing and Routing Mechanisms for

Electric Vehicle Public Charging

Stations Network

2.1 Introduction

It is well-known that without appropriate demand management schemes in place,

Electric Vehicle (EV) charging patterns could create problems for power transmission

and distribution networks, and reduce the environmental benefits of transportation elec-

trification. Hence, the past decade has seen significant research advances in the design of

EV demand management algorithms. Broadly speaking, most available smart charging

approaches focus on optimizing residential and commercial charging profiles when the

duration of charge events allows for temporal load shifting. However, our focus in this

chapter is on public charging station networks, which are fundamentally different from

residential and commercial charging in two ways: 1) Temporal load shifting after a plug-

in event is not feasible, unless battery swapping methods are employed. Most drivers
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would want to leave the station as soon as possible, quite similar to a gas station stop; 2)

Access to EV supply equipment (EVSE) is open to the public, which creates congestion

effects and results in wait times at popular stations.

Prior art: We categorize the rich literature on mobility-aware charge management

of EVs into three categories. The first category considers using the mobility pattern of

EVs in order to optimize EV charging load in an economic dispatch problem and manage

EVs’ effects on transmission systems (see, e.g., [4, 5, 6, 7, 8]) or distribution systems (see,

e.g., [9, 10]). In [11], the authors study the dynamic impact of EV movements on inte-

grated power and traffic systems. They propose Nodal Time-of-Use (NTOU) and Road

Traffic Congestion (RTC) prices to control the driving pattern of EV loads. In [12], the

authors study the extended Pickup Delivery Problems (PDPs) for an EV fleet containing

EV customers with different service requests. They propose a mixed-integer quadratic

constraint optimization for solving the offline pre-trip scheduling problem. This line of

work is not focused on public charging stations and mostly adopts traffic assignment

models. The second category of related work focuses on the problem of routing EV users

to stations (see, e.g., [13, 14, 15, 16, 17, 18]). Naturally, given the stochastic nature of EV

arrivals and the limited number of EVSEs at each station, one can consider the problem

of managing access to public charging stations as a queuing network, where previous

works have considered various objectives such as revenue maximization or waiting time

minimization (see, e.g. [19, 20, 21] and the references therein). The main focus of these

papers is the design of optimal routing policies to directly send users to stations given

heterogeneous user needs and not on designing pricing strategies. The advantage of using

our proposed mechanism compared to these papers is that we jointly design incentive-

compatible pricing and routing policies. This means that our work does not assume

that customers will have to follow our routing orders without considering customers’ in-

centives to deviate from the posted assignment. The downside is that our algorithm is
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more complex than one that is solely focused on optimal routing without any incentive

issues. The third category of work, which is most intimately connected to our work,

considers the design of pricing strategies to manage users’ access to charging networks,

where individuals decide which station to use based on prices (self-routing) [22]. In [23],

the authors study the waiting times of charging station queues and the profit of the CNO

under flat rate charging prices as well as a threshold-based pricing policy that penalizes

higher demand. In [24], the authors propose a Stackelberg framework to design prices for

charging stations that incentives more uniform station utilization. In [25], the authors

study the joint charging and navigation problem of EVs. They formulate en-route charg-

ing navigation problems using Dynamic Programming (DP). They propose a so-called

Simplified Charge Control (SCC) algorithm for deterministic traffic networks. Moreover,

for the stochastic case, they propose an online state recursion algorithm.

Our objective is to guide EV drivers to drive into the right station in a mobility-

aware fashion, in order to 1) manage the effect of EVs on the grid (e.g., on capacity-

constrained feeders or integration of behind-the-meter solar) and 2) ensure fair service

to customers with proper capacity allocation and short station wait times (admission

control), considering heterogeneous user preferences and needs. This is not an easy

task to achieve merely through pricing algorithms, mainly due to the complexity of the

price response structure of users and its dependence on the users’ mobility needs and

preferences, information that is not readily available and is very hard to obtain. Hence,

we take a different path here, which allows us to somewhat separate the pricing and

admission control aspects of the problem. We assume that customers cannot directly

choose which charging station they will charge at. Instead, a Charging Network Operator

(CNO) is in charge of directly assigning users to charge stations given their respective

value of time (VoT), charging demand and travels preferences. We believe that this is

reasonable given that, even today, access to public charging stations is only allowed
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for specific vehicle types or with users with prepaid charging plans/subscriptions. A

customer’s travel preferences specify which charging stations they are willing to visit. The

CNO’s goal is to design a menu of differentiated service options with service qualities that

are tailored to the characteristics of heterogeneous users. Each service option is tailored

to users with given VoT, charging demand, and travel preferences, and is associated with

a routing policy (i.e., the probability of that customer type being assigned to each of the

stations on their path), as well as an appropriate price. The CNO wishes to optimize

these differentiated routing policies and prices in order to optimally use capacity-limited

charging stations and minimize electricity costs. Furthermore, the CNO’s goal is to design

incentive-compatible pricing-routing policies, which ensures that individual users reveal

their true needs and preferences to the CNO. Such differentiated pricing mechanisms

have been studied before in the context of residential demand response in recent years

(see, e.g., [26, 27]) in order to incentivize the participation of loads in direct load control

programs, analogous to what we are trying to achieve here for fast charging networks.

The contributions of the work presented in this chapter are as follows:

• Modeling the decision problem faced by a CNO for managing EVs in a public

charging station network through differentiated services.

• Proposing incentive-compatible pricing and routing policies for maximizing the so-

cial welfare or the profit of the CNO considering users’ mobility patterns, distribu-

tion network constraints, or behind-the-meter solar generation.

• Proposing an algorithm that finds the globally optimal solution for the CNO’s

non-convex objective in the special case of hard capacity.
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2.2 System Model

2.2.1 Individual User Model

We first describe the individual EV users’ parameters and decision-making model.

User types

We assume that users belong to one of V × E × B types. A type (i, j, ℓ) customer

has a value of time (VoT) vi with i ∈ V = {1, . . . , V }, an energy demand ej with

j ∈ E = {1, . . . , E}, and a traveling preference Gℓ, with ℓ ∈ B = {1, . . . , B}. The value of

time is often used to model the heterogeneity of users’ utility and choice when optimizing

their response in the presence of travel time variations. The set of traveling preferences

Gℓ declares the set of stations to which customers with preference ℓ have access on their

path. More specifically, for each traveling preferences ℓ, we define the vector yℓ with

length Q (number of charging stations) such that yℓ(q) = 1 if station q ∈ Gℓ and 0

otherwise. For convenience, we order the customer types such that both VoT and energy

demand are in ascending order, i.e., v1 < v2 < . . . < vV , and e1 < e2 < . . . < eE. In this

chapter, we assume that users do not act strategically in choosing the amount of energy

they need, i.e., they fully charge their EV if they enter a charging station.

We assume that type (i, j, ℓ) customers arrive in the system with a given 3-dimensional

expected (average) arrival rate matrix Λ = [Λi,j,ℓ]i∈V,j∈E,ℓ∈B, which we consider as an

inelastic and known parameter. In each potential arrival, the customers can choose to

either purchase a service option from the differentiated service options offered by CNO,

or choose to not buy any charging services. Note that we are in a static setting, i.e.,

the expected rate of arrival of users of different types is assumed as a constant variable

when designing pricing/routing policies. While the arrival rate can vary across time, we

will assume that the dynamics of the charging process at fast charging stations are faster
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than the dynamics of average traffic conditions.

Service options

We assume that the number of differentiated service options that are available matches

the three-dimensional user types (i, j, ℓ) ∈ V × E × B. The CNO will sell each service

option (i, j, ℓ) with price Pi,j,ℓ. Moreover, service options are differentiated in terms of a

routing policy ri,j,ℓ = [rqi,j,ℓ]q=1,...,Q, which is a column vector of routing probabilities of

customers that purchase service option (i, j, ℓ) to each charging station q ∈ Gℓ.

The joint choice of these pricing-routing policies (Pi,j,ℓ, ri,j,ℓ) would affect the propor-

tion of users that choose to purchase each service option, which would, in turn, affect the

arrival rate and average charging demand per EV at each charging station. As a result,

the average total electricity demand and waiting times at the station are determined

through the design of these pricing-routing policies. Hence, the design of the pricing-

routing policy to be employed directly affects the social welfare (or the CNO’s profit).

To concretely model this connection, we first model how users choose which service type

to purchase (if any).

User decision model

In general, users have no obligation to buy the services option corresponding to their

own true type (why would I tell a CNO that I have a low value of time and be assigned a

longer wait?). The total utility of a user from purchasing charging services is the reward

they receive from charging minus the expected waiting cost (which is the product of VoT

with the expected waiting time) and the price paid for charging services. Let us assume

that customers with the value of time vi and traveling preference ℓ will get a reward Rℓ
i

for receiving a full battery charge. Furthermore, we assume that information about the

expected wait time Wi,j,ℓ of each service option (i, j, ℓ) in the menu is available to users.
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Throughout this chapter, we assume that the time it takes to drive to a station from

the main corridor (denoted by dq) is included in the “wait time” corresponding to that

station (on top of the queuing time ϱq), i.e., we have

Wi,j,ℓ =

Q∑
q=1

(
dq + ϱq

)
r
(q)
i,j,ℓ. (2.2.1)

We will assume that the users do not observe the current exact realization of wait times,

i.e., the expected wait time Wi,j,ℓ is not conditioned on the realization of the random

arrival rate of the user and will be constant at the equilibrium. Therefore, customers of

type (i, j, ℓ) will choose their service option (m, k, t) by solving:

max
m∈V,j≤k≤E,t∈Bℓ

Rℓ
i − viWm,k,t − Pm,k,t. (2.2.2)

According to our assumption on the inelasticity of user’s charging needs, a customer of

type (i, j, ℓ) can only choose a service option (m, k, ℓ) if ej ≤ ek. Moreover, we assume

users of type (i, j, ℓ) may only choose a travel preference t ∈ Bℓ, where Bℓ is defined as the

set of all preferences t ∈ B such that Gt ⊂ Gℓ (otherwise the user would have to change

their travel origin-destination pair). If the total utility defined in (2.2.2) is not positive

for any available service option (m, k, t), then that customer will not purchase charging

services. We would like to note that our scheme is not forcing any user to accept the

CNO’s routing to different stations. It only provides lower prices for more flexibility in

regard to waiting time and station choice. If a user is not willing to provide this flexibility,

they may choose to select the service option that only includes the specific station they

would like to visit and naturally pay a higher price for receiving service.

The aggregate effect of each individual customer’s decision of whether to buy service

or not and their choice of service option will lead to a Nash Equilibrium (NE) of effective
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expected arrival rates in the charging station network, denoted by λ = [λi,j,ℓ]i∈V,j∈E,ℓ∈B.

Our goal in this chapter is to design a pricing routing policy such that 1) the resulting

NE is optimal for maximizing social welfare or CNO profit; 2) we belong to the family

of incentive-compatible (IC) pricing policies, i.e., policies where every user can achieve

the best outcome for themselves by acting according to their true preferences. Next, we

characterize conditions that should hold at equilibrium for such policies.

2.2.2 Incentive Compatible (IC) Pricing-Routing Policies

In this chapter, we would like to focus on Incentive Compatible (IC) pricing-routing

policies. A pricing-routing policy is IC if, for each user type (i, j, ℓ), it is always optimal to

choose the service option that matches their user type, i.e., service option (i, j, ℓ). Hence,

no users will have any incentive to lie about their user type to the CNO, which can be

desirable for system design purposes. Mathematically, given the user’s decision problem

in (2.2.2), this condition will be satisfied for a pricing routing policy if the following

conditions are satisfied at equilibrium:

∀k, t ∈ V , t ̸= k,∀j ∈ E ,∀ℓ ∈ B

Pk,j,ℓ + vkWk,j,ℓ ≤ Pt,j,ℓ + vkWt,j,ℓ, (2.2.3)

Pt,j,ℓ + vtWt,j,ℓ ≤ Pk,j,ℓ + vtWk,j,ℓ, (2.2.4)

∀i ∈ V ,∀t, k ∈ E , t > k,∀ℓ ∈ B

Pi,k,ℓ + viWi,k,ℓ ≤ Pi,t,ℓ + viWi,t,ℓ, (2.2.5)

∀i ∈ V ,∀j ∈ E , ∀ℓ ∈ B,∀t ∈ Bℓ

Pi,j,ℓ + viWi,j,ℓ ≤ Pi,j,t + viWi,j,t, (2.2.6)
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These conditions ensure that no user receives a higher utility by joining the system under

any type other than their own. For convenience, we refer to (2.2.3)-(2.2.4) as vertical

IC constraints, and (2.2.5) as the horizontal IC constraint. Note that while the service

options’ prices Pi,j,ℓ play a direct role in these conditions, the routing probabilities ri,j,ℓ

only indirectly affect these conditions by determining the wait times Wi,j,ℓ. We will

explore this connection more later.

Furthermore, Individual Rationality (IR) is satisfied if the following constraints are

satisfied at equilibrium:

Pi,j,ℓ = Rℓ
i − viWi,j,ℓ, if 0 < λi,j,ℓ < Λi,j,ℓ

Pi,j,ℓ < Rℓ
i − viWi,j,ℓ, if λi,j,ℓ = Λi,j,ℓ

Pi,j,ℓ > Rℓ
i − viWi,j,ℓ, if λi,j,ℓ = 0. (2.2.7)

That is if any user of type (i, j, ℓ) joins the system, their utility from joining the system

must be non-negative. Next, we study the structure of NE under any IC policies under

two assumptions about rewards Rℓ
i .

Assumption 1 For customers with different traveling preferences, the rewards Rℓ
i satisfy

the following:

∀i ∈ V , ∀ℓ,m ∈ B :

if |Gℓ| > |Gm| then Rℓ
i < Rm

i ,

if |Gℓ| = |Gm| then Rℓ
i = Rm

i . (2.2.8)

This means that users with a more limited set of charging options get a higher reward for

receiving service.
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Assumption 2 For customers with the same traveling preference ℓ, the ratios
Rℓ

i

vi
satisfy

the following:

Rℓ
1

v1
<

Rℓ
2

v2
< . . . <

Rℓ
V

vV
. (2.2.9)

A similar structure was assumed in [28] and other past work for service differentiation

through pricing-routing policies in a single server service facility with Poisson arrivals

and exponential service time M/M/1.

The next lemma shows that under an IC pricing-routing policy, waiting time is a

non-increasing function of VoT for users with the same traveling preference and energy

demand.

Lemma 2.2.1 Under an incentive-compatible pricing-routing policy, for any users of

types (i+ 1, j, ℓ) and (i, j, ℓ) who have purchased charging services, we must have:

Wi+1,j,ℓ ≤ Wi,j,ℓ. (2.2.10)

Proof: From vertical IC constraints (2.2.3) and (2.2.4) for customers of type (i, j, ℓ)

and (i+ 1, j, ℓ), we can write:

(vi+1 − vi)Wi+1,j,ℓ ≤ (vi+1 − vi)Wi,j,ℓ,

and the fact that vi+1 − vi > 0, would lead to the result.

The next lemma shows that it suffices to only check IC conditions for neighboring

service options, e.g., the options with one level higher value in VoT or energy.
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Lemma 2.2.2 (Local IC) The IC constraints (2.2.3)-(2.2.6) are satisfied if and only if:

∀i ∈ {1, . . . , V − 1},∀j ∈ E ,∀ℓ ∈ B :

Pi+1,j,ℓ + vi+1Wi+1,j,ℓ ≤ Pi,j,ℓ + vi+1Wi,j,ℓ,

Pi,j,ℓ + viWi,j,ℓ ≤ Pi+1,j,ℓ + viWi+1,j,ℓ,

∀i ∈ V ,∀j ∈ {1, . . . , E − 1}, ∀ℓ ∈ B :

Pi,j,ℓ + viWi,j,ℓ ≤ Pi,j+1,ℓ + viWi,j+1,ℓ,

∀i ∈ V ,∀j ∈ E , ∀ℓ ∈ B,∀t ∈ Tℓ :

Pi,j,k + viWi,j,k ≤ Pi,j,t + viWi,j,t, (2.2.11)

where Tℓ denotes the set of all travel preferences t ∈ Bℓ such that |Gt| = |Gℓ| − 1.

In the following lemma, we highlight a special structure of users’ arrival pattern λ at

equilibrium under an IC policy.

Lemma 2.2.3 If customers of type (i, j, ℓ) have partially entered the system (i.e., 0 <

λi,j,ℓ < Λi,j,ℓ), under an IC policy, the effective arrival rates satisfy:

1. (Vertical solution structure) λk,j,ℓ = Λk,j,ℓ,∀k > i, and λk,j,ℓ = 0,∀k < i, i.e.,

customers with higher VoTs and similar energy demand and similar traveling pref-

erence enter the system in full, and customers with lower VoTs do not enter the

system.

2. (Horizontal solution structure) λi,k,ℓ = Λi,k,ℓ,∀k < j, and λi,k,ℓ = 0,∀k > j, i.e.,

customers with lower energy demand and same VoT and same traveling preference

enter in full, and customers with higher energy demand and same VoT and same

traveling preference do not enter at all.
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Figure 2.1: The solution structure for an IC policy.

The proof follows from combining, IR and IC conditions, as well as Assumption 1. We

omit it due to brevity.

Therefore, at the Nash equilibrium, due to IC constraints, the solution structure of

the effective arrival rates are similar to Fig. 2.1. The red borderline shows which user

types should partially enter the system, i.e., where 0 < λi,j,ℓ < Λi,j,ℓ. This means that

not all users of type (i, j, ℓ) will join the system. Hence, from Lemma 2.2.3, we know

that customers to the left of the line will enter the system in full, and customers to

the right will not enter the system. Next, we study the design of a socially-optimal IC

pricing-routing policy.

2.3 Socially-Optimal Policy

Our charging stations are located at heterogeneous distances from the users’ path and

have different locational marginal prices and capacities. In the socially optimal policy,

the CNO’s goal is to choose a routing policy that maximizes the social welfare of all EV
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users with access to the network, which we can write as:

max
ri,j,ℓ≥0

0≤λi,j,ℓ≤Λi,j,ℓ

B∑
l=1

V∑
i=1

E∑
j=1

[
Rℓ

iλi,j,ℓ − viλi,j,ℓWi,j,ℓ(λ,R)− θT ri,j,ℓejλi,j,ℓ

]
(2.3.1)

s.t. 1Tdiag(yℓ)ri,j,ℓ = 1, ∀i ∈ V , j ∈ E , ℓ ∈ B, (2.3.2)

B∑
l=1

V∑
i=1

E∑
j=1

λi,j,ℓejr
(q)
i,j,ℓ ≤ Cq, ∀q ∈ {1, . . . , Q}, (2.3.3)

where θ = [θq]q=1,...,Q denotes the vector of locational marginal prices of electricity at

each charging station q, ri,j,ℓ = [rqi,j,ℓ]q=1,...,Q is a column vector of routing probabilities

for service option (i, j, ℓ) to each charging station q,R = [ri,j,ℓ]∀i,j,ℓ is the matrix of routing

probabilities for all service types, with the
[
(ℓ − 1) × E × v + E(i − 1) + j

]
-th column

dedicated to type (i, j, ℓ), Cq is the capacity of charging station q, and λ = [λi,j,ℓ]∀i,j,ℓ

is the vector of effective arrival rates. The objective function is the sum of the reward

received by admitted users to the system minus waiting and electricity costs, (2.3.2)

ensures that the routing probabilities sum up to one overall charging station allowed for

traveling preference ℓ, and (2.3.3) is the capacity constraint for each charging station.

The waiting time function Wi,j,ℓ(λ,R) maps the effective expected arrival rate in each

station into an expected waiting time (e.g., queueing models can be appropriate here).

Can the CNO design an IC pricing policy that enforces the socially optimal routing

solution (2.3.1) as an equilibrium? Next, we propose such a price. The first order

necessary condition for the problem (2.3.1) is as follows:

Rℓ
i−viWi,j,ℓ(λ,R)−

∑
t,h,z

(
λt,h,zvt

∂Wt,h,z(λ,R)

∂λi,j,ℓ

)
− θT ri,j,ℓej − xT ri,j,ℓej + γi,j,ℓ − µi,j,ℓ = 0, (2.3.4)

with γi,j,ℓ ≥ 0, µi,j,ℓ ≥ 0, γi,j,ℓλi,j,ℓ = 0, µi,j,ℓ(λi,j,ℓ − Λi,j,ℓ) = 0, and x = [xq]q=1,...,Q as the
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Lagrange multiplier of the capacity constraint (2.3.3). We can observe that the following

prices will satisfy the IR constraints (2.2.7):

Pi,j,ℓ =
V∑
t=1

E∑
h=1

B∑
z=1

(
∂Wt,h,z(λ,R)

∂λi,j,ℓ

λt,h,zvt

)
+ (θ + x)T ri,j,ℓej. (2.3.5)

Next, we show that the prices in (2.3.5) also satisfy IC constraints (2.2.3)-(2.2.6).

Proposition 2.3.1 With the prices defined in (2.3.5), the solution of socially optimal

problem (2.3.1) defines an incentive-compatible routing and pricing policy.

Proof: The proof is inspired by that of Theorem 1 in [29]. To prove incentive

compatibility, we need to choose two arbitrary service options and show that with the

prices given by (2.3.5), customers from the first type are better off choosing their own

option over the other. We first consider vertical IC constraints (2.2.3)-(2.2.4). Suppose,

we have the globally optimal solution of (2.3.1). Assume customers of class (i, j, ℓ) enter

the system and pretend to be of type (m, j, ℓ). We will increase the effective arrival rate

of customers of type (i, j, ℓ) by an infinitesimal amount δ and treat them as customers

of type (m, j, ℓ). Hence, because we were at the globally optimal solution of (2.3.1), we

can write:

∂

∂δ

[
Rℓ

iδ −
∑

(t,h,z)̸=(i,j,ℓ)

vtλt,h,zWt,h,z(λ+ δm,j,ℓ,R)− viλi,j,ℓWi,j,ℓ(λ+ δm,j,ℓ,R)

− δviWm,j,ℓ(λ+ δm,j,ℓ,R)− δθT rm,j,ℓej − δxT rm,j,ℓej

]
δ=0

≤ 0.

Hence, we can write:

Rℓ
i −
∑
t,h,z

(
λt,h,zvt

∂Wt,h,z(λ,R)

∂λm,j,ℓ

)
− viWm,j,ℓ(λ,R)− θT rm,j,ℓej − δxT rm,j,ℓej ≤ 0.
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Using the price in (2.3.5), this leads to:

Rℓ
i ≤ viWm,j,ℓ(λ,R) + Pm,j,ℓ

and from IR constraints (2.2.7), we know that if λi,j,ℓ > 0, we need to have Rℓ
i ≥

viWi,j,ℓ(λ,R) + Pi,j,ℓ. Therefore,

viWi,j,ℓ(λ,R) + Pi,j,ℓ ≤ viWm,j,ℓ(λ,R) + Pm,j,ℓ,

which proves that vertical IC constraints hold. The proof for (2.2.5)-(2.2.6) is similar

and we remove it due to brevity.

Our results up to this point are in their most general form. The expected waiting time

Wi,j,ℓ(λ,R) associated with each type (i, j, ℓ) can be defined using queueing theory as

a weighted sum of wait times for the different charging stations or can have any other

general form that arises in reality. However, we would like to note that the problem

(2.3.1) is not convex in general, and hence finding the solution is not straightforward

in all cases. While this is not devastating as this problem only has to be solved for

planning, we will study the problem in the special case of hard capacity constraints next.

This allows us to exploit the special structure highlighted in Lemma 2.2.3 to characterize

the optimal routing policy through solving linear programs. This is especially useful for

our numerical experiments.

2.3.1 Additional modeling factors: distribution network con-

straints and behind-the-meter solar

We would like to note that as opposed to residential and workplace charging, where

temporal load shifting is possible for grid support, fast charging stations do not pro-
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vide such opportunities (unless battery swapping methods are employed). Our proposed

method allows the CNO to consider the following elements when optimizing pricing-

routing decisions for charging stations: 1) the locational electricity prices for each charg-

ing station (already included in (2.3.1)); 2) behind the meter RES supply availability

(such as solar generation) at each station; 3) distribution network information and con-

straints. We will elaborate on the latter two additions in this section.

In order to additionally consider network constraints such as line loading limits (de-

fined below as the total line capacities excluding the loadings induced by conventional

demands) the CNO can consider adding the following constraint to the CNO’s optimiza-

tion problem (2.3.1):

Q∑
q=1

DEq

( B∑
ℓ=1

V∑
i=1

E∑
j=1

λi,j,ℓejr
(q)
i,j,ℓ

)
≤ ft, ∀t. (2.3.6)

The constraint is similar to those adopted in [30, 31] for temporal load shifting of EV

load in distribution networks. The reader should note that if this constraint is added

to (2.3.1), the Lagrange multiplier of this constraint should be added to the prices we

defined in (2.3.5).

Second, we would like to note that behind-the-meter solar energy available at stations

can be easily accommodated by our model by adding in virtual stations with an electricity

price of 0, traveling time equal to the station which is equipped by solar generation, and

capacity equal to the currently available solar generation. In this case, the CNO is able to

observe the available behind-the-meter solar integration in real-time, and design pricing-

routing schemes in order to efficiently use real-time solar generation. This addition will

help us better highlight the differences between the routing solutions of the social-welfare

maximizing and profit-maximizing policies that we will discuss in our numerical results

in Section 2.5.
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2.3.2 The Special Case of Hard Capacity Constraints

In this special case, we assume that station queuing time (i.e., ϱq = 0, ∀q = 1, . . . , Q)

will be equal to zero as long as the station is operated below capacity. Furthermore, we

assume that the travel time from the main corridor to reach each charging station k is

a known and constant parameter dq, q = 1, . . . , Q. Therefore, the expected wait time for

customers of type (i, j, ℓ) is:

Wi,j,ℓ =

Q∑
q=1

dqr
(q)
i,j,ℓ. (2.3.7)

Without loss of generality, we assume that stations are ordered such that d1 < d2 < . . . <

dQ. We can now rewrite the socially-optimal problem (2.3.2) as:

max
ri,j,ℓ≥0

0≤λi,j,ℓ≤Λi,j,ℓ

B∑
l=1

V∑
i=1

E∑
j=1

ωi,j,ℓ, (2.3.8)

where

ωi,j,ℓ = λi,j,ℓ

[
Rℓ

i −
(Q−1∑

q=1

(vi(dq − dQ) + ej(θq − θQ))r
(q)
i,j,ℓ

)
− (vidQ + ejθQ)

]
. (2.3.9)

We assume that the furthest charging station Q is accessible to all customers with each

traveling preference and that θQ ≤ θi,∀i = 1, . . . , Q− 1. This could represent an incon-

venient outside option available to all customers. Additionally, for each charging station

k = 1, . . . , Q, we calculate os =
(
v1(ds − dQ)+ eE(θs − θQ)

)
. Then, we label the charging

stations with the set s = [si]i=1,...,Q such that os1 ≤ os2 ≤ ... ≤ osQ . The next lemma

characterizes the specific order in which customers are assigned to these stations.

Lemma 2.3.2 The optimal solution of (2.3.8) satisfies the following two properties:

1. If customers of type (i, j, ℓ) are assigned to station sk, customers of type (n, j, ℓ)

with vn < vi are only assigned to stations sm,m ≥ k.
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2. If customers of type (i, j, ℓ) are assigned to station sk, customers of type (i, n, ℓ)

with en > ej are only assigned to stations sm,m ≥ k.

Proof: We prove both statements by contradiction. Consider the first statement.

Suppose there is another optimal solution in which for the customers of type (n, j, ℓ)

there is a positive probability r
(m)
n,j,ℓ of assignment to station sm while customers with

type (i, j, ℓ) have been assigned to a less desirable station sk with k > m. However, we

can have another set of routing probabilities such that r
(m)′

n,j,ℓ =
(
r
(m)
n,j,ℓ − ε ∗ λi,j,ℓ/λn,j,ℓ

)
,

r
(m)′

i,j,ℓ = ε ∗ λi,j,ℓ/λn,j,ℓ, and r
(k)′

i,j,ℓ =
(
r
(k)
i,j,ℓ − ε ∗ λi,j,ℓ/λn,j,ℓ

)
, which lead to another feasible

solution that increases the objective function of (2.3.8). Therefore, it is contradictory to

the assumption of optimality of the first solution. The proof of the second statement is

similar, and we remove it for brevity.

Lemma 2.3.3 In the optimal solution of problem (2.3.8), if charging stations sn is not

used in full capacity, then charging stations sm with m > n will be empty.

The proof is provided in Appendix A-Section A.1.

The takeaway is that in this special case, 1) customers with a higher value of time

and lower energy demand receive higher priority in joining stations with the lower value

of os; 2) stations are filled in order. This special structure allows us to find the globally

optimal solution of non-convex quadratic problem (2.3.8) by admitting customers with

higher priority to charging stations with the lower value of oS until they are full. Each

station is then associated with a borderline similar to that of Fig. 2.1. User types that

fall between the border lines of charging stations sk−1 and sk will be routed to charging

station sk, whereas user types that fall on the borderline of station sk will be partially

routed to station sk. User types that fall on the right side of the borderline of charging

station sk will not be routed to station sk.
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We consider the non-trivial case where all the customers receive positive utility from

joining all the charging stations in their traveling preference (otherwise that station will

be removed from the preference set). Hence, the CNO will assign customers to the

charging stations until either the stations are full or all customers have been admitted.

This means that we can assume that the set of available charging stations is:

X = {si : vV (di − dQ) + e1(θi − θQ) ≤ 0}, (2.3.10)

and the set of potential admittable customers is:

Y = {(i, j, ℓ) : Rℓ
i −
(
vidQ + ejθQ

)
≥ 0}. (2.3.11)

Exploiting the special solution structure highlighted in Lemmas 2.3.2 and 2.3.3, Algo-

rithm 1 determines the optimal solution of problem (2.3.8). This is done by adding an

extra virtual charging station, sQ+1, without any capacity constraint such that:

sQ+1 ∈ Gℓ,∀ℓ ∈ B, (2.3.12)(
max
ℓ∈B

Rℓ
V

)
< v1dQ+1 + e1θQ+1. (2.3.13)

Therefore, assigning customers to the charging station sQ+1 has a negative effect on social

welfare. In step 2, it admits all types of customers in full, i.e., λi,j,ℓ = Λi,j,ℓ,∀(i, j, ℓ). After

fixing the variable λi,j,ℓ = Λi,j,ℓ, the resulting linear program (LP) of problem (2.3.8) is

referred to as the Border-based Decision Problem (BDP), and its solution determines

the temporary allocation (routing probabilities), denoted by hi,j,ℓ = [h
(q)
i,j,ℓ]q=1,...,Q+1, of

admitted customers. It removes the partition of customers that join the virtual charging

station as it is shown in step 3.
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Algorithm 1: Optimal Admission and Routing

1 Add virtual station sQ+1 without capacity constraint
2 Set λi,j,ℓ = Λi,j,ℓ, ri,j,ℓ = 0 (∀i, j, ℓ)
3 Solve BDP (temporary routing probabilities), and set:

r
(q)
i,j,ℓ = h

(q)
i,j,ℓ for q = 1, . . . , Q

λi,j,ℓ = Λi,j,ℓ(1− h
(Q+1)
i,j,ℓ )

4 Report the optimal solution :

(R⋆,λ⋆) =

{
[r

(q)⋆

i,j,ℓ ]q=1,...,Q = [r
(q)
i,j,ℓ]q=1,...,Q

λ⋆
i,j,ℓ = λi,j,ℓ

Theorem 2.3.4 Algorithm 1 will find the globally optimal solution (i.e., the globally

optimal effective arrival rates and routing probabilities) for problem (2.3.8).

The proof is provided in Appendix A-Section A.2.

Next, we consider the case of designing IC pricing-routing policies for a profit-

maximizing CNO.

2.4 Profit-Maximizing Policy

In this section, we study the design of incentive-compatible pricing-routing policies

with the goal of maximizing the profit earned by the CNO. Consider the following prob-
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lem:

max
ri,j,ℓ≥0,

0≤λi,j,ℓ≤Λi,j,ℓ

Pi,j,ℓ

B∑
ℓ=1

V∑
i=1

E∑
j=1

[
Pi,j,ℓλi,j,ℓ − θT ri,j,ℓejλi,j,ℓ

]
.

s.t. ∀i ∈ V ,∀j ∈ E , ℓ ∈ B,∀m ∈ Bℓ : (2.4.1)

B∑
l=1

V∑
i=1

E∑
j=1

λi,j,ℓejr
(q)
i,j,ℓ ≤ Cq, ∀q ∈ {1, . . . , Q}, (2.4.2)

1T ri,j,ℓ = 1, (2.4.3)

WV,j,ℓ ≤ WV−1,j,ℓ ≤ . . . ≤ W1,j,ℓ ≤
Rℓ

1

v1
, (2.4.4)

i∑
t=1

(vt+1 − vt)(Wt,j,ℓ −Wt,j,m) ≤ Rm
1 −Rℓ

1, (2.4.5)

IC and IR Constraints (2.2.3)-(2.2.6) and (2.2.7).

The CNO’s profit is not affected by the average wait times users experience. Instead, the

objective function simply considers the revenue from services sold minus the electricity

costs. The first and second constraints ensure that station capacity constraints are not

violated and routing probabilities sum up to 1. The third (e.g., 2.4.4) and fourth (e.g.,

2.4.5) constraints ensure that the wait times that result from the choice of λi,j,ℓ and ri,j,ℓ

do not violate the requirements imposed on wait times in an IC pricing-routing policy.

Note that the connection between the prices Pi,j,ℓ and the admission rate and routing

probabilities λ and R are only through the IR and IC constraints. Accordingly, for

a given set of feasible values of λ and R, and hence Wi,j,ℓ(λ,R), one may maximize

the prices independently to maximize revenue, as long as IR and IC constraints are not
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violated. Consider the following prices:

∀j ∈ {1, . . . , E − 1}, ∀i ∈ {1, . . . , V − 1},∀ℓ ∈ {1, . . . , B} :

Pi+1,j,ℓ = Pi,j,ℓ + vi+1Wi,j,ℓ − vi+1Wi+1,j,ℓ, (2.4.6)

Pi,j+1,ℓ = Pi,j,ℓ + viWi,j,ℓ − viWi,j+1,ℓ, (2.4.7)

P1,1,ℓ = Rℓ
1 − v1W1,1,ℓ. (2.4.8)

The reader can verify that these prices are as high at horizontal IC constraints allow

them to be, and hence, if they are valid, they will be revenue-maximizing. Next, we show

that this is indeed the case, i.e., the prices are IC.

Proposition 2.4.1 The prices defined in (2.4.6)-(2.4.8) are Incentive Compatible and

Individually Rational.

The proof is provided in Appendix A-Section A.3.

Accordingly, to find the optimal pricing-routing policy, we can simply substitute

the prices from (2.4.6)-(2.4.8) in (2.4.1), allowing us to rewrite the problem with fewer

decision variables and constraints:

max
ri,j,ℓ

0≤λi,j,ℓ≤Λi,j,ℓ

B∑
l=1

E∑
j=1

[ V∑
i=1

(
Rℓ

1λi,j,ℓ − viWi,j,ℓ(λ,R)λi,j,ℓ − θT ri,j,ℓejλi,j,ℓ

)

−
V−1∑
i=1

(
(vi − vi+1)(

V∑
m=i+1

λm,j)Wi,1,ℓ(λ,R)

)]
.

s.t. Constraints (2.4.2) - (2.4.5). (2.4.9)

The profit maximization problem (2.4.9) has a similar structure to that of (2.3.2), which

we know is non-convex in general. However, we can still uniquely characterize the globally

optimal solution in the special case of hard capacity constraints on charging stations,
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Figure 2.2: Single line diagram of bus 4 distribution system of RBTS

which is especially helpful in our numerical experiments.

2.4.1 The Special Case of Hard Capacity Constraints

In the special case of hard capacity constraints, where (2.4.9) can be rewritten as:

max
ri,j≥0

0≤λi,j≤Λi,j

Q−1∑
q=1

B∑
l=1

V∑
i=1

E∑
j=1

[
Rℓ

1λi,j,ℓ −
(
λi,j,ℓ

[
vi(dq − dQ) + ej(θq − θQ)

]
r
(q)
i,j,ℓ + vidQ + ejθQ

)

−

(
(vi − vi+1)(dq − dQ)

(
V∑

m=i+1

λm,j,ℓ

)
r
(q)
i,1,ℓ

)]
. (2.4.10)

We can show that (2.4.10) can be similarly solved through BDP linear programs. We

remove the details for brevity.
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Value of Time ($/h) Energy Demand (kWh) Traveling Preferences
v1 = 20 e1 = 30 b1 = {s1, s2}
v2 = 30 e2 = 40 b2 = {s3, s4}
v3 = 40 e3 = 50 b3 = {s5, s6}
v4 = 50 e4 = 60 b4 = {s2, s3}
v5 = 60 e5 = 70 b5 = {s4, s5}

Table 2.1: Customers’ types

2.5 Numerical Results

2.5.1 Grid Structure

To study the effect of distribution system constraints on the pricing/routing solutions,

we use bus 4 of the Roy Billinton Test System (RBTS) [32]. Fig. 2.2 shows the single-line

diagram of Bus 4 distribution networks. Line limit details are shown in Table 2.5.3. In

the case study, we include 6 charging stations with parameters shown in Table 2.5.3. The

first three stations are load points LP6, LP7, and LP15 in bus 2 of RBTS, and the rest

of the charging stations are in bus 4 of RBTS as shown in Fig. 2.2. We assume that

each load point with a charging station also has a commercial conventional loading with

an average of 415 kW and a peak of 671.4 KW. Furthermore, for each bus, we use the

locational marginal electricity prices data from [33].

2.5.2 EV Arrivals

In our case study, we assume each customer belongs to one of the 125 user types

considering 5 different values of times, 5 different energy demand, and 5 different traveling

preferences as it is shown in Table 2.5.1. We note that the dimension of the type grid is

not a major issue and it can be further expanded if needed. We consider 24-time slots

with varying potential arrival rates for each day (note that at each time slot, we solve a

static problem as we have assumed that the dynamics of charging, which takes around
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20 minutes, is faster than the dynamics of the variations of arrival rates). We use the

Danish driving pattern in [34] to model EVs arrival rates (see Fig. 2.3).

Figure 2.3: EVs arrival to the system at each time step.

We focus specifically on the special case of stations with hard capacity constraints,

where our proposed Algorithm 1 can determine the globally optimal pricing-routing pol-

icy. Then we study both socially optimal and profit-maximizing scenarios. We highlight

the results of our algorithm by considering both charging stations equipped with behind-

the-meter solar generation and without any solar generation.

2.5.3 Experiment Results

In a socially optimal scenario, it can be seen from Fig. 2.4 that line loadings reach but

do not exceed the limit at hours 14, 23, and 24, which means the distribution network

constraints are active for station 6. Hence, the CNO can design an incentive-compatible

pricing and routing scheme while considering the impact of EV charging in the power

distribution system (in Fig. 2.4, it is shown that in the absence of distribution system

constraints, the optimal pricing/routing strategy would violate network constraints).

Now, let us assume that a charging station of 6, which is the farthest charging station

from customers’ routes (i.e., the least desirable assignment for them in terms of traveling
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Figure 2.4: Line loading of the socially optimal problem for station 6.

Line L31 L43
limit (kWh) 7000 1400

Table 2.2: Line loading limit

distance), can potentially be equipped with a behind-the-meter large-scale (500kW) solar

system (this will require 1500m2 of roof space to install). For the random generation

profiles, we use solar data from [35] for June 2019 (one realization shown in Fig. 2.5).

The first result we highlight is the energy consumption profile of station 6 under the

social-welfare maximizing scenario with available solar capacity. Essentially, by compar-

ing energy demand with no solar generation, i.e., Fig. 2.4 and with solar generation,

i.e., Fig. 2.5, we see that the availability of free solar energy makes the farthest charging

station have higher levels of demand in order to maximize welfare, and so customers have

to drive further on average. We will highlight this trade-off more thoroughly next.

Time travel distance (hour) Capacity (MWh)
d1 = 0.03 c1 = 0.6
d2 = 0.06 c2 = 0.7
d3 = 0.09 c3 = 0.8
d4 = 0.12 c4 = 0.6
d5 = 0.15 c5 = 0.8
d6 = 0.18 c6 = 1

Table 2.3: Charging stations’ values
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Figure 2.5: Energy demand for charging station 6 with behind-the-meter solar
generation capacity.

Socially optimal Profit maximizing
With solar generation 9460 ($) 9320 ($)

Without solar generation 8280 ($) 8440 ($)

Table 2.4: Cost of traveling of all customers over a day

Specifically, Table 2.5.3 shows the cost of traveling from the main corridor to reach

charging stations for all types of customers with vehicle arrivals shown in Fig. 2.3. We

calculate
∑B

l=1

∑V
i=1

∑E
j=1 viλi,j,ℓWi,j,ℓ as the cost of traveling in both socially optimal and

profit-maximizing scenarios over a day. Without solar generation, for both cases in which

the objective is to maximize social welfare and maximize profits, customers with a higher

VoT and lower energy demand have priority in joining the closer charging stations. With

solar generation, in the socially optimal case, customers with higher energy demand are

assigned to the furthest charging station even to get cheaper electricity, and the traveling

cost is larger. However, for the profit-maximizing case, customers with a higher value

of time (and hence higher willingness to pay) are still assigned to the closer charging

stations (and are charged more), and the overall cost of traveling is less than when the

objective is to maximize social welfare, and larger than not having solar generation.

We would like to note that the concept of incentive compatibility as highlighted in

our work only applies to each individual’s incentive for incorrectly reporting their type to
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Energy demand (kWh) 50 60 40
Value of time ($/h) 20 30 40

Reward ($) 440 635 845
Locational marginal price ($/kWh) 0.5 0.4 0.3

Time travel distance (h) 0.3 0.6 0.9

Table 2.5: Parameters

the CNO under the differentiated service program. The algorithm provides no guarantee

that every individual is better off under the differentiated SO policy than they would

be under a Nash Equilibrium with no centralized routing, hence incentivizing them to

request the existence of the differentiated service program. This is considered normal

since any type of congestion pricing mechanism (including locational marginal pricing)

to maximize welfare could lead to cost increases for some individuals but overall improve

welfare for society.

2.5.4 Bench-marking with status-quo

The goal of this experiment is to highlight the benefits of a mobility-aware differ-

entiated service mechanism as opposed to self-routing by customers to stations, which

can be considered the status-quo. We have compared the performance of our proposed

solution to the equilibrium load and wait time pattern at the stations in the scenario

where users self-route. We assume that in the self-routing scenario, customers will be

charged at locational marginal prices for energy (which can vary across stations). For the

experiment, we assume 3 different user types, and 3 charging stations (this is clearly not

a realistic choice of the parameters, but computing all the equilibria is computationally

challenging in bigger cases). The values we used for the numerical experiment are shown

in Table 2.5.4:

Then, we let the customers selfishly choose the charging station they want to charge

at in order to maximize their utility. We need to note that multiple Nash equilibria may
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exist for this game. In our setup, there exist 4 different equilibria, and the values of

social welfare are 7290.9$, 7302.1$, 7312.1$, 7328.1$. Observe that they are all less than

the value of social welfare achieved using our proposed solution based on differentiated

services, which is 7398.9$. We can argue that this is a natural observation given the lack

of appropriate congestion pricing schemes that can deter users from the most popular

choice of stations. We note that congestion pricing to guide users towards a socially-

optimal charge footprint while considering station capacities is not straightforward to

apply in this case for reasons explained in the Introduction.

2.6 Conclusions

We studied the decision problem of a CNO for managing EVs in a public charging

station network through differentiated services. In this case, EV users cannot directly

choose which charging station they will charge at. Instead, they choose their energy

demand and their priority level, as well as their traveling preferences (which stations

they are willing to visit) from among a menu of service options that are offered to them,

and the CNO then assigns them to the charging stations directly to control station wait

times and electricity costs. This is reminiscent of incentive-based direct load control

algorithms that are very popular in demand response. We propose incentive-compatible

pricing and routing policies for maximizing the social welfare or the profit of the CNO.

We proposed an algorithm that finds the globally optimal solution for the non-convex

optimizations that appear in our work in the special case of hard capacity constraints in

both social welfare and profit maximization scenarios and highlighted the benefits of our

algorithms towards behind-the-meter solar integration at the station level. [36, 37, 22]

are the the results of this work.
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Chapter 3

Stochastic Linear Bandit: An

Overview

3.1 Introduction

In this chapter, we present a summary on the stochastic linear bandit (LB) problem.

Stochastic bandit optimization is a sequential decision-making problem that has long

found applications in many fields where some characteristics of the users’ response are

not known and can only be learned through a limited number of noisy observations,

including recommendation engines, advertisement placement, personalized medicine, etc.

The learner’s objective for the overall learning task consists of maximizing the cumulative

reward gained during T rounds of interaction with the user. The expected reward gained

at each round t is a function f(xt) of the feature vector xt associated with each action

that the learner chooses to play, and f is not known to the learner. There is rich

literature covering parametric or non-parametric characterizations of f , as well as finite

or continuous action sets.

Two popular algorithms have been studied in order to capture the trade-off between

38



Stochastic Linear Bandit: An Overview Chapter 3

exploration and exploitation in sequential decision-making problems: 1) Upper confidence

bound (UCB), which consists of choosing the optimal action according to the upper-

confidence bounds on the true parameter (i.e., θ⋆) [38]; 2) Thompson Sampling (TS),

which samples the true parameter from a prior distribution, and selects the optimal

action with respect to the sampled parameter [39]. [40] formalized the linear bandit

problem which is the extension of the Multi-armed bandit problem introduced by [41].

In [40], the arms are associated with vectors in Rd, and the reward is a noisy and unknown

linear function of the arms, and they derived an optimistic algorithm that relies on the

least-square estimation of the unknown reward parameter. Further, [42] introduced new

concentration inequalities for the least square estimates which allows them to improve

the regret bound of [40]. Similarly, a Thompson Sampling algorithm that has shown

a good empirical performance can be derived for the LB problem. [39] provided the

first regret analysis for the LB problem, and later on, [43] proposed the linear Thompson

Sampling Algorithm with least square concentration inequalities. In this chapter, we first

present the LB setting, and then we present the OFUL and Linear Thompson Sampling

algorithms with their regret guarantees.

3.2 Problem Setting

In LB, the learner is given a convex and compact set of actions X ⊂ Rd. At each

round t, playing an action xt ∈ X results in observing reward:

rt := x⊤
t θ∗ + ξt (3.2.1)

where θ∗ ∈ Rd is a fixed but unknown vector that describes the users’ characteristics,

and ξt is a zero-mean noise. Here, the expected reward is linear in the action xt, i.e.,
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f(xt) = x⊤
t θ∗.

We denote the optimal arm as:

x∗ = argmax
x∈X

x⊤θ∗ (3.2.2)

At each step t, the learner selects an arm xt ∈ X based on the past observations (and

possibly additional randomization), it observes the reward rt := x⊤
t θ∗ + ξt and it suffers

a regret equal to the difference in expected reward between the optimal arm x∗ and the

arm xt. All the information observed up to time t is encoded in the filtration Ft =

(F1, σ(x1, . . . , xt, ξ1, . . . , ξt, )), where F1 contains any prior knowledge. The objective of

the learner is to minimize the cumulative pseudo-regret up to round T :

R(T ) =
T∑
t=1

x⊤
∗ θ∗ − x⊤

t θ∗. (3.2.3)

We make the following standard assumptions on the noise distribution, the reward pa-

rameter, and the actions.

Assumption 3 For all t, ξt is conditionally zero-mean R-sub-Gaussian noise variables,

i.e., E[ξt|Ft−1] = 0, and E[eλξt |Ft−1] ≤ exp (λ
2R2

2
), ∀λ ∈ Rd.

Assumption 4 There exists a positive constant S such that ∥θ⋆∥2 ≤ S.

Assumption 5 The action set X is a compact and convex subset of Rd that contains

the unit ball. We assume that ∥x∥2 ≤ L,∀x ∈ X . Also, we assume ⟨x, θ⋆⟩ ≤ 1,∀x ∈ X .

3.3 Regularized Least-Square Estimation

The LB problem is characterized by bandit feedback, i.e., the learner only observes

the rewards without any additional information on θ∗. However, an estimate θ̂t can be
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computed using the standard least square procedure. Let (x1, . . . , xt) be the sequence of

arms chosen up to round t, and (r1, . . . , rt) be their corresponding rewards. Then, θ∗ can

be estimated by regularized least-square (RLS). For any parameter, λ > 0, the design

matrix and the RLS estimates are:

Vt = λI +
t−1∑
s=1

xsx
⊤
s , θ̂t = V −1

t

t−1∑
s=1

xsrs+1. (3.3.1)

Leveraging the theory of self-normalized processes, [42] derived a new concentration

inequality for the RLS estimate.

Proposition 3.3.1 Let Assumptions 3, 4, and 5 hold. For any fixed δ ∈ (0, 1), and

βt(δ) = R

√√√√d log

(
1 + tL2

λ

δ

)
+
√
λS (3.3.2)

with probability at least 1− δ, it holds that

∥∥∥θ̂t − θ⋆

∥∥∥
Vt

≤ βt(δ). (3.3.3)

3.4 Optimism in Face of Uncertainty for Linear Ban-

dit

In this section, we present the Optimism in Face of Uncertainty for the Linear ban-

dit (OFUL) algorithm of [42]. The summary of the OFUL algorithm is presented in

Algorithm 2.
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Algorithm 2: OFUL algorithm

5 Input: δ, T, λ, V1 = λI.
6 for t = 1, . . . , T do

7 Build the confidence region: Ct(δ) = {θ ∈ Rd :
∥∥∥θ − θ̂t

∥∥∥
Vt

≤ βt(δ)}

8 Select the action-parameter pair: (xt, θ̃t) = argmaxx∈X ,θ∈Ct(δ) x
⊤θ

9 Play action xt, and observe reward rt = x⊤
t θ∗ + ξt

10 Update the RLS estimate θ̂t+1 and design matrix Vt+1 using (3.3.1).

11 end for

At each time step t, for a fixed δ ∈ (0, 1), OFUL constructs a confidence set Ct(δ) as:

Ct(δ) = {θ ∈ Rd :
∥∥∥θ − θ̂t

∥∥∥
Vt

≤ βt(δ)}. (3.4.1)

Proposition 3.3.1 guarantees that θ∗ ∈ Ct with probability at least 1 − δ. Then at each

time step, OFUL selects the optimistic action-parameter pair as

(xt, θ̃t) = argmax
x∈X ,θ∈Ct(δ)

x⊤θ. (3.4.2)

Under the Assumptions 3, 4, and 5, [42] proved the following result on the regret bound

of OFUL algorithm:

Theorem 3.4.1 For any δ ∈ (0, 1), with probability at least 1−δ, the regret of the OFUL

algorithm is bounded as:

R(T ) ≤ 2βT

√
2dT log(1 +

TL2

λd
), (3.4.3)

where βt = R

√
d log

(
1+ tL2

λ

δ

)
+
√
λS.
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3.5 Thompson Sampling Algorithm for Linear Ban-

dit

In this section, we present Linear Thompson Sampling (LTS) algorithm from [43].

First, [44] define Thompson Sampling (TS) for linear bandit as a Bayesian algorithm

where a Gaussian prior over θ∗ is updated according to the observed reward, a random

sample is drawn from the posterior, and the corresponding optimal arm is selected at

each step. Then, [43] show that LTS can be defined as a generic randomized algorithm

constructed on the RLS-estimate rather than sampling from a Bayesian posterior. The

summary of LTS is presented in Algorithm 3.

Algorithm 3: LTS algorithm

12 Input: δ, T, λ, V1 = λI.
13 Set δ′ = δ/(4T )
14 for t = 1, . . . , T do

15 Sample ηt ∼ DTS, and compute θ̃t = θ̂t + βt(δ
′)V

−1/2
t ηt

16 Select the action : xt = argmaxx∈X x⊤θ̃t
17 Play action xt, and observe reward rt = x⊤

t θ∗ + ξt

18 Update the RLS estimate θ̂t+1 and design matrix Vt+1 using (3.3.1).

19 end for

At each time step t, given RLS-estimate θ̂t and the design matrix Vt, LTS samples a

perturbed parameter θ̃t as:

θ̃t = θ̂t + βt(δ
′)V

−1/2
t ηt, (3.5.1)

where ηt is a random sample drawn i.i.d. from a suitable multivariate distribution DTS.

Then, the optimal arm associated with the perturbed parameter is chosen and the cor-

responding reward is observed. LTS requires solving only a linear optimization problem

in contrast with OFUL which requires solving a bilinear optimization problem in (3.4.2).
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The key idea of [44, 43] on how to select the random perturbation ηt ∈ Rd to guarantee

good regret performance is as follows. On the one hand, θ̃t must stay close enough to

the RLS-estimate θ̂t so that x⊤
t θ̃t is a good proxy for the true (but unknown) reward

x⊤
t θ⋆. Thus, ηt must satisfy an appropriate concentration property. On the other hand,

θ̃t must also favor exploration in a sense that it leads –often enough– to actions xt that

are optimistic, i.e., they satisfy

x⊤
t θ̃t ≥ x⊤

⋆ θ⋆ (3.5.2)

Thus, ηt must satisfy an appropriate anti-concentration property. This translates into

the following conditions on DTS.

Definition 3.5.1 DTS is a multivariate distribution on Rd absolutely continuous with

respect to the Lebesgue measure which satisfies the following properties:

• Anti-concentration: there exists a constant p > 0 such that for any u ∈ Rd with

∥u∥2 = 1:

P(u⊤ηt ≥ 1) ≤ p. (3.5.3)

• Concentration: There exists constants c, c′ > 0, such that ∀δ ∈ (0, 1):

P

(
∥ηt∥2 ≤

√
cd log(

c′d

δ
)

)
≥ 1− δ. (3.5.4)

[43] interpreted that the definition of DTS requires LTS to explore far enough from θ̂t

(anti-concentration) but not too much (concentration). This implies that LTS performs

“useful” exploration with enough frequency (notably it performs optimistic steps), but

without selecting arms with too large regret.
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[43] also prove a regret bound for the LTS algorithm. To do that, they first use the

following standard decomposition of the cumulative regret:

R(T ) =
T∑
t=1

(
x⊤
⋆ θ⋆ − x⊤

t θ̃t︸ ︷︷ ︸
Term I

)
+

T∑
t=1

(
x⊤
t θ̃t − x⊤

t θ⋆︸ ︷︷ ︸
Term II

)
, (3.5.5)

where Term I depends on the randomization of LTS, and Term II mostly depends on

the properties of RLS-estimation. Regarding Term II, the concentration property of HTS

guarantees that θ̃t is close to θ̂t, and consequently, close to θ⋆ thanks to Proposition 3.3.1.

Therefore, controlling Term II can be done similarly to previous works e.g., [42].

Theorem 3.5.2 (Regret of LTS) Let λ ≥ 1 and Assumptions 3, 4, and 5 hold. Fix

δ ∈ (0, 1). Then, with probability at least 1 − δ, the regret of LTS is upper bounded as

follows:

R(T ) ≤
(
βT (δ

′) + γT (δ
′)(1 +

4

p
)
)√

2Td log (1 +
TL2

λ
) +

4γT (δ
′)

p

√
8TL2

λ
log

4

δ
, (3.5.6)

where δ′ = δ
4T
, βt(δ

′) as in (3.3.2) and, γt(δ
′) = βt(δ

′)
(
1 + 2

C
LS
)√

cd log ( c
′d
δ′
).

In summary, the two efficient approaches for the LB problem:

• linear UCB (LUCB): [42] provides a regret bound of order O(dT 1/2 log T ).

• linear Thompson Sampling (LTS): [43] adopt a frequentist view and show a regret

bound of order O(d3/2 log1/2 dT 1/2 log3/2 T ).
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Chapter 4

Safety-constrained Bandit

Algorithms with Applications to

Human-Cyber-Physical Systems

4.1 Introduction

The application of stochastic bandit optimization algorithms to safety-critical sys-

tems has received significant attention in the past few years. In such cases, the learner

repeatedly interacts with a system with an uncertain reward function and operational

constraints. In spite of this uncertainty, the learner needs to ensure that her actions do

not violate the operational constraints at any round of the learning process. This shares

a similar challenge to the one in H-CPS due to the involvement of humans in the control

loop. For example, in electricity pricing for societal-scale infrastructure systems such

as power grids or transportation networks where minimizing the operational costs with

a limited number of user interactions. In this case, it is required that the operational

constraints of the power grid are not violated in response to our actions. However, the
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existing bandit algorithms might not be directly applicable to these cases due to the

existence of infrastructural safety constraints that have to be met at each round of user

interactions. Especially in the earlier rounds, there is a need to choose actions with

caution, while at the same time making sure that the chosen action provides sufficient

learning opportunities about the set of safe actions. This uncertainty about safety and

the resulting conservative behavior means the learner could experience additional costs

in such constrained environments.

In this chapter we focus on linear stochastic bandits (LB) (see Chapter 3 for details)

where each action is associated with a feature vector x, and the expected reward of

playing each action is equal to the inner product of its feature vector and an unknown

parameter vector θ⋆. Two efficient approaches have been developed: linear UCB (LUCB)

and linear Thompson Sampling (LTS). For LUCB, [42] provides a regret bound of order

O(d·T 1/2 log T ). For LTS [44, 43] adopt a frequentist view and show regretO(d3/2 log1/2 d·

T 1/2 log3/2 T ). Here we provide an LTS algorithm that respects linear safety constraints

and study its performance.

4.2 Problem Setting

Reward function. The learner is given a convex and compact set of actionsD0 ⊂ Rd.

At each round t, playing an action xt ∈ D0 results in observing reward rt := x⊤
t θ⋆ + ξt,

where θ⋆ ∈ Rd is a fixed, but unknown, parameter and ξt is a zero-mean additive noise.

Safety constraint. We further assume that the environment is subject to a linear

constraint:

x⊤
t µ⋆ ≤ C, (4.2.1)
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which needs to be satisfied by the action xt at every round t, to guarantee the safe

operation of the system. Here, C is a positive constant that is known to the learner,

while µ⋆ is fixed, but unknown vector parameter. Let us denote the set of “safe actions”

that satisfy the constraint (4.2.1) as follows:

Ds
0(µ⋆) := {x ∈ D0 : x

⊤µ⋆ ≤ C}. (4.2.2)

By having C > 0 and further assuming that 0 ∈ D0, we know that the action 0 is always

as safe action. However, beyond that Ds
0(µ⋆) is unknown to the learner, since µ⋆ is itself

unknown. We consider a bandit-feedback setting in which, at every round t, the learner

receives side information about the safety set via noisy measurements:

wt = x⊤
t µ⋆ + ζt, (4.2.3)

where ζt is zero-mean additive noise. During the learning process, the learner needs a

mechanism that allows her to use the side measurements in (4.2.3) for determining the

safe set Ds
0(µ⋆). This is critical since it is required (at least with high probability) that

xt ∈ Ds
0(µ⋆) for all rounds t.

Regret. The cumulative pseudo-regret for T rounds is R(T ) =
∑T

t=1 x
⊤
⋆ θ⋆ − x⊤

t θ⋆,

where x⋆ = argmaxx∈Ds
0(µ

∗) x
⊤θ⋆ is the optimal safe action that maximizes the expected

reward over Ds
0(µ⋆).

Learning goal. The learner’s objective is to control the growth of the pseudo-

regret. Moreover, we require that the chosen actions xt, t ∈ [T ] are safe (i.e., they belong

to Ds
0(µ⋆) in (4.2.2)), with high probability over T rounds. As is common, we use regret

to refer to the pseudo-regret R(T ).

Example. As a concrete motivation example of our setting, consider medical trials,
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a problem traditionally advocated as an application area for linear bandits, where the

effect of different therapies is unknown a-priori to the doctors and can only be determined

through clinical trials. Free exploration is not possible, since it may lead to actions that

cause harm to the patient, an outcome to be avoided at all times. To model this, we

pick the unknown parameter µ⋆ so as to represent the patients’ response, and the known

parameter C so as to represent a safety threshold that doctors need to account for.

The hazard-threshold C can be assumed known as it is the same for all patients (and

can be estimated from existing data). In this example, actions xt represent selected

therapies at time t (e.g., drug dosage) and we assume that a (conservative) safe seed

set of harmless (but, plausibly not efficient) therapies is known to the doctor. Overall,

while doctors try to select therapies (xt) with high rewards (which could be a signal that

shows improvement in a patient’s health condition), they should not violate the safety

constraint x⊤
t µ⋆ ≤ C at any time.

4.2.1 Contribution

We do believe that albeit simple, linear models for safety constraints could be directly

relevant in traditionally advocated applications of bandit problems such as medical trials

applications [45], recommendation systems [46], and ad placement [47]. Even in more

complex settings where linear models are not directly applicable, we still believe that

this is the appropriate first step toward a principled study of the performance of safe

algorithms.

The contribution of our work in this chapter are the following:

• We provide the first safe Linear Thompson Sampling (Safe-LTS) algorithm with prov-

able regret guarantees for the linear bandit problem with linear safety constraints.

• Our analysis shows that Safe-LTS achieves the same order O(d3/2 log1/2 d·T 1/2 log3/2 T )
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of regret as the original LTS (without safety constraints) [43]. Hence, the dependence of

our regret bound on the time horizon T cannot be improved modulo logarithmic factors

(see lower bounds in [40, 48]).

• We compare Safe-LTS to existing safe versions of LUCB. We show that our algorithm

has: better regret in the worst-case, fewer parameters to tune, and superior empirical

performance.

• We propose a heuristic modification to our Safe-LTS algorithm that adapts a dynamic

noise-distribution scheme and is shown empirically to outperform the latter. This idea

might also be relevant in the unconstrained linear bandit setting.

On a technical level, to derive Safe-LTS and its regret bound, need to properly account

for the fact that the optimal safe action x⋆ is not necessarily in the estimated safe decision

set (see Eqn. (4.3.3) for formal definition) at each round t. This is because, at each time

step, we only have an estimate of the unknown parameter µ∗, thus the estimated set is

only a conservative inner approximation of the actual safe set in (4.2.2). Consequently,

we need to design an action selection rule that is simultaneous: (i) Frequently optimistic

in spite of limitations on actions imposed because of safety. Here, we achieve this by

appropriately tuning the randomization of Thompson Sampling. Specifically, through

careful analysis, essentially controlling the distance of the optimal action x⋆ from the

estimated safe set, we find that the appropriate tuning involves scaling with a simple

function of the problem parameters including the safety constant C. (ii) Guarantees a

proper expansion of the estimated safe set so as to not exclude good actions for a long

time, leading to large regret of safety. Here, we show that it is the randomized nature of

LTS that achieves this second goal, and this is exactly where the LUCB action selection

rule seems to fail to provide the same guarantees.

50



Safety-constrained Bandit Algorithms with Applications to Human-Cyber-Physical Systems
Chapter 4

4.2.2 Other Related Work

Multi-armed Bandits (MAB) - Two popular algorithms have been studied in MAB in

order to capture the trade-off between exploration and exploitation in sequential decision-

making problems: 1) Upper confidence bound (UCB), which consists of choosing the

optimal action according to the upper-confidence bounds on the true parameter (i.e.,

θ⋆) [38]; 2) Thompson Sampling (TS), which samples the true parameter from a prior

distribution, and selects the optimal action with respect to the sampled parameter [39].

Moreover, [49] considers a new approach to the MAB problem based on Deterministic

Sequencing of Exploration and Exploitation (DSEE). In particular, they divide the time

horizon into the pure exploration phase and the pure exploitation phase. In the former,

the player plays all arms in a round-robin fashion. In the latter, the player plays the arm

with the largest sample mean. [50, 51] study the MAB problem in multiplayer settings

where a team of agents cooperates on a network in order to maximize their collective

reward. In [52, 53], they study the multi-objective MAB problem where the components

of the reward signal correspond to different objectives. They evaluate the performance

of their algorithm with notions of 2-D regret and Pareto regret. Other lines of work

have studied the best-arm identification problem in MAB that aims to identify the arm

with the largest expected regret [54] as well as cascading bandits where the goal is to

learn arms in order to rank them based on the users’ preferences such as recommendation

systems [55]. In [56, 57], they study the MAB problem given adversarial attacks, where

the adversary can change the action selected by the learner, and they propose a robust

algorithm for the case that the total attack cost is given. Also, [58] studies the MAB

problem in the case that the statistical rewards of different arms may be correlated. In

particular, they study the regional bandits problem where the arms belong to different

groups such the expected reward of the arms in the same group is a function of the
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common parameter, and the parameters are independent across different groups. Another

line of work focuses on the design of risk-sensitive algorithms [59, 60, 61]. In particular,

in economic and finance applications, the learner may be more interested in reducing

the uncertainty (i.e., risk) in the outcome, rather than achieving the highest cumulative

reward [62, 63].

Safety - A diverse body of related works on stochastic optimization and control have

considered the effect of safety constraints that need to be met during the run of the

algorithm [64, 65] and references therein. Closely related to our work, [66, 67] study non-

linear bandit optimization with nonlinear safety constraints using Gaussian processes

(GPs) as non-parametric models for both the reward and the constraint functions. Their

algorithms have shown great promise in robotics applications [68, 69]. Without the GP

assumption, [45] proposes and analyzes a safe variant of the Frank-Wolfe algorithm to

solve a smooth optimization problem with an unknown convex objective function and

unknown linear constraints (with side information, similar to our setting). All the above

algorithms come with provable convergence guarantees, but no regret bounds. To the

best of our knowledge, the first work that derived an algorithm with provable regret guar-

antees for bandit optimization with stage-wise safety constraints, as the ones imposed on

the aforementioned works, is [70]. While [70] restricts attention to a linear setting, their

results reveal that the presence of the safety constraint –even though linear– can have

a non-trivial effect on the performance of LUCB-type algorithms. Specifically, the pro-

posed Safe-LUCB algorithm comes with a problem-dependent regret bound that depends

critically on the location of the optimal action in the safe action set – increasingly so in

problem instances for which the safety constraint is active. In [70], the linear constraint

function involves the same unknown vector (say, θ⋆) as the one that specifies the linear

reward. Instead, in Section 4.2 we allow the constraint to depend on a new parameter vec-

tor (say, µ⋆) to which the learner gets access via side-information measurements (4.2.3).
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This latter setting is the direct linear analog to that of [66, 67, 45] and we demonstrate

that an appropriate Safe-LTS algorithm enjoys regret guarantees of the same order as the

original LTS without safety constraints. A more elaborate comparison to [70] is provided

in Section 4.5.3. In contrast to the previously mentioned references, another recent work

[46] defines safety as the requirement of ensuring that the cumulative (linear) reward up

to each round stays above a given percentage of the performance of a known baseline

policy. A “stage-wise” variant of this type of constraint was recently studied in another

interesting work [71]. Compared to [46], the setting of [71] is closer to ours, but there

are still some key differences. Most notably, in contrast, to [71], the constraint studied

here is such that the optimal action x⋆ is not guaranteed to be in the estimated safe-set

(especially at early rounds t). Because of this, the analysis of [71] is not directly appli-

cable here. On a technical side, [71] proves a bound on the expected reward (but they

restrict actions to an ellipsoidal). Instead, we present a high-probability bound on the

regret similar to [46, 70]. Moreover, [72] also considers more relaxed safety constraints

with respect to ours (from high probability to expectation) in the bandit setting. They

propose an optimism-pessimism algorithm for both linear bandit and MAB problems.

Also, it is worth mentioning that the algorithms presented in [70, 71] require distinct

rounds of randomization that are dedicated to learning the unknown constraints. Instead,

our analysis shows that the inherent randomization of the TS action selection rule suffices

for this purpose. As a closing remark, [70, 46, 45, 71, 73, 74, 75] show that simple linear

models for safety constraints might be directly relevant to several applications such as

medical trials, recommendation systems, managing the customers’ demand in power-grid

systems. Moreover, even in more complex settings where linear models do not directly

apply (e.g., [68, 69]), we believe that this simplification is an appropriate first step towards

a principled study of regret behavior of safe algorithms in sequential decision settings.

Thompson Sampling - Even though TS-based algorithms [76] are computationally
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easier to implement than UCB-based algorithms and have shown great empirical perfor-

mance, they were largely ignored by the academic community until a few years ago, when

a series of papers [77, 43, 39, 78] showed that TS achieves optimal performance in both

frequentist and Bayesian settings. Most of the literature focused on the analysis of the

Bayesian regret of TS for general settings such as linear bandits or reinforcement learning

(see e.g., [79]). More recently, [80, 81, 82] provided an information-theoretic analysis of

TS. Additionally, [83] provides regret guarantees for TS in the finite and infinite MDP

setting. Another notable paper is [84], which studies the stochastic MAB problem in

complex action settings providing a regret bound that scales logarithmically in time with

improved constants. None of these papers study the performance of TS for LB with

safety constraints.

4.3 Safe Linear Thompson Sampling

Our proposed algorithm is a safe variant of Linear Thompson Sampling (LTS). At

any round t, given a regularized least-squares (RLS) estimate θ̂t, the algorithm samples

a perturbed parameter θ̃t that is appropriately distributed to guarantee sufficient ex-

ploration. Considering this sampled θ̃t as the true environment, the algorithm chooses

the action with the highest possible reward while making sure that the safety constraint

(4.2.1) holds. The presence of the safety constraint complicates the learner’s choice of

actions. In order to ensure that actions remain safe at all rounds, the algorithm uses the

side-information (4.2.3) to construct a confidence region Ct, which contains the unknown

parameter µ⋆ with high probability. With this, it forms an inner approximation Ds
t of

the safe set, which is composed of all actions xt that satisfy the safety constraint for all

v ∈ Ct. The summary is presented in Algorithm 4 and a detailed description follows.
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Algorithm 4: Safe Linear Thompson Sampling (Safe-LTS)

20 Input: δ, T, λ. Set δ′ = δ
6T

21 for t = 1, . . . , T do
22 Sample ηt ∼ HTS

23 Set Vt = λI +
∑t−1

s=1 xsx
⊤
s and compute RLS-estimates θ̂t and µ̂t

24 Set: θ̃t = θ̂t + βt(δ
′)V

− 1
2

t ηt
25 Build the confidence region: Ct(δ′) = {v ∈ R : ∥v − µ̂t∥Vt

≤ βt(δ
′)}

26 Compute the estimated safe set: Ds
t = {x ∈ D0 : x

⊤v ≤ C, ∀v ∈ Ct(δ′)}
27 Play the following action: xt = argmaxx∈Ds

t
x⊤θ̃t

28 Observe reward rt and measurement wt

29 end for

4.3.1 Model Assumptions

Notation. [n] denotes the set {1, 2, . . . , n}. The Euclidean norm of a vector x

is denoted by ∥x∥2. Its weighted ℓ2-norm with respect to a positive semidefinite ma-

trix V is denoted by ∥x∥V =
√
x⊤V x. We also use the standard Õ notation that

ignores poly-logarithmic factors. Finally, for ease of notation, from now on-wards we

refer to the safe set in (4.2.2) by Ds
0 and drop the dependence on µ⋆. Let Ft =

(F1, σ(x1, . . . , xt, ξ1, . . . , ξt, ζ1, . . . , ζt)) denote the filtration representing the accumulated

information up to round t. We also introduce standard assumptions on the problem as

follows.

Assumption 6 For all t, ξt and ζt are conditionally zero-mean, R-sub-Gaussian noise

variables, i.e., E[ξt|Ft−1] = E[ζt|Ft−1] = 0, E[eαξt|Ft−1] ≤ exp (α
2R2

2
), E[eαζt |Ft−1] ≤

exp (α
2R2

2
),∀α ∈ R.

Assumption 7 There exists a positive constant S such that ∥θ⋆∥2 ≤ S and ∥µ⋆∥2 ≤ S.

Assumption 8 The action set D0 is a star-convex subset of Rd and contains the origin.

We assume ∥x∥2 ≤ L, ∀x ∈ D0.
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It is straightforward to generalize our results when the sub-Gaussian constants of ξt and

ζt and/or the upper bounds on ∥θ⋆∥2 and ∥µ⋆∥2 are different. Throughout, we assume

they are equal, for brevity.

4.3.2 Algorithm description and discussion

Let {xi}i∈[t] be the sequence of actions and {ri}i∈[t], {wi}i∈[t] be the corresponding

rewards and side-information measurements. For any λ > 0, the RLS-estimates θ̂t of θ⋆

and µ̂t of µ⋆ are θ̂t = V −1
t

∑t−1
s=1 rsxs, µ̂t = V −1

t

∑t−1
s=1wsxs, where Vt = λI +

∑t−1
s=1 xsx

⊤
s .

Based on θ̂t and µ̂t, we construct two confidence regions Et := Et(δ′) and Ct := Ct(δ′) as

follows:

Et := {θ ∈ Rd :
∥∥∥θ − θ̂t

∥∥∥
Vt

≤ βt(δ
′)}, (4.3.1)

Ct := {v ∈ Rd : ∥v − µ̂t∥Vt
≤ βt(δ

′)}. (4.3.2)

Both Et and Ct depend on δ′, but we will often suppress notation for simplicity. The

ellipsoid radius βt is properly chosen as in [42] in order to guarantee that θ⋆ ∈ Et and

µ⋆ ∈ Ct with high probability.

Theorem 4.3.1 Let Assumptions 6-7 hold. For δ ∈ (0, 1), and βt(δ) = R

√
d log

(1+ tL2

λ

δ

)
+

√
λS, with probability at least 1− δ, it holds that θ⋆ ∈ Et(δ) and µ⋆ ∈ Ct(δ), ∀t ≥ 1.

For Background on the frequentist view of LTS, please see Chapter 3-Section 3.5.

Addressing challenges in the safe setting

Compared to the classical linear bandit setting [44, 43], the presence of the safety

constraint raises the following two questions: (i) How to guarantee actions played at

each round are safe? (ii) In the face of the safety restrictions, how can optimism (cf.
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(3.5.2)) be maintained? In the rest of this section, we explain the mechanisms that

Safe-LTS employs to address both of these challenges.

Safety - First, the chosen action xt at each round need not only maximize x⊤
t θ̃t,

but also, it needs to be safe. Since the learner does not know the safe action set Ds
0,

Algorithm 4 performs conservatively and guarantees safety as follows. After creating the

confidence region Ct around the RLS-estimate µ̂t, it forms the so-called safe decision set

at round t denoted as Ds
t :

Ds
t = {x ∈ D0 : x

⊤v ≤ C, ∀v ∈ Ct}. (4.3.3)

Then, the chosen action is optimized over only the subset Ds
t , i.e.,

xt = argmax
x∈Ds

t

x⊤θ̃t. (4.3.4)

We make the following two remarks about Ds
t . On a positive note, Ds

t is easy to compute:

Ds
t := {x ∈ D0 : x

⊤v ≤ C, ∀v ∈ Ct} (4.3.5)

= {x ∈ D0 : max
v∈Ct

x⊤v ≤ C} (4.3.6)

= {x ∈ D0 : x
⊤µ̂t + βt(δ

′) ∥x∥V −1
t

≤ C}. (4.3.7)

Indeed, the optimization in (4.3.4) is an efficient convex quadratic program. Yet, the

challenge remains thatDs
t contains actions that are safe with respect to all the parameters

in Ct, and not only µ⋆. As such, it is only an inner approximation of the true safe set

Ds
0. As we will see next, this fact complicates the requirement for optimism.

Optimism in the face of safety - The fact that Ds
t is only an inner approximation

of Ds
0 makes it harder to maintain optimism of xt as defined in (3.5.2). To see this,
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note that in the classical setting, the algorithm of [43] would choose xt as the action

that maximizes θ̃t over the entire set D0. In turn, this would imply that x⊤
t θ̃t ≥ x⊤

⋆ θ̃t

because x⋆ belongs to the feasible set D0. This observation is the critical first argument

in proving that xt is optimistic often enough, i.e., (3.5.2) holds with fixed probability

p > 0. Unfortunately, in the presence of safety constraints, xt is a maximizer over only

the subset Ds
t . Since x⋆ may not lie within Ds

t , there is no guarantee that x⊤
t θ̃t ≥ x⊤

⋆ θ̃t

as before. So, how does then one guarantee optimism?

Intuitively, at the first rounds, the estimated safe set Ds
t is only a small subset of

the true Ds
0. Thus, xt ∈ Ds

t is a vector of the small norm compared to that of x⋆ ∈ Ds
0.

Thus, for (3.5.2) to hold, it must be that θ̃t is not only in the direction of θ⋆, but it also

has a larger norm than that. To satisfy this latter requirement, the random vector ηt

must be large; hence, it will “anti-concentrate more”. As the algorithm progresses, and

–thanks to side-information measurements– the set Ds
t becomes an increasingly better

approximation of Ds
0, the requirements on anti-concentration of ηt become the same as

if no safety constraints were present. Overall, at least intuitively, we might hope that

optimism is possible in the face of safety but only provided that ηt is set to satisfy a

stronger (at least at the first rounds) anti-concentration property than that required by

[43] in the classical setting.

At the heart of Algorithm 4 and its proof of regret lies an analytic argument that

materializes the intuition described above. Specifically, we will prove that optimism

is possible in the presence of safety at the cost of a stricter anti-concentration property

compared to that specified in [43]. While the proof of this fact is deferred to Section 4.4.1,

we now summarize the appropriate distributional properties that provably guarantee good

regret performance of Algorithm 4 in the safe setting.

Definition 4.3.2 In Algorithm 4, the random vector ηt is sampled IID at each t from a
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distribution HTS on Rd that is absolutely continuous with respect to the Lebesgue measure

and satisfies:

Anti-concentration: There exists constant p > 0 such that for any u ∈ Rd with ∥u∥2 = 1,

P
(
u⊤ηt ≥ 1 +

2

C
LS
)
≥ p. (4.3.8)

Concentration: There exists positive constants c, c′ > 0 such that ∀δ ∈ (0, 1),

P
(
∥ηt∥2 ≤

(
1 +

2

C
LS
)√

cd log (
c′d

δ
)
)
≥ 1− δ. (4.3.9)

In particular, the difference to the distributional assumptions required by [43] in the

classical setting is the extra term 2
C
LS in (4.3.8) (naturally, the same term affects the

concentration property (4.3.9)). Our proof of regret in Section 4.4 shows that this extra

term captures an appropriate notion of the distance between the approximationDs
t (where

xt lives) and the true safe set Ds
0 (where x⋆ lives), and provides enough exploration for

the sampled parameter θ̃t so that actions in Ds
t can be optimistic. While this intuition

can possibly explain the need for an additive term in Definition 4.3.2, it is insufficient

when it comes to determining its “correct” value. This is determined by our analytic

treatment in Section 4.4.1.

Finally, we remark that it is not hard to construct distributions that simultaneously

satisfy the two conditions in (4.3.8) and (4.3.9). For example, a multivariate zero-mean

IID Gaussian distribution with all entries having a (possibly time-dependent) variance

(1 + 2
C
LS)2 satisfies the Definition 4.3.2 and can be chosen to sample ηt in Algorithm 4

from it.
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4.4 Regret Analysis

Here, we present a tight regret bound for Safe-LTS by proving that its action selection

rule is simultaneously: 1) frequently optimistic, and, 2) guarantees a proper expansion of

the estimated safe set. Our main result Theorem 4.4.1 is perhaps surprising: in spite of

the additional safety constraints, Safe-LTS has regret O(d3/2 log1/2 d · T 1/2 log3/2 T ) that

is order-wise the same as that in the classical setting [44, 43].

Theorem 4.4.1 (Regret of Safe-LTS) Let λ ≥ 1 and Assumptions 6, 7, 8 hold. Fix

δ ∈ (0, 1). Then, with probability at least 1 − δ, Safe-LTS is safe and its regret is upper

bounded as follows:

R(T ) ≤
(
βT (δ

′) + γT (δ
′)(1 +

4

p
)
)√

2Td log (1 +
TL2

λ
)

+
4γT (δ

′)

p

√
8TL2

λ
log

4

δ
, (4.4.1)

where δ′ = δ
6T
, βt(δ

′) as in Theorem 4.3.1 and, γt(δ
′) = βt(δ

′)
(
1 + 2

C
LS
)√

cd log ( c
′d
δ′
) .

The theorem above provides guarantees both on the safety of the actions chosen by

Safe-LTS Algorithm 4, as well as, on its regret.

First, we comment on the safety of the actions, which is ensured by the construction

of the algorithm as discussed in Section 4.3.2. Formally, fix a desired δ and set δ′ = δ
6T
.

Consider any time t ∈ [T ]. On the one hand, from Theorem 4.3.1, it holds that P(µ⋆ ∈

Ct(δ′)) ≥ 1 − δ′. On the other hand, by construction (lines 7-8, Algorithm 4), Safe-LTS

guarantees that xt at time t belongs to Ds
t , i.e., x⊤

t v ≤ C, ∀v ∈ Ct(δ
′). Putting these

two together shows that P(x⊤
t µ⋆ ≤ C) ≥ 1− δ′. Then, a union bound (see Lemma B.1.5)

over all time steps from 1 to T proves that P(∀t ∈ [T ] : x⊤
t µ⋆ ≤ C) ≥ 1 − Tδ′ ≥ 1 − δ

6
,

i.e., Safe-LTS is with high probability at least 1− δ safe at all rounds.
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Next, we discuss the regret bound of Theorem 4.4.1, which requires careful analysis.

The detailed proof is in given in the Appendix B-Section B.2. In the rest of the section,

we highlight the key changes compared to [44, 43] that occur due to the safety constraint.

To begin, let us consider the following standard decomposition of the cumulative regret

R(T ) =
T∑
t=1

(
x⊤
⋆ θ⋆ − x⊤

t θ̃t︸ ︷︷ ︸
Term I

)
+

T∑
t=1

(
x⊤
t θ̃t − x⊤

t θ⋆︸ ︷︷ ︸
Term II

)
. (4.4.2)

Regarding Term II, the concentration property of HTS guarantees that θ̃t is close to θ̂t,

and consequently, close to θ⋆ thanks to Theorem 4.3.1. Therefore, controlling Term II

can be done similarly to previous works e.g., [42, 43]; see App. B.2.2 for more details.

Next, we focus on Term I.

To see how the safety constraints affect the proofs let us first review the treatment of

Term I in the classical setting. For UCB-type algorithms, Term I is always non-positive

since the pair (θ̃t, xt) is optimistic at each round t by design [40, 48, 42]. For LTS, Term

I can be positive; that is, (3.5.2) may not hold at every round t. However, [44, 43] proved

that thanks to the anti-concentration property of ηt, this optimistic property occurs often

enough.

Our main technical contribution, detailed in the next section, is to show that the

properly modified anti-concentration property in Definition 4.3.2 together with the con-

struction of approximated safe sets as in (4.3.7) can yield frequently optimistic actions

even in the face of safety. Specifically, it is the extra term 2
C
LS in (4.3.8) that allows

enough exploration to the sampled parameter θ̃t in order to compensate for safety limi-

tations on the chosen actions, and because of that we are able to show Safe-LTS obtains

the same order of regret as that of [43]. After that, in Section 4.4.2, we show that we

can bound the overall regret of Term I with the Vτ norm of the optimistic actions.

As a closing remark, we note that our proof of optimism in the face of safety directly
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applies as is above to a scenario where the constraint and the reward function are pa-

rameterized by the same vector θ⋆, i.e., the constraint is of the form x⊤
t θ⋆ ≤ C. In this

case, obviously, no side information is required and we can show the same order of regret

as in Theorem 4.4.1. Please see Section 4.5.3 for a discussion on how this result improves

upon that of [70] who studied constraints parameterized by θ⋆.

4.4.1 Proof sketch: Optimism despite safety constraints

We prove that θ̃t is optimistic with constant probability (see Appendix B-Section B.1

for a formal statement and proof).

Lemma 4.4.2 (Optimism in the face of safety; Informal) For any t ≥ 1, Safe-LTS sam-

ples parameter θ̃t and chooses action xt such that the pair (θ̃t, xt) is optimistic frequently

enough, i.e., P
(
x⊤
t θ̃t ≥ x⊤

⋆ θ⋆

)
≥ p, where p > 0 is the probability of the anti-concentration

property (4.3.8).

The challenge in the proof is that xt is chosen from Ds
t , which does not necessarily

contain all feasible actions and hence, may not contain x⋆. Thus, we need a mechanism to

control the distance of x⋆ from the optimistic actions that can only lie within the subsetDs
t

(distance is defined here in terms of an inner product with the optimistic parameters θ̃t).

Unfortunately, we do not have direct control over this distance term and so at the heart

of the proof lies the idea of identifying a “good” feasible action x̃t ∈ Ds
t whose distance to

x⋆ is easier to control. To be concrete, we show that it suffices to choose the good feasible

point in the direction of x⋆, i.e., x̃t = αtx⋆, where the key parameter αt ∈ (0, 1] must

be set to satisfy x̃t ∈ Ds
t . Naturally, the value of αt is determined by the approximated

safe set Ds
t as defined in (4.3.7). The challenge though is that we do not know how the

value of x⊤
∗ µ̂t compares to the constant C. We circumvent this issue by introducing an

enlarged confidence region centered at µ⋆ as C̃t := {v ∈ Rd : ∥v − µ⋆∥Vt
≤ 2βt(δ

′)}, and
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the corresponding shrunk safe decision set as

D̃s
t := {x ∈ D0 : x

⊤v ≤ C, ∀v ∈ C̃t}

= {x ∈ D0 : x
⊤µ⋆ + 2βt(δ

′) ∥x∥V −1
t

≤ C} ⊆ Ds
t . (4.4.3)

D̃s
t is defined with respect to an ellipsoid centered at µ⋆ (rather than at µ̂t). This

is convenient since x⊤
⋆ µ⋆ ≤ C. Using this, it can be easily checked that αt =

(
1 +

2
C
βt(δ

′) ∥x⋆∥V −1
t

)−1
ensures αtx⋆ ∈ D̃s

t ⊆ Ds
t . From this, and optimality of xt =

argmaxx∈Ds
t
x⊤θ̃t we have that

x⊤
t θ̃t ≥ αtx

⊤
⋆ θ̃t. (4.4.4)

Using (4.4.4), it suffices to prove that p ≤ P
(
αtx

⊤
⋆ θ̃t ≥ x⊤

⋆ θ⋆
)
= P

(
x⊤
⋆ θ̃t ≥ x⊤

⋆ θ⋆ +

2
C
βt(δ

′) ∥x⋆∥V −1
t

x⊤
⋆ θ⋆
)
, where, the equality follows by definition of αt. To continue, recall

that θ̃t = θ̂t+βtV
− 1

2
t ηt. Thus, the probability we want to lower bound can be equivalently

rewritten as

P
(
βt(δ

′)x⊤
⋆ V

− 1
2

t ηt ≥ x⊤
⋆ (θ⋆ − θ̂t) +

2

C
βt(δ

′) ∥x⋆∥V −1
t

x⊤
⋆ θ⋆
)
.

To simplify the above, we use (i) |x⊤
⋆ θ⋆| ≤ ∥x⋆∥2∥θ⋆∥2 ≤ LS; (ii) x⊤

⋆ (θ⋆−θ̂t) ≤ ∥x⋆∥V −1
t

∥θ⋆−

θ̂t∥Vt ≤ βt(δ
′)∥x⋆∥V −1

t
, because of Cauchy-Schwartz and Theorem 4.3.1. Put together, we

need that p ≤ P
(
βt(δ

′)x⋆V
− 1

2
t ηt ≥ βt(δ

′)∥x⋆∥V −1
t

+ 2
C
LSβt(δ

′) ∥x⋆∥V −1
t

)
, or equivalently,

p ≤ P
(
u⊤
t ηt ≥ 1 + (2/C)LS

)
, (4.4.5)

where we have defined ut = V
− 1

2
t x⋆

/
∥x⋆∥V −1

t
. By definition of ut, note that ∥ut∥2 =

1. Hence, the desired (4.4.5) holds due to the anti-concentration property of the HTS
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distribution in (4.3.8).

The key differences to the proof of optimism in the classical setting in [43, Lemma 3]

are as follows. First, we present an algebraic version of the basic machinery introduced in

[43, Sec. 5] that we show is convenient to extend to the safe setting. Second, we employ

the idea of relating xt to a “better” feasible point αtx⋆ and show optimism for the latter.

Third, even after introducing αt, the fact that 1/αt − 1 is proportional to ∥x⋆∥V −1
t

is

critical for the seemingly simple algebraic steps that follow (4.4.4). In particular, in

deducing (4.4.5) from the expression above, note that we have divided both sides in the

probability term by ∥x⋆∥Vt−1. It is only thanks to the proportionality observation that

we made above that the term ∥x⋆∥Vt−1 cancels throughout and we can conclude with

(4.4.5) without a need to lower bound the minimum eigenvalue of the Gram matrix Vt

(which is known to be hard).

4.4.2 Proof sketch: Why frequent optimism is enough to bound

Term I

As discussed in Section 4.4, the presence of the safety constraints complicates the

requirement for optimism. We show in Section 4.4.1 that Safe-LTS is optimistic with

constant probability in spite of safety constraints. Based on this, we complete the sketch

of the proof here by showing that we can bound the overall regret of Term I in (4.4.2)

with the Vτ -norm of optimistic (and in our case, safe) actions. Let us first define the set

of the optimistic parameters as

Θopt
t (δ′) = {θ ∈ Rd : maxx∈Ds

t
x⊤θ ≥ x⊤

⋆ θ⋆}. (4.4.6)
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In Section 4.4.1, we show that Safe-LTS samples from this set i.e., θ̃t ∈ Θopt
t , with

constant probability. Note that, if at round t Safe-LTS samples from the set of optimistic

parameters, Term I at that round is non-positive. In the following, we show that selecting

the optimal arm corresponding to any optimistic parameter can control the overall regret

of Term I. The argument below is adapted from [43] with required modifications.

For the purpose of this proof sketch, we assume that at each round t, the safe decision

set contains the previous safe action that the algorithm played, i.e., xt−1 ∈ Ds
t . However,

for the formal proof in App. B.2.1, we do not need such an assumption. Let τ be a time

such that θ̃τ ∈ Θopt
t , i.e., x⊤

τ θ̃τ ≥ x⊤
⋆ θ⋆. Then, for any t ≥ τ we have

Term I := RTS
t = x⊤

⋆ θ⋆ − x⊤
t θ̃t

≤ x⊤
τ θ̃τ − x⊤

t θ̃t ≤ x⊤
τ

(
θ̃τ − θ̃t

)
. (4.4.7)

The last inequality comes from the assumption that at each round t, the safe decision

set contains the previous played safe actions for rounds s ≤ t; hence, x⊤
τ θ̃t ≤ x⊤

t θ̃t. To

continue from (4.4.7), we use Cauchy-Schwarz, and obtain

RTS
t ≤ ∥xτ∥V −1

τ

∥∥∥θ̃τ − θ̃t

∥∥∥
Vτ

≤
(∥∥∥θ̃τ − θ⋆

∥∥∥
Vτ

+
∥∥∥θ⋆ − θ̃t

∥∥∥
Vτ

)
∥xτ∥V −1

τ

≤
(∥∥∥θ̃τ − θ⋆

∥∥∥
Vτ

+
∥∥∥θ⋆ − θ̃t

∥∥∥
Vt

)
∥xτ∥V −1

τ
. (4.4.8)

The last inequality comes from the fact that the Grammatrices construct a non-decreasing

sequence (Vτ ⪯ Vt, ∀t ≥ τ). Then, we define the ellipsoid ETS
t (δ′) such that

ETS
t (δ′) := {θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Vt

≤ γt(δ
′)}, (4.4.9)
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Figure 4.1: Comparison of expansion of a safe decision sets for Safe-LUCB and
Safe-LTS, for a single problem instance.

where

γt(δ
′) = βt(δ

′)
(
1 +

2

C
LS
)√

cd log (
c′d

δ
). (4.4.10)

It is not hard to see by combining Theorem 4.3.1 and the concentration property that θ̃t ∈

ETS
t (δ′) with high probability. Hence, we can bound (4.4.8) using triangular inequality

such that:

RTS
t ≤

(
γτ (δ

′) + βτ (δ
′) + γt(δ

′) + βt(δ
′)

)
∥xτ∥V −1

τ
(4.4.11)

≤ 2

(
γT (δ

′) + βT (δ
′)

)
∥xτ∥V −1

τ
(4.4.12)

The last inequality comes from the fact that βt(δ
′) and γt(δ

′) are non-decreasing in t by

construction. Therefore, following the intuition of [43], we can upper bound Term I with

respect to the Vτ -norm of the optimal safe action at time τ (see Appendix B-Section B.2.1

for formal proof). Bounding the term ∥xτ∥V −1
τ

is standard based on the analysis provided

in [42] (see Proposition B.1.1 in Appendix B-Section B.1).
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Figure 4.2: Comparison of mean per-step regret for Safe-LTS, Safe-LUCB, and Naive
Safe-LUCB. The shaded regions show one standard deviation around the mean. The
results are averages over 30 problem realizations.

4.5 Numerical Results and Comparison to State of

the Art

We present details of our numerical experiments on synthetic data. First, we show how

the presence of safety constraints affects the performance of LTS in terms of regret. Next,

we evaluate Safe-LTS by comparing it against safe versions of LUCB. Then, we compare

Safe-LTS to [70]’s Safe-LUCB. In all the implementations, we used: T = 10000, δ = 1/4T ,

R = 0.1 and D0 = [−1, 1]2. Unless otherwise specified, the reward and constraint

parameters θ⋆ and µ⋆ are drawn from N (0, I2) each; C is drawn uniformly from [0, 1].

Throughout, we have implemented a modified version of Safe-LUCB which uses ℓ1-norms

instead of ℓ2-norms, due to computational considerations (e.g., [40, 70]). This highlights

a well-known benefit associated with TS-based algorithms, namely that they are easier to

implement and more computationally-efficient than UCB-based algorithms. In particular,

the action selection rule in UCB-based algorithms involves solving optimization problems

with bilinear objective functions, whereas, for TS-based algorithms, it would lead to linear

objectives (see [43]).
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4.5.1 The effect of safety constraints on LTS

In Fig. 4.3(left), we compare the average cumulative regret of Safe-LTS to the stan-

dard LTS with oracle access to the true safe set Ds
0. The results are averages over 20

problem realizations. As shown, even though Safe-LTS requires that chosen actions be-

long to the conservative inner-approximation set Ds
t , it still achieves a regret of the same

order as the oracle reaffirming the prediction of Theorem 4.4.1. Also, the comparison

to the oracle reveals that the action selection rule of Safe-LTS is indeed such that it

guarantees fast safe-set expansion so as to not exclude optimistic actions for a long time.

Fig. 4.3(left) also shows the performance Safe-LTS with dynamic noise distribution. In

order for Safe-LTS to be frequently optimistic, our theory requires that the random per-

turbation ηt satisfies (4.3.8) for all rounds. Specifically, we need the extra 2
C
LS factor

compared to [43] in order to ensure safe set expansion. While this result is already suf-

ficient for the tight regret guarantees of Theorem 4.4.1, it does not fully capture our

intuition (see also Sec. 4.3.2) that as the algorithm progresses and Ds
t gets closer to Ds

0,

exploration (and thus, the requirement on anti-concentration) does not need to be so

aggressive. Based on this intuition, we propose the following heuristic modification, in

which Safe-LTS uses a perturbation with the following dynamic property:

Pη∼HTS

(
u⊤η ≥ k(t)

)
≥ p, (4.5.1)

for k(t) a linearly-decreasing function k(t) = (1+ 2
C
LS)2(1−t/T ). In particular, this can

be implemented by sampling each entry of ηt, t ∈ [T ] i.i.d from N (0, k(t)). Fig. 4.3(left)

shows empirical evidence of the superiority of the heuristic.
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Figure 4.3: Left: Average cumulative regret of Safe-LTS vs standard LTS with oracle
access to the safe set and Safe-LTS with a dynamic noise distribution described in
Section 4.5.1. Right: Cumulative regret of Safe-LTS, Naive Safe-LUCB and Inflated
Naive Safe-LUCB for a specific problem instance.

4.5.2 Comparison to the safe version of LUCB

Here, we compare the performance of our algorithm with the safe version of LUCB,

as follows.

We implement a natural extension of the classical LUCB algorithm in [40], which we

call “Naive Safe-LUCB” and which respects safety constraints by choosing actions from

the estimated safe set in (4.3.3). We consider an improved version, which we call “Inflated

Naive Safe-LUCB” and which is motivated by our analysis of Safe-LTS. Specifically, in

light of Lemma 4.4.2, we implement the improved LUCB algorithm with an inflated

confidence ellipsoid by a fraction 1+ 2
C
LS in order to favor optimistic exploration. In Fig.

4.3(right), we employ these two algorithms for a specific problem instance showing that

both fail to provide the Õ(
√
T ) regret of Safe-LTS, in general. Specifically, we chooose

θ∗ =

 0.5766

−0.1899

, µ∗ =

 0.2138

−0.0020

, and C = 0.0615. Further numerical simulations

suggest that while Safe-LTS always outperforms Naive Safe-LUCB, the Inflated Naive

Safe-LUCB can have superior performance to Safe-LTS in many problem instances (see
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Figure 4.4: Comparison of the cumulative regret of Safe-LTS and Naive Safe-LUCB
and Inflated Naive Safe-LUCB algorithms over randomly generated instances.

Fig. 4.4). Unfortunately, not only is this not always the case (cf. Fig. 4.3(right)), but

also we are not aware of an appropriate modification to our proofs to show this problem-

dependent performance. Further investigations in this direction might be of interest.

4.5.3 Comparison to Safe-LUCB

We compare our algorithm to the Safe-LUCB algorithm of [70]. In [70], the linear

safety constraint involves the same unknown parameter vector θ⋆ of the linear reward

function and –in our notation– it takes the form x⊤Bθ⋆ ≤ C, for some known matrix B.

As such, no side-information measurements are needed.

First, while our proof does not show a regret of Õ(
√
T ) for the setting of [70] in the

general case, it does so for special cases. For example, it is not hard to see that our

proofs readily extend to their setting when B = I. This already improves upon the

Õ(T 2/3) guarantee provided by [70]. Indeed, for B = I, there are non-trivial instances

where C − x⊤
∗ θ∗ = 0 (i.e., the safety constraint is active), in which Safe-LUCB suffers
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Figure 4.5: Left: Regret of Safe-LUCB vs Safe-LTS, for a single problem instance
with active safety constraint. Right: Average cumulative regret of Safe-LTS vs two
safe LUCB algorithms.

from a Õ(T 2/3) bound [70]. Second, while our proof adapts to a special case of [70]’s

setting, the other way around is not true, i.e., it is not obvious how one would modify the

proof of [70] to obtain a Õ(
√
T ) guarantee even in the presence of side information. This

point is highlighted by Fig. 4.5(left) that numerically compares the two algorithms for a

specific problem instance with side information: θ∗ = [0.9, 0.23]⊤, µ∗ = [0.55, 0.31]T , and

C = 0.11 (note that the constraint is active at the optimal). Also, see Section 4.5.5 for a

numerical comparison of the estimated safe-sets’ expansion for the two algorithms. Fig.

4.5(right) compares Safe-LTS against Safe-LUCB and Naive Safe-LUCB over 30 problem

realizations. As already pointed out in [70], Naive Safe-LUCB generally leads to poor

regret, since the LUCB action selection rule alone does not provide sufficient exploration

towards safe set expansion. In contrast, Safe-LUCB is equipped with a pure exploration

phase over a given seed safe set, which is shown to lead to proper safe set expansion.

Our paper reveals that the inherent randomized nature of Safe-LTS is alone capable to

properly expand the safe set without the need for an explicit initialization phase (during

which regret grows linearly).
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4.5.4 Standard deviations

Figure 4.2 shows the sample standard deviation of regret around the average per-

step regret for each one of the curves depicted in Figure 4.5(right). We remark on the

strong dependency of the performance of LUCB-based algorithms on the specific problem

instance, whereas the performance of Safe-LTS does not vary significantly under the same

instances.

4.5.5 Safe-set expansion

We also plot the expansion of the estimated safe set Ds
t in time for different problem

instances for Saf-LTS and ”Inflated Naieve Safe-LUCB” and Safe-LUCB in [70]. In

particular, Fig. 4.1 highlights the gradual expansion of the safe decision set for Safe-

LUCB in [70] and Safe-LTS for a problem instance in which the safety constraint is active

for parameters θ∗ =

 0.9

0.23

, µ∗ =

 0.55

−0.31

, and C = 0.11. Similarly, Fig. 4.6 illustrates

the expansion of the safe decision set for “Inflated Naive Safe-LUCB” and Safe-LTS for

a problem instance with parameters θ∗ =

 0.5766

−0.1899

, µ∗ =

 0.2138

−0.0020

, and C = 0.0615

in which the former provides poor (almost linear) regret. These empirical experiments

reinforce the main message of our paper that the inherent randomized nature of TS is

crucial for properly expanding the safe action set.

Next, we comment on the dependence of the regret of Safe-LTS on the size of the

safe set. Note that the size of the safe action set depends on the safety constant C as

well as on the unknown parameter µ⋆. Recall that S is an upper bound on the norm

of µ⋆, and, also ∥x∥2 ≤ L for any action vector x ∈ D0. Since the constraint is of the

form x⊤µ⋆ ≤ C, the size of the set of safe actions depends on the values L, S, C. We

will also assume that LS > C, since otherwise, it follows by Cauchy-Schwartz that all
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Figure 4.6: Comparison of expansion of safe decision sets for Safe-LTS, and Inflated
Naive Safe-LUCB.

actions in D0 are safe and the regret is no different compared to the unconstrained case.

Intuitively, for smaller values of C (compared to LS), the “smaller” the safe set around

zero. This means that the algorithm can only take actions in a very conservative manner

to guarantee that actions remain safe. At an intuitive level, we would then expect an

increase on regret. This intuition is in fact captured by our regret bound in Theorem

4.4.1 showing that the bound increases with increasing values of the ratio LS
C
. Thus, the

smaller C, the larger our regret bound. In Figure 4.7 we showcase the effect of decreasing

C on regret. Specifically, we have chosen θ⋆ = [0.3; 0.8], µ⋆ = [0.2; 0.7], D0 = [−1, 1]2,

S =
√
2 and L =

√
2 and we have plotted the regret of Safe-LTS for different values

of C = 0.7, 0.8, 0.9 and 1. We see that the regret increases for smaller values of C as

suggested by our bound of Theorem 4.4.1. As a closing remark, while we make no claim

that our bound captures sharply the effect of the size of the safe set (perhaps measured

in terms of some geometric quantity such as volume), we showed that our bound captures

the effect of the size in the summary term LS/C, which also appears to agree with the

empirical results of Figure 4.7.
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Figure 4.7: Comparison of the cumulative regret of Safe-LTS for different values of
the safety constant C.

4.6 Conclusion

In this paper, we study a linear stochastic bandit (LB) problem in which the en-

vironment is subject to unknown linear safety constraints that need to be satisfied at

each round. As such, the learner must make necessary modifications to ensure that the

chosen actions belong to the unknown safe set. We propose Safe-LTS, which to the best

of our knowledge, is the first safe linear TS algorithm with provable regret guarantees

for this problem. Moreover, we show that the Safe-LTS achieves the same frequentist

regret of order O(d3/2 log1/2 d · T 1/2 log3/2 T ) as the original LTS problem studied in [43].

We also compare Safe-LTS with several UCB-type safe algorithms. We show that our

algorithm has: better regret in the worst-case (Õ(T 1/2) vs. Õ(T 2/3)), fewer parameters

to tune and often superior empirical performance. Interesting directions for future work

include gaining a theoretical understanding of the regret of the algorithm when the TS

distribution satisfies the dynamic property in (4.5.1), which empirically leads to regret

of smaller order as well as, investigating TS-based alternatives to the GP-UCB-type al-

gorithms of [66, 67]. Additionally, it is interesting to study extensions of our theory on

linear constraints to the more general setting in which constraints are modeled as Gaus-
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sian Processes. This would also allow more complex settings in which the safe regions

may even be disconnected. [85, 86, 87, 88, 89] are the results of this chapter.
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Chapter 5

Stage-wise Conservative Stochastic

Linear Bandits

5.1 Introduction

Machine Learning algorithms have found an increasingly widespread deployment in

healthcare [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 90], communications [87, 101, 102,

103, 104, 105, 106, 107, 108, 109, 110, 111], robotics [112, 113, 114, 115, 116], quantum

research [117, 118, 119], etc. With the growing range of applications of bandit algorithms

for safety-critical real-world systems, the demand for safe learning is receiving increasing

attention [120]. In this paper, we investigate the effect of stage-wise safety constraints on

the linear stochastic bandit problem. Inspired by the earlier work of [46, 121], the type of

safety constraint we consider in this paper was first introduced by [71]. As with the clas-

sic linear stochastic bandit problem, the learner wishes to choose a sequence of actions

xt that maximize the expected reward over the horizon. However, here the learner is also

given a baseline policy that suggests an action with a guaranteed level of expected reward

at each stage of the algorithm. This could be based on historical data, e.g., historical ad
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placement or medical treatment policies with known success rates. The safety constraint

imposed on the learner requires her to ensure that the expected reward of her chosen

action at every single round is no less than a predetermined fraction of the expected re-

ward of the action suggested by the baseline policy. An example that might benefit from

the design of stage-wise conservative learning algorithms arises in recommender systems,

where the recommender might wish to avoid recommendations that are extremely dis-

liked by the users at any single round. Our proposed stage-wise conservative constraints

ensure that at no round would the recommendation system cause severe dissatisfaction

for the user, and the reward of action employed by the learning algorithm, if not better,

should be close to that of baseline policy. Another example is in clinical trials where the

effects of different therapies on patients’ health are initially unknown. We can consider

the baseline policy to be treatments that have been historically employed, with known

effectiveness. The proposed stage-wise conservative constraint guarantees that at each

stage, the learning algorithm suggests an action (a therapy) that achieves the expected

reward close to that of the baseline treatment, and as such, this experimentation does

not cause harm to any single patient’s health. To tackle this problem, [71] proposed a

greedy algorithm called SEGE. They use the decomposition of the regret first proposed

in [46], and show an upper bound of order O(
√
T ) over the number of times that the

learning algorithm plays the baseline actions, overall resulting in an expected regret of

O(
√
T log T ). For this problem, we present two algorithms, SCLTS and SCLUCB, and

we provide regret bounds of order O(
√
T log3/2 T ) and O(

√
T log T ), respectively. As it is

explained in detail in Section 5.4, we improve the result of [71], i.e., we show our proposed

algorithms play the (non-optimal) baseline actions at most O(log T ) times, while also re-

laxing a number of assumptions made in [71]. Moreover, we show that our proposed

algorithms are adaptable with minor modifications to other safety-constrained variations

of this problem. This includes the case where the constraint has a different unknown
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parameter than the reward function with bandit feedback (Section 5.4.1), as well as the

setting where the reward of baseline action is unknown to the learner in advance (Section

5.5).

5.2 Problem Setting

Linear Bandit. The learner is given a convex and compact set of actions X ⊂ Rd.

At each round t, she chooses an action xt and observes a random reward

yt = ⟨xt, θ⋆⟩+ ξt, (5.2.1)

where θ⋆ ∈ Rd is unknown but fixed reward parameter and ξt is zero-mean additive noise.

We let rt be the expected reward of action xt at round t, i.e., rt := E[yt] = ⟨xt, θ⋆⟩.

Baseline actions and stage-wise constraint. We assume that the learner is given

a baseline policy such that selecting the baseline action xbt at round t, she would receive

an expected reward rbt := ⟨xbt , θ⋆⟩. We assume that the learner knows the expected

reward of the actions chosen by the baseline policy. We further assume that the learner’s

action selection rule is subject to a stage-wise conservative constraint of the form1

rt = ⟨xt, θ⋆⟩ ≥ (1− α)rbt , (5.2.2)

that needs to be satisfied at each round t. In particular, constraint (5.2.2) guarantees

that at each round t, the expected reward of the action chosen by the learner stays above

the predefined fraction 1−α ∈ (0, 1) of the baseline policy. The parameter α, controlling

the conservatism level of the learning process, is assumed known to the learner similar

1In Section 5.4.1, we show that our results also extend to constraints of the form ⟨xt, µ⋆⟩ ≥ (1−α)qbt ,
where µ⋆ is an additional unknown parameter. In this case, we assume the learner receives additional
bandit feedback on the constraint after each round.
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to [46, 121]. At each round t, an action is called safe if its expected reward is above the

predetermined fraction of the baseline policy, i.e., (1− α)rbt .

Remark 5.2.1 It is reasonable to assume that the learner has an accurate estimate of

the expected reward of the actions chosen by baseline policy [46]. However, in Section 5.5,

we relax this assumption and propose an algorithm for the case where the expected rewards

of the actions chosen by baseline policy are unknown to the learner in advance.

Regret. The cumulative pseudo-regret of the learner up to round T is defined as R(T ) =∑T
t=1⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩,

R(T ) =
T∑
t=1

⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩, (5.2.3)

where x⋆ is the optimal safe action that maximizes the expected reward,

x⋆ = argmax
x∈X

⟨x, θ⋆⟩. (5.2.4)

The learner’s objective is to minimize the pseudo-regret while respecting the stage-wise

conservative constraint in (5.2.2). For the rest of the paper, we use regret to refer to the

pseudo-regret R(T ).

5.2.1 Previous work

The baseline model adopted in this paper was first proposed in [46, 121] in the case of

cumulative constraints on the reward. In [46, 121], an action is considered feasible/safe

at round t as long as it keeps the cumulative reward up to round t above a given fraction

of a given baseline policy. This differs from our setting, which is focused on stage-wise

constraints, where we want the expected reward of the every single action to exceed

a given fraction of the baseline reward at each time t. This is a tighter constraint
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than that of [46, 121]. The setting considered in this paper was first studied in [71],

which proposed an algorithm called SEGE to guarantee the satisfaction of the safety

constraint at each stage of the algorithm. While our paper is motivated by [71], there are

a few key differences: 1) We prove an upper bound of order O(log T ) for the number of

times that the learning algorithm plays the conservative actions which is an order-wise

improvement with respect to that of [71], which shows an upper bound of order O(
√
T );

2) In our setting, the action set is assumed to be a general convex and compact set in

Rd. However, in [71], the proof relies on the action set being a specific ellipsoid; 3) In

Section 5.5, we provide a regret guarantee for the learning algorithm for the case where

the baseline reward is unknown. However, the results of [71] have not been extended to

this case; 4) In Section 5.4.1, we also modify our proposed algorithm and provide a regret

guarantee for the case where the constraint has a different unknown parameter than the

one in the reward function. However, this is not discussed in [71]. Another difference

between the two works is on the type of performance guarantees. In [71], the authors

bound the expected regret. Towards this goal, they manage to quantify the effect of the

risk level δ on regret and constraint satisfaction. However, it appears that the analysis

in [71] is limited to ellipsoidal action sets. Instead, in this paper, we present a bound on

the regret that holds with high (constant) probability (parameterized by δ) over all T

rounds of the algorithm. This type of result is very common in the bandit literature, e.g.

[42, 40], and in the emerging safe-bandit literature [46, 70, 67].

Another variant of safety w.r.t a baseline policy has also been studied in [122, 123]

in the multi-armed bandits framework. Moreover, there has been increasing attention

on studying the effect of safety constraints in the Gaussian process (GP) optimization

literature. For example, [66, 67] study the problem of nonlinear bandit optimization

with nonlinear constraints using GPs (as non-parametric models). The algorithms in

[66, 67] come with convergence guarantees but no regret bound. Moreover, [68, 69] study
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safety-constrained optimization using GPs in robotics applications. A large body of

work has considered safety in the context of model-predictive control, see, e.g., [64, 65]

and references therein. Focusing specifically on linear stochastic bandits, an extension

of UCB-type algorithms to provide safety guarantees with provable regret bounds was

considered recently in [70]. This work considers the effect of a linear constraint of the

form x⊤Bθ⋆ ≤ C, where B and C are respectively a known matrix and positive constant

and provides a problem-dependent regret bound for a safety-constrained version of LUCB

that depends on the location of the optimal action in the safe action set. Notice that this

setting requires the linear function x⊤Bθ⋆ to remain below a threshold C, as opposed to

our setting which considers a lower bound on the reward. We note that the algorithm and

proof technique in [70] does not extend to our setting and would only work for inequalities

of the given form; however, we discuss how our algorithm can be modified to provide a

regret bound of order O(
√
T log T ) for the setting of [70] in Appendix C-Section C.8. A

TS variant of this setting has been studied in [124, 125].

5.2.2 Model Assumptions

Notation. The weighted ℓ2-norm with respect to a positive semi-definite matrix V

is denoted by ∥x∥V =
√
x⊤V x. The minimum of two numbers a, b is denoted a ∧ b. Let

Ft = (F1, σ(x1, ξ1, . . . , xt, ξt)) be the filtration (σ-algebra) that represents the information

up to round t.

Assumption 9 For all t, ξt is conditionally zero-mean R-sub-Gaussian noise variables,

i.e., E[ξt|Ft−1] = 0, and E[eλξt |Ft−1] ≤ exp (λ
2R2

2
), ∀λ ∈ Rd.

Assumption 10 There exists a positive constant S such that ∥θ⋆∥2 ≤ S.

Assumption 11 The action set X is a compact and convex subset of Rd that contains

the unit ball. We assume that ∥x∥2 ≤ L,∀x ∈ X . Also, we assume ⟨x, θ⋆⟩ ≤ 1,∀x ∈ X .
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Let κbt = ⟨x⋆, θ⋆⟩ − rbt be the difference between expected reward of the optimal and

baseline actions at round t. As in [46], we assume the following.

Assumption 12 There exist 0 ≤ κl ≤ κh and 0 < rl ≤ rh such that, at each round t

κl ≤ κbt ≤ κh and rl ≤ rbt ≤ rh. (5.2.5)

We note that since these parameters are associated with the baseline policy, it can be

reasonably assumed that they can be estimated accurately from data. This is because we

think of the baseline policy as a “past strategy”, implemented before bandit optimization,

thus producing a large amount of data. The lower bound 0 < rl ≤ rbt on the baseline

reward ensures a minimum level of performance at each round. κh and rh could be at

most 1, due to Assumption 11. For simplicity, we assume the lower bound κl on the

sub-optimality gap κbt is known. If not, we can always choose κl = 0 by optimality of x⋆.

5.3 Stage-wise Conservative Linear Thompson Sam-

pling (SCLTS) Algorithm

In this section, we propose a TS variant algorithm in a frequentist setting referred to

as Stage-wise Conservative Linear Thompson Sampling (SCLTS) for the problem setting

in Section 5.2. Our adoption of TS is due to its well-known computational efficiency over

UCB-based algorithms, since action selection via the latter involves solving optimization

problems with bilinear objective functions, whereas the former would lead to linear ob-

jectives. However, this choice does not fundamentally affect our approach. In fact, in

Appendix C-Section C.7, we propose a Stage-wise Conservative Linear UCB (SCLUCB)

algorithm, and we provide the regret guarantee for it. In particular, we show a regret
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of order O
(
d
√
T log(TL2

λδ
)
)
for SCLUCB, which has the same order as the lower bound

proposed for LB in [40, 48].

At each round t, given a regularized least-square (RLS) estimate of θ̂t, SCLTS samples

a perturbed parameter θ̃t with an appropriate distributional property. Then, it searches

for the action that maximizes the expected reward considering the parameter θ̃t as the

true parameter while respecting the safety constraint (5.2.2). If any such action exists,

it is played under certain conditions; else, the algorithm resorts to playing a perturbed

version of the baseline action that satisfies the safety constraint. In order to guarantee

constraint satisfaction (a.k.a safety of actions), the algorithm builds a confidence region

Et that contains the unknown parameter θ⋆ with high probability. Then, it constructs

an estimated safe set X s
t such that all actions xt ∈ X s

t satisfy the safety constraint for

all v ∈ Et. The summary of the SCLTS is presented in Algorithm 5, and a detailed

explanation follows.

Algorithm 5: Stage-wise Conservative Linear Thompson Sampling (SCLTS)

30 Input: δ, T, λ, ρ1
31 Set δ′ = δ

4T

32 for t = 1, . . . , T do
33 Sample ηt ∼ HTS

34 Compute RLS-estimate θ̂t and Vt according to (5.3.1)

35 Set θ̃t = θ̂t + βtV
−1/2
t ηt

36 Build the confidence region Et(δ′) in (5.3.2)
37 Compute the estimated safe set X s

t in (5.3.3)

38 if the following optimization is feasible: x(θ̃t) = argmaxx∈X s
t
⟨x, θ̃t⟩, then

39 Set F = 1, else F = 0

40 if F = 1 and λmin(Vt) ≥
(

2Lβt

κl+αrbl

)2
, then Play xt = x(θ̃t)

41 else Play xt = (1− ρ1)xbt + ρ1ζt
42 Observe reward yt in (5.2.1)

43 end for
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5.3.1 Algorithm description

Let x1, . . . , xt be the sequence of the actions and r1, . . . , rt be their corresponding

rewards. For any λ > 0, we can obtain a regularized least-squares (RLS) estimate θ̂t of

θ⋆ as follows

θ̂t = V −1
t

t−1∑
s=1

ysxs, where Vt = λI +
t−1∑
s=1

xsx
⊤
s . (5.3.1)

Algorithm 5 construct a confidence region

Et(δ′) = Et := {θ ∈ Rd : ∥θ − θ̂t∥Vt ≤ βt(δ
′)}, (5.3.2)

where the ellipsoid radius βt is chosen according to the Proposition 5.3.1 in [42] (restated

below for completeness) in order to guarantee that θ⋆ ∈ Et with high probability.

Proposition 5.3.1 Let Assumptions 9, 10, and 11 hold. For a fixed δ ∈ (0, 1), and

βt(δ) = R

√√√√d log

(
1 + tL2

λ

δ

)
+
√
λS

with probability at least 1− δ, it holds that θ⋆ ∈ Et.

The estimated safe action set

Since θ⋆ is unknown to the learner, she does not know whether an action x ∈ X is

safe or not. Thus, she builds an estimated safe set such that each action xt ∈ X s
t satisfies
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the safety constraint for all v ∈ Et, i.e.,

X s
t :={x ∈ X : ⟨x, v⟩ ≥ (1− α)rbt ,∀v ∈ Et} = {x ∈ X : min

v∈Et
⟨x, v⟩ ≥ (1− α)rbt} (5.3.3)

= {x ∈ X : ⟨x, θ̂t⟩ − βt(δ
′)∥x∥V −1

t
≥ (1− α)rbt}. (5.3.4)

Note that X s
t is easy to compute since (5.3.4) involves a convex quadratic program. In

order to guarantee safety, at each round t, the learner chooses her actions only from this

estimated safe set in order to maximize the reward given the sampled parameter θ̃t, i.e.,

x(θ̃t) = argmax
x∈X s

t

⟨x, θ̃t⟩, (5.3.5)

where θ̃t = θ̂t + βtV
−1/2
t ηt, and ηt is a random IID sample from a distribution HTS that

satisfies certain distributional properties (see [43] or Defnition C.3.1 in Appendix C-

Section C.3 for more details). The challenge with X s
t is that it contains actions that are

safe with respect to all the parameters in Et, and not only θ⋆. Hence, there may exist

some rounds that X s
t is empty. In order to face this problem, the algorithm proceeds as

follows. At round t, if the estimated action set X s
t is not empty, SCLTS plays the safe

action x(θ̃t) in (5.3.5) only if the minimum eigenvalue of the Gram matrix Vt is greater

than k1
t =

(
2Lβt

κl+αrbl

)2
, i.e., λmin(Vt) ≥ k1

t , where k
1
t is of order O(log t). Otherwise, it plays

the conservative action that is presented next. We show in Appendix C-Section C.3 that

λmin(Vt) ≥ k1
t ensures that for the rounds that SCLTS plays the action x(θ̃t) in (5.3.5),

the optimal action x⋆ belongs to the estimated safe set X s
t , from which we can bound

the regret of Term I in (5.4.1).

85



Stage-wise Conservative Stochastic Linear Bandits Chapter 5

Conservative actions

In our setting, we assume that the learner is given a baseline policy that at each round

t suggests a baseline action xbt . We employ the idea proposed in [71], which is merging

the baseline actions with random exploration actions under stage-wise safety constraints.

In particular, at each round t, SCLTS constructs a conservative action xcb
t as a convex

combination of the baseline action xbt and a random vector ζt as follows:

xcb
t = (1− ρ1)xbt + ρ1ζt, (5.3.6)

where ζt is assumed to be a sequence of independent, zero-mean and bounded random

vectors. Moreover, we assume that ∥ζt∥2 = 1 almost surely and σ2
ζ = λmin(Cov(ζt)) > 0.

The parameters σζ and ρ1 control the exploration level of the conservative actions. In

order to ensure that the conservative actions are safe, in Lemma 5.3.2, we establish an

upper bound on ρ1 such that for all ρ1 ∈ (0, ρ̄), the conservative action xcb
t = (1−ρ1)xbt+

ρ1ζt is guaranteed to be safe.

Lemma 5.3.2 At each round t, given the fraction α, for any ρ ∈ (0, ρ̄), where ρ̄ = αrl
S+rh

,

the conservative action xcb
t = (1− ρ)xbt + ρζt is guaranteed to be safe almost surely.

For the ease of notation, in the rest of this paper, we simply assume that ρ1 =
rl

S+rh
α.

At round t, SCLTS plays the conservative action xcb
t if the two conditions defined in

Section 5.3.1 do not hold, i.e., either the estimated safe set X s
t is empty or λmin(Vt) < k1

t .

5.4 Regret Analysis

In this section, we provide a tight regret bound for SCLTS. In Proposition 5.4.1, we

show that the regret of SCLTS can be decomposed into regret caused by choosing safe
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Thompson Sampling actions plus that of playing conservative actions. Then, we bound

both terms separately. Let Nt−1 be the set of rounds i < t at which SCLTS plays the

action in (5.3.5). Similarly, N c
t−1 = {1, . . . , t − 1} − Nt−1 is the set of rounds j < t at

which SCLTS plays the conservative actions.

Proposition 5.4.1 The regret of SCLTS can be decomposed into two terms as follows:

R(T ) ≤
∑
t∈NT

(⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩)︸ ︷︷ ︸
Term I

+ |N c
T | (κh + ρ1(rh + S))︸ ︷︷ ︸

Term II

(5.4.1)

The idea of bounding Term I is inspired by [43]: we wish to show that LTS has a

constant probability of being ”optimistic”, in spite of the need to be conservative. In

Theorem 5.4.2, we provide an upper bound on the regret of Term I which is of order

O(d3/2 log1/2 d T 1/2 log3/2 T ).

Theorem 5.4.2 Let λ, L ≥ 1. On event {θ⋆ ∈ Et,∀t ∈ [T ]}, and under Assumption 12,

we can bound Term I in (5.4.1) as:

Term I ≤ (βT (δ
′) + γT (δ

′)(1 +
4

p
))

√
2Td log (1 +

TL2

λ
) +

4γT (δ
′)

p

√
8TL2

λ
log

4

δ
,

where δ′ = δ
6T
, and γt(δ) = βt(δ

′)
(
1 + 2

C

)√
cd log ( c

′d
δ
)

We note that the regret of Term I has the same bound as that of [43] in spite of the

additional safety constraints imposed on the problem. As the next step, in order to

bound Term II in (5.4.1), we need to find an upper bound on the number of times |N c
T |

that SCLTS plays the conservative actions up to time T . We prove an upper bound on

|N c
T | in Theorem 5.4.3.
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Theorem 5.4.3 Let λ, L ≥ 1. On event {θ⋆ ∈ Et,∀t ∈ [T ]}, and under Assumption 12,

it holds that

|N c
T | ≤

(
2LβT

ρ1σζ(κl + αrl)

)2

+
2h2

1

ρ41σ
4
ζ

log(
d

δ
) +

2Lh1βT

√
8 log(d

δ
)

ρ31σ
3
ζ (κl + αrl)

,

where h1 = 2ρ1(1− ρ1)L+ 2ρ21 and ρ1 = ( rl
S+rh

)α.

Remark 5.4.4 The upper bound on the number of times SCLTS plays the conservative

actions up to time T provided in Theorem 5.4.3 has the order O
(

L2d log(T
δ
) log( d

δ
)

α4(r2l ∧r
4
l )κl(σ

2
ζ∧σ

4
ζ )

)
.

The first idea of the proof is based on the intuition that if a baseline action is played at

round τ , then the algorithm does not yet have a good estimate of the unknown parameter

θ⋆ and the safe actions played thus far have not yet expanded properly in all directions.

Formally, this translates to small λmin(Vτ ) and the upper bound O(log τ) ≥ λmin(Vτ ).

The second key idea is to exploit the randomized nature of the conservative actions (cf.

(11)) to lower bound λmin(Vτ ) by the number of times (N c
τ ) that SCLTS plays the baseline

actions up to that round (cf. Lemma C.4.1 in Appendix C). Putting these together leads

to the advertised upper bound O(log T ) on the total number of times (N c
T ) the algorithm

plays the baseline actions.

5.4.1 Additional Side Constraint with Bandit Feedback

We also consider the setting where the constraint depends on an unknown parameter

that is different than the one in reward function. In particular, we assume the constraint

of the form

⟨xt, µ⋆⟩ ≥ (1− α)qbt , (5.4.2)
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which needs to be satisfied by the action xt at every round t. In (5.4.2), µ⋆ is a fixed, but

unknown and the positive constants qbt = ⟨xbt , µ⋆⟩ are known to the learner. In Section

5.5, we relax this assumption and consider the case where the learner does not know the

value of qbt . Let νbt = ⟨x⋆, µ⋆⟩ − ⟨xbt , µ⋆⟩. Similar to Assumption 12, we assume there

exist constants 0 ≤ νl ≤ νh and 0 < ql ≤ qh such that νl ≤ νbt ≤ νh and ql ≤ qbt ≤ qh.

We assume that with playing an action xt, the learner observes the following bandit

feedback:

wt = ⟨xt, µ⋆⟩+ χt, (5.4.3)

where χt is assumed to be a zero-mean R-sub-Gaussian noise. In order to handle this

case, we show how SCLTS should be modified, and we propose a new algorithm called

SCLTS-BF. The details on SCLTS-BF are presented in Appendix C.5. In the following,

we only mention the difference between SCLTS-BF with SCLTS, and show an upper

bound on its regret.

The main difference is that SCLTS-BF constructs two confidence regions Et in (5.3.2)

and Ct based on the bandit feedback such that θ⋆ ∈ Et and µ⋆ ∈ Ct with high probability.

Then, based on Ct, it constructs the estimated safe decision set denoted Ps
t = {x ∈ X :

⟨x, v⟩ ≥ (1 − α)qbt ,∀v ∈ Ct}. We note that SCLTS-BF only plays the actions from Ps
t

that are safe with respect to all the parameters in Ct.

We report the details on proving the regret bound for SCLTS-BF in Appendix C-

Section C.5. We use the decomposition in Proposition 5.4.1, and we upper bound Term I

similar to the Theorem 5.4.2. Then, we show an upper bound of orderO
(

L2d log(T
δ
) log( d

δ
)

α4(q2l ∧q
4
l )νl(σ

2
ζ∧σ

4
ζ )

)
over the number of times that SCLTS-BF plays the conservative actions.
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5.5 Unknown Baseline Reward

Inspired by [46], which studies this problem in the presence of safety constraints on

the cumulative rewards, we consider the case where the expected reward of the action

chosen by baseline policy, i.e., rbt is unknown to the learner. However, we assume that

the learner knows the value of rl in (5.2.5). We describe the required modifications on

SCLTS to handle this case and present a new algorithm called SCLTS2. Then, we prove

the regret bound for SCLTS2, which has the same order as SCLTS. Therefore, the lack

of information about the reward of the baseline policy does not cause any harm to our

algorithm in terms of the order of the regret.

Here, the learner does not know the value of rbt ; however, she knows that the unknown

parameter θ⋆ falls in the confidence region Et with high probability. Hence, we can upper

bound the RHS of (5.2.2) with maxv∈Et⟨xbt , v⟩ ≥ rbt . Therefore, any action x that satisfies

min
v∈Et

⟨x(θ̃t), v⟩ ≥ (1− α)max
v∈Et

⟨xbt , v⟩,

is safe with high probability. In order to ensure safety, SCLTS2 only plays the safe

actions from the estimated safe actions set Zs
t = {x ∈ X : minv∈Et⟨x, v⟩ ≥ (1 −

α)maxv∈Et⟨xbt , v⟩}. We report the details on SCLTS2 in Appendix C-Section C.6.

Next, we provide an upper bound on the regret of SCLTS2. To do so, we first use

the decomposition in Proposition 5.4.1. The regret of Term I is similar to that of SCLTS

(Theorem 5.4.2), and in Theorem 5.5.1, we prove an upper bound on the number of time

SCLTS2 plays the conservative actions. Note that similar steps can be generalized to the

setting of additional side constraints with bandit feedback.

Theorem 5.5.1 Let λ, L ≥ 1. On event {θ⋆ ∈ Et,∀t ∈ [T ]}, and under Assumption 12,

we can upper bound the number of times SCLTS2 plays the conservative actions, i.e.,
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Figure 5.1: Left: comparison of the cumulative regret of SCLTS and SCLUCB versus
SEGE algorithm in [71]. Middle: average regret (over 100 runs) of SCLTS algorithm
for different values of α. Right: expected reward under SCLTS algorithm in the first
3000 rounds for α = 0.2.

|N c
T | as:

|N c
T | ≤

(
2LβT (2− α)

ρ3σζ(κl + αrl)

)2

+
2h2

3

ρ43σ
4
ζ

log(
d

δ
) +

2Lh3βT (2− α)

ρ33σ
3
ζ (κl + αrl)

√
8 log(

d

δ
), (5.5.1)

where h3 = 2ρ3(1− ρ3)L+ 2ρ23 and ρ3 = ( rl
S+1

)α.

Remark 5.5.2 The regret of SCLTS2 has order of O
(

L2d log(T
δ
) log( d

δ
)(2−α)2

α4(r2l ∧r
4
l )κl(σ

2
ζ∧σ

4
ζ )

)
, which has

the same rate as that of SCLTS. Therefore, the lack of information about the reward

function only hurt the regret with a constant (2− α)2.

5.6 Numerical Results

In this section, we investigate the numerical performance of SCLTS and SCLUCB

on synthetic data, and compare it with SEGE algorithm introduced by [71]. In all the

implementations, we used the following parameters: R = 0.1, S = 1, λ = 1, d = 2. We

consider the action set X to be a unit ball centered on the origin. The reward parameter

θ⋆ is drawn from N (0, I4). We generate the sequence {ζt}∞t=1 to be IID random vectors

that are uniformly distributed on the unit circle. The results are averaged over 100

realizations.

91



Stage-wise Conservative Stochastic Linear Bandits Chapter 5

In Figure 5.1(left), we plot the cumulative regret of the SCLTS algorithm and SCLUCB

and SEGE algorithm from [71] for α = 0.2 over 100 realizations. The shaded regions show

standard deviation around the mean. In view of the discussion in [40] regarding compu-

tational issues of LUCB algorithms with confidence regions specified with ℓ2-norms, we

implement a modified version of Safe-LUCB which uses ℓ1-norms instead of ℓ2-norms.

Figure 5.1(left) shows that SEGE algorithm suffers a high variance of the regret over

different problem instances which shows the strong dependency of the performance of

SEGE algorithm on the specific problem instance. However, the regret of SCLTS and

SCLUCB algorithms do not vary significantly under different problem instances, and has

a low variance. Moreover, the regret of SEGE algorithm grows faster in the beginning

steps, since it heavily relies on the baseline action in order to satisfy the safety constraint.

However, the randomized nature of SCLTS leads to a natural exploration ability that is

much faster in expanding the estimated safe set, and hence it plays the baseline actions

less frequently than SEGE algorithm even in the initial exploration stages.

In Figure 5.1(middle), we plot the average regret of SCLTS for different values of α

over a horizon T = 10000. Figure 5.1(middle) shows that, SCLTS has a better perfor-

mance (i.e., smaller regret) for the larger value of α, since for the small value of α, SCLTS

needs to be more conservative in order to satisfy the safety constraint, and hence it plays

more baseline actions. Moreover, Figure 5.1(right) illustrates the expected reward of

SCLTS algorithm in the first 3000 rounds. In this setting, we assume there exists one

baseline action xb = [0.6, 0.5], which is available to the learner, θ⋆ = [0.5, 0.4] and the

safety fraction α = 0.2. Thus, the safety threshold is (1 − α)⟨xb, θ⋆⟩ = 0.4 (shown as a

dashed red line), which SCLTS respects in all rounds. In particular, in initial rounds,

SCTLS plays the conservative actions in order to respect the safety constraint, which as

shown have an expected reward close to 0.475. Over time as the algorithm achieves a

better estimate of the unknown parameter θ⋆, it is able to play more optimistic actions
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and as such receives higher rewards.

5.7 Conclusion

In this paper, we study the stage-wise conservative linear stochastic bandit problem.

Specifically, we consider safety constraints that requires the action chosen by the learner

at each individual stage to have an expected reward higher than a predefined fraction

of the reward of a given baseline policy. We propose extensions of Linear Thompson

Sampling and Linear UCB in order to minimize the regret of the learner while respecting

safety constraint with high probability and provide regret guarantees for them. We also

consider the setting of constraints with bandit feedback, where the safety constraint has

a different unknown parameter than that of the reward function, and we propose the

SCLTS-BF algorithm to handle this case. Third, we study the case where the rewards

of the baseline actions are unknown to the learner. Lastly, our numerical experiments

compare the performance of our algorithm to SEGE of [71] and showcase the value of the

randomized nature of our exploration phase. In particular, we show that the random-

ized nature of SCLTS leads to a natural exploration ability that is faster in expanding

the estimated safe set, and hence SCLTS plays the baseline actions less frequently as

theoretically shown. For future work, natural extension of the problem setting to gener-

alized linear bandits, and possibly with generalized linear constrains might be of interest.

[73, 126] are the results of this chapter.
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Chapter 6

Model Selection in Stochastic Linear

Bandits

6.1 Introduction

Learning under bandit feedback is a class of online learning problems in which an

agent interacts with the environment through a set of actions (arms), and receives rewards

only from the arms that it has pulled. The goal of the agent is to maximize its expected

cumulative reward without knowledge of the reward distributions of the arms. Multi-

armed bandit (MAB) is the simplest form of this problem [127, 38, 128, 129]. Linear

bandit [40, 130, 42] is a generalization of MAB to (possibly) infinitely many arms, each

associated with a feature vector. The mean reward of each arm is assumed to be the dot

product of its feature vector and an unknown parameter vector. This setting contains

contextual linear bandit in which action sets and feature vectors change at every round.

The main component of bandit algorithms is to balance exploration and exploitation: to

decide when to explore and learn about the arms, and when to exploit and select the

action with the highest estimated reward. The most common exploration strategies are
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optimism in the face of uncertainty (OFU) or upper confidence bound (UCB) [38, 40, 42,

73, 126], and Thompson sampling (TS) [76, 44, 77, 43, 86, 85].

In this paper, we study model selection in stochastic linear bandits (LB), where the

LB problem at hand is selected from a set of M models. The agent has information about

the models but does not know the identity of the one(s) that the new LB problem has

been selected from. The goal of the agent is to identify the true model(s) and transfer its

(their) collected experience to speedup the learning of the task at hand. It is a common

scenario in many application domains that the new task belongs to a family of models

that are either known accurately or with misspecification. For example, it is reasonable

to assume that the customers of an online marketing website, the users of an app, or

the patients in a medical trial belong to a certain number of categories based on their

shopping and browsing habits or their genetic signatures. It is also common these days

that websites, apps, and clinics have a large amount of information from each of these

categories that can be used to build a model.

Model selection is particularly challenging with bandit information. A common ap-

proach is to consider each model as a black-box that runs a bandit algorithm with its own

information, and then a meta algorithm plays a form of bandit-over-bandits strategy with

their outcomes. These algorithms often achieve a regret of Õ(
√
MT ), and thus, are not

desirable when the number of models M is large. In this paper, we consider two bandit

model selection settings and show that it is possible to improve this rate so that the regret

scales as
√
logM with the number of models. The main innovation in our algorithms

is utilizing reductions from bandits to full-information problems, and performing model

selection in the full-information setting for which much stronger results exist. The main

reason for Õ(
√
MT ) regret in bandit-over-bandits algorithms is that no information is

shared among the models (bandit algorithms), i.e., when a bandit algorithm is used to

take an action in a round, the resulting feedback is not shared with the other models. On
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the other hand, model selection in the full-information setting allows the model to share

information among each other, which makes the superior
√
logM regret bound possible.

The two model selection settings we consider in this paper are: feature selection,

where the mean reward of the LB problem is in the linear span of at least one of M given

feature maps (models), and parameter selection, where the reward parameter of the LB

problem is arbitrarily selected from M models represented as (possibly) overlapping balls

in Rd. Here the models can be misspecified, i.e., only estimates of the centers and radii

of the balls are given to the algorithm. We derive algorithms in these settings that

use reductions from bandits to full-information. Our algorithms are computationally

efficient and have regret bounds that are not worse (up to a
√
logM factor) than the

case where the true model is known. We achieve this by properly instantiating existing

algorithmic paradigms: SquareCB [131] and OFUL [42]. The SquareCB algorithm in

its original form uses a set of static experts, but we need adaptive (learning) experts in

order to have a computational efficient algorithm with the desired regret in our feature

selection setting. Working with adaptive (time-varying) experts requires appropriate and

non-trivial modifications to the proof of SquareCB.

There are mainly two types of reductions from bandits to full-information problems.

The first one is the classical reduction that uses importance weighted estimates. A popu-

lar algorithm in this class is EXP3 that uses Exponentially Weighted Average forecaster

as the full-information algorithm. The bandit model selection strategy of [132], known as

CORRAL, also uses this type of reduction with an online mirror descent method and a

carefully selected mirror map as the full-information algorithm. Given that importance

weighted estimates are fed to the full-information algorithm, a
√
M term is in general

unavoidable in the regret of the methods that use this type of reduction. In this work, we

use a different type of full-information reduction introduced by [131] and [133]. Here, the

full-information algorithm has direct access to its losses without any importance weighted
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estimates, and thus, allows us to obtain regrets that scales as
√
logM with the number

of model.

6.2 Problem Formulation

In this section, we first provide a brief overview of stochastic linear bandits. We then

describe the two model selection settings studied in the paper. We conclude by intro-

ducing a regression oracle used by our algorithms that is based on sequential prediction

with expert advice and square loss.

6.2.1 Stochastic Linear Bandits

A stochastic linear bandit (LB) problem is defined by a sequence of T interactions

of a learning agent with a stochastic environment. At each round t ∈ [T ], the agent is

given a decision set At ⊂ Rd from which it has to select an action at. Upon taking the

action at ∈ At, it observes a reward yt = ⟨ϕt(at), θ∗⟩+ ηt, where θ∗ ∈ Rd is the unknown

reward parameter, ϕt(a) ∈ Rd is the feature vector of action a at round t, and ηt is a

zero-mean R-sub-Gaussian noise. When the features correspond to the canonical basis,

this formulation reduces to multi-armed bandit. In case the features depend on both an

action a ∈ A and a context x ∈ X , i.e., ϕt(at) = ϕ(xt, at), this LB formulation is called

contextual linear bandit. It is also common in practice that the action set is fixed and

finite, i.e., A = [K], in which case we are in the finite K-action setting. The history Ht

of a LB algorithm up to round t consists of all the contexts, actions, and rewards that it

has observed from the beginning until the end of round t− 1, i.e., Ht = {(xs, as, ys)}t−1
s=1,

or equivalently Ht = {(ϕs(as), ys)}t−1
s=1.

The goal of the agent in LB is to maximize its expected cumulative reward in T

97



Model Selection in Stochastic Linear Bandits Chapter 6

rounds, or equivalently to minimize its T -round (pseudo) regret, i.e.,

R(T, θ∗) =
T∑
t=1

⟨ϕt(a
∗
t ), θ∗⟩ − ⟨ϕt(at), θ∗⟩, (6.2.1)

where a∗t = argmaxa∈At
⟨ϕt(a), θ∗⟩ is the optimal action in round t.

6.2.2 Feature Selection Setting

In this setting, the agent is given a set of M feature maps {ϕi}Mi=1 with dimension

d. We assume that the expected reward of the LB problem belongs to the linear span

of at least one of these M models (features), i.e., there exists an i ∈ [M ] and a θi∗ ∈ Rd,

such that for all rounds t ∈ [T ], contexts x ∈ X , and actions a ∈ A, we may write the

mean rewards as E[yt] = ⟨ϕi(x, a), θi∗⟩.1 We refer to such feature maps as true models and

denote them by i∗. Note that the agent does not know the identity of the true model(s)

i∗.

As a motivational example for this setting, we can consider a recommender system

that has trained M models (e.g., M neural networks) to predict the score of customer-

item pairs. Each model corresponds to a particular mood or type of the customer, or any

other latent component of the customer’s state. Each model provides an embedding for

customer-item pairs and the score is linear in this embedding (think of an embedding as

the one to the last layer of a trained NN). When a new customer arrives, the recommender

system should find out as soon as possible which of theM models (embeddings) is the best

match to the current mood/type of this customer in order to recommend her desirable

items.

We make the following standard assumption on the boundedness of the reward pa-

1Note that we use the contextual linear bandit notation for this setting and in the corresponding
sections.
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rameters and features of the M models.

Assumption 13 There are constants L, S,G ≥ 0, such that for all i ∈ [M ], t ∈ [T ],

x ∈ X , and a ∈ A, we have ∥θi∗∥ ≤ S, ∥ϕi(x, a)∥ ≤ L, and |⟨ϕi(x, a), θi∗⟩| ≤ G.

Remark 6.2.1 Note that we consider the same dimension d for all feature maps (mod-

els). The reason for that is a recent result by [134] in which they prove no algorithm

can adapt to the unknown intrinsic dimension d∗ and achieve the regret of O(
√
d∗T ),

simultaneously for all values of d∗, in a sequence of nested linear hypothesis classes with

dimensions d1 < d2 < . . . < dM .

Our goal here is to design an algorithm that minimizes transfer regret, which in this

setting we define it as

R(T ) =
T∑
t=1

⟨ϕi∗(xt, a
∗
t ), θ

i∗
∗ ⟩ − ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩, (6.2.2)

where a∗t = argmaxa∈A⟨ϕi∗(xt, a), θ
i∗
∗ ⟩. In the results we report for this setting in Sec-

tion 6.3, we make two assumptions: 1) the feature maps are all known (no model mis-

specification), and 2) the number of actions is finite, i.e., we are in the finite K-action

setting described in Section 6.2.1. However, we believe that our algorithm and analysis

can be extended to the case of having misspecified models and convex action sets using

the results in [135].

6.2.3 Parameter Selection Setting

In this setting, unlike the classical setting in Section 6.2.1, we no longer assume that

the unknown parameter θ∗ can be any vector in Rd. Rather, θ∗ can be generated from

M possible reward models, each defined as a ball B(µi, bi) = {θ ∈ Rd : ∥θ − µi∥ ≤ bi},

with center µi ∈ Rd and radius bi ≥ 0. Note that the models (balls) may overlap and
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do not have to be disjoint. The M models can be thought of the responses of M types

(or clusters) of customers to different items in a recommender system or the reactions of

patients with M genotypes to a set of drugs. The radii {bi}Mi=1 represent the variation

within each cluster. The reward parameter θ∗ of the new task (LB problem) is arbitrarily

selected from the M models. For example, it can be adversarially selected from the

union of the models, i.e., θ∗ ∈
⋃M

i=1B(µi, bi). In this case, we denote by I∗, the set of

indices of the balls that contain θ∗. Since the models are often computed from (finite)

historical data, it is reasonable to assume that only estimates of their centers {µ̂i}Mi=1 are

available, together with upper-bounds on the error of these estimates {ci}Mi=1, such that

∥µi − µ̂i∥ ≤ ci, for all i ∈ [M ].

The agent has no knowledge either about θ∗ or the process according to which it has

been selected. The only information given to the agent are: 1) estimates µ̂i of the center

of the models, 2) upper-bounds ci on the errors of these estimates, and 3) the exact radii

bi of the models, for all i ∈ [M ]. This means that although θ∗ is selected from the actual

models B(µi, bi), the agent has only access to estimated models B(µ̂i, bi + ci) that have

more uncertainty (their corresponding balls are larger). For simplicity, we assume that

the exact values of radii {bi}Mi=1 are known. However, our results can be easily extended

to the case that instead of bi’s, their estimates b̂i and upper-bounds on their errors c′i,

i.e., ∥bi − b̂i∥ ≤ c′i, for all i ∈ [M ], are given to the agent. In this case, the agent has to

use even more uncertain estimates of the models B(µ̂i, bi + ci + c′i).

Our goal is to design an algorithm that can transfer knowledge from these estimated

models and learn the new task with parameter θ∗ more efficiently than when it is in-

dependently learned. This goal can be quantitatively stated as minimizing the transfer

regret,

R(T ) = sup
θ∗∈

⋃M
i=1 B(µi,bi)

R(T, θ∗), (6.2.3)
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where R(T, θ∗) is the regret defined by (6.2.1). We make the following standard assump-

tion on the boundedness of the features and expected rewards.

Assumption 14 There exist constants L,G ≥ 0, such that ∀t ∈ [T ] and ∀a ∈
⋃T

t=1At,

we have ∥ϕt(a)∥ ≤ L, and ∀θ ∈
⋃M

i=1B(µi, bi), we have |⟨ϕt(a), θ⟩| ≤ G.

6.2.4 Regression Oracle

In both model selection settings studied in the paper, our proposed algorithms use a

regression oracle that is based on sequential prediction with expert advice and square loss.

Following [131] and [135], we refer to this regression oracle as SqAlg. We can consider

SqAlg as a meta algorithm that consists ofM learning algorithms (or experts), each corre-

sponding to one of our M models, and returns a prediction by aggregating the predictions

of its experts. More precisely, in each round t ∈ [T ], SqAlg takes the current context-

action pair (xt, at), or equivalently ϕt(at), as input, and gives them to its M experts to

predict their reward, i.e., f i
t (Ht) = f i(ϕt(at);Ht), ∀i ∈ [M ], given the current history

Ht. Then, the meta algorithm SqAlg aggregates its experts’ predictions, {f i
t (Ht)}Mi=1,

given their current weights, and returns its own prediction ŷt = SqAlgt(ϕt(at);Ht). Upon

observing the actual reward yt, SqAlg updates the weights of its experts according to the

difference between their predictions f i(ϕt(at);Ht) and the actual reward yt.

The regression oracles (SqAlg) used by our model selection algorithms differ in the

prediction algorithm used by their experts. However, in both cases, SqAlg aggregates

its experts’ predictions using an algorithm by [136] (see Algorithm 12 in Appendix D-

Section D.1). The performance of SqAlg is evaluated in terms of its regret RSq(T ), which

is defined as its accuracy (in terms of square loss) w.r.t. the accuracy of the best expert

in the set, i.e.,
T∑
t=1

(ŷt − yt)
2 − min

i∈[M ]

T∑
t=1

(f i
t (Ht)− yt)

2 ≤ RSq(T ). (6.2.4)
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In each round t, we define the oracle prediction for a context x and an action a as

ŷt(x, a) := SqAlgt(x, a;Ht). As shown in [136], in case all observations and experts’

predictions are bounded in an interval of size ℓ, this regret can be bounded as RSq(T ) ≤

ℓ2 logM (see Appendix D-Section D.1 for more details). We use this regret bound in the

analysis of our proposed algorithms.

6.3 Feature Selection Algorithm

In this section, we derive an algorithm for the feature selection setting described in

Section 6.2.2 that is based on the SquareCB algorithm [131]. We refer to our algorithm

as feature selection SquareCB (FS-SCB). We prove an upper-bound on the transfer regret

of FS-SCB in Section 6.3.1, and provide an overview of the related work and a discussion

on our results in Section 6.3.2.

Algorithm 6 contains the pseudo-code of FS-SCB. In each round t ∈ [T ], the algorithm

observes a context xt ∈ X and passes it to its regression oracle SqAlg to produce its

reward predictions ŷt(xt, a), ∀a ∈ [K]. Each expert in SqAlg corresponds to one of the M

models and is a ridge regression algorithm with the feature map of that model. Expert

i ∈ [M ] predicts the reward of the context xt, for each action a ∈ [K], as f i(xt, a;Ht) =

⟨ϕi(xt, a), θ̂
i
t⟩, where θ̂it = argminθ ∥Φi⊤

t θ−Yt∥2 +λi∥θ∥2. We may write θ̂it in closed-form

as θ̂it = (V λi
t )−1Φi⊤

t Yt. In these equations, Yt = (y1, . . . , yt−1)
⊤ is the reward vector; Φi

t is

the feature matrix of the ith model, whose rows are ϕi(x1, a1), . . . , ϕ
i(xt−1, at−1); λi is the

regularization parameter of model i, which our analysis shows that it only needs to be

larger than one, i.e., λi ≥ 1; and finally V λi
t = λiI + Φ⊤

t Φt. The meta algorithm SqAlg

aggregates the experts’ predictions {f i(xt, a;Ht)}Mi=1 and produces its own predictions

ŷt(xt, a), ∀a ∈ [K], using Algorithm 12 in Appendix D-SectionD.1 (see Remark 6.3.1).

The next step in FS-SCB is computing the action with the highest predicted reward,
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Algorithm 6: Feature Selection Square-CB (FS-SCB)

44 Input: Models {ϕi}Mi=1, Confidence Parameter δ, Learning Rate α, Exploration
Parameter κ

45 for t = 1, . . . , T do
46 Observe context xt

47 Oracle predicts:
48 ŷt(xt, a) = SqAlgt(xt, a;Ht), ∀a ∈ [K]
49 Define a distribution pt over the actions:

pt(a) =


1

κ+α
(
ŷt(xt,a)−ŷt(xt,a′t)

) , a ̸= a′t,

1−
∑

a̸=a′t
pt(a), a = a′t,

(6.3.1)

where a′t = argmaxa∈[K] ŷt(xt, a);

50 Sample action at ∼ pt(·) and play it;
51 Build the confidence region Et(δ′) in (5.3.2)
52 Observe reward yt = ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩+ ηt;

53 Update SqAlg with (xt, at, yt);

54 end for

i.e., a′t = argmaxa∈[K] ŷt(xt, a), and using it to define a distribution pt ∈ ∆K over the ac-

tions (see Eq. 6.3.1). The distribution pt in (6.3.1) is defined similarly to the probability

selection scheme of [137], and assigns a probability to every action inversely propor-

tional to the gap between its prediction and that of a′t. The algorithm then samples

its action at from pt, observes reward yt, and feeds the tuple (xt, at, yt) to the oracle

to update its weights over the experts. Our analysis in Section 6.3.1 and Appendix D-

Section D.2 suggest to set the exploration parameter to κ = K and the learning rate to

α =
√

KT/DT (δ), where we define DT (δ) in Lemma 6.3.3 and give its exact expression

in Eq. D.2.25 in Appendix D-Section D.2.2.

Remark 6.3.1 (Admissible Experts) It is important to note that in each round t ∈

[T ], FS-SCB only uses predictions by admissible experts, i.e., experts i that belong to the
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set

St :=
{
i ∈ St−1 : ⟨ϕi(xt, a), θ̂

i
t⟩ ≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)
+ L

√
λiS, ∀a ∈ [K]

}
,

(6.3.2)

with S0 = [M ]. This is the set of experts i whose predictions f i(xt, a;Ht) = ⟨ϕi(xt, a), θ̂
i
t⟩, ∀a ∈

[K] are within a bound defined by (6.3.2). When an expert was removed from the admis-

sible set in a round t, it will remain out for the rest of the game. We discuss the technical

reasons for defining this set in the proof of Lemma 6.3.5 in Appendix D-Section D.2.2.

6.3.1 Regret Analysis of FS-SCB

We state a regret bound for FS-SCB followed by a proof sketch. The detailed proofs

are all reported in Appendix D-Section D.2.

Theorem 6.3.2 Let Assumption 13 hold and the regularization parameters λi, explo-

ration parameter κ, and learning rate α set to the values described above. Then, for any

δ ∈ [0, 1/4), w.p. at least 1− δ, the regret defined by (6.2.2) for FS-SCB is bounded as

RFS-SCB(T ) ≤ O
(√

2T log(2/δ) +RLG

×

√√√√KT (1 + log(M)) max
i∈[M ]

{
λiS2 + 4d log

(
1 + TL2

λid

δ

)})
.

Proof Sketch. The proof consists of two main steps:

Step 1. We first need to bound the prediction error of the online regression oracle.

Lemma 6.3.3 For any δ ∈ (0, 1/4], w.p. at least 1−δ, we can bound the prediction error
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of the regression oracle as

t−1∑
s=1

(
ŷs(xs, as)− ⟨ϕi∗(xs, as), θ

i∗
∗ ⟩
)2 ≤ Dt(δ) :=

O
((

1 +R2L2G2 log(M)
)
max
i∈[M ]

{
λiS

2 + 4d log
(1 + TL2

λid

δ

)})
.

The exact definition of Dt(δ) (see Eq. D.2.25 in Appendix D-Section D.2.3) shows its

dependence on the following two terms: 1) an upper-bound Qt on the prediction error

of the true models,

max
i∗

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ̂

i∗
s ⟩ − ⟨ϕi∗(xs, as), θ

i∗
∗ ⟩
)2 ≤ Qt, (6.3.3)

and 2) the regret RSq(t) of the regression oracle. Thus, the proof of Lemma 6.3.3

requires finding expressions for these quantities, which we derive them in the following

lemmas.

Lemma 6.3.4 For any δ ∈ (0, 1), with probability at least 1−δ, we may write Qt defined

in (6.3.3) as (see Eq. D.2.9 in Appendix D-Section D.2.1 for the exact expression)

Qt = O
(
max
i∈[M ]

{
λiS

2 + 4d log
(
1 +

tL2

λid

)}
+R2 log(1/δ)

)
.

Lemma 6.3.5 For any δ ∈ (0, 1), with probability at least 1− δ, we may write the regret

of the regression oracle as (see Eq. D.2.19 in Appendix D.2.2 for the exact expression)

RSq(t) = O
(
R2L2 log(M)×(

G2 + max
i∈[M ]

{
λiS

2 + d log
(
1 +

tL2

λid

)}
+ log(1/δ)

))
.

Step 2. We then show how the overall regret of FS-SCB is related to the prediction
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error of the online regression oracle, Dt(δ), using the following lemma:

Lemma 6.3.6 Under the same assumptions as Theorem 6.3.2, for any δ ∈ (0, 1/4], with

probability at least 1− δ, the regret of the FS-SCB algorithm is bounded as

RFS-SCB(T ) ≤
√

2T log(2/δ) +
α

4
DT (δ) +

T∑
t=1

∑
a∈[K]

pt(a)

(
⟨ϕi∗(xt, a), θ

i∗
∗ ⟩ − ⟨ϕi∗(xt, a

∗
t ), θ

i∗
∗ ⟩

− α

4

(
ŷt(xt, a)− ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)2)

. (6.3.4)

Finally, we conclude the proof of Theorem 6.3.2 by bounding the last term on the RHS

of (6.3.4) using Lemma D.2.1 (see Appendix D-Section D.2.5 for details).

6.3.2 Related Work (Feature Selection)

The most straightforward solution to the feature selection problem described in Sec-

tion 6.2.2 is to concatenate all models (feature maps) and build a (M × d)-dimensional

feature, and then search for the sparse reward parameter θ∗ ∈ RMd with only d non-zero

elements. We may then solve the resulting LB problem using a sparse LB algorithm

(e.g., [133]). This approach would result in a regret bound of Õ(d
√
MT ), which may not

be desirable when the number of models M is large.

Another approach is to use the EXP4 (or SquareCB) algorithm [138] to obtain a regret

that scales only logarithmically with M . If we partition the linear space of each model

into O(2d) predictors, we will have the total number of O(M2d) predictors. Predictor

(i, j) ∈ ([M ], [2d]) is associated with a linear map θij ∈ Rd and recommends the action

argmaxa∈A⟨ϕi(a), θij⟩. The regret of EXP4 with this set of experts is of Õ(
√
dKT logM).

Although this solution has logarithmic dependence on M , it is still not desirable, since
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it is not computationally efficient (requires handling M2d predictors).

To have computational efficiency, we can use the approach of [139], but this results

in a O(T 2/3) regret. They designed a model selection strategy using an EXP4 algorithm

with a set of experts that are instances of the S-EXP3 algorithm of [140]. The interesting

fact is that each S-EXP3 expert is a learning algorithm and competes against a set of

mappings. The overall regret of this algorithm is of Õ
(
T 2/3(|S|K logK)1/3

√
logM

)
(see

[141, Chapter 4.2]). If we apply this algorithm to our setting, the resulting regret bound

is of Õ(T 2/3d1/3K1/3
√
logM). Although the algorithm is computationally more efficient

than EXP4 and its regret has logarithmic dependence on M , it is still not desirable as

its dependence on T is of Õ(T 2/3), which is not optimal.

The novelty of our results is that we propose a computationally efficient algorithm,

whose regret has better dependence on M and T , i.e., Õ(
√
KT logM), than all the ex-

isting methods. Our FS-SCB algorithm achieves this by 1) using a novel instantiation of

SquareCB, or more precisely by constructing a proper full information algorithm (expert),

and 2) using SquareCB with a set of adaptive (learning), and not static, least-squares

experts. Note that SquareCB is a reduction that turns any online regression oracle into

an algorithm for contextual bandits [131].

More recently, [142] studied a feature selection problem where the reward function is

linear in all M feature maps (all models are realizable). Under this stronger assumption

(than ours), they prove a regret bound that is competitive (up to a logM factor) with

that of a linear bandit algorithm that uses the best feature map. More specifically, if

one of the feature maps is such that a constant regret is achievable, the overall model

selection strategy also achieves a constant regret. Although our focus is not on constant

regret, we are able to achieve our results without requiring all models to be realizable.
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6.4 Parameter Selection Algorithm

We propose a UCB-style algorithm for the parameter selection setting described in

Section 6.2.3, which we refer to as parameter selection OFUL (PS-OFUL). We then

provide an upper-bound on its transfer regret and conclude with a discussion on the

existing results related to this setting.

Algorithm 7 contains the pseudo-code of PS-OFUL. The novel idea in PS-OFUL is

the construction of its confidence set Ct (Eq. 6.4.2), which is based on the predictions

{ŷs}t−1
s=1 by a regression oracle SqAlg. As described in Section 6.2.4, SqAlg is a meta

algorithm that consists of M learning algorithms (or experts), and its predictions ŷt are

aggregates of its experts’ predictions f i(ϕt(at);Ht), ∀i ∈ [M ]. In PS-OFUL, each expert

i ∈ [M ] is a biased regularized least-squares algorithm with bias µ̂i, i.e., our estimate of

the center of the ith ball (model). Expert i predicts the reward of the context-action

ϕt(at) as f
i(ϕt(at);Ht) = ⟨ϕt(at), θ̂

i
t⟩, where θ̂it = argminθ ∥Φ⊤

t θ− Yt∥2 + λi∥θ− µ̂i∥2. We

may write θ̂it in closed-form as θ̂it = (V λi
t )−1Φ⊤

t (Yt − Φtµ̂i) + µ̂i. In these equations, the

reward vector Yt and V λi
t are defined as in Section 6.3; Φt is the feature matrix, whose

rows are ϕ1(a1), . . . , ϕt−1(at−1); and λi is the regularization parameter of expert i. Our

analysis in Section 6.4.1 and Appendix D.3 suggests to set them to λi =
1

(bi+ci)2
.

The PS-OFUL algorithm takes the feature map ϕ and models {B(µ̂i, bi + ci)}Mi=1 as

input. At each round t ∈ [T ], it first constructs a confidence set Ct−1 using the predictions

of the regression oracle {ŷs}t−1
s=1. The radius γt(δ) of the confidence set Ct is defined by

two terms: 1) the regret RSq(t) of the regression oracle SqAlg, defined by (6.2.4), and 2)

an upper-bound Ut on the prediction error of the true models (i.e., models that contain

θ∗), i.e.,

max
i∈I∗

t−1∑
s=1

(
⟨ϕs(as), θ̂

i
t⟩ − ⟨ϕs(as), θ∗⟩

)2 ≤ Ut. (6.4.1)
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The exact values of Ut, RSq(t), and γt(δ) come from our analysis and have been stated

in Eq. D.3.22 in Appendix D-Section D.3.3. PS-OFUL then computes action at as the

one that attains the maximum optimistic reward w.r.t. the confidence set Ct−1. Using at,

it calculates ŷt = SqAlgt(ϕt(at);Ht)). As described in Section 6.2.4, SqAlg makes use of

Algorithm 12 in Appendix D-Section D.1 to return its prediction ŷt as an aggregate of

its experts’ predictions (see Remark 6.4.1). Finally, PS-OFUL takes action at, observes

reward yt, and pass the sample (ϕt(at), yt) to SqAlg. This sample is then used within

SqAlg to evaluate its experts and to update their weights.

Algorithm 7: Parameter Selection OFUL (PS-OFUL)

55 Input: Feature Map ϕ, Confidence Parameter δ, Models {B(µ̂i, bi + ci)}Mi=1

56 for t = 1, . . . , T do
57 Construct the confidence set:

Ct−1 =

{
θ :

t−1∑
s=1

(
ŷs − ⟨ϕs(as), θ⟩

)2 ≤ γt−1(δ)

}
(6.4.2)

58 Take action: at = argmaxa∈At maxθ∈Ct−1⟨ϕt(a), θ⟩
59 Oracle predicts: ŷt = SqAlgt(ϕt(at);Ht)
60 Observe reward: yt = ⟨ϕt(at), θ∗⟩+ ηt
61 Update SqAlg with (ϕt(at), yt);

62 end for

Remark 6.4.1 (Admissible Experts) Similar to FS-SCB, in each round t ∈ [T ], PS-

OFUL only uses predictions by admissible experts, i.e., experts i that belong to the set

St :=
{
i ∈ St−1 : ⟨ϕt(at), θ̂

i
t⟩ ≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)

+ L
√
λi(bi + ci)

}
, (6.4.3)

with S0 = [M ]. This is the set of experts i whose prediction f i(ϕt(at);Ht) = ⟨ϕt(at), θ̂
i
t⟩
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is within a bound defined by (6.4.3). When an expert was removed from the admissible

set in a round t, it will remain out for the rest of the game. We discuss the technical

reasons for defining this set in the proof of Lemma 6.4.5 in Appendix D-Section D.3.2.

6.4.1 Regret Analysis of PS-OFUL

We state a regret bound for PS-OFUL followed by a proof sketch. The detailed proofs

are all reported in Appendix D-Section D.3.

Theorem 6.4.2 Let Assumption 14 hold and λi =
1

(bi+ci)2
≥ 1, ∀i ∈ [M ]. Then, for

any δ ∈ (0, 1/4], with probability at least 1 − δ, the transfer-regret defined by (6.2.3) of

PS-OFUL is bounded as

R(T ) = O
(
dRLmax{1, G}

√
1 + log(M) (6.4.4)

×

√
T log

(
1 +

T

d

)
log
(1 + TL2 maxi∈[M ](bi+ci)2

d

δ

))
.

Proof Sketch. The proof consists of two main steps.

Step 1. We first fully specify the confidence set Ct and prove its validity i.e., P(θ∗ ∈

Ct) ≥ 1− δ, ∀t ∈ [T ].

Theorem 6.4.3 Under the same assumptions as Theorem 6.4.2, the radius γt(δ) of the

confidence set Ct is fully specified by Eq. D.3.22 in Appendix D.3.3. Moreover, for any

δ ∈ (0, 1/4], with probability at least 1 − δ, the true reward parameter θ∗ lies in Ct, i.e.,

P (θ∗ ∈ Ct) ≥ 1− δ.

The definition of γt(δ) in Eq. D.3.22 shows its dependence on Ut and RSq(t), de-

fined by (6.4.1) and (6.2.4), respectively. Thus, the proof of Thm. 6.4.3 requires finding

expressions for these quantities, which we derive them in the following lemmas.
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Lemma 6.4.4 Setting λi =
1

(bi+ci)2
, ∀i ∈ [M ], with probability 1 − δ, we may write Ut,

defined by (6.4.1), as (see Eq. D.3.9 in Appendix D-Section D.3.1 for the exact expression)

Ut = O
(
dR2 log

(1 + tL2 maxi∈[M ](bi+ci)
2

d

δ

))
.

Lemma 6.4.5 Setting λi = 1
(bi+ci)2

, ∀i ∈ [M ], with probability 1 − δ, we may write

RSq(t), defined by (6.2.4), as (see Eq. D.3.15 in Appendix D.3.2 for the exact expression)

RSq(t) = O
(
dR2L2 log(M) log

(1 + tL2 maxi∈[M ](bi+ci)
2

d

δ

))
.

Step 2. We then show how the regret is related to the confidence sets using the

following lemma:

Lemma 6.4.6 Under the same assumptions as Theorem 6.4.2, for any δ ∈ (0, 1/4], with

probability at least 1− δ, the regret of PS-OFUL is bounded as

RPS-OFUL(T ) ≤ 2Gd+ (6.4.5)

2max{1, G}
√

2dT log
(
1 +

T

d

)
max
d<t≤T

γt(δ).

We conclude the proof of Theorem 6.4.2 by plugging the confidence radius γt(δ)

computed in Theorem 6.4.3 (Eq. D.3.22 in Appendix D-Section D.3.3) into the regret

bound (6.4.5).

6.4.2 Related Work (Parameter Selection)

[143] and [144] studied meta learning in stochastic linear bandit (LB), where the

agent solves a sequence of LB problems, whose reward parameters θ∗ are drawn from an

unknown distribution ρ of bounded support in Rd. For each LB task, the agent is given an
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estimate of the mean of the distribution ρ and an upper-bound of its error, and its goal is

to minimize the transfer regret R(T, ρ) = Eθ∗∼ρ

[
E[R(T, θ∗)]

]
. Their proposed algorithms

assume knowing the variance term Varh = Eθ∗∼ρ

[
∥θ∗ − h∥2

]
, for any h ∈ Rd, in order

to properly set their regularization parameter λ. Thus, the parameter selection setting

studied in our paper can be seen as an extension of their transfer learning setting to

multiple (M) models. Moreover, we allow the reward parameter of the new LB problem

θ∗ to be selected arbitrarily from the M models, and consider a worst-case transfer regret

(see Eq. 6.2.3) for our algorithm (instead of a regret in expectation w.r.t. ρ). Despite

these differences, our setting is similar to theirs as we are also given an estimate of the

center of each model µ̂i, together with an upper-bound on its error ci, plus the radius bi of

each model. Also similar to their results, our analysis clearly shows the importance of the

choice of the regularization parameters, λi = 1/(bi+ci)
2, for obtaining a regret bound that

only logarithmically depends on the maximum model uncertainty, i.e., maxi∈[M ](bi+ ci)
2.

Our parameter selection setting is also related to latent bandits [145, 146] in which

identifying the true latent variable is analogous to finding the correct model. The latest

work in this area is by [146] in which the agent faces a K-armed LB problem selected

from a set of M known K-dimensional reward vectors. They proposed UCB and TS

algorithms for this setting and showed that their regret (Bayes regret in case of TS)

are bounded as 3M + 2Tε + 2R
√
6MT log T , where the reward vectors are known up

to an error of ε. Comparing to their results, the regret of PS-OFUL in (6.4.4) has a

better dependence on the number of models,
√
logM vs. M , and the model uncertainty,√

log(maxi∈[M ](bi + ci)2) vs. ε. However, the number of actions K does not appear in

their bound, while the bound of PS-OFUL will have a
√
K factor when applied to K-

armed bandit problems. If the objective is to have a better scaling in K, we can use a

different bandit model selection strategy, called regret balancing [147, 148], to obtain an

improved regret that scales as min{εT +
√
MT,

√
KMT} (see Appendix D-Section D.5
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Figure 6.1: Feature selection in the synthetic LB problem (top) and MNIST (bottom).
The regrets are averaged over 100 LB problems.

Figure 6.2: Parameter selection in the synthetic LB problem (left) and CIFAR-10
(right). Results are averaged over 50 runs.

for details).

In another closely related work, [149] approach a similar problem by initializing TS

with a prior that is a mixture of M distributions. They prove a Bayes regret bound for

their algorithm in case of Gaussian mixtures that has
√
M dependence on the number

of models and
√

maxi∈[M ] σ
2
0,i dependence on the maximum variance of the Gaussian

priors. Both these dependences are logarithmic
√
logM and

√
log(maxi∈[M ](bi + ci)2) in

the regret of PS-OFUL.
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6.5 Experiments

We evaluate the performances of our FS-SCB and PS-OFUL algorithms using a syn-

thetic LB problem and image classification problems: MNIST [150] and CIFAR-10 [151].

We report the details of our experimental setup and additional results in Appendix D-

Section D.6.

Feature Selection (Synthetic): We first sample the parameter of the linear bandit

problem from a d = 50 dimensional Gaussian with variance 0.01: θ∗ ∼ N (0, 0.01Id).

We generate all feature maps, {ϕi(a)}Mi=1, by sampling 10, 000 vectors from the Gaussian

with mean θ∗ and covariance 0.1Id, i.e., ϕ
i(a) ∼ N (θ∗, 0.1Id), for a = 1, . . . , 10, 000. This

implies that all M feature maps have the same bias. We set ϕ1(·) to be the true feature

map. At each round t ∈ [T ], the learner is given an action set consist of 10 numbers

from A = {1, 2, . . . , 10, 000}. The reward of each action a is ⟨ϕ1(a), θ⋆⟩ + ηt, where

ηt ∼ U [−0.5, 0.5].

Feature Selection (MNIST):We train a convolutional neural network (CNN) with

M different number of epochs on MNIST data, and use their second layer to the last as

our d = 10-dimensional feature maps {ϕi}Mi=1. These feature maps have test accuracy

between 20% (worst model) and 97% (best model). We set the best one as true model ϕi∗ .

For each class s ∈ S = {0, . . . , 9}, we fit a linear model, given the feature map ϕi∗ , and

obtain parameters {θi∗s }9s=0. At the beginning of each LB task, we select a class s∗ ∈ S

uniformly at random and set its parameter to θi∗s∗ . At each round t ∈ [T ], the learner is

given an action set consists of 10 images, one from class s∗ and the rest randomly selected

from the other classes. The reward of each action a is defined as ⟨ϕi∗(a), θi∗s∗⟩+ηt ∈ [0, 1],

where ϕi∗(a) is the application of the feature map ϕi∗ to the image corresponding to

action a and ηt ∼ U [−0.5, 0.5] is the noise.

In Figure 6.1, we compare the regret of our FS-SCB algorithm for different number
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Figure 6.3: Parameter selection in CIFAR-10 with models less accurate than those in
Figure 6.2 (right). The results are averaged over 50 runs.

of models M with a regret balancing algorithm that uses SquareCB baselines (RB-SCB),

and three SquareCB algorithms that use the best (Oracle), second-best (with test ac-

curacy 84% for MNIST), and worst feature maps. The results in Figure 6.1 show that

1) FS-SCB always performs between the best and second-best experts, 2) the regret of

FS-SCB that scales as
√
logM is close to RB-SCB (scales as

√
M) for small M , but

gets much better as M grows, and 3) RB-SCB has much higher variance than the other

algorithms in MNIST.

Parameter Selection (Synthetic): We first sample the center of M = 10 balls

from a d = 20-dimensional Gaussian, i.e., {µi}Mi=1 ∼ N (0, Id), and set their radii to

bi = b, ∀i ∈ [M ]. At the beginning of each LB task, we select a model i∗ ∈ [M ] uniformly

at random, and then sample the problem’s parameter from its ball, i.e., θ∗ ∼ B(µi∗ , bi∗).

The action set in each round t ∈ [T ] consists of 10 vectors {ϕt(aj)}10j=1 ∼ N (0, 0.01Id),

and the reward of the selected action at is defined as ⟨ϕt(at), θ∗⟩+ ηt, ηt ∼ U [−0.5, 0.5].

Figure 6.2 (left) compares the regret of our PS-OFUL algorithm with OFUL [42] for

different sizes of the balls b ∈ {0,
√
d, 2

√
d}. We run OFUL with the upper-bounds

∥θ∗∥2 ≤ S = 10 and S = maxi(µi + bi) on the reward parameter. Note that the second

bound is tighter and shows the best performance of OFUL. Our results indicate that the

regret of PS-OFUL is better than OFUL, and gets closer to it as we increase the size

of the balls from b = 0 to b = 2
√
d ≈ 9. This clearly shows the potential advantage of
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transfer (PS-OFUL) over individual (OFUL) learning.

Parameter Selection (CIFAR-10): We modify the EfficientNetV2-S network [152]

by adding a layer of d = 12 neurons before the last layer and fine-tuning it on CIFAR-10

dataset. We then select this d-dimensional layer as our feature map ϕ. To define our

M models (balls), we sample 100M datasets of size 500. For each dataset, we randomly

select a class s∗ ∈ [M ], assign reward 1 to images from s∗ and 0 to other images, and

fit a linear model to it to obtain a parameter vector. Finally, we fit a Gaussian mixture

model with M components to these 100M parameter vectors and use the means and

covariances of the resulting clusters as the center and radii of our M models (balls). At

the beginning of each LB task, we select a class s∗ ∈ [M ] uniformly at random. In each

round t ∈ [T ], the learner is given an action set consists of 10 images, one from class

s∗ and the rest randomly selected from the other classes. The learner receives a reward

from Ber(0.9), if it selects the image from class s∗, and from Ber(0.1), otherwise.

In Figure 6.2 (right), we compare the mean reward of PS-OFUL for different values of

M with a regret balancing algorithm that uses OFUL baselines (RB-OFUL) [147], OFUL

(individual learning), and BIAS-OFUL [143] with bias being the center of the true model

(Oracle). The results show 1) the good performance of PS-OFUL, 2) the performance

of PS-OFUL gets better than RB-OFUL as M grows (
√
logM vs.

√
M scaling), 3) the

large variance of RB-OFUL, especially in comparison to PS-OFUL, and finally 4) the

advantage of transfer (PS-OFUL) over individual (OFUL) learning.

In order to show the impact of the model accuracy (the accuracy of the center of the

balls and their radii) on the performance of the algorithms, we defined a less accurate

set of M models (balls) using 10M datasets of size 50 (as opposed to 100M datasets of

size 500 used in the results reported in Figure 6.2 (right)). In Figure 6.3, we compare the

mean reward of PS-OFUL for different number of models M with RB-OFUL, OFUL, and

BIAS-OFUL. The results indicate that with decreasing in the accuracy of the models,
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the performance of PS-OFUL and RB-OFUL get closer to that for OFUL.

6.6 Conclusions

We studied two model selection settings in LB, where the mean reward is linear in at

least one of M models (feature selection), and where the reward parameter is arbitrarily

selected from M misspecified models (parameter selection). We derived computation-

ally efficient algorithms in these settings that are based on reductions from bandits to

full-information problems, and proved regret bounds with desirable dependence on the

horizon and number of models. An interesting future direction is to extend our results to

the meta learning and learning-to-learn setting, where the agent starts with M models,

and instead of solving a single LB problem, has to solve N of them one after another.

[153, 144] are the results of this chapter.
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Supplements to Chapter 2

A.1 Proof of Lemma 2.3.3

We prove this by contradiction. Suppose there is another optimal solution for problem

(2.3.8) (R⋆,λ⋆) in which for customers with traveling preference Gℓ, station sn has empty

capacity, and assume that customers with type (i, j, ℓ) are assigned to stations sm with

m > n. However, we can have another set of routing probabilities such that for a small

0 ≤ ϵ, r
(n)

′

i,j,ℓ = r
(n)⋆

i,j,ℓ + ϵ, and r
(m)

′

i,j,ℓ = r
(m)⋆

i,j,ℓ − ϵ which is a feasible solution, and it will

increase the objective function (2.3.8) due to the structure we found in lemma 2.3.2.

Hence, it is contradictory to the optimality of this solution.

A.2 Proof of Theorem 2.3.4

We first assume that all the charging stations are used at full capacity, i.e., potential

customers are more than the available capacity of charging stations. We need to show

that the Algorithm 1 will find the optimal solution of problem (2.3.8). For convenience,

denote as f(.) the objective function of (2.3.8), and g(.) as the resulting linear program of
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problem (2.3.8) when we consider virtual station sQ+1 and we fix λi,j,ℓ = Λi,j,ℓ, ∀(i, j, ℓ).

Assume the optimal solution of problem f to be A⋆ =

(
[r

(k)⋆

i,j,ℓ ]k=1,...,ρ, λ
⋆
i,j,ℓ

)
, ∀(i, j, ℓ), and

the optimal solution of linear program g to be B̂⋆ =

(
[h

(k)⋆

i,j,ℓ ]k=1,...,ρ,Q+1, λi,j,ℓ = Λi,j,ℓ

)
,

∀(i, j, ℓ) . We define Â =

(
[r

(k)
′

i,j,ℓ]k=1,...,ρ,Q+1, λ
′

i,j,ℓ = Λi,j,ℓ

)
, ∀(i, j, ℓ), such that:

[r
(k)

′

i,j,ℓ]k=1,...,ρ = [r
(k)⋆

i,j,ℓ ]k=1,...,ρ, (A.2.1)

r
(Q+1)

′

i,j,ℓ =
Λi,j,ℓ − λ⋆

i,j,ℓ

Λi,j,ℓ

, (A.2.2)

and we define B =

(
[h

(k)
′′

i,j,ℓ ]k=1,...,ρ, λ
′′

i,j,ℓ

)
, ∀(i, j, ℓ), such that:

[h
(k)

′′

i,j,ℓ ]k=1,...,ρ = [h
(k)⋆

i,j,ℓ ]k=1,...,ρ, (A.2.3)

λ
′′

i,j,ℓ = Λi,j,ℓ(1− h
(Q+1)⋆

i,j,ℓ ). (A.2.4)

Therefore, Â and B are in the feasible set of solutions of problems g and f , respectively.

By the definition of optimality, we can write:

f g

A⋆ Â

B B̂⋆

f(A⋆) + g(B̂⋆) ≥ g(Â) + f(B), or (A.2.5)

α = f(A⋆)− g(Â) ≥ f(B)− g(B̂⋆) = β, (A.2.6)

where α is the negative effect of admitting all customers to the system and adding the

virtual station sQ+1 on the problem 2.3.8 for optimal solution A⋆, and β is that of solution

B. Hence, α > β is contradictory to the optimality of A⋆. Therefore, α = β, which means
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the solution structure B is the optimal solution for problem (2.3.8). Therefore, Algorithm

1 will propose the optimal solution of (2.3.8). Now consider the case where all charging

stations are not used at full capacity, i.e., the potential customers are less than the

available capacity of charging stations. As is it shown in lemma 2.3.3, in the optimal

solution of problem (2.3.8), customers will be assigned to the charging stations starting

from charging station s1. The same structure holds in the case where Algorithm 1 adds

a virtual station since the coefficients of decision variables will have the same structure

as they have in (2.3.8). Therefore, if the available capacity of charging stations is more

than the potential set of customers can use, Algorithm 1 will not send any customers

to the station sQ+1, and in the optimal solution of problem (2.3.8) all customers will be

admitted to the system in full.

A.3 Proof of Proposition 2.4.1

We know that

Pi+1,j,ℓ − Pi,j,ℓ = vi+1(Wi,j,ℓ −Wi+1,j,ℓ)

vi+1(Wi,j,ℓ −Wi+1,j,ℓ) ≥ vi(Wi,j,ℓ −Wi+1,j,ℓ), (A.3.1)

and hence, we can conclude that

Pi+1,j,ℓ − Pi,j,ℓ ≥ vi(Wi,j,ℓ −Wi+1,j,ℓ), (A.3.2)

which satisfies the vertical IC constraints using Lemma (2.2.2). For proving Horizontal

IC, we know from (2.4.7) that Pi,j+1,ℓ − Pi,j,ℓ = vi(Wi,j,ℓ − Wi,j+1,ℓ), which satisfies the

condition stated in Lemma (2.2.2) for Horizontal IC. For proving (2.2.6), we need to

120



Supplements to Chapter 2 Chapter A

show that Pi,j,ℓ + viWi,j,ℓ ≤ Pi,j,m + viWi,j,m if m ∈ Bℓ that we can get with considering

constraint (2.4.5) and equations (2.4.6)-(2.4.8). We prove IR by induction for customers

with traveling preference Gℓ. We know that IR requires that Pi,j,ℓ ≤ Ri−viWi,j,ℓ. Starting

with i = 1 we have P1,j,ℓ = R1 − v1W1,j,ℓ. Now, assume that IR holds for type (i, j, ℓ).

For type (i + 1, j, ℓ), we can write Pi+1,j,ℓ =
(
Pi,j,ℓ + vi+1Wi,j,ℓ − vi+1Wi+1,j,ℓ

)
≤
(
Ri −

viWi,j,ℓ+vi+1Wi,j,ℓ−vi+1Wi+1,j,ℓ

)
. Also, we know that Wi+1,j,ℓ ≤ Wi,j,ℓ ≤ Ri

vi
≤
(Ri+1−Ri

vi+1−vi

)
,

which leads to Pi+1,j,ℓ ≤
(
Ri + (vi+1 − vi)

Ri+1−Ri

vi+1−vi
− vi+1Wi+1,j,ℓ

)
. Accordingly, Pi+1,j,ℓ ≤

Ri + Ri+1 − Ri − vi+1Wi+1,j,ℓ = Ri+1 − vi+1Wi+1,j,ℓ, which concludes that: Pi+1,j,ℓ ≤

Ri+1 − vi+1Wi+1,j,ℓ. This proves IR.
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B.1 Proof of Lemma 4.4.2

We first state the standard results that plays an important role in most proofs for

linear bandits problems.

Proposition B.1.1 ( from[42]) Let λ ≥ 1. For any arbitrary sequence of actions

(x1, . . . , xt) ∈ Dt, let Vt be the corresponding Gram matrix, then

t∑
s=1

∥xs∥2V −1
s

≤ 2 log
det(Vt+1)

det(λI)
≤ 2d log (1 +

tL2

λ
). (B.1.1)

In particular, we have

T∑
s=1

∥xs∥V −1
s

≤
√
T

(
T∑

s=1

∥xs∥2V −1
s

) 1
2

≤

√
2Td log

(
1 +

TL2

λ

)
. (B.1.2)

Also, we recall the Azuma’s concentration inequality for super-martingales.

122



Supplements to Chapter 4 Chapter B

Proposition B.1.2 (Azuma’s inequality [154]) If a super-martingale (Yt)t≥0 correspond-

ing to a filtration Ft satisfies |Yt − Yt−1| < ct for some positive constant ct, for all

t = 1, . . . , T , then, for any u > 0,

P (YT − Y0 ≥ u) ≤ 2e
− u2

2
∑T

t=1 c2t . (B.1.3)

Next, we define the high probability confidence regions for the RLS-estimates that er use

in the rest of the proof.

Definition B.1.3 Let δ ∈ (0, 1), δ′ = δ
6T
, and t ∈ [T ]. We define the following events:

• Êt is the event that the RLS-estimate θ̂ concentrates around θ⋆ for all steps s ≤ t,

i.e., Êt = {∀s ≤ t,
∥∥∥θ̂s − θ⋆

∥∥∥
Vs

≤ βs(δ
′)};

• Ẑt is the event that the RLS-estimate µ̂ concentrates around µ⋆, i.e., Ẑt = {∀s ≤

t, ∥µ̂s − µ⋆∥Vs
≤ βs(δ

′)}. Moreover, define Zt such that

Zt = Êt ∩ Ẑt.

• Ẽt is the event that the sampled parameter θ̃t concentrates around θ̂t for all steps

s ≤ t, i.e., Ẽt = {∀s ≤ t,
∥∥∥θ̃s − θ̂s

∥∥∥
Vs

≤ γs(δ
′)}. Let Et be such that Et = Ẽt ∩ Zt.

Lemma B.1.4 Under Assumptions 6, 7, we have P(Z) = P(Ê ∩ Ẑ) ≥ 1 − δ
3
where

Ê = ÊT ⊂ · · · ⊂ Ê1, and Ẑ = ẐT ⊂ · · · ⊂ Ẑ1.

Proof: The proof is similar to the one in Lemma 1 of [43] and is ommited for brevity.

Lemma B.1.5 Under Assumptions 6, 7, we have P(E) = P(Ẽ ∩ Z) ≥ 1 − δ
2
, where

Ẽ = ẼT ⊂ · · · ⊂ Ẽ1.
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Proof: We show that P(Ẽ) ≥ 1 − δ
6
. Then, from Lemma B.1.4 we know that

P(Z) ≥ 1− δ
3
, thus we can conclude that P(E) ≥ 1− δ

2
. Bounding Ẽ comes directly from

concentration inequality (4.3.9). Specifically, for 1 ≤ t ≤ T

P
(∥∥∥θ̃t − θ̂t

∥∥∥
Vt

≤ γt(δ
′)

)
= P

(
∥ηt∥2 ≤

γt(δ
′)

βt(δ′)

)
= P

(
∥ηt∥2 ≤

(
1 +

2

C
LS

)√
cd log (

c′d

δ′
)

)
≥ 1− δ′.

Applying union bound on this ensures that P(Ẽ) ≥ 1− Tδ′ = 1− δ
6
.

Now we are ready to provide the formal proof of Lemma 4.4.2. First, we provide a formal

statement and a detailed proof of Lemma 4.4.2. Here, we need several modifications

compared to [43] that are required because in our setting, actions xt belong to inner

approximations of the true safe set Ds
0. Moreover, we follow an algebraic treatment that

is perhaps simpler compared to the geometric viewpoint in [43].

Lemma B.1.6 Let Θopt
t = {θ ∈ Rd : maxx∈Ds

t
x⊤θ ≥ x⊤⋆ θ⋆} ∩ ETS

t be the set of optimistic

parameters, θ̃t = θ̂t + βt(δ
′)V

− 1
2

t ηt with ηt ∼ DTS, then ∀t ≥ 1, P
(
θ̃t ∈ Θopt

t |Ft, Zt

)
≥ p

2
.

Proof: First, we provide the shrunk version D̃s
t of Ds

t as follows:

A shrunk safe decision set D̃s
t . Consider the enlarged confidence region C̃t centered

at µ⋆ as

C̃t := {v ∈ Rd : ∥v − µ⋆∥Vt
≤ 2βt(δ

′)}. (B.1.4)

We know that Ct ⊆ C̃t, since ∀v ∈ Ct, we know that ∥v − µ⋆∥Vt
≤ ∥v − µ̂t∥Vt

+∥µ̂t − µ⋆∥Vt
≤

2β(t). From the definition of enlarged confidence region, we can get the following defini-
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tion for shrunk safe decision set:

D̃s
t :={x ∈ D0 : x

⊤v ≤ C, ∀v ∈ C̃t}

= {x ∈ D0 : max
v∈C̃t

x⊤v ≤ C}

= {x ∈ D0 : x
⊤µ⋆ + 2βt(δ

′) ∥x∥V −1
t

≤ C}, (B.1.5)

and note that D̃s
t ⊆ Ds

t , and they are not empty, since they include zero due to Assump-

tion 8.

Then, we define the parameter αt such that the vector zt = αtx⋆ in direction x⋆

belongs to D̃s
t and is closest to x⋆. Hence, we have:

αt := max
{
α ∈ [0, 1] : zt = αx⋆ ∈ D̃s

t

}
. (B.1.6)

Since D0 is convex by Assumption 8 and both 0, x⋆ ∈ D0, we have

αt = max

{
α ∈ [0, 1] : α

(
x⊤
⋆ µ⋆ + 2βt(δ

′) ∥x⋆∥V −1
t

)
≤ C

}
. (B.1.7)

From constraint (4.2.1), we know that x⊤
⋆ µ⋆ ≤ C. We choose αt such that

1 +
2

C
βt(δ

′) ∥x⋆∥V −1
t

=
1

αt

. (B.1.8)

We need to study the probability that a sampled θ̃t drawn from HTS distribution at

round t is optimistic, i.e.,

pt = P
(
(xt(θ̃t))

⊤θ̃t ≥ x⊤
⋆ θ⋆

∣∣∣ Ft, Zt

)
.
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Using the definition of αt in (B.1.7), we have

(xt(θ̃t))
⊤θ̃t = max

x∈Ds
t

x⊤θ̃t ≥ αtx
⊤
⋆ θ̃t. (B.1.9)

Hence, we can write

pt ≥P
(
αtx

⊤
⋆ θ̃t ≥ x⊤

⋆ θ⋆

∣∣∣ Ft, Zt

)
= P

(
x⊤
⋆

(
θ̂t + βt(δ

′)V
− 1

2
t ηt

)
≥ x⊤

⋆ θ⋆
αt

∣∣∣∣ Ft, Zt

)

Then, we use the value that we chose for αt in (B.1.8), and we have

= P
(
x⊤
⋆ θ̂t + βt(δ

′)x⊤
⋆ V

− 1
2

t ηt ≥

x⊤
⋆ θ⋆ +

2

C
βt(δ

′) ∥x⋆∥V −1
t

x⊤
⋆ θ⋆|Ft, Zt

)

we know that |x⊤
⋆ θ⋆| ≤ ∥x⋆∥2∥θ⋆∥2 ≤ LS. Hence,

pt ≥ P
(
βt(δ

′)x⊤
⋆ V

− 1
2

t ηt ≥

x⊤
⋆ (θ⋆ − θ̂t) +

2

C
LSβt(δ

′) ∥x⋆∥V −1
t

| Ft, Zt

)

From Cauchy–Schwarz inequality and (4.3.2), we have

| x⊤
⋆

(
θ⋆ − θ̂t

)
|≤ ∥x⋆∥V −1

t

∥∥∥θ⋆ − θ̂t

∥∥∥
Vt

≤ βt(δ
′) ∥x⋆∥V −1

t
.
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Therefore, we can write

pt ≥ P
(
x⊤
⋆ V

− 1
2

t ηt ≥

∥x⋆∥V −1
t

+
2

C
LS ∥x⋆∥V −1

t
| Ft, Zt

)
(B.1.10)

We define u⊤ =
x⊤
⋆ V

− 1
2

t

∥x⋆∥
V −1
t

, and hence ∥u∥2 = 1. It follows from (B.1.10) that

pt ≥ P
(
u⊤ηt ≥ 1 +

2

C
LS

)
≥ p, (B.1.11)

where the last inequality follows the concentration inequality (4.3.9) of the TS distri-

bution. We also need to show that the high probability concentration inequality event

does not effect the TS of being optimistic. This is because the chosen confidence bound

δ′ = δ
6T

is small enough compared to the anti-concentration property (4.3.8). Moreover,

we assume that T ≥ 1
3p

which implies that δ′ ≤ p
2
. We know that for any events A ans

B, we have

P(A ∩B) = 1− P(Ac ∪Bc) ≥ P(A)− P(Bc). (B.1.12)

We apply (B.1.12) with A = {Jt(θ̃t) ≥ J(θ⋆)} and B = {θ̃t ∈ ETS
t } which leads to

P
(
θ̃t ∈ Θopt

t

∣∣∣ Ft, Zt

)
≥ p− δ′ ≥ p

2
.

127



Supplements to Chapter 4 Chapter B

B.2 Proof of Theorem 4.4.1

The proof presented below follows closely the proof of [43] and is primarily presented

here for completeness. Specifically, we have identified that the only critical change that

needs to be made to account for safety is the proof of actions being frequently optimistic

in the face of constraints thanks to the modified anti-concentration property 4.3.8. This

was handled in the previous section B.1. For completeness, we also prove in Lemma B.2.1

that the first action of Safe-LTS is always safe under our assumptions.

We use the following decomposition for bounding the regret:

R(T ) ≤
T∑
t=1

(
x⊤
⋆ θ⋆ − xtθ⋆

)
1{Et} =

T∑
t=1

x⊤
⋆ θ⋆ − x⊤

t θ̃t︸ ︷︷ ︸
Term I

1{Et}+
T∑
t=1

x⊤
t θ̃t − x⊤

t θ⋆︸ ︷︷ ︸
Term II

1{Et}. (B.2.1)

B.2.1 Bounding Term I.

For any θ, we denote xt(θ) = argmaxx∈Ds
t
x⊤θ. On the event Et, θ̃t belongs to ETS

t

which leads to

(Term I)1{Et} := RTS
t 1{Et}

≤
(
x⊤
⋆ θ⋆ − inf

θ∈ETS
t

(xt(θ))
⊤θ

)
1{Zt}. (B.2.2)

Here and onwards, we use 1{E} as the indicator function applied to an event E . We

have also used the fact that Et is a subset of Zt. Next, we can also bound (B.2.2) by the

expectation over any random choice of θ̃ ∈ Θopt
t (recall (4.4.6)) that leads to

RTS
t ≤ E

[(
(xt(θ̃))

⊤θ̃ − inf
θ∈ETS

t

(xt(θ))
⊤θ

)
1{Zt}

∣∣∣∣ Ft, θ̃ ∈ Θopt
t

]
.
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Equivalently, we can write

RTS
t ≤ E

[
sup
θ∈ETS

t

((
xt(θ̃)

)⊤
θ̃ −

(
xt(θ)

)⊤
θ
)
1{Zt}

∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t

]
, (B.2.3)

Then, using Cauchy–Schwarz and the definition of γt(δ
′) in (4.4.10)

E

[
sup
θ∈ETS

t

(
xt(θ̃)

)⊤ (
θ̃ − θ

)
1{Zt}

∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t

]

≤ E

[∥∥∥xt(θ̃)
∥∥∥
V −1
t

sup
θ∈ETS

t

∥∥∥θ̃ − θ
∥∥∥
Vt

∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t , Zt

]
P(Zt)

≤ 2γt(δ
′)E
[∥∥∥xt(θ̃)

∥∥∥
V −1
t

∣∣∣∣ Ft, θ̃ ∈ Θopt
t , Zt

]
P(Zt).

This property shows that the regret RTS
t is upper bounded by V −1

t -norm of the optimal

safe action corresponding to the any optimistic parameter θ̃. Hence, we need to show

that TS samples from the optimistic set with high frequency. We prove in Lemma B.1.6

that TS is optimistic with a fixed probability (p
2
) which leads to bounding RTS

t as follows:

RTS
t

p

2
≤ 2γt(δ

′)E
[∥∥∥xt(θ̃t)

∥∥∥
V −1
t

∣∣∣∣ Ft, θ̃t ∈ Θopt
t , Zt

]
P(Zt)

p

2
≤ (B.2.4)

2γt(δ
′)E
[∥∥∥xt(θ̃t)

∥∥∥
V −1
t

∣∣∣∣ Ft, θ̃t ∈ Θopt
t , Zt

]
P(Zt)P

(
θ̃t ∈ Θopt

t

∣∣∣ Ft, Zt

)
≤ 2γt(δ

′)E
[∥∥∥xt(θ̃t)

∥∥∥
V −1
t

∣∣∣∣ Ft, Zt

]
P(Zt). (B.2.5)

By reintegrating over the event Zt we get

RTS
t ≤ 4γt(δ

′)

p
E
[∥∥∥xt(θ̃t)

∥∥∥
V −1
t

1{Zt}
∣∣∣∣ Ft

]
. (B.2.6)
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Recall that Et ⊂ Zt, hence

RTS(T ) ≤
T∑
t=1

RTS
t 1{Et}

≤ 4γT (δ
′)

p

T∑
t=1

E
[∥∥∥xt(θ̃t)

∥∥∥
V −1
t

∣∣∣∣ Ft

]
. (B.2.7)

For bounding this term, we rewrite the RHS above as:

RTS(T ) ≤
T∑
t=1

∥xt∥V −1
t

+

T∑
t=1

(
E
[∥∥∥xt(θ̃t)

∥∥∥
V −1
t

∣∣∣∣ Ft

]
− ∥xt∥V −1

t

)
. (B.2.8)

We can now bound the first expression using Proposition B.1.1. For the second expression

we proceed as follows:

• First, the sequence

Yt =
t∑

s=1

(
E
[∥∥∥xs(θ̃s)

∥∥∥
V −1
s

∣∣∣∣ Fs

]
− ∥xs∥V −1

s

)

is a martingale by construction.

• Second, under Assumption 8, ∥xt∥2 ≤ L, and since V −1
t ≤ 1

λ
I, we can write

E
[∥∥∥xs(θ̃s)

∥∥∥
V −1
s

∣∣∣∣ Fs

]
− ∥xs∥V −1

s
≤ 2L√

λ
,∀t ≥ 1. (B.2.9)

• Third, for bounding YT , we use Azuma’s inequality, and we have that with proba-

bility 1− δ
2
,

YT ≤
√

8TL2

λ
log

4

δ
. (B.2.10)
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Putting these together, we conclude that with probability 1− δ
2
,

RTS(T ) ≤ 4γT (δ
′)

p

(√
2Td log

(
1 +

TL2

λ

)
+

√
8TL2

λ
log

4

δ

)
.

B.2.2 Bounding Term II

We can bound on Term II using the general result of [42]. In fact, we can use the

following general decomposition:

T∑
t=1

(Term II)1{Et} := RRLS(T )

=
T∑
t=1

(
x⊤
t θ̃t − x⊤

t θ⋆

)
1{Et}

≤
T∑
t=1

| x⊤
t (θ̃t − θ̂t) | 1{Et}+

T∑
t=1

| x⊤
t (θ̂t − θ⋆) | 1{Et}. (B.2.11)

By Definition B.1.3, we have Et ⊆ Zt and Et ⊆ Ẽt, and hence

| x⊤
t (θ̃t − θ̂t) | 1{Et} ≤ ∥x∥V −1

t
γt(δ

′)

| x⊤
t (θ̂t − θ⋆) | 1{Et} ≤ ∥x∥V −1

t
βt(δ

′).

Therefore, from Proposition B.1.1, we have with probability 1− δ
2

RRLS(T ) ≤ (βT (δ
′) + γT (δ

′))

√
2Td log

(
1 +

TL2

λ

)
. (B.2.12)

B.2.3 Overall Regret Bound

Recall that from (4.4.2), R(T ) ≤ RTS(T )+RRLS(T ). As shown previously, each term

is bounded separately with probability 1− δ
2
. Using union bound over two terms, we get
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the following expression:

R(T ) ≤ (βT (δ
′) + γT (δ

′)(1 +
4

p
))

√
2Td log (1 +

TL2

λ
)

+
4γT (δ

′)

p

√
8TL2

λ
log

4

δ
, (B.2.13)

holds with probability 1− δ where δ′ = δ
6T
. For completeness we show below that action

x1 is safe. Having established that, it follows that the rest of the actions xt, t > 1 are

also safe with probability at least 1 − δ′. This is by construction of the feasible sets Ds
t

and by the fact that µ⋆ ∈ Ct(δ′) with the same probability for each t.

Lemma B.2.1 The first action that Safe-LTS chooses is safe, that is x⊤
1 µ⋆ ≤ C.

Proof: At round t = 1, the RLS-estimate µ̂1 = 0 and V1 = λI. Thus, Safe-

LTS chooses the action which maximizes the expected reward while satisfying x⊤
1 µ̂1 +

β1(δ
′) ∥x1∥V −1

1
≤ C. Hence, x1 satisfies:

β1(δ
′) ∥x1∥V −1

1
≤ C.

From Theorem 4.3.1 and V −1
1 = (1/λ)I leads to S ∥x1∥2 ≤ C which completes the proof.
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C.1 Proof of Proposition 5.4.1

From the definition of regret, we can write

R(T ) =
∑
t∈NT

(⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩) +
∑
t∈Nc

T

(⟨x⋆, θ⋆⟩ − ⟨(1− ρ1)xbt − ρ1ζt, θ⋆⟩)

=
∑
t∈NT

(⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩) +
∑
t∈Nc

T

(
⟨x⋆, θ⋆⟩ − ⟨xbt , θ⋆⟩+ ρ1⟨xbt , θ⋆⟩+ ρ1⟨ζt, θ⋆⟩

)
≤
∑
t∈NT

(⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩) + |N c
T | (κh + ρ1(rh + S)) . (C.1.1)

C.2 Proof of Lemma 5.3.2

In order to ensure that the conservative action xt = (1− ρ)xbt + ρζt is safe, we need

to show that it satisfies (5.2.2). Hence, it suffices to show that

⟨(1− ρ)xbt + ρζt, θ⋆⟩ ≥ (1− α)rbt . (C.2.1)
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We can lower bound the LHS of (C.2.1) as follows:

⟨(1− ρ)xbt + ρζt, θ⋆⟩ = rbt − ρrbt + ρ⟨ζt, θ⋆⟩ ≥ rbt − ρrbt − ρS.

Recall that ∥ζt∥2 = 1 almost surely, and due to Assumption 10, we know that ∥θ⋆∥2 ≤ S.

Hence, it suffices to show that

rbt − ρrbt − ρS ≥ (1− α)rbt ,

or equivalently,

ρrbt + ρS ≤ αrbt (C.2.2)

From (C.2.2) we can write

ρ ≤ αrbt
S + rbt

. (C.2.3)

Therefore, for any ρ satisfying (C.2.3), the conservative action xt = (1 − ρ)xbt + ρζt is

guaranteed to be safe almost surely. Then, we lower bound the right hand side of (C.2.3)

using Assumption 12, and we establish the following upper bound on ρ,

ρ ≤ αrl
S + rh

. (C.2.4)

Therefore, for any ρ ∈ (0, ρ̄), where ρ̄ = αrl
S+rh

, the conservative actions are safe.
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C.3 Proof of Theorem 5.4.2

In this section, we provide an upper bound on the regret of Term I in (5.4.1). We

first rewrite Term I as follows:

∑
t∈NT

(⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩) (C.3.1)

Clearly, it would be beneficial to show that (C.3.1) is non-positive. However, as stated

in [43] (in the case of linear TS applied to the standard stochastic linear bandit problem

with no safety constraints), this cannot be the case in general. Instead, to bound regret

in the unconstrained case, [43] argues that it suffices to show that (C.3.1) is non-positive

with a constant probability. But what happens in the safety-constrained scenario? It

turns out that once the above stated event happens with constant probability (in our

case, in the presence of safety constraints), the rest of the argument by [43] remains

unaltered. Therefore, our main contribution in the proof of Theorem 5.4.2 is to show

that (C.3.1) is non-positive with a constant probability in spite of the limitations on

actions imposed because of the safety constraints. To do so, let

Θopt
t = {θ ∈ Rd : ⟨x(θ), θ⟩ ≥ ⟨x⋆, θ⋆⟩}, (C.3.2)

be the so-called set of optimistic parameters, where x(θ̃t) = argmaxx∈X s
t
⟨x, θ̃t⟩ is the

optimal safe action for the sampled parameter θ̃t chosen from the estimated safe action

set X s
t . LTS is considered optimistic at round t, if it samples the parameter θ̃t from the

set of optimistic parameters Θopt
t and plays the action x(θ̃t). In Lemma C.3.2, we show

that SCLTS is optimistic with constant probability despite the safety constraints. Before

that, let us restate the distributional properties put forth in [43] for the noise η ∼ HTS

that are required to ensure the right balance of exploration and exploitation.
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Definition C.3.1 ( Definition 1. in [43]) HTS is a multivariate distribution on Rd

absolutely continuous with respect to the Lebesgue measure which satisfies the following

properties:

• (anti-concentration) there exists a strictly positive probability p such that for any

u ∈ Rd with ∥u∥2 = 1,

Pη∼HTS (⟨u, η⟩ ≥ 1) ≥ p. (C.3.3)

• (concentration) there exists positive constants c, c′ such that ∀δ ∈ (0, 1)

Pη∼HTS

(
∥η∥ ≤

√
cd log(

c′d

δ
)

)
≥ 1− δ. (C.3.4)

Lemma C.3.2 Let Θopt
t = {θ ∈ Rd : ⟨x(θ), θ⟩ ≥ ⟨x⋆, θ⋆⟩} be the set of the optimistic

parameters. For round t ∈ NT , SCLTS samples the optimistic parameter θ̃t ∈ Θopt
t and

plays the corresponding safe action x(θ̃t) frequently enough, i.e.,

P(θ̃t ∈ Θopt
t ) ≥ p. (C.3.5)

Proof: We need to show that for rounds t ∈ NT

P
(
⟨x(θ̃t), θ̃t⟩ ≥ ⟨x⋆, θ⋆⟩

)
≥ p. (C.3.6)

First, we show that for rounds t ∈ NT , x⋆ falls in the estimated safe set, i.e., x⋆ ∈ X s
t .

To do so, we need to show that

⟨x⋆, θ̂t⟩ − βt∥x⋆∥V −1
t

≥ (1− α)rbt , (C.3.7)
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using ∥θ⋆ − θ̂t∥Vt ≤ βt, it suffices that

⟨x⋆, θ⋆⟩ − 2βt∥x⋆∥V −1
t

≥ (1− α)rbt . (C.3.8)

But we know that ∥x⋆∥V −1
t

≤ ∥x⋆∥2√
λmin(Vt)

≤ L√
λmin(Vt)

, where we also used Assumption 11

to bound ∥x⋆∥2. Hence, we can get

⟨x⋆, θ⋆⟩ − 2βt∥x⋆∥V −1
t

≥ ⟨x⋆, θ⋆⟩ −
2βtL√
λmin(Vt)

. (C.3.9)

By substituting (C.3.9) in (C.3.8), it suffices to show that

κbt + αrbt ≥
2βtL√
λmin(Vt)

, (C.3.10)

or equivalently,

λmin(Vt) ≥
(

2Lβt

κt + αrbt

)2

. (C.3.11)

To show (C.3.11), simply recall that λmin(Vt) ≥ k1
t , where k

1
t =

(
2Lβt

κl+αrl

)2
. Therefore, x⋆ ∈

X s
t for t ∈ NT . Note that we are not interested in expanding the safe set in all possible

directions. Instead, what aligns with the objective of minimizing regret, is expanding the

safe set in the “correct” direction, that of x⋆. Therefore, λmin(Vt) ≥ O(log t) provides

enough expansion of the safe set to bound the Term I in (5.4.1).

The rest of the proof is similar as in [43, Lemma 3]; we include in here for complete-

ness.

For rounds t ∈ NT , we know that

⟨x(θ̃t), θ̃t⟩ ≥ ⟨x⋆, θ̃t⟩,
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since x(θ̃t) = argmaxx∈X s
t
⟨x, θ̃t⟩ and we have already shown that x⋆ ∈ X s

t . Therefore, it

suffices to show that

P
(
⟨x⋆, θ̃t⟩ ≥ ⟨x⋆, θ⋆⟩

)
≥ p. (C.3.12)

From the definition of θ̃t, we can rewrite (C.3.12) as

P
(
⟨x⋆, θ̂t⟩+ βt⟨x⋆, V

−1/2
t ηt⟩ ≥ ⟨x⋆, θ⋆⟩

)
≥ p,

or equivalently,

P
(
βt⟨x⋆, V

−1/2
t ηt⟩ ≥ ⟨x⋆, θ⋆ − θ̂t⟩

)
≥ p. (C.3.13)

Then, we use Cauchy-Schwarz for the LHS of (C.3.13), and given the fact that ∥θ⋆ −

θ̂t∥Vt ≤ βt, we get

P
(
⟨x⋆, V

−1/2
t ηt⟩ ≥ ∥x⋆∥V −1/2

t

)
≥ p,

or equivalently,

P (⟨ut, ηt⟩ ≥ 1) ≥ p, (C.3.14)

where ut =
x⋆V

−1/2
t

∥x⋆∥
V
−1/2
t

. Therefore, ∥ut∥2 = 1 by construction. At last, we know that

(C.3.14) is true thanks to the anti-concentration distributional property of the parameter

ηt in Definition C.3.1.

As mentioned, after showing that SCLTS for rounds t ∈ NT samples from the set of

optimistic parameters with a constant probability, the rest of the proof for bounding the
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regret of Term I is similar to that of [43]. In particular, we conclude with the following

bound

Term I :=
∑
t∈NT

(⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩)

(βT (δ
′) + γT (δ

′)(1 +
4

p
))

√
2|NT |d log (1 +

|NT |L2

λ
) +

4γT (δ
′)

p

√
8|NT |L2

λ
log

4

δ
,

(C.3.15)

where δ′ = δ
6|NT | , and,

γt(δ) = βt(δ
′)

(
1 +

2

C

)√
cd log (

c′d

δ
), (C.3.16)

and since NT ≤ T , the proof is completed.

C.4 Proof of Theorem 5.4.3

In this section, we prove an upper bound of order O(log T ) on the number of times

that SCLTS plays the conservative actions.

Let τ be any round that the algorithm plays the conservative action, i.e., at round τ ,

either F = 0 or λmin(Vτ ) < k1
τ =

(
2Lβτ

κτ+αrbτ

)2
. By definition, if F = 0, we have

∄x ∈ X : ⟨x, θ̂τ ⟩ − βτ∥x∥V −1
τ

≥ (1− α)rbτ , (C.4.1)

and since we know that x⋆ ∈ X , and θ⋆ ∈ Et with high probability, we can write

⟨x⋆, θ⋆⟩ − 2βτ∥x⋆∥V −1
τ

≤ ⟨x⋆, θ̂τ ⟩ − βτ∥x⋆∥V −1
τ

< (1− α)rbτ . (C.4.2)

139



Supplements to Chapter 5 Chapter C

From (C.4.2), we can get

κbτ + αrbτ < 2βτ∥x⋆∥V −1
τ

≤ 2βτL√
λmin(Vτ )

, (C.4.3)

and hence the following upper bound on minimum eigenvalue of the Gram matrix:

λmin(Vτ ) <

(
2βτL

κbτ + αrbτ

)2

≤ k1
τ . (C.4.4)

Therefore, at any round τ that a conservative action is played, whether it is because

F = 0, or because we have {λmin(Vτ ) < kτ}, we can always conclude that

λmin(Vτ ) < k1
τ . (C.4.5)

The remainder of the proof builds on two auxiliary lemmas. First, in Lemma C.4.1,

we show that the minimum eigenvalue of the Gram matrix Vt is lower bounded with the

number of times SCLTS plays the conservative actions.

Lemma C.4.1 Under Assumptions 9, 10, and 11, it holds that

P(λmin(Vt) ≤ t) ≤ d exp

(
−
(ρ21|N c

t |σ2
ζ − t)2

8|N c
t |h2

1

)
, (C.4.6)

where h1 = 2ρ1(1− ρ1)L+ 2ρ21 and ρ1 = ( rl
S+rh

)α.

Using (C.4.5) and applying Lemma C.4.1, it can be checked that with probability

1− δ,

(
2Lβτ

κl + αrl

)2

> ρ21|N c
τ |σ2

ζ −
√
8|N c

τ |h2
1 log(

d

δ
). (C.4.7)

This gives an explicit inequality that must be satisfied by τ . Solving with respect to
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τ leads to the desired. In particular, we apply simple Lemma C.4.2 below.

Lemma C.4.2 For any a, b, c > 0, if ax−
√
bx < c, then the following holds for x ≥ 0

0 ≤ x <
2ac+ b+

√
b2 + 4abc

2a2
. (C.4.8)

Using Lemma C.4.2 results in the following upper bound on the |N c
τ |

|N c
τ | ≤

(
2Lβτ

ρ1σζ(κl + αrl)

)2

+
2h2

1

ρ41σ
4
ζ

log(
d

δ
) +

h12Lβτ

(κl + αrl)ρ31σ
3
ζ

√
8 log(

d

δ
). (C.4.9)

Therefore, we can upper bound N c
T with the following:

|N c
T | ≤

(
2LβT

ρ1σζ(κl + αrl)

)2

+
2h2

1

ρ41σ
4
ζ

log(
d

δ
) +

2Lh1βT

√
8 log(d

δ
)

ρ31σ
3(κl + αrl)

, (C.4.10)

which has order O
(

L2d log(T
δ
)

α2r2l (κl+αrl)2σ
2
ζ
+

(
L2

α2r2l σ
4
ζ
+ d2

)
log(d

δ
)

)
, as promised.
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C.4.1 Proof of Lemma C.4.1

Our objective is to establish a lower bound on λmin(Vt) for all t. It holds that

Vt = λI +
t∑

s=1

xsx
⊤
s

⪰
∑
s∈Nc

t

((1− ρ1)xbs − ρ1ζs) ((1− ρ1)xbs − ρ1ζs)
⊤

=
∑
s∈Nc

t

(
(1− ρ1)

2xbsx
⊤
bs − ρ1(1− ρ1)xbsζ

⊤
s − ρ1(1− ρ1)ζsx

⊤
bs + ρ21ζsζ

⊤
s

)
⪰
∑
s∈Nc

t

(
− ρ1(1− ρ1)xbsζ

⊤
s − ρ1(1− ρ1)ζsx

⊤
bs + ρ21ζsζ

⊤
s

)
=
∑
s∈Nc

t

(
ρ21E[ζsζ⊤s ]− ρ1(1− ρ1)xbsζ

⊤
s − ρ1(1− ρ1)ζsx

⊤
bs + ρ21ζsζ

⊤
s − ρ21E[ζsζ⊤s ]

)
⪰ ρ21σ

2
ζ |N c

t |I +
∑
s∈Nc

t

Us, (C.4.11)

where Us is defined as

Us =

(
− ρ1(1− ρ1)xbsζ

⊤
s − ρ1(1− ρ1)ζsx

⊤
bs + ρ21ζsζ

⊤
s − ρ21E[ζsζ⊤s ]

)
. (C.4.12)

Then, using Weyl’s inequality, it follows that

λmin(Vt) ≥ ρ21σ
2
ζ |N c

t | − λmax(
∑
s∈Nc

t

Us).

Next, we apply the matrix Azuma inequality (see Theorem C.4.3) to find an upper

bound on λmax(
∑

s∈Nc
t
Us). For this, we first need to show that the sequence of matrices

Us satisfies the conditions of Theorem C.4.3. By definition of Us in (C.4.12), it follows

that E[Us|Fs−1] = 0, and U⊤
s = Us. Also, we construct the sequence of deterministic

matrices As such that U2
s ⪯ A2

s as follows. We know that for any matrix B, B2 ≤ ∥B∥22I,
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where ∥B∥2 is the maximum singular value of B, i.e.,

σmax(B) = max
∥u∥1=∥v∥2=1

u⊤Bv.

Thus, we first show the following bound on the maximum singular value of the matrix

Us defined in (C.4.12):

max
∥u∥1=∥v∥2=1

u⊤Usv = −ρ1(1− ρ1)(u
⊤xbs)(v

⊤ζs)
⊤ − ρ1(1− ρ1)(u

⊤ζs)(v
⊤xbs)

⊤+

ρ21(u
⊤ζs)(v

⊤ζs)
⊤ − ρ21E

[
(u⊤ζs)(v

⊤ζs)
⊤]

≤ ρ1(1− ρ1)∥xbs∥2∥ζs∥2 + ρ1(1− ρ1)∥ζs∥2∥xbs∥2 + ρ21∥ζs∥22 + ρ21E
[
∥ζs∥22

]
≤ 2ρ1(1− ρ1)L+ 2ρ21, (C.4.13)

where we have used Cauchy-Schwarz inequality and the last inequality comes from the

fact that ∥ζs∥2 = 1 almost surely, and ∥xbs∥2 ≤ L by Assumption 11. From the derivations

above, and choosing As = h1I, with h1 = 2ρ1(1− ρ1)L+ 2ρ21, it almost surely holds that

U2
s ⪯ σmax(Us)

2I ⪯ h2
1I = A2

s. Moreover, using triangular inequality, it holds that

∥
∑
s∈Nc

t

A2
s∥ ≤

∑
s∈Nc

t

∥A2
s∥ ≤ |N c

t |h2
1.

Now we apply the the matrix Azuma inequality, to conclude that for any c ≥ 0,

P

λmax(
∑
s∈Nc

t

Us) ≥ c

 ≤ d exp

(
− c2

8|N c
t |h2

1

)
.

Therefore, it holds that with probability 1− δ, λmax(
∑

s∈Nc
t
Us) ≤

√
8|N c

t |h2
1 log(

d
δ
), and
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hence with probability 1− δ,

λmin(Vt) ≥ ρ2|N c
t |σ2

ζ −
√

8|N c
t |h2

1 log(
d

δ
),

or equivalently,

P(λmin(Vt) ≤ t) ≤ d exp

(
−
(ρ21|N c

t |σ2
ζ − t)2

8|N c
t |h2

1

)
,

where h1 = 2ρ1(1− ρ1)L+ 2ρ21 and ρ1 = ( rl
S+rh

)α. This completed the proof of lemma.

C.4.2 Matrix Azuma Inequality

Theorem C.4.3 (Matrix Azuma Inequality, [155]) Consider a sequence {Yk} of in-

dependent, random matrices adapted to the filtration {Fk}. Each {Yk} is a self-adjoint

matrix such that E[Yk | Fk−1] = 0. Consider a fixed matrix Ak such that Y 2
k ⪯ A2

k holds

almost surely. Then, for t ≥ 0, it holds that

P

(
λmax

(
s∑

k=1

Yk

)
≥ t

)
≤ d exp

(
− t2

8∥
∑s

k=1 A
2
k∥

)
. (C.4.14)

C.5 Upper Bounding the Regret of SCLTS-BF

In this section we provide the variation of our algorithm for the case of constraints

with bandit feedback, which we refer to as SCLTS-BF in Algorithm 8. We then provide

a regret bound for SCLTS-BF. The summary of SCLTS-BF is presented in Algorithm 8.

In this setting, we assume that at each round t, with playing an action xt, the learner
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Algorithm 8: SCLTS-BF

63 Input: δ, T, λ, ρ

64 Set δ′ = δ
4T

65 for t = 1, . . . , T do
66 Sample ηt ∼ HTS

67 Compute RLS-estimate θ̂t and Vt according to (5.3.1) and µ̂t

68 Set θ̃t = θ̂t + βtV
−1/2
t ηt

69 Build the confidence region Et(δ′) in (C.5.2) and Ct(δ′) in (C.5.3)
70 Compute the estimated safe set Ps

t = {x ∈ X : ⟨x, v⟩ ≥ (1− α)qbt ,∀v ∈ Ct}
71 if the following optimization has a feasible solution:

x(θ̃t) = argmaxx∈Ps
t
⟨x, θ̃t⟩, then

72 Set F = 1, else F = 0

73 if F = 1 and λmin(Vt) ≥
(

2Lβt

νl+αql

)2
, then

74 Play xt = x(θ̃t)
75 else
76 play xt = xcb

t defined in (C.5.6)
77 Observe reward rt

78 end for

observes the reward yt = ⟨xt, θ⋆⟩+ ξt and the following bandit feedback:

wt = ⟨xt, µ⋆⟩+ χt, (C.5.1)

where χt is assumed to be a zero-mean R-sub-Gaussian noise.

The main difference of SCLTS-BF with SCLTS is in the definition of the estimated safe

action set. In particular, at each round t, SCLTS-BF constructs the following confidence

regions:

Et(δ′) = {θ ∈ R :
∥∥∥θ − θ̂t

∥∥∥
Vt

≤ βt(δ
′)}, (C.5.2)

Ct(δ′) = {v ∈ R : ∥v − µ̂t∥Vt
≤ βt(δ

′)}, (C.5.3)

where µ̂t = V −1
t

∑t−1
s=1wsxs is the RLS-estimate of µ⋆. The radius in (C.5.2) and (C.5.3) is
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chosen according to Proposition 5.3.1 such that θ⋆ ∈ Et and µ⋆ ∈ Ct with high probability.

In order to ensure safety at each round t, SCLTS-BF constructs the following estimated

safe action set

Ps
t = {x ∈ X : ⟨x, v⟩ ≥ (1− α)qbt ,∀v ∈ Ct}. (C.5.4)

The challenge with Ps
t is that it contains all the actions that are safe with respect to all

the parameters in Ct. Thus, there may exist some rounds that Ps
t is empty. To handle

this case, SCLTS-BF proceed as follows. At each round t, given the sampled parameter

θ̃t, if the estimated safe action set Ps
t defined in (C.5.4) is not empty, SCLTS-BF plays

the safe action

x(θ̃t) = argmax
x∈Ps

t

⟨x, θ̃t⟩ (C.5.5)

only if λmin(Vt) ≥ k2
t , where k

2
t =

(
2Lβt

νl+αql

)2
. Otherwise, it plays the following conservative

action

xcb
t = (1− ρ2)xbt + ρ2ζt, (C.5.6)

where ρ2 = α( ql
S+qh

) in order to ensure that the conservative actions are safe.

Next, we provide a regret guarantee for SCLTS-BF. First, we use the following de-

composition of regret:

R(T ) =
T∑
t=1

⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩

=
∑
t∈NT

(
⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩

)
︸ ︷︷ ︸

Term I

+
∑
t∈Nc

T

(
⟨x⋆, θ⋆⟩ − ⟨(1− ρ)xbt − ρζt, θ⋆⟩

)
︸ ︷︷ ︸

Term II

, (C.5.7)
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where N c
t is the set of rounds i < t that SCLTS-BF plays the conservative actions, and

Nt = {1, . . . , t} − N c
t . In the following, we upper bound both Term I and Term II,

separately.

Bounding Term I. Bounding Term I follows the same steps as that of Theorem

5.4.2. Here, we show that for SCLTS-BF, at rounds t ∈ NT , the optimal action x⋆

belongs to the estimated safe safe, i.e., x⋆ ∈ Ps
t . Then, we conclude that regret of Term

I similar to Theorem 5.4.2 has the order of O(d3/2 log1/2 d T 1/2 log3/2 T ).

At rounds t ∈ NT , we know

λmin(Vt) ≥ k2
t ≥

(
2Lβt

νbt + αqbt

)2

. (C.5.8)

Then, in order to show that x⋆ ∈ X s
t , we need to show

⟨x⋆, µ̂t⟩ − βt∥x⋆∥V −1
t

≥ ⟨x⋆, µ⋆⟩ − 2βt∥x⋆∥V −1
t

≥ (1− α)qbt . (C.5.9)

First inequality comes from the fact that ∥µ⋆ − µ̂t∥Vt ≤ βt. Therefore, it suffices to

show the second inequality holds. We use the fact that ∥x⋆∥V −1
t

≤ ∥x⋆∥2√
λmin(Vt)

≤ L√
λmin(Vt)

,

where we use Assumption 11 to bound ∥x⋆∥2. Hence, we have

⟨x⋆, µ⋆⟩ − 2βt∥x⋆∥V −1
t

≥ ⟨x⋆, µ⋆⟩ −
2βtL√
λmin(Vt)

. (C.5.10)

Then, it suffices to show that

νbt + αqbt ≥
2βtL√
λmin(Vt)

, (C.5.11)

From (C.5.8), we know that (C.5.11) holds, and hence, x⋆ ∈ Ps
t . Therefore, we can use

the result of Theorem 5.4.2, and obtain the desired regret bound.
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Bounding Term II. First, we provide the formal statement of the theorem.

Theorem C.5.1 Let λ, L ≥ 1. On event

{
{θ⋆ ∈ Et,∀t ∈ [T ]} ∩ {µ⋆ ∈ Ct,∀t ∈ [T ]}

}
,

and Assumptions 12, we can upper bound the number of times SCLTS-BF plays the

conservative actions, i.e., |N c
T | as:

|N c
T | ≤

(
2LβT

ρ2σζ(αql + νl)

)2

+
2h2

2

ρ42σ
4
ζ

log(
d

δ
) +

2Lh2βT

√
8 log(d

δ
)

ρ32σ
3
ζ (αql + νl)

(C.5.12)

where h2 = 2ρ2(1− ρ2)L+ 2ρ22 and ρ2 = ( ql
S+qh

)α.

In order to prove Theorem C.5.1, we proceed as follows:

∑
t∈Nc

T

(
⟨x⋆, θ⋆⟩ − ⟨(1− ρ2)xbt − ρ2ζt, θ⋆⟩

)
=
∑
t∈Nc

T

⟨x⋆, θ⋆⟩ − ⟨xbt , θ⋆⟩+ ρ2(⟨xbt + ζt, θ⋆⟩)

≤
∑
t∈Nc

T

νh + ρ2(qbt + S) ≤ |N c
T |(νh + αql),

(C.5.13)

where qh ≥ qbt ≥ ql > 0 and νh ≥ νbt ≥ νl for all t. Therefore, in order to bound Term

II, it suffices to upper bound |N c
T | which is the number of rounds that SCLTS-BF plays

the conservative actions up to round T. In order to do so, we proceed as follows:

Let τ be any round that the algorithm plays the conservative action.

If F = 0, i.e.,

∄x ∈ X : ⟨x, µ̂τ ⟩ − βτ∥x∥V −1
τ

≥ (1− α)qbτ , (C.5.14)

and since we know that x⋆ ∈ X , and µ⋆ ∈ Ct with high probability, we can write

⟨x⋆, µ⋆⟩ − 2βτ∥x⋆∥V −1
τ

≤ ⟨x⋆, µ̂τ ⟩ − βτ∥x⋆∥V −1
τ

< (1− α)qbτ . (C.5.15)
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Using (C.5.15), we can get

νbτ + αqbτ < 2βτ∥x⋆∥V −1
τ

≤ 2βτL√
λmin(Vτ )

, (C.5.16)

and hence the following upper bound on minimum eigenvalue of the Gram matrix:

λmin(Vτ ) <

(
2βτL

νbτ + αqbτ

)2

≤
(

2βτL

νl + αql

)2

= kτ (C.5.17)

Therefore, we show that in the cases where either the event {∄x ∈ X : ⟨x, µ̂τ ⟩ −

βτ∥x∥V −1
τ

≥ (1 − α)qbτ} or the event {λmin(Vτ ) < k2
τ} happen, we can conclude that at

round τ

λmin(Vτ ) < k2
τ . (C.5.18)

From Lemma C.4.1, we know that the minimum eigenvalue of the Gram matrix, i.e.,

λmin(Vt) is lower bounded with the number of times that SCLTS-BF plays the conservative

actions, i.e., |N c
T |. Therefore, using (C.5.18), we can get

|N c
T | ≤

(
2LβT

ρ2σζ(αql + νl)

)2

+
2h2

2

ρ42σ
4
ζ

log(
d

δ
) +

2Lh2βT

√
2 log(d

δ
)

ρ32σ
3
ζ (αql + νl)

(C.5.19)

where h2 = 2ρ2(1− ρ2)L+ 2ρ22 and ρ2 = α( ql
S+qh

).

C.6 Proof of Theorem 5.5.1

In this section, we first present the SCLTS2 algorithm, for the case where the learner

does not know the reward of the actions suggested by baseline policy in advance, i.e., rbt .

The summary of SCLTS2 is presented in Algorithm 9.
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The algorithm relies on the fact that we can find an upper bound over the value of

rbt , using the fact that θ⋆ ∈ Et, i.e.,:

max
v∈Et

⟨xbt , v⟩ ≥ ⟨xbt , θ⋆⟩ = rbt . (C.6.1)

Then, we can write the safety constraint as follows:

min
v∈Et

⟨x(θ̃t), v⟩ ≥ (1− α)max
v∈Et

⟨xbt , v⟩. (C.6.2)

It is easy to show that safety constraint (5.2.2) holds when (C.6.2) is true. Therefore, if

we choose actions that satisfy (C.6.2), we can ensure that they are safe with respect to

the safety constrain in (5.2.2).

Then we propose the estimated safe action set Zs
t as:

Zs
t = {x ∈ X : min

v∈Et
⟨x, v⟩ ≥ (1− α)max

v∈Et
⟨xbt , v⟩}, (C.6.3)

which contains actions that are safe with respect to all the parameter in Et. At each round

t, SCLTS2 plays the safe action x(θ̃t) from Zs
t that maximizes the expected reward given

the sampled parameter θ̃t, i.e.,

x(θ̃t) = argmax
x∈Zs

t

⟨x, θ̃t⟩ (C.6.4)

only if λmin(Vt) ≥ k3
t , where k

3
t =

(
2Lβt(2−α)
κl+αrl

)2
. Otherwise it plays the conservative action

xcb
bt

as:

xcb
t = (1− ρ3)xbt + ρ3ζt, (C.6.5)
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where ρ3 = α( rl
S+1

) such that the conservative action xcb
t is safe, where we use Assumption

11 for upper bounding the reward, i.e., rbt ≤ 1.

Algorithm 9: SCLTS2

79 Input: δ, T, λ, ρ

80 Set δ′ = δ
4T

81 for t = 1, . . . , T do
82 Sample ηt ∼ HTS

83 Compute RLS-estimate θ̂t and Vt according to (5.3.1)

84 Set θ̃t = θ̂t + βtV
−1/2
t ηt

85 Build the confidence region Et(δ′) in (5.3.2)
86 Compute the estimated safe set

Zs
t = {x ∈ X : minv∈Et⟨x, v⟩ ≥ (1− α)maxv∈Et⟨xbt , v⟩}

87 if the following optimization is feasible: x(θ̃t) = argmaxx∈Zs
t
⟨x, θ̃t⟩, then

88 Set F = 1, else F = 0

89 if F = 1 and λmin(Vt) ≥
(

2Lβt(2−α)
κl+αrl

)2
, then

90 Play xt = x(θ̃t)
91 else
92 play xt = xcb

t defined in (C.6.5)
93 Observe reward yt

94 end for

In order to bound the regret of SCLTS2, we first use the decomposition defined in

Proposition 5.4.1. The regret of Term I is similar to that of SCLTS (i.e., Theorem 5.4.2).

Hence, it suffices to upper bound the number of time SCLTS2 plays the conservative

actions, i.e., |N c
T |.

In order to bound |N c
T |, we proceed as follows. Let τ be the round that SCLTS2 plays

a conservative action. If F = 0, i.e.,

∄x ∈ X : min
v∈Cτ

⟨x, v⟩ ≥ (1− α)max
v∈Cτ

⟨xbτ , v⟩. (C.6.6)
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Using the fact that x⋆ ∈ X , we can write

⟨x⋆, θ̂τ ⟩ − βτ∥x⋆∥V −1
τ

< (1− α)
(
⟨xbτ , θ̂τ ⟩+ βτ∥xbτ∥V −1

τ

)
. (C.6.7)

Then, since ∥θ⋆ − θ̂t∥Vt ≤ βt, we can upper bound the RHS and lower bound the LHS of

(C.6.7), and get

⟨x⋆, θ⋆⟩ − 2βτ∥x⋆∥V −1
τ

< (1− α)
(
⟨xbτ , θ⋆⟩+ 2βτ∥xbτ∥V −1

τ

)
, (C.6.8)

or equivalently,

κbτ + αrbτ < 2βτ∥x⋆∥V −1
τ

+ 2(1− α)βτ∥xbτ∥V −1
τ

. (C.6.9)

Then we can use the fact that ∥x⋆∥V −1
τ

≤ L√
λmin(Vτ )

and ∥xbτ∥V −1
τ

≤ L√
λmin(Vτ )

, where we

use Assumption 11 for upper bounding ∥x⋆∥2. Thus, we upper bound the RHS of (C.6.9)

as follows:

κbτ + αrbτ < 2βτ
L√

λmin(Vτ )
+ 2(1− α)βτ

L√
λmin(Vτ )

, (C.6.10)

and hence, we can get the following upper bound λmin(Vτ ) as follows:

λmin(Vτ ) <

(
2LβT (2− α)

κbτ + αrbτ

)2

≤
(
2LβT (2− α)

κl + αrl

)2

= k3
τ . (C.6.11)

Therefore, we show that whether the event F = 0 happens or λmin(Vt) < k3
t , we can

achieve the upper bound provided in (C.6.11). Then, using the result of Lemma C.4.1,

where we show that λmin(Vt) is lower bounded with the number of times the algorithm
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plays the conservative actions, we obtain the following upper bound on the |N c
τ |

|N c
τ | ≤

(
2Lβτ (2− α)

ρ3σζ(κl + αrl)

)2

+
2h2

3

ρ43σ
4
ζ

log(
d

δ
) +

2Lh3βτ (2− α)

ρ33σ
3
ζ (κl + αrl)

√
2 log(

d

δ
), (C.6.12)

where h3 = 2ρ3(1− ρ3)L+ 2ρ23 and ρ3 = α( rl
S+1

).

C.7 Stage-wise Conservative Linear UCB (SCLUCB)

Algorithm

In this section we propose a UCB-based safe stochastic linear bandit algorithm called

Stage-wise Conservative Linear-UCB (SCLUCB), which is a safe counterpart of LUCB

for the stage-wise conservative bandit setting. In particular, at each round t, given the

RLS-estimate θ̂t of θ⋆, SCLUCB constructs the confidence region Et as follows:

Et(δ) = {θ ∈ Rd : ∥θ − θ̂t∥Vt ≤ βt(δ)}. (C.7.1)

The radius βt(δ) is chosen as in Proposition 5.3.1 such that θ⋆ ∈ Et(δ) with probability

1− δ. Then, similar to SCLTS, it builds the estimated safe set X s
t such that it includes

actions that are safe with respect to all the parameter in Et, i.e.,

X s
t = {x ∈ X : ⟨x, v⟩ ≥ (1− α)rbt ,∀v ∈ Et}. (C.7.2)

Similar to SCLTS, the challenge with X s
t is that there may exist some rounds that X s

t is

empty. In order to face this problem, SCLUCB proceed as follows. In order to guarantee
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safety, at each round t, if X s
t is not empty, SCLUCB plays the action x̄t as

(x̄t, θ̄t) = max
x∈X s

t

max
v∈Et

⟨x, v⟩ (C.7.3)

only if λmin(Vt) ≥
(

2Lβt

κl+αrbl

)2
, otherwise it plays the conservative action xcb

t defined in

(5.3.6). The summary of SCLUCB is presented in Algorithm (10).

Algorithm 10: Stage-wise Conservative Linear UCB (SCLUCB)

95 Input: δ, T, λ, ρ
96 for t = 1, . . . , T do

97 Compute RLS-estimate θ̂t and Vt according to (5.3.1)
98 Build the confidence region Et(δ) in (C.7.1)
99 Compute the estimated safe set X s

t in (C.7.2)
100 if the following optimization is feasible: x̄t = argmaxx∈X s

t
maxv∈Et⟨x, v⟩,

then
101 Set F = 1, else F = 0

102 if F = 1 and λmin(Vt) ≥
(

2Lβt

κl+αrbl

)2
, then

103 Play xt = x̄t

104 else
105 play xt = xcb

t defined in (5.3.6)
106 Observe reward yt

107 end for

Next, we provide the regret guarantee for SCLUCB. Recall, Nt−1 be the set of rounds

i < t at which SCLUCB plays the action in (5.3.5). Similarly, N c
t−1 = {1, . . . , t−1}−Nt−1

is the set of rounds j < t at which SCLUCB plays the conservative actions.

Proposition C.7.1 The regret of SCLUCB can be decomposed into two terms as follows:

R(T ) ≤
∑
t∈NT

(⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩)︸ ︷︷ ︸
Term I

+ |N c
T | (κh + ρ1(rh + S))︸ ︷︷ ︸

Term II

(C.7.4)

In the following, we bound both terms, separately.
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Bounding Term I. The first Term in (C.7.4) is the regret caused by playing the safe

actions that maximize the reward given the true parameter is θ̄t. The idea of bounding

Term I is similar to [42]. We use the fact that for t ∈ NT , xt = x̄t, and start with the

following decomposition of the instantaneous regret for t ∈ NT :

⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩ = ⟨x⋆, θ⋆⟩ − ⟨x̄t, θ̄t⟩︸ ︷︷ ︸
Term A

+ ⟨x̄t, θ̄t⟩ − ⟨x̄t, θ⋆⟩︸ ︷︷ ︸
Term B

(C.7.5)

Bounding Term A. Since for round t ∈ Nt, we require that λmin(Vt) ≥ k1
t , where

k1
t =

(
2Lβt

κl+αrbl

)2
, we can conclude that x⋆ ∈ X s

t . Therefore, due to (C.7.3), we have

⟨x̄t, θ̄t⟩ ≥ ⟨x⋆, θ⋆⟩, and hence Term A is not positive.

Bounding Term B. In order to bound Term B, we use the following chain of in-

equalities:

Term B := ⟨x̄t, θ̄t⟩ − ⟨x̄t, θ⋆⟩ = ⟨x̄t, θ̄t⟩ − ⟨x̄t, θ̂t⟩+ ⟨x̄t, θ̂t⟩ − ⟨x̄t, θ⋆⟩

≤ ∥x̄t∥V −1
t

∥θ̄t − θ̂t∥Vt + ∥x̄t∥V −1
t

∥θ̂t − θ⋆∥Vt

≤ 2βt∥x̄t∥V −1
t

, (C.7.6)

where the last inequality follows from Proposition 5.3.1. Recall, from Assumption 11, we

have the following trivial bound:

⟨x⋆, θ⋆⟩ − ⟨x̄t, θ⋆⟩ ≤ 2. (C.7.7)

Thus, we conclude the following

Term B ≤ 2min(βt∥x̄t∥V −1
t

, 1). (C.7.8)
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Next, we state a direct application of Lemma 11 in [42].

Lemma C.7.2 For λ > 0, and under Assumptions 9, 10, and 11, we have

T∑
t=1

min(∥x̄t∥2V −1
t

, 1) ≤ 2d log

(
1 +

TL2

λd

)
(C.7.9)

Therefore, from Lemma C.7.2, we can conclude the following bound on regret of Term

B:

∑
t∈NT

2min(βt∥x̄t∥V −1
t

, 1) ≤ 2βT

√
2d|NT | log(1 +

|NT |L2

λd
). (C.7.10)

Next, in Theorem C.7.3, we provide an upper bound on the regret of Term I which

is of order O
(
d
√
T log(TL2

λδ
)
)
.

Theorem C.7.3 On event {θ⋆ ∈ Et} for a fixed δ ∈ (0, 1), with probability 1−δ, it holds

that:

∑
t∈NT

(⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩) ≤ 2βT

√
2dT log(1 +

TL2

λd
) (C.7.11)

Bounding Term II. In order to bound Term II in (C.7.4), we need to find an upper

bound on the number of times that SCLUCB plays the conservative actions up to time

T , i.e., |N c
T |. We prove an upper bound on |N c

T | in Theorem C.7.4 which has the order

of O
(

L2d log(T
δ
) log( d

δ
)

α4(r2l ∧r
4
l )κl(σ

2
ζ∧σ

4
ζ )

)
.

Theorem C.7.4 Let λ, L ≥ 1. On event {θ⋆ ∈ Et,∀t ∈ [T ]}, and under Assumption 12,

we can upper bound the number of times SCLUCB plays the conservative actions, i.e.,
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|N c
T | as:

|N c
T | ≤

(
2LβT

ρ1σζ(κl + αrl)

)2

+
2h2

1

ρ41σ
4
ζ

log(
d

δ
) +

2Lh1βT

√
8 log(d

δ
)

ρ31σ
3(κl + αrl)

, (C.7.12)

where h1 = 2ρ1(1− ρ1)L+ 2ρ21 and ρ1 = ( rl
S+rh

)α.

The proof is similar to that of Theorem 5.4.3, and we omit its proof here.

C.8 Comparison with Safe-LUCB

In this section, we extend our results to an alternative safe bandit formulation pro-

posed in [70], where the algorithm Safe-LUCB was proposed. In order to do so, we

first present the safety constraint in [70], and then we show the required modification

of SCLUCB to handle this case, which we refer to as SCLUCB2. Then, we provide a

problem-dependent regret bound for SCLUSB2, and we show that it matches the prob-

lem dependent regret bound of Safe-LUCB in [70]. We need to note that in [70], they

also provide a general regret bound of order Õ(T 2/3) for Safe-LUCB which we do not

discuss in this paper.

In [70], it is assumed that the learner is given a convex and compact decision set D0

which contains the origin, and with playing the action xt, she observes the reward of

yt = x⊤
t θ⋆+ηt, where θ⋆ is the fixed unknown parameter, and ηt is R-sub-Gaussian noise.

Moreover, The learning environment is subject to the linear safety constraint

x⊤Bθ⋆ ≤ C, (C.8.1)

which needs to be satisfied at all rounds t with high probability, and an action xt is called

safe, if it satisfies (C.8.1). In (C.8.1), the matrix B ∈ Rd×d and the positive constant C
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are known to the learner. However, the learner does not receive any bandit feedback on

the value x⊤Bθ⋆ and her information is restricted to those she receives from the reward.

Given the above constraint, the learner is restricted to choose actions from the safe

set Ds
0 as:

Ds
0(θ⋆) = {x ∈ D0 : x

⊤Bθ⋆ ≤ C}. (C.8.2)

Since θ⋆ in unknown, the safe set Ds
0 is unknown to the learner. Then, in [70], they

provide the problem-dependent regret bound (for the case where ∆ := C − x⊤Bθ⋆ > 0)

of order O(
√
T log T ). In the following, we present the required modification of SCLUSB

to handle this safe bandit formulation, and propose the new algorithm called SCLUCB2

that we prove a problem dependnt regret bound of order O(
√
T log T ). We need to note

that [70] also provide a general regret bound of order Õ(T 2/3) for the case where ∆ = 0;

however, we do not discuss this case in this paper.

At each round t, given the RLS-estimate θ̂t of θ⋆, SLUCB2 builds the confidence

region Et as:

Et = {θ ∈ Rd : ∥θ − θ̂t∥Vt ≤ βt}, (C.8.3)

and the radius βt is chosen according to Proposition 5.3.1 such that θ⋆ ∈ Et with high

probability. The learner does not know the safe set Ds
0; however, she knows that θ⋆ ∈ Et

with high probability. Hence, SLUCB2 constructs the estimated safe set Ds
t such that it
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contains actions that are safe with respect to all the parameter in Et, i.e.,

Ds
t = {x ∈ D0 : x

⊤Bv ≤ C, ∀v ∈ Et}

= {x ∈ D0 : max
v∈Et

x⊤Bv ≤ C}

= {x ∈ D0 : x
⊤Bθ̂t + βt∥Bx∥V −1

t
≤ C} (C.8.4)

Clearly, action x = [0]d (origin) is a safe action since C > 0, and also [0]d ∈ D0. Thus,

[0]d ∈ Ds
t . Since x = [0]d is a known safe action, we define the conservative action xc

0 as:

xc
0 = (1− ρ)[0]d + ρζt = ρζt, (C.8.5)

where ζt is a sequence of IID random vectors such that ∥ζt∥2 = 1 almost surly, and

σζ = λmin(Cov(ζt)) > 0. We choose the constant ρ according to the Lemma C.8.1 in

order to ensure that the conservative action xc
0 is safe.

Lemma C.8.1 At each round t, for any ρ ∈ (0, ρ̄), where

ρ̄ =
C

∥B∥S
, (C.8.6)

the conservative action xc
0 = ρζt is guaranteed to be safe almost surly.

We choose ρ = C
∥B∥S for the rest of this section, and hence the conservative action is

xc
0 =

C

∥B∥S
ζt. (C.8.7)

Let ∆ = C − x⊤
⋆ Bθ⋆. We consider the case where ∆ > 0. At each t, in order to

guarantee safety, SCLUCB2 only chooses its action from the estimated safe set Ds
t . The

challenge with Ds
t is that it includes actions that are safe with respect to all parameter
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in Et, and not only θ⋆. Thus, there may exist some rounds that Ds
t is empty. At round

t, if Ds
t is not empty, SCLUCB2 plays the safe action

x̄t = argmax
x∈Ds

t

max
v∈Et

⟨x, v⟩ (C.8.8)

only if λmin(Vt) ≥
(

2Lβt∥B∥
∆

)2
, otherwise it plays the conservative action xc

0 in (C.8.7).

The summary of SCLUCB2 is presented in Algorithm 11.

Algorithm 11: SCLUCB2

108 Input: δ, T, λ, ρ
109 for t = 1, . . . , T do

110 Compute RLS-estimate θ̂t and Vt according to (5.3.1)
111 Build the confidence region Et(δ) in (C.8.3)
112 Compute the estimated safe set Ds

t in (C.8.4)
113 if the following optimization is feasible: x̄t = argmaxx∈Ds

t
maxv∈Et⟨x, v⟩, then

114 Set F = 1, else F = 0

115 if F = 1 and λmin(Vt) ≥
(

2Lβt∥B∥
∆

)2
, then

116 Play xt = x̄t

117 else
118 play xt = xc

0 defined in (C.8.7)
119 Observe reward yt

120 end for

In the following we provide the regret guarantee for SCLUCB2. Let Nt−1 be the

set of rounds i < t at which SCLUCB2 plays the action in (C.8.8). Similarly, N c
t−1 =

{1, . . . , t−1}−Nt−1 is the set of rounds j < t at which SCLUCB2 plays the conservative

action in (C.8.7).

First, we use the following decomposition of the regret, then we bound each term

separately.

Proposition C.8.2 The regret of SCLUCB2 can be decomposed to the following two
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terms:

R(T ) =
T∑
t=1

⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩

=
∑
t∈NT

(
⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩

)
+
∑
t∈Nc

T

(
⟨x⋆, θ⋆⟩ − ⟨xc

0, θ⋆⟩
)
,

≤
∑
t∈NT

(
⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩

)
︸ ︷︷ ︸

Term I

+ 2|N c
t |︸ ︷︷ ︸

Term II

. (C.8.9)

Bounding Term I. In order to bound Term I, we proceed as follows. First, we show

that at rounds t ∈ NT , the optimal action x⋆ belongs to the estimated safe set Ds
t , i.e.,

x⋆ ∈ Ds
t . To do so, we need to show that

x⊤
⋆ Bθ̂t + βt∥Bx⋆∥V −1

t
≤ C. (C.8.10)

Since ∥θ⋆ − θ̂t∥Vt ≤ βt, it suffices to show that:

x⊤
⋆ Bθ⋆ + 2βt∥Bx⋆∥V −1

t
≤ C, (C.8.11)

or equivalently

2βt∥Bx⋆∥V −1
t

≤ ∆, (C.8.12)

where ∆ = C − x⊤
⋆ Bθ⋆. It is easy to see (C.8.10) is true whenever (C.8.11) holds. Using

Assumption 11, we can get ∥Bx⋆∥V −1
t

≤ ∥B∥∥x⋆∥2√
λmin(Vt)

≤ ∥B∥L√
λmin(Vt)

. Hence, from (C.8.12), it

suffices to show that

2βt∥B∥L√
λmin(Vt)

≤ ∆, (C.8.13)

161



Supplements to Chapter 5 Chapter C

or equivalently

λmin(Vt) ≥
(
2βt∥B∥L

∆

)2

(C.8.14)

that we know it is true for t ∈ NT . Therefore, on event {θ⋆ ∈ Et}, x⋆ ∈ Ds
t . We can

bound the regret of Term I in (C.8.9) similar to Theorem C.7.3, and get the regret of

order O
(
d
√
T log(TL2

λδ
)
)
.

Bounding Term II. We need to upper bound the number of times that SCLUCB2

plays the conservative action xc
0, i.e., |N c

T |. We prove an upper bound on |N c
T | in Theorem

C.8.3 which has the order of O
(

L2S2∥B∥2d log(T
δ
) log( d

δ
)

∆2(C∧C2)(σ2
ζ∧σ

4
ζ )

)
.

Theorem C.8.3 Let λ, L ≥ 1. On event {θ⋆ ∈ Et,∀t ∈ [T ]}, we can upper bound the

number of times SCLUCB2 plays the conservative actions, i.e., |N c
T | as:

|N c
T | ≤

(
2LS∥B∥2βT

C∆σζ

)2

+
32 log(d

δ
)

σ4
ζ

+
8LS∥B∥2βT

√
2 log(d

δ
)

C∆σ3
ζ

. (C.8.15)

Proof: Let τ be any round that the algorithm plays the conservative action, i.e., at

round τ , either F = 0 or λmin(Vτ ) <
(

2L∥B∥βτ

∆

)2
.

By definition, if F = 0, we have

∄x ∈ X : x⊤Bθ̂τ + βτ∥Bx∥V −1
τ

≤ C, (C.8.16)

and since we know that x⋆ ∈ X , and θ⋆ ∈ Et with high probability, we can write

x⊤
⋆ Bθ⋆ + 2βτ∥Bx⋆∥V −1

τ
≥ x⊤

⋆ Bθ̂τ + βτ∥Bx⋆∥V −1
τ

> C. (C.8.17)
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Then, using the LHS and RHS of (C.8.17), we can get

2L∥B∥βτ√
λmin(Vτ )

≥ 2βτ∥x⋆∥V −1
τ

≥ ∆,

and hence the following upper bound on minimum eigenvalue of the Gram matrix:

λmin(Vτ ) <

(
2L∥B∥βτ

∆

)2

.

Therefore, at any round τ that a conservative action is played, whether it is because

{F = 0} happens or beccause we have {λmin(Vτ ) <
(

2L∥B∥βτ

∆

)2
}, we can always conclude

that

λmin(Vτ ) <

(
2L∥B∥βτ

∆

)2

(C.8.18)

The remaining of the proof builds on two auxiliary lemmas. First, in Lemma C.8.4,

we show that the minimum eigenvalue of the Gram matrix Vt is lower bounded with the

number of times SCLUCB2 plays the conservative actions.

Lemma C.8.4 On event {θ⋆ ∈ Et}, it holds that

P(λmin(Vt) ≤ t) ≤ d exp

(
−
(ρ2σ2

ζ |N c
t | − t)2

32ρ4|N c
t |

)
, (C.8.19)

where ρ = C
∥B∥S .

Using (C.8.18) and applying Lemma C.8.4, it can checked that with probability 1− δ

(
2L∥B∥βτ

∆

)2

> ρ2σ2
ζ |N c

τ | −
√
32ρ4.|N c

τ | log(
d

δ
),
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Then using Lemma C.4.2, we can conclude the following upper bound

|N c
τ | ≤

(
2LS∥B∥2βτ

C∆σζ

)2

+
32 log(d

δ
)

σ4
ζ

+
8LS∥B∥2βτ

√
2 log(d

δ
)

C∆σ3
ζ

.

C.8.1 Proof of Lemma C.8.4

Our objective is to establish a lower bound on λmin(Vt) for all t. It holds that

Vt = λI +
t∑

s=1

xsx
⊤
s

⪰
∑
s∈Nc

t

(ρζs) (ρζs)
⊤

=
∑
s∈Nc

t

(
ρ2E[ζsζ⊤s ] + ρ2ζsζ

⊤
s − ρ2E[ζsζ⊤s ]

)
⪰ ρ2σ2

ζ |N c
t |I +

∑
s∈Nc

t

Gs, (C.8.20)

where Gs is defined as

Gs =

(
ρ2ζsζ

⊤
s − ρ2E[ζsζ⊤s ]

)
. (C.8.21)

Thus, using Weyl’s inequality, it follows that

λmin(Vt) ≥ ρ2σ2
ζ |N c

t | − λmax(
∑
s∈Nc

t

Gs).

Next, we apply the matrix Azuma inequality (see Theorem C.4.3) to find an upper

bound on λmax(
∑

s∈Nc
t
Gs). For this, we first need to show that the sequence of matrices

Gs satisfies the conditions of Theorem C.4.3. By definition of Gs in (C.8.21), it follows
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that E[Gs|Fs−1] = 0, and G⊤
s = Gs. Also, we construct the sequence of deterministic

matrices As such that G2
s ⪯ A2

s as follows. We know that for any matrix K, K2 ≤ ∥K∥22I,

where ∥K∥2 is the maximum singular value of K, i.e.,

σmax(K) = max
∥u∥1=∥v∥2=1

u⊤Kv.

Thus, we first show the following bound on the maximum singular value of the matrix

Gs defined in (C.8.21):

max
∥u∥1=∥v∥2=1

u⊤Gsv = ρ2(u⊤ζs)(v
⊤ζs)

⊤ − ρ2E
[
(u⊤ζs)(v

⊤ζs)
⊤]

≤ ρ2∥ζs∥22 + ρ2E
[
∥ζs∥22

]
≤ 2ρ2,

where we have used Cauchy-Schwarz inequality and the last inequality comes from the

fact that ∥ζs∥2 = 1 almost surely. From the derivations above, and choosing As = 2ρ2I,

it almost surely holds that G2
s ⪯ σmax(Gs)

2I ⪯ 4ρ4I = A2
s. Moreover, using triangular

inequality, it holds that

∥
∑
s∈Nc

t

A2
s∥ ≤

∑
s∈Nc

t

∥A2
s∥ ≤ 4ρ4|N c

t |.

Now we can apply the matrix Azuma inequality, to conclude that for any c ≥ 0,

P

λmax(
∑
s∈Nc

t

Gs) ≥ c

 ≤ d exp

(
− c2

32ρ4|N c
t |

)
.

Therefore, it holds that with probability 1−δ, λmax(
∑

s∈Nc
t
Gs) ≤

√
32ρ4|N c

t | log(dδ ), and
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hence with probability 1− δ,

λmin(Vt) ≥ ρ2σ2
ζ |N c

t | −
√
32ρ4|N c

t | log(
d

δ
), (C.8.22)

or equivalently,

P(λmin(Vt) ≤ t) ≤ d exp

(
−
(ρ2σ2

ζ |N c
t | − t)2

32ρ4|N c
t |

)
, (C.8.23)

where ρ = C
∥B∥S . This completes the proof.
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Supplements to Chapter 6

D.1 Sequential Prediction Algorithm

The sequential prediction algorithm SqAlg uses the following algorithm from [136]

(also see [156, Chapter 3]) to aggregate its experts’ predictions. Algorithm 12 takes the

observations yt and experts’ predictions f i
t (Ht) that are bounded in the known range

[β, β + ℓ] as input. It first scales these input to the range [0, 1] and uses its current

weights for the experts to generate its own prediction ŷt.

The performance of SqAlg is evaluated as the accuracy (in terms of square loss) of

its prediction w.r.t. the accuracy of the prediction by the best expert in the set, i.e.,

T∑
t=1

(ŷt − yt)
2 − min

i∈[M ]

T∑
t=1

(f i
t (Ht)− yt)

2 ≤ RSq(T ). (D.1.1)

We call this the regret of SqAlg and denote it by RSq(T ). [136] prove the following bound

for RSq(T ), which we use in the analysis of our algorithms.

Proposition D.1.1 (Theorem 4.2 in [136]) For any arbitrary sequence
{(

{f i
t (Ht)}Mi=1, ŷt, yt

)}T
t=1

in which the experts’ predictions
{
{f i

t (Ht)}Mi=1

}T
t=1

and observations {yt}Tt=1 are all bounded
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in [β, β + ℓ], the regret defined by (D.1.1) of Algorithm 12 is bounded as

RSq(T ) ≤ 2ℓ2 logM.

Here we use the fact that |St| ≤ M, ∀t ∈ [T ].

Algorithm 12: Sequential Prediction with Expert Advice

121 Input: ℓ and β (experts’ predictions f i
t (Ht) are bounded in the known range

[β, β + ℓ])
122 Initialization: Set the weight w1,i = 1 for all experts i ∈ [M ]
123 for t = 1, . . . , T do
124 Receive predictions f i

t (Ht) by experts i ∈ St−1

125 Remove experts whose predictions are out of bound and construct the new
set of admissible experts St (see Remarks 6.3.1 and 6.4.1)

126 Scale experts’ predictions hi,t =
f i
t (Ht)−β

ℓ
, ∀i ∈ St

127 Set vt,i =
wt,i

W
, ∀i ∈ St, where W =

∑
i∈St

wt,i

128 Prediction: Compute:

∆(0) =
−1

2
log

(∑
i∈St

vt,ie
−2h2

i,t

)
, ∆(1) =

−1

2
log

(∑
i∈St

vt,ie
−2(1−hi,t)

2

)
129

130 Predict a value ŷ′t that satisfies the following conditions:

(ŷ′t)
2 ≤ ∆(0) , (1− ŷ′t)

2 ≤ ∆(1).

131 Update: Observing reward yt, scale it as y′t =
yt−a
ℓ

, and update the experts’
weights

wt+1,i = wt,ie
−2(y′t−hi,t)

2

(D.1.2)

132 Return prediction ŷt = β + ℓŷ′t

133 end for
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D.2 Proofs of Section 6.3

In this section, we first provide a brief overview for the steps of our proof. Then, we

provide the proofs of lemmas used in Section 6.3.

The performance analysis of the FS-SCB algorithm requires two steps. First, we

control the sum of the prediction error of the agent. Second, we show how the regret is

related to the prediction error of the agent, and then we bound the regret.

Step 1. To control the sum of the prediction error of the agent Dt, we need to find

two upper bounds: 1) an upper bound on the prediction error of the true model i∗ whose

identity is unknown to the agent Qt; 2) an upper bound on the regret caused by the

online regression oracle RSq

First, in Lemma 6.3.4, we bound the sum of the prediction error of the true model as

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ̂

i∗
s ⟩ − ⟨ϕi∗(xs, as), θ

i∗
∗ ⟩
)2

≤ Qt (D.2.1)

where

Qt = 1 + 2

(
max
i∈[M ]

{
λiS

2 + 4d log
(
1 +

tL2

λid

)})
+

32R2 log

R
√
8 +

√
1 + maxi∈[M ]

{
λiS2 + 4d log

(
1 + tL2

λid

)}
δ

 .

Next, in Lemma 6.3.5, we provide a high probability upper-bound on the regret caused

by the online regression oracle as

RSq(t) ≤ 8(logM)R2L2

(
G2 + max

i∈[M ]
{λiS

2 + d log
(
1 +

tL2

λid

)
}+ log(1/δ)

)
.

Then, in Lemma 6.3.3, we show the following upper bound on the sum of prediction error
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of the agent:

Dt(δ) ≤ 1 + 2RSq(t) + 2Qt + 4R

√
2(1 +Qt) log

(√1 +Qt

δ

)
+ 32R2 log

R
√
8 +

√
1 +RSq(t) +Qt + 2R

√
2(1 +Qt) log

(√
1+Qt

δ

)
δ

 .

(D.2.2)

Step 2. First in Lemma 6.3.6, we show how the regret is related to the prediction error

of the agent using the Azuma’s inequality, i.e.,

RFS-SCB(T ) ≤
√

2T log(2/δ) + αDT (δ) (D.2.3)

+
T∑
t=1

∑
a∈[K]

pt(xt, a)
(
⟨ϕi∗(xt, a

∗
t ), θ

i∗
∗ ⟩ − ⟨ϕi∗(xt, a), θ

i∗
∗ ⟩ −

α

4

(
ŷt(xt, a)− ⟨ϕi∗(xt, a), θ

i∗
∗ ⟩
)2)

.

Then in Appendix D.2.5, we put everything together and complete the proof.

D.2.1 Proof of Lemma 6.3.4

At each round t, each expert i∗ ∈ I∗ estimates its reward parameter as

θ̂i∗t = argmin
θ

∥∥(Φi∗
t )

⊤θ − Yt

∥∥2
2
+ λi∗ ∥θ∥

2
2 . (D.2.4)
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Let V
λi∗
t = λi∗I +

∑t−1
s=1 ϕ

i∗(xs, as)ϕ
i∗(xs, as)

⊤
. From the standard least-squares analysis,

we have

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ̂

i∗
s ⟩ − ys

)2 − t−1∑
s=1

(
⟨ϕi∗(xs, as), θ

i∗
∗ ⟩ − ys

)2 ≤
λi∗

∥∥θi∗∗ ∥∥22 + 2
t−1∑
s=1

〈
ϕi∗(xs, as)

⊤
, (V λi∗

s )−1ϕi∗(xs, as)
〉
.

Therefore, we can write:

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ̂

i∗
s − θi∗∗ ⟩

)2 ≤ λi∗

∥∥θi∗∗ ∥∥22 + 2 log

(
det(V

λi∗
t )

det(λi∗I)

)

+ 2
t−1∑
s=1

ηs
(
⟨ϕi∗(xs, as), θ̂

i∗
s − θi∗∗ ⟩

)
. (D.2.5)

The last term on the RHS of (D.2.5) can be bounded using Proposition D.4.1 in Ap-

pendix D.4 as

∣∣∣∣∣
t−1∑
s=1

ηs
(
⟨ϕi∗(xs, as), θ̂

i∗
s − θi∗∗ ⟩

)∣∣∣∣∣ ≤
R

√√√√2

(
1 +

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ̂i∗s − θi∗∗ ⟩

)2)
log

(
1 +

∑t−1
s=1

(
⟨ϕi∗(xs, as), θ̂i∗s − θi∗∗ ⟩

)2
δ

)
.

(D.2.6)

Define u =
√

1 +
∑t−1

k=1

(
⟨ϕi∗(xk, ak), θ̂

i∗
k − θi∗∗ ⟩

)2
, v = 1 + λi∗

∥∥∥θλi∗
∗

∥∥∥2
2
+ 2 log

(
det(V i∗

t )

det(λi∗I)

)
,

and w = 2R
√

2 log(s/δ). It is easy to see that (D.2.6) can be written in the form

of u2 ≤ v + uq. Then, by applying Lemma D.4.5 in Appendix D.4, we may write

u ≤
√
v + w. Substituting for w, we can get u ≤

√
v + 2R

√
2 log(u/δ). Then, by
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Lemma D.4.6 in Appendix D.4, for δ ∈ (0, 1/4], we have

u ≤
√
v + 4R

√√√√log

(
2
√
2R +

√
v

δ

)
,

which using the inequality (a+ b)2 ≤ 2a2 + 2b2, for any a and b, we can write it as

u2 ≤ 2v + 32R2 log

(
2
√
2R +

√
v

δ

)
.

Finally, we substitute u and v, and subtract 1 from both sides, and for δ ∈ (0, 1/4], we

obtain

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ̂

i∗
s − θi∗∗ ⟩

)2 ≤ 1 + 2λi∗

∥∥θi∗∗ ∥∥22 + 4 log

(
det(V

λi∗
t )

det(λi∗I)

)

+ 32R2 log


R
√
8 +

√
1 + λ

∥∥θi∗∗ ∥∥22 + 2 log

(
det(V

λi∗
t )

det(λi∗I)

)
δ

 .

(D.2.7)

We know that ∥θi∗∗ ∥
2
2 ≤ S2. Moreover, by Lemma D.4.3 in Appendix D.4, we can bound

the term log

(
det(V

λi∗
t )

det(λi∗I)

)
. Replacing these in (D.2.7), we may write

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ̂

i∗
s − θi∗∗ ⟩

)2 ≤ 1 + 2λi∗S
2 + 8d log

(
1 +

tL2

λi∗d

)

+ 32R2 log

R
√
8 +

√
1 + λi∗S

2 + 4d log
(
1 + tL2

λi∗d

)
δ

 .

(D.2.8)
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Since the algorithm does not know the identity of i∗, we derive an expression for Qt, and

conclude the proof by replacing i∗ with the maximum over all i ∈ [M ] in (D.2.8) as

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ̂

i∗
s − θi∗∗ ⟩

)2 ≤ 1 + 2

(
max
i∈[M ]

{
λiS

2 + 4d log
(
1 +

tL2

λid

)})

+ 32R2 log

R
√
8 +

√
1 + maxi∈[M ]

{
λiS2 + 4d log

(
1 + tL2

λid

)}
δ

 := Qt. (D.2.9)

D.2.2 Proof of Lemma 6.3.5

To bound the regret RSq(t) of the regression oracle SqAlg, similar to the proof of

Lemma 6.4.5 in Appendix D.3.2, we show the reward signals and the experts’ predictions

are bounded with high probability. Then, we use Proposition D.1.1 in Appendix D.1 to

complete the proof.

From (D.3.10), according to Assumption 13, we have ⟨ϕi∗(x, a), θi∗∗ ⟩ ≤ LS, for all

x ∈ X , a ∈ [k], and i ∈ [M ]. Hence, with probability at least 1− δ, we have

yt ∈
[
−
(
G+R

√
2 log(2/δ)

)
,
(
G+R

√
2 log(2/δ)

)]
. (D.2.10)

Next we bound the predictions of the experts that FS-SCB considers in its prediction.

To do so, we first show an upper bound on the prediction of the any true model i∗. In

particular, we can write for t ∈ [T ] and ∀a ∈ [K]:

∣∣∣⟨ϕi∗(xt, at), θ̂
i∗
t ⟩
∣∣∣ = ∣∣∣⟨ϕi∗(xt, at), θ

i∗
∗ ⟩+ ⟨ϕi∗(xt, at), θ̂

i∗
t − θi∗∗ ⟩

∣∣∣
(a)

≤
∣∣⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
∣∣+ ∣∣∣⟨ϕi∗(xt, at), θ̂

i∗
t − θi∗∗ ⟩

∣∣∣
(b)

≤ G+
∥∥ϕi∗(xt, at)

∥∥
(V

λi∗
t )−1

(∥∥Φi∗
t ηt
∥∥
(V

λi∗
t )−1

+
√

λi∗S
)
, (D.2.11)

(a) It results from a triangular inequality. (b) This is because of the Assumption 13, and
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the fact that the true model is linearly realizable, we can apply Theorem 2 in [42]. Then,

we use Theorem 1 in [42] and standard matrix analysis together with our assumption that

∥ϕi∗(xt, at)∥ ≤ L, and bound the terms on the RHS of (D.2.11) with high probability as

∥∥Φi∗
t ηt
∥∥
(V

λi∗
t )−1

≤ R

√√√√√2 log


√
det(V

λi∗
t )

δ
√

det(λi∗I)

, (D.2.12)

and

∥∥ϕi∗(xt, at)
∥∥
(V

λi∗
t )−1

≤ ∥ϕi∗(xt, at)∥√
λmin(V

λi∗
t )

≤ L√
λi∗

≤ L, (D.2.13)

where λmin(V
λi∗
t ) is the smallest eigenvalue of the matrix V

λi∗
t . In the last step of (D.2.13),

we use the fact that λi ≥ 1, ∀i ∈ [M ]. Putting Eqs. D.2.11, D.2.12, and D.2.13 together,

with probability at least 1− δ, we have

∣∣∣⟨ϕi∗(xt, at), θ̂
i∗
t ⟩
∣∣∣ ≤ G+RL

√√√√√2 log


√

det(V
λi∗
t )

δ
√
det(λi∗I)

+ L
√

λiS. (D.2.14)

Using Lemma D.4.3 in Appendix D.4, we may write (D.2.14) as

∣∣∣⟨ϕi∗(xt, at), θ̂
i∗
t ⟩
∣∣∣ ≤ G+RL

√√√√d log

(
1 + tL2

λi∗d

δ

)
+ L

√
λi∗S. (D.2.15)

FS-SCB employees this idea that at any time step t ∈ [T ], any potentially true model

(i.e., linearly realizable) should have a similar bound on its prediction. To do so, the set

of admissible experts, St, only considers experts that have the following bound on their
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prediction at each time t ∈ [T ] and ∀a ∈ [K] as:

∣∣∣⟨ϕi(xt, at), θ̂
i
t⟩
∣∣∣ ≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)
+ L

√
λiS. (D.2.16)

If at some time step t, this bound does not hold for any expert i, then the algorithm

simply eliminates that expert from the set of admissible experts, since that model is not

a true model (i.e., the reward is not in the linear span of the prediction of that expert),

and that expert will remain out for the rest of the game. Then, we may bound the range

of the prediction of each expert i ∈ St at round t ∈ [T ] as

⟨ϕi(xt, at), θ̂
i
t⟩ ∈[

−
(
G+RL

√
d log

(1 + tL2

λid

δ

)
+ L

√
λiS

)
,

(
G+RL

√
d log

(1 + tL2

λid

δ

)
+ L

√
λiS

)]
.

(D.2.17)

Putting together (D.2.10) and (D.2.17), we conclude that for all rounds t ∈ [T ] and

experts i ∈ St, with probability at least 1− δ, the reward yt and the expert’s predictions

f i
t (Ht) are in the range [β, β + ℓ] for

β = −
(
G+RL

√
d log

(1 + tL2

λid

δ

)
+L
√

λiS

)
, ℓ = 2

(
G+RL

√
d log

(1 + tL2

λid

δ

)
+L
√

λiS

)
.

(D.2.18)

Using Proposition D.1.1 in Appendix D.1 with the bound on the observations and pre-

dictions in (D.2.18), with probability at least 1− δ, we obtain the following regret bound

for SqAlg:

RSq(t) = 8R2L2 log(M)

(
G2 + max

i∈[M ]

{
λiS

2 + d log
(
1 +

tL2

λid

)}
+ log(1/δ)

)
, (D.2.19)
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in which we use the fact that for a, b > 0, (a+ b)2 ≤ 2a2+2b2. This concludes our proof.

D.2.3 Proof of Lemma 6.3.3

Here, we bound the sum of the square loss of the oracle predictions, i.e.,

t−1∑
s=1

(
ŷs(xs, as)− ⟨ϕi∗(xs, as), θ

i∗
∗ ⟩
)2 ≤ Dt(δ). (D.2.20)

We know that yt = ⟨ϕi∗(xt, at), θ
i∗
∗ ⟩+ ηt. Hence we can write

(
ŷt(xt, at)− yt

)2 − (⟨ϕi∗(xt, at), θ̂
i∗
t ⟩ − yt

)2
=(

ŷt(xt, at)− ⟨ϕi∗(xt, at), θ
i∗
∗ ⟩ − ηt

)2 − (⟨ϕi∗(xt, at), θ̂
i∗
t ⟩ − ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩ − ηt

)2
=
(
ŷt(xt, at)− ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)2 − (⟨ϕi∗(xt, at), θ̂

i∗
t ⟩ − ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)2

+ 2ηt
(
⟨ϕi∗(xt, at), θ̂

i∗
t ⟩ − ŷt(xt, at)

)
=
(
ŷt(xt, at)− ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)2 − (⟨ϕi∗(xt, at), θ̂

i∗
t ⟩ − ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)2

+ 2ηt
(
⟨ϕi∗(xt, at), θ̂

i∗
t ⟩ − ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)
+ 2ηt

(
⟨ϕi∗(xt, at), θ

i∗
∗ ⟩ − ŷt(xt, at)

)
.

(D.2.21)

Then, from Proposition D.4.1 in Appendix D.4, with probability at least 1− δ, we have

∣∣∣∣∣
t−1∑
s=1

ηs
(
⟨ϕi∗(xs, as), θ̂

i∗
s − θi∗∗ ⟩

)∣∣∣∣∣ ≤
R

√√√√√2

(
1 +

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ̂i∗s − θi∗∗ ⟩

)2)
log


√

1 +
∑t−1

s=1

(
⟨ϕi∗(xs, as), θ̂i∗s − θi∗∗ ⟩

)2
δ

,

(D.2.22)
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and

∣∣∣∣∣
t−1∑
s=1

ηs
(
⟨ϕi∗(xs, as), θ

i∗
∗ ⟩ − ŷs(xs, as)

)∣∣∣∣∣ ≤
R

√√√√√2

(
1 +

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ

i∗
∗ ⟩ − ŷs

)2)
log


√
1 +

∑t−1
s=1

(
⟨ϕi∗(xs, as), θ

i∗
∗ ⟩ − ŷs

)2
δ

.

(D.2.23)

Using (D.2.22) and (D.2.23), the upper-bound RSq(t) from (D.2.19) in Appendix D.2.2,

and the upper-bound Qt on the square error of the prediction of the true model in (D.2.9)

in Appendix D.2.1, we may write (D.2.21) as

t−1∑
s=1

(
ŷs(xs, as)− ⟨ϕi∗(xs, as), θ

i∗
∗ ⟩
)2 ≤ RSq(t) +Qt + 2R

√
2(1 +Qt) log

(√
1 +Qt

δ

)

+ 2R

√√√√√2
(
1 +

t−1∑
s=1

(
⟨ϕi∗(xs, as), θ

i∗
∗ ⟩ − ŷs(xs, as)

)2 )
log


√

1 +
∑t−1

s=1

(
⟨ϕi∗(as), θ

i∗
∗ ⟩ − ŷs(as)

)2
δ

.

(D.2.24)

Let u =
√
1 +

∑t−1
k=1

(
ŷk(xk, ak)− ⟨ϕi∗(xk, ak), θ

i∗
∗ ⟩
)2
, v = 1+RSq(t)+Qt+2R

√
2(1 +Qt) log(

√
1+Qt

δ
),

and q = 2R
√

2 log(s/δ). Then, following the same machinery as the one in the proof

of Lemma 6.3.4 in Section D.2.1, and with the use of Lemmas D.4.5 and D.4.6, for
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δ ∈ (0, 1/4], with probability at least 1− δ, we have

t−1∑
s=1

(
ŷs(xs, as)− ⟨ϕi∗(xs, as), θ

i∗
∗ ⟩
)2 ≤ 1 + 2RSq(t) + 2Qt + 4R

√
2(1 +Qt) log

(√
1 +Qt

δ

)

+ 32R2 log


R
√
8 +

√
1 +RSq(t) +Qt + 2R

√
2(1 +Qt) log

(√
1+Qt

δ

)
δ

 := Dt(δ),

(D.2.25)

where

Qt = 1 + 2

(
max
i∈[M ]

{
λiS

2 + 4d log

(
1 +

tL2

λid

)})
+

32R2 log

R
√
8 +

√
1 + maxi∈[M ]

{
λiS2 + 4d log

(
1 + tL2

λid

)}
δ

 ,

and

RSq(t) ≤ 8R2L2 log(M)

(
G2 + max

i∈[M ]

{
λiS

2 + d log

(
1 +

tL2

λid

)}
+ log(1/δ)

)
.

D.2.4 Proof of Lemma 6.3.6

The inequality can be obtained using Azuma’s inequality and following similar steps

as in Lemma 2 of [131]. We may write the regret as

RFS-SCB(T ) =
T∑
t=1

(
⟨ϕi∗(xt, a

∗
t ), θ

i∗
∗ ⟩ − ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩ −

α

4

(
ŷt(xt, at)− ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)2)

+
α

4

T∑
t=1

(
ŷt(xt, at)− ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)2

. (D.2.26)
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The last term on the RHS of (D.2.26) is bounded with Dt(δ) in (D.2.25) from the result of

Lemma 6.3.3 in Appendix D.2.3. Define filtration Ft−1 = σ
(
(x1, a1, y1), . . . , (xt−1, at−1, yt−1)

)
.

On the RHS of (D.2.26), the action at is random. We can use the Azuma’s inequality

and with probability at least 1 − δ, upper-bound the first term on the RHS of (D.2.26)

with its expectation counterparts using the probability distribution pt as

RFS-SCB(T ) ≤
√
2T log(2/δ) +

α

4
DT (D.2.27)

+
T∑
t=1

∑
a∈[K]

pt(a)
(
⟨ϕi∗(xt, a

∗
t ), θ

i∗
∗ ⟩ − ⟨ϕi∗(xt, a), θ

i∗
∗ ⟩ −

α

4

(
ŷt(xt, a)− ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)2)

.

D.2.5 Proof of Theorem 6.3.2

We first state the following lemma from [131] to bound the first term on the RHS

of (D.2.28).

Lemma D.2.1 (Lemma 3 in [131]) Under Assumption 13, for the probability distri-

bution pt ∈ ∆K defined in the FS-SCB algorithm, we may write

∑
a∈[K]

pt(a)
(
⟨ϕi∗(xt, a

∗
t ), θ

i∗
∗ ⟩ − ⟨ϕi∗(xt, a), θ

i∗
∗ ⟩ −

α

4

(
ŷt(xt, a)− ⟨ϕi∗(xt, at), θ

i∗
∗ ⟩
)2) ≤ 2K

α
.

Putting everything together, with the choice of α =
√
KT/DT (δ), with probability

at least 1 − δ, we can show the following upper-bound on the regret of the FS-SCB

algorithm:

RFS-SCB(T ) ≤ 3
√

KTDT (δ) +
√

2T log(2/δ) (D.2.28)
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Here the upper-bound is of order

RFS-SCB(T ) ≤ O
(√

2T log(2/δ) +RLG

√√√√KT (1 + log(M)) max
i∈[M ]

{
λiS2 + 4d log

(
1 + TL2

λid

δ

)})
.
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D.3 Proofs of Section 6.4

The regret analysis of the PS-OFUL algorithms requires two steps. First, in Theo-

rem 6.4.3, we show that the confidence set Ct is valid at each round t, i.e., for any t, δ > 0,

it includes the reward parameter θ∗ with probability at least 1− δ. Second, we show how

the regret is related to the valid confidence set, and then using Lemmas D.4.2 and D.4.3

complete the proof.

Step 1. The key idea for showing the validity of the confidence set Ct requires

controlling the square prediction error of the online regression oracle ŷt, i.e., upper-

bounding γt. In Appendix D.3.3, we show that we can relate this distance to the sum of

two terms: γt ≤ O (Ut +RSq(t)), and then show how we can bound each of them.

1) Bounding Ut: Lemma 6.4.4 shows the worst-case upper-bound on the square error

of the prediction of true model i∗, given that the agent does not know the identity of the

true model:

t∑
s=1

⟨ϕs(as), θ̂
i∗
s − θ∗⟩2 ≤ Ut (D.3.1)

where

Ut ≤ 3 + 8d log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

)
+ 32R2 log(1/δ) (D.3.2)

Proof: The proof is provided in Appendix D.3.1.

2) Bounding RSq(t): In Lemma 6.4.5, we prove an upper-bound on the regret caused

by the prediction oracle SqAlg, given our proposed expert predictions as (see Appendix D.3.2
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for details).

RSq(t) ≤8(G+ L)2 log(M) + 8R2L2d log(M) log(1/δ)

+ 8R2L2d log(M) log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

)

Putting these together, in Appendix D.3.3, we prove Theorem 6.4.3 that shows the va-

lidity of the confidence set Ct.

Step 2. In Appendix D.3.4, we first show how regret is related to the confidence

set. In particular, we show that given the validity of of the confidence set Ct, i.e., for any

δ ∈ (0, 1/4], with probability at least 1− δ, θ∗ ∈ Ct, we can bound the regret as

RPS-OFUL(T ) ≤ 2Gd+ 2max{1, G}

√
2dT log

(
1 +

T

d

)
max
d<t≤T

γt(δ).

Then, in Appendix D.3.5, we set λi =
1

(bi+ci)2
, for each i ∈ [M ], and use Lemmas D.4.2

and D.4.3 to complete the proof of Theorem 6.4.2. Here we prove a regret upper-bound

of order

O

dRLmax{1, G}
√

1 + log(M)×

√√√√T log

(
1 +

T

d

)
log

(
1 +

TL2 maxi∈[M ](bi+ci)2

d

δ

) .

D.3.1 Proof of Lemma 6.4.4

At each round s ∈ [T ], each expert i∗ ∈ I∗ estimates its reward parameter as

θ̂i∗s = argmin
θ

∥∥Φ⊤
s θ − Ys

∥∥2 + λi∗ ∥θ − µ̂i∗∥
2 ,

which is the output of a Follow-The-Regularized-Leader (FTRL) algorithm with quadratic

regularizer ∥θ − µ̂i∗∥
2. Following the standard FTRL analysis of online regression (see
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e.g., [156, Chapter 11]), we have

t∑
s=1

(⟨ϕs(as), θ̂
i∗
s ⟩−ys)

2−
t∑

s=1

(⟨ϕs(as), θ∗⟩−ys)
2 ≤ λi∗ ∥θ∗ − µ̂i∗∥

2+2
t∑

s=1

⟨ϕs(as), (V
λi∗
s )−1ϕs(as)⟩,

(D.3.3)

where V
λi∗
t = λi∗I +

∑t−1
s=1 ϕs(as)ϕs(as)

⊤. We may write (D.3.3) as

t∑
s=1

⟨ϕs(as), θ̂
i∗
s − θ∗⟩2 ≤ λi∗ ∥θ∗ − µ̂i∗∥

2 + 2 log

(
det(V

λi∗
t )

det(λi∗I)

)
+ 2

t∑
s=1

ηs⟨ϕs(as), θ̂
i∗
s − θ∗⟩.

(D.3.4)

Using Proposition D.4.1 in Appendix D.4, we may bound the last term on the RHS

of (D.3.4) as

∣∣∣∣∣
t∑

s=1

ηs⟨ϕs(as), θ̂
i∗
s − θ∗⟩

∣∣∣∣∣ ≤ R

√√√√2

(
1 +

t∑
s=1

⟨ϕs(as), θ̂i∗s − θ∗⟩2
)
log

(
1 +

∑t
s=1⟨ϕs(as), θ̂i∗s − θ∗⟩2

δ

)
.

(D.3.5)

It is easy to see that (D.3.4) can be written in the form u2 ≤ v + uw, where u =√
1 +

∑t
s=1⟨ϕs(as), θ̂i∗s − θ∗⟩2, v = 1+λi∥θ∗−µ̂i∗∥2+2 log

(
det(V

λi∗
t )

det(λi∗I)

)
, and w = 2R

√
2 log(u/δ).

Then, by applying Lemma D.4.5 in Appendix D.4, we may write u ≤
√
v+w. Substitut-

ing for w, we can get u ≤
√
v+2R

√
2 log(u/δ). Then, by Lemma D.4.6 in Appendix D.4,

for δ ∈ (0, 1/4], we have

u ≤
√
v + 4R

√√√√log

(
2
√
2R +

√
v

δ

)
,

which using the inequality (a+ b)2 ≤ 2a2 + 2b2, for any a and b, we can write it as

u2 ≤ 2v + 32R2 log

(
2
√
2R +

√
v

δ

)
.
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Finally, we substitute u and v, and subtract 1 from both sides, and for δ ∈ (0, 1/4], we

obtain

t∑
s=1

⟨ϕs(as), θ̂
i∗
s − θ∗⟩2 ≤ 1 + 2λi∗ ∥θ∗ − µ̂i∗∥

2 + 4 log

(
det(V

λi∗
t )

det(λi∗I)

)

+ 32R2 log


2
√
2R +

√
1 + λi∗ ∥θ∗ − µ̂i∗∥

2 + 2 log

(
det(V

λi∗
t )

det(λi∗I)

)
δ

 .

(D.3.6)

We know ∥θ∗ − µ̂i∗∥
2 ≤ (bi∗ + ci∗)

2. Moreover, by Lemma D.4.3 in Appendix D.4, we can

bound the term log

(
det(V

λi∗
t )

det(λi∗I)

)
. Replacing these terms in (D.3.6), we have

t∑
s=1

⟨ϕs(as), θ̂
i∗
s − θ∗⟩2 ≤ 1 + 2λi∗(bi∗ + ci∗)

2 + 8d log

(
1 +

tL2

dλi∗

)

+ 32R2 log

2
√
2R +

√
1 + λi∗(bi∗ + ci∗)

2 + 4d log(1 + tL2

dλi∗
)

δ

 .

(D.3.7)

Setting λi∗ =
1

(bi∗+ci∗ )
2 , as used by the PS-OFUL algorithm, we obtain

t∑
s=1

⟨ϕs(as), θ̂
i∗
s − θ∗⟩2 ≤ 3 + 8d log

(
1 +

tL2(bi∗ + ci∗)
2

d

)

+ 32R2 log

2
√
2R +

√
2 + 4d log

(
1 + tL2(bi∗+ci∗ )

2

d

)
δ

 .

(D.3.8)
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Since the algorithm does not know the identity of i∗, we derive an expression for Ut and

conclude the proof by replacing i∗ with the maximum over all i ∈ [M ] in (D.3.8), as

t∑
s=1

⟨ϕs(as), θ̂
i∗
s − θ∗⟩2 ≤ 3 + 8d log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

)

+ 32R2 log

2
√
2R +

√
2 + 4d log

(
1 +

tL2 maxi∈[M ](bi+ci)2

d

)
δ

 := Ut.

(D.3.9)

D.3.2 Proof of Lemma 6.4.5

To obtain a high probability bound on the regretRSq(t) of the regression oracle SqAlg,

we first show that the inputs to the regression oracle, i.e., reward signals yt = ϕt(at) + ηt

and the experts’ predictions f i
t (Ht) = ⟨ϕt(at), θ̂

i
t⟩ are all bounded with high probability.

We then use Proposition D.1.1 in Appendix D.1 to complete the proof.

Since each noise ηt is R-sub-Gaussian, from Lemma D.4.4 in Appendix D.4, with

probability at least 1 − δ, we have that |ηt| ≤ R
√

2 log(2/δ). We also have from As-

sumption 14 that for each context and each action a ∈
⋃T

t=1At, their mean reward

|⟨ϕt(a), θ∗⟩| ≤ G. Thus, by the triangular inequality, with probability at least 1 − δ, we

obtain

yt ∈
[
−
(
G+R

√
2 log(2/δ)

)
,
(
G+R

√
2 log(2/δ)

)]
. (D.3.10)

Next we bound the prediction of the experts that PS-OFUL considers in its prediction.

To do so, we employ the same idea as we mentioned in the proof of Lemma 6.3.5 in

Appendix D.2.2, where we first show an upper bound on the prediction of the any true
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model i∗. In particular, we can write for any time t ∈ [T ]:

∣∣∣⟨ϕt(at), θ̂
i∗
t ⟩
∣∣∣ = ∣∣∣⟨ϕt(at), θ∗⟩+ ⟨ϕt(at), θ̂

i∗
t − θ∗⟩

∣∣∣
(a)

≤ |⟨ϕt(at), θ∗⟩|+
∣∣∣⟨ϕt(at), θ̂

i∗
t − θ∗⟩

∣∣∣
(b)

≤ G+ ∥ϕt(at)∥(V λi
t )−1

(
∥Φtηt∥(V λi

t )−1 +
√

λi∗ ∥µ̂i∗ − θ∗∥
)

(c)

≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)
+ L

√
λi(bi + ci) (D.3.11)

(a) It results from triangular inequality. (b) This comes from the Assumption 14 as

well as Theorem 1 in [42]. (c) This is because of the Theorem 2 in [42] and the fact that i∗

is the true model and hence θ∗ ∈ B(µ̂i∗ , bi∗). Thus, we can have ∥µ̂i∗ − θ∗∥ ≤ (bi+ci). PS-

OFUL employees this idea that at any time step, any potentially true model should have

a similar bound on its prediction. This is being enforced by the set of admissible expert,

St, where it only considers experts that have the following bound on their prediction at

each time t ∈ [T ] as:

∣∣∣⟨ϕt(at), θ̂
i
t⟩
∣∣∣ ≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)
+ L

√
λi(bi + ci). (D.3.12)

If at some time step t, this bound does not hold for any expert i, then the algorithm

simply eliminates that expert from the set of admissible experts, since that model is not

a true model (i.e., the reward does not belong to the ball of that model), and that expert

will remain out for the rest of the game.

Setting λi =
1

(bi+ci)2
in (D.3.12), we can bound the prediction of each expert i ∈ St at
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round t ∈ [T ] as

⟨ϕt(at), θ̂
i
t⟩ ∈

[
−
(
G+ L+RL

√
d log

(1 + tL2 maxi∈[M ](bi+ci)2

d

δ

))

,

(
G+ L+RL

√
d log

(1 + tL2 maxi∈[M ](bi+ci)2

d

δ

))]
. (D.3.13)

Putting together (D.3.10) and (D.3.13), we conclude that for all rounds t ∈ [T ] and

experts i ∈ ST , with probability at least 1−δ, the rewards yt and the experts’ predictions

f i
t (Ht) are in the range [β, β + ℓ] for

β = −
(
G+ L+RL

√
d log

(1 + tL2 maxi∈[M ](bi+ci)2

d

δ

))
,

ℓ = 2

(
G+ L+RL

√
d log

(1 + tL2 maxi∈[M ](bi+ci)2

d

δ

))
.

(D.3.14)

Using Proposition D.1.1 in Appendix D.1 with the bound on the observations and pre-

dictions in (D.3.14), with probability at least 1− δ, we obtain the following regret bound

for SqAlg:

RSq(t) ≤ 8(logM)

(
(G+ L)2 +R2L2d log

(1 + tL2 maxi∈[M ](bi+ci)
2

d

δ

))
, (D.3.15)

in which we use the fact that for a, b > 0, (a+ b)2 ≤ 2a2+2b2. This concludes our proof.

D.3.3 Proof of Theorem 6.4.3

In order to fully specify the confidence set Ct and prove its validity, i.e., θ∗ ∈ P(θ∗ ∈

Ct) ≥ 1−δ, we should find a high probability upper-bound γt(δ) for the sum of the square
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loss of the oracle predictions, i.e.,

t∑
s=1

(ŷs − ⟨ϕs(as), θ∗⟩)2 ≤ γt(δ).

Let zs = (ŷs−ys)
2− (⟨ϕs(as), θ̂

i∗
s ⟩−ys)

2, where i∗ ∈ I∗ is the index of a ball that contains

θ∗. Since ys = ⟨ϕs(as), θ∗⟩+ ηs, we may write

zs = (ŷs − ⟨ϕs(as), θ∗⟩ − ηs)
2 − (⟨ϕs(as), θ̂

i∗
s ⟩ − ⟨ϕs(as), θ∗⟩ − ηs)

2

= (ŷs − ⟨ϕs(as), θ∗⟩)2 − (⟨ϕs(as), θ̂
i∗
s ⟩ − ⟨ϕs(as), θ∗⟩)2 + 2ηs(⟨ϕs(as), θ̂

i∗
s ⟩ − ŷs).

Since
∑t

s=1 zs ≤ RSq(t), where RSq(t) is the regret of the regression oracle at round t, we

have

t∑
s=1

(ŷs − ⟨ϕs(as), θ∗⟩)2 ≤ RSq(t) +
t∑

s=1

(⟨ϕs(as), θ̂
i∗
s ⟩ − ⟨ϕs(as), θ∗⟩)2 + 2

t∑
s=1

ηs(⟨ϕs(as), θ̂
i∗
s ⟩ − ŷs).

(D.3.16)

From the definition of Ut in (6.4.1), we may upper-bound
∑t

s=1(⟨ϕs(as), θ̂
i∗
s ⟩−⟨ϕs(as), θ∗⟩)2

with Ut and write (D.3.16) as

t∑
s=1

(ŷs − ⟨ϕs(as), θ∗⟩)2 ≤ RSq(t) + Ut + 2
t∑

s=1

ηs(⟨ϕs(as), θ̂
i∗
s ⟩ − ŷs)

≤ RSq(t) + Ut + 2
t∑

s=1

ηs⟨ϕs(as), θ̂
i∗
s − θ∗⟩+ 2

t∑
s=1

ηs(⟨ϕs(as), θ∗⟩ − ŷs).

(D.3.17)
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Then, from Proposition D.4.1 in Appendix D.4, with probability at least 1− δ, we have

∣∣∣∣∣
t∑

s=1

ηs⟨ϕs(as), θ̂
i∗
s − θ∗⟩

∣∣∣∣∣ ≤ (D.3.18)

R

√√√√√2

(
1 +

t∑
s=1

⟨ϕs(as), θ̂i∗s − θ∗⟩2
)
log


√

1 +
∑t

s=1⟨ϕs(ak), θ̂i∗s − θ∗⟩2

δ

,

and

∣∣∣∣∣
t∑

s=1

ηs(⟨ϕs(as), θ∗⟩ − ŷs)

∣∣∣∣∣ ≤ (D.3.19)

R

√√√√√2

(
1 +

t∑
s=1

(⟨ϕs(as), θ∗⟩ − ŷs)
2

)
log


√
1 +

∑t
s=1 (⟨ϕs(as), θ∗⟩ − ŷs)

2

δ

.

Using (D.3.18) and (D.3.19), we may write (D.3.17) as

t∑
s=1

(
ŷs − ⟨ϕs(as), θ∗⟩

)2 ≤ RSq(t) + Ut + 2R

√
2(1 + Ut) log

(√
1 + Ut/δ

)

+R

√√√√√8

(
1 +

t∑
s=1

(
ŷs − ⟨ϕs(as), θ∗⟩

)2)
log


√
1 +

∑t
s=1

(
ŷs − ⟨ϕs(as), θ∗⟩

)2
δ

.

(D.3.20)

It is easy to see that (D.3.20) can be written in the form u2 ≤ v + uw, where u =√
1 +

∑t
s=1(⟨ϕs(as), θ∗⟩ − ŷs)2, v = 1 + RSq(t) + Ut + 2R

√
2(1 + Ut) log(

√
1+Ut

δ
), and

w = R
√

8 log(u/δ). Then, by applying Lemma D.4.5 in Appendix D.4, we may write

u ≤ w +
√
v. Substituting for w, we can get u ≤

√
v + R

√
8 log(u/δ). Then, by
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Lemma D.4.6 in Appendix D.4, for δ ∈ (0, 1/4], we have

u ≤
√
v + 4R

√√√√log

(
R
√
8 +

√
v

δ

)
,

which using the inequality (a+ b)2 ≤ 2a2 + 2b2, for any a and b, we can write it as

u2 ≤ 2v2 + 32R2 log

(
R
√
8 +

√
v

δ

)
.

Finally, we substitute u and v, and subtract 1 from both sides, and for δ ∈ (0, 1/4], we

obtain

t∑
s=1

(
ŷs − ⟨ϕs(as), θ∗⟩

)2 ≤ 1 + 2RSq(t) + 2Ut + 4R

√
2(1 + Ut) log

(√
1 + Ut/δ

)

+ 32R2 log

R
√
8 +

√
1 +RSq(t) + Ut + 2R

√
2(1 + Ut) log

(√
1 + Ut/δ

)
δ

 := γt(δ).

(D.3.21)

Eq. D.3.21 shows that for δ ∈ (0, 1/4], with probability at least 1 − δ, we have θ∗ ∈ Ct,

which completes the proof of the validity of the confidence set Ct.

We can now fully specify Ct by plugging Ut from (D.3.9) (see Appendix D.3.1) and
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RSq(t) from (D.3.15) (see Appendix D.3.2) into (D.3.21), and write γt(δ) as

γt(δ) := 1 + 2RSq(t) + 2Ut + 4R

√
2(1 + Ut) log

(√
1 + Ut/δ

)
+ 32R2 log

R
√
8 +

√
1 +RSq(t) + Ut + 2R

√
2(1 + Ut) log

(√
1 + Ut/δ

)
δ

 ,

where (D.3.22)

Ut = 3 + 8d log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

)

+ 32R2 log

2
√
2R +

√
2 + 4d log

(
1 +

tL2 maxi∈[M ](bi+ci)2

d

)
δ

 ,

RSq(t) = 8 log(M)

(
G2 + L2 + 2GL+R2L2d log

(
1 +

tL2 maxi∈[M ](bi+ci)
2

d

δ

))
,

which concludes the proof.

A closer look at Ut and RSq(t), the two main terms in the definition of γt(δ), we may

write them in terms of the dominant terms as

Ut ≈
C1︷ ︸︸ ︷

3 + 16R2 log(2)+8d log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

)
+ 32R2 log(1/δ)

+ 32R2 log

(
1 + 2R + d log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

))
≈ C1 + 32R2 log(1/δ) + 8d log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

)
, (D.3.23)
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and

RSq(t) =

C2︷ ︸︸ ︷
8(G+ L)2 log(M)+8R2L2d log(M) log(1/δ)

+ 8R2L2d log(M) log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

)
= C2 + 8R2L2d log(M) log(1/δ) + 8R2L2d log(M) log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

)
.

(D.3.24)

Using (D.3.23) and (D.3.24), we may write γt(δ) in terms of the dominant terms as

γt(δ) ≈ 1 + 2C1 + 2C2 + 16R2
(
4 + L2d log(M)

)
log(1/δ)

+ 16d
(
1 +R2L2 log(M)

)
log

(
1 +

tL2maxi∈[M ](bi + ci)
2

d

)
.

(D.3.25)

D.3.4 Proof of Lemma 6.4.6

In Theorem 6.4.3, we proved that at each round, with probability at least 1− δ, the

true reward parameter θ∗ belongs to the confidence set Ct of the PS-OFUL algorithm.

Here, we show how the regret of PS-OFUL is related to the radius γt(δ) of this confidence

set.

Here we assume that at the first d rounds, the algorithm plays actions whose features

are of the form ϕi(ai) = Lei, ∀i ∈ [d], where ei = [0, . . . , 1, . . . , 0] is a d-dimensional

vector whose elements are all 0, except a 1 at the ith position. In this case, we can define

a matrix Vt as

Vt =
t−1∑
s=1

ϕs(as)
⊤ϕs(as) = L2I +

t−1∑
s=d+1

ϕt(at)
⊤ϕt(at), (D.3.26)
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and use it to rewrite the confidence set as

Ct−1 =
{
θ ∈ Rd : (θ − θ̂t)Vt(θ − θ̂t) +

t−1∑
s=1

(
ŷs − ⟨ϕs(as), θ̂t⟩

)2 ≤ γt(δ)
}
, (D.3.27)

where θ̂t = argminθ∈Rd

∑t−1
s=1

(
ŷs − ⟨ϕs(as), θ⟩

)2
. The confidence set Ct in (D.3.27) is

contained in a larger ellipsoid

Ct−1 ⊆
{
θ ∈ Rd : (θ − θ̂t)Vt(θ − θ̂t) ≤ γt(δ)

}
=
{
θ ∈ Rd : ∥θ − θ̂t∥2Vt

≤ γt(δ)
}
. (D.3.28)

Given (at, θ̃t) = argmaxa∈At maxθ∈Ct−1⟨ϕt(a), θ⟩ are the action and parameter resulted

from solving the optimization problem at round t of the PS-OFUL algorithm, we may

write

⟨ϕt(a
∗
t ), θ∗⟩ − ⟨ϕt(at), θ∗⟩ ≤ ⟨ϕt(at), θ̃t⟩ − ⟨ϕt(at), θ∗⟩

= ⟨ϕt(at), θ̃t − θ̂t⟩+ ⟨ϕt(at), θ̂t − θ∗⟩

≤ ∥ϕt(at)∥V −1
t

∥θ̃t − θ̂t∥Vt + ∥ϕt(at)∥V −1
t

∥θ̂t − θ∗∥Vt

≤ 2
√

γt(δ) ∥ϕt(at)∥V −1
t

(because θ∗, θ̃t ∈ Ct−1). (D.3.29)

Since ∀a ∈
⋃T

t=1 At, we assume that |⟨ϕ(a), θ∗⟩| ≤ G, we can upper-bound the instanta-

neous regret in (D.3.29) as

⟨ϕt(a
∗
t ), θ∗⟩ − ⟨ϕt(at), θ∗⟩ ≤ 2min

{
G,
√
γt(δ) ∥ϕt(at)∥V −1

t

}
. (D.3.30)
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Using (D.3.30), we can bound the transfer-regret of PS-OFUL as

RPS-OFUL(T ) =
T∑
t=1

⟨ϕt(a
∗
t )− ϕt(at), θ∗⟩ ≤ 2Gd+

T∑
t=d+1

⟨ϕt(a
∗
t )− ϕt(at), θ∗⟩

≤ 2Gd+ 2
T∑

t=d+1

min{G,
√
γt(δ) ∥ϕt(at)∥V −1

t
}

≤ 2Gd+ 2
T∑

t=d+1

√
γt(δ) min{G, ∥ϕt(at)∥V −1

t
} (since γt(δ) ≥ 1)

≤ 2Gd+ 2

(
max
d<t≤T

√
γt(δ)

) T∑
t=d+1

min{G, ∥ϕt(at)∥V −1
t

}

≤ 2Gd+ 2

(
max
d<t≤T

√
γt(δ)

)
(max{1, G})

T∑
t=d+1

min{1, ∥ϕt(at)∥V −1
t

}

≤ 2Gd+ 2

(
max
d<t≤T

√
γt(δ)

)
(max{1, G})

√√√√T
T∑

t=d+1

min{1, ∥ϕt(at)∥2V −1
t

}

≤ 2Gd+ 2

(
max
d<t≤T

√
γt(δ)

)
(max{1, G})

√
2T log

(
det(VT )

det(Vd)

)
, (D.3.31)

where the last inequality follows from Lemma D.4.2 in Appendix D.4. Then, using

Lemma D.4.3 in Appendix D.4, we can bound det(VT ) ≤
(
L2 + TL2

d

)d
and det(Vd) = L2d.

Hence, we may write (D.3.31) as

RPS-OFUL(T ) ≤ 2Gd+ 2max{1, G}

√
2dT log

(
1 +

T

d

)
max
d<t≤T

γt(δ). (D.3.32)
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D.3.5 Proof of Theorem 6.4.2

If we substitute γt(δ) from (D.3.25) in the regret bound (D.3.32), we may write it (in

terms of the dominant terms) as

RPS-OFUL(T ) ≤ 2Gd+ 2
√
2max{1, G}

√
dT log

(
1 +

T

d

)

×

√
C3 + 16R2

(
4 + L2d log(M)

)
log(1/δ) + 16d

(
1 +R2L2 log(M)

)
log

(
1 +

TL2maxi∈[M ](bi + ci)2

d

)

= O

dRLmax{1, G}
√

1 + log(M)×

√√√√T log

(
1 +

T

d

)
log

(
1 +

TL2 maxi∈[M ](bi+ci)2

d

δ

) ,

(D.3.33)

where C3 = 1 + 2C1 + 2C2, and hence C3 = 7 + 32R2 log(2) + 16(G+ L)2 log(M).
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D.4 Auxiliary Tools

Here we report auxiliary results that we use in our proofs in other appendices.

We start with stating Theorem 7 in [133], which is the self-normalized martingale tail

inequality for the scalar random variables.

Proposition D.4.1 (Self-normalized bound for martingales) Let {Ft}∞t=1 be a fil-

tration. Let τ be a stopping time w.r.t to the filtration {Ft}∞t=1, i.e., the event {τ ≤ t}

belongs to Ft+1. Let {Zt}∞t=1 be a sequence of real-valued variables such that Zt is Ft-

measurable. Let {ηt}∞t=1 be a sequence of real-valued random variables such that ηt is Ft+1

measurable and is conditionally R-sub-Gaussian. Then, for any δ > 0, with probability

at least 1− δ,

∥∥∥∥∥
τ∑

t=1

ηtZt

∥∥∥∥∥ ≤ R

√√√√2

(
1 +

τ∑
t=1

Z2
t

)
log

(√
1 +

∑τ
t=1 Z

2
t

δ

)
.

Next, we state a direct application of Lemma 11 in [42] that bounds the cumulative

sum of
∑t−1

s=1 ∥ϕs(as)∥2V −1
s

which plays an important role in most of the proofs for linear

bandits problems.

Lemma D.4.2 Let λ > 0 and Vt = λI +
∑t−1

s=1 ϕs(as)ϕ
⊤
s (as). If for all a ∈ ∪t−1

s=1As, we

have ∥ϕs(a)∥2 ≤ L, then we may write

t−1∑
s=1

min{1, ∥ϕs(as)∥2V −1
s

} ≤ 2 log

(
det(Vt)

det(λI)

)
.

Next, we present a determinant-trace inequality matrix result.

Lemma D.4.3 (Determinant-Trace Inequality) Suppose X1, . . . , Xt−1 ∈ Rd, and

for any 1 ≤ s ≤ t − 1, we have ∥Xs∥2 ≤ L. Let Vt = λI +
∑t−1

s=1 XsX
⊤
s , for some
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λ > 0. Then we have

det(Vt) ≤
(
λ+

tL2

d

)d

.

Proof: Let α1, . . . , αd be the eigenvalues of Vt. Since Vt is positive definite, its

eigenvalues are positive. Also not that det(Vt) = Πd
s=1αs and trace(Vt) =

∑d
s=1 αs. By

arithmetic-geometric means inequality we have

d
√
α1 . . . αd ≤

α1 + · · ·+ αd

d
.

Therefore, det(Vt) ≤
(

trace(Vt)
d

)d
. It suffices to upper-bound the trace of Vt as

trace(Vt) = trace(λI) +
t−1∑
s=1

trace(XsX
⊤
s ) = dλ+

t−1∑
s=1

∥Xs∥22 ≤ dλ+ tL2,

and the result follows.

Next, we state a bound on the absolute value of the R-sub-Gaussian random variable.

Lemma D.4.4 Let {Ft}∞t=1 be a filtration. Let {η}∞t=1 be a real-valued stochastic process

such that ηt is Ft-measurable and ηt is conditionally R-sub-Gaussian for some R > 0,

i.e.,

∀λ ∈ R, E [ηt|Ft] = 0, E
[
eληt |Ft

]
≤ exp

(
λ2R2

2

)
.

Then, condition on filtration Ft, with probability at least 1−δ, we have |ηt| ≤ R
√

2 log(2/δ).
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Proof: Let λ > 0. Then,

P(ηt ≥ k|Ft) = P(eληt ≥ eλk|Ft) ≤ e−λk E[eληt |Ft] (by Markov’s inequality)

≤ e−λke
λ2R2

2 = exp

(
−λk +

λ2R2

2

)
. (D.4.1)

Optimizing for λ, and thus, selecting λ = k
R2 , we conclude that

P(ηt ≥ k|Ft) ≤ e−
k2

2R2 .

Repeating this argument for −ηt, we also obtain P(ηt ≤ −k|Ft) ≤ e−
k2

2R2 . Combining

these two bounds, we can conclude that

P(|ηt| ≥ k|Ft) ≤ 2e−
k2

2R2 . (D.4.2)

From (D.4.2), with the choice of δ = 2e−
k2

2R2 , and thus k = R
√

2 log(2/δ), completes the

proof.

Then, we state a square-root trick for positive numbers.

Lemma D.4.5 Let a, b > 0. If z2 ≤ a+ bz, then z ≤
√
a+ b.

Proof: Let q(z) = z2−bz−a. We can rewrite the condition z2 ≤ a+bz as q(z) ≤ 0.

Then we know that the quadratic polynomial q(z) has the following two roots

z∗1 =
b+

√
b2 + 4a

2
z∗2 =

b−
√
b2 + 4a

2
.

Then, we know that the condition q(z) ≤ 0, implies that min{z∗1 , z∗2} ≤ z ≤ max{z∗1 , z∗2}.
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Therefore, for positive numbers a, b, we get

z ≤ max{z∗1 , z∗2} =
b+

√
b2 + 4a

2
≤ b+

√
a,

where for the last inequality, we use the fact that for u, v > 0,
√
u+ v ≤

√
u+

√
v.

Next, we restate a simple logarithmic trick from [133].

Lemma D.4.6 (Proposition 10 in [133]) Let c ≥ 1, q > 0, δ ∈ (0, 1/4]. If s ≥ 1 and

s ≤ c+ q
√

log(s/δ), then we have s ≤ c+ q
√

2 log( c+q
δ
).
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D.5 Relation to Latent Bandits

In this section, we informally show that if the goal in latent bandits is to have a

better scaling with the number of actions K (e.g., the number of actions K is much

larger than the number of latent states M), we can use a different bandit model selection

strategy, called regret balancing [147, 148, 157, 158] to obtain an improved regret that

scales as min{εT +
√
MT,

√
KMT}. This rate is the best of the regret of PS-OFUL,

which scales as
√
KT , and the regret of the latent bandit algorithm of [146], which scales

as εT +
√
MT .

In regret balancing, in each round, the model selection strategy chooses one of M

base algorithms. We denote by Ni,t, the number of times that the base algorithm i has

been selected up to round t, and by Ri,t, the cumulative rewards of this base algorithm

during these Ni,t rounds. Given a reference regret bound U : [T ] → R, in each round

t ∈ [T ], the algorithm first finds the optimistic base algorithm It and its value bt, i.e.,

It = argmax
i∈[M ]

Ri,t

Ni,t

+
U(Ni,t)

Ni,t

, bt =
RIt,t

NIt,t

+
U(NIt,t)

NIt,t

, (D.5.1)

and then takes the action recommended by It and uses its observed reward to update the

base algorithm It.

We can apply regret balancing to the problem of latent bandits in the following way.

We consider M + 1 base algorithms: one that plays UCB, and M , each corresponds

to a latent value and always plays the greedy action of that latent model (which is

guaranteed to be ε-accurate by assumption). If the regret balancing strategy selects the

UCB base algorithm in all rounds, it would suffer the regret
√
Kt+

√
t, and if it selects

the optimal base algorithm, i.e., the base algorithm corresponding to the correct latent

model, it would suffer the regret εt +
√
t. Note that by regret, we mean the actual
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regret and not pseudo-regret, and thus,
√
t is the consequence of noise in the reward

signal. Thus, we select the reference regret bound of our regret balancing strategy as

U(t) = min{εt+
√
t,
√
Kt+

√
t}. We may write the regret of the resulting regret balancing

strategy as follows:

R(T )
(a)
=

M+1∑
i=1

Ni,Tµ∗ −Ri,T

(b)

≤
M+1∑
i=1

Ni,T bT −Ri,T
(c)
=

M+1∑
i=1

U(Ni,T )

≤
M+1∑
i=1

min
{
εNi,T +

√
Ni,T ,

√
KNi,T +

√
Ni,T

}
≤ min

{M+1∑
i=1

(
εNi,T +

√
Ni,T

)
,
M+1∑
i=1

(√
KNi,T +

√
Ni,T

)}
(d)
= min

{
εT +

M+1∑
i=1

√
Ni,T ,

M+1∑
i=1

(√
KNi,T +

√
Ni,T

)}
(e)

≤ min
{
εT +

M+1∑
i=1

√
T

M + 1
,
M+1∑
i=1

(√
K

T

M + 1
+

√
T

M + 1

)}
= min

{
εT +

√
(M + 1)T ,

√
K(M + 1)T +

√
(M + 1)T

}
= O

(
min

{
εT +

√
MT,

√
KMT

})
,

which concludes our claim. Note that we used the following steps in our above

derivations: (a) µ∗ is the mean of the optimal arm. (b) This is because with high

probability we have µ∗ ≤ bt, ∀t ∈ [T ]. (c) This is from the definition bt in (D.5.1). (d)

This is due to the fact that
∑M+1

i=1 Ni,T = T . (e) The maximizer of
∑M+1

i=1

√
Ni,T , subject

to
∑M+1

i=1 Ni,T = T , is when all {Ni,T}M+1
i=1 are equal.
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Figure D.1: Feature selection on MNIST dataset. The regrets are averaged over 100
LB problems.

Figure D.2: Feature selection on CIFAR-100 dataset. The regrets are averaged over
100 LB problems.

D.6 More on Experimental Results

We evaluate the performances of FS-SCB and PS-OFUL algorithms in a synthetic

linear bandit problem and real-world image classification problems on CIFAR-10, CIFAR-

100 [151], and MNIST datasets [150].

D.6.1 Feature Selection

MNIST Dataset

MNIST dataset consists of 60000 training and 10000 test images of size 28× 28, each

belonging to one of 10 classes. We train a convolutional neural network (CNN) with M

different number of epochs on MNIST data, and use their second layer to the last as

our d = 10-dimensional feature maps {ϕi}Mi=1. These feature maps have test accuracy
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between 20% (worst model) and 97% (best model). We set the best one as true model ϕi∗ .

For each class s ∈ S = {0, . . . , 9}, we fit a linear model, given the feature map ϕi∗ , and

obtain parameters {θi∗s }9s=0. At the beginning of each LB task, we select a class s∗ ∈ S

uniformly at random and set its parameter to θi∗s∗ . At each round t ∈ [T ], the learner is

given an action set consists of 10 images, one from class s∗ and the rest randomly selected

from the other classes. The reward of each action a is defined as ⟨ϕi∗(a), θi∗s∗⟩+ηt ∈ [0, 1],

where ϕi∗(a) is the application of the feature map ϕi∗ to the image corresponding to

action a and ηt ∼ U [−0.5, 0.5] is the noise.

In Figure D.1, we compare the regret of our FS-SCB algorithm for different number

of models M with a regret balancing algorithm that uses SquareCB baselines (RB-SCB),

and three SquareCB algorithms that use the best (Oracle), second-best (with test ac-

curacy 84%), and worst feature maps (experts). Each plot is averaged over 100 LB

problems. Figure D.1 shows that 1) FS-SCB always performs between the best and

second-best experts, 2) the regret of FS-SCB that scales as
√
logM is close to RB-SCB

(scales as
√
M) for small M , but gets much better as M grows, and 3) RB-SCB has

much higher variance than the other algorithms.

CIFAR-100 Dataset

CIFAR-100 dataset consists of 50000 training and 10000 test images of size 32× 32,

each belonging to one of 100 classes. We extracted the features of the images by fine

tuning and taking the output of the second-to-last layer of the EfficientNet-B0 Network

[159] and got the feature matrix of dimension 50000× 1280. For all experts i ∈ [M ], we

multiply this feature matrix with a Gaussian random matrix of dimension 1280× di for

di ∈ [2, 128] to get the di dimensional feature maps ϕi. These feature maps have accuracy

between 5% (worst model) and 78% (best model). We set the best one as true model ϕi∗ .

For each class s ∈ S = {0, . . . , 99}, we fit a linear model, given the feature map ϕi∗ and
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Figure D.3: Parameter selection on MNIST dataset, where 100M datasets of size 500
are used to define the balls. The results are averaged over 50 runs.

obtain parameters {θi∗s }99s=0. At the beginning of each LB task, we select a class s∗ ∈ S

uniformly at random and set its parameter to θi∗s∗ . At each round t ∈ [T ], the learner is

given an action set consists of 10 images, one from class s∗ and the rest randomly selected

from the other classes. The reward of each action a is defined as ⟨ϕi∗(a), θi∗s∗⟩+ηt ∈ [0, 1],

where ϕi∗(a) is the application of the feature map ϕi∗ to the image corresponding to

action a and ηt ∼ U [−0.5, 0.5] is the noise.

In Figure D.2, we compare the regret of our FS-SCB algorithm for different number

of models M with a regret balancing algorithm that uses SquareCB baselines (RB-SCB)

and aggregate them according to (D.5.1), and three SquareCB algorithms that use the

best (Oracle), second-best (with test accuracy 55%), and worst feature maps (experts).

Each plot is averaged over 100 LB problems. Figure D.2 shows that 1) FS-SCB always

performs close to the best and second-best experts, 2) the regret of FS-SCB that scales

as
√
logM is close to RB-SCB (scales as

√
M) for small M , but gets much better as M

grows, and 3) RB-SCB has much higher variance than the other algorithms.
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Figure D.4: Parameter selection on MNIST dataset, where 10M datasets of size 50
are used to define the balls. The results are averaged over 50 runs.

D.6.2 Parameter Selection

Image Classification on MNIST Dataset

MNIST dataset consists of 60000 test and 10000 training images of size 28× 28, each

belonging to one of 10 classes. We train a CNN with d = 12 neurons on second-to-last

layer on MNIST dataset with 98% accuracy. We then select this d-dimensional layer as

our feature map ϕ. To define our M models (balls), we sample 100M datasets of size

500. For each dataset, we randomly select a class s∗ ∈ [M ], assign reward 1 to images

from s∗ and 0 to other images, and fit a linear model to it to obtain a parameter vector.

Finally, we fit a Gaussian mixture model (GMM) with M components to these 100M

parameter vectors and use the means and covariances of the resulting clusters as the

center and radii of our M models (balls). At the beginning of each LB task, we select

a class s∗ ∈ [M ] uniformly at random. At each round t ∈ [T ], the learner is given an

action set consists of 10 images, one from class s∗ and the rest randomly selected from

the other classes. The learner receives a reward from Ber(0.9) if it selects the image from

class s∗, and from Ber(0.1), otherwise.

In Figure D.3, we compare the mean reward of PS-OFUL for different number of

modelsM with a regret balancing algorithm that uses OFUL baselines (RB-OFUL) [147],

OFUL (individual learning), and BIAS-OFUL [143] with bias being the center of the
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true model (Oracle). Figure D.3 shows 1) the good performance of PS-OFUL, 2) the

performance of PS-OFUL gets better than RB-OFUL as M grows (
√
logM vs.

√
M

scaling), 3) the large variance of RB-OFUL, especially in comparison to PS-OFUL, and

finally 4) the advantage of transfer (PS-OFUL) over individual (OFUL) learning.

Impact of the model estimates: In order to demonstrate the impact of the accuracy

of the model center estimates as well as the radii of the balls, we defined a less accurate

set of M models (balls) using 10M datasets of size 50 (as opposed to 100M datasets of

size 500). In Figure D.4, we compare the mean reward of PS-OFUL for different number

of models M with RB-OFUL, OFUL, and BIAS-OFUL.

206



Bibliography

[1] “Expect More EV Charging Stations as States Tap into Federal Dollars,
[Online].” https://www.pewtrusts.org/en/research-and-analysis/blogs/

stateline/2022/10/11/

expect-more-ev-charging-stations-as-states-tap-into-federal-dollars.
Accessed: October 2022.

[2] “Long Queue at Tesla Supercharge Point , [Online].”
https://www.reuters.com/article/factcheck-tesla-supercharge/

fact-check-video-of-queue-at-tesla-supercharge/

-point-was-captured-on-thanksgiving-in-2019-idUSL1N2YM10J. Accessed:
July 2022.

[3] A. Moradipari, S. Bae, M. Alizadeh, E. M. Pari, and D. Isele, Predicting
parameters for modeling traffic participants, in 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC), pp. 703–708, IEEE,
2022.

[4] M. Khodayar, L. Wu, and Z. Li, Electric vehicle mobility in
transmission-constrained hourly power generation scheduling, Smart Grid, IEEE
Transactions on 4 (June, 2013) 779–788.

[5] X. Xi and R. Sioshansi, Using price-based signals to control plug-in electric vehicle
fleet charging, IEEE Transactions on Smart Grid 5 (May, 2014) 1451–1464.

[6] R. Sioshansi, Or forum-modeling the impacts of electricity tariffs on plug-in
hybrid electric vehicle charging, costs, and emissions, Operations Research 60
(2012), no. 3 506–516.

[7] M. Alizadeh, H. T. Wai, A. Goldsmith, and A. Scaglione, Retail and wholesale
electricity pricing considering electric vehicle mobility, IEEE Transactions on
Control of Network Systems PP (2018), no. 99 1–1.

[8] W. Wei, L. Wu, J. Wang, and S. Mei, Network equilibrium of coupled
transportation and power distribution systems, IEEE Transactions on Smart Grid
9 (Nov, 2018) 6764–6779.

207

https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2022/10/11/expect-more-ev-charging-stations-as-states-tap-into-federal-dollars
https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2022/10/11/expect-more-ev-charging-stations-as-states-tap-into-federal-dollars
https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2022/10/11/expect-more-ev-charging-stations-as-states-tap-into-federal-dollars
https://www.reuters.com/article/factcheck-tesla-supercharge/fact-check-video-of-queue-at-tesla-supercharge/-point-was-captured-on-thanksgiving-in-2019-idUSL1N2YM10J
https://www.reuters.com/article/factcheck-tesla-supercharge/fact-check-video-of-queue-at-tesla-supercharge/-point-was-captured-on-thanksgiving-in-2019-idUSL1N2YM10J
https://www.reuters.com/article/factcheck-tesla-supercharge/fact-check-video-of-queue-at-tesla-supercharge/-point-was-captured-on-thanksgiving-in-2019-idUSL1N2YM10J


[9] J. Hu, S. You, M. Lind, and J. Østergaard, Coordinated charging of electric
vehicles for congestion prevention in the distribution grid, IEEE Transactions on
Smart Grid 5 (March, 2014) 703–711.

[10] D. Wang, H. Wang, J. Wu, X. Guan, P. Li, and L. Fu, Optimal aggregated
charging analysis for pevs based on driving pattern model, in 2013 IEEE Power
Energy Society General Meeting, pp. 1–5, July, 2013.

[11] D. Tang and P. Wang, Nodal impact assessment and alleviation of moving electric
vehicle loads: From traffic flow to power flow, IEEE Transactions on Power
Systems 31 (Nov, 2016) 4231–4242.

[12] T. Chen, B. Zhang, H. Pourbabak, A. Kavousi-Fard, and W. Su, Optimal routing
and charging of an electric vehicle fleet for high-efficiency dynamic transit
systems, IEEE Transactions on Smart Grid 9 (July, 2018) 3563–3572.

[13] D. Goeke and M. Schneider, Routing a mixed fleet of electric and conventional
vehicles, European Journal of Operational Research 245 (2015), no. 1 81 – 99.

[14] T. Wang, C. G. Cassandras, and S. Pourazarm, Optimal motion control for
energy-aware electric vehicles, Control Engineering Practice 38 (2015) 37 – 45.

[15] Q. Guo, S. Xin, H. Sun, Z. Li, and B. Zhang, Rapid-charging navigation of
electric vehicles based on real-time power systems and traffic data, IEEE
Transactions on Smart Grid 5 (July, 2014) 1969–1979.

[16] S. Pourazarm, C. G. Cassandras, and T. Wang, Optimal routing and charging of
energy-limited vehicles in traffic networks, International Journal of Robust and
Nonlinear Control 26 (2016), no. 6 1325–1350.

[17] H. Yang, S. Yang, Y. Xu, E. Cao, M. Lai, and Z. Dong, Electric vehicle route
optimization considering time-of-use electricity price by learnable partheno-genetic
algorithm, IEEE Transactions on Smart Grid 6 (March, 2015) 657–666.

[18] Y. Cao, S. Tang, C. Li, P. Zhang, Y. Tan, Z. Zhang, and J. Li, An optimized ev
charging model considering tou price and soc curve, IEEE Transactions on Smart
Grid 3 (March, 2012) 388–393.

[19] P. Fan, B. Sainbayar, and S. Ren, Operation analysis of fast charging stations
with energy demand control of electric vehicles, IEEE Transactions on Smart Grid
6 (July, 2015) 1819–1826.

[20] H. Qin and W. Zhang, Charging scheduling with minimal waiting in a network of
electric vehicles and charging stations, in Proceedings of the Eighth ACM
international workshop on Vehicular inter-networking, pp. 51–60, ACM, 2011.

208



[21] A. Gusrialdi, Z. Qu, and M. A. Simaan, Scheduling and cooperative control of
electric vehicles’ charging at highway service stations, in Decision and Control
(CDC), 2014 IEEE 53rd Annual Conference on, pp. 6465–6471, IEEE, 2014.

[22] A. Moradipari, N. Tucker, and M. Alizadeh, Mobility-aware electric vehicle fast
charging load models with geographical price variations, IEEE Transactions on
Transportation Electrification 7 (2020), no. 2 554–565.

[23] I. Zenginis, J. Vardakas, N. Zorba, and C. Verikoukis, Performance evaluation of
a multi-standard fast charging station for electric vehicles, IEEE Transactions on
Smart Grid 9 (Sep., 2018) 4480–4489.

[24] I. S. Bayram, G. Michailidis, I. Papapanagiotou, and M. Devetsikiotis,
Decentralized control of electric vehicles in a network of fast charging stations, in
Global Communications Conference (GLOBECOM), 2013 IEEE, pp. 2785–2790,
IEEE, 2013.

[25] C. Liu, M. Zhou, J. Wu, C. Long, and Y. Wang, Electric vehicles en-route
charging navigation systems: Joint charging and routing optimization, IEEE
Transactions on Control Systems Technology 27 (2019) 906–914.

[26] E. Bitar and S. Low, Deadline differentiated pricing of deferrable electric power
service, in Decision and Control (CDC), 2012 IEEE 51st Annual Conference on,
pp. 4991–4997, IEEE, 2012.

[27] M. Alizadeh, Y. Xiao, A. Scaglione, and M. van der Schaar, Dynamic incentive
design for participation in direct load scheduling programs, IEEE Journal of
Selected Topics in Signal Processing 8 (Dec, 2014) 1111–1126.

[28] A.-K. Katta and J. Sethuraman, Pricing strategies and service differentiation in
queues – a profit maximization perspective, Working paper (2005).

[29] R. M. Bradford, Pricing, routing, and incentive compatibility in multiserver
queues, European Journal of Operational Research 89 (1996), no. 2 226–236.

[30] S. Huang, Q. Wu, S. S. Oren, R. Li, and Z. Liu, Distribution locational marginal
pricing through quadratic programming for congestion management in distribution
networks, IEEE Transactions on Power Systems 30 (July, 2015) 2170–2178.

[31] R. Li, Q. Wu, and S. S. Oren, Distribution locational marginal pricing for optimal
electric vehicle charging management, IEEE Transactions on Power Systems 29
(Jan, 2014) 203–211.

[32] R. N. Allan, R. Billinton, I. Sjarief, L. Goel, and K. S. So, A reliability test system
for educational purposes-basic distribution system data and results, IEEE
Transactions on Power Systems 6 (May, 1991) 813–820.

209



[33] “Open Access Same-time Information System (OASIS), [Online].”
http://oasis.caiso.com/mrioasis/logon.do.

[34] Q. Wu, A. H. Nielsen, J. Ostergaard, S. T. Cha, F. Marra, Y. Chen, and
C. Træholt, Driving pattern analysis for electric vehicle (ev) grid integration
study, in 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT Europe), pp. 1–6, Oct, 2010.

[35] “California ISO Supply and Renewables, [Online].”
http://www.caiso.com/TodaysOutlook/Pages/supply.aspx. Accessed:
Jun-2019.

[36] A. Moradipari and M. Alizadeh, Pricing and routing mechanisms for
differentiated services in an electric vehicle public charging station network, IEEE
Transactions on smart grid 11 (2019), no. 2 1489–1499.

[37] A. Moradipari and M. Alizadeh, Pricing differentiated services in an electric
vehicle public charging station network, in 2018 IEEE Conference on Decision
and Control (CDC), pp. 6488–6494, IEEE, 2018.

[38] P. Auer, N. Cesa-Bianchi, and P. Fischer, Finite-time analysis of the multiarmed
bandit problem, Machine Learning 47 (2002), no. 2-3 235–256.

[39] S. Agrawal and N. Goyal, Analysis of Thompson sampling for the multi-armed
bandit problem, in Conference on Learning Theory, pp. 39–1, 2012.

[40] V. Dani, T. Hayes, and S. M. Kakade, Stochastic linear optimization under bandit
feedback, 21st Annual Conference on Learning Theory (2008).

[41] P. Auer, N. Cesa-Bianchi, and P. Fischer, Finite-time analysis of the multi-armed
bandit problem, Machine learning 47 (2002), no. 2-3 235–256.

[42] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, Improved algorithms for linear
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