
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Top-k and Reverse Top-k Queries Over Spatio-Temporal Ranges

Permalink
https://escholarship.org/uc/item/0zf2f821

Author
Ahmed, Pritom

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0zf2f821
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Top-k and Reverse Top-k Queries Over Spatio-Temporal Ranges

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Pritom Ahmed

December 2020

Dissertation Committee:

Dr. Vassilis J. Tsotras, Chairperson
Dr. Vagelis Hristidis
Dr. Ahmed Eldawy
Dr. Eamonn Keogh

Copyright by
Pritom Ahmed

2020

The Dissertation of Pritom Ahmed is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First of all, I am grateful to my advisor Dr. Vassilis Tsotras; without whose help, I would not have

reached this milestone. I want to take this opportunity to thank him for being a constant source of

hope and motivation during my PhD.

I want to thank my collaborators Dr. Vagelis Hristidis and Dr. Ahmed Eldawy, for their

continuous guidance during my PhD. Both of them have been very helpful and patient with me

during this time. I would also like to thank my committee member Dr. Eamonn Keogh for providing

useful suggestions and feedback.

The text of this dissertation, in part or in full, is a reprint of the material as it appears

in the Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD

2017) titled “Efficient Computation of Top-k Frequent Terms Over Spatio-Temporal Ranges” and

the arXiv.org preprint titled “Reverse Spatial Top-k Keyword Queries”. The co-author (Dr. Vassilis

Tsotras) directed, co-written, and supervised the research, forming the foundation for this disserta-

tion. The co-authors Dr. Vagelis Hristidis and Dr. Ahmed Eldawy reviewed the paper and provided

useful suggestions and feedback throughout the research.

This research was partially supported by NSF grants: IIS-1527984, IIS-1838222 and IIS-

1901379. Any opinions, findings and conclusions or recommendations expressed in this material

are those of the author and do not necessarily reflect those of the National Science Foundation.

iv

I dedicate this work to my loving wife, Afrin Hossain, for her support and continuous

encouragement. I also dedicate this work to my parents Shabbir Ahmed, Rokshan Ara

Sheuly, and my aunt Parveen Ahmed who always loved me unconditionally and made me

who I am. Without them in my life, I would not be where I am today.

v

ABSTRACT OF THE DISSERTATION

Top-k and Reverse Top-k Queries Over Spatio-Temporal Ranges

by

Pritom Ahmed

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2020

Dr. Vassilis J. Tsotras, Chairperson

The wide availability of tracking devices has drastically increased geolocation in social

networks, resulting in new commercial applications; for example, marketers can identify current

trending topics within a region of interest and focus their products accordingly. In this thesis, we

first study a basic analytics query on geotagged data, which we refer to as the Top-k Frequent

Spatiotemporal Terms (kFST) query. Given a spatiotemporal region, kFST finds the most frequent

terms among the social posts in that region. While there has been prior work on keyword search

and on group keyword search on spatial data, our problem is different in that it returns keywords

and aggregated frequencies as output, instead of having the keyword(s) as input. Moreover, we

differ from works addressing the streamed version of this query in that we operate on large, disk-

resident data, and we provide exact answers. This thesis proposes an index structure and algorithms

to answer kFST queries. Our index structure employs an R-tree augmented by top-k sorted term

lists, where a key challenge is to balance the size of the index to achieve faster execution and

smaller space requirements. We theoretically study and experimentally validate the ideal length of

vi

the stored term lists. A detailed experimental evaluation of the proposed methods’ performance as

compared to baselines using real datasets, shows its efficiency and better performance.

Next, we study the reverse problem, namely, the Reverse Spatial Top-k Keyword (RSK)

query: given a query term q, an integer k, and a neighborhood size l, find the neighborhoods of that

size where q is in the top-k most frequent terms among the social posts in those neighborhoods. An

obvious approach would be to partition the dataset with a uniform grid structure of cell size l (a tem-

poral window, a spatial square, or a spatiotemporal cube) and identify the cells where this term is in

the top-k most frequent keywords. However, this answer would be incomplete since it only checks

for neighborhoods that are perfectly aligned to the grid. What makes the problem challenging chal-

lenging is that the complete answer should identify neighborhoods placed anywhere in the search

space. Furthermore, for every neighborhood that is an answer, one can easily create another neigh-

borhood with the same data points that are also an answer (by merely moving this neighborhood in

any direction as long as it contains the same set of data points). In particular, there are infinitely

many such answers. Instead, we identify contiguous regions where any point in the region can be

the center of a neighborhood that satisfies the query. We propose an index structure (that employs a

uniform grid augmented by materialized sorted term lists) and algorithms to answer the RSK query

efficiently. We apply various optimizations that drastically improve query latency against the base-

line. We also provide a theoretical model to choose the optimal cell size to minimize query latency.

We further examine an approximate version of the RSK, which leads to faster query processing.

Extensive experimental performance evaluation of the proposed methods using real Twitter datasets

shows the efficiency of our optimizations and the accuracy of the proposed theoretical model.

vii

Finally, we examine the Reverse Spatial Top-k Snapshot Query (RSKSQ), which like the

RSK query, identifies areas where a keyword is popular, however, it operates over the Twitter data

stream. Given a query term q, an integer k, a neighborhood size l, a time window W, and a refresh

rate r, we find the neighborhoods of size l where q is in the top-k most frequent terms among the

tweets in those neighborhoods. To answer RSKSQ queries, we run the RSK query over a snapshot

of a fixed-sized time window (W) of the most recent tweets, i.e., tweets posted in the last W minutes

and refresh the results every r seconds. To implement this approach we use a Ring Buffer B of a

fixed size to keep track of the latest tweets. If B becomes full, we discard the oldest tweets. We use

an index structure consisting of a uniform grid augmented by materialized lists of term frequencies

and a filter-refinement-based RSK query processing algorithm optimized for fast updates to find

the answers. We have implemented a system that provides the results of RSKSQ refreshed every r

seconds using a desktop application based on ArcGIS.

viii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Efficient Computation of Top-k Frequent Terms over Spatio-temporal Ranges 6
2.1 Introduction . 6
2.2 Related Work . 10
2.3 Problem Definition . 12
2.4 Proposed Index Structure and Algorithms . 14

2.4.1 Full Lists on Leaf Nodes Only (STL-L) 15
2.4.2 Full Lists on All Nodes (STL-LI) . 17
2.4.3 Considering Partial Lists(STL-Li, STL-li) 20
2.4.4 Optimizations to the top-k Algorithms . 24

2.5 Computing the Expected STL Size . 26
2.5.1 Justification for Choice of Precomputed Prefix Length 33

2.6 Multi-Region Queries . 35
2.6.1 Algorithmic Modifications for Multi-Region Queries 36

2.7 Experimental Evaluation . 38
2.7.1 Setup . 38
2.7.2 Model Validation . 42
2.7.3 STL Approaches Comparison . 45
2.7.4 Spatio-Temporal Query Experiments . 47
2.7.5 Multi-Region Query Experiments . 48
2.7.6 Comparison to Approximate Solutions . 50
2.7.7 Discussion . 52

2.8 Conclusions and Future Work . 53

3 Reverse Spatial Top-k Keyword Queries 54
3.1 Introduction . 54
3.2 Related Work . 56

ix

3.3 Problem Definition . 58
3.4 Proposed Algorithms . 60

3.4.1 Filtering Step . 61
3.4.2 Refinement Step for the RSK Query . 64
3.4.3 Refinement Step for the RSKR Query . 68

3.5 Optimal Cell Size Estimation . 72
3.5.1 Analysis of the RSKR refinement step . 72
3.5.2 Analysis of the RSK refinement step . 76

3.6 Parallel Implementation . 77
3.7 Experiments . 82

3.7.1 Setup . 82
3.7.2 Model Validation . 83
3.7.3 Single Node Evaluation . 85
3.7.4 Multi Node Evaluation . 91
3.7.5 Comparison with GARNET . 94

3.8 Conclusions and Future work . 96

4 An Application: Reverse Spatial Top-k Snapshot Query over Social Media Streams 97
4.1 Introduction . 97
4.2 Related Work . 99
4.3 Problem Definition . 99
4.4 Our Approach . 100

4.4.1 System Architecture . 100
4.4.2 Data Storage . 101
4.4.3 Efficient Updating the Indices and STLs 102

4.5 System Description . 102
4.6 Experiments . 106
4.7 Conclusion and Future Work . 108

5 Conclusions 109

Bibliography 111

x

List of Figures

2.1 Sample dataset containing 10 objects, (a) shows the locations and (b) shows the
terms of the objects. 14

2.2 Spatial R-Tree for the sample dataset in Figure 3.1 and leaf level STLs 15
2.3 Inner level STLs. 18
2.4 Level vs. avg. number of term entries per full STL. The number on top of each bar

is the avg. size of that level STL in MB. 21
2.5 Comparison between standard RA-STL-Li and our optimized RA-STL-Li. 25
2.6 Comparison between standard NRA-STL-Li and our optimized NRA-STL-Li. . . . 26
2.7 Case analysis of si and q . 29
2.8 Trade-off between accessed prefix length and execution cost (time). 34
2.9 Estimated and Actual average number of STLs involved in the top-k calculation for

different query region selectivities for the 15M dataset. 40
2.10 Calculating the Zipf parameter for different levels of the R-tree (15M dataset). . . . 41
2.11 Estimated λ and average stopping points of RA-STL-Li and NRA-STL-Li for dif-

ferent query region selectivities (15M dataset). 41
2.12 Space requirements (15M dataset). 43
2.13 Avg. processing time for different STL sizes (λ) for query selectivity of 0.002 (15M

dataset). 43
2.14 Avg. processing time for different query selectivities (15M dataset). 46
2.15 Comparing RA-STL-Li, NRA-STL-Li, POSTGIS and RTreeScan for different se-

lectivity of query regions (15M dataset). 47
2.16 Query performance for different values of k when STLs were created using k=10

(15M dataset). 48
2.17 Comparing NRA-STL-Li, RTreeScan and POSTGIS for different spatio-temporal

query selectivities (100M dataset). 49
2.18 Comparing performance of NRA-STL-Li, RTreeScan and POSTGIS for different

dataset sizes and selectivity 0.002. 50
2.19 Multi-region query processing using ‘included’ regions. 51
2.20 Multi-region query processing using ‘included’ and ‘excluded’ Regions. 51
2.21 Percentage of error for the approximate solution using different selectivities (15M

dataset). 52

xi

3.1 Sample dataset containing 10 posts. (a) the post locations and grid cells, (b) the post
terms, (c) STLs for Cell 1 and Cell 3. 59

3.2 RSK (deep blue) and RSKR (light blue) results for keyword “york”. 59
3.3 (a) Cell expansive region for ηH = 2, (b) Cell conservative region for ηL = 1. 62
3.4 Horizontal Jump length estimation. 62
3.5 Example output of the Filtering step. 63
3.6 Steps of the Proposed Algorithm for RSK query. 63
3.7 Fully contained cells and paritally intersecting cells in the l-square neighborhood. . 73
3.8 Refinement time for different candidate cells for q = ”home” and k = 5. 78
3.9 Correlation between refinement time and cell post count (left), expansive region

post count (right), for q = “home”, k = 5. 78
3.10 Equal-width (left) and equal-post slicing (right). 79
3.11 Validity test with respect to cell sizes and speedup for cell size estimator. 84
3.12 RSK query latency. 86
3.13 RSKR query latency. 87
3.14 Number of gray cells and checked l-square neighborhoods for different query key-

words. 90
3.15 Precision and Recall of RSKR approximate algorithms for different keywords. . . . 90
3.16 Query latency while varying the dataset size. 91
3.17 Comparing effect of slicing on query latency (in minutes) of RSK for different query

keywords. 92
3.18 Effect of slice count on query latency for different query keyword. 93
3.19 Query latency with varying number of cores for different keywords. 94
3.20 Scale-up experiments for different keywords. 95
3.21 Comparison of number of results found by GARNET, RSK-Exact and FS-PC algo-

rithm. 95

4.1 RSKSQ System Architecture. 101
4.2 Ring Buffer at different time where refresh rate r = 300 seconds and Window size

W = 40 minutes. 103
4.3 User Interface of the RSKSQ system. 104
4.4 Output of RSKSQ system for q = “brooklyn” and k = 10 from various times on

December 6th and December 17th, 2020. 106
4.5 Output of RSKSQ system for q = “rudigiuliani” and k = 50 from various times in

the evening of December 6th and December 17th, 2020. 107
4.6 Output of RSKSQ system for q = “pfizer” and k = 100 from various times in the

evening of December 15th, 2020. 107
4.7 Query latency and tweet count for varying the size of time window W 108

xii

List of Tables

2.1 Different index types. 17
2.2 Changes on RA-STL to reduce random accesses. 23
2.3 Model Parameters . 27
2.4 Changes to Random Access (RA) for Multi-Region kFST. 37
2.5 Changes to Non-Random Access (NRA) for Multi-Region kFST. 38
2.6 List of Algorithms (x = L or LI or Li or li). 40
2.7 Index size for various datasets (in GB). 45

3.1 Notations used throughout Theoretical Analysis. 73
3.2 Keyword ranks. 83

xiii

Chapter 1

Introduction

Web users and content are increasingly being geopositioned, and increased focus is being

given to serving local content in response to web queries. Several online social media, such as Twit-

ter, Instagram, Foursquare and Facebook, allow users to geotag their social posts. For example, in

Twitter[5], users express their thoughts in short messages (tweets), and each tweet may be associ-

ated with a geolocation, which denotes the originating location of the tweet. This creates novel data

analytics problems, such as detecting popular topic trends [42], most frequent trajectories [66], etc.

In this thesis, we investigate top-k and reverse top-k on geotagged and time-stamped social data.

Given a user-specified spatiotemporal region, we want to find the k most frequent terms in the posts

in this region. We refer to this problem as the Top-k Frequent Spatiotemporal Terms (kFST) Query.

As an example, the user may want to know which terms have been popular around her current loca-

tion over the past week, and thus her query specifies a spatial circle with radius 2 miles around her

and a temporal interval of a week.

1

Our problem is different from recent works on the intersection of keyword search and

spatial querying. These works generally return one or more spatial objects, given a query that

specifies both a spatial and a keyword condition. In the context of geotagged social posts, these

works would return one or more social posts. In contrast, our queries only specify a spatial condition

and (the most frequent) terms are returned. Nevertheless, we leverage existing work on spatial and

text indexing. There is also recent work addressing the streamed version of the kFST query in main

memory; since we operate on large data that does not fit in memory, our focus is on creating efficient

indexing while also providing exact answers. Section 4.2 discusses in detail previous related work.

A straightforward approach to address the kFST query, which we include as a baseline in

our experiments, is to simply index all posts in an R-tree [35]. Given a query range the R-tree will

provide all relevant posts in that range. To get the query answer, the terms of these posts need to be

aggregated (using a group by hash-based aggregation scheme to compute the frequency per term)

and then sorted. Nevertheless, we found that performance degrades as the query region (and thus

the posts involved) increases.

A first method we propose is to materialize a sorted term list (STL) for each leaf node

of the R-tree, where each STL contains pairs of terms and their frequencies, sorted by decreasing

frequency. To answer a kFST query we run a top-k algorithm [28] on the STLs involved in the

query range. Note that the additional space used by the STLs on the leaf nodes does not increase the

asymptotic space complexity of the index (it is still linear; moreover duplicate terms are aggregated).

Unfortunately, performance will still deteriorate once there are too many STLs involved (i.e. the

query region increases further), because top-k algorithms are known to degrade in performance

when the number of lists is very large.

2

We thus extend the use of STLs to the inner nodes of the R-tree as well. Given a kFST

query, if the MBR of an internal node is fully contained in the query region, the STL in that node

is used in the top-k calculation (i.e. the search proceeds to lower nodes only when their MBRs are

partially contained in the query region). This algorithm variant leads to fast query execution times,

because the number of STLs accessed for the top-k calculation is significantly reduced. However,

the inner level STLs add considerable extra space to our index, since an inner STL is aggregating

over all the posts in its subtree (here each term is counted once for each level of the R-tree). This is

especially critical in free text data objects, such as social posts, given the huge size of the vocabulary

of user-generated content – typically in the millions of unique terms (including names, numbers,

typos, and so on).

To maintain the advantage offered by inner STLs while keeping the indexing space low,

we explore the use of partial STLs of fixed length λ. We create a model of the access patterns of the

top-k algorithm on the indexing structure and a theoretical analysis, to determine the optimal length

λ of the prefix of each STL that should be maintained, such as most top-k queries can be answered

within the STL (if more entries are needed for a query, we invoke recursively a top-k algorithm on

the child nodes). Note, that the use of partial STLs does not imply loss of accuracy; our algorithms

return the exact top-k result.

In addition to the single-region variant of kFST, we present a multi-region variant, where

the user may be interested in terms that are popular in one set of regions and not popular in another

set of regions. For example, the user may be interested to know what is trending in her immediate

neighborhood, but not trending in the whole city, which may indicate a local event. The multi-region

problem variant is challenging in terms of avoiding to access the same STLs multiple times – once

3

for each query region that contains their MBR. Further, it is challenging to define a termination

threshold of a top-k algorithm when the entries (terms) are sorted in the reverse order – in the above

example, the terms in the whole city should be naturally sorted in increasing frequency because a

lower frequency is more desirable, but the STL are always sorted by decreasing frequency. That is,

the aggregation function is increasing on some STLs and decreasing on others.

Next, we focus on the reverse problem: given a keyword, we want to find the spatial (or

temporal) regions where this keyword is in the top-k most frequent keywords. This query has many

applications, and depending on the application different query sizes or time windows are prefer-

able. Consider an advertiser who wants to monitor Twitter posts and identify neighborhoods where

a particular product is among the top-k terms discussed. Smaller result areas (say few blocks in

size) may be preferable, where electronic billboards can be utilized, to advertise a new product or

offer coupons based on the expressed interest in those areas. Location based social media ads can

also be instantly purchased. On the other hand, a political candidate’s campaign may be interested

in identifying larger areas (so that a political rally can be organized) where a specific topic is pop-

ular/unpopular. In this application, posts from a wider time window may be considered (the time

window is not an explicit parameter in our problem, as it determines the posts collection size; we

consider different collection sizes in our experiments). As shown by these examples, in addition to

the query term and its importance, the neighborhood size should also be a query parameter.

The problem is challenging because of the large number of possible neighborhoods (which

is O(N2) for N posts). Instead of searching the whole space, we propose an (exact) algorithm

that uses a filtering step to prune the search space (without missing any answers) and a scan-based

refinement step to find the answers in the resulting pruned space. We use a grid-based index structure

4

augmented with a materialized sorted term list at each cell to avoid repeated processing of the tweets

during query time. To further minimize the RSK query latency, we propose a theoretical model that

estimates the optimal grid index cell size. Nevertheless, the refinement step can be slow because

of the sheer number of neighborhoods it has to process to find all the answers. Thus we also

explore a restricted version of the problem (RSKR) that limits the possible answers to the cells of

a query provided grid. In addition to an exact solution, for the RSKR query, we present faster but

approximate algorithms where we restrict the number of neighborhood checks using a budget. The

proposed algorithms for RSK and RSKR are highly parallelizable. To take advantage of parallelism,

we propose a slicing technique that enables distributing the workload of the refinement step among

different nodes and thus further reduce the query latency.

Finally, We present the Reverse Spatial Top-k Snapshot Query (RSKSQ), which operates

over the Twitter data stream. We implement it by running the Reverse Spatial Keyword (RSK) query

on geo-tagged posts that arrived in time window of W , and refresh the result every r time units. We

present a working system using live Twitter stream providing users with options to choose the size

of the sliding window as well as the refresh rate i.e., the rate at which the result will be updated.

The system is build as a desktop application based on ArcGIS [61].

The rest of the thesis is organized as follows: in chapter 2, we present our work on finding

top-k most frequent terms over spatio-temporal ranges (kFST). Chapter 3 describes our approach

and findings while answering the reverse problem, i.e., asnwering reverse spatial top-k keyword

queries (RSK). Next, in chapter 4, we discuss a working system we developed answering RSKSQ,

a snapshot reverse spatial top-k query. Finally, in chapter 5, we summarize our findings and discuss

some possible future directions for the research presented in this thesis.

5

Chapter 2

Efficient Computation of Top-k

Frequent Terms over Spatio-temporal

Ranges

2.1 Introduction

In this chapter, we investigate a basic query on geotagged social data. Given a user-

specified spatiotemporal region, we want to find the k most frequent terms in the posts in this

region. We refer to this problem as the Top-k Frequent Spatiotemporal Terms (kFST) Query. As an

example, the user may want to know which terms have been popular around her current location

over the past week, and thus her query specifies a spatial circle with radius 2 miles around her and

a temporal interval of a week.

6

Our problem is different from recent works on the intersection of keyword search and

spatial querying. These works generally return one or more spatial objects, given a query that

specifies both a spatial and a keyword condition. In the context of geotagged social posts, these

works would return one or more social posts. In contrast, our queries only specify a spatial condition

and (the most frequent) terms are returned. Nevertheless, we leverage existing work on spatial and

text indexing. There is also recent work addressing the streamed version of the kFST query in main

memory; since we operate on large data that does not fit in memory, our focus is on creating efficient

indexing while also providing exact answers. Section 4.2 discusses in detail previous related work.

A straightforward approach to address the kFST query, which we include as a baseline in

our experiments, is to simply index all posts in an R-tree [35]. Given a query range the R-tree will

provide all relevant posts in that range. To get the query answer, the terms of these posts need to be

aggregated (using a group by hash-based aggregation scheme to compute the frequency per term)

and then sorted. Nevertheless, we found that performance degrades as the query region (and thus

the posts involved) increases.

A first method we propose is to materialize a sorted term list (STL) for each leaf node

of the R-tree, where each STL contains pairs of terms and their frequencies, sorted by decreasing

frequency. To answer a kFST query we run a top-k algorithm [28] on the STLs involved in the

query range. Note that the additional space used by the STLs on the leaf nodes does not increase the

asymptotic space complexity of the index (it is still linear; moreover duplicate terms are aggregated).

Unfortunately, performance will still deteriorate once there are too many STLs involved (i.e. the

query region increases further), because top-k algorithms are known to degrade in performance

when the number of lists is very large.

7

We thus extend the use of STLs to the inner nodes of the R-tree as well. Given a kFST

query, if the MBR of an internal node is fully contained in the query region, the STL in that node

is used in the top-k calculation (i.e. the search proceeds to lower nodes only when their MBRs are

partially contained in the query region). This algorithm variant leads to fast query execution times,

because the number of STLs accessed for the top-k calculation is significantly reduced. However,

the inner level STLs add considerable extra space to our index, since an inner STL is aggregating

over all the posts in its subtree (here each term is counted once for each level of the R-tree). This is

especially critical in free text data objects, such as social posts, given the huge size of the vocabulary

of user-generated content – typically in the millions of unique terms (including names, numbers,

typos, and so on).

To maintain the advantage offered by inner STLs while keeping the indexing space low,

we explore the use of partial STLs of fixed length λ. We create a model of the access patterns of the

top-k algorithm on the indexing structure and a theoretical analysis, to determine the optimal length

λ of the prefix of each STL that should be maintained, such as most top-k queries can be answered

within the STL (if more entries are needed for a query, we invoke recursively a top-k algorithm on

the child nodes). Note, that the use of partial STLs does not imply loss of accuracy; our algorithms

return the exact top-k result.

In addition to the single-region variant of kFST, we present a multi-region variant, where

the user may be interested in terms that are popular in one set of regions and not popular in another

set of regions. For example, the user may be interested to know what is trending in her immediate

neighborhood, but not trending in the whole city, which may indicate a local event.

8

The multi-region problem variant is challenging in terms of avoiding to access the same

STLs multiple times – once for each query region that contains their MBR. Further, it is challenging

to define a termination threshold of a top-k algorithm when the entries (terms) are sorted in the

reverse order – in the above example, the terms in the whole city should be naturally sorted in

increasing frequency because a lower frequency is more desirable, but the STL are always sorted by

decreasing frequency. That is, the aggregation function is increasing on some STLs and decreasing

on others.

The contributions of this chapter can be summarized as follows:

• We propose STL-enhanced indexing and top-k algorithms to solve the kFST problem. Both

Random Access (RA) and Non Random Access (NRA) variants are presented.

• We present a theoretical model to optimize the space requirements of the index structure by

carefully pruning the length of the STL lists and experimentally evaluate it’s accuracy.

• We experimentally explore the various indexing options from no STLs to full and/or partial

STLs and identify the space versus query trade-offs.

• We extend our algorithms for the multi-region kFST problem and show that our multi-region

approach is more efficient than simply running the single-region algorithm multiple times.

The rest of the chapter is organized as follows: Section 4.2 discusses related work, while

Section 4.3 formulates the problem. Section 2.4 describes our index structure and Section 2.5

presents the model used to estimate the STL size. We discuss an extension of our algorithms to

accommodate multiple query regions in Section 2.6. Our indexing scheme and algorithms are eval-

uated in Section 2.7 while conclusions appear in Section 2.8.

9

2.2 Related Work

Spatial Aggregation There has been work on spatial aggregation, where the goal is to

efficiently compute the aggregate function (e.g. count or sum) of the main quantity of the appli-

cation (e.g., sales) [47]. In our setting, this would solve the problem of computing the frequency

of a specific keyword given a spatial area. However, kFST must handle millions of keywords and

produce top-k frequency rankings.

Top-k Spatial Keyword Query : A top-k spatial keyword query retrieves the k objects

that are closest to the query location and contain the query keywords [30, 21]. This problem has also

been studied in the context of spatially-annotated web objects, where the goal is to combine both the

textual content and the geolocation of Web pages when performing Web search [18, 24]. The work

in [78] examines jointly processing multiple top-k spatial keyword queries, while the top-k spatial

keyword query for continuously moving objects is studied in [79]. [45] examined spatiotemporal

burstiness queries which, given a set of terms identify (unusual frequency) bursts of these terms in a

given area. Those set of terms has to be provided beforehand and the system will process the stream

of data to look for unusual spike in frequencies in those terms only.

More recently, the problem has been extended to return groups of spatial objects that

satisfy some properties. Specifically, [17] solves the problem of retrieving a group of spatio-textual

objects that collectively cover the query keywords, are close to the query location and have small

inter-object distances; a generalization appears in [12]. Again, the problem is different than kFST

as posts or users are returned and not terms. Several geo-social query variants are examined in [11].

One of them, closest to our work, is the problem of Top-k Frequent Social Keywords in Range,

which computes the top-k terms based on their frequency in pairs of friends in a spatial range. Our

10

problem differs because we aim to find the most frequent terms in a spatial range not restricted by

any social media constraints. Even without this constraint, the algorithm in [11] will take too long

because the inverted lists are stored only in the leaf nodes. In our experimental section we examine a

similar approach that stores an inverted list in the leaf nodes only (termed as STL-L, Figure3.6). We

find that as the size of the query region increases, this solution starts performing poorly compared

to our proposed approaches.

Top-k Spatial Preference Queries: The work in [82] ranks objects based on their spatial

neighborhood, i.e., find the top-k objects (e.g., homes) whose aggregate distance from other objects

(e.g., restaurants) is minimized. A follow-up work solves a similar problem, except that there is a

distance threshold, e.g., within 5 miles [63]. This problem is clearly different from kFST as we do

not return posts but keywords of posts – we view each keyword in a post as a data point, and we

find keywords with high density.

Top-k Spatio-Temporal Queries: The works in [52, 65] address the kFST query over

streamed data on main memory; our work differs in that (i) we consider large datasets that reside on

disk (thus indexing is necessary) and (ii) we provide exact (versus approximate) results. Geo-Trend

[52] is a framework for computing top-k trending keywords over spatiotemporal ranges, i.e., terms

whose frequencies are on the rise recently. A spatial grid is used while the time period depends on

the size of the system’s main memory. Only the top-k trending results in each spatiotemporal cell

are maintained and combined to generate the query result.

AFIA [65] uses a multi-layer grid based index structure where each cell of the grid main-

tains the k+1 most frequent terms as materialized summary as opposed to our carefully pruned λ

terms (λ >> k). Given that a top-k algorithm may need more than k entries from each list, there is

11

no guarantee that the resulting top-k terms are 100% accurate. Instead, their output is divided into

two subsets, one with X terms (where X ≤ k) that are guaranteed to be in top-k, and the rest k-X

terms that are approximate top-k terms. In addition to finding exact results, our work differs in that

a model is introduced to identify the length of all materialized summaries.

Finally, GARNET [42] addresses various trending queries on microblogs; initially data is

stored in main memory which is periodically flushed to disk. The framework can support multiple

contexts including location. The spatial context is implemented by a fixed grid layer while the tem-

poral domain uses a multilayer index. For each cell, and for each time unit (say day) they maintain a

materialized top-k list. To answer a kFST query, for each cell included in the query region, they pick

all lists that are included in the temporal query range and they run a top-k algorithm. Hence, it is

not guaranteed that the exact top-k result can be computed (without having to access the raw tweets

which defies the purpose of an index), as more than k entries may be needed from the cells in some

queries. The time performance of their top-k algorithm (assuming it does not need to access the

raw tweets) would be similar to the performance of our leaves-only, full-lists variant, which keeps

an STL only at the leaf nodes of the index (note that our index combines the spatial and temporal

dimensions). As we show in the experimental section, our other algorithms clearly outperform that

approach.

2.3 Problem Definition

Let D = {o1, o2, ..., oN} be a dataset with N objects, where each object o ∈ D corre-

sponds to a post and consists of a pair of attributes < Loc, Terms >; o.Loc is a 3-dimensional

point that identifies the location of the post in space and time (e.g., o.Loc is described by a triplet

12

(x, y, T)). The attribute o.Terms = {t1, t2, ...} denotes the collection of the post’s terms (and may

include duplicates). For simplicity in the following discussion (and examples) we consider only the

spatial location of a post; this can be easily extended to add the post’s timestamp T and thus support

spatio-temporal queries (in Section 2.7 we also provide performance results under spatio-temporal

ranges).

Let V = {∪o∈Do.Terms} be the vocabulary with all terms. Consider a dataset with 10

objects whose locations in 2D space are shown in Figure 3.1(a); the terms of these objects are shown

in Figure 3.1(b). The vocabulary {∪9i=1ti} contains 9 terms.

The frequency of a term t ∈ V is denoted as f(t) = {fo1(t) + fo2(t) + ... + foN (t)},

where fo(t) denotes the number of times t appears in o.Terms. Given a region R, the frequency of

term t in R is denoted as fR(t) = {
∑
foi(t)|oi.Loc ∈ R}.

kFST Query Definition (Single Region): A kFST query Q is defined by the tuple <

RQ, k >, where RQ denotes the region of interest and k denotes the number of output terms. The

goal is to find the k terms : t1, t2, ..., tk, whose frequencies fRQ(t1), fRQ(t2), ... , fRQ(tk) are the

highest among all terms in V .

Consider the example in Figure 3.1. The dotted region in Figure 3.1(a) denotes the query

region RQ. Assume the user is interested in the top-2 terms (k = 2). Therefore, the goal is to

compute the two terms from {∪9i=1ti} whose frequencies are the maximum in the dotted region (i.e.

in the Terms of five objects {o1, o2, o3, o6, o7}).

We also explore the multi-region extension of kFST:< S+, [S−], k >, which provides two

sets of regions S+ (for inclusion) and an optional S− (for exclusion) and identifies the top-k terms

that are popular in the S+ regions and not popular in the S− regions. Terms in S+ are penalized if

13

o1

o2

o3

o4

o5

o7

o6

o8

o9

o10

Object Terms Object Terms

o1 {t1 ,t2, t4, t6} o6 {t1 ,t2, t5, t9}

o2 {t2 ,t2, t4} o7 {t1 ,t1, t4}

o3 {t1 ,t3, t4} o8 {t4 ,t5, t6, t9}

o4 {t6 ,t7, t8, t8} o9 {t2, t4, t9}

o5 {t4 , t5 , t9} o10 {t2 , t6, t7}

(a) Locations (b) Terms

Figure 2.1: Sample dataset containing 10 objects, (a) shows the locations and (b) shows the terms
of the objects.

they are popular in any of the S− regions. If only S+ is provided, kFST simply combines multiple

regions and identifies the top-k terms (if regions in S+ overlap, common posts are not duplicated).

As an example consider finding the top-k most frequent terms in posts from all the Ivy League

campuses over 2015 (S+). Based on the application, the user may choose to normalize the term

frequencies per campus. We can also identify the terms which were most discussed in the Ivy

League campuses and were not popular in the US campuses over the same period (S−). Note that

this inclusion/exclusion can extend to higher dimensional regions by adding more attributes to the

R-tree.

2.4 Proposed Index Structure and Algorithms

We assume that the full set D of posts is large and stored on disk. Figure 2.2(a) shows the

baseline approach that indexes the posts with a multidimensional R-tree [35]. We use R-tree and not

other temporal indexes for spatiotemporal data, because we are indexing points and not intervals.

To solve the < RQ, k > query, we access only the posts contained in RQ; their terms are collected,

ordered and the top-k terms are returned. Next, we present a suite of indexes that enhance the R-

tree with STLs and corresponding top-k algorithms to efficiently solve the kFST problem, without

14

having to scan all objects that match the query region. Our approaches differ on which tree nodes

(leaf/index) contain STLs and on whether these STLs are full or partial. In the following discussion

we refer to each approach using the notation in Table 2.1.

Term ObjectEntries Freq

t2 <o1.Loc,1>, <o2.Loc,2> 3

t4 <o1.Loc,1>, <o2.Loc,1>, <o3.Loc,1> 3

t1 <o1.Loc,1>, <o3.Loc,1> 2

t3 <o3.Loc,1> 1

t6 <o1.Loc,1> 1

Term ObjectEntries Freq

t1 <o6.Loc,1>, <o7.Loc,2> 3

t2 <o6.Loc,1> 1

t4 <o7.Loc,1> 1

t5 <o6.Loc,1> 1

t9 <o6.Loc,1> 1

STL of R3 STL of R4

…

o1

o2
o3

o4

o5

o7
o6

o8

o9

o10

R1 R2R3

R4

R5

R6 o10o3

R1 R2

R3 R4

o1 o2 o6 o7 o4 o5 o8 o9

R5 R6

R-Tree Structure

(a) (b)

Query Region

Figure 2.2: Spatial R-Tree for the sample dataset in Figure 3.1 and leaf level STLs

2.4.1 Full Lists on Leaf Nodes Only (STL-L)

Since the number of terms can rapidly increase with RQ, a better approach to compute

the top-k terms, is to store sorted term lists (STLs) for the leaf nodes of the R-tree. In particular, the

STL of a leaf node nl contains the aggregated term entries from the object (posts) stored within the

node’s MBR Rnl , sorted based on the frequencies of the terms in that MBR. The total number of

entries in this STL, i.e. the vocabulary size, is |Vnl | where Vnl = {∪o∈Do.Terms|o.Loc ∈ Rnl}.

For each term t ∈ Vnl , we have a term entry of the form < t, t.ObjectEntries, t.Freq >, where

t.ObjectEntries is a list of object entries that contain t. Each entry in this list has the form

< Loc, Freq > ≡ [∃o ∈ D : Loc = o.Loc ∈ Rnl and Freq = fo(t)>0]. Finally, the third

field t.Freq is the sum of all Freq values of the object entries in t.ObjectEntries. The term

entries in STL are sorted by their Freq values in descending order. Figure 2.2(b) shows the STLs

for the two leaf nodes R3 and R4 of the R-tree in Figure 2.2(a). We refer to this indexing scheme as

STL-L, to denote that only the leaf nodes of the R-tree have STL lists.

15

Algorithm Overview: To leverage the STL-L index we proceed in two steps. First, the

leaf nodes that intersect with the query region RQ are identified; then a top-k algorithm is applied

on the STLs of the intersected leafs nodes. If a leaf node is fully contained in RQ its STL is used

directly in the top-k algorithm; if it is partially contained, then a partial STL list is created with

the objects that are contained in RQ, as explained below. Among the several top-k algorithms

in literature, we use two popular variations, the Random Access (RA) and Non Random Access

(NRA) [28, 56]. Note that RA is a modified (improved) version of TA. The specific improvements

are presented in Section 2.4.4.

Random Access (RA): At each iteration i, the RA algorithm extracts the ith term entry te

from each of the involved leaf STLs. The sum of all te.F req values is considered as the threshold

θ at iteration i. Each time a new term t is seen, RA scans the other STLs to compute the aggregate

fRQ(t). Note that in our case, for a given term entry te with the term t, if the leaf node nl of the

STL (that contains te) is fully contained in RQ then te.F req is used in the fRQ(t) computation.

Otherwise, te.ObjectEntries is scanned to compute fRQ∩Rnl (t) which contributes to the fRQ(t).

RA stops when it finds k terms whose frequencies are higher or equal to the threshold θ value. As

an example, consider the dotted query region in Figure 3.1(a). Based on the R-tree in Figure 2.2(a),

the two leaf nodes R3 and R4 are fully contained in the query region. Therefore RA executes on

these two nodes’ STLs (Figure 2.2(b)).

Non Random Access (NRA): Similarly, NRA scans all the STLs involved in top-k com-

putation in parallel. Each time a new term t is seen, NRA computes a Best Score and a Worst Score

16

Index Description
STL-L full lists on leaf nodes only
STL-LI full lists on leaf and index nodes
STL-Li full lists on leaf nodes, partial lists in index nodes
STL-li partial lists on leaf and index nodes

Table 2.1: Different index types.

Algorithm 1 kFST − STL(RQ, k, root)
Require: Query Region RQ, number of output terms k and the root node of R-tree root
Ensure: Return top-k terms with highest frequencies in RQ

1: N← FindCandidateNodes(RQ, root)
2: E← RA-STL(N , RQ, k) / NRA-STL(N , RQ, k)
3: T ← ∅
4: for each term entry te in E do
5: T ← T ∪ te.T erm
6: return T

for that term (for details see [28]) and stops when it finds k terms whose Worst Scores are higher or

equal to the threshold θ value.

2.4.2 Full Lists on All Nodes (STL-LI)

Solving the kFST query using leaf level STLs shows good performance for relatively

small query regions. However, as the size ofRQ increases, the number of intersected leaf nodes and

thus the number of involved STLs increases. This slows down both the RA and NRA performance

(see Figures 2.14a, 2.14b in the experimental evaluation). One solution is to enhance our index

structure adding STLs to all inner level nodes of the R-tree. Figure 2.3 shows the STLs for inner

level nodes R1 and R2. Note that the ObjectEntries fields are removed from the term entries of

inner level STLs. This is to improve space efficiency; we refer to this scheme as STL-LI.

17

Algorithm 2 FindCandidateNodes(RQ, n)
Require: Query Region RQ, and the node n
Ensure: Return the set of candidate nodes from the subtree rooted at n such that the STLs of the

selected nodes are used for top-k computation
1: if IsLeaf(n) then
2: if RQ ∩Rn 6= ∅ then
3: return {n}
4: else
5: return ∅
6: if Rn ⊆ RQ then
7: return {n}
8: else
9: N ← ∅

10: for each child c of n do
11: N← N ∪ FindCandidateNodes(RQ, c)
12: return N

Term Freq

t1 5

t2 4

t4 4

t3 1

t5 1

t6 1

t9 1

STL of R1

Term Freq

t4 3

t6 3

t9 3

t2 2

t7 2

t8 2

t5 2

STL of R2

…

Figure 2.3: Inner level STLs.

Using the additional inner level STLs, we consider a modified tree traversal algorithm

(Algorithm 2). Starting from the root node of the R-tree, if an inner level node is fully contained

in the query region, then no further checking is required for the children of that node. The STL of

this fully contained node is used in the top-k computation. However, if an inner level node overlaps

with the query region then its children nodes are checked. This process continues until we reach the

leaf level where the leaf nodes that intersect with the query region are identified. As before, if a leaf

18

Algorithm 3 RA-STL(N , RQ, k)
Require: Set of nodes N , the query region RQ and the number of output term entries k
Ensure: Execute Random Access TA on the STLs of the nodes in N and return the top-k term

entries with highest frequencies
1: E ← ∅, i← 0
2: repeat
3: θ ← 0, f ← 0
4: for each node n in N do
5: L← getSTL(n)
6: te ← ith term entry in L
7: if te is null and NotIsLeaf(n) then
8: te ← GetTermEntry(n,RQ, i)
9: θ ← θ + te.F req

10: t← te.T erm
11: if t has not been seen yet then
12: f ′ ← 0
13: if isLeaf(n) then
14: f ′ ← ComputeTermFreq(te, RQ)
15: else
16: f ′ ← te.F req
17: for each node n′ in N do
18: if n′ 6= n then
19: do random access for term t on STL of n′ and compute fRQ∩R′

n
(t)

20: f ′ ← f ′ + fRQ∩R′
n
(t)

21: E← E ∪ {< t, ∅, f ′ >}
22: f ←frequency of the kth term entry in E
23: i← i+ 1
24: until θ>f
25: return top-k term entries in E with highest frequencies

node is not totally contained in the query region then we create an STL only for the node’s posts

that are contained.

Using the modified tree traversal algorithm, consider again the query region in Figure

3.1(a). Based on the R-tree in Figure 2.2(a), only the inner level node R1 is fully contained in the

query region. Therefore, no further checking is done and the top-k terms are returned by the top-K

algorithms (both RA and NRA) using only the STL of R1. This reduces the number of involved

STLs from 2 to 1.

19

Algorithm 4 NRA-STL(N , RQ, k)
Require: Set of nodes N , the query region RQ and the number of output term entries k
Ensure: Execute NRA on the STLs of the nodes inN and return the top-k term entries with highest

frequencies
1: SortedTopKElements← ∅, i← 0
2: repeat
3: θ ← 0, f ← 0
4: for each node n in N do
5: L← getSTL(n)
6: te ← ith term entry in L
7: if te is null and NotIsLeaf(n) then
8: te ← GetTermEntry(n,RQ, i)
9: tops[n]← te.F req

10: t← te.T erm
11: if t has not been seen yet then
12: SortedTopKElements← tke(t)
13: else
14: tke← SortedTopKElements(t)
15: if isLeaf(n) then
16: tke.partialScore← tke.partialScore+ ComputeTermFreq(te, RQ)
17: else
18: tke.partialScore← tke.partialScore+ te.F req
19: SortedTopKElements← tke(t)
20: θ ←

∑
n tops[n]

21: i← i+ 1
22: until SortedTopKElements[k].worstScore ≥ θ
23: return top-k term entries in E with highest frequencies

2.4.3 Considering Partial Lists(STL-Li, STL-li)

Unfortunately the STL-LI approach requires large space especially for the STLs at the

higher level nodes. Figure 2.4 shows the average number of term entries of a STL at different levels

(level 4 corresponds to the index root). The number of term entries (and thus the size of a STL)

increases for the higher levels. Nevertheless, we note that, both RA and NRA typically scan only

a small subset of the entries in a STL. We can thus exploit this early stopping property to compute

the expected number of accessed term entries (λ) to be stored in an STL (addressed in Section

2.5). Using this λ value we shrink the size of each inner level STL, which reduces the overall space.

20

Algorithm 5 GetTermEntry(n,RQ, i)
Require: The node n, the query region RQ and the index i
Ensure: Return the ith term entry in the region Rn

1: N ← ∅
2: for each child c of n do
3: N← N ∪ c
4: E← (N)RA− STL(N , RQ, i)
5: return the ith term entry in E

Algorithm 6 ComputeTermFreq(te, RQ)
Require: The term entry te, and the query region RQ
Ensure: Return the frequency of te in the region RQ

1: f ← 0
2: for each object entry oe in te.ObjectEntries do
3: if oe.loc ∈ RQ then
4: f ← f + oe.freq
5: return f

The leaf level STLs still keep their full size (in case the threshold algorithms cannot stop within the

λ-sized inner STLs, the leaf STLs can then provide any additional terms needed). We refer to this

index as STL-Li.

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Level

A
v
g
.

N
u

m
b

er
 o

f

T
er

m
 E

n
tr

ie
s

(i
n

 m
il

li
o
n

s)

0.02 1.97

116.72

215.55

Figure 2.4: Level vs. avg. number of term entries per full STL. The number on top of each bar is
the avg. size of that level STL in MB.

21

We proceed with how the threshold algorithms need to be modified for the kFST problem

given that the inner level STLs contain λ number of term entries while the leaf level STLs contain

all term entries. The overall approach is depicted in Algorithm 1. At first, the algorithm finds the

R-tree nodes whose STLs are involved in top-k computation (line 1). After that, it executes the RA

or NRA to compute the top-k term entries using Algorithm 3 or 4 respectively (line 2). The main

component of these algorithms is the repeat-until loop (lines 2 - 24 and lines 2 - 22 respectively).

The RA version (Algorithm 3), at each iteration i, scans the ith term entry from each of

the involved STLs (lines 5 - 8) and computes the θ value (line 9). If the index i exceeds λ, Algorithm

5 is called (line 8) for each involved inner level STL to compute the next term entry in sorted order.

Algorithm 5 invokes Algorithm 3 recursively for the STLs of the child nodes. If a new term t is

seen, Algorithm 3 looks up the term t in all involved STLs and computes the aggregate frequency

(lines 11 - 20). Algorithm 6 is a supporting method used to compute the value of a term entry te in

RQ. It scans all the object entries in te.ObjectEntries, finds the object entries that are contained

in RQ and aggregates their frequencies.

The NRA version (Algorithm 4), at each iteration i, scans the ith term entry from each

of the involved STLs (lines 5 - 8) and computes the tops value (line 9) which is the maximum

possible value for any of the unseen term that may appear in any of the later scan in that particular

STL. Note that, when the index i exceeds λ, Algorithm 5 is called (line 8) for each involved inner

level STL to compute the next term entry in sorted order. Algorithm 5 invokes Algorithm 4 recur-

sively for the STLs of the child nodes. If a new term t is seen, Algorithm 4 adds it to the buffer

called SortedTopKElements. Then the Algorithm updates the partial score of the term in the

SortedTopKElements. This partial score is used to calculate the bestScore and worstScore of

22

Replace line 9 by:
9(a): θ ← θ + te.F req
9(b): tops[n]← te.F req

Replace line 10 by:
10(a): T ← te.T erm
10(b): for each t in T
Add the following lines between line 20 and 21:
(i) index← index of n′ in N
(ii) maxPossible← f ′ +

∑i<=Size(N)
i←index tops[i]

(iii) if Size(E) > k and maxPossible ¡ E[k].Freq
break

Table 2.2: Changes on RA-STL to reduce random accesses.

each of the terms in the buffer SortedTopKElements. The threshold value θ is calculated in line

21 which is the summation of tops for all the STLs involved in the calculation.

The advantage of using full STLs at the leaf nodes comes at the expense of the full list

space overhead. A remaining question is whether we can actually reduce this overhead further. Such

an approach would replace each full leaf STL with a partial one. In the experimental section we

term this approach as STL-li. We note that a leaf node has a limited number of objects (based on the

fixed page size); thus if needed we could still compute the full STL.

Clearly, λ depends on k (see Section 2.5). Hence, k needs to be known when building the

partial lists. We argue that this is a reasonable assumption for several applications. For example,

Twitter as of now displays the top-10 trending topics (or hashtags) for each user (our work would

allow for a more fine grained list of topics per user). Other applications displayed on mobile screens

have similar constraints for k. Further, in the experimental section (Figure 2.16) we show that the

proposed algorithm performs well for up to 50% larger k than the one originally provided.

23

2.4.4 Optimizations to the top-k Algorithms

Optimizing RA-STL: A standard RA algorithm makes random accesses for all the terms

it has seen. However, after the buffer has at least k elements, there exist some terms which can never

make it to the top-k. As a result, we can avoid making random accesses for such terms. Table 2.2

shows the necessary changes for this optimization. We are using the array tops to keep track of the

values of each list/node in the current iteration. Later, we use this value to calculate the maximum

possible value (maxPossible) for each term we encounter. If the k-th term in the buffer already

has a greater value that this maximum possible value, no further random accesses are needed for

that keyword.

We experimentally evaluated this optimization, using the setting described in Section 2.7.1.

The results appear in Figure 2.5 using the RA-STL-Li as an example. The optimization speeds up

the query performance by around 7 times on average. In the rest of this chapter, all RA-STL algo-

rithms use the optimized approach.

24

RA-STL- Li Standard RA-STL-Li

0.01 0.02 0.03 0.04 0.05

0

1500000

3000000

4500000

6000000

Query Selectivity

Q
u

e
ry

 T
im

e
 (

m
ili

s
e

c
o

n
d

s
)

Figure 2.5: Comparison between standard RA-STL-Li and our optimized RA-STL-Li.

Optimizing NRA-STL: After implementing the NRA-STL algorithm, we observed that

the CPU time required for sorting the SortedTopKElements is high. We thus applied the follow-

ing optimizations. (i) Reduce Buffer Size : The work in [53] showed that if the summation of the

last seen value in all lists is less than the k-th highest score in buffer then no keyword which has not

been seen in any input can end up in the top-k result. Hence once that condition is true we do not

add new keywords in the buffer. (ii) Use QuickSelect: Initially, we were sorting the whole buffer

to get the k-th worst value (needed to decide if the calculation of top-k is finished). Instead we use

the QuickSelect algorithm [37] to fetch the k-th highest value from the buffer without sorting it. (iii)

Delay Checking for Finish: We check if the algorithm is finished in every 50 steps rather than ev-

ery step. This significantly reduces the CPU time. (iv) Sorting Efficiently: In case of ties among

the term scores in the buffer, the standard NRA algorithm sorts them based on the best possible

score. However, calculating the best possible score involved redundant computations. Instead we

25

are only sorting the keywords whose worst possible score is equal to the k-th worst possible score

in the buffer.

Figure 2.6 depicts the experimental evaluation of these optimizations using NRA-STL-Li

as example. The improvement over the standard NRA-STL-Li is drastic (on average 50 times). In

the rest, all NRA-STL algorithms use the optimized approach.

NRA-STL-Li Standard NRA-STL-Li

0.01 0.02 0.03 0.04 0.05

0

20000

40000

60000

80000

Query Selectivity

Q
u

e
ry

 T
im

e
 (

m
ili

s
e

c
o

n
d

s
)

Figure 2.6: Comparison between standard NRA-STL-Li and our optimized NRA-STL-Li.

2.5 Computing the Expected STL Size

We would like to estimate how long the ranked lists of internal nodes should be so as

to minimize the chance that the top-k algorithms of Section 2.4.3 will need to access more terms,

while at the same time keeping the length of the lists short to save space. For that, we estimate the

expected STL size λ accessed by our top-k algorithms in two steps. In the first step, we estimate

vector M = (m1,m2, ...,mh), where mi denotes the expected number of STLs involved in the

26

Symbol Description
M = (m1,m2, ...,mh) expected number of STLs involved in the

top-k calculation from different level
h height of R-tree

Si = (si,1, si,2, ..., si,d) avg. size of an MBR at level i
Nr = (N1, N2, ..., Nh) number of MBRs at different levels
RQ = (q1, q2, ..., qd) size of query region

f avg. node capacity (fanout)
N number of objects

Table 2.3: Model Parameters

top-k calculation from level i; h is the height of the R-tree. Using M , we calculate λ in the second

step.

Step 1 - Calculate M: Given the query region RQ, we start from the root level (level h)

of the R-tree. At each inner level i (2 ≤ i ≤ h), we estimate the expected number of nodes which

are fully contained in the query region and the region covered by the contained nodes. The STLs of

the contained nodes are involved in the top-k calculation. Thus, mi for inner levels is equal to the

number of contained nodes. The remaining query region (i.e. the query region which is not covered

by the contained nodes) is used as the new query region for the next level i − 1. This process

continues until we reach the leaf level (i = 1) where the number of nodes that intersect with the

new query region is estimated as m1.

In the discussion below we use the parameters in Table 2.3. Consider a d-dimensional

unit dataspace ([0, 1)d) which contains the N objects. An R-tree with height h and average node

capacity (fanout) f stores these N objects. Let, Ni be the number of nodes at level i and Si =

(si,1, si,2, ..., si,d) be the average size of a level i node. Given N and f , to estimate the R-tree

properties (h,Ni,Si) we use the analysis described in [67].

27

Since N objects are contained in N1 nodes at leaf level and the average fanout factor is f ,

the number of leaf level nodes is N1 = N
f . Similarly N1 nodes are contained in N2 nodes at level

2, therefore N2 =
N
f2

. Thus the number of nodes at level i is,

Ni =
N

f i
(2.1)

The height h of the R-tree is calculated as [67, 34],

h = 1 + dlogf
N

f
e (2.2)

To compute Si, we assume that the node sides are equal in all dimensions (i.e. si,1 =

si,2 = ... = si,d). Let si be the average size of a level i node in all dimensions. Since f number of

level (i − 1) nodes are contained in a single node at level i, the number of level (i − 1) nodes that

contribute to a single side of level i node is d
√
f . Therefore si can be computed as,

si = (f1/d − 1).
1

(Ni−1)1/d
+ si−1 (2.3)

Here (Ni−1)
1/d is the average distance between the centers of two consecutive level (i−1)

node projections in a single dimension. The detailed analysis is described in [67].

For simplicity, we assume that the query sides of RQ are also equal in all dimensions (i.e.

q1 = q2 = ... = qd = q). Given Ni and si, the number of level i nodes that intersect with query

region qd is [67],

intersect(Ni, si, q) = Ni.(si + q)d (2.4)

28

As stated earlier, here we are interested in the estimation of the number of fully contained

nodes for inner levels (which is a subset of intersected nodes computed in [67]). The next analysis

describes how we can estimate the number of contained nodes given the values Ni, si and q.

RQ

si
si si si

q q q

(a) case 1 (b) case 2 (c) case 3

Figure 2.7: Case analysis of si and q

Based on the values of si and q, there are three possible cases,

Case 1 (si>q): The node size is greater than the query region (Figure 2.7(a)). Therefore,

no node is contained in the query; this means we have to go to next level (i− 1).

Case 2 (q ≥ 2si): In this case, we consider a d-dimensional rectangle (the shaded region

in Figure 2.7(b)) inside the query region where each side of the inner rectangle is si distance far

away from the query rectangle. We argue that the nodes which intersect with the inner rectangle are

the nodes that are contained in the query region. The number of nodes that intersect with the inner

rectangle is intersect(Ni, si, q− 2si). Let Ai be the region covered by the contained nodes. Using

a similar analysis as for the si calculation, we can estimate the average size ai of a single side of

Ai, by,

ai = (intersect(Ni, si, q − 2si)
1/d − 1).

1

(Ni)1/d
+ si (2.5)

29

The remaining uncovered region (i.e. qd − (ai)
d) is considered as the new query region

for the next level which can be divided into small rectangles of size (q−ai2)d. The number of small

rectangles is estimated as d(qd − (ai)
d)/(q−ai2)de

Case 3 (si ≤ q<2si): In this case, only one node can be contained in the query region

assuming no overlapping between the nodes at a given level (Figure 2.7(c)). This assumption is

a reasonable property for a good R-tree [15]. Using the similar analysis explained in case 2, the

remaining uncovered region (i.e. qd− (si)
d) is divided into d(qd− (si)

d)/(q−si2)de small rectangles

of size (q−si2)d. These small rectangles are considered as the new query region for the next level.

To compute m1, we first compute the total number of leaf nodes covered by the contained

inner level nodes. We compute this value as
∑h

i=2mif
i−1 since each contained node at level i

(2 ≤ i ≤ h) covers total f i−1 number of leaf nodes. We then subtract this value from the total

number of leaf nodes that intersect with the original query qd. The exact formula used for m1

computation is,

m1 = intersect(N1, s1, q)−
h∑
i=2

mif
i−1 (2.6)

Algorithm 7 shows the pseudocode to compute M . At first, lines 1 − 4 compute the R-

tree properties h, Ni and si. Then using the R-tree properties, the second for loop (lines 7 − 21)

computes the M . Each iteration of the for loop corresponds to a level of R-tree. Lines 8 − 9

compute m1 for the leaf level and lines 10 − 21 compute mi for the inner levels (2 ≤ i ≤ h). The

variable factor stores the number of query rectangles at a level i.

Step 2 - Calculate STL size λ: The analysis in this step is based on the assumption that

the frequencies of terms in the whole corpus (i.e. the collection of all terms in the dataset) follow

30

Algorithm 7 ComputeM(N, f, d, q)

Require: The number of objects N , the fanout factor f , the dimensionality d and the average size
of query region side q

Ensure: Return the vector M
1: Calculate h using Equation 2.2
2: s0 ← 0
3: for i← 1 to h do
4: Calculate Ni and si using Equations 2.1 and 2.3 respectively
5: factor ← 1
6: q′ ← q
7: for i← h to 1 do
8: if i = 1 then
9: Calculate m1 using Equation 2.6

10: else
11: if q′<si then
12: mi ← 0
13: else if q′ ≥ 2si then
14: mi = factor × intersect(Ni, si, q

′ − 2si)
15: Calculate ai using Equation 2.5
16: factor ← factor × d((q′)d − (ai)

d)/(q
′−ai
2)de

17: q′ ← q′−ai
2

18: else
19: mi ← factor × 1
20: factor ← factor × d((q′)d − (si)

d)/(q
′−si
2)de

21: q′ ← q′−si
2

22: return M = {m1,m2, ...,mh}

the Zipf distribution. This is true [39] for the collection of documents collected from several online

sources: Myspace[2], Twitter[5], Slashdot[4].

We first consider calculating λ for the RA algorithm. Let each object have x number of

terms on average. Therefore, the total number of terms (including duplicates) in the whole corpus

is Nx. Let p be the rank of a term and freq(p,Nx) denote the frequency of the pth term in the

ordered frequency list of a dataset containing Nx terms. The Zipf law states that the frequency of a

term is inversely proportional to its rank in the frequency list. Thus the Zipf parameter c (which is

collection specific) is given by:

31

c = p
freq(p,Nx)

Nx
(2.7)

Using Equation 2.7, the frequency freq(p,Nx) of a term at any arbitrary rank p can be

computed which is cNx
p .

In our case, each level i node of the R-tree contains on average Nx/Ni terms. Therefore,

the frequency of the pth term in the STL of a level i node is ciNx
Nip

. Similarly the frequency of the

pth term in the STL of the query region qd is cqqdNx
p . The above assumes that the exact frequency

of each accessed term from any STL is known, which is a property of the RA algorithm.

Note that a top-k algorithm works by computing the threshold value at successive index

p which is the sum of all pth frequency values in the STLs that are involved in top-k calculation.

Given Nx, q and M , the threshold value at an index p is computed as,

θ(p, q,Nx,M) =
h∑
i=1

mi
ciNx

Nip
(2.8)

The top-k threshold algorithm stops at an index pwhen the threshold value equals or drops

below the kth frequency value in the query region qd. Therefore the expected list size is computed

as,

λRA(k, q,Nx,M) = min
p
{θ(p, q,Nx,M) ≤ cqq

dNx

k
} (2.9)

When considering the NRA algorithm, the scan may have to go further than RA; the

reason is that when we have accessed the first p terms of each STL, we may only know the partial

final frequency of some terms. The NRA algorithm terminates when two conditions hold at the

same time: (a) the minimum score of the k-th best term so far, y, is higher than the threshold, and

32

(b) that score is also higher than the maximum score of other partially seen terms. Computing the

optimal λ requires knowledge of the correlation of the term frequencies across lists. Instead, we

compute a conservative estimation (overestimate), by assuming that we have only seen each term in

only one list. Then, the larger MBRs dominate the scores, and hence we can assume that y equals

the kth term of the largest MBR, where the largest MBR can be assumed to be one level below the

query region qd; that is, the largest MBR has area qd/f . Given these assumptions, the conservative

estimation of λ for NRA is given by:

λNRA(k, q,Nx,M) = min
p
{θ(p, q,Nx,M) ≤ cqq

dNx

kf
} (2.10)

We further justify the choice of λ in in Section 2.5.1.

2.5.1 Justification for Choice of Precomputed Prefix Length

Note that in Equations 2.9 and 2.10 we computed the expected prefix length E(p). We

will now justify that setting the precomputed prefix length λ to E(p) is an effective choice. Let

p be a variable representing the prefix length that a query accesses in an STL. Figure 2.8a shows

the distribution of p for our 15M tweets dataset for query selectivity of 0.002 across all accessed

STLs. For our theoretical analysis, we assume that p follows the binomial distribution, which has a

similar shape; that is, we have Prob(p) =
(
n
p

)
· P p(1 − P)n−p, where n and P are parameters of

the binomial distribution, which has mean E(p) = nP .

The expected cost Cost(λ) of accessing a partial STL has two components: (i) the cost of

RA on the precomputed prefix length, which is a · p, where a is a constant (representing the average

cost of accessing an item in the list) and p is the prefix length; (ii) a · f · (p − λ) for the access to

33

(a) Distribution of accessed prefix lengths (b) Cost vs. precomputed prefix length

Figure 2.8: Trade-off between accessed prefix length and execution cost (time).

the f children of the involved nodes when p > λ terms are needed. Hence,

Cost(λ) = a ·
∑
p=1..l

(Prob(p) · p)+

a · f ·
∑

p=(λ+1)..l

(Prob(p) · (p− λ))
(2.11)

Note that λ takes values from 0 to l, where l is the maximum length of the STL if we

would store all its terms. To plot the cost function, we select the following concrete values: a = 1

(its choice does not affect the shape), f = 100 (which is a typical branching factor for R-trees,

which we also use in our experiments; increasing it would make the graph more steep), and l = 450

(increasing further has no effect as the probability is almost 0 for larger values). For the binomial,

we used P = 0.5, n = 400, soE(p) = 200 (different values of P make the binomial curve wider or

narrower). Figure 2.8b shows that there is a clear elbow at λ = 200, which is also the mean prefix

length E(p). Equations 2.9 and 2.10 indeed compute E(p) using the properties of the R-tree and

the terms’ distribution. Figure 2.13 shows experimentally the same behavior of the cost (time) as a

function of λ.

34

2.6 Multi-Region Queries

With multi-region kFST queries a user can combine or exclude terms from multiple re-

gions. Consider for example the month before the US elections. It would be interesting to know

about the popular terms that appear in social media in some states combined (e.g. the battleground

states, say Florida and North Carolina) to see how the public opinion is formed in those states. One

can also normalize the term frequencies within each respective state so that larger states do not

dominate the top-k calculations. We may also be interested in excluding terms that are popular in

“blue” states (e.g. New York and California) so as to identify the terms that are of interest to the

republican voters in the battleground states.

Straightforward approach: To solve the multi-region kFST we can simply run the algo-

rithm separately for each region (the R-tree will be traversed multiple times) and then add/subtract

the frequencies of the top-k terms in different regions to obtain the terms which have the maximum

frequencies combined.

Proposed approach: It is more efficient to compute the multiple regions kFST in a single

traversal of the R-Tree. The case where the kFST contains only included regions is simple: to

find terms which are popular in all these areas we add the term frequencies for STLs belonging to

these regions. The more interesting case is when the kFST contains excluded regions. If a term t

is found in one of the excluded regions’ STL, its score is penalized by subtracting t’s frequency in

that STL. Furthermore, the threshold calculation is also affected. For the RA algorithm, finding t in

the excluded region adds zero to the threshold (since we subtract, this is the highest value from the

excluded STL). Similarly, for the NRA the tops value for this particular STL would be zero (which

is the maximum possible value for any of the unseen terms in that list).

35

Consider the example in Figure 2.2 assuming that R3 is an included region while R4 is

an excluded region. At the first iteration, RA accesses the first position in each STL, i.e., terms t1

and t2. RA finds these terms in all STLs and computes their scores: fRQ(t1) = 3 − 2 = 1 and

fRQ(t2) = 3− 1 = 2. The θ value at this point is 3 + 0 = 3. The algorithm proceeds and scans the

terms at the second position, t4 and t2. The score of t4 is 3 − 1 = 2. At this point, the top-2 terms

are t4 and t2 (ties are broken arbitrarily). The θ value at position 2 is 3+0 = 3 which is higher than

the frequencies of t4 and t2. At the next position we see no new terms but θ becomes 2 + 0 = 2

which is no higher than the frequencies of t4 and t2. RA ends and t4 and t2 are the top-2 terms.

The detailed modifications needed so that RA-STL (Algorithm 3) and NRA-STL. Algo-

rithm 4) work for multiple regions appear in Section 2.6.1. We denote the multi-region algorithm

variants by prepending the “MR-” prefix, e.g., MR-RA-STL-Li.

2.6.1 Algorithmic Modifications for Multi-Region Queries

The modifications needed so that RA-STL (Algorithm 3) works for multiple regions ap-

pear in Table 2.4. The original line 8 needs to run once for each region in {S+, S−}; hence we

replace it with 8(a-d). The calculation of θ in line 9 will also have to be modified to accommodate

Included and Excluded regions. Line 14 which computes the individual term frequency for leaves

should run once for each of the query regions (replaced by 14(a-b)). The calculation of the term

frequency f depends on the type of STL the term comes from; thus line 20 is changed accordingly

(opi is an addition operation for STLs from Included Regions and subtraction operation for Ex-

cluded Regions).

36

The following modifications are needed on NRA-STL (Algorithm 4) to support multiple

region kFST queries. Line 8 needs to run once for each region in the region list. It is thus replaced

with 8(a-d) as shown in Table 2.5. In Line 9, the calculation of tops[n] will also have to be modified

to accommodate the Included and Excluded regions. If the node is in an Included region, its value

will be the frequency of the term, otherwise, it will be 0. In lines 16 and 18, we have to modify the

calculation of the term frequency f for the each region in the list depending on which list the region

belongs to (we add for an Included Region and subtract for and Excluded Region as shown).

Replace line 8 by:
8(a): for each RQ in {S+, S−} do
8(b): te ← GetTermEntry(n,RQ, i)
8(c): if te is not null then
8(d): break
Replace line 9 by:
9(a): if n in S+ then θ ← θ + te.F req
9(b): else if n in S− then θ ← θ + 0

Replace line 14 by:
14(a): for each RQ in {S+, S−} do
14(b): f ′ ← f ′ + CompTermFreq(n, te, RQ)

Replace line 20 by:
20(a): f ′ ← f ′(opi)fRQ∩R′

n
(t)

Table 2.4: Changes to Random Access (RA) for Multi-Region kFST.

37

Replace line 8 by:
8(a): for each RQ in {S+, S−} do
8(b): te ← GetTermEntry(n,RQ, i)
8(c): if te is not null then
8(d): break
Replace line 9 by:
9(a): if n in S+ then tops[n]← te.F req
9(b): else if n in S− then tops[n]← 0

Replace line 16 by:
16(a): tke.partialScore← tke.partialScore (opi)

CompTermFreq(te, RQ)

Replace line 18 by:
18(a): tke.partialScore← tke.partialScore (opi) te.F req

Table 2.5: Changes to Non-Random Access (NRA) for Multi-Region kFST.

2.7 Experimental Evaluation

We proceed with the experimental evaluation results. Table 2.6 depicts the name con-

vention used for the algorithms presented in the experiments (where x refers to the kind of STLs

used).

2.7.1 Setup

All experiments are performed on a 3.4GHz Intel Core i7-3770 CPU, 16GB RAM ma-

chine running Windows 10 OS.

Datasets: For our experiments, we crawled 15,124,195 geo-tagged, english-based tweets

using the Twitter streaming API [5]. The temporal domain covered two years (2012, 2013) while

the spatial domain was the whole world. We removed the stop keywords from the tweet text to get

meaningful top-k terms. After removing the stop keywords, each tweet has 9 terms on average. We

term this as the 15M dataset. To measure scalability performance we also used two artificial datasets

38

that had 50M and 100M tweets. These datasets have the same temporal domain as the 15M dataset;

to create the 50M and 100M datasets, for each real tweet we added 4 and 8 (respectively) artificial

tweets by changing the original tweet’s geolocation .

Index Structure: All tweets in each dataset are indexed by an R-tree. The page (node)

size is set to 8KB which corresponds to a maximum of 100 entries; the average fanout factor f is

70. We store the STLs of the R-tree nodes in a column family using Cassandra 2.0.5. To improve

the efficiency of the threshold algorithms (both RA and NRA), we divide each STL into pages of

size 250 entries and store each STL page as a separate row in the column family. The row key is the

concatenation of the STL identifier and the page index. Furthermore, to facilitate random access on

each STL (RA algorithm), we store the terms of a given STL in a separate column family. Here,

each term is stored as a separate row, where the row key is the concatenation of the STL identifier

and the term. The value is the frequency of that term in this STL.

In the first baseline method (RTreeScan), we use R-tree to find the tweets that are inside

the query region; their term aggregation is performed very fast using a hash map (in main memory).

In the second baseline method (POSTGIS), we use the PostGIS [3] spatial database ex-

tender to index the tweets. We first run a query to find the tweets that are inside the query region

and then we aggregate their term frequency using a hash map residing in main memory.

Query Distribution: For simplicity, the query regions used in the experiments have

square faces. The term “query selectivity” denotes the fraction of the total dataset area (or vol-

ume) covered by the query. Our datasets cover the total area of the earth, i.e., 196.9 million sq.

miles. Hence, our smallest selectivity, which is 0.00001 corresponds to 1970 sq. miles, and so on.

For the smaller dataset of 15M tweets, this corresponds to an average of 150 tweets per query, while

39

Estimated Avg. STL Involved Actual Avg. STLs involved

0.00001 0.0001 0.001 0.01
0

500

1000

1500

2000

Query Selectivity

A
v
g

.
n

u
m

b
e

r
o

f
S

T
L

s
 i
n

v
o

lv
e

d

Figure 2.9: Estimated and Actual average number of STLs involved in the top-k calculation for
different query region selectivities for the 15M dataset.

Algorithm * Description
NRA-STL-x Sequential access in STL-x
RA-STL-x Random access in STL-x

MR-NRA-STL-x Multi-Region NRA-STL-x
MR-RA-STL-x Multi-Region RA-STL-x

RTreeScan Baseline 1
POSTGIS Baseline 2

Table 2.6: List of Algorithms (x = L or LI or Li or li).

for our largest selectivity of 0.05 there are about 750,000 tweets on average. For the larger datasets

50M and 100M, our smallest selectivity 0.00001 has 500 and 1000 and our largest selectivity 0.05

has 2500,000 and 5000000 respectively. For each query selectivity the results are averaged over 100

different queries with that selectivity. The default value of k is set to 10 in all experiments except

Figure 2.16 where we consider queries with various values of k.

40

1 5 10 50 100

10

100

Rank

F
re
q
u
e
n
c
y

(a) Level 1 [c = 0.071788]

1 10 100 1000

10

100

1000

10000

Rank

F
re
q
u
e
n
c
y

(b) Level 2 [c = 0.10699]

1 10 100 1000

1000

10000

100000

1000000

Rank

F
re
q
u
e
n
c
y

(c) Level 3 [c = 0.100089]

1 5 10 50 100 500 1000

10000

100000

1000000

Rank

F
re
q
u
e
n
c
y

(d) Level 4 [c = 0.08027]

Figure 2.10: Calculating the Zipf parameter for different levels of the R-tree (15M dataset).

Estimated λ-NRA Actual λ-NRA-STL-LI Estimated λ-RA Actual λ-RA-STL-LI

0 0 0 0 0 0.01 0.01 0.
05

0

60

120

180

240

Query Selectivity

A
ve

ra
g

e
S

to
pp

in
g

In
de

x

Figure 2.11: Estimated λ and average stopping points of RA-STL-Li and NRA-STL-Li for different
query region selectivities (15M dataset).

41

2.7.2 Model Validation

We first compare the theoretically estimated number of STLs involved in a query (
∑h

i=1mi,

where mi is calculated by Algorithm 7) to the actual number of STLs (averaged over multiple

queries). Figure 2.9 shows the estimated value and the average number of STL/nodes calculated by

Algorithm 2 for different query selectivities using the 15M dataset (this algorithm is used by both

RA and NRA). As expected, the number of STLs increases with the query selectivity. Overall the

model behaves well (slightly underestimating the actual value); this is to be expected because our

analysis assumes uniform distribution for the object locations, while in practice, the tweet locations

follow a skewed distribution.

As mentioned in Section 2.5, our model assumes that the terms in the tweets follow the

Zipf distribution and that this also holds for the tweets at each node of the R-tree. Figure 2.10

depicts the average term frequency vs. rank (p) for the STLs at different levels of the R-tree (level 1

corresponds to the leaf nodes) for the 15M dataset. The slope of each graph corresponds to the Zipf

parameter (c) at each level. As it can be seen the values of c are similar across levels (validating our

assumption). For computing λ, we set the query region Zipf parameter (cq) equal to the average c

across all levels of the R-tree.

Figure 2.11 shows the theoretically estimated λRA and λNRA, using Equations 2.9 and

2.10 respectively, along with the actual average STL list length accessed by the RA-STL-Li and

NRA-STL-Li algorithms respectively for the 15M dataset, for various query selectivities.

The estimated λRA follows closely the actual RA-STL prefix length. We further observe

that at the lower selectivities the model slightly overestimates, because at these selectivities, the

42

RTree STL Term POSTGIS

RTreeScan POSTGIS STL-L STL-LI STL-Li STL-li
0

1.5

3

4.5

6

In
de

x
S

iz
e

in
 G

B

Figure 2.12: Space requirements (15M dataset).

(a) RA-STL-Li (b) NRA-STL-Li

Figure 2.13: Avg. processing time for different STL sizes (λ) for query selectivity of 0.002 (15M
dataset).

43

query region is small enough that it typically contains/overlaps only leaf nodes. However, the model

does not account for all partially contained nodes and their terms; it thus assumes that the algorithm

has access to fewer terms than in reality. In case of RA-STL, when a term is first encountered its

exact score is calculated. If fewer terms are seen, the chance that the threshold will be exceeded

decreases. In contrast, for higher selectivities the model slightly underestimates, as the query is

large enough to contain inner nodes. Our model assumes that an inner node is contained as long

as the query region exceeds the inner node size; in that case the model uses a higher level STL. A

higher level STL contains terms with higher frequencies dominating the top-k calculation. In reality

however, there may be smaller inner nodes not fully contained by the query and thus the RA-STL

will access children nodes and involve many lower level STLs. As a result, the top-k calculation

finishes later than what the model estimates.

As expected, the estimated λNRA overestimated the list prefix length, because Equa-

tion 2.10 makes a conservative assumption that a term appears in one STL while in practice, it

typically appears in multiple STLs. Nevertheless, the estimated λNRA closely follows the trend of

the actual accessed length.

For the rest of the experiments with the 15M dataset, we pick λRA = λNRA = 220, which

is given by Equation 2.10 for λNRA for middle selectivities. We know that this is an overestimation

of the list length for both RA and NRA, so this choice ensures that there is low probability of needing

to access more than 220 terms for any list. Figures 2.13(a),(b) show the query processing time for

different values of λ for RA-STL-Li and NRA-STL-Li respectively, using query selectivity 0.002

for the 15M dataset. In both cases the performance initially improves drastically as λ increases and

44

Index Structure 15 M 50 M 100 M
STL-Li 3.45 19.64 42.76

RTreeScan 2.13 8.97 19.54
POSTGIS 5.64 22.36 50.79

Table 2.7: Index size for various datasets (in GB).

stabilizes when λ > 220. Similarly, for the 50M and 100M dataset, we chose λ as 430 and 650

respectively.

2.7.3 STL Approaches Comparison

Index Size: Figure 2.12 depicts the space requirements for the four approaches (STL-L, STL-LI,

STL-Li and STL-li) and the two baselines, RTreeScan and POSTGIS for the 15M dataset. For each

method, we show the space needed by the R-tree, the STLs and Term index (the Term index is the

Cassandra column store used to facilitate the random accesses (RA); hence it is not needed for the

NRA algorithms). Since the R-tree is identical in all STL approaches, its size is the same; this is also

the space used by RTreeScan. The POSTGIS approach uses the GiST index for indexing the data.

The STL-L approach stores STLs only for the leaf level nodes, thus it requires the least STL storage

among all STL-based approaches. At the other end, the STL-LI approach stores full STLs for all

nodes and thus uses the largest space. STL-Li replaces the inner lists with partial STLs saving on

the STL space; STL-li uses the least space. The Term index space relates to the terms in the STLs

used hence it behaves similarly to the STL space. Table 2.7 shows the space required for STL-Li,

RTreeScan and POSTGIS for various datasets for spatio-temporal queries.

kFST Query Processing: Figures 2.14a and 2.14b present the single-region kFST query perfor-

mance comparison for the four approaches (STL-L, STL-LI, STL-Li and STL-li) using the RA and

45

NRA algorithms respectively for the 15M dataset. In all cases, the query time increases with the

query selectivity. Note that, when the query region is less than the MBR size of level 2 nodes,

only leaf level STLs are involved in RA-STL-x and NRA-STL-x. For these selectivities all four

approaches perform similarly. As the query size increases, some leaf level STLs are replaced by the

inner level STL(s) for the STL-Li, STL-li and STL-LI approaches which start to perform better than

STL-L. As expected, the full list case (STL-LI) has the best performance; nevertheless, both partial

list approaches (STL-Li and STL-li) show similar performance. This is because with λ = 220 the

partial STLs are sufficient to answer the query regions greater than the size of the level 2 nodes (as

Figure 2.13 also showed). Among the partial list approaches, STL-li is slightly slower than STL-Li

since it has to compute some leaf lists from scratch.

RA-STL-L RA-STL-LI RA-STL- Li RA-STL-li

0.01 0.02 0.03 0.04 0.05

0

50000

100000

150000

200000

Query Selectivity

Q
u
e
ry

 T
im

e
 (

m
ili

s
e
c
o
n

d
s
)

(a) RA-STL-x

NRA-STL-L NRA-STL-LI NRA-STL- Li NRA-STL-li

0.01 0.02 0.03 0.04 0.05

0

4000

8000

12000

16000

Query Selectivity

Q
u

e
ry

 T
im

e
 (

m
ili

s
e

c
o

n
d

s
)

(b) NRA-STL-x

Figure 2.14: Avg. processing time for different query selectivities (15M dataset).

Given the space and query time trade-offs, the STL-Li is a good compromise for both the

RA and NRA algorithms (offering space close to the minimum of STL-L and query times close to

the STL-LI). Next, we compare the NRA-STL-Li and RA-STL-Li with RTreeScan and POSTGIS

the 15M dataset. The results appear in Figure 2.15 (note the logarithmic scale on the query time).

46

RTReeScan RA-STL-Li NRA-STL-Li POSTGIS

0.01 0.02 0.03 0.04 0.05
10

100

1000

10000

100000

Query Selectivity

Q
ue

ry
 T

im
e

(m
ili

se
co

n
ds

)

Figure 2.15: Comparing RA-STL-Li, NRA-STL-Li, POSTGIS and RTreeScan for different selec-
tivity of query regions (15M dataset).

The NRA-STL-Li consistently outperforms the other methods. Interestingly, the RA-STL-Li is

slower than the RTreeScan baseline; the reason is the many random accesses it performs as the

number of STLs increases.

We also examined the sensitivity of our approach (NRA-STL-Li) to the value of k. As

discussed in Section 2.4.3, the partial lists assume that k is known in advance. In Figure 2.16 we

assume that λ was computed using k = 10 and examine the behavior of the NRA-STL-Li algorithm

when the query uses different k (varied from 5 to 20) on the 15M dataset. As it can be seen from

the Figure, the partial list algorithm is faster that the baselines for k up to 15.

2.7.4 Spatio-Temporal Query Experiments

We proceed with a comparison between NRA-STL-Li, RtreeScan for the (more general)

spatio-temporal queries. The temporal dimension of the dataset spans over 2 years. To create

spatio-temporal queries, we first varied the temporal range from 1 hour (corresponding to selectivity

47

RTreeScan POSTGIS k=5 k=10 k=15 k=20

0.01 0.02 0.03 0.04 0.
05

10

100

1000

10000

100000

Query Selectivity

Q
ue

ry
 T

im
e

(m
ili

se
co

n
ds

)

Figure 2.16: Query performance for different values of k when STLs were created using k=10 (15M
dataset).

0.00001) to 1 month (for 0.05) and then computed the needed spatial selectivity so that the total

selectivity is the value shown in Figure 2.17. Please note that We run this experiment on the 100M

dataset. Like our previous experiments, NRA-STL-Li outperforms both RTreeScan and POSTGIS.

Scalability: We also examine how our algorithm scales. In this experiment, we use all

datasets 15M, 50M and 100M tweets and we compared RTreeScan, POSTGIS and NRA-STL-Li

using a spatio-temporal query (constructed as above) with selectivity of 0.002. The result is shown

in Figure 2.18. NRA-STL-Li outperforms both baselines (note the log scale). As we increase the

size of the dataset for the same selectivity, the algorithms have to process more and more data.

Hence the query time for all the algorithms increases.

2.7.5 Multi-Region Query Experiments

We proceed with the evaluation of the multi-region kFST algorithms. In these experiments

we used the 15M dataset. Specifically, we compare the “straight-forward approach” which uses

48

RTreeScan POSTGIS NRA-STL-Li

0.01 0.02 0.03 0.04 0.05

100

1000

10000

100000

Query Selectivity

Q
ue

ry
 T

im
e

(m
ili

se
co

n
ds

)

Figure 2.17: Comparing NRA-STL-Li, RTreeScan and POSTGIS for different spatio-temporal
query selectivities (100M dataset).

single-region algorithms as modules (denoted as RA-STL-Li and NRA-STL-Li in this experiment),

and the optimized multi-region versions (MR-RA-STL-Li and MR-NRA-STL-Li). We compared

the algorithms for two regions (both ‘included’), where the “straightforward” approach runs RA-

STL-Li or NRA-STL-Li once for each region. Figures 2.19a and 2.19b show that the Multi-Region

algorithms perform better. This is because a single region algorithm has to run multiple times (in

this case twice) and hence traverse the R-tree multiple times. Further, the NRA variants perform

better than the RA, as is the case for single-region queries.

Next we consider queries when both ‘included’ and ‘excluded’ regions are present. For

this experiment, given a selectivity, we randomly select 2 regions as included and another 2 regions

as excluded. Figure 2.20a and Figure 2.20b depict the comparisons. The MR-RA-STL-Li and

MR-NRA-STL-Li approaches are again faster.

In terms of the number of MBR accesses, if a single-region query accesses n MBRs, the

multi-region query accesses at most m ∗ n MBRs, where m is the number of regions. The best

49

RTreeScan POSTGIS NRA-STL-Li

20 40 60 80 100

1000

5000

10000

Dataset Size (millions)

Q
ue

ry
 T

im
e

(m
ili

se
co

n
ds

)

Figure 2.18: Comparing performance of NRA-STL-Li, RTreeScan and POSTGIS for different
dataset sizes and selectivity 0.002.

scenario is when there is very large overlap in which case it accesses close to nMBRs (as the R-tree

access paths overlap as well). In terms of the number of STLs involved in the query, if a single

region query reads l STLs, the multi-region query reads m ∗ l STLs in the worst case and around

l in the best case (when the m regions have very large overlap to each other). The exact overhead

depends on how far the regions are from each other.

2.7.6 Comparison to Approximate Solutions

We finally compare our approach with the approximate solution of AFIA [65]. AFIA

keeps k + 1 items in their materialized lists in each grid cell. We emulate its performance by

keeping only k + 1 items in all of our STLs. The top-k algorithm is forced to terminate if it crosses

the k + 1 STL term. We then compare the returned top-k terms with the (exact) solution that our

algorithm would provide. Figure 2.21 shows the average percentage of error for the approximate

approach with k = 10 (using the 15M dataset). The error is computed as missed/k where missed

50

RA-STL- Li MR-RA-STL- Li

0.01 0.02 0.03 0.04 0.05

0

15000

30000

45000

60000

Query Selectivity

Q
u

e
ry

 T
im

e
 (

m
ili

s
e

c
o

n
d

s
)

(a) RA-STL-Li vs MR-RA-STL-Li.

NRA-STL- Li MR-NRA-STL- Li

0.01 0.02 0.03 0.04 0.05

0

75

150

225

300

Query Selectivity

Q
u

e
ry

 T
Im

e
 (

m
ili

s
e

c
o

n
d

s
)

(b) NRA-STL-Li vs MR-NRA-STL-Li.

Figure 2.19: Multi-region query processing using ‘included’ regions.

RA-STL- Li MR-RA-STL- Li

0.01 0.02 0.03 0.04 0.05

0

250000

500000

750000

1000000

Query Selectivity

Q
u
e
ry

 T
im

e
 (

m
ili

s
e
c
o
n

d
s
)

(a) RA-STL-Li vs MR-RA-STL-Li

NRA-STL- Li MR-NRA-STL- Li

0.01 0.02 0.03 0.04 0.05

0

1250

2500

3750

5000

Query Selectivity

Q
u
e
ry

 T
im

e
 (

m
ili

s
e
c
o
n

d
s
)

(b) NRA-STL-Li vs MR-NRA-STL-Li

Figure 2.20: Multi-region query processing using ‘included’ and ‘excluded’ Regions.

corresponds to the number of terms in the correct answer that are not included in the approximate

answer (i.e., we do not consider the position of a term in the returned answer). The error increases

with the selectivity since the number of STLs involved in the calculation increases, and so does the

number of lists for which we have to access beyond the k+1st term.

51

0.01 0.02 0.03 0.04 0.05
0

2.5

5

7.5

10

Query Selectivity

E
rr

or
 %

Figure 2.21: Percentage of error for the approximate solution using different selectivities (15M
dataset).

2.7.7 Discussion

From the experiments presented above we come to the following conclusions: Among

the approaches presented, including the baselines RTreeScan and POSTGIS, the best performance

(considering query time and space requirements) is given by the NRA-STL-Li algorithm. Here is an

ordering of the algorithms from the fastest to the slowest: NRA-STL-Li > NRA-STL-L > POSTGIS

> RTreeScan > RA-STL-Li > RA-STL-L

Note that all the NRA-STL-x algorithms are faster compared to the RA-STL-x algorithms.

NRA is faster because our data resides on the disk, which is at least an order of magnitude slower

to access randomly, and the depth of access by NRA is only around 2 times more on average. RA

could be faster in different scenarios.

Further, the performance advantage of the partial STL-based algorithms (NRA-STL-Li,

RA-STL-Li), incurs very small space overhead as compared to the algorithms that do not maintain

any internal node STLs (NRA-STL-L, RA-STL-L, RTreeScan) and the POSTGIS approach.

52

As an anecdotal evidence for the usefulness of our system from a user’s perspective, we

ran a spatio-temporal query which covers the Catalan region in Spain during the month of Octo-

ber 2013. Among the top-10 frequent tweet terms were terms like ‘barcelona’, ‘madrid’, ‘xavi’,

‘fcbarcelona’. These directly correspond to the famous el clasico soccer match between Real

Madrid and FC Barcelona, which was held on 26 October, 2013.

2.8 Conclusions and Future Work

We proposed an indexing scheme that adds sorted term lists (STLs) for fast answering

of top-k most frequent term queries over spatio-temporal ranges. Our approach uses a theoretical

model to reduce the size of the STLs without sacrificing the query time performance. We presented

RA and NRA algorithms that operate on top of the proposed index structures. The NRA algorithm

with partial STLs was found to have the best performance (when considering query time and space).

We also presented efficient multi-region versions of the algorithms. As future work, we plan to

enhance our STL approach with a distributed threshold algorithm (like [16]) so as to process even

larger volumes of data. Further, we will study how the proposed indexes can handle high-throughput

streaming data.

53

Chapter 3

Reverse Spatial Top-k Keyword Queries

3.1 Introduction

In this chapter, we focus on the reverse problem: given a keyword, we want to find the

spatial (or temporal) regions where this keyword is in the top-k most frequent keywords. This query

has many applications, and depending on the application different query sizes or time windows are

preferable. Consider an advertiser who wants to monitor Twitter posts and identify neighborhoods

where a particular product is among the top-k terms discussed. Smaller result areas (say few blocks

in size) may be preferable, where electronic billboards can be utilized, to advertise a new product or

offer coupons based on the expressed interest in those areas. Location based social media ads can

also be instantly purchased. On the other hand, a political candidate’s campaign may be interested

in identifying larger areas (so that a political rally can be organized) where a specific topic is pop-

ular/unpopular. In this application, posts from a wider time window may be considered (the time

window is not an explicit parameter in our problem, as it determines the posts collection size; we

54

consider different collection sizes in our experiments). As shown by these examples, in addition to

the query term and its importance, the neighborhood size should also be a query parameter.

In this chapter, we investigate such reverse top-k queries on geotagged social posts. Given

a user-specified query term q, rank k and a neighborhood size l, the Reverse Spatial Keyword Query

(RSK) find all the neighborhoods of size l where q is among the k most frequent terms among the

posts in those regions.

The problem is challenging because of the large number of possible neighborhoods (which

is O(N2) for N posts). Instead of searching the whole space, we propose an (exact) algorithm

that uses a filtering step to prune the search space (without missing any answers) and a scan-based

refinement step to find the answers in the resulting pruned space. We use a grid-based index structure

augmented with a materialized sorted term list at each cell to avoid repeated processing of the tweets

during query time. To further minimize the RSK query latency, we propose a theoretical model that

estimates the optimal grid index cell size. Nevertheless, the refinement step can be slow because

of the sheer number of neighborhoods it has to process to find all the answers. Thus we also

explore a restricted version of the problem (RSKR) that limits the possible answers to the cells of

a query provided grid. In addition to an exact solution, for the RSKR query, we present faster but

approximate algorithms where we restrict the number of neighborhood checks using a budget. The

proposed algorithms for RSK and RSKR are highly parallelizable. To take advantage of parallelism,

we propose a slicing technique that enables distributing the workload of the refinement step among

different nodes and thus further reduce the query latency. In summary, our contributions are:

55

• We introduce the Reverse Spatial Keyword (RSK) query on geo-tagged posts and provide an

exact filter and refinement solution. We also consider a restricted version of the query (RSKR)

and provide faster exact and approximate algorithms.

• To minimize the RSK and RSKR query latency we propose a theoretical model that finds the

optimal index cell size and experimentally evaluate its accuracy using validity tests.

• We explore parallelism for all proposed algorithms, using an efficient load slicing technique

to evenly distribute the workload among nodes.

• Using real Twitter datasets, we present a thorough experimental evaluation that verifies our

methods’ efficiency.

The rest of the chapter is organized as follows: Section 4.2 discusses related work, while

Section 4.3 formulates the RSK and RSKR queries. Section 3.4 presents our algorithms for the

RSK and RSKR queries. The proposed model to estimate the optimal grid cell size is discussed in

Section 3.5. The parallel implementation using the slicing technique appears in Section 3.6. Our

algorithms and theoretical models are experimentally evaluated in Section 3.7, while conclusions

and future work appear in Section 4.7.

3.2 Related Work

Reverse Spatial Queries: An example in this category is the reverse k-nearest neighbor

(RkNN) query which returns all data objects that have the query object in the set of their k-nearest

neighbors [9]. Other examples include RkNN for spatial-texual similar objects [49, 50], and the

56

Reverse top-k Boolean spatial keyword query [32]. While we also look at ‘reverse’ queries, we

return regions instead of data objects.

Vlachou et al. [69] introduced the Reverse top-k query, which, given a“product” p, returns

the“weighting vectors” w for which p is in the top-k set. Here, p can be a keyword, while w can be

ranges of various types like time interval, spatial region. [69, 70, 72] propose several threshold based

algorithms to solve reverse top-k queries, while [59] addresses parallel and distributed processing of

the reverse top-k query. Reverse top-k queries can be used to identify the most influential products

[71] or monitor the popularity of locations based on user mobility [73].

More related to our work is the reverse spatial top-k query, which, given a keyword as

input, returns spatial regions based on query-provided preferences like frequency or trend. For

example, given a term and a positive integer k, the Reverse Frequent Spatial (RFS) query [29] finds

the top k locations on the geographical map where the term is frequent. The key difference is that we

can return results of any size while the RFS query returns a list of k cells from the index grid, sorted

by the confidence score which is the approximate frequency of the term. GARNET [42] is a system

optimized for top-k most trending keyword queries over spatiotemporal streams. As a by-product

they also support a restricted version of the proposed RSKR query. We discuss the differences with

RSKR in detail in Section 3.7.5, including an experimental comparison.

Density and Burstiness Queries: Related are also works on density-based queries over

moving object databases. A spatial area is dense if the number of moving objects it contains is

above some threshold [36, 57]. While we consider density to identify the result query regions, we

are different in that we find regions where a keyword is among the top-k most frequent.

57

A burst is identified when an unusually high frequency (a deviation from the expected

frequency) is observed for user provided keyword [44]. [54] examines spatial bursts: given an

interval and a term q, identify geographical regions where the observed frequency of q was unusually

high, within the interval. In [46], we extended the problem to identifying spatiotemporal regions

where a term is bursty. Our work differs in that we provide regions where the term is in the top-k

(instead of simply being bursty); also instead of streaming we focus on a disk-based dataset that can

be indexed.

3.3 Problem Definition

Let D = {o1, o2, ..., oN} be a dataset with N posts over a spatial rectangle of area A.

Each post o ∈ D is a tuple 〈Loc, Terms〉. Here, o.Loc is a spatial point (x, y) that identifies the

location of the post and o.Terms = {t1, t2, ...} denotes the post’s terms, where we ignore duplicate

terms in the same post. Let V = {∪o∈D

o.Terms} be the vocabulary of all terms. For example, Figure 3.1 shows a collection of 10 posts.

The vocabulary, i.e., {∪10i=1oi.T erms} contains 9 terms. Given a region R, the frequency of term

t in R is fR(t) = {count(oi)|t ∈ oi.T erms & oi.Loc ∈ R}. An l-square neighborhood is a

square region with side length l and sides parallel to longitude and latitude. A query term q is (k, l)-

frequent at a spatial point p if the frequency of q is among the top-k highest term frequencies in the

l-square neighborhood centered at p.

Throughout the chapter, we assume the existence of a grid index I that will facilitate query

answering (Figure 3.1a). Each cell in I stores the posts within that cell, sorted along the x-axis. In

each cell we also store a Sorted Term List (STL), which is a materialized list of (term, frequency)

58

Figure 3.1: Sample dataset containing 10 posts. (a) the post locations and grid cells, (b) the post
terms, (c) STLs for Cell 1 and Cell 3.

pairs, sorted by decreasing frequency. A pair (t,f) of the STL indicates that that term t appears in f

posts in that grid cell (Figure 3.1c).

Reverse Spatial Keyword (RSK) Query: An RSK queryQ is defined by a tuple 〈k, q, l〉.

The answer to RSK Q is the set of spatial regions where q is (k, l)-frequent at each point in these

regions. Figure 3.2 shows an example of the result regions (deep blue) of an RSK query for the

query keyword “york”. Any point in the deep blue areas is a center of an l-square neighborhood

where q is in the top-K. Note that such result regions can be anywhere (independently of the index

cells).

Figure 3.2: RSK (deep blue) and RSKR (light blue) results for keyword “york”.

59

Computing the exact answer to the RSK problem involves checking a large number of

neighborhoods and is thus expensive. For that reason, we also propose a resctricted version of the

problem (RSKR) defined next.

RSK-Restricted (RSKR) Query: An RSKR queryQR is again a tuple 〈k, q, l〉, however,

the answer to RSKR QR is the set of cells from the index grid I that contain at least one point

where q is (k, l)-frequent. It is called ‘restricted’ since the answer is limited among the grid cells.

Figure 3.2 shows the result of an RSKR query in light blue (for the same q as above). Note that

all the results of RSKR are orthogonal polygons whose sides coincede with the grid but the results

of RSK are orthogonal polygons with sides parallel to longitude and latitude. Moreover, from the

query definitions, the RSKR result polygons always contain the RSK ones.

3.4 Proposed Algorithms

Consider an RSK query 〈k, q, l〉. The straightforward algorithm to find all the results for

this query needs to scan the whole spatial rectangle A. Unfortunately, the cost of this algorithm is

prohibitively expensive for large datasets, as there are O(N2) different l × l square windows that

must be checked. Assuming that the cost of processing each post is constant, the amount of work

for each window is O(l
2N
A), resulting to O(N3) behavior (since area A and neighborhood size l are

not dependent on N).

For both the RSK and RSKR queries, our proposed query processing algorithm consists

of two steps: (a) Filtering step: Using the stored STLs we identify the cells that are guaranteed to

be in the answer (accepts) and the cells that are guaranteed not to be answer (rejects). The rest of

the cells are candidate cells i.e., the filtering step cannot decide whether they are answers or not.

60

We process these candidate cells in the refinement step. (b) Refinement step: For RSK queries, for

each candidate cell, we propose an efficient plane-sweep algorithm to compute the points in that cell

where q is (k, l)-frequent. For RSKR queries, the refinement step decides, with some confidence,

if there is any point in a candidate cell where the query is (k, l)-frequent (recall that for RSKR,

the answer is returned at the cell granularity). We proceed with the common filtering step; the

refinement step for RSK appears in Section 3.4.2 while the (several variants of the) refinement step

for RSKR in Section 3.4.3.

3.4.1 Filtering Step

Let lmin be the minimum l size that we want to support in the RSK and RSKR queries.

Then, the cell size of the grid index I must be c ≤ lmin
2 . This condition is necessary for the

filtering step of the algorithm to be applicable as we discuss below. Let l× l be the size of the query

neighborhood and c×c be the size of cells in the grid index. Let ηH = d l2ce and ηL = b l2cc. We define

the conservative region Ci,j for a cell Ci,j as the union of cells Cu,v for which i− ηL < u < i+ ηL

and j− ηL < v < j+ ηL. Similarly, we define the expansive region Ei,j for a cell Ci,j as the union

of cells Cu,v for which i − ηH ≤ u ≤ i + ηH and j − ηH ≤ v ≤ j + ηH . Figures 3.3a and 3.3b

show the expansive and conservative regions of a cell respectively, using l = 3c.

Any point p in cell Ci,j is at most l/2 distance away from the edges of Ci,j (since c ≤

lmin
2), so p’s l-square neighborhood completely contains Ci,j . Hence, the Ci,j score is a lower bound

for the frequency of the query keyword. Similarly, any point p in cell Ci,j is at least l/2 distance

away from the edges ofEi,j , so p’s l-square neighborhood is completely contained in Ei,j . Thus the

score in Ei,j is an upper bound for the frequency of the query keyword. Therefore, if the frequency

of the query term q in Ci,j is greater than the frequency of the kth term in Ei,j , then Ci,j is accepted

61

as an answer. This means q is (k, l)-frequent for all the points in Ci,j and we color the cell as

GREEN (accept). On the other hand, if the frequency of q in Ei,j is less than the frequency of the

kth term in Ci,j , then there cannot be any point in Ci,j that is an answer. Thus q is not (k, l)-frequent

for any point in Ci,j and we color the cell as RED (reject).

The rest of the cells are candidate cells and we color them as GRAY. Only a subset of

GRAY cells might be in the answer so they have to go through the refinement step (next section)

to calculate which parts of the cell (if any) where q is (k, l)-frequent. Figure 3.5 shows an example

output of the filtering step.

(a) (b)

Figure 3.3: (a) Cell expansive region for ηH = 2, (b) Cell conservative region for ηL = 1.

Figure 3.4: Horizontal Jump length estimation.

62

Figure 3.5: Example output of the Filtering step.

(a) Expansive region (b) Vertical Jump. (c) Multiple Vertical Jumps.

(d) Horizontal Jump. (e) Many Horizontal Jumps.

Figure 3.6: Steps of the Proposed Algorithm for RSK query.

63

3.4.2 Refinement Step for the RSK Query

In this step, we process each candidate cell to find all points in the candidate cell Ci,j

that are (k, l)-frequent. Let candidate cell Ci,j have left-bottom corner (xl, yb) and right-top corner

(xr, yt). The expansive region, Ei,j of Ci,j is a square whose left-bottom corner is (xl − l/2, yb −

l/2), and right-top corner is (xr + l/2, yt + l/2). Clearly, it contains all posts that appear in the

l-square neighborhood of any point p ∈ Ci,j (see Figure 3.3a).

We use a plane-sweeping algorithm to identify all the l-square neighborhoods within the

expansive region (Ei,j) of the cell Ci,j . Throughout the chapter, we discuss one way to traversing

the XY-plane by intially fixing the region on X-axis and moving on the Y-axis. After we are done

one X-axis, we can move on Y-axis. The order of axes can be easily swapped but it would not

change the answer. Before we begin describing the steps of the algorithm, lets define some terms

we will frequently use in the chapter.

Vertical Strip (VS): A vertical strip is a rectangle whose top and bottom border equals

to that of the expansive region. Its width over X-axis is equal to l. In Figure 3.6a, we see both a

vertical strip and an l-square neighborhood with respect to an expansive region. We start from the

left side of the expansive region, Ei,j (we could have started from the right side as well). We put

the vertical slide on the left side of Ei,j and the 1st l-square neighborhood, along the top border as

shown in Figure 3.6a.

Processing the posts that are contained in the l-square neighborhood and adding them in

the hashtable (we call it termFreqMap) takes a lot of time. As we already have processed the

posts for each cell in the grid, we can leverage STLs to save time. Whenever we are processing an

l-square neighborhood, we find out the cells C that are fully contained in the l-square neighborhood.

64

Then, we calculate the regions P that are not covered by the regions covered by the cells in C. Then,

we process the posts in P to calculate the hashtable termFreqMap. Finally, we combine all the

STLs from the cells in C into termFreqMap. Then we fetch the frequency fq of q and fk of the

kth most frequent keyword, from termFreqMap. We use the QuickSelect algorithm [38] to fetch

the score for the kth most frequent term in the termFreqMap which takes O(n) time. This allows

to avoid the additional cost of sorting all the terms in termFreqMap based on their frequencies, to

fetch the score of the k-th most frequent term. If fq ≥ fk then q is (k, l)-frequent in the l-square

neighborhood, otherwise it’s not. In either case, we find the next l-square neighborhood. As we

started from the top of the vertical strip, we can only go down along the Y-axis.

Getting the Next l-square neighborhood by Shifting: If we change (add/remove) one

post in the l-square neighborhood, we get a new l-square neighborhood. We do this by finding the

post (o1) that is closest to the top border and the post (o2) that is closest to the bottom border, both

on the bottom side. Then, we compute the distance (d1) between top border and o1 and the distance

(d2) between the bottom border and o2. If d1 < d2, we choose the Y coordinate of 01 as the new top

border and find our next l-square neighborhood to check. If d1 > d2, we choose the Y coordinate

of 02 as the new bottom border and find our next l-square neighborhood to check.

We propose further optimizations by introducing vertical and horizontal jumps. Instead

of going post by post to find new windows, we can skip several posts at once. The number of posts

that we can safely skip without change of answer is equal to the difference between the worst-case

frequency of q, fw and the kth most frequent term in STLCF i.e., |(fw − fk)|. It means that all

the l-square neighborhoods that can be created by these skipped posts have the same result as the

previous one. Thus the total number of l-square neighborhoods we have to check to find all the

65

answers drastically reduces. We can speed up the refinement process of sweeping along the Y-axis,

by using a Vertical Jump: instead of shifting by one post, we shift by |fq - fk| posts. Since a

term is considered present in a post at most once, we are not missing any results. If a vertical jump

starts from an l-square neighborhood which is an answer (i.e., q is (k, l)-frequent), then it generates

a line segment, starting from the center of the current l-square neighborhood to the center of the

next l-square neighborhood which is an answer, as shown in Figure 3.6b. The length of these line

segments depends on the size of vertical jumps. Any point along this line can be the center of an

answer.

Reuse Previous Calculation: Due to the nature of the algorithm, there is much overlap

between two consecutive l-square neighborhoods. As in most cases, we jump only a portion of

the total posts contained in the query region. As a result, there are many posts that are common

between two consecutive l-square neighborhoods. As there is overlap between two consecutive l-

square neighborhoods, we can use the calculation of the previous window to assist in the calculation

of the next window. To use the calculation of the previous window, we remove the scores of the posts

that were part of the previous window but not part of the new l-square neighborhood. Similarly, we

add the scores of the posts that are newly added i.e., part of the new l-square neighborhood but

not part of the previous l-square neighborhood. We create two separate lists, one containing the

removed posts and the other containing the newly added posts. We use these two lists to update

the termFreqMap from the previous l-square neighborhood to get the termFreqMap for the new l-

square neighborhood. We continue until the new l-square neighborhood’s bottom border reaches or

goes beyond the bottom border of the expansive region as shown in Figure 3.6c. It means we have

66

completed the processing of the current vertical strip. Now we start processing of a new vertical

strip by shifting on the right side along the X-axis.

After we reach the bottom border of the expansive region or the vertical strip, we have

the information for all the l-square neighborhoods that were checked in that vertical strip including

their individual jump sizes i.e., {j1, j2, . . . jn}. In the lemma below, we show that we can make a

safe jump of j = jmin
2 posts on the X-axis (Horizontal Jump) without losing any results, where

jmin = min(j1, j2, . . . jn) is the minimum amount of vertical jump in the vertical strip.

Lemma 1 : If a vertical strip makes a horizontal jump of j = jmin
2 posts, where jmin was the

minimum amount of vertical jump in the vertical strip, we will not miss any result.

Proof. Intuitively, we are looking for the minimum safe jump radius around any point

that can be the center of an l-square neighborhood in the current vertical strip (i.e. the point in along

the middle vertical line of the current vertical strip). Let A be the point with the minimum safe

vertical jump jmin, and B the destination of the jump as shown in Figure 3.4. The point x between

A and B (and also in the whole moddle line of the current vertical strip) with minimum safe jump

radius is the one where we go with a vertical jump of jmin
2 from A. x has a remainder safe jump

radius of jmin
2 , which is the horizontal safe jump amount we can do. If we would consider another

point X’ farther from x, then x’ would be closer to B (and hence its horizontal safe jump would be

bounded by jB
z , where z would be smaller than 2 (closer to B than the midpoint x) and jB ≥ jmin,

so jB
z ≥

jmin
2 .

Figure 3.6d shows an example of horizontal jump. Next, we process the new vertical

strip in the same way as mentioned above. We keep shifting vertical strips, until the right border

of the new vertical strip reaches or goes beyond the right border of the expansive region, Ei,j .

67

This concludes the processing of one candidate cell. The overall algorithm is formally presented

in Algorithm 8. Figure 3.6e shows an example where the 6th vertical strip is beyond the expansive

region boundary (shown as a purple vertical line on the right), so the refinement step stops at the 5th

vertical strip. Each horizontal jump stretches the line segment(s) generated in one vertical strip into

rectangles (as shown in Figure 3.6d). The width of these rectangles depends on the horizontal jump

size. The orthogonal polygons in the RSK query result (Figure 3.2) are created by the union of all

these rectangles. Note that q is (k, l)-frequent at any point within these polygons.

Using vertical and horizontal jumps, the total number of l-square neighborhoods that the

RSK algorithm checks is N2

j (where j is the average jump size), which results to O(l
2N3

jA) running

time. This is still O(N3) however, j is a large constant resulting in much better performance in

practice than the straightforward algorithm.

3.4.3 Refinement Step for the RSKR Query

The refinement step of the RSK query algorithm checks a large number of l-square neigh-

borhoods which leads to high query latency. One approach to lower the query latency is to stop pro-

cessing within a candidate cell as soon as the first l-square neighborhood where q is (k, l)-frequent

is found in that cell. Thus the refinement step of the RSKR query algorithm returns exactly those

cells that have answers. But for the candidate cells where there is no result, this simple approach

will still check all windows centered within this cell (i.e. the same approach as the exact solution).

Coordinate Division: To reduce query latency, we propose an approach that divides the

search space and checks a bounded number of l-square neighborhoods per candidate cell, based on

a technique we call Coordinate Division (CD). This technique is applied on each candidate cell in

68

Algorithm 8 RSK(cell, q)

Require: Query term q and cell contains a STL for the posts in that CELL
Ensure: Return all the l × l sized squares where q is among the top-k

1: posts← getAdjacentposts(c)
2: sortpostsLongitude(posts)
3: while true do
4: cell← Cell(left, topBorder)
5: currentPosts← postsIn(posts, cell)
6: sortpostsLatitude(currentPosts)
7: top← topBorder
8: while true do
9: cellY ← newCell(V erticalStrip, left, top)

10: for each post in currentposts do
11: currentPostsY ← post
12: if not in previousGrid then
13: newlyAddedpost← post
14: if prevGridexists then
15: termFreqMap← processRemovedposts()
16: termFreqMap← processNewlyAddedposts()
17: else
18: termFreqMap← processposts(currentPostsY)
19: qscore ← termFrequencyMap.get(q)
20: kthScore← quickSelect(termFreqMap.values(), k)
21: if qscore ≥ kthScore then
22: result← cellY
23: c.color ← GREEN
24: jump← |kthScore - qscore|
25: jumps← add(jump)
26: prevGrid← cellY
27: if cell.bottom ≥ bottomBorder then
28: break
29: minJump← min(jumps)
30: V erticalStrip← jump(V erticalStrip,minJump)
31: if cell.right ≥ rightBorder then
32: break
33: return result

69

iterations. In one iteration, within each candidate cell, a random point is chosen and used as the cen-

ter of the l-square neighborhood. If that neighborhood is an answer the algorithm stops processing

that cell. If not, the chosen point is used to divide the cell space into four regions. A random point

is then chosen in each of the four regions. If an answer is found in any of the four l-square neigh-

borhoods centered on these points, the algorithm stops processing this cell. Otherwise, a diff value

is calculated for each of the four l-square neighborhoods; this diff value is the difference between

the score of the query term q and the score of the kth most frequent term in the l-square neighbor-

hood. The algorithm picks the region with the point that has the lowest diff value and continues by

dividing that region into four parts as before. This iteration stops either when a result is found or an

upper bound for the number of divisions is reached. Checking whether an l-square neighborhood is

an answer or not is similar as with the RSK query algorithm with one variation. Since we randomly

choose points, the algorithm will use the previous termFreqMap only when there is enough over-

lap (at least 50%) between subsequent l-square neighborhoods. Note that because points are picked

randomly, a CD iteration over a candidate cell may miss some results. Hence, we allow the RSKR

query algorithm to run multiple iterations on candidate cells where no answer is found.

There are thus two parameters affecting the RSKR query algorithm performance: (i) the

number of divisions, and (ii) the number of iterations. Increasing any of these parameters improves

the accuracy at the expense of query latency. The overall algorithm is formally presented in Algo-

rithm 9.

We implemented two additonal heuristics on the RSKR query algorithm: (i) Partial STL:

When a cell is partially contained in the l-square neighborhood, instead of identifying and process-

ing the posts that are contained in this l-square neighborhood, we access the STL of that cell and

70

Algorithm 9 RSKR−Approximate(GRID, q)
Require: Query term q and GRIDINDEX is the space covered divide into cells. Each CELL in GRIDINDEX

contains a STL for the posts in that CELL
Ensure: Color all the cells in the GRIDINDEX to indicate whether there is any l× l sized squares in the cell

where q is among the top-k
1: while there is more randomRestart do
2: while true do
3: randomPoint← calculateRandomPoint(cell)
4: topLeftCell← calculateTopLeftCell(cell)
5: scoreTopLeft← calculateScore(topLeftCell)
6: if scoreTopLeft > 0 then
7: cell.color ← GREEN
8: break
9: topRightCell← calculateTopRightCell(cell)

10: scoreTopRight← calculateScore(topRightCell)
11: if scoreTopRight > 0 then
12: cell.color ← GREEN
13: break
14: bottomLeftCell← calculateBottomLeftCell(cell)
15: scoreBottomLeft← calculateScore(bottomLeftCell)
16: if scoreBottomLeft > 0 then
17: cell.color ← GREEN
18: break
19: bottomRightCell← calculateBottomRightCell(cell)
20: scoreBottomRight← calculateScore(bottomRightCell)
21: if scoreBottomRight > 0 then
22: cell.color ← GREEN
23: break
24: max← max(scoreTL, scoreTR, scoreBL, scoreBR)
25: if max ≤ score then
26: break
27: if max == scoreForTopLeft then
28: rightBorder ← randomX
29: bottomBorder ← randomY
30: if max == scoreForTopRight then
31: leftBorder ← randomX
32: bottomBorder ← randomY
33: if max == scoreForBottomLeft then
34: rightBorder ← randomX
35: topBorder ← randomY
36: if max == scoreForBottomRight then
37: leftBorder ← randomX
38: topBorder ← randomY
39: else
40: break
41: return result

71

multiply its scores by the percentage of overlap. (ii) STLOnly: We can further speed up latency by

only considering the STLs of the cells that are fully contained in the l-square neighborhood. The

effects of these heuristics on query latency and accuracy are examined in the experimental section.

The RSKR results are produced by the union of the returned grid cells; hence they are orthogonal

polygons aligned to the grid (shown in light blue in Figure 3.2).

3.5 Optimal Cell Size Estimation

This section presents a theoretical analysis for the processing cost of the RSK and RSKR

queries. The objective is to find the optimal cell size that minimizes the processing cost of the two

corresponding refinement steps presented in Sections 3.4.2 and 3.4.3. First, we discuss estimating

the optimal cell size for RSKR which is necessarily the calculation we need to estimate optimal

cell size for a single l-square neighborhood. After that, we will use the calculation to estimate the

optimal cell size for RSK problem. Table 3.1 summarizes the notation used in the analysis.

3.5.1 Analysis of the RSKR refinement step

Let, N be the total number of posts in the input dataset, c be the side length of the square

cells, l be the side length of the square l-square neighborhood, and A be the total area of the min-

imum bounding rectangle (MBR) that covers the input dataset. The area of one cell is c2, area of

the l-square neighborhood is l2 and the total number of cells is A
c2

. Assuming a uniform distribution

of the data points, the average number of posts per cell is ρ = Nc2

A . Let the number of cells that are

fully contained and partially contained in the l-square neighborhood be I and P , respectively. The

72

Symbol Description
N Total number of posts in the input
A Total area covered by the dataset
c Side length of the square cell
l Side length of the square l-square neighborhood
ρ Average number of posts per cell
y Average number of terms per post
K First parameter in Heap’s Law
β Second parameter in Heap’s Law
I Number of cells fully contained in the l-square neighborhood
P Number of partial cells in the l-square neighborhood
NC Number of posts in a cell
NV S Number of posts in a vertical strip
NE Number of posts in an expansive region

Table 3.1: Notations used throughout Theoretical Analysis.

l c

Fully contained

Partially overlapping

l-square neighborhood

< c

> l − 2c

< c

Figure 3.7: Fully contained cells and paritally intersecting cells in the l-square neighborhood.

total cost of processing an l-square neighborhood is divided into two parts, the cost of processing

fully contained cells and the cost of the partially contained cells.

Cost of processing fully contained cells: To compute the cost of processing fully con-

tained cells, we compute the total number of fully contained cells I and multiply this by the average

cost of processing one cell.

Lemma 2 There is at least (lc − 1)2 cells that are fully contained in the l-square neighborhood.

73

Proof. As illustrated in Figure 3.7, there is at most two partially overlapping cells along

each dimension, i.e., one partial cell on each end. The length of overlap between the query region

and a partial cell is less than c. This means that the length of all fully contained cells is > l − 2c.

Along that length, the number of cells is larger than dl/ce − 2 cells. Since the number of cells is an

integer, the number cells along one dimension is at least dl/ce − 1. This means that there is at least

(l/c− 1)2 fully contained cells.

From Lemma 2, the total number of fully contained cells is I = (lc − 1)2. Next, we will

calculate the average cost of processing one fully contained cell.

The RSKR refinement step processes fully contained cells by simply merging their STLs

into one. Each STL contains a list of term frequencies. First, we need to compute the average size

of one STL, i.e., the number of unique terms in one cell. To estimate the number of unique terms in

one cell we use Heap’s Law [26], STLsize = K(ρ ·y)β , where ρ = c2N
A is the total number of posts

in a cell, y is the average number of words per post, K and β are two free parameters of Heap’s Law

that are calculated once for the entire dataset. The total processing cost of all fully contained cells,

TI = I · STLsize = (lc − 1)2 ·K(ρ · y)β = (lc − 1)2 ·K(c
2Ny
A)β .

Cost of processing partially intersected cells: We compute the cost of processing par-

tially intersected cells by splitting it into two steps, fetching and processing. The fetching step scans

all posts inside partially intersected cells to find the posts that are inside the l-square neighborhood.

The processing step scans all the terms in all the fetched posts to update the overall term frequencies

in the l-square neighborhood. The details are provided below.

Lemma 3 There is at most 4 lc partially intersecting cells in the l-square neighborhood..

74

Proof. According to Lemma 2, there is at least l
c − 1 fully contained cells along each of the two

dimensions. Additionally, there is at most two partially intersecting cells on each end of these cells.

This makes the total number of partially intersecting cells that surround the fully contained cells

from the four directions 4(lc − 1). In addition, there are four additional partially intersecting cells

on the four corners. This makes the total number of partially intersecting cells 4 lc .

According to Lemma 3, there are 4 lc cells intersecting with the l-square neighborhood.

Since these cells are not fully contained in the l-square neighborhood, we cannot simply use their

STLs and we will need to fetch and process the individual posts inside the l-square neighborhood.

Assuming no index inside each cell and a unit cost of processing each post, the cost of fetching the

posts is equal to the total number of posts in partially contained cells which is 4 lc ·
c2N
A = 4lcN

A .

Second, the cost of processing the posts is equal to the total number of terms (not unique

terms) in all posts inside the l-square neighborhood. The area of l-square neighborhood is l2, the

area covered by the fully contained cells is (lc − 1)2 ∗ c2, thus, the area covered by partial cells is

l2 − (lc − 1)2 ∗ c2 = 2lc− c2. Assuming uniform distribution and y terms per post, the total cost of

processing all partially intersecting cells, TP = 4lcN
A + yN

A (2lc− c2). The total cost for processing

a single l-square neighborhood, θ is shown in Equation 3.1.

θ(c) = (
l

c
− 1)2 ∗K(

c2yN

A
)β +

4lcN

A
+
yN

A
(2lc− c2) (3.1)

The optimal cell c∗ is the cell size that minimizes the value of θ in Equation 3.1; to find

c∗ we use Wolfram Alpha [76].

If the filtering step generates a total of G number of candidate (gray) cells for a query

keyword, in the worst case, the refinement step of RSKR will check B
G∗θ(c) l-square neighborhoods,

75

where B is the total budget allocated for a query keyword which is equally divided among the

candidate cells. With the change in the number of candidate cells, the budget per candidate cell

changes as well.

Example: Let N = 15 million, y = 3, l = 1, A = 220, K = 1.92 and β = 0.07197.

Equation 3.1 has a local minimum at c = 0.0346488 and local maximum at c = 0.840214.

3.5.2 Analysis of the RSK refinement step

We use the same notations used in the previous section to analyze the running time of

the exact RSK refinement algorithm. We break down the running time of the RSK algorithm as

follows: 1. All the posts in the expansive region are sorted by x. 2. The posts in the first vertical

strip are sorted by y. 3. The first l-square neighborhood is processed as analyzed in Section 3.5.1.

4. Subsequent l-square neighborhoods in each vertical strip are processed through vertical jump.

5. The next vertical strip is identified and steps 2-4 are repeated until all vertical strips are processed.

In the next part, we analyze the processing cost for the above steps in order.

1. To estimate the sorting cost, we need to estimate the total number of posts in the ex-

pansive region. The number of cells in the expansive region is (2 · l2c + 1)2 = (lc + 1)2. Assuming

uniform distribution of posts over the space, post count in expansive region, NE =
(
l
c + 1

)2 · c2NA .

So cost of sorting posts in expansive region, sortE = NE log(NE).

2. Similarly, the area of the vertical strip is l · c · (lc + 1). Assuming uniform distribution,

post count in vertical strip is: sortV S = l · c ·
(
l
c + 1

)
· NA log(NV S).

3. The first l-square neighborhood in a vertical strip is processed similar to RSKR query

in Section 3.5.1 and the processing cost is given by Equation 3.1.

76

4. To compute the cost of subsequent l-square neighborhoods, we need to estimate the size

of the vertical jump j. We estimate the jump size to be the absolute difference between the estimated

frequencies of the query keyword and the kth keyword, |fq − fk| in the l-square neighborhood,

j =
∣∣∣ l2c2yNA ·

(
1
rq
− 1

k

)∣∣∣, Where rq is the rank of the query keyword in the dataset. Given the jump

size, we can estimate the number of l-square neighborhoods checked per vertical strip, lCountV S =(
NV S − N ·l2

A

)
/j. From steps 2-4, the cost of processing one vertical strip is, costV S = sortV S +

θ + j · y · lCountV S .

5. To estimate the number of vertical strips, V SCount, we compute the size of the hori-

zontal jump to be half that of the vertical jump, i.e., j/2. Estimated number of vertical strips is,

V SCountE =
⌈
2·(NE−NV S)

j

⌉
.

To sum it up, step 1 is performed only once, steps 2-4 are performed for each vertical strip,

and step 5 determines the number of vertical strips. Therefore, the total cost of the RSK refinement

step is as follows θF (c) = sortE+costV S = sortE+(sortV S+θ+ jy · lCountV S) ·V SCountE =

NE log(NE) + (NV S log(NV S) + θ + jy · lCountV S) · V SCountE . The optimal cell c∗ is the cell

size that minimizes θF (c) as before, we find c∗ using Wolfram Alpha [76].

3.6 Parallel Implementation

RSK parallelism: As the experimental results will show, the RSK query provides an exact answer,

but it is time consuming. Among the two parts of the algorithm, filtering is very fast because it only

processes the STLs (i.e. not the actual posts). In contrast, the refinement step processes the actual

posts, hence it takes much longer (about 99% of the query latency). In this section, we explore

how parallelism can be used to further improve query latency for the refinement step. Our aim is

77

to divide the work among the participating nodes so as to achieve balanced load. During the RSK

refinement step, the time taken by each candidate cell varies substantially (see Figure 3.8). Since the

RSK algorithm as presented, checks l-square neighborhoods first along the Y-axis, we introduce a

vertical slicing mechanism that divides the work from busy candidate cells into smaller independent

units (slices) that can be processed in parallel.

Figure 3.8: Refinement time for different candidate cells for q = ”home” and k = 5.

Figure 3.9: Correlation between refinement time and cell post count (left), expansive region post
count (right), for q = “home”, k = 5.

Indicators of Large Refinement Time: Since the actual refinement time for a particular

candidate cell is query dependent and not known until the refinement step is executed, we would like

to find indicators that can accurately estimate the refinement time and are either precomputed (i.e.

78

query independent), or easy to compute at query time. For each candidate cell we considered four

such indicators, namely: (a) its post count, (b) the post count in the expansive region of the cell, (c)

its jump size and (d) the jump size in its expansive region. Among them, (a) is query independent,

while the rest are easy to compute after the filtering step. For example, (c) uses the jump size

(|fq − fk|), while (d) depends on the jump size and l. Similarly, (b) can be easily computed per

candidate cell using l and cell post counts.

Our experiments showed that the jump size indicators are also dependent on the post

count (which is to be expected because the maximum possible jump is equal to the post count).

Hence we concentrate on the post count based indicators; Figure 3.9 plots the correlation between

the refinement time and the post counts (cell or expansive region). Clearly, the post count in the

expansive region (termed as NE) is the indicator of choice as it has the highest correlation with

refinement time. Intuitively, the posts in the expansive region are a better representative of the posts

needed to answer the RSK query for a given candidate cell.

Figure 3.10: Equal-width (left) and equal-post slicing (right).

79

Slicing: Let G be the set of the candidate cells provided by a query’s filtering step. Below

we discuss a heuristic that slices candidate cells with high NE . In particular, each candidate cell is

assigned a slice count s (the number of slices for that cell).

LetM be the number of cores in the cluster. SummingNE for all cells inG represents the

amount of work (all posts that need to be considered) needed by the RSK refinement step. Ideally,

we would like to divide this workload equally among all nodes, but this is not possible since each

NE is of different size. To enable easier distribution we divide the workload into γ ∗M slices where

γ is a constant which indicates the average number of slices per node. By varying γ, we can control

the total number of slices created. The average work per slice is τ =

∑
G
NE

M∗γ and the slice count for a

given candidate cell is s = bNEτ c. The proposed heuristic assigns s slices to the candidate cells with

s > 1.

Figure 3.10 (left) shows a cell sliced vertically into four equal-width slices (s = 4).

While processing a slice in the refinement step, we use the boundary of the slice instead of the

boundary of the cell. For example, processing the third slice only checks for the l-square neighbor-

hoods whose centers are in the rectangle with left-bottom corner (xl+2d, yb) and right-top corner

(xl+3d, yt) (where d = c
s). Since posts may not be uniformly distributed within a cell, we also

explored equal-post slicing. Figure 3.10 (right) shows an example. Here, the vertical strips are

positioned on the X-axis so that each slice has the similar number of posts. Our experiments (not

shown) showed that using equal-post slicing offered 8-15% improvement in query latency.

Processing a particular slice needs to be independent; hence the node that is assigned a

given slice should have all the data needed for processing the refinement step on this slice. Ideally,

one could identify the posts and STLs for the expansive region of each slice. Since this is time-

80

consuming, we instead send to the assigned node the posts and STLs included in the expansive

region of the parent cell. We call this data the Cell Data Store (CDS). All slices of a given cell get

the same CDS.

The final step assigns the slices (and their CDS) to the M cluster nodes. All slices are

stored in a sorted list (in decreasing order) according to their parent cell’s NE . We start with M

empty buckets (one bucket for each cluster node) and assign the topM slices from the list sequen-

tially to the buckets. Buckets are then added in a priority queue that orders them (in decreasing

order) according to their aggregate NE . The bucket with the smallest aggregate NE is assigned the

next slice from the sorted list; this process continues until all slices are assigned.

We presented slicing in a vertical way since it has to obey the same direction as the plane

sweep algorithm. If instead we had used a horizontal sweep line, slicing would be horizontal.

However, we have found that performing slicing in both directions would not be as effective. This

is because slicing in both dimensions will reduce the number of vertical jumps. Further, the size of

a horizontal jump is equal to half of the minimum of all the vertical jump sizes (jumpmin2), and thus

is typically smaller than a vertical jump.

RSKR parallelism: We also explore parallelism for the RSKR query algorithm. Since this algo-

rithm terminates as soon as a result is found while processing a given cell, slicing will not help.

Since slices of a cell are processed at different nodes, if a result is found on a slice we would need to

terminate all other slices of the same cell. Instead, to parallelize RSKR, we distribute the candidate

(gray) cells among nodes using a bucket-based approach as above (so that every node gets a similar

amount of tweets).

81

3.7 Experiments

3.7.1 Setup

Hardware: We experimentally evaluate the presented algorithms, both for single-node and multi-

node environments. All single-node experiments are run on a machine featuring an Intel Core i-7

processor (8 cores) with 16 GB of RAM and 7200 rpm hard drive. The single-node experiments

use all available (eight) cores on the processor. All multi-node experiments are run on an AWS

Spark cluster. Each slave machine was r5.xlarge with 4 vCPUs and 32GB of memory. We run one

executor per core (vCPU).

Datasets: Using the Twitter streaming API [5], we collected all geo-tagged (i.e., tweets

that have the user’s GPS location or the user’s ‘Twitter Place’), English-based tweets (i.e., excluding

empty tweets or tweets with only URLs) from a rectangle that contains the New York state and

surrounding areas (i.e., region A has GPS coordinates: -91, -66, 46, 36) for the six month period

from August 2014 to January 2015. This resulted in a dataset with 15M geo-tagged tweets (12GB in

size). In particular, since most users do not typically reveal their phone’s GPS [22, 41], there were

only about 3% tweets with actual GPS location. For the rest of the geo-tagged tweets (i.e., those

with the user’s ‘Twitter Place’) we used as location, a random point in the provided polygon that the

Twitter API shares for ‘Place’. Each tweet record has the tweet’s spatio-temporal coordinates and

its terms. After removing stopwords, each tweet has an average of 5 terms.

As discussed in Section 3.4, the RSK query is computationally very expensive with re-

spect to the number of tweets involved in the query, which is application dependent. This number

can increase either by collecting (over time) more tweets over an area, or by increasing the area’s

size. Our experiments use datasets derived from the full dataset above (by keeping the area fixed

82

Symbol Rank Keyword
Q1 1 Love
Q5 5 Good
Q10 10 Sorry
Q25 25 Home
Q50 50 Hope
Q200 200 Change

Table 3.2: Keyword ranks.

but limiting the time interval), with sizes varying from 10K tweets to the full dataset of 15M tweets.

This is needed for testing the scalability of our algorithms as well for emulating scenarios where an

application deals with an area/interval that contains fewer data. For comparison purposes, today’s

Twitter API provides around 28.5K tweets with GPS location per day for the above rectangle A.

Query keywords: In our experiments, we use query keywords that have different ranks

in the dataset based on their frequencies. Table 3.2 shows six keywords with ranks 1, 5, 10, 25, 50

and 200 based on their frequency in the full 15M dataset. Depending on the dataset used in each

experiment, the actual keyword at a specific rank may be different. Furthermore, throughout this

section, if not otherwise specified, we use k = 10.

Index Structure: We divided the space covered by each dataset into a uniform grid of

square cells with each cell containing tweets that are in the geographical area covered by that cell.

Each cell is enhanced with a STL of it’s tweets.

3.7.2 Model Validation

To check the optimal cell size estimator model, we run stability and validity tests. In

the stability tests, we depict how the optimal cell size produced by the model differs from the

experimentally obtained ‘best’ cell size. In particular, we experimented with a fixed set of square

83

cell sizes, with side length: 0.5, 0.25, 0.125, 0.1, 0.05, 0.025, 0.02, 0.01, 0.005 (degrees of longitude

and latitude). In each experiment we report the experimentally best cell size as the cell size that

showed the smallest query latency.

(a) Validity test (cell size) - varying k.
(b) Validity test (cell size) - varying query
keywords.

(c) Validity test (cell size)- varying query
sidelength. (d) Validity test (speedup) - varying k.

(e) Validity test (speedup)- varying query keywords.
(f) Validity test (speedup)- varying query
sidelength.

Figure 3.11: Validity test with respect to cell sizes and speedup for cell size estimator.

The validity results with repect to cell size for the RSK and RSKR problem appear in

Figures 3.11(a)-(c). In these experiments, we used the RSK algorithm with vertical and horizontal

84

jumps (Algorithm 8) on the full dataset (15M) and varied k (from 1 to 100), the query keyword

rank (Q1 through Q200) and the query neighborhood size l (from 0.1 to 5 degrees). As it can be

seen, the theoretically optimal cell size for RSK and the experimentally ‘best’ are very close in all

experiments, while varying different parameters. We also observe that with the change of parameters

i.e., k, Q and keywords, the optimal cell size remains stable and doesn’t show any abrupt changes.

Figures 3.11(d)-(f) present the validity tests with respect to speedup for the RSK problem using the

same dataset and varying the same parameters. Here the normalized difference between the query

latencies, for the theoretically optimal cell size cθ and the experimentally ‘best’ cexp is depicted,

as the speedup: Latency(cθ)−Latency(cexp)
Latency(cθ)

. As it can be observed from these figures, the difference

between the query latencies remains low (within 10%). We also run stability and validity tests for

the RSKR problem using Algorithm 9 on the large dataset (15M) varying the same parameters. As

before, we observe that the model is quite accurate.

For simplicity, in the rest of the chapter we fix the value of k to 10; for this k the theoreti-

cally optimal cell size cwas close to 0.25 which is the cell size we used in the following experiments

(unless otherwise mentioned).

3.7.3 Single Node Evaluation

We first examine the performance of the RSK query. For these experiments, we use a dataset of

10K tweets taken by random sampling from the full dataset. We compare three algorithms, namely,

the baseline (RSK-W, i.e. without jump), RSK with only vertical jump (RSK-V) and RSK with

both vertical and horizontal jump (RSK-VH, described in Algorithm 8). Figures 3.12a and 3.12b

present the query latencies of the algorithms while varying the query keyword positions q (using

l = 0.5) and the query neighborhood size l (using keywordQ5) respectively. The baseline approach

85

(a) Varying query keyword (b) Varying neighborhood sizes

Figure 3.12: RSK query latency.

(RSK-W) is too slow (took almost an hour) hence is omitted from the figures. In both figures,

we see significant performance improvement (note the logarithmic scale on the latency axis) with

the introduction of the horizontal jump which drastically reduces the number of checked l-square

neighborhoods.

We also observed in Figure 3.12a, that the query latency spikes for keywords whose rank

is closer to k (in these experiments Q10). When q is close to the kth keyword (in rank), the jump

size becomes smaller; as a result, more l-square neighborhoods are checked increasing the query

latency for Q10. For keywords ranked below Q10, the jump size (|fq − fk|) is large because fq is

higher which leads to larger jumps and hence fewer l-square neighborhood checks improving the

query latency. A similar justification explains the reduction of query latency for keywords with

larger rank than Q10; here fq is much smaller but the jump size increases since it is an absolute

value of the difference. Based on the these results, for the remaining experiments we will use the

algorithm RSK-VH (Algorithm 8) for the (spatial) RSK query .

The next experiments consider the RSKR query performance using the same dataset

(random sample with 10K tweets). Unless otherwise specified, both number of random restarts

and number of divisions for each algorithm is set to 5. As in each coordinate division, we check

86

(a) Varying query keyword (b) Varying neighborhood sizes

Figure 3.13: RSKR query latency.

4 l-square neighborhoods, the budget per candidate cell was 100. We compare five approximate

algorithms (i-v) and one exact algorithm (vi). These algorithms are: (i) Full STL (FS), which uses

the STLs of the cells that are fully contained in the l-square neighborhood; (ii) Full STL and Pre-

vious Calculation (FS-PC), which uses the termFreqMap from previously checked l-square neigh-

borhoods; (iii) PartialSTL; (iv) STLOnly, (v) FS-PC(25), where the number of random restarts

increased to 25; (vi) RSK-Exact, which is a variation of the RSK-VH algorithm that terminates

processing a candidate cell as soon as one result is found for that cell. Figures 3.13b and 3.13a

depict the query latency performance of the RSKR algorithms using different neighborhood sizes

l (for keyword Q5) and for different query keyword positions q (using l = 0.5) respectively. In

both figures the RSK-Exact algorithm is the slowest among the RSKR algorithms since it explores

the whole expansive region of a candidate cell, while all approximate algorithms use coordinate

division to quickly focus to the part that is most likely to contain a result. Moreover, as expected,

the latency for the RSKR query is much smaller (in msec) than the latency of the RSK query (in

seconds).

In comparing the approximate algorithms, one has to also consider their precision and re-

call (to be examined later). In both figures we observe that the approximate algorithms’ performance

87

(higher to lower) is as follows : FS-PC(25) > FS > FS-PC > PartialSTL > STLOnly. Note that un-

less a result is found in a candidate cell, algorithm FS-PC(25) can randomly restart 25 times, while

the other approximate algorithms can restart 5 times. Hence, when FS-PC(25) cannot find a result,

it restarts more times making it the slowest (and also most accurate) approximate algorithm. Note

that the difference between the FS and FS-PC algorithms is that the latter uses the termFreqMap

of the previously checked l-square neighborhood. Since l ≥ 2c, there is a lot of overlap between

two consecutive l-square neighborhoods. As a result, FS-PC is faster than FS since the use of the

previous termFreqMap allows it to take advantage of this overlap. PartialSTL and STLOnly do

not check any tweet; instead they find results based on the STLs only, which adds another level of

approximation. These algorithms are thus faster than the other approximate algorithms but their

precision suffers from the extra approximation. STLOnly is the fastest (and has the lowest preci-

sion/recall as we will see in Figure 3.15) as it only considers the cells that are fully contained in the

l-square neighborhood, completely ignoring the partially contained cells.

Another observation from Figure 3.13a is that RSK-Exact shows the same spike in query

latency for the query positioned at rank k (Q10), which is expected since it follows the RSK algo-

rithm. We also observe that the behavior of the approximate algorithms is different, as it starts with

a query latency decline from Q1 to Q5, followed by a maximum at Q25 and another decline until

Q200. There are two factors affecting this behavior, namely: (i) the number of candidate cells, and,

(ii) the number of l-square neighborhoods checked. Figure 3.14a depicts the number of candidate

(gray) cells as the rank of the query keyword increases. It also shows the number of red and green

cells for reference purposes. Clearly, as the keyword rank increases the number of gray cells de-

creases. The sum of red, green and gray cells is constant for all keywords. As the keyword rank

88

increases, the keyword becomes less popular and hence there are more cells for which we can easily

decide that they have no answer, i.e., they become red cells. Since there are very few green cells,

the numbers of gray and red cells change in opposite directions.

Figure 3.14b shows the (average) number of l-square neightborhoods checked per gray

cell by algorithm FS-PC; the other approximate algorithms behave similarly. As the rank of the

keyword increases, there are fewer possible answers (keyword is less popular) and thus we have

to check more l-square neightborhoods to find an answer. The difference becomes more apparent

in larger ranks since there are much fewer answers. Figure 3.14b also shows the total number of

l-square neighborhoods that the FS-PC algorithm checks (over all gray cells); this is calculated by

multiplying the number of gray cells in Figure 3.14a with the l-square neighborhoods checked per

cell. This graph behaves similarly with the behavior seen in Figure 3.13a. FromQ1 toQ5 the latency

decreases since results are still easy to find but the number of candidate cells decreases and dictates

the query latency. For Q10 the number of candidate cells decrease slightly in comparison with

Q5, however it is relatively harder to find an answer because the rank of the keyword is no longer

less than k (and thus we have to check more l-square neighborhoods). This behavior continues

until Q25, after which the decline on the number of candidate cells dominates and reduces the query

latency. Moreover, the higher ranked keywords have higher latency over the lower ranked keywords.

As higher ranked keywords have much fewer answers, the approximate algorithm keeps checking

random l-square neighborhoods (until it finds an answer or runs out of budget).

We compare the precision and recall of the different approximate algorithms for the RSKR

query in Figures 3.15a and 3.15b respectively. While faster, the approaches that find results by

looking only within STLs (namely the PartialSTL and STLOnly) suffer both in precision and recall

89

(a) Different cell counts. (b) Checked l-square neighborhoods.

Figure 3.14: Number of gray cells and checked l-square neighborhoods for different query key-
words.

(a) Precision. (b) Recall.

Figure 3.15: Precision and Recall of RSKR approximate algorithms for different keywords.

when compared to the other approximate algorithms. The precision of all the approximate algorithm

is worst for Q10, because its rank is equal to k. For the approximate algorithms, candidate cells for

this particular keyword are the hardest to classify because the difference between the frequency of

the k-th keyword and the frequency ofQ10 is minimal. The FS and FS-PC algorithms have the same

precision and recall since they use the same budget and differ only in the use of Previous Calculation.

Overall, the algorithm using the Full STL and Previous Calculation (FS-PC) outperforms the other

versions with respect to both precision and query latency. Hence, in the remaining experiments we

will use FS-PC to answer RSKR query (Algorithm 9).

90

(a) RSK (b) RSKR

Figure 3.16: Query latency while varying the dataset size.

Dataset Scalability: Having identified the best algorithm for each of the RSK and RSKR

problems, we proceed with examining the effect of the dataset size. Figures 3.16(a) and (b) show

the query latency for each problem respectively, for different keywords while varying the dataset

sizes from 10K tweets to the full dataset of 15M tweets. We used neighborhood size, l = 0.5 and cell

size, c = 0.25 for these experiments. We see similar trends for different query keywords for different

sizes of dataset. Nevertheless, the query latency increases significantly with the increase of dataset

size. This is expected as many more tweets must be processed. Even for the faster RSKR algorithm,

the query latency becomes prohibitively large for big datasets (note the logarithmic scale). This

leads us to explore scaling both the RSK and RSKR problems to multiple nodes.

3.7.4 Multi Node Evaluation

Effect of slicing. Our algorithms to answer the RSK and RSKR queries are highly parallelizable as

each candidate (gray) cell can be processed independently. Moreover, the RSK algorithm slices each

gray cell so that a single cell can be processed in parallel by multiple machines. In this part, we first

examine the effectiveness of slicing; then we present scalability experiments for both problems. All

91

Figure 3.17: Comparing effect of slicing on query latency (in minutes) of RSK for different query
keywords.

multi node experiments below were performed using the full 15M tweets dataset with neighborhood

size l = 0.5 and cell size c = 0.25. To test the effectiveness of slicing, we experimentally evaluated

two versions of the RSK algorithm without and with slicing (where we applied equal-post slicing

using the approach discussed in Section 3.6). The results appear in Figure 3.17 for different query

keyword positions q. We observe significant improvement in query latency by using slicing. This is

because slicing provides better load balancing among the cores.

Since individual slices can be processed at different cores, the maximum time taken to

process any of the slices is important. Figure 3.18a shows the relationship between the number of

slices and the maximum processing time per slice. For this experiment we applied slicing to three

different cells that we term busy, medium and light, based on their tweet density (with 303k, 3k

and 587 tweets respectively). As the figure shows, slicing helps until a certain point, after which

regardless of the number of slices, the maximum time taken by a slice does not improve. The reason

there is a lower bound that we cannot go below is because we expand the region of each slice equal

to the query neighborhood size l, so even the thinnest slice has to be expanded by l. This holds for

all cell densities we experimented. As expected, slicing is more advantageous for busy (followed

92

(a) Max. time for a slice for Q1. (b) Average slice count per core (γ)

Figure 3.18: Effect of slice count on query latency for different query keyword.

by medium and light) cells as it provides a larger reduction in latency. This asserts the findings

of Figure 3.9 where we also showed that the number of posts is directly correlated with the time

needed to process a cell.

We also examined the effect of γ, the average number of slices assigned to each core.

Figure 3.18b shows the query latency while varying γ from 1 to 20, using a fixed number of cores

(M = 300). For all keywords, as we increase γ we increase the number of slices (γ ∗M), which

improves latency as it enables better distribution of workload. We observe again that more slicing

(higher γ) is not going to help after a certain point when the time required per slice stops improving.

Further adding slices per core will start deteriorating latency. This is because we always have to

expand the slice by l regardless how thin the slice is. So slicing too much doesn’t help. In the

remaining experiments, we set γ = 10 as it depicted the best query latency.

Cluster Speed-up: To measure the speed-up performance we started with a cluster of 50 cores

doubling them until 400 cores. Figure 3.19a shows the RSK query latency (using Algorithm 8) for

different keywords while varying the number of cores in the cluster. For all queries, adding more

cores improves the latency. The relative latencies of the keywords follow the same order as with the

93

(a) RSK (b) RSKR

Figure 3.19: Query latency with varying number of cores for different keywords.

single-node experiments (Figure 3.12a). Figure 3.19b shows query latencies for RSKR (Algorithm

9) for different query keywords with different number of cores in the cluster. The query latencies

for the less popular query keywords (Q25, Q50, Q200) suffer for the same reason as mentioned for

the single node experiments (Figure 3.13a).

Cluster Scale-up: To explore the scale-up performance, we keep the workload constant (in terms

of number of tweets per core) as we add more cores to the cluster. We start with a cluster of 100

cores and 5M tweets (i.e., 50K tweets/core) then 200 cores and 10M tweets and finally 300 cores

and 15M tweets. Figure 3.20 shows query latency of RSK and RSKR (for different keywords) for

the above scale-up experiments. Clearly both algorithms achieve very good scale-up performance;

the query latency per keyword remains similar, which means that the additional data is processed in

roughly the same amount of time if the cores are increased proportionately.

3.7.5 Comparison with GARNET

GARNET[42] has two fundamental limitations compared to our approach. Firstly, the

neighborhood size in GARNET has to be equal to the cell size. Secondly, all the results have to be

94

(a) RSK (b) RSKR

Figure 3.20: Scale-up experiments for different keywords.

aligned with the cell of the grid. Hence, GARNET provides an approximate answer to the RSKR

(restricted) query. In particular, a cell is answer of the RSKR problem if there is at least one point

in the cell that is (k, l)-frequent, whereas GARNET returns that cell if the center of the cell is (k, l)-

frequent. Figure 3.21 depicts the total number of results returned by the two systems. For RSKR

we depict both approaches, namely RSK-Exact and FS-PC. As expected, GARNET misses lots of

results as it tests only the center of the cell while our approaches test numereous shifted l-square

neighborhoods within each cell.

Figure 3.21: Comparison of number of results found by GARNET, RSK-Exact and FS-PC algo-
rithm.

95

3.8 Conclusions and Future work

We introduced the Reverse Spatial Keyword (RSK) Query on geo-tagged posts that allows

a user to identify where a particular keyword is popular. Using materialized term frequency lists we

presented algorithms to solve RSK queries. We further proposed a restricted version of the query

(RSKR) for which we present an exact and multiple faster but approximate algorithms. Parallelism

is explored for the both exact and restricted problems. An interesting future direction is to explore

RSK related queries over 3-dimensional spatiotemporal data.

96

Chapter 4

An Application: Reverse Spatial Top-k

Snapshot Query over Social Media

Streams

4.1 Introduction

In this chapter, we present an application of the RSK query over streaming social media

data; this is a different environment than the archival setting used to present RSK in the previous

chapter. Since typically an archived dataset is too large the RSK query also takes too long to process.

However, there are many applications where the users are only interested in the most recent data, i.e.,

what people are talking about in the social media “right now”. The system presented in this chapter

targets these types of applications. We formalize the problem as Reverse Spatial Top-k Snapshot

Query (RSKSQ), which like the RSK query identifies areas where a keyword is popular, however, it

97

operates over the Twitter data stream. Given a query term q, an integer k, a neighborhood size l, a

time window W, and a refresh rate r, we find the neighborhoods of size l where q is in the top-k most

frequent terms among the tweets in those neighborhoods. To answer RSKSQ queries, we run the

RSK query over a snapshot of a fixed-sized time window (W) of the most recent tweets, i.e., tweets

posted in the last W minutes, and refresh the results every r time units. To implement this approach

we use a circular queue Q of a fixed size of W
r to keep track of the latest tweets. If Q becomes

full, we discard the oldest tweets. To answer the RSKSQ, we use an index structure consisting of

a uniform grid augmented by materialized lists of term frequencies and a filter-refinement-based

RSK query processing algorithm optimized for fast updates. We have implemented a system that

provides the results of RSKSQ using a desktop application based on ArcGIS[61]. Our contribution

is as follows:

• We consider the Reverse Spatial Top-k Snapshot Query (RSKSQ), which operates over the

Twitter data stream. We implement it by running the Reverse Spatial Keyword (RSK) query

on geo-tagged posts that arrived in time window of sizeW , and refresh the result every r time

units.

• We present a working system using the live Twitter stream providing users with options to

choose the size of the window W as well as the refresh rate i.e., the rate at which the result

will be updated. The system is built as a desktop application based on ArcGIS [61].

The rest of the chapter is organized as follows: Section 4.2 discusses related work, while

Section 4.3 formulates the RSKSQ system. Section 4.4 presents our proposed approach for the

RSKSQ system. Various aspects and properties of our developed system is described in Section 4.5.

98

We explore the query latency of the our system, in Section 4.6, while conclusions and future work

appear in Section 4.7.

4.2 Related Work

The most related works relate to Continuous Monitoring over Data Streams. In par-

ticular, [55] studies continuous monitoring of top-k queries over a fixed-size window over the most

recent data. The window size can be expressed either in terms of the number of active tuples or time

units. [25] investigates dynamic spatial–keyword objects whose locations and keywords change

over time. They study the problem of continuously tracking top-k dynamic spatial–keyword objects

for a given set of queries. A continuous query is issued once over a streaming dataset, and then

logically runs continuously until it is terminated. It lets users get new incremental results from the

dataset (when the dataset changes and the result is affected) without having to issue the same query

repeatedly [13]. Our work is different from these because we focus on a snapshot query computed

over posts contained over a time window rather than a continuous query. Moreover, these works

basically return top-k objects as results while we return the spatial domain where the user provided

keyword is among the top-k most frequent keywords.

4.3 Problem Definition

The Reverse Spatial Top-k Snapshot Query (RSKSQ) is defined by the tuple 〈k, q, l,W, r〉.

That is, the query parameters required to answer the RSKSQ include all the parameters of an RSK

query along with two additional parameters: (1) W the time-window that includes the posts we

are interested in, and, (2) r the refresh rate. The refresh rate r is less than the time-window length

99

W ; r < W . Typical values of r are in seconds while normally W is in minutes. RSKSQ queries

identify areas where a keyword is popular among the posts included within the time-window, W

and the results are refreshed every r time units. That is, the answer to RSKSQ is the set of spatial

regions where q is (k, l)-frequent at each point in these regions within the time-window W .

4.4 Our Approach

Our approach to build a system for the RSKSQ query consists of two parts: (1) Storing

and Updating the dataset. This implies efficiently storing the tweets originating during the current

time window W and then updating this set of tweets after every r period of time; this step is

described in more details in Section 4.4.2. (2) Answer the RSK Query. We use a filering and

refinement based RSK algorithm to answer the QRSK part in QRSKSQ every r time units.

4.4.1 System Architecture

The overall system is illustrated in Figure 4.1. First, the new batch of tweets arrive to

the Ring Buffer (B) which is updated to keep the tweets within the W time window. Then, the

STL augmented Grid is updated from B where each cell’s tweets and its STL are updated. After

that, the RSK Query Processor starts working where the Grid acts as its input. Finally, the result is

projected on the map for the users. This whole process is repeated every r time units. Users have

the opportunity to update the query keyword q and k.

100

Figure 4.1: RSKSQ System Architecture.

4.4.2 Data Storage

The RSKSQ system has to update its results every r time units (typically in seconds). It

is vital to design a storage system for the tweets that is fast, efficient and easy to update. A good

design should have a low overall network bandwidth requirement. While updating the storage, each

tweet should be downloaded only once. We use a Circular Queue or Ring Buffer of size W
r ; each

element in the buffer stores the set of tweets fetched every r time units. Once the buffer is full, i.e.,

we have tweets for the last W time interval, we discard the oldest set of tweets from the buffer and

add the latest set of tweets in its place. Figure 4.2 shows how new data arriving every r time units is

stored in the ring buffer. The ring buffer’s elements are empty at first (shown in blue). As more and

more batches of tweets arrive (Figure 4.2(a)-(h)), the cells fill up (shown in white). Once the whole

buffer is filled, we insert the next batch of tweets into the element which holds the oldest set of

tweets as shown in Figure 4.2(i). As a result, each tweet post is downloaded only once. Moreover,

this technique keeps the in-memory database as small as possible by only holding the tweets from

101

the last W time interval. We get the whole dataset (D) by merging the non-empty sets of tweets

from the ring buffer B.

4.4.3 Efficient Updating the Indices and STLs

We optimize the STL calculation by only updating the STLs of the cells whose tweet set

has been changed, after every refresh of the dataset (every r time units). If a cell has any change

in its set of tweets, we keep track of the set of tweets added from the newest batch of tweets. We

also keep track of the set of tweets removed from a cell from the oldest set of tweets removed (in

case of full Ring Buffer B). We use these two lists of tweets to update the STL of the cell without

reprocessing the terms of all the tweets in the cell every time the results are updated.

4.5 System Description

Hardware: We host the demo system in single-node environment, run on a machine featuring an

Intel Core i-7 processor (8 cores) with 16 GB of RAM and 512 GB solid state drive. The RSK

Query uses all available (eight) cores on the processor.

Data Storage and Dataset: We implement the Ring Buffer (B) as a list of sets of tweets while we

sort these tweets by their arrival time in the buffer. We use the Twitter streaming API of twitter4j [68]

to collect all geo-tagged (i.e., tweets that have the user’s GPS location or the user’s ‘Twitter Place’),

English-based tweets (i.e., excluding empty tweets or tweets with only URLs) from a rectangle that

contains the New York state and surrounding areas (i.e., region A has GPS coordinates: -76, -69,

43, 36). As before, since there are only about 5% tweets with actual GPS location, for the rest of the

geo-tagged tweets (i.e., those with the user’s ‘Twitter Place’) we used as location, a random point

102

(a) Ring Buffer at 12:05 PM. (b) Ring Buffer at 12:10 PM. (c) Ring Buffer at 12:15 PM.

(d) Ring Buffer at 12:20 PM. (e) Ring Buffer at 12:25 PM. (f) Ring Buffer at 12:30 PM.

(g) Ring Buffer at 12:35 PM. (h) Ring Buffer at 12:40 PM. (i) Ring Buffer at 12:45 PM.

Figure 4.2: Ring Buffer at different time where refresh rate r = 300 seconds and Window size W =
40 minutes.

103

in the provided polygon that the Twitter API shares for ‘Place’. Each tweet record has the tweet’s

spatio-temporal coordinates and its terms. We also remove the stopwords to get more useful results.

Index Structure: We divided the space covered by each dataset into a uniform grid of square cells

with each cell containing tweets that are in the geographical area covered by that cell. Each cell is

enhanced with a STL of its tweets. We update the index structure every r time units, by removing

the tweets from the oldest set and adding newly arriving tweets. If there is change of tweets in a

cell, we update that cell’s STL as well.

(a) User Input interface. (b) Output over map.

Figure 4.3: User Interface of the RSKSQ system.

User Interface: The user interface of our RSKSQ system is shown in Figure 4.3. It has two parts,

(1) User Input interface shown in Figure 4.3a, and (2) Output over Map shown in Figure 4.3b. In the

user input interface, there is a list of 50 most frequent terms in the current time window along with

their respective ranks. This list is updated every r time units just like the output in the map. The

104

user input interface allows the user to update the query keyword (q) and the value of k. The output

will change according to the new query keyword (q) and k. The top term list on the left side of the

input interface can act as a guide to find useful results using our RSKSQ system. As the ranks of

the terms in the list are from all the tweets in the current snapshot, we can find the locations where

a particular keyword (q) is more popular by changing the value of k to be equal to the rank of that

keyword. The output of the RSKSQ system will show the places where the given query keyword is

more popular than other places in the current time window.

Output on Map: Figure 4.4, 4.5 and 4.6 show the output of our RSKSQ system over real data from

the live Twitter stream. For all the experiments here, we have used a time window W = 2 hours. On

Sunday, December 6th, 2020, we ran the query q = “brooklyn” with k = 10 (in the same geographic

area described before). As expected, the keyword is popular around Brooklyn in the New York

state. We run the same query again on December 17th and find very similar result. As the keyword

“brooklyn” is a name of a place, it’s popularity/frequency remains the similar unless there is some

trending event related to that place.

On the same day, December 6th, we ran the query q = “rudigiuliani” with k = 50, which

coincides with the news that then US President’s attorney Rudi Giuliani had been diagnosed with

covid19. We can see from the output shown in Figure 4.5 (a)-(c), that the keyword is popular around

various locations in the New York state. We run the same query again on the same time but on a

different day, on December 17th. This time around we see from the output shown in Figure 4.5(d)-(f)

that there are actually way fewer results (if any). This is because the news is not trending anymore

and the query keyword itself is not popular enough to be among the top-50 most frequent terms in

many areas.

105

We further run the query q = “pfizer” on December 15th, 2020 with k = 100. Pfizer is

the name of the company whose vaccine has been recently approved for use in USA. The results

are shown in Figure 4.6. As is apparent from the result, the keyword’s popularity is unchanged over

time as it a frequently discussed topic.

(a) December 6th, 9:39 PM. (b) December 6th, 9:43 PM. (c) December 6th, 9:48 PM.

(d) December 17th, 9:39 PM. (e) December 17th, 9:43 PM. (f) December 17th, 9:48 PM.

Figure 4.4: Output of RSKSQ system for q = “brooklyn” and k = 10 from various times on Decem-
ber 6th and December 17th, 2020.

4.6 Experiments

In this section, we explore the query latency of the RSKSQ system, which clearly depends

on the size of the dataset within the W window. The size of the dataset depends on: (1) time of

day (during daytime for the same W , we get many more tweets), and (2) size of time window W .

We run the experiment during daytime when the rate of ingestion of tweets is highest. In particular,

106

(a) December 6th, 8:00 PM. (b) December 6th, 8:08 PM. (c) December 6th, 8:12 PM.

(d) December 17th, 8:00 PM. (e) December 17th, 8:08 PM. (f) December 17th, 8:12 PM.

Figure 4.5: Output of RSKSQ system for q = “rudigiuliani” and k = 50 from various times in the
evening of December 6th and December 17th, 2020.

(a) Output at 8:30 PM. (b) Output at 8:32 PM. (c) Output at 8:34 PM.

(d) Output at 8:36 PM. (e) Output at 8:40 PM.

Figure 4.6: Output of RSKSQ system for q = “pfizer” and k = 100 from various times in the
evening of December 15th, 2020.

107

the experiment was conducted using the live Twitter stream starting from December 16th, 2020 at 7

AM PST. For this experiment, we use the query keyword q whose rank is equal to k; this is because

in this case the query latency is highest for the RSK query as discussed and experimentally shown

in Chapter 3. The query neighborhood side length (l) is 0.2 and the cell size (c) is 0.05. Figure

4.7 shows how query latency and the number of tweets change with the change of window size W .

As expected, both query latency and tweet count increase with the increase of the window size W .

Note that the query latency indicates the smallest possible value of r for the respective window size

W .

(a) RSKSQ latency. (b) Tweet count.

Figure 4.7: Query latency and tweet count for varying the size of time window W .

4.7 Conclusion and Future Work

We introduce the Reverse Spatial Top-k Snapshot Query (RSKSQ) system on geo-tagged

posts that allows a user to identify where a particular keyword is popular over the live Twitter stream.

Using materialized term frequency lists and a ring buffer based main memory storage, we develop

a system to answer the RSKSQ query. An interesting future direction is to explore ways to extend

our system to support continuous queries over the live Twitter stream.

108

Chapter 5

Conclusions

The wide availability of tracking devices has drastically increased the role of geolocation

in social networks, resulting in new applications. This has led to new challenges as well as opportu-

nities to explore and get better insight about people on the social media. There has been numerous

works on how to use these information in the best way possible. In these thesis, we explore several

avenues of this promising field of study.

In chapter 2, we proposed an indexing scheme that adds sorted term lists (STLs) for fast

answering of top-k most frequent term queries over spatio-temporal ranges (kFST). Our approach

uses a theoretical model to reduce the size of the STLs without sacrificing the query time perfor-

mance. We presented RA and NRA algorithms that operate on top of the proposed index structures.

The NRA algorithm with partial STLs was found to have the best performance (when consider-

ing query time and space). We also presented efficient multi-region versions of the algorithms. In

chapter 3, we introduce the Reverse Spatial Keyword (RSK) query on geo-tagged posts that allows

a user to identify where a particular keyword is popular. Using materialized term frequency lists

109

we present algorithms to solve RSK queries. We further propose a restricted version of the query

(RSKR) for which we present an exact and multiple faster but approximate algorithms. Parallelism

is explored for both exact and restricted problems. In chapter 4, we introduce the Reverse Spatial

Top-k Snapshot Query (RSKSQ) on geo-tagged posts that allows a user to identify where a partic-

ular keyword is popular over live Twitter stream. Using materialized term frequency lists and ring

buffer based main memory storage, we develop a system to answer RSKSQ query.

As for future work, there are several interesting directions. One would be to enhance the

STL approach (presented in chapter 2) with a distributed threshold algorithm (like [16]) so as to

process even larger volumes of data. Another direction would be to explore RSK related queries

over spatio-temporal data (i.e. 3-dimensional) instead of spatial data which we discussed in chapter

3. It would also be very interesting to extend our system presented in chapter 4 to support continuous

queries over the live Twitter stream along with snapshot queries which is already supported in our

work.

110

Bibliography

[1] Geofeedia, https://geofeedia.com/.

[2] Myspace, http://myspace.com/.

[3] PostGIS, http://www.postgis.net/.

[4] Slashdot, http://slashdot.org//.

[5] Twitter, http://twitter.com/.

[6] Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2009.

[7] Proceedings of the 26th International Conference on Data Engineering,ICDE 2010, March
1-6, 2010, Long Beach, California, USA. IEEE Computer Society, 2010.

[8] The 37th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’14, Gold Coast , QLD, Australia - July 06 - 11, 2014. ACM, 2014.

[9] Elke Achtert, Christian Böhm, Peer Kröger, Peter Kunath, Alexey Pryakhin, and Matthias
Renz. Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In Proceedings of
the 2006 ACM SIGMOD International Conference on Management of Data, pages 515—-526.
ACM, 2006.

[10] Pritom Ahmed, Mahbub Hasan, Abhijith Kashyap, Vagelis Hristidis, and Vassilis J. Tsotras.
Efficient computation of top-k frequent terms over spatio-temporal ranges. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD Conference.
ACM, 2017.

[11] Ritesh Ahuja, Nikos Armenatzoglou, Dimitris Papadias, and George J Fakas. Geo-social
keyword search. In International Symposium on Spatial and Temporal Databases, pages 431–
450. Springer, 2015.

[12] Nikos Armenatzoglou, Ritesh Ahuja, and Dimitris Papadias. Geo-social ranking: functions
and query processing. VLDB J., 24(6):783–799, 2015.

[13] Shivnath Babu. Continuous Query, pages 492–493. Springer US, Boston, MA, 2009.

111

[14] H. Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and Gerhard Weikum. IO-
Top-k: Index-access optimized top-k query processing. In VLDB, pages 475–486, 2006.

[15] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-tree:
An efficient and robust access method for points and rectangles. In ACM SIGMOD, pages
322–331, 1990.

[16] Pei Cao and Zhe Wang. Efficient top-k query calculation in distributed networks. In PODC,
pages 206–215, 2004.

[17] Xin Cao, Gao Cong, Tao Guo, Christian S. Jensen, and Beng Chin Ooi. Efficient processing
of spatial group keyword queries. ACM Trans. Database Syst., 40(2):13, 2015.

[18] Xin Cao, Gao Cong, and Christian S. Jensen. Retrieving top-k prestige-based relevant spatial
web objects. PVLDB, 3(1):373–384, 2010.

[19] Xin Cao, Gao Cong, Christian S. Jensen, Jun Jie Ng, Beng Chin Ooi, Nhan-Tue Phan, and
Dingming Wu. SWORS: A system for the efficient retrieval of relevant spatial web objects.
PVLDB, 5(12):1914–1917, 2012.

[20] Ho-Leung Chan, Tak Wah Lam, Lap-Kei Lee, and Hing-Fung Ting. Continuous monitoring of
distributed data streams over a time-based sliding window. Algorithmica, 62(3-4):1088–1111,
2012.

[21] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. Spatial keyword query process-
ing: An experimental evaluation. PVLDB, 6(3):217–228, 2013.

[22] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you tweet: A content-
based approach to geo-locating twitter users. In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, CIKM. ACM, 2010.

[23] Rada Chirkova, Asuman Dogac, M. Tamer Özsu, and Timos K. Sellis, editors. Proceedings of
the 23rd International Conference on Data Engineering,ICDE 2007. IEEE Computer Society,
2007.

[24] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the top-k most relevant
spatial web objects. PVLDB, 2(1):337–348, 2009.

[25] Yuyang Dong, Chuan Xiao, Hanxiong Chen, Jeffrey Xu Yu, Kunihiro Takeoka, Masafumi
Oyamada, and Hiroyuki Kitagawa. Continuous top-k spatial–keyword search on dynamic
objects. The VLDB Journal, pages 1–21, 2020.

[26] Leo Egghe. Untangling herdan’s law and heaps’ law: Mathematical and informetric argu-
ments. JASIST, 2007.

[27] Facebook, https://www.facebook.com/.

[28] Ronald Fagin. Combining fuzzy information from multiple systems. In PODS, pages 216–
226, 1996.

112

[29] S. Farazi and D. Rafiei. Top-k frequent term queries on streaming data. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE Computer Society, 2019.

[30] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In IEEE ICDE,
pages 656–665, April 2008.

[31] Foursquare, https://foursquare.com/.

[32] Yunjun Gao, Xu Qin, Baihua Zheng, and Gang Chen. Efficient reverse top-k boolean spatial
keyword queries on road networks. IEEE Trans. Knowl. Data Eng., 2015.

[33] Shen Ge, Leong Hou U, Nikos Mamoulis, and David W. Cheung. Efficient all top-(k)
computation—a unified solution for all top-(k), reverse top-(k) and top-(m) influential
queries. IEEE Trans. on Knowl. and Data Eng., 2013.

[34] Diane Greene. An implementation and performance analysis of spatial data access methods.
In IEEE ICDE, pages 606–615, 1989.

[35] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In ACM SIGMOD,
pages 47–57, 1984.

[36] Marios Hadjieleftheriou, George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras. On-
line discovery of dense areas in spatio-temporal databases. In Advances in Spatial and Tem-
poral Databases, 2003.

[37] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, July 1961.

[38] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 1961.

[39] Giacomo Inches, Mark J. Carman, and Fabio Crestani. Statistics of online user-generated short
documents. In ECIR, pages 649–652, 2010.

[40] Instragam, https://www.instagram.com/.

[41] Mike Izbicki, Vagelis Papalexakis, and Vassilis J. Tsotras. Geolocating tweets in any language
at any location. In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM. ACM, 2019.

[42] Christopher Jonathan, Amr Magdy, Mohamed F. Mokbel, and Albert Jonathan. GARNET: A
holistic system approach for trending queries in microblogs. 32nd IEEE ICDE, pages 1251–
1262, 6 2016.

[43] Dimitrios Kotsakos, Theodoros Lappas, Dimitrios Kotzias, Dimitrios Gunopulos, Nattiya
Kanhabua, and Kjetil Nørvåg. A burstiness-aware approach for document dating. In The 37th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’14, Gold Coast , QLD, Australia- July 06 - 11, 2014, 2014.

[44] Theodoros Lappas, Benjamin Arai, Manolis Platakis, Dimitrios Kotsakos, and Dimitrios
Gunopulos. On burstiness-aware search for document sequences. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009.

113

[45] Theodoros Lappas, Marcos R. Vieira, Dimitrios Gunopulos, and Vassilis J. Tsotras. On the
spatiotemporal burstiness of terms. Proc. VLDB Endow., 5(9):836–847, May 2012.

[46] Theodoros Lappas, Marcos R. Vieira, Dimitrios Gunopulos, and Vassilis J. Tsotras. On the
spatiotemporal burstiness of terms. PVLDB, 2012.

[47] Iosif Lazaridis and Sharad Mehrotra. Progressive approximate aggregate queries with a multi-
resolution tree structure. In ACM SIGMOD, pages 401–412, 2001.

[48] Y Liu, L Chen, N Jing, and L Liu. Parallel top-k spatial join query processing on massive
spatial data. J Comput Res Dev, 2011.

[49] Jiaheng Lu, Ying Lu, and Gao Cong. Reverse spatial and textual k nearest neighbor search. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’11. ACM, 2011.

[50] Changyin Luo, Junlin Li, Guohui Li, Wei Wei, Yanhong Li, and Jianjun Li. Efficient reverse
spatial and textual k nearest neighbor queries on road networks. Knowl.-Based Syst., 2016.

[51] C. Ma, H. Lu, L. Shou, and G. Chen. Ksq: Top-k similarity query on uncertain trajectories.
IEEE Transactions on Knowledge and Data Engineering, 2013.

[52] Amr Magdy, Ahmed Aly, Mohamed Mokbel, Sameh Elnikety, Yuxiong He, Suman Nath, and
Walid Aref. GeoTrend: Spatial trending queries on real-time microblogs. ACM GIS Conf.,
2016.

[53] N. Mamoulis, Kit Hung Cheng, Man Lung Yiu, and D. W. Cheung. Efficient aggregation of
ranked inputs. In IEEE ICDE, pages 72–72, April 2006.

[54] Michael Mathioudakis, Nilesh Bansal, and Nick Koudas. Identifying, attributing and describ-
ing spatial bursts. PVLDB, 2010.

[55] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Continuous monitoring of top-
k queries over sliding windows. In Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis,
editors, Proceedings of the ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, USA, June 27-29, 2006, pages 635–646. ACM, 2006.

[56] Surya Nepal and M. V. Ramakrishna. Query processing issues in image(multimedia)
databases. In IEEE ICDE, pages 22–29, 1999.

[57] Jinfeng Ni and Chinya V. Ravishankar. Pointwise-dense region queries in spatio-temporal
databases. In ICDE. IEEE Computer Society, 2007.

[58] Jinfeng Ni and Chinya V. Ravishankar. Pointwise-dense region queries in spatio-temporal
databases. In Proceedings of the 23rd International Conference on Data Engineering,ICDE,
2007.

[59] P. Nikitopoulos, G. A. Sfyris, A. Vlachou, C. Doulkeridis, and O. Telelis. Parallel and dis-
tributed processing of reverse top-k queries. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE), 2019.

114

[60] Baiyou Qiao, Bing Hu, Junhai Zhu, Gang Wu, Christophe Giraud-Carrier, and Guoren Wang.
A top-k spatial join querying processing algorithm based on spark. Information Systems, 2020.

[61] CA: Environmental Systems Research Institute Redlands. Arcgis desktop: Release 10.8, 2020.

[62] João B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørvåg. Efficient
processing of top-k spatial preference queries. PVLDB, 2010.

[63] João B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørvåg. Efficient
processing of top-k spatial preference queries. PVLDB, 4(2):93–104, 2010.

[64] R. S. Saranya and S. Saraswathi. Ranking spatial data by quality preferences. In IEEE-
International Conference On Advances In Engineering, Science And Management (ICAESM
-2012), 2012.

[65] A. Skovsgaard, D. Sidlauskas, and C. S. Jensen. Scalable top-k spatio-temporal term querying.
In IEEE ICDE, pages 148–159, March 2014.

[66] Stefan Stieglitz, Milad Mirbabaie, Björn Ross, and Christoph Neuberger. Social media
analytics–challenges in topic discovery, data collection, and data preparation. International
journal of information management, 39, 2018.

[67] Yannis Theodoridis and Timos Sellis. A model for the prediction of R-tree performance. In
PODS, pages 161–171, 1996.

[68] Twitter4j, http://twitter4j.org/.

[69] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørvåg. Reverse top-k
queries. In Proceedings of the 26th International Conference on Data Engineering, ICDE
2010, March 1-6, 2010, Long Beach, California, USA. IEEE Computer Society, 2010.

[70] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørvåg. Monochromatic and
bichromatic reverse top-k queries. IEEE Trans. Knowl. Data Eng., 2011.

[71] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørvåg, and Yannis Kotidis. Identifying the most
influential data objects with reverse top-k queries. Proc. VLDB Endow., 2010.

[72] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørvåg, and Yannis Kotidis. Branch-and-bound
algorithm for reverse top-k queries. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13. ACM, 2013.

[73] Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørvåg. Monitoring reverse top-k queries
over mobile devices. In Proceedings of the 10th ACM International Workshop on Data Engi-
neering for Wireless and Mobile Access. Association for Computing Machinery, 2011.

[74] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, M. Sanderson, and X. Qin. Answering top-k ex-
emplar trajectory queries. In 2017 IEEE 33rd International Conference on Data Engineering
(ICDE). IEEE Computer Society, 2017.

115

[75] Xiaoyang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. Selectivity estima-
tion on streaming spatio-textual data using local correlations. Proc. VLDB Endow., 2014.

[76] Wolframalpha, https://www.wolframalpha.com/.

[77] Dingming Wu, Gao Cong, and Christian S. Jensen. A framework for efficient spatial web
object retrieval. VLDB J., 21(6):797–822, 2012.

[78] Dingming Wu, Man Lung Yiu, Gao Cong, and Christian S. Jensen. Joint top-k spatial keyword
query processing. IEEE Trans. Knowl. Data Eng., 24(10):1889–1903, 2012.

[79] Dingming Wu, Man Lung Yiu, Christian S. Jensen, and Gao Cong. Efficient continuously
moving top-k spatial keyword query processing. In IEEE ICDE, pages 541–552, 2011.

[80] Tian Xia, Donghui Zhang, Evangelos Kanoulas, and Yang Du. On computing top-t most
influential spatial sites. In Proceedings of the 31st International Conference on Very Large
Data Bases, page 946–957. VLDB Endowment, 2005.

[81] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k spatial preference queries. In 2007
IEEE 23rd International Conference on Data Engineering, pages 1076–1085. IEEE Computer
Society, 2007.

[82] Man Lung Yiu, Xiangyuan Dai, Nikos Mamoulis, and Michail Vaitis. Top-k spatial preference
queries. In Chirkova et al. [23], pages 1076–1085.

[83] Manli Zhu, Dimitris Papadias, Dik Lun Lee, and Jun Zhang. Top-k spatial joins. IEEE Trans-
actions on Knowledge and Data Engineering, 2005.

116

