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The coefficient of variation (CV) measures variability relative to the mean, and can be 

useful when increases in the mean correspond with systematic increases in variability. The 

univariate CV has been studied and applied extensively, but until recently it was not possible to 

study the structure of relative covariation occurring in multivariate data. However, Boik and 

Shirvani (2009) demonstrated that relative covariation could be modeled using estimators they 

developed to describe the sampling distribution of the CV matrix. This matrix, denoted Ψ, is 

defined as  

Ψ = 𝐷𝝁
−1 Σ 𝐷𝝁

−1, 

where 𝐷𝜇 is diagonal matrix containing variable means and Σ is the covariance matrix. The 

present research builds on this previous work by considering a more general class of structure 

models of the CV matrix.  
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Specifically, we investigated how structural equation models of the CV matrix could be 

estimated and applied. First, a statistical theory for the estimation and evaluation of structural 

equation models of CV matrices was developed for both normally and arbitrarily distributed 

variables using generalized least squares. Computational algorithms were then written to 

implement the theory and to allow CV models to be estimated. Using these algorithms, a series 

of simulation studies were conducted to determine the quality of the estimators proposed by Boik 

and Shirvani (2009) and the quality of the subsequent model parameters, standard errors, and test 

statistics, which rely on those estimators. The simulations considered a range of sample sizes, 

normal and log-normal data, different numbers of variables, and models with either one or two 

factors. It was found that Boik and Shirvani’s theoretical estimators of the variance of the 

sampling distribution of the Ψ converged very slowly to their expected values and that they were 

particularly unreliable for log-normal data. That said, the estimation methods relying on these 

estimators, were generally able to estimate factor loadings accurately across conditions and when 

the sample sizes were fairly large and the number of variables was small, they also produced 

reasonably accurate estimates of the variance parameters, standard errors and test-statistics. 

However, in small samples with large numbers of variables, the variance estimates and the model 

fit statistics tended to be too low and the standard errors were typically overly conservative. In 

addition, when the data were log-normal the model fit statistics were problematic regardless of 

whether the estimator relied on normal theory. This general pattern of results was observed in 

both one-factor and two-factor models. The discussions below address some possible 

explanations for the estimation problems noted here and propose future work that should be done 

to better understand and potentially correct these problems.  



iv 

 

Some of this work was initiated here and included in a short series of follow-up studies. 

Specifically, we addressed the numerical stability of the CV matrix and its sampling distribution 

covariance in terms of condition numbers. It was found that these matrices were both typically 

less stable than their counterparts in structural covariance modeling. In addition, we observed 

that Winsorizing the data used for the estimation produced modest improvements in the 

numerical stability. It remains to be seen how this might affect model estimation.  

Finally, a one-factor CV model was fit to a longitudinal dataset assessing alcohol use 

over four years. Although each estimation method seemed to be able to reproduce the sample CV 

matrix with some accuracy, the model fit statistics indicated the model should be rejected. Given 

the non-normal distributions of the variables in the model, the appropriate interpretation of these 

results is ambiguous, but the interpretation and implications are discussed.  
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Chapter 1. Introduction and Motivation  

In empirical investigations of variability, measures of absolute variation, such as the 

standard deviation and the variance, are generally used by default without consideration of other 

options. While these measures are typically sufficiently informative, in some instances it may be 

more meaningful to consider variability relative to the mean, that is, to consider a measure of 

relative variation (Van Valen, 2005). One popular index of relative variation is the coefficient of 

variation (CV), which can be defined as the standard deviation divided by the mean. Although 

this coefficient is not the default measure of variability, its unique properties have resulted in 

widespread use across most scientific and academic disciplines.  

However, the vast majority of these applications have only considered the CV as a 

univariate summary statistic. This is not ideal because, as we will discuss below, there are often 

many variables in studies with meaningful CVs. In recognition of this, Boik and Shirvani (2009) 

developed a principal components technique to analyze relative variation using a multivariate 

extension of the CV. Presently, we propose a more general structural equation modeling (SEM) 

approach to this problem that will allow researchers to construct structural models of the 

multivariate CV whose fit and parameters can be tested.  

This proposal is structured as follows: In this introductory section, we will first provide a 

basic definition and description of the CV, followed by a discussion of several potential 

applications of structural CV models. In the second section, we describe the existing methods of 

performing statistical inference for the univariate and multivariate CVs. Third, we will provide a 

detailed definition of the CV matrix and describe its sampling distribution, which will be used in 

the fourth section to develop the theory of structural modeling of coefficient of variation 
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matrices. Finally, we will propose a series of simulation studies and applications to examine the 

empirical value of this type of model.  

Background and Basic Definition 

Although it is somewhat rare to see measures of variation aside from the standard 

deviation and variance, there are actually many measures of inequality and diversity (Allison, 

1978; Bedeian & Mossholder, 2000). In addition to the CV and the usual variance, these classes 

include the Gini coefficient, Theil’s coefficient, the logarithmic variance, the generalized 

variance, and entropy among others (Allison, 1978; Budescu & Budescu, 2012). In terms of its 

properties, the CV has the most in common with the Gini coefficient, which is defined as the 

average of the absolute deviations between pairs of observations, scaled by the mean. However, 

these alternative inequality measures will not be elaborated upon here. (See Allison (1978) for a 

comparison of several of these techniques.) 

 Before proceeding, it may be useful to define the CV more formally.1 As described 

above, the univariate CV (𝜓) can be defined as the standard deviation divided by the mean: 

 𝜓 =
𝜎

𝜇
. (1.1) 

As we will describe in later sections, there are several distinct multivariate analogs of this 

formula, but for our purposes we are primarily interested in the matrix form. The CV matrix (Ψ) 

has diagonal elements equal to the squared coefficients of variation for each variable and off-

diagonal elements equal to the covariance of the two variables divided by their means. That is  

                                                 
1 Throughout this paper notation will be introduced as it is used. However, for your reference most of the symbols 

and other notion used are listed with definitions in Appendix A.   
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Ψ𝑖𝑖 =

𝜎𝑖
2

𝜇𝑖
2 (1.2) 

 and 

 Ψ𝑖𝑗 =
𝜎𝑖𝑗

𝜇𝑖𝜇𝑗
. (1.3) 

This particular form is useful because it includes both measures of relative variation and 

measures of relative covariation. Also, it should be note that the CV is clearly undefined when 

the mean is 0. For this and additional reasons (discussed below), it is generally required that the 

data be positive with means that are bounded away from 0.  

Properties and Appropriate Use of the CV 

One well known feature of the coefficient of variation is that it is invariant to rescaling 

(Allison, 1978). That is, if 𝑘 is a scalar constant and 𝑘 > 0, then the CV of 𝑘𝑋 will be the same 

as the CV of 𝑋. This means that the relative distances between observations are preserved by 

multiplication. This property is beneficial because it means that CV values from different 

samples can be compared even if different units of measurement were used (Sorensen, 2002).  

Although we may multiply the CV by a constant without effect, we cannot add a constant 

without changing its value. Following Bedeian & Mossholder (2000) we refer to this property as 

location sensitivity. Specifically, if a positive value is added to all of the scores the CV will 

decrease. This may seem strange, but in some contexts it has an intuitive appeal. For instance, 

one might consider investigations of income inequality (Sorensen, 2002). Suppose one group of 

individuals has an average annual income of $20K and another group has average annual income 

of $100K. Does a deviation of 1K mean the same thing to both groups? Intuitively, the answer is 

certainly not, but the usual (absolute) measures of variation would treat the $1K difference 

identically regardless of the group’s average annual income. On the other hand, the CV would 



4 

 

assign more weight to a $1K change in the former group relative to the latter, and thus would be 

smaller for the group with the higher mean. Although these properties are useful in some 

contexts, they do suggest a need for caution when applying and interpreting the CV.  

In particular, it should be apparent that the level of measurement is important in 

determining the meaningfulness of the CV. That is, generally the data should be of the ratio 

level, so that the zero value will represent a true absence of the quantity being measured. If the 

data were interval, the scale could be shifted arbitrarily. However, because of the location 

sensitivity property of the CV, these arbitrary shifts would change the value of the CV and thus 

change the meaning of the statistic. This has resulted in recurrent misapplications of the CV 

which have led some to suggest that the CV should not be used in general (Livers, 1942; 

Sorensen, 2002). However, others advise a more nuanced approach and have shown that the CV 

can be meaningfully interpreted even with interval-level measures if the arbitrary zero-point is 

fixed, and the underlying trait can be assumed to be positive with a true zero (Allison, 1978; 

Bedeian & Mossholder, 2000). However, whenever possible it is of course preferred to have true 

ratio-level variables.  

Another source of controversy regarding CV applications involves the use of the CV to 

compare variation across groups (Fiske & Baer, 1955; Sorensen, 2002). First, it has been noted 

that the CV depends on the sample size and that appropriate adjustments should be made prior to 

comparing across groups of different sizes (Bedeian & Mossholder, 2000). Also, when 

comparisons across groups are made, it is implicitly assumed that the groups are from a common 

population (Fiske & Baer, 1955; Sorensen, 2002). However, this assumption may not be valid or 

testable, so one must be cautious when interpreting any differences observed (Fiske & Baer, 

1955).  
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Potential Applications 

 Being a fairly simple and intuitive measure of relative variation, the CV has seen 

applications in a broad range of fields from chemistry to sociology (Wilson & Payton, 2002; 

Sorensen, 2002). In this section, we describe some of the existing applications in a small subset 

of these disciplines and emphasize those for which structural equation models may be 

particularly useful. Most of the applications described used the only the univariate statistic. 

However, in each case we elaborate on the potential advantages of the proposed approach to 

multivariate CV modeling.   

 Biology. To begin, we will briefly address some of the applications of the CV in biology, 

where much of the existing work on the multivariate CV originated (Albert & Zhang, 2010; 

Reyment, 1960; Van Valen, 1974, 2005). Rement (1960) first described a form of the 

multivariate CV as a means of assessing relative fossil sizes of different species of ostracods, a 

class of crustaceans. Others have applied versions of the multivariate CV to assess the quality of 

various electrophoresis techniques, to compare cranial sizes of male and female gophers, and to 

summarize high-dimensional microarray data assessing gene expression in the context of acute 

leukemia (Albert & Zhang, 2010).  

Although the previous examples may not lend themselves well to SEM, other biologists 

have considered methods that could translate into structural models. In particular, another study 

of gene expression in leukemia considered the principal components (PC) of CV matrices 

(Nawaz & Ali, 2010). They used the results of the principal components analysis (PCA) to 

identify clustering in the data. In addition, they compared this analysis with a PCA on the 

correlation matrix. They concluded that the PCs obtained from the CV matrix were more 

informative than those obtained from the correlation matrix, but oddly they did not compare 
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these with the covariance matrix PCs. Although an exploratory approach was taken in this 

application, we note that a structural modeling procedure for the CV matrix may provide an 

avenue for future hypothesis tests regarding shared relative variation (in terms of a factor-

analytic framework rather than a cluster analysis framework).  

 Economics. The fields of economics and finance have applied the CV statistic 

extensively in contexts which might readily benefit from a multivariate structural modeling 

framework. In particular, in economics there are circumstances in which the mean and variance 

vary systematically for a large number of variables of interest (Holgersson, Karlsson, Mansoor, 

2011). Common economics measures such as “risk,” “marginal utility,” “future cash flow” and 

“excess return” are examples of such variables (Aizenman, 1998; Holgersson, Karlsson, 

Mansoor, 2011; Rajgopal & Shevlin, 2002). For example, the risk of an investment can be 

thought of as the ratio of return variability to the average return. That is, more stable investments 

will have low variability and high average returns whereas riskier investments will tend to have 

high variance relative to the mean. This suggests that fitting a structural model on the basis of 

relative variation may be more substantively meaningful (in some contexts) than fitting a model 

based on the raw covariance. Others have constructed models to address this issue using 

alternative statistical methods, but thus far none of these would allow for the inclusion of latent 

variables (Holgersson, Karlsson, Mansoor, 2011). Therefore, the introduction of structural 

equation models of CV matrices may be preferable relative to existing methods.  

 Cognition. Several cognitive phenomena, such as learning (or conversely cognitive 

decline), intelligence and attention, have mean values that are related to their variances (Dodge, 

Mattek, Austin, Hayes, & Kaye, 2012; Klein, Wendling, Huetter, Ruder, & Peper, 2006; 

Segalowitz, Segalowitz, & Wood, 1998; Wisdom, Mignogna, & Collins, 2012). For instance, in 
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models of second-language learning it has been observed that as skills are learned, both the mean 

and variance of reactions times associated with various skills tests decline (Hulstijn, van 

Gelderen, & Schoonen, 2009). However, as language skills become more automatic it is 

speculated that the variance will decrease faster than the mean leading to a decline in the CV of 

the reaction times (Segalowitz, et al., 1998). A latent growth curve model of the CV matrix 

might be able to reveal (or falsify) this hypothetical pattern. Similar CV models may be useful in 

testing hypotheses regarding changes in intelligence over time or in assessing cognitive decline 

in the elderly (Dodge et al., 2012; Wisdom et al., 2012).  

 In addition, the coefficient of variation has been used in studies of attention. In particular, 

the CV and other measures of intra-subject variability (ISV) have been used to distinguish 

between those with ADHD and controls (Klein et al., 2006). With the goal of developing a 

diagnostic aid for clinicians, these researchers computed different ISV statistics for several 

measures of attention and impulsivity. They then conducted separate principal components 

analyses for each of the ISVs. The loadings were calculated for the ADHD group and for the 

controls. The authors noted a few differences in the loadings between the analysis for the CV and 

that for the usual standard deviation. Although the authors were hesitant to endorse the CV as a 

standalone measure of variability, they suggested that the CV and the standard deviation be 

considered in tandem (Klein et al., 2006). Although this investigation does not directly translate 

into a structural model of attention, it does suggest that differences might be found between 

models based on relative versus absolute variance. This pattern suggests that structural models of 

the CV matrix may provide new information that complements the findings of traditional 

structural equation models of ADHD and related constructs.  
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 Neuroscience. Interesting applications of the CV have also appeared in the neuroscience 

literature. For instance, in an fMRI study intended to ignite a “functional connectome” project, 

Bharat et al. (2010) used voxelwise CVs of various connectivity maps to find (putative) 

functional boundaries and sharp anatomical boundaries between regions (particularly, for the 

fALFF map). They also showed that the CV values tended to be more similar within regions. 

Although this might suggest that a model considering the relative covariance of regions might be 

useful for connectivity studies, it should be noted that the validity of this application of the CV is 

somewhat dubious. The CV values calculated by Bharat et al. (2010) could take on negative 

values; that is, the scale of measurement was interval which may mean that valid comparisons 

cannot be made. They addressed (or possibly ignored) this potential issue by taking the absolute 

value of the CVs. However, given that their CV maps were in agreement with known anatomical 

structures, the analyses they presented are clearly not completely meaningless, but perhaps 

should be interpreted with care.  

 Statistics. Finally, the CV has general statistical utility as well. For instance, within the 

context of Absolute Simplex Theory (AST), the CV matrix can be used to parameterize a model 

of Guttman data (Bentler, 1971; Bentler, 2012). Guttman (1944) described a type of scale 

composed of binary items ordered from most to least difficult, such that once a participant 

answered one question correctly all of the following items would also be answered correctly. If 

there were “errors” in this data (e.g. endorsing an item and failing to endorse a later item), these 

observations would be discarded. This of course is a less than ideal solution, which combined 

with the lack of a statistical estimation and testing framework, resulted in this method falling into 

disuse (Bentler, 2012).  
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However, Bentler (1971) showed that a set of error-free Guttman data (a.k.a. an “absolute 

simplex”) could be completely represented in terms of its CV matrix, which has the form 

 Ψ𝑖𝑗 = Ψ𝑖𝑖 for 𝑖 ≥ 𝑗. (1.4) 

Furthermore, it was shown that a set of Guttman data containing errors (a.k.a. a “quasi-

simplex”), which cannot be completely recovered from the CV matrix, could be described in 

terms of a factor analytic model parameterized in terms of the CV. That is, the CV model Ψ(𝛉) 

could have the form 

 Ψ(𝛉) = 𝐷𝝁
−1ΛΦΛ𝐷𝝁

−1 + 𝐷𝝁
−1ℰ𝐷𝝁

−1, (1.5) 

where 𝛉 is a vector of model parameters, Λ is a matrix of factor loadings, Φ is the covariance 

matrix of the latent factors, and ℰ is the covariance matrix describing the unique factors. With 

modern SEM techniques it has become possible estimate and test parameters of a model with this 

struture. This is useful, in part, because it brings the Guttman Scaling method into a more 

realistic context, but also because the CV parameters (once estimated) can be used to obtain 

person scores comparable to those of item response theory (Bentler, 1971; Lewis, 2010).  
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Chapter 2. Existing Statistical Methods 

The Univariate Case 

In this section we briefly summarize the existing statistical literature regarding inference 

on the univariate CV. McKay (1932) was the first to consider the distribution of 𝜓. He showed 

that for normally distributed data, the distribution of the CV followed  non-central t-distribution, 

and this was later used to construct a confidence interval for the CV (Johnson and Welch, 1940). 

However, Koopmans, Owen, and Rosenblatt (1964) note that this confidence interval can 

sometimes have infinite length. Furthermore, they showed that by using some a priori 

information about the population mean, one could construct an interval that was guaranteed to 

have finite bounds. They also showed that for log-normal data, which has the property that the 

CV only depends on the variance (and not the mean), the situation simplifies and finite intervals 

can be guaranteed without a priori information.  

A variety of alternative methods of estimating confidence intervals for the CV have been 

developed. In particular, intervals for the CV have been constructed for data drawn from various 

distributions, including the inverse Gaussian, Poisson, and Gamma distributions (Hsieh, 1990; 

Linhart, 1965; Panichitkosolkul, 2010). More recently, other scholars constructed large-sample 

aymptotic approximations of the intervals and considered the finite-sample bias of the resulting 

intervals (Albrecher, Ladoucette & Teugels, 2010; Bao, 2009; Curto & Pinto, 2009). Finally, 

small sample theories have been used to construct confidence intervals for the CV (Vangel, 

1996; Wong & Wu, 2002). (For a comparison of several of these methods see Gulhar, Golam 

Kibria, Albatineh, and Ahmed (2012).) 

Aside from simple confidence intervals, little has been done to model the univariate CV. 

However, one study investigated how a few of the previously developed approximate 
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distributions for the CV could be used to construct tests of factorial models (Wilson & Payton, 

2002). Specifically, they considered factorial models in which the data to be modeled consisted 

of a set of univariate CVs and they applied the generalized linear model to estimate model 

parameters and test model fit.  

The Multivariate Case 

 Most work on generalizing the CV to multiple variables has focused on creating a scalar 

index which can summarize the relative variation of all of the variables simultaneously. The first 

such index, developed by Reyment (1960), can be regarded as an analog to the generalized 

variance (the determinant of the covariance matrix) (Reyment, 1960; Van Valen, 2005). 

Adopting the subscript notation of Albert and Zhang (2010), the index can be expressed as 

 

𝐶𝑉𝑅𝑅 = (
|Σ|

1
p

𝛍T𝛍
)

1
2

 , (2.1) 

where Σ is the covariance martrix, μ is the vector of means, 𝑝 is the number of variables, and |∙| 

is the matrix determinant. Reyment (1960) also developed a formula for the standard deviation of 

his CV index that can be used with large samples and briefly examined the performance of this 

measure relative to correlation and univariate CV methods. 

More recently, others have developed similar indices to address issues with Reyment’s 

formulation. Van Valen (1974, 2005) noted that because the previous definition depends on the 

determinant of the covariance matrix it may be zero or very close to zero when the matrix is ill-

conditioned even if there is substantial variation in one or more of the variables. He suggested 

replacing the numerator with the trace of the covariance matrix: 

 

𝐶𝑉𝑉𝑉 = (
𝑡𝑟(Σ)

𝝁𝑇𝝁
)

1
2

 . 
(2.2) 
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Albert and Zhang (2010) noted that although this version is more stable than the original 

formulation, it neglects information about the covariance terms entirely. They compared 𝐶𝑉𝑅𝑅 

and 𝐶𝑉𝑉𝑉 with a generalization of the (inverted) Mahalanobis distance  

 𝐶𝑉𝑉𝑁 = (𝝁𝑇Σ−1𝝁)−1/2, (2.3) 

and an index which they developed  

 

𝐶𝑉𝐴𝑍 = (
𝝁𝑇Σ𝝁

(𝝁𝑇𝝁)2
)

1
2

 (2.4) 

(Albert & Zhang, 2010; Budsaba & Smith, 2006). Albert and Zhang (2010) commented that 

although 𝐶𝑉𝑉𝑁 was scale invariant, it required matrix inversion and as result it would break 

down similarly to Reyment’s (1976) index when the covariance matrix was ill-conditioned or 

singular. On the other hand, they argued that their formulation was superior because it did not 

require matrix inversion. Accordingly, they proceeded to compare these methods and their 

corresponding confidence interval estimates in a series of applications. 

 Beyond the consideration of scalar indices, it seems that there has been little investigation 

into the distribution of the multivariate CV matrix. In a pair of brief papers, Bennett (1977, 1980) 

used normal theory to derive a joint distribution of the multivariate coefficient of variation. 

However, there was no investigation into the applications or properties of the distribution. A later 

work by Boik and Shirvani (2009) independently developed an alternative distribution of the CV 

matrix which can be applied in normal and non-normal conditions. The distribution they 

developed (described in detail below) was then used to construct principal component models of 

the CV matrix. The modeling procedure was applied to women's Olympic track data and the 

validity of hypothesis tests of the models were assessed via simulations.  
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Chapter 3. The Coefficient of Variation Matrix 

Definition 

Let 𝑌 be an 𝑛 × 𝑝 matrix containing 𝑛 observations drawn from a 𝑝-variate distribution 

with the population mean vector 𝝁 and the population covariance matrix Σ. Denote the transpose 

of each row of 𝑌 as 𝑌𝑖, so that 𝑌𝑖 is a 𝑝 × 1 vector consisting of one observation. Assuming that 

the expected values of the means are positive and bounded away from 0, we can define the 

population coefficient of variation matrix as 

 Ψ = 𝐷𝝁
−1 Σ 𝐷𝝁

−1, (3.1) 

where 𝐷𝝁 is the 𝑝 × 𝑝 diagonal matrix of means. Then, as described in (1.2) and (1.3), the 

elements of the coefficient of variation matrix Ψ𝑖𝑗 have the form Σ𝑖𝑗/(𝜇𝑖𝜇𝑗).  

Similarly, we may define the corresponding sample statistics. Let 𝜇̂ be the 𝑝-vector of 

sample means and let Σ̂ be the sample covariance matrix. Then we can define the sample CV 

matrix as  

 Ψ̂ = 𝐷𝝁̂
−1 Σ̂ 𝐷𝝁̂

−1, (3.2) 

where 𝐷𝝁̂ is the 𝑝 × 𝑝 diagonal matrix of sample means. The elements of this matrix (Ψ̂𝑖𝑗) will 

have the analogous form Σ̂𝑖𝑗/(𝜇̂𝑖𝜇̂𝑗). 

Sampling Distribution 

Boik and Shirvani (2009) derived the asymptotic distribution and finite sample bias of the 

CV matrix using the delta method. That is, they first calculated the first and second partial 

derivatives of the of the CV matrix with respect to the mean and covariance. Then, these were 

used to expand a second-order Taylor series of  √𝑛 𝑣𝑒𝑐(Ψ̂ − Ψ) around the population mean and 

covariance (where the function 𝑣𝑒𝑐(∙) simply stacks the columns of the matrix). Finally, they 
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applied central limit theorem to the Taylor expansion to obtain the asymptotic distribution of 

√𝑛 𝑣𝑒𝑐(Ψ̂ − Ψ). The main results of this procedure are summarized below; however, for details 

refer to Boik and Shirvani (2009).  

First it is helpful to describe preliminary results regarding the sampling distributions of 𝝁̂ 

and Σ̂. In particular, Boik and Shirvani (2009) derived the covariance matrix of √𝑁(𝝁̂ − 𝝁) and 

√𝑁(𝝈̂ − 𝝈), where 𝝈 = 𝑣𝑒𝑐(Σ) and 𝝈̂ = 𝑣𝑒𝑐(Σ̂). They showed that this covariance has the block 

form 

 
𝑐𝑜𝑣 [

√𝑁(𝝁̂ − 𝝁)

√𝑁(𝝈̂ − 𝝈)
] = (

Σ Ω12

Ω12
𝑇 Ω22

) (3.3) 

where  

 Ω12 = E [(𝑌𝑖 − 𝝁)(𝑌𝑖 − 𝝁)𝑇⊗2
] (3.4) 

and  

 
Ω22 =  E [(𝑌𝑖 − 𝝁)⊗2(𝑌𝑖 − 𝝁)𝑇 ⊗2

] − 𝝈𝝈′ +
2𝑁𝑝(Σ ⊗ Σ)

𝑛 − 1
. (3.5) 

In the above equations, the operator ⊗ represents the Kronecker product and 𝐴⊗𝑘 is the 𝑘𝑡ℎ 

power of the Kronecker product of matrix 𝐴 (see Appendix). In addition, 𝑁𝑝 is a matrix which 

projects onto the space of symmetric matrices and can be expressed as a product of duplication 

matrices (Boik & Shirvani, 2009; Harville, 1997). The duplication matrix 𝐷𝑝 is the unique 𝑝2 ×

𝑝∗ matrix that maps 𝑣𝑒𝑐ℎ(𝐴) to 𝑣𝑒𝑐(𝐴) and 𝑁𝑝 = 𝐷𝑝 (𝐷𝑝
𝑇 𝐷𝑝 )

−1
 𝐷𝑝

𝑇 (Boik & Shirvani, 2009; 

Harville, 1997; Magnus and Neudecker, 1999).  

Importantly, it was shown that when ‖𝐸(𝑌𝑖
⊗4)‖ is finite, √𝑛 𝑣𝑒𝑐(Ψ̂ − Ψ) converges in 

distribution to 𝒩(𝟎𝑝, ΣΨ) as 𝑛 approaches ∞, where  
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 ΣΨ = 2𝑁𝑝(Ψ ⊗ 𝐼𝑝)𝐿𝑝Ψ𝐿𝑝
𝑇 (Ψ ⊗ 𝐼𝑝)2𝑁𝑝 − Ω12

∗ 𝑇
𝐿𝑝

𝑇 (Ψ ⊗ 𝐼𝑝)2𝑁𝑝 

−2𝑁𝑝(Ψ ⊗ 𝐼𝑝)𝐿𝑝Ω12
∗ + Ω22

∗ , 

(3.6) 

where  

 Ω12
∗ = 𝐷𝝁

−1Ω12(𝐷𝝁
−1 ⊗ 𝐷𝝁

−1) (3.7) 

and 

 Ω22
∗ =  (𝐷𝝁

−1 ⊗ 𝐷𝝁
−1)Ω22(𝐷𝝁

−1 ⊗ 𝐷𝝁
−1). (3.8) 

Note that in the above expressions ‖∙‖ denotes the usual vector norm and 𝐿𝑝 is a 𝑝2 × 𝑝 matrix 

of zeros and ones that inserts rows and/or columns of zeros into another matrix via multiplication 

(details in Appendix). Boik and Shirvani (2009) also approximated the expected finite sample 

bias of the CV matrix estimate:  

 𝐸[𝑣𝑒𝑐(Ψ̂ − Ψ)]

≈
1

𝑛
{(𝐼𝑝 ⊗ 𝐿𝑝

𝑇 )𝑣𝑒𝑐[Ψ𝐿𝑝
𝑇 (Ψ ⊗ 𝐼𝑝)2𝑁𝑝 − 2Ω12

∗ ]

+ (Ψ ⊗ 𝐼𝑝)𝐿𝑝𝑣𝑒𝑐(Ψ)}.   

(3.9) 

They note that the preceding formula holds when ‖𝐸(𝑌𝑖
⊗5)‖ is finite and the error of the 

approximation is on the order of 1/𝑛2.  

 If it can be assumed that the observations 𝑌𝑖 are independent and identically distributed 

following the multivariate normal distribution 𝒩(𝝁, Σ), then the above results simplify 

somewhat. Specifically, Boik and Shirvani (2009) showed that when normality assumptions 

were met, the variance of the sampling distribution of the CV matrix becomes 

 ΣΨ = 2𝑁𝑝(Ψ ⊗ 𝐼𝑝)𝐿𝑝Ψ𝐿𝑝
𝑇 (Ψ ⊗ 𝐼𝑝)2𝑁𝑝 + 2𝑁𝑝(Ψ ⊗ Ψ). (3.10) 

The bias estimate simplifies similarly with the Ω12
∗  dropping out.  
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 Boik and Shirvani (2009) also proposed estimators for the variance of the sampling 

distribution ΣΨ. To construct an estimator according to (3.6) estimators are needed for the 

covariance matrices Ω12
∗  and Ω22

∗ . The authors suggested using the root-𝑛 consistent estimators  

 Ω̂12
∗ = 𝐷𝝁̂

−1Ω̂12(𝐷𝝁̂
−1 ⊗ 𝐷𝝁̂

−1) (3.11) 

where 

 
Ω̂12 =

𝑛 ∑ (𝑌𝑖 − 𝜇𝑖̂)(𝑌𝑖 − 𝜇𝑖̂)
𝑇⊗2𝑛

𝑖=1

(𝑛 − 1)(𝑛 − 2)
 , (3.12) 

and 

 Ω̂22
∗ =  (𝐷𝝁̂

−1 ⊗ 𝐷𝝁̂
−1)Ω̂22(𝐷𝝁̂

−1 ⊗ 𝐷𝝁̂
−1). (3.13) 

where  

 
Ω̂22 =

∑ (𝑌𝑖 − 𝜇𝑖̂)
⊗2(𝑌𝑖 − 𝜇𝑖̂)

𝑇⊗2𝑛
𝑖=1 − (𝑛 − 2)𝝈̂𝑇𝝈̂

𝑛 − 𝑝∗ − 1
 (3.14) 

Then substituting these into (3.6), they obtained the root-𝑛 consistent estimator  

 Σ̂Ψ = 2𝑁𝑝(Ψ̂ ⊗ 𝐼𝑝)𝐿𝑝Ψ̂𝐿𝑝
𝑇 (Ψ̂ ⊗ 𝐼𝑝)2𝑁𝑝 − Ω̂12

∗ 𝑇
𝐿𝑝

𝑇 (Ψ̂ ⊗ 𝐼𝑝)2𝑁𝑝 

−2𝑁𝑝(Ψ̂ ⊗ 𝐼𝑝)𝐿𝑝Ω̂12
∗ + Ω̂22

∗ . 

(3.15) 

Alternatively, if normality assumptions are met, (3.10) can be used to obtain the estimator 

 Σ̂Ψ = 2𝑁𝑝(Ψ̂ ⊗ 𝐼𝑝)𝐿𝑝Ψ̂𝐿𝑝
𝑇 (Ψ̂ ⊗ 𝐼𝑝)2𝑁𝑝 + 2𝑁𝑝(Ψ̂ ⊗ Ψ̂) (3.16) 

which is also root-n consistent.  

In addition, it should be noted that the above variances correspond to the sampling 

distribution of the large 𝑝2-vector 𝑣𝑒𝑐(Ψ), whereas the computations in the following chapters 

will require the equivalent matrices for the reduced 𝑝∗-vector 𝑣𝑒𝑐ℎ(Ψ). More precisely, the 

matrices represented in (3.15) and (3.16) contain redundant elements corresponding to the 

redundant elements in 𝑣𝑒𝑐(Ψ) and thus they are non-invertible. These redundancies can be 
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removed using the duplication matrix 𝐷𝑝 and/or the elimination matrix 𝐻𝑝, which maps 𝑣𝑒𝑐(𝐴) 

to 𝑣𝑒𝑐ℎ(𝐴), and can be expressed in terms of the duplication matrix: 𝐻𝑝 = (𝐷𝑝
𝑇𝐷𝑝)

−1
𝐷𝑝

𝑇 

(Magnus & Neudecker, 1999). In order to produce generalized least squares (GLS) estimators of 

principal component models of the CV matrix, Boik and Shirvani (2009) needed to “invert” the 

matrices in (3.15) and (3.16). To do this, they addressed the redundancy problem using the 

transformation 

 Σ̂Ψ
+ = 𝐷𝑝(𝐷𝑝

𝑇Σ̂𝛹𝐷𝑝)
−1

𝐷𝑝
𝑇 (3.17) 

to obtain the Moore-Penrose inverse Σ̂Ψ
+  (which is also a large 𝑝2 × 𝑝2 matrix). Below we will 

also consider a more intuitive (but ultimately equivalent) approach using the elimination matrix 

to obtain a smaller invertible version of Σ̂𝛹, which is defined as follows2:  

 Σ̂𝝍 = 𝐻𝑝Σ̂𝛹𝐻𝑝
𝑇 . (3.18) 

This form of the variance of the sampling distribution of the CV matrix is invertible and 

therefore readily compatible with the existing literature that we will use to develop more general 

reduced parameter models of the CV matrix.  

  

                                                 
2 Recall, that we use 𝝍 to denote 𝑣𝑒𝑐ℎ(Ψ), so this notation represents the estimated variance of the distribution of 

𝑣𝑒𝑐ℎ(Ψ). 
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Chapter 4. Structural Models 

A General Structural Modeling Method 

Although historically SEM has dealt primarily with covariance structures, the general 

principle may be applied to a wide range of statistics. For instance, one might wish to model 

means, polychoric or tetrachoric correlations, frequencies, higher-order moments, or in our case, 

coefficient of variation matrices (Bentler & Dijkstra, 1985). In this section, we introduce the 

theory behind this more general SEM framework, and in the next sections we consider how these 

methods apply to the covariance matrix and the CV matrix.  

First, let 𝒔 be a vector with length 𝑝∗ of asymptotically normal sample statistics obtained 

from 𝑛 independent observations, such that 𝒔 converges in probability to 𝒔0 as 𝑛 approaches ∞. 

Also, let Θ be a parameter space contained in ℝ𝑞 where 𝑞 ≤ 𝑝∗, and let 𝜽  be an arbitrary 

element of Θ. Then a structural model 𝓈(𝜽) is said to hold if there exists 𝜽0 ∈ Θ such that 

𝓈(𝜽0) = 𝒔0, where 𝓈(𝜽) is a continuous vector function defined on Θ and 𝒔0 contains the 

population values of the statistics in 𝒔 (Browne, 1984).  

 Next we consider the parameters 𝜽 and some of their properties. One general method of 

estimating these parameters is to minimize a discrepancy function, such as the GLS function 

 𝐹(𝒔, 𝓈(𝜽)|𝑊) = (𝒔 − 𝓈(𝜽))
𝑇

 𝑊(𝒔 − 𝓈(𝜽)), (4.1) 

with respect to 𝜽, where 𝑊 is a symmetric weight matrix. Although not addressed here, 

constraints may be placed on the values of 𝜃, and this procedure is addressed in detail by Bentler 

and Dijkstra (1985). To estimate the set of parameters 𝜽̂ at which 𝐹(𝒔, 𝓈(𝜽̂)|𝑊) is minimized, 

generally some sort of iterative algorithm is employed (such as the Gauss-Newton or Newton-

Raphson algorithms). Bentler and Dijkstra (1985) showed that when 𝒔 → 𝒔0 in probability and 

𝑊 is appropriately chosen, then 𝜽̂ will be a consistent estimator under the model 𝓈(𝜽). To be 
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specified appropriately, 𝑊 can either be a fixed positive definite matrix 𝑊0 that is constant 

across 𝑛 or it can be allowed to vary across 𝑛 if the sequence converges in probability to the 

positive definite matrix 𝑊0. Next, Bentler and Dijkstra (1985) showed that if  

 
√𝑛 [

(𝒔 − 𝒔0)

𝑣𝑒𝑐(𝑊 − 𝑊0)
] → 𝒩 ([

𝟎
𝟎

] , [
𝑉𝑠𝑠 𝑉𝑠𝑤

𝑉𝑤𝑠 𝑉𝑤𝑤
]) (4.2) 

in distribution and the model is correctly specified,   

 √𝑛(𝜽̂ − 𝜽0) → 𝒩(𝟎, (𝓈̇(𝜽0)𝑇𝑊𝓈̇(𝜽0))−1) (4.3) 

in distribution, where  𝓈̇(𝜽) =  
𝜕

𝜕𝜽′ 𝓈(𝜽). Furthermore, for the estimation to be asymptotically 

efficient, it is sufficient to select a 𝑊 that converges in probability to 𝑉𝑠𝑠
−1. These results provide 

a foundation for conducting hypothesis tests of the model 𝓈(𝜽) and the parameters 𝜽.  

 To test hypotheses regarding model fit, we can construct a test statistic by evaluating the 

GLS function in (4.1) at 𝜃 and setting 𝑊 = 𝑉̂𝑠𝑠
−1. Then  

 𝑇𝐺𝐿𝑆 = 𝑛𝐹(𝒔, 𝓈(𝜽̂)|𝑊 = 𝑉̂𝑠𝑠
−1) (4.4) 

has an approximate 𝜒2-distribution with 𝑝∗ − 𝑞 degrees of freedom (Browne, 1982; 1984). In the 

case that 𝑊 does not depend on any particular distributional assumptions, we will call this 

estimation method Arbitrary-distribution GLS (or AGLS) or equivalently we could say it is 

asymptotically distribution free (ADF). If 𝑊 is derived using normal theory assumptions, we 

will call this method Normal-theory GLS (or NGLS).  

 In addition, the result in (4.3) allows us to construct tests of individual parameters 𝜃𝑖 

using a z-test. In particular, (4.3) shows that the variance of the sampling distribution of 𝜃 is 

 Δ = (𝓈̇(𝜽0)𝑇𝑊𝓈̇(𝜽0))
−1

, (4.5) 

with 𝑊 = 𝑉̂𝑠𝑠
−1. By selecting the appropriate diagonal element of this matrix we may calculate 

the standard errors of the parameters via  
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 𝑆𝐸(𝜃𝑖) = √ Δ𝑖𝑖/𝑛 . (4.6) 

Modeling Coefficient of Variation Matrices 

 Now we may apply this framework to models of the CV matrix. Boik and Shirvani 

(2009) showed that the asymptotic sampling distribution of the CV matrix meets the 

requirements put forth by Bentler and Dijkstra (1985) for structural modeling via GLS. Thus 

when we appropriately specify CV models, we use the procedures described above to obtain 

hypothesis tests for the model fit and for the parameter estimates.  

More concretely, given some CV matrix Ψ and an appropriate model Ψ(𝛉), we can 

develop a version of the GLS function in (4.1). Let the vector sample statistics 𝒔 = 𝝍̂, where 

𝝍̂ = 𝑣𝑒𝑐ℎ(Ψ̂) (the half-vectorization of Ψ̂), and let 𝓈(𝜽) = 𝝍(𝜽), where 𝝍(𝜽) = 𝑣𝑒𝑐ℎ(Ψ(𝛉)). 

Then (4.1) becomes  

 
𝐹(𝝍̂, 𝝍(𝜽)|𝑊) = (𝝍̂ − 𝝍(𝜽))

𝑇

𝑊 (𝝍̂ − 𝝍(𝜽)), (4.7) 

which can be minimized to obtain parameter estimates. Also, the value of 𝑉𝑠𝑠 for the full 

vectorization of Ψ̂ is given by (3.6) for data with an arbitrary distribution and (3.10) for 

multivariate normal data. Moreover, there are two corresponding estimators of 𝑉𝑠𝑠. First, to 

perform AGLS estimation we can use the arbitrary-distribution form of Σ̂Ψ given in (3.15) and 

calculate Σ̂𝝍 as shown in (3.8) and let 𝑊 = Σ̂𝝍
−1. Alternatively, to perform NGLS estimation, we 

can use the normal-theory form of Σ̂Ψ and again calculate Σ̂𝝍 as shown in (3.8) and let 𝑊 = Σ̂𝝍
−1. 

Substituting these weight matrices into (4.4) along with Ψ̂ and an appropriate model, we can 

obtain AGLS and NGLS 𝜒2-test statistics, respectively. Finally, to perform hypothesis tests of 

the individual parameters of the model, we would need to evaluate the derivative 𝓼̇(𝜽) =

 
𝜕

𝜕𝜽
𝜓(𝜽) and then calculate the standard errors using (4.5) and (4.6).  
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Modeling Covariance Matrices 

In the modeling of covariance matrices, the GLS function has been studied and applied 

using a variety of different choices of 𝑊 and/or estimators of 𝑉𝑆𝑆. One option is to estimate the 

variance of the asymptotic sampling distribution of the covariance matrix, denoted Σ̂𝑆, without 

assuming any particular distribution for the data. This matrix can be computed by first 

calculating  

 𝑍𝑖 = 𝑣𝑒𝑐ℎ{(𝑌𝑖 −  𝜇̂)(𝑌𝑖 − 𝜇̂)𝑇} (4.8) 

and then  

 Σ̂𝑆 = 𝑐𝑜𝑣(𝑍). (4.9) 

Then, the corresponding weight matrix 𝑊 would be Σ̂𝑆
−1 and this would yield an AGLS test 

statistic. It is known that this test-statistic generally does not perform well in empirical 

applications, and that in the case of structural covariance modeling, a simple adjustment can 

substantially improve the test's accuracy in finite samples (Yuan and Bentler, 1997b). 

Furthermore, it is known that the empirical standard errors resulting from the ADF procedure 

tend to be substantially lower than their true values, and that this bias can be substantially 

reduced with a simple correction (Yuan & Bentler, 1997a). However, it is not clear whether 

similar corrections might be relevant to models of the CV matrix.  

 In addition, it has been shown that when the data are normally distributed, the weight 

matrix obtained from Σ̂𝑆 can be reduced to a simpler form, allowing the GLS function in (4.1) to 

simplify (Browne 1982; 1984). That is, in structural models of covariance matrices with normal 

data,  

 
𝑊 =

1

2
𝐷𝑝

𝑇(𝑊∗ ⊗ 𝑊∗)𝐷𝑝, (4.10) 
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which means that (4.1) can be expressed in terms of a 𝑝 × 𝑝 weight matrix 𝑊∗ rather than the 

much larger 𝑝∗ × 𝑝∗ matrix 𝑊:  

 
𝐹(𝒔, 𝓈(𝜽)|𝑊∗) =

1

2
𝑡𝑟[(𝑆 − Σ(𝜽))𝑊∗]

2
 (4.11) 

(Jennrich, 1970; Browne, 1974). Using this form, we can obtain a normal theory GLS 𝜒2-

statistic by setting 𝑊∗ = 𝑆−1. In addition, it is possible to perform reweighted least squares 

(RLS) estimation by allowing 𝑊∗ to be updated iteratively as 𝜽 is estimated. To do this, we set 

𝑊∗ = Σ−1(𝜽̂), where Σ(𝜽) is the model of the covariance matrix (as a function of 𝜽). In other 

words, the weight matrix is the inverse of the model's predicted covariance values given the 

current estimate of 𝜽. This method is equivalent to normal theory maximum likelihood (Lee & 

Jennrich, 1979; Bentler, 2006). Because these normal-theory estimators use smaller more easily 

estimated matrices they can be more computationally stable, but like the AGLS estimates, may 

also be biased (Yuan & Bentler, 1997a). However, if the “sandwich” covariance estimator is 

used, this bias can be reduced and the resulting estimates can be quite robust to violations (Yuan 

& Bentler, 1997a). The need for this or a similar correction may also exist in more general 

structural equation models. Finally, it should be noted that the substitution 𝑊∗ = 𝐼𝑝 can be made 

here to get the least squares estimates; however, this choice of 𝑊∗ will not result in a 𝜒2-test 

statistic (Bentler, 2006).  Therefore, this strategy will not be addressed any further here.  

Applying Covariance Methods to CV Matrix Modeling? 

 Although technically the use of the simplified form of the GLS function given in (4.11) 

would be misspecified if applied to CV matrix model estimation, the reduced complexity and 

increased stability of these methods relative to AGLS may nevertheless make them useful for 

modeling the CV matrix. Therefore, in addition to the correctly specified AGLS and NGLS 
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methods for modeling the CV matrix, we also consider variations of the covariance NGLS and 

RLS procedures described in the previous section. That is, we will also estimate CV models by 

modifying (4.11) for use with CV matrices as follows:    

 
𝐹(Ψ, Ψ(𝜽)|𝑊∗) =

1

2
𝑡𝑟[(Ψ − Ψ(𝜽))𝑊∗]

2
 (4.12) 

First, we will consider a misspecified-NGLS estimation procedure (abbreviated MGLS below) 

that uses (4.12) with 𝑊∗ = Ψ̂−1. Second, we will consider a misspecified-RLS (MRLS) 

estimation procedure that uses (4.12) with 𝑊∗ = Ψ−1(𝛉̂), where 𝛉̂ is updated iteratively. After 

minimizing the GLS function, the test-statistics and standard errors will be computed with the 

same method described previously.  

Defining Models of Coefficient of Variation Matrices 

There are a variety of possible choices for the model of the CV matrix. For example, we 

could define Ψ(𝛉) using a variation of the confirmatory factor analytic model in (1.5) (Jöreskog, 

1969). Although here we primarily consider confirmatory factor models, the theory could be 

applied to any the structural equation model of the form 

 𝜼 = 𝛽𝜼 + 𝛾𝝃 (4.13) 

where 𝜼 contains dependent variables, which may be latent or observed, 𝛽 contains the set of 

coefficients for the regression of variables in 𝜼 on other variables in 𝜼, 𝝃 contains a set of strictly 

independent variables, and 𝛾 is a set of coefficients for the regression of 𝜼 on 𝝃 (Bentler & 

Weeks, 1980). Let 𝐵 be a matrix containing 𝛽 (and known 0 elements), Γ be a matrix containing 

𝛾 (and known 0 and 1 elements), and Φ be the covariance matrix for the independent variables. 

Then we can express the modeled CV matrix in terms of the linear model as 

 Ψ(𝜽) = 𝐺(𝐼 − 𝐵)−1ΓΦT(1 − 𝐵)𝑇−1
𝐺 (4.14) 
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where 𝜽 contains the unknown elements of 𝐵, Γ, Φ, and 𝐷𝝁 and 𝐺 is a selection matrix which 

selects the observed variables. As always we will need to select models that are appropriately 

identified, to ensure that there is a unique solution for the parameters.  
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Chapter 5. General Simulation Method 

A series of studies were conducted to assess the quality of various statistics related to the 

estimation of the CV models proposed in the previous chapter. First, a preliminary study was 

conducted to examine the accuracy of the formulas for Σ̂Ψ proposed by Boik and Shirvani (2009) 

(described in Chapter 4). However, the primary goal of this study was to assess the quality of the 

parameter estimates, test statistics, and standard errors obtained from each of the estimation 

methods proposed in the previous chapter across a range of data types and models. These 

simulations are described in Chapters 7 through 11. In addition, follow-up studies were 

conducted to address concerns regarding the computational stability and accuracy of some of the 

statistics central to the CV model estimation process. These follow-up simulation are described 

in Chapters 12 and 13.  

The purpose of the current chapter is to describe the general methods that were used in all 

or most of the simulation studies mentioned above. This includes descriptions of the models, the 

data generation procedures, the estimation procedures and the replication process. Brief methods 

are also provided in each of the subsequent chapters to describe additional study-specific 

methods and deviations from the general method.  

Models 

In each simulation, a particular structural model needed to be specified. The specified 

model (a) served as the true model that gave rise to the population CV matrix, which was needed 

to generate data, and (b) was used to determine what model should be fit to the data. In each 

case, we assumed that the model fit to the data was correctly specified. However, we did vary the 

type of model and the numbers of variables included in each model.  
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One factor model. A simple one factor model was considered containing either 5 or 20 

observed variables (𝑝). In each case, the true models used to generate the data for the simulations 

had all path coefficients and variances set to 1. This is illustrated for the 5-variable case in 

Figure 5.1(a). Furthermore, these population parameter values give rise to a 𝑝 × 𝑝 population CV 

matrix of the form 

 

Ψ = Ψ(𝛉0) = (

2 1 ⋯ 1
1 2 ⋱ ⋮
⋮ ⋱ ⋱ 1
1 ⋯ 1 2

). (5.1) 

The corresponding model that was fit to the data was specified such that the factor variance, the 

error variances and all but one of the factor loadings were free parameters, while the remaining 

path coefficients were fixed to 1 to ensure that the model was identified. Figure 5.1(b) shows the 

model that was specified and estimated in simulation for the 5-variable case. The models in the 

20-variable case were defined similarly and thus are not depicted.   

 Two factor model. A two factor model was also considered with either 6 or 20 observed 

variables. The variables were split evenly so that each factor had equal numbers of indicators. 

All model parameters excluding the factor covariance were set to 1.0, and the factor covariance 

was set to 0.3. Figure 5.2(a) depicts the true model for the 6 variable condition. These parameters 

result in a population CV matrix that has the following block structure, which can be expressed 

in terms of two 
𝑝

2
×

𝑝

2
 matrices 𝐶 and 𝐷, as follows:  

 Ψ = Ψ(𝛉0) = (
𝐷 𝐶
𝐶 𝐷

), (5.2) 

where  

 
𝐶 = (

0.3 … 0.3
⋮ ⋱ ⋮

0.3 … 0.3
), (5.3) 
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and  

 

𝐷 = (

2 1 ⋯ 1
1 2 ⋱ ⋮
⋮ ⋱ ⋱ 1
1 ⋯ 1 2

). (5.4) 

In order to identify the models that were estimated in samples, one loading per factor was fixed 

to 1.0 and all paths from the error terms had coefficients fixed to 1.0. The remaining parameters 

were left as free for estimation. The parameters that were fixed and free are also depicted in 

Figure 5.2(b) for the 6 variable condition, where the free parameters are marked with asterisks. 

Again, the models in the 20-variable case were defined similarly (but with 10 variables loading 

on each factor) and therefore are not diagrammed.   

Data Generation 

To generate the data, first, the true model was used to construct the corresponding 

population CV matrix Ψ (as described above). A vector 𝝁 was also specified, and this was used 

together with Ψ to calculate the population covariance matrix Σ. Given these population 

parameters, samples could be drawn from the distribution of interest. Two types of multivariate 

distributions were considered: normal and log-normal. In addition, a variety of sample sizes were 

considered ranging from 100 to 100,000.  

Normal data. In order to generate normal data, 𝝁 was fixed and Σ was calculated from Ψ 

and 𝝁, using the relation 

 Σ = D𝛍Ψ(𝛉𝟎)D𝛍. (5.5) 

Then each observation was drawn from the multivariate normal distribution such that 

𝑌𝑖~𝒩(𝝁, Σ = D𝜇Ψ𝐷𝜇). In one condition, we considered a simple case in which the population 
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mean of each observed variable was set to 1 (i.e. 𝝁 = 𝟏𝑝).3 As a consequence, the population 

values of Σ and Ψ were identical. In another condition, we considered population means that 

differed across the variables. Namely, the means varied from 1.0 to 3.0 in 4 evenly spaced steps 

(of size 1/2) in the 𝑝 = 5 condition and 19 evenly spaced steps (of size 2/19) in the 𝑝 = 20 

condition. That is, 𝝁 = (1.0, 1.5, 2.0, … ,3.0)𝑇 and 𝝁 ≈ (1.00, 1.11, 1.22, … ,3.00)𝑇 in the 5-

variable and 20-variable conditions, respectively. The specific type or types of data considered in 

particular simulations are listed in specific method sections in the chapters below.  

Log-normal data. Next, to generate log-normal data we needed to first obtain a matrix 𝑋 

of observations 𝑋𝑖 drawn from a normal distribution with appropriate population parameters, i.e. 

𝑋𝑖~𝒩(𝝁, Σ), and then transform these observations according to the relation 

 𝑌𝑖𝑗 = 𝑒𝑋𝑖𝑗 . (5.6) 

The resulting observations 𝑌𝑖 have a multivariate log-normal distribution. However, in order to 

ensure that 𝑌𝑖 was drawn from a population with the specified value of Ψ, we first needed to use 

some of the special properties of log-normal data to determine what values of 𝝁 and Σ should be 

used to generate the data 𝑋𝑖. In particular, Tarmast (2001) showed that the elements of the mean 

vector and covariance matrix of multivariate log-normal data can be expressed as functions of 

the mean and covariance of the untransformed data as follows: 

 
𝐸[𝑌]𝑖 = 𝑒𝜇𝑖+

1
2

Σ𝑖𝑖 (5.7) 

and 

                                                 
3 Note that while 1 is not a large positive number, given the samples sizes considered here, it is substantially larger 

than 0 in terms of the standard error of the mean.  
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𝐶𝑜𝑣[𝑌]𝑖𝑗 = 𝑒𝜇𝑖+𝜇𝑗+

1
2

(Σ𝑖𝑖+Σ𝑗𝑗)(𝑒Σ𝑖𝑗 − 1). (5.8) 

Therefore, the corresponding CV matrix of the log-normal data would have elements  

 Ψ𝑖𝑗 = 𝑒Σij − 1, (5.9) 

which like the univariate analog do not depend on the mean. Consequently, the elements of the 

covariance matrix of the untransformed data can be expressed in terms of the elements of Ψ as 

follows:  

 Σ𝑖𝑗 = log(Ψ𝑖𝑗 + 1). (5.10) 

Therefore, we generated log-normal data from a population with the CV matrix Ψ by first 

calculating Σ according to (5.10) and setting 𝝁 = 𝟏𝑝, then generating observations 𝑋𝑖~𝒩(𝝁, Σ) 

and finally transforming 𝑋 to 𝑌 via (5.6).  

Estimation 

Each sample was fit to the models described above using each of the four CV-model 

estimation methods described in Chapter 4. More specifically, the models were fit by minimizing 

the GLS function in (4.1) using four different choices of the weight matrix 𝑊. Two correctly 

specified forms of GLS estimation were performed by setting 𝑊 = Σ̂Ψ
−1 (defined in Chapter 3). 

The first version, using Σ̂Ψ as it is defined in (3.15), is intended for data with an unknown or 

arbitrary distribution and, as noted previously, will be referred to as the AGLS method. The other 

version, which uses Σ̂Ψ as it is defined in (3.16), is intended for normally distributed data and, as 

noted previously, will be referred to as the NGLS method. In addition, two misspecified 

estimation methods, MGLS and MRLS, were employed. These are also described in Chapter 4 

and used a weight matrix of the form given in (4.10) with 𝑊∗ = 𝑆̂−1 for the MGLS procedure 

and 𝑊∗ = 𝒮(𝜃)
−1

for the MRLS procedure.  
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 The minimization was accomplished using optimizers built in to the statistical 

programming language R (version 3.1.0). In particular, Gauss-Newton and quasi-Newton 

methods, as implemented in the nlm and optim functions of the R stats package, were used (R 

Core Team, 2014). The initial values of the free parameters 𝜽, found in various components of 

the structural models defined in (4.13) and (4.14), were set to the default EQS start values as 

described by Bentler (2006).  For each sample, these start values and the appropriate GLS 

function (i.e. the criterion function) were provided to the optimizers, and the final parameter 

estimates were taken from whichever method yielded the lowest estimate of the criterion. The 

minimization algorithms also returned a value for the GLS function in (4.7), which was 

multiplied by the sample size to obtain a 𝜒2-test statistic with 𝑝∗ − 𝑞 degrees of freedom as 

shown in (4.8).  

 Once the parameter estimates were computed, the standard errors were calculated. The 

derivative needed to compute Δ (and the standard errors), shown in (4.5), was computed 

numerically using the jacobian function found in the R numDeriv package (Gilbert & Varadhan, 

2012). Finally, (4.5) and (4.6) were used to obtain the standard errors of the parameter estimates.  

Replications 

 Above we have described a variety of conditions, each with a particular model, number 

of observed variables, data type, and sample size. In each of these conditions, we drew 500 

samples of size 𝑁 from the specified distribution and calculated a set of results and/or fit the 

appropriate model. The 500 sets of results were recorded and analyzed. The details of these 

procedures are described in the following chapters.  
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Figures 

 

Figure 5.1. The 5-variable one-factor model is depicted, with (a) showing the true model and (b) 

showing the model that was estimated with the asterisks (*) indicating free parameters. 
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Figure 5.2. The 6-variable two-factor model is depicted, with (a) showing the true model and (b) 

showing the model that was estimated with the asterisks (*) indicating free parameters. 
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Chapter 6. Analysis of the Convergence of 𝚺̂𝝍 to 𝚺𝝍 

In order to examine the asymptotic behavior of our two estimators of Σ𝝍, we compared 

the estimates produced from a large set of simulated samples to the population values. In the case 

of normally distributed data, with known parameters, the population value can be computed 

exactly using (3.10). However, when the data are non-normal this is not possible, so a very-

large-sample estimate was used in place of the population value. The goals of this simulation 

were to confirm that the estimators did converge to their expected values, and to considered the 

samples sizes required to produce reasonable estimates of Σ𝝍. 

Method 

 Conditions. In this simulation, the simple one-factor model with 5 variables (with means 

of 1) was examined as the sample size increased. The sample size values considered were 100, 

300, 500, 1000, 10,000, and 100,000 and both normal and log-normal data were analyzed.  

 Calculating the Population Values of 𝚺𝝍. When the data are normally distributed with 

known parameters, ΣΨ can be calculated exactly using (3.10). Because (3.10) contains redundant 

elements (as described in Chapter 3), this matrix was reduced using the elimination matrix, as is 

demonstrated in (3.18), for an estimator of ΣΨ. This yielded a 𝑝∗ × 𝑝∗ matrix, called Σ𝝍, that is 

the population covariance matrix of 𝑣𝑒𝑐ℎ(𝝍). Therefore, in the normal data conditions, our 

estimators (Σ𝝍) could be compared directly with the population matrix Σ𝝍. 

 However, for non-normal data there is no known way to calculate the population value of 

ΣΨ. Specifically, this is not known because (3.10) does not apply for non-normal data, and the 

arbitrary distribution form of ΣΨ, given in (3.6), requires knowledge of the population values of 

Ω12 and Ω22, which are not known (descriptions of Ω12 and Ω22 may be found in Chapter 3). 
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Therefore, when the data were log-normal, instead of calculating an exact population value of Σ𝝍 

we produced a very-large-sample estimate of Σ𝝍 using a sample size of 500,000 and used this in 

place of Σ𝝍 in the analyses described below. In addition, to provide some validation for this 

approach, a very-large-sample estimate of Σ𝝍 was also produced in the case of normal data and 

we examined the difference between this estimate and the known population value of Σ𝝍.4  

Comparison of the 𝚺̂𝜓 and 𝚺𝜓. To assess the difference between an estimate of Σ̂𝝍 and 

the population matrix Σ𝝍 we took the difference between the two matrices and because the 

matrices are both symmetric, we then selected only the unique elements of the difference matrix 

(by taking the half-vectorization). That is, we calculated a set of residuals (𝑟𝑒𝑠) corresponding to 

the unique elements of Σ𝝍 such that  

 𝑟𝑒𝑠 =  𝑣𝑒𝑐ℎ(Σ̂𝝍 − Σ𝝍). (6.1) 

 

Note that since Σ̂𝝍 and Σ𝝍 have dimensions 𝑝∗ × 𝑝∗, 𝑟𝑒𝑠 is a vector of length 𝑝∗∗ =
𝑝∗(𝑝∗+1)

2
. 

Next, the elements of 𝑟𝑒𝑠 were squared and the average of the elements was taken to produce a 

form of mean squared error (𝑀𝑆𝐸) as follows:  

                                                 
4 Each of these matrices described in this section are also reported in Appendix B. The exact value of Σ𝝍, as 

calculated for the normal data condition considered here, is reported in Table B.1. The very-large-sample 

approximation of Σ𝝍 that was calculated in the normal data condition is reported in Table B.2. In addition, the 

differences between the corresponding elements of Σ𝝍 and its very-large-sample approximation are reported in 

Table B.3. Finally, the very-large-sample approximation of Σ𝝍 that was calculated in condition using log-normal 

data is reported in Table B.4.  
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𝑀𝑆𝐸 =

∑ 𝑟𝑒𝑠𝑖
2𝑝∗∗

𝑖=𝑖

𝑝∗∗
 (6.2) 

Note, the 𝑀𝑆𝐸 in the above formula is a scalar index summarizing the average error of the 

elements of the matrix. This index was calculated in each sample using both the arbitrary 

distribution and normal theory versions of the estimator Σ̂𝝍. When the data were drawn from a 

normal distribution, then the known population value of Σ𝝍 was used in (6.1). When the data 

were drawn from a log-normal distribution, the population value of Σ𝝍 was not known, so the 

very-large-sample estimate was substituted into (6.1) in place of Σ𝝍.5 

Analyses. In each of the 500 samples, an arbitrary distribution theory and a normal 

theory value of the 𝑀𝑆𝐸 were computed using the appropriate value of Σ𝝍 (described above). 

This produced a set of 500 scalar 𝑀𝑆𝐸 values for each method and condition. For each of these 

sets, the mean, standard deviation and five-number summaries were calculated and reported 

below.  

Results 

The summary statistics describing the 𝑀𝑆𝐸 values in the normal data condition are 

presented in Table 6.1 for the arbitrary distribution form of the estimator of Σ𝝍, and in Table 6.2 

for the normal theory form of the estimator of Σ𝝍. As shown in the tables, for the smallest 

samples (𝑁=100) the average 𝑀𝑆𝐸 value for the arbitrary distribution estimator was about 727 

and that for the normal theory estimator was about 643. As the sample sizes increased, the 

average 𝑀𝑆𝐸 values consistently decreased and in the largest sample size (𝑁=100,000) these 

                                                 
5 The value of Σ𝝍 used to calculated the 𝑟𝑒𝑠 and subsequently the 𝑀𝑆𝐸 in the normal data condition is reported in 

Table B.1 of Appendix B and that used in the log-normal data condition is reported in Table B.4 of Appendix B.  



36 

 

values were about 0.15 for the arbitrary distribution estimator and 0.14 for the normal theory 

estimator. In this condition, with a few exceptions, the minimums, maximums, and quartiles also 

tended to decrease.  

The summary statistics describing the 𝑀𝑆𝐸 values in the log-normal data condition are 

presented in Table 6.3 for the arbitrary distribution form of the estimator of Σ𝝍, and in Table 6.4 

for the normal theory form of the estimator of Σ𝝍. Unlike the normal data case, the average 𝑀𝑆𝐸 

values did not neatly converge towards 0. The average values seemed to be much larger than 

they were for normal data and the values went up and down as the sample size increased. This 

may be due to the skew and extreme values in the distribution. Extremely large maximum values 

of the 𝑀𝑆𝐸 were particularly common when the arbitrary distribution estimator was used. 

However, the median values did consistently decrease for both methods. The median 𝑀𝑆𝐸s of 

the arbitrary distribution estimator, decreased from 7779 (with 𝑁=100) to 2260 (with 

𝑁=100,000). However, those of the normal theory estimator only decreased from 7490 (with 

𝑁=100) to 6650. Given these results, it seems that for this sort of non-normal data, the normal 

theory estimates are more stable, but typically less accurate than the arbitrary distribution theory 

estimators.  

Discussion  

In summary, these results show some instances where the estimators of Σ𝝍 seem to 

behave appropriately and other instances where they break down. Specifically, the estimators 

seem to work fairly well when the data are normally distributed. In this case, both the arbitrary 

distribution and normal theory estimators converged asymptotically to the theoretical value of 

Σ𝝍. However, the errors in these estimates may be quite large in samples with a size less than 

1000 and it is difficult to say what effect this might have on the estimation process and the 
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resulting parameters and test statistic values. In contrast to the case with normal data, the 

estimators had more difficultly when the data were log-normally distributed. The typical errors 

arising from the use of the arbitrary distribution estimator of Σ𝝍 seemed to gradually decline, but 

the magnitudes of these errors at the observed sample sizes were in general very large, which 

may indicate that even if the arbitrary distribution estimator converges to Σ𝝍, it may do this too 

slowly to be of any real use in estimation. Furthermore, extremely large values of the 𝑀𝑆𝐸 were 

still prevalent at large sample sizes, indicating that for at least some samples the estimated values 

of Σ𝝍 (particularly those given by the arbitrary distribution theory) were wildly inaccurate. 

Lastly, this simulation suggests that the normal theory estimator is not robust to violations of 

normality. Although the estimation errors produced for the log-normal data were often smaller 

than those of the arbitrary distribution estimator, the improvements seen with increases in sample 

size, seemed to stagnate quickly. This suggests that these estimators will not perform well in 

non-normal data, but how this will effect model estimation is not yet clear. The following 

chapters will begin to assess this question.  

Additionally, there are some other possible explanations for the large discrepancies seen 

between the observed and theoretical values of Σ𝝍 seen in the condition with log-normal data. 

The first and most obvious possibility, is that there is an error in the either the theoretical 

formulas or the implementation of the method. Extensive testing has not revealed a coding error, 

but that does not preclude the possibility. If there is a theoretical error in the formulas for Σ𝝍 or 

Σ̂𝝍, that may be particularly difficult to detect. Besides human error, the discrepancies could be 

caused by the use of the very-large-sample approximation. The apparent convergence rate of the 

arbitrary distribution estimator shown in Table 6.3 is very slow but does seem to occur at least 

for median values. Perhaps when the data are log-normally distributed a sample larger than 
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500,000 is required to obtain an accurate fix on the population value. Moreover, there could be 

some unstated or unknown assumption or condition required by the estimators that is not met by 

some forms of non-normal data. For instance, there could be an implicit distributional 

assumption that is violated, or perhaps there is numerical instability is leading to violations of 

boundary conditions or division by near-zero numbers. The large and non-decreasing nature of 

the maximum values of the 𝑀𝑆𝐸s resulting from the arbitrary distribution estimator (relative to 

those of the normal theory estimators) lends some support for the possibility of a numerical 

instability issue. However, in any case, additional work is required to determine the source of the 

deviations between the theoretical and estimated values of Σ𝝍.  

This work could be extended to address the concerns raised above. For example, perhaps 

it is possible to find or construct a method of calculating the exact population value Σ𝝍for 

arbitrary distributions. If future theoretical research into this was successful, it would be possible 

to see if the problem persists when the true value is used rather than a very-large-sample 

approximation. Moreover, work could be done to examine the computation stability of the 

estimated matrices. This could help determine whether there is a problem with division by a 

near-zero number and to determine when these matrices will be numerically stable enough to be 

inverted (as is required for CV model estimation). This topic is partially addressed in chapters 12 

and 13, which follows up on some of the questions raised here and in the next few chapters.   

Future work might also consider whether the individual elements of the Σ̂𝝍 exhibit 

differential performance. It could be the case that some of the elements converge more quickly 

than others, or that some have more potential variability. For instance, do the elements 

describing variances of elements of the CV matrix behave differently than those describing 

covariances of elements of the CV matrix? If it turned out that some of the elements were 
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behaving poorly, this may help isolate a theoretical issue or help identify means of producing 

more robust estimates.  

 As noted above, it also remains to be seen how these estimators will perform in the task 

of model estimation. This question is considered in depth for both normal and non-normal data 

with different structures in the next few chapters.  
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Tables 

Table 6.1. Summary statistics for the 𝑀𝑆𝐸s of the arbitrary distribution version of 𝛴̂𝜓 for normal 

data. 

N Mean SD  Min Q1 Med Q3 Max 

100 727.38 2958.60  6.02 47.86 84.09 259.52 36829.15 

300 81.97 157.52  2.36 16.19 29.69 69.13 1835.26 

500 48.15 105.25  1.74 10.52 19.01 41.99 1514.97 

1000 17.82 26.11  0.88 5.24 10.03 19.34 269.62 

10,000 1.47 1.57  0.06 0.53 0.94 1.80 11.55 

100,000 0.15 0.14  0.01 0.05 0.10 0.18 0.86 

 

 

Table 6.2. Summary statistics for the 𝑀𝑆𝐸s of the normal theory version of 𝛴̂𝜓 for normal data. 

N Mean SD  Min Q1 Med Q3 Max 

100 643.14 2620.74  6.35 45.36 79.02 243.69 39613.26 

300 78.74 154.17  1.26 14.78 28.82 61.52 1467.97 

500 45.03 103.11  0.74 9.98 17.59 39.62 1555.40 

1000 17.11 25.55  0.52 5.25 9.41 17.82 255.36 

10,000 1.40 1.50  0.04 0.50 0.88 1.68 10.13 

100,000 0.14 0.14  0.00 0.05 0.09 0.18 0.83 
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Table 6.3. Summary statistics for the 𝑀𝑆𝐸s of the arbitrary distribution version of 𝛴̂𝜓 for log-

normal data. 

N Mean SD  Min Q1 Med Q3 Max 

100 15339 113995  3202 6915 7779 8281 2465508 

300 37038 195759  2846 6350 7244 8043 2292974 

500 222368 2157830  3339 5871 6784 7836 29423057 

1000 94859 1096735  2860 5271 6291 7647 23688653 

10,000 881873 16697903  933 3139 4046 8604 372671488 

100,000 107042 1473562  523 1476 2260 8944 31426238 

 

 

Table 6.4. Summary statistics for the 𝑀𝑆𝐸s of the normal theory version of 𝛴̂𝜓 for log-normal 

data. 

N Mean SD  Min Q1 Med Q3 Max 

100 364848 7879649  2304 6804 7490 8037 176197165 

300 11529 49026  3054 6407 7113 7624 854765 

500 32510 311359  2691 6398 7035 7444 4363580 

1000 6838 3235  3133 6308 6814 7196 72923 

10,000 6628 520  4208 6456 6686 6847 14668 

100,000 6632 112  5977 6571 6650 6703 6944 
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Chapter 7. Quality of Parameter, Standard Error and Test Statistic Estimates: One Factor 

Models of Normal Data with Variables with Equal Population Means  

In this chapter and the following four chapters we examined the performance of the 

AGLS, NGLS, MGLS and MRLS methods of estimating CV models in terms of the parameter 

estimates, standard error estimates and test-statistics in finite samples. These chapters are 

organized by model and data type, with Chapters 7 through 9 addressing one-factor models and 

Chapters 10 and 11 addressing two-factor models. In addition, the current chapter, along with 

Chapters 8 and 10 consider models of normal data, whereas Chapters 9 and 11 consider data with 

a log-normal distribution. The current chapter specifically addresses simple one-factor models of 

normal data with all variable means equal to 1.  

Method 

Conditions. Normally distributed data were generated according to the structure shown 

in Figure 5.1. The models included either 5 or 20 variables, and the population means of the 

variables were either fixed to 1 or allowed to vary from 1 to 3 (see Chapter 5 for details). The 

sample sizes in the 5-variable case ranged from 100 to 100,000, whereas in the 20-variable case, 

they ranged from 300 to 100,000. 

 Analyses. For each condition and estimation method, 500 samples were drawn, and for 

each sample, 𝜒2-test statistics, parameter estimates and standard errors were calculated, as 

described in Chapters 4 and 5. In addition, each estimated 𝜒2-test statistic was compared to a 

critical value obtained from the appropriate asymptotic  𝜒2 distribution in order to conduct a 

hypothesis test to assess the model fit at the .05-level. The percentage of models rejected was 

then compared to the expected 5% rejection rate. Finally, the means and standard deviations of 

the parameter estimates and their corresponding standard errors were calculated. This allowed 
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the average parameter estimates to be compared to their true values and the average estimated 

standard errors to be compared to the empirical standard errors (i.e. the standard deviations of the 

set of 500 parameter estimates).  

Results  

Convergence. In some replications, not all of the estimation methods were able to 

converge. In the 5-variable case with 𝑁=100, the AGLS method did not converge for two 

samples and the NGLS method did not converge for three samples. These cases were excluded 

from the analyses below. In addition, in the 20-variable case with 𝑁=300, there were two cases 

of non-convergence for the MGLS method.  

Parameter Estimates and Standard Errors. Tables 7.1 through 7.4 show the means 

and standard deviations of the factor loadings, factor variance and errors variances for each of 

the four methods in the 5-variable condition. Each table displays the results for one sample size 

(100, 300, 500, and 1000, respectively). In the population, each parameter (including the factor 

loadings, the factor variance and the error variances) has a population value of 1 and the tabled 

results were contrasted with this value. In particular, all methods seemed to yield reasonable but 

slightly high estimates of the factor loadings and these estimates got closer to 1 as the sample 

size increased. For the first factor loading, this trend is depicted with boxplots in Figure 7.1. 

However, the factor and error variance estimates obtained from the AGLS and NGLS methods 

tended to be a low, particularly in the 𝑁=100 and 𝑁=300 conditions. This is illustrated in Figure 

7.2 for the factor variance and Figure 7.3 for the first error variance. The figures also reveal how 

the variance estimates improved with increases in sample size.  

The theoretical standard errors are also displayed in Tables 7.1 through 7.4. The quality 

of these estimates was assessed by contrasting them with the standard deviations of the 
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parameters (i.e. the empirical standard errors). It seems that while the MGLS and MRLS 

methods tended to produce underestimates of the standard errors, the AGLS and NGLS methods 

produced slightly conservative standard error estimates. As the sample size increased, all 

methods yielded estimates that were progressively closer to the empirical standard errors. 

However, the AGLS and NGLS standard errors continued to be a bit high and the MGLS and 

MRLS methods continued to be a bit low.  

Tables 7.5 through 7.8 show the means and standard deviations of some of the parameter 

estimates of each of the four methods in the 20-variable condition. Again, each table displays the 

results for one sample size (300, 500, 1000 and 10,000, respectively), and the tables show the 

results for the first 6 factor loadings, the factor variance and the first 7 error variances. In this 

case, the factor loading estimates were still quite accurate in all methods. The largest deviations 

from the population values of the factor loadings were seen in the 𝑁=300 condition for the 

AGLS estimates, which were somewhat higher than those of the other methods (see Table 7.5). 

In addition, there were differences in the variability of the estimates across methods, which is 

apparent in the boxplots for the first factor loading shown in Figure 7.4 (as well as in tables). 

While the factor loading estimates were generally good, the variance estimates for the factor and 

the errors were quite poor for the AGLS and NGLS methods. For example, Table 7.4 shows that 

in the smallest sample size, these values tended to be in the 0.2-0.4 range, well below the 

population value of 1.0. Interestingly, the NGLS variance estimates were lower than the AGLS, 

in spite of the data following a normal distribution. The variance estimates obtained from the 

NGLS and NRLS methods were substantially better (e.g. they were in the range of 0.8 to 1.1 in 

the 𝑁=300 condition). The underestimation of the factor and error variances by the AGLS and 

NGLS methods persisted into the largest samples sizes. With 𝑁=1000, the estimated variances 
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were in the 0.5-0.6 range, and with 𝑁=10,000 they were in the 0.9-1.0 range. These trends can be 

seen in the boxplots of the factor variance and first error variance in Figures 7.5 and 7.6, 

respectively.  

Again, the theoretical standard errors for the 20-variable conditions are displayed in 

Tables 7.5 through 7.8, and these were compared against the standard deviations of the 

parameters (i.e. the empirical standard errors). Similarly to the 5-variable condition, in the 20-

variable condition the MGLS and MRLS methods tended to underestimate the standard errors, 

while the AGLS and NGLS methods tended to overestimate the standard errors. As the sample 

size increased, the all methods yielded better estimates, but the estimates from the AGLS and 

NGLS converged more quickly with the corresponding standard deviations of the parameters, 

and with 𝑁=10,000, the estimates were still noticeably better than the MGLS and MRLS 

estimates.  

 Test Statistics. In the 5-variable condition, the population/theoretical value of the 𝜒2-test 

statistic was 5. As shown in Table 7.9, in this condition the AGLS and NGLS methods 

underestimated the 𝜒2 value, but improved as the sample size increased. Specifically, with 

𝑁=100, the average 𝜒2 value was 3.669 for AGLS and 3.820 for NGLS, and with 𝑁=1000, the 

average 𝜒2 value was 4.835 for AGLS and 4.823 for NGLS. In contrast, the MGLS and MRLS 

methods were consistently close to the population value for all sample sizes. Table 7.10 provides 

another look at the discrepancies between the observed and population 𝜒2 values by considering 

the results of hypothesis tests of the 𝜒2 value. Specifically, the table shows the percentage of 

replications that would have resulted in an incorrect rejection of the model, which should happen 

5% of the time with 𝛼 = 0.05. While the MGLS method consistently provided rejection rates 

that were close to the correct value, with estimates between 4.0% and 6.0%, the AGLS, NGLS, 



46 

 

and MRLS methods dramatically under-rejected at low sample sizes. The AGLS and NGLS 

methods did not reject any models when the sample size was 100, but they generally got closer to 

the appropriate value as the sample size increased. The MRLS method was a bit better, rejecting 

3.6% of models in the 𝑁=100 condition and gradually improving. It is also worth noting that all 

methods over-rejected the model in the 𝑁=100,000 condition, with rejection rates of 5.8% for the 

AGLS method and 6.0% for the other methods. Figures 7.7 through 7.10 depict histograms of the 

𝜒2-test statistics as the sample size increases. In particular, Figures 7.7 and 7.8 show the initial 

underestimation of the 𝜒2 value for the AGLS and NGLS methods, respectively. On the other 

hand, Figures 7.9 and 7.10 show that the MGLS and MRLS methods, respectively, generally 

produced 𝜒2 estimates that more closely matched the expected distribution.  

 The test statistics in the 20-variable condition followed the same trends as those observed 

in the 5-variable condition, but the discrepancies between the observed values and population 

values were more pronounced, and larger sample sizes were required to obtain approximately 

correct values. Table 7.11 shows the means and the standard deviations of the 𝜒2-test statistics 

for each method and sample size and Table 7.12 shows the rejection rates resulting from 

hypothesis tests of the model for each method and sample size. Once again, most of the methods 

underestimated the 𝜒2-test statistics. The underestimation was particularly profound for the 

AGLS and NGLS procedures, which yielded 𝜒2 values close to 50 in the 𝑁=100 condition and 

close to 100 in the 𝑁=1000 condition. Eventually, with 𝑁=100,000 the 𝜒2 values were closer to 

the expected value of 170. This issue was also reflected in the rejection rates, as the AGLS and 

NGLS methods did not reject any models in sample sizes less than 10,000. The extent of the 

deviation from the expected distribution is also displayed graphically in Figure 7.11 for the 

AGLS method and in Figure 7.12 for the NGLS method. The MGLS and MRLS procedures 
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performed much better. The MGLS method had the best performance: the average 𝜒2 estimates 

were close to the population 𝜒2 value of 170, and the model rejection rate was close to the 

expected rejection rate of 5%. The histograms of the estimated 𝜒2 values obtained through 

MGLS also appear consistent with the expected 𝜒2 distribution, as shown in Figure 7.13. 

However, the MRLS method still somewhat underestimated the 𝜒2 values. With a sample size of 

100, the average MRLS 𝜒2 value was about 161, and with a sample size of 1000, it was about 

168. However, even this seemingly small deviation seen in the 𝑁=1000 condition was enough to 

produce a rather concerning issue with under-rejection. Specifically, only 2.60% of models were 

rejected. In Figure 7.14 shows histograms of the MRLS 𝜒2 estimates. The underestimation is 

particularly apparent in the 𝑁=300 and 𝑁=500 conditions. 

Discussion 

 The results of this study seem to suggest that AGLS and NGLS may be viable methods 

for estimating CV models when there only a few variables and the sample size is quite large. 

However, they also suggest that when there are many variables, the estimation procedures will 

not yield accurate 𝜒2 values or parameter variance estimates unless the sample sizes are 

unrealistically large. In addition, this study showed that the MGLS and MRLS methods may be 

good choices for estimating CV models when the data are normal, even though they are 

misspecified. In particular, the MGLS method performed quite well in both the large and small 

samples with both 5 and 20 variables. This is interesting because it suggests that MGLS was able 

to provide stable parameter estimates and accurate test statistics in conditions when the correctly 

specified methods could not. The MRLS method also performed fairly well relative the AGLS 

and NGLS methods. However, it did not perform as well as the MGLS method particularly in 
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terms of estimating the parameters and 𝜒2-test statistics in cases with a large number of 

variables.  

It is also noteworthy that while all of the estimation methods seemed to be able to 

accurately estimate the factor loadings, the AGLS and NGLS methods tended to underestimate 

the variance parameters. This tendency was exacerbated when the model contained a large 

number of variables. This tendency has also been observed in ADF estimation of structural 

models of covariance matrices. In the present simulations, the models were identified by fixing 

path coefficients (i.e. for the error variances and for one of the factor loadings); however, 

perhaps the AGLS and NGLS estimation methods would do better if the models were identified 

by fixing variance components and estimating the path coefficients. This could be investigated 

by re-running these simulations using a slightly different model specification and comparing the 

results. If this is effective, it is also possible that a similar trick might be used in structural 

covariance models. 

Also, with regards to the estimation of the test statistics for models containing a large 

number of variables, the AGLS and NGLS estimation methods produced 𝜒2 values that 

converged to their expected distributions at a comically slow rate. Possibly, theoretical work 

could be done to improve this convergence rate so that the 𝜒2 values were approximately correct 

within the range of realistic sample sizes. Without a solution along these lines, the AGLS and 

NGLS estimated model fit statistics will not be useful when there are more than a few variables 

to be modeled.  

Furthermore, it should be noted that initially these simulations were planned to be 

completed in samples sizes ranging from 100 to 1000 for both the 5-variable and 20-variable 

conditions. However, in the 20-variable condition, it quickly became apparent that the Σ̂𝝍 
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matrices were numerically non-invertible with a sample size of 100. That is, in small samples the 

Σ̂𝝍 matrices were not positive semi-definite. Therefore, the simulations were not run in the 

smallest sample size condition in the 20-variable case, and the sample size range was increased 

to include larger values. However, in order to assess the source of this problem, additional 

simulations were run to consider potential causes of the numerical stability in Σ̂𝝍 and to examine 

a potential solution relying on Winsorization. Because it seems plausible that the root of the 

problem is that the CV matrix itself is unstable, in Chapter 12 we examined the condition 

numbers of the CV matrix relative to the sample covariance matrix. Then in Chapter 13 we 

examined the condition numbers of the Σ̂𝝍 relative to Σ̂𝑺 (the covariance matrix describing the 

sampling distribution of the sample covariance matrix).  
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Tables  

Table 7.1. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of normal data with 5 

variables with equal population means and N=100. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.015 1.015 1.011 1.017  0.893  0.816 0.802 0.811 0.821 0.823 

𝑆𝐷  0.241 0.242 0.239 0.244  0.369  0.303 0.299 0.295 0.307 0.318 

𝑆𝐸𝜃̂ 
𝑀  0.275 0.276 0.276 0.277  0.424  0.344 0.334 0.337 0.347 0.347 

𝑆𝐷  0.111 0.113 0.097 0.101  0.215  0.169 0.175 0.166 0.180 0.176 

                

NGLS 

𝜃 
𝑀  1.011 1.017 1.016 1.011  0.865  0.799 0.786 0.799 0.806 0.807 

𝑆𝐷  0.199 0.215 0.211 0.213  0.330  0.278 0.276 0.288 0.289 0.303 

𝑆𝐸𝜃̂ 
𝑀  0.281 0.281 0.284 0.283  0.424  0.349 0.338 0.343 0.350 0.350 

𝑆𝐷  0.082 0.087 0.086 0.080  0.202  0.169 0.174 0.171 0.181 0.176 

                

MGLS 

𝜃 
𝑀  1.008 1.017 1.018 1.018  1.108  1.011 0.985 0.997 1.014 1.015 

𝑆𝐷  0.225 0.236 0.238 0.241  0.472  0.367 0.375 0.374 0.388 0.379 

𝑆𝐸𝜃̂ 
𝑀  0.166 0.168 0.168 0.169  0.288  0.186 0.181 0.183 0.186 0.186 

𝑆𝐷  0.047 0.052 0.050 0.049  0.104  0.064 0.066 0.065 0.067 0.065 

                

MRLS 

𝜃 
𝑀  1.008 1.017 1.017 1.016  1.093  1.091 1.064 1.076 1.098 1.100 

𝑆𝐷  0.227 0.238 0.239 0.239  0.468  0.396 0.402 0.398 0.419 0.407 

𝑆𝐸𝜃̂ 
𝑀  0.171 0.173 0.173 0.174  0.290  0.195 0.189 0.191 0.194 0.195 

𝑆𝐷  0.049 0.054 0.052 0.050  0.105  0.067 0.069 0.067 0.071 0.068 
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Table 7.2. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of normal data with 5 

variables with equal population means and N=300. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.007 1.021 1.010 1.019  0.955  0.922 0.929 0.938 0.938 0.929 

𝑆𝐷  0.125 0.131 0.129 0.125  0.228  0.188 0.184 0.185 0.202 0.187 

𝑆𝐸𝜃̂ 
𝑀  0.136 0.138 0.136 0.137  0.232  0.193 0.194 0.197 0.197 0.194 

𝑆𝐷  0.021 0.022 0.022 0.022  0.066  0.051 0.052 0.051 0.054 0.051 

                

NGLS 

𝜃 
𝑀  1.006 1.019 1.009 1.018  0.956  0.923 0.928 0.936 0.937 0.927 

𝑆𝐷  0.125 0.129 0.126 0.120  0.227  0.184 0.182 0.183 0.200 0.186 

𝑆𝐸𝜃̂ 
𝑀  0.136 0.138 0.137 0.138  0.232  0.194 0.195 0.198 0.198 0.196 

𝑆𝐷  0.019 0.020 0.020 0.020  0.065  0.051 0.051 0.050 0.054 0.051 

                

MGLS 

𝜃 
𝑀  1.006 1.020 1.010 1.019  1.035  0.998 1.003 1.012 1.014 1.002 

𝑆𝐷  0.129 0.134 0.131 0.126  0.258  0.198 0.198 0.198 0.215 0.201 

𝑆𝐸𝜃̂ 
𝑀  0.095 0.096 0.095 0.096  0.158  0.104 0.104 0.105 0.105 0.104 

𝑆𝐷  0.015 0.016 0.015 0.015  0.033  0.020 0.019 0.019 0.021 0.019 

                

MRLS 

𝜃 
𝑀  1.007 1.020 1.010 1.019  1.030  1.023 1.027 1.039 1.040 1.028 

𝑆𝐷  0.129 0.134 0.131 0.126  0.257  0.202 0.202 0.202 0.220 0.204 

𝑆𝐸𝜃̂ 
𝑀  0.096 0.097 0.096 0.097  0.158  0.105 0.105 0.107 0.106 0.106 

𝑆𝐷  0.015 0.016 0.016 0.015  0.033  0.020 0.020 0.019 0.021 0.020 
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Table 7.3. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of normal data with 5 

variables with equal population means and N=500. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.005 1.004 1.005 1.007  0.973  0.955 0.961 0.951 0.955 0.957 

𝑆𝐷  0.092 0.098 0.097 0.094  0.166  0.146 0.157 0.151 0.143 0.146 

𝑆𝐸𝜃̂ 
𝑀  0.102 0.102 0.102 0.102  0.177  0.150 0.151 0.149 0.150 0.150 

𝑆𝐷  0.012 0.013 0.012 0.012  0.036  0.029 0.032 0.031 0.028 0.029 

                

NGLS 

𝜃 
𝑀  1.004 1.004 1.005 1.008  0.973  0.956 0.961 0.953 0.955 0.958 

𝑆𝐷  0.092 0.098 0.096 0.093  0.165  0.145 0.156 0.151 0.141 0.144 

𝑆𝐸𝜃̂ 
𝑀  0.102 0.102 0.102 0.102  0.178  0.150 0.151 0.150 0.150 0.151 

𝑆𝐷  0.011 0.012 0.011 0.011  0.035  0.029 0.032 0.031 0.028 0.029 

                

MGLS 

𝜃 
𝑀  1.005 1.005 1.005 1.008  1.021  1.002 1.007 0.999 1.000 1.004 

𝑆𝐷  0.093 0.100 0.098 0.095  0.177  0.151 0.164 0.158 0.145 0.150 

𝑆𝐸𝜃̂ 
𝑀  0.073 0.073 0.073 0.073  0.121  0.080 0.081 0.080 0.080 0.080 

𝑆𝐷  0.008 0.009 0.009 0.008  0.018  0.011 0.012 0.012 0.011 0.011 

                

MRLS 

𝜃 
𝑀  1.005 1.004 1.005 1.008  1.018  1.017 1.023 1.015 1.015 1.019 

𝑆𝐷  0.094 0.100 0.098 0.095  0.177  0.153 0.166 0.159 0.146 0.151 

𝑆𝐸𝜃̂ 
𝑀  0.074 0.074 0.074 0.074  0.122  0.081 0.081 0.081 0.081 0.081 

𝑆𝐷  0.008 0.009 0.008 0.008  0.018  0.011 0.012 0.012 0.011 0.011 
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Table 7.4. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of normal data with 5 

variables with equal population means and N=1000. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.007 0.999 1.008 1.005  0.982  0.979 0.976 0.976 0.977 0.977 

𝑆𝐷  0.065 0.070 0.067 0.065  0.117  0.102 0.102 0.105 0.105 0.101 

𝑆𝐸𝜃̂ 
𝑀  0.070 0.070 0.071 0.070  0.124  0.106 0.106 0.105 0.106 0.106 

𝑆𝐷  0.005 0.006 0.006 0.006  0.017  0.015 0.014 0.015 0.015 0.014 

                

NGLS 

𝜃 
𝑀  1.006 0.999 1.008 1.004  0.983  0.980 0.977 0.976 0.978 0.977 

𝑆𝐷  0.064 0.070 0.066 0.064  0.117  0.101 0.102 0.104 0.105 0.101 

𝑆𝐸𝜃̂ 
𝑀  0.070 0.070 0.071 0.070  0.124  0.106 0.106 0.106 0.106 0.106 

𝑆𝐷  0.005 0.006 0.006 0.005  0.017  0.014 0.014 0.015 0.015 0.014 

                

MGLS 

𝜃 
𝑀  1.006 0.999 1.008 1.004  1.007  1.003 1.000 1.000 1.001 1.001 

𝑆𝐷  0.065 0.070 0.067 0.065  0.122  0.105 0.105 0.107 0.107 0.104 

𝑆𝐸𝜃̂ 
𝑀  0.052 0.052 0.052 0.052  0.085  0.057 0.057 0.056 0.057 0.056 

𝑆𝐷  0.004 0.004 0.004 0.004  0.009  0.006 0.006 0.006 0.006 0.006 

                

MRLS 

𝜃 
𝑀  1.006 0.999 1.008 1.004  1.005  1.011 1.008 1.007 1.009 1.008 

𝑆𝐷  0.065 0.071 0.067 0.065  0.122  0.106 0.106 0.107 0.108 0.104 

𝑆𝐸𝜃̂ 
𝑀  0.052 0.052 0.052 0.052  0.085  0.057 0.057 0.057 0.057 0.057 

𝑆𝐷  0.004 0.004 0.004 0.004  0.009  0.006 0.006 0.006 0.006 0.006 
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Table 7.5. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of normal data 

with 20 variables with equal population means and N=300.  

   
 

Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃 
𝑀  1.029 1.022 1.031 1.024 1.026 1.012  0.398  0.359 0.364 0.361 0.364 0.366 0.365 0.365 

𝑆𝐷  0.293 0.227 0.243 0.229 0.228 0.217  0.133  0.080 0.090 0.087 0.084 0.086 0.088 0.084 

𝑆𝐸𝜃̂ 
𝑀  0.308 0.280 0.293 0.280 0.286 0.282  0.182  0.147 0.148 0.147 0.148 0.148 0.148 0.150 

𝑆𝐷  0.777 0.164 0.393 0.138 0.234 0.213  0.047  0.035 0.037 0.035 0.036 0.036 0.037 0.039 

                    

NGLS 

𝜃 
𝑀  1.005 1.003 1.003 1.002 1.005 1.002  0.306  0.265 0.269 0.270 0.269 0.271 0.270 0.271 

𝑆𝐷  0.068 0.073 0.068 0.070 0.068 0.065  0.042  0.055 0.059 0.060 0.056 0.057 0.057 0.058 

𝑆𝐸𝜃̂ 
𝑀  0.342 0.341 0.342 0.342 0.342 0.342  0.178  0.145 0.145 0.143 0.144 0.145 0.145 0.147 

𝑆𝐷  0.051 0.050 0.048 0.050 0.050 0.050  0.031  0.036 0.036 0.035 0.035 0.036 0.037 0.038 

                    

MGLS 

𝜃 
𝑀  1.003 0.998 1.002 0.998 0.999 1.003  1.049  0.905 0.906 0.899 0.905 0.906 0.905 0.917 

𝑆𝐷  0.115 0.114 0.118 0.113 0.115 0.112  0.230  0.170 0.176 0.172 0.168 0.175 0.175 0.181 

𝑆𝐸𝜃̂ 
𝑀  0.084 0.083 0.084 0.084 0.083 0.084  0.149  0.083 0.083 0.082 0.083 0.083 0.083 0.084 

𝑆𝐷  0.011 0.011 0.011 0.011 0.011 0.011  0.029  0.015 0.015 0.015 0.015 0.016 0.016 0.016 

                    

MRLS 

𝜃 
𝑀  1.003 0.998 1.002 0.998 0.999 1.003  1.039  1.084 1.082 1.078 1.086 1.086 1.085 1.094 

𝑆𝐷  0.115 0.114 0.118 0.113 0.115 0.113  0.229  0.199 0.203 0.198 0.200 0.207 0.207 0.207 

𝑆𝐸𝜃̂ 
𝑀  0.087 0.087 0.087 0.087 0.087 0.087  0.152  0.093 0.093 0.093 0.093 0.093 0.093 0.094 

𝑆𝐷  0.012 0.011 0.012 0.011 0.012 0.012  0.029  0.017 0.017 0.017 0.017 0.018 0.018 0.018 
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Table 7.6. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of normal data 

with 20 variables with equal population means and N=500. 

   
 

Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃 
𝑀  1.004 1.009 1.008 1.010 1.005 1.004  0.481  0.448 0.449 0.449 0.446 0.448 0.447 0.450 

𝑆𝐷  0.113 0.109 0.113 0.114 0.109 0.110  0.095  0.076 0.075 0.071 0.074 0.073 0.075 0.073 

𝑆𝐸𝜃̂ 
𝑀  0.175 0.177 0.176 0.176 0.176 0.176  0.145  0.114 0.113 0.115 0.112 0.114 0.114 0.114 

𝑆𝐷  0.033 0.035 0.035 0.035 0.034 0.032  0.026  0.022 0.021 0.023 0.023 0.021 0.022 0.022 

                    

NGLS 

𝜃 
𝑀  0.999 0.997 0.999 1.000 1.000 1.001  0.416  0.385 0.384 0.384 0.384 0.383 0.385 0.386 

𝑆𝐷  0.041 0.041 0.043 0.039 0.043 0.043  0.040  0.056 0.056 0.057 0.056 0.055 0.058 0.055 

𝑆𝐸𝜃̂ 
𝑀  0.211 0.212 0.211 0.211 0.212 0.211  0.151  0.120 0.119 0.121 0.119 0.120 0.120 0.120 

𝑆𝐷  0.023 0.024 0.024 0.022 0.023 0.023  0.022  0.023 0.023 0.024 0.025 0.023 0.024 0.023 

                    

MGLS 

𝜃 
𝑀  1.002 1.007 0.998 1.007 1.006 1.004  1.029  0.943 0.938 0.950 0.935 0.944 0.945 0.944 

𝑆𝐷  0.093 0.094 0.091 0.090 0.093 0.092  0.173  0.138 0.136 0.141 0.144 0.136 0.142 0.137 

𝑆𝐸𝜃̂ 
𝑀  0.065 0.065 0.065 0.065 0.065 0.065  0.114  0.065 0.065 0.066 0.065 0.065 0.065 0.065 

𝑆𝐷  0.007 0.007 0.007 0.007 0.007 0.007  0.017  0.009 0.009 0.010 0.010 0.009 0.010 0.009 

                    

MRLS 

𝜃 
𝑀  1.002 1.007 0.998 1.007 1.005 1.005  1.023  1.053 1.046 1.059 1.044 1.054 1.055 1.049 

𝑆𝐷  0.093 0.094 0.091 0.090 0.093 0.092  0.173  0.151 0.153 0.156 0.156 0.153 0.156 0.151 

𝑆𝐸𝜃̂ 
𝑀  0.066 0.067 0.066 0.067 0.067 0.067  0.115  0.070 0.070 0.070 0.069 0.070 0.070 0.070 

𝑆𝐷  0.007 0.007 0.007 0.007 0.007 0.007  0.017  0.010 0.010 0.010 0.010 0.010 0.010 0.010 
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Table 7.7. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of normal data 

with 20 variables with equal population means and N=1000.  

   
 

Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃 
𝑀  1.001 0.998 1.001 1.002 0.999 1.002  0.626  0.604 0.604 0.602 0.601 0.599 0.599 0.603 

𝑆𝐷  0.061 0.057 0.060 0.061 0.059 0.060  0.073  0.061 0.061 0.063 0.061 0.058 0.064 0.060 

𝑆𝐸𝜃̂ 
𝑀  0.099 0.099 0.099 0.099 0.099 0.099  0.109  0.087 0.087 0.086 0.087 0.086 0.086 0.087 

𝑆𝐷  0.010 0.010 0.010 0.010 0.010 0.010  0.014  0.012 0.012 0.012 0.012 0.011 0.012 0.012 

                    

NGLS 

𝜃 
𝑀  1.000 0.998 1.000 0.999 0.999 0.999  0.587  0.566 0.567 0.565 0.565 0.560 0.562 0.565 

𝑆𝐷  0.044 0.039 0.041 0.041 0.042 0.041  0.052  0.052 0.052 0.054 0.051 0.051 0.054 0.050 

𝑆𝐸𝜃̂ 
𝑀  0.110 0.110 0.110 0.110 0.110 0.110  0.113  0.091 0.091 0.090 0.091 0.090 0.090 0.091 

𝑆𝐷  0.009 0.009 0.009 0.009 0.009 0.009  0.014  0.012 0.012 0.013 0.012 0.012 0.013 0.012 

                    

MGLS 

𝜃 
𝑀  1.000 0.997 1.001 1.000 0.999 1.000  1.014  0.975 0.974 0.970 0.973 0.966 0.967 0.973 

𝑆𝐷  0.068 0.062 0.064 0.066 0.066 0.065  0.124  0.098 0.096 0.101 0.099 0.097 0.103 0.097 

𝑆𝐸𝜃̂ 
𝑀  0.046 0.046 0.046 0.046 0.046 0.046  0.080  0.047 0.047 0.046 0.047 0.046 0.046 0.047 

𝑆𝐷  0.004 0.003 0.004 0.004 0.004 0.004  0.008  0.005 0.005 0.005 0.005 0.005 0.005 0.005 

                    

MRLS 

𝜃 
𝑀  1.000 0.997 1.001 1.000 0.999 1.000  1.012  1.029 1.027 1.023 1.027 1.021 1.021 1.027 

𝑆𝐷  0.068 0.062 0.064 0.066 0.066 0.065  0.124  0.103 0.101 0.105 0.106 0.102 0.108 0.101 

𝑆𝐸𝜃̂ 
𝑀  0.047 0.046 0.047 0.046 0.046 0.047  0.080  0.048 0.048 0.048 0.048 0.048 0.048 0.048 

𝑆𝐷  0.004 0.003 0.004 0.004 0.004 0.004  0.008  0.005 0.005 0.005 0.005 0.005 0.005 0.005 
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Table 7.8. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of normal data 

with 20 variables with equal population means and N=10,000.  

    Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃 
𝑀  1.000 1.000 1.001 1.001 1.001 1.002  0.933  0.931 0.931 0.930 0.932 0.932 0.932 0.932 

𝑆𝐷  0.020 0.019 0.019 0.020 0.019 0.019  0.034  0.030 0.028 0.030 0.029 0.028 0.029 0.030 

𝑆𝐸𝜃̂ 
𝑀  0.022 0.022 0.022 0.022 0.022 0.022  0.037  0.031 0.031 0.031 0.031 0.031 0.031 0.031 

𝑆𝐷  0.0006 0.0005 0.0005 0.0006 0.0005 0.0005  0.0016  0.0014 0.0013 0.0014 0.0014 0.0013 0.0013 0.0013 

                    

NGLS 

𝜃 
𝑀  1.001 1.000 1.001 1.001 1.001 1.002  0.932  0.930 0.930 0.929 0.931 0.932 0.931 0.931 

𝑆𝐷  0.020 0.019 0.019 0.020 0.019 0.019  0.033  0.029 0.028 0.030 0.029 0.028 0.028 0.029 

𝑆𝐸𝜃̂ 
𝑀  0.022 0.022 0.022 0.022 0.022 0.022  0.037  0.031 0.031 0.031 0.031 0.031 0.031 0.031 

𝑆𝐷  0.0005 0.0005 0.0005 0.0005 0.0005 0.0005  0.0016  0.0013 0.0013 0.0014 0.0013 0.0013 0.0013 0.0013 

                    

MGLS 

𝜃 
𝑀  1.001 1.000 1.001 1.001 1.001 1.002  0.999  0.996 0.997 0.995 0.997 0.998 0.997 0.997 

𝑆𝐷  0.021 0.020 0.020 0.021 0.020 0.020  0.037  0.032 0.030 0.032 0.032 0.031 0.030 0.032 

𝑆𝐸𝜃̂ 
𝑀  0.015 0.015 0.015 0.015 0.015 0.015  0.025  0.015 0.015 0.015 0.015 0.015 0.015 0.015 

𝑆𝐷  0.0003 0.0003 0.0003 0.0004 0.0003 0.0003  0.0008  0.0005 0.0004 0.0005 0.0005 0.0005 0.0004 0.0005 

                    

MRLS 

𝜃 
𝑀  1.001 1.000 1.001 1.001 1.001 1.002  0.998  1.001 1.002 1.000 1.003 1.003 1.003 1.003 

𝑆𝐷  0.021 0.020 0.020 0.021 0.020 0.020  0.037  0.032 0.031 0.032 0.032 0.031 0.031 0.032 

𝑆𝐸𝜃̂ 
𝑀  0.015 0.015 0.015 0.015 0.015 0.015  0.025  0.015 0.015 0.015 0.015 0.015 0.015 0.015 

𝑆𝐷  0.0003 0.0003 0.0003 0.0003 0.0003 0.0003  0.0008  0.0005 0.0005 0.0005 0.0005 0.0005 0.0004 0.0005 
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Table 7.9. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 5) test statistics of the one-

factor model of normal data in the condition with 5 variables with equal population means.  

  AGLS  NGLS  MGLS  MRLS 

 𝑁 
 𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

100  3.67 1.84  3.82 1.80  5.13 3.01  5.03 2.94 

300  4.54 2.53  4.51 2.44  5.01 2.96  4.97 2.90 

500  4.70 2.81  4.70 2.81  5.03 3.19  4.99 3.13 

1000  4.84 2.85  4.82 2.81  4.99 2.99  5.00 3.02 

 

 

 

Table 7.10. Percent of replications in which the model of normal data was rejected by a 

𝜒2(𝑑𝑓 = 5) test with 𝛼 = .05 in the condition with 5 variables with equal population means. 

𝑁 
 AGLS  NGLS  MGLS  MRLS 

100  0.0  0.0  5.6  3.6 

300  1.4  1.4  4.0  3.6 

500  2.4  2.8  4.6  4.0 

1000  2.8  3.0  4.2  4.6 

10,000  3.6  3.8  3.8  4.0 

100,000  5.8  6.0  6.0  6.0 
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Table 7.11. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 170) test statistics of the one-

factor model of normal data in the condition with 20 variables with equal population means.  

  AGLS  NGLS  MGLS  MRLS 

 𝑁 
 𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

300  49.66 5.61  49.86 5.05  169.19 18.29  161.26 15.86 

500  75.25 7.07  68.99 5.34  170.22 18.75  163.98 16.92 

1000  103.70 8.97  98.81 7.09  171.06 18.50  167.87 17.53 

10,000  158.18 15.74  158.06 15.55  169.48 17.87  169.22 17.92 

100,000  169.12 17.95  169.13 18.01  170.36 18.27  170.38 18.28 

 

 

Table 7.12. Percent of replications in which the one-factor model of normal data was rejected by 

a 𝜒2(𝑑𝑓 = 170) test with 𝛼 = .05 in the condition with 20 variables with equal population 

means. 

𝑁  AGLS  NGLS  MGLS  MRLS 

300  0.00  0.00  5.22  0.40 

500  0.00  0.00  5.60  1.60 

1000  0.00  0.00  6.20  2.60 

10,000  0.20  0.20  3.60  4.40 

100,000  4.00  4.00  5.00  5.20 
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Figures 

 

Figure 7.1. Boxplots of the values of the first factor loading estimated by the different methods 

across sample sizes (in the normal data condition with 5 variables with equal means). 
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Figure 7.2. Boxplots of the values of the factor variance estimated by the different methods 

across sample sizes (in the normal data condition with 5 variables with equal means). 
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Figure 7.3. Boxplots of the values of the first error variance estimated by the different methods 

across sample sizes (in the normal data condition with 5 variables with equal means).  
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Figure 7.4. Boxplots of the values of the first factor loading estimated by the different methods 

across sample sizes (in the normal data condition with 20 variables with equal means).  

 

Note that in the AGLS condition with 𝑁=300, there was one outlier (with a value of 5.7) that is 

not displayed above.  
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Figure 7.5. Boxplots of the values of the factor variance estimated by the different methods 

across sample sizes (in the normal data condition with 20 variables with equal means). 
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Figure 7.6. Boxplots of the values of the first error variance estimated by the different methods 

across sample sizes (in the normal data condition with 5 variables with equal means). 
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Figure 7.7. Histogram of the values of the 𝜒2-test statistic produced through AGLS estimation 

across sample sizes (in the normal data condition with 5 variables with equal means). 
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Figure 7.8. Histogram of the values of the 𝜒2-test statistic produced through NGLS estimation 

across sample sizes (in the normal data condition with 5 variables with equal means). 
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Figure 7.9. Histogram of the values of the 𝜒2-test statistic produced through MGLS estimation 

across sample sizes (in the normal data condition with 5 variables with equal means). 
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Figure 7.10. Histogram of the values of the 𝜒2-test statistic produced through MRLS estimation 

across sample sizes (in the normal data condition with 5 variables with equal means). 
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Figure 7.11. Histogram of the values of the 𝜒2-test statistic produced through AGLS estimation 

across sample sizes (in the normal data condition with 20 variables with equal means). 
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Figure 7.12. Histogram of the values of the 𝜒2-test statistic produced through NGLS estimation 

across sample sizes (in the normal data condition with 20 variables with equal means). 
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Figure 7.13. Histogram of the values of the 𝜒2-test statistic produced through MGLS estimation 

across sample sizes (in the normal data condition with 20 variables with equal means). 
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Figure 7.14. Histogram of the values of the 𝜒2-test statistic produced through MRLS estimation 

across sample sizes (in the normal data condition with 20 variables with equal means). 
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Chapter 8. Quality of Parameter, Standard Error and Test Statistic Estimates: One Factor 

Models of Normal Data with Variables with Unequal Population Means  

In the previous chapter, we addressed simple one-factor models of normal data that had 

all variable means equal to 1 in the population. As described previously, in that case the 

covariance and the CV matrix are identical in the population. This makes it difficult to 

empirically verify whether the misspecified estimation methods (MGLS and MRLS), which are 

based on covariance theory, are in fact modelling the CV matrix appropriately. Therefore, this 

chapter repeats the analyses of the previous chapter in a population with variables that have 

means that deviate from 1 to provide additional verification of the accuracy of the estimation 

methods.  

Method 

Conditions. Here, normally distributed data were generated according to the structure 

shown in Figure 5.1. The models included either 5 or 20 variables, and the population means of 

the variables were allowed to vary from 1 to 3 (see Chapter 5 for details). The sample sizes in the 

5-variable case ranged from 100 to 100,000, whereas in the 20-variable case, they ranged from 

300 to 100,000.   

 Analyses. The analyses employed here were identical to those used in Chapters 7, so you 

may refer to the Chapter 7 methods for details.  

Results  

Convergence. In the condition with 5 variables and a sample size of 100, AGLS did not 

converge for one sample and NGLS did not converge for one sample. However, at larger sample 

sizes all methods were able to converge on a solution. 
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Parameter Estimates and Standard Errors. In general, the pattern of results observed 

here seemed comparable to that observed in the equal means condition in Chapter 7. The means 

and standard deviations of the parameter estimates and standard errors for the 5-variable 

condition are displayed in Tables 8.1 through 8.4 and those for the 20-variable condition are 

shown in Tables 8.5 through 8.8. (As in the previous chapter, the tables for the 20 variable 

condition show the results for the first 6 factor loadings, the factor variance and the first 7 error 

variances.)  Again, each table contains the results of a different sample size condition. 

Comparing these tables to Table 7.1 through 7.8, respectively, reveals no systematic differences 

in the average estimates. For example, consider the results of the equal and unequal means 

conditions with a sample size of 100 shown in Table 7.1 and 8.1, respectively. Initially, it 

appears that the average estimates in the AGLS and NGLS methods deviate more from their 

population values in the unequal means condition than those in the equal means condition. 

However, this pattern does not persist in larger sample sizes or in the 20-variable condition, 

suggesting the deviations are spurious. Also, the boxplots of the of the parameter estimates for 

the first factor loading, the factor variance and the first error variance were contrasted with the 

those of Chapter 7. Because the distributions were close matches to the corresponding 

distributions in Figures 7.1 through 7.6, these are not provided.  

Test Statistics. In addition, for the 5-variable condition, Table 8.9 shows the means and 

standard deviation of the 𝜒2 values and Table 8.10 shows the model rejection rates for each 

sample size and estimation method. Similarly, for the 20-variable, Table 8.11 shows the means 

and standard deviations of the 𝜒2 estimates and Table 8.12 shows the model rejection rates for 

each sample size and estimation method. The values in these tables are generally a close match 

for the comparable values in Tables 7.9 through 7.12. In the 5-variable condition, there appear to 
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be some small differences between the values in the equal means condition and the unequal 

means condition shown here, but again, similar differences are not observed in the 20-variable 

condition. This suggests that the differences are probably not meaningful. In addition, the trends 

observed in the histograms of the 𝜒2 distributions for each method were the same as those shown 

in the corresponding equal means conditions in Figures 7.7 through 7.14. Therefore, these are not 

displayed below. 

Discussion 

 The consistency of these results with the previous chapter’s results is encouraging as it 

suggests that the all of the estimation methods are estimating the CV structure taking the mean 

structure into account appropriately. If the MGLS and MRLS methods, which are derived from 

covariance-theory methods, were still estimating a covariance structure, it may not have been 

apparent in the equal means condition, but it would have been apparent in the unequal means 

condition. However, since no substantial differences were apparent in the results it seems that 

this is not the case.
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Tables  

Table 8.1. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of normal data with 5 

variables with unequal population means and N=100. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.022 1.034 1.020 1.016  0.872  0.807 0.789 0.810 0.816 0.795 

𝑆𝐷  0.250 0.258 0.246 0.233  0.366  0.319 0.285 0.289 0.304 0.317 

𝑆𝐸𝜃̂ 
𝑀  0.273 0.279 0.275 0.272  0.407  0.341 0.328 0.336 0.339 0.332 

𝑆𝐷  0.110 0.145 0.106 0.100  0.212  0.191 0.155 0.162 0.172 0.193 

                

NGLS 

𝜃 
𝑀  1.017 1.028 1.026 1.020  0.848  0.796 0.781 0.793 0.810 0.788 

𝑆𝐷  0.210 0.204 0.216 0.202  0.330  0.307 0.271 0.271 0.291 0.307 

𝑆𝐸𝜃̂ 
𝑀  0.276 0.282 0.281 0.278  0.410  0.343 0.330 0.339 0.344 0.334 

𝑆𝐷  0.073 0.079 0.082 0.075  0.206  0.191 0.155 0.159 0.175 0.197 

                

MGLS 

𝜃 
𝑀  1.024 1.035 1.029 1.021  1.075  0.994 0.971 0.989 1.004 0.975 

𝑆𝐷  0.241 0.236 0.241 0.229  0.476  0.396 0.353 0.351 0.376 0.378 

𝑆𝐸𝜃̂ 
𝑀  0.168 0.170 0.170 0.168  0.280  0.182 0.178 0.182 0.183 0.179 

𝑆𝐷  0.047 0.046 0.047 0.045  0.110  0.069 0.060 0.060 0.064 0.065 

                

MRLS 

𝜃 
𝑀  1.024 1.034 1.029 1.021  1.060  1.071 1.049 1.067 1.080 1.052 

𝑆𝐷  0.240 0.235 0.241 0.231  0.471  0.424 0.385 0.373 0.404 0.402 

𝑆𝐸𝜃̂ 
𝑀  0.173 0.175 0.175 0.173  0.283  0.190 0.186 0.190 0.191 0.187 

𝑆𝐷  0.047 0.048 0.049 0.048  0.111  0.072 0.063 0.063 0.067 0.067 
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Table 8.2. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of normal data with 5 

variables with unequal population means and N=300. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.015 1.014 1.006 1.013  0.943  0.916 0.932 0.923 0.912 0.921 

𝑆𝐷  0.126 0.129 0.134 0.126  0.211  0.165 0.180 0.188 0.193 0.166 

𝑆𝐸𝜃̂ 
𝑀  0.137 0.137 0.136 0.136  0.226  0.189 0.193 0.191 0.187 0.191 

𝑆𝐷  0.023 0.023 0.024 0.022  0.056  0.044 0.049 0.051 0.051 0.047 

                

NGLS 

𝜃 
𝑀  1.015 1.013 1.005 1.013  0.940  0.915 0.929 0.924 0.910 0.919 

𝑆𝐷  0.124 0.126 0.130 0.123  0.207  0.162 0.178 0.185 0.191 0.164 

𝑆𝐸𝜃̂ 
𝑀  0.137 0.137 0.136 0.137  0.227  0.190 0.194 0.193 0.189 0.192 

𝑆𝐷  0.021 0.021 0.022 0.021  0.056  0.043 0.048 0.050 0.051 0.046 

                

MGLS 

𝜃 
𝑀  1.015 1.013 1.005 1.014  1.014  0.987 1.001 0.995 0.979 0.990 

𝑆𝐷  0.129 0.130 0.135 0.128  0.228  0.175 0.192 0.200 0.203 0.177 

𝑆𝐸𝜃̂ 
𝑀  0.096 0.096 0.095 0.096  0.155  0.102 0.104 0.103 0.102 0.103 

𝑆𝐷  0.015 0.015 0.016 0.015  0.028  0.017 0.018 0.019 0.020 0.018 

                

MRLS 

𝜃 
𝑀  1.016 1.013 1.005 1.014  1.009  1.012 1.025 1.020 1.003 1.015 

𝑆𝐷  0.129 0.130 0.135 0.128  0.228  0.181 0.197 0.203 0.206 0.182 

𝑆𝐸𝜃̂ 
𝑀  0.097 0.097 0.096 0.097  0.156  0.104 0.105 0.105 0.103 0.104 

𝑆𝐷  0.015 0.015 0.016 0.015  0.028  0.017 0.019 0.019 0.020 0.018 
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Table 8.3. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of normal data with 5 

variables with unequal population means and N=500. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.005 0.998 1.002 1.004  0.962  0.952 0.950 0.938 0.945 0.947 

𝑆𝐷  0.100 0.099 0.095 0.101  0.168  0.144 0.143 0.133 0.143 0.140 

𝑆𝐸𝜃̂ 
𝑀  0.102 0.101 0.101 0.102  0.175  0.148 0.148 0.145 0.147 0.147 

𝑆𝐷  0.012 0.012 0.013 0.013  0.035  0.029 0.029 0.027 0.029 0.029 

                

NGLS 

𝜃 
𝑀  1.005 0.997 1.003 1.004  0.961  0.950 0.949 0.936 0.944 0.946 

𝑆𝐷  0.100 0.097 0.094 0.099  0.166  0.143 0.142 0.131 0.142 0.139 

𝑆𝐸𝜃̂ 
𝑀  0.102 0.101 0.102 0.102  0.175  0.149 0.149 0.146 0.148 0.148 

𝑆𝐷  0.012 0.012 0.012 0.012  0.035  0.029 0.029 0.026 0.029 0.028 

                

MGLS 

𝜃 
𝑀  1.006 0.997 1.003 1.004  1.007  0.996 0.994 0.980 0.989 0.992 

𝑆𝐷  0.102 0.099 0.096 0.101  0.178  0.152 0.149 0.138 0.150 0.147 

𝑆𝐸𝜃̂ 
𝑀  0.074 0.073 0.074 0.074  0.120  0.080 0.080 0.078 0.079 0.079 

𝑆𝐷  0.009 0.009 0.009 0.009  0.018  0.011 0.011 0.010 0.011 0.011 

                

MRLS 

𝜃 
𝑀  1.005 0.997 1.003 1.004  1.004  1.010 1.009 0.994 1.004 1.008 

𝑆𝐷  0.102 0.099 0.096 0.101  0.178  0.155 0.151 0.140 0.152 0.151 

𝑆𝐸𝜃̂ 
𝑀  0.074 0.074 0.074 0.074  0.120  0.080 0.080 0.079 0.080 0.080 

𝑆𝐷  0.009 0.009 0.009 0.009  0.018  0.011 0.011 0.010 0.011 0.011 

 

 



 

 

  

8
0 

Table 8.4. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of normal data with 5 

variables with unequal population means and N=1000. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.001 1.004 0.999 0.999  0.985  0.975 0.974 0.976 0.969 0.963 

𝑆𝐷  0.066 0.069 0.069 0.068  0.123  0.108 0.108 0.108 0.102 0.103 

𝑆𝐸𝜃̂ 
𝑀  0.070 0.070 0.070 0.070  0.124  0.106 0.105 0.106 0.104 0.104 

𝑆𝐷  0.006 0.006 0.006 0.006  0.018  0.015 0.015 0.015 0.014 0.014 

                

NGLS 

𝜃 
𝑀  1.001 1.004 0.999 1.000  0.985  0.976 0.975 0.976 0.968 0.963 

𝑆𝐷  0.066 0.068 0.069 0.067  0.122  0.109 0.108 0.107 0.101 0.102 

𝑆𝐸𝜃̂ 
𝑀  0.070 0.070 0.070 0.070  0.124  0.106 0.106 0.106 0.105 0.104 

𝑆𝐷  0.006 0.006 0.006 0.005  0.017  0.015 0.015 0.015 0.014 0.014 

                

MGLS 

𝜃 
𝑀  1.001 1.004 0.999 1.000  1.009  1.000 0.999 1.000 0.992 0.986 

𝑆𝐷  0.067 0.069 0.070 0.068  0.126  0.111 0.110 0.109 0.103 0.104 

𝑆𝐸𝜃̂ 
𝑀  0.052 0.052 0.052 0.052  0.085  0.056 0.056 0.056 0.056 0.056 

𝑆𝐷  0.004 0.004 0.004 0.004  0.009  0.006 0.006 0.006 0.005 0.006 

                

MRLS 

𝜃 
𝑀  1.001 1.004 0.999 1.000  1.007  1.007 1.007 1.007 0.999 0.994 

𝑆𝐷  0.067 0.069 0.069 0.068  0.126  0.112 0.110 0.110 0.105 0.104 

𝑆𝐸𝜃̂ 
𝑀  0.052 0.052 0.052 0.052  0.085  0.057 0.057 0.057 0.056 0.056 

𝑆𝐷  0.004 0.004 0.004 0.004  0.009  0.006 0.006 0.006 0.006 0.006 
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Table 8.5. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of normal data 

with 20 variables with unequal population means and N=300.  

   
 

Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃 
𝑀  1.022 1.040 1.026 1.019 1.032 1.033  0.391  0.367 0.358 0.363 0.364 0.363 0.362 0.365 

𝑆𝐷  0.212 0.227 0.206 0.194 0.219 0.227  0.123  0.086 0.083 0.085 0.091 0.086 0.085 0.087 

𝑆𝐸𝜃̂ 
𝑀  0.285 0.283 0.279 0.278 0.281 0.282  0.179  0.146 0.144 0.145 0.148 0.145 0.146 0.147 

𝑆𝐷  0.242 0.150 0.108 0.104 0.136 0.126  0.043  0.036 0.035 0.036 0.036 0.035 0.035 0.037 

                    

NGLS 

𝜃 
𝑀  1.004 1.003 0.999 0.998 1.002 1.000  0.307  0.271 0.266 0.269 0.268 0.271 0.268 0.268 

𝑆𝐷  0.070 0.068 0.068 0.066 0.067 0.067  0.042  0.059 0.056 0.057 0.062 0.061 0.056 0.060 

𝑆𝐸𝜃̂ 
𝑀  0.338 0.338 0.338 0.337 0.338 0.338  0.177  0.142 0.140 0.143 0.144 0.141 0.143 0.144 

𝑆𝐷  0.047 0.046 0.045 0.045 0.046 0.046  0.031  0.035 0.035 0.036 0.036 0.035 0.036 0.037 

                    

MGLS 

𝜃 
𝑀  1.000 1.005 1.005 1.002 1.006 1.006  1.024  0.896 0.884 0.895 0.901 0.890 0.896 0.902 

𝑆𝐷  0.176 0.114 0.135 0.112 0.142 0.130  0.220  0.171 0.173 0.176 0.174 0.172 0.170 0.176 

𝑆𝐸𝜃̂ 
𝑀  0.092 0.086 0.088 0.088 0.089 0.088  0.146  0.082 0.081 0.082 0.082 0.081 0.082 0.082 

𝑆𝐷  0.180 0.053 0.086 0.087 0.105 0.092  0.027  0.015 0.015 0.016 0.015 0.015 0.015 0.016 

                    

MRLS 

𝜃 
𝑀  1.006 1.005 1.008 1.000 1.010 1.009  1.018  1.071 1.062 1.076 1.084 1.066 1.068 1.083 

𝑆𝐷  0.109 0.111 0.117 0.111 0.113 0.111  0.215  0.195 0.197 0.205 0.203 0.198 0.199 0.210 

𝑆𝐸𝜃̂ 
𝑀  0.087 0.087 0.088 0.087 0.087 0.088  0.149  0.092 0.091 0.092 0.093 0.092 0.092 0.093 

𝑆𝐷  0.012 0.012 0.012 0.011 0.012 0.012  0.027  0.016 0.017 0.017 0.017 0.017 0.017 0.018 
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Table 8.6. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of normal data 

with 20 variables with unequal population means and N=500.  

   
 

Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃 
𝑀  1.001 1.001 1.012 1.005 1.008 1.007  0.481  0.455 0.447 0.448 0.447 0.453 0.451 0.453 

𝑆𝐷  0.105 0.112 0.109 0.104 0.118 0.108  0.090  0.075 0.071 0.075 0.071 0.073 0.073 0.076 

𝑆𝐸𝜃̂ 
𝑀  0.173 0.173 0.174 0.172 0.173 0.174  0.144  0.114 0.111 0.112 0.112 0.113 0.114 0.113 

𝑆𝐷  0.028 0.029 0.030 0.027 0.030 0.029  0.024  0.021 0.020 0.021 0.022 0.022 0.023 0.022 

                    

NGLS 

𝜃 
𝑀  0.999 0.996 1.001 1.002 1.000 0.999  0.418  0.389 0.386 0.387 0.384 0.386 0.387 0.389 

𝑆𝐷  0.042 0.042 0.046 0.044 0.042 0.042  0.041  0.054 0.055 0.057 0.057 0.056 0.055 0.056 

𝑆𝐸𝜃̂ 
𝑀  0.209 0.208 0.209 0.209 0.209 0.209  0.150  0.119 0.117 0.118 0.118 0.119 0.120 0.119 

𝑆𝐷  0.021 0.022 0.022 0.022 0.023 0.022  0.022  0.022 0.021 0.022 0.024 0.024 0.024 0.023 

                    

MGLS 

𝜃 
𝑀  1.001 0.999 1.005 1.007 1.005 1.002  1.017  0.940 0.929 0.931 0.931 0.937 0.941 0.939 

𝑆𝐷  0.088 0.086 0.094 0.091 0.092 0.087  0.162  0.133 0.128 0.133 0.140 0.141 0.141 0.138 

𝑆𝐸𝜃̂ 
𝑀  0.065 0.065 0.065 0.065 0.065 0.065  0.113  0.065 0.064 0.064 0.064 0.065 0.065 0.065 

𝑆𝐷  0.007 0.006 0.007 0.007 0.007 0.006  0.016  0.009 0.009 0.009 0.010 0.010 0.010 0.009 

                    

MRLS 

𝜃 
𝑀  1.001 0.999 1.005 1.007 1.005 1.002  1.012  1.047 1.035 1.037 1.036 1.042 1.047 1.048 

𝑆𝐷  0.088 0.086 0.094 0.091 0.092 0.087  0.162  0.144 0.145 0.149 0.156 0.156 0.153 0.151 

𝑆𝐸𝜃̂ 
𝑀  0.066 0.066 0.067 0.067 0.067 0.067  0.114  0.070 0.069 0.069 0.069 0.069 0.070 0.070 

𝑆𝐷  0.007 0.006 0.007 0.007 0.007 0.006  0.016  0.009 0.010 0.010 0.010 0.010 0.010 0.010 
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Table 8.7. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of normal data 

with 20 variables with unequal population means and N=1000.  

   
 

Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃 
𝑀  1.000 1.000 0.999 0.998 0.998 0.999  0.630  0.603 0.601 0.601 0.602 0.602 0.597 0.602 

𝑆𝐷  0.060 0.056 0.058 0.058 0.059 0.059  0.072  0.065 0.063 0.063 0.060 0.060 0.066 0.066 

𝑆𝐸𝜃̂ 
𝑀  0.099 0.099 0.099 0.099 0.099 0.099  0.110  0.087 0.087 0.087 0.087 0.086 0.086 0.087 

𝑆𝐷  0.010 0.010 0.010 0.010 0.010 0.009  0.014  0.012 0.012 0.012 0.011 0.012 0.012 0.012 

                    

NGLS 

𝜃 
𝑀  1.000 1.000 0.999 0.998 1.001 1.001  0.590  0.566 0.563 0.565 0.566 0.567 0.562 0.567 

𝑆𝐷  0.040 0.040 0.042 0.040 0.042 0.043  0.054  0.054 0.053 0.055 0.052 0.052 0.056 0.056 

𝑆𝐸𝜃̂ 
𝑀  0.109 0.110 0.109 0.109 0.109 0.110  0.113  0.091 0.091 0.091 0.091 0.091 0.090 0.091 

𝑆𝐷  0.009 0.009 0.009 0.009 0.009 0.009  0.015  0.013 0.013 0.013 0.012 0.012 0.013 0.013 

                    

MGLS 

𝜃 
𝑀  1.002 1.001 0.999 0.997 1.002 1.002  1.018  0.975 0.969 0.972 0.972 0.972 0.968 0.974 

𝑆𝐷  0.062 0.062 0.065 0.064 0.066 0.065  0.128  0.103 0.100 0.101 0.093 0.096 0.103 0.102 

𝑆𝐸𝜃̂ 
𝑀  0.046 0.046 0.046 0.046 0.046 0.046  0.080  0.047 0.046 0.047 0.047 0.047 0.046 0.047 

𝑆𝐷  0.004 0.004 0.004 0.004 0.003 0.004  0.009  0.005 0.005 0.005 0.004 0.005 0.005 0.005 

                    

MRLS 

𝜃 
𝑀  1.002 1.001 0.999 0.997 1.002 1.002  1.015  1.029 1.024 1.027 1.026 1.025 1.022 1.028 

𝑆𝐷  0.062 0.062 0.065 0.063 0.066 0.065  0.128  0.107 0.105 0.106 0.098 0.103 0.108 0.105 

𝑆𝐸𝜃̂ 
𝑀  0.046 0.046 0.046 0.046 0.046 0.046  0.080  0.048 0.048 0.048 0.048 0.048 0.048 0.048 

𝑆𝐷  0.004 0.004 0.004 0.004 0.004 0.004  0.009  0.005 0.005 0.005 0.005 0.005 0.005 0.005 
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Table 8.8. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model with 20 

variables with unequal population means and N=10,000.  

   
 

Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃̂ 
𝑀  1.000 0.999 1.000 1.000 0.998 1.001  0.935  0.931 0.929 0.931 0.929 0.929 0.927 0.931 

𝑆𝐷  0.020 0.020 0.020 0.020 0.021 0.020  0.036  0.030 0.029 0.029 0.030 0.031 0.028 0.030 

𝑆𝐸𝜃̂  
𝑀  0.022 0.022 0.022 0.022 0.022 0.022  0.037  0.031 0.031 0.031 0.031 0.031 0.031 0.031 

𝑆𝐷  0.001 0.001 0.001 0.001 0.001 0.001  0.002  0.001 0.001 0.001 0.001 0.001 0.001 0.001 

                    

NGLS 

𝜃̂ 
𝑀  1.000 1.000 1.000 1.000 0.999 1.001  0.934  0.930 0.928 0.930 0.928 0.928 0.926 0.930 

𝑆𝐷  0.020 0.020 0.020 0.020 0.021 0.020  0.036  0.029 0.029 0.028 0.029 0.030 0.028 0.030 

𝑆𝐸𝜃̂  
𝑀  0.022 0.022 0.022 0.022 0.022 0.022  0.037  0.031 0.031 0.031 0.031 0.031 0.031 0.031 

𝑆𝐷  0.001 0.001 0.001 0.000 0.001 0.001  0.002  0.001 0.001 0.001 0.001 0.001 0.001 0.001 

                    

MGLS 

𝜃̂ 
𝑀  1.000 0.999 1.000 1.000 0.999 1.001  1.000  0.996 0.994 0.996 0.994 0.994 0.992 0.996 

𝑆𝐷  0.020 0.021 0.021 0.021 0.022 0.020  0.039  0.032 0.031 0.031 0.032 0.032 0.031 0.032 

𝑆𝐸𝜃̂  
𝑀  0.015 0.015 0.015 0.015 0.015 0.015  0.025  0.015 0.015 0.015 0.015 0.015 0.015 0.015 

𝑆𝐷  0.000 0.000 0.000 0.000 0.000 0.000  0.001  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

                    

MRLS 

𝜃̂ 
𝑀  1.000 0.999 1.000 1.000 0.999 1.001  1.000  1.002 1.000 1.001 1.000 0.999 0.998 1.001 

𝑆𝐷  0.020 0.021 0.021 0.021 0.022 0.020  0.039  0.032 0.031 0.031 0.032 0.032 0.031 0.032 

𝑆𝐸𝜃̂  
𝑀  0.015 0.015 0.015 0.015 0.015 0.015  0.025  0.015 0.015 0.015 0.015 0.015 0.015 0.015 

𝑆𝐷  0.000 0.000 0.000 0.000 0.000 0.000  0.001  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 8.9. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 5) test statistics of the one-

factor model of normal data in the condition with 5 variables with unequal population means. 

  AGLS  NGLS  MGLS  MRLS 

 𝑁 
 𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

100  3.523 1.867  4.359 2.482  4.662 2.675  4.956 3.034 

300  3.674 1.863  4.418 2.476  4.676 2.642  4.941 2.979 

500  4.926 3.227  4.899 3.011  4.987 2.994  5.112 3.186 

1000  4.788 2.915  4.853 2.953  4.987 3.030  5.103 3.178 

 

 

 

Table 8.10. Percent of replications in which the one-factor model was rejected by a 𝜒2(𝑑𝑓 = 5) 

test with 𝛼 = .05 in the condition with 5 variables with unequal population means. 

𝑁 
 AGLS  NGLS  MGLS  MRLS 

100  0.0  0.0  5.0  2.8 

300  1.2  1.6  4.0  4.2 

500  2.2  2.2  4.0  4.6 

1000  4.4  4.2  6.0  5.6 

10,000  4.4  4.6  4.6  4.6 

100,000  5.6  5.6  5.6  5.2 
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Table 8.11. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 170) test statistics of the one-

factor model of normal data in the condition with 20 variables with unequal population means. 

  AGLS  NGLS  MGLS  MRLS 

 𝑁 
 𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

300  49.75 5.53  49.97 5.32  170.16 19.67  161.17 16.32 

500  75.22 7.16  69.00 5.53  168.38 19.10  162.85 17.21 

1000  103.18 9.01  98.35 7.15  170.00 18.86  167.49 18.18 

10,000  158.27 15.20  158.18 14.78  169.59 16.99  169.35 16.85 

100,000  168.50 18.26  168.45 18.26  169.67 18.52  169.64 18.49 

 

 

Table 8.12. Percent of replications in which the one-factor model was rejected by a 𝜒2(𝑑𝑓 =

170) test with 𝛼 = .05 in the condition with 20 variables with unequal population means. 

𝑁  AGLS  NGLS  MGLS  MRLS 

300  0.0  0.0  5.8  0.4 

500  0.0  0.0  4.4  1.0 

1000  0.0  0.0  5.6  3.2 

10,000  0.0  0.2  3.2  3.2 

100,000  4.6  4.6  4.6  4.8 
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Chapter 9. Quality of Parameter, Test Statistic, and Standard Error Estimates: One Factor 

Models of Log-Normal Data 

In this chapter we continued to examine the performance of the AGLS, NGLS, MGLS 

and MRLS methods of estimating CV models. Specifically, here we assessed the performance of 

the parameter estimates, standard error estimates and the test-statistics in finite samples of log-

normal data with a one-factor population CV structure.   

Method 

Conditions. In this case, log-normal data were generated using the procedure described 

in Chapter 5. Once again, the structure shown in Figure 5.1 was used to form the population CV 

matrices including either 5 or 20 variables. The means were each set to 1 in this condition. The 

sample sizes in the 5-variable case ranged from 100 to 100,000, whereas in the 20-variable case, 

ranged from 300 to 100,000.  

 Analyses. The analyses employed here were identical to those used in Chapters 7 and 8. 

For details refer to the analyses section of Chapter 7.   

Results  

Convergence. In the conditions with 5 variables and log-normal data, each of the 

estimation methods had some samples for which they failed to converge on solutions. First, the 

AGLS method did not converge for 7 samples in the 𝑁=100 condition, 18 samples in the 𝑁=300 

condition and 1 sample in the 𝑁=500 condition. Second, the NGLS method did not converge for 

5 samples in the 𝑁=300 condition. Next, the MGLS method did not converge in 1 sample in the 

𝑁=100 condition and 1 sample in the 𝑁=300 condition. Finally, the MRLS method did not 

converge for 5 samples in the 𝑁=100 condition, 2 samples in the 𝑁=300 condition, 2 samples in 

the 𝑁=1000 condition and 1 sample in the 𝑁=10,000 condition.  
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In the 20-variable condition, again each method had some issues with convergence. In 

particular, the AGLS method did not converge for 16 samples in the 𝑁=300 condition and 1 

sample in the 𝑁=500 condition. The NGLS method did not converge for 3 samples in the 𝑁=300 

condition and 1 sample in the 𝑁=500 condition. Next the MGLS method did not converge for 1 

sample in the 𝑁=300 condition. Finally the MRLS method did not converge in 13 samples in the 

𝑁=300 case, 3 samples in the 𝑁=500 case, and 1 sample in the 𝑁=1000 case. 

Parameter Estimates and Standard Errors. For the 5-variable condition, the means 

and standard deviations of the parameter estimates and standard error estimates for each of the 

four estimation methods are shown in Tables 9.1 through 9.4. Each table shows one sample size 

(100, 300, 500, and 1000, respectively). As shown in the tables, each estimation method seemed 

to produce slightly high, but reasonable estimates of the factor loadings and these estimates 

improved as the sample size increased. Boxplots illustrate this trend for the first factor loading in 

Figure 9.1. However, the factor variance and error variance estimates were all too low. This is 

also illustrated with boxplots in Figure 9.2 for the estimates of the factor variance and in Figure 

9.3 for the estimates of the first error variance. Specifically, the average error variances resulting 

from MRLS method were the closest to the population values, and this method also produced 

reasonable factor variance estimates. On the other hand, the MGLS method produced the best 

average factor variance estimates, but the average error variance estimates were much lower. 

Lower still were the average variance estimates resulting from the AGLS and NGLS methods, 

with the AGLS method performing somewhat better than the NGLS method.  

In addition, the standard error estimates in the 5-variable condition produced by each 

method were also too low. The AGLS and NGLS methods produced standard errors that were 

better matches for the standard deviations of the parameters than those of the MGLS and MRLS 
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methods which tended to be very low.   In particular, in the 𝑁=100 condition, some of the 

standard deviations of the standard error estimates were exceeding large variance (e.g. see the 

value corresponding to the factor variance in the MGLS condition). These standard deviations 

became smaller as the sample size increased revealing increasing stability in the estimated 

standard errors. However, with the exception of the AGLS method, this increasing stability was 

not associated with an increase in accuracy.  

For the 20-variable condition, the means and standard deviations of the parameter 

estimates and standard errors for each of the four estimation methods are shown in Tables 9.5 

through 9.8. Once again, these tables show the results for the first 6 factor loadings, the factor 

variance and the first 7 error variances. Each table shows one sample size (300, 500, 1000 and 

10,000, respectively). These tables reveal some troubling issues with estimation. Most notably, 

in the 𝑁=100 and 𝑁=300 the MRLS method seem to produce volatile and inaccurate average 

parameter estimates (e.g. one of the average error variance values was 257.97 with a standard 

deviation of 5663.62). However, the boxplots of the distributions of the estimates of the first 

factor loading, shown in Figure 9.4, suggest that some of these issues may be driven by extreme 

outliers as it appears that all of the methods had median factor loadings close to 1.0.  Also, the 

AGLS and NGLS methods produced average error variance estimates that were very low (e.g. 

around 0.07 to 0.09 rather than 1.00 in the 𝑁=100 condition). The average error variances 

estimated by the MGLS method were somewhat better, but were still quite low (e.g. these were 

in the 0.51 to 0.53 range in the 𝑁=100 condition). In addition, while the average factor variance 

obtained through the MGLS method was fairly accurate, those obtained through the AGLS and 

MGLS were very low. The boxplots of the estimates of the factor variance in Figure 9.5 and of 

the first error variance in Figure 9.6, exemplify these issues with the variance estimates. 
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Test Statistics. The test statistics found in the 5-variable case were also quite poor. As 

shown in Table 9.9, only the AGLS method was able to produce reasonable average 𝜒2 values. 

This was also apparent when examining the model rejection rates (see Table 9.8). The other three 

methods each had average 𝜒2 values that increased with sample size and this resulted in most 

models being rejected by hypothesis tests. Figures 9.7 to 9.8, show the histograms of the 𝜒2 

estimates, and from these plots it is apparent that only the AGLS method begins to approximate 

the theoretical 𝜒2 distribution as the sample size increased. On the other hand, the 𝜒2 statistics 

resulting from the NGLS, MGLS, MRLS procedures, had distributions that became flatter and 

more dispersed as the sample size increased. This trend is shown in Figures 9.8, 9.9 and 9.10 for 

sample sizes ranging from 100 to 1000. In the 𝑁=10,000 and 𝑁=100,000 conditions, the trend of 

flattening and spreading away from the 𝜒2 distribution continued, so these distributions are not 

displayed in the figures.  

The test-statistics in the 20-variable condition behaved even more erratically. First, as 

shown in Table 9.11, the AGLS method produced average 𝜒2 values that were initially (with 

𝑁=300) far below the predicted 𝜒2 values. These values then seemed to get closer to the 

expected value with 𝑁=500 only to overshoot in the 𝑁=1000 condition. The values finally 

seemed to begin to converge in the 𝑁=10,000 and 𝑁=100,000. The extent of this strange 

behavior is shown by the histograms in Figure 9.11. The other three estimation methods seemed 

to produce 𝜒2-test statistics that followed a similar pattern to those in the 5-variable case. That is 

the average 𝜒2 values became larger, more and more models were rejected (see Tables 9.11 and 

9.12) and the histograms of the 𝜒2 values became increasingly dispersed (see Figures 9.12, 9.13 

and 9.14).  
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Discussion 

 The results of the estimation of models of log-normal data were a bit ambiguous. When 

the number of variables in the model was small, the factor loadings were accurately estimated, 

but the variance parameters were generally too low, at least in small samples. These got better as 

the sample size increased, but the AGLS and NGLS variance parameter estimates were still low 

in large samples. This problem was worse in the condition with a large number of variables, and 

there was also some trouble estimating the factor loadings. The standard error estimates were 

also unreliable. The standard errors given MGLS and MRLS appeared to be very low, and they 

were also highly variable, making them unreliable for use in testing parameters. The AGLS and 

MGLS standard errors were less bad, but they were still usually too low (in contrast to what was 

seen in the normal data conditions). Furthermore, the test statistic estimates were inaccurate.  

The AGLS estimates seemed slow to converge to the expected 𝜒2 distribution, and those 

produced by the NGLS, MGLS, and MRLS methods seemed to outright diverge from the 

expected 𝜒2 distribution.  

The results for the condition with a large number of variables were even messier. For the 

most part, increasing the number of variables simply resulted in an exaggeration of the problems 

described in the small variable case. However, in the case of the AGLS test statistic estimates, 

this also revealed a new problem. That is, the estimated 𝜒2-test statistics given by the AGLS 

method seemed to wobble up and down with the sample size before seeming to settle in near the 

expected distribution. From the perspective of applying this method, this fluctuation is 

particularly troubling, because a research would not have any way to know whether a statistic 

was too high or too low. It seems when we have non-normal data and models containing a large 
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number of variables, we will not be able to rely upon the test statistics given by any of these 

estimation methods.  

These results, particularly those relating to the distributions of the estimated test-

statistics, confirm that the AGLS method is the only correctly specified method. The NGLS 

method makes normal theory assumptions as do the MGLS and MRLS methods, which are based 

on normal-theory estimation of covariance models. This explains why the NGLS, MGLS, and 

MRLS methods all seemed to fail in consistent ways in terms of the estimated test statistics. That 

is, they became misspecified when normality was violated.  

Finally, more work should be done to determine why the estimation methods did not 

perform well here in the case of log-normal data. Perhaps this data was problematic because of 

the tendency to have extreme values which can influence the mean, and of course the covariance 

and CV matrices. In structural equation modeling of covariance matrices, the use of case-robust 

estimators, which are not influenced by outlying values, have been shown to be beneficial when 

extreme cases are present (e.g. Bentler, Satorra, Yuan, 2009). This strategy might also be applied 

here by obtaining case-robust estimators of the mean and covariance matrix and using these to 

produce a potentially more stable CV matrix. Further, it might be the case that these estimation 

methods perform better in other forms of non-normal data that do not contain frequent extreme 

values. Along those lines, maybe the skew of the log-normal data leads to problems and the 

estimators would perform better in symmetric (but not necessarily normal) distributions. This is 

yet another avenue that future research might explore. 
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Tables 

Table 9.1. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of log-normal data with 5 

variables and N=100. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.048 1.091 1.096 1.095  0.777  0.567 0.597 0.603 0.578 0.584 

𝑆𝐷  0.526 0.644 0.761 0.617  0.859  0.499 0.332 0.379 0.352 0.343 

𝑆𝐸𝜃̂ 
𝑀  0.264 0.303 0.316 0.271  0.352  0.299 0.199 0.214 0.198 0.204 

𝑆𝐷  0.604 0.848 1.850 0.579  1.868  1.857 0.138 0.268 0.144 0.142 

                

NGLS 

𝜃 
𝑀  1.017 1.059 1.049 1.061  0.566  0.405 0.422 0.411 0.409 0.411 

𝑆𝐷  0.610 0.402 0.395 0.419  0.262  0.277 0.352 0.346 0.307 0.318 

𝑆𝐸𝜃̂ 
𝑀  0.659 0.345 0.339 0.346  0.291  0.222 0.315 0.231 0.222 0.227 

𝑆𝐷  7.237 0.244 0.241 0.299  0.145  0.209 2.035 0.188 0.213 0.237 

                

MGLS 

𝜃 
𝑀  1.073 1.088 1.078 1.084  0.961  0.686 0.673 0.669 0.660 0.674 

𝑆𝐷  0.857 0.663 0.771 0.706  1.127  0.944 0.384 0.402 0.472 0.494 

𝑆𝐸𝜃̂ 
𝑀  0.339 0.292 0.328 0.298  2.487  2.388 0.131 0.133 0.130 0.132 

𝑆𝐷  3.485 2.502 3.325 2.580  50.402  50.412 0.064 0.069 0.074 0.078 

                

MRLS 

𝜃 
𝑀  1.047 1.063 1.068 1.073  0.949  0.877 0.906 0.934 0.908 0.903 

𝑆𝐷  1.138 1.074 0.948 0.825  0.700  0.648 0.751 0.755 1.296 0.830 

𝑆𝐸𝜃̂ 
𝑀  0.400 0.387 0.355 0.326  0.233  0.151 0.157 0.161 0.158 0.156 

𝑆𝐷  4.665 4.316 3.622 2.986  0.128  0.091 0.114 0.112 0.185 0.118 
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Table 9.2. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of log-normal data with 5 

variables and N=300. 

    Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.023 1.027 1.035 1.031  0.774  0.729 0.727 0.752 0.727 0.724 

𝑆𝐷  0.267 0.277 0.269 0.254  0.286  0.256 0.277 0.309 0.251 0.259 

𝑆𝐸𝜃̂ 
𝑀  0.151 0.155 0.153 0.151  0.184  0.171 0.172 0.186 0.170 0.174 

𝑆𝐷  0.081 0.079 0.085 0.066  0.109  0.099 0.129 0.123 0.110 0.100 

                

NGLS 

𝜃 
𝑀  1.007 1.020 1.023 1.011  0.704  0.587 0.601 0.609 0.589 0.590 

𝑆𝐷  0.222 0.230 0.214 0.201  0.236  0.278 0.278 0.348 0.267 0.245 

𝑆𝐸𝜃̂ 
𝑀  0.165 0.168 0.166 0.165  0.195  0.155 0.156 0.164 0.152 0.151 

𝑆𝐷  0.071 0.080 0.068 0.063  0.074  0.096 0.101 0.125 0.094 0.078 

                

MGLS 

𝜃 
𝑀  1.025 1.054 1.042 1.032  0.999  0.808 0.823 0.844 0.801 0.800 

𝑆𝐷  0.292 0.327 0.300 0.272  0.484  0.367 0.384 0.454 0.356 0.317 

𝑆𝐸𝜃̂ 
𝑀  0.094 0.096 0.094 0.094  0.143  0.087 0.088 0.091 0.086 0.087 

𝑆𝐷  0.032 0.036 0.033 0.030  0.055  0.035 0.037 0.043 0.034 0.031 

                

MRLS 

𝜃 
𝑀  0.999 1.037 1.008 0.960  0.963  0.982 0.950 0.969 0.913 0.935 

𝑆𝐷  0.759 0.586 0.926 1.633  0.450  1.137 0.517 0.544 0.432 0.503 

𝑆𝐸𝜃̂ 
𝑀  0.249 0.201 0.290 0.458  0.144  0.099 0.096 0.098 0.094 0.095 

𝑆𝐷  3.336 2.228 4.253 8.029  0.053  0.093 0.045 0.048 0.038 0.043 
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Table 9.3. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of log-normal data with 5 

variables and N=500. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.037 1.028 1.031 1.029  0.794  0.783 0.789 0.779 0.796 0.792 

𝑆𝐷  0.238 0.189 0.200 0.186  0.259  0.267 0.248 0.210 0.265 0.260 

𝑆𝐸𝜃̂ 
𝑀  0.141 0.135 0.133 0.131  0.164  0.168 0.171 0.164 0.169 0.169 

𝑆𝐷  0.173 0.054 0.051 0.045  0.079  0.102 0.154 0.093 0.115 0.110 

                

NGLS 

𝜃 
𝑀  1.023 1.018 1.017 1.025  0.755  0.690 0.679 0.683 0.684 0.685 

𝑆𝐷  0.178 0.179 0.176 0.170  0.207  0.270 0.251 0.243 0.254 0.270 

𝑆𝐸𝜃̂ 
𝑀  0.122 0.122 0.122 0.122  0.156  0.127 0.128 0.124 0.126 0.131 

𝑆𝐷  0.038 0.035 0.037 0.036  0.049  0.059 0.061 0.050 0.058 0.071 

                

MGLS 

𝜃 
𝑀  1.040 1.032 1.022 1.044  0.981  0.872 0.866 0.853 0.867 0.881 

𝑆𝐷  0.250 0.323 0.220 0.278  0.390  0.317 0.317 0.280 0.314 0.348 

𝑆𝐸𝜃̂ 
𝑀  0.074 0.075 0.073 0.075  0.112  0.071 0.072 0.070 0.071 0.073 

𝑆𝐷  0.024 0.034 0.020 0.029  0.035  0.023 0.023 0.019 0.022 0.026 

                

MRLS 

𝜃 
𝑀  1.039 1.030 1.024 1.041  0.962  0.970 0.960 0.952 0.957 0.984 

𝑆𝐷  0.251 0.323 0.219 0.276  0.353  0.427 0.376 0.372 0.426 0.433 

𝑆𝐸𝜃̂ 
𝑀  0.077 0.077 0.076 0.078  0.114  0.076 0.076 0.075 0.075 0.078 

𝑆𝐷  0.025 0.037 0.021 0.031  0.035  0.029 0.026 0.024 0.028 0.030 
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Table 9.4. Means and standard deviations of parameter estimates and standard errors of a 1-factor model of log-normal data with 5 

variables and N=1000. 

   
 

Factor Loadings  
Factor 

Variance 
 Error Variances 

AGLS 

𝜃 
𝑀  1.010 1.006 1.017 1.011  0.856  0.847 0.845 0.842 0.845 0.845 

𝑆𝐷  0.133 0.126 0.133 0.134  0.205  0.212 0.221 0.197 0.192 0.228 

𝑆𝐸𝜃̂ 
𝑀  0.105 0.104 0.105 0.106  0.145  0.150 0.149 0.148 0.148 0.151 

𝑆𝐷  0.032 0.030 0.031 0.033  0.064  0.094 0.092 0.075 0.083 0.094 

                

NGLS 

𝜃 
𝑀  1.005 1.012 1.016 1.011  0.843  0.791 0.775 0.784 0.780 0.766 

𝑆𝐷  0.139 0.133 0.139 0.147  0.191  0.220 0.251 0.215 0.238 0.323 

𝑆𝐸𝜃̂ 
𝑀  0.080 0.079 0.079 0.080  0.117  0.096 0.097 0.095 0.094 0.100 

𝑆𝐷  0.018 0.016 0.017 0.019  0.032  0.038 0.046 0.031 0.037 0.065 

                

MGLS 

𝜃 
𝑀  1.015 1.014 1.017 1.027  1.003  0.924 0.923 0.915 0.906 0.937 

𝑆𝐷  0.180 0.163 0.159 0.187  0.313  0.275 0.309 0.241 0.268 0.357 

𝑆𝐸𝜃̂ 
𝑀  0.052 0.051 0.051 0.052  0.082  0.053 0.053 0.052 0.052 0.054 

𝑆𝐷  0.011 0.010 0.010 0.011  0.020  0.014 0.017 0.012 0.013 0.026 

                

MRLS 

𝜃 
𝑀  1.016 1.016 1.019 1.023  0.985  0.983 0.988 0.971 0.957 0.991 

𝑆𝐷  0.170 0.156 0.155 0.178  0.281  0.310 0.396 0.276 0.285 0.333 

𝑆𝐸𝜃̂ 
𝑀  0.053 0.053 0.053 0.053  0.082  0.055 0.055 0.054 0.054 0.055 

𝑆𝐷  0.011 0.010 0.010 0.011  0.020  0.015 0.020 0.013 0.014 0.016 

 

  



 

 

  

9
7 

Table 9.5. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of log-normal 

data with 20 variables and N=300. 

    Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃̂ 
𝑀  1.009 1.013 1.008 1.015 1.012 1.007  0.200  0.071 0.076 0.073 0.075 0.073 0.071 0.070 

𝑆𝐷  0.139 0.135 0.134 0.133 0.139 0.136  0.040  0.040 0.045 0.043 0.043 0.042 0.043 0.044 

𝑆𝐸𝜃̂ 
𝑀  0.128 0.127 0.128 0.128 0.128 0.128  0.048  0.043 0.045 0.044 0.043 0.044 0.044 0.044 

𝑆𝐷  0.028 0.028 0.029 0.027 0.028 0.029  0.007  0.014 0.015 0.014 0.013 0.015 0.012 0.012 

                    

NGLS 

𝜃̂ 
𝑀  1.000 1.012 1.009 1.017 1.001 0.995  0.174  0.082 0.079 0.085 0.085 0.088 0.077 0.078 

𝑆𝐷  0.223 0.169 0.187 0.215 0.215 0.174  0.069  0.063 0.074 0.070 0.063 0.066 0.065 0.061 

𝑆𝐸𝜃̂ 
𝑀  0.449 0.433 0.445 0.443 0.445 0.433  0.123  0.081 0.086 0.085 0.081 0.084 0.083 0.083 

𝑆𝐷  0.476 0.243 0.524 0.353 0.524 0.286  0.038  0.033 0.048 0.049 0.036 0.041 0.034 0.032 

                    

MGLS 

𝜃̂ 
𝑀  1.027 1.016 1.013 1.015 1.040 1.120  1.029  0.513 0.525 0.533 0.517 0.533 0.516 0.515 

𝑆𝐷  0.300 0.414 0.270 0.377 0.294 1.672  0.657  0.172 0.193 0.239 0.179 0.207 0.165 0.249 

𝑆𝐸𝜃̂ 
𝑀  0.094 0.102 0.087 0.101 0.089 0.151  0.137  0.056 0.057 0.058 0.056 0.057 0.056 0.059 

𝑆𝐷  0.158 0.298 0.058 0.291 0.062 1.267  0.062  0.018 0.021 0.024 0.018 0.021 0.018 0.062 

                    

MRLS 

𝜃̂ 
𝑀  0.359 0.822 0.848 0.803 0.077 0.738  14.457  1.319 1.450 1.404 1.279 1.363 257.974 1.372 

𝑆𝐷  21.245 8.290 8.906 10.197 20.710 11.752  275.822  1.304 1.622 1.722 1.221 1.907 5663.623 1.500 

𝑆𝐸𝜃̂ 
𝑀  0.133 0.114 0.114 0.117 0.122 0.120  1.256  0.112 0.123 0.119 0.109 0.116 22.427 0.117 

𝑆𝐷  0.537 0.215 0.239 0.271 0.320 0.305  22.524  0.107 0.133 0.141 0.101 0.157 492.424 0.123 
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Table 9.6. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of log-normal 

data with 20 variables and N=500. 

    Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃̂ 
𝑀  1.018 1.023 1.025 1.002 1.027 1.013  0.197  0.174 0.175 0.179 0.182 0.173 0.177 0.178 

𝑆𝐷  0.223 0.226 0.218 0.209 0.235 0.229  0.058  0.078 0.066 0.065 0.064 0.064 0.061 0.063 

𝑆𝐸𝜃̂ 
𝑀  0.131 0.132 0.131 0.129 0.133 0.132  0.042  0.048 0.047 0.048 0.046 0.048 0.047 0.047 

𝑆𝐷  0.087 0.071 0.073 0.075 0.092 0.083  0.008  0.017 0.012 0.013 0.013 0.013 0.014 0.012 

                    

NGLS 

𝜃̂ 
𝑀  1.009 1.010 1.007 1.000 1.008 1.001  0.195  0.110 0.120 0.118 0.120 0.112 0.117 0.114 

𝑆𝐷  0.145 0.147 0.145 0.149 0.152 0.149  0.054  0.085 0.066 0.069 0.063 0.070 0.067 0.069 

𝑆𝐸𝜃̂ 
𝑀  0.319 0.320 0.316 0.317 0.319 0.318  0.105  0.080 0.075 0.078 0.073 0.075 0.075 0.076 

𝑆𝐷  0.095 0.093 0.095 0.096 0.094 0.094  0.023  0.039 0.025 0.034 0.025 0.035 0.041 0.029 

                    

MGLS 

𝜃̂ 
𝑀  1.002 1.003 0.998 1.020 1.012 1.011  1.057  0.646 0.629 0.639 0.617 0.624 0.624 0.626 

𝑆𝐷  0.214 0.212 0.207 0.234 0.220 0.209  0.543  0.210 0.160 0.196 0.169 0.207 0.228 0.175 

𝑆𝐸𝜃̂ 
𝑀  0.063 0.064 0.063 0.064 0.064 0.064  0.112  0.051 0.049 0.051 0.048 0.049 0.049 0.050 

𝑆𝐷  0.016 0.016 0.016 0.017 0.017 0.016  0.045  0.018 0.013 0.016 0.013 0.016 0.017 0.015 

                    

MRLS 

𝜃̂ 
𝑀  0.566 0.710 0.489 0.100 0.588 0.335  1.068  1.613 1.184 1.231 1.155 1.320 1.175 1.246 

𝑆𝐷  9.661 6.486 11.222 20.261 9.354 14.971  1.159  8.158 0.737 0.824 0.824 1.546 0.796 1.164 

𝑆𝐸𝜃̂ 
𝑀  0.090 0.085 0.092 0.111 0.089 0.101  0.133  0.106 0.078 0.081 0.077 0.087 0.078 0.082 

𝑆𝐷  0.397 0.265 0.462 0.838 0.384 0.618  0.283  0.518 0.047 0.053 0.053 0.099 0.051 0.074 
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Table 9.7. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of log-normal 

data with 20 variables and N=1000.  

    Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃̂ 
𝑀  1.009 1.006 1.013 1.012 1.010 1.007  0.347  0.425 0.420 0.421 0.438 0.424 0.425 0.427 

𝑆𝐷  0.120 0.120 0.124 0.116 0.128 0.131  0.064  0.081 0.083 0.088 0.178 0.077 0.082 0.084 

𝑆𝐸𝜃̂ 
𝑀  0.075 0.075 0.077 0.076 0.076 0.076  0.042  0.050 0.049 0.049 0.052 0.048 0.050 0.050 

𝑆𝐷  0.012 0.013 0.014 0.013 0.014 0.014  0.006  0.014 0.013 0.013 0.058 0.013 0.013 0.014 

                    

NGLS 

𝜃̂ 
𝑀  1.011 1.011 1.022 1.012 1.010 1.019  0.234  0.182 0.177 0.179 0.174 0.180 0.179 0.183 

𝑆𝐷  0.140 0.135 0.232 0.129 0.137 0.128  0.047  0.079 0.076 0.073 0.141 0.075 0.076 0.074 

𝑆𝐸𝜃̂ 
𝑀  0.205 0.205 0.208 0.204 0.205 0.204  0.080  0.065 0.063 0.064 0.068 0.063 0.064 0.063 

𝑆𝐷  0.056 0.054 0.067 0.055 0.054 0.051  0.011  0.023 0.021 0.022 0.096 0.024 0.021 0.019 

                    

MGLS 

𝜃̂ 
𝑀  1.019 1.013 1.029 1.008 1.017 1.007  1.004  0.766 0.749 0.755 0.781 0.747 0.760 0.751 

𝑆𝐷  0.167 0.162 0.473 0.157 0.177 0.160  0.312  0.189 0.175 0.181 0.559 0.195 0.183 0.166 

𝑆𝐸𝜃̂ 
𝑀  0.046 0.046 0.047 0.045 0.046 0.045  0.077  0.040 0.039 0.040 0.042 0.039 0.040 0.039 

𝑆𝐷  0.009 0.009 0.024 0.009 0.010 0.008  0.021  0.011 0.010 0.010 0.047 0.010 0.010 0.009 

                    

MRLS 

𝜃̂ 
𝑀  0.961 0.975 2.022 0.957 0.956 0.947  1.052  1.139 1.137 1.133 4.632 1.103 1.333 1.133 

𝑆𝐷  1.195 0.804 22.688 1.111 1.301 1.314  1.598  0.708 0.559 0.493 77.944 0.499 4.809 0.992 

𝑆𝐸𝜃̂ 
𝑀  0.050 0.050 0.058 0.050 0.051 0.050  0.084  0.053 0.053 0.053 0.211 0.052 0.062 0.053 

𝑆𝐷  0.012 0.010 0.189 0.011 0.019 0.012  0.078  0.032 0.025 0.022 3.524 0.023 0.215 0.045 
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Table 9.8. Means and standard deviations of a subset of parameter estimates and standard errors of a 1-factor model of log-normal 

data with 20 variables and N=10,000.  

    Factor Loadings (1-6)  
Factor 

Variance 
 Error Variances (1-7) 

AGLS 

𝜃 
𝑀  1.001 1.004 1.003 1.003 1.001 1.000  0.748  0.823 0.817 0.825 0.824 0.823 0.821 0.818 

𝑆𝐷  0.034 0.034 0.037 0.033 0.037 0.034  0.044  0.059 0.060 0.057 0.062 0.061 0.058 0.057 

𝑆𝐸𝜃̂ 
𝑀  0.027 0.027 0.027 0.027 0.027 0.027  0.032  0.044 0.044 0.043 0.045 0.043 0.044 0.043 

𝑆𝐷  0.002 0.002 0.002 0.002 0.002 0.002  0.003  0.012 0.012 0.011 0.012 0.010 0.011 0.011 

                    

NGLS 

𝜃 
𝑀  1.002 1.002 1.000 1.001 1.001 1.002  0.571  0.548 0.550 0.549 0.550 0.548 0.550 0.545 

𝑆𝐷  0.042 0.042 0.045 0.044 0.045 0.042  0.057  0.082 0.082 0.077 0.087 0.080 0.081 0.076 

𝑆𝐸𝜃̂ 
𝑀  0.035 0.035 0.035 0.035 0.035 0.035  0.034  0.028 0.028 0.028 0.028 0.028 0.028 0.028 

𝑆𝐷  0.004 0.004 0.004 0.004 0.004 0.004  0.003  0.005 0.006 0.004 0.005 0.004 0.005 0.004 

                    

MGLS 

𝜃 
𝑀  1.004 1.004 1.010 1.004 1.007 1.005  1.004  0.953 0.960 0.956 0.967 0.950 0.960 0.948 

𝑆𝐷  0.063 0.062 0.070 0.075 0.067 0.065  0.227  0.118 0.149 0.106 0.120 0.103 0.112 0.102 

𝑆𝐸𝜃̂ 
𝑀  0.015 0.015 0.015 0.015 0.015 0.015  0.025  0.014 0.015 0.015 0.015 0.014 0.015 0.014 

𝑆𝐷  0.001 0.001 0.001 0.001 0.001 0.001  0.005  0.002 0.002 0.002 0.002 0.002 0.002 0.002 

                    

MRLS 

𝜃 
𝑀  1.004 1.004 1.009 1.003 1.006 1.005  0.999  1.038 1.024 1.018 1.047 1.023 1.026 1.013 

𝑆𝐷  0.061 0.059 0.065 0.066 0.064 0.062  0.179  0.544 0.196 0.136 0.245 0.293 0.169 0.155 

𝑆𝐸𝜃̂ 
𝑀  0.015 0.015 0.015 0.015 0.015 0.015  0.025  0.015 0.015 0.015 0.016 0.015 0.015 0.015 

𝑆𝐷  0.001 0.001 0.001 0.001 0.001 0.001  0.007  0.008 0.003 0.002 0.004 0.004 0.002 0.002 
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Table 9.9. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 5) test statistics of the one-

factor model of log-normal data in the condition with 5 variables.  

  AGLS  NGLS  MGLS  MRLS 

 𝑁 
 𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

100  6.74 3.59  7.63 2.64  15.42 9.47  15.91 10.48 

300  6.77 3.85  14.90 6.17  23.82 15.99  25.60 19.30 

500  6.35 4.67  20.01 9.12  29.06 20.30  31.54 25.38 

1000  5.75 3.35  27.30 15.15  36.43 30.46  38.67 34.86 

10,000  5.32 3.11  58.87 49.71  62.47 57.79  64.17 62.83 

100,000  5.13 3.01  80.24 82.48  80.94 84.85  82.27 91.05 

 

 

 

Table 9.10. Percent of replications in which the one-factor model of log-normal data was 

rejected by a 𝜒2(𝑑𝑓 = 5) test with 𝛼 = .05 in the condition with 5 variables. 

𝑁 
 AGLS  NGLS  MGLS  MRLS 

100  11.36  11.31  61.12  61.21 

300  14.11  70.80  78.56  79.32 

500  8.62  81.80  84.80  85.60 

1000  9.00  86.20  87.40  88.15 

10,000  6.20  94.80  95.00  94.99 

100,000  4.60  97.00  97.00  97.00 
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Table 9.11. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 170) test statistics of the one-

factor model of log-normal data in the condition with 20 variables. 

  AGLS  NGLS  MGLS  MRLS 

 𝑁 
 𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

300  83.15 7.49  72.69 8.05  565.96 84.92  677.33 152.85 

500  185.04 16.09  108.42 10.27  704.36 115.47  854.97 221.64 

1000  303.08 29.32  188.93 12.50  927.98 163.42  1140.73 317.98 

10,000  214.24 21.95  986.19 103.88  1832.83 527.53  2103.80 1048.88 

100,000  178.02 16.91  2231.84 556.03  2492.53 752.42  2591.77 983.21 

 

 

 

Table 9.12. Percent of replications in which the one-factor model of log-normal data was 

rejected by a 𝜒2(𝑑𝑓 = 170) test with 𝛼 = .05 in the condition with 20 variables. 

𝑁  AGLS  NGLS  MGLS  MRLS 

300  0.00  0.00  100.00  100.00 

500  13.23  0.00  100.00  100.00 

1000  100.00  14.80  100.00  100.00 

10,000  68.40  100.00  100.00  100.00 

100,000  8.60  100.00  100.00  100.00 
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Figures  

 

Figure 9.1. Boxplots of the values of the first factor loading estimated by the different methods 

across sample sizes (in the log-normal data condition with 5 variables). Note that the following 

extreme outliers are not depicted: In the 𝑁=100 case, each method had one large negative outlier 

between -4 (for AGLS) and -25 (for MRLS) and NGLS also had one large positive outlier (with 

a value of 11). In the 𝑁=300, the MRLS method produced one large negative outlier (about -14).  
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Figure 9.2. Boxplots of the values of the factor variance estimated by the different methods 

across sample sizes (in the log-normal data condition with 5 variables). Note that the following 

extreme outliers are not depicted: In the 𝑁=100 case the AGLS method produced one outlier 

(with a value of about 14) and the MGLS method produced one large negative outlier (about -

18). 

 

  



 

105 

  

 

Figure 9.3. Boxplots of the values of the first error variance estimated by the different methods 

across sample sizes (in the log-normal data condition with 5 variables). Note that the following 

extreme outliers are not depicted: In the 𝑁=100 case the AGLS method produced one outlier 

(with a value of about -6) and the MGLS method produced one large positive outlier (about 20) 

and in the 𝑁=300 condition MRLS produced an outlier around 25.  
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Figure 9.4. Boxplots of the values of the first factor loading estimated by the different methods 

across sample sizes (in the log-normal data condition with 20 variables). The following extreme 

outliers are not depicted: The MRLS procedure produced several extreme outliers (-450 and 150 

with 𝑁=300, -200 with 𝑁=500, and -10 with 𝑁=1000). 
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Figure 9.5. Boxplots of the values of the factor variance estimated by the different methods 

across sample sizes (in the normal data condition with 20 variables with equal means). The 

following extreme outliers are not depicted: The MRLS procedure produced several extreme 

outliers in the 𝑁=300 condition (at approximately 6000, 500, 45, and 25), in the 𝑁=500 

condition (at approximately 25) and in the 𝑁=1000 condition (at about 35). 
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Figure 9.6. Boxplots of the values of the first error variance estimated by the different methods 

across sample sizes (in the log-normal data condition with 20 variables). One extreme outlier is 

not depicted: The MRLS procedure produced an error estimate of 175 in the 𝑁=500 condition.  
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Figure 9.7. Histograms of the values of the 𝜒2-test statistics produced through AGLS estimation 

across sample sizes (in the log-normal data condition with 5 variables). Two outliers are not 

depicted: In the 𝑁=500 condition, there were outliers at 71 and 591. 
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Figure 9.8. Histograms of the values of the 𝜒2-test statistics produced through NGLS estimation 

across sample sizes (in the log-normal data condition with 5 variables).  
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Figure 9.9. Histograms of the values of the 𝜒2-test statistics produced through MGLS estimation 

across sample sizes (in the log-normal data condition with 5 variables). In the 𝑁=1000 condition, 

there were two outliers at 288 and 483 which are not displayed.  
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Figure 9.10. Histograms of the values of the 𝜒2-test statistics produced through MRLS 

estimation across sample sizes (in the log-normal data condition with 5 variables). 
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Figure 9.11. Histograms of the values of the 𝜒2-test statistics produced through AGLS 

estimation across sample sizes (in the log-normal data condition with 20 variables). 
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Figure 9.12. Histograms of the values of the 𝜒2-test statistics produced through NGLS 

estimation across sample sizes (in the log-normal data condition with 20 variables). In the 

𝑁=100,000 condition there was an extreme value at 6064 that is not shown.  
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Figure 9.13. Histograms of the values of the 𝜒2-test statistics produced through MGLS 

estimation across sample sizes (in the log-normal data condition with 20 variables). Note, in the 

𝑁=100,000 condition, the right tail of the distribution was quite long and could not be depicted 

without distorting the histogram of the more typical values. As result, seven values ranging from 

5058 to 8887 are excluded.  
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Figure 9.14. Histograms of the values of the 𝜒2-test statistics produced through MRLS 

estimation across sample sizes (in the log-normal data condition with 20 variables). Here, in 

several of the sample size conditions, the right tail of the distribution was very long and could 

not be depicted without distorting the histograms of the more typical values. As result, some 

values were not displayed. Specifically, in the 𝑵=1000 condition there were 11 points ranging 

from 2000 to 2535, in the 𝑵=10,000 condition there were 9 points ranging from 5109 to 13501, 

and in the 𝑵=100,000 condition there were 14 points ranging from 5024 to 14356.  
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Chapter 10. Quality of Parameter, Test Statistic, and Standard Error Estimates: Two 

Factor Models of Normal Data 

In this chapter we continue to examine the performance of the AGLS, NGLS, MGLS and 

MRLS methods of estimating CV models by considering a model with two factors. Specifically, 

here we consider the performance of each method when the data are normally distributed. In the 

following chapter we will consider the same model, but data following a log-normal distribution.  

Method 

Conditions. Here, normally distributed data were generated according to the structure 

shown in Figure 5.2. The models included either 6 variables (3 per factor) or 20 variables (10 per 

factor). The sample sizes in the 6-variable case ranged from 100 to 100,000, whereas in the 20-

variable case, ranged from 300 to 100,000. 

Analyses. Refer to Chapter 7 for details regarding the analyses. The analyses used here 

were identical.  

Results  

Convergence.  In the smallest sample size condition (i.e. the condition with 6 variables 

and a sample size of 100), some of the estimation methods were unable to converge to solutions 

for some of the replications. Specifically, the NGLS method did not converge for 3 samples and 

the MGLS and RLS methods each did not converge for 1 sample.   

Parameter Estimates and Standard Errors. Tables 10.1 through 10.4 show means and 

standard deviations of the factor loadings, factor variances/covariances and errors variances for 

each of the four methods in the 6-variable condition. Each table displays the results for one 

sample size (100, 300, 500, and 1000, respectively). In the population, the factor loadings, the 
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factor variance and the error variances each have values of 1 and the factor covariance has a 

value of 0.3. The tabled results were contrasted with these values. 

The pattern of results observed here closely matched the previously reported results 

involving other small models of normal data. In particular, Tables 10.1 through 10.4 show that 

once again the average factor loadings seemed to be quite accurate for all estimation methods, 

even at small sample sizes. This is also apparent in Figure 10.1, which shows that the 

distributions of values of the first factor loading for the first factor was centered at 1.0 for each 

method and that the estimates became more precise as the sample size increased. In addition, the 

average variance and covariance estimates still tended to be too low for the AGLS and NGLS 

methods, while MGLS and MRLS produced more accurate estimates of the variance/covariance 

components, as was seen in previous models of normal data. For instance, in the condition with a 

sample size of 100, the AGLS method estimated each factor variance to be about 0.88 and the 

factor covariance to about 0.25. Similarly, the NGLS method estimated the factor variances to 

0.83 and 0.85 and the factor covariance to be 0.24. On the other hand, the MGLS and MRLS 

methods yielded average variance estimates that were better, but a bit high and fairly accurate 

estimates of the average factor covariance. The MGLS procedure had average factor variance 

estimates of about 1.06, and an average factor covariance of 0.31 (in the condition with 𝑁=100). 

The MRLS procedure had higher factor variance estimates on average, about 1.09 and 1.10, and 

very accurate factor covariance estimates (0.30 on average). All methods produced more 

accurate parameter estimates as the sample size increased. However, the variance estimates 

produced by the AGLS and NGLS methods converged slowly and were still a bit low in large 

sample sizes (e.g. see Tables 10.3 and 10.4). In addition, Figures 10.2 and 10.3 also display the 

distributions of the first factor variance estimates and the factor covariance estimates, 
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respectively, across methods and sample sizes. This figure shows the same trend regarding 

accuracy, but also reveals the MGLS and MRLS procedures tended to have a bit more variability 

in their estimates at small sample sizes. Similar, results were obtained for the error variance 

estimates. That is, the AGLS and NGLS methods, tended to underestimate the variances, while 

MGLS and MRLS methods produced more accurate estimates that had slightly higher variability 

in small samples. These trends are apparent in Tables 10.1 through 10.4 and in Figure 10.4, 

which shows the distributions of the estimates for the first error variance. 

The theoretical standard errors are also displayed in Tables 10.1 through 10.4. As in 

previous chapters, these estimates were compared with the standard deviations of the parameters 

(i.e. the empirical standard errors). In small sample sizes, the AGLS and NGLS methods tended 

to give slightly high estimates of the standard errors relative to the variances of the parameter 

estimates, but these greatly improved as the sample sizes increased. On the other hand, the 

MGLS and MRLS procedures reliably produced estimated standard errors that were much lower 

than the variances of the parameters. The size of this discrepancy did decline as the sample sizes 

increased, but was still present in large samples. For instance, with 𝑁=1000, the standard errors 

of the error variances averaged about 0.07 for the MGLS and MRLS estimates, but the parameter 

variances were actually in the range of 0.11-0.12. The estimated standard errors for the factor 

loadings were a bit less biased, but the bias in the estimates of the factor variances was 

comparable to that in the error variances. Interestingly, the standard errors of the factor 

covariances were fairly accurate for all estimation methods. 

Tables 10.5 through 10.8 show means and standard deviations of a subset of the 

parameter estimates obtained from each of the four methods in the 20-variable condition. Each 

table displays the results for one sample size (300, 500, 1000 and 10,000, respectively) and the 
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parameters displayed include first 2 factor loadings for each factor, the factor variances and 

covariance, and the error variances for the first 3 variables loading on each factor. The estimates 

of the factor loadings were again fairly accurate across methods, but there were some differences 

in the precision of the estimates of the factor loadings. This is illustrated by Figure 10.5, which 

shows the distribution of the estimates of the first factor loading (on factor 1). In particular, it 

shows that while each method yielded factor loading estimates that were centered around 1.0, the 

AGLS estimates had very high variability while the NGLS method had the smallest variability, 

particularly at smaller sample sizes. 

Next, the estimates of the variance parameters seemed to differ across methods (also 

shown in Tables 10.5 through 10.8). Specifically, the AGLS and NGLS methods dramatically 

underestimated the variance parameters. With a sample size of 300, the AGLS estimates of the 

factor variances had averages between 0.48 and 0.49 and average error variance estimates around 

0.45 and the NGLS estimates were even worse (around 0.37 for the factor variance estimates and 

0.35 for the error variance estimates). The MGLS and MRLS estimates of the variance 

components tended to be much more accurate, but the MGLS estimates of the error variances 

had averages that were still too low. These were between 0.88 and 0.90 in the 𝑁=300 case. 

Regarding the covariance between the two factors, the MGLS and MRLS procedures were fairly 

accurate, whereas the AGLS and NGLS methods produced average estimates that were much too 

low. Specifically, in the 𝑁=300 case, the AGLS factor covariance estimates averaged about 0.14 

and the NGLS method averaged about 0.10. All estimates seemed to improve as the sample size 

increased, but the downward bias in the variance estimates for the AGLS and NGLS was still 

apparent at large sample sizes. For instance, with a sample size of 10,000 these methods 

produced factor and error variance estimates that were around 0.95 on average and factor 
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covariance estimates that were between 0.28 and 0.29, which are still a bit lower than the 

population value of 0.30. In addition, there were noteworthy differences in the variability of 

estimates of the variance/covariance parameters across the methods. Specifically, the NGLS 

method, in addition to producing very low estimates, seemed to very reliably produce those low 

estimates. This is illustrated by Figures 10.6 through 10.8, which display the distributions of the 

estimated factor variance (for the first factor), the factor covariance and the first error variance 

(of the first observed variable), respectively.  The figures show, that the variability of the 

estimates given by the NGLS method is consistently less than the variability of the other 

methods. 

The standard errors for the 20-variable conditions are also displayed in Tables 10.5 

through 10.8 and these were compared against the standard deviations of the parameters (i.e. the 

empirical standard errors). In this case, the AGLS method produced the standard error estimates 

that most closely reflected the standard deviations of the parameters estimates. However, they 

were once again, too conservative. The NGLS estimates of the standard errors were also fairly 

accurate at large sample sizes, but the tended to be much too high in smaller samples. That is, the 

reduced variability of the NGLS estimates of the variance/covariance parameters that was 

reported above, was not reflected in the standard error estimates that this method produced. 

Therefore, there was a large discrepancy between the estimated standard errors and the standard 

deviations of the parameter estimates produced by this method (refer to Table 10.5 for 

examples). The MGLS and MRLS procedures, on the other hand, tended to give standard error 

estimates that were much too low. They did get better as the sample sizes increased, but the bias 

was still substantial with a sample size of 10,000. (See Table 10.8 for specific values.) 
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Test Statistics. In the 6-variable condition the population/theoretical value of the 𝜒2-test 

statistic was 8. The means and standard deviations of the 𝜒2 values for the 6-variable condition 

are shown in Table 10.9. As observed in previous conditions, the AGLS and NGLS methods 

required very large sample sizes before they began producing average 𝜒2 values that were close 

to the expected value. Specifically, they were much too low in smaller samples. This trend is also 

shown in the histograms of the estimated 𝜒2 values shown in Figures 10.9 (for the AGLS 

method) and 10.10 (for NGLS method). A problematic result of this downward bias, is that the 

proportion of hypothesis tests that would result in a rejection of the null hypothesis was much too 

low (or even 0) in small samples. These proportions were calculated and are reported in Table 

10.10. The MGLS and MRLS procedures tended to produce much more accurate 𝜒2 values as 

shown in Table 10.9 and in Figures 10.11 (for MGLS) and 10.12 (for MRLS). However, they 

still under-rejected the null hypothesis when the sample size was 100 as shown in Table 10.10. In 

larger samples, the MGLS and MRLS methods tended to reject at a rate much closer to the 

expected 5%, but there were still some noteworthy fluctuations in this rate (see Table 10.10). 

In the 20-variable condition the population value of the 𝜒2-test statistic was 169 and the 

means and standard deviations of the estimated 𝜒2 values across methods and sample sizes are 

shown in Table 10.11. In this condition, the AGLS and NGLS methods did not (on average) 

produce any reasonable values of the 𝜒2-test statistic at a realistic sample size. These two 

methods began to produce estimates that were approximately correct with sample sizes of 10,000 

and 100,000, but sample sizes this large generally do not occur. The slow convergence of these 

𝜒2 values is clearly apparent in Figure 10.13 for the AGLS method and 10.14 for the NGLS 

method. Furthermore, as shown in Table 10.12, this resulted in these two methods being unable 

to reject the null hypothesis with samples sizes between 300 and 1000 and the methods only 
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showed a reasonable rejection rate at the highest sample size (𝑁=100,000). The MGLS and 

MRLS methods tended to provide less inaccurate estimates of the 𝜒2 values. This is effect is 

apparent in the averages shown in Table 10.11 and in the histograms of the estimates shown in 

Figure 10.15 for the MGLS method and in Figure 10.16 for the MRLS method. However, these 

values were still somewhat low and this produced low rejection rates in the 𝑁=300 and 𝑁=500 

conditions, particularly for the MRLS procedure (see Table 10.12). It is also noteworthy that 

when the sample sizes were very large (i.e. in the 𝑁=100,000 condition) all of the methods had 

rejection rates that were a bit too high (ranging from 5.4 to 6.0). 

Discussion 

 Overall, the results of the simulations presented here were comparable to those in 

previous chapters that considered normal data with similar numbers of variables. That is, the 

results for the 2-factor model with 6 variables presented here were a close match for those 

observed in Chapters 7 and 8 for the single factor model with 5 variables. This is informative, 

because in spite of the model being slightly more complex (and including one additional 

observed variable) the estimation performance seemed roughly equivalent. Similarly, the results 

for the 2-factor model with 20 variables described here were a close match for those observed in 

Chapters 7 and 8 for the single factor model with 20 variables. This suggests that while adding 

another factor does not seem to greatly impact the quality of the estimation, the problems 

observed previously are still apparent in the more complex model. 

 The primary difference here was that that an addition factor variance and a factor 

covariance needed to be estimated. Interestingly, all methods seemed to be somewhat better at 

estimating the factor covariance and its standard error than other variance parameters. However, 

the estimates of the factor covariance were still subject to the same sort of biases as the other 
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variance parameters. Specifically, the AGLS and NGLS methods tended to underestimate these 

in small samples, a trend that has been consistently observed across the studies so far.  

 Although the estimation methods perform comparably here in another form of factor 

model, does not mean the results will be similar in other types of structural equation models. 

There may be other models where the estimation methods perform better, and some where they 

completely break down. Future work should continue to explore different structures of CV 

models and reconsider the estimation performance in a variety of new structures. This may also 

lead to the discovery of new applications of the CV matrix models if one of these structures is 

relevant to a particular kind of data.   
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Tables  

Table 10.1. Means and standard deviations of parameter estimates and standard errors for a 2-factor model of normal data with 6 

variables with N=100. 

    Factor Loadings  Factor Covariances  Error Variances 

    𝑉1 𝑉2  𝑉4 𝑉5  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸4 𝐸5 𝐸6 

AGLS 

𝜃̂ 
𝑀  1.045 1.039  1.024 1.026  0.877 0.877 0.247  0.814 0.778 0.786  0.789 0.789 0.790 

𝑆𝐷  0.335 0.301  0.280 0.281  0.382 0.392 0.149  0.314 0.311 0.318  0.324 0.309 0.318 

𝑆𝐸𝜃̂ 
𝑀  0.334 0.332  0.322 0.327  0.443 0.444 0.167  0.382 0.377 0.375  0.371 0.363 0.374 

𝑆𝐷  0.187 0.148  0.137 0.145  0.205 0.226 0.058  0.174 0.289 0.179  0.176 0.168 0.183 

                     

NGLS 

𝜃̂ 
𝑀  1.040 1.039  1.014 1.021  0.834 0.849 0.239  0.793 0.752 0.770  0.774 0.766 0.776 

𝑆𝐷  0.281 0.275  0.248 0.255  0.332 0.348 0.132  0.286 0.303 0.288  0.302 0.282 0.302 

𝑆𝐸𝜃̂ 
𝑀  0.331 0.332  0.320 0.324  0.437 0.442 0.163  0.384 0.375 0.373  0.374 0.364 0.374 

𝑆𝐷  0.114 0.128  0.107 0.113  0.198 0.212 0.055  0.174 0.273 0.175  0.179 0.164 0.186 

                     

MGLS 

𝜃̂ 
𝑀  1.045 1.042  1.024 1.023  1.059 1.065 0.312  0.996 0.961 0.968  0.977 0.953 0.969 

𝑆𝐷  0.300 0.292  0.267 0.271  0.460 0.469 0.168  0.384 0.479 0.390  0.390 0.371 0.394 

𝑆𝐸𝜃̂ 
𝑀  0.214 0.215  0.208 0.208  0.310 0.312 0.149  0.233 0.231 0.229  0.228 0.224 0.229 

𝑆𝐷  0.082 0.093  0.072 0.073  0.112 0.118 0.046  0.082 0.105 0.081  0.084 0.077 0.086 

                     

MRLS 

𝜃̂ 
𝑀  1.045 1.040  1.029 1.023  1.094 1.097 0.302  1.084 1.052 1.066  1.070 1.037 1.052 

𝑆𝐷  0.291 0.293  0.267 0.273  0.472 0.461 0.161  0.419 0.524 0.429  0.421 0.386 0.414 

𝑆𝐸𝜃̂ 
𝑀  0.217 0.217  0.211 0.210  0.322 0.323 0.151  0.247 0.244 0.243  0.243 0.236 0.242 

𝑆𝐷  0.084 0.091  0.074 0.078  0.116 0.115 0.045  0.086 0.108 0.086  0.089 0.082 0.086 
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Table 10.2. Means and standard deviations of parameter estimates and standard errors for a 2-factor model of normal data with 6 

variables with N=300. 

    Factor Loadings  Factor Covariances  Error Variances 

    𝑉1 𝑉2  𝑉4 𝑉5  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸4 𝐸5 𝐸6 

AGLS 

𝜃̂ 
𝑀  1.007 1.002  1.009 1.023  0.951 0.925 0.286  0.929 0.911 0.925  0.899 0.909 0.913 

𝑆𝐷  0.145 0.150  0.131 0.146  0.230 0.214 0.085  0.211 0.192 0.206  0.187 0.192 0.194 

𝑆𝐸𝜃̂ 
𝑀  0.155 0.153  0.155 0.156  0.244 0.237 0.094  0.210 0.206 0.210  0.203 0.207 0.205 

𝑆𝐷  0.028 0.029  0.026 0.029  0.066 0.062 0.018  0.055 0.051 0.055  0.048 0.052 0.050 

                     

NGLS 

𝜃̂ 
𝑀  1.006 1.002  1.008 1.023  0.944 0.922 0.284  0.922 0.907 0.918  0.897 0.906 0.909 

𝑆𝐷  0.140 0.146  0.128 0.141  0.222 0.210 0.083  0.206 0.187 0.201  0.182 0.187 0.189 

𝑆𝐸𝜃̂ 
𝑀  0.155 0.154  0.154 0.157  0.245 0.238 0.093  0.211 0.207 0.211  0.204 0.208 0.206 

𝑆𝐷  0.025 0.026  0.024 0.027  0.065 0.060 0.018  0.055 0.051 0.055  0.048 0.052 0.051 

                     

MGLS 

𝜃̂ 
𝑀  1.006 1.002  1.009 1.024  1.029 1.003 0.310  1.002 0.986 0.998  0.975 0.985 0.987 

𝑆𝐷  0.144 0.148  0.132 0.144  0.254 0.237 0.094  0.224 0.205 0.220  0.199 0.209 0.208 

𝑆𝐸𝜃̂ 
𝑀  0.116 0.115  0.115 0.117  0.176 0.171 0.085  0.129 0.128 0.130  0.126 0.129 0.127 

𝑆𝐷  0.021 0.022  0.019 0.021  0.036 0.033 0.014  0.025 0.024 0.026  0.022 0.025 0.023 

                     

MRLS 

𝜃̂ 
𝑀  1.007 1.001  1.008 1.023  1.046 1.016 0.307  1.032 1.016 1.028  1.008 1.016 1.017 

𝑆𝐷  0.144 0.146  0.131 0.143  0.261 0.242 0.092  0.226 0.212 0.225  0.208 0.213 0.212 

𝑆𝐸𝜃̂ 
𝑀  0.116 0.115  0.116 0.118  0.178 0.174 0.085  0.132 0.130 0.132  0.128 0.131 0.129 

𝑆𝐷  0.021 0.021  0.019 0.021  0.037 0.034 0.014  0.025 0.024 0.026  0.022 0.026 0.024 
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Table 10.3. Means and standard deviations of parameter estimates and standard errors for a 2-factor model of normal data with 6 

variables with N=500. 

    Factor Loadings  Factor Covariances  Error Variances 

    𝑉1 𝑉2  𝑉4 𝑉5  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸4 𝐸5 𝐸6 

AGLS 

𝜃̂ 
𝑀  1.006 1.003  1.004 1.007  0.965 0.959 0.290  0.955 0.939 0.945  0.947 0.948 0.942 

𝑆𝐷  0.106 0.112  0.114 0.111  0.176 0.164 0.069  0.158 0.155 0.164  0.159 0.161 0.154 

𝑆𝐸𝜃̂ 
𝑀  0.115 0.114  0.114 0.115  0.186 0.184 0.072  0.161 0.159 0.160  0.159 0.160 0.159 

𝑆𝐷  0.015 0.016  0.016 0.016  0.038 0.034 0.011  0.031 0.030 0.032  0.031 0.032 0.030 

                     

NGLS 

𝜃̂ 
𝑀  1.006 1.003  1.004 1.006  0.962 0.958 0.289  0.953 0.938 0.944  0.944 0.946 0.941 

𝑆𝐷  0.105 0.110  0.112 0.110  0.172 0.164 0.068  0.157 0.153 0.161  0.159 0.159 0.153 

𝑆𝐸𝜃̂ 
𝑀  0.115 0.115  0.115 0.115  0.186 0.185 0.072  0.162 0.159 0.161  0.160 0.161 0.160 

𝑆𝐷  0.014 0.015  0.015 0.015  0.037 0.034 0.010  0.031 0.030 0.032  0.031 0.032 0.030 

                     

MGLS 

𝜃̂ 
𝑀  1.006 1.003  1.004 1.007  1.012 1.007 0.304  1.000 0.986 0.992  0.992 0.994 0.988 

𝑆𝐷  0.107 0.112  0.113 0.112  0.185 0.175 0.073  0.165 0.162 0.172  0.166 0.169 0.161 

𝑆𝐸𝜃̂ 
𝑀  0.089 0.089  0.089 0.089  0.134 0.133 0.065  0.099 0.098 0.099  0.098 0.099 0.098 

𝑆𝐷  0.012 0.012  0.012 0.012  0.020 0.019 0.008  0.014 0.014 0.014  0.015 0.015 0.014 

                     

MRLS 

𝜃̂ 
𝑀  1.006 1.003  1.004 1.007  1.021 1.014 0.302  1.018 1.004 1.010  1.010 1.012 1.006 

𝑆𝐷  0.106 0.112  0.113 0.112  0.187 0.177 0.072  0.166 0.164 0.174  0.169 0.173 0.163 

𝑆𝐸𝜃̂ 
𝑀  0.089 0.089  0.089 0.089  0.135 0.134 0.065  0.100 0.099 0.100  0.099 0.100 0.100 

𝑆𝐷  0.012 0.012  0.012 0.012  0.020 0.019 0.008  0.014 0.014 0.014  0.015 0.015 0.014 
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Table 10.4. Means and standard deviations of parameter estimates and standard errors for a 2-factor model of normal data with 6 

variables with N=1000. 

    Factor Loadings  Factor Covariances  Error Variances 

    𝑉1 𝑉2  𝑉4 𝑉5  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸4 𝐸5 𝐸6 

AGLS 

𝜃̂ 
𝑀  1.004 1.004  1.002 1.004  0.981 0.981 0.293  0.977 0.971 0.969  0.969 0.971 0.968 

𝑆𝐷  0.074 0.078  0.079 0.085  0.125 0.136 0.045  0.118 0.118 0.111  0.109 0.110 0.109 

𝑆𝐸𝜃̂ 
𝑀  0.079 0.079  0.079 0.079  0.130 0.130 0.050  0.114 0.113 0.113  0.113 0.113 0.113 

𝑆𝐷  0.007 0.007  0.008 0.008  0.019 0.019 0.005  0.016 0.016 0.016  0.015 0.015 0.015 

                     

NGLS 

𝜃̂ 
𝑀  1.003 1.003  1.002 1.004  0.981 0.980 0.293  0.977 0.970 0.970  0.968 0.970 0.968 

𝑆𝐷  0.073 0.078  0.078 0.084  0.124 0.135 0.045  0.118 0.118 0.112  0.108 0.110 0.108 

𝑆𝐸𝜃̂ 
𝑀  0.079 0.079  0.079 0.079  0.131 0.130 0.050  0.114 0.113 0.113  0.113 0.113 0.113 

𝑆𝐷  0.007 0.007  0.007 0.008  0.018 0.019 0.005  0.016 0.016 0.016  0.015 0.015 0.015 

                     

MGLS 

𝜃̂ 
𝑀  1.003 1.004  1.002 1.004  1.006 1.006 0.301  1.003 0.995 0.995  0.994 0.995 0.993 

𝑆𝐷  0.073 0.078  0.079 0.085  0.129 0.140 0.047  0.122 0.121 0.115  0.112 0.113 0.113 

𝑆𝐸𝜃̂ 
𝑀  0.062 0.062  0.062 0.063  0.094 0.094 0.046  0.070 0.070 0.070  0.069 0.070 0.069 

𝑆𝐷  0.006 0.006  0.006 0.007  0.010 0.010 0.004  0.008 0.007 0.007  0.007 0.007 0.007 

                     

MRLS 

𝜃̂ 
𝑀  1.003 1.004  1.002 1.004  1.010 1.009 0.300  1.012 1.005 1.004  1.003 1.004 1.003 

𝑆𝐷  0.073 0.078  0.079 0.085  0.129 0.142 0.047  0.122 0.122 0.117  0.114 0.113 0.114 

𝑆𝐸𝜃̂ 
𝑀  0.063 0.063  0.063 0.063  0.095 0.095 0.046  0.070 0.070 0.070  0.070 0.070 0.070 

𝑆𝐷  0.006 0.006  0.006 0.007  0.010 0.011 0.004  0.008 0.007 0.007  0.007 0.007 0.007 
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Table 10.5. Means and standard deviations of a subset of parameter estimates and standard errors for a 2-factor model of normal 

data with 20 variables with N=300. 

     Subset of Factor Loadings  Factor Covariances  Subset of Error Variances 

    𝑉1 𝑉2  𝑉11 𝑉12  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸11 𝐸12 𝐸13 

AGLS 

𝜃̂ 
𝑀  1.021 1.018  1.031 1.028  0.486 0.481 0.139  0.452 0.451 0.448  0.450 0.450 0.450 

𝑆𝐷  0.220 0.219  0.230 0.200  0.162 0.156 0.075  0.112 0.111 0.114  0.108 0.110 0.104 

𝑆𝐸𝜃̂ 
𝑀  0.247 0.247  0.253 0.246  0.195 0.196 0.078  0.159 0.159 0.157  0.158 0.158 0.157 

𝑆𝐷  0.092 0.103  0.137 0.086  0.052 0.050 0.020  0.038 0.041 0.040  0.037 0.039 0.038 

                     

NGLS 

𝜃̂ 
𝑀  0.997 1.005  1.005 1.004  0.377 0.376 0.103  0.352 0.352 0.349  0.346 0.350 0.353 

𝑆𝐷  0.090 0.090  0.094 0.092  0.061 0.060 0.026  0.077 0.077 0.077  0.070 0.076 0.065 

𝑆𝐸𝜃̂ 
𝑀  0.293 0.294  0.297 0.295  0.190 0.191 0.071  0.157 0.156 0.154  0.155 0.155 0.154 

𝑆𝐷  0.051 0.052  0.055 0.053  0.038 0.039 0.010  0.039 0.041 0.041  0.037 0.039 0.038 

                     

MGLS 

𝜃̂ 
𝑀  1.008 1.011  1.007 1.003  0.970 0.989 0.302  0.899 0.896 0.887  0.889 0.894 0.892 

𝑆𝐷  0.125 0.131  0.131 0.123  0.220 0.239 0.081  0.173 0.185 0.182  0.165 0.176 0.166 

𝑆𝐸𝜃̂ 
𝑀  0.090 0.089  0.089 0.088  0.145 0.147 0.071  0.087 0.086 0.086  0.086 0.086 0.086 

𝑆𝐷  0.013 0.014  0.014 0.014  0.028 0.030 0.011  0.016 0.017 0.017  0.015 0.016 0.016 

                     

MRLS 

𝜃̂ 
𝑀  1.008 1.009  1.007 1.001  1.042 1.059 0.302  1.079 1.068 1.063  1.062 1.067 1.065 

𝑆𝐷  0.123 0.126  0.125 0.118  0.228 0.251 0.079  0.201 0.218 0.210  0.193 0.206 0.202 

𝑆𝐸𝜃̂ 
𝑀  0.089 0.089  0.089 0.088  0.154 0.156 0.073  0.098 0.097 0.096  0.096 0.097 0.096 

𝑆𝐷  0.013 0.013  0.013 0.013  0.030 0.031 0.012  0.018 0.019 0.019  0.017 0.018 0.018 
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Table 10.6. Means and standard deviations of a subset of parameter estimates and standard errors for a 2-factor model of normal 

data with 20 variables with N=500. 

     Subset of Factor Loadings  Factor Covariances  Subset of Error Variances 

    𝑉1 𝑉2  𝑉11 𝑉12  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸11 𝐸12 𝐸13 

AGLS 

𝜃̂ 
𝑀  1.006 1.004  1.013 1.014  0.572 0.566 0.172  0.555 0.548 0.541  0.548 0.548 0.550 

𝑆𝐷  0.115 0.114  0.118 0.108  0.109 0.108 0.050  0.093 0.090 0.086  0.095 0.096 0.089 

𝑆𝐸𝜃̂  
𝑀  0.153 0.153  0.155 0.155  0.152 0.152 0.060  0.122 0.122 0.120  0.123 0.123 0.122 

𝑆𝐷  0.028 0.029  0.028 0.027  0.029 0.028 0.010  0.024 0.024 0.023  0.024 0.026 0.024 

                     

NGLS 

𝜃̂ 
𝑀  1.001 1.000  1.006 1.009  0.501 0.499 0.147  0.486 0.486 0.478  0.484 0.484 0.484 

𝑆𝐷  0.068 0.067  0.068 0.064  0.062 0.066 0.029  0.070 0.070 0.068  0.072 0.069 0.070 

𝑆𝐸𝜃̂  
𝑀  0.179 0.179  0.181 0.181  0.157 0.157 0.059  0.129 0.129 0.127  0.130 0.130 0.128 

𝑆𝐷  0.022 0.023  0.023 0.023  0.028 0.028 0.008  0.026 0.026 0.024  0.025 0.027 0.026 

                     

MGLS 

𝜃̂ 
𝑀  0.999 1.000  1.007 1.008  0.986 0.988 0.303  0.943 0.943 0.930  0.948 0.947 0.941 

𝑆𝐷  0.096 0.099  0.096 0.092  0.178 0.178 0.069  0.144 0.145 0.135  0.141 0.151 0.143 

𝑆𝐸𝜃̂  
𝑀  0.068 0.068  0.069 0.069  0.113 0.113 0.055  0.069 0.069 0.068  0.069 0.069 0.068 

𝑆𝐷  0.008 0.008  0.008 0.008  0.018 0.017 0.007  0.010 0.010 0.009  0.010 0.011 0.010 

                     

MRLS 

𝜃̂ 
𝑀  1.000 1.001  1.006 1.007  1.028 1.032 0.302  1.050 1.050 1.038  1.057 1.055 1.047 

𝑆𝐷  0.093 0.098  0.094 0.091  0.184 0.183 0.069  0.159 0.157 0.147  0.156 0.165 0.156 

𝑆𝐸𝜃̂  
𝑀  0.068 0.068  0.068 0.068  0.118 0.118 0.056  0.074 0.074 0.073  0.074 0.074 0.073 

𝑆𝐷  0.008 0.008  0.008 0.008  0.018 0.018 0.007  0.011 0.011 0.010  0.011 0.011 0.011 
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Table 10.7. Means and standard deviations of a subset of parameter estimates and standard errors for a 2-factor model of normal 

data with 20 variables with N=1000. 

     Subset of Factor Loadings  Factor Covariances  Subset of Error Variances 

    𝑉1 𝑉2  𝑉11 𝑉12  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸11 𝐸12 𝐸13 

AGLS 

𝜃̂ 
𝑀  1.006 1.004  1.001 1.000  0.702 0.706 0.214  0.688 0.688 0.689  0.689 0.688 0.687 

𝑆𝐷  0.066 0.067  0.064 0.064  0.084 0.086 0.035  0.071 0.069 0.074  0.074 0.075 0.077 

𝑆𝐸𝜃̂ 
𝑀  0.089 0.089  0.090 0.090  0.111 0.113 0.043  0.090 0.091 0.090  0.091 0.091 0.091 

𝑆𝐷  0.009 0.009  0.009 0.009  0.015 0.015 0.005  0.012 0.013 0.013  0.013 0.012 0.013 

                     

NGLS 

𝜃̂ 
𝑀  1.002 1.002  0.999 0.999  0.668 0.673 0.202  0.655 0.657 0.654  0.658 0.657 0.655 

𝑆𝐷  0.053 0.055  0.051 0.052  0.068 0.068 0.028  0.062 0.063 0.065  0.066 0.066 0.065 

𝑆𝐸𝜃̂ 
𝑀  0.097 0.097  0.097 0.097  0.115 0.116 0.043  0.095 0.095 0.095  0.096 0.096 0.095 

𝑆𝐷  0.008 0.008  0.008 0.008  0.015 0.015 0.004  0.013 0.013 0.014  0.013 0.013 0.013 

                     

MGLS 

𝜃̂ 
𝑀  1.002 1.003  0.999 1.001  0.988 0.997 0.303  0.965 0.968 0.964  0.972 0.973 0.969 

𝑆𝐷  0.065 0.067  0.066 0.065  0.121 0.123 0.046  0.097 0.101 0.103  0.103 0.102 0.101 

𝑆𝐸𝜃̂ 
𝑀  0.048 0.048  0.048 0.048  0.080 0.081 0.039  0.049 0.049 0.049  0.049 0.049 0.049 

𝑆𝐷  0.004 0.004  0.004 0.004  0.008 0.009 0.004  0.005 0.005 0.005  0.005 0.005 0.005 

                     

MRLS 

𝜃̂ 
𝑀  1.003 1.003  0.999 1.001  1.008 1.020 0.302  1.017 1.021 1.016  1.027 1.028 1.022 

𝑆𝐷  0.064 0.067  0.066 0.064  0.121 0.125 0.046  0.103 0.104 0.108  0.109 0.107 0.105 

𝑆𝐸𝜃̂ 
𝑀  0.048 0.048  0.048 0.048  0.082 0.082 0.039  0.051 0.051 0.050  0.051 0.051 0.051 

𝑆𝐷  0.003 0.004  0.004 0.004  0.008 0.009 0.004  0.005 0.005 0.005  0.005 0.005 0.005 
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Table 10.8. Means and standard deviations of a subset of parameter estimates and standard errors for a 2-factor model of normal 

data with 20 variables with N=10,000. 

     Subset of Factor Loadings  Factor Covariances  Subset of Error Variances 

    𝑉1 𝑉2  𝑉11 𝑉12  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸11 𝐸12 𝐸13 

AGLS 

𝜃̂ 
𝑀  0.999 1.000  1.001 1.000  0.956 0.955 0.287  0.951 0.953 0.952  0.953 0.952 0.954 

𝑆𝐷  0.020 0.020  0.019 0.020  0.038 0.035 0.013  0.032 0.031 0.031  0.032 0.031 0.032 

𝑆𝐸𝜃̂ 
𝑀  0.021 0.021  0.021 0.021  0.038 0.038 0.014  0.032 0.032 0.032  0.032 0.032 0.032 

𝑆𝐷  0.001 0.001  0.001 0.001  0.002 0.002 0.001  0.001 0.001 0.001  0.001 0.001 0.001 

                     

NGLS 

𝜃̂ 
𝑀  0.999 1.000  1.001 1.000  0.956 0.954 0.286  0.951 0.952 0.951  0.952 0.951 0.953 

𝑆𝐷  0.020 0.020  0.019 0.020  0.037 0.035 0.013  0.032 0.031 0.030  0.032 0.031 0.032 

𝑆𝐸𝜃̂ 
𝑀  0.022 0.022  0.022 0.022  0.038 0.038 0.014  0.032 0.032 0.032  0.032 0.032 0.032 

𝑆𝐷  0.0005 0.0005  0.0005 0.0005  0.0017 0.0016 0.0005  0.0015 0.0014 0.0014  0.0014 0.0014 0.0014 

                     

MGLS 

𝜃̂ 
𝑀  1.000 1.000  1.001 1.000  1.001 1.000 0.300  0.996 0.998 0.996  0.997 0.996 0.998 

𝑆𝐷  0.020 0.020  0.019 0.020  0.040 0.038 0.014  0.034 0.033 0.032  0.034 0.033 0.033 

𝑆𝐸𝜃̂ 
𝑀  0.015 0.015  0.015 0.015  0.025 0.025 0.012  0.016 0.016 0.016  0.016 0.016 0.016 

𝑆𝐷  0.0004 0.0004  0.0003 0.0004  0.0009 0.0008 0.0004  0.0005 0.0005 0.0005  0.0005 0.0005 0.0005 

                     

MRLS 

𝜃̂ 
𝑀  1.000 1.000  1.001 1.000  1.003 1.002 0.300  1.001 1.003 1.002  1.003 1.002 1.003 

𝑆𝐷  0.020 0.021  0.019 0.020  0.040 0.038 0.014  0.034 0.033 0.033  0.034 0.033 0.033 

𝑆𝐸𝜃̂ 
𝑀  0.015 0.015  0.015 0.015  0.026 0.025 0.012  0.016 0.016 0.016  0.016 0.016 0.016 

𝑆𝐷  0.0004 0.0004  0.0003 0.0004  0.0009 0.0008 0.0004  0.0005 0.0005 0.0005  0.0005 0.0005 0.0005 
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Table 10.9. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 8) test statistics of the 2-factor 

model of normal data with 6 variables. 

  AGLS  NGLS  MGLS  MRLS 

 𝑁  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

100  5.36 2.29  5.63 2.13  7.44 3.49  7.47 3.55 

300  6.99 3.34  7.08 3.26  7.92 4.06  7.91 4.14 

500  7.14 3.26  7.23 3.27  7.72 3.71  7.71 3.74 

1000  7.68 3.67  7.70 3.65  7.97 3.90  7.96 3.89 

10,000  7.96 3.67  7.97 3.68  7.99 3.71  8.00 3.71 

100,000  8.16 3.96  8.16 3.96  8.16 3.96  8.16 3.96 

 

 

 

Table 10.10. Percent of replications in which the 2-factor model of normal data with 6 variables 

was rejected by a 𝜒2(𝑑𝑓 = 8) test with 𝛼 = .05. 

𝑁 
 AGLS  NGLS  MGLS  MRLS 

100  0.00  0.00  2.00  2.40 

300  1.40  1.00  5.20  5.40 

500  1.80  1.20  4.00  4.00 

1000  4.20  4.00  4.80  4.60 

10,000  3.60  4.00  4.20  4.40 

100,000  5.00  4.80  4.80  4.80 
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Table 10.11. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 169) test statistics of the 2-

factor model of normal data with 20 variables. 

  AGLS  NGLS  MGLS  MRLS 

𝑁 
 𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

300  62.09 6.87  64.73 5.44  166.11 18.71  158.75 16.01 

500  91.77 8.78  86.11 6.48  169.22 17.59  163.68 16.25 

1000  118.45 10.80  114.35 8.90  170.15 18.83  167.17 17.61 

10,000  161.38 16.44  161.45 16.09  169.27 17.69  169.04 17.56 

100,000  168.05 18.23  168.02 18.27  168.83 18.45  168.81 18.46 

 

 

 

Table 10.12. Percent of replications in which the 2-factor model of normal data with 20 

variables was rejected by a 𝜒2(𝑑𝑓 = 169) test with 𝛼 = .05. 

𝑁 
 AGLS  NGLS  MGLS  MRLS 

300  0.0  0.0  3.2  0.8 

500  0.0  0.0  4.4  1.4 

1000  0.0  0.0  6.2  2.8 

10,000  0.8  1.0  4.2  4.4 

100,000  5.4  5.6  6.0  6.0 
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Figures 

 

Figure 10.1. Boxplots of the values of the first factor loading of 𝐹1 (in the 2-factor model) 

estimated by the different methods across sample sizes (in the normal data condition with 6 

variables). 
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Figure 10.2. Boxplots of the values of the factor variance of 𝐹1 (in the 2-factor model) estimated 

by the different methods across sample sizes (in the normal data condition with 6 variables). 
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Figure 10.3. Boxplots of the values of the factor covariance between 𝐹1 and 𝐹2 (in the 2-factor 

model) estimated by the different methods across sample sizes (in the normal data condition with 

6 variables). 
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Figure 10.4. Boxplots of the values of the first error variance (of 𝑉1 in the 2-factor model) 

estimated by the different methods across sample sizes (in the normal data condition with 6 

variables).  
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Figure 10.5. Boxplots of the values of the first factor loading of 𝐹1 (in the 2-factor model) 

estimated by the different methods across sample sizes (in the normal data condition with 20 

variables). 
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Figure 10.6. Boxplots of the values of the factor variance of 𝐹1 (in the 2-factor model) estimated 

by the different methods across sample sizes (in the normal data condition with 20 variables). 
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Figure 10.7. Boxplots of the values of the factor covariance between 𝐹1 and 𝐹2 (in the 2-factor 

model) estimated by the different methods across sample sizes (in the normal data condition with 

20 variables). 
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Figure 10.8. Boxplots of the values of the first error variance (of 𝑉1 in the 2-factor model) 

estimated by the different methods across sample sizes (in the normal data condition with 20 

variables).  
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Figure 10.9. Histogram of the values of the 𝜒2-test statistic produced through AGLS estimation 

of the 2-factor model across sample sizes (in the normal data condition with 6 variables). 
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Figure 10.10. Histogram of the values of the 𝜒2-test statistic produced through NGLS estimation 

of the 2-factor model across sample sizes (in the normal data condition with 6 variables). 
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Figure 10.11. Histogram of the values of the 𝜒2-test statistic produced through MGLS estimation 

of the 2-factor model across sample sizes (in the normal data condition with 6 variables). 
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Figure 10.12. Histogram of the values of the 𝜒2-test statistic produced through MRLS estimation 

of the 2-factor model across sample sizes (in the normal data condition with 6 variables). 
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Figure 10.13. Histogram of the values of the 𝜒2-test statistic produced through AGLS estimation 

of the 2-factor model across sample sizes (in the normal data condition with 20 variables). 
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Figure 10.14. Histogram of the values of the 𝜒2-test statistic produced through NGLS estimation 

of the 2-factor model across sample sizes (in the normal data condition with 20 variables). 
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Figure 10.15. Histogram of the values of the 𝜒2-test statistic produced through MGLS estimation 

of the 2-factor model across sample sizes (in the normal data condition with 20 variables). 

 

  



 

150 

  

 

Figure 10.16. Histogram of the values of the 𝜒2-test statistic produced through MRLS estimation 

of the 2-factor model across sample sizes (in the normal data condition with 20 variables). 
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Chapter 11. Quality of Parameter, Test Statistic, and Standard Error Estimates: Two 

Factor Models of Log-Normal Data 

In this chapter we continued to examine the performance of the AGLS, NGLS, MGLS 

and MRLS methods of estimating CV models containing two factors. Specifically, here we 

consider the performance of each method when the data followed a log-normal distribution.  

Method 

Conditions. In this chapter, we considered the same 2-factor structures as the last chapter 

with the structure shown in Figure 5.2. The models included either 6 variables (3 per factor) or 

20 variables (10 per factor). The sample sizes in the 6-variable case ranged from 100 to 100,000, 

whereas in the 20-variable case, ranged from 300 to 100,000. 

 Analyses. Refer to Chapter 7 for details regarding the analyses. The analyses used here 

were identical to those in the preceding chapters.  

Results  

Convergence.  In the present simulations, each method had some samples for which it 

could not converge, particularly when the sample sizes were small. However, the MRLS 

procedure had some difficulty finding appropriate solutions, even with relatively large sample 

sizes. In the 6-variable condition with a sample of 100, the AGLS procedure did not converge for 

10 samples, the NGLS procedure did not converge in 8 samples, the MGLS procedure did not 

converge in 1 sample, and the MRLS procedure did not converge in 15 samples. The MRLS 

procedure was also unable to converge for 6 samples with 𝑁=300, 5 samples with 𝑁=500, and 2 

samples with 𝑁=1000. 

In the conditions with 20 variables, the smallest sample size was larger and as result, 

there were fewer issues with convergence. However, the AGLS method did not converge in 4 
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samples with sample of size 300 and the MRLS procedure did not converge for 12 samples of 

size 300, 5 samples of size 500 and 4 samples of size 1000. 

Parameter Estimates and Standard Errors. As in the previous chapter, the population 

factor loadings, factor variances and error variances each have values of 1 and the population 

factor covariance has a value of 0.3 and these values were contrasted with the estimates obtained 

using each of the four estimation methods. The means and standard deviations of these estimates 

are reported in Tables 11.1 through 11.4 for the 6-variable condition. Each table displays the 

results for one sample size (100, 300, 500, and 1000, respectively). Unlike the results observed in 

the previous chapter, which examined normal data, in this case the average factor loadings 

tended to be too high in small samples and this appeared to be the case for each estimation 

method. However, these estimates did improve relatively quickly with increases in sample size. 

For the first factor loading, the distributions of estimates are displayed in Figure 11.1 across 

methods and sample sizes. In the figure it is apparent that although the median loading values 

were accurate, there was a large positive skew particularly in small samples. 

In contrast to the factor loadings, the trends seen in the quality of the estimates of the 

factor variances and covariance (in the 6-variable condition) seemed very similar to those 

reported in the previous chapter. That is, the AGLS and NGLS techniques still yielded estimates 

that were much too low and the MGLS and MRLS methods tended to give factor variance and 

covariance estimates that were fairly accurate on average, but the estimates tended to have high 

variability and they were more likely to yield extreme outliers than the other two methods. For 

example, consider the distributions of the first factor variance and of the factor covariance given 

in Figures 11.2 and 11.3, respectively. 
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In addition, the error variance estimates produced here in the 6-variable condition tended 

to be worse than in the previous chapter, with all estimation methods producing values that were 

too low. For instance, in the condition with a sample size of 100, the average error variance 

estimates given by the NGLS procedure were roughly between 0.49 and 0.54 and those given by 

the AGLS procedure were roughly between 0.53 and 0.58. The MGLS procedure provided 

slightly better estimates, which were approximately between 0.69 and 0.74, and the MRLS 

procedure provided the best estimates, which were ranged approximately from 0.76 to 1.02. 

However, even in this best case, the estimates were much too low, and although there was 

improvement as the sample size increased, the estimates were still somewhat too low with 

𝑁=1000. This tendency of the estimation methods to underestimate the error variances can be 

seen in Table 11.4, but is also displayed Figure 11.4, which shows the distributions of estimates 

of one particular error variance across methods and sample sizes.   

In contrast to the previous chapter, in which the AGLS and NGLS standard errors tended 

to be upwardly biased and the MGLS and MRLS standard errors tended to be downwardly 

biased, the standard error estimates in the 6-variable log-normal data condition were all too low 

on average. While the AGLS method standard errors did tend to improve as the sample size 

increased, the other methods standard errors did not seem to improve and in some cases, 

appeared worse in larger samples. Furthermore, it seems that at least some of the 

samples/estimates produced very extreme values of the standard errors. For instance, consider 

the standard deviations of the standard error estimates shown in Table 11.1 for the 𝑁=100 

condition. The standard deviation of the AGLS standard error estimates was 12.59 for one of the 

factor loadings, and the standard deviation of the MGLS standard error estimates was 31.29 for 

one of the error variances. This instability seemed to be resolved in the 𝑁=300 condition, but 
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nevertheless, suggests that the standard errors produced for log-normal data are not consistently 

reliable. 

The means and standard deviations of a subset of the parameter estimates for the 20-

variable condition are displayed in Tables 11.5 through 11.8 and once again each table displays 

the results for all methods in one sample size (100, 300, 500, and 1000, respectively). For the 

most part, the average factor loadings were accurate for each method and sample size. However, 

the average factor loading estimates given by the MRLS procedure were unreliable and 

sometimes off by a substantial margin (e.g. see Tables 11.6 and 11.7). This is problem is 

probably driven by the occasional extreme values produced by MRLS. Figure 11.5 depicts the 

typical distributions of the estimates of the first factor loading (of factor 1), and contains 

comments about the extreme values (which are not depicted). It is noteworthy that most of these 

extreme values occurring in the distributions shown in Figures 11.5 through 11.8 were the result 

of MRLS estimation. 

Next, on average the factor variance and covariance estimates (in the 20-variable 

condition) that were produced through MRLS and MGLS estimation were fairly accurate across 

sample sizes. However, the factor variance and covariance estimates given my AGLS and NGLS 

were extremely low, on average. Specifically, in the 𝑁=300 condition the average AGLS 

estimates were about 0.23 for the factor variances and about 0.14 for the covariance, while the 

the average NGLS estimates were about 0.21 for the factor variances and about 0.05 for the 

covariance. Although there was some improvement as the sample size increased, the estimates 

were persistently too low even in the very large sample sizes. In the 𝑁=10,000 condition the 

average AGLS estimates were about 0.82 for the factor variances and about 0.23 for the 

covariance, while the average NGLS estimates were about 0.77 for the factor variances and 
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about 0.23 for the covariance. This underestimation is readily apparent in Figures 11.6 and 11.7 

which display the distributions of the first factor variance estimates and the factor covariance 

estimates, respectively. In addition, these figures call attention to the large difference between 

the variability of the estimates given by the AGLS and NGLS methods relative to that of the 

estimates given by the MGLS and MRLS methods. That is, while MGLS and MRLS estimation 

yielded more accurate estimates of the factor variances and covariance on average, they tended 

to produce highly varied and sometimes extreme estimates. On the other hand, the AGLS and 

NGLS methods were very consistent in giving their very low estimates of the factor variance and 

covariance. 

In addition, the error variance estimates showed a similar pattern of results to the factor 

variance estimates. More specifically, MRLS estimation produced the most accurate estimates on 

average but the tended to be a slightly high and this can probably be attributed to the large 

positive skew in the distributions, which is particularly apparent in Figure 10.8, which shows the 

distributions of the estimates of one of the error variances. MGLS estimation was yield average 

estimates that were somewhat too low, and the AGLS and NGLS methods reliably 

underestimated the error variances. For example, considering the subset of values reported in 

Table 11.5 for the condition with a sample size of 300, MRLS produced average estimates 

between 1.07 and 1.13 and MGLS produced average estimates between 0.60 and 0.63. In 

addition, AGLS produced average error variance estimates ranging from about 0.12 to 0.13, 

whereas NGLS produced average error variance estimates ranging from about 0.14 to 0.15. As 

the sample size increased, the estimates of all methods generally approached the true population 

value (see Figure 11.8 for an example). 
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The means and standard deviations of the standard errors for the 20-variable condition 

are also shown in Tables 11.5 through 11.8. The AGLS method seemed to provide standard error 

estimates that most closely matched the standard deviations of the parameters, but these were 

downwardly biased as was seen in the previous condition. By contrast, the NGLS standard errors 

were generally too high in small samples, but became too low in very large samples. The MRLS 

and MGLS methods once again produced standard error estimates that were consistently too low, 

and did not seem to improve as the sample size increased. In addition, there was once again 

trouble with excess variability in the estimated standard errors for a few of the parameters at the 

smallest sample size (𝑁=300). Specifically, some factor loadings had standard errors with large 

standard deviations when estimated by NGLS (e.g. 6.93 and 5.34), by MGLS (e.g. 3.23 and 

3.04), and by MRLS (e.g. 1.11 and 1.45) as shown in Table 11.5. In addition, the NGLS 

estimates of the standard error of one of the factor covariance had an extremely high standard 

deviation (specifically, 16.43). 

Test Statistics. In the 6-variable condition the expected value of the 𝜒2-test statistic was 

8, and Table 11.9 displays the means and standard deviations of the estimated 𝜒2 values by 

method and sample size. As can be seen in the table, only the AGLS estimation method produced 

𝜒2 values that were consistently close to the expected value. The tendency of the AGLS 𝜒2 

values to approximately follow the expected 𝜒2 distribution can also be seen in Figure 11.9, 

which contains histograms of the AGLS estimated 𝜒2 values with the expected 𝜒2 distribution 

overlaid (at different sample sizes). In addition, Table 11.10 displays the percentage of samples 

that would have produced 𝜒2 values that would result in rejection of the null hypothesis (at the 

0.05 level) by each method across sample sizes. Again, only the AGLS method seemed to 

converge to the expected 5%. The NGLS, MGLS, and MRLS methods all tended to produce 𝜒2  
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values with averages that increased with the sample size, as shown in Table 11.9, which resulted 

in higher rejection rates as the sample size increased. As the sample size increased, the observed 

distributions of the 𝜒2-test statistics also became more dispersed and distant from the expected 

𝜒2 distribution, as is shown in Figures 11.10 through 11.13. 

In the 20-variable condition the expected value of the 𝜒2-statistic was 169, but none of 

the estimation methods in this condition produced 𝜒2 values that cleanly converged to their 

expected distributions. This is reflected in the means and standard deviations of the 𝜒2 values 

shown in Table 11.11. Specifically, the table shows that the mean estimates resulting from the 

normal theory methods (i.e. NGLS, MGLS, and MRLS) seemed to increase without bound as the 

sample size increased. The AGLS estimates, on the other hand, did not increase indefinitely with 

sample size, but instead increased well past the expected value to 276.66 and then began to 

approach the expected value again in very large sample sizes. The percentages of 𝜒2-test 

statistics that would have resulted in rejecting the null hypothesis are shown in 11.12, and they 

also demonstrate this pattern. Specifically, the rejection rates for the AGLS method was initially 

0% before increasing with the sample size to 99.4% and then declining towards again towards 

the expected rate. The NGLS method's rejection rates are initially 0, but increase until all of the 

samples result in rejection and the MGLS and MRLS methods appeared to always result in a 

rejection of the null hypothesis. This odd behavior of the test statistics produced by each method, 

is consistent with what was observed in the 20-variable model of log-normal data in the 1-factor 

case (see Chapter 9) and is further illustrated by Figures 11.13 through 11.16. Figure 11.13 

shows displays the boomerang-like behavior of the distributions of the AGLS estimates of the 𝜒2 

values, while Figures 11.14 through 11.16 show that the distributions produced by the NGLS, 

MGLS, and MRLS methods (respectively) become more dispersed and have higher centers as 
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the sample sizes increase. The expected 𝜒2 distribution is overlaid in each graph, so the 

aforementioned deviations can be easily detected. 

Discussion 

 For the most part, the addition of a second factor did not seem to affect the estimation and 

in any particular way. The results observed here were generally analogous to those reported in 

Chapter 9. As noted previously, AGLS is the only correctly specified method in non-normal 

data, and the estimates of the test statistics once again reflected this. Although the results 

reported here for the log-normal data showed that the estimators had less than desirable 

performance, the fact the performance was consistent suggests that factor models may be 

estimated reliably using these techniques. If this finding can be extended to comparably sized 

non-factor models, this may allow these methods to be applied more broadly. Future research 

should address additional forms of models, to determine for what models this pattern of results 

will change.  
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Tables  

Table 11.1. Means and standard deviations of parameter estimates and standard errors for a 2-factor model of log-normal data with 6 

variables with N=100. 

    Factor Loadings  Factor Covariances  Error Variances 

    𝑉1 𝑉2  𝑉4 𝑉5  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸4 𝐸5 𝐸6 

AGLS 

𝜃̂ 
𝑀  1.076 1.086  1.144 1.149  0.777 0.770 0.149  0.573 0.574 0.533  0.575 0.581 0.564 

𝑆𝐷  0.510 0.540  1.251 0.972  0.575 0.559 0.192  0.440 0.401 0.337  0.371 0.544 0.394 

𝑆𝐸𝜃̂ 
𝑀  0.297 0.299  0.844 0.723  0.295 0.320 0.084  0.260 0.253 0.254  0.260 0.318 0.277 

𝑆𝐷  0.369 0.392  12.592 7.570  0.230 0.588 0.055  0.183 0.237 0.167  0.203 1.058 0.567 

                     

NGLS 

𝜃̂ 
𝑀  1.077 1.062  1.091 1.088  0.671 0.687 0.171  0.542 0.506 0.488  0.491 0.506 0.501 

𝑆𝐷  0.512 0.442  0.438 0.510  0.429 0.479 0.121  0.388 0.435 0.418  0.394 0.484 0.466 

𝑆𝐸𝜃̂ 
𝑀  0.387 0.375  0.381 0.418  0.360 0.447 0.127  0.283 0.278 0.289  0.292 0.327 0.364 

𝑆𝐷  0.504 0.413  0.293 0.805  0.276 1.594 0.054  0.206 0.233 0.276  0.275 0.463 1.591 

                     

MGLS 

𝜃̂ 
𝑀  1.059 1.060  1.123 1.107  0.943 0.958 0.270  0.720 0.693 0.686  0.694 0.739 0.685 

𝑆𝐷  0.464 0.453  0.529 0.511  1.060 0.704 0.241  0.496 0.519 0.929  0.520 0.610 0.536 

𝑆𝐸𝜃̂ 
𝑀  0.218 0.216  0.238 0.229  1.668 0.254 0.122  0.178 0.179 1.595  0.190 0.190 0.178 

𝑆𝐷  0.146 0.128  0.259 0.185  31.284 0.139 0.053  0.099 0.107 31.289  0.126 0.130 0.108 

                     

MRLS 

𝜃̂ 
𝑀  1.061 1.061  1.255 0.969  1.064 1.051 0.242  0.851 0.826 0.757  1.017 0.845 0.772 

𝑆𝐷  0.437 0.431  3.576 2.541  1.455 0.771 0.443  0.674 0.723 0.509  4.298 1.210 0.544 

𝑆𝐸𝜃̂ 
𝑀  0.218 0.213  0.245 0.234  0.277 0.274 0.128  0.197 0.195 0.196  0.244 0.220 0.195 

𝑆𝐷  0.146 0.115  0.536 0.374  0.231 0.138 0.088  0.116 0.120 0.117  0.923 0.362 0.097 
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Table 11.2. Means and standard deviations of parameter estimates and standard errors for a 2-factor model of log-normal data with 6 

variables with N=300. 

    Factor Loadings  Factor Covariances  Error Variances 

    𝑉1 𝑉2  𝑉4 𝑉5  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸4 𝐸5 𝐸6 

AGLS 

𝜃̂ 
𝑀  1.027 1.025  1.033 1.033  0.864 0.836 0.193  0.743 0.760 0.733  0.769 0.741 0.746 

𝑆𝐷  0.330 0.309  0.286 0.296  0.412 0.367 0.109  0.360 0.417 0.322  0.334 0.359 0.342 

𝑆𝐸𝜃̂ 
𝑀  0.185 0.183  0.180 0.185  0.238 0.225 0.065  0.218 0.215 0.212  0.218 0.223 0.223 

𝑆𝐷  0.149 0.148  0.087 0.114  0.164 0.125 0.027  0.135 0.132 0.125  0.127 0.164 0.128 

                     

NGLS 

𝜃̂ 
𝑀  1.035 1.028  1.036 1.025  0.849 0.824 0.239  0.739 0.722 0.707  0.723 0.728 0.732 

𝑆𝐷  0.279 0.285  0.285 0.292  0.386 0.334 0.097  0.387 0.382 0.407  0.367 0.339 0.397 

𝑆𝐸𝜃̂ 
𝑀  0.168 0.167  0.172 0.172  0.229 0.228 0.085  0.192 0.189 0.183  0.184 0.186 0.198 

𝑆𝐷  0.066 0.066  0.064 0.078  0.121 0.115 0.025  0.131 0.147 0.174  0.106 0.119 0.192 

                     

MGLS 

𝜃̂ 
𝑀  1.038 1.031  1.041 1.021  1.011 1.004 0.295  0.874 0.865 0.831  0.846 0.865 0.889 

𝑆𝐷  0.293 0.292  0.316 0.301  0.503 0.571 0.146  0.488 0.517 0.505  0.413 0.455 0.566 

𝑆𝐸𝜃̂ 
𝑀  0.116 0.115  0.119 0.117  0.161 0.165 0.079  0.117 0.116 0.115  0.117 0.115 0.121 

𝑆𝐷  0.043 0.043  0.044 0.043  0.063 0.083 0.024  0.049 0.058 0.051  0.045 0.047 0.065 

                     

MRLS 

𝜃̂ 
𝑀  1.039 1.030  1.042 1.019  1.032 1.019 0.286  0.934 0.917 0.873  0.897 0.927 0.920 

𝑆𝐷  0.290 0.292  0.305 0.294  0.501 0.475 0.133  0.523 0.495 0.386  0.440 0.510 0.423 

𝑆𝐸𝜃̂ 
𝑀  0.117 0.116  0.118 0.116  0.164 0.166 0.079  0.121 0.119 0.117  0.122 0.120 0.122 

𝑆𝐷  0.043 0.044  0.042 0.042  0.056 0.060 0.022  0.050 0.049 0.038  0.047 0.049 0.044 
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Table 11.3. Means and standard deviations of parameter estimates and standard errors for a 2-factor model of log-normal data with 6 

variables with N=500. 

    Factor Loadings  Factor Covariances  Error Variances 

    𝑉1 𝑉2  𝑉4 𝑉5  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸4 𝐸5 𝐸6 

AGLS 

𝜃̂ 
𝑀  1.023 1.018  1.017 1.019  0.857 0.876 0.218  0.798 0.816 0.794  0.797 0.837 0.819 

𝑆𝐷  0.214 0.230  0.251 0.217  0.333 0.371 0.085  0.278 0.308 0.299  0.285 0.410 0.330 

𝑆𝐸𝜃̂ 
𝑀  0.153 0.154  0.154 0.152  0.203 0.207 0.059  0.201 0.201 0.200  0.205 0.210 0.212 

𝑆𝐷  0.058 0.071  0.106 0.059  0.131 0.145 0.023  0.121 0.118 0.114  0.144 0.152 0.151 

                     

NGLS 

𝜃̂ 
𝑀  1.033 1.027  1.030 1.037  0.874 0.888 0.260  0.813 0.815 0.798  0.799 0.810 0.823 

𝑆𝐷  0.239 0.225  0.269 0.267  0.314 0.347 0.090  0.377 0.358 0.330  0.376 0.481 0.394 

𝑆𝐸𝜃̂ 
𝑀  0.124 0.125  0.125 0.128  0.177 0.181 0.068  0.153 0.150 0.151  0.154 0.162 0.154 

𝑆𝐷  0.039 0.045  0.048 0.057  0.081 0.088 0.020  0.098 0.079 0.106  0.128 0.139 0.107 

                     

MGLS 

𝜃̂ 
𝑀  1.041 1.024  1.039 1.048  1.005 1.013 0.299  0.907 0.907 0.903  0.904 0.943 0.913 

𝑆𝐷  0.260 0.235  0.296 0.295  0.571 0.541 0.136  0.431 0.406 0.448  0.534 0.589 0.479 

𝑆𝐸𝜃̂ 
𝑀  0.091 0.090  0.091 0.092  0.128 0.128 0.062  0.094 0.092 0.092  0.094 0.098 0.094 

𝑆𝐷  0.027 0.025  0.034 0.035  0.054 0.050 0.018  0.035 0.028 0.035  0.041 0.064 0.041 

                     

MRLS 

𝜃̂ 
𝑀  1.044 1.026  1.042 1.048  1.019 1.019 0.291  0.952 0.943 0.921  0.927 0.968 0.939 

𝑆𝐷  0.259 0.235  0.298 0.298  0.612 0.461 0.124  0.449 0.424 0.372  0.443 0.493 0.409 

𝑆𝐸𝜃̂ 
𝑀  0.091 0.090  0.092 0.092  0.128 0.129 0.062  0.096 0.094 0.093  0.096 0.098 0.095 

𝑆𝐷  0.027 0.025  0.035 0.035  0.048 0.043 0.017  0.035 0.029 0.027  0.036 0.038 0.032 
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Table 11.4. Means and standard deviations of parameter estimates and standard errors for a 2-factor model of log-normal data with 6 

variables with N=1000. 

    Factor Loadings  Factor Covariances  Error Variances 

    𝑉1 𝑉2  𝑉4 𝑉5  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸4 𝐸5 𝐸6 

AGLS 

𝜃̂ 
𝑀  1.014 1.014  1.011 1.008  0.893 0.890 0.232  0.854 0.850 0.847  0.871 0.850 0.854 

𝑆𝐷  0.161 0.153  0.151 0.146  0.244 0.204 0.062  0.262 0.238 0.232  0.243 0.220 0.261 

𝑆𝐸𝜃̂ 
𝑀  0.122 0.120  0.122 0.118  0.168 0.164 0.047  0.173 0.180 0.165  0.186 0.169 0.175 

𝑆𝐷  0.038 0.037  0.046 0.037  0.086 0.069 0.014  0.105 0.107 0.088  0.124 0.082 0.108 

                     

NGLS 

𝜃̂ 
𝑀  1.021 1.021  1.010 1.005  0.929 0.946 0.270  0.880 0.882 0.863  0.912 0.863 0.876 

𝑆𝐷  0.177 0.178  0.184 0.174  0.332 0.271 0.071  0.311 0.349 0.331  0.382 0.276 0.359 

𝑆𝐸𝜃̂ 
𝑀  0.082 0.082  0.082 0.081  0.128 0.129 0.048  0.110 0.109 0.107  0.114 0.106 0.109 

𝑆𝐷  0.018 0.019  0.019 0.018  0.065 0.045 0.010  0.055 0.068 0.058  0.081 0.044 0.057 

                     

MGLS 

𝜃̂ 
𝑀  1.021 1.020  1.012 1.006  1.000 1.010 0.293  0.943 0.938 0.919  0.974 0.917 0.931 

𝑆𝐷  0.183 0.184  0.191 0.179  0.426 0.314 0.103  0.368 0.383 0.369  0.427 0.298 0.389 

𝑆𝐸𝜃̂ 
𝑀  0.063 0.063  0.062 0.062  0.091 0.092 0.044  0.067 0.067 0.066  0.068 0.066 0.067 

𝑆𝐷  0.014 0.014  0.014 0.013  0.031 0.024 0.009  0.020 0.021 0.025  0.025 0.018 0.020 

                     

MRLS 

𝜃̂ 
𝑀  1.022 1.020  1.015 1.007  1.007 1.020 0.289  0.967 0.956 0.934  0.995 0.940 0.943 

𝑆𝐷  0.184 0.182  0.193 0.181  0.418 0.312 0.100  0.392 0.391 0.338  0.436 0.307 0.366 

𝑆𝐸𝜃̂ 
𝑀  0.063 0.063  0.062 0.062  0.091 0.092 0.044  0.068 0.067 0.067  0.069 0.067 0.067 

𝑆𝐷  0.014 0.014  0.014 0.013  0.029 0.022 0.009  0.020 0.021 0.022  0.025 0.018 0.018 
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Table 11.5. Means and standard deviations of a subset of parameter estimates and standard errors for a 2-factor model of log-normal 

data with 20 variables with N=300. 

    Subset of Factor Loadings  Factor Covariances  Subset of Error Variances 

    𝑉1 𝑉2  𝑉11 𝑉12  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸11 𝐸12 𝐸13 

AGLS 

𝜃̂ 
𝑀  1.011 1.004  0.997 1.003  0.228 0.235 0.144  0.127 0.115 0.122  0.116 0.122 0.127 

𝑆𝐷  0.172 0.162  0.157 0.160  0.054 0.058 0.033  0.072 0.077 0.066  0.059 0.062 0.069 

𝑆𝐸𝜃̂ 
𝑀  0.146 0.145  0.142 0.143  0.057 0.058 0.033  0.063 0.063 0.063  0.060 0.060 0.063 

𝑆𝐷  0.036 0.036  0.036 0.035  0.010 0.011 0.005  0.023 0.033 0.021  0.019 0.019 0.021 

                     

NGLS 

𝜃̂ 
𝑀  1.039 1.032  1.066 1.045  0.211 0.214 0.054  0.154 0.143 0.158  0.152 0.148 0.154 

𝑆𝐷  0.261 0.243  0.550 0.431  0.072 0.076 0.024  0.092 0.103 0.098  0.091 0.088 0.107 

𝑆𝐸𝜃̂ 
𝑀  0.399 0.397  0.709 0.633  0.131 0.133 0.049  0.104 0.110 0.106  0.100 0.101 0.104 

𝑆𝐷  0.180 0.169  6.933 5.335  0.037 0.037 0.012  0.060 0.146 0.065  0.045 0.060 0.057 

                     

MGLS 

𝜃̂ 
𝑀  0.992 1.010  1.014 1.019  0.907 0.891 0.239  0.618 0.632 0.627  0.596 0.600 0.617 

𝑆𝐷  0.760 0.725  0.274 0.278  0.506 1.037 0.103  0.267 0.506 0.273  0.222 0.257 0.259 

𝑆𝐸𝜃̂ 
𝑀  0.237 0.229  0.091 0.092  0.131 0.868 0.064  0.066 0.068 0.067  0.064 0.065 0.066 

𝑆𝐷  3.234 3.040  0.048 0.043  0.056 16.418 0.019  0.027 0.048 0.027  0.022 0.027 0.025 

                     

MRLS 

𝜃̂ 
𝑀  1.001 1.000  1.010 1.003  1.039 1.106 0.286  1.111 1.129 1.104  1.068 1.110 1.127 

𝑆𝐷  0.722 0.890  0.241 0.230  0.547 1.017 0.170  0.678 0.602 0.552  0.563 0.672 0.775 

𝑆𝐸𝜃̂ 
𝑀  0.146 0.163  0.093 0.093  0.156 0.161 0.071  0.100 0.101 0.099  0.096 0.099 0.101 

𝑆𝐷  1.111 1.454  0.027 0.028  0.072 0.099 0.025  0.058 0.050 0.047  0.047 0.057 0.065 
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Table 11.6. Means and standard deviations of a subset of parameter estimates and standard errors for a 2-factor model of log-normal 

data with 20 variables with N=500. 

    Subset of Factor Loadings  Factor Covariances  Subset of Error Variances 

    𝑉1 𝑉2  𝑉11 𝑉12  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸11 𝐸12 𝐸13 

AGLS 

𝜃̂ 
𝑀  1.036 1.013  1.000 1.000  0.283 0.295 0.091  0.272 0.263 0.265  0.266 0.259 0.266 

𝑆𝐷  0.201 0.186  0.180 0.192  0.080 0.080 0.029  0.088 0.114 0.092  0.093 0.101 0.088 

𝑆𝐸𝜃̂  
𝑀  0.133 0.130  0.127 0.127  0.058 0.060 0.021  0.064 0.068 0.066  0.068 0.068 0.066 

𝑆𝐷  0.040 0.037  0.034 0.038  0.012 0.012 0.003  0.021 0.025 0.021  0.024 0.033 0.021 

                     

NGLS 

𝜃̂ 
𝑀  1.020 1.021  1.012 1.015  0.264 0.268 0.075  0.205 0.206 0.207  0.207 0.199 0.213 

𝑆𝐷  0.196 0.199  0.190 0.184  0.073 0.074 0.022  0.097 0.122 0.094  0.126 0.114 0.102 

𝑆𝐸𝜃̂  
𝑀  0.267 0.271  0.269 0.267  0.114 0.116 0.044  0.088 0.095 0.092  0.097 0.094 0.092 

𝑆𝐷  0.105 0.099  0.094 0.090  0.024 0.026 0.008  0.035 0.048 0.039  0.048 0.050 0.041 

                     

MGLS 

𝜃̂ 
𝑀  1.027 1.031  1.031 1.041  0.925 0.960 0.267  0.685 0.723 0.712  0.736 0.718 0.718 

𝑆𝐷  0.255 0.250  0.244 0.267  0.372 0.532 0.092  0.207 0.246 0.239  0.253 0.274 0.252 

𝑆𝐸𝜃̂  
𝑀  0.069 0.070  0.071 0.071  0.104 0.107 0.052  0.055 0.058 0.057  0.059 0.058 0.057 

𝑆𝐷  0.023 0.022  0.022 0.023  0.037 0.047 0.013  0.017 0.021 0.018  0.020 0.025 0.018 

                     

MRLS 

𝜃̂ 
𝑀  1.149 1.024  1.031 1.043  1.028 1.090 0.292  1.206 1.154 1.075  1.140 1.153 1.099 

𝑆𝐷  2.161 1.324  0.212 0.243  0.446 1.015 0.351  3.994 0.799 0.498  0.659 0.681 0.514 

𝑆𝐸𝜃̂  
𝑀  0.081 0.078  0.073 0.074  0.118 0.122 0.056  0.083 0.080 0.075  0.079 0.080 0.077 

𝑆𝐷  0.207 0.104  0.020 0.024  0.046 0.074 0.030  0.256 0.052 0.033  0.043 0.045 0.034 
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Table 11.7. Means and standard deviations of a subset of parameter estimates and standard errors for a 2-factor model of log-normal 

data with 20 variables with N=1000. 

    Subset of Factor Loadings  Factor Covariances  Subset of Error Variances 

    𝑉1 𝑉2  𝑉11 𝑉12  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸11 𝐸12 𝐸13 

AGLS 

𝜃̂ 
𝑀  1.007 1.011  1.007 1.003  0.484 0.484 0.107  0.519 0.518 0.513  0.524 0.516 0.513 

𝑆𝐷  0.116 0.116  0.118 0.113  0.086 0.085 0.027  0.096 0.097 0.103  0.103 0.105 0.108 

𝑆𝐸𝜃̂ 
𝑀  0.074 0.075  0.074 0.073  0.058 0.058 0.017  0.063 0.065 0.063  0.064 0.064 0.065 

𝑆𝐷  0.014 0.014  0.013 0.013  0.010 0.010 0.002  0.018 0.020 0.020  0.020 0.021 0.021 

                     

NGLS 

𝜃̂ 
𝑀  1.011 1.009  1.018 1.019  0.355 0.354 0.105  0.304 0.311 0.299  0.312 0.314 0.306 

𝑆𝐷  0.130 0.140  0.149 0.137  0.070 0.073 0.020  0.102 0.103 0.106  0.105 0.105 0.112 

𝑆𝐸𝜃̂ 
𝑀  0.156 0.158  0.158 0.158  0.093 0.093 0.035  0.073 0.075 0.074  0.074 0.074 0.075 

𝑆𝐷  0.047 0.047  0.045 0.041  0.016 0.017 0.005  0.022 0.027 0.028  0.025 0.026 0.034 

                     

MGLS 

𝜃̂ 
𝑀  1.017 1.006  1.006 1.003  0.978 0.971 0.292  0.797 0.819 0.803  0.808 0.811 0.814 

𝑆𝐷  0.206 0.167  0.160 0.161  0.314 0.294 0.075  0.188 0.216 0.217  0.202 0.212 0.241 

𝑆𝐸𝜃̂ 
𝑀  0.048 0.048  0.048 0.048  0.078 0.078 0.038  0.043 0.044 0.043  0.043 0.043 0.044 

𝑆𝐷  0.014 0.009  0.010 0.009  0.020 0.020 0.007  0.009 0.011 0.013  0.011 0.012 0.013 

                     

MRLS 

𝜃̂ 
𝑀  0.883 0.891  1.004 1.005  1.031 1.085 0.284  1.052 1.076 1.386  1.042 1.061 1.054 

𝑆𝐷  2.017 1.812  0.152 0.163  0.320 1.400 0.354  0.612 0.533 7.828  0.338 0.494 0.417 

𝑆𝐸𝜃̂ 
𝑀  0.095 0.092  0.049 0.049  0.083 0.086 0.040  0.052 0.053 0.067  0.051 0.052 0.052 

𝑆𝐷  0.956 0.895  0.010 0.009  0.023 0.065 0.021  0.028 0.025 0.355  0.016 0.023 0.019 
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Table 11.8. Means and standard deviations of a subset of parameter estimates and standard errors for a 2-factor model of log-normal 

data with 20 variables with N=10,000. 

     Subset of Factor Loadings  Factor Covariances  Subset of Error Variances 

    𝑉1 𝑉2  𝑉11 𝑉12  𝑣𝑎𝑟(𝐹1) 𝑣𝑎𝑟(𝐹2) 𝑐𝑜𝑣(𝐹1, 𝐹2)  𝐸1 𝐸2 𝐸3  𝐸11 𝐸12 𝐸13 

AGLS 

𝜃̂ 
𝑀  1.002 1.001  1.001 1.002  0.824 0.821 0.226  0.857 0.856 0.851  0.849 0.856 0.850 

𝑆𝐷  0.039 0.038  0.038 0.039  0.050 0.055 0.015  0.069 0.071 0.062  0.062 0.069 0.065 

𝑆𝐸𝜃̂ 
𝑀  0.031 0.031  0.031 0.031  0.042 0.042 0.012  0.053 0.053 0.052  0.052 0.052 0.052 

𝑆𝐷  0.003 0.003  0.003 0.003  0.005 0.005 0.001  0.017 0.017 0.014  0.016 0.016 0.016 

                     

NGLS 

𝜃̂ 
𝑀  1.002 1.003  1.000 0.999  0.766 0.767 0.231  0.749 0.754 0.746  0.749 0.747 0.745 

𝑆𝐷  0.043 0.046  0.046 0.044  0.064 0.067 0.018  0.088 0.090 0.078  0.096 0.093 0.091 

𝑆𝐸𝜃̂ 
𝑀  0.027 0.027  0.027 0.027  0.037 0.037 0.013  0.030 0.030 0.030  0.031 0.030 0.031 

𝑆𝐷  0.003 0.003  0.003 0.003  0.004 0.004 0.001  0.004 0.004 0.005  0.005 0.005 0.010 

                     

MGLS 

𝜃̂ 
𝑀  1.003 1.002  1.002 0.999  0.995 0.999 0.300  0.971 0.975 0.970  0.975 0.970 0.975 

𝑆𝐷  0.059 0.059  0.064 0.064  0.104 0.104 0.026  0.109 0.110 0.115  0.128 0.128 0.205 

𝑆𝐸𝜃̂ 
𝑀  0.015 0.015  0.015 0.015  0.025 0.025 0.012  0.015 0.015 0.015  0.015 0.015 0.015 

𝑆𝐷  0.001 0.001  0.001 0.001  0.003 0.002 0.001  0.002 0.002 0.002  0.002 0.002 0.003 

                     

MRLS 

𝜃̂ 
𝑀  1.003 1.002  1.002 1.000  1.000 1.003 0.299  1.008 1.011 1.011  1.015 1.005 1.015 

𝑆𝐷  0.058 0.058  0.063 0.062  0.103 0.101 0.026  0.123 0.121 0.159  0.159 0.157 0.262 

𝑆𝐸𝜃̂ 
𝑀  0.015 0.015  0.015 0.015  0.025 0.026 0.012  0.016 0.016 0.016  0.016 0.016 0.016 

𝑆𝐷  0.001 0.001  0.001 0.001  0.003 0.002 0.001  0.002 0.002 0.002  0.002 0.002 0.004 
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Table 11.9. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 8) test statistics of the 2-factor 

model of log-normal data with 6 variables. 

  AGLS  NGLS  MGLS  MRLS 

𝑁 
 𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

100  9.35 3.91  7.86 2.96  12.50 7.53  12.58 8.41 

300  9.81 4.86  12.66 5.91  16.50 11.03  16.32 10.87 

500  9.27 4.33  14.53 8.01  17.89 14.57  17.77 14.74 

1000  8.90 3.87  17.21 10.70  19.43 15.66  19.50 16.06 

10,000  7.93 3.78  24.35 16.78  24.68 17.35  29.58 108.80 

100,000  8.13 4.04  27.37 16.93  27.40 16.99  27.41 17.02 

 

 

 

Table 11.10. Percent of replications in which the 2-factor model of log-normal data with 6 

variables was rejected by a 𝜒2(𝑑𝑓 = 8) test with 𝛼 = .05. 

𝑁 
 AGLS  NGLS  MGLS  MRLS 

100  7.14  0.61  27.86  26.39 

300  11.80  28.00  41.20  40.69 

500  9.00  38.40  45.40  44.04 

1000  5.80  47.00  48.80  48.80 

10,000  4.20  67.00  67.80  67.60 

100,000  4.60  78.00  78.00  78.00 
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Table 11.11. Means and standard deviations of estimated 𝜒2(𝑑𝑓 = 169) test statistics of the 2-

factor model of log-normal data with 20 variables. 

  AGLS  NGLS  MGLS  MRLS 

𝑁  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷  𝑀 𝑆𝐷 

300  94.44 8.76  89.86 7.77  422.95 62.28  460.50 90.63 

500  193.08 16.57  130.77 9.32  517.19 90.41  573.72 132.13 

1000  276.66 30.82  218.16 12.84  649.53 124.46  729.17 196.85 

10,000  199.30 20.32  794.60 133.57  1072.19 294.33  1142.90 401.69 

100,000  175.92 19.74  1283.00 358.71  1340.42 422.49  1365.39 484.39 

 

 

 

Table 11.12. Percent of replications in which the 2-factor model of log-normal data with 20 

variables was rejected by a 𝜒2(𝑑𝑓 = 169) test with 𝛼 = .05. 

𝑁 
 AGLS  NGLS  MGLS  MRLS 

300  0.0  0.0  100.0  100.0 

500  30.4  0.0  100.0  100.0 

1000  99.4  92.6  100.0  100.0 

10,000  47.8  100.0  100.0  100.0 

100,000  11.0  100.0  100.0  100.0 
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Figures 

 

Figure 11.1. Boxplots of the values of the first factor loading of 𝐹1 (in the 2-factor model) 

estimated by the different methods across sample sizes (in the log-normal data condition with 6 

variables). 
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Figure 11.2. Boxplots of the values of the factor variance of 𝐹1 (in the 2-factor model) estimated 

by the different methods across sample sizes (in the log-normal data condition with 6 variables). 

Two extreme values are not displayed above. Specifically, MGLS produced one extreme 

negative outlier (near -17) and MRLS produced a positive extreme outlier (near 29). 
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Figure 11.3. Boxplots of the values of the factor covariance between 𝐹1 and 𝐹2 (in the 2-factor 

model) estimated by the different methods across sample sizes (in the log-normal data condition 

with 6 variables).  

With a sample size of 100, the MRLS procedure yielded one extreme value (around -8) which is 

not included in the figure above.   
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Figure 11.4. Boxplots of the values of the first error variance (of 𝑉1 in the 2-factor model) 

estimated by the different methods across sample sizes (in the log-normal data condition with 6 

variables).  
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Figure 11.5. Boxplots of the values of the first factor loading of 𝑭𝟏 (in the 2-factor model) 

estimated by the different methods across sample sizes (in the log-normal data condition with 20 

variables). 

 

There were several extreme outliers that are excluded from the plot above. Specifically, in the 

𝑁=300 condition, the MGLS and MRLS procedures each produced outliers (around -15 and -13, 

respectively). In addition, the MRLS procedure had two extreme positive values (near 30 and 40) 

in the 𝑁=500 condition and two extreme negative values (around -25 and -33) in the 𝑁=1000 

condition.  
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Figure 11.6. Boxplots of the values of the factor variance of 𝐹1 (in the 2-factor model) estimated 

by the different methods across sample sizes (in the log-normal data condition with 20 

variables). 
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Figure 11.7. Boxplots of the values of the factor covariance between 𝐹1 and 𝐹2 (in the 2-factor 

model) estimated by the different methods across sample sizes (in the log-normal data condition 

with 20 variables). 

 

The MRLS procedure produced some extreme outliers that are not depicted above. Specifically, 

there were two extreme values (about -3 and 7) in the 𝑁=500 condition and one extreme value 

(around -7) in the 𝑁=1000 condition.  
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Figure 11.8. Boxplots of the values of the first error variance (of 𝑽𝟏 in the 2-factor model) 

estimated by the different methods across sample sizes (in the log-normal data condition with 20 

variables).  

The plot above does not depict two extreme values produced by the MRLS procedure. In 

particular, one point (around 70) in the 𝑁=500 condition and one point (around 15) in the 

𝑁=1000 condition are not shown.  
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Figure 11.9. Histogram of the values of the 𝜒2-test statistic produced through AGLS estimation 

of the 2-factor model across sample sizes (in the log-normal data condition with 6 variables). 

 

  



 

178 

  

 

Figure 11.10. Histogram of the values of the 𝜒2-test statistic produced through NGLS estimation 

of the 2-factor model across sample sizes (in the log-normal data condition with 6 variables). 
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Figure 11.11. Histogram of the values of the 𝜒2-test statistic produced through MGLS estimation 

of the 2-factor model across sample sizes (in the log-normal data condition with 6 variables). 
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Figure 11.12. Histogram of the values of the 𝜒2-test statistic produced through MRLS estimation 

of the 2-factor model across sample sizes (in the log-normal data condition with 6 variables). 

 

One outlier (with a value of 2426) is excluded in the 𝑁=10,000 condition above. 
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Figure 11.13. Histogram of the values of the 𝜒2-test statistic produced through AGLS estimation 

of the 2-factor model across sample sizes (in the log-normal data condition with 20 variables). 

 

  



 

182 

  

 

Figure 11.14. Histogram of the values of the 𝜒2-test statistic produced through NGLS estimation 

of the 2-factor model across sample sizes (in the log-normal data condition with 20 variables). 
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Figure 11.15. Histogram of the values of the 𝜒2-test statistic produced through MGLS estimation 

of the 2-factor model across sample sizes (in the log-normal data condition with 20 variables). 

The histogram for the 𝑵=10,000 condition excludes one extreme value (at 2776).  
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Figure 11.16. Histogram of the values of the 𝜒2-test statistic produced through MRLS estimation 

of the 2-factor model across sample sizes (in the log-normal data condition with 20 variables). 

Once again, some extreme values are not depicted. Namely, there were two extreme values in the 

𝑁=1000 condition (around 1759 and 1814) and one in the 𝑁=10,000 condition (around 4377).  
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Chapter 12. Numerical Stability of 𝚿̂ Relative to 𝑺 and Potential Benefits of Winsorization 

This chapter and the following chapter address the computational stability of the AGLS 

and NGLS estimation methods for CV models in terms of the condition numbers of some of the 

matrices used in the process. In the Chapter 7 discussion, we noted that we had initially intended 

to consider the samples size of 100 in both the 5-variable and 20-variable conditions, but that the 

Σ̂𝝍 matrices were numerically non-invertible. We speculated that because the CV matrix contains 

the means in the denominator, it may be more sensitive to fluctuations in sample observations 

than the covariance matrix. Consequently, it is possible that poor estimates of the mean, such as 

those that might occur in smaller samples, render the CV matrix ill-conditioned. If this occurred 

Σ̂𝝍 would also be ill-conditioned because the Σ̂𝝍 relies heavily on Ψ̂. To examine this question 

further, we considered the condition numbers of the both Ψ̂ and Σ̂𝝍 relative to their covariance 

analogs (S and Σ̂𝐒). The condition number is the ratio of the largest eigenvalue to the smallest 

eigenvalue of a matrix and larger values of this ratio are associated with more computational 

difficulties including computational singularities preventing inversion. In this chapter the 

condition numbers of sample CV matrices are contrasted with those of the sample covariance 

matrices and the next chapter will examine the condition numbers of several estimators of the 𝑉𝑆𝑆 

matrix used in estimation.  

Moreover, it is possible that by producing more stable estimates of the means and 

covariances, we could reduce this numerical instability in Ψ̂ and Σ̂𝝍. Therefore, we also 

examined the stability of these matrices when they were calculated from Winsorized data. It was 

hoped that by trimming the extreme values, the Ψ̂ estimates would be more stable and that the 

resulting Σ̂𝝍 would have lower condition numbers. If this were successful, it might allow for the 

estimation of larger models in small sample sizes.  
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Method 

 Conditions. First, we considered several one-factor models of data drawn from a normal 

distribution. These models contained either 5 or 20 variables and the population means were 

either fixed at 1 or allowed to vary from 1 to 3 as described in Chapter 5. Second, we considered 

two one-factor models of log-normal data: one with 5 variables and one with 20 variables. The 

sample size values considered were 100, 300, 500, and 1000. 

 Analyses. For each model and data type combination, 500 samples were drawn from the 

specified population and for each sample the covariance matrix and CV matrix were calculated. 

In addition, for each sample a Winsorized version of that sample was computed. The 

Winsorization was done within each variable, by trimming the lowest and highest 5% of scores 

(on that variable) and replacing these values with the 5th and 95th quantiles, respectively. Then, 

both the covariance and CV matrix were recomputed using the Winsorized version of the data.  

 Finally, we calculated the condition numbers of each matrix described above. That is, the 

eigenvalues were calculated and the condition number was computed by taking the ratio of the 

largest to the smallest eigenvalues. The means, standard deviations and general distributions of 

the condition numbers were analyzed and the results of each method were contrasted.  

Results  

One-factor models of normal data with equal population means. The population CV 

matrices for the 5 and 20 variable models, which have the form shown in (5.1), have condition 

numbers of 6 and 21, respectively. Because the population means are all equal to 1, the 

population covariance matrix has identical condition numbers. The empirical condition numbers 

are summarized in Tables 12.1 and 12.2 and Figures 12.1 and 12.2. As shown in Tables 12.1 and 

12.2, the condition numbers of the CV matrix tended to be higher than those of the covariance 
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matrix. In addition, the Winsorization procedure produced modest improvements in the condition 

number estimates. It is also apparent that the as the sample sizes increased, the condition 

numbers approached their true population values.  

One-factor models of normal data with unequal population means. The same models 

and numbers of variables were considered in this condition, so the population CV matrix still has 

the form shown in (5.1). However, the population means of the variables were allowed to vary 

from 1 to 3, and therefore, the population covariance matrix differed from the CV matrix. This 

difference of course produced differing population condition numbers. In the 5-variable case, the 

CV matrix still had a condition number of 6, whereas the covariance matrix had a condition 

number of about 25.38. Similarly, the population condition number of the CV matrix in the 20-

variable case was still 21, but that of the covariance matrix was approximately 90.58.  

The empirical condition numbers are summarized in Tables 12.3 and 12.4 and Figures 

12.3 and 12.4. The changes in the population condition numbers were reflected in the empirical 

values, which were substantially higher for covariance matrices than for CV matrices. Aside 

from this difference, the findings were comparable to results of the previous study of variables 

with equal means. That is, condition numbers tended to decrease towards their population values 

as the sample size increased, and Winsorization produced modest improvements.  

One-factor models of log-normal data. The population CV matrices for the 5 and 20 

variable models of log-normal data were identical to those for the one-factor model of normal 

data (shown in 5.1) and therefore have the same condition numbers: 6 and 21, respectively. The 

empirical condition numbers are summarized in Tables 12.5 and 12.6 and Figures 12.5 and 12.6. 

From these summaries, it is apparent that for log-normal data, the empirical condition numbers 

tended to be much larger than the theoretical values. The difference was most pronounced in 
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small samples, but the difference was still substantial at a sample size of 1000. However, in the 

case of log-normal data, the benefit of Winsorization for the estimated condition number was 

more pronounced. As shown, in Figures 12.5 and 12.6 the distributions of the condition numbers 

obtained from the Winsorized data tended to have fewer extreme outliers and produced generally 

better estimates of the population condition numbers.  

Discussion  

 When the data were normally distributed and the means did not vary, it was apparent that 

the covariance matrix was numerically more stable than the CV matrix and that these estimates 

improved as the sample size increase. However, the results of the studies of the one-factor 

models of normal data unequal means show that the condition numbers of the CV matrix and 

covariance matrix can be quite different. Furthermore, this difference is reflected in the sample 

values of the condition numbers. This suggests that when analyzing data with means that vary 

systematically with the variance such that there is a simple one-factor structure for the CV 

matrix, the CV matrix may be computationally more stable than the covariance matrix. This may 

have implications for the numerical stability of structural models of data and may inform our 

modeling decisions. In addition, the studies of log-normal data showed the condition numbers for 

the CV matrix were only very slightly lower than those of the covariance matrix, suggesting that 

the computational stability of the CV matrix will be comparable to that of the covariance matrix 

when modeling log-normal data.  

 Finally, it is noteworthy that while Winsorization only produced modest improvements in 

the case of normal data, it was more effective when the data followed a log-normal distribution. 

Although it did not substantially affect the average condition numbers, Winsorization did 

dramatically reduce the variability of the estimates resulting in fewer extreme outliers and more 
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reliable values. This suggests that Winsorization may potentially be useful in enhancing the 

numerical stability of estimation, particularly when dealing with log-normal data. The following 

chapter will investigate whether these benefits carry over to improve the various estimators of Σ𝝍 

and discuss the implications for model estimation.  
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Tables 

Table 12.1. Condition number means and standard deviations of S and 𝛹̂ for a one-factor model 

of normal data with 5 observed variables (equal means). 

  𝑁 = 100  𝑁 = 300  𝑁 = 500  𝑁 = 1000 

Matrix  M SD  M SD  M SD  M SD 

𝑆  8.45 1.58  7.14 0.77  6.86 0.54  6.58 0.36 

Ψ̂  9.30 1.90  7.51 0.87  7.14 0.61  6.75 0.39 

𝑆Win  8.25 1.58  6.93 0.76  6.67 0.53  6.38 0.36 

Ψ̂Win  9.11 1.92  7.30 0.85  6.93 0.60  6.55 0.39 

 

 

Table 12.2. Condition number means and standard deviations of S and 𝛹̂ for a one-factor model 

of normal data with 20 observed variables with equal means. 

  𝑁 = 100  𝑁 = 300  𝑁 = 500  𝑁 = 1000 

Matrix  M SD  M SD  M SD  M SD 

𝑆  61.86 10.73  35.74 3.54  31.02 2.34  27.42 1.41 

Ψ̂  67.20 11.89  37.43 3.76  32.07 2.53  28.02 1.47 

𝑆Win  61.17 11.19  34.82 3.53  30.08 2.32  26.51 1.39 

Ψ̂Win  66.74 12.21  36.49 3.73  31.15 2.51  27.12 1.42 

 

 

Table 12.3. Condition number means and standard deviations of S and 𝛹̂ for a one-factor model 

of normal data with 5 observed variables with means varying from 1 to 3. 

  𝑁 = 100  𝑁 = 300  𝑁 = 500  𝑁 = 1000 

Matrix  M SD  M SD  M SD  M SD 

𝑆  27.74 5.77  26.24 2.87  25.87 2.40  25.54 1.55 

Ψ̂  9.30 1.85  7.56 0.86  7.09 0.59  6.71 0.36 

𝑆Win  27.09 6.04  25.51 2.92  25.13 2.44  24.81 1.55 

Ψ̂Win  9.11 1.85  7.36 0.86  6.89 0.58  6.51 0.37 
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Table 12.4. Condition number means and standard deviations of S and 𝛹̂ for a one-factor model 

of normal data with 20 observed variables with means varying from 1 to 3. 

  𝑁 = 100  𝑁 = 300  𝑁 = 500  𝑁 = 1000 

Matrix  M SD  M SD  M SD  M SD 

𝑆  140.83 28.48  103.24 11.52  97.48 8.73  94.00 5.58 

Ψ̂  67.00 13.19  37.58 3.94  32.23 2.52  28.19 1.49 

𝑆Win  138.68 28.62  100.02 11.93  94.41 8.69  90.71 5.66 

Ψ̂Win  66.33 13.44  36.61 3.95  31.30 2.49  27.33 1.49 

 

 

Table 12.5. Condition number means and standard deviations of S and 𝛹̂ for a one-factor model 

of log-normal data with 5 observed variables (equal means). 

  𝑁 = 100  𝑁 = 300  𝑁 = 500  𝑁 = 1000 

Matrix  M SD  M SD  M SD  M SD 

𝑆  19.97 14.32  12.31 4.98  10.58 3.24  8.96 1.87 

Ψ̂  16.83 10.72  11.34 4.37  9.97 2.83  8.63 1.65 

𝑆Win  13.76 3.80  10.44 1.54  9.64 1.10  8.87 0.68 

Ψ̂Win  12.36 3.13  9.88 1.35  9.25 0.95  8.62 0.62 

 

 

Table 12.6. Condition number means and standard deviations of S and 𝛹̂ for a one-factor model 

of log-normal data with 20 observed variables (equal means). 

  𝑁 = 100  𝑁 = 300  𝑁 = 500  𝑁 = 1000 

Matrix  M SD  M SD  M SD  M SD 

𝑆  251.84 151.28  89.56 71.55  64.02 18.02  47.09 8.99 

Ψ̂  215.85 116.82  81.75 48.76  60.38 16.33  45.18 8.26 

𝑆Win  131.52 37.04  58.98 8.38  48.39 4.67  40.51 2.65 

Ψ̂Win  119.48 33.31  55.93 7.62  46.49 4.33  39.36 2.51 
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Figures 

 

Figure 12.1. Condition numbers of S and Ψ̂ for a one-factor model of normal data with 5 

observed variables with equal means.  
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Figure 12.2. Condition numbers of S and Ψ̂ for a one-factor model of normal data with 20 

observed variables with equal means.  
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Figure 12.3. Condition numbers of S and Ψ̂ for a one-factor model of normal data with 5 

observed variables with means varying from 1 to 3. 
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Figure 12.4. Condition numbers of S and Ψ̂ for a one-factor model of normal data with 5 

observed variables with means varying from 1 to 3. 
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Figure 12.5. Condition numbers of S and Ψ̂ for a one-factor model of log-normal data with 5 

observed variables (and equal means). 
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Figure 12.6. Condition numbers of 𝑆 and Ψ̂ for a one-factor model of log-normal data with 20 

observed variables (and equal means). 
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Chapter 13. Numerical Stability of 𝚺̂𝝍 Relative to 𝚺̂𝑺 and Potential Benefits of 

Winsorization 

This chapter continues investigating factors contributing to the computational stability of 

the AGLS and NGLS estimation methods for CV models. Here we examined the condition 

numbers of several estimators of the 𝑉𝑆𝑆 matrix used in estimation. In particular, we considered 

the both the arbitrary-distribution and normal-theory versions of Σ̂𝜓 and contrasted their 

condition numbers with those of Σ̂𝑆. Because Σ̂𝜓 depends on Ψ and therefore depends more 

heavily on the sample mean than the Σ̂𝑆 and 𝑆, we expect that Σ̂𝜓 will have higher condition 

numbers on average than Σ̂𝑆. Again, we also expect that the condition numbers of both Σ̂𝜓 and Σ̂𝑆 

to be improved by Winsorization.  

In addition, we conducted an investigation of the potential differences in numerical 

stability between the method of inverting ΣΨ employed by Boik and Shirvani (2009) and the 

method employed here. These two approaches are described in (3.17) and (3.18), and they are 

mathematically equivalent in terms of the sum of squares they produce using different forms of 

the GLS function. As described previously, the first method relies on inverting the matrix 

𝐷𝑝
𝑇Σ̂Ψ𝐷𝑝 and then transforming the inverse into a large 𝑝2 × 𝑝2 matrix, whereas the second 

method inverts the matrix 𝐻𝑝Σ̂𝛹𝐻𝑝
𝑇 and then uses the reduced 𝑝∗ × 𝑝∗ matrix in estimation. 

Therefore, we will examine the condition numbers of these two matrices (in both the arbitrary 

distribution and normal theory contexts) to see if one may be more numerically stable.  

Method 

 Conditions. This simulation examined one-factor models of the form shown in Figure 

5.1 and the data were drawn from normal and log-normal distributions, respectively. The models 
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contained either 5 or 20 variables and the population means of the variables were fixed at 1. The 

sample size values considered were 100, 300, 500, 1000, and 10,000. 

 Analyses. For each of the 500 replications, we calculated three variations of the VSS 

matrix, whose inverse serves as the weight matrix during GLS estimation. The first variation we 

examined was the variance of the sampling distribution of the covariance matrix Σ̂S. The second 

and third variations of VSS examined were the two versions of the variance of the sampling 

distribution of the CV matrix Σ̂𝝍: one that does not assume any particular distribution and one 

that assumes normality. Each of these may be used in a GLS estimation of structural models of 

CV matrices and they are computed according to (3.15), (3.16), and (3.18).  

 As described in the previous chapter, a Winsorized version of that sample was computed 

by trimming the lowest and highest 5% of scores within each variable and replacing these with 

the 5th and 95th quantiles, respectively. Then, each of the 𝑉𝑆𝑆 matrices were recomputed using 

the Winsorized data.  

 Finally, we again calculated the condition number of each matrix by finding the 

eigenvalues and eigenvectors obtaining the ratio of the largest to the smallest eigenvalue. The 

means, standard deviations and general distributions of the condition numbers were examined at 

each sample size.  

Results  

One-factor models of normal data with equal population means. Tables 13.1 and 13.2 

show the means and standard deviations of the condition numbers of the various 𝑉𝑆𝑆 matrices 

estimated from normally distributed data from a 5-variable one-factor covariance matrix with 

equal means. While Table 13.1 shows the values computed from the raw data, Table 13.2 shows 

the values computed from the Winsorized data. The condition numbers of Σ̂𝑆 were lower than 
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those of any of the CV method matrices. The highest average values of the condition numbers 

were observed in the arbitrary distribution method relying on 𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇 whereas the condition 

numbers were lower when using normal theory and/or 𝐷𝑝
𝑇Σ̂Ψ𝐷𝑝. Furthermore, substantial 

reductions in the condition number values were obtained through Winsorization as can be seen 

be contrasting values in Table 13.1 to those in Table 13.2.  

The means and standard deviations of the condition numbers of the various 𝑉𝑆𝑆 matrices 

resulting from a model containing 20-variables are shown in Table 13.3 (for the non-Winsorized 

data) and 13.4 (for the Winsorized data). The pattern of results found here was similar to that of 

the 5-variable case. However, in the 20-variable case the condition numbers tended to be very 

high in general and when the sample size was low (i.e. when 𝑁 = 100) the numerical 

computation of the matrices was so unstable that none of the matrices, except those relying on 

normal theory, were positive semi-definite. For completeness, the average condition numbers are 

still reported in these cases but they are marked with an asterisk and should be interpreted with 

caution. Importantly, it should also be noted that although the average condition numbers did get 

smaller as the sample sizes increased, the values for the Σ̂𝜓 were still very large with 10,000 

observations (i.e. larger than 1500 in the for raw data and larger than 1250 for Winsorized data).  

One-factor models of log-normal data. Tables 13.5 and 13.6 show the means and 

standard deviations of the condition numbers of the various 𝑉𝑆𝑆 matrices associated with a 5-

variable one-factor covariance matrix calculated from log-normal data. The results from the non-

Winsorized data are in Table 13.5, while those for the Winsorized data are reported in Table 

13.6. Once more, it seems that the normal theory estimates were more stable than the arbitrary 

distribution theory estimates and the 𝐷𝑝
𝑇Σ̂Ψ𝐷𝑝 values were somewhat more stable than the 

𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇 values. Also, as was found in the results of Chapter 12, Winsorization was very 



 

201 

  

effective at reducing the condition numbers of matrices derived from log-normal data. The trend 

in the results for the 20-variable condition with log-normal data was comparable, and the results 

are displayed in in Table 13.7 (for the non-Winsorized data) and Table 13.8 (for the Winsorized 

data).  

Discussion  

These results revealed a clear pattern of the stability of the Σ̂Ψ matrices. Specifically, the 

normal theory estimators were more stable than the arbitrary distribution theory estimators, the 

𝐷𝑝 transformation was more stable than the 𝐻𝑝 transformation, and Winsorization was modestly 

helpful with normal data and very helpful with log-normal data. However, these results do not all 

lead directly to estimation recommendations.  

For instance, while it makes sense that the normal theory estimates would be more stable 

than the arbitrary distribution theory estimates given how they are computed in (3.15) and (3.16), 

this does not mean that the normal theory estimators are better or more appropriate. As we saw in 

Chapter 6, when the normal theory version of Σ̂Ψ is calculated from log-normal data, the result 

tends to be a poor match for the population value. Also, we saw in Chapter 9, that model 

estimation using the normal theory version of Σ̂Ψ with log-normal data leads to virtually 

meaningless model fit statistics. Therefore, also it is more stable and it would only be preferable 

in the case of normally distributed.  

Next, it is interesting that the 𝐷𝑝
𝑇Σ̂Ψ𝐷𝑝 values were somewhat more stable than the 

𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇 values. This also makes sense, because the computation of 𝐻𝑝 requires an addition 

inverse to be computed; however, we cannot necessarily conclude that using 𝐷𝑝
𝑇Σ̂Ψ𝐷𝑝 will lead 

to superior solutions. It is possible that there are other problems associated with the downstream 

transformations required in this method, or with estimating more elements of matrices that may 



 

202 

  

have detrimental effects that are not addressed here. Additional research should compare the 

results of these two approaches to see if one method is superior. If it were the case that one of 

these methods was more reliable or accurate, this might have implications for the estimation of 

standard structural covariance models in addition to the coefficient of variation models 

considered here.  

 Finally, it was also apparent that Winsorizing the data enhanced the numerical stability of 

the estimators, especially when the data were log-normally distributed. This may lead to better 

and more reliable estimation and future work should investigate how Winsorization might affect 

the parameter estimates, standard errors and test statistics resulting from the estimation of a CV 

model. Other forms of Winsorization could also be considered. For instance, here we Winsorized 

the data within each variable, but this could also be done within cases. Alternatively, we could 

Winsorize the elements of the CV matrix or Σ̂Ψ or employ an alternative method to produce 

more robust (asymptotic) covariance matrices.  
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Tables 

Table 13.1. Condition number means and standard deviations of Σ̂𝑆 and different estimators of Σ̂𝝍 for a one-factor model of normal 

data with 5 observed variables with equal means (non-Winsorized). 

  Covariance Method  Arbitrary Distribution  Normal Theory 

  Σ̂𝑆  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝 

𝑁  M SD  M SD  M SD  M SD  M SD 

100  134.36 58.85  624.74 346.97  418.59 252.76  446.93 252.39  289.50 175.01 

300  72.02 18.72  312.30 87.48  197.54 61.64  264.72 71.13  161.98 47.90 

500  62.16 12.12  269.01 58.52  167.52 39.81  238.79 48.71  143.03 32.80 

1000  54.93 7.28  235.35 34.30  142.17 22.52  215.87 29.31  127.09 19.51 

10,000  46.06 2.13  195.88 9.37  112.71 5.95  191.69 8.28  108.74 5.34 

 

 

 

Table 13.2. Condition number means and standard deviations of Σ̂𝑆 and different estimators of Σ̂𝝍 for a one-factor model of 

Winsorized normal data with 5 observed variables with equal means. 

  Covariance Method  Arbitrary Distribution  Normal Theory 

  Σ̂𝑆  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝 

𝑁  M SD  M SD  M SD  M SD  M SD 

100  80.88 30.81  450.14 261.29  299.53 176.84  373.81 217.13  245.43 149.03 

300  43.37 9.59  222.57 64.84  140.89 43.45  218.13 59.25  136.21 40.17 

500  37.68 5.98  191.54 42.20  119.51 28.05  195.83 39.35  120.16 27.56 

1000  33.13 3.48  167.15 24.58  101.34 15.91  176.63 24.20  106.32 16.62 

10,000  27.61 0.99  139.22 6.44  80.63 4.14  155.99 6.65  90.44 4.45 
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Table 13.3. Condition number means and standard deviations of Σ̂𝑆 and different estimators of Σ̂𝝍 for a one-factor model of normal 

data with 20 observed variables with equal means (non-Winsorized). Note that the asterisks indicate matrices that were numerically 

non-positive semi-definite.  

  Covariance Method  Arbitrary Distribution  Normal Theory 

  Σ̂𝑆  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝 

𝑁  M SD  M SD  M SD  M SD  M SD 

100  -7.58E+15* 5.51E+15*  -13.81* 10.84*  -12.59* 10.82*  16584.60 8608.67  15289.25 8244.72 

300  20993.72 5132.83  27968.62 7085.12  25631.28 6598.32  4894.66 1313.04  4366.49 1222.65 

500  4250.06 747.57  9805.00 1896.33  8698.78 1720.01  3559.02 664.71  3129.15 619.39 

1000  1721.65 211.24  5023.19 688.11  4381.75 619.82  2750.49 367.08  2378.77 341.76 

10,000  648.00 24.92  2177.83 94.92  1836.45 83.23  1848.37 75.97  1552.90 67.83 

 

 

 

Table 13.4. Condition number means and standard deviations of Σ̂𝑆 and different estimators of Σ̂𝝍 for a one-factor model of 

Winsorized normal data with 20 observed variables with equal means. Note that the asterisks indicate matrices that were numerically 

non-positive semi-definite.  

  Covariance Method  Arbitrary Distribution  Normal Theory 

  Σ̂𝑆  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝 

𝑁  M SD  M SD  M SD  M SD  M SD 

100  -7.69E+15* 5.42E+15*  -15.12* 10.45*  -14.88* 11.74*  14096.01 7400.14  13107.45 7102.89 

300  14027.04 2957.47  19780.84 4803.25  18070.39 4410.68  4059.04 1102.66  3668.41 1045.50 

500  2791.86 394.84  7006.71 1334.49  6195.44 1194.36  2932.10 551.03  2610.58 522.02 

1000  1112.50 104.58  3597.60 479.35  3129.92 423.49  2259.03 301.48  1979.05 284.41 

10,000  408.50 12.00  1535.20 63.42  1295.07 55.44  1499.96 60.43  1279.43 56.62 
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Table 13.5. Condition number means and standard deviations of Σ̂𝑆 and different estimators of Σ̂𝝍 for a one-factor model of log-

normal data with 5 observed variables with equal means (non-Winsorized). 

  Covariance Method  Arbitrary Distribution  Normal Theory 

  Σ̂𝑆  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝 

𝑁  M SD  M SD  M SD  M SD  M SD 

100  70483.89 384249.76  8421.03 28318.14  6923.71 33587.71  4380.28 26779.34  3070.89 18021.49 

300  22380.79 241804.08  3884.46 12644.99  2557.12 8513.12  2089.93 24776.36  982.09 8350.50 

500  4393.97 10630.54  1966.28 4473.07  1281.37 3113.49  509.51 566.60  324.47 352.21 

1000  3020.75 9480.50  1630.66 4469.89  989.38 2474.36  400.91 427.01  245.56 207.65 

10,000  647.98 940.03  495.75 818.83  249.31 396.89  223.20 31.07  131.82 19.71 

 

 

 

 

Table 13.6. Condition number means and standard deviations of Σ̂𝑆 and different estimators of Σ̂𝝍 for a one-factor model of 

Winsorized log-normal data with 5 observed variables with equal means. 

  Covariance Method  Arbitrary Distribution  Normal Theory 

  Σ̂𝑆  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇  𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝 

𝑁  M SD  M SD  M SD  M SD  M SD 

100  594.38 545.46  196.55 112.92  221.77 123.52  397.42 225.94  334.06 217.72 

300  163.84 63.77  70.90 19.15  98.93 22.36  249.69 70.72  196.57 61.68 

500  125.47 34.70  56.03 11.04  84.80 14.84  226.78 51.56  176.05 44.98 

1000  98.52 18.65  45.46 6.24  73.79 8.09  205.16 30.61  156.51 26.29 

10,000  71.66 3.75  33.97 1.37  62.11 2.02  179.76 7.79  135.20 6.44 
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Table 13.7. Condition number means and standard deviations of Σ̂𝑆 and different estimators of Σ̂𝝍 for a one-factor model of log-

normal data with 20 observed variables (non-Winsorized). Note that the asterisks indicate matrices that were numerically non-positive 

semi-definite.  

  Covariance Method  Arbitrary Distribution  Normal Theory 

  Σ̂𝑆  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇   𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇   𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝 

𝑁  M SD  M SD  M SD  M SD  M SD 

100  -1.43E+16* 1.29E+16*  -5.94E-03* 2.50E-03*  -5.68E-03* 2.92E-03  3.35E+05 8.41E+05  3.04E+05 7.48E+05 

300  1.12E+08 3.79E+08  3.85E+07 1.34E+08  3.14E+07 1.15E+08  4.47E+04 1.59E+05  3.95E+04 1.51E+05 

500  5.10E+06 1.08E+07  2.38E+06 4.59E+06  1.91E+06 3.78E+06  1.66E+04 2.01E+04  1.44E+04 1.55E+04 

1000  8.67E+05 2.95E+06  4.64E+05 1.44E+06  3.69E+05 1.20E+06  9.13E+03 1.24E+04  7.98E+03 1.06E+04 

10,000  2.75E+04 5.69E+04  2.12E+04 4.90E+04  1.65E+04 4.06E+04  2.74E+03 4.83E+02  2.36E+03 4.19E+02 

 

 

 

 

Table 13.8. Condition number means and standard deviations of Σ̂𝑆 and different estimators of Σ̂𝝍 for a one-factor model of 

Winsorized log-normal data with 20 observed variables. Note that the asterisks indicate matrices that were numerically non-positive 

semi-definite.  

  Covariance Method  Arbitrary Distribution  Normal Theory 

  Σ̂𝑆  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇   𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝  𝐻𝑝Σ̂Ψ𝐻𝑝
𝑇   𝐷𝑝

𝑇Σ̂Ψ𝐷𝑝 

𝑁  M SD  M SD  M SD  M SD  M SD 

100  -1.48E+16* 1.24E+16*  -1.25E-02* 8.19E-03*  -1.16E-02* 7.69E-03*  3.16E+04 2.36E+04  3.19E+04 2.49E+04 

300  7.07E+05 3.28E+05  3.19E+05 1.39E+05  3.01E+05 1.31E+05  6.84E+03 2.07E+03  6.72E+03 2.12E+03 

500  4.25E+04 1.40E+04  2.36E+04 6.85E+03  2.27E+04 6.60E+03  4.72E+03 1.06E+03  4.61E+03 1.07E+03 

1000  7.19E+03 1.43E+03  4.03E+03 6.38E+02  4.06E+03 6.31E+02  3.38E+03 5.21E+02  3.32E+03 5.24E+02 

10,000  1.22E+03 6.17E+01  6.41E+02 2.22E+01  1.12E+03 3.46E+01  2.09E+03 9.67E+01  2.17E+03 1.10E+02 
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Chapter 14. Application 

In this chapter, we considered how a CV model might be applied in a substantive 

research context. Although the preceding results indicated that the estimation methods may have 

trouble when certain distributional and model size conditions are not met, the effects of this in 

the context of real data should be investigated. Therefore, the present chapter considers a one-

factor model of some longitudinal data regarding alcohol use.  

Method 

Data. Duncan, et al. (1997) and Duncan, Duncan, and Hops (1998) reported on a sample 

of 435 families containing at least one adolescent to examine development of alcohol use over 

time. The alcohol use of the individuals within the families (1204 total cases) was measured at 4 

time points over 4 years (T1, T2, T3, and T4), as an index with values ranging from 0 to 4. A value 

of 0 indicted that the individual was a “lifetime abstainer,” whereas a value of 4 indicated that 

the individual consumed 30 or more drinks per month. For additional details refer to Duncan, et 

al. (1998). For the purposes of the present research, one member of each family was selected to 

create a subset 435 independent observations to be used in the analysis below.  

Model. Here a single factor model of the 4 alcohol use measures was constructed. To 

identify the model, the last factor loading and the paths from the error terms to the observed 

alcohol use variables were fixed to 1. The remaining parameters were left free to be estimated. 

This model is depicted in Figure 14.1.  

Analyses. First, the means, the covariance matrix and the CV matrix were calculated. 

Next, the one factor model described above was fit to the data using each of the four estimation 

methods (AGLS, NGLS, MGLS, and MRLS) to produce four sets of parameter and standard 

error estimates as well as the four corresponding 𝜒2-test statistics. In addition, the parameter 
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estimates produced by each method were used to produce a model predicted value of the CV 

matrix. These predicted CV matrices were contrasted with the sample CV matrix and the 

standardized residuals were considered. Note that we define the standardized residual to be the 

difference between the model-predicted elements of the CV matrix and the corresponding 

elements of the sample CV matrix relative to the standard deviation of the non-redundant 

elements of the sample CV matrix.  

Results 

Distribution and Summary of Data. The index of alcohol use recorded at the four time 

points were not normally distributed. There distributions are shown in Figure 14.2. In addition, 

there were slight increases in the average alcohol use over time. Specifically, the means of the 

alcohol use index at the 4 time points were 1.979, 2.026, 2.099, and 2.234. These average 

increases in alcohol use were accompanied by corresponding increases in variance, as can be 

seen in the sample covariance matrix  

𝑆 = ( 

1.190 0.858 0.855 0.797
0.858 1.220 1.019 0.990
0.855 1.019 1.319 1.141
0.797 0.990 1.141 1.578

). 

However, the coefficients of variation seemed to be more stable over time as can be seen in the 

sample CV matrix 

Ψ̂ = ( 

0.304 0.214 0.206 0.180
0.214 0.297 0.240 0.219
0.206 0.240 0.299 0.243
0.180 0.219 0.243 0.316

). 

In particular, the diagonal elements of 𝑆 seem to increase, whereas those of Ψ̂ do not.  

Parameter Estimates. The parameter estimates and standard errors produced by each of 

the four estimation methods are displayed in Table 14.1. The four methods were fairly consistent 

in their estimation of the parameters. The first factor loading (corresponding to alcohol use at the 
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first time point) tended to be a bit lower than the others, with estimates approximately between 

0.87 and 0.89. The other two estimated factor loadings had values between 1.01 and 1.02 and 

1.08 and 1.09, respectively. (The fourth factor loading was fixed at 1.) The factor variance 

estimates were also reasonably consistent across methods. Each method produced an estimate 

around 0.21 to 0.22. There was somewhat more variation in the estimates of the error variances. 

In particular, the estimates of the AGLS and MRLS error variances (about 0.13 and 0.14, 

respectively) for alcohol use at the first time point were slightly larger than those of the NGLS 

and MGLS (which were about 0.12). In addition, the MRLS value (0.075) of the second error 

variance seemed slightly larger than the others (which were closer to 0.06). The standard error 

estimates also tended to be fairly similar across methods. However, there were some small but 

potentially noteworthy differences. In particular, the NGLS method produced the highest 

standard error estimates for each of the factor loadings and for the factor variance and the AGLS 

method produced the highest standard errors for the error variances.  

Test Statistics. Each estimation method produced a 𝜒2 value that resulted in the rejection 

of the model. Specifically, 𝜒2(2) = 15.32 for AGLS, 𝜒2(2) = 19.43 for NGLS, 𝜒2(2) = 20.28 

for MGLS, 𝜒2(2) = 24.91 for MRLS, which are all well above the 5.99 cutoff for significance 

at the 0.05 level. This indicates that the one-factor CV model does not sufficiently explain the 

data.  

Reproduced CV matrices. Each set of parameter estimates was used to produce the 

model-predicted value of CV matrix. The predicted values, denoted Ψ(𝜃), are reported along 

side the sample values (Ψ̂) in Table 14.2. Based on visual inspection of the observed sample 

values and those produced by the models, it appears that the models were able to reproduce the 

sample CV matrix. In addition, the correlations between the observed and predicted values were 
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higher than 0.98 for each method. However, the standardized residuals suggest the prediction 

errors were large relative to the standard deviations of the non-redundant elements of Ψ̂. The 

distributions of these residuals are presented in Figure 14.3 for each method. It seems that MRLS 

estimation tended to produce the smallest errors, whereas NGLS produced the largest errors.  

Discussion 

 While this analysis does answer some questions about the applicability of CV models to 

real data, it leaves many others open. In particular, we did see consistency across the estimation 

methods in the parameter estimates and (for the most part) the standard errors. Although in this 

case there is no way to determine how the estimates compared with the population, the 

consistency of the estimates and the ability of the model to reproduce the CV matrix suggests 

that these modeling techniques can provide reasonable parameter estimates in real data. On the 

other hand, there seemed to be large differences between the 𝜒2 values produced by the different 

estimation methods. The simulation studies suggested that these values may behave strangely 

when the data are non-normal. This was especially true for the three methods that make 

distributional assumptions (NGLS, MGLS and MRLS), but as we saw in Chapter 9, even the 

AGLS estimates could be unreliable if the sample size is not very large. This could explain why 

the models were rejected even with a seemingly high correlation between the predicted and 

observed CV matrix, or it could simply be the case that the residuals were large relative to the 

typical size of the matrix elements.  

 Additionally, we have so far been unable to address one of our primary questions of 

interest regarding the application of CV models to real data. That is, are there instances in which 

a structural CV model will provide simpler, more parsimonious description of the data than a 

traditional structural covariance model? While we have demonstrated that a CV model can be 
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meaningful applied to real data, we have not succeeded in finding a case where this form of 

model will clearly be superior to a covariance model. Although the CV model used here is 

indeed less complex than the covariance model that would be required to model the changes in 

means over time, the CV model was not supported statistically. Now that a bit more is known 

about the behavior of the CV models and their estimation, it may be easier to understand when a 

CV model might be useful, and future work should certainly consider additional applications.    
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Tables 

Table 14.1. Parameter estimates and standard errors for the 1-factor model of alcohol use. 

   Factor Loadings  Factor Variance  Error Variances 

AGLS 
𝜃  0.876 1.019 1.089  0.219  0.128 0.060 0.038 0.090 

𝑆𝐸𝜃̂  0.052 0.043 0.041  0.021  0.014 0.010 0.008 0.010 

             

NGLS 
𝜃  0.888 1.023 1.081  0.211  0.116 0.061 0.040 0.088 

𝑆𝐸𝜃̂  0.059 0.053 0.048  0.024  0.012 0.007 0.006 0.010 

             

MGLS 
𝜃  0.889 1.024 1.081  0.220  0.121 0.063 0.042 0.092 

𝑆𝐸𝜃̂  0.052 0.046 0.043  0.021  0.010 0.006 0.006 0.008 

             

MRLS 
𝜃  0.879 1.014 1.086  0.219  0.141 0.075 0.041 0.099 

𝑆𝐸𝜃̂  0.050 0.046 0.045  0.021  0.011 0.007 0.006 0.008 

 

 

 

Table 14.2. Values of the non-redundant elements of 𝛹̂ and the corresponding model predictions 

of those elements (Note, that the element ordering corresponds to the order of 𝑣𝑒𝑐ℎ(𝛹). That is, 

the columns of the lower triangular portion of 𝛹̂ were stacked to produce the columns below). 

Ψ̂ Ψ(𝜃𝐴𝐺𝐿𝑆) Ψ(𝜃𝑁𝐺𝐿𝑆) Ψ(𝜃𝑀𝐺𝐿𝑆) Ψ(𝜃𝑀𝑅𝐿𝑆) 

0.304 0.295 0.282 0.294 0.311 

0.214 0.195 0.191 0.200 0.195 

0.206 0.209 0.202 0.211 0.209 

0.180 0.192 0.187 0.195 0.193 

0.297 0.287 0.281 0.294 0.300 

0.240 0.243 0.233 0.243 0.241 

0.219 0.223 0.215 0.225 0.222 

0.299 0.298 0.286 0.298 0.300 

0.243 0.238 0.228 0.237 0.238 

0.316 0.309 0.299 0.311 0.318 
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Figures 

 

Figure 14.1. A one-factor model of the index of alcohol use at the four time points, with the 

values of fixed included and free parameters marked with the asterisks (*). 
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Figure 14.2. Histograms of the index of alcohol use at the four time points. 
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Figure 14.3. Histograms of the standardized residuals of the reproduced CV matrix. 
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Chapter 15. Conclusions 

 The simulations described here, have identified some circumstances when a CV model 

can be fit appropriately, and some other circumstances when a CV model will not be 

informative. In particular, the estimation methods preformed quite well in small models of 

normally distributed data. In addition, the MRLS and MGLS methods performed reasonably well 

in large models of normally distributed data when the sample size was large enough. In log-

normal data, the results indicated that the estimation methods were generally effective at 

estimating parameters, but not fit statistics, for small models with large sample sizes. However, 

when these conditions were not met the estimation methods were unreliable for this sort of data. 

The results confirmed that only the AGLS method is correctly specified for non-normal data. In 

addition, it did not seem to matter whether one factor or two were included in the model. The 

type of data and the number of variables were, however, very important.  

 The results of the application of the data are not as informative as we had hoped. Some of 

the results discussed suggest that it is plausible that some data exists for which a CV model, like 

those described here, would provide a simpler explanation of the data than a covariance model. 

However, it is not yet clear what that data might be and whether the estimation methods will be 

able to provide accurate and informative parameters and tests explaining that data. This work has 

provided a foundation, for future explorations of this topic. It has identified some conditions that 

should be met for reliable and accurate estimation, which may also allow appropriate data to be 

selected and modeled. Furthermore, we have proposed numerous directions of investigation that 

may result in better estimation of CV models. If these topics are pursued they may allow more 

diverse models and data types to be fit accurately, increasing the odds that a structure or class of 
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structures will be identified that can be better understood and more conveniently modeled in 

terms of the coefficient of variation matrix.  
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Appendix A. Notation 

Distributions 

𝒩(𝝁, Σ): The multivariate normal distribution with mean 𝜇 and covariance Σ. 

𝑙𝑜𝑔𝒩(𝝁, Σ): The multivariate log-normal distribution produced by transforming 

multivariate normal data with mean 𝜇 and covariance Σ. 

𝜒2(𝑑𝑓): The chi-squared distribution with 𝑑𝑓 degrees of freedom.  

Matrix Notation: Special Matrices and Functions 

𝐴𝑇: The transpose of matrix 𝐴.  

𝐴−1: The matrix inverse of 𝐴.   

|𝐴|: The determinant of 𝐴. 

𝑡𝑟(𝐴): The trace of 𝐴.  

‖𝒂‖: The ℓ2-norm of vector 𝑎 computed via √∑(𝑎𝑖
2). 

𝐴 ⊗ 𝐵: The Kronecker product of matrix A with matrix B.  

𝐴⊗𝑘: The 𝑘𝑡ℎ Kronecker product of A with itself (e.g. 𝐴⊗3 = 𝐴 ⊗ 𝐴 ⊗ 𝐴).  

𝐼𝑘: The 𝑘 × 𝑘 identity matrix.  

𝟎𝑘: The vector of zeros of length 𝑘.  

𝟏𝑘: The vector of ones of length 𝑘.  

𝐴𝑖𝑗: The element of matrix 𝐴 in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column.  

𝐴𝑖: Usually the 𝑖𝑡ℎ column of the matrix 𝐴 (the 𝑖𝑡ℎ row in the case of 𝑌𝑖) 

𝑎𝑖: The 𝑖𝑡ℎ element of the vector 𝒂. 

𝐷𝒂: The square diagonal matrix with the elements of vector 𝑎 placed on the diagonal. 

𝑣𝑒𝑐(𝐴): The vectorization of matrix 𝐴 obtained by stacking the columns of 𝐴.  
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𝑣𝑒𝑐ℎ(𝐴): The half-vectorization of a symmetric matrix 𝐴 obtained by stacking the 

elements of the columns in the lower-triangular portion of 𝐴. 

𝒆𝑖
𝑝
: The 𝑖𝑡ℎ column of 𝐼𝑝. 

𝐿𝑝,𝑞𝑟: Matrix of zeros and ones defined by ∑ ((𝒆𝑖
𝑝)

⊗𝑞
(𝒆𝑖

𝑝)
𝑇⊗𝑟

)𝑝
𝑖=1 . 

𝐿𝑝: A special case of 𝐿𝑝,𝑞𝑟 with 𝑞 = 2 and 𝑟 = 1. That is 𝐿𝑝 is a 𝑝2 × 𝑝 matrix of zeros 

and ones defined by ∑ (𝒆𝑖
𝑝 ⊗ 𝒆𝑖

𝑝)(𝒆𝑖
𝑝)

𝑇𝑘
𝑖=1 . 

𝐷𝑝: The unique 𝑝2 × 𝑝∗ “duplication” matrix which converts a half-vectorization of 𝐴 to 

a vectorization of 𝐴, i.e. 𝑣𝑒𝑐(𝐴) = 𝐷𝑝𝑣𝑒𝑐ℎ(𝐴) (Magnus & Neudecker, 1999).  

𝐻𝑝: The unique 𝑝∗ × 𝑝2 “elimination” matrix which converts a vectorization of 𝐴 to a 

half-vectorization of 𝐴, i.e. 𝑣𝑒𝑐ℎ(𝐴) = 𝐻𝑝𝑣𝑒𝑐(𝐴) (Magnus & Neudecker, 1999). 

The elimination matrix may be expressed in terms of the duplication matrix: 𝐻𝑝 =

(𝐷𝑝
𝑇𝐷𝑝)

−1
𝐷𝑝

𝑇 (Magnus & Neudecker, 1999). 

Count Variables 

𝑛: Number of observations.  

𝑝: Number of variables.  

𝑝∗: Number of elements in 𝒔. (For covariance or CV models, 𝑝∗ = 𝑝(𝑝 + 1)/2).  

𝑝∗∗: The number of unique elements in Σ𝝍, which is calculated 𝑝∗∗ = 𝑝∗(𝑝∗ + 1)/2. 

𝑞: Number of model parameters.  

Univariate Data, Statistics and Parameters 

𝜓: Population CV, i.e. 𝜓 = 𝜎/𝜇  

𝜇: Population mean. 

𝜎2: Population variance. 
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𝜎: Population standard deviation. 

Multivariate Data, Statistics and Parameters 

𝑌: An 𝑛 (observations) × 𝑝(variables) matrix of observations.  

𝑌𝑖: A 𝑝 × 1 vector consisting of one observation (row) of 𝑌. 

𝐶𝑉𝑥𝑥: A scalar index summarizing the multivariate CV matrix (four types are presented). 

Ψ: Population CV matrix. 

Ψ̂: Estimated CV matrix. 

Ψ̂𝑊𝑖𝑛: CV matrix estimated with winsorized data (trim=5%). 

𝝍: Vectorized population CV matrix (𝑣𝑒𝑐ℎ(Ψ)). 

𝝍̂: Vectorized estimated CV matrix (𝑣𝑒𝑐ℎ(Ψ̂)). 

𝝁: Vector of population means. 

𝝁̂: Vector of estimated means. 

Σ: Population covariance matrix. 

Σ̂: Estimated covariance matrix. 

𝝈: Vectorized covariance matrix (𝑣𝑒𝑐ℎ(Σ)). 

𝝈̂: Vectorized covariance matrix (𝑣𝑒𝑐ℎ(Σ̂)).  

Σ𝝈: Covariance matrix for the asymptotic sampling distribution of 𝑣𝑒𝑐ℎ(S). 

Σ̂𝝈: Estimated covariance matrix asymptotic sampling distribution of 𝑣𝑒𝑐ℎ(S). 

ΣΨ: Covariance matrix for the asymptotic sampling distribution of 𝑣𝑒𝑐(Ψ̂). 

Σ̂Ψ: Estimated covariance matrix asymptotic sampling distribution of 𝑣𝑒𝑐(Ψ̂).  

Σ𝝍: Covariance matrix for the asymptotic sampling distribution of 𝑣𝑒𝑐ℎ(Ψ̂). 

Σ̂𝝍: Estimated covariance matrix asymptotic sampling distribution of 𝑣𝑒𝑐ℎ(Ψ̂).  
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Σ̂Ψ
+ : The Moore-Penrose inverse of  Σ̂Ψ (i.e. Σ̂Ψ

+ = 𝐷𝑝(𝐷𝑝
𝑇 Σ̂Ψ𝐷𝑝)

−1
𝐷𝑝

𝑇). 

Ω𝑥𝑦: Sub-block of the covariance matrix defined in (3.3) through (3.5). 

Ω𝑥𝑦
∗ : Transformation of the covariance matrices Ω𝑥𝑦 defined in (3.6) through (3.8). 

General Structural Models 

𝒔: A vector of sample statistics. When applicable, 𝒔 = 𝑣𝑒𝑐ℎ(𝑆). 

𝒔0: The population value of the population value of the statistics in 𝒔. 

𝑆: A matrix of sample statistics such that 𝒔 = 𝑣𝑒𝑐ℎ(𝑆). 

𝜽: Vector of length 𝑞 of model parameters (element of the parameter space Θ). 

𝜽̂: Estimated vector (of length 𝑞) of model parameters obtained by minimizing a 

discrepancy function. 

𝓈(𝜽): A structural model with parameters 𝜽. When applicable, 𝓈(𝜽) = 𝑣𝑒𝑐ℎ(𝒮(𝜽)). 

𝒮(𝜽): A matrix such that 𝓈(𝜽) = 𝑣𝑒𝑐ℎ(𝒮(𝜽)). 

𝓈̇(𝜽): Derivative of 𝓈(𝜽) relative to 𝜽, i.e. 𝓈̇(𝜽) =  
𝜕

𝜕𝜽𝑇 𝓈(𝜽). 

𝜽0: The set of population parameters such that 𝓈(𝜽0) = 𝒔0.  

𝑉𝑆𝑆: The asymptotic variance of the sampling distribution of √𝑛(𝒔 − 𝒔0) as defined in 

(4.2).  

𝑊: A weight matrix for the generalized least squares function which takes on different 

values depending on the type of estimation being conducted.  

𝑊∗: A 𝑝 × 𝑝 weight matrix which can be used to form an alternative expression for the 

weight matrix 𝑊 when normality assumptions are met. See (4.10). 

𝑊0: Either a constant-valued positive definite matrix selected to be the value of 𝑊 or a 

positive definite matrix to which 𝑊 converges in probability.  
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𝐹(𝒔, 𝓈(𝜽)|𝑊): A generalized least squares discrepancy function with parameters 𝒔 and 

𝓈(𝜽) and weight matrix 𝑊. 

𝑇𝑋𝑋: Test statistic for estimation method 𝑋𝑋 (an asterisk indicates a corrected value).  

Δ: Covariance of the sampling distribution of 𝜽̂. 

Models 

 Σ(𝜽): Model covariance matrix (function of 𝜽). 

Ψ(𝛉): Model CV matrix (function of 𝜽). 

𝝍(𝜽): Half-vectorization of the model CV matrix, i.e. 𝑣𝑒𝑐ℎ(Ψ(θ)). 

𝝍̇(𝜽): Derivative of 𝝍(𝜽) relative to 𝜽, i.e. 𝝍̇(𝜽) =  
𝜕

𝜕𝜽
𝝍(𝜽). 

The Bentler-Weeks Model 

𝜼: Vector of dependent variables. 

𝜉: Vector of independent variables.  

𝛽: Matrix of regression coefficients relating elements of 𝜼 to each other.  

𝛾: Matrix of regression coefficients relating 𝝃 to 𝜼. 

𝐵: Matrix containing 𝛽 and known 0 elements. 

Γ: A matrix containing 𝛾 and known 0 and 1 elements. 

Φ: The covariance matrix for the independent variables. 

𝐺: A selection matrix which selects the observed variables 
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Appendix B. Population Value and Large Sample Approximation of 𝚺𝝍  

 

Table B.1. The population matrix 𝛴𝛹 for five normally distributed variables with parameters described in Chapter 6.  

40 16 16 16 16 18 10 10 10 18 10 10 18 10 18 

16 11 8 8 8 16 8 8 8 10 6 6 10 6 10 

16 8 11 8 8 10 8 6 6 16 8 8 10 6 10 

16 8 8 11 8 10 6 8 6 10 8 6 16 8 10 

16 8 8 8 11 10 6 6 8 10 6 8 10 8 16 

18 16 10 10 10 40 16 16 16 18 10 10 18 10 18 

10 8 8 6 6 16 11 8 8 16 8 8 10 6 10 

10 8 6 8 6 16 8 11 8 10 8 6 16 8 10 

10 8 6 6 8 16 8 8 11 10 6 8 10 8 16 

18 10 16 10 10 18 16 10 10 40 16 16 18 10 18 

10 6 8 8 6 10 8 8 6 16 11 8 16 8 10 

10 6 8 6 8 10 8 6 8 16 8 11 10 8 16 

18 10 10 16 10 18 10 16 10 18 16 10 40 16 18 

10 6 6 8 8 10 6 8 8 10 8 8 16 11 16 

18 10 10 10 16 18 10 10 16 18 10 16 18 16 40 
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Table B.2. A large-sample estimate (N=500,000) of the population matrix 𝛴𝛹 for five normally distributed variables with parameters 

described in Chapter 6.  

39.56 15.87 15.82 15.93 15.83 17.85 9.91 9.96 9.89 17.83 9.92 9.87 17.90 9.92 17.80 

15.87 10.92 7.93 7.97 7.92 15.88 7.94 7.97 7.91 9.92 5.96 5.92 9.96 5.95 9.88 

15.82 7.93 10.89 7.94 7.90 9.91 7.93 5.96 5.92 15.86 7.92 7.89 9.91 5.93 9.87 

15.93 7.97 7.94 10.96 7.95 9.95 5.96 7.98 5.95 9.92 7.93 5.93 15.91 7.94 9.91 

15.83 7.92 7.90 7.95 10.89 9.87 5.93 5.95 7.90 9.87 5.93 7.89 9.91 7.92 15.81 

17.85 15.88 9.91 9.95 9.87 39.74 15.89 15.94 15.84 17.86 9.91 9.86 17.93 9.91 17.78 

9.91 7.94 7.93 5.96 5.93 15.89 10.92 7.95 7.91 15.88 7.92 7.89 9.92 5.93 9.86 

9.96 7.97 5.96 7.98 5.95 15.94 7.95 10.97 7.94 9.91 7.94 5.93 15.94 7.94 9.89 

9.89 7.91 5.92 5.95 7.90 15.84 7.91 7.94 10.87 9.86 5.92 7.88 9.91 7.91 15.79 

17.83 9.92 15.86 9.92 9.87 17.86 15.88 9.91 9.86 39.69 15.82 15.79 17.80 9.87 17.75 

9.92 5.96 7.92 7.93 5.93 9.91 7.92 7.94 5.92 15.82 10.88 7.89 15.84 7.91 9.86 

9.87 5.92 7.89 5.93 7.89 9.86 7.89 5.93 7.88 15.79 7.89 10.84 9.87 7.88 15.77 

17.90 9.96 9.91 15.91 9.91 17.93 9.92 15.94 9.91 17.80 15.84 9.87 39.72 15.85 17.79 

9.92 5.95 5.93 7.94 7.92 9.91 5.93 7.94 7.91 9.87 7.91 7.88 15.85 10.89 15.80 

17.80 9.88 9.87 9.91 15.81 17.78 9.86 9.89 15.79 17.75 9.86 15.77 17.79 15.80 39.53 
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Table B.3. The raw differences between the elements of the population matrix 𝛴𝛹 and those of a large-sample estimate (N=500,000) 

for five normally distributed variables with parameters described in Chapter 6.  

0.44 0.13 0.18 0.07 0.17 0.15 0.09 0.04 0.11 0.17 0.08 0.13 0.10 0.08 0.20 

0.13 0.08 0.07 0.03 0.08 0.12 0.06 0.03 0.09 0.08 0.04 0.08 0.04 0.05 0.12 

0.18 0.07 0.11 0.06 0.10 0.09 0.07 0.04 0.08 0.14 0.08 0.11 0.09 0.07 0.13 

0.07 0.03 0.06 0.04 0.05 0.05 0.04 0.02 0.05 0.08 0.07 0.07 0.09 0.06 0.09 

0.17 0.08 0.10 0.05 0.11 0.13 0.07 0.05 0.10 0.13 0.07 0.11 0.09 0.08 0.19 

0.15 0.12 0.09 0.05 0.13 0.26 0.11 0.06 0.16 0.14 0.09 0.14 0.07 0.09 0.22 

0.09 0.06 0.07 0.04 0.07 0.11 0.08 0.05 0.09 0.12 0.08 0.11 0.08 0.07 0.14 

0.04 0.03 0.04 0.02 0.05 0.06 0.05 0.03 0.06 0.09 0.06 0.07 0.06 0.06 0.11 

0.11 0.09 0.08 0.05 0.10 0.16 0.09 0.06 0.13 0.14 0.08 0.12 0.09 0.09 0.21 

0.17 0.08 0.14 0.08 0.13 0.14 0.12 0.09 0.14 0.31 0.18 0.21 0.20 0.13 0.25 

0.08 0.04 0.08 0.07 0.07 0.09 0.08 0.06 0.08 0.18 0.12 0.11 0.16 0.09 0.14 

0.13 0.08 0.11 0.07 0.11 0.14 0.11 0.07 0.12 0.21 0.11 0.16 0.13 0.12 0.23 

0.10 0.04 0.09 0.09 0.09 0.07 0.08 0.06 0.09 0.20 0.16 0.13 0.28 0.15 0.21 

0.08 0.05 0.07 0.06 0.08 0.09 0.07 0.06 0.09 0.13 0.09 0.12 0.15 0.11 0.20 

0.20 0.12 0.13 0.09 0.19 0.22 0.14 0.11 0.21 0.25 0.14 0.23 0.21 0.20 0.47 
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Table B.4. A large-sample estimate (N=500,000) for five variables log-normal distributions with parameters described in Chapter 6.  

480.65 113.94 122.44 112.76 138.08 52.90 43.12 39.29 49.56 53.50 40.01 45.62 51.42 38.72 85.54 

113.94 74.84 49.40 45.30 56.20 99.44 44.38 41.36 45.89 35.77 26.70 28.45 33.22 25.10 47.94 

122.44 49.40 75.22 46.03 51.91 38.07 42.07 26.67 28.43 92.22 41.22 43.08 34.82 23.58 41.48 

112.76 45.30 46.03 72.27 44.56 35.48 26.72 39.24 25.08 35.23 40.96 23.58 83.26 33.81 34.96 

138.08 56.20 51.91 44.56 108.67 39.36 28.47 25.08 54.36 36.84 23.59 47.64 27.90 40.65 116.13 

52.90 99.44 38.07 35.48 39.36 385.03 104.61 95.08 104.39 47.94 35.73 36.40 46.03 34.66 57.46 

43.12 44.38 42.07 26.72 28.47 104.61 68.49 41.62 42.47 85.66 41.05 39.49 34.49 23.48 36.13 

39.29 41.36 26.67 39.24 25.08 95.08 41.62 66.18 40.52 35.07 40.45 23.44 83.44 36.71 34.82 

49.56 45.89 28.43 25.08 54.36 104.39 42.47 40.52 78.94 33.36 23.45 42.04 30.68 40.64 97.95 

53.50 35.77 92.22 35.23 36.84 47.94 85.66 35.07 33.36 377.38 95.78 95.61 51.50 31.56 47.68 

40.01 26.70 41.22 40.96 23.59 35.73 41.05 40.45 23.45 95.78 71.67 37.22 85.54 33.37 29.48 

45.62 28.45 43.08 23.58 47.64 36.40 39.49 23.44 42.04 95.61 37.22 68.05 27.60 35.02 85.46 

51.42 33.22 34.82 83.26 27.90 46.03 34.49 83.44 30.68 51.50 85.54 27.60 272.27 70.99 35.75 

38.72 25.10 23.58 33.81 40.65 34.66 23.48 36.71 40.64 31.56 33.37 35.02 70.99 54.90 77.91 

85.54 47.94 41.48 34.96 116.13 57.46 36.13 34.82 97.95 47.68 29.48 85.46 35.75 77.91 278.01 
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