Title

$1,2,3, \ldots, 2 n+1$, infinity!

Permalink

https://escholarship.org/uc/item/1075v66x

Author

Palamourdas, Konstantinos

Publication Date

2012
Peer reviewed|Thesis/dissertation

University of California
 Los Angeles

$1,2,3, \ldots, 2 n+1, \infty!$

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Mathematics
by

Konstantinos Palamourdas

(C) Copyright by

Konstantinos Palamourdas

Abstract of the Dissertation

$$
1,2,3, \ldots, 2 \mathrm{n}+1, \infty!
$$

by

Konstantinos Palamourdas

Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2012
Professor Itay Neeman, Chair

It is well known by [1] that the Borel chromatic number of a graph generated by a Borel function is ω or at most 3 . In this dissertation we will prove that the Borel chromatic number of a graph generated by n Borel functions that commute is ω or at most $2 n+1$. On top of that, we will prove that the Borel chromatic number for graphs generated by 2 functions is ω or at most $2 \times 2+1=5$, while the Borel chromatic number for graphs generated by 3 functions is ω or at most 8 .

The dissertation of Konstantinos Palamourdas is approved.

John Carriero
Donald Martin
Yiannis Moschovakis
Itay Neeman, Committee Chair

University of California, Los Angeles
2012

To my family
that supported me tirelessly
for so many years!

Table of Contents

1 Preliminaries 1
2 Summary of Results 9
3 Commuting Functions 12
4 The 1-colorable subset Lemma 16
5 The Least Available Subset Lemma 21
6 The 2 functions case (no restrictions) 25
7 The 3 functions case (no restrictions) 28
8 Other chromatic numbers 33
References 47

List of Figures

5.1 Coloring partition for 2 functions 24
7.1 Coloring partition for 3 functions 28

Acknowledgments

This dissertation would have never been completed without the invaluable help of my supervisor Itay Neeman. His continuous support, understanding and guidance kept me going especially during the hardest of times. And for that I am grateful!

Vita

 High School degree from General Lyceum of Chalkis (Greece) with honors. Diploma in Mathematics from University of Athens (Greece) with honors, awards and scholarship.Awarded the Greek "Onassis-foundation" scholarship for academic excellence.

MA in Mathematics from University of California Los Angeles (USA).

Awarded the Sorgenfrey Teaching award from UCLA.

PhD in mathematics from UCLA.

CHAPTER 1

Preliminaries

There has been a lot of work in descriptive set theory on actions on Borel spaces. Each such action can be viewed naturally as a directed graph induced by a Borel function. In [1], Kechris, Solecki and Todorcevic initiated the study of definable combinatorics of these graphs. More precisely, they defined the notions of Borel coloring and Borel chromatic number. The concept of Borel chromatic numbers is parallel to that of the usual chromatic numbers from graph theory. However, one can easily see that the two behave very differently, as there are examples of trees with infinite Borel chromatic numbers (see [1]).

In [1] they showed among other things that a Borel graph generated by one (Borel) function has a Borel chromatic number which is ω or at most 3 . In this dissertation we will generalize the results to more than one functions.

In Chapter 2 we give a summary of these results. But first, we give all the relevant definitions and some background from [1]:

Definition 1.1. Let X be a set.

- A (directed) graph \mathcal{G} on X is a binary relation $E \subseteq X \times X$ which is irreflexive (i.e. $(x, x) \notin E)$. We write this as $\mathcal{G}=(X, E)$. Every $(x, y) \in E$ is called an edge of the graph \mathcal{G} and every $x \in X$ is called a vertex or node of \mathcal{G}. If X is finite then \mathcal{G} is a finite graph.
- A forward path in \mathcal{G} is a sequence $\left(x_{n}\right)_{n \in k}$ where $k \in \omega+1$, and $\left(x_{i}, x_{i+1}\right) \in E$ for all i s.t. $i+1 \in k$. Since we do not deal with any other kinds of paths, we sometimes omit the word "forward". If $k=\omega$ we say that the (forward) path is infinite or unbounded.

If $k \in \omega, x_{0}=x$ and $x_{k-1}=y$ then we call this a path from x to y.

- A set $A \subseteq X$ is said to be bounded if it does not contain any infinite (forward) paths.
- A cycle in \mathcal{G} is a sequence $\left(x_{n}\right)_{n \in k}$ where $k \in \omega$, each $x_{n} \in X, x_{i} \neq x_{j}$ for all $(i, j) \in(k \times k) \backslash\{(0, k-1)\}, x_{0}=x_{k-1}$, and $\left(x_{i}, x_{i+1}\right) \in E$ for all $i+1 \in k$. A graph with no cycles is called acyclic
- A connected component of \mathcal{G} is a set $A \subseteq X$ s.t. any two elements in A are connected via a path. If \mathcal{G} has only one connected component we call it connected. An acyclic connected graph is called a tree. An acyclic (but not necessarily connected) graph is called a forest.
- A successor or descendant of a node $x \in X$ is every node $y \in X$ s.t. $(x, y) \in E$. The out-degree of x is the cardinality of the set of its successors.
- A predecessor or ancestor of a node $x \in X$ is every node $y \in X$ s.t. $(y, x) \in E$. The in-degree of x is the cardinality of the set of its predecessors.
- The degree of $x \in X$ is the cardinality of the sum of the sets of its successors and its predecessors.
- A finite graph $\mathcal{G}=(X, E)$ is called a clique if for every two $x, y \in X$ we either have $(x, y) \in E$ or $(y, x) \in E$. If in addition, X has exactly $k \in \omega$ elements then we call \mathcal{G} a k-clique.
- Let I be an (index) set and $\mathcal{F}_{\mathcal{I}}$ be a family of functions $F_{i}: X \rightarrow X(i \in I)$. We say that \mathcal{G} is generated by $\mathcal{F}_{\mathcal{I}}$, and write $\mathcal{G}=\mathcal{G}_{\mathcal{F}_{I}}$, if $\mathcal{G}=(X, E)$ where $(x, y) \in E$ iff $x \neq y$ and $F_{i}(x)=y$ for some $i \in I$. Also, if $\mathcal{F}_{\mathcal{I}}=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ then we say that \mathcal{G} is generated by $\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ and we write $\mathcal{G}=\mathcal{G}_{F_{1}, F_{2}, \ldots, F_{n}}$.
- A coloring of \mathcal{G} is a map: $c: X \rightarrow Y$, s.t. $(x, y) \in E \Rightarrow c(x) \neq c(y)$. If $|Y|=k$ then we call c a k-coloring. The smallest cardinal k for which \mathcal{G} admits a k-coloring is called the chromatic number of \mathcal{G}. We write this as $\mathcal{X}(\mathcal{G})=k$.
- A graph $\mathcal{G}=(X, E)$ on a standard Borel space X will be called Borel if the relation $E \subseteq X^{2}$ is Borel. Note that if I is countable and all functions $F_{i}(i \in I)$ are Borel then $\mathcal{G}_{\mathcal{F}_{I}}$ is Borel. In particular $\mathcal{G}_{F_{1}, F_{2}, \ldots, F_{n}}$ is Borel for any $n \in \omega$ and any Borel functions $F_{1}, F_{2}, \ldots, F_{n}$.

Definition 1.2. Let $\mathcal{G}=(X, E)$ be a graph on a standard Borel space X. Let $n \in \omega+1$. A Borel n-coloring of \mathcal{G} is an n-coloring which is also Borel, meaning that its corresponding coloring map is a Borel function. Equivalently, the coloring may be viewed as a partition $X=\biguplus_{i \in I} A_{i}$ where $|I|=n$, every A_{i} is Borel, and if $x, y \in A_{i}$ then $(x, y) \notin E$ and $(y, x) \notin E$. We also define the Borel chromatic number of \mathcal{G}, denoted $\mathcal{X}_{B}(\mathcal{G})$, to be the smallest $n \in \omega+1$ s.t. \mathcal{G} admits a Borel n-coloring. If such a coloring does not exist we say that: $\mathcal{X}_{B}(\mathcal{G})>\omega$.

In what follows we will work with graphs \mathcal{G} on a standard Borel space X that are generated by finitely many Borel functions $\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ and thus they are Borel. By [1] we already know the following:

Fact 1.3. Let X be a standard Borel space, $n \in \omega$, and $F_{i}: X \rightarrow X$ be Borel functions for $i \in n$. Then for $\mathcal{G}=\mathcal{G}_{F_{0}, F_{1}, \ldots, F_{n-1}}$ we have that $\mathcal{X}_{B}(\mathcal{G}) \leq \omega$.

Fact 1.4. There is a Borel space X and a Borel function $F: X \rightarrow X$ s.t. $\mathcal{X}_{B}\left(\mathcal{G}_{F}\right)=\omega$.

It is also a well known fact from graph theory that:
Fact 1.5. Let X be a finite set (with $|X|=k \in \omega$), $n \in \omega$, and \mathcal{G} be a (finite) graph on X s.t. every node $x \in X$ has out-degree $\leq n$. Then $\mathcal{X}(\mathcal{G}) \leq 2 n+1$

Sketch of Proof. First, note that there is $x_{0} \in X$ with degree $\leq 2 n$. Otherwise, \mathcal{G} would have more than $(2 n) k / 2=n k$ edges. But this would imply that at least one of its k nodes has out-degree more than n. In the same manner, in the graph induced by $X \backslash\left\{x_{0}\right\}$ we can find a node $x_{1} \in X \backslash\left\{x_{0}\right\}$ with degree $\leq 2 n$ in the induced subgraph on $X \backslash\left\{x_{0}\right\}$. Recursively, we can enumerate $X=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ in such a way that for every $i \in k, x_{i}$ has degree $\leq 2 n$ in the graph induced by $\left\{x_{i}, x_{i+1}, \ldots, x_{k-1}\right\}$. Now, we can color \mathcal{G} recursively as follows:

We start with the node x_{k-1} which we can color arbitrarily with any of the available $2 n+1$ colors. Next, assuming that we have colored the nodes x_{i+1}, \ldots, x_{k-1} we observe that x_{i} is connected to at most $2 n$ vertices from the set $\left\{x_{i+1}, \ldots, x_{k-1}\right\}$ so by the pigeon-hole principle we can color it using one of the available $2 n+1$ colors which is different than the colors of the nodes from $\left\{x_{i+1}, \ldots, x_{k-1}\right\}$ which are connected to x_{i}.

Fact 1.6. Let $n \in \omega$. There is a standard Borel space X and $F_{i}: X \rightarrow X$ Borel functions (for $i \in n$) s.t. $\mathcal{X}_{B}\left(\mathcal{G}_{F_{0}, F_{1}, \ldots, F_{n-1}}\right) \geq 2 n+1$.

Proof. Let $X=2 n+1$. We define $F_{i}(x)=x+i(\bmod (2 n+1))$ for all $x \in X$ and $i \in n$. By the definition we observe that for $x, y \in X$ there is at most one $i \in n$ s.t. $F_{i}(x)=y$. Otherwise, if $i, j \in n, i \neq j$ and $F_{i}(x)=F_{j}(x)=y$ then $x+i=x+j(\bmod (2 n+1))$ which implies that $i=j(\bmod (2 n+1))$ and thus $i=j$ since $i, j<n$. Moreover, if $F_{i}(x)=y$ then there is no $j \in n$ s.t. $F_{j}(y)=x$. Otherwise, $x+i=y(\bmod (2 n+1))$ and thus $y+j+i=y(\bmod (2 n+1))$ which means that $j+i=0(\bmod (2 n+1))$ which is a contradiction since $j+i \leq 2 n<2 n+1$. We conclude that $\mathcal{G}=\mathcal{G}_{F_{0}, F_{1}, \ldots, F_{n-1}}=(X, E)$ has no double edges in the sense that if $x, y \in X$ with $(x, y) \in E$ then $(y, x) \notin E$ while there is a unique $F \in\left\{F_{0}, F_{1}, \ldots, F_{n-1}\right\}$ s.t. $F(x)=y$. Therefore, \mathcal{G} has exactly $n *(2 n+1)=\binom{2 n+1}{2}$ (single) edges, which is the most a finite graph with $2 n+1$ nodes and no double edges can have. We conclude that \mathcal{G} is a clique and thus $\mathcal{X}(\mathcal{G}) \geq 2 n+1$ which in turn means that $\mathcal{X}_{B}(\mathcal{G}) \geq 2 n+1$.

All the above lead naturally to the following question which was first asked in [1]:

Question 1.7. Let X be a standard Borel space, $n \in \omega$ and $F_{i}: X \rightarrow X$ be Borel functions for $i \in n$. Is it true that $\mathcal{X}_{B}\left(\mathcal{G}_{F_{0}, F_{1}, \ldots, F_{n-1}}\right) \in\{1,2, \ldots, 2 n+1\} \bigcup\{\omega\}$?

By the results above, a positive answer would be optimal: By Facts 1.6 and 1.4, $2 n+1$ and ω are both possible Borel chromatic numbers for graphs generated by n Borel functions.

Question 1.7 is the main topic of this dissertation. We will present several new results on various cases, that provide or approach positive answers. But first we present the results from [1] that provide a positive answer in case $n=1$.

Theorem 1.8. Let X be a standard Borel space and $F: X \rightarrow X$ be a Borel functions. Then $\mathcal{X}_{B}\left(\mathcal{G}_{F}\right) \in\{1,2,3, \omega\}$.

Proof. We will give a proof slightly different than the one in [1]. This is because we want to be consistent with the ideas that we will use later on for proving the Least Available Subset Lemma 5.1. By Fact $1.3 \mathcal{X}_{B}(\mathcal{G}) \leq \omega$. So, say that $\mathcal{X}_{B}\left(\mathcal{G}_{F}\right)=k \in \omega$ and $c: X \rightarrow k$ is the coloring function. Now, setting $A_{i}=c^{-1}(i)$ we have $X=\biguplus_{i \in k} A_{i}$ and each A_{i} is 1-colorable. We will re-partition X in a different way into the sets B and C (i.e. $X=B \uplus C$) using the A_{i} recursively as follows:

- We first set $B_{0}=A_{0}$ and $C_{0}=\emptyset$.
- Now (for $0<i \leq k-1$) assuming that $A_{0} \cup A_{1} \cup \ldots \cup A_{i-1} \subseteq B_{i-1} \cup C_{i-1}$ we set $\bar{B}_{i}=\left\{x \in A_{i} \mid\right.$ the successor of x (if it exists) $\left.\notin B_{i-1}\right\}$. We also set $\bar{C}_{i}=A_{i} \backslash \bar{B}_{i}$. Next, we set $B_{i}=B_{i-1} \cup \bar{B}_{i}$ and $C_{i}=C_{i-1} \cup \bar{C}_{i}$.
- Finally, we set $B=B_{k-1}$ and $C=C_{k-1}$.

Clearly, we have that $B_{i} \subseteq B_{i+1}$ and $C_{i} \subseteq C_{i+1}$ for all $i<k-1$.
Claim 1.9. The set B is bounded.

Proof. Towards contradiction, assume that there is an unbounded path $P \subseteq B$. Since c is a finite coloring of \mathcal{G}_{F}, there is $x \in P$ s.t. $F(x) \neq x, F(x) \in P$ and $c(F(x)) \leq c(x)$. Since, $c(F(x)) \neq c(x)$ it follows that $c(F(x))<c(x)$. Thus since we know that $F(x) \in B$ we must have that $F(x) \in B_{c(F(x))} \subseteq B_{c(x)-1}$. Therefore, during the $(c(x))$-th step of the recursion above $x \notin \bar{B}_{c(x)}$ (as the successor $F(x) \in B_{c(x)-1}$). We conclude that $x \in \bar{C}_{c(x)} \subseteq C$ which is of course a contradiction.

Claim 1.10. The set B is 2-colorable.

Proof. Since B is bounded then for every $x \in B$ there is a $k \in \omega$ s.t. $F^{k+1}(x)=F^{k}(x)$ or $F^{k}(x) \notin B$. If there is a $k \in \omega$ s.t. $F^{k+1}(x)=F^{k}(x)$ then set $e(x)$ equal to the minimum
such k. Otherwise, set $e(x)$ to be $k-1$ where k is now the minimum integer s.t. $F^{k}(x) \notin B$. Note that if $F(x) \in B$ with $F(x) \neq x$ then $e(F(x))=e(x)-1$. Now define $d: B \rightarrow 2$ by setting $d(x)=e(x) \bmod 2$. Clearly, this produces a 2-coloring for B.

Claim 1.11. The set C is 1-colorable.

Proof. Towards contradiction we assume that there is an $x \in C$ s.t. $F(x) \neq x$ and $F(x) \in C$. Suppose first that $c(x)>c(F(x))$. Then since $F(x) \in C$ and $C \cap B=\emptyset$, at stage $i=c(x)$ we have that $F(x) \notin B_{i-1}$. By construction this implies that $x \in B_{i} \subseteq B$ and thus $x \notin C$ which is a contradiction. Suppose next that $c(x)<c(F(x))$. If $c(x)=0$ then $x \in B_{0} \subseteq B$ and thus $x \notin C$ which is a contradiction. If $c(x)>0$ then at stage $i=c(x)$ we have $F(x) \notin B_{i-1} \cup C_{i-1}$. By construction this implies that $x \in B_{i} \subseteq B$ and thus $x \notin C$ which is a contradiction. Therefore, $c(x)=c(F(x))$ which contradicts the definition of the coloring function.

From all the above and the fact that $X=B \uplus C$ it is now obvious that $\mathcal{X}_{B}\left(\mathcal{G}_{F}\right) \leq 3$.

Remark 1.12. Note that all $x \in X$ s.t. $F(x)=x$ and all $x \in B$ s.t. $F(x) \notin B$ are assigned the same color in the coloring we described above. All such x belong to B and are given the color $d(x)=0$ in the proof of Claim 1.10. Moreover, the proof of Claim 1.10 does not use anything more than the fact that B is Borel and bounded. Therefore, we proved that each Borel and bounded set B for which each $x \in B$ has at most one successor is Borel 2-colorable, and all its elements with no successor in B are assigned the same color.

Finally, if we set $B^{i}=\{x \in B \mid d(x)=i\}$ then we have the following properties:

- $X=B^{0} \uplus B^{1} \uplus C$.
- The set $B^{0} \uplus B^{1}=B$ is bounded.
- Each B^{i}, C is Borel 1-colorable.
- Each $x \in B^{1}$ is followed by an element in B^{0}.

Based on the above theorem we can prove the following corollary that also appears in [1]:

Corollary 1.13. Let X be a Borel space and $F_{0}, F_{1}, \ldots, F_{n-1}$ be Borel functions on X. Let $\mathcal{G}=\mathcal{G}_{F_{0}, F_{1}, \ldots, F_{n-1}}$. If $\mathcal{X}_{B}(\mathcal{G})<\omega$ then $\mathcal{X}_{B}(\mathcal{G}) \leq 3^{n}$.

Proof. Since $\mathcal{X}_{B}(\mathcal{G})<\omega$ then clearly $\mathcal{X}_{B}\left(\mathcal{G}_{F_{i}}\right)<\omega$ for each $i \in n$. Thus, from 1.8 we can define $c_{i}: X \rightarrow 3$ to be a Borel coloring of $\mathcal{G}_{F_{i}}$ for all $i \in n$. Then $c(x)=$ $\left(c_{0}(x), c_{1}(x), \ldots, c_{n-1}(x)\right)$ is easily a Borel coloring of \mathcal{G}.

Also, since the set C in theorem 1.8 is clearly Borel, we can give the following characterization which can be found in [2]:

Theorem 1.14. (Finite Colorable Characterization for a Single Function) Let X be a Borel space, $f: X \rightarrow X$ be a Borel function with $f(x) \neq x$ for all $x \in X$, and let $\mathcal{G}=\mathcal{G}_{f}$ be the corresponding Borel graph generated by f. Then the following statements are equivalent:
(i) $\chi_{\mathcal{B}}(\mathcal{G}) \leq 3$
(ii) $\chi_{\mathcal{B}}(\mathcal{G})<\omega$
(iii) There is a Borel subset $A \subseteq X$ s.t. for each $x \in X$ there exists an $i \in \omega$ s.t. $f^{i}(x) \in A$ and $f^{i+1}(x) \notin A$.

Proof. $(i) \rightarrow(i i)$: This is trivial.
(ii) \rightarrow (iii) : We take $A=C$ where C is the 1-colorable set described in the proof of Theorem 1.8. Now if $x \notin C$ then $x \in B$ (where again B is the 2 -colorable set described in the proof of Theorem 1.8) and thus since $(\forall y) f(y) \neq y$, there should be an $i \in \omega$ s.t. $f^{i}(x) \notin B \Rightarrow f^{i}(x) \in C \Rightarrow f^{i}(x) \in A$. Moreover, since C is 1-colorable and $f^{i+1}(x) \neq f^{i}(x)$, we have that $f^{i+1}(x) \notin C=A$. Similarly if $x \in C$ then $f(x) \notin C$ and thus as before we can find a $i \in \omega$ s.t. $f^{i+1}(x) \in A$ while $f^{i+2}(x) \notin A$.
(iii) $\rightarrow(i)$: Let $A_{0} \subseteq A$ be the set of all $x \in A$ s.t. $f(x) \notin A$. Clearly, A_{0} is 1-colorable. Also, $X \backslash A_{0}$ is bounded. This is because if $x \in X \backslash A_{0}$ then by (iii) there is an $i \in \omega$ s.t. $f^{i}(x) \in A$ but $f^{i+1}(x) \notin A$. By the definition of A_{0}, this means that $f^{i}(x) \in A_{0}$ and thus $X \backslash A_{0}$ cannot contain unbounded paths. Thus $X \backslash A_{0}$ is bounded and therefore by the proof of Claim 1.10 it is 2-colorable. Since A_{0} is 1-colorable it follows that $X=A_{0} \uplus\left(X \backslash A_{0}\right)$ is 3-colorable.

CHAPTER 2

Summary of Results

In this section we will provide a list with all the new results proved in this dissertation. First of all, we will give a positive answer to Question 1.7 in the general case of n functions that commute with each other. More specifically:

Theorem 2.1. Let X be a Borel space, $n \in \omega, F_{1}, F_{2}, \ldots, F_{k}: X \rightarrow X$ be Borel functions which commute with each other and $\mathcal{G}=\mathcal{G}_{F_{1}, F_{2}, \ldots, F_{k}}$. Then either $\chi_{\mathcal{B}}(\mathcal{G}) \leq 2 k+1$ or $\chi_{\mathcal{B}}(\mathcal{G})=$ ω.

Next, we will prove a key lemma that in its essence generalizes Theorem 1.8, and which will be essential for the proof of our major results in the next chapters. The idea of the lemma is that we can find non-trivial extensions of graphs generated by a single (Borel) function which have the property that they are Borel 3-colorable, provided that they are finitely Borel colorable. More formally:

Lemma 2.2. (The simple 1-colorable Subset Lemma). Let X be a Borel space and \mathcal{G} be a finitely (Borel) colorable Borel graph over X with the following two properties:

- Every $x \in X$ has at most two descendants in X.
- The set of splitting nodes $Y=\{x \in X \mid x$ has exactly 2 descendants $\}$ is 1-colorable.

Then \mathcal{G} is Borel 3-colorable.

Then, we will use our new ideas we already used for the proof of Theorem 1.8 in order to produce a quadratic bound for the chromatic number of graphs generated by n Borel
functions (for an arbitrary $n \in \omega$), which is already better than the exponential one given on Corollary 1.13. More precisely we will prove the following:

Lemma 2.3. (The Least Available Subset): Let X be a Borel space, $k \in \omega$ and F_{i} : $X \rightarrow X$ be Borel functions for all $i \in k$. Let also $\mathcal{G}=\mathcal{G}_{F_{0}, F_{1}, \ldots, F_{k-1}}$. Suppose finally that $\chi_{\mathcal{B}}(\mathcal{G})<\omega$. Then $\chi_{\mathcal{B}}(\mathcal{G}) \leq 1+2+\ldots+(k+1)=\frac{k^{2}}{2}+\frac{3 k}{2}+1=\mathcal{O}\left(k^{2}\right)$.

By combining the two Lemmas above, we will be able to give a positive answer to the main Question 1.7 for the case $n=2$ when the functions do not necessarily commute with each other:

Theorem 2.4. (Non-commutative functions) Let X be a Borel space and $F, G: X \rightarrow$ X be Borel functions. Let also $\mathcal{G}=\mathcal{G}_{F, G}$. Suppose finally that $\chi_{\mathcal{B}}(\mathcal{G})<\omega$. Then $\chi_{\mathcal{B}}(\mathcal{G}) \leq 5$.

Then, by using a generalized version of the 1-colorable subset Lemma and by the Least Available Subset lemma, we will get a better than quadratic (but still not optimal) bound for the case $n=3$ with arbitrary Borel functions:

Theorem 2.5. Let X be a Borel space and $F, G, H: X \rightarrow X$ be Borel functions. Let also $\mathcal{G}=\mathcal{G}_{F, G, H}$. Suppose finally that $\chi_{\mathcal{B}}(\mathcal{G})<\omega$. Then $\chi_{\mathcal{B}}(\mathcal{G}) \leq 8$.

Finally, we apply the above results and ideas to conclude bounds for Baire and μ measurable chromatic numbers which are defined as follows:

Definition 2.6. Let X be a Polish space and \mathcal{G} be a graph on X. Let also, $c: X \rightarrow \omega$ be a coloring of \mathcal{G}. Then:

- The Baire chromatic number of $\mathcal{G}\left(\chi_{\mathcal{B P}}(\mathcal{G})\right)$ is given by: $\chi_{\mathcal{B P}}(\mathcal{G})=\min \{|c(X)|$ where c is a Baire measurable coloring of $\mathcal{G}\}$.
- The μ-measurable chromatic number of $\mathcal{G}\left(\chi_{\mu}(\mathcal{G})\right)$ is given by: $\chi_{\mu}(\mathcal{G})=\min \{|c(X)|$ where c is a μ-measurable coloring of $\mathcal{G}\}$. (Here, μ is a probability measure on X).

For starters we give a different proof of the following theorem proved first in [2]:

Theorem 2.7. Let X be a Polish space, μ be a probability measure on X, and $f: X \rightarrow X$ be a Borel function. Then $\chi_{\mathcal{B P}}\left(\mathcal{G}_{f}\right) \leq 3$ and $\chi_{\mu}\left(\mathcal{G}_{f}\right) \leq 3$.

Then, we give two more results that use the bounds and ideas for the Borel chromatic number of graphs generated by n functions, that are described above:

Theorem 2.8. Let X be a Polish space, μ be a probability measure on X, and $f_{0}, f_{1}: X \rightarrow X$ be two Borel functions on X. Then $\chi_{\mathcal{B P}}\left(\mathcal{G}_{f_{0}, f_{1}}\right) \leq 5$ and $\chi_{\mu}\left(\mathcal{G}_{f_{0}, f_{1}}\right) \leq 5$.

Theorem 2.9. Let X be a Polish space, μ be a probability measure on $X, n \in \omega$ and $f_{0}, f_{1}, \ldots, f_{n-1}: X \rightarrow X$ be Borel functions on X. Then, we have that: $\chi_{\mathcal{B P}}\left(\mathcal{G}_{f_{0}, f_{1}, \ldots, f_{n-1}}\right)<\omega$ and $\chi_{\mu}\left(\mathcal{G}_{f_{0}, f_{1}, \ldots, f_{n-1}}\right)<\omega$.

CHAPTER 3

Commuting Functions

The functions $F_{0}, F_{1}, \ldots, F_{n-1}$ on X are said to commute with each other if and only if $F_{i}\left(F_{j}(x)\right)=F_{j}\left(F_{i}(x)\right)$ for all $x \in X$ and $i, j \in n$.

In the single function case (Theorem 1.8) the issue of commutativity does not come up, as a single function trivially commutes with itself. For $n>1$, Question 1.7 splits naturally into two subquestions: One where the functions commute, and one where they do not. In this section we provide a general (positive) answer for all $n \in \omega$ in the case of commuting functions:

Theorem 3.1. Let X be a Borel space, $k \in \omega, F_{1}, F_{2}, \ldots, F_{k}: X \rightarrow X$ be Borel functions which commute with each other and $\mathcal{G}=\mathcal{G}_{F_{1}, F_{2}, \ldots, F_{k}}$. Then either $\chi_{\mathcal{B}}(\mathcal{G}) \leq 2 k+1$ or $\chi_{\mathcal{B}}(\mathcal{G})=$ ω.

Proof. For the sake of simplicity we are going to prove the theorem for $k=2$. The proof for $k>2$ is very similar. Let $F, G: X \rightarrow X$ be Borel functions which commute with each other. By Fact 1.3 we have that $\mathcal{X}_{B}(\mathcal{G}) \leq \omega$. Suppose that $\mathcal{X}_{B}(\mathcal{G})=n \in \omega$. Fix $c: X \rightarrow n$ to be a Borel coloring function for $\mathcal{G}=\mathcal{G}_{F, G}$.

We will construct a new coloring e, which uses only $2 * 2+1=5$ colors. Define $d: X \rightarrow n$ by $d(x)=c\left(F^{n} G^{n}(x)\right)$. Due to commutativity of F and G it is easy to observe that d is a (Borel) n-coloring function. For example, if $x=F(y)$ then $d(x)=c\left(F^{n} G^{n}(x)\right)=$ $c\left(F^{n} G^{n}(F(y))\right)=c\left(F\left(F^{n} G^{n}(y)\right)\right) \neq c\left(F^{n} G^{n}(y)\right)=d(y)$. Similarly for $x=G(y)$. Now, it is enough to construct a Borel coloring function $e: X \rightarrow\{A, B, C, D, E\}$. Towards that we will first recursively define functions $e_{i}: X \rightarrow\{A, B, C, D, E\} \cup n$ for each $i \in n$ as follows:
[$i=0:]$ If $x \in d^{-1}(0)$ then set $e_{0}(x)=A$. Otherwise, set $e_{0}(x)=d(x)$.
$\left[0<i<n\right.$:] If $x \notin d^{-1}(i)$ then set $e_{i}(x)=e_{i-1}(x)$. Otherwise, we will prove that the set

$$
\{A, B, C, D, E\} \backslash\left(\left\{e_{i-1}(F(x)), e_{i-1}(G(x))\right\} \cup\left\{e_{i-1}(y) \mid y \in F^{-1}(x) \cup G^{-1}(x)\right\}\right)
$$

is non-empty. Let $e_{i}(x)$ be the lexicographically least element of the above set.
Claim 3.2. Let $i \in n$. Then for any $j \leq i$ and any $x \in d^{-1}(j), e_{i}(x) \in\{A, B, C, D, E\}$.

Proof. Immediate from the definition of e_{i}.

To facilitate the computations we also set $e_{-1}=d$. Also, for each $x \in X$ and $i \in n$ we define $P(x, i):[-i, i]^{2} \rightarrow n$ given by $P(x, i)(k, l)=c\left(F^{n+k} G^{n+l}(x)\right)$.

Claim 3.3. Let $0<i \in n$. Then $P(F(x), i-1)$ can be determined uniformly from $P(x, i)$. In particular, if $x_{1}, x_{2} \in X$ and $P\left(x_{1}, i\right)=P\left(x_{2}, i\right)$ then $P\left(\left(F\left(x_{1}\right), i-1\right)=P\left(\left(F\left(x_{2}\right), i-1\right)\right.\right.$. Similarly for G.

Proof. Let $x_{1}, x_{2} \in X$ and $P\left(x_{1}, i\right)=P\left(x_{2}, i\right)$. Let $k, l \in[-(i-1), i-1]$. Then:

$$
\begin{align*}
P\left(F\left(x_{1}\right), i-1\right)(k, l) & =c\left(F^{n+k+1} G^{n+l}\left(x_{1}\right)\right) \tag{3.1}\\
& =P\left(x_{1}, i\right)(k+1, l) \tag{3.2}\\
P\left(F\left(x_{2}\right), i-1\right)(k, l) & =c\left(F^{n+k+1} G^{n+l}\left(x_{2}\right)\right) \tag{3.3}\\
& =P\left(x_{2}, i\right)(k+1, l) \tag{3.4}
\end{align*}
$$

By (3.2),(3.4) and the fact that $P\left(x_{1}, i\right)=P\left(x_{2}, i\right)$, we conclude that

$$
P\left(\left(F\left(x_{1}\right), i-1\right)=P\left(\left(F\left(x_{2}\right), i-1\right)\right.\right.
$$

Claim 3.4. Let $0<i \in n$, and let $y \in F^{-1}(x)$. Then $P(y, i-1)$ can be determined uniformly from $P(x, i)$. In particular if $y_{1}, y_{2} \in X$ and $P\left(F\left(y_{1}\right), i\right)=P\left(F\left(y_{2}, i\right)\right.$ then $P\left(y_{1}, i-1\right)=$ $P\left(y_{2}, i-1\right)$.

Proof. Let $y_{1}, y_{2} \in X$ and $P\left(F\left(y_{1}\right), i\right)=P\left(F\left(y_{2}, i\right)\right.$. Let $k, l \in[-(i-1), i-1]$. Then:

$$
\begin{align*}
P\left(y_{1}, i-1\right)(k, l) & =c\left(F^{n+k} G^{n+l}\left(y_{1}\right)\right) \tag{3.5}\\
& =P\left(F\left(y_{1}\right), i\right)(k-1, l) \tag{3.6}\\
P\left(y_{2}, i-1\right)(k, l) & =c\left(F^{n+k} G^{n+l}\left(y_{2}\right)\right) \tag{3.7}\\
& =P\left(F\left(y_{2}\right), i\right)(k-1, l) \tag{3.8}
\end{align*}
$$

By (3.6),(3.8) and the fact that $P\left(F\left(y_{1}\right), i\right)=P\left(F\left(y_{2}, i\right)\right.$ we conclude that

$$
P\left(y_{1}, i-1\right)=P\left(y_{2}, i-1\right)
$$

Claim 3.5. Let $i \in n$ and $x \in X$. Then the value of $e_{i}(x)$ depends only on $P(x, i)$. Precisely this means that if $x_{1}, x_{2} \in X$ are such that: $P\left(x_{1}, i\right)=P\left(x_{2}, i\right)$ then $e_{i}\left(x_{1}\right)=e_{i}\left(x_{2}\right)$.

Proof. We will prove this using induction on $i \in n$. The base case is trivial since $e_{0}(x)$ depends only on $d(x)=c\left(F^{n} G^{n}(x)\right)=P(x, 0)(0,0)$. Now, let $x_{1}, x_{2} \in X$ and $0<i<n$ with $P\left(x_{1}, i\right)=P\left(x_{2}, i\right)$. By the recursive construction above we know that both $e_{i}\left(x_{j}\right)$ $(j=1,2)$ depend only on $d\left(x_{j}\right), e_{i-1}\left(x_{j}\right), e_{i-1}\left(F\left(x_{j}\right)\right), e_{i-1}\left(G\left(x_{j}\right)\right)$ and all $e_{i-1}(y)$ for y s.t. $y \in F^{-1}\left(x_{j}\right) \cup G^{-1}\left(x_{j}\right)$.

Since $P\left(x_{1}, i\right)=P\left(x_{2}, i\right)$ we conclude that $P\left(x_{1}, 0\right)=P\left(x_{2}, 0\right)$ and $P\left(x_{1}, i-1\right)=P\left(x_{2}, i-\right.$ 1). Thus, $d\left(x_{1}\right)=d\left(x_{2}\right)$ and $e_{i-1}\left(x_{1}\right)=e_{i-1}\left(x_{2}\right)$. Also, since $P\left(x_{1}, i\right)=P\left(x_{2}, i\right)$ then by the claim above we get $P\left(\left(F\left(x_{1}\right), i-1\right)=P\left(\left(F\left(x_{2}\right), i-1\right)\right.\right.$. Therefore, by induction hypothesis we have $e_{i-1}\left(F\left(x_{1}\right)\right)=e_{i-1}\left(F\left(x_{2}\right)\right)$. Similarly, $e_{i-1}\left(G\left(x_{1}\right)\right)=e_{i-1}\left(G\left(x_{2}\right)\right)$. Also, let $y_{1} \in$ $F^{-1}\left(x_{1}\right)$ and $y_{2} \in F^{-1}\left(x_{2}\right)$ then since $P\left(x_{1}, i\right)=P\left(x_{2}, i\right)$ and thus $P\left(F\left(y_{1}\right), i\right)=P\left(F\left(y_{2}, i\right)\right.$, we can conclude from the claim above that $P\left(y_{1}, i-1\right)=P\left(y_{2}, i-1\right)$. Therefore, by induction hypothesis we have $e_{i-1}\left(y_{1}\right)=e_{i-1}\left(y_{2}\right)$.

Now using the last line of the first paragraph it follows that $e_{i}\left(x_{1}\right)=e_{i}\left(x_{2}\right)$.
Claim 3.6. Let $i \in n$ and $x \in d^{-1}(i)$. Then the following set is non-empty:

$$
Y=\{A, B, C, D, E\} \backslash\left(\left\{e_{i-1}(F(x)), e_{i-1}(G(x))\right\} \cup\left\{e_{i-1}(y) \mid y \in F^{-1}(x) \cup G^{-1}(x)\right\}\right)
$$

Proof. We will prove this using induction on $i \in n$. The base case is trivial. Now, we fix $0<i<n$ and we further assume that all the e_{i-1} values are well-defined. If $y_{1}, y_{2} \in X$ with $F\left(y_{1}\right)=F\left(y_{2}\right)=x$, then since we trivially have that $P\left(F\left(y_{1}\right), i\right)=P\left(F\left(y_{2}\right), i\right)$, we can conclude by a claim above that $P\left(y_{1}, i-1\right)=P\left(y_{2}, i-1\right)$. Therefore, again by a claim above we can deduce that $e_{i-1}\left(y_{1}\right)=e_{i-1}\left(y_{2}\right)$. Therefore, we conclude that $e_{i-1}(y)$ is the same for all $y \in F^{-1}(x)$. Similarly, $e_{i-1}(y)$ is the same for all $y \in G^{-1}(x)$. We conclude that the cardinality of $\left\{e_{i-1}(F(x)), e_{i-1}(G(x))\right\} \cup\left\{e_{i-1}(y) \mid y \in F^{-1}(x) \cup G^{-1}(x)\right\}$ is at most 4 and thus $Y \neq \emptyset$.

Claim 3.7. Let $i \in n$. Then e_{i} is a Borel coloring.

Proof. This is immediate by the above claim and the definition of e_{i}.
Claim 3.8. e_{n-1} is a Borel coloring function from X to $\{A, B, C, D, E\}$

Proof. This is immediate by the claims above.

We conclude the proof by setting $e=e_{n-1}$. This completes the proof for the case $k=2$. The proof of the general case $(k>2)$ is exactly the same with the only difference that we define $d(x)=c\left(F_{1}^{n} F_{2}^{n} \ldots F_{k}^{n}(x)\right)$ and that we have $2 * k$ restrictions for the values of e_{i} rather than just $2 * 2=4$.

From now on we will drop the assumption of commutativity and we will focus on graphs generated by not necessarily commuting functions. More specifically, in the following chapters we will give a proof for the case $n=2$.

CHAPTER 4

The 1-colorable subset Lemma

The first step towards the proof of the case $n=2$ is the following lemma which basically extends the graphs of theorem 1.8 while at the same time maintains the 3 -coloring. But first, a few important definitions.

Definition 4.1. Let X be a set, $\mathcal{G}=(X, E)$ a graph on X and $A \subseteq X$. We say that A has property $P_{k}(k \in \omega)$ if every $x \in A$ has at most k descendants in A. Also, if $k=1$ we simply say that A has property P.

Fact 4.2. Let X be standard Borel space, $\mathcal{G}=(X, E)$ be a Borel graph on X and $A \subseteq X$ be a Borel set with propery P. If $\mathcal{G} \upharpoonright A$ is finitely colorable then $\mathcal{X}_{B}(\mathcal{G} \upharpoonright A) \leq 3$. In fact, there is a Borel coloring $c: A \rightarrow\{1,2,3\}$ with the property that if $x \in A$ has no descendants in A, then $c(x)=1$. We call such x a top element of A.

Proof. We define $F: A \rightarrow A$ to be as follows: We set $F(x)=x$ if there is no $y \in A$ s.t. $(x, y) \in E \upharpoonright A$. Otherwise, we set $F(x)$ to be the unique $y \in A$ s.t. $(x, y) \in E \upharpoonright A . F$ is clearly Borel and thus we can apply Theorem 1.8 on the graph $\mathcal{H}=(A, E \upharpoonright A)$. Also, by Remark 1.12 all $x \in A$ with no descendants in A are given the same color. W.l.o.g. this color can be 1 .

Lemma 4.3. Let X be standard Borel and $\mathcal{G}=(X, E)$ be a Borel graph with a finite Borel coloring that has property P. Then we can partition \mathcal{G} into two subgraphs $\mathcal{G}_{1}=\left(X_{1}, E \upharpoonright X_{1}\right)$ and $\mathcal{G}_{2}=\left(X_{2}, E \upharpoonright X_{2}\right)$ s.t. \mathcal{G}_{1} is Borel 1-colorable and every connected component of \mathcal{G}_{2} has at most 2 elements. On top of that:

- If $x \in X$ has no successors in \mathcal{G} then $x \in X_{2}$.
- If K is a bounded connected component of \mathcal{G}, then $\mathcal{G}_{2} \upharpoonright K$ is 1-colorable.

We call \mathcal{G}_{1} the 1 st part of \mathcal{G} and \mathcal{G}_{2} the 2nd part of \mathcal{G}.

Proof. For each $x \in X$ let K_{x} be the maximum connected component of \mathcal{G} containing x. Now define $E=\left\{x \in X \mid K_{x}\right.$ is bounded $\}$ and $U=\left\{x \in X \mid K_{x}\right.$ is unbounded $\}$. Then by Remark 1.12 we can have $E=E^{0} \uplus E^{1}$ and $U=B^{0} \uplus B^{1} \uplus C$ where E^{0}, E^{1} are 1-colorable Borel subsets of X, E^{0} contains all elements in E with no successor in X, and B^{0}, B^{1}, C are defined exactly as in Remark 1.12.

Let $X_{1}=E^{1} \uplus B^{0}$ and $X_{2}=E^{0} \uplus B^{1} \uplus C$. Clearly $\mathcal{G}_{1}=\left(X_{1}, E \upharpoonright X_{1}\right)$ is 1-colorable. Also, by the definition of E and U, no element in E^{0} is ever connected to any element in $B^{1} \uplus C$, and at the same time no element in B^{1} is followed by an element in C. Thus, using the additional fact that $E^{0}, E^{1}, B^{0}, B^{1}$ and C are all 1-colorable we can conclude that every connected component of $\mathcal{G}_{2}=\left(X_{2}, E \upharpoonright X_{2}\right)$ has at most 2 elements. Finally, again by Remark 1.12 and the fact that $E^{0} \subseteq X_{2}$ we can deduce that \mathcal{G}_{2} contains all $x \in X$ with no successors in \mathcal{G}.

Definition 4.4. Let X be an arbitrary set, $n \in \omega, c: X \rightarrow\{1,2, \ldots, n\}$, and $r: X \rightarrow$ $\mathcal{P}(\{1,2, \ldots, n\})$. We say that c is restricted by r if $c(x) \notin r(x)$ for all $x \in X$. We also say that x is restricted by $i \in\{1,2, \ldots, n\}$ if $i \in r(x)$.

Definition 4.5. Let X be any set, and $\mathcal{G}=(X, E)$ be a graph on X. Then the function $d_{\mathcal{G}}: X \rightarrow \mathcal{P}(X)$ defined by $d_{\mathcal{G}}(x)=\{y \in X \mid(x, y) \in E\}$, is called the successor function of \mathcal{G}. Also, for $A \subseteq X$ we define $d_{\mathcal{G}}^{A}: A \rightarrow \mathcal{P}(A)$ by $d_{\mathcal{G}}^{A}(x)=\{y \in A \mid(x, y) \in E\}$, to be the successor function of $\mathcal{G} \upharpoonright A$.

Remark 4.6. If \mathcal{G} is Borel then $d_{\mathcal{G}}$ is also Borel. Moreover, if \mathcal{G} and $A \subseteq X$ are both Borel, then $d_{\mathcal{G}}^{A}$ is Borel too.

Lemma 4.7. Let X be standard Borel, $\mathcal{G}=(X, E)$ also Borel, $n \in \omega$, and $r: X \rightarrow$ $\mathcal{P}(\{1, \ldots, n\})$ be Borel as well. Also, let $A \subseteq X$ be Borel and bounded, with the additional
property that $(\forall x \in A)\left(\left|d_{\mathcal{G}}^{A}(x)\right|+|r(x)| \leq n\right)$. Then there is a Borel coloring $c: A \rightarrow$ $\{1, \ldots, n+1\}$ that is restricted by r.

Proof. We start with a recursive definition of the function $r k: X \rightarrow \omega$ that assigns a rank to each element of A and a pseudo-rank to every element in $X \backslash A$:

Base Case: For all $x \notin A$ let $r k(x)=-1$
Recursive Step: Let $x \in A$ and assume that all $r k(y)$ for $y \in d_{\mathcal{G}}^{A}(x)$ have already been defined. Then we let $r k(x)=\max \left\{r k(y) \mid y \in d_{\mathcal{G}}^{A}(x)\right\}+1$.

Since, every node $x \in X$ of the graph $\mathcal{G} \upharpoonright A$ has finite out-degree $\leq n$, then by Konig's lemma and the fact that A is bounded, we deduce that the function $r k$ is well-defined and that $r k(x) \in \omega$ for all $x \in X$. Now, using this ranking function we can easily construct a Borel coloring function $c: A \rightarrow\{1, \ldots, n+1\}$ as follows:

Base Case: For all $x \in A$ s.t. $r k(x)=0$ set $c(x)$ to be the least $m \in\{1, \ldots, n+1\} \backslash r(x)$.
Recursive Step: Let $x \in A$ s.t. $r k(x)=q \geq 1$. Then for all $y \in d_{\mathcal{G}}^{A}(x)$ we have $r k(y) \leq q-1$ and hence $c(y)$ has already been defined. Set $c(x)$ to be the least $m \in$ $\{1, \ldots, n+1\} \backslash\left(\left\{c(y) \mid y \in d_{\mathcal{G}}^{A}(x)\right\} \cup r(x)\right)$. Such m exists since $\left|d_{\mathcal{G}}^{A}(x)\right|+|r(x)| \leq n$.

The function c is a Borel $(n+1)$-coloring for A.

Remark 4.8. If $A \subseteq X$ has no restrictions, then by the above construction we conclude that every $x \in A$ with $c(x)=k$ is followed by a $y_{m} \in A$ with $c\left(y_{m}\right)=m$ for all $1 \leq m<k$.

Lemma 4.9. (The generalized 1-colorable Subset Lemma). Let X be a Borel space, $r: X \rightarrow$ $\mathcal{P}(\{1,2,3\})$ also Borel, and $\mathcal{G}=(X, E)$ be a finitely (Borel) colorable Borel graph over X with the following properties:

- For every $x \in X$ we have that $\left|d_{\mathcal{G}}(x)\right|+|r(x)| \leq 2$.
- The (Borel) set of "splitting nodes" $Y=\left\{x \in X| | d_{\mathcal{G}}(x)|+|r(x)|=2\}\right.$ is 1-colorable.

Then there is a Borel coloring $c: X \rightarrow\{1,2,3\}$ on \mathcal{G} which is restricted by r.

Proof. In what follows, we will define c on different subsets of X that partition X. And every time we define c on a new subset $A \subseteq X$ we will make sure that $c(x) \neq r(x)$, while c maintains its coloring property, namely $c(x) \neq c(y)$ when $(x, y) \in E$ and $c(x), c(y)$ are both defined. We will also call this procedure "coloring" the set $A \subseteq X$. We first define $Z=\{x \in X \mid x$ is followed by $y \in Y\}$. Note that $Z \cap Y=\emptyset$ by the assumption that Y is 1-colorable. Now we color X in steps:

Step 1: First we observe that since $X \backslash(Y \uplus Z)$ has no splitting nodes, it has property P. We can therefore color $X \backslash(Y \uplus Z)$ using 3 colors, namely $1,2,3$. We will do that as follows: For the connected components of $X \backslash(Y \uplus Z)$ that have no elements with restrictions, we use Fact 4.2 to color our graph, while for all the other components, we use Lemma 4.7. That way, since the only elements in $X \backslash(Y \uplus Z)$ with restrictions are top elements which are not followed by an element in Z, we can arrange by 4.2 , that no $z \in Z$ is preceded by a 2 or 3 .

Step 2: Now we color all elements of Y which are not followed or restricted by 1, with the color 1. This does not violate the coloring property, as the only predecessors of a $y \in Y$ belong to Z which is yet to be colored.

Step 3: Finally let $W \subseteq X$ be the set of all nodes we have not assigned a color to yet. We can color W using the colors 2 and 3 without violating the property of the coloring function c. This is possible because:
(i) $W \subseteq Y \uplus Z$.
(ii) By the previous step, every $w \in W \cap Y$ is followed or restricted by at least one 1 .
(iii) By its definition, $Z \subseteq W$ and every $z \in Z$ is followed by one element in Y, and it's not restricted by any $i \in\{1,2,3\}$.
(iv) We have already seen above that if $w \in W \cap Z \subseteq Z$ then w is not preceded by a 2 or 3. We also have that if $w \in W \cap Y \subseteq Y$ then w is preceded only by elements in Z which are yet to be colored. We conclude that W is not preceded by a 2 or 3 .
(v) Since $W \subseteq Y \uplus Z$, then in every unbounded component K of W, every $w \in K \cap Y$ is followed exactly by a 1 and an element in $K \cap Z$, and every element in $w \in K \cap Z$ is followed exactly by an element in $K \cap Y$. Thus we can color this component by assigning the color 2 to every element in $K \cap Y$ and the color 3 to every element in $K \cap Z$.
(vi) Let K be a bounded component of W. By (ii) and (iii), the only element of K that can have a restriction other than a 1 is the top element. Hence, if we define $r^{\prime}(x)=r(x) \backslash\{1\}$, we get that $\left|d_{\mathcal{G}}^{W}(x)\right|+\left|r^{\prime}(x)\right| \leq 1$ for all x in bounded components of W. Now by Lemma 4.7 it is clear that we can color the bounded components of W using the colors 2 and 3 and without violating the coloring property.

This gives us a Borel 3-coloring $c: X \rightarrow\{1,2,3\}$ which is restricted by r.

Now we give as a corollary a weaker version of this lemma:
Corollary 4.10. (The simple 1-colorable Subset Lemma). Let X be a Borel space and \mathcal{G} be a finitely (Borel) colorable Borel graph over X with the following two properties:

- Every $x \in X$ has at most two descendants in X.
- The set of splitting nodes $Y=\{x \in X \mid x$ has exactly 2 descendants $\}$ is 1-colorable.

Then \mathcal{G} is Borel 3-colorable.

CHAPTER 5

The Least Available Subset Lemma

In this section we prove a Lemma that gives us a quadratic bound (even though not the optimal one) for the Borel chromatic number of a Borel graph generated by n Borel function. Note, that this is already a better bound than the obvious exponential bound (i.e. 3^{n}) we can derive from Corollary 1.13.

Lemma 5.1. (The Least Available Subset): Let X be a Borel space, $k \in \omega$ and F_{i} : $X \rightarrow X$ be Borel functions for all $i \in k$. Let also $\mathcal{G}=\mathcal{G}_{F_{0}, F_{1}, \ldots, F_{k-1}}$. Suppose finally that $\chi_{\mathcal{B}}(\mathcal{G})<\omega$. Then, there is a Borel coloring c of \mathcal{G} into pairs $\langle i, j\rangle$ s.t. $i, j \geq 0$, $i+j \leq k$ and if $c(x)=\langle i, j\rangle$ then x is followed by a $y_{m} \in X$ with $c\left(y_{m}\right)=\langle i, m\rangle$, and by a $z_{l} \in X$ with $c\left(z_{l}\right)=\left\langle l, j_{l}\right\rangle\left(j_{l} \leq k-l\right)$ for all $m<j$ and $l<i$. In particular, $\chi_{\mathcal{B}}(\mathcal{G}) \leq 1+2+\ldots+(k+1)=\frac{k^{2}}{2}+\frac{3 k}{2}+1=\mathcal{O}\left(k^{2}\right)$.

Proof. For clarity, we prove the lemma when $k=2$. (The argument for the higher dimensions is a direct generalization to what follows and therefore can be easily deduced by the reader). Since $k=2$ let $F_{0}=F$ and $F_{1}=G$. Also, since $\chi_{\mathcal{B}}(\mathcal{G})<\omega$ we can fix some $n \in \omega$ s.t. $\chi_{\mathcal{B}}(\mathcal{G}) \leq n$. Let $X=A_{0} \uplus A_{1} \uplus \ldots \uplus A_{n-1}$ be a n-Borel coloring of \mathcal{G} over X. Using induction on $i \in n$ we will find a partition of X into three sets: B_{0}, B_{1} and B_{2}. The inductive construction of the sets B_{0}, B_{1} and B_{2} goes as follows:
[$i=0:]$ In that case, we put all $x \in A_{0}$ into B_{0}. In other words $A_{0} \subset B_{0}$.
$[i \rightarrow i+1:]$ For that step we assume that $i+1 \in n$ and that $A_{0} \uplus A_{1} \uplus \ldots \uplus A_{i} \subseteq B_{0} \uplus B_{1} \uplus B_{2}$. Then, for every $x \in A_{i+1}$ we define $j(x) \in 3$ to be the minimal index $j \in 3$ s.t. both $F(x) \notin B_{j}$ and $G(x) \notin B_{j}$. Then we let $x \in B_{j(x)}$. In other words, we send x to the least "available"
subset B_{j}. We note here that $j(x)$ is obviously well-defined, since $F(x)$ and $G(x)$ can belong to at most two different B_{j} 's.

Claim 5.2. The sets B_{0}, B_{1} and B_{2} are all bounded.

Proof. Assume otherwise. Then for some $j \in 3$ we will have that B_{j} contains an infinite path $I=\left\{x_{i} \mid i \in \omega\right\} \subseteq B_{j}$. Since I is infinite and the coloring given by A_{0}, \ldots, A_{n-1} is finite, we can find $i, k, l \in \omega$ s.t. $x_{i} \in A_{k}, x_{i+1} \in A_{l}$ and $k>l$. So, in our inductive construction above, the element x_{i+1} gets priority over x_{i}. And thus, by the time we reach the k-th step of our inductive construction, the element x_{i+1} should already be in B_{j}. Then by construction, at stage k we put $x_{i} \in B_{j^{\prime}}$ for some $j^{\prime} \in 3$ s.t. $j^{\prime} \neq j$. This is of course a contradiction since $x_{i} \in I \subseteq B_{j}$. We conclude that none of the B_{j} 's contains an infinite path and therefore, they are all bounded.

Claim 5.3. The set B_{0} is Borel 3-colorable. Moreover, we can construct a Borel coloring $b_{0}: B_{0} \rightarrow\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 0,2\rangle\}$ with the additional two properties:

1. If $x \in B_{0}$ is s.t. $b_{0}(x)=\langle 0,2\rangle$ then there are two descendants $y, z \in B_{0}$ of x s.t. $b_{0}(y)=\langle 0,0\rangle$ and $b_{0}(y)=\langle 0,1\rangle$.
2. If $x \in B_{0}$ is s.t. $b_{0}(x)=\langle 0,1\rangle$ then x has a descendant $y \in B_{0}$ s.t. $b_{0}(y)=\langle 0,0\rangle$.

Proof. This is immediate by Lemma 4.7, Remark 4.8, and the fact that for all $x \in B_{0}$ we have $\left|d_{\mathcal{G}}^{B_{0}}(x)\right| \leq 2$ and no other restrictions.

Claim 5.4. The set B_{1} is (Borel) 2-colorable. Moreover, we can construct a Borel coloring $b_{1}: B_{1} \rightarrow\{\langle 1,0\rangle,\langle 1,1\rangle\}$ with the additional property that if $x \in B_{1}$ is s.t. $b_{1}(x)=\langle 1,1\rangle$ then x has a descendant $y \in B_{1}$ s.t. $b_{1}(y)=\langle 1,0\rangle$.

Proof. First, we claim that by the definition of B_{0} and B_{1}, every element $x \in B_{1}$ has at least one direct descendant in B_{0}. To see this, let's assume that $x \in A_{k}$ for some $k \in n$. Then in the k-th step of our inductive construction we will look at the direct descendants of x. But if none of them are in B_{0} then we would have had that $x \in B_{0}$ which is a contradiction.

Since each $x \in B_{1}$ has at most two descendants overall, and one of them belongs to B_{0}, we have $\left|d_{\mathcal{G}}^{B_{1}}(x)\right| \leq 1$. Thus we can use Lemma 4.7 and Remark 4.8 conclude the claim.

Claim 5.5. The set B_{2} is (Borel) 1-colorable.

Proof. Assume otherwise. Then there should be two elements $x, y \in B_{2}$ s.t. y is a successor of x. But $x \in B_{2}$ iff x has successors in both B_{0} and B_{1}. Since x has two successors, it cannot then have a successor $y \in B_{2}$.

By the above claim we can construct a Borel coloring $b_{2}: B_{2} \rightarrow\{\langle 2,0\rangle\}$.
Now, by all the claims above and the fact that $X=B_{0} \uplus B_{1} \uplus B_{2}$, we can construct a Borel function $c: X \rightarrow\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,0\rangle,\langle 1,1\rangle,\langle 2,0\rangle\}$ by $c(x)=b_{i}(x)$ for $x \in B_{i}$. Clearly, c is a coloring function. Moreover, by the properties of all b_{i}, if $c(x)=\langle i, j\rangle$ then x is followed by a $y_{m} \in X$ with $c\left(y_{m}\right)=\langle i, m\rangle$, and by a $z_{l} \in X$ with $c\left(z_{l}\right)=\left\langle l, j_{l}\right\rangle\left(j_{l} \leq k-l\right)$ for all $m<j$ and $l<i$. This completes the proof of the lemma for $k=2$.

Remark 5.6. By all the above, it is now fairly obvious that in the general case of k-functions we will have that $X=B_{0} \uplus \ldots \uplus B_{k}$ where each B_{i} will be bounded and have property P_{k-i}, and each element $x \in B_{i}$ will have successors in each of the sets B_{0}, \ldots, B_{i-1}.

The last observation together with Remark 4.8 are enough to complete the proof of the lemma in the general case of $k>2$.

We now give a helpful definition and some remarks in order to clarify some of the proof ideas of the previous lemma:

Definition 5.7. (White-Blue-Red elements)

- We call every element $x \in B_{0}$ a White element.
- We call every element $x \in B_{1}$ a Blue element.
- We call every element $x \in B_{2}$ a Red element.

White:	$\langle 0,0\rangle$	$\langle 0,1\rangle$	$\langle 0,2\rangle$
Blue:	$\langle 1,0\rangle$	$\langle 1,1\rangle$	
Red:	$\langle 2,0\rangle$		

Figure 5.1: Coloring partition for 2 functions

Notational Abuse: In what follows, we will call an element x of X by the number which is assigned to it by the corresponding b_{j} coloring function. For example: If $x \in B_{1}$ and $b_{1}(x)=\langle 1,1\rangle$ then we will say that this x is a $\langle 1,1\rangle$, if $y \in B_{2}$ then we will say that this y is a $\langle 2,0\rangle$ etc... Figure 5.1 summarizes the coloring partition of Lemma 5.1 to White/Blue/Red sections, as well as the coloring within each component of the partition. All the above leads to the following Remark:

Remark 5.8. For the coloring c of Lemma 5.1 the following properties hold:

1. Every $\langle 2,0\rangle$ is followed by exactly one White and one Blue element.
2. Every $\langle 1,1\rangle$ is followed by a White element and a $\langle 1,0\rangle$.
3. Every $\langle 1,0\rangle$ is followed by at least one White element.
4. Every $\langle 0,2\rangle$ is followed by exactly a $\langle 0,0\rangle$ and a $\langle 0,1\rangle$.
5. Every $\langle 0,1\rangle$ is followed by at least one $\langle 0,0\rangle$.
6. A $\langle 0,0\rangle$ gives us inconclusive info, in the sense that it could be followed by any two non- $\langle 0,0\rangle$ elements.

We will use the above observations to obtain an optimal coloring for $n=2$ in the following chapter.

CHAPTER 6

The 2 functions case (no restrictions)

Theorem 6.1. (Non-commutative functions) Let X be a Borel space and $F, G: X \rightarrow$ X be Borel functions. Let also $\mathcal{G}=\mathcal{G}_{F, G}$. Suppose finally that $\chi_{\mathcal{B}}(\mathcal{G})<\omega$. Then $\chi_{\mathcal{B}}(\mathcal{G}) \leq 5$.

Proof. By the L.A.S. lemma 5.1, our space X can be partitioned into three sets, the White set W, the Blue set B, and the Red set R, each of which is bounded and has respectively, property P_{2}, property P_{1} and property P_{0}. Moreover, every (Blue) element in B is followed by at least one (White) element in W and every (Red) element in R is followed by exactly one (White) element in W and one (Blue) element in B. To sum up:

1. $X=W \uplus B \uplus R$
2. All sets W, B, R are bounded
3. W has property P_{2} and thus since it's also bounded it is Borel 3 -colorable.
4. B has property P_{1} and thus since it's also bounded it is Borel 2-colorable.
5. R has property P_{0} and thus it's Borel 1-colorable.
6. Every Blue element is followed by at least one White element.
7. Every Red element is followed by exactly one Blue and one White element.

Moreover, using the colors $1,2,3$ in this order for the White colors $\langle 0,0\rangle,\langle 0,1\rangle,\langle 0,2\rangle$ (of Lemma 5.1), 4,5 for the Blue colors $\langle 1,0\rangle,\langle 1,1\rangle$, and 6 for the Red color $\langle 2,0\rangle$, we have by Remark 5.8 that:

- Every 2 and 3 is followed by at least one 1
- Every 5 is followed by at least a 4

Now we define $D \subseteq X$ to be the set of all 2's, 3's, 5's and 6's. By the above and since every element in D has trivially at most two descendants, we have that every 2,3 and 5 has at most one descendant in D and thus only the 1-colorable subset of 6 's can have two descendants in D. We conclude that the set D satisfies the assumptions of the 1-colorable subset Lemma 4.10 and thus it should be 3-colorable. Now, clearly, $X=D \uplus(X \backslash D)$. D is Borel 3-colorable by the above, and $X \backslash D$ is trivially Borel 2-colorable. Therefore, \mathcal{G} will be Borel 5-colorable as desired.

Using all the above, we can give the following characterization of all the finitely Borelcolorable graphs generated by two Borel functions:

Theorem 6.2. Let X be a Borel space, $F, G: X \rightarrow X$ be arbitrary Borel functions and $\mathcal{G}=\mathcal{G}_{F, G}$, the corresponding Borel graph generated by them. Then the following statements are equivalent:

$$
\text { i. } \chi_{\mathcal{B}}(\mathcal{G}) \leq 5
$$

$$
\text { ii. } \chi_{\mathcal{B}}(\mathcal{G})<\omega
$$

iii. There are 3 Borel Subsets A, B and C s.t.

$$
\begin{aligned}
& \text { - } X=A \uplus B \uplus C \\
& \text { - All } A, B \text { and } C \text { are bounded } \\
& \text { - If } x \in B \text { then } F(x) \in A \text { or } G(x) \in A \\
& \text { - If } x \in C \text { then }(F(x) \in A, G(x) \in B) \text { or }(F(x) \in B, G(x) \in A) .
\end{aligned}
$$

Proof. It's enough to prove that $i \rightarrow i i, i i \rightarrow i i i$ and $i i i \rightarrow i$.
[$i \rightarrow i i:]$ This is trivial.
$[$ ii \rightarrow iii :] This implication follows from the construction in the proof of the L.A.S. Lemma 5.1 and Claim 5.2.
[iii $\rightarrow i:]$ This is just by the proof of the theorem 6.1. I.e. the set A will be our White set, B will be our Blue set and C will be our Red set.

CHAPTER 7

The 3 functions case (no restrictions)

In this chapter, we explore the $n=3$ case:
Theorem 7.1. Let X be a Borel space and $F, G, H: X \rightarrow X$ be Borel functions. Let also $\mathcal{G}=\mathcal{G}_{F, G, H}$. Suppose finally that $\chi_{\mathcal{B}}(\mathcal{G})<\omega$. Then $\chi_{\mathcal{B}}(\mathcal{G}) \leq 8$.

Proof. According to the L.A.S. lemma 5.1 we can color the graph \mathcal{G} in 10 colors and in such a way that we can get the following properties (see Figure 7.1):

- All elements colored by $1,2,3$ or 4 are further labelled 'white'
- All elements colored by 5,6 or 7 are further labelled 'blue'
- All elements colored by 8 or 9 are further labelled 'red'
- All elements colored by 10 are further labelled 'black'
- All 2's are followed by at least a 1
- All 3's are followed by at least a 2 and a 1
- All 4's are followed by at least a 3 , a 2 and a 1

White:	1	2	3	4
Blue:	5	6	7	
Red:	8	9		
Black:	10			

Figure 7.1: Coloring partition for 3 functions

- All 5's are followed by at least a white element
- All 6's are followed by at least a 5 and a white element
- All 7 's are followed by at least a 6 , a 5 and a white element
- All 8's are followed by at least a blue and a white element
- All 9's are followed by at least an 8 , a blue and a white element
- All 10 's are followed by at least a red, a blue and a white element

Now let's define $Y \subseteq X$ to be the set of all 2's, 3's, 4's, 6's, 7's, 9's and 10's. It's enough to prove that $\mathcal{G} \upharpoonright Y$ is 5 -colorable. We will color $\mathcal{G} \upharpoonright Y$ using the colors A, B, C, D and E. Also for notational simplicity, when we talk about coloring on Z we will really mean coloring on $\mathcal{G} \upharpoonright Z$. We will color Y in 5 colors using the following steps:

Step 1: By the listed properties above, except for the 10's, every element in Y has at most 2 successors in Y.

Step 2: We set $Y_{0} \subseteq Y$ to be the set of all $y \in Y$ which has a path that ends with a 10 . I.e. all $y \in Y$ s.t. there exists an $n \in \omega$ and a sequence $L_{i} \in\{F, G, H\}$ (for all $i \in n$) s.t. $L_{n-1}\left(\ldots\left(L_{1}\left(L_{0}(y)\right)\right) \ldots\right)$ is a 10 . Note also that all 10 's are trivially in Y_{0}.

Step 3: We color the set $Y \backslash Y_{0}$ in 5-colors (A, B, C, D, E). This is simply by theorem 6.1, the fact that Y is finitely Borel colorable and the fact that every element in $Y \backslash Y_{0}$ has at most two successors in $Y \backslash Y_{0}$.

Step 4: We set $Z_{0} \subseteq Y_{0}$ to be the set of all 10 's.

Step 5: For $y \in Y_{0} \backslash Z_{0}$ we define $\operatorname{dist}(y)$ to be the minimal $n \in \omega$ s.t. there are $L_{i} \in\{F, G, H\}($ for all $i \in n)$ s.t. $L_{n-1}\left(\ldots\left(L_{1}\left(L_{0}(y)\right)\right) \ldots\right)$ is a 10 .

Step 6: We set $Z_{1}=\left\{y \in Y_{0} \backslash Z_{0} \mid \operatorname{dist}(y)\right.$ is odd $\}, Z_{2}=\left\{y \in Y_{0} \backslash Z_{0} \mid \operatorname{dist}(y)\right.$ is even $\}$.

Step 7: The set Z_{1} has property P. This is simply because every element $y \in Z_{1}$ is followed by at least one element in $Z_{0} \cup Z_{2}$ (and one element in $X \backslash Y$). Similarly the set Z_{2} also has property P . This is simply because every element $y \in Z_{2}$ is followed by at least one element in Z_{1} (and one element in $X \backslash Y$).

Step 8: We set $W_{1} \subseteq Z_{1}$ to be the set of all elements in Z_{1} that have two successors in $M=Y_{0} \cup C \cup D \cup E$, namely, either in Y_{0}, or in $Y \backslash Y_{0}$ and colored with C, D or E. (In addition there is a third successor outside Y.) W_{1} has property P since it's contained in Z_{1}. By lemma 4.3, applied to the graph $\mathcal{G} \upharpoonright W_{1}$, let V_{1} be the 1 st part of W_{1}. By this construction we clearly have that the set of all elements in $Z_{1} \backslash V_{1}$ with exactly two successors in $M \backslash V_{1}$ is 1-colorable. This is because by lemma 4.3 if $y \in Z_{1} \backslash V_{1}$ has this property then:

- y has to be an element of the 2 nd part of W_{1}.
- Every successor of an element in the 2nd part of W_{1} which is also in the 2 nd part of W_{1}, has a successor on the 1st part of W_{1}.

Also every element in V_{1} is immediately followed by exactly one element in $Z_{1} \backslash V_{1}$, because if not then by lemma 4.3 such element would be the first of a bounded component which means it would belong in the 2nd part of W_{1} and thus in $W_{1} \backslash V_{1}$. As a corollary, every element in V_{1} is followed by at most one element in $Z_{0} \uplus Z_{2}$.

Step 9: We set $W_{2} \subseteq Z_{2}$ to be the set of all elements in Z_{2} that have two successors in $M \backslash V_{1}$. By lemma 4.3 let V_{2} be the 2 nd part of W_{2}. By this construction we clearly have that every element in $Z_{2} \backslash V_{2}$ has at most one successor in $M \backslash\left(V_{1} \uplus V_{2}\right)$. This is again because of lemma 4.3 and the fact that if $y \in W_{2} \backslash V_{2}$ then it has to be in the 1st part of W_{2} and thus it should be followed by an element in V_{2}.

Step 10: Now we set $V_{0} \subseteq Z_{0}$ to be all the 10 's which are followed by at most one element in $V_{1} \cup V_{2} \cup A \cup B$ (this means that the 10 is followed by at most one element which is in $V_{1} \cup V_{2}$ or it's in $Y \backslash Y_{0}$ and it's colored by A or B).

Step 11: By all the above, the set $V=V_{0} \uplus V_{1} \uplus V_{2}$ has property P. On top of that, by construction of V_{2}, an element in V_{2} is never followed by an element in $V_{0} \uplus V_{1}$ and thus the only unbounded components of V contain elements only from the 1-colorable sets V_{0} and V_{1}. We conclude that the restriction of V to its unbounded components is 2-colorable. Since we also have by Lemma 4.7 that every bounded component with property P is Borel 2-colorable, we conclude that V is 2-colorable. Moreover, we can color the entire set V using exactly the colors A and B without violating the coloring property with respect to nodes that have already been colored, namely nodes in $Y \backslash Y_{0}$. This is simply because: (a) all predecessors of nodes in V belong to Y_{0}, (b) no element in $V_{1} \uplus V_{2}$ is followed by an element in $\left(Y \backslash Y_{0}\right) \cap(A \cup B)$, and (c) if $y \in V_{0}$ is followed by an $(A \cup B)$-element in $Y \backslash Y_{0}$ then the connected component K_{y} of V that contains y is bounded and has y as its first/top element. The latter implies that by Lemma 4.7 we can treat the $(A \cup B)$-successor of y as a restriction, when coloring the bounded components. Moreover, Lemma 4.7 gives a two coloring into $\{A, B\}$ that respects these restrictions.

Step 12: The remaining graph on $U=Y_{0} \backslash V$ is 3-colorable and we can color it using C, D and E without violating the coloring property. This is because $U \subseteq Z_{0} \uplus Z_{1} \uplus Z_{2}$ and all elements in $\left(Z_{0} \uplus Z_{2}\right) \backslash V$ have at most one successor in $U \cup(C \cup D \cup E)$. To verify this, we observe that any $y \in Z_{0} \backslash V$ is followed by at least two elements in $A \cup B$ (this includes elements of V that were colored using A and B in step 11) and any $y \in Z_{2} \backslash V$ is followed by at least one element in V_{2} and one element in $X \backslash Y$. So, if $U_{0} \subseteq U$ is the set of all elements in U that have two successors in $U \cup(C \cup D \cup E)$ then $U_{0} \subseteq Z_{1} \backslash V$. But we have already shown above that such a set should be 1-colorable. Define $r: U \rightarrow \mathcal{P}(\{C, D, E\})$ by " $a \in r(y)$ " iff "there is a successor of y which is colored by $a \in\{C, D, E\}$ ". Then, by the generalized 1-colorable subset lemma 4.9 we can find a Borel coloring $c: U \rightarrow\{C, D, E\}$ on U which is restricted by r and thus it does not violate the coloring property.

All the above shows that we can color Y in 5 -colors, i.e. A, B, C, D, E and thus we can color X in 8 -colors, namely $A, B, C, D, E, 1,5,8$. Therefore, $\chi_{\mathcal{B}}(\mathcal{G}) \leq 8$

Using all the above, we can give the following characterization:

Theorem 7.2. Let X be a Borel space, $F_{0}, F_{1}, F_{2}: X \rightarrow X$ be arbitrary Borel functions and $\mathcal{G}=\mathcal{G}_{F_{0}, F_{1}, F_{2}}$, the corresponding Borel graph generated by them. Then the following statements are equivalent:
i. $\chi_{\mathcal{B}}(\mathcal{G}) \leq 8$
ii. $\chi_{\mathcal{B}}(\mathcal{G})<\omega$
iii. There are 4 Borel Subsets A, B, C and D s.t.
$-X=A \uplus B \uplus C \uplus D$

- All A, B, C and D are bounded
- If $x \in B$ then $F_{0}(x) \in A$ or $F_{1}(x) \in A$ or $F_{2}(x) \in A$
- If $x \in C$ then there are $i, j \in 3$ with $i \neq j$ s.t. $F_{i}(x) \in A$ and $F_{j}(x) \in B$
- If $x \in D$ then there are $i, j, k \in 3$ with $i \neq j, i \neq k, j \neq k$ s.t. $F_{i}(x) \in A$, $F_{j}(x) \in B$ and $F_{k}(x) \in C$.

Proof. $i \rightarrow i i$: This is trivial.
$i i \rightarrow$ iii : This implication is an immediate result of the L.A.S. Lemma 5.1.
iii $\rightarrow i$: This is just by the proof of the theorem 7.1. I.e. the set A will be our White set, B will be our Blue set, C will be our Red set and D will be our Black set.

CHAPTER 8

Other chromatic numbers

We recall the following definitions from Chapter 2:

Definition 8.1. Let X be a Polish space and \mathcal{G} be a graph on X. Then:

- The Baire chromatic number of $\mathcal{G}\left(\chi_{\mathcal{B P}}(\mathcal{G})\right)$ is given by: $\chi_{\mathcal{B P}}(\mathcal{G})=\min \{|c(X)|$ where c is a Baire measurable coloring of $\mathcal{G}\}$.
- The μ-measurable chromatic number of $\mathcal{G}\left(\chi_{\mu}(\mathcal{G})\right)$ is given by: $\chi_{\mu}(\mathcal{G})=\min \{|c(X)|$ where c is a μ-measurable coloring of $\mathcal{G}\}$. (Here, μ is a probability measure on X).

Definition 8.2. A set $C \subseteq X$ of a graph (X, E) is called upward invariant if $x \in C$ implies $y \in C$ for all successors y of x. The same set $C \subseteq X$ is called downward invariant if $x \in C$ implies $y \in C$ for all predecessors y of x.

Proposition 8.3. If $C \subseteq X$ is comeager, C is upward invariant, $\mathcal{G}=\mathcal{G}_{f_{0}, f_{1}, \ldots, f_{n}}$ is generated by n Borel functions and $\chi_{\mathcal{B}}(\mathcal{G} \upharpoonright C) \leq k$, then $\chi_{\mathcal{B P}}(\mathcal{G}) \leq \max \{2 n+1, k\}$. (Similarly for χ_{μ}, if $C \subseteq X$ has μ-measure 1).

Proof. If such a C exists, then we will first color $\mathcal{G} \upharpoonright C$ in a Borel - and thus also in a Baire - way, using k colors. Then we will color the remaining graph on $X \backslash C$ using at most $2 n+1$ colors without violating the coloring property. This is possible since we could do this for any finite subset of $\mathcal{G} \upharpoonright(X \backslash C)$. Therefore, by applying compactness (AC) we can get a $2 n+1$ coloring on $\mathcal{G} \upharpoonright(X \backslash C)$ which may not be Borel but it will be Baire, since the set $X \backslash C$ is meager.

Ben Miller showed in [2] that in the case of graphs \mathcal{G} generated by one Borel function, there is always a both upward and downward invariant co-meager Borel set $C \subseteq X$ s.t. $\chi_{\mathcal{B}}(\mathcal{G} \upharpoonright C)$ is finite (and similarly with μ-measure 1 set C). From this, Theorem 1.14 and the last remark, it follows that $\chi_{\mathcal{B P}}(\mathcal{G}) \leq 3$ and $\chi_{\mu}(\mathcal{G}) \leq 3$.

In this chapter we generalize the results to graphs generated by more functions. More precisely, for any $n \in \omega$ and any Borel functions $f_{0}, f_{1}, \ldots, f_{n}$ there is an upward invariant co-meager $C \subseteq X$ s.t. $\chi_{\mathcal{B}}\left(\mathcal{G}_{f_{0}, \ldots, f_{n}} \upharpoonright C\right)$ is finite. (Similarly for μ-measure 1 set C.)

Historical Remark: After we mentioned our generalization to Ben Miller, he found a simple variant of his theorem in [2] saying that for any Borel functions $f_{0}, f_{1}, \ldots, f_{n-1}$ and for any $i<n$ there is a comeager $C \subseteq X$ which is upward invariant under all functions $f_{0}, f_{1}, \ldots, f_{n-1}$ and s.t. $\chi_{\mathcal{B}}\left(\mathcal{G}_{f_{i}} \upharpoonright C\right) \leq 3$ (similarly for μ-measure 1 sets). Applying this to each $i<n$ and intersecting the sets C, one gets an upward invariant co-meager (or μ-measure 1) $C^{*} \subseteq X$ s.t. $\chi_{\mathcal{B}}\left(\mathcal{G}_{f_{0}, \ldots, f_{n}} \upharpoonright C^{*}\right) \leq 3^{n}<\omega$. We give our full original proof here, in case its other ideas become useful for other work.

We start by giving a different proof of the theorem first proved in [2] while keeping some of his details and ideas intact.

Theorem 8.4. Let X be a Polish space, μ be a probability measure on X, and $f: X \rightarrow X$ be a Borel function. Then there is a co-meager upward and downward invariant set C s.t. $\chi_{\mathcal{B}}\left(\mathcal{G}_{f} \upharpoonright C\right) \leq 3$, and similarly for μ-measure 1 set C. In particular, $\chi_{\mathcal{B P}}\left(\mathcal{G}_{f}\right) \leq 3$ and $\chi_{\mu}\left(\mathcal{G}_{f}\right) \leq 3$.

Proof. We know that $\chi_{\mathcal{B}}\left(\mathcal{G}_{f}\right) \leq \omega$, so we can fix an ω Borel coloring D_{i} for $\mathcal{G}_{f}(i \in \omega)$. Now, for each $n \in \omega$ we let $F_{n}=D_{0} \uplus D_{1} \uplus \ldots \uplus D_{n}$. Clearly, $F_{n} \subseteq F_{n+1}$ and $\bigcup F_{n}=X$. Finally, we let $A_{n}=\left\{x \in X \mid \forall i \in \omega \exists j>i\right.$ s.t $\left.f^{j}(x) \in F_{n}\right\}$.

Lemma 8.5. The Borel chromatic number of $\mathcal{G}_{f} \upharpoonright A_{n}$ is at most 3.

Proof. Fix $n \in \omega$. By looking at $A_{n} \cap D_{0}, A_{n} \cap D_{1}, \ldots, A_{n} \cap D_{n}$, we can find a 1-colorable set $Y_{n} \subseteq A_{n}$ s.t. if $x \in A_{n}$ then there exists an $m \in \omega$ s.t. $f^{m}(x) \in Y_{n}$. Clearly, the set $A_{n} \backslash Y_{n}$
is bounded by Y_{n} and thus it is Borel 2-colorable. We conclude that the entire $\mathcal{G}_{f} \upharpoonright A_{n}$ is Borel 3-colorable.

A close inspection to the above construction shows that we can do it in such a way that:

1. $Y_{n} \subseteq Y_{n+1}($ for all $n \in \omega)$
2. $\bigcup_{n \in \omega} Y_{n}$ is 1-colorable
3. On the n-th step, we recursively preserve the colors we assigned during the previous steps. That is, on step n we only assign colors to the elements of A_{n} that haven't been colored during the steps $0,1, \ldots, n-1$, while we keep the previously assigned colors for the rest of the elements of A_{n}.
4. In the end the entire set $\biguplus_{n \in \omega} A_{n}$ is Borel 3-colorable.

Since A_{n} is both upward and downward invariant, the lemma above allows us to assume without loss of generality that $A_{n}=\emptyset$ for all $n \in \omega$. This means that for each $x \in X$ and $n \in \omega$ there exists some $i \in \omega$ s.t. $f^{j}(x) \notin F_{n}$ for all $j \geq i+1$. Now, for each $\alpha \in 2^{\leq \omega}$, we define $C_{\alpha}=\bigcup_{\alpha(n)=1} D_{n}$.

Lemma 8.6. There is a comeager both upward and downward invariant Borel set $C \subseteq X$ such that $\chi_{\mathcal{B}}\left(\mathcal{G}_{f} \upharpoonright C\right) \leq 3$.

Proof. For all $x \in X, k \in \omega$ and $s \in 2^{<\omega}$, there exist $t \supseteq s$ and $i \geq k$ s.t. $f^{i}(x) \in C_{t}$ and $f^{i+1}(x) \in F_{|t|} \backslash C_{t}$. To see this, let $n=|s|$. Since $A_{n}=\emptyset$ there is some $i \geq k$ s.t. $f^{i}(x) \notin F_{n}$ and $f^{i+1}(x) \notin F_{n}$. So, we can find $m, l>n(m \neq l)$ that satisfy: $f^{i}(x) \in D_{m}$ and $f^{i+1}(x) \in D_{l}$. We now expand s to $t \in 2^{<\omega}$ in such a way that $t(m)=1, t(l)=0, t \upharpoonright|s|=s$ and $|t|=\max \{m, l\}+1$. The latter gives us that $f^{i}(x) \in C_{t}$ and $f^{i+1}(x) \in F_{|t|} \backslash C_{t}$ as desired. We now have that:

$$
\forall x \in X \forall^{*} \alpha \in 2^{\omega} \forall k \in \omega \exists i \in \omega\left(f^{i+k}(x) \in C_{\alpha} \text { and } f^{i+k+1} \notin C_{\alpha}\right)
$$

where the part " $\forall^{*} \alpha \in 2^{\omega} \phi(\alpha)$ " indicates that the set $\left\{\alpha \in 2^{\omega} \mid \phi(\alpha)\right\}$ is comeager. Now the Kuratowski-Ulam Theorem gives us that for comeagerly many $\alpha \in 2^{\omega}$, the set:

$$
C^{\alpha}=\left\{x \in X \mid \forall k \in \omega \exists i \in \omega\left(f^{i+k}(x) \in C_{\alpha} \text { and } f^{i+1+k}(x) \notin C_{\alpha}\right)\right\} \text { is comeager }
$$

Thus, in order to complete the lemma it's enough to fix any α_{0} with that property. By the Finite Colorable Characterization for a Single Function (Theorem 1.14), it is very easy to see that $\chi_{\mathcal{B}}\left(\mathcal{G}_{f} \upharpoonright C^{\alpha_{0}}\right) \leq 3$. Moreover, a straightforward computations shows that $C^{\alpha_{0}}$ is also both upward and downward invariant. The proof of the lemma is now complete.

Lemma 8.7. There is a μ-conull both upward and downward invariant Borel set $C \subseteq X$ such that $\chi_{\mathcal{B}}\left(\mathcal{G}_{f} \upharpoonright C\right) \leq 3$.

Proof. First we observe that for each $\epsilon>0, p \in \omega$, and $n \in \omega$ there exists an $m>n$ s.t. $\mu\left(\left\{x \in X \mid \exists i \in \omega\right.\right.$ s.t. $\left.\left.f^{p+i}(x) \in F_{m} \backslash F_{n}\right\}\right) \geq 1-\epsilon / 2$. To see this we consider $i_{n}(x)$ to be the least $i \in \omega$ s.t. $f^{j}(x) \notin F_{n}$ for all $j \geq i$ (This is well defined since $A_{n}=\emptyset$). Now, we define $B_{k}=\left\{x \in X \mid f^{i_{n}(x)}(x) \in D_{k}\right\}$. Clearly, $\bigcup_{k>n} B_{k}=X$ since $f^{i_{n}(x)}(x) \notin F_{n}$. Thus, we can find $m>n$ big enough s.t. $\mu\left(\bigcup_{n<k \leq m} B_{k}\right) \geq 1-\epsilon / 2$. Thus, $\mu(\{x \in X \mid \exists i \in \omega$ s.t. $\left.\left.f^{p+i}(x) \in F_{m} \backslash F_{n}\right\}\right) \geq 1-\epsilon / 2$ as desired.

Now, an argument like the one above, allows us to also find an $l>m$ s.t.:

$$
\mu\left(\left\{x \in X \mid \exists i \in \omega \text { s.t. } f^{p+i}(x) \in F_{m} \backslash F_{n} \text { and } f^{p+i+1}(x) \in F_{l} \backslash F_{m}\right\}\right) \geq 1-\epsilon .
$$

Hence, for each $n \in \omega$ and each $s \in 2^{n}$, we can find $t \in 2^{l+1}$ such that:
$\mu\left(\left\{x \in X \mid \exists i \in \omega\right.\right.$ s.t. $f^{p+i}(x) \in C_{t}$ and $\left.\left.f^{p+i+1}(x) \in F_{|t|} \backslash C_{t}\right\}\right) \geq 1-\epsilon$. (We just set $t \upharpoonright n=s, t(k)=1$ for all $n \leq k \leq m$ and $t(k)=0$ for all $m<k \leq l)$. Now we can recursively construct an $\alpha \in 2^{\omega}$ s.t.:
$\left\{x \in X \mid \forall p \in \omega \exists i \in \omega\right.$ s.t. $f^{p+i}(x) \in C_{\alpha}$ and $\left.f^{p+i+1}(x) \notin C_{\alpha}\right\}$ is μ-conull. To see this, we observe that we can find strictly increasing sequence of $t_{k} \in 2^{<\omega}\left(t_{k} \subsetneq t_{k+1}\right)$ s.t. $\mu\left(H_{k}\right) \geq 1-1 / 2^{k}$ for all $k \in \omega$, where:
$H_{k}=\left\{x \in X \mid \exists i \in \omega\right.$ s.t. $f^{p_{k}+i}(x) \in C_{t_{k}} \backslash F_{\left|t_{k-1}\right|}$ and $\left.f^{p_{k}+i+1}(x) \in F_{\left|t_{k}\right|} \backslash C_{t_{k}}\right\}$, while $\left\{p_{k} \mid k \in \omega\right\}$ lists all natural numbers each repeated infinitely many times. Then, we let
$T_{j}=\bigcap_{k>j} H_{j}$. Set $T=\bigcup_{j} T_{j}$. Clearly, $\mu\left(T_{j}\right) \geq 1-1 / 2^{j}$ and $\mu(T)=1$. Thus, $\alpha=\bigcup_{k} t_{k}$ is as desired. This is simply because by the definition of H_{k}, for each $x \in T_{j}$ we have that $\forall p \in \omega \exists i \in \omega$ s.t. $f^{p+i}(x) \in C_{\alpha}$ and $f^{p+i+1}(x) \notin C_{\alpha}$.

Then let $C=\left\{x \in X \mid \forall p \in \omega \exists i \in \omega\right.$ s.t. $f^{p+i}(x) \in C_{\alpha}$ and $\left.f^{p+i+1}(x) \notin C_{\alpha}\right\}$. Clearly, C is a μ-conull both upward and downward invariant borel subset of X. Also, by the Finite Colorable Characterization for a Single Function (Theorem 1.14), it is very easy to see that $\chi_{\mathcal{B}}\left(\mathcal{G}_{f} \upharpoonright C\right) \leq 3$, as desired.

Theorem 8.8. Let X be a Polish space, μ be a probability measure on X, and $f_{0}, f_{1}: X \rightarrow X$ be two Borel functions on X. Then there is an upward invariant and co-meager set C s.t. $\chi_{\mathcal{B}}\left(\mathcal{G}_{f_{0}, f_{1}} \upharpoonright C\right) \leq 5$, and similarly for μ-measure 1 set C. In particular, $\chi_{\mathcal{B P}}\left(\mathcal{G}_{f_{0}, f_{1}}\right) \leq 5$ and $\chi_{\mu}\left(\mathcal{G}_{f_{0}, f_{1}}\right) \leq 5$.

Proof. Let X be any Polish space and $f_{0}, f_{1}: X \rightarrow X$ be any two Borel functions on X. For the first part it is enough to show that there is a comeager $C \subseteq X$ s.t. $\chi_{\mathcal{B}}\left(\mathcal{G}_{f_{0}, f_{1}} \upharpoonright C\right)<\omega$. Our plan is to partition X into sets $E, E_{0}, E_{1}, E_{2}, M_{\alpha_{0}}$, and B, in such a way that, on an upward invariant comeager set (and similarly for a co-null set):

1. E, E_{0}, E_{1}, E_{2}, and $M_{\alpha_{0}}$ all have property P.
2. B is bounded.

Then B can be Borel 3-colored using Lemma 4.7, while E, E_{0}, E_{1}, E_{2}, and $M_{\alpha_{0}}$ can be Borel 3-colored on a comeager (co-null) set using Theorem 8.4. The entire graph can then be Borel $3 \times 6=18$ colored on a comeager (co-nulll) set.

We know that $\chi_{\mathcal{B}}\left(\mathcal{G}_{f_{0}, f_{1}}\right) \leq \omega$, so we can fix an ω Borel coloring $\biguplus_{i \in \omega} D_{i}$ for $\mathcal{G}_{f_{0}, f_{1}}$. Now, for each $n \in \omega$ we let $F_{n}=D_{0} \uplus D_{1} \uplus \ldots \uplus D_{n}$. Clearly, $F_{n} \subseteq F_{n+1}$ and $\bigcup F_{n}=X$. We now give the following very useful notational definition:

Definition 8.9. Let $x \in X, n \in \omega$ and $s \in 2^{n}$. Then we will use the following notation:

$$
f^{s}(x)=f_{s(n-1)} \ldots f_{s(1)} f_{s(0)}(x)\left(\text { Clearly }, f^{\emptyset}(x)=x\right)
$$

We now let $A_{n}=\left\{x \in X \mid \exists^{\infty} s \in 2^{<\omega}\right.$ with $\left.f^{s}(x) \in F_{n}\right\}$, where $\exists^{\infty} s \in 2^{<\omega}$ is an abbreviation for "there exist infinitely many distinct $s \in 2^{<\omega}$ ". We set, $A=\bigcup A_{n}$. We also define the following sets: $E^{n}=\left(A_{n} \backslash \bigcup_{j<n} A_{j}\right) \cap D_{n}$ for every $n \in \omega$. We also set $E=\bigcup_{n \in \omega} E^{n}$.

Claim 8.10. The set E has property P.

Proof. Let $x \in E^{n}$ for some $n \in \omega$. We will prove that either $f_{0}(x) \notin E$ or $f_{1}(x) \notin E$. This is enough to prove the claim.
[$n=0$]: In this case, $x \in D_{0}$ and either $f_{0}(x) \in A_{0}$ or $f_{1}(x) \in A_{0}$ (by definition of A_{0}). If $f_{0}(x) \in A_{0}$ then $f_{0}(x) \notin E^{0}$ (since $f_{0}(x) \notin D_{0}$), while $f_{0}(x) \notin E^{j}$ for all $j>0$ since $E^{j} \cap A_{0}=\emptyset$ for all $j>0$. We conclude that $f_{0}(x) \notin E$. If $f_{1}(x) \in A_{0}$ then we work similarly.
[$n>0$]: In this case, $x \in D_{n}$ and either $f_{0}(x) \in A_{n}$ or $f_{1}(x) \in A_{n}$ (by definition of A_{n}). If $f_{0}(x) \in A_{n}$ then $f_{0}(x) \notin E^{n}$ (since $f_{0}(x) \notin D_{n}$) while $f_{0}(x) \notin E^{j}$ for all $j>n$ since $E^{j} \cap A_{n}=\emptyset$ for all $j>n$. Also, $f_{0}(x) \notin E^{j}$ for all $j<n$. This is simply because if there was some $m<n$ s.t. $f_{0}(x) \in E^{m}$ then that would imply that $f_{0}(x) \in A_{m}$ and thus $x \in A_{m}$ which is impossible since $x \in E^{n}$ and thus $x \notin A_{j}$ for all $j<n$. We conclude that $f_{0}(x) \notin E$. If $f_{1}(x) \in A_{0}$ then we work similarly.

The proof is now complete. We conclude that E has in fact property P.
Claim 8.11. Let $x, y \in X, s \in 2^{<\omega}$ and $y=f^{s}(x)$. If $y \in A$ then $x \in A$ as well.

Proof. Since $y \in A$ then we can fix the minimum $n \in \omega$ s.t. $y \in A_{n}$. But since $y=f^{s}(x)$ then it is immediate that $x \in A_{n}$ by the definition of A_{n}.

As a corollary of the claim above we get that the set $X \backslash A$ is upward invariant.
Claim 8.12. For all $x \in A$ there exists some $s \in 2^{<\omega}$ s.t. $f^{s}(x) \in E$.

Proof. Let $x \in A$. Then we can find an $n \in \omega$ such that $x \in A_{n} \backslash \bigcup_{j<n} A_{j}$. By definition of A_{n} this means that: $\exists^{\infty} s \in 2^{<\omega}$ s.t. $f^{s}(x) \in D_{n} \backslash \bigcup_{j<n} A_{j}$. However, the latter is equivalent to: $\exists^{\infty} s \in 2^{<\omega}$ s.t. $f^{s}(x) \in E_{n}$.

We now define recursively on A the following rank function: $r k: A \rightarrow \omega$, which is well defined by the previous claim.

- If $x \in E \subseteq A$ then $r k(x)=0$.
- If $x \in A \backslash E$ then $r k(x)=\min \left\{|s|\right.$ s.t. $\left.f^{s}(x) \in E\right\}$

The above, allows us to partition $A \backslash E=\biguplus_{i \geq 1} X_{i}$ where $x \in X_{i}$ iff $r k(x)=i$. Next we will recursively re-partition $A \backslash E$ into the sets $\bar{E}_{0} \uplus E_{1} \uplus E_{2}$.
$(i=1)$ In that case, we set $X_{1} \subseteq E_{0}$.
$(i>1)$ For this one, we recursively assume that $X_{1} \uplus \cdots \uplus X_{i-1} \subseteq E_{0} \uplus E_{1} \uplus E_{2}$. For each $x \in X_{i}$ we let $x \in E_{j}$ where $j \in 3$ is the minimum index such that $f_{0}(x) \notin E_{j}$ and $f_{1} \notin E_{j}$.

This construction clearly gives us: $A \backslash E=E_{0} \uplus E_{1} \uplus E_{2}$ from which we can clearly get: $A=E \uplus E_{0} \uplus E_{1} \uplus E_{2}$.

Claim 8.13. The sets E_{0}, E_{1} and E_{2}, they all have property P.

Proof. It is enough to prove that for each $j \in 3$ and $x \in E_{j}$ we can find $i \in 2$ s.t. $f_{i}(x) \notin E_{j}$. Since $E_{0} \uplus E_{1} \uplus E_{2}=E \backslash A$, we can prove this using induction on the rank of $x \in E \backslash A$:
$(r k(x)=1)$ Then, x is followed by an element in E.
$(r k(x)>1)$ By definition of the $r k$ function, we know that there is an $i \in 2$ s.t.: $f_{i}(x) \in X_{r k(x)-1} \subseteq E_{0} \uplus E_{1} \uplus E_{2}$. However, by the recursive definition of the sets E_{0}, E_{1}, E_{2} above, we know that $f_{i}(x) \notin E_{j}$ as desired. The proof of the lemma is now complete.

Remark 8.14. We can alternatively partition $A=E \uplus E^{0} \uplus E^{1}$ in such a way that both E^{0} and E^{1} have property P.

Proof. As before we recursively define on A the following function: $r k: A \rightarrow \omega$:

- If $x \in E \subseteq A$ then $r k(x)=0$.
- If $x \in A \backslash E$ then $r k(x)=\min \left\{|s|\right.$ s.t. $\left.f^{s}(x) \in E\right\}$

Now we set $E^{0}=\{x \in A \mid r k(x)$ is even but not zero $\}$ and $E^{1}=\{x \in A \mid r k(x)$ is odd $\}$. Then it's clear that every element in E^{0} is followed by an element in E^{1} and every element in E^{1} is followed by an element in $E \cup E^{0}$.

We now concentrate on $X \backslash A$. For convenience, let us simply work on X while assuming that $A=\emptyset$. We will later return to the general situation of $A \neq \emptyset$. As in theorem 8.4 we set $C_{\alpha}=\bigcup_{\alpha(n)=1} D_{n}$ for all $\alpha \in 2^{\leq \omega}$. We now prove the following useful lemma:

Lemma 8.15. For each $x \in X$ and $s \in 2^{<\omega}$ there exist some $r \in \omega$ and $t \in 2^{<\omega}$ (with $t \supseteq s$) that satisfy the following:

$$
\forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}: f^{h_{1}}(x) \in C_{t} \text { but } f^{h_{1} \frown<i>}(x) \in F_{|t|} \backslash C_{t}(\text { some } i \in 2)(*)
$$

Proof. Let $x \in X, n \in \omega$ and $s \in 2^{n}$. Let $B_{n}=\left\{y \in X \mid y=x\right.$ or $y=f^{u}(x) \in F_{n}$ for some $\left.u \in 2^{<\omega}\right\}$. Clearly, B_{n} is finite (since $A=\emptyset$). Now, we find $m>n$ big enough s.t.: if $y \in F_{n}$ or $y=x$ then both $f_{0}(y) \in F_{m}$ and $f_{1}(y) \in F_{m}$. We can do this because B_{n} is finite. Now, we let $B_{m}=\left\{y \in X \mid y=x\right.$ or $y=f^{u}(x) \in F_{m}$ for some $\left.u \in 2^{<\omega}\right\}$. Again, B_{m} is finite. Now we let $B_{m}^{0} \subseteq B_{m}$ to be the set of all $y \in B_{m}$ s.t. either $f_{0}(y) \notin B_{m}$ or $f_{1}(y) \notin B_{m}$. Clearly by the definition of $m, B_{m}^{0} \cap\left(F_{n} \cup\{x\}\right)=\emptyset$. Finally, we find $l>m$ big enough s.t.: if $y \in B_{m}^{0}$ then both $f_{0}(y) \in F_{l}$ and $f_{1}(y) \in F_{l}$.

Now, let $U=\left\{u \in 2^{<\omega} \mid f^{u}(x) \in B_{m}\right\}$. Since $A=\emptyset, U$ is finite. Set $r \in \omega$ to be $r=\max \{|u|: u \in U\}$. We also set $t \in 2^{l+1}$ to be $t \upharpoonright n=s, t(n)=t(n+1)=\ldots=t(m)=1$ and $t(m+1)=t(m+2)=\ldots=t(l)=0$. We will now prove that $(*)$ holds for these r and t. Towards that, let $h_{0} \in 2^{r}$. Then, there must be some $k \leq r$ s.t. $f^{h_{0} \upharpoonright k}(x) \in B_{m}^{0}$.

If not, then $f^{h_{0} \upharpoonright k}(x) \in B_{m} \backslash B_{m}^{0}$ for all $k \leq r$. In particular, $f^{h_{0} \upharpoonright r}(x)=f^{h_{0}}(x) \in B_{m} \backslash B_{m}^{0}$ which means that both $f^{h_{0} \curvearrowleft<0>}(x) \in B_{m}$ and $f^{h_{0} \sim<1>}(x) \in B_{m}$, which contradicts the maximality of r, as both $\left|h_{0} \frown(0)\right|=r+1$ and $\left|h_{0} \frown(1)\right|=r+1$.

We set $h_{1}=h_{0} \upharpoonright k \subseteq h_{0}$. Then $f^{h_{1}}(x) \in F_{m} \backslash F_{n}$ but $f^{h_{1} \frown<i>}(x) \in F_{l} \backslash F_{m}$ for some $i \in 2$. Thus, $f^{h_{1}}(x) \in C_{t}$ but $f^{h_{1} \frown<i>}(x) \in F_{|t|} \backslash C_{t}$ for some $i \in 2$. We conclude that the $(*)$ and thus the lemma holds.

Hence, $\forall x \in X \forall^{*} \alpha \in 2^{\omega} \exists r \in \omega$ s.t. $\forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}$ s.t. $\left[f^{h_{1}}(x) \in C_{\alpha}\right.$ and $f^{h_{1} \frown<i>} \notin C_{\alpha}$ (some $i \in 2$)], where the part " $\forall^{*} \alpha \in 2^{\omega} \phi(\alpha)$ " indicates that the set $\left\{\alpha \in 2^{\omega} \mid \phi(\alpha)\right\}$ is comeager.

We now return to the situation where $A \neq \emptyset$. Using the fact that $X \backslash A$ is upward invariant, the work above gives us the following statement:
$\forall x \forall^{*} \alpha$ if $x \in X \backslash A$ then $\exists r \forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}$ s.t. $f^{h_{1}}(x) \in C_{\alpha}$ but $f^{h_{1} \frown<i>}(x) \notin C_{\alpha}$ for some $i \in 2$.

For each such α we can define $M_{\alpha}=\left\{x \in C_{\alpha} \mid f_{0}(x) \notin C_{\alpha}\right.$ or $\left.f_{1}(x) \notin C_{\alpha}\right\}$. That way, we make sure that M_{α} has property P. Moreover:
$\forall x \forall^{*} \alpha$ if $x \in X \backslash A$ then $\exists r \forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}$ s.t. $f^{h_{1}}(x) \in M_{\alpha}$
For simplicity, we set $Q(x, \alpha)=\exists r \forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}$ s.t. $f^{h_{1}}(x) \in M_{\alpha}$.
Therefore, so far we have:
$\forall x \forall^{*} \alpha$ if $x \in X \backslash A$ then $Q(x, \alpha)$.
Now using the proof of theorem 8.4 and the fact that E has property P we can get $\bar{A}_{E} \subseteq E$ s.t. $\chi_{\mathcal{B}}\left(\mathcal{G} \upharpoonright \bar{A}_{E}\right) \leq 3$ and on $E \backslash \bar{A}_{E}$ we have:
$\forall x \forall^{*} \beta$ if $x \in E \backslash \bar{A}_{E}$ then $\exists s \in 2^{<\omega}$ s.t. $f^{s\lceil n}(x) \in E$ for all $n \leq \operatorname{lh}(s)$ and $\left[\left(f^{s \neg<i>}(x) \notin E\right.\right.$ for all $i \in 2)$ or $\left(f^{s}(x) \in C_{\beta}\right.$ but $f^{s \neg<i>}(x) \in E \backslash C_{\beta}$ for some $\left.i \in 2\right)$]

Of course, the same statements are true for all the sets E_{0}, E_{1}, E_{2} and M_{α} (for the comeagerly many α 's) since they all have property P.

Set $R(x, \beta, Y)=\exists s \in 2^{<\omega}$ s.t. $f^{s \backslash n}(x) \in Y$ for all $n \leq l h(s)$ and $\left[\left(f^{s \frown<i>}(x) \notin Y\right.\right.$ for all $i \in 2)$ or $\left(f^{s}(x) \in C_{\beta}\right.$ but $f^{s \neg<i>}(x) \in Y \backslash C_{\beta}$ for some $\left.\left.i \in 2\right)\right]$.

We then have by the above that for each $Y \in\left\{E, E_{0}, E_{1}, E_{2}, M_{\alpha}\right\}$ there are sets $\bar{A}_{Y} \subseteq Y$ s.t. $\chi_{\mathcal{B}}\left(\mathcal{G} \upharpoonright \bar{A}_{Y}\right) \leq 3$ and:
$(\forall x)\left(\forall^{*} \alpha\right)\left(\forall^{*} \beta\right)\left(x \in Y \backslash \bar{A}_{Y} \rightarrow R(x, \beta, Y)\right)$
Let:
$T(x, \alpha, \beta)=\left(\bigwedge_{Y \in\left\{E, E_{0}, E_{1}, E_{2}, M_{\alpha}\right\}}\left(x \in Y \backslash \bar{A}_{Y} \rightarrow R(x, \beta, Y)\right)\right) \&(x \in X \backslash A \rightarrow Q(x, \alpha))$.
Then, $(\forall x)\left(\forall^{*} \alpha\right)\left(\forall^{*} \beta\right) T(x, \alpha, \beta)$. Also, replacing x by $f^{t}(x)$, where $t \in 2^{<\omega}$, we get equivalently that:
$(\forall x)\left(\forall t \in 2^{<\omega}\right)\left(\forall^{*} \alpha\right)\left(\forall^{*} \beta\right) T\left(f^{t}(x), \alpha, \beta\right)$.
Now, it's finally time to "switch quantifiers" by using the Kuratowski-Ulam theorem:
For comeagerly many α 's and β 's the following set is comeager:
$C^{\alpha, \beta}=\left\{x \in X \mid \forall t \in 2^{<\omega} T\left(f^{t}(x), \alpha, \beta\right)\right\}$.
Finally, all we have to do is fix some α_{0} and β_{0} such that the set $C=C^{\alpha_{0}, \beta_{0}}$ is comeager. Clearly, C is upward invariant. We check that it is also Borel finitely colorable. Since the set C is partitioned into $\left(\underset{Y \in\left\{E, E_{0}, E_{1}, E_{2}, M_{\alpha_{0}}\right\}}{\biguplus}(Y \cap C)\right) \uplus\left(C \backslash\left(A \cup M_{\alpha_{0}}\right)\right)$, it is enough to check that the graph \mathcal{G} is Borel 3 -colorable on each of the pieces. Then the entire graph will be Borel 18 colorable in C. But, each $Y \cap C$ is Borel 3-colorable as in the proof of Theorem 8.4, using the property that $\left(\forall x \in\left(Y \backslash \bar{A}_{Y}\right) \cap C\right) R(x, \beta, Y)$ and the fact that \bar{A}_{Y} (and thus $\left.\bar{A}_{Y} \cap C\right)$ is upward and downward invariant inside Y as well as Borel 3-colorable. At the same time, the set $C \backslash\left(A \cup M_{\alpha_{0}}\right)$ is bounded by $A \cup M_{\alpha_{0}}$ and thus it's also Borel 3-colorable by Lemma 4.7. Combining these colorings we get that $\chi_{\mathcal{B}}(\mathcal{G} \upharpoonright C) \leq 18$ and hence by Theorem 6.1, $\chi_{\mathcal{B}}(\mathcal{G} \upharpoonright C) \leq 5$.

Next we turn to the μ-measurable chromatic number. We start with the following useful lemma:

Lemma 8.16. For each $\epsilon>0, u \in 2^{<\omega}$ and $s \in 2^{<\omega}$ there exists some $t \in 2^{<\omega}$ (with $t \supseteq s$) s.t.: $\mu\left(\left\{x \in X \mid f^{u}(x) \in X \backslash A \rightarrow\left[\exists r \in \omega \forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}: f^{u \frown h_{1}}(x) \in C_{t}, f^{u \frown h_{1} \frown<i>}(x) \in\right.\right.\right.$ $F_{|t|} \backslash C_{t}($ some $\left.\left.\left.i \in 2)\right]\right\}\right) \geq 1-\epsilon$.

Proof. Towards that, we let $\epsilon>0, u \in 2^{<\omega}, n \in \omega$ and $s \in 2^{n}$. Then we can find $m>n$ such that:

$$
\mu\left(\left\{x \in X \mid f^{u}(x) \in X \backslash A \rightarrow\left[\exists r \in \omega \forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}: f^{u \frown h_{1}}(x) \in F_{m} \backslash F_{n}\right]\right\} \geq 1-\epsilon / 2\right.
$$

To see this, let $r_{n}(x)$ to be the least $r \in \omega$ s.t. $f^{u \sim h}(x) \notin F_{n}$ for all $h \in 2^{<\omega}$ with $|h| \geq r$. Such r exists since $f^{u}(x) \notin A$. We also set $B_{k}=\left\{x \in X \mid f^{u \frown h}(x) \in F_{k}\right.$ for all $\left.h \in 2^{\leq r_{n}(x)}\right\}$. Clearly, $\bigcup_{k>n} B_{k}=X$ and thus we can find $m>n$ big enough s.t. $\mu\left(\bigcup_{n<k \leq m} B_{k}\right) \geq 1-\epsilon / 2$. In the same manner, we can find $l>m$ such that:
$\mu\left(\left\{x \in X \mid f^{u}(x) \in X \backslash A \rightarrow\left[\exists r \in \omega \forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}: f^{u \frown h_{1}}(x) \in F_{m} \backslash F_{n}, f^{u \frown h_{1} \frown<i>}(x)\right.\right.\right.$ $\in F_{l} \backslash F_{m}$ (some $\left.\left.\left.i \in 2\right)\right]\right\} \geq 1-\epsilon$. Now, we define $t \in 2^{l+1}$ to be such that: $t \upharpoonright n=s$, $t(k)=1$ for all $n \leq k \leq m$ and $t(k)=0$ for all $m<k \leq l$. Clearly, the t in question satisfies the properties of the lemma.

Now we can recursively construct an $\alpha \in 2^{\omega}$ s.t.:
The set $C=\left\{x \in X \mid\left(\forall u \in 2^{<\omega}\right)\left[f^{u}(x) \in X \backslash A \rightarrow \exists r \in \omega \forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}: f^{u \frown h_{1}}(x) \in\right.\right.$ C_{α} but $f^{u \frown h_{1} \frown<i>}(x) \notin C_{\alpha}$ (some $\left.\left.\left.i \in 2\right)\right]\right\}$ is μ-conull.

To see this, we observe that we can find strictly increasing sequence of $t_{k} \in 2^{<\omega}\left(t_{k} \subsetneq t_{k+1}\right)$ s.t. $\mu\left(H_{k}\right) \geq 1-1 / 2^{k}$ for all $k \in \omega$, where:

$$
H_{k}=\left\{x \in X \mid f^{u}(x) \in X \backslash A \rightarrow\left[\exists r \in \omega \forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}: f^{u_{k} \frown h_{1}}(x) \in C_{t_{k}} \backslash F_{\left|t_{k-1}\right|}\right.\right.
$$ but $f^{u_{k} \frown h_{1} \frown<i>}(x) \in F_{\left|t_{k}\right|} \backslash C_{t_{k}}$ (some $\left.\left.\left.i \in 2\right)\right]\right\}$, while $\left\{u_{k} \mid k \in \omega\right\}$ lists all finite sequences $u \in 2^{<\omega}$ each repeated infinitely many times, and $F_{\left|t_{-1}\right|}$ is defined to be the empty set. Then, we let $T_{j}=\bigcap_{k>j} H_{j}$ and $T=\bigcup_{j} T_{j}$. Clearly, $\mu\left(T_{j}\right) \geq 1-1 / 2^{j}$ and $\mu(T)=1$. Thus, $\alpha=\bigcup_{k} t_{k}$ is as desired. This is simply because by the definition of H_{k}, for each $x \in T_{j}$ we have that $\left(\forall u \in 2^{<\omega}\right)\left[f^{u}(x) \in X \backslash A \rightarrow \exists r \in \omega\right.$ s.t. $\forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}: f^{u \sim h_{1}}(x) \in C_{\alpha}$ but $\left.f^{u \prec h_{1} \frown\langle i\rangle}(x) \notin C_{\alpha}\right]$.

Next, we let $D_{\alpha} \subseteq C_{\alpha}$ to be the set of all $x \in C_{\alpha}$ s.t. either $f_{0}(x) \notin C_{\alpha}$ or $f_{1}(x) \notin C_{\alpha}$. It is then easy to see that:

$$
C=\left\{x \in X \mid\left(\forall u \in 2^{<\omega}\right)\left[f^{u}(x) \in X \backslash A \rightarrow \exists r \in \omega \forall h_{0} \in 2^{r} \exists h_{1} \subseteq h_{0}: f^{u \frown h_{1}}(x) \in D_{\alpha}\right]\right\} \text { is }
$$ μ-conull.

For notational simplicity, we set $E=E_{3}$ and $D_{\alpha}=E_{4}$. Thus, $A \cup D_{\alpha}=E_{0} \uplus E_{1} \uplus$
$E_{2} \uplus E_{3} \uplus E_{4}$. Note that all E_{j} 's have property P. Using this fact, we can define a function $g: \bigcup_{j \in 5} E_{j} \rightharpoonup \bigcup_{j \in 5} E_{j}$ s.t. $g(x)=f_{i}(x)$ if both $x, f_{i}(x) \in E_{j}$ (for some $i \in 2$ and $j \in 5$), or else $g(x) \uparrow$ (meaning that $g(x)$ is undefined). For each $Y \in\left\{E_{0}, E_{1}, E_{2}, E_{3}, E_{4}\right\}$ let \bar{A}_{Y} be the union of the sets A_{n} defined at the start of proof of Theorem 8.4, for the graph $\mathcal{G} \upharpoonright Y$. Also, for $s, t, u \in 2^{<\omega}$ and $Y \in\left\{E_{0}, E_{1}, E_{2}, E_{3}, E_{4}\right\}$ we define:
$H_{Y}^{u}(s, t)=\left\{x \in X \mid y=f^{u}(x) \in Y \backslash \bar{A}_{Y} \rightarrow\left[\left(\exists k \in \omega\right.\right.\right.$ s.t. $\left.g^{k}(y) \uparrow\right)$ or $(\exists k \in \omega$ s.t. $g^{k}(y) \in C_{t} \backslash F_{|s|}$ but $\left.\left.\left.g^{k+1}(y) \in F_{|t|} \backslash C_{t}\right)\right]\right\}$.

Lemma 8.17. Let $\epsilon>0, s, u \in 2^{<\omega}$ and $Y \in\left\{E_{0}, E_{1}, E_{2}, E_{3}, E_{4}\right\}$. Then we can find $t \in 2^{<\omega}$ s.t. $s \subseteq t$ and $\mu\left(H_{Y}^{u}(s, t)\right) \geq 1-\epsilon$.

Proof. Let $\epsilon>0, n \in \omega, s \in 2^{n}, u \in 2^{<\omega}$, and $Y \in\left\{E_{0}, E_{1}, E_{2}, E_{3}, E_{4}\right\}$. Clearly, by the definition of $Y \backslash \bar{A}_{Y}$, when $g^{j}(x)$ is defined for all $j \in \omega$, and $x \notin \bar{A}_{Y}$, we can also define $i_{n}(x)$ to be the least $i \in \omega$ s.t. $g^{j}(x) \notin F_{n}$ for all $j \geq i$. Now, define $B_{k}=\left\{x \in X \mid y=f^{u}(x) \in\right.$ $Y \backslash \bar{A}_{Y} \rightarrow\left[\left(\exists k \in \omega\right.\right.$ s.t. $\left.g^{k}(y) \uparrow\right)$ or $\left.\left.\left(g^{i_{n}(y)}(y) \in D_{k}\right)\right]\right\}$. Clearly, $\bigcup_{k>n} B_{k}=X$. Thus we can find $m>n$ s.t. $\mu\left(\bigcup_{n<k \leq m} B_{k}\right) \geq 1-\epsilon / 2$. Therefore:

$$
\mu\left(\left\{x \in X \mid y=f^{u}(x) \in Y \backslash \bar{A}_{Y} \rightarrow\left[(\exists k \in \omega \text { s.t. } g ^ { k } (y) \uparrow) \text { or } \left(\exists k \in \omega \text { s.t. } g^{k}(y) \in\right.\right.\right.\right.
$$ $\left.\left.\left.\left.F_{m} \backslash F_{n}\right)\right]\right\}\right) \geq 1-\epsilon / 2$. Similarly, we can find an $l>m$ s.t.:

$$
\mu\left(\left\{x \in X \mid y=f^{u}(x) \in Y \backslash \bar{A}_{Y} \rightarrow\left[(\exists k \in \omega \text { s.t. } g ^ { k } (y) \uparrow) \text { or } \left(\exists k \in \omega \text { s.t. } g^{k}(y) \in F_{m} \backslash F_{n}\right.\right.\right.\right.
$$ but $\left.\left.\left.\left.g^{k+1}(y) \in F_{l} \backslash F_{m}\right)\right]\right\}\right) \geq 1-\epsilon$.

Finally, we define $t \in 2^{l+1}$ to be such that: $t \upharpoonright n=s, t(k)=1$ for all $n \leq k \leq m$ and $t(k)=0$ for all $m<k \leq l$. Clearly, for that t we have that $\mu\left(H_{Y}^{u}(s, t)\right) \geq 1-\epsilon$, which proves the lemma.

Now, let $d_{k}=\left(E_{j_{k}}, u_{k}\right)$ be an enumeration of all pairs $\left(E_{j}, u\right)$ with $j \in 5$ and $u \in 2^{<\omega}$, where each pair appears infinitely many times in the enumeration. Next, starting with $t_{0}=\emptyset$ we recursively construct a sequence $\left\{t_{i}\right\}_{i \in \omega}$ of elements in $2^{<\omega}$ s.t. $\mu\left(H_{i}\right)>1-1 / 2^{i}$ where $H_{i}=H_{E_{j_{i}}}^{u_{i}}\left(t_{i}, t_{i+1}\right)$. We also set $H=\bigcup_{j} \bigcap_{i>j} H_{i}$. Clearly $\mu(H)=1$. We also let $\beta=\bigcup_{i} t_{i}$. By all the above, it should also be clear that:
$H=\left\{x \in X \mid\left(\forall u \in 2^{\omega}\right)\left[y=f^{u}(x) \in \biguplus_{j \in 5}\left(E_{j} \backslash \bar{A}_{E_{j}}\right) \rightarrow\left[\left(\exists k \in \omega\right.\right.\right.\right.$ s.t. $\left.g^{k}(y) \uparrow\right)$ or $(\exists k \in \omega$ s.t. $g^{k}(y) \in C_{\beta}$ but $\left.\left.\left.\left.g^{k+1}(y) \notin C_{\beta}\right)\right]\right]\right\}$ which is μ-conull.

Let $C^{\prime}=C^{\alpha, \beta}=\left\{x \in X \mid \forall u \in 2^{<\omega} T\left(f^{u}(x), \alpha, \beta\right)\right\}$, where T is the predicate defined in the proof for the comeager case above. Clearly $C^{\prime}=H \cap C$ and thus C^{\prime} is μ-conull. Moreover, C^{\prime} is easily upward invariant.

We also check that C^{\prime} is Borel finitely colorable: Since the set C^{\prime} is partitioned into $\left(\biguplus_{j \in 5}\left(E_{j} \cap C^{\prime}\right)\right) \uplus\left(C^{\prime} \backslash\left(\biguplus_{j \in 5} E_{j}\right)\right)$, it is enough to check that the graph \mathcal{G} is Borel 3colorable on each of the pieces. Then the entire graph will be Borel 18 colorable in C^{\prime}. But, each $E_{j} \cap C^{\prime}$ is Borel 3-colorable exactly as in the proof of Theorem 8.4, using the property that $\left(\forall x \in\left(E_{j} \backslash \bar{A}_{E_{j}}\right) \cap C^{\prime}\right) R\left(x, \beta, E_{j}\right)$, where R is the predicate defined in the proof for the comeager case above, and the fact that $\bar{A}_{E_{j}}$ (and thus $\bar{A}_{E_{j}} \cap C^{\prime}$) is upward and downward invariant inside E_{j} as well as Borel 3-colorable. At the same time, the set $C^{\prime} \backslash\left(\biguplus_{j \in 5} E_{j}\right)$ is bounded by $\biguplus_{j \in 5} E_{j}$ and thus it's also Borel 3-colorable by Lemma 4.7. Combining these colorings we get that $\chi_{\mathcal{B}}\left(\mathcal{G} \upharpoonright C^{\prime}\right) \leq 18$ and hence by Theorem 6.1, $\chi_{\mathcal{B}}\left(\mathcal{G} \upharpoonright C^{\prime}\right) \leq 5$.

The method used in the proof of the above theorem can be used to obtain the following theorem as a corollary:

Theorem 8.18. Let X be a Polish space, μ be a probability measure on X, and $\mathcal{G}=(X, E)$ be a graph generated by countably many Borel functions. Then let E_{0}, \ldots, E_{n-1} be disjoint subsets of X with property P_{k}. Then $\biguplus_{j \in n} E_{j}$ is Borel finitely colorable on an upward invariant comeager subset of X. Similarly for μ measure 1 set. In particular, if $f_{0}, f_{1}, \ldots, f_{k-1}: X \rightarrow$ X are Borel functions on X, then there is an upward invariant and comeager set C s.t. $\chi_{\mathcal{B}}\left(\mathcal{G}_{f_{0}, f_{1}, \ldots, f_{k-1}} \upharpoonright C\right)<\omega$, and similarly for μ-measure 1 set C. It follows, we have that: $\chi_{\mathcal{B P}}\left(\mathcal{G}_{f_{0}, f_{1}, \ldots, f_{k-1}}\right)<\omega$ and $\chi_{\mu}\left(\mathcal{G}_{f_{0}, f_{1}, \ldots, f_{k-1}}\right)<\omega$.

Proof. The proof of Theorem 8.8 shows that given any graph \mathcal{G} generated by $k+1$ Borel functions, we can find an upward invariant comeager (μ-conull) set $C \subseteq X$ s.t. C can be partitioned into sets $E_{0}, E_{1}, \ldots, E_{k+3}$ and $C \backslash\left(\biguplus_{j \in k+4} E_{j}\right)$ where all E_{j} have property P_{k}
and $C \backslash\left(\biguplus_{j \in k+4} E_{j}\right)$ is bounded by $\biguplus_{j \in k+4} E_{j}$. By induction, there is an upward invariant and comeager ${ }^{j \in k+4}(\mu$-conull $) C^{\prime} \subseteq C$ s.t. $C^{\prime} \cap E_{j}^{j \in k+4}$ is Borel finitely colorable. Moreover, $C^{\prime} \backslash\left(\underset{j \in k+4}{\biguplus} E_{j}\right)$ is also Borel finitely colorable by Lemma 4.7. We conclude that the graph \mathcal{G} is Borel finitely colorable on C^{\prime}.

Now let E_{0}, \ldots, E_{n-1} be disjoint sets with property P_{k+1}. By the proof of Theorem 8.8 the following set is upward invariant and comeager:

$$
C=C^{\alpha}=\left\{x \in X \mid\left(\forall u \in \omega^{<\omega}\right) \bigwedge_{i \in n}\left(f^{u}(x) \in E_{i} \backslash A_{E_{i}} \rightarrow Q\left(f^{u}(x), \alpha\right)\right)\right\}
$$

Now, again by the proof of Theorem 8.8, we also get that inside $E_{i} \cap C$ we can find some disjoint sets $E_{i}^{0}, \ldots, E_{i}^{k+3}$ s.t. each E_{i}^{j} has property P_{k} while $\left(E_{i} \cap C\right) \backslash\left(\underset{j \in k+4}{\biguplus} E_{i}^{j}\right)$ is bounded by $\underset{j \in k+4}{\biguplus} E_{i}^{j}$.

Now, let: $E=\biguplus_{i \in n} \biguplus_{j \in k+4} E_{i}^{j}$. By induction, we get that E is Borel finitely colorable on a upward invariant comeager set $C^{\prime} \subseteq C$. Moreover, since $\left(E_{i} \cap C^{\prime}\right) \backslash\left(\underset{j \in k+4}{\biguplus} E_{i}^{j}\right)$ is bounded by $\biguplus_{j \in k+4} E_{i}^{j}$, then by Lemma 4.7 we have that: $\biguplus_{i \in n} E_{i}$ is Borel finitely colorable on C^{\prime}.

For the μ measurable chromatic number we work similarly.

References

[1] A. S. Kechris, S. Solecki, and S. Todorcevic. Borel chromatic numbers. Adv. Math., 141(1):1-44, 1999.
[2] Benjamin D. Miller. Measurable chromatic numbers. J. Symbolic Logic, 73(4):1139-1157, 2008.

