
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Enabling Efficient Persistent Memory Systems

Permalink
https://escholarship.org/uc/item/0xw3q1jb

Author
Ni, Yuanjiang

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0xw3q1jb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

ENABLING EFFICIENT PERSISTENT MEMORY SYSTEMS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Yuanjiang Ni

September 2022

The Dissertation of Yuanjiang Ni
is approved:

Professor Ethan L. Miller, Chair

Professor Heiner Litz

Doctor Pankaj Mehra

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Yuanjiang Ni

2022

Table of Contents

List of Figures vi

List of Tables ix

Abstract xi

Dedication xiii

Acknowledgments xiv

1 Introduction 1
1.1 Contributions . 5
1.2 Organization . 7

2 Background and Motivation 8
2.1 Emerging Memory Technologies . 8

2.1.1 PMEM as Storage . 10
2.1.2 PMEM as Memory . 12

2.2 3DXP Persistent Memory . 13
2.3 Failure-Atomic PMEM . 15
2.4 PMEM-based Index Structures . 18
2.5 Resource Allocation Techniques . 21
2.6 Chapter Summary . 23

3 Eliminating redundant writes in failure-atomic PMEM 24
3.1 SSP Design . 25

3.1.1 Programming Model and ISA Extension 26
3.1.2 Shadow Sub-Paging . 27
3.1.3 Metadata Journaling . 30
3.1.4 Page Consolidation . 31
3.1.5 Discussion . 32

3.2 SSP Architecture . 33

iii

3.2.1 Extensions on CPU hardware . 35
3.2.2 Memory Controller Extensions . 37
3.2.3 Architecture Details . 40
3.2.4 Hardware Cost and Complexity Trade-off 41
3.2.5 Recovery . 42

3.3 Evaluation . 43
3.3.1 Experimental Setup . 44
3.3.2 Mirobenchmark Results . 46
3.3.3 Sensitivity Study . 48
3.3.4 Performance of Real Workloads . 50

3.4 Chapter Summary . 51

4 Near-Optimal Resource Allocation for Tiered-Memory Systems 52
4.1 Motivation . 53
4.2 TMC Design . 58

4.2.1 Overview . 58
4.2.2 Analyzing Application Properties . 59
4.2.3 Inferring Tiered-Memory Performance 61
4.2.4 Data Placement . 64
4.2.5 Optimizing Packing Efficiency . 65
4.2.6 Discussion . 66

4.3 Evaluation in Simulation . 68
4.3.1 Experimental setup . 68
4.3.2 Execution and Search Cost . 70
4.3.3 Improving Packing Efficiency . 71
4.3.4 Threshold Sensitivity Study . 72
4.3.5 Memory Tiering Sensitivity Analysis 73

4.4 Real System Experiments . 75
4.4.1 Evaluation . 76

4.5 Chapter Summary . 79

5 Performance optimized indexing for 3DXP memories 80
5.1 Experimental Setup . 81

5.1.1 Methodology . 81
5.1.2 Experimental Environments . 82

5.2 PMEM Indexing Techniques . 83
5.2.1 Write-optimized Indexing Structures 83
5.2.2 Storage Consistency . 86
5.2.3 Selective Persistence . 90

5.3 Workload Performance . 92
5.3.1 Mixed Workloads . 92
5.3.2 Sensitivity to the Node Size . 93

5.4 Optimizations . 94

iv

5.4.1 Interleaving Operations . 95
5.4.2 Group Flushing . 97
5.4.3 Log-structuring . 99

5.5 Chapter Summary . 104

6 Future Directions 106

7 Conclusions 108

Bibliography 111

v

List of Figures

2.1 The future compute and memory architecture enabled by emerging memory

technologies . 9

2.2 Potential states of the linked list after a crash 11

2.3 Challenges in maintaining consistency for B+-Tree 19

3.1 The metadata of SSP: each thread has to track their own write set with private

updated bitmaps; all threads should agree on a current bitmap for a virtual page;

the per-page committed bitmap is used to preserve the consistent state of a page

and should be stored durably. 29

3.2 The consistency of SSP: the commit process might consist of updating multiple

committed bitmap in the PMEM; power failure in between will leave the system

in an inconsistent state. 30

3.3 The architecture of SSP. 33

3.4 The atomic update process of SSP . 34

3.5 Performance of micro-benchmarks (higher is better). 46

3.6 Comparison of logging writes (lower is better). 46

vi

3.7 PMEM writes. 47

3.8 Sensitivity to the Latency of PMEM: the x-axis shows the PMEM latency in

multiple of DRAM latency. 48

3.9 Sensitivity to the latency of SSP Cache: y-axis shows the speedup over REDO-

LOG. 49

4.1 Execution time and cost for 12 〈Slow memory ratio, LLC capacity〉 configura-

tions (graph500) . 54

4.2 Costs for best/worst/average configuration, normalized to the average cost of all

configurations. 55

4.3 The packing efficiency improvement achieved by a resource-optimal policy

over the naive policy. 56

4.4 workflow of TMC . 58

4.5 Estimating the rest of configurations with the miss curve 64

4.6 Execution cost increase over exhaustive search 70

4.7 Search cost of TMC and BO, normalized to the search cost of exhaustive search

(ES). ES and Rand are omitted as they are one and zero. 71

4.8 Efficiency of TMC’s configuration selection. TMC increases the efficiency

while minimizing the cost penalty for the customer. 72

4.9 Effectiveness of TMC under various configurations of tiered memory. 73

4.10 PEBS sampling overhead. We choose prime SIs to avoid bias from periodicities

like prior work [77]. 77

vii

4.11 Accuracy of estimating the slow memory access frequency in a real system

using profiling. 78

4.12 Accuracy of estimating the execution performance in a real system using profiling. 79

5.1 Throughput under three different workloads (higher is better) 83

5.2 Latency under three different workloads (lower is better) 84

5.3 Profiling of btree under the Fill Random . 84

5.4 The cost of persistence . 87

5.5 Persistence cost decomposition (4 threads) . 89

5.6 The efficiency of selective persistence . 91

5.7 The performance of mixed read-write workloads 92

5.8 Performance sensitivity to the size of the node 93

5.9 Profiling for btree under the Read Random application 95

5.10 Interleaving efficiency . 96

5.11 Benefits of preserving sequentiality in software. 97

5.12 Design considerations. 100

5.13 Performance comparison between btree-LS, persistent unsorted and FAST/FAIR. 102

5.14 The impact of the number of logs. 102

5.15 The impact of GC and delta prefetching. 103

viii

List of Tables

2.1 The basic performance characteristics of 3DXP. Non-temporal stores (NT) and

cache line writebacks (clwb) are followed by a memory barrier to ensure that

the store reaches the ADR domain. 14

2.2 Summary of existing failure-atomicity mechanisms. 15

3.1 System Parameters . 43

3.2 A list of evaluated microbenchmarks showing the write set size (average number

of cache lines modified / average number of pages modified / maximum number

of pages modified). The write set consists of atomic updates within a transaction. 43

3.3 The performance improvement over other designs for Benchmarks Memcached

and Vacation. 50

3.4 The saving of write traffic over other designs for Benchmarks Memcached and

Vacation. 50

4.1 Diversity of optimal configurations: Each column represents the optimal mem-

ory configurations for a specific tiered-memory configuration. 55

ix

4.2 List of symbols and their definitions . 59

4.3 Description of the benchmarks . 68

5.1 Profiling of the evaluated designs under the FillRandom workload (PMEM, 1

thread). It shows Instructions Per Cycles (IPC), the number of instructions,

resource related stalls and persistence instructions (clwb/sfence), read traffic

to PMEM (bytes), write traffic to PMEM (bytes), Read Amplification and Write

Amplification per operation . 88

x

Abstract

Enabling Efficient Persistent Memory Systems

by

Yuanjiang Ni

The next-generation data center infrastructure must be equipped with more cost-

competitive memory and storage solutions to deal with the rising I/O and memory demand.

Emerging fast, byte-addressable, persistent memories (PMEM) are closing the long-standing

divide between the memory and the storage, and can serve the role of both fast storage and

scalable memory. However, several challenges must be addressed to fully unlock the potential

of PMEM in the future infrastructure: i) traditional failure-atomicity mechanisms such as log-

ging and shadow paging impose significant performance overhead and cause additional wear

out by writing extra data into PMEM, ii) while appropriate memory selection and allocation is

crucial for cloud providers and customers, existing approaches are unable to find cost-optimal

configurations despite incurring significant search costs, and iii) prior work has also been lim-

ited to performance studies using simulated memories ignoring the intricate details of persistent

memory devices.

The main contribution of this dissertation is a set of technologies that address these

challenges. First, we address the redundant writes in failure-atomic PMEM with Shadow Sub-

Paging (SSP). SSP exploits a novel cache-line-level remapping mechanism to eliminate redun-

dant data copies in PMEM, minimizes the storage overheads using page consolidation, and

removes failure-atomicity overheads from the critical path, significantly improving the perfor-

xi

mance of PMEM systems. Our evaluation results demonstrate that SSP reduces overall write

traffic by up to 1.8×, and improves transaction throughput by up to 1.6×, compared to a state-

of-the-art logging design.

Next we explore methodologies to enable low-overhead configuration selection for

tiered-memory systems. Our tiered memory configurator (TMC) recommends cloud config-

urations according to workload characteristics and resource utilization. Whereas prior work

utilized extensive simulation or costly machine learning techniques, TMC profiles applications

to reveal internal properties that lead to fast and accurate performance estimation. TMC’s novel

configuration-selection algorithm incorporates a new heuristic, packing penalty, to ensure that

recommended configurations achieve good resource efficiency. We have demonstrated that

TMC reduces the search cost by up to 4× over the state-of-the-art while improving resource

utilization by up to 17%.

Finally, we present one of the first in-depth performance studies on the interplay of

real persistent memory hardware and indexing data structures. We conduct comprehensive eval-

uations of various index structures leveraging diverse workloads and configurations. We first

obtain important findings via a thorough investigation of the experimental results and detailed

micro-architectural profiling. We then propose two novel techniques for improving the indexing

data structure performance on persistent memories.

xii

To my loving parents

xiii

Acknowledgments

I first would like to thank my advisors, Professor Ethan Miller and Professor Heiner

Litz, for their guidance and encouragement. I could not have finished my research and thesis

without their help. I would like to thank the members of my advancement committee and

dissertation committee. Their support contributes tremendously to the completion of this thesis.

I think all my colleagues in the Storage Systems Research Center (SSRC) for the valuable

feedback and help they provide throughout my graduate career. My work on 3DXP memory

was done during my internship at the Alibaba group. Thanks to my colleagues at Alibaba for

helping me with the 3DXP work.

This research was supported by the NSF grants IIP-1266400, IIP-1841565, #1829524,

#1829525, #1817077, #1823559, the industrial sponsors of the Center for Research in Stor-

age Systems, and SRC/DARPA Center for Research on Intelligent Storage and Processing-in-

memory.

xiv

Chapter 1

Introduction

Data has emerged as one of the world’s most important assets, driving e-commerce

platforms, social media, streaming services, and scientific research. A 2018 Forbes article

reported that 2.5 exabytes of data were generated daily and that 90 percent of the world’s data

was generated over a two-year span [14]. The ever-rising data tide calls for a more powerful

and cost-effective memory/storage solution in the data center.

On the storage side, system architects’ desire to get I/O latencies as low as possible

is hindered by the significant gap in the memory and storage hierarchy. Although NVMe SSDs

offer microsecond scale access latencies, they are still considerably slower than DRAM. As a

result, the IT industry has been long waiting for new technology to fulfill the market demands

for high-performance data storage.

On the memory side, continuing growth in data center applications’ main memory

requirements [11, 78, 90, 118], along with the slowdown of DRAM scaling [70], renders main

memory the costliest component of data center infrastructure. Meta [118] estimates the cost of

1

DRAM will grow and reach 33% as a fraction of server cost of ownership (TCO). Moreover,

due to the strict service level objectives (SLO) imposed by data center applications, memory

is often over-provisioned. Microsoft found [73] that 50% of the provisioned main memory

capacity remains untouched by virtual machines (VM).

New persistent memory (PMEM) technologies are being developed to address these

challenges. PMEM [80, 119] can be any apparatus that enables the stored data structures to be

accessed with low latency at byte-granularity across the life span of the process that created

or modified them. Persistent memories fit between DRAM and NAND flash from both a per-

formance and a price point perspective, bridging the gap between the memory and the storage.

Particularly, PMEM can act as either high-performance storage or as high capacity and low-cost

main memory.

Enabled by the recent trends in memory technologies, fast and byte-addressable per-

sistent memory systems are becoming a reality. Emerging byte-addressable, non-volatile mem-

ory (BNVM) technologies promise higher density and lower energy cost while only being mod-

erately slower than DRAM [5,23,36,59,61,63,74,121,124]. On the other hand, many candidate

BNVM technologies share limitations such as limited endurance and higher write latency. In

addition, memory disaggregation [8, 42, 75, 118] and Compute Express Link (CXL) attached

memory [4,73,78,99] enable pooled deployment of recycled, slower, previous-generation mem-

ory across a fabric. Remote memories are slower but provide significant cost reductions, as

shown in prior work [8, 73]. Disaggregated, CXL-attached, remote, and persistent memories

are practical, as they can be mapped into application virtual address space and accessed using

conventional load-store instructions.

2

One class of workloads that PMEM stands to revolutionize is data-intensive work-

loads such as online transaction processing. Persistent memories introduce a new storage inter-

face: applications use CPU load/store instructions to directly operate on the storage medium.

This model removes the need to maintain separate data formats for memory and storage, avoid-

ing serialization and deserialization of the in-memory data structures. PMEM’s adoption into

infrastructures will enable a switch to more efficient memory-style data access, resulting in

substantial performance improvements [27, 52, 114].

Memory-intensive applications such as Artificial Intelligence (AI), in-memory databases [108],

and data analytics [40] may experience severe performance degradation due to the spilling of

the workloads to the disk [59]. The memory capacity of an application can be expanded cost-

effectively by backing a part of its address space with low-cost (but slower) memory. It is

possible for slower memory to result in a net cost win if the cost savings of replacing DRAM

outweigh the cost penalty of reduced program performance.

The ecosystem of persistent memory systems is gradually falling into place: Intel’s

3DXP memory [49] was launched in 2019, researchers and companies have built PMEM opti-

mized file systems [29, 35, 122, 123] as well as PMEM supporting libraries [27, 52, 114], major

chip manufacturers are developing and incorporating CXL solutions [9, 71, 81, 99], and tiered-

memory systems are now increasingly supported by operating systems such as Linux [61, 78,

118, 124]. However, despite all the important progress that has been made, several obstacles

must be overcome to fully reap the potential benefits of the PMEM:

• Inefficient failure-atomic PMEM. Since data structures in persistent memory survive a

power cycle, the PMEM programming model requires mechanisms to ensure that per-

3

sisted data is reusable by preserving application consistency in the presence of failures.

The updates within a failure-atomic section are guaranteed to be executed indivisibly (all

or nothing). The following challenges must be addressed to implement efficient failure-

atomic transactions in the PMEM: First, the limited write endurance [67] of PMEM

compared to DRAM, second, the latency overheads introduced for guaranteeing failure-

atomicity, by extra memory fences, flushes and logging and third, the inability to amortize

overheads when operating on fast PMEM.

• Resource allocation for tiered memory. Cloud providers such as Microsoft Azure [3],

Amazon AWS [1], and Google [2] offer Infrastructure as a Service (IaaS) to satisfy the

computing needs of their clients. In such platforms, optimizing tiered memory systems

becomes even more challenging as the optimal memory allocation now depends on multi-

ple applications and their requirements. Selecting the right resources is beneficial for the

cloud provider and client. For instance, we show that inefficient configurations increase

the cost by up to 2.6× for clients, whereas resource stranding can increase the cost by

2.2× for cloud operators. However, optimizing the cloud resource configurations, such

as the fast to slow memory ratio in tiered memory systems, and predicting its perfor-

mance implications, is challenging due to the large search space. Utilizing a brute-force

approach, an infeasible number of configurations covering all fast to slow memory ra-

tios and hardware resources must be evaluated to devise accurate performance and TCO

models.

• Platform-specific optimizations. Although 3DXP, one of the first high-capacity PMEM,

4

has been commercially available only recently, the research on PMEM based index struc-

tures started long before the arrival of real persistent memory. Due to the limited availabil-

ity of PMEM, prior work resorted to DRAM-based emulation [126] or hardware simula-

tion [92]. However, in recent empirical studies [53,125], PMEM behavior has been shown

to be more nuanced than previously thought. As a result, it remains to be seen whether

the proposed PMEM-based indexing approaches will actually work on real PMEM hard-

ware. In addition, none of the prior work focuses on indexing structure from a practical

perspective and explores platform-specific techniques that efficiently optimize indexes in

3DXP memory.

1.1 Contributions

We have developed a set of technologies that address the abovementioned challenges 1.

In particular, this dissertation makes the following contributions:

• Shadow sub-paging. We present Shadow Sub-Paging (SSP), a PMEM optimized shadow

paging, to enable low overhead failure-atomic PMEM transactions. SSP leverages the fol-

lowing key observation to provide failure-atomicity: Instead of duplicating writes as in

logging-based approaches, SSP only consistently updates a small amount of metadata in

PMEM. As the metadata is small compared to the actual data, the redundant write traffic,

a major concern in existing PMEM systems, is almost completely avoided. However, SSP

raises two new challenges. First, metadata needs to be written in an atomically consistent

1We will publish the software and benchmarks used in this dissertation in https://www.crss.us/
sw-pmemhiertools.html

5

https://www.crss.us/sw-pmemhiertools.html
https://www.crss.us/sw-pmemhiertools.html

way, which we address with lightweight metadata journaling. And second, SSP intro-

duces memory capacity overheads, which we address via page consolidation. We extend

the translation lookaside buffer (TLB) hardware to support SSP semantics, minimizing

changes to the processor core while avoiding most address remapping overheads.

• Tiered memory configurator. To minimize the cost of identifying the right resource alloca-

tion in the tiered memory systems, we present the Tiered Memory Configurator (TMC),

a system that only requires performance measurements of N + 1 hardware configura-

tions where N represents the number of tiers in the memory system. TMC recommends

near-optimal tiered-memory configurations according to the application’s behavior and

the data center’s real-time utilization. Instead of utilizing a machine-learning based,

black-box approach as in prior works, TMC devises a performance model based on the

understanding of hardware performance characteristics. To trade-off execution time per-

formance and cost, our methodology optimizes for a single metric: execution time per-

formance per TCO. In addition, we introduce a new heuristic, packing penalty, which

penalizes the configuration that exacerbates the resource stranding issue given the real-

time resource utilization at the data center.

• 3DXP optimized index structures. We conduct an in-depth performance study on the inter-

play of real PMEM hardware and index structures. We provide new insights on utilizing

indexing data structures in Intel’s 3DXP memory. We propose two write optimizations

for PMEM based indexes: 1) Group flushing, a technique that prevents data reorder-

ing by flushing modified data in groups. An unmodified B-tree with software-directed

6

group flushing achieves write throughput comparable to its write-efficient counterpart

while having better search and range-query performance; 2) Persistency Optimized Log-

structuring, which translates random writes to sequential writes at the cost of additional

reads, effectively addressing the larger line size deployed by 3DXP (265 Byte vs. 64

Byte).

1.2 Organization

The remainder of this dissertation is organized as follows: Chapter 2 provides back-

ground and related work helping motivate the need for our studies, Chapter 3 describes how we

eliminate redundant writes in failure-atomic transactions with Shadow Sub-Paging, Chapter 4

discusses how TMC achieves fast and accurate configuration selection for tiered-memory sys-

tems, Chapter 5 presents insights and novel techniques to improve the performance of B+-Trees

on the real PMEM hardware, Chapter 6 explores future work directions and Chapter 7 conclude.

7

Chapter 2

Background and Motivation

In this chapter, we begin by examining general characteristics of emerging memory

technologies such as byte-addressable non-volatile memory (BNVM) and the prominent use

cases of persistent memory. We then describe 3DXP memory, one of the first widely avail-

able BNVM, emphasizing the peculiarities of the real hardware. Next, we discuss existing

techniques that have been proposed to enforce failure-atomicity in the PMEM enabled storage

system. Section 2.4 reviews various key techniques that enable efficient integration of PMEM

technology and indexing data structures. Finally, we explore the existing techniques in finding

the right resource allocation for tiered-memory systems.

2.1 Emerging Memory Technologies

Byte-addressable, non-volatile memories (BNVM) promise to combine memory and

storage characteristics by increasing cost-efficiency over DRAM, providing data persistence and

byte addressability at sub-microsecond-scale latencies. Key memory manufacturers such as Mi-

8

Figure 2.1: The future compute and memory architecture enabled by emerging memory tech-
nologies

cron, Intel and SK Hynix have been exploring alternative memory technologies for decades. The

candidate technologies that have been developed over the past include PCM [67], ReRAM [102],

3DXP [49] and 3DVXP [107]. Although the details of these technologies vary, many share lim-

itations such as limited write endurance and asymmetric read-write latencies where a write

operation may take longer to complete [67].

In today’s DIMM-based memory solutions, CPUs’ memory technology support com-

pletely determines the memory subsystem. Such a rigid, hardware-defined memory subsystem

limits mix-and-match of memory technologies with differing cost and performance profiles,

and makes it hard to upgrade the memory capacity at a fine granularity. Compute express link

(CXL) [9,71,81,99] is about to enable a new compute and memory architecture. With the advent

of the new CXL standard, different types of cache-coherent memory devices can be connected

to the system memory and accessed via native load/store instructions at high speed in the fu-

ture servers. CXL enables us to design the memory hierarchy based on the latency, bandwidth,

capacity, and persistence needs of the workloads. In this way, compute and memory resources

can be scaled independently and system resources can be utilized more effectively. As shown

in Figure 2.1, through CXL coherent interconnect, it is possible to expand the memory within a

9

server as well as pool and share memory between servers.

2.1.1 PMEM as Storage

Byte-addressable, persistent memories will enable the two-tier storage hierarchy to

evolve into a single level of large and fast memory. Legacy storage interfaces such as file

systems likely will continue to exist into the PMEM era [29,35,122,123]. In the legacy model,

system calls such as read() or write() have been used to operate on data stored in application

buffers. Our work focuses on a new PMEM enabled programming model [15,27,46,52,114] in

which applications directly access the storage media from userspace using processor load and

store instructions.

A reliable storage system must tolerate unexpected system failures by providing dura-

bility. As CPU caches typically do not reside within the power-fail protected domain [101], data

in the CPU cache is lost during a power cycle. Contemporary CPU provides instructions that

explicitly flush the modified data to PMEM from the CPU cache e.g. the cache-line writeback

clwb in x86.

Besides ensuring that modified data reaches the persistence domain, we must also

guarantee that the persistent memory state is consistent after an update operation is performed

by an application. Contemporary architectures generally only support eight or sixteen-byte

atomic stores. As a result, for an update operation that performs a series of PMEM writes or

a PMEM write that is larger than 16 bytes, a more sophisticated scheme must be devised to

achieve the failure atomicity. To better understand failure consistency, consider a straightfor-

ward linked list example. In order to insert a new node into a linked list, we must

10

head head headhead

1) Init 2) Complete 3) Failure scenario
(inconsistent)

4) Failure scenario
(consistent)

Figure 2.2: Potential states of the linked list after a crash

1. create a new node,

2. have the new node point at the node that is currently at the head,

3. update the head pointer to point at the new node.

Figure 2.2 depicts the potential states of the linked list in the PMEM after a power

failure when inserting a new to the linked list: State 1 represents the case where a power failure

happen before the insertion starts, state 2 represents the case where a power failure happen after

the insertion completes, and state 3 and state 4 represents the potential failure scenarios where

a power failure interrupts the insertion.

It is important to highlight that stores can be reordered in the CPU cache or the mem-

ory controller before they are eventually persisted in the PMEM. An inconsistent PMEM state

will arise if the writes in the step 2 and step 3 are reordered, and a crash happens right after step

3 is persisted but before step 2 is persisted as shown in the state 3 of Figure 2.2. The inconsistent

linked list is no longer usable as the head node may point at a wrong memory location (update

in step 2 was not persisted). The failure consistency in the persistent memory can be ensured

by either carefully ordering the PMEM stores or using failure-atomic transactions.

We can ensure the data is updated atomically by explicitly ordering the PMEM stores

in an update operation. For instance, ensuring that the write in step 2 is persisted first guarantees

11

the consistency of the linked list under any failure scenarios in the linked list example. If a crash

happens after step 2 is persisted but before step 3 is persisted, the persistent linked list remains

consistent as if the insertion never happened (State 4 in Figure 2.2); however, the new node must

be reclaimed (e.g. via garbage collection) to prevent a permanent memory leak. Persist ordering

can be enforced with a combination of cache-line flushing and memory fencing: the cache-line

flushing forces a write-back of a modified cache line, and the memory fencing ensures the

completion of a persist operation.

Achieving consistency with persist memory ordering is error-prone if more complex

update operations are involved [32, 47, 68, 69]. To remedy this, existing PMEM support li-

braries [19,27,114,128] incorporate the abstraction of failure-atomic transactions. In the linked

list example, programmers now only need to specify a failure-atomic transaction comprising

the two updates; the failure-atomic transactions ensure that either both updates are persisted, or

none of them take effect. Section 2.3 presents details of existing failure-atomicity techniques,

which can be used to implement durable transactions.

2.1.2 PMEM as Memory

Applying technologies such as persistent memory and CXL inevitably introduces

multiple tiers of memory that need to be managed. Tiered memory [5, 23, 36, 59, 61, 63, 74,

121, 124] allocates performance-sensitive data in DRAM and performance-insensitive data in

the second tier memory, seeking to maintain performance at a lower cost.

Researchers and companies have explored tiered memory systems: hardware-controlled

and software-controlled tiered memory. In the hardware-controlled tiered memory [23, 63], the

12

DRAM acts as a hardware-manged cache layer on top of the slow memory tier (e.g. PMEM).

Similar as the CPU cache, the memory controller will transparently identify performance-

critical pages and place them on the DRAM cache. One major drawback of this approach is

that the DRAM is not visible from the perspective of the OS, limiting the total memory capacity

applications can utilize. This dissertation instead focuses on managing the tiered memory in

software [5,36,59,61,121,124] where both DRAM and the second tier memory can be exposed

as the main memory (volatile) and visible to the applications. The responsibility of effectively

managing two or more tiers of memory falls on the OS [5, 61, 124] or applications [36, 59, 121]

in software-controlled tiered memory. Although such tiered-memory systems are now increas-

ingly supported by operating systems such as Linux [61, 78, 118, 124], it remains unclear how

applications should allocate their data structures between the faster, more expensive and the

slower, less-expensive tiers for maximizing performance per total cost of ownership (TCO).

Some data center operators [66,118] have chosen to implement the slow memory tier

using compressed DRAM instead of a new memory technology, such as 3DXP, as we have done

in this dissertation. Linux Zswap and related mechanisms [76] compress swapped pages but are

not fast enough to be load-store memory; they resemble near-I/O mechanisms such as tmpfs or

RAMdisk.

2.2 3DXP Persistent Memory

Intel released 3DXP memory in 2019 as one of the first commercially available PMEM

hardware. While in last section we have introduced the architecture and some prominent use

13

Bandwidth (GB/s) Idle Latency (ns)
Seq.
Read

Rand.
Read

Seq.
Write

Rand.
Write

Seq.
Read

Rand.
Read

NT
Store

clwb

DRAM 105.9 70.4 52.3 52 81 101 86 57
3DXP 38.9 10.3 11.5 2.8 169 305 90 62

Table 2.1: The basic performance characteristics of 3DXP. Non-temporal stores (NT) and cache
line writebacks (clwb) are followed by a memory barrier to ensure that the store reaches the
ADR domain.

cases of the PMEM in general, we focus on the design of a real PMEM hardware (3DXP) in

this section.

For wear-leveling and bad-block management, 3DXP coordinates access to the under-

lying 3DXP media via an indirection layer [53]. The Address Indirection Table (AIT) translates

system addresses to device-internal addresses. The access granularity of the 3DXP media is

256 bytes [53], requiring the 3DXP controller to translate 64-byte requests from the CPU into

larger 256-byte requests. The coarser 256-byte granularity corresponds to the error-correcting

code (ECC) block unit of 3DXP. To avoid a 4× write amplification on every write, write com-

bining buffers are employed to aggregate cache-line-sized data into 256-byte chunks. When

write combining buffers are exhausted, a hopefully full buffer is selected by the IO scheduling

logic and flushed to the 3DXP media. Similarly, 256-byte buffers are allocated for incoming

read requests.

The basic performance characteristics exhibited by 3DXP on an Intel Cascade Lake

server are summarized in Table 2.1. A more comprehensive study of the performance charac-

teristics of the 3DXP can be found in a prior report [53]. Overall, 3DXP provides inferior per-

formance compared to DRAM. Furthermore, the read throughput of 3DXP is about 4× higher

than the write throughput and sequential workloads achieve 4× higher throughput than random

14

Name Low Extra Writes Low Persistence Overhead Low Instruction Overhead
Software redo/undo logging 5 5 5

ATOM, Proteus 5 5 4

DHTM 5 4 4

LSNVMM 4 4 5

SCSP 5 5 5

SSP 4 4 4

Table 2.2: Summary of existing failure-atomicity mechanisms.

workloads. The read-write asymmetric throughput can be explained by the higher write latency

of the 3DXP media [67]. The performance gap between sequential and random workloads can

be explained by the 4× IO amplification induced by the translation of 64-byte cache line ac-

cesses to 256-byte 3DXP accesses. In addition, the unloaded random read latency of 3DXP is

about 3× higher than that of DRAMs and the random read latency is 2× higher than the se-

quential read latency. Finally, the unloaded latency of a non-temporal store or cache-line write

back (clwb) is almost identical between 3DXP and DRAM. Note that this is the latency to the

controller write buffer and is not sustainable as the memory access load increases.

2.3 Failure-Atomic PMEM

Storage systems traditionally ensure crash consistency by using one of three tech-

niques: write-ahead logging [83], shadow paging [44], or log-structuring [96]. We now exam-

ine the use of these techniques in implementing failure-atomic PMEM transactions. Table 2.2

presents a summary of existing PMEM optimized failure-atomicity mechanisms, which we will

discuss in more detail in the following:

• Write-Ahead Logging. Whenever data is overwritten, either the original data or the new

15

data must first be written to a logging area in PMEM. Only after persisting the log to

PMEM data can be updated in place, guaranteeing that the original data can always be

recovered after a failure. Prior approaches [27, 52, 56, 57, 106, 114] differ in terms of the

techniques used to minimize the instruction overhead and how they reduce the impact

of logging on the application performance. There are two types of logging: redo log-

ging records the new data in the log area, whereas undo logging records the old value.

Undo logging has to persist a log record (old data) first before the PM write can be made

in place for each PM write, introducing excessive persist ordering and cache flushing

overhead. With redo logging, log records that contain the new values can be stashed in

the memory and streamed to the PMEM when a transaction completes. However, redo

logging requires all memory reads to be intercepted and redirected to the redo log to ob-

tain the latest values. As a result, it imposes significant instruction overhead for read

operations. Hardware logging [56, 57, 106], therefore, has been introduced to provide

high-performance logging by optimizing persistence overhead and instruction overhead.

ATOM [57] and Proteus [106] (hardware undo logging) move the log update out of the

critical path of the atomic update by tracking the dependency of the log update and the

data updated in hardware. DHTM [56] (hardware redo logging) improves upon previous

solutions by decoupling the data update from the transaction commit: the process of writ-

ing back the modified cache lines to persistent memory can overlap with the execution

of the non-transactional code following the transaction. However, even under DHTM,

committing the redundant writes to PMEM remains on the critical path and, as a result,

may delay subsequent transactions reducing overall performance.

16

• Shadow Paging. When shadow paging performs a write, it creates a new copy of a

memory page, updates the new copy, and then atomically updates the persistent virtual-

to-physical address mapping to complete a failure atomic write sequence. BPFS [29]

presents a redesign of traditional shadow paging for the PMEM-aware filesystem, called

Short-Circuit Shadow Paging (SCSP). SCSP includes two optimizations: i) it only copies

the unmodified portion of a page, and ii) it applies 8-byte atomic updates as soon as pos-

sible to avoid propagating the copy-on-write (CoW) to the root of tree. Unfortunately,

SCSP cannot track the update at sub-page granularity and thus still has to CoW almost

the entire page if the PM write is small (e.g. 8 byte). While SCSP might be suitable

for file system workloads where the file data updates tend to be large, persistent mem-

ory accesses are performed on the byte-granularity, rendering the method ineffective for

persistent memory systems e.g. CoW overhead for small updates.

• Log-Structuring. Log-structured stores [96] do not update data in place, but instead ap-

pend newly written data to the end of a log. A continuously updated mapping table is

used to map logical addresses to physical storage. The unique challenge in using log-

structuring in persistent memories is that, mappings need to refer to large, fixed-size

blocks of data to limit the overhead of the mapping table. Persistent memory systems,

however, operate on fine-grained byte-sized granularity, which introduces fragmentation

and garbage collection overheads when utilizing large block sizes. Log-Structured Non-

volatile Main Memory (LSNVMM) [46] proposes a sophisticated tree-based remapping

mechanism that allows the out-of-place update to be performed at varied granularities.

17

The mapping of LSNVMM is implemented as a partitioned tree (e.g. an array of skip

lists); a node cache (e.g. hashtable) is employed to reduce tree traversal. Despite all

its optimizations, the capacity overheads for storing the mapping tables and the instruc-

tion overhead are still significant in a system that offers data access at sub-microsecond

latencies.

To sum up, all the log-based approaches share a common “write twice” problem, as

PMEM writes need to be performed twice: once to the log and once to the actual data. In CoW,

modified data is only written once; however, unmodified data has to be copied first, render-

ing this approach inefficient for small updates. Log-structuring must use a more flexible, and

hence complex, mapping scheme [46] to reduce the otherwise prohibitive metadata, imposing

significant instruction overhead for the read operations.

2.4 PMEM-based Index Structures

In previous sections, we have examined the characteristics of PMEM and some gen-

eral issues in implementing persistent data structures in PMEM (failure-atomicity). This section

explores specific techniques to enable efficient, PMEM based B+-Tree index structures.

The B-Tree [12] is a self-balancing multi-way tree structure. In a B-tree, each internal

(non-leaf) node contains k− 1 keys as separation values to divide its children into k subtrees,

where k must be within the range of db
2e and b (b represents the capacity of the internal node).

When data is inserted or removed from a node, internal nodes may be joined or split to maintain

the pre-defined number of children. A B+-tree [28] is a modified B-tree that stores all key-values

18

1 6 8

1 3 6 8

1

1

2

2
CPU Cache

PM

Sorted
Items

insert 3

(a) Stage 1

1 3 8

1 3 6 8

1

1

2

2
CPU Cache

PM

Sorted
Items

(b) Stage 2

Figure 2.3: Challenges in maintaining consistency for B+-Tree

in its leaves and maintains copies of keys in internal nodes. The leaves of a B+-tree are often

connected via sibling pointers for fast traversal. While originally proposed to support efficient

indexing on block storage, the B+-Tree is also widely used as an efficient in-memory index to

alleviate the performance gap between the CPU cache and the main memory, with each node

consisting of multiple cache lines [43]. Several studies investigated the design of in-DRAM

B+-trees and its variants from different aspects such as cache consciousness [43, 95], scalabil-

ity [17, 72, 104], the capability of memory latency hiding [20, 55, 93], and the opportunities of

architecture-specific optimizations [60,104]. With the advent of PMEM, while these techniques

are still applicable, the durability and consistency requirements, as well as different media char-

acteristics, call for new techniques in designing B+-trees. In this section, we summarize the

techniques that have been proposed to adapt the index structures to PMEMs:

• Optimizing for Writes. While traditional B+-Tree implementation typically keeps the

items in the node sorted, prior work on PMEM-based indexing proposes to leave the items

unsorted in the node to deal with the higher write cost of the PMEM [21, 22, 89, 126]. In

the unsorted B+-Tree, an extra validity bitmap can be added as the node’s metadata to

19

encode the node slots’ occupancy. Each insertion consists of 3 steps: i) identifying an

empty slot by consulting the validity bitmap, ii) writing the item into the empty slot, and

iii) updating the corresponding validity bit.

• Consistency. Ensuring consistency for B+-Tree updates is challenging as an insertion

(or deletion) requires touching a large portion of a node (e.g. sorted node) that spans

multiple cache lines. As shown in a B+-Tree example (Figure 2.3), two cache lines are

touched when inserting key 3 into a sorted node. If the system crashes and only cache

line ¶ is persisted, the sorted node in the PMEM becomes inconsistent as key 6 in the

BTree node is essentially lost (Step 2 in Figure 2.3). The most straightforward solution

is to rely on failure-atomic transactions (see Section 2.1.1) to ensure the atomicity of a

B+-tree insertion. However, failure-atomic transactions are often undesirable due to the

excessive logging overhead. As a result, alternative approaches have been proposed to

maintain data consistency for B+-trees in the PMEM. First, unsorted B+-trees built on

the validity bitmap [22, 89, 126] maintain the atomicity of node updates by preserving

the persist order between writes to the new slot and the update to the validity bitmap. If

the system crashes before the update to the validity bit is persisted, the corresponding

slot remains invalid, and the insertion will be failed. Second, Hwang et al [47] propose

two mechanisms—Failure-Atomic ShifT (FAST) and Failure-Atomic In-place Rebalance

(FAIR)—which can be used to provide failure atomicity to the complicated B+-Tree up-

date without resorting to expensive logging. The intuition is that if the modified cache

lines can be persisted in a particular order, the inconsistent states in the PMEM caused

20

by an unclean shutdown can be tolerated. In the previous B+-Tree example, if we ensure

that cache line · is persisted before the cache-line ¶, a crash may result in a transient

inconsistent state where the sorted node contains a duplicate 6. However, such inconsis-

tency can be tolerated as it can be easily detected (e.g. duplicate elements) and fixed by

the reader without hurting the correctness of query results.

• Selective Persistence. The idea of selective persistence is that the entire index can be

reconstructed from a fraction of the tree. Performance can be improved by storing the

recoverable part of the index in fast DRAM. Selective persistence can be applied to

B+Tree [89, 126] as the leaf nodes of a B+-Tree are already linked in the sorted order,

providing all the information to rebuild the internal nodes. The trade-off of this approach

is between performance and the failure-recovery time.

2.5 Resource Allocation Techniques

Resource allocation in tiered memory systems has to be performed whenever an appli-

cation is submitted to the cluster and depends on the current physically available resources. As

a result, it is important to minimize the amount of time required to identify the optimal memory

configuration of a workload. As the main goal of utilizing tiered memory systems is to reduce

TCO, the runtime cost of determining a near-optimal configuration must be considerably less

than running the workload itself. Ideally, to minimize the search cost, it is sufficient to execute

a few test runs for establishing the performance profile of each application.

• Machine Learning. Machine learning techniques [79,88,105,110] such as KNN, Support

21

Vector Machines (SVM), or regression can be used to predict application performance

under a certain machine configuration. Traditional machine learnings are not conscious

of the search cost and may require a large number of the samples. Ernest [110] has

investigated reducing the amount of training data with experimental experiment design.

However, the usage of Ernest is limited as it can only be used to predict the optimal

number instances for analytic workloads.

• Collaborative Filtering. Collaborative filtering [34, 62] can be used to predict how an

unknown application will perform across different configurations, based on sparse per-

formance data collected by profiling training workloads. Although systems such as Se-

lecta [62] require to profile a new, incoming application only on two configurations sim-

ilar to TMC, Selecta requires extensive training on a large set of workloads and configu-

rations for achieving ideal accuracy. Furthermore, Selecta is a black-box technique that

cannot influence memory allocation and data-structure placement within memory tiers.

As a result, it needs to rely on underlying OS-level technique to transparently migrate

data between the memory tiers.

• Bayesian Optimization. Cherrypick [7] proposes to use bayesian optimization (BO) to

reduce the search cost for optimizing the objective function: C(~x) = P(~x)×T (~x); ~x rep-

resents a VM configuration, T (~x) represents the run time under~x and P(~x) represents the

cost per unit time for ~x. BO treats the body of the objective function as a black box and

tries to find an optimal solution that minimizes the total cost with as few samples as pos-

sible. It relies on an acquisition function to choose the best configuration to run next, and

22

it stops when the Estimated Improvement (EI) is smaller than a threshold. Although BO

significantly reduces the search cost as compared to exhaustive search, it still requires 6

to 12 samples for identifying a cost-optimal configuration. Cherrypick reduces the search

overhead by learning a black-box model that predicts cost-efficient cloud configurations

based on a limited number of training samples. However, as it lacks an actual perfor-

mance model, it cannot handle tasks such as finding all configurations whose execution

costs is within a certain range or selecting optimal configurations based on real-time re-

source availability.

2.6 Chapter Summary

This dissertation is motivated by the need for new techniques to facilitate the effi-

cient incorporation of the emerging memory technologies into the system infrastructure. In this

chapter, we have provided detailed background and motivation for the dissertation. We have

described the nuanced behavior of 3DXP persistent memory and shown that there is lack of

platform specific insights and optimizations. We have introduced the existing PMEM optimized

failure-atomicity mechanisms and pointed out their inefficiencies. We have also discussed tech-

niques that can be used to achieve near-optimal resource allocation for tiered-memory systems.

23

Chapter 3

Eliminating redundant writes in failure-atomic

PMEM

Computer systems that deploy persistent memories (PMEM) can leverage their non-

volatility on the main memory level, however need to take into account that processor caches

may remain volatile. As a result, the integrity of persistent data structures after an unclean shut-

down remains a major concern. Existing failure-consistency mechanisms such as logging and

shadow paging, which are designed for the traditional disk-based I/O model, impose significant

performance and energy overheads by writing extra data into the PMEM.

We introduce a hardware-friendly remapping mechanism, based on shadow paging,

that can i) reduce the number of extra NVRAM writes over logging, and ii) avoid extra data

copying within the critical path. We propose Shadow Sub-Paging (SSP), that supports cache-

line-level remapping with low metadata overhead: our approach requires only three bits for each

cache line in pages that are being actively updated. The process of atomic updates and transac-

24

tion commit only involves updating the per-page metadata using simple bitwise operations and

no extra data movement is required in the critical path.

In a nutshell, our approach works as follows: For each virtual PMEM memory page

in the TLB, SSP maintains two physical page mappings. Persistent writes are applied to the two

pages alternatively and SSP switches the page mapping on each failure-atomic transaction. In-

stead of performing CoW on a per page granularity, SSP maintains additional meta information

that tracks state on a cache line basis within each page. Finally, when a page is evicted from

the TLB, SSP performs page consolidation to merge the two physical pages into one. Page

consolidation is the only point where SSP introduces redundant writes. Our key observation,

however, is that the number of transactions is much higher than the number of TLB evictions

for most applications. This allows SSP to batch redundant writes to PMEM resulting in a sig-

nificant decrease of overall writes. As page consolidation can be performed in the background,

SSP removes overheads required for failure-atomicity from the performance critical path.

3.1 SSP Design

In this section we introduce the design of SSP. First, we introduce the programming

model and then we discuss the basic concept of SSP. We then introduce two key techniques: i)

metadata journaling and i) page consolidation. We conclude this section with a discussion.

25

3.1.1 Programming Model and ISA Extension

We adopt a programming model proposed by Mnemosyne [114], in which program-

mers use the language construct atomic{...} to define a failure atomic section (e.g. updates

inside are persist in a all or nothing fashion), and use the persistent keyword to annotate

pointers to persistent data. Furthermore, we extend the ISA with a pair of new instructions—

ATOMIC BEGIN and ATOMIC END—to define the begin and the end of a failure-atomic section and

a new instruction called ATOMIC STORE to hint a store must be conducted in an atomic fashion.

ATOMIC BEGIN and ATOMIC END act as a full memory barriers. The ATOMIC STORE instruction

adds the store address to the transaction’s write set so that it can be flushed to PMEM during

commit. The compiler can be modified to translate these software interfaces (e.g. the atomic

block and the persistent pointers) to the ISA instructions.

Note that our interface resembles the interface of Intel TSX [51, 116] where XBEGIN

and XEND are used to indicate the beginning and the end of a transaction. Intel TSX is designed

to replace locking as a new way to ensure thread synchronization, and provides no guarantee

on durability. In future work, we will investigate integrating SSP with hardware transactional

memory through which we can provide an unified interface for supporting ACID transactions.

In this work, we assume the isolation of threads are guaranteed using locks: by grabbing locks

before the operation is performed, other threads are prevented from observing intermediate

states.

26

3.1.2 Shadow Sub-Paging

Conventional shadow paging suffers from the problem that it operates on full pages

which means a cache line write requires CoW of an entire page. To address this challenge, we

propose Shadow Sub-Paging, a technique that can track updates on a much finer granularity:

cache lines. Shadow Sub-Paging draws inspirations from the PTM-select technique [24], with

major extensions to support failure-atomicity for persistent memory.

SSP Abstraction. Shadow Sub-Paging (SSP) is a persistent-memory-optimized version of

shadow paging. When SSP is used to perform atomic updates, each active virtual page is associ-

ated with a second physical page. A page is active as long as it is in the TLB; for inactive pages

the two physical pages are consolidated into one for space efficiency. We refer to the original

physical page as “P0” and the extra physical page as “P1”. Besides a second physical page,

SSP requires three bitmaps for pages that are being actively updated. Specifically, the state of

each cache line in the virtual page is represented by a single current bit, single updated bit and

a single committed bit; each bit in these bitmaps refers to the cache line of the same offset. As

bitmap access is performed on the critical path, they are cached in the TLB as we will explain

in the metadata section. The current bit defines whether the most recent version of some data

referred to by a virtual address is currently mapped to physical page P0 or P1. The updated bit

is set to one whenever the cache line is written, and is reset as part of the commit process. The

updated bitmap represents the write set of a transaction. The Committed bit defines whether P0

or P1 currently contains the committed (old) version of the cache line.

As a transaction is being processed, reads are directed to the page determined by the

27

current bit. When the cache line is written to for the first time in a transaction SSP performs

three tasks atomically. First, the corresponding updated bit is set to track the line as part of the

transaction’s write set. Second, the write is applied to the cache line that resides on the “other”

page, for instance, to P1 if the committed cache line is part contained in P0. Third, the current

bit is inverted such that the most recent (but still transient) version of the cache line now points

to the new page. Note that in SSP it is possible that for a specific virtual page, some cache

lines are currently stored on P0 and some on P1. Whenever a write targets a cache line that is

already in the write set, it simply updates the current cache line. To commit a failure-atomic

transaction, SSP persists all cache lines in the write set by flushing them to PMEM. Note that

cache lines might have already been persisted during the transaction in case they were evicted

from the cache. This is not a problem in SSP, even in the case of a power failure, as writes never

overwrite committed data in place. Furthermore, as part of the commit sequence, the updated

bitmap is cleared to atomically commit the speculative updates; Lastly, the committed bitmap is

persisted so that in case of a system failure, the current bitmaps can be recovered.

The approach explained above suffers from the following problem. Consider a cache

line for a virtual address that is currently mapped to P0. If the cache line is transactionally

written, the update needs to be applied to P1, requiring a copy-on-write of P0 into P1 which is

costly. The other option would be to cache both the P0 and the P1 cache line. However, this

would virtually reduce the cache size by 2×. We address this issue by the following technique.

Instead of performing CoW, we directly apply the write to the cache line, however, we atomi-

cally change the tag so that the line now maps to the “other” page. As the “old” line has already

been flushed to PMEM as part of a previous commit, this approach is safe.

28

1000

 Thread1’s
 Updated Bitmap

0001

 Thread2’s
 Updated Bitmap

1010

 Curent Bitmap

0011

 Committed bitmap

 V
 P0

 P1

TLB Hardware (Volatile) NVRAM

2

1
1

2

Committed State

Invalid State

Speculative Updates
From thread1
Speculative Updates
From thread2

Figure 3.1: The metadata of SSP: each thread has to track their own write set with private
updated bitmaps; all threads should agree on a current bitmap for a virtual page; the per-page
committed bitmap is used to preserve the consistent state of a page and should be stored durably.

Metadata Storage. The per-page bitmaps need to be checked (and updated) in the critical path.

As in prior work [103], we extend the TLB hardware to cache extra metadata required by SSP.

Specifically, we store the second physical page number, the updated bitmap, and the current

bitmap in the TLB hardware. As shown in Figure 3.1, threads (cores) are required to use their

own set of updated bitmaps to track the write-set of the on-going transaction so that they can

commit (or abort) their modifications in isolation. To ensure a single view of shared memory,

all threads share a current bitmap for a given virtual page. We will discuss how to ensure the

coherence of current bitmap among cores in section 3.2.2. Our system must guarantee that

data from previously committed transactions can always be retrieved after a power cycle. The

per-page committed bitmap is durably stored in the PMEM and is updated as part of the commit

process.

29

 VA

 VB

 VA

 VB

0000

0000

 Committed bitmaps

NVRAM

 VA

 VB

1100

0000

 Committed bitmaps

NVRAM

 VA

 VB

1100

0011

 Committed bitmaps

NVRAM

A0 A1 A2 A3

B0 B1 B2 B3

Atomic {
 update A0;
 update A1;
 update B0;
 update B1
}

Address Space

1
updated the committed
bitmap of VA.

2
updated the committed
bitmap of VB.

Consistent ConsistentInconsistent

Code and the Address Space Layout

Figure 3.2: The consistency of SSP: the commit process might consist of updating multiple
committed bitmap in the PMEM; power failure in between will leave the system in an inconsis-
tent state.

3.1.3 Metadata Journaling

To preserve the atomicity of data updates in the case of transactions spanning mul-

tiple pages, we must update all committed bitmaps atomically during transaction commit. An

example describing this scenario is shown in Figure 3.2 where a code section specifies four

cache lines need to be updated atomically. The commit process involves updating the commit-

ted bitmap of VA (from “0000” to “1100”) and that of VB (from “0000” to “0011”). However,

it might take two separate steps to update these committed bitmaps from the perspective of the

memory controller. If the system crashes in between, only updates on VA (e.g. A0 and A1) will

be visible after recovery, which violates atomicity. We use metadata journaling to ensure the

atomicity of updates on the metadata of SSP. Our metadata journaling approach can be con-

30

sidered as a redo logging, however, only for the SSP metadata and not for the data itself as in

conventional redo logging. It works as follows: every update to the per-page metadata, appends

an entry (operation) to the log where an entry contains the page ID and the committed bitmap.

Only after persisting the meta log for a transaction to PMEM, SSP updates the per page com-

mitted bitmaps in the metadata area. More details on the implementation of metadata journaling

are provided in section 3.2.1. As compared to data journaling (e.g. redo/undo logging), which

requires to log every modified data block (e.g. typically 64 Byte), SSP journaling is lightweight

as it only needs to record 128 bits of metadata for each modified page.

3.1.4 Page Consolidation

Associating each virtual page in the system with two physical pages represents a 2×

capacity overhead. To address this problem, SSP consolidates physical pages into a single page

whenever a virtual page is not actively used, and thus not contained in the TLB. As SSP requires

pages to be resident in the TLB if they are written as part of a transaction, it is safe to consolidate

a page even if some lines are still cached because a line without TLB mapping must either be

committed or invalid.

At the time of consolidation, the valid data of a virtual page is likely to be distributed

across the two associated physical pages. To minimize the data copying overhead, we identify

the physical page (e.g. P0 or P1) which contains fewer valid cache lines and copy its valid data

to the other physical page (e.g. P1 or P0). Note that we can easily compute the number of valid

cache lines in P0 or P1 by counting the number of ‘0” or “1” in the corresponding committed

bitmap. Finally, we update the virtual-to-physical mapping table so that the virtual page refers

31

to the physical page with all the valid data.

Another issue that needs to be addressed is the accurate identification of inactive vir-

tual pages. It is important, as premature consolidations of pages that are still being actively

updated will result in unnecessary data copying overhead. We reuse the TLB hotness tracking:

when a virtual page is not referenced by any TLB entry, we consider it as inactive. These inac-

tive pages could be consolidated eagerly (e.g. immediately after being detected) or lazily (e.g.

when the demands on the memory resources are high). Our current implementation consolidate

inactive pages eagerly and we plan to investigate lazy consolidation in the future.

3.1.5 Discussion

Virtually-Indexed cache: SSP can work seamlessly with physical, or virtually-indexed physically-

tagged caches. To support SSP on a virtually-indexed cache, we extend the tag with one TX bit

to indicate whether a cache line has been modified by the current transaction. When a modi-

fied cache line is written back to memory, the TX bit allows Shadow Sub-Paging to distinguish

transactional cache lines from regular cache lines. For a transactional cache line, we leverage

SSP remapping to prevent overwriting the committed data. A read miss will also require to

access the extended TLB. In this case, SSP locates the current mapping (P0 or P1) of a cache

line.

Superpages: Superpages [31, 65, 85, 109] are commonly used to increase the coverage of the

TLB. Supporting superpages in SSP is challenging due to the large per-page metadata overhead.

For instance, a 2 MiB page has 32,768 cache lines and thus, the required bitmap size is 262,144

bytes. It is unpractical to scale TLB entries to support such large bitmaps. SSP currently only

32

VPN PPN0 PPN1
Current
Bitmap

CPU Cache

CPU Core

Extended TLB

Metadata Journaling

SIDTID P0 Commit.
Bitmap

1

4

VPN P0 P1 Current
Bitmap

Updated
Bitmap

Transient
data

persistent
datajournal-tail

cache base

journal-head

Memory (NVRAM + DRAM)

Commit.
Bitmap

1

4 Mem.
Ctrl.

SSP Cache

P1P0 Commit.
Bitmap

Current
Bitmap

TLB
Count

Core.
Count

Figure 3.3: The architecture of SSP.

supports 4 KiB base pages. However, techniques such as transparent superpages and page clus-

tering as supported by Linux can be extended to support SSP. In particular, coexistence of small

and superpages is possible by automatically demoting superpages when they are updated and

promoting pages to superpages when they become “inactive”. With this approach, superpages

can be used for read-only data. As for the design of TLB hardware, support for superpages and

that for SSP can coexist because most processor vendors use split TLBs [31]. SSP only requires

TLB extensions for the 4 KiB base pages.

Limitation and Fall-back path. The SSP design has limitations in terms of the size of a trans-

action it can support. If a transaction updates more pages than the TLB can hold, SSP needs

to abort the transaction and revert to a fall-back path. The fall-back path transfers control to

a programmer-defined handler which can implement any kind of unbounded software redo or

undo logging to ensure atomicity. SSP is designed to handle small and medium sized transac-

tions efficiently, in line with to existing commercial HTMs such Intel’s RTM [51, 116].

3.2 SSP Architecture

Figure 3.3 depicts the architectural details of SSP. The per-page metadata of SSP,

which contains persistent fields such as the committed bitmap and volatile fields such as the

33

 C3

0000
 Updated Bitmap Current Bitmap

 CPU Cache

0011

 Data Tag

V P1

P1

P0

P0

V

Store V:C3

Store P1:C3

01

1

4

Check the current
 bit (1)1 check the updated

 bit (0)

5 Flip the
current bit

 Set the
current bit

2
Fetch the data from
NVRAM (line-level COW)

3 Update the cache tag

4 Update the new copy

Figure 3.4: The atomic update process of SSP

current bitmap, is managed by the memory controller in the form of the SSP cache. We extend

the TLB hardware to cache the current bitmap, the updated bitmap and the second physical page

number. The core is extended to handle atomic updates of cache lines so that on each write the

cache tag, the updated bit and the current bit is updated atomically. To support transaction

commit, the core needs to i) write back the cache lines that have been modified and ii) issue a

metadata update instruction for each modified page to the memory controller. The memory con-

troller performs metadata journaling to ensure the atomicity of metadata updates. Furthermore,

the memory controller tracks the status of each page using the SSP cache and it also conducts

page consolidation.

34

3.2.1 Extensions on CPU hardware

We propose a set of architectural extensions to facilitate SSP. In particular, we adopt

a wider TLB entry in which we can cache the second physical page number, the current bitmap

and the updated bitmap of a page that is being modified. In the event of TLB miss, the core

will conduct a page table walk as usual to obtain the original physical page number (e.g. P0) for

the missing page. Afterwards, it interacts with the memory controller to fetch the SSP-specific

metadata (using P0 as index), that is the second physical page number (e.g. P1) and the current

bitmap; the updated bitmap is initialized with all zeros.

Memory Read and Write. During address translation, the virtual address is translated into

either P0 or P1, depending on the corresponding current bit for the accessed cache line. The

remainder of the memory access path remains unmodified.

Atomic Update. Figure 3.4 shows how SSP handles atomic updates. We assume a write-back

cache with a write allocate policy. An atomic update process is described as follows: i) Shadow

Sub-Paging checks the current bit to determine which page to write; ii) a copy of the data is

loaded into the cache if it is not present; iii) the cache line is remapped by changing the tag, so

the “other” cache line can be updated; iv) the new cache is updated with the written data; v) the

current bit is flipped. Note that iii) and v) are only necessary if the line was written for the first

time during the transaction. Since this modified cache line now is associated with another page,

it is safe to evict it from the cache anytime without worrying about overwriting the committed

state in PMEM.

To conduct the remapping, the current bitmap for a page needs to be changed. To keep

35

the current state of shared pages coherent across cores (and the memory controller), the most

straightforward solution is to perform a TLB shootdown. However, TLB shootdowns incur sig-

nificant overheads [10, 113]. We instead adopt the approach proposed by page-overlays [103]

which exploits the cache coherence network to guarantee coherency of the TLB entries, includ-

ing the current bitmap. The cache coherence network is extended with a new message called

flip-current-bit. When a cache line is updated for the first time in a transaction (current bit is

zero), a flip-current-bit message is broadcast via the cache coherence network to notify other

cores as well as memory controllers to flip the current bit for the corresponding cache line.

Note that we may piggy back the flip-current-bit on the invalidation message. The approach

can be trivially extended to support directory based cache coherency protocols. We believe the

broadcasting will only impose minimal overhead on the system overall. As shown in previous

work [84], in typical PM workloads, only a small portion (< 4%) of accesses are to PM; the

majority to DRAM. Moreover, our design only requires a broadcast operation for a fraction of

stores to PM (e.g. modifying a cacheline for the first time in a transaction).

Transaction Commit. Durable transactions must guarantee data persistence after commit re-

quests are acknowledged. The commit process of SSP involves two steps i) data persistence and

ii) metadata update. Atomic updates themselves do not ensure data persistence—some updates

might still be in the cache at the transaction commit. Here we use a write-back instruction such

as clwb to write back the cache lines modified by the committing transaction. The write-set of

the committing transaction is tracked by the updated bitmaps stored in the extended TLB. The

commit process also needs to update the committed bitmaps stored in PMEM. We extend the

write interface of the memory controller with a special metadata update instruction. For each

36

updated page (identified by the update buffer), we pass information such as the page ID (e.g.

P0) and the updated bitmap to the memory controller using the metadata update instruction.

The memory controller will perform journaling to ensure the atomicity of the metadata updates.

The metadata update instructions are passed to the memory controller without caching. Note

that we must ensure the ordering between the data persistence and the metadata update. If the

system crashes before the atomic metadata update is complete, all speculative updates will be

discarded, recovering into an consistent state.

3.2.2 Memory Controller Extensions

In the SSP architecture, the memory controller provides centralized storage for meta-

data and it performs page consolidation and metadata journaling. Furthermore, it is responsible

for managing a set of pages from which the second physical pages can be allocated. Note that

the number of pages is bounded by the number of TLB entries and that page consolidation

ensures that pages will be freed after they become inactive.

Metadata Storage. SSP associates each virtual page with additional metadata. Since we only

need these additional fields when pages are active, we do not require extension of the page

table entries. Instead, the memory controller maintains a SSP cache separately to store the SSP-

related metadata. An SSP cache entry contains the following details regarding a page that is

being actively updated: the original/second physical page number (PPN0/PPN1); the consistent

state (committed bitmap); the current state (current bitmap); the number of TLBs that have

cached the translation for this page (TLB reference count); the number of cores that are updating

this page (core reference count). Among this information, the physical page numbers and the

37

committed bitmap must be stored durably. Fields such as the current bitmap, the core/TLB

reference count are transient and are not necessary for the recovery.

Whenever a SSP cache entry is accessed (e.g. after a TLB miss), the SSP cache is

consulted with the original physical page number (P0). In case of a miss, the memory con-

troller inserts a new entry into the SSP cache. The replacement algorithm of the SSP cache

is straightforward. The memory controller may evict any entry that contains a page that is i)

already consolidated (e.g. committed bitmap is zero) and ii) not referenced by any TLB (e.g.

TLB reference count is zero). The SSP cache can be sized according to the TLB and the number

of cores. For instance, in a system with N cores and T -entry TLBs, the size of the SSP cache

is set to N × T +O. Here O is the overprovisioning factor used to accommodate pages that

are being consolidated. The rationale behind this is that i) the maximum number of concurrent

transactions is N, ii) each transaction can touch no more than T pages, and iii) O entries are

overprovisioned so that we do not have to wait for pages to be consolidated in order to make

room for new TLB-fill requests. If under rare conditions, we find that the cache entries we

reserve are not enough, we can resize the SSP cache and request more pages from the OS.

Free Space Management. At system initialization, the OS will reserve a small mount of con-

tinuous PMEM physical pages and pass the base address to the memory controller by setting

one of its registers. The memory controller will associate each entry of the SSP cache with an

extra physical page up front. The extra physical page is utilized by the virtual page assigned to

an entry and can be reused when the entry is assigned to a new virtual page as all data stored

in the extra page is persisted during consolidation. To overcome uneven wear out, the memory

controller may exchange the per-slot extra physical pages with fresh pages from time to time.

38

Page Consolidation. SSP decides whether a page is eligible for consolidation according to the

following information: is there any TLB that has cached the SSP cache entry for this page?

Specifically, the TLB reference count is used to decide when to consolidate a page. The TLB

reference count is increased by one if a core fetches the SSP cache entry from the memory

controller and is decreased by one if a core evicts the SSP cache entry from its TLB. When the

memory controller detects that the reference counter for a page drops to zero, an entry, which

includes the two physical page numbers and the committed bitmap, is inserted into a consoli-

dation queue. An OS thread conducts page consolidation in the background, allowing the new

TLB entry to be inserted with minimal delay. When a page has been consolidated, the consoli-

dation thread inserts an entry into a finish queue to notify the controller. We reserve several bits

in the SSP cache entry to track the status of a page (e.g. whether it is being consolidated). In

the rare case a page is requested by the TLB during consolidation, the response is delayed until

after the consolidation for that page has been completed.

Metadata Journaling. A multi-page transaction requires multiple updates to the metadata area

that stores the pages’ committed bitmaps. As shown in Figure 3.3, each metadata journaling

record, which represents the intention to update the SSP cache, has four fields—the Transaction

ID (TID), the ID of the cache slot that that is being modified (SID), the new value of original

physical page number and the new value of the committed bitmap. The TID is assigned by the

memory controller to uniquely identify the metadata updates from the same transaction. The

SID is used to compute the physical address of the slot given the base address of the SSP cache.

Upon receiving a metadata update instruction, the memory controller generates a record and

appends it to the metadata journal. Note that journaling records are written back to PMEM, at

39

cache level granularity, only when the log buffer is full or an explicit request is made to flush

the buffer.

Checkpointing. To limit the growth of the journaling space and also to bound the recovery

time, the memory controller needs to perform checkpointing, which updates the state of the

persistent SSP cache to the most recent consistent snapshot and then needs to clear the jour-

naling space. A background OS thread is used for checkpointing and takes three steps: i) it

records the current head pointer—where appends happen—of the journal, ii) it applies the log

records to the persistent SSP cache and iii) it advances the tail pointer of the journal. Note that

the checkpointing thread will capture the final state of a modified cache entry and only write it

back to the persistent cache.

3.2.3 Architecture Details

We here discuss several optional details that improve the efficiency of the implemen-

tation of SSP.

Write-set Buffer. Storing the updated bitmap in the TLB entry along with the physical page

numbers and the current bitmap, albeit straightforward, entails a problem—the burst of non-

transactional accesses may cause an in-transaction TLB entry (e.g. updated bitmap is non-zero)

to be evicted, making it impossible to track the write-set of the transaction. To address this issue,

a separate write-set buffer can be added to store the updated bitmaps. The write-set buffer is

cleared once the ongoing transaction is committed. By decoupling the updated bitmap from the

TLB, a page might be evicted from the TLB while it is written as part of a ongoing transaction.

We deal with this corner case with a per-page core reference count. The per-page reference

40

count is increased upon receiving a flip-current-bit from a specific core, and is cleared upon

receiving a metadata update instruction. A page with non-zero core reference count will not be

considered for consolidation or cache eviction.

SSP Cache Organization. Transient runtime information such as the reference count is updated

frequently. Placing the SSP cache in PMEM will cause unnecessary wear out. The SSP cache

is organized as a transient SSP cache (stored in DRAM) and a persistent SSP cache (stored in

PMEM): the transient cache is employed to serve the requests from the cores; the persistent

cache serves as a backup and is used only during recovery. We only store persistent metadata

such as the physical page numbers and the committed bitmap in the persistent cache.

To leverage faster memory in the hierarchy, we use a small portion of the L3 to as a

“cache” for the SSP cache [30]. Only 1% of a 12-megabyte L3 cache could be used to cache

about 4K SSP cache entries. We will study the sensitivity of the access latency of the SSP cache

in the evaluation.

3.2.4 Hardware Cost and Complexity Trade-off

There are two main hardware overheads in our design: the extended TLB entries and

the write-set buffer. For a typical 4 KiB page and 64 byte cache line, there are 64 cache lines

per page, so each bitmap has 64 bits, adding 64 bits and a second physical page number (e.g.

40 bits) to each TLB entry. Across the 64-entry L1 TLB, the overall cost to expand the TLB

is 832 bytes. If we take the L2 TLB into consideration, a 1024-entry L2 TLB will add another

13 kilobytes. Each write-set buffer entry includes a 36-bit tag and a 64-bit bitmap. The size

of a 64-entry write-set buffer is therefore 800 bytes. Thus, the overall hardware cost is 14.6

41

kilobytes.

We now identify opportunities to address the hardware overhead. In our original

design, we conservatively assume the ideal granularity for ensuring persistence is 64 bytes (e.g.

cache line granularity). However, as disclosed by a recent work [53], the preferable granularity

for persisting data to the Intel’s Optane DC Persistent Memory is 256 bytes. Utilizing 4×

larger sub-pages, the size of the bitmap could be reduced to 16 bits, significantly reducing state

overhead of the TLB entries. Furthermore, recent Intel, IBM and ARM processors provide

HTM support. HTM uses one transactional bit per cache line to track the speculative updates.

By reusing the transactional bit, we might be able to eliminate the need for using the updated

bitmaps.

Our current design trades-off complexity for higher performance. To reduce hardware

complexity, we may drop the modifications on TLB hardware by implementing SSP mappings

in userspace. However, this imposes significant instruction overheads as now every load/store

must be intercepted similarly to software transactional memory systems. Second, we can avoid

the changes on the TLB coherence network by using TLB shootdowns instead. However, the

TLB shootdown procedure involves trapping into the OS, issuing inter-process interrupts, im-

posing a significant performance overhead. Note that our current implementation only serves as

a baseline for exploring the viability of SSP. Other alternatives might be considered in practice.

3.2.5 Recovery

Upon restart from an unclean shutdown, SSP performs the following two steps for

recovery. First, it rebuilds the transient SSP cache with the persistent metadata stored in the

42

Processor 4 OoO Cores, 3.7 GHz, 5-wide issue, 4-wide retire, 128 ROB entries,
Load/Store Queue: 48/32, 64 DTLB entries

L1I and L1D 32 KiB, 64-byte lines, 8-way, 4 cycles
L2 256 KiB, 64-byte lines, 8-way, 6 cycles
L3 12 MiB, 64-byte lines, 16-way, 27 cycles

DRAM 8 GiB, 1 channel, 64 banks per rank, 1 KiB row-buffer, read/write 50 ns
PMEM 8 GiB, 1 channel, 32 banks per rank, 2 KiB row-buffer, read/write 50/200 ns

Table 3.1: System Parameters

Name Write Set Description
RBTree-Rand 12/3/13 Insert/delete nodes in a red-black tree; Random workloads
BTree-Rand 10/6/21 Insert/delete nodes in a B+-Tree; Random workloads
Hash-Rand 3/3/4 Insert/delete nodes in a hashtable; Random workloads

SPS 2/2/2 Swap elements in an array
RBTree-Zipf 5/2/6 Insert/delete nodes in a red-black tree; Zipfian workloads.
BTree-Zipf 6/4/15 Insert/delete nodes in a B+-Tree; Zipfian workloads.
Hash-Zipf 3/3/4 Insert/delete nodes in a hashtable; Zipfian workloads

Memcached 3/2/35 Memslap as workload generator; Four clients; 90% SET
Vacation 4/3/9 Four clients; 16 million tuples

Table 3.2: A list of evaluated microbenchmarks showing the write set size (average number of
cache lines modified / average number of pages modified / maximum number of pages modi-
fied). The write set consists of atomic updates within a transaction.

persistent cache. Specifically, fields such as the two physical page numbers and the committed

bitmap are reloaded directly from the persistent cache. Then the current bitmap is initialized

with the value of the committed bitmap all other transient fields (e.g. reference counters) are

initialized as zeros. Furthermore, the state of the transient cache needs to be updated to the most

recent consistent snapshot, replaying the records in the metadata journal whereas the entries of

aborted transactions are skipped.

3.3 Evaluation

43

3.3.1 Experimental Setup

We implemented SSP on MarssX86 [91], which is a cycle-accurate full system sim-

ulator for the x86-64 architecture. We integrated DRAMSim2 [97] into MarssX86 for a more

detailed memory simulation. The DRAMSim2 is extended to model a hybrid memory system

with both DRAM and PMEM connected to the same memory-bus. Table 3.1 shows the main

parameters of the system. Our simulated machine supports out-of-order execution, and includes

a 64-entry L1 DTLB, 3 levels of cache, and an NVDIMM.

Simulation Methodology. We simulate the impact of logging, page consolidation as well as

data persistence using the MarssX86 and DRAMSIM2. To model the impact of SSP on the TLB

and on cache coherency, we measure the number of TLB misses and the number of flip-current-

bit messages. Note that we only count the TLB misses caused by accessing the persistent heap.

The latency of accessing SSP cache is modeled for a given workload according to the L3 SSP

cache miss ratio, L3 latency (e.g. 27 cycles) and DRAM latency (e.g. 185 cycles). The extra

cycles are then added to the total cycles. To better understand the impact of the latency of SSP

cache access, we conduct a sensitivity study in Section 3.3.3. In our experiment, we reserve

0.3% of the L3 cache to be used to store the SSP cache (e.g. about 1K SSP cache entries).

Benchmarks. We evaluate both microbenchmarks and real workloads in our experiments. The

microbenchmarks cover commonly used data structures such as the B+-Tree (BTree), as de-

scribed in Table 3.2. The elements, keys or values used in these workloads are all 8-byte in-

tegers. Each data structure update (e.g. insert, delete, or swap) is wrapped inside a durable

transaction. Benchmarks BTree, RBTree and Hash first search for a key and then either delete

44

(key found) or insert (key absent) a key/value pair. We vary the access patterns for these work-

loads by changing the key distribution. We use suffix “-Rand” and “-Zipf” to denote random

workloads and zipfian workloads. For zipfian workloads, 80% of the updates are applied to

15% of the keys. The key/value pairs are generated prior to each run. We evaluate two real

applications: Memcached [37] is a well-known in-memory Key/Value cache and Vacation [82]

which emulates an OLTP system. Prior work [84] has published the persistent-memory-aware

version of these applications; we merely replace their durable interfaces with ours. The char-

acterization of the benchmarks is shown in Figure 3.2. As none of the evaluated applications

writes to more than 64 pages during a transaction, a 64-entry write-set buffer is sufficient to

accommodate all of the workloads. As a result, none of our evaluated applications requires the

unbounded fall-back path.

Evaluated Designs. We compare SSP with two other designs for which we use tuned, optimal

parameters (e.g. size of the log buffer). We do not compare with conventional shadow paging.

As shown in Table 3.2, transactions only touch 2-6 cache lines on average. Conventional shadow

paging degrades performance by writing up to 64× more cache lines.

• UNDO-LOG represents a naive hardware undo logging mechanism. Each atomic store will

generate a log entry. The store then will be blocked until the log entry reaches persistent

memory. Under undo logging, if a value is repeatedly updated multiple times, we only need

to generate a log entry for the first update. We employ a log buffer to avoid writing redundant

log entries.

• REDO-LOG [56] is a state-of-the-art hardware redo logging. It allows overlapping data

persistence with the non-transactional code following the transaction commit. Besides, it

45

BTree-Rand

RBTree-Rand

Hash-Rand
SPS

BTree-Zipf

RBTree-Zipf

Hash-Zipf
0.0

0.5

1.0

1.5

2.0

T
P

S
(N

or
m

al
iz

ed
)

UNDO-LOG REDO-LOG SSP

(a) One thread.

BTree-Rand

RBTree-Rand

Hash-Rand
SPS

BTree-Zipf

RBTree-Zipf

Hash-Zipf
0.0

0.5

1.0

1.5

2.0

T
P

S
(N

or
m

al
iz

ed
)

UNDO-LOG REDO-LOG SSP

(b) Four Threads.

Figure 3.5: Performance of micro-benchmarks (higher is better).

BTree-Rand

RBTree-Rand

Hash-Rand
SPS

BTree-Zipf

RBTree-Zipf

Hash-Zipf
0.0

0.5

1.0

1.5

2.0

L
og

gi
ng

W
ri

te
s

(N
or

m
al

iz
ed

)

UNDO-LOG REDO-LOG SSP

Figure 3.6: Comparison of logging writes (lower is better).

also employs a log buffer to predict the final state of a cache line and thus avoids redundant

log entries.

3.3.2 Mirobenchmark Results

Transactional throughput. We show performance results of the four designs running the mi-

crobenchmarks. From Figure 3.5a, we observe that SSP outperforms UNDO-LOG and REDO-

LOG by 1.9× and 1.3× on average under single threaded workloads. The improvement mainly

comes from the ability of SSP to reduce the logging overhead. As shown in Figure 3.6, SSP can

46

BTree-Rand

RBTree-Rand

Hash-Rand
SPS

BTree-Zipf

RBTree-Zipf

Hash-Zipf
0.0

0.5

1.0

1.5

2.0

N
V

R
A

M
W

ri
te

s
(N

or
m

al
iz

ed
)

UNDO-LOG REDO-LOG SSP

(a) Comparison of PMEM writes.

BTree-Rand

RBTree-Rand

Hash-Rand
SPS

BTree-Zipf

RBTree-Zipf

Hash-Zipf
0

25

50

75

100

W
ri

te
s

(%
)

Data Journaling Consolidation Checkpointing

(b) Breakdown of PMEM writes for SSP.

Figure 3.7: PMEM writes.

decrease the write traffic caused by logging by 7.6× and respectively 4.7× compared to UNDO-

LOG and UNDO-LOG. In particular, under the BTree-Rand workload, SSP nearly eliminates

the logging writes, which results in a 1.5× improvement in transactional throughput. As we

can see in Table 3.2, the BTree benchmark exhibits great spatial locality (e.g. several cache

lines modified in a single page), which minimizes the writes introduced by metadata journaling.

Figure 3.5a shows the performance under four threads. We can see SSP scales well. SSP can

improve the performance by 2.4× and 1.4× over the UNDO-LOG and REDO-LOG on average,

respectively.

PMEM Writes. Figure 3.7a compares SSP to the baseline designs in terms of the number of

PMEM writes. We make two observations. First, SSP can save 45% and 28% write traffic as

compared to UNDO-LOG and REDO-LOG on average, as the Undo/Redo logging designs es-

sentially require data to be written twice. Although page consolidation also causes extra writes

in SSP, it is not a per-transaction operation: modified data does not require an immediate copy

operation during the transaction commit but instead additional writes are only required when an

active page turns inactive. As the transaction frequency is much higher than the frequency of

pages becoming inactive, SSP can effectively “batch” the additional writes required for failure-

47

x1 x3 x5 x7 x9

NVRAM Latency

0

50

100

150

200

T
P

S
(K

)

UNDO-LOG REDO-LOG SSP

(a) RBTree.

x1 x3 x5 x7 x9

NVRAM Latency

0

50

100

150

200

T
P

S
(K

)

UNDO-LOG REDO-LOG SSP

(b) BTree.

Figure 3.8: Sensitivity to the Latency of PMEM: the x-axis shows the PMEM latency in multiple
of DRAM latency.

atomicity. Figure 3.7b shows the breakdown of PMEM writes in our SSP design. As we can

see, the number of writes caused by page consolidation is less than the data writes under most

of the workloads except for SPS. Second, the locality of the workloads affects the number of

PMEM writes. Under benchmarks with zipfian access pattern (e.g. BTree-Zipf, RBTree-Zipf and

Hash-Zipf), SSP on average can reduce the write traffic by 56% and 42% over UNDO-LOG and

REDO-LOG. In contrast, for random workloads using a unified distribution SSP can only save

43% and 23% write traffic over UNDO-LOG and REDO-LOG. As shown in Figure 3.7b, under

workloads with locality, extra writes caused by page consolidation are negligible. It demon-

strates the SSP design can efficiently prevent the premature consolidation of hot pages and thus

minimize page consolidation overhead for zipfian workloads.

3.3.3 Sensitivity Study

Latency of PMEM. Figure 4.9 shows the transaction throughput with varying memory latency.

Overall, it can be seen that the performance of SSP and the baseline designs degrade when

the PMEM latency increases. However, the gap between SSP and other designs is increasing

48

20 40 60 80 100 120 140 160 180

Latency (Cycle)

0.0

0.5

1.0

1.5

Im
pr

ov
em

en
t

BTree-Rand

RBTree-Rand

Hash-Rand

SPS

BTree-Zipf

RBTree-Zipf

Hash-Zipf

Figure 3.9: Sensitivity to the latency of SSP Cache: y-axis shows the speedup over REDO-
LOG.

as well. In particular, the speedup over REDO-LOG increases from 1.1× to 1.8× under the

benchmark BTree (Figure 3.8b). SSP minimizes the logging writes and thus is less sensitive

to the change of the PMEM latency. We observe that when the PMEM is as fast as DRAM,

REDO-LOG outperforms SSP by 8% under the benchmark RBTree (Figure 3.8a). The reason

behind this is that when the persistency overhead is low (e.g. DRAM latency), REDO-LOG can

hide the most of the delay caused by persisting data.

Latency of the SSP Cache. Figure 3.9 shows the impact of the latency of the SSP cache

on the performance of our SSP design. For all workloads besides SPS, the cache latency has

limited impact on SSP performance, showing only a moderate linear performance decrease with

increased latency. However, the latency of SSP cache is still critical for benchmarks such as SPS

and Hash-Rand. This is because their poor locality leads to frequent TLB misses, which in turn

increase the frequency of accessing the SSP cache. We observe that the zipfian workloads are

49

UNDO-LOG REDO-LOG
Memcached 75% 35%

Vacation 27% 13%

Table 3.3: The performance improvement over other designs for Benchmarks Memcached and
Vacation.

UNDO-LOG REDO-LOG
Memcached 49% 46%

Vacation 38% 17%

Table 3.4: The saving of write traffic over other designs for Benchmarks Memcached and Vaca-
tion.

less sensitive to the latency of the SSP cache than these random ones. This can also be explained

by the difference in locality exposed by these workloads.

3.3.4 Performance of Real Workloads

Table 3.3 shows the performance improvement of SSP over other designs for the

Memcached and Vacation benchmarks. For the Memcached benchmark, SSP provides a 74%

throughput improvement over UNDO-LOG and a 35% higher throughput compared to REDO-

LOG. For the Vacation Benchmark, SSP provides a 27% improvement over UNDO-LOG and

13% higher throughput over REDO-LOG. The improvement comes from the reduction in log-

ging overhead. Specifically, SSP saves 86% and 82% logging writes over UNDO-LOG and

REDO-LOG under the real workloads on average. In the Vacation benchmark, SSP generates

less improvement over REDO-LOG. This is because the volatile execution contributes to most

of the overhead of the Vacation benchmark.

Table 3.4 shows the reduction of PMEM writes. As we can see, SSP continues to save

write traffic to PMEM: 49% and 46% reduction over UNDO-LOG and REDO-LOG under the

50

Memcached Workload and 38% and 17% reduction over UNDO-LOG and REDO-LOG under

the Memcached Workload. The extra write traffic caused by page consolidation is only 15%

and 31% of the total write traffic for the Memcached and Vacation workloads.

3.4 Chapter Summary

We proposed SSP, a novel shadow paging scheme that leverages fine grain cache line

level remapping, to enable efficient, failure-atomic transactions. In particular, SSP eliminates

most of the redundant writes introduced by prior log-based techniques. Our key idea is that we

can delay the application of redundant writes via address remapping, enabling write batching

to reduce the overall number of writes to NVRAM. By introducing cache line remapping, our

technique successfully eliminates the copy-on-write overhead that made prior shadow mapping

schemes unfeasible, while only requiring moderate changes to the TLB hardware. In addition

to improving endurance, SSP removes redundant writes from the critical path improving trans-

actional performance. In particular, our experimental results show that SSP can reduce overall

NVRAM writes by up to 1.8×, and improve performance by up to 1.6×, as compared to a

state-of-the-art hardware logging.

51

Chapter 4

Near-Optimal Resource Allocation for

Tiered-Memory Systems

Allocation policies of the tiered-memory system [5, 23, 36, 59, 61, 63, 74, 121, 124]

have been devised to determine the best memory type for a given data item given a fixed fast to

slow memory ratio. We claim that these prior works on allocation policies are insufficient in the

IaaS cloud setting, where operators and customers desire improved cost efficiency in addition

to raw performance.

Selecting the right resources, such as the optimal fast to slow memory ratio, is critical

for both the cloud provider and client. For instance, a wrong configuration (e.g. a wrong fast to

slow memory ratio) increases the TCO by up to 2.6× for the cloud customer. In addition, the

optimization of cloud configurations also determines the overall resource efficiency of a data

center. In particular, to reduce resource stranding, an efficient tiered-memory configuration

policy also needs to consider the actual available amount of memory in the different tiers.

52

Existing solutions utilizing simulation [36] or machine learning techniques [79, 88,

105, 110] are insufficient as they incur high cost when being used to find a cost-optimal config-

uration for an application. Tiered memory configurator (TMC) profiles applications to reveal

internal properties, which then can be used to enable fast performance estimation. We first de-

vise a model to optimize the memory and data structure placement into different memory tiers

for a single application and then generalize the technique to optimize allocation across appli-

cations running in a data center. TMC’s model only contains a minimal amount of workload

specific variables which can be filled in with the data of only three profile runs of an application.

Moreover, we proposed to use a new heuristic, namely packing penalty, to quantify the impact

of a configuration on the resource efficiency in the cloud.

4.1 Motivation

Public IaaS cloud providers such as Amazon’s EC2 [1] offer their customers a limited

number of predefined VM instance types and charge them on a per-hour basis. On the other

hand, a few IaaS cloud providers, such as Google’s Compute Engine, further allow cloud users

to create a VM instance with a customized number of vCPUs and amount of memory [2]. Prior

work [131] has shown that making VM customizable is beneficial for both the provider and the

user. This work targets a future IaaS cloud incorporating both traditional DRAM and a second,

slower memory tier. We expect, that in future clouds, customers will be able to configure the

number of vCPU, the amount of local DRAM, the amount of second tier memory, and the

capacity of the last-level cache (LLC) of their vCPUs in a VM. The IaaS cloud charges the

53

<
0.

0,
1>

<
0.

2,
1>

<
0.

4,
1>

<
0.

6,
1>

<
0.

8,
1>

<
1.

0,
1>

<
0.

0,
28
>

<
0.

2,
28
>

<
0.

4,
28
>

<
0.

6,
28
>

<
0.

8,
28
>

<
1.

0,
28
>

0

1

2

3
E

xe
cu

ti
on

ti
m

e
(N

or
m

al
iz

ed
)

Performance

0.0

0.5

1.0

1.5

E
xe

cu
ti

on
co

st
(N

or
m

al
iz

ed
)

Cost

Figure 4.1: Execution time and cost for 12 〈Slow memory ratio, LLC capacity〉 configurations
(graph500)

users based on Equation 4.1.

Totalcost = VM cost×Execution time (4.1)

Scaling down a VM configuration reduces its hourly VM cost, however, also increases

the execution time of applications. In order to minimize the total cost, one must choose a

proper configuration that optimizes for both. Figure 4.1 shows the execution time and cost

for graph500 utilizing different ratios of slow and fast memory 1 and LLC sizes. As the ratio

of slow memory increases, the total cost is reduced, though the run time increases. This is

because the saving in hourly cost outweighs the performance penalty of scaling down the VM.

However, the total cost eventually goes up as the increase in run time overwhelms the saving

1Slow memory ratio can be represented as slow mem size
slow mem size+DRAM size

54

Applications Config 1 Config 2 Config 3
2× slower, 0.7× cost 3× slower, 0.4× cost 4× slower 0.3× cost

cactusBSSN 〈 0.1, 28 〉 〈 0.1, 28 〉 〈 1.0, 28 〉
graph500 〈 0.4, 28 〉 〈 0.4, 28 〉 〈 0.9, 20 〉
memcached 〈 0.0, 2 〉 〈 0.9, 2 〉 〈 0.9, 2 〉
xsbench 〈 0.9, 4 〉 〈 0.9, 3 〉 〈 0.9, 3 〉
canneal 〈 0.6, 2 〉 〈 0.6, 1 〉 〈 0.6, 1 〉
xhpcg 〈 0.0, 1 〉 〈 0.0, 1 〉 〈 0.0, 1 〉

Table 4.1: Diversity of optimal configurations: Each column represents the optimal memory
configurations for a specific tiered-memory configuration.

cactusB
SSN

graph500

memcached

xsbench

canneal
xhpcg

0

1

2

T
ot

al
co

st
(N

or
m

al
iz

ed
)

Min. Max.

Figure 4.2: Costs for best/worst/average configuration, normalized to the average cost of all
configurations.

in hourly cost. Note that in this experiment, we translate a performance slowdown into cost by

computing the additional total number of VMs required to offset the performance degradation.

This assumes that applications are throughput-bound, ie an increase in execution time can be

offset with additional hardware resources. This assumption is typical for data centers that scale

user request-level throughput with hardware resources or deploy high fan-out architectures (e.g.

Google Websearch) to distribute the execution time of a request across servers.

Table 4.1 shows the the optimal tiered memory ratio and LLC configuration across six

different workloads and three memory technologies. Each column represents a specific tiered

55

2 4 6 8 10 12 14
Workload mix

0

1

2

P
ac

ki
ng

effi
ci

en
cy

Figure 4.3: The packing efficiency improvement achieved by a resource-optimal policy over the
naive policy.

memory technology where the slow memory is s times slower and p times cheaper than DRAM.

Performance per TCO optimal configurations for each workload are shown in the form of 〈slow

memory ratio, LLC size〉. For example, if the the slower memory tier has a 3× higher read

latency but 0.4× lower cost, the cost-optimal configuration for the workload graph500 has a 〈

slow memory ratio = 0.4, LLC size = 28 ways 〉. As we can see, there exists no configuration

that is uniformly best for all workloads or memory technologies. Figure 4.2 further shows the

minimum and maximum cost for the different hardware configurations and workloads (normal-

ized to average cost of all configurations). As can be seen, customers spend 1.2–1.5× less for

the optimal configuration compared to the average configuration and 1.4 - 2.6× less compared

to the worst configuration.

Cloud customers request VM instances of a specific hardware configuration. The

cloud’s VM scheduler is responsible for selecting a server that can hold the new VM accord-

ing to the hardware requirements and the current availability of machines in the cluster. One

important aspect for optimizing the cost efficiency of such clouds is to optimize the packing den-

56

sity [111]. If VMs can be packed into fewer machines at a given time, idle machines can be pow-

ered down to save energy and cost, or they can be used to run low-priority batch jobs. Packing

inefficiency leads to resource stranding where one of the resources (e.g. vCPUs) becomes fully

utilized while others (e.g. memory) are not. Existing cluster schedulers [39, 41, 112] consider

packing efficiency during job scheduling to maximize cloud resource utilization. However, they

fail to be effective if the resource demand of the VM workload is fundamentally unbalanced.

For example, if all workloads at a given moment request disproportionately large amounts of

DRAM, a large amount of second tier memory can be left unused. VM configurations need to

adopt based on the real-time resource utilization of the cloud.

We thus investigate the potential upper-bound benefit of considering packing effi-

ciency when choosing a tiered memory configuration. In particular, we determine the optimal

slow to fast memory ratio based on resource availability. We evaluate 15 different workload

mixes consisting of 4 applications each, and compute the benefit provided by the resource-

optimal policy considering packing efficiency over a naive policy. The naive policy requests

optimal tiered memory allocations for each individual application in isolation, whereas the

resource-optimal policy considers the availability of physical hardware resources. For instance,

if a machine contains 3× more slow than fast memory, the policy reserves 0.5× fast and 1.5×

slow memory regardless of what the actual optimal slow to fast memory ratio of an application

is. As we can see from Figure 4.3, the resource-optimal policy achieves up to 2.2× higher

packing efficiency than the naive cost-optimal configuration, motivating the consideration of

both configuration cost and packing efficiency.

57

Figure 4.4: workflow of TMC

4.2 TMC Design

In this section we describe how TMC produces tiered memory and LLC configura-

tions optimizing cost efficiency for both the cloud provider and user.

4.2.1 Overview

TMC requires 3 inputs: i) the workload submitted by a cloud customer, ii) the cost

model stating the price of slow and fast memory as well as the cost of an LLC way, and iii)

the latest resource utilization info of the available hardware. To enable its performance predic-

tions, TMC monitors the memory consumption of an application during a profiling stage. TMC

then automatically determines two VM parameters: the near-optimal memory ratio of local

DRAM and slow memory, and the number of LLC-ways allocated to the VM. In line with prior

work [36, 115], we observe that the characteristics above are almost always data-structure spe-

cific. As a result, our proposed methodology determines application properties such as memory

access rate on a per data-structure level and not on raw page data. Every memory allocation is

assigned with a tag, either by the user, compiler, or allocator (by examining the call stack).

58

Symbol Definition
CPI Cycle Per Instructions
CPIcache CPI in a system with perfect LLC cache
CPIdram CPI in a DRAM-only configuration
MPI LLC misses per instruction
MPIdram LLC misses to DRAM per instruction
MPIslow LLC misses to slow memory per instruction
MLP Memory level parallelism
Ldram DRAM latency
Lslow Latency of slow memory
∆L Latency increase in slow memory over DRAM

Table 4.2: List of symbols and their definitions

Figure 4.4 outlines the workflow of TMC. After receiving the workload, TMC profiles

it using three reference configurations: 〈slow memory = 0%, LLC = MIN〉, 〈slow memory = 0%,

LLC = MAX〉, 〈slow memory = 100%, LLC = MAX〉. Important application properties, such as

average memory latency and MLP are collected in the profiling step. The application properties

are then used to enable performance prediction (Section 4.2.3) and to guide data placement

(Section 4.2.4). Finally, our configuration selection algorithm searches for a configuration that

satisfies both the customer’s and cloud provider’s needs (Section 4.2.5).

As an optimization, TMC can retain the performance profiles for workloads it has pro-

filed recently. TMC can simply use the command and the user’s input (e.g. number of iterations

for a scientific application) to uniquely identify a workload. Prior work [64] has investigated

automatically identifying parameters that significantly impact the application behavior.

4.2.2 Analyzing Application Properties

In this section, we analyze prior work on application performance modeling and then

propose an improved model that can handle tiered memory systems. Prior work [26] proposed

59

Eq. 4.2 to quantify the relationship between off-chip memory accesses and the application per-

formance in a homogeneous system (e.g. DRAM-only). Table 4.2 shows the performance

metrics used by the devised models.

CPIdram = CPIcache +
MPI×Ldram

MLP
(4.2)

We extend Eq. 4.2 to model systems with a tiered memory hierarchy as shown in

Eq. 4.3

CPI = CPIcache +
MPIdram×Ldram +MPIslow×Lslow

MLP

= CPIcache +
(MPI−MPIslow)×Ldram +MPIslow×Lslow

MLP

= CPIcache +
MPI×Ldram +MPIslow× (Lslow−Ldram)

MLP

= CPIdram +
MPIslow×∆L

MLP
(4.3)

The performance penalty introduced by a second-tier memory technology is deter-

mined by the application’s memory access rate, its latency-sensitivity, and the availability of

memory level parallelism (MLP). As a result, the performance prediction mainly relies on three

types of application properties:

Access rate to the slow memory. To devise a performance model, TMC needs to

estimate how the slow-memory access rate changes with the size of the slow memory tier and

that of the LLC. As a result, our profiling mechanism measures the access rate (i.e. access per

60

instruction) of each data structure.

Memory latency. The effective memory latency can be highly dependent on the ac-

cess pattern of the application [53,74,125]. For instance, the queuing delay within the memory

subsystem depends on the memory bandwidth, while the access patterns affect the probability

of DRAM row hits. Thus, we assess the average end-to-end memory latency for each applica-

tion individually. In particular, for each memory tier, we measure the average memory latency

when all of the application’s data is placed in that memory tier. We assume that memory latency

is similar across machines; if machine types differ significantly, profiling per machine type is

required.

Memory level parallelism. Memory accesses are costly and introduce long CPU

stalls. To hide some of this latency, contemporary Out-of-Order CPUs execute multiple memory

accesses in parallel. To consider MLP, TMC profiles the average number of outstanding memory

accesses to an application. Our approach assumes that MLP is an application specific property

unaffected by the memory technology, which has shown to hold in practice. While there does

not exist a PMU counter to directly measure MLP, we can derive it from measuring back-end

stalls. We provide a detailed description of its implementation in Section 4.4.

4.2.3 Inferring Tiered-Memory Performance

As described in Section 4.2.1, TMC only performs 3 profile runs to determine ap-

plication specific performance models. However, due to spatial and temporal locality within

memory accesses, memory tiers affect performance non-linearly. In particular, there exist per-

formance cliffs [13, 25], for instance, when the hot working set of an application exceeds the

61

LLC size. We utilize cache miss curves to estimate the memory access rate depending on the

LLC-size configuration as proposed by Qureshi [94]. The technique utilizes the LRU stack

property to measure the number of hits in a small number of cache sets and then derives a

miss curve from the per-set hit counters. In addition, we analyze application memory traces

collected throughout the profiling step to build a frequency table, tracking the access rate and

memory region of each data structure. During offline analysis, we iterate through each memory

access, map it back to the data structure according to its address, and then update the access

count of that data structure. By sorting data structures by access frequency, we can estimate

the slow-memory access rate based on a particular size of slow memory and its contained data

structures. Data structure access frequencies can be obtained via Intel’s Precise Event-Based

Sampling (PEBS) and other similar hardware sampling techniques as it enables the recording

of LLC-miss addresses directly. We will investigate the implication of the PEBS sampling rate

on accuracy and performance overheads in Section 4.4.

Profiling the first and second reference configuration, as shown in Section 4.2.1,

only provides us with the CPIdram for two special DRAM-only configurations, where LLC =

MIN, respectively LLC = MAX. In the following, we describe how to estimate CPIdram for all

other LLC configurations. First, we compute CPIcache for LLC = MIN using Eq. 4.4 where

CPIdram(LLC = MIN) and MPI(LLC = MIN) are the CPI and MPI measured in the reference

configuration 〈slow memory = 0%, LLC = MIN〉. We then estimate the CPIs for all other

LLC configurations using (Eq. 4.5) where MPI(LLC = x) represents the cache miss curve. We

can utilize the cache miss curve to estimate the memory access rate given a certain number of

62

LLC-ways x.

CPIcache = CPIdram(LLC = MIN)−MPI(LLC = MIN)×Ldram

MLP
(4.4)

CPIdram(LLC = x) = CPIcache +
MPI(LLC = x)×Ldram

MLP
(4.5)

Above we explained how we can compute the CPI for all LLC configurations for

the DRAM-only system. In the following, we discuss how to compute the performance of a

tiered memory system. In particular, we estimate the performance loss induced by accessing

slow memory, depending on the slow to fast memory ratio and application characteristics. To

estimate the slow-memory access rate, we again utilize the cache miss curve as well as the

frequency table. The frequency table is used to estimate the relative access rate to different data

structures. We estimate the slow-memory access rate to be the cumulative access rate of data

structures that will be placed in slow memory. An example of the frequency table is shown in

Figure 4.4. Data structures in this example have already been ranked according to their hotness.

Let us assume the working-set size of the application is 2.5 GiB in the frequency table example.

When the slow memory ratio is 20% (512 MiB), the entire data structure of Hash (384 MiB)

and List1 (128 MiB) will be placed into slow memory, so that the access rate to the second-tier

memory can be estimated to be the accumulated access rate of Hash and List1 (i.e. 0.8.). The

frequency table only allows us to estimate the slow-memory access rate for the configurations

where LLC = MIN or LLC = MAX. Analogous for computing performance for all LLC-ways,

we now again leverage the cache miss curve to estimate the slow-memory access rate for the

63

Figure 4.5: Estimating the rest of configurations with the miss curve

other configurations, i.e. configurations with other LLC sizes than MIN or MAX. The process

is detailed in Figure 4.5. First, for each ratio, the access rate to the second-tier memory is

only known for two LLC sizes (MIN and MAX), constituting the start and end point of a slow-

memory miss curve . The slow-memory miss curve depicts how the slow-memory access rate

changes over the LLC size. We can approximate the complete miss curve for the target ratio

by first moving the cache miss curve to align with the start point of a slow-memory miss curve

(step 2) and scale it vertically to fit the end point (step 3).

4.2.4 Data Placement

The presented methodology above enables TMC to determine a near-optimal slow to

fast memory ratio and number of LLC ways. While Section 4.2.3 will show how to compute

these exact ratios and ways, we first need to devise a policy to decide which data structures

should be placed in fast respectively slow memory. TMC utilizes a policy based on the access

count per MiB as determined by Access Count
Size to represent the hotness of a data structure. While

prior work such as X-MEM [36] have proposed more complex policies that consider MLP for

data structure placement, we observed that such an approach only provides little performance

64

Algorithm 1 Configuration Selection Algorithm
con fi . i’th candidate configuration
Ci . Total cost for con fi

R . Total resource capacity in a machine
U . Overall resource utilization in a cloud

procedure OPTIMIZATION(...)
. First round: optimize the cost for the customers
for each i ∈ {1...N} do . N is the size of con f

if Ci
Cmin
−1≤ T then

opt.insert(con fi)
end if

end for

. Second round: optimize the resource efficiency
for each i ∈ {1...S} do . S is the size of opt

Di←{ opti,cpu
Rcpu

,
opti,dram

Rdram
,

opti,slow
Rslow

,
opti,llc

Rllc
}

penaltyi = Di ·U
end for
Sort the opt according the penalty (increase)
return opt0

end procedure

improvements over a policy based on access count. In addition, X-MEM introduces a 40×

slowdown as it must use expensive application instrumentation to analyze continuous memory

access traces in order to classify memory accesses as pointer chasing, sequential or random.

4.2.5 Optimizing Packing Efficiency

Now that we can estimate the run time, we calculate the total cost for all candidate

configurations. Algorithm 1 shows the pseudo-code for our configuration selection. Our se-

lection algorithm consists of two rounds. In the first round, we identify all configurations that

satisfy the cost-performance objective of the customers. If the estimated cost of a configuration

is within a threshold T of the estimated optimal cost, we consider it as a cost-optimal configu-

65

ration. In the second round, we pick a configuration that maximizes the resource efficiency for

the cloud provider. We propose a new heuristic, packing penalty, to evaluate the impact of a

configuration on the resource efficiency at the cloud: a configuration with lower packing penalty

makes more efficient usage of cloud resources and vice versa. The packing penalty is the dot

product of two vectors U and D whose dimension is the number of valid configurations. U rep-

resents the overall resource utilization of each configuration, while D represents the resource

demand of each configuration. The rationale behind this is that the configurations utilizing a

large amount of scarce resources should be penalized. Resource demand of a configuration

will be normalized first using the total resource capacity per-machine. Note that when the slow

memory tier is provisioned across machines as in CXL memory pools, the slow-memory capac-

ity per machine is statically determined by the total capacity of CXL-memory across machines.

4.2.6 Discussion

Bandwidth. Our prediction model assumes that the end-to-end memory latency of

an application is relatively stable across different configurations. We found that this assumption

holds as long as the memory bandwidth of the system is not overly saturated, particularly, less

than 80% of peak. As demonstrated in prior studies [38, 53, 54, 125], there is a “knee” in the

bandwidth-latency curve at around 80% of the maximal bandwidth. For most of the operating

range, memory latency is relatively flat, however, increases exponentially after the “knee”. As

reported in [53], the “knee” for 3DXP when dealing with random read workload is at around 10

GiB/s where the latency increases from 300ns to 400ns. Our technique assumes that the cloud

provider enforces workload mixes via scheduling that consume at most 80% of a machines

66

DRAM bandwidth. This has been naturally the case for all workload mixes evaluated in this

paper. Google has reported [58] that data center applications are almost exclusively DRAM

latency and not bandwidth limited. If higher bandwidth utilization is desirable, our model can

be extended easily.

Application specific MLP. Prior work has proposed measuring data structure specific

MLP by extending the memory controller [74] or by adding expensive instrumentation [36].

However, our study indicates that replacing application specific MLP with data structure spe-

cific MLP provides little improvement over the prediction accuracy (less than 1%). Hence, our

work measures the MLP of the application, assuming MLP is identical across different mem-

ory configurations. Our approach has shown to be accurate when applied in real systems for

predicting application performance (Section 4.4).

Noisy profiles. If the profiling runs of an application happen to be scheduled on a

machine that is under abnormal conditions e.g. overloaded, TMC might produce a performance

model that is not representative of the machines in the cluster. To overcome this problem,

we can design a micro-benchmark that performs operations exercising different resources in the

system, have it run periodically in the machines of the cluster, and report back the representative

metrics. We will schedule the profiling runs on a machine whose condition is consistent with

most of machine in the cluster.

67

Description
CactusBSSN Model a vacuum flat space-time
Graph500 BFS search on an undirected graph
Memcached Workload C in YCSB
XSBench Monte Carlo neutron transport
Canneal Optimize routing cost of a chip design
XHPCG Preconditioned conjugate gradient

Table 4.3: Description of the benchmarks

4.3 Evaluation in Simulation

In this section, we first present our experiment methodology. We then analyze the

effectiveness of TMC.

4.3.1 Experimental setup

Cloud VM Simulation. We simulate physical hardware in the cloud using the cycle-

accurate simulator Scarab [45]. We modify Scarab to implement the required performance

counters for capturing cache miss curves and application-specific properties (see Section 4.2.3)

required by TMC. The simulated machines in our study contain 12 cores, 12 MiB 48-way asso-

ciative LLC and 24 GB DRAM. We simulate a fast memory tier (DRAM) and a CXL-attached

memory pool as the slow tier. Our CXL-based disaggregated system provides a shared memory

pool for each 8-node rack. Similar to prior work [73], we add an additional latency of 85 ns to

each CXL access i.e. the end-to-end memory latency is comprised of the CXL delay and the ac-

cess latency of the second tier memory. Although our work makes no assumption on the type of

media that will be used in the slow memory tier, we simulate the performance characteristics of

3DXP memory by default i.e. 3× [53,125] the DRAM latency (100 ns). In our experiment, the

slower memory tier is provisioned by attaching a 128 GiB 3DXP DIMM to a server, except for

68

Section 4.3.5 where we explore the effectiveness of TMC in other memory tiering architectures.

New allocated VMs are added to a queue in order of their arrival. Every time a new virtual ma-

chine is created, the scheduler checks all machines to find one with sufficient resources. TMC

analyzes the machines in random order, and places the job on the first one that has the required

available resources.

IaaS cloud. We assume that customers can choose a slow memory ratio out of 11

slow memory ratios (0%, 10%, 20%, ... , 100%) and an LLC size out of seven configurations

(1, 2, 3, 4, 12, 20, 28). We assume that the cloud providers utilize a technology such as Intel’s

cache allocation technology (CAT) [48,100] to assign ways to applications. In total, there exist

77 candidate configurations. We obtain the hourly cost for a single vCPU and 1 GB of DRAM

by using the least square method to solve a system of equations derived from all VM instances

in the Msv2-series of Microsoft Azure. We assume the cost of 3DXP memory is 0.4× that of

DRAM. Following the methodology described in [130], we obtain the hourly cost for a unit of

LLC capacity according to the estimated area percentage of the LLC in a CPU chip.

Workloads. The workloads used in our experiments cover a broad spectrum of ap-

plications (Table 4.3). We modify the applications to utilize our custom memory allocator that

assigns each data structure with a tag. For each application, we execute 2 billion representative

instructions. We pick four out of the six workloads to form a workload mix resulting in 15

workload mixes in total. A workload mix represents the workloads that are being submitted to

the cluster at a given period.

Baselines. We compare TMC with the following strategies: i) Exhaustive search (ES)

finds cost-optimal configurations by running all the configurations. It provides an upper bound

69

cactusB
SSN

graph500

memcached

xsbench

canneal
xhpcg

Avg.
0.0

0.2

0.4
In

cr
ea

se
in

ex
ec

ut
io

n
co

st

Rand BO TMC

Figure 4.6: Execution cost increase over exhaustive search

on the overall performance. ii) Random (Rand) selects a configuration randomly from a set of

candidate configurations without any test runs. iii) Bayesian Optimization (BO) is a state-of-

the-art solution that has been used in prior work [7] to reduce the number of samples to reach a

cost-optimal configuration. In our experiment, we use EI = 5% and three initial samples.

4.3.2 Execution and Search Cost

In this work we aim to learn cost-optimal tiered-memory configurations with minimal

search overheads. Figure 4.6 shows the execution cost of the VM, LLC, fast and slow memory

configuration determined by TMC and the baseline techniques. As can be seen, TMC reduces

the execution cost by 1.3× over Rand and by 1.05× over BO in average. TMC only incurs a

2% higher TCO per performance than the ES’s cost-optimal configuration. While ES provides

the best performance in terms of cost minimization, it also incurs the highest search cost of all

approaches as shown in Figure 4.7. In particular, TMC provides 26× lower search cost than

ES and 3× lower search cost than BO. Rand imposes no search overhead by simply choosing a

70

cactusB
SSN

graph500

memcached

xsbench

canneal
xhpcg

Avg.
0.00

0.05

0.10

0.15

S
ea

rc
h

co
st

(N
or

m
al

iz
ed

)

BO TMC

Figure 4.7: Search cost of TMC and BO, normalized to the search cost of exhaustive search
(ES). ES and Rand are omitted as they are one and zero.

configuration randomly, however, it has no way of controlling the quality of the recommended

configuration, and, as a result, it increases TCO by up to 50% and 33% on average compared to

ES.

4.3.3 Improving Packing Efficiency

The second goal of TMC is to increase the packing efficiency without introducing a

significant cost penalty for the customer. For the cost penalty, we set the threshold T to 2.5%,

so that the recommended configuration can be at most 2.5% more costly than the optimal con-

figuration. We use compact cluster size [111] as the metric to measure the packing efficiency of

the cloud. Figure 4.8 compares the compact cluster size and the average running cost achieved

by the evaluated schemes. Exhaustive Search recommends actual cost optimal configurations,

but entails significant search overheads as seen in Section 4.3.2. As compared to ES, TMC re-

duces the compact cluster size by 17% and introduces only a 1.5% higher cost. In addition, we

also observe that TMC can indeed control the quality of the recommended configurations and

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Workload mix

0.0

0.5

1.0

1.5

C
om

pa
ct

cl
us

te
r

si
ze ES Rand TMC (T = 0%) TMC (T = 2.5%) TMC (T = 7.5%)

(a) compact cluster size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Workload mix

0.0

0.5

1.0

1.5

E
xe

cu
ti

on
C

os
t

ES Rand TMC (T = 0%) TMC (T = 2.5%) TMC (T = 7.5%)

(b) execution cost

Figure 4.8: Efficiency of TMC’s configuration selection. TMC increases the efficiency while
minimizing the cost penalty for the customer.

achieve a significantly lower execution cost compared to a randomly selected configuration.

4.3.4 Threshold Sensitivity Study

We next study the impact of the threshold T. A larger threshold T allows more config-

urations to be deemed cost-optimal, enabling TMC to further increase resource efficiency. For

example, when the T increases from 0% to 2.5% (resp., 7.5%), TMC can boost resource effi-

ciency by reducing the compact cluster size by 25% (resp., 32%). On the other hand, increasing

T also lowers the standard of cost-optimal configurations, which in turn causes the execution

cost of the recommended configurations to rise. For example, the average cost execution of the

configurations recommended by the TMC is 1.1%, 2.6% and 7.9% higher than the optimal cost

when the threshold T is 0%, 2.5% and 7.5% respectively.

72

128L
256L

128P
384P

640P
896P

Avg.
128L

256L
128P

384P
640P

896P
Avg.

0
20
40
60
80

100
120
140

C
om

pa
ct

cl
us

te
r

si
ze DRAM = 48 GiB DRAM = 24 GiB

ES Rand TMC (T = 0%) TMC (T = 2.5%) TMC (T = 7.5%)

Figure 4.9: Effectiveness of TMC under various configurations of tiered memory.

4.3.5 Memory Tiering Sensitivity Analysis

This experiment investigates the effectiveness of TMC under various tiered memory

architectures. The two Local configurations deploy slow memory locally via DIMMs: 128L

attaches one 128 GiB 3DXP module and 256L attaches two 128 GiB modules to each node.

The current 3DXP modules only come in capacities of 128GB, 256GB and 512GB. As a result,

Local can only increase the memory capacity at a very coarse granularity. The four Pool con-

figurations explore rack-scale pooled deployment enabled by the emerging CXL technology to

connect slow memories to 8 nodes via a CXL fabric: 128P / 384P / 640P / 896P respectively

provide 128 / 384 / 640 / 896 GiB of 3DXP memory in the pool. For each such far memory

configuration, we evaluate two configurations of local DRAM with either 24 GiB or 48 GiB per

machine.

We run the 15 workload mixes under various tiered memory configurations to ob-

serve the average compact cluster size of each configuration shown in Figure 4.9. First, we

demonstrate that TMC improves resource efficiency in nearly all architectures as compared to

other approaches. For example, TMC reduces the compact cluster size on average by 30%

73

(resp. 13%) as compared to ES when the DRAM size per machine is 48 GiB (resp. 24 GiB).

Second, we observe that the 384P and 640P already allow TMC to achieve optimal resource

efficiency when the size of the local DRAM is 24 GiB and 48 GiB respectively. 384P and

640P effectively provision 48 GiB and 80 GiB far memory per node. On the other hand, Local

only allows the memory to be expanded at the coarser 128 GiB granularity, potentially leading

to the over-provisioning and stranding of slow memory. Third, we show that TMC delivers

smaller improvements in resource efficiency when managing CXL-pooled slow memory, com-

pared to local-attached slow memory. For instance, TMC (T = 7.5%) delivers just 10% resource

efficiency improvement under the 640P compared to 28% under the 128L with 24 GiB local

DRAM. When DRAM is under high pressure, TMC improves resource efficiency by finding

cost-optimal configurations with larger slow memory ratios. However, CXL dilates execution

times due to its longer access latency, thus increasing the execution cost of VM configurations

with larger slow memory ratios, making it harder for TMC to improve resource efficiency with

alternative configurations. Finally, data center operators must comprehensively consider both

platform cost and resource efficiency in order to find an optimal server configuration. We par-

ticularly note two interesting examples: i) Doubling the local DRAM from 24 GiB to 48 GiB

reduces the compact cluster size for all approaches; However, it also introduces significantly

higher per-machine costs, ii) 640P reduces platform cost by requiring 37.5% less 3DXP mem-

ory as compared to 128L; however, TMC (T=7.5%) achieves 14% lower resource efficiency in

a 640P.

74

4.4 Real System Experiments

Simulation allows us to easily observe any application properties and thus enables us

to quickly verify our proposed techniques on the performance estimation and the configuration

selection. In this section, we introduce a proof-of-concept implementation and partly verify the

applicability of using TMC in real systems. In particular, we build a working prototype that can

predict how the run time changes with the size of the slow memory. As hardware monitors for

learning the cache miss curve [94] become available, TMC can be completely implemented in

software. In the following section, we consider the following three main questions:

• What is the overhead of PEBS sampling?

• Can we accurately estimate the access frequencies?

• Can we accurately estimate the performance impact?

We utilize precise event-based sampling (PEBS) to intercept samples of memory ac-

cesses to estimate the access frequency of data structures. PEBS captures a snapshot of the

processor state upon certain configurable hardware events. We program PEBS to monitor

MEM LOAD RETIRED.L3 MISS events. PEBS can be configured with a sampling interval (SI).

For a sampling interval of n, PEBS captures every nth event into a buffer. When the PEBS

buffer is full, an interrupt is triggered, during which TMC records the CPU state in a software-

accessible buffer. We only record the virtual address accessed by CPU misses. The sampled

memory accesses are then written to a file in a separate thread. As discussed in Section 4.2.3,

we count the sampled accesses to different data structures in the offline analysis. We multiply

the number of sampled memory accesses by the sampling interval (n) to estimate the actual

75

access frequencies.

Due to the lack of general, well-documented performance counters that allow us

to measure the MLP as well as the average memory latency in contemporary Intel CPUs,

our current implementation measures MLP and the latency sensitivity of an application indi-

rectly. In particular, we measure the amortized performance penalty introduced by accessing

the slow memory. The amortized performance penalty takes into consideration both the latency-

sensitivity as well as the effect of memory level parallelism on an application. We measure the

CPI of an application in the DRAM-only configuration (CPIdram), CPI in the configuration

where all data is placed in the slow memory (CPIslow), as well as the number of accesses to

the slow memory (MPIslow). The amortized performance penalty can then be computed via

Eq. 4.6. The performance impact associated with placing data to the slow memory can be esti-

mated by simply multiplying the access rate to the slow memory (estimated) and the amortized

performance penalty.

Per f penalty =
∆L

MLP
=

CPIslow−CPIdram

MPIslow
(4.6)

4.4.1 Evaluation

Setup. To evaluate the proposed scheme, we use a server equipped with a Xeon Gold

5218 processor and a tiered memory hierarchy with six 32 GiB DRAM DIMMs (192 GiB in

total) and a 128 GiB intel DC Persistent Memory.

Overhead. We first study the overhead introduced by PEBS which is important as

it impacts the search cost of TMC. Figure 4.10 shows the sampling overhead for different SIs

76

cactuBSSN

graph500

memcached

xsbench

canneal
xhpcg

mean
0

25

50

75

100

O
ve

rh
ea

d
(%

)

SI = 2 SI = 103 SI = 10007

Figure 4.10: PEBS sampling overhead. We choose prime SIs to avoid bias from periodicities
like prior work [77].

compared to the application execution time without PEBS monitoring. The PEBS sampling

overhead is comprised of induced pipeline flushes due to the PEBS assist, and the overhead for

handling extra interrupts [6]. High sampling rates results in substantial performance overhead.

With a SI of two, the performance overhead can be as high as 102.1% (41.4% on average). We

configure PEBS to use a large sampling interval (10007). With such a large SI, we observe

virtually no overhead (< 1%) due to PEBS sampling across all workloads.

Access-rate estimation. In our experiment, we move data structures of an application

to the slow memory tier one by one in a random order and then measure the ground-truth

number of accesses to the slow memory and the ground-truth run-time. Figure 4.11 shows the

number of accesses to slow memory depending on the amount of data allocated in slow memory.

We show the ground-truth and estimated number of accesses to the slow memory. As we can

see, we achieve a high accuracy in estimating the access frequencies even at a relatively low

sampling rate. The inaccuracies in the workload xhpcg is likely caused by the shadow effect of

PEBS [127].

77

0 20 40 60 80 100
Slow memory (%)

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

es
s-

ra
te

(N
or

m
al

iz
ed

)

Ground-truth

Prediction

(a) cactusBSSN

0 20 40 60 80 100
Slow memory (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

es
s-

ra
te

(N
or

m
al

iz
ed

)

Ground-truth

Prediction

(b) graph500

0 20 40 60 80 100
Slow memory (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

es
s-

ra
te

(N
or

m
al

iz
ed

)

Ground-truth

Prediction

(c) xsbench

0 20 40 60 80 100
Slow memory (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

es
s-

ra
te

(N
or

m
al

iz
ed

)

Ground-truth

Prediction

(d) xhpcg

Figure 4.11: Accuracy of estimating the slow memory access frequency in a real system using
profiling.

Performance estimation. Figure 4.12 shows the ground-truth and estimated run-time

depending on the amount of application data allocated in slow memory. Overall, TMC achieves

high accuracy in estimating the amortized performance penalty of different applications and,

as a result, is capable of producing accurate predictions on the execution time of the applica-

tion. This observation demonstrates that our assumption on the MLP and the memory latency

as stated in Section 4.2.2 holds in most of the cases. However, we also observe that there is a

relatively high prediction error (7%) on the performance although TMC achieves high accuracy

in estimating the access rate for the cactusBSSN workload as shown in Figure 4.11a. The cac-

tusBSSN workload presents an interesting example where the assumption that MLP / memory

latency is identical across different memory configurations might not hold. However, we argue

that adding new hardware [74] or using costly instrumentation [36] (40× slowdown) to capture

the data structure specific MLP just for improving the accuracy for a few applications is not

justified.

78

0 20 40 60 80 100
Slow memory (%)

0

200

400

600
R

un
ti

m
e

(s
)

Ground-truth

Prediction

(a) cactusBSSN

0 20 40 60 80 100
Slow memory (%)

0

250

500

750

1000

R
un

ti
m

e
(s

)

Ground-truth

Prediction

(b) graph500

0 20 40 60 80 100
Slow memory (%)

0
50

100
150
200
250

R
un

ti
m

e
(s

)

Ground-truth

Prediction

(c) xsbench

0 20 40 60 80 100
Slow memory (%)

0

50

100

150

R
un

ti
m

e
(s

)

Ground-truth

Prediction

(d) xhpcg

Figure 4.12: Accuracy of estimating the execution performance in a real system using profiling.

4.5 Chapter Summary

This work investigates how to quickly identify ideal memory configurations for ap-

plications in tiered-memory cloud systems. TMC captures application-specific properties with

existing performance monitoring hardware and uses them for accurate performance prediction.

We demonstrate that TMC reduces the search cost by up to 4× while recommending high-

quality configurations. Our approach additionally improves resource efficiency by 17% on av-

erage versus a naive policy that requests optimal allocations for each application in isolation.

As a result, TMC provides the tools to efficiently support emerging tiered memory systems and

to reap both performance and cost benefits.

79

Chapter 5

Performance optimized indexing for 3DXP

memories

Prior research on PMEM based data structures has leveraged simulation or emulation

methodologies, ignoring the intricate details and performance pathologies of persistent mem-

ories such as Intel’s 3DXP. This work focuses on the B+-tree and its variants, exploring the

common design issues of sorted index structures in a real system utilizing persistent memory.

We demonstrate how to achieve high performance on a real-world persistent memory platform,

combining several different techniques and providing an in-depth analysis of their micro ar-

chitectural performance characteristics. Furthermore, we present two novel techniques group

flushing and log structuring for PMEM.

80

5.1 Experimental Setup

We now describe our methodology to evaluate the performance characteristics of dif-

ferent B+-Tree implementations on 3DXP.

5.1.1 Methodology

In this work, we compare six B+-Tree solutions: 1) btree: A conventional in-memory

B+-Tree with sorted keys in each node; 2) unsorted leaf : A write-optimized B+-Tree with

unsorted leaf nodes and sorted keys in internal nodes; 3) btree-WAL: A B+-Tree utilizing WAL

for consistency; 4) FAST/FAIR: A B+-Tree with FAST/FAIR [47] for consistency (details on

FAST/FAIR can be found in Section 2.4); 5) persistent unsorted: A B+-Tree with unsorted leafs

utilizing native atomic in-place updates to ensure the consistency of leaf updates and WAL for

supporting the rare case of structural modifications; 6) FAST/FAIR SP: A FAST/FAIR B+-Tree

that employs selective persistence. All of these six solutions employ the same fine-grained,

optimistic concurrency control mechanism [18] to enable multi-core scalability. Note that we

employ linear search for all our implementations as prior work [47] has shown that binary search

performs worse when the node size is smaller than 4 KB due to branch mispredictions.

We profile the executions of the different B+-Tree implementations using multiple

hardware performance counters, including the total number of instructions, instruction per cy-

cles (IPC), cache miss stalls and resource related stalls, to interpret the results. The performance

counters are obtained via perf [33]. The resource related stalls include stalls caused by the lim-

ited size of hardware resources such as the load/store queue as well as stalls induced by the

81

execution of memory fences. We also collect the performance counters from the 3DXP, includ-

ing the amount data that is read and written from and to the 3DXP controller as well as the

amount of data that is read and written from and to the 3DXP storage media.

5.1.2 Experimental Environments

All of our experiments are conducted on a 2-socket, 56-core machine with 32KB/1024KB/38MB

L1/L2/L3 Caches. The 12 memory channels (2 sockets × 6 channels/socket) are fully popu-

lated using DRAM and 3DXP modules. In particular, we deploy 96GB of DRAM (6 × 16

GB/DIMM) and 1.5TB of 3DXP (6 × 256 GB/DIMM). Note that the per-socket channels are

evenly split between DRAM and 3DXP. We use the ext4-DAX file system on the Fedora distri-

bution (kernel 5.0.9). All our experiments are executed on a single socket by pinning threads

and restricting memory allocation to the same NUMA node. Our code is written in C/C++ and

compiled with clang 8.0.0 with -O3 flag.

We design four micro-benchmarks for evaluation. Unless otherwise stated, the sys-

tem is warmed up by loading a tree with 160 million random entries and then one of the four

operations is performed: Fill Random randomly inserts 80 million additional key/value pairs;

Read Random retrieves 320 million random keys; Range Query performs range query requests

with a selection ratio of 0.001%; Read/Write simulates a mixed read-write workload. Both keys

and values in these workloads are 16 bytes in size. We perform an exhaustive search of the

B+-Tree node size as one of the experiments. For all other experiments we utilize a node size

of 512 bytes which provides good performance in all configurations (Section 5.3.2).

82

0 10 20 30 40 50
of Threads

0

10

20

30

40

50

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(a) Read Random

0 10 20 30 40 50
of Threads

0

25

50

75

100

125

T
hr

ou
gh

pu
t

(K
O

P
S

)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(b) Range Query

0 10 20 30 40 50
of Threads

0

5

10

15

20

25

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(c) Fill Random

Figure 5.1: Throughput under three different workloads (higher is better)

5.2 PMEM Indexing Techniques

In this section, we conduct experiments to measure the efficiency of PMEM tech-

niques for addressing the read-write asymmetry and for providing storage consistency and

durability. Furthermore, we analyze how B+-Trees can leverage a combination of DRAM and

PMEM devices to optimize performance.

5.2.1 Write-optimized Indexing Structures

In the first experiment we analyze the benefit of write optimized data structures. As

described in Section 2.4 the unsorted leaf index reduces writes while increasing computational

complexity by maintaining the bitmaps. We compare unsorted leaf against a conventional btree

baseline showing the achieved throughput in Figure 5.1 and latency in Figure 5.2 for three

different workloads. We compare the in-DRAM Performance (prefixed by DRAM) and in-

PMEM Performance (prefixed by PMEM).

Unsorted leaf reduces costly PMEM writes by avoiding sorting the entries, and thus

can improve the update performance by up to 1.40× in the 3DXP (Figure 5.1c and Figure 5.2c).

In DRAM, reads and writes have almost the same cost, so unsorted leaf only improves the

83

0 10 20 30 40 50
of Threads

0.0

0.5

1.0

1.5

2.0
L

at
en

cy
(µ

s)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(a) Read Random

0 10 20 30 40 50
of Threads

0

500

1000

1500

2000

L
at

en
cy

(µ
s)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(b) Range Query

0 10 20 30 40 50
of Threads

0

2

4

6

8

L
at

en
cy

(µ
s)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(c) Fill Random

Figure 5.2: Latency under three different workloads (lower is better)

0 10 20 30 40 50

of Threads

0

5

10

15

S
ta

lls
(K

cy
cl

es
)

resource related stalls (DRAM)

L3 miss stalls (DRAM)

resource related stalls (PM)

L3 miss stalls (PM)

Figure 5.3: Profiling of btree under the Fill Random

update performance by 1.06×. The impact of searching values within unsorted nodes requires

that all valid slots must be checked. In contrast, on average, only half of the entries need to

be checked in a sorted node for an existing key. However, as unsorted leaf only suffers from

additional overhead while accessing leaf nodes, the read performance of unsorted leaf is com-

parable to that of the btree (Figure 5.1a and Figure 5.2a). As the unsorted leaf incurs significant

instruction overhead to sort the keys in a range query, it exhibits up to 3× performance degrada-

tion under the DRAM and 2× degradation under 3DXP (Figure 5.1a and Figure 5.2b). Unsorted

leaf suffers from a smaller performance hit when performing a range query in PMEM as the

software overhead becomes less significant compared to the cost of device accesses.

The read performance of in-PMEM indexes is lower than that of the in-DRAM in-

84

dexes by a constant ratio (Figure 5.1a and Figure 5.2a). For write workloads, the slowdown for

btree ranges from 2.2× to 4.4× whereas the slowdown for unsorted leaf only ranges from 2.0×

to 3.0× (Figure 5.1c and Figure 5.2c) as the number of threads increases from 1 to 48. This

observation is in line with 3D XPoint’s asymmetric read/write performance. When the load of

the system is low (1 thread), the performance gap between PMEM and DRAM is between 2–3×

as the node traversal dominates the total runtime with memory writes being mostly performed

out of the critical path. As the number of execution threads increases, the 3DXP approaches its

maximum I/O capacity. The impact on performance is twofold. First, increasing the PMEM

operations creates back pressure, eventually filling up the hardware resources (reorder buffer,

store queue) and stalling the processor pipeline. Second, the amortized penalty of L3 cache

misses increases as it takes more time to process the read requests in a fully loaded 3DXP.

Figure 5.3 shows the performance profile for btree on both DRAM and PMEM. Compared to

the in-DRAM btree, the in-PMEM one experiences a drastic increase in L3 miss stalls and,

furthermore, resource related stalls increase as the number of execution threads scales beyond

16, indicating that the bandwidth of PMEM is indeed becoming a bottleneck.
Finding 1: The gap between the insertion performance of in-DRAM indexes and that of the

in-PMEM indexes widens as the number of execution threads increases.
Implication: The PMEM bandwidth can be a limiting factor for indexing structures to handle

requests at large scale. First, the indexing structures should be designed to carefully avoid

wasting PMEM bandwidth. Second, more hardware resources should be added to the system to

mitigate the back pressure from the PMEM.
Our evaluation shows that the actual improvement of unsorted leaf on insertion per-

formance is relatively small (e.g. 6%) in a single-thread workload, which is significantly less

85

than what prior work [21], utilizing a simulation based methodology, suggested. Actual PMEM

devices are better at hiding high cost of writes than expected. In a real-world system, PMEM

writes can be queued at multiple layers (store buffer, cache, iMC, 3DXP controller) and slowly

drained to PMEM. Finding 1 indicates that the 3DXP becomes bandwidth-bound as the number

of execution threads increases beyond 16. As we can see, the impact of write reduction in the

unsorted leaf on performance increases with I/O pressure on the 3DXP.
Finding 2: The real-world efficiency of write-optimized indexing structures varies significantly

based on the intensity of the workloads.

Implication: To enable write-optimized indexing structures B+-trees have to be restructured,

increasing the search overhead. As a result, for workloads with a low insertion rate conventional

B+-trees are preferable over write-optimized implementations in PMEMs.

5.2.2 Storage Consistency

Figure 5.4 compares the insertion performance of persistent B-Trees with various

consistency mechanisms. The persistent trees (btree-WAL, FAST/FAIR and persistent unsorted)

pay extra costs to ensure storage consistency. To evaluate the persistence overhead, we compare

them with their volatile counterparts (e.g. btree and unsorted).

Several general observations are made. First, as expected, the consistency mech-

anisms introduce runtime overheads, in particular, the insertion latencies of btree-WAL and

persistent unsorted are up to 1.77× and 1.56× higher than the latency of the volatile B+-Tree

implementations (Figure 5.4d). The persistence overhead includes i) execution of additional

instructions to implement WAL and ii) introduction of execution stalls caused by memory barri-

ers. Table 5.1 shows a detailed performance profile. It confirms that btree-WAL, FAST/FAIR and

86

0 10 20 30 40 50
of Threads

0

5

10

15

20

25
T

hr
ou

gh
pu

t
(M

O
P

S
)

btree

unsorted leaf

btree-WAL

FAST/FAIR

persistent unsorted

(a) Throughput (DRAM)

0 10 20 30 40 50
of Threads

0

1

2

3

4

5

6

7

8

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree

unsorted leaf

btree-WAL

FAST/FAIR

persistent unsorted

(b) Throughput (PMEMs)

0 10 20 30 40 50
of Threads

0

2

4

6

8

10

12

L
at

en
cy

(µ
s)

btree

unsorted leaf

btree-WAL

FAST/FAIR

persistent unsorted

(c) Latency (DRAM)

0 10 20 30 40 50
of Threads

0

2

4

6

8

10

12
L

at
en

cy
(µ

s)

btree

unsorted leaf

btree-WAL

FAST/FAIR

persistent unsorted

(d) Latency (PMEMs)

Figure 5.4: The cost of persistence

persistent unsorted indeed increase the number of instructions and experience more resource re-

lated stalls. Second, btree-WAL and persistent unsorted cannot achieve comparable throughput

to their volatile counterparts (e.g. btree and unsorted) in the PMEM (Figure 5.4b). This is be-

cause the persistent unsorted and btree-WAL rely on write-ahead logging and, therefore, incur

extra PMEM write traffic. In contrast, the WAL-free FAST/FAIR achieves comparable through-

put as btree. Third, btree-WAL exhibits the lowest performance among the three persistent trees

as employing write-ahead logging for the sorted node entails considerably higher overheads.

87

CPU Memory
InstructionIPC Resource

Stalls
Per. In-
str.

Read Write RA WA

btree 2107 0.22 7740 0/0 1626 400 1.6 3.2
unsorted 2381 0.26 6532 0/0 1651 236 1.5 3.5
btree-WAL 4620 0.26 11240 12/4 2001 937 1.6 1.8
FAST/FAIR 2548 0.19 9982 6/10 2119 474 1.5 2.2
persistent un-
sorted

3137 0.22 9244 5/5 1973 411 1.4 2.6

Table 5.1: Profiling of the evaluated designs under the FillRandom workload (PMEM, 1 thread).
It shows Instructions Per Cycles (IPC), the number of instructions, resource related stalls and
persistence instructions (clwb/sfence), read traffic to PMEM (bytes), write traffic to PMEM
(bytes), Read Amplification and Write Amplification per operation

Compared to the latency in DRAM (Figure 5.4c), the latency of the persistent trees

in PMEM increases drastically as the number of the execution threads increases (Figure 5.4d).

In particular, the latency of FAST/FAIR increases by 2.40× in PMEM but only 1.35× when

residing in DRAM. As we can see in Table 5.1, the 3DXP-level write-amplification introduced

by the persistent trees remains high, indicating the full I/O capacity is still underutilized. Note

that the write-amplification of the btree-WAL is relatively low. This is because it generates

redundant writes written to the in-PMEM log sequentially.
Finding 3: The restricted I/O bandwidth of 3DXP limits the insertion rate of the persistent trees

while due to random access patterns the PMEM bandwidth cannot be not fully utilized.

Implication: In conventional B+-Trees, random updates are unavoidable increasing the write-

amplification for PMEMs. Given the constrained I/O capacity of PMEMs, the insertion perfor-

mance can be further improved by reshaping the I/O pattern of the B+-Tree via log-structuring.
Despite the common belief that persistence introduces performance overheads Fig-

ure 5.4d shows an interesting counterexample. For the Fill Random workload, FAST/FAIR de-

livers 3% higher throughput than the volatile btree on 3DXP, when the number of execution

threads is 48. This performance increase is provided by the explicit cache-line flushing mecha-

88

btree-WAL

persistent unsorted
FAST/FAIR

0

1

2

3

4

5
E

xe
cu

ti
on

T
im

e
p

er
O

P
(µ

s)
origin WAL CPU flushing

Figure 5.5: Persistence cost decomposition (4 threads)

nism required for ensuring consistency which, as a side-effect, forces cache-lines to be written

back to the 3DXP controller sequentially. In contrast, the timing of cache-lines being written

back in btree is implicitly controlled by the CPU cache. This observation has inspired us to

develop a new optimization described in Section 5.4.2.
Finding 4: With conventional B-Trees, sequentially modified cache lines are often written back

out of order by the cache controller, resulting in sub-optimal bandwidth utilization in PMEM.

Implication: We can improve the performance of the conventional indexes by preserving the

spatial locality of updates for the 3DXP controller.
Figure 5.5 breaks down the runtime overhead: For each implementation, we list the

execution time induced by the btree implementation itself as well as the time induced by WAL,

memory fences and cache-line flushes. We observe the CPU flushing overhead of btree-WAL

is actually low (Figure 5.5) and is close to that of persistent unsorted although it requires 2×

more cache-line flush instructions (Table 5.1). This is because the frequency of memory barri-

89

ers is lower in WAL (1 memory barrier for every 3 cache-line flushes) which allows multiple

cache flush operations to proceed in parallel. As a result, the software overhead of WAL of 0.9

µs almost outweighs the overhead for persisting data of 1.1 µs in btree-WAL. In contrast, the

software overhead of WAL in the case of persistent unsorted is minimal (0.3 µs) as it is only

required to implement rarely occurring structural modifications of the tree.
Finding 5: WAL provides a straightforward approach to ensure the consistency for complicated

operations, however, incurs significant software overhead.
As shown in Table 5.1, FAST/FAIR requires more flush operations than the persistent

unsorted B+-Tree. Intuitively, FAST/FAIR incurs more CPU flushing overheads and exhibits

higher latency than the persistent unsorted implementation in the latency-bound workloads

when the number of the execution threads is small. Figure 5.5, however, shows the opposite

trend: The CPU flushing overhead of FAST/FAIR is 1.7× lower than that of the persistent un-

sorted tree. In contrast, the latency of FAST/FAIR and that of persistent unsorted is comparable

when placed in DRAM under the same workload. This is because FAST/FAIR flushes cache

lines continuously inducing smaller overheads for 3DXP.
Finding 6: FAST/FAIR in the 3DXP benefits from flushing cache-line continuously, reducing

latency when the load of the system is low. When utilizing PMEM, the latency is only to 1.27×

higher than that of the btree.

5.2.3 Selective Persistence

We examine the efficiency of the selective persistence technique described in Sec-

tion 2.4. We store the internal nodes in fast DRAM as they can be rebuilt from the linked leaf

nodes. First, as frequently accessed index nodes are placed in DRAM, the search performance

greatly benefits from selective persistence. As shown in Figure 5.6a and Figure 5.6b, storing

90

0 10 20 30 40 50
of Threads

0

10

20

30

T
hr

ou
gh

pu
t

(M
O

P
S

)

FAST/FAIR

FAST/FAIR SP

(a) Read Random (Thpt.)

0 10 20 30 40 50
of Threads

0.0

0.5

1.0

1.5

2.0

L
at

en
cy

(µ
s)

FAST/FAIR

FAST/FAIR SP

(b) Read Random (Lat.)

0 10 20 30 40 50
of Threads

0

2

4

6

8

T
hr

ou
gh

pu
t

(M
O

P
S

)

FAST/FAIR

FAST/FAIR SP

(c) Fill Random (Thpt.)

0 10 20 30 40 50
of Threads

0

2

4

6

8

L
at

en
cy

(µ
s)

FAST/FAIR

FAST/FAIR SP

(d) Fill Random (Lat.)

Figure 5.6: The efficiency of selective persistence

index nodes in DRAM indeed improves the read performance by about 1.5× closing the gap

between in-DRAM indexes and in-PMEM indexes. Second, the selective persistence also im-

proves the update performance as it i) boosts the process of tree traversal and ii) avoids the

PMEM writes to update the internal nodes stored in DRAM. As shown in Figure 5.6c and Fig-

ure 5.6d, the insertion performance is improved by up to 1.4× using the selective persistence

technique. One drawback of the selective persistence approach is that it increases the recovery

time. We have measured the time that it takes to rebuild the index nodes: as we increase the

number of inserted entries from 104 to 108, the recovery time increases from 10 milliseconds to

10 seconds almost linearly.

91

20 40 60 80

Write Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree

unsorted leaf

FAST/FAIR

persistent unsorted

(a) 1 Thread (DRAM)

20 40 60 80

Write Ratio (%)

0

5

10

15

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree

unsorted leaf

FAST/FAIR

persistent unsorted

(b) 16 Threads (DRAM)

20 40 60 80

Write Ratio (%)

0

10

20

30

40

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree

unsorted leaf

FAST/FAIR

persistent unsorted

(c) 48 Threads (DRAM)

20 40 60 80

Write Ratio (%)

0.0

0.1

0.2

0.3

0.4

0.5

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree

unsorted leaf

FAST/FAIR

persistent unsorted

(d) 1 Thread (PMEM)

20 40 60 80

Write Ratio (%)

0

2

4

6

8

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree

unsorted leaf

FAST/FAIR

persistent unsorted

(e) 16 Threads (PMEM)

20 40 60 80

Write Ratio (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree

unsorted leaf

FAST/FAIR

persistent unsorted

(f) 48 Threads (PMEM)

Figure 5.7: The performance of mixed read-write workloads

5.3 Workload Performance

In this section, we extend our experiments to more diverse workloads and configura-

tions.

5.3.1 Mixed Workloads

Figure 5.7 shows the index performance under workloads with varying ratios of PUT

and GET operations and different number of execution threads. The first row in Figure 5.7

shows the performance of different index structures in DRAM and the second row shows the

performance in PMEM. Two observations are made. First, the ratio of PUT/GET operations

has a greater impact on the performance of the evaluated index structures in the 3DXP plat-

form. In particular, the throughput of the btree degrades by 2.3× in the PMEM and only by

1.3× in the DRAM as the write ratio increases from 20% to 80% with 48 execution threads.

92

128 256 512 1024 2048 3072 4096
Node Size (Byte)

0.00

0.25

0.50

0.75

1.00

1.25

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(a) Read Random (1 Thread)

128 256 512 1024 2048 3072 4096
Node Size (Byte)

0

10

20

30

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(b) Read Random (32 Threads)

128 256 512 1024 2048 3072 4096
Node Size (Byte)

0.0

0.2

0.4

0.6

0.8

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(c) Fill Random (1 Thread)

128 256 512 1024 2048 3072 4096
Node Size (Byte)

0

5

10

15

20

T
hr

ou
gh

pu
t

(M
O

P
S

)

btree (DRAM)

unsorted leaf (DRAM)

btree (PM)

unsorted leaf (PM)

(d) Fill Random (32 Threads)

Figure 5.8: Performance sensitivity to the size of the node

This observation further demonstrates the read/write asymmetry issue of the 3DXP. Second,

in-memory indexes do not benefit much from the improved write efficiency of unsorted B-Trees

when dealing with read-intensive workloads or when the load of the system is low. For instance,

in a workload with 16 execution threads and 40% PUT ratio, the unsorted leaf implementation

only achieves a 2% higher throughput.

5.3.2 Sensitivity to the Node Size

Figure 5.8 shows the effect of the node size on performance. We make two observa-

tions. First, the performance of all evaluated B-Tree indexes peaks at the node size of around

512 Bytes in both Fill Random and Read Random benchmarks. Figure 5.9 shows the profil-

ing of btree under the Read Random benchmark. As we can see, when the size of the node

93

increases from 128 bytes to 512 bytes, the L3 miss penalty (L3-miss stall cycles) is signifi-

cantly reduced, thus increasing overall performance. This can be explained by the improved

efficiency of the hardware prefetcher for large nodes spanning consecutive cache lines. Note

that the total amount of data that needs to be read from DRAM on a traversal is similar as trees

with smaller nodes contain more levels. When the node size increases beyond 512 bytes, the L3

miss penalty no longer decreases, however, the key-scanning overhead continues to increase, as

larger nodes need to be searched, leading to performance degradation. Second, we find the in-

sertion performance of in-PMEM btree and in-DRAM btree peaks at different node sizes when

the number of update threads is 32 as shown in Figure 5.8d. In particular, when the size of the

node increases from 256 bytes to 512 bytes, the performance of the in-DRAM btree increases

by 1.13× whereas that of the in-PMEM btree degrades by 1.08×. This is because in a write

intensive workload, the overhead of writing more data in PMEM outweighs the reduced miss

penalty when the node size is increased to 512 bytes.
Finding 7: In order to maximize the performance, parameters such as node size for in-DRAM

indexes need to be re-tuned for in-PMEM indexes.

5.4 Optimizations

In this section, we conduct three studies to show the potential optimizations enabled

by our findings. We focus on showcasing the key ideas and their impact on performance.

94

128 256 512 1024 2048 3072 4096
Node Size (Byte)

0

1000

2000

3000

4000

C
ou

nt

L3-miss stalls Instructions

Figure 5.9: Profiling for btree under the Read Random application

5.4.1 Interleaving Operations

Major in-memory B+-tree operations such as query, insertion, and removal are imple-

mented by traversing the tree from the root to leafs, resulting in the pointer chasing problem: a

node cannot be accessed before the previous node’s pointer is resolved. If the accessed node is

not already in the CPU cache, the CPU stalls waiting for data from the main memory. As shown

in Table 2.1, 3DXP’s longer read latency compared to DRAM exacerbates the pointer chasing

issue. There are several techniques proposed to hide memory latencies [20, 55, 93] of B+-tree

variants. One effective approach is to group multiple operations against a data structure and

then issue them as a batch, thus increasing memory level parallelism [55, 93]. In this section,

we examine the efficiency of interleaving the execution of multiple GET requests. The multi-

GET performance of the btree with varying node size and batch size is shown in Figure 5.10,

where throughput is computed as batch size times the number of multi-GET operations / sec-

ond. The efficiency of interleaving decreases as the node size grows. For instance, with DRAM,

95

128 (D
RAM)

256 (D
RAM)

512 (D
RAM)

1024 (D
RAM)

128 (PM)

256 (PM)

512 (PM)

1024 (PM)

Batch Size (Memory Type)

0

500

1000

1500

2000

T
hp

t.
(K

O
P

S
)

1 2 4 6 8

Figure 5.10: Interleaving efficiency

when the batch size is increased from 1 to 4, the GET throughput increases by 2.1× with 256-

byte nodes but only by 1.2× with 1024-byte nodes. This is due to the fact that modern CPU

cores have a limited number (10 20) of line fill buffers (LSB) to support memory parallelism.

With a smaller node size, fewer cache lines need to be prefetched at once for a single GET

operation, hence more GET operations can be performed in parallel. Due to larger access la-

tencies in-PMEM B+-tree benefits more from interleaving. For instance, with 128-byte nodes

the multi-GET throughput of the in-PMEM btree increases by 3.4× compared to the conven-

tional implementation, whereas with the same configuration the in-DRAM btree only increases

performance by 2.5×.
Lesson 1: In-PMEM indexes benefit more from interleaving compared to its in-DRAM coun-

terparts as long as adequate hardware resources (LSBs) are provided. System designers should

consider increasing hardware resources on future CPUs to enable higher memory parallelism.

96

0 10 20 30 40 50
of Threads

0

2

4

6

8

T
hp

t.
(M

O
P

S
)

btree

unsorted leaf

btree w GF

(a) Throughput

0 10 20 30 40 50
of Threads

0

2

4

6

8

L
at

.
(µ

s)

btree

unsorted leaf

btree w GF

(b) Latency

Figure 5.11: Benefits of preserving sequentiality in software.

5.4.2 Group Flushing

As described in Finding 3, when PMEM is used as memory and no explicit cache-line

flush is used to ensure persistence, the order of the modified cache lines being written back to the

PMEM controller is implicitly decided by the cache replacement algorithm. Since the data in

the CPU cache is managed at the cache line granularity (typically 64 bytes), sequential updates

on the software level may be translated into small random accesses by the PMEM controller,

resulting in sub-optimal bandwidth utilization. Intuitively, the leaf and internal node updates

in the b-tree largely consist of sequential accesses and should induce low write amplification

within the device. However, Table 5.1 shows that the device write amplification for the btree

with the Fill Random workload is close to 4, indicating little sequentiality is preserved when

accessing the PMEM.

The most efficient solution to this problem is to match the unit of the cache replace-

ment policy to the access granularity of the PMEM controller. However, this would require

significant modifications to the CPU architecture. We investigate the potential improvement of

preserving sequentiality in PMEM via a simple software-level solution—group flushing. The

97

key idea of group flushing is to explicitly flush modified cache lines in contiguous groups via

cache-line flush instructions. We first identify places in B+-Tree where updates are likely to be

performed in large blocks such as node updates and node initializations. We then emit clwb

instructions following these updates. Note that the number of lines affected by an update is de-

termined dynamically at runtime and, hence, additional logic is required to avoid flushing when

an update does not span more than one cache line.

We denote a B+Tree optimized with group flushing as btree w GF. Figure 5.11 com-

pares the btree w GF to the original B+Tree (btree) as well as the unsorted B+Tree (unsorted

leaf). As we can see, btree w GF achieves 24% higher insertion throughput compared to the

btree. The unsorted leaf still achieves a slightly higher update performance, however, it sacri-

fices range search performance by up to 50% as shown in Figure 5.2b and Figure 5.1b. We also

observe that the latency of btree w GF is higher than that of the btree when the thread number is

less than 16. This is because, in the case of a low system load, writes to PMEM do not represent

the main performance issue and the group flushing technique incurs extra instruction overheads

due to additional clwb instructions. With Finding 2 showing that btree and unsorted leaf have

comparable performance under low load, in practice btree can be used by only enabling group

flushing when the system load is high.

98

Lesson 2: Prior research focuses on addressing the write performance bottleneck by reducing

writes at the software level, for instance, by leaving nodes unsorted. Group flushing provides a

new direction by improving the I/O efficiency of PMEM by addressing the granularity disparity

between the CPU and the PMEM. We envision group flushing to encourage hardware design-

ers investigating PMEM-aware CPU cache replacement policies to further avoid the software

overheads.

5.4.3 Log-structuring

Finding 3 and Finding 6 motivate us to employ log-structuring for improving the

update performance of persistent B+-Trees. As shown in Figure 5.12, random update operations

on a conventional B+-Tree are translated to small random in-place writes in the PMEM address

space. Due to the access disparity between CPU caches and the PMEM (64 vs 256 bytes), this

random write pattern results in a significant write amplification of 3.2× as shown in Table 5.1.

To confirm this issue, Table 5.1 shows that the write amplification of the unsorted btree is almost

3, indicating that two thirds of the write bandwidth is wasted, due to random in-place updates

in the PMEM address space.

By incorporating a log-structured layout [96, 98], random writes can be batched into

large sequential runs to reduce write amplification and thus better utilize the limited PMEM

write bandwidth. However, this approach requires an efficient way to locate data in the log

space. Virtualized B-Trees [72, 120] decouple the physical representation of the tree node from

the logical representation. An indirection layer maps a logical identifier of a tree node to a

chain of delta records in the log space, each record in the chain representing an update to the

99

Index Nodes

L1 L2 L3

ID

L1

Delta
pointer Meta

L2

L3

Leaf Node Mappting Table

33
1

31

1

2

2

23
Leaf
nodes

Logs

ID

Figure 5.12: Design considerations.

corresponding node. The effectiveness of log structuring, to a large degree, depends on the

efficiency of garbage collection (GC) and failure recovery.

5.4.3.1 Design Considerations

Employ indirection only for leaf nodes. The virtualized B+-Tree in prior works [72,120] fully

separates the physical representation from the logical view. However, Wang et al. [117] demon-

strates that the indirection overhead of the BwTree [72] can be as high as 18%. We propose a

novel hybrid layout: indirection is only used when accessing leaves that are write-heavy. This

approach represents a good trade-off between read and write performance. Figure 5.12 shows

the organization of our proposed tree where each leaf node is identified by its leaf node ID

(LNID) and a leaf node mapping table is used to translate the LNID to the physical pointer to

100

the head of the delta (update) chain. For reads, a list traversal is performed on the delta chain

to identify the search key. For an update, a delta record is prepared, the delta record is flushed

to the 3DXP and the newly prepared delta is prepended to the delta chain. If the number of the

items in the delta chain exceeds the pre-defined node size, a split operation is performed. The

valid data on the chain is then distributed into two new nodes of equal size.

Supporting multiple logs. A single log used by all threads is the most straightforward log

space organization, however, this approach severely limits the concurrency of updates and re-

covery operations. At the other extreme, a per-node log in persistent unsorted trees avoids the

scalability issues at the cost of random writes and higher write amplification. We choose the

middle ground by adopting a multi-log layout where updates are dispatched to a circular buffer-

backed log based on the hash of its LNID. When the garbage of a log exceeds a pre-determined

threshold, a GC task is initiated by one of the multiple GC threads to start at the head of each

circular buffer copying the valid data to its tail. The validity of a delta record is determined by

its availability in the mapping table. During GC, valid delta records of the same chain are con-

solidated by the garbage collector into a new record and the address is updated in the mapping

table.

Avoiding random PMEM writes to the mapping table. Each node update requires modifying

the corresponding chain head pointer in the leaf node mapping table, producing undesirable

random writes. We recognize the fact that all the data required for the mapping table during

recovery is always persisted in logs enabling us to keep the mapping table in DRAM and rebuild

it upon recovery. When a failure is detected, multiple log replay threads are initiated each one

assigned with a number of logs. The threads work in parallel by scanning each log in the

101

chronological order rebuilding the delta chains in the mapping table.

Hiding access latencies with prefetching. The delta chain reduces the spatial locality within a

leaf nod degrading search performance. For instance, two consecutive items in a conventional

B-Tree may be separated in the log space of a virtualized B+-Tree, resulting in an additional

cache miss when accessed together. Prefetching is used to mitigate the performance degradation

for reads. In particular, for each leaf node, we cache the pointers to the most recent delta records,

and prefetch them whenever a chain traversal is initiated. The number of delta records cached,

represents a trade-off between read performance and the space consumption of the mapping

table.

0 10 20 30 40 50
of Threads

0

2

4

6

8

T
hp

t.
(M

O
P

S
)

persistent unsorted

FAST/FAIR

btree-LS

(a) Random Fill

0 10 20 30 40 50
of Threads

0

5

10

15

20

T
hp

t.
(M

O
P

S
)

persistent unsorted

FAST/FAIR

btree-LS

(b) Random Read

Figure 5.13: Performance comparison between btree-LS, persistent unsorted and FAST/FAIR.

1 12 16 24 48 96 144 192 2304
of Logs

0

2

4

6

8

T
hr

ou
gh

pu
t

(M
O

P
S

)

(a) IOPS

1 12 16 24 48 96 144 192 2304
of Logs

0.0

0.5

1.0

1.5

W
ri

te
A

m
pl

ifi
ca

ti
on

(b) WA

1 2 4 8 16 32 48
of Logs

0

5

10

15

R
ec

ov
er

y
T

im
e

(s
)

(c) Recovery Time

Figure 5.14: The impact of the number of logs.

102

0 2 4 6 8
of Cached Delta Records

0

1

2

3

4
T

hr
ou

gh
pu

t
(M

O
P

S
)

(a) Prefetching (8 threads)

200 400 600 800 1000
GC Threshold (MB)

0.0
2.5
5.0
7.5

10.0
12.5
15.0

T
hr

ou
gh

pu
t

(M
O

P
S

) Fill Random Read Random

(b) GC (48 threads)

Figure 5.15: The impact of GC and delta prefetching.

5.4.3.2 Evaluation

The results of the log-structured B+-tree implementation (denoted as btree-LS) are

compared with those of persistent unsorted and FAST/FAIR in Figure 5.13, with GC disabled.

One can see in Figure 5.13a that btree-LS achieves 41% higher insertion performance as com-

pared to FAST/FAIR, from efficiently reducing the PMEM-level write amplification with a high

system load. A 37% degradation in read performance is also observed (Figure 5.13b), mainly

because of the reduced spatial locality in cache.

Figure 5.14 demonstrates the impact of log count selection by running Fill Random

with 48 threads. Figure 5.14a shows that the update performance first increases drastically with

the number of logs, as the contention for log updates is removed. After the number of logs goes

beyond 48, the performance gradually drops as write sequentiality diminishes. Figure 5.14b

confirms that write amplification inside the 3DXP increases from 1.4 to 1.7 as the number of

logs increases. Figure 5.14c shows the recovery time of 160M entries by varying log count,

with the replayer count equal to the log count and GC threshold set at 50MB. By effectively

exploiting parallelism of the recovery process, with 48 replayer threads (and 48 logs) the whole

103

index can be recovered in 0.89 secs and the speedup over the single-thread implementation is

21×.

We show the impact of garbage collection and delta prefetching in Figure 5.15. Fig-

ure 5.15b shows the impact of garbage collection. The background GC workers attempt to

keep the amount of garbage data within a tunable threshold. The update performance degrades

by only up to 7% as the GC threshold decreases from 1000MB to 100MB. Meanwhile the

read performance increases by 20%. This is because GC is also responsible for consolidating

small delta records and thus a more aggressive GC setting better preserves spatial locality. Fig-

ure 5.15a shows the efficiency of delta prefetching. As the number of cached delta entries is

increased from 1 to 8, the read performance is improved by 26%. Delta prefetching can barely

improve performance when the number cached delta entries goes beyond 4. We suspect this is

because the maximum level of memory parallelism supported by the hardware is reached.
Lesson 3: Log-structuring efficiently utilizes the limited write bandwidth by significantly re-

ducing device write amplification, at the cost of search performance and additional implemen-

tation complexities. By placing the indirection layer in DRAM, exploiting parallelism within

the log space and judiciously selecting software parameters such as the garbage threshold, we

can make log-structuring practical for PMEM indexes.

5.5 Chapter Summary

This work work studies the common design issues of sorted index structures in a real

system utilizing persistent memory. We present two novel techniques group flushing and log

structuring for PM. Group flushing improves performance by 24% by addressing the granularity

disparity between CPU caches and the DCPMM controller. In addition, our study revisits the

104

log structuring technique in the context of persistent memories improving performance by 41%

as compared to state-of-the art persistent B+-Tree.

105

Chapter 6

Future Directions

System use of memory is changing as memory technologies advance rapidly and new

interconnect standards emerge. We must also evolve our ideas to take advantage of future mem-

ories. The facts that compute express link (CXL) [4] enables a fast, coherent interconnect that

speaks load/store memory semantics and that CXL can connect memory media with differing

cost-per-GB and performance profiles are bound to have major repercussions on future system

designs. In traditional architectures, the type of memory technology (e.g. DDR4), memory

speed, and maximum memory capacity depend entirely on the CPU architecture. CXL will

enable the transition from a rigid, hardware-defined memory hierarchy into a flexible, software-

defined memory subsystem with desired capacity, bandwidth, and cost-per-GB based on the

workload demands.

While our work has considered the allocation and placement of volatile data objects,

the management of persistent data must also be studied in the CXL-enabled infrastructure. It

should be common to have different non-volatile memory technologies deployed across the

106

CXL fabric in the future memory hierarchy. These non-volatile memory technologies may differ

in terms of the cost-per-GB, performance, and endurance level. For instance, battery-backed

DRAM achieves DRAM-like latency and endurance level, but it is much more expensive than

other non-volatile memories such as PCM. Placing the persistent data in such a tiered memory

presents new challenges and calls for additional research e.g. what are the performance and

endurance implications of placing persistent objects in a particular memory tier?

The idea of memory selection and allocation must also be revisited in the context

of the next-generation, data-centric OS [16] that is specifically designed for future memories.

In a data-centric OS such as Twizzler [16], data is organized into objects, which are uniquely

identified by a global object ID. In such an OS, it is important to have a memory configurator

that ensures the data objects are placed on the right server with appropriate memory selection

and allocation based on the capacity, latency, bandwidth, and persistence needs. The memory

configurator must employ mechanisms to learn the characteristics such as access and write rate

of the data structures and devise algorithms to orchestrate the data allocation and placement.

We envision fast, remote persistent memories enabled by CXL will be an attractive

option in the future as they provide sufficient fault isolation between PMEMs and the CPU

and between mirrored PMEMs [80]. Much prior work on PMEM optimized failure-atomicity

mechanisms such as our SSP [86, 87] has been designed and tested assuming that the PMEMs

are directly connected to the CPU. Adapting the failure-atomicity methodologies to the CXL-

attached persistent memories remains future work.

107

Chapter 7

Conclusions

Three obstacles must be overcome in order to fully unlock the potential of emerging

memory technologies such as PMEM in the future infrastructure: costly failure-atomic PMEM,

overhead in finding the right resource allocation in tiered memory, and lack of platform-specific

insights and optimizations. This thesis presents my work on two approaches, SSP and TMC,

which improve the performance and cost efficiency of PMEM-enabled storage and tiered mem-

ory. In addition, we conduct an in-depth performance study on the interplay of real PMEM

hardware and index structures. Our work leads us to draw the following implications for the

future design of the processor, memory as well as software:

• Processor design. While SSP can improve the performance by reducing the persistence

overhead introduced by extra PMEM writes, a significant performance gap still exists be-

tween the persistent and non-persistent versions of an application. To further eliminate the

performance overhead introduced by flushing the cache line in the future, cost-effective

solutions that expand the persistence domain would be critical in the future. For instance,

108

low-latency nonvolatile memory such as STT-RAM can be used to replace volatile SRAM

as the last level cache [129], or techniques such as eADR [50] can be used to flush the up-

dates in the CPU cache to the PMEM media on power failure. If the granularity disparity

between CPU caches and PMEM remains in the future generation of the 3DXP modules,

we could consider extending the processor to improve the I/O efficiency of 3DXP. For

instance, the cache replacement logic can be made aware of the underlying 3DXP media

e.g. prefer writing back modified cache lines in 256-byte blocks. Furthermore, systems

such as our TMC benefit greatly from better observability of the workload. In the future,

new PMU counters can be added to improve the observability e.g. counters can be added

to measure the MLP of a workload.

• Memory subsystem design. Prior work [53] discloses that 3DXP memory embeds an

address indirection table to achieve wear leveling and bad-block management. Such an

indirection layer offers opportunities to incorporate the functionalities of SSP entirely

inside the PM controller, significantly reducing the complexity without sacrificing much

performance. Furthermore, the operations on a index structure can be interleaved to hide

the latency of memory accesses [20, 55, 93]. As the latency of PMEM is several times

higher than that of DRAM, it becomes even more critical to be able to hide latency of

PMEM accesses. However, our work demonstrated that the lack of hardware resources

such as line fill buffers limits the memory parallelism, which makes it ineffective to hide

the PMEM latency.

• Software and OS design. SSP can be implemented in software leveraging a software

109

mapping layer in userspace similar to LSNVMM [46]. However, an extra indirection

may result in non-trivial software overhead, which calls for optimizing the SSP mapping

in the userspace. The write bandwidth of 3DXP is rather limited. We can improve the

write performance of index structures by leveraging techniques that reshape the access

pattern, such as log-structuring.

We hope that ideas presented in this work and other emerging ideas (e.g. Software De-

fined Memory [66,78,118]) will be combined and improved further through continued research

on cost- and capacity-efficient high performance memory systems.

110

Bibliography

[1] Amazon elastic compute cloud. https://aws.amazon.com/ec2.

[2] Create a VM with a custom machine type. https://cloud.google.com/compute/
docs/instances/creating-instance-with-custom-machine-type.

[3] Microsoft azure: Cloud computing services. https://azure.microsoft.com/.

[4] Compute express link: The breakthrough cpu-to-device interconnect. https://www.
computeexpresslink.org/, 2020.

[5] Neha Agarwal and Thomas F Wenisch. Thermostat: Application-transparent page man-
agement for two-tiered main memory. In Proceedings of the 2017 International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 631–644, 2017.

[6] Soramichi Akiyama and Takahiro Hirofuchi. Quantitative evaluation of intel pebs over-
head for online system-noise analysis. In Proceedings of the 7th International Workshop
on Runtime and Operating Systems for Supercomputers ROSS 2017, pages 1–8, 2017.

[7] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Min-
lan Yu, and Ming Zhang. {CherryPick}: Adaptively unearthing the best cloud configura-
tions for big data analytics. In Proceedings of the 13th Symposium on Networked Systems
Design and Implementation (NSDI ’17), pages 469–482, 2017.

[8] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout, Mar-
cos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can far memory
improve job throughput? In Proceedings of the 15th European Conference on Computer
Systems (EuroSys ’20), pages 1–16, 2020.

[9] AMD. Amd joins consortia to advance cxl, a new high-speed interconnect
for breakthrough performance. https://community.amd.com/t5/business/
amd-joins-consortia-to-advance-cxl-a-new-high-speed-interconnect/
ba-p/418202, 2019.

[10] Nadav Amit. Optimizing the TLB shootdown algorithm with page access tracking. In
Proceedings of the 2017 USENIX Annual Technical Conference, pages 27–39, 2017.

111

https://aws.amazon.com/ec2
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://azure.microsoft.com/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://community.amd.com/t5/business/amd-joins-consortia-to-advance-cxl-a-new-high-speed-interconnect/ba-p/418202
https://community.amd.com/t5/business/amd-joins-consortia-to-advance-cxl-a-new-high-speed-interconnect/ba-p/418202
https://community.amd.com/t5/business/amd-joins-consortia-to-advance-cxl-a-new-high-speed-interconnect/ba-p/418202

[11] Andy Patrizio. Facebook and amazon are causing a memory
shortage. https://www.networkworld.com/article/3247775/
facebook-andamazon-are-causing-a-memory-shortage.html, 2018.

[12] R. Bayer and E. M. Mccreight. Organization and maintenance of large ordered indexes.
Acta Inf., 1(3), September 1972.

[13] Nathan Beckmann and Daniel Sanchez. Talus: A simple way to remove cliffs in cache
performance. In Proceedings of the 21th Int’l Symposium on High-Performance Com-
puter Architecture (HPCA-21), pages 64–75. IEEE, 2015.

[14] Bernard Marr. How much data do we create every day? the mind-blowing stats ev-
eryone should read. https://www.forbes.com/sites/bernardmarr/2018/05/21/
how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
?sh=323acd8760ba, 2018.

[15] Daniel Bittman, Peter Alvaro, Darrell D. E. Long, and Ethan L. Miller. A tale of two
abstractions: The case for object space. In Proceedings of the 11th Workshop on Hot
Topics in Storage and File Systems (HotStorage ’19), July 2019.

[16] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell DE Long, and Ethan L Miller. Twiz-
zler: a data-centric os for non-volatile memory. ACM Transactions on Storage (TOS),
17(2):1–31, 2021.

[17] Anastasia Braginsky and Erez Petrank. A lock-free b+tree. In Proceedings of the 24th
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 58–67, 2012.

[18] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. Cache-conscious
concurrency control of main-memory indexes on shared-memory multiprocessor sys-
tems. In Proceedings of the VLDB Endowment, volume 1, pages 181–190, 2001.

[19] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging locks
for non-volatile memory consistency. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications, OOP-
SLA ’14, pages 433–452, 2014.

[20] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. Improving index performance
through prefetching. In Proceedings of the 2001 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’01, pages 235–246, 2001.

[21] Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking database algorithms
for phase change memory. In CIDR’11: 5th Biennial Conference on Innovative Data
Systems Research, January 2011.

[22] Shimin Chen and Qin Jin. Persistent B+-trees in non-volatile main memory. Proc. VLDB
Endow., 8(7):786–797, February 2015.

112

https://www.networkworld.com/article/3247775/facebook-andamazon-are-causing-a-memory-shortage.html
https://www.networkworld.com/article/3247775/facebook-andamazon-are-causing-a-memory-shortage.html
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=323acd8760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=323acd8760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=323acd8760ba

[23] Chia Chen Chou, Aamer Jaleel, and Moinuddin K Qureshi. Cameo: A two-level memory
organization with capacity of main memory and flexibility of hardware-managed cache.
In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 1–12. IEEE, 2014.

[24] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Sampson, Michael
Van Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo Colavin. Unbounded page-
based transactional memory. ACM Sigplan Notices, 41(11):347–358, 2006.

[25] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. Cliffhanger: Scal-
ing performance cliffs in web memory caches. In Proceedings of the 12th Symposium on
Networked Systems Design and Implementation (NSDI ’16), pages 379–392, 2016.

[26] Russell Clapp, Martin Dimitrov, Karthik Kumar, Vish Viswanathan, and Thomas Will-
halm. Quantifying the performance impact of memory latency and bandwidth for big
data workloads. In 2015 IEEE International Symposium on Workload Characterization,
pages 213–224. IEEE, 2015.

[27] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ran-
jit Jhala, and Steven Swanson. NV-Heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories. In Proceedings of the 16th International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’11), pages 105–118, March 2011.

[28] Douglas Comer. Ubiquitous b-tree. ACM Computing Surveys (CSUR), 11(2):121–137,
1979.

[29] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee,
Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable, persistent mem-
ory. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles
(SOSP ’09), pages 133–146, Big Sky, MT, October 2009.

[30] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill Hughes.
Cache hierarchy and memory subsystem of the AMD Opteron processor. IEEE micro,
30(2):16–29, 2010.

[31] Guilherme Cox and Abhishek Bhattacharjee. Efficient address translation for architec-
tures with multiple page sizes. In Proceedings of the 2017 International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 435–448, New York, NY, USA, 2017. ACM.

[32] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi. Log-free
concurrent data structures. In Proceedings of the 2018 USENIX Annual Technical Con-
ference, pages 373–386, 2018.

[33] Arnaldo Carvalho De Melo. The new linux’perf’tools. In Slides from Linux Kongress,
volume 18, pages 1–42, 2010.

113

[34] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware scheduling for het-
erogeneous datacenters. ACM SIGPLAN Notices, 48(4):77–88, 2013.

[35] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. System software for persistent memory. In
Proceedings of the 9th European Conference on Computer Systems (EuroSys ’14), April
2014.

[36] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram, Nadathur
Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. Data tiering in heteroge-
neous memory systems. In Proceedings of the 11th European Conference on Computer
Systems (EuroSys ’16), pages 1–16, 2016.

[37] Brad Fitzpatrick. Distributed caching with memcached. Linux journal, 2004(124):5,
2004.

[38] Sadagopan Srinivasan Li Zhao Brinda Ganesh, Bruce Jacob, and Mike Espig Ravi Iyer.
CMP memory modeling: How much does accuracy matter? In Fifth Annual Workshop
on Modeling, Benchmarking and Simulation, pages 24–33.

[39] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and Steven Hand.
Firmament: Fast, centralized cluster scheduling at scale. In Proceedings of the 12th
Symposium on Operating Systems Design and Implementation (OSDI ’16), pages 99–
115, 2016.

[40] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Pow-
erGraph: Distributed graph-parallel computation on natural graphs. In Proceedings of the
10th Symposium on Operating Systems Design and Implementation (OSDI ’12), pages
17–30, 2012.

[41] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya
Akella. Multi-resource packing for cluster schedulers. ACM SIGCOMM Computer Com-
munication Review, 44(4):455–466, 2014.

[42] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G Shin.
Efficient memory disaggregation with infiniswap. In Proceedings of the 13th Symposium
on Networked Systems Design and Implementation (NSDI ’17), pages 649–667, 2017.

[43] Richard A. Hankins and Jignesh M. Patel. Effect of node size on the performance of
cache-conscious b+-trees. In Proceedings of the 2003 SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS ’03, pages 283–294, 2003.

[44] Dave Hitz, James Lau, and Michael Malcom. File system design for an NFS file server
appliance. In Proceedings of the Winter 1994 USENIX Technical Conference, pages
235–246, San Francisco, CA, January 1994.

[45] HPS. scarab. https://github.com/hpsresearchgroup/scarab, [n.d.].

114

https://github.com/hpsresearchgroup/scarab

[46] Qingda Hu, Jinglei Ren, Anirudh Badam, and Thomas Moscibrod. Log-structured non-
volatile main memory. In Proceedings of the 2017 USENIX Annual Technical Confer-
ence, pages 703–717, Santa Clara, CA, June 2017.

[47] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. Endurable tran-
sient inconsistency in byte-addressable persistent b+-tree. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies (FAST ’18), page 187, 2018.

[48] Intel. Introduction to cache allocation technology in the intel xeon processor e5
v4 family. https://www.intel.com/content/www/us/en/developer/articles/
technical/introduction-to-cache-allocation-technology.html, 2016.

[49] Intel. Intel optane persistent memory. https://www.intel.com/content/www/us/
en/architecture-and-technology/optane-dc-persistent-memory.html, 2019.

[50] Intel. eADR: New opportunities for persistent memory applications. https:
//www.intel.com/content/www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-memory-applications.html, 2021.

[51] Intel Corporation. Architecture instruction set extensions programming reference, 2012.

[52] Intel Corporation. Persistent memory programming. http://http://pmem.io/, 2015.

[53] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,
Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al. Basic perfor-
mance measurements of the intel optane dc persistent memory module. arXiv preprint
arXiv:1903.05714, 2019.

[54] Bruce Jacob. The memory system: you can’t avoid it, you can’t ignore it, you can’t fake
it. Synthesis Lectures on Computer Architecture, 4(1):1–77, 2009.

[55] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski, and Gor
Nishanov. Exploiting coroutines to attack the killer nanoseconds. Proc. VLDB Endow.,
11(11):1702–1714, July 2018.

[56] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. DHTM: Durable hard-
ware transactional memory. In Proceedings of the 45th Int’l Symposium on Computer
Architecture, 2018.

[57] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. ATOM: Atomic dura-
bility in non-volatile memory through hardware logging. In Proceedings of the 23th Int’l
Symposium on High-Performance Computer Architecture (HPCA-23), pages 361–372.
IEEE, 2017.

[58] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In
Proceedings of the 42th Int’l Symposium on Computer Architecture, pages 158–169,
2015.

115

https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
http://http://pmem.io/

[59] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaibhav Gogte, and
Ronald Dreslinski. Improving performance of flash based {Key-Value} stores using stor-
age class memory as a volatile memory extension. In Proceedings of the 2021 USENIX
Annual Technical Conference, pages 821–837, 2021.

[60] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D Nguyen, Tim
Kaldewey, Victor W Lee, Scott A Brandt, and Pradeep Dubey. FAST: fast architecture
sensitive tree search on modern cpus and gpus. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of Data, pages 339–350. ACM, 2010.

[61] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. Exploring the design space of page
management for multi-tiered memory systems. In Proceedings of the 2021 USENIX
Annual Technical Conference, pages 715–728, 2021.

[62] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Selecta: Heterogeneous cloud stor-
age configuration for data analytics. In Proceedings of the 2018 USENIX Annual Tech-
nical Conference, pages 759–773, 2018.

[63] Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas. Pageseer: Using page walks
to trigger page swaps in hybrid memory systems. In Proceedings of the 25th Int’l Sym-
posium on High-Performance Computer Architecture (HPCA-25), pages 596–608. IEEE,
2019.

[64] Shonali Krishnaswamy, Seng Wai Loke, and Arkady Zaslavsky. Estimating computation
times of data-intensive applications. IEEE Distributed Systems Online, 5(4), 2004.

[65] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach, and Emmett
Witchel. Coordinated and efficient huge page management with Ingens. In Proceed-
ings of the 12th Symposium on Operating Systems Design and Implementation (OSDI
’16), pages 705–721, 2016.

[66] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid, et al.
Software-defined far memory in warehouse-scale computers. In Proceedings of the 2019
International Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 317–330, 2019.

[67] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable DRAM alternative. In Proceedings of the 36th International Sym-
posium on Computer Architecture (ISCA ’09), ISCA ’09, pages 2–13, New York, NY,
USA, 2009. ACM.

[68] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H Noh. WORT:
Write optimal radix tree for persistent memory storage systems. In Proceedings of the
15th USENIX Conference on File and Storage Technologies (FAST ’17), pages 257–270,
2017.

116

[69] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. Recipe: Converting concurrent dram indexes to persistent-memory indexes.
In Proceedings of the 28th ACM Symposium on Operating Systems Principles (SOSP
’19), pages 462–477, 2019.

[70] Seok-Hee Lee. Technology scaling challenges and opportunities of memory devices. In
2016 IEEE International Electron Devices Meeting (IEDM), pages 1–1. IEEE, 2016.

[71] Lenovo. Cxl and the tiered-memory future of
servers. https://www.lenovoxperience.com/newsDetail/
283yi044hzgcdv7snkrmmx9ovpq6aesmy9u9k7ai2648j7or, 2021.

[72] Justin J Levandoski, David B Lomet, and Sudipta Sengupta. The Bw-Tree: A b-tree for
new hardware platforms. In Proceedings of the 29th IEEE International Conference on
Data Engineering (ICDE ’13), pages 302–313. IEEE, 2013.

[73] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst, Pan-
tea Zardoshti, Monish Shah, Ishwar Agarwal, Mark Hill, Marcus Fontoura,
et al. First-generation memory disaggregation for cloud platforms. arXiv preprint
arXiv:2203.00241, 2022.

[74] Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, and Onur Mutlu. Utility-
based hybrid memory management. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pages 152–165. IEEE, 2017.

[75] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K Rein-
hardt, and Thomas F Wenisch. Disaggregated memory for expansion and sharing in
blade servers. In Proceedings of the 36th annual international symposium on Computer
architecture, pages 267–278, 2009.

[76] Linux Kernel Organization. Linux zswap. https://www.kernel.org/doc/
Documentation/vm/zswap.txt, [n.d.].

[77] Liang Luo, Akshitha Sriraman, Brooke Fugate, Shiliang Hu, Gilles Pokam, Chris J
Newburn, and Joseph Devietti. Laser: Light, accurate sharing detection and repair. In
Proceedings of the 22th Int’l Symposium on High-Performance Computer Architecture
(HPCA-22), pages 261–273. IEEE, 2016.

[78] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agarwal, Pal-
lab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia, and Prakash
Chauhan. TPP: Transparent page placement for cxl-enabled tiered memory. arXiv
preprint arXiv:2206.02878, 2022.

[79] Andréa Matsunaga and José AB Fortes. On the use of machine learning to predict the
time and resources consumed by applications. In 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pages 495–504. IEEE, 2010.

117

https://www.lenovoxperience.com/newsDetail/283yi044hzgcdv7snkrmmx9ovpq6aesmy9u9k7ai2648j7or
https://www.lenovoxperience.com/newsDetail/283yi044hzgcdv7snkrmmx9ovpq6aesmy9u9k7ai2648j7or
https://www.kernel.org/doc/Documentation/vm/zswap.txt
https://www.kernel.org/doc/Documentation/vm/zswap.txt

[80] Pankaj Mehra and Samuel Fineberg. Fast and flexible persistence: the magic potion for
fault-tolerance, scalability and performance in online data stores. In Proceedings of the
18st International Parallel & Distributed Processing Symposium (IPDPS 2004), page
206. IEEE, 2004.

[81] Micron. Micron exits 3D xpoint market, eyes CXL opportunities. https://www.
eetimes.com/micron-exits-3d-xpoint-market-eyes-cxl-opportunities/,
2021.

[82] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IEEE International Sympo-
sium on Workload Characterization (IISWC ’08), pages 35–46. Citeseer, 2008.

[83] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES: a
transaction recovery method supporting fine-granularity locking and partial rollbacks us-
ing write-ahead logging. ACM Transactions on Database Systems, 17(1):94–162, 1992.

[84] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and Kim-
berly Keeton. An analysis of persistent memory use with WHISPER. In Proceedings
of the 2017 International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), ASPLOS ’17, pages 135–148, New York,
NY, USA, 2017. ACM.

[85] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. Practical, transparent operat-
ing system support for superpages. ACM SIGOPS Operating Systems Review, 36(SI):89–
104, 2002.

[86] Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan Miller. Reducing NVM writes
with optimized shadow paging. In Proceedings of the 10th Workshop on Hot Topics in
Storage and File Systems (HotStorage ’18), July 2018.

[87] Yuanjiang Ni, Jishen Zhao, Heiner Litz, Daniel Bittman, and Ethan L Miller. Ssp: Elimi-
nating redundant writes in failure-atomic nvrams via shadow sub-paging. In Proceedings
of the 52th Annual IEEE/ACM International Symposium on Microarchitecture, pages
836–848, 2019.

[88] Oliver Niehorster, Alexander Krieger, Jens Simon, and Andre Brinkmann. Autonomic
resource management with support vector machines. In 2011 IEEE/ACM 12th Interna-
tional Conference on Grid Computing, pages 157–164. IEEE, 2011.

[89] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner.
Fptree: A hybrid SCM-DRAM persistent and concurrent B-tree for storage class mem-
ory. In Proceedings of the 2016 ACM SIGMOD International Conference on Manage-
ment of Data, pages 371–386. ACM, 2016.

118

https://www.eetimes.com/micron-exits-3d-xpoint-market-eyes-cxl-opportunities/
https://www.eetimes.com/micron-exits-3d-xpoint-market-eyes-cxl-opportunities/

[90] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich,
David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel Rosen-
blum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. The case for RAM-
Clouds: Scalable high-performance storage entirely in DRAM. ACM SIGOPS Operating
Systems Review, 43(4):92–105, December 2009.

[91] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. Marss: a full system simu-
lator for multicore x86 cpus. In 2011 48th Design Automation Conference (DAC), pages
1050–1055. IEEE, 2011.

[92] M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie. Destiny: A tool for modeling
emerging 3d nvm and edram caches. In 2015 Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2015.

[93] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki. Interleav-
ing with coroutines: A practical approach for robust index joins. Proc. VLDB Endow.,
11(2):230–242, October 2017.

[94] Moinuddin K Qureshi and Yale N Patt. Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06), pages 423–
432. IEEE, 2006.

[95] Jun Rao and Kenneth A. Ross. Making B+-trees cache conscious in main memory. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, pages 475–486, Dallas, TX, May 2000.

[96] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-
structured file system. ACM Transactions on Computer Systems, 10(1):26–52, February
1992.

[97] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A cycle accurate
memory system simulator. IEEE Computer Architecture Letters, 10(1):16–19, 2011.

[98] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. Log-structured memory
for DRAM-based storage. In Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST ’14), February 2014.

[99] Samsung. Samsung unveils industry-first memory module incorporat-
ing new cxl interconnect standard. https://news.samsung.com/global/
samsung-unveils-industry-first-memory-module
-incorporating-new-cxl-interconnect-standard, 2015.

[100] Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable and efficient fine-grain cache
partitioning. In Proceedings of the 38th Int’l Symposium on Computer Architecture,
pages 57–68, 2011.

119

https://news.samsung.com/global/samsung-unveils-industry-first-memory-module
https://news.samsung.com/global/samsung-unveils-industry-first-memory-module
-incorporating-new-cxl-interconnect-standard

[101] Steve Scargall. Programming persistent memory: A comprehensive guide for developers.
Springer Nature, 2020.

[102] Fujitsu Semiconductor. Fujitsu semiconductor releases world’s largest density 8mbit
reram product from september. https://www.fujitsu.com/global/products/
devices/semiconductor/memory/reram/spi-8m-mb85as8mt.html, 2019.

[103] Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase, Onur Mutlu, Phillip B Gibbons,
Michael A Kozuch, Todd C Mowry, and Trishul Chilimbi. Page overlays: An enhanced
virtual memory framework to enable fine-grained memory management. In Proceedings
of the 42th Int’l Symposium on Computer Architecture, pages 79–91. IEEE, 2015.

[104] Jason Sewall, Jatin Chhugani, Changkyu Kim, Nadathur Satish, and Pradeep Dubey.
PALM: Parallel architecture-friendly latch-free modifications to b+ trees on many-core
processors. Proc. VLDB Endowment, 4(11):795–806, 2011.

[105] Akbar Sharifi, Shekhar Srikantaiah, Asit K Mishra, Mahmut Kandemir, and Chita R
Das. METE: meeting end-to-end qos in multicores through system-wide resource man-
agement. In Proceedings of the 2011 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 13–24, 2011.

[106] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. Proteus: A
flexible and fast software supported hardware logging approach for nvm. In Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, pages
178–190. ACM, 2017.

[107] SK hynix. tructural and device considerations for vertical cross point memory with
single-stack memory toward CXL memory beyond 1xnm 3DXP. https://research.
skhynix.com/blog/detail?seq=147, 2022.

[108] Michael Stonebraker and Ariel Weisberg. The voltdb main memory dbms. Data Engi-
neering, page 21, 2013.

[109] Madhusudhan Talluri and Mark D. Hill. Surpassing the tlb performance of superpages
with less operating system support. In Proceedings of the 6th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS
’94), pages 171–182, New York, NY, USA, 1994. ACM.

[110] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, and Ion
Stoica. Ernest: Efficient performance prediction for {Large-Scale} advanced analytics.
In Proceedings of the 12th Symposium on Networked Systems Design and Implementa-
tion (NSDI ’16), pages 363–378, 2016.

[111] Abhishek Verma, Madhukar Korupolu, and John Wilkes. Evaluating job packing in
warehouse-scale computing. In Proceedings of the 2014 IEEE International Conference
on Cluster Computing, pages 48–56. IEEE, 2014.

120

https://www.fujitsu.com/global/products/devices/semiconductor/memory/reram/spi-8m-mb85as8mt.html
https://www.fujitsu.com/global/products/devices/semiconductor/memory/reram/spi-8m-mb85as8mt.html
https://research.skhynix.com/blog/detail?seq=147
https://research.skhynix.com/blog/detail?seq=147

[112] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune,
and John Wilkes. Large-scale cluster management at google with borg. In Proceedings
of the 10th European Conference on Computer Systems (EuroSys ’15), pages 1–17, 2015.

[113] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez, Avi
Mendelson, Nacho Navarro, Adrian Cristal, and Osman S Unsal. DiDi: Mitigating the
performance impact of TLB shootdowns using a shared TLB directory. In 2011 Interna-
tional Conference on Parallel Architecture and Compilation Techniques (PACT), pages
340–349. IEEE, 2011.

[114] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight persis-
tent memory. In Proceedings of the 16th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’11), March 2011.

[115] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur Mutlu, Fang Lv,
Xiaobing Feng, and Guoqing Harry Xu. Panthera: Holistic memory management for big
data processing over hybrid memories. In Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 347–362, 2019.

[116] Zhaoguo Wang, Hao Qian, Jinyang Li, and Haibo Chen. Using restricted transactional
memory to build a scalable in-memory database. In Proceedings of the 9th European
Conference on Computer Systems (EuroSys ’14), page 26. ACM, 2014.

[117] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael
Kaminsky, and David G. Andersen. Building a Bw-Tree takes more than just buzz words.
In Proceedings of the 2018 ACM SIGMOD International Conference on Management of
Data, pages 473–488. ACM, 2018.

[118] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise
Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, et al. TMO:
transparent memory offloading in datacenters. In Proceedings of the 2022 International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pages 609–621, 2022.

[119] Wikipedia. Persistent memory. https://en.wikipedia.org/wiki/Persistent_
memory, [n.d.].

[120] Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping Chang. An efficient b-tree layer implemen-
tation for flash-memory storage systems. ACM Trans. Embed. Comput. Syst., 6(3), July
2007.

[121] Kai Wu, Yingchao Huang, and Dong Li. Unimem: Runtime data managementon non-
volatile memory-based heterogeneous main memory. In Proceedings of the 2015 Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis
(SC17), pages 1–14, 2017.

121

https://en.wikipedia.org/wiki/Persistent_memory
https://en.wikipedia.org/wiki/Persistent_memory

[122] Xiaojian Wu, Sheng Qiu, and A. L. Narasimha Reddy. SCMFS: A file system for storage
class memory and its extensions. ACM Transactions on Storage, 9(3), August 2013.

[123] Jian Xu and Steven Swanson. NOVA: a log-structured file system for hybrid volatile/non-
volatile main memories. In Proceedings of the 14th USENIX Conference on File and
Storage Technologies (FAST ’16), February 2016.

[124] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Nimble page man-
agement for tiered memory systems. In Proceedings of the 2019 International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 331–345, 2019.

[125] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson. An
empirical guide to the behavior and use of scalable persistent memory. In Proceedings
of the 16th USENIX Conference on File and Storage Technologies (FAST ’20), pages
169–182, 2020.

[126] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and Bing-
sheng He. NV-Tree: Reducing consistency cost for NVM-based single level systems. In
Proceedings of the 13th USENIX Conference on File and Storage Technologies (FAST
’15), pages 167–181, February 2015.

[127] Jifei Yi, Benchao Dong, Mingkai Dong, and Haibo Chen. On the precision of precise
event based sampling. In Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop
on Systems, pages 98–105, 2020.

[128] Lu Zhang and Steven Swanson. Pangolin: A fault-tolerant persistent memory pro-
gramming library. In Proceedings of the 2019 USENIX Annual Technical Conference,
USENIX ATC ’19, pages 897–911, 2019.

[129] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln: Closing
the performance gap between systems with and without persistence support. In Pro-
ceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-46, pages 421–432, New York, NY, USA, 2013. ACM.

[130] Yanqi Zhou, Henry Hoffmann, and David Wentzlaff. Cash: Supporting iaas customers
with a sub-core configurable architecture. In Proceedings of the 43th Int’l Symposium on
Computer Architecture, pages 682–694, 2016.

[131] Yanqi Zhou and David Wentzlaff. The sharing architecture: sub-core configurability
for iaas clouds. In Proceedings of the 2014 International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’14), pages 559–
574, 2014.

122

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Contributions
	Organization

	Background and Motivation
	Emerging Memory Technologies
	PMEM as Storage
	PMEM as Memory

	3DXP Persistent Memory
	Failure-Atomic PMEM
	PMEM-based Index Structures
	Resource Allocation Techniques
	Chapter Summary

	Eliminating redundant writes in failure-atomic PMEM
	SSP Design
	Programming Model and ISA Extension
	Shadow Sub-Paging
	Metadata Journaling
	Page Consolidation
	Discussion

	SSP Architecture
	Extensions on CPU hardware
	Memory Controller Extensions
	Architecture Details
	Hardware Cost and Complexity Trade-off
	Recovery

	Evaluation
	Experimental Setup
	Mirobenchmark Results
	Sensitivity Study
	Performance of Real Workloads

	Chapter Summary

	Near-Optimal Resource Allocation for Tiered-Memory Systems
	Motivation
	TMC Design
	Overview
	Analyzing Application Properties
	Inferring Tiered-Memory Performance
	Data Placement
	Optimizing Packing Efficiency
	Discussion

	Evaluation in Simulation
	Experimental setup
	Execution and Search Cost
	Improving Packing Efficiency
	Threshold Sensitivity Study
	Memory Tiering Sensitivity Analysis

	Real System Experiments
	Evaluation

	Chapter Summary

	Performance optimized indexing for 3DXP memories
	Experimental Setup
	Methodology
	Experimental Environments

	PMEM Indexing Techniques
	Write-optimized Indexing Structures
	Storage Consistency
	Selective Persistence

	Workload Performance
	Mixed Workloads
	Sensitivity to the Node Size

	Optimizations
	Interleaving Operations
	Group Flushing
	Log-structuring

	Chapter Summary

	Future Directions
	Conclusions
	Bibliography

