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ABSTRACT OF THE DISSERTATION

Methods and Models

for the Analysis of Human Genetic Data

by

Robert Brown

Doctor of Philosophy in Bioinformatics

University of California, Los Angeles, 2017

Professor Bogdan Pasaniuc, Chair

The advent of time- and cost-effective technologies for genotyping and sequencing human

DNA has massively increased both the type and amount of genetic data available for study.

In order to best utilize this data, new methods must be developed to better assess how

human history affects genetics and how genetics affects human phenotypes such as height,

eye color and disease risk.

This work presents five new methods that build upon each other to address this challenge.

The first method leverages geographic information contained in rare genetic variation to infer

the genetic ancestry of individuals at each location in the genome. It increases ancestry in-

ference accuracy when applied to cohorts of continentally admixed individuals. This method

also allows inference of local ancestry when studying cohorts containing subcontinentally

admixed individuals.

The second method applies the idea of highly structured geographic information in rare

variation to create a better variant filtering approach for finding the causal variation in

monogenic disorders. By finding better estimates of allele frequencies both within and across

populations, it reduces the number of variants that must be considered as potentially disease

causing. This results in decreased time and cost expenditures in necessary follow-up analyses.

Due to multiple testing issues, compound heterozygous architectures and haplotype af-

fects are difficult to detect as contributing to complex diseases or gene regulation. The next
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two methods present ways to detect these complex features. Compared to standard marginal

association approaches, these two methods show that compound heterozygous architectures

and haplotype effect models often better capture the genetic contributions to traits. The

results demonstrate the need for future fine-mapping approaches that seek complex causal

architectures.

The final method in this work searches for causal relationships in gene expression net-

works. These networks are formed by genes with highly correlated expression levels. How-

ever, the correlation may be due to unobserved confounding variables. By utilizing genetic

variants as instrumental variables, this method finds causal gene-on-gene effects. Knowing

the direction and magnitude of gene-on-gene effects is vital to better understanding regula-

tory networks in disease pathways and for the identification of drug targets.
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CHAPTER 1

Introduction

Essentially inaccessible a few decades ago at large scale, the three billion base pair long string

of human deoxyribonucleic acid (DNA) can now be read in both a time-efficient and cost-

efficient manner. Composed of four possible nucleotide base pairs represented by ‘A’, ‘C’,‘G’

and ‘T’, each individual’s DNA is unique and responsible for a proportion of phenotypes

(traits such as height, eye color or disease risk) that are inherited from parents. With the

advent of high throughput technologies, researchers can collect and study the DNA from

many individuals in order to gain insights and understanding into how populations grow and

evolve, the risk factors for diseases and the inner regulatory networks that control growth

and development.

In humans, each individual carries two copies of the human genome. The copies are

broken into chromosomes. There are 22 non-sex chromosomes, implying that each individual

carries 44: two copies of chromosome 1, two of chromosome 2 and so forth. The 3 billion

base pair long string of DNA that makes up the human genome is divided unevenly among

the 22 chromosomes. Researchers are most interested in where and why the genome differs

between individuals and how these differences influence human traits.

In order to quantify these differences, researchers use a ‘reference genome.’ The reference

genome is simply a universally accessible genome that allows comparison with the genome of

any individual; locations with differences are annotated as genetic variation. After surveying

many individuals, it is possible to quantify in a population the frequency of differences

from the reference genome at each nucleotide. Locations where there are individuals with

differences from the reference genome are referred to as single nucleotide polymorphisms

(SNPs). The nucleotides (which we will refer to as alleles) that match the allele on the
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reference genome are referred to as ‘reference alleles,’ and those that do not match are called

‘alternate alleles’. At any given SNP location, the vast majority of individuals carry either

the reference allele or the same alternate allele.

Since each individual has two copies of their DNA, at each SNP position they can either

carry two reference alleles, one reference and one alternate allele, or two alternate alleles.

The genotype of an individual at a SNP position is normally defined as the number of

alternate alleles an individual carries at that position. Interestingly, analysis of SNPs show

that, relative to the size of the genome, there are very few genetic differences between any

two randomly chosen individuals. In other words, we are more genetically similar than we

are different.

While genotypes at SNPs are the most basic unit of genetic data, it is important to

understand their arrangement in the human genome. For example, when looking at two ad-

jacent SNP positions on chromosome 1, if an individual has one reference and one alternate

allele at each position, there are four possible arrangements of the alleles: 1) both alternate

alleles can be on the first copy of chromosome 1, 2)both alternate alleles are on the second

copy of chromosome 1, 3) the first copy of the chromosome has the first alternate allele and

the second copy carries the second alternate allele or 4) the second copy of the chromosome

carries the first alternate allele and the first copy carries the second. These possible arrange-

ments are referred to as haplotypes. While the example is of a 2-SNP haplotype, haplotypes

can be defined by any number of SNPs occurring adjacently on the same chromosome.

When humans reproduce, they pass on chunks of DNA from each chromosome. In other

words, haplotypes, the specific arrangement of reference and alternate alleles in the parent,

are partially passed on to children. Because the arrangements of SNPs are also inherited,

this induces correlations between observed genotype values at nearby SNPs. This correlation

is referred to as linkage disequilibrium.

SNPs, haplotypes and linkage disequilibrium together make up the fundamental building

blocks of information that scientists use to understand the relationship between genetics,

phenotypes and human history. The following chapters will leverage these three sources of
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information in order build better models and methods for understanding population struc-

ture, finding alleles that cause monogenic disorders, identifying the genetic variation that

regulates gene expression and for understanding how the expression from one gene can affect

the expression of another.

Chapter 2 investigates the differences in SNP frequency distributions between popula-

tions. There are a large number of SNPs where alternate alleles are observed in one popu-

lation, such as Europeans, but not in any others, such as Asians and Africans (these SNPs

can be referred to as continental specific variants (CSVs). CSVs tend to have either the

alternate or the reference allele being rare in the population where it is observed. This is

due to population structure, where there has not been enough time for the CSV to move

to other populations through migration and drift. The method developed in this chapter

recognizes that, while rare, observed CSVs contain a significant amount of geographic infor-

mation. The method uses this potentially useful information in order to infer the continental

(or subcontinental) location from which each location in an individual’s genome originates.

Identifying the local ancestry of genomic regions is especially important when considering

admixed individuals such as African Americans, who have genetic ancestry form multiple

continental populations. This information is important for finding risk locations for diseases,

understanding genetic recombination and inferring human demographic events. The method

is published in PloS Computational Biology [18].

Building off insights from Chapter 2, Chapter 3 presents an improved method for identi-

fying genetic variants that cause monogenic disorders such as sickle cell anemia, hemophilia

or color blindness. While these are common examples, the majority of monogenic disorders

are extremely rare affecting at most a few individuals each year across the globe. Since they

rarely occur in the general population, the disease causing alleles must also be rare in all pop-

ulations. Standard approaches that try to narrow down the list of potential causal variants

therefore filter out any SNP from consideration that is observed above a defined frequency

such as 0.1%. However, standard approaches calculate this frequency across continental

populations, such as across all Europeans. Because rare variation is highly structured even

within a population, averaging across continental populations downwardly biases frequency
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estimates resulting in higher false discovery rates. The method presented in this chapter

corrects for this bias by more accurately defining populations for estimating the allele fre-

quencies. The improved frequency estimates result in more efficient variant filtering. This

method is published in the European Journal of Human Genetics [17].

One of the causal architectures in monogenic disorders is called a compound heterozy-

gote. In such an architecture, the function of a gene in both copies of a chromosome is

disrupted, but the disruption occurs at different SNP locations. While this architecture is

common in monogenic disorders, it is difficult to find in complex disease studies and gene

expression studies. There is no way to know a priori which SNPs together form a compound

heterozygote. Chapter 4 presents a method to search for compound heterozygotes in gene

expression data. The results indicate that compound heterozygous architectures, in many

cases, better tag the underlying and unknown true regulatory architecture. The method and

results of this study are published in Bioinformatics [16].

The compound heterozygous architecture is a special case of a more general haplotype ef-

fect architecture model. Chapter 5 lays out the method for the more general haplotype-based

approach that seeks genetic regions regulating gene expression. By looking for associations

between gene expression and all possible sets of haplotypes in 10,000 base pair regions of the

genome, the method is able to find more and stronger associations, even though there is a

much higher significance threshold due to the multiple testing correction. The results indicate

that many genes are regulated by architectures that are not significantly correlated with any

marginal SNP, rather, these genes have significant associations with specific arrangements

of SNPs. This result is very important; it demonstrates that future fine-mapping methods

need to incorporate complex haplotype-based architectures into their models when trying

to identify the true causal genetic variation. This work is prepared for submission to the

RECOMB-Genetics 2017 Conference in Los Angeles.

The final chapter (6), is unique. In all previous chapters, SNPs are used specifically

because they contribute to disease risk, gene regulation or contain geographic information.

In this Chapter 6, SNPs are only important as a tool. The genotype of an individual is

both random and fixed. While an individual’s genotypes can influence their phenotypes,
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the phenotypes cannot influence their genotypes. This characteristic allows the SNPs to

solve the question of correlation versus causation when looking at gene expression networks.

Many genes have highly correlated expression levels due to unobserved confounding vari-

ables. Here, the central question is whether the expression from one gene causally affects

gene expression levels from another gene. This chapter shows that leveraging SNPs as in-

strumental variables can determine if there is causation, in addition to correlation, within

gene expression networks. This work is prepared for submission to the RECOMB-Genetics

2017 Conference in Los Angeles.
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CHAPTER 2

Enhanced Methods for Local Ancestry Assignment in

Sequenced Admixed Individuals

2.1 Introduction

Advances in high-throughput genotyping technologies have enabled large-scale studies of

genetic variation, from genome-wide association studies (GWAS) [78] to inference of popula-

tion history from genetic data[139]. The most notable use of high-throughput genotyping has

been in GWAS where researchers have reproducibly identified thousands of genetic variants

associated with many diseases[26]. Although initial studies have focused on homogenous

populations[27], the development of accurate methods for discerning population structure

has enabled studies across individuals of different ethnicities such as admixed populations

(i.e. populations with genetic ancestry from more than one continent)[157, 144, 86, 167].

Owing to their recent demographic history, admixed individuals have genomes that are a

mosaic of segments originating from different continents. A key component of genetic studies

in recently admixed populations is the inference of ancestry at each locus in the genome (i.e.

the continental origin of each variant, local ancestry). Although local ancestry has been

traditionally used to map genes to diseases through admixture mapping[31, 170, 167], the

past few years have seen the use of local ancestry analyses in a wide range of genetic ap-

plications. Recent work has shown that admixture mapping can be used to localize missing

The work appearing in this chapter is published: Robert Brown and Bogdan Pasaniuc. “Enhanced
methods for local ancestry assignment in sequenced admixed individuals.” PLoS computational biology,
10(4):e1003555, April 2014.
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sequences from the human reference genome[57], while other analyses of local ancestry in

large samples of African American individuals have yielded novel insights into the dynamics

of recombination rates across the genome[77, 194]. Local ancestry also can be leveraged to

make demographic inferences from genetic data of admixed populations[83, 22, 90, 64] as

well as in finding signals of natural selection in African Americans[82]. Finally, local ancestry

is also important for disease genetics in correcting for spurious associations in fine-mapping

studies[156] as well as in finding new disease risk loci through a combination of association

and admixture mapping[144, 171, 205, 51, 198].

Many methods have been developed to infer local ancestry in admixed individuals. Early

methods[122, 126, 146] relied on ancestry informative markers within hidden Markov models

to achieve high accuracy. With decreasing genotyping costs, newer methods[13, 142, 163, 182]

were designed to use the increasing amount of data from genome-wide genotyping arrays

while accounting for linkage disequilibrium (LD) among variants. The currently established

methods[4, 154, 181] model LD in the form of haplotypes to achieve superior accuracy over

non-haplotype aware approaches. Recent work in parallel to ours[119] explored the use

of conditional random forests in performing local ancestry analysis. Although extremely

accurate for African Americans, these methods have not achieved the same level of high

accuracy in Latino Americans, partially due to the lack of good proxies for the Native

American component[143] and more recent divergence among ancestral populations. Rapid

cost decreases in sequencing technologies coupled with the increased power for assessing

genetic variation has made sequencing the approach of choice for many of the coming ge-

netic studies[73, 3, 8, 38, 43, 62, 72, 125, 130, 145, 158, 178, 186]. The amount of variants

identified by sequencing makes local ancestry inference in large cohorts of sequenced indi-

viduals prohibitively time consuming (e.g. existing HMM-based approaches will take 5 CPU

years to infer local ancestry in 15,000 sequenced African Americans, or 18 days per core

on a 100-core cluster). This is particularly important as sample sizes continue to increase

to hundreds of thousands of individuals. For example, a recent study of obesity included

over 15,000 African Americans[30] and another study included 30,000 African Americans for

recombination mapping[77].
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Here we present improved methods for local ancestry inference for fully sequenced ad-

mixed genomes. Sequencing, as opposed to genotyping, is able to catalogue much larger sets

of variants with a large component of such variants being continent-specific (i.e. variants that

are observed only in individuals from one continental group such as Europeans or Africans).

For example, the 1000 Genomes Project[39] has found that 17% of variants with frequencies

between 0.5-5% and 53% of variants with frequencies <0.5% are continent-specific when

comparing European, African, East Asian and American populations. We hypothesized that

these variants can be used for ultra-fast assignment of ancestry at every locus in the genome.

We term these variants as continent-specific variants (CSVs) and model them within stan-

dard hidden Markov models of local ancestry to achieve an accurate and computationally

efficient method for local ancestry inference (Lanc-CSV). Our model accounts for potential

errors induced by low-coverage sequencing as well as by the finite sample size of the reference

panels used for local ancestry inference. As opposed to most previous local ancestry methods

that require phased reference panels, our approach only requires allele frequency information

for each continental group.

Our approach is significantly faster than existing standard haplotype-based approaches

making it the approach of choice for large-scale sequencing studies (e.g. our approach is able

to infer local ancestry in under 42 CPU days in 15,000 sequenced genomes, or 0.42 days per

core if a 100-core cluster is available). The very-fast computational speed of our approach

allows it to be sample aware by iteratively improving the quality of the CSV calls using the

admixed individuals themselves to further boost accuracy by eliminating spuriously identified

CSVs. We use simulations of recently admixed individuals starting from 1000 Genomes data

to show that Lanc-CSV achieves comparable accuracy to existing methods (e.g. mean r2 =

0.92 across simulations of African Americans, Mexicans, and Puerto Ricans as compared to

0.93 for LAMP-LD[4], 0.84 for RFMix[119] and 0.80 for MULTIMIX[36]).

We investigate the effect of low coverage sequencing on our method in simulations and

show that at 5x coverage our approach achieves an r2 = 0.86 in African Americans, 0.70

in Mexicans and 0.78 in Puerto Ricans. More importantly, we investigate whether similar

results can be obtained in real data. We infer local ancestry using our approach in the real
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African American, Mexican, and Puerto Rican individuals from 1000 Genomes and find that

Lanc-CSV agrees with the published consensus local ancestry calls (mean r2 = 0.79 across

the three sets of comparisons as compared to a mean r2 = 0.81 for a haplotype-based method,

see Results). While our current method achieves comparable results to existing methods with

the given data sets, we demonstrate that the iterative sample aware CSV updating continues

to increase the overall accuracy as the sample size increases. With large studies this may

give Lanc-CSV a further accuracy advantage over existing methods. Finally, we extend the

concept of CSVs to sub-continental population-specific variants (sCSVs) and show that they

can be used to perform ancestry assignment with individuals admixed from two ancestries

from the same continent.

As the costs of sequencing rapidly decreases and genetic studies sequence more samples,

the tradeoff between computational runtime and accuracy becomes critical for local ancestry

inference. Using our proposed approaches we can reliably infer local ancestry in very large

sequenced cohorts at a fraction of the computational cost of existing approaches.

2.2 Methods

2.2.1 Data and simulations

The 1000 Genomes Project[39] has produced a public catalog of human genetic variation

through sequencing in individuals from populations across the world. In this work we use

the 88 Yoruba (YRI) and 97 Luhya (LWK) individuals as proxy for the African haplotypes;

the 85 Utah residents with northern and western European ancestry (CEU) and 97 Tuscans

in Italy (TSI) individuals were used as proxy for the European haplotypes; the 88 Japanese

in Tokyo (JPT), 97 Han Chinese in Beijing (CHB) and 100 Southern Han Chinese (CHS)

individuals were used as a proxy for the Native American haplotypes. The 14 Iberian popu-

lations in Spain (IBS), 93 Finnish in Finland (FIN) and 89 British in England and Scotland

(GBR) individuals are also used for determining sCSVs. We used the 1000 Genomes phased

haplotypes from each individual. We restricted our analysis to chromosome 10. The TSI,
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JPT and LWK haplotypes were used as training haplotypes for CSVs and all of the CEU,

CHB+CHS and YRI haplotypes were used as simulation haplotypes so that the training

and simulation haplotypes would be disjoint and unmatched. Following previous works we

filtered A/T and C/G variants from the analysis[143] leaving 1,581,313 (50,000) SNPs used

for sequencing (array) simulations.

Similar to previous works[154], we simulate admixed chromosomes as a random walk

over the 1000 Genomes haplotypes. Distance to the next crossover is sampled from an

exponential distribution with parameter (Gλ)−1 where λ = 10−8 base pairs per generation

and G is the number of generations since admixture[4, 154]. At a crossover event, an ancestry

(i.e. continental group) is chosen according to admixture-specific proportions and a random

haplotype is drawn uniformly from that continental group. We simulate 2000 haplotypes this

way and paired them to form 1000 genotypes with no simulated haplotype used more than

once. We used the following admixture proportions (θ) for the European, Native American

and African ancestry: 0.45:0.5:0.05 for Mexicans and 0.67:0.13:0.2 for Puerto Ricans and

0.2:0.0:0.8 for African-Americans[118, 24, 153, 185]. For African Americans we simulated

data assuming 6 generations since admixture (G = 6) and for Mexicans and Puerto Ricans

we assumed 15 generations (G = 15).

2.2.2 Continent-specific variants in the 1000 Genomes data

Comparing sequenced samples from different continental groups identifies continent-specific

variants. A CSV is identified if the reference or alternate allele is observed in only one of the

continental groups being compared. A CSV is only informative of an individuals ancestry

if it is observed in that individual. We used the reference panels to estimate CSVs and

then identified how many European, Native American, and African CSVs per megabase per

haplotype are present in the haplotypes used for simulations. That is, we count the total

CSVs from each group observed in the simulation haplotypes of given group and normalize

by sample size and chromosome length. The expected number of informative CSVs per

megabase per haplotype gives an indication of how well local ancestry can be inferred using
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only CSVs.

2.2.3 Local ancestry inference using CSVs

Following previous works[142], we consider admixed populations arising from K ancestral

populations A1, . . . , AK that have been mixing for G generations. For a given admixed

genotype from the admixed population, we describe each individual genotype as a vector

g, where gi ∈ (0, 1, 2) is the number of alternative alleles of that individual at SNP i. At

position i, the individuals two alleles have either both descended from the same ancestries

(i.e. continental group) or from two different ancestries. We are interested in determining

the ancestry origin of the two alleles at each position i in the genome. Our model is based

on an HMM described by a triple H = (Q, δ, ε), where Q is the set of states, δ is the

transition probability function and ε is the emission probability function. A different HMM is

estimated for each individual at each iteration with parameters estimated from the locations

of informative CSVs in each individual.

We denote by Q each possible combination (including the same ancestry) of ancestries

in a diploid genome. The transition function δ changes at each step j as a function of the

genetic distance between informative CSVs. The emission probabilities ε are constant for

each state in Q. For any number of ancestral groups K, there are nine transition types

that are typical of all possible transitions (not all are needed if K < 4)(see Table 2.1). The

transition functions described can describe the transition from any state q at step j−1 to any

state q′ at step j (see Figure 2.1). Here r is the probability of one or more recombinations

occurring between the j−1th informative CSV and the jth informative CSV and is a function

of the genetic distance between the two of them. This is modeled as a Poisson process with

parameter dGλ as the probability of one or more recombinations occurring between two SNPs

separated by distance d, having recombined G generations ago and with a rate parameter

λ. There is significant linkage between many of the CSVs so we set λ = 10−15 in order to

minimize the effect of close highly linked CSVs.

It is impossible to perfectly determine which CSVs are spurious from the reference sets,
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Figure 2.1: The hidden Markov model for a 2-way admixed individual (e.g. African Ameri-
can). The three types of states represent the three types of possible ancestry combinations:
homozygous for African ancestry, homozygous for European ancestry or heterozygous for
African and European ancestry. The probability of transitioning between the previous state
ql−1 and ql is a function of the genetic distance between the previous CSVl−1 and CSVl.

so emission probabilities must reflect the possibility of errors in determining which variants

are continent-specific (see Table 2.2). In a section of heterogeneous ancestry, emissions from

the two ancestries are expected to occur proportional to the expected number of informative

continent-specific variants seen in the two ancestries. In a section of homogenous ancestries,

emissions are expected from only the one ancestry. We assume a low spurious CSV rate of

εCSV = 10−5 and allow for the iterations to correct for errors by removing spurious CSVs

identified in confidently called homozygous ancestry sections. We assume that the first state

(q0) of the HMM is silent. With the HMM defined for each individual, the probability of the

individuals continent-specific variants is computed by summing over all paths π of length L

(the number of CSVs showing alternate alleles in that respective individual):

P (CSV |HMM) =
∑
π

L∏
j=1

δj(πj−1, πj−1)ε(CSVj|πj) (2.1)

The HMM is posterior decoded and local ancestry is called by assigning each CSV location

the ancestry pair that had the highest posterior probability. Ancestry was called at all
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variants by calling a variants ancestry as the same as the proceeding informative CSV.

Once ancestry calls have been assigned, reference panels are updated to reflect newly

identified CSVs and to remove spurious CSVs. For each reference continental group k and

for each allele i in the genome, the sample allele frequency pki is found by summing the

alternate allele count across all individuals at allele i with homozygous ancestry for group

k at that allele and then dividing by twice the number of homozygous calls at that locus

for group k. This is performed for all homozygous ancestry SNP locations in individual i

except for at SNPs that are within 10 SNPs of an ancestry transition since these are likely to

be less confidently called. The minor allele frequency p̃ki, first calculated from the reference

haplotypes is then updated.

p̃ki = max(pki, p̃ki) (2.2)

The maximum value is used because allele frequencies are used as indicators of the presence

of a CSV in a population; that the frequency is equal to zero or greater than zeros is what is

important for training CSVs. Another iteration of posterior decoding is performed using this

new p̃ki in order to determine CSV locations. We generally observed negligible improvement

in accuracy between the 3rd and 4th iteration.

(A1, A1) (A1, A2)

(A1, A1) ((1− rj) + rjθ1)2 ((1− rj) + rjθ1)θ1

(A1, A2) 2((1− rj) + rjθ1)rjθ2 ((1− rj) + rjθ1)((1− rj) + rjθ2) + r2j θ1θ2

(A3, A3) r2j θ
2
3 r2j θ

2
3

(A2, A3) r2j θ2θ3 ((1− rj) + rjθ2)rjθ3 + r2j θ2θ3

(A3, A4) r2j θ3θ4 r2j θ3θ4

Table 2.1: The transition probabilities between ancestry pairs. If Ak represent a specific
ancestry and θk represents the admixture proportion of that ancestry in the admixed popu-
lation, then these equations are the transition probabilities for all possible types of transitions
given a probability rj of one or more recombinations occurring between the (j − 1)th infor-
mative CSV and the jth informative CSV. The columns represent the ancestry state at the
(j − 1)th CSV and the rows the ancestry state being transitioned into at the jth CSV.
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π = (A1, A1) π = (A1, A2)

CSV = A1 1− εCSVK N1

N1+N2
− εCSV K

2

CSV 6= A1 εCSVK NA

CSV = A2 NA N2

N1+N2
− εCSV K

2

CSV = A3 NA εCSVK

Table 2.2: Probability of emitting an informative CSV from an ancestry state. The prob-
ability of seeing a CSV from a different ancestry in a homozygous ancestry state is εCSV .
In heterozygous states, CSVs are expected to be observed proportional to the ratio of the
expected number of informative CSVs per haplotype per megabase per individual (see Table
2.4) in the two populations. Nk represents the expected number of informative CSVs per
haplotype per megabase per individual in population k.

2.2.4 Comparison to array-based methods

We compared Lanc-CSV to LAMP-LD (v1.0) and MULTIMIX (v1.1.0), two widely used

state-of-the art methods for local ancestry inference and a concurrently published method,

RFMix (v1.0.2). We used unphased genotype data as input for all methods except RFMix,

which requires phased haplotypes. We ran LAMP-LD using the same parameter settings

used by 1000 Genomes[39] (number of states 25 and window size 100). We ran RFMix using

the default settings with no EM iterations because of the large reference panel sizes. RFMix

must be used with phased haplotypes that we computed with Beagle[20] using 30 haplotypes

each from the African, European and Native American (Asian) reference panels as haplo-

type references for phasing. We ran MULTIMIX using the MULTIMIX MCMCgeno method

(which cannot be run with the resolve step). We ran it using the suggested misfit rates for

two-way admixture [0.95 0.05; 0.05 0.95] and [0.95 0.025 0.025; 0.025 0.95 0.025; 0.025 0.025

0.95] for three-way admixture. For sequencing results we passed the fully sequenced ref-

erence haplotypes and the 200 simulated admixed individuals data to the programs. For

array-based results we passed only the data at variants present on the Illumina 1M geno-

typing array (down sampled randomly to 50,000 variants in order to run on LAMP-LD).

We parallelized LAMP-LD, RFMix and MULTIMIX for the fully sequenced data by split-

ting the data into small segments (∼50,000 SNPs per segment) across the chromosome. We
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computed accuracies by correlating the true and inferred local ancestry at each SNP across

individuals only at the Illumina 1M chip variants.

2.2.5 Low-coverage sequencing

Using the same 200 genotypes for each simulated admixed population as above, we simulate

read data for each individual. We assume that the number of reads covering each variant

in each individual is drawn from a Poisson distribution with the rate parameter set to the

average read coverage across the genome. We simulate reads for 0.1x, 1x, 2x, 5x, 10x, 20x,

and 30x average coverage across the genome.

We adapted the inference method above to function with input read count data instead

of genotype data. Given a set of read data for an individual at SNP i, ri = (refi, alti), where

ref and alt are the counts of reads of the reference allele and the alternate allele. We first

compute genotype dosage (di) at SNP location i using the admixture proportion weighted

mean frequency in admixed individuals (p̂i) of the alternate allele. Let ancestral population

k have admixture proportion θk on average in the admixed individuals.

p̄i =
K∑
k=1

θkp̃ki (2.3)

Then P (gi), where gi is the genotype, is assumed to follow Hardy-Weinberg Equilibrium

with alternate allele frequency p̄i. P (ri|gi) follows a binomial distribution modeling the

number of alternate alleles seen given the number of trials equal to the total number of reads

and the probability of an alternate allele equal to 1 − εs, 0.5 and εs for g = 0, 1, or 2. We

assume a sequencing error rate of εs = 0.01. We then calculate the genotype dosage:

di =

∑2
gi=0 giP (ri|gi)P (gi)

P (ri|gi)P (gi)
(2.4)

When di > 0.6, we assume that the alternate allele is present at position i and can then

run Lanc-CSV as previously described. We choose this threshold value so that the false

positive rate is below 0.0025 and the false discovery rate of observed CSVs is below 0.2 for

all coverage levels at or above 1x.
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The Wahlund Effect[188] decreases heterozygosity and breaks Hardy-Weinberg Equi-

librium when individuals from multiple populations are sampled and have different allele

frequencies. CSVs are very rare and 98% of CSVs have an allele frequency <5% in the

population in which they are observed. In order to ensure that the Wahlund Effect does not

significantly affect our method, we calculate the probability of each genotype for a CSV with

frequency 5% in one population admixing with another population with CSV frequency 0%,

where the admixture proportion of the population with the observed CSV is 10%, 50% and

80% (see Table 2.3). The magnitude of the effect is decreases as CSV frequency decreases

so these are the most extreme expected values. The effect also assumes that sampled pop-

ulations have not mixed, so each generation since admixture will further decrease the effect

size.

2.2.6 Effect of sample aware inference

In order to determine if the accuracy of Lanc-CSV increases with increasing numbers of

admixed individuals, we used an additional 800 African Americans, Puerto Ricans, and

Mexicans each giving a total of 1000 simulated admixed individuals for each population.

We then run Lanc-CSV for 50, 100, 200, 400, 800 and 1000 individuals in each sample and

compute r2 after 4 iterations. Each set of individuals contains the individuals from smaller

data sets. Figure 2.8 shows the increasing accuracy with increasing sample size.

2.2.7 Analysis of real admixed individuals from 1000 Genomes

In order to assess the performance of our approach in real data, we used the Americans

of African Ancestry in South Western USA (ASW), Mexican Ancestry from Los Angeles

(MXL), and Puerto Ricans from Puerto Rico (PUR) genotypes from real individuals con-

tained in 1000 Genomes. Since the true ancestry is not known, we evaluate the accuracy of

Lanc-CSV by comparing to the local ancestry calls provided by 1000 Genomes. The 1000

Genomes calls are the consensus calls of four established local ancestry methods (including

LAMP-LD). Calls were made at a locus when 3 of the 4 methods agreed on the local ances-
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P(G=0) P(G=1) P(G=2)

Hardy-Weinberg

equilibrium with 10%

admixture proportion

0.99 0.01 0.00

Unmixed 10%

admixture proportion
0.99 0.05 0.00

Hardy-Weinberg

equilibrium with 50%

admixture proportion

0.95 0.05 0.00

Unmixed 50%

admixture proportion
0.95 0.05 0.00

Hardy-Weinberg

equilibrium with 80%

admixture proportion

0.92 0.08 0.00

Unmixed 80%

admixture proportion
0.92 0.08 0.00

Table 2.3: Wahlund Effect on genotype probabilities. When an allele has different frequencies
in different populations and the populations are looked at as a single population, the Wahlund
Effect predicts a decrease in heterozygosity. The magnitude of the effect decreases with
the difference in the allele frequencies and with mixing between the populations. 98% of
CSVs have an allele frequency ¡5%. Here we report the genotype probabilities assuming the
admixed populations have established Hardy-Weinberg Equilibrium, and assuming they are
completely unmixed (the most extreme version of the Wahlund Effect). We report these
values for 10%, 50% and 80% admixture proportion of the CSV containing population. This
demonstrates that the Wahlund Effect will have negligible effect on our methods performance.

try at that locus. We used the 1000 Genomes consensus ancestry calls in place of the true

ancestry and r2 was calculated the same way as previously described. This is not a measure

of accuracy since the true ancestry is not known, but a measure of calling consensus between

our approach and other ancestry inference methods.

To check possible causes of poor correlation with the consensus calls, we selected a subset
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of 20 individuals from the real Mexican data, and determined CSVs using both the reference

haplotypes as well as the regions of the remaining (not from the subset of 20) Mexican

individuals genotypes that are homozygous for a local ancestry. We then reran our method

on the subset of Mexicans, first using both reference haplotypes and the held out Mexicans

for training CSVs and second using only the reference haplotypes. We trained on the held

out admixed genotypes by using the homozygous ancestry regions from 1000 Genomes local

ancestry calls to identify new and spurious CSVs after training on the reference haplotypes.

We see significant increases in accuracy when we do this, demonstrating poor reference panels

as a major driver of the poor correlation.

2.2.8 Ancestry calling for closely related populations

CSVs, as demonstrated in Table 1, contain sufficient information to distinguish continental

groups from each other. However, it is possible to distinguish sub-continental populations

from each other as well, such as distinguishing a JPT haplotype from a CHS haplotype, both

of which are in the Asian continental group.

In order to distinguish sub-continental haplotypes we define sub-continental population-

specific variants (sCSVs) as variants seen in one of the 1000 Genomes populations (e.g.

GBR) but not in any of the other populations of all continental groups including its own.

We perform a leave one out analysis where we remove one of the haplotypes from one of the

populations, then train sCSVs on all remaining haplotypes. We then determine how many

sCSVs from each of the populations we see on the held out haplotype.

We repeated this analysis, but instead of using the full haplotype to ask how many sCSVs

are seen on each haplotype, we randomly choose sections from each haplotype between 0.05

and 30 megabases long and call the ancestral population of each haplotype segment as the

population of which the most sCSVs were seen on the segment. With ten populations,

random guessing results in an accuracy of 10%. We also calculate the accuracy of correctly

calling the continental group from which each haplotype segment was drawn against the

haplotype length.
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In order to address the accuracy of sub-continental population calling in real data, we

look at ASW individuals. In regions where the continental group ancestry (using the 1000

Genomes consensus calls) was called as African-African or European-European, we counted

the number of sCSVs seen in each population. We normalized the counts to the number of

observed sCSVs per megabase per haplotype. We compared these counts for the African-

African ancestry regions to the expected number of observed sCSVs per megabase for a YRI

haplotype and a LWK haplotype (calculated from the expected counts from the haplotypes

used for Figure 2.9 which were then normalized by the length of the chromosome in mega-

bases).

2.3 Results

2.3.1 Continent-specific variants in the 1000 Genomes data

Using data from the 1000 Genomes Project, we investigate whether CSVs can be used to

perform accurate local ancestry inference. We define CSVs as single nucleotide variants in

which one of the alleles is only observed in one of the continental groups (e.g. European) and

absent from other continental groups. Determining CSVs can be quickly achieved using ref-

erence panels such as data generated by the 1000 Genomes Project[39]. Although extremely

useful, 1000 Genomes was sequenced at low coverage (4x) with potentially many rare vari-

ants (likely to be CSVs[65]) being left uncalled. In addition, some variants are spuriously

called as CSVs due to the finite sample of the reference panels; for example, variants that

would be observed in larger samples from more than one continental group are mislabeled

as CSVs due to the small size of the reference panels. We call these variants spurious CSVs.

We assess the presence of informative and spurious CSVs for the purposes of local an-

cestry inference in the real 1000 Genomes data. To mimic local ancestry inference, we used

data from the TSI(97), JPT(88) and LWK(97) populations (as proxies for the European,

Native American and African continental groups, numbers represent the number of individ-

uals from each population) to infer CSVs and used a different set of haplotypes (CEU(85),
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European CSVs

(TSI)

African CSVs

(LWK)

Asian CSVs

(JPT)

European

Haplotypes

(CEU)

15.70 (93%, 2.25) 1.00 (6%, 0.60) 0.21 (1%, 0.12)

Afican

Haplotypes

(YRI)

0.57 (<1%, 0.33) 123.48 (99%, 5.22) 0.33 (<1%, 0.14)

Asian

Haplotypes

(CHS+CHB)

0.40 (3%, 0.26) 0.64 (5%, 0.32) 10.75 (91%, 1.45)

Table 2.4: The average number of observed CSVs per haplotype per megabase from each
ancestry. Parentheses are the percentages of CSVs on each haplotype and the standard
deviations. To estimate CSVs we used TSI, LWK, and JPT individuals as proxies for the
European, African and Native American ancestries. We calculated the number of European,
African and Asian CSVs seen on CEU, YRI, and CHS+CHB haplotypes. The values in
parentheses represent the percentages of each ancestry type of CSV seen on a haplotype
from a specific population.

CHB+CHS(197) and YRI(88)) to determine the number of observed CSVs from each con-

tinental group on a haplotype of a given group. We observe that only a fraction of called

CSVs using the reference panel are spurious in the target panel; e.g. an average of 15.70 per

mega-base per chromosome of European CSVs in the reference are also observed on a target

European haplotype as compared to 1.20 per mega-base per chromosome that are spuriously

called (i.e. was a Native American or African CSV seen on the European haplotype) (see

Table 2.4). The spacing between observed CSVs on a haplotype ranges on the average from

10 kb for African chromosomes to 100 kb for Asian chromosomes. Since we used data

from different populations within the same continental groups (e.g. TSI and CEU), some of

the European CSVs are missed as they are specific to only one population within the same

continent. Therefore the numbers in Table 1 represent a lower bound on the total amount

of CSVs informative for continental local ancestry inference. As previously reported, we ob-
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serve a much larger number of African CSVs owing to the larger genetic diversity observed

within Africa[39]. We also observe that the percentage of spurious African CSVs is much

lower than that of European and Asian CSVs that are falsely identified (0.7% vs. 7.2% and

8.8%).

Figure 2.2: Example of CSVs in a 2-way admixed individual (e.g. African American). Lines
denote the true local ancestry while the dots denote CSVs. Different dot types denote the
continental ancestry of each CSV. From visual inspection it is relatively easy to discern
the true ancestry from the three observed patterns. Spurious CSVs are denoted by CSVs
mislabeling the true ancestry state.

2.3.2 Accurate local ancestry inference using CSVs

The admixture process creates chromosomal segments of different ancestry in recently ad-

mixed individuals[167]. Therefore, if we visualize CSVs along the genome of a recently

admixed individual, we expect to observe continuous segments with only CSVs from one

continent (at loci where both alleles have the same ancestry) or a mixture of CSVs from

two continents (at loci where one allele comes from one ancestry and another allele from a

different ancestry) (see Figure 2.2). In practice we do not know the true local ancestry and
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we observe CSVs along the genome in an admixed individual (with potential errors) and

we seek to infer the underlying local ancestry status. We extend standard hidden Markov

models (HMM) for local ancestry to model CSVs as emissions and local ancestry as the

underlying hidden state. We use this model to calculate the probability of the ancestral

state at each locus in the genome conditional on the observed sequence of CSVs.

African American Mexican Puerto Rican

LAMP-lD (array data) 0.98 (1.00, 0.99) 0.89 (0.97, 0.93) 0.91 (0.98, 0.96)

MULTIMIX (array data) 0.93 (0.99, 0.98) 0.73 (0.94, 0.80) 0.74 (0.93, 0.86)

RFMix (array data) 0.90 (0.98, 0.97) 0.79 (0.93, 0.87) 0.82 (0.95, 0.91)

LAMP-LD (full genome) 0.85 (0.97, 0.95) 0.80 (0.94, 0.89) 0.79 (0.95, 0.90)

MULTIMIX (full genome) 0.46 (0.84, 0.72) 0.44 (0.73, 0.49) 0.40 (0.74, 0.56)

RFMix (full genome) 0.92 (0.99, 0.97) 0.83 (0.95, 0.89) 0.85 (0.96, 0.92)

Lanc-CSV 0.96 (0.99, 0.99) 0.87 (0.96, 0.92) 0.92 (0.98, 0.96)

Table 2.5: Local ancestry accuracy in simulations of African Americans, Mexicans and Puerto
Ricans. Accuracy is reported as mean r2 (haploid accuracy, diploid accuracy). “Array data”
denotes that a method was run only on the variants present on the Illumina 1M genotyping
array.“Full genome” denotes methods were run using all the variants. RFMix requires phased
haplotype input that was phased using Beagle; all other methods received unphased genotype
data as input. Correlation values are the mean squared correlation across SNPs of the true
vs. inferred ancestry across individuals. Accuracy is reported as mean r2 (haploid accuracy,
diploid accuracy). LAMP-LD and MULTIMIX were optimized to run with genotyping array
data, possibly explaining the steep drop in accuracy when they are run using full sequencing
data.

We used simulations of African Americans, Mexicans, and Puerto Ricans to quantify the

performance of our approach. As a baseline for comparison, we used LAMP-LD and MUL-

TIMIX, two of the fastest and most accurate methods for local ancestry inference[4, 36].

LAMP-LD models haplotypes within HMMs of haplotype diversity for ancestry assignment

and has been recently shown to attain similar accuracy as another HMM-based approach

(HAPMIX[154]) for African Americans and superior accuracy in Latino Americans. MULTI-

MIX models correlations among SNPs using a multivariate Gaussian approach; all methods

utilize a window-based framework to integrate results across the genome. As a metric of
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accuracy, we use the squared correlation coefficient (r2) between the true simulated ances-

try and the inferred one; the correlation coefficient measures the loss in association power

for admixture mapping from errors in the local ancestry estimates[4]. We also report the

percent of correctly inferred ancestry calls. Lanc-CSV attains similar results as best perform-

ing methods for ancestry inference across simulations of African Americans, Mexicans, and

Puerto Ricans (e.g. mean r2 of 0.92 with Lanc-CSV across the considered populations)(see

Figure 2.4 and Table 2.5). Interestingly, we observe that the accuracy of both LAMP-LD

and MULTIMIX deteriorates when sequencing data is used; e.g. mean r2 of 0.93 when

only SNPs on the Illumina-1M array are used, as compared to 0.71 when all sequencing

data are used with LAMP-LD. Similar results are seen with MULTIMIX (see Figure 2.4

and Table 2.5). This is likely due to the fact that both LAMP-LD and MULTIMIX have

been optimized for GWAS genotyping array data and not for the significant number of rare

variants identified through sequencing. Recent work in parallel to ours has proposed the use

of conditional random forests in local ancestry inference (RFMix[119]). We assessed RFMix

accuracy on our simulations and we observe comparable accuracy as other methods for array

data (see Figure 2.4 and Table 2.5). In addition, RFMix accuracy slightly increases when

sequencing data is available from an r2 = 0.84 to 0.87. We also observe a lower performance

of MULTIMIX as compared to LAMP-LD and RFMix in our simulations. The average

distance between a true switch point and the inferred switch point for Lanc-CSV is 76 kb

and for LAMP-LD is 91 kb, both have a standard deviation greater than 100 kb (see Fig-

ure 2.3). Importantly, our approach requires significantly less computational runtime than

both LAMP-LD and MULTIMIX run on genotyping array data (Lanc-CSV is 3-5x faster)

or sequencing data (Lanc-CSV is 40-150x faster). Lanc-CSV is slightly faster than RFMix

when run on sequencing data (1.4x reduced runtime) (see Table 2.6 and Figures 2.5 and

2.1). However, RFMix requires phased haplotype data, which can take significant time to

calculate with unrelated individuals. If phasing time is included Lanc-CSV is 12.5x faster

than RFMix on sequencing data (see Table 2.6).
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Runtime for 200

individuals on

chromosome 10

Estimated runtime

for 200 individuals

on all chromosomes

Estimated runtime

for 15000 individuals

on all chromosomes

LAMP-LD

(array data)
0.11 2.79 69.83

MULTIMIX

(array data)
0.06 1.50 113.25

RFMix

(array data)

0.004

(+0.01 for phasing)

0.11

(+0.18 for phasing))

8.06

(+13.12 for phasing)

LAMP-LD

(full genome)
4.39 109.79 1,790.20

MULTIMIX

(full genome)
3.30 82.58 6,193.80

RFMix

(full genome)

0.03

(+0.22 for phasing)

0.79

(+5.5 for phasing)

59.46

(+412.5 for phasing)

Lanc-CSV

(full genome)
0.02 0.54 41.41

Table 2.6: Runtime in CPU days for LAMP-LD, MULTIMIX, RFMix and Lanc-CSV. Run-
times were estimated by running each method on chromosome 10 in 200 individuals and
extrapolated to full genome. Results are in total CPU days. All methods can be parallelized
for proportional decreases in computing time. RFMix requires phased haplotype data and
phasing time is reported in the parentheses.

2.3.3 Extension to low-coverage sequencing

Recent works have shown that low-coverage sequencing yields superior association power

per unit of cost as compared to genotyping arrays in GWAS[141]. The accuracy of genotype

calling from sequencing data is directly related to the read coverage. High read coverage

increases the likelihood of observing true CSVs, while low read coverage increases the likeli-

hood of both not observing a CSV and spurious CSVs due to errors in the genotype calling

from read data. We extend our method to low-coverage sequencing data by means of a

preprocessing step where a CSV is called present at a locus if the genotype dosage (i.e. the

expected count of alternate alleles given the observed reads) is above a set threshold level
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Figure 2.3: Resolution in determining ancestry switch locations in LAMP-LD and Lanc-CSV.
For each true ancestry switch location in the simulated Puerto Rican data we calculated the
distance in base pairs to the nearest inferred ancestry switch point for both LAMP-LD and
Lanc-CSV from the true ancestry switch point. We only considered true switches where the
inferred switches from both LAMP-LD and Lanc-CSV were less than 500 kb from the true
switch point. The mean distance to the switch point for LAMP-LD was 91,145 bp and 75,644
bp for Lanc-CSV. For each true switch, we take the difference between the LAMP-LD error
distance and Lanc-CSVs error distance and plot a histogram of these values. Positive values
imply that at a true switch location LAMP-LD had greater error, negative values that our
method had greater error; a zero value indicates that both methods are equally accurate.

at a CSV location. We estimate the genotype dosage from reads using standard techniques.

Through simulations, we determine that the Wahlund Effect[188] is likely not going to impact

our assumptions of Hardy-Weinberg Equilibrium at the allele frequencies of most CSVs (see

Table 2.3). Starting from the previous simulations, we simulated sequencing data at various

coverages using standard parameters for sequencing. At 5x coverage we observe an accuracy

of 0.86 for African-Americans, 0.70 in Mexicans and 0.78 in Puerto Rican simulations. As

expected accuracy increases as coverage increases with little gains in accuracy coming above

10x (e.g. an accuracy of 0.91 at 10x in Puerto Rican simulations) (see Figure 2.7).
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Figure 2.4: Local ancestry inference accuracy in three simulated populations. Array data
denotes that a method was run only on the variants present on the Illumina 1M genotyping
array. Full genome denotes methods were run using all the variants. RFMix requires phased
haplotype input, which was infered using Beagle; all other methods received unphased geno-
type data as input. Correlation values are the mean squared correlation across SNPs of the
true vs. inferred ancestry across individuals. LAMP-LD and MULTIMIX were optimized to
run with genotyping array data, possibly explaining the steep drop in accuracy when they
are run using full sequencing data. MULTIMIX is not plotted when run on full sequencing
data because it performed very poorly, possibly due to inaccurate parameters for sequencing
data. Haploid and diploid errors are reported in Table 2.5.

2.3.4 Sample-aware inference of local ancestry improves accuracy

Accurate methods for local ancestry inference leverage reference panels of haplotypes to use

as proxies for the missing ancestral individuals that mixed to form current admixed popula-

tions. Recent works have shown that local ancestry inference can be improved when using

the admixed samples themselves to rebuild the reference panels of haplotypes[143]. A major

advantage of our approach for local ancestry inference is that we can iteratively re-estimate

CSVs by incorporating information from the inferred ancestry regions in the admixed sam-

ples themselves. In particular, we first estimate CSVs using external reference panels of
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Figure 2.5: Runtime (in CPU days) as a function of the number of individuals in a study
with sequencing data. Lanc-CSV is always faster than LAMP-LD and MULTIMIX when run
on either full genome sequencing data or genotyping array data (see Figure 2.6 and Table
2.6). The full sequencing data contained ∼30 times more alleles than the genotyping array
data. Only RFMix has comparable speed for full sequenced data and is faster for genotype
array data. We show the runtime for RFMix with phasing time included.

haplotypes (e.g. 1000 Genomes), then call local ancestry and in an iterative fashion, re-call

CSVs using confidently called ancestry segments from the sample itself. This procedure re-

duces the number of spuriously called CSVs while determining new CSVs and increasing the

overall accuracy of the method. In addition, this allows for sample-aware reference panels

that are better proxies for the true ancestral population of current day admixed individuals.

For example we observe an increase in accuracy from r2 = 0.87 to 0.92 in 200 simulated

admixed Puerto Ricans after four iterations. The greatest increase in accuracy is after the

first iteration and very little increase in accuracy comes with the fourth iteration. The main

source of errors in Mexicans and Puerto Ricans is in distinguishing European and Native
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Figure 2.6: Runtime (in CPU days) as a function of the number of individuals in a study
with genotyping array data (and sequencing data for Lanc-CSV). Lanc-CSV is always faster
than LAMP-LD and MULTIMIX when run on either full genome sequencing data (see Figure
2.5 and Table 2.6) or genotyping array data. The full sequencing data contained ∼30 times
more alleles than the genotyping array data. Only RFMix has comparable speed for full
sequenced data and is faster for genotype array data. We show the runtime for RFMix with
phasing time included.

American regions that have a much lower signal to noise ratio than in African and Euro-

pean or African and Native American regions (see Table 2.4). African American inference

is highly accurate at all sample sizes because even without any iterations, accuracy is high

due to the strong signal to noise ratio allowing African and European segments to be easily

distinguished.

As compared to previous methods that do not use information from the other admixed

individuals when calling local ancestry, Lanc-CSV will continue to increase in accuracy as

the admixed sample size increases. Figure 2.8 plots the accuracy as a function of the number
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Figure 2.7: Accuracy as a function of sequencing coverage. African-Americans with only two
distinct ancestral populations increases fastest in accuracy.

of admixed individuals. As expected we observe that the accuracy increases as the number

of individuals increases with 200 samples being sufficient for high accuracy comparable to

LAMP-LD in these simulations. However, as more simulated samples are added in, accuracy

exceeds that of LAMP-LD in both the Mexican and Puerto Rican ancestries.

2.3.5 Analysis of real admixed individuals from 1000 Genomes

We investigated whether similar results can be achieved in real admixed genomes. We used

our approach and LAMP-LD to call ancestry in the real data from the Americans of African

Ancestry in South Western USA (ASW), Mexican Ancestry from Los Angeles (MXL), and

Puerto Ricans from Puerto Rico (PUR) individuals from the 1000 Genomes Project. 1000

Genomes provided local ancestry calls for these individuals based on the consensus of four

current local ancestry inference methods[4, 154, 119, 36]. Since the true ancestry is not

known for these individuals, we measured the correlation between the local ancestry calls of
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Figure 2.8: Accuracy as a function of sample size. While accuracy increases with increasing
numbers of admixed individuals, the most significant increase is seen in Mexican individuals.
We report accuracy for Lanc-CSV using 200 admixed individuals, but accuracy exceeds this
as the number of admixed individuals increases. This is due to the method being better able
to correct for spurious CSVs and to add in new CSVs when there are more individuals.

our approach with the ancestry calls provided by 1000 Genomes. We observed an average

correlation rate (r2) on chromosome 10 of 0.94, 0.63, and 0.81 for Lanc-CSV and 0.99, 0.66

and 0.79 for LAMP-LD (which was used as part of inferring the consensus calls) in African

Americas, Mexicans and Puerto Ricans respectively (haploid and diploid errors reported in

Table 2.7).

These low r2 values are likely a result of poor reference panels in our inference since we are

using the Asian haplotypes as proxy for Native American panels (1000 Genomes project used

a specially designed panel for Native American[118]). To further investigate this hypothesis,

we used our method to infer local ancestry in 20 of the Mexican individuals using the rest of

the Mexicans as reference panel (that is, we used the consensus ancestry calls provided by

1000 Genomes to call CSVs). We observe a large increase in accuracy when incorporating
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the other Mexicans (and their local ancestry consensus calls) in the reference panel (mean

r2 of 0.80 versus 0.66 if only Asian samples are used as reference).

This demonstrates that the low accuracy of both LAMP-LD and Lanc-CSV in real data

is likely due to poor reference panels. It also demonstrates that a sample aware method

could overcome this obstacle if sufficient admixed individuals are available. Therefore, we

use the consensus calls of the Mexicans and Puerto Ricans of the 1000 Genome data to

build improved CSV reference panels and provide them as a free resource to be used with

Lanc-CSV for new sequenced admixed individuals.

African American

(ASW)

Mexican

(MXL)

Puerto Rican

(PUR)

LANC-CSV 0.94 (0.994 0.988) 0.63 (0.84, 0.68) 0.81 (0.96, 0.92)

LAMP-LD 99.12 (1, 1) 0.66 (0.89, 0.77) 0.79 (0.94, 0.79)

Table 2.7: Correlation of ancestry calls between our approach and the 1000 Genomes calls
in real admixed individuals from 1000 Genomes. Accuracy reported as r2 (haploid accuracy,
diploid accuracy). The 1000 Genomes consensus local ancestry calls were made using LAM-
P-LD as one of the four methods. This demonstrates that poor accuracy is likely a result of
poor reference panels.

2.3.6 Sub-continental ancestry calling

We extend continent-specific variants to sub-continental population-specific variants (sCSVs).

We define sCSVs as variants that are observed in only one of the 1000 Genomes populations

and not in any other (e.g. a variant observed only in the individuals from Great Britain

(GBR) and never in any of the other populations). Using a leave one out analysis we

demonstrate in Figure 2.9 that the chromosomes from 9 out of 10 populations have more

observed sCSVs from the population from which it was observed than from any other. Due

to limited reference panel size and the closeness of the sub-continental populations, there are

considerable numbers of spurious sCSVs, but not enough to make sub-continental ancestry

calling impossible in some scenarios. The two exceptions are the IBS population that only

has 28 reference haplotypes (not enough to accurately determine sCSVs) and the CHB and
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CHS that are genetically very similar.

Figure 2.9: Proportions of sCSVs from each population observed on a held out haplotype.
Each row represents the ancestry of the haplotype that was held out and each column
represents the average number of sCSVs observed on the held out haplotype from the given
population. Each row is normalized by the maximum value of the row so that the population
with the most sCSVs observed has a value of 1. In each row, higher values are associated
with populations in the same continental group as would be expected. The IBS have only
fourteen individuals, which makes determining IBS sCSVs extremely difficult.

We assess the ability of correctly calling the population through a leave-one-out proce-

dure starting from the real 1000 Genomes haplotype data. For each held out haplotype

we randomly select short segments between 0.1 and 30 megabases and assign them to the

population that has the maximum sCSV count across this segment. We plot the accuracy

of this nave calling as a function of segment size in Figure 2.10. We also calculate the accu-

racy of assigning each haplotype to the correct continental group based on sCSVs in Figure

2.11. Correlating the accuracy of assigning the correct population to the haplotype segment

(length 10 megabases) with the size of the reference panel of the called segment achieves

a correlation coefficient of r=0.65 (p-value=0.042) showing that larger reference panel sizes
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are associated with more accurate sub-continental population ancestry inference. The two

African populations (YRI and LWK) as well as the Finnish (FIN) and (JPT) have very ac-

curate ancestry calls possibly due to a higher degree of genetic differentiation as compared to

the other sub-continental populations. The CEU individuals are Utah residents with north-

ern and western European ancestry and may already be sub-continentally admixed which

could potentially explain the low accuracy seen with the CEU. The IBS do not have enough

reference panels to be able to call IBS sCSVs. As expected, when errors are being made, most

of the errors resulted in another population from the same continental group being called

(Figure 2.11). We also simulated diploid admixed individuals from pairs of sub-continental

European populations with moderate accuracy in Lanc-CSV (Table 2.8).

FIN GBR TSI CEU

FIN na 0.76 0.77 0.77

GBR na 0.74 0.75

TSI na 0.77

CEU na

Table 2.8: Accuracy of Inference on 100 simulated admixed individuals among pairs of coun-
tries in Europe. We used admixture proportions of (0.5,0.5) and 6 generations of admixture.
Accuracy is reported as haploid error. We observe a high proportion of heterozygous an-
cestry calls (over 90%), consistent with increased ambiguity in the calling using sCSVs for
closely related populations.

In order to determine the effectiveness of the sCSV approach in real data, we counted

the sCSVs observed per megabase in African-African and European-European continental

called ancestry regions of the ASW individuals on chromosome 10 (using the 1000 Genomes

consensus local ancestry calls). Figure 2.12 shows that in the African-African regions there

is strong enrichment for YRI sCSVs. We additionally plot the expected number of observed

sCSVs on a YRI haplotype (red diamonds) and the expected number of observed sCSVs on

an LWK haplotype (green squares). The observed counts more closely resemble the count

profile expected from the YRI haplotypes. This supports the established hypothesis that the

African component of the ASW is likely from western Africa. When looking at the European-
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Figure 2.10: sCSVs allow for calling the sub-continental population of a haplotype. Ran-
domly drawn segments of haplotypes from known populations can be accurately assigned to
the population of origin. Accuracy for each population is significantly correlated with the
number of reference haplotypes for that population (r=0.65, p-value=0.042). The highest
accuracies are seen in populations that are more isolated from other populations in their
continents.

European segments of the ASW (Figure 2.13), the most sCSVs are CEU followed by GBR

supporting the hypothesis that the European ancestors are more related to northwestern

Europeans. However given the small admixture proportion of European ancestry in African

Americans, there are only a few small regions of European-European ancestry resulting in

the very low sCSV counts for the ASW in these regions as compared to the African-African

ancestry regions.

2.4 Discussion

We have presented here an approach for local ancestry inference in fully sequenced recently

admixed individuals. Our approach makes use of alleles that are found to be present only
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Figure 2.11: sCSVs are able to assign the correct continental group to small haplotype
segments with high accuracy. This shows most of the incorrectly called accuracies still call
to the correct continental group.

in individuals from a given continental group (continent-specific variants, CSVs). Through

the use of real data from 1000 Genomes we have shown that the density of such CSVs is

high enough across the genome to allow for fast and accurate inference of local ancestry. It

should be noted that the 1000 Genomes haplotypes are based on 4x sequencing data. Not

only does the low coverage make this data noisier, but it also misses many CSVs that are

in the individuals but not called due to the low coverage. As more high coverage reference

panels are constructed our method will become increasingly accurate as more CSVs are

identified and spurious CSVs removed. Having no pre-compute time and fast runtime per

individual allows for our approach to be sample-aware in an iterative fashion. As opposed

to previous approaches Lanc-CSV shows increased accuracy as more admixed samples are

being analyzed. We show that as the method is run on increasing numbers of simulated

individuals, it exceeds the accuracy that is obtained by LAMP-LD on the 200 Mexican and

35



Figure 2.12: The average number of sCSVs from each 1000 Genomes population observed per
megabase on the African-African called local ancestry regions of the real ASW individuals
on chromosome 10. The large number of YRI sCSVs seen in these regions supports the
hypothesis that the African admixture component in African Americans comes from western
Africa. We plot the expected number of observed sCSVs per megabase on a YRI haplotype
(red diamonds) and the expected number of observed sCSVs on an LWK haplotype (green
squares). The observed counts more closely resemble the count profile expected from the
YRI haplotypes.

Puerto Rican samples. We expect this feature to become more important as larger sample

sizes are being analyzed since the accuracy should continue to increase.

The real data analysis demonstrates the necessity of having reference panels well matched

to the admixed population or having a sample aware method that can correct for poorly

matched reference panels. Lanc-CSV achieves comparable results to LAMP-LD in these few

real African-American, Puerto Rican and Mexican individuals. Unlike LAMP-LD, we expect

our approach to continue improving in accuracy as more sequenced individuals from each

continental population become available. We extended the concept of continent-specific vari-

ants to sub-continental population-specific variants and showed that under some scenarios it
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Figure 2.13: The average number of sCSVs from each 1000 Genomes population observed
on the European-European called local ancestry regions of the real ASW individuals.

is possible to determine the sub-continental ancestry. We confirmed that in real ASW indi-

viduals, admixture was most likely between individuals from western Africa (near or related

to the YRI); as more reference panels become available for these and other populations, we

expect sCSVs to be increasingly informative of the sub-continental population ancestries.

Although sCSVs show potential for sub-continental ancestry calling in haploid data, more

sophisticated methods may prove fruitful for diploid calling.

A future direction for research that may prove fruitful is to relax assumptions used in our

approach and by finding better ways to parameterize the method. Linkage disequilibrium

among the CSVs is a main contributor to errors and further work explicitly modeling the LD

structure between CSVs may provide increased accuracy. The current method has a uniform

error rate for spurious CSVs across all ancestries. However the number of spurious European

CSVs is much higher than the number of spurious African CSVs and the number of reference
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haplotypes is not controlled for in determining the error rate; therefore a non-uniform error

model may further increase accuracy.
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CHAPTER 3

Leveraging ancestry to improve causal variant

identification in exome sequencing for monogenic

disorders

3.1 Introduction

Vast decreases in the cost of exome sequencing have allowed for major advancements in

the identification of causal variants for rare monogenic traits and disorders[59, 3, 135,

99].Although each individual carries 20,000-24,000 single nucleotide variants, most are com-

mon in the population and are unlikely to explain a rare monogenic trait. Variants that

are too common to be consistent with the prevalence of a rare disorder are removed from

consideration[3] and the remaining variants are prioritized based on functional, structural

and conservation properties[134, 138, 81]. Recent prioritization approaches use cross-species

comparisons[160] or a combination of scores from several stand-alone methods for increased

performance[63, 112, 108, 95]. Although such techniques are very powerful when family data

is available[136, 174, 202, 159, 9, 133, 3, 99], hundreds of variants often remain for follow-up

validation when only a single case individual is sequenced[108, 114, 115].

Variant filtering in exome sequencing studies is usually performed using frequencies that

are estimated across large databases of human variation either by ignoring ancestry, or by

The work appearing in this chapter is published: Robert Brown, Hane Lee, Ascia Eskin, Gleb Kichaev,
Kirk E Lohmueller, Bruno Reversade, Stanley F Nelson, and Bogdan Pasaniuc. “Leveraging ancestry to
improve causal variant identification in exome sequencing for monogenic disorders.” European Journal of
Human Genetics, 24(1):113119, 2016.
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matching at the level of continental ancestry (e.g. the Exome Variant Server[166])[116]

thus ignoring sub-continental ancestry. Although FST values calculated within continental

populations are usually low (mostly due to the dependency of FST on allele frequency)[80, 7],

detectable population structure still exists[139, 200]. Population genetic models predict that

rare variants show greater clustering within continental populations than more common

variants[121] and empirical studies have supported this prediction[53, 39, 65, 184, 129, 207,

131]. Therefore, a rare variant might appear rare (<1%) when its frequency is estimated

across many populations, when in reality it is only rare in most populations and less rare

or even common (>1%) in a one or more clustered sets of populations (see Figure 3.1). For

example, variant rs17046386 is common in Africans (therefore unlikely to be pathogenic)

and generally rare or absent in non-Africans[107, 162] (see Figure 3.2). However, this variant

would not be discarded in the filtering step based on frequency estimates from European

reference panels thus increasing the validation burden in the subsequent steps. In addition,

the limited size of existing reference panels, especially when defining ancestry at the level of

a country (often <100 individuals), induces significant statistical variance in allele frequency

estimates that needs to be accounted for (e.g. a variant with true frequency of 0.5% has

9.0% probability of being observed with a frequency >1% in a sample of 100 individuals and

thus erroneously discarded).

In this work we investigate the use of sub-continental allele frequencies (typically esti-

mated at the level of a country[127, 191]) for a discrete frequency-based filtering step in

exome sequencing studies but such ideas can also be applied to general statistical method-

ologies aimed at finding causal genes in exome scans. We propose approaches that leverage

the frequency estimates across all sub-continental populations in filtering while accounting

for the statistical noise introduced by the smaller number of individuals used to estimate

frequencies. We use simulations starting from the 1000 Genomes[39], the NHLBI Exome

Sequencing Project (ESP) Exome Variant Server (EVS)[166] and the ClinVar[100] data, to

show that our approach improves efficacy of filtering (e.g. a reduction of 16% in the num-

ber of variants to be followed up in case-only simulations). Importantly, we show that the

standard approach that ignores statistical noise in the allele frequency estimation is miscal-
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Figure 3.1: Histogram of variants with allele frequencies <1% in 1000 Genomes but >1%
in the CEU. It shows that allele frequencies can be highly structured for rare variants and
that averaging across too many genetically dissimilar populations can have a downward-bias
effect on frequency estimates of alleles present in a given population.

ibrated with respect to the false negative rate (i.e. the probability of filtering out a true

causal variant). Finally, we validate our approach using exome-sequencing data from 20 real

individuals with monogenic disorders for which the true causal variants are known. Here

we successfully reduce the number of variants to be functionally tested (a 38% reduction

from 750 to 468 in the heterozygous case), while never discarding the known causal vari-

ants. Our results show that existing filtering pipelines for studies of monogenic traits can be

significantly improved by incorporating ancestry while accounting for statistical noise in the

filtering step. Interestingly, utilizing sub-continental population reference panels overcomes

the reduction in performance due to higher statistical noise from the smaller panels.
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Figure 3.2: Geographic distribution of rs17046386 across the Human Genome Diversity Panel
CEPH data. The minor allele is rare in non-African populations, but not rare in African
populations.

3.2 Methods

3.2.1 Datasets

The 1000 Genomes Project[39] has produced a public catalog of human genetic variation

through sequencing from several populations: Han Chinese in Beijing (CHB), Japanese in

Tokyo (JPT), Southern Han Chinese (CHS), Utah Residents with Northern and Western Eu-

ropean ancestry (CEU), Toscani in Italia (TSI), Finnish in Finland (FIN), British in England

and Scotland (GBR), Iberian population in Spain (IBS), Yoruba in Ibadan (YRI), Luhya

in Webuye (LWK), Americans of African Ancestry in SW USA (ASW), Mexican ancestry

from Los Angeles (MXL), Puerto Ricans from Puerto Rico (PUR) and Colombians from

Medellin (CLM). We use the 1000 Genomes data (with the exception of IBS individuals,

only 14 in total) to evaluate the effectiveness of various filtering approaches. Since the vast

majority of causal variants for monogenic traits are located in the exome[35], we restrict our
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analysis to coding regions of autosomal chromosomes. For admixed individuals we down-

loaded and used the 1000 Genomes Project local ancestry calls (the consensus calls from four

inference methods[4, 36, 119, 154]). Damaging scores for each single nucleotide variant were

estimated using KGGSeq with default parameters[108] that combines the functional scores

from dbNSFP[111] v2.0.

The NHLBI Exome Sequencing Project (ESP) Exome Variant Server (EVS) has released

allele counts from 4,300 European-Americans and 2,203 African Americans[166] along with

PolyPhen2 scores for missense variants and we used those in our analyses. A set of 1395

pathogenic variants (as reported by multiple submitters) was obtained from the ClinVar

database[100] (accessed Dec 4, 2014).

To compare simulations to real data, we used exomes of 101 individuals with self- reported

countries of origin including Turkey, Jordan, Tunisia, Egypt, Israel, Iran, Syria and Palestine.

We grouped these individuals into a single supplemental population for estimating best

matching allele frequencies. Of the 101 individuals, nine were known to harbor heterozygous

variants in genes causing autosomal dominant disorders, ten had homozygous variants, and

one had compound heterozygous variants in a gene causing an autosomal recessive disorder

(see Table 3.6 and 3.7 and 3.8).

Exome sequencing was performed using llumina TruSeq Exome Enrichment Kit or Agi-

lent SureSelectXT Human All Exon 50Mb kit. Illumina HiSeq2000 was used for sequencing

as 100bp paired-end runs at the UCLA Clinical Genomics Center or the UCLA Broad Stem

Cell Research Center. Sequence reads were aligned to the human reference genome (Human

GRCh37 (hg19) build) using Novoalign (v2.07, http://www.novocraft.com/main/index.php).

PCR duplicates were identified by Picard (v1.42, http://picard.sourceforge.net/) and GATK

(Genome Analysis Toolkit) (v1.1, http://www.broadinstitute.org/gatk/)[123] was used to

realign indels, recalibrate the quality scores, call, filter, recalibrate and evaluate the vari-

ants. SNVs and INDELs across the sequenced protein-coding regions and flanking junctions

were annotated using Variant Annotator X (VAX), a customized Ensembl Variant Effect

Predictor[203].
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3.2.2 False negative rate estimation

We estimate the probability of filtering out a true causal variant (false negative rate) at a

given frequency threshold as a function of a reference panel and the maximum true allele

frequency of the causal variant. The filtering threshold can be adjusted in order to provide a

desired FNR. Let t be the nominal frequency threshold that is used for filtering. We define

the corresponding FNR at this threshold as:

FNR(t) =

∫ max(fc)
0

fP (fref,N > t|f)P (f)df∫ max(fc)
0

fP (f)df
(3.1)

where f is the frequency of the variant in the population, max(fc) is the maximum assumed

frequency of the causal variant in the population, P (f) is the proportion of variants with

frequency f in the population and P (fref,N > t|f) is the probability that a variant with

frequency f is observed at a frequency greater than t in the reference panel of N individuals

randomly drawn from the population.

The FNR computation requires knowledge about the distribution of variants across all

frequencies in the population; this can be estimated from population genetic theory under

various demographic assumptions[65, 94, 93, 150, 120, 10] or empirically from the data. In

this work, we estimate the distribution P (f) from reference panel allele counts and perform

the above integration across the observed site frequency spectrum as follows:

FNR(t) =

∑
fi≤max(fc) fiP (fref,N > t|fi)P ′(fi)∑

fi≤max(fc) fiP
′(fi)

(3.2)

Here fi represents each of the unique allele frequencies observed in the reference panel of N

individuals and P ′(fi) represents the proportion of variants in the reference panel that have

estimated frequency fi. P (fref,N > t|fi) is modeled as a binomial draw with the frequency

of success equal to fi and the number of draws equal to the number of allele counts (2N).

Since the integration is over a discrete space we calculate the probability that the number

of success is greater than the threshold times 2N . We propose to filter variants using the

minimum frequency threshold t such that FNR(t) < 0.05. If multiple populations are used

in filtering (i.e. removing variants that are common in any population, see below), we employ
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a Bonferroni correction for the threshold; that is, we require FNR(t) < 0.05/K in each of the

K considered populations.

3.2.3 Leveraging population structure for improved filtering

We simulate individuals with monogenic disorder by drawing two individuals from a specific

1000 Genomes population and then simulating an offspring assuming Mendelian inheritance

and independence between SNPs. We compare three possible disease scenarios (Case-Only,

Trio-Dominant and Trio-Recessive) using 40 simulated individuals per scenario and popula-

tion. The Case-Only scenario assumes there is no information on parental genotypes. The

Trio-Dominant scenario assumes that both parental exomes are sequenced and the offspring

and one of the parents has the disorder. The Trio-Recessive scenario assumes that both

parents are exome sequenced and heterozygous for the causal allele and that the offspring

has two copies of the causal allele. Prior to frequency filtering, we remove all variants that

do not result in an amino acid change or do not create or remove a stop codon. In addition

we remove variants inconsistent with the disease scenario.

We consider multiple frequency-filtering approaches. The NoAncestry, f >1% and

NoAncestry, FNR < 5% approaches estimate allele frequencies and FNRs across all

1000 Genomes individuals. The key intuition here is that statistical noise is decreased

with large reference panels but at the cost of ignoring population structure. NoAncestry,

f > 1% filters out variants with allele frequency > 1% without regard for the FNR;

NoAncestry, FNR < 5% filters out variants above a threshold determined to ensure a

5% FNR. The PopMatched, FNR<5% approach uses only the reference individuals from

the sub-continental population (country-level, see 1000 Genomes[39]) of the simulated indi-

vidual. The AllPop, FNR < 5% approach filters out variants observed in any population

above a conservative Bonferroni-corrected FNR < 5% threshold. We assume that popula-

tions are independent and set the desired FNR for each population to 0.05 divided by the

number of populations used in filtering (e.g. 14 for simulation results). MaxPopFreq filters

variants if observed above 1% allele frequency in any 1000 Genomes continental population
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and is similar to a strategy implemented by ANNOVAR[190] that filters variants if observed

above 1% in any 1000 Genomes continental population or the EVS European or African

American populations.

For admixed populations we only simulated the Case-Only scenario by using the geno-

types of real admixed individuals from 1000 Genomes as case individuals. In addition to

methods above, we considered a method that utilizes local ancestry calls (PopMatched-LA,

FNR<5%). In each individual at loci that are homozygous for African, European or Na-

tive American ancestry, we used the corresponding continental allele frequency estimates

obtained by averaging across all 1000 Genomes individuals from a given continent. In lo-

cal ancestry heterozygous regions we used a 50-50 weighting of the matching continental

frequencies. We use the maximum continental FNR-based frequency threshold from the

African, European and Asian continents as the filtering threshold.

3.3 Results

3.3.1 Modeling statistical uncertainty increases filtering efficacy

We use simulations from the European-American Exome Variant Server (EVS)[166] dataset

to assess filtering based on a false negative rate (FNR) as compared to the standard approach

of ignoring statistical noise in the allele frequency estimates . We use simulations of various

reference panel sizes created with binomial sampling from the frequencies estimated across

all the European (or African American) EVS data. As expected, the frequency threshold

that maintains a 5% FNR increases as reference panel size decreases (see Figure 3.3). As the

maximum frequency of the true causal variant (max(fc)) decreases the number of variants

for follow-up per individual also decreases thus increasing filtering performance (see Figure

3.3). Overall, we find a diminishing return in performance for reference panels larger than

500 individuals.

Next, we investigated the FNR attained by the standard approach that ignores statis-

tical noise and filters based on the mean frequency estimate. At small reference panels the
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Figure 3.3: Reference panel size impacts the efficacy of filtering in exome sequencing in
European simulations from the EVS data. We simulated reference panels at various sizes
using a Binomial sampling from the EVS frequencies. Figure 3.3a shows the threshold on the
variant frequency needed to achieve a 5% FNR for various assumptions about the maximum
frequency of the causal variant in the population (from 0.001 to 0.01). Figure 3.3b displays
the number of variants that remain to be followed up post-filtering at a 5% FNR rate. As
expected with larger reference panel sizes, the estimated frequency from the reference panel
becomes more accurate making the 5% FNR threshold converge to the maximum assumed
frequency of the causal variant (fM) which in turn increases the efficacy of filtering. We
observe limited gains in accuracy for reference panels over 500 individuals. Similar results
are obtained for simulations of African Americans (see Figure 3.4)

standard approach is mis-calibrated attaining an FNR close to 25% thus removing causal

variants from consideration (see Table 3.1). In contrast, the approach that maintains an

FNR < 5% significantly increases the number of variants for follow-up from 298 to 724 on

average; this is necessary as it reduces the FNR to the desired 5% (see Table 3.1). With

large reference panels the frequency-based approach is conservative (FNR ∼0%) yielding

twice as many variants for follow-up than the FNR-based approach if the maximum causal

frequency is 0.1%. Qualitatively similar results were observed for simulations from the EVS

African-American data (see Figure 3.4).
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100 Reference Individuals 2500 Reference Individuals

Max True

Frequency
Method Threshold

Number of

Variants for

Follow-up

Probability

of FIltering

True Causal

Threshold

Number of

Variants for

Follow-p

Probability

of Filtering

True Causal

1.00%
(f >1%) 1.0% 298.0 25.4% 1.0% 310.9 2.2%

FNR <5%
6.5% 724.1 4.6% 0.9% 298.3 4.8%

0.10%
(f >1%) 1.0% 298.0 12.1% 1.0% 310.9 0.0%

FNR <5%
1.5% 356.0 4.3% 0.1% 149.8 3.6%

0.05%
(f >1%) 1.0% 298.0 8.0% 1.0% 310.9 0.0%

FNR <5%
1.5% 356.0 1.9% 0.1% 141.2 2.3%

Table 3.1: Method comparisons for different reference panel sizes and maximum causal allele
frequencies. We compare two methods. The first is a method (f >1%) that filters out any
variants at an observed frequency >1% ignoring the statistical noise on the frequency esti-
mates (and thus the FNR). The second is a method (FNR <5%) that filters out variants if
observed above a threshold frequency guaranteed to provide less than a 5% chance of filtering
out the true causal variant. At small reference panel sizes it is critical to incorporate sta-
tistical noise from the reference panel to not over-filter the true causal variants. Conversely,
with large reference panels, a hard 1% frequency filter is too conservative and significantly
increases the number of variants remaining for follow-up analysis.

Variants for Follow-up Variants for Follow-up with KGGSeq Variants

Case-only
Trio-

Dominant

Trio-

Recessive
Case-only

Trio-

Dominant

Trio-

Recessive

NoAncestry,

f >1%
679.3 330.5 5.2 410.5 200.4 2.8

NoAncestry,

FNR <5%
702.1 346.4 5.9 422.5 208.8 3.1

MaxPopFreq 358.3 176.6 1.0 235.4 115.9 1.0

PopMatched,

FNR <5%
675.4 332.2 4.2 400.4 196.8 2.2

AllPop,

FNR <5%
570.1 279.2 3.1 353.7 173.6 1.7

Table 3.2: Average number of variants that remain for follow-up post-filtering in simula-
tions of non-admixed individuals. All FNR approaches assume the maximal causal variant
frequency of 1%. NoAncestry, f >1% and MaxPopFreq have increased FNRs of 6% and
50% respectively. The AllPop, FNR <5% approach outperforms all other FNR-based ap-
proaches. The PopMatched, FNR <5% approach is the second best performing FNR-based
approach demonstrating that the improvements from better population matching outweigh
the effects of increased statistical noise from smaller reference panels.

3.3.2 Leveraging ancestry to increase filtering performance

Next, we assessed the performance of filtering with or without accounting for the highly

structured nature of rare variants[28, 53, 39, 65]. Using simulated exome data we investi-
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Figure 3.4: Reference panel size impacts the efficacy of filtering in exome sequencing in
African-American simulations from the EVS data.(See Figure 3.3 for European simulations.)

gated the efficacy of filtering across a wide range of methods and sequencing studies. When

comparing the methods that do not leverage ancestry, we observe that the NoAncestry,

FNR <5% approach leads to a slightly increased number of variants that need to be func-

tionally followed up over the NoAncestry, f >1% approach (Table 3.2). The increased

number of variants is necessary to attain a correct 5% FNR rate (NoAncestry, f >1%

attains an FNR of 6%). The MaxPopFreq approach yields the fewest number of variants

by filtering at 1% frequency in any continental population, but has a 50% probability of

filtering out the true causal variant (FNR =50%) (see Table 3.2).

Among all methods that maintain an FNR <5% and use ancestry information, we

observe that the method that incorporates data across all populations (AllPop, FNR <5%)

attains the best performance across all simulated scenarios (an average 16% reduction across

all populations from the NoAncestry, FNR <5% method in the Case-Only scenario, see

Table 3.2). The improvement is likely due to variants common in at least one population

that are filtered out as unlikely to be pathogenic. This benefit from assaying variants across

many populations comes even at the expense of multiple testing correction (a Bonferroni

adjustment is made to the FNR required in each individual population resulting in an

average filtering threshold of 3.2%). This demonstrates that the benefit of better population
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matching outweighs the cost of higher statistical noise from the small reference panels. The

greatest improvement from population matching comes with the African populations where

there is a 26% decrease in the number of variants remaining for follow-up (see Table 3.3).

We also investigated other types of clinical scenarios. As expected, the Trio-Dominant

scenario has approximately half as many variants for follow-up as the Case-Only scenario (see

Table 3.2). The Trio-Recessive scenario, simulated without inbreeding, shows <6 variants

remaining for all scenarios and methods (see Table 3.2). Finally, we observe a similar pattern

of improved performance when also filtering non-damaging variants as predicted by KGGSeq

(Table 3.2). Therefore, improvements of ancestry-aware filtering do not come preferentially

from variants with non-damaging predictions.

3.3.3 Ancestry-aware filtering in admixed individuals

We extend our approach to admixed individuals (e.g. African Americans) with genetic ances-

try from multiple continents. We incorporate the local ancestry structure in the filtering step

with the PopMatched− LA, FNR <5% approach that matches reference panels according

to the ancestry at each site in an individuals genome. This significantly lowers the number

of variants for follow-up in the admixed populations as compared to the local ancestry naive

method (PopMatched, FNR <5%) (see Figure 3.5). For example, in African-American

individuals we observe a reduction from 664 to 487 variants from just matching the local

ancestry to continental populations as compared to using all 1000 Genomes data with a

FNR <5%. When using information from all populations in the 1000 Genomes dataset,

there is improvement for all admixed populations over the method that ignores ancestry

(NoAncestry, FNR <5%)(see Figure 3.5).

3.3.4 Ancestry-aware filtering in ClinVar data

In the simulations above, we have made the assumption that the frequency distribution

of causal variants is well approximated using the rare variants in our data which may not

hold in practice. To investigate deviations from this assumption, we filter the set of Clin-
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1000 Genomes

Population

(Number of

Individuals)

NoAncestry,

FNR <5%

PopMatched,

FNR <5%

AllPop,

FNR <5%

ASW* (61) 6645 (78) 487 (33) 514 (53)

CEU (85) 311 (38) 393 (43) 302 (40)

CHB (97) 321 (33) 323 (35) 282 (32)

CHS (100) 322 (16) 317 (17) 282 (16)

CLM* (60) 335 (44) 377 (32) 309 (29)

FIN (93) 289 (19) 312 (28) 264 (18)

GBR (89) 293 (29) 355 (40) 286 (30)

JPT (89) 344 (25) 341 (34) 295 (26)

LWK (97) 833 (32) 610 (31) 605 (29)

MXL* (66) 312 (27) 392 (34) 308 (24)

PUR* (55) 353 (52) 369 (37) 321 (39)

TSI (98) 326 (27) 386 (31) 321 (27)

YRI (88) 765 (26) 566 (23) 547 (23)

Table 3.3: Different levels of genetic diversity across populations induce a variation in the
average number of variants remaining for follow-up in an individual. The highest number
of variants remaining for follow-up is seen in African populations (YRI and LWK) as well
as African-Americans (ASW); this is consistent with these populations have the greatest
amount of genetic diversity. These populations also show the greatest benefit from bet-
ter population matching and from applying the AllPop, FNR <5% approach. * denotes
admixed populations where results from the PopMatched − LA, FNR <5% approach are
reported. Standard deviations given in parentheses.

Var pathogenic SNPs according to our methods. We find that the AllPop, FNR <5%,

PopMatched, FNR <5% and NoAncestry, f >1% approaches filtered out 42 (3.0% FNR),

18 (1.3% FNR), and 38 (2.7% FNR) of the 1395 variants respectively. This shows that all

approaches are conservative with respect to FNR and suggests that by approximating the

distribution of frequencies at causal variants from real data we do not artificially increase
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Figure 3.5: Population matching using local ancestry information improves performance
over local ancestry nave population matching in admixed populations. The PopMatched,
FNR <5% approach performs poorly because the admixed reference panel sizes are much
smaller than non-admixed reference panels leading to increased filtering thresholds. The
AllPop, FNR <5% outperforms all other FNR-based approaches.

the FNR in empirical data.

3.3.5 Analysis of 20 exomes of individuals with monogenic traits

To examine the performance of the different filtering strategies when applied to actual data,

we used the data from 20 of the 101 real exome sequenced individuals who had monogenic

disorders where the causal variants have been previously identified. We assumed a maximum

causal allele frequency of 1% for all cases because there was no prevalence data[3]. For all

modes of inheritance, the number of variants in an individual for follow-up after filtering

was lower when filtering with the PopMatched, FNR <5% and AllPop, FNR <5% ap-

proaches as opposed to the NoAncestry, f >1% approach that does not account for the

FNR (See Table 3.6). We filtered out all variants except those with damaging annotations:
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splice acceptors, stop gains, frame shifts, stop losses, initiator codon changes, inframe in-

sertions, inframe deletions, missense variants, splice region variants and KGGSeq predicted

damaging variants. The 101 individuals form a supplemental population with the test indi-

vidual held out. We included these individuals when estimating average frequencies across

all populations in the 1000 Genomes project for the real data. Using our AllPop, FNR <5%

approach only 468 variants need to be followed up for dominant disorders as compared to

750 for the NoAncestry, f >1% approach (see Table 3.4). The true causal variant identified

in these individuals was never filtered out. This demonstrates that using multiple popula-

tion frequency estimates significantly reduces the number of variants remaining for follow-up

analysis, while still maintaining an appropriate false negative rate. In Table 3.6 we report

the variants remaining in each individual along with country data, presumed inheritance

pattern, the zygosity of the causal variant and disease. Removing outliers based on PCA

from the 101 self-reported Middle Eastern individuals makes no significant difference in the

number of variants remaining for follow-up (see Figure 3.6 and Table 3.5).

Method
Recessive

(cases=10)

Dominant

(cases=9)

Compound

Heterozygous

(cases=1)

NoAncestry, f >1% 57.7 (34.8) 749.7 (91.0) 604

PopMatched, FNR <5% 40.1 (32.5) 604.8 (107.1) 426

AllPop, FNR <5% 29.2 (21.4) 467.7 (61.5) 370

Table 3.4: Average number of variants that remain for follow-up post-filtering in real exome
studies of 20 individuals with monogenic disorders. None of the filtering approaches removed
the true casual variants from consideration. Across all disorder architectures, we observe a
significant decrease in the number of variants that need to be followed up if ancestry is
incorporated in the filtering step. Parentheses denote standard deviations. Variants were
eliminated from consideration as potentially true causal variants if they are not annotated as
damaging (see Methods 3.2.1) and if they are not observed twice if the disorder is assumed
to be autosomal recessive or at least once if it is assumed to be dominant (heterozygous) or
compound heterozygous.
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Figure 3.6: Principle component analysis of CEU, YRI, CHB and 101 self-reported Middle
Eastern (ME) individuals. Analysis is based on 24,791 variants where there is no missing
data for any of the Middle Eastern exomes and where the variants were called in the 1000
Genomes data. The YRI, CEU and CHB populations are well separated and the Middle
Eastern population clusters with the CEU and trails towards the YRI. This is similar to
what is observed in previous work[201]. Removing the two most extreme ME individuals
(far left and far bottom blue dots) results in a marginal increase in the number of variants
remaining in the Middle Eastern individuals (see Table 3.5)

3.4 Discussion

In this work, we introduce approaches that account for the finite sample size of the existing

reference panels used in filtering while leveraging sub-continental ancestry to improve the

filtering step in monogenic disease studies. Both the real data analysis of 20 exomes of

individuals with known monogenic disorders and the simulations show that our approaches

reduce the number of variants that need to be further investigated, thus increasing the effec-

tiveness of identifying causal variants using exome sequencing of unrelated individuals. This

work demonstrates that in a clinical setting, even a small reference panel of 100 individuals

from a well-matched population can have significant impact on the filtering efficacy.
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Method
Recessive

(cases=10)

Dominant

(cases=9)

Compound

Heterozygous

(cases=1)

NoAncestry, f >1% 58.6 (35.4) 758.0 (92.8) 614

PopMatched, FNR <5% 40.8 (33.2) 614.4 (110.8) 431

AllPop, FNR <5% 29.4 (21.5) 471.3 (62.8) 374

Table 3.5: Average number of variants that remain for follow-up post-filtering in real ex-
ome studies of 20 individuals with monogenic disorders after controlling the Middle Eastern
reference panel by removing the two most extreme PCA outliers.

Our methods are limited in that they do not account for the cases where a second genetic

or environmental factor is required for the phenotype to appear and this increases the risk

of filtering the true causal if the second factor is rare in some populations. Errors in variant

calling in reference populations may also falsely elevate the frequency of a true causal variant

and so using multiple technologies for estimating allele frequencies would be a best practice.

While our work is presented for use with exome sequencing studies, its central idea will be

extendable to whole genome sequencing since rare variation both in and out of the exome

will show population clustering.

The current bottleneck in using population structure to help identify rare variants is

the limited size of the reference panels for narrowly defined sub-continental populations.

Large databases such as the Exome Variant Server could increase their impact if they could

report sub-continental allele frequencies in addition to just European and African-American

allele frequencies. Recent projects such as the UK10K[128] will be extremely valuable as

it is a large reference panel of a specific population. The ALFRED database[32] will also

be a very valuable resource for cross-population work with monogenic diseases when it can

provide sequencing level data. Founder populations (e.g. Amish or Iceland) where some

non-causal variants are pulled to high frequency may be powerful in eliminating non-causal

variants if the disease is rare or not present in the founder population[169, 110]. Tools such

as Kaviar[61] will allow researchers to quickly search these emerging sources of population

55



frequency data. Finally, a Bayesian approach to integrate cross-population prevalence, allele

frequencies, annotation and functional data in a filter-free probabilistic manner is possible

but left to explore in future work.

Ind
Country

Presumed

Inheri-

tance

Causal

Variant

zygosity

Disease

Variants

Remaining

Pre-

Frequency

Filtering

No

Ancestry,

f >1%

Pop

Matched,

FNR <5%

AllPop,

FNR <5%

1 Jordan Recessive Homo Brachydactyly, type A2 5016 65 43 33

2 Turkey Recessive Homo LADD Syndrome 5049 50 20 20

3 Turkey Recessive Homo
Oral-facial-digital

syndrome type VI
4752 25 23 20

4 Iran Recessive Homo
Spastic paraplegia 11,

autosomal recessive
4674 39 15 13

5 Syria Recessive Homo Mitchell-Riley syndrome 4751 26 18 16

6 Tunisia
None

Given
Homo

Steroid-11

beta-hydroxylase

deficiency

4834 37 19 11

7 Jordan Recessive Homo Microcephaly 4722 22 11 5

8 Jordan Recessive Homo
Rickets vitamin

D-dependent type 1A
4973 104 102 56

9 Iran
None

Given
Homo

Oral-facial-digital

syndrome type VI
5653 112 67 52

10 Jordan
None

Given
Homo

Cranioectodermal

dysplasia 3
5938 97 83 66

11 Jordan
None

Given
Het

Microphthalmia,

syndromic 5
15694 872 750 532

12 Turkey Recessive Het

Split-hand/foot

malformation 1 with

sensorineural hearing loss

12171 619 445 361

13 Tunisia Dominant Het Palmoplantar MSSE 14111 813 747 505

14 Iran Dominant Het Parkinson’s Disease 13727 726 535 446

15 Iran Dominant Het
Ataxia, sensory, 1,

autosomal dominant
13417 661 512 410

16 Jordan
None

Given
Het

Cerebral cavernous

malformations 3
14713 871 690 545

17 Jordan7
None

Given
Het Brachydactyly, type B1 13472 668 543 421

18 Jordan
None

Given
Het Anophthamia 13789 748 623 494

19 Iran
None

Given
Het Spinocerebellar ataxia 6 15128 769 598 495

20 Turkey Recessive
Comp-

Het

Oral-Facial-Digital type

VI
12919 604 426 370

Table 3.6: Analysis of real data by individual exome. Variants remaining pre-frequency
filtering reflects the number of variants remaining when all variants without damaging an-
notations are filtered out and when variants inconsistent with the disorder architecture are
removed but before frequency-based filtering has been preformed.
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Ind
Genomic

Position (hg19)
Gene HGVSc HGVSp

Causal Variant

Zygosity

1 4:96035914 BMPR1B

c.188 207delGGTT

GCCTGTGG

TCACTTCT

p.Val66ArgfsX22 Hom

2 10:123256236 FGFR2 c.1400G>A p.Gly467Glu Hom

3 5:37205557 C5orf42 c.3150-1G>T - Hom

4 15:44941193 SPG11 c.169 170delCT p.Leu57AspfsX66 Hom

5 6:117240406 RFX6 c.1129C>T p.Arg377X Hom

6 8:143956714 CYP11B1 c.1136G>T p.Gly379Val Hom

7 8:6266892 MCPH1 c.114+1G>T - Hom

8 12:58157481 CYP27B1
c.1319 1325dup

CCCACCC p.Phe443GlyfsX24
Hom

9 5:37121819 C5orf42 c.5616delA
p.Leu1872Phefs

Ter44
Hom

10 14:76455258 IFT43 c.85G>T p.Glu29X Hom

11 14:57270998 OTX2 c.181C>G p.Leu61Val Het

12 7:96650164 DLX5 c.754T>C p.Tyr252His Het

13 - - - - Het

14 12:40653350 LRRK2 c.1487C>T p.Thr496lle Het

15 8:42729096 RNF170 c.191G>A p.Arg64Gln Het

16 3:167414800 PDCD10 c.264dupA p.Glu89ArgfsX6 Het

17 9:94486233 ROR2 c.2543C>T p.Pro848Leu Het

18 14:57269015 OTX2 c.382 331delAATG p.Asn110GlufsX6 Het

19 19:13411385 CACNA1A c.2261C>A p.Ala754Glu Het

20
5:37183490 C5orf42 c.4793C>A p.Thr1598Lys Com

Het
5:37226725 c.1972G>C p.Gly658Arg

Table 3.7: Identification information for causal variants identified in the real individuals and
their zygosity.
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Ind

Variant

reported

in Liter-

ature

ExAC EVS HGMD variant types SIFT Polyphen Prediction*

1 No[105] NP NP Missense/ nonsense NA NA Lkly pathogenic

2 No[161] 1 het NP Missense Delet Prb damage Lkly pathogenic

3 Yes[113] NP NP Missense/ nonsense NA NA Pathogenic

4 No[177] 1 het NP Mostly nonsense NA NA Lkly pathogenic

5 No[173] NP NP Missense/ nonsense NA NA Lkly pathogenic

6 Yes[88] NP NP Missense/ nonsense Delet Benign Pathogenic

7 No[45] NP NP Missense/ nonsense NA NA Lkly pathogenic

8 Yes[189] NP NP Missense/ nonsense NA NA Pathogenic

9 No[113] NP NP Missense/ nonsense NA NA Lkly pathogenic

10 No[2] NP NP Missense NA NA Lkly pathogenic

11 No[165] NP NP Missense/ nonsense Delet Prb damage Lkly pathogenic

12 No[168] NP NP Missense/ nonsense Delet Poss damage Lkly pathogenic

13 No[117] - - - - - Lkly pathogenic

14 No[210] NP NP Missense/ nonsense Toler Benign Lkly pathogenic

15 No[2] NP NP Missense Delet Prb damage Lkly pathogenic

16 Np[5] NP NP Missense/ nonsense NA NA Lkly pathogenic

17 No[140] 15 het† 2 het Nonsense Delet Poss damage VUS

18 No[165] NP NP Missense NA NA Lkly pathogenic

19 No[204] NP NP Missense Delet Prb damage Lkly pathogenic

20 No[113]
3 hom† 3 het

Missense/nonsense
Delet Prb damage VUS

NP NP Toler Prb damage VUS

Table 3.8: Summary of evidence for identifying causal variants in real exome sequencing
data. Variants not found in a database are signified as not present (NP). Variants that have
exact matches to published variants are signified as reported in literature with the citation
given. Variants without exact matches cite the literature of the gene in which the variant falls
that is associated to the phenotype. The HGMD variant types list frame shifts and splice
site variants as nonsense variants. *Variants reported before in the literature were predicted
to be pathogenic. Variants not reported in literature were evaluated in the context of 1)
how well the phenotypes match, 2) is the variant absent or extremely rare in the population,
3) does the variant type match the known or predicted mechanism of how the gene can
be disrupted, 4) is the in silico prediction concordant (for missense variants) and predicted
to be likely pathogenic if all four were in agreement. †Phenotypic data is not publically
available from ExAC database. Patient #17’s phenotype is relatively mild and it is likely
that 15 individuals in ExAC with the same variant are affected or carriers. One variant
in Patient #20 is observed as homozygous in 3 individuals in ExAC but phenotypic data
on these 3 individuals are not available. A follow-up functional study is warranted to call
the potential compound heterozygous variants likely pathogenic. Information on Individual
#13 is withheld because it is a novel finding and in preparation for publication; the citation
corresponding to it clinically defines the disease and maps it to one locus.
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CHAPTER 4

Enhanced methods to detect haplotypic effects on gene

expression

4.1 Introduction

Expression quantitative trait loci (eQTLs) are genetic variants, typically single nucleotide

polymorphisms (SNPs), associated with gene expression levels. eQTLs are found through as-

sociation scans that test for an additive effect of SNPs on expression[149, 179]. In addition to

additive effects, effects from interacting SNPs can moderate gene expression[44, 74, 106, 151].

Some types of cis-interactions can only be captured by phase-aware methods[23, 46]. How-

ever, many estimated interaction effects are explained by un-typed variants or confounders

that cast doubt on the importance and prevalence of interactions in humans[52, 74, 196, 75].

Despite this, marginal SNP tests and SNP interaction tests cannot represent the full range

of possible genetic architectures that can influence gene expression.

Studies of monogenic disorders (i.e. diseases caused by damaging mutations in a single

gene) have been particularly successful in determining the genetic mechanisms responsible

for disease. Recessive monogenic disorders can have an underlying compound heterozygous

architecture of causal mutations that are usually loss-of-function (LOF) [59, 60, 136]. These

architectures arise when a gene is heterozygous at two different positions for LOF variants on

different haplotypes. LOF compound heterozygous architectures are known to be important

The work appearing in this chapter is published: Robert Brown, Gleb Kichaev, Nicholas Mancuso,
James Boocock, and Bogdan Pasaniuc. “Enhanced methods to detect haplotypic effects on gene expression.”
Bioinformatics (Oxford, England), 2017.
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in complex traits as well [109], but are challenging to detect due to multiple testing issues[58].

Intuitively, for fully penetrant recessive disorders, additional LOF mutations on the same

haplotype have no additional effect since the gene function has already been disrupted. With

widespread evidence of compound heterozygote architectures in monogenic disorders, in this

work we extend such ideas to finding their effects on gene expression.

Transcriptional processes are controlled through multiple layers of genome organization[66,

96, 193, 91]. We hypothesize that specific sets of SNP alleles have cis-acting effects[102] on

transcriptional processes. Specifically, in this work we assume the effect of having one of

the alleles on a haplotype is the same as having multiple. For example, having either of two

alleles on a haplotype may have the same effect on an epigenetic state affecting expression

from that haplotype as having both alleles on that same haplotype[47, 48, 69, 124, 183]. As

an alternative example under this model, if alleles of two SNPs can each alone disrupt the

function of an enhancer, then having both alleles on a haplotype will have the same effect

as just having one of either allele on that same haplotype. To test this hypothesis, we de-

fine compound regulatory predictors (CRPs) that encode the number of haplotypes in each

individual carrying at least one alternate allele from a predefined set of SNPs and test for

association between the CRPs and gene expression levels. This does not preclude SNPs not

in the set from having other independent effects for the same gene. We restrict our analysis

to looking at CRPs composed from pairs of two SNPs.

Using simulations of multiple causal architectures, we demonstrate our method is better

able to capture the signal from underlying CRP architectures leading to an increased num-

ber of eGenes discovered after controlling the false discovery rate (FDR). Importantly, the

combined SNP and CRP method has no loss of power relative to the marginal SNP test to

detect single causal SNPs.

To investigate the extent of CRPs in real data, we apply our method to data from the

GEUVADIS eQTL study[101]. We find that 2,222 of the 3,529 identified eGenes (genes with

at least one association) contain both a SNP eQTL and a CRP eQTL. Of these genes, 822

have more of the expression variance captured with a CRP eQTL than a SNP eQTL. Of all

eGenes, 974 (27.6%) have a CRP as the top association. There are 153 genes with a CRP
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eQTL but no SNP eQTL. Our combined SNP and CRP test finds 29 (0.8%) more eGenes

than the marginal SNP test despite a larger multiple testing burden. While this is only a

small increase in overall power, the results as a whole demonstrate that some underlying

genetic architectures affecting expression are better captured using a compound regulatory

predictor model.

4.2 Methods

We start with an overview of our proposed approach. We first regress gene expression on

marginal SNP genotypes (the SNP test) in a 1Mb window centered on a transcription start

site. We then re-encode genotypes so that the alternate allele is positively associated with

expression levels. This way alternate alleles forming CRPs will have the same effect direction

on expression levels. We then encode CRPs as the number of haplotypes in an individual

with at least one alternate allele at either of two SNP positions (gCRP ∈ (0, 1, 2)). Lastly we

regress gene expression on gCRP . To avoid a large increase in the number of tests, we limit

multiple testing through a SNP pair selection process.

We illustrate the importance of the CRP model with a toy example in Figure 4.1. Alter-

nate alleles, encoded as g1 and g2, can each affect a transcriptional process in such a way as

to completely prevent gene expression from the haplotype(s) carrying the alternate allele(s).

Since most eQTLs have small to modest effect sizes[1, 68, 101], full loss of expression due to

a SNP allele is an extreme example for illustrative purposes and not assumed by our model.

Both the SNP test and the SNP x SNP interaction test[44, 106] have reduced power since

neither g1, g2 nor g1g2 are perfectly correlated with gCRP . Since the alternate alleles have

a cis-acting effect on the transcriptional process, gene expression is dependent both on the

genotypes and the phase of the alleles in the special case of (g1,g2)=(1,1).
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Figure 4.1: Example of a causal CRP architecture. Each pair of vertical bars represents a
maternal and paternal haplotype (unordered). A dot represents an alternate allele with g1
and g2 denoting the genotypes of the SNPs for an individual. The number of haplotypes
carrying at least one alternate allele is given by gCRP . The example phenotype, expressed
mRNA, represents the percentage of the maximum amount of mRNA that can be produced
and is linearly dependent on gCRP . Full loss of expression due to the alleles is an extreme
example for illustrative purposes. The term g1g2 represents the product of the two genotypes.
The example shows two instances of (g1,g2)=(1,1) where the phase will lead to different values
for gCRP and expression.

4.2.1 The CRP model

A general additive 2-SNP haplotype model in which each possible haplotype has an effect

on the phenotype y is

y = β00h00 + β10h10 + β01h01 + β11h11 + ε (4.1)

Here h indicates the number (0, 1 or 2) of each of the four possible haplotypes carried by an

individual, β is the effect size of each haplotype, and ε ∼ N (0, σ2
e). The subscripts specify

the allele combinations for each haplotype. We focus on the model in which alternate alleles

form a CRP (βCRP = β10 + β01 + β11).

We introduce a new variable (gCRP = h01+h10+h11) to indicate the number of haplotypes

containing at least one alternate allele. We rewrite the model in terms of gCRP as

y = βCRPgCRP + ε (4.2)
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Given genotype data gi for SNPi (or gCRP ) and phenotype data y for n individuals, a

standard measure of association is the Wald statistic:

zi =
β̂i

SE(β̂i)
=
Cov(gi, y)

√
n√

V ar(gi)σ2
e

(4.3)

which asymptotically follows a normal distribution with variance 1 and a non-centrality

parameter (NCP) given by

λi
√
n =

βi
√
V ar(gi)

σe

√
n (4.4)

The NCP governs the power of rejecting the null hypothesis that there is no association

between gi and the phenotype at a specified family-wise error rate (FWER). Non-causal

SNPs (β = 0) have an induced-NCP if they are in linkage disequilibrium with a causal

SNP[79, 89, 97, 155, 192, 206].

Similarly, an induced-NCP can exist for SNPs comprising or tagging a causal CRP. We

let x and y* represent mean 0 and variance 1 transformed genotypes and phenotypes and

β∗ represent the β for the transformed data. We obtain an estimate for each β∗ in a linear

additive model. 
β̂∗i

β̂∗j

β̂∗CRP

 =
1

n

[
xTi xTj xTCRP

]
y∗ (4.5)

=
1

n

[
xTi xTj xTCRP

]


xi

xj

xCRP

 β∗ + ε

 (4.6)

=


1 ri,j ri,CRP

ri,j 1 rj,CRP

ri,CRP rj,CRP 1

 β∗ +
1

n

[
xTi xTj xTCRP

]
ε (4.7)

= V β∗ +
1

n

[
xTi xTj xTCRP

]
ε (4.8)

We rewrite the β̂∗ estimates as random variables drawn from a multivariate normal distri-

bution with means given by V β∗ and variance σ2
eV n

−1, in which V is the correlation matrix
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of the standardized genotypes.

β̂∗ ∼MVN

(
V β∗,

σ2
e

n
V

)
(4.9)

For a causal CRP architecture in which β∗ =
[
0 0 β∗CRP

]T
, λ = V β∗ is the mean values

of β̂∗, 
λi

λj

λCRP

 =


1 ri,j ri,CRP

ri,j 1 rj,CRP

ri,CRP rj,CRP 1




0

0

β∗CRP

 =


ri,CRPλCRP

rj,CRPλCRP

λCRP

 (4.10)

Here a SNP i that comprises or tags the CRP will appear to have a mean effect size λi =

ri,CRPλCRP . The mean effect size λ gives the NCP when testing a SNP or CRP for association

with a phenotype for a given sample size.

4.2.2 Correlation between SNPs and CRPs

Haplotype h1 h2 hCRP Haplotype Probability (p)

h00 0 0 0 (1− f1)(1− f2) +D

h01 0 1 1 f1(1− f2)−D

h10 1 0 1 (1− f1)f2 −D

h11 1 1 1 f1f2 +D

Table 4.1: Two-SNP haplotype characterization. Each 2-SNP haplotype is characterized by
the presence or absence of an alternate allele at the first and second SNP position (h1 and
h2). The variable hCRP indicates if a haplotype carries either of the two alternate alleles. The
allele frequencies (f1 and f2) and the linkage between the SNPs (D) govern the haplotype
probability in a sample.

We calculate the correlation ri,CRP for SNPs from a hypothetical sample where the prob-

ability of each 2-SNP haplotype is a function of the allele frequencies and linkage (D) (see

Table 4.1). Here two SNPs define each haplotype, with h1 and h2 representing the presence

of an alternate allele at the first and second SNP positions. The maximum linkage (Dmax)

between SNPs is a function of their allele frequencies (f1 and f2) and puts an upper bound

on their correlation (r)[76].
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D = r
√

(1− f1)(1− f2)f1f2 (4.11)

Dmax =


min{f1f2, (1− f1)(1− f2)} when D < 0

min{f1(1− f2), (1− f1)f2} when D > 0

(4.12)

Assuming that haplotypes are inherited independently, there are 16 possible maternal and

paternal 2-SNP haplotype combinations for each individual. The haplotype probability (p) is

the probability of drawing a specific haplotype with replacement. For each pair of haplotypes

(indexed with superscripts k and l) we can compute the probability of the haplotype pair

as pkpl. The equations gk,li = hki + hli and gk,lj = hkj + hlj give the genotypes of an individual

at SNPs i and j who has one kth and one lth haplotype. The gk,lCRP term, given by gk,lCRP =

hkCRP +hlCRP is the number of haplotypes in an individual with one kth and one lth haplotype

that contain either alternate allele. From these values, the correlation between gi and gCRP

is computed using the following relationships:

ri,CRP =

∑4
k=1

∑4
l=1 p

kpl(gk,lCRP − µCRP )(gk,li − µi)
σCRPσi

(4.13)

σ2
i =

4∑
k=1

4∑
l=1

pkpl(gk,li − µi) where µi =
4∑

k=1

4∑
l=1

pkplgk,li (4.14)

σ2
CRP =

4∑
k=1

4∑
l=1

pkpl(gk,lCRP − µCRP ) where µCRP =
4∑

k=1

4∑
l=1

pkplgk,lCRP (4.15)

4.2.3 Power analysis to detect CRP effects

Using the model given in Equation (4.2) with the phenotype standardized to have mean 0

and variance 1 (σ2
Y = 1) we compute the power to reject the null hypothesis with a 0.05

significance threshold for a given sample and effect size. Let fCRP be the frequency of risk

haplotypes (fCRP = E[gCRP ]/2).

σ2
Y = 2fCRP (1− fCRP )β2

CRP + σ2
e (4.16)

Let σ2
CRP = 2fCRP (1−fCRP )β2

CRP such that σ2
Y = σ2

CRP +σ2
e = 1 where σ2

CRP is the variance

of the phenotype explained by the CRP. We can then estimate the variance of β̂CRP and

approximate the NCP for the Wald statistic.
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V ar(β̂CRP ) =
σ2
e

nV ar(gCRP )
≈ σ2

e

2nfCRP (1− fCRP )
(4.17)

λCRP
√
n =

βCRP√
V ar(β̂CRP )

=

√
n

σ2
CRP

1− σ2
CRP

(4.18)

This result is identical to that of testing a single SNP for association with a phenotype,

but uses gCRP as the predictor as opposed to a SNP genotype. Assuming the true causal

architecture is a CRP, SNPs will have induced-NCPs given by Equation (4.10). We calculate

the power of a test to have a significant association given that the true causal architecture

is a CRP:

POWER = Φ
(
Φ−1(α/2) + λ

√
n
)

+ 1− Φ
(
−Φ−1(α/2) + λ

√
n
)

(4.19)

Here λ can be either the NCP of the CRP (λCRP ) or the induced-NCP at SNP i (ri,CRPλCRP ).

α = 0.05/M is the desired family-wise error rate (FWER), where M is the number of tests

performed for each gene.

4.2.4 CRPs in gene expression data

In order to search for SNP and CRP eQTLs in both real and simulated gene expression,

we begin with the SNP test that regresses expression levels on centered and standardized

SNP genotypes in a 1 Mb window around the genes transcription start site. Following

the GEUVADIS analysis, we included the top three genotype-based principal components

(PCs) as covariates as well as a binary variable denoting whether individuals were originally

obtained from the 1000 Genomes[39] Phase 1 or imputed. We only use SNPs with estimated

maf > 0.05. We re-encode the genotype data so that alternate alleles are positively associated

with expression levels.

We limit the number of tests by only performing the CRP test on selected SNP pairs. To

select SNP pairs, we look at all possible pairs of SNPs in the window being tested; when both

SNPs in the pair pass a suggestive 0.4 significance threshold (Bonferroni corrected based on

the number of SNP tests performed) and when each SNP in the pair has |ri,CRP | < 0.8, we
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test the CRP formed by the SNP pair for association with expression. This process looks

for CRPs primarily in genes that already have a significant or near significant marginal

association, so it is not expected that this test will greatly increase power.

For real data analysis we determine an empirical p-value using an adaptive permutation

procedure following the GTEx approach[68]. We perform at least 1,000 permutations and

at most 10,000 permutations. After the first 1,000 permutations, an exit criteria is reached

if 15 permutations have a stronger association than the observed association. Therefore, all

p-values are estimated with at least 1,000 permutations. For each gene, we permute the

expression levels and then rerun the entire SNP test as well as the entire SNP and CRP

test including the SNP selection. We then control for a 0.05 false discovery rate (FDR)

across genes using the Benjamini-Hochberg procedure. In the real data analysis the largest

significant p-value after FDR control was 0.0095, which indicates that all significant genes

required more than 1,000 permutations before reaching the exit criteria.

For simulated data, we permute each gene on chromosome 22 10,000 times and use the

resulting null distribution of association statistics for each gene to determine the p-values

for simulated genes.

4.2.5 Simulations for multiple causal architectures

We base our simulations on the chromosome 22 genotypes of Europeans (n=373) from the

GEUVADIS study[101]. We ran Beagle 4.1[21, 19] to impute and phase missing or unphased

genotypes for both the simulations and for the real expression analysis. Simulations draw

either 0, 1 or 2 SNPs to be causal from a 1 Mb window centered on a randomly drawn

transcription start site. After simulating a phenotype (see below), we run the tests as

explained in Section 4.2.4. We also run an interaction test where we use an f-test to compare

the model containing just the top marginal association to the model the contains the top

marginal association as well as the product of the SNP genotypes for the same SNPs that

are being evaluated as a CRP. For each causal architecture, we simulate 200 sets of 18,000

genes and report the mean number of genes with a significant association after controlling
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for the FDR.

Phenotypes are simulated using an additive model so that the causal genetic architecture

explains a fixed σ2
g = 0.08 proportion of the variance in expression. We simulate five un-

derlying causal architectures using either common SNPs with maf>0.05 or rare SNPs with

0.01<maf< 0.05: (1) We randomly choose a single common or rare SNP to be causal. (2)

Two causal common SNPs are randomly chosen and each explains half of σ2
g after accounting

for linkage disequilibrium. (3) A causal CRP formed by two randomly chosen SNPs with

either both common or both rare. We also simulate CRPs with two common SNPs but

require that the SNPs are correlated either with r2 > 0.8 or < 0.2. The high LD simula-

tion replicates conditions likely seen in a regulatory element where SNPs are often strongly

linked. (4) The genotypes of two randomly chosen common SNPs are multiplied to form a

causal interaction effect. (5) A null model where the phenotype is simply a draw from a

normal distribution. We run the simulations using either masked or unmasked causal SNPs

to determine how the methods will perform with un-typed variation and confounders.

4.2.6 Real data analysis

We re-analyzed data from the GEVUDADIS project[101]. Following the original work[101],

we filter out non-autosomal genes and genes that did not have >0 quantification in >90% of

individuals resulting in 18,621 genes. We standardize the RPKM and PEER normalized gene

expression levels sampled from human lymphoblastoid cells after removing non-European

data. Lastly, we run the tests as described in Section 4.2.4. We compute a centered and

standardized gCRP from the phased genotype data for SNP pairs selected for the CRP test.

To determine if the top CRP eQTL is confounded due to correlation with the top SNP

eQTL, we perform conditional regression that removes the effect of the top SNP eQTL if

it is has an empirical p-value <0.05. We then re-run the CRP analysis. Significance of the

CRP is determined using the permutation method described above.

68



4.3 Results

4.3.1 Underlying SNPs poorly tag CRPs

The test statistic (zi) is drawn from a normal distribution with a mean given by the NCP or

induced-NCP. Under certain frequency and linkage conditions, the induced-NCPs at SNPs

that comprise a causal CRP can be significantly lower than the CRPs NCP (see Figure 4.2

and 4.3). For example, two SNP genotypes (g1 and g2) each with maf=0.5 and under no LD

(r1,2=0) each have a correlation (r1,CRP and r2,CRP ) of 0.58 with the CPR (gCRP ). In this

case, if the CRP were causal, the SNP tests induced-NCP is only 58% the NCP of the CRP.

This could result in a significant loss of power.

gCRP

g1 g2r1,2

y

Figure 4.2: Correlation structure between the SNP genotypes (g1 and g2) and the CRP
(gCRP ). The phenotype y is dependent on the CRP.

4.3.2 Power to detect CPRs

We computed the power at a 0.05 Bonferroni corrected significance level of the SNP test and

the combined SNP and CRP test to have an association with a trait having an underlying

CRP architecture. Because this does not take SNP selection into account for testing CRPs,

the combined test results represent the power achievable if testing the causal CRP directly.

We correct using the number of SNP (2,266) or SNP and CRP (3,064) tests performed on

average per gene in the real gene expression data. As the variance explained due to a causal
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Figure 4.3: The correlation between SNPs and CRPs. The greyscale represents the absolute
maximum of r1,CRP and r2,CRP given the SNP frequencies indicated by the x and y-axis
and a correlation (r1,2) of -0.2 between the SNPs. From darkest to lightest, the greyscale
represents absolute maximum ri,CRP from [1,0.75), [0.75,0.5), [0.5,0.25) and [0.25,0].

CRP decreases, the combined test outperforms the SNP test (see Figure 4.4). The combined

test has 92% maximum possible power to detect a CRP with σ2
CRP = 0.08, assuming the

CRP is directly tested, as opposed to 62% power with the SNP test.

We simulate gene expression under different causal architectures to evaluate the effect of

confounders and to determine how the SNP selection process affects the power of the com-

bined SNP and CRP test versus the marginal SNP test (see Table 4.2). In our simulations,

we fix the percentage of phenotypic variance due to the underlying architecture at σ2
g = 0.08

and simulate 200 sets of 18,000 genes under each architecture.

Using the null simulations, we observe that the SNP test, combined SNP and CRP test,

and the combined SNP and interaction tests have mean false positive rates of 4.97%, 4.96%

and 4.97% respectively, each having a standard error of 0.01%. This indicates that the three

tests are well calibrated under the null.
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We evaluate the power of each test by comparing the average number of genes that

have a significant association after controlling FDR at 0.05 in each 18,000 gene set using

Benjamini-Hochberg (see Table 4.2). No genes from the Null simulations are significant

after controlling the FDR. When the underlying causal model is a single causal SNP, the

three tests find approximately the same number of eGenes: 17,404 (SNP test), 17,404 (SNP

and interaction test), and 17,405 (SNP and CRP test). Even though the tests find only

one difference in the total number of eGenes, the sets of eGenes found by each test are not

subsets of the most powerful test. The SNP and CRP test on average finds 7 unique eGenes

not included in the set of eGenes found by the SNP test. Interestingly, the rare single SNP

causal model is the only simulated architecture where the combined SNP and CRP model is

outperformed by the other models, indicting that CRPs poorly tag SNPs with maf < 0.05.

For simulated CRP architectures, the combined SNP and CRP test significantly outper-

forms the SNP test (and the SNP and interaction test) by finding 93 (and 92) more eGenes.

However it found 117 unique eGenes not found by the SNP test indicating that in those genes

marginal SNPs were much poorer tags of the underlying CRP. The most extreme example of

this is found when looking at CRPs formed by two rare SNPs where the SNP and CRP test

finds 211 eGenes not found by the SNP test even though it only finds 46 total more eGenes.

The combined SNP and CRP test has increased power over the SNP test when SNPs

forming a CRP are in low LD. In this case the combined test finds 100 more eGenes than

the SNP test, 124 being unique to the SNP and CRP test. Conversely, for the high LD CRP

simulations, the combined test finds the same number of eGenes with 9 being unique. There

is no increase in the total number of eGenes discovered since CRPs formed by high LD SNPs

are very well tagged by single SNPs (see Figures 4.2 and 4.3). This also explains why the

number of unique eGenes found by the SNP and CRP test is similar to what was found with

the single causal SNP architecture.

For the two SNP and interaction architectures, the combined SNP and CRP test signifi-

cantly outperforms the SNP and combined SNP and interaction tests. This is likely due to

the CRP test being able to tag combinations of haplotypes poorly tagged by single SNPs

and the fact that the SNP selection method used for both the CRP and the interaction tests,

71



is optimized for finding CRPs.
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Figure 4.4: Power to detect a causal CRP with 373 individuals and a 0.05 Bonferroni cor-
rected significance level.

4.3.3 CRPs in real gene expression data

Looking at all 18,621 genes that passed the filtering criteria, our combined SNP and CRP

test identifies 3,529 eGenes while the marginal SNP test only finds 3,500. Of the 3,529

eGenes, 1,154 have a SNP eQTL but no CRP eQTL and 2,222 have both a SNP and a CRP

eQTL. In 37.0% of the 2,222, the CRP eQTL has a larger effect size than the SNP eQTL. For

these eGenes, the top CRP eQTL from the combined test on average captures 12.6% of the

variance in expression, as opposed to 10.8% with the top SNP eQTL. Finally, 153 identified

eGenes have a CRP eQTL but no SNP eQTL. In these eGenes the top CRP eQTL captures

7.1% of the expression variance while the top (not significant) SNP captures 4.9%. These

results demonstrate that the combined test is both more powerful than the marginal SNP

test and in many eGenes better captures the signal from the genetic effect on expression.

72



The CRP model makes two predictions. The first is that the mean expression levels

of individuals who are heterozygous at the two SNPs (g1, g2)=(1,1) that form a CRP will

depend on the phase of the alleles. The individuals will have gCRP=1 if the alleles are in

phase or gCRP=2 if they are out of phase (see Figure 4.1). The second prediction is that there

should be no difference in mean expression levels between individuals with (g1, g2)=(2,0) and

the individuals with (g1, g2)=(0,2). Both of these groups of individuals will have gCRP=2.

There are 887 eGenes with a CRP eQTL where at least four individuals fall into each

of the groups. Using a Hochberg-Benjamini FDR control (α=0.05 applied to a t-test, we

find 11 CRPs where there is a significant difference in mean expression levels between indi-

viduals with (g1, g2)=(1,1) and (gCRP=1) and individuals with (g1, g2)=(1,1) and (gCRP=2)

but found no significant difference between individuals with (g1, g2)=(0,2) and those with

(g1, g2)=(2,0).

In order to determine if the top CRP eQTL tags the top SNP eQTL, we condition gene

expression on the top SNP eQTL with an empirical p-value < 0.05 and then re-run the CRP

analysis and permutations. This results in 3,218 eGenes where there is only a SNP eQTL,

158 eGenes that contain both a SNP and a CRP eQTL, and 38 eGenes that contain only a

CRP eQTL. This analysis shows that while the top CRP eQTLs are highly correlated with

the top SNP eQTLs for most genes, in some cases the CRP eQTLs are capturing signal not

included with the top SNP eQTL.

After running the SNP test and the combined SNP and CRP test, there are three SNPs

of interest: gm is the SNP that has the strongest marginal association with gene expression,

gCRP,1 and gCRP,2 are the two SNPs that form the top CRP (gCRP ). We use Akaike informa-

tion criterion (AIC) to compare eight models that use the following predictors: (1) gm, with

k=3 (2) gCRP,1 with k=3, (3) gCRP,2 with k=3, (4) gCRP with k=3, (5) gCRP,1*gCRP,2 with

k=3, (6) gm and gCRP,1*gCRP,2 with k=4 (7) gm and gCRP with k=4 (8) gCRP,1 and gCRP,2

and g=CRP,1*gCRP,2. with k=5.

Using AIC we determine if a CRP (gCRP ) effect is more likely than a SNP interaction

(gCRP,1*gCRP,2) by comparing models 6 and 7 that each also include the main marginal
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effect(gm). For the 2,222 eGenes with both a SNP eQTL and a CRP eQTL, the model with

the CRP is 100 times more likely than the model with the interaction effect for 263 of the

eGenes. When looking at the 153 eGenes that only have a CPR eQTL, the model with the

CRP is 100 times more likely than the model with the interaction effect in 21 of the eGenes.

We then compare the model that only includes the CRP effect (model 4) to all other

models. For the 2,222 eGenes, the CRP only model is most likely compared to all other

models in 154 of the eGenes. When looking at the 153 eGenes that only have a CPR eQTL,

the CRP only model is most likely in 31 of the eGenes.

4.4 Discussion

In this work we introduce a new method to detect haplotype effects on gene expression.

Motivated by monogenic disorders, we extend ideas behind compound heterozygotes to gene

expression through a compound regulatory predictor. Our method performs almost identi-

cally to the standard marginal SNP methods when the underlying architecture is a single

causal, but outperforms it when there are more complex underlying architectures.

The main limitation of our combined test is that it only allows for CRPs composed

of two SNPs. It is possible that any number of SNPs affect a transcriptional process or

tag haplotypes with similar effect size. Due to the conservative SNP selection process, our

method is best able to find CRP associations in genes that already have significant or close to

significant associations. It is underpowered to find CRPs when the CRPs are poorly tagged

by all marginal SNPs.

Though the gain in power of the combined test over the marginal SNP test is small in

real data, the eGenes identified using the CRP model suggest that marginal tests of common

SNPs do not fully tag the genetic architectures that influence gene expression. Without

comprehensive functional analysis, it is impossible to know if a CRP eQTL causally changes

expression levels, or if it is simply tags an un-typed causal variant, interaction, or a more

complex causal mechanism.
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Given the stronger CRP eQTL signals seen in many genes, our model may be useful for

imputing gene expression that can then be leveraged in transcript-wide association studies[55,

70] Finally, the CRP eQTLs motivate two future directions. First, the method can be

adapted to increase the power of genome-wide association studies to find novel associated

loci. Second, fine-mapping methods used to prioritize potentially causal variants may become

more accurate by explicitly modeling CRP architectures.
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Causal Architecture SNP test

SNP and

Interaction

Test

SNP and CRP

Test

Null 0 0 (0) 0 (0)

Unmasked

SNP (c) 17,404 17,404 (0) 17,405 (7)

CRP (c) 14,421 14,422 (1) 14,514* (117)

CRP (c) low LD 14,402 14,403 (1) 14,502* (124)

CRP (c) high LD 16,135 16,136 (0) 16,135 (9)

2 SNPs (c) 14,529 14,529 (0) 14,640* (134)

G1G2 (c) 10,477 10,485 (9) 10,538* (124)

Masked

SNP (c) 16,395 16,395 (0) 16,400 (18)

SNP (r) 3,298 3,303 (6) 3,278 (150)

CRP (c) 13,565 13,565 (0) 13,670* (132)

CRP (r) 2,863 2,864 (2) 2,909† (122)

2 SNPs (c) 13,701 13,701 (0) 13,824* (153)

Table 4.2: Average number of eGenes identified after controlling the FDR for different un-
derlying causal genetic architectures. The table reports the mean number of simulated genes
with at least one significant association for a given test and simulated causal architecture
after controlling the FDR at 0.05. The * represents a significant difference in the number of
eGenes discovered between the SNP and CRP test and both other tests and the † represents
a significant difference between the SNP and interaction test and the SNP and CRP test
(using a t-test with a significance threshold of 0.05/22). The SNP and interaction test was
never significantly different form the SNP test. The values in parentheses represent the num-
ber of genes found by the specified combined test but included in the set of eGenes found
by the SNP test. The (c) and (r) represent architectures using common or rare SNPs.
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CHAPTER 5

Haplotype-based eQTL Mapping Increases Power

5.1 Introduction

Expression quantitative trait loci (eQTLs) are genetic variants that regulate gene expression.

Association scans to find eQTLs have been successfully applied to multiple datasets to find

many eGenes, genes with at least one eQTL regulating their expression. These studies

have shown that much of the variation in gene expression is heritable[33, 197, 199, 152] and

that the genetic architectures that regulate expression are often found near the gene they

regulate[34, 187]. The GEUVADIS[101] and GTEx[68] projects have publically provided

genotype and expression data for hundreds of individuals across multiple tissues. These

data have been successfully used to probe how genetic variation influences complex diseases

through gene expression regulation[70, 55, 42, 209].

The standard test of association assumes an underlying additive model[149, 179] that re-

lates genotype to expression level using a marginal SNP test. eQTLs found through studies

using this model may have independent additive effects, but could also have more compli-

cated interactions that cannot be captured by a marginal SNP test. The marginal SNP

test does not account for the presence of multiple eQTLs existing for the same eGene[15]

or for interactions between eQTLs for the same gene[208]. Recent work[44, 151, 106, 74]

has searched for evidence of eQTLs arising from SNPxSNP interactions where one SNP

moderates the effect of another. Such interactions are known to exist in yeast[12] but their

relevance to gene expression in humans has been difficult to ascertain[196, 75, 14]. Other

work has found evidence of haplotype effects when using a likelihood model for short 10 SNP

haplotypes[56].
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In this work we present a new approach (HapSet) for investigating haplotype effects on

gene expression. We hypothesize that each haplotype in a 10 kb region can have a specific

effect on gene expression. The HapSet approach divides haplotypes from a region into all

possible two set combinations and looks for a difference in the average effect size between

the sets. In order to use the marginal SNP approach as a subset of our approach, we force

our approach to include haplotype sets defined by the genotypes at single SNP locations.

Our method is not biased by filtering or test selection methods that utilize marginal test

statistics, since it determines haplotype sets independent of the expression data. We compute

significance thresholds for the haplotype set tests in order to control the family-wise error

rate (FWER) at desired levels.

We simulate gene expression assuming five underlying architectures: single causal SNPs,

multiple causal SNPs, SNPxSNP interactions, haplotypes with non-zero effects and a null

model. Our simulations show that both approaches maintain a 0.05 FWER under the null

model. With the common SNP-based simulated architectures, the marginal SNP approach

has slightly higher power due to a less stringent significance threshold. We expect this result

since the SNP approach is a subset of the HapSet approach. For example, when a single

common SNP accounts for 5% of the variance in phenotype, the SNP approach has 78%

power while the HapSet approach has 71%. However, when the underlying model is based

on a random set of haplotypes assigned the same non-zero effect size, the HapSet approach

has 71% power compared to the SNP approach that only has 56%. This demonstrates that

there is insufficient SNP density to tag many of the possible haplotype combinations.

We apply our method to find eGenes with the GEUVADIS data using expression and

genotype data from 373 Europeans individuals. Of the 18,621 genes in the data, both the

marginal SNP approach and the HapSet approach identify an overlapping 4,495 genes as

eGenes. The marginal SNP approach also finds 606 eGenes not identified by the HapSet

approach, and the HapSet approach finds 707 eGenes not identified by marginal SNP ap-

proach. Since the SNP tests are a subset of the HapSet tests, the 707 eGenes only identified

by the HapSet test are those that the SNP test still could not identify even with a lower sig-

nificance threshold. This indicates that the single causal model poorly captures the genetic
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architecture regulating expression of those genes. Overall, the HapSet approach identifies 101

more eGenes than the marginal SNP approach. This highlights the importance of exploring

haplotype-based models both for association studies and for fine-mapping approaches.

5.2 Methods

A SNP represents variation at one specific location in the genome. Haplotypes represent

variation across a set of successive SNPs on a single chromosome. Generally, a small number

of haplotypes are representative of the majority of the haplotypes in a sample when looking

at a small region. Each of these haplotypes can have different effect sizes depending on

the genetic architectures occurring on the haplotypes. Our proposed approach seeks to

maximize the difference between the frequency-weighted mean effect size on gene expression

of haplotypes within a defined set (H) and those not in the set (Hc). Once a set is defined,

haplotypes from individuals are identified as either in or out of the set, and a pseudo-genotype

can encode for the number of haplotypes an individual carries that are within the set. Gene

expression can then be regressed on this pseudo-genotype to estimate the mean difference in

effect size of haplotypes in and out of the set.

5.2.1 Haplotype effect model

We divide the genome up into S equal length sections. We assume that the ith haplotype in

the sth section has its own specific and independent effect βsi on gene expression y

y =
S∑
s=1

∑
i

βsihsi + ε (5.1)

Here y is the gene expression for an individual, hsi indicates the number of the ith haplotype

in the sth section that an individual carries (either 0, 1 or 2) and ε ∼ N(0, σ2
e). When only

interested in finding associations between y and any of the haplotypes in a region s, we

can rewrite our model (Equation 5.2). Here ε now includes the variance due to all of the
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haplotypes not in region s as well as environmental noise.

y =
∑
i

βihi + ε (5.2)

5.2.2 Marginal SNP approach

The marginal SNP approach for identifying an association between a SNP and expression

fits the following additive model

y = βgjgj + ε (5.3)

where gj is the number of alternate alleles an individual carries at the jth SNP. Assuming

the model in Equation 5.2, βgj will be the difference between the frequency weighted av-

erage effect of haplotypes containing an alternate allele at SNP j and the average effect of

haplotypes that carry the reference allele:

βgj =
∑
i

βif(hi)I (hi(gj) = 1)

f(hi)I (hi(gj) = 1)
−
∑
i

βif(hi)I (hi(gj) = 0)

f(hi)I (hi(gj) = 0)
(5.4)

Here I (hi(gj) = 1) is equal to 1 if hi contains an alternate allele at the jth SNP (gj) otherwise

it is 0. Similarly, I (hi(gj) = 0) is equal to 1 if hi contains a reference allele at the jth SNP

(gj) otherwise it is 0. The frequency of haplotype hi is given by f(hi).

5.2.3 Haplotype set approach

The haplotype set (HapSet) approach fits an additive model similar to Equation 5.3,

y = βHgH + ε (5.5)

where gH is a pseudo-genotype for the number of haplotypes an individual carries that are

members of a set H of haplotypes (see Section 5.2.5). βH is the difference between the

average effect size of haplotypes in set H and the average effect size of haplotypes not in set

H (i.e. in set Hc)

βH =
∑
i

βif(hi)I (hi(H))

f(hi)I (hi(H))
−
∑
i

βif(hi)I (hi(H
c))

f(hi)I (hi(Hc))
(5.6)

Here I (hi(H)) and I (hi(H
c)) are equal to 1 if haplotype hi is a member of set H (or Hc)

and 0 otherwise.
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5.2.4 Testing for significant associations

A standard measure of association is the Wald statistic for an expression level y and genotype

(or pseudo-genotype) of SNP j (gj) for n individuals

zj =
β̂j

SE(β̂j)
=
Cov(gj, y)

√
n√

V ar(gj)σ2
e

(5.7)

which asymptotically follows a normal distribution with variance 1 and a non-centrality

parameter given by

λj
√
n =

βj
√
V ar(gj)

σe

√
n. (5.8)

Since the E(β̂j) = βj, under the marginal SNP approach, testing the SNP with the largest

βgj after standardizing gj will result in the largest association statistic for the marginal SNP

test. Likewise, for the HapSet approach, a set H that maximizes βH for a standardized gH

will maximize the association statistic for the HapSet approach. This is because for each

gene, only the maximum of all the observed test statistics is kept (a Zmax like test).

5.2.5 Determining haplotype sets

Since there is no way to know a priori the H that maximizes the difference, we test all

possible Hs from all 10 kb windows within 500 kb of a genes transcript start site. This

results in
(
NH

2

)
haplotype sets (and statistical tests) where NH is the number of haplotypes

observes in a 10kb window. To determine the Hs, we remove all SNPs with minor allele

frequency <0.05 and find all the haplotypes in a 10 kb region. We treat all haplotypes with

frequency <0.05 as a single haplotype. If there are more than 8 haplotypes in the group, we

use the 7 most frequently occurring haplotypes and treat all the remaining haplotypes as the

8th haplotype. We then compute all possible ways to form two sets (H and Hc). Using the

phased genotype data, for each H, we encode for each individual the number of haplotypes

they carry that are contained in H as gH . We compute gH for each H of every 10 kb region

in the genome.

We force the marginal SNP approach to be a subset of the HapSet approach. For each

SNP with minor allele frequency >0.05, we define all haplotypes with an alternate allele at

81



the SNP location to be in set H and all haplotypes with the reference allele at the SNP

location to be in set Hc.

5.2.6 Power simulations

We simulate four causal architectures using genotype data from chromosome 22 of the 373

Europeans in the GEUVADIS project. We use the non-transformed genotype data. We sim-

ulate using the following models where the proportion of the variance due to the underlying

architecture is h2: null, single causal SNP, two causal SNPs, SNPxSNP interaction and a

haplotype set model (Equations 5.9, 5.10, 5.11, 5.12 and 5.13 respectively). Causal SNPs

(gC1 and gC2) are randomly chosen from SNPs within 500 kb of a transcription start site.

All SNPs have minor allele frequency >0.05 except when using a rare single causal SNP

with frequency between 0.01 and 0.05. We fix all β values to be 1 and add noise to achieve

the desired h2. The haplotype set model assumes that a random set of haplotypes H all

have the same non-zero effect size. We draw the causal H from one of the Hs determined

in Section 5.2.5 that is within 500 kb of a transcription start site. When masking the causal

haplotypes, we do not test any SNPs or haplotypes within 10kb of the simulated causal

haplotypes. We then regress the simulated expression on all genotypes and gHs within 500

kb of the transcription start site. We simulate each trait 65,000 times for each h2 and the

null model 650,000 times.

y ∼ N(0, 1) (5.9)

y = βC1gC1 + ε where ε ∼ N

(
0, V ar(βC1gC1)

1− h2

h2

)
(5.10)

y = βC1gC1 + βC2gC2 + ε where ε ∼ N

(
0, V ar(βC1gC1 + βC2gC2)

1− h2

h2

)
(5.11)

y = βC1C2gC1gC2 + ε where ε ∼ N

(
0, V ar(βC1C2gC1gC2)

1− h2

h2

)
(5.12)
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y = βHgH + ε where ε ∼ N

(
0, V ar(βHgH)

1− h2

h2

)
(5.13)

5.3 Results

5.3.1 Data for simulations and analysis

Our analyses are based on publically available genotype and lymphoblastoid expression data

of 373 European individuals provided by the GEUVADIS[101] project. Following the GEU-

VADIS project, we only use expression from genes that had >0 quantifications in >90% of

individuals. We center and standardize the RPKM and PEER normalized gene expression

levels.

5.3.2 Controlling the family-wise error rate

Using all of the gH values calculated from the chromosome 22 genotypes of the 373 Euro-

pean individuals in the GEUVADIS data and the genotype data for SNPs with minor allele

frequency above 0.05, we compute significance thresholds using SLIDE [71]. Since eQTL

testing only looks at predictors within 500 kb of each gene, we ensure a FWER level for each

gene by scaling the threshold for a 1 Mb region. For a 0.05 desired FWER, this results in a

2.0x10−5 significance threshold for our HapSet approach. Running the same procedure using

the genotype data for the SNP approach, we estimate a per megabase significance threshold

of 5.8x10−5. The results from the different FWER levels (see Table 5.1) suggest that the

HapSet approach needs to correct for approximately three times as many independent tests

in comparison to the marginal SNP approach.

5.3.3 Power analysis

Our simulations show that the marginal SNP approach and HapSet approach are both well

calibrated under the null with 0.043 and 0.046 discovery rates when controlling for a 0.05

FWER. The power of both approaches increases as the variance due to the underlying genetic
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SNP HapSet

0.01 FWER 9.8x10−6 3.3x10−6

0.05 FWER 5.8x10−5 2.0x10−5

0.10 FWER 1.2x10−4 4.0x10−5

Table 5.1: Per megabase significance thresholds estimated with SLIDE. For the 0.01, 0.05
and 0.1 FWERs analyzed, the HapSet approach performs approximately three times as many
independent tests as the SNP approach.

architecture increases. The discovery rate of the SNP approach is slightly superior to that

of the HapSet approach when the underlying model is based on common SNPs (see Figure

5.1 and Table 5.2). However, if the underlying model is a single rare SNP with minor

allele frequency between 0.01 and 0.05, the HapSet approach outperforms the marginal SNP

approach. When the underlying model is a random set of haplotypes H, the HapSet approach

shows a substantial increase in power over the marginal SNP approach (see Figure 5.2 and

Table 5.2). For example, for a h2=0.05 and a haplotype set architecture, the SNP approach

has 56% power compared to 71% for the HapSet approach (see Table 5.2). When the set

of causal haplotypes is masked, the HapSet approach still outperforms the marginal SNP

approach.

Null

(h2=0)

Common

SNP

Two

SNPs

SNPxSNP

Interaction

Rare

SNP

Haplotype

Set

Haplotype

Set

(Masked)

SNP 0.043 0.78 0.35 0.75 0.20 0.56 0.43

HapSet 0.046 0.71 0.30 0.73 0.22 0.71 0.47

Table 5.2: Discovery rate of the marginal SNP and HapSet approaches when h2=0.05. The
marginal SNP approach outperforms the HapSet approach when the underlying genetic
architecture is based on SNPs. The exception is when the underlying architecture is based
on a rare SNP with allele frequency between 0.01 and 0.05. When the architecture is based
on haplotype sets, the HapSet approach strongly outperforms the SNP approach with 71%
discovery rate compared to a 56% rate for the SNP approach. When the haplotype sets and
SNPs within 10 kb of the simulated casual haplotype set are masked, the HapSet method
still outperforms the SNP approach. This indicates that there is not enough SNP density to
tag some haplotype combinations.
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Figure 5.1: Discovery rate of the marginal SNP and HapSet approaches with SNP-based sim-
ulated architectures. The proportion of variance due to the underlying genetic architecture
is given by h2. The HapSet approach slightly outperforms the SNP approach for causal SNPs
with minor allele frequencies between 0.01 and 0.05. Since the HapSet approach has a more
stringent significance threshold to control the FWER at 0.05, this indicates that the HapSet
approach is better tagging the causal SNP than the SNP approach. For all other SNP-based
causal architectures, the HapSet method performs slightly below the SNP approach. Since
the SNP approach is a subset of the HapSet approach, this is due only to the difference in
significance thresholds.

5.3.4 Analysis of GEUVADIS data

We apply the two approaches to the GEUVADIS gene expression data. Following the GEU-

VADIS analysis, we regress expression on the genotypes or HapSets (both standardized to

mean 0 and variance 1) while controlling for the top three genotype-based PCs[101]. We

use the 18,621 genes that passed the filtering criteria. We report in Table 5.3 the number
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Figure 5.2: Discovery rate of the marginal SNP and HapSet approaches with haplotype-based
simulated architectures. When a random set of haplotypes has a non-zero effect size, the
HapSet approach has a large power advantage over the marginal SNP approach. When
the set of causal haplotypes is masked, the HapSet approach slightly outperforms the SNP
approach.

of eGenes found by the SNP approach and the Haplotype approach while controlling for

different FWER levels.

When controlling for a 0.05 FWER, the two approaches found 4,495 overlapping eGenes

(see Table 5.3). The HapSet approach also found 707 eGenes that were not detectable using

genotype data. Since the SNP approach is a subset of the HapSet approach, yet has a less

stringent significance threshold, this indicates that marginal SNPs poorly tag the regulatory

architecture for these genes. Conversely, the 606 eGenes found only by the SNP approach

represent eGenes that had p-values smaller than 5.8x10−5 (the SNP approach threshold for

a 0.05 FWER) but larger than 2.0x10−5 (the HapSet threshold for a 0.05 FWER). In total,

there are 101 more eGenes identified by the HapSet approach than by the marginal SNP

approach. Using a more stringent 0.01 FWER shows that the marginal SNP test identifies

20 more eGenes than the HapSet approach. However, by allowing for a looser FWER of 0.1,

the HapSet approach again outperforms the marginal SNP approach and identifies 112 more

eGenes.

We evaluate the average squared effect sizes for the top SNP or HapSet for each eGene

when controlling for a 0.05 FWER. The 4,495 eGenes found by both approaches had mean
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Only SNP Both HapSet

0.01 FWER 348 3,408 328

0.05 FWER 606 4,495 707

0.10 FWER 874 5,157 986

Table 5.3: Number of eGenes identified by the marginal SNP and HapSet approaches while
controlling for a given FWER. The marginal SNP approach identifies 20 more eGenes than
the HapSet approach when using a 0.01 FWER, but with the 0.05 and 0.1 FWERs, the
HapSet approach identifies 101 and 112 more eGenes respectively.

squared effect sizes of 0.097 and 0.099 for the SNP and HapSet approach, respectively. The

606 eGenes only found by the SNP approach had effects sizes of 0.045 (SNP) and 0.045

(HapSet). The SNP approach is a subset of the HapSet approach but has a less stringent

significance threshold, which explains why these eGenes were not found by the HapSet

approach but have the same mean squared effect size. The mean squared effect sizes for the

eGenes found only by the HapSet approach have the largest difference of 0.034 (SNP) and

0.055 (HapSet). This difference may indicate that there are underlying causal architectures

that the HapSet approach is capable of effectively tagging but the marginal SNP approach

cannot identify. We regress out the effect of the top associated HapSet for the 707 eGenes

found only by the HapSet approach and compute the mean squared effect of the same top

(though not significant) SNP associations with the residuals. We observe a mean squared

effect of 0.013. This indicating the top SNPs were largely picking up on signal better captured

by the HapSet approach.

5.4 Discussion

In this work we present a new framework for tagging additive haplotype effects that are

insufficiently captured using the standard SNP-based regression approach. We implement

our method and demonstrate that it is well calibrated under the null hypothesis. We also

show that it has little loss of power due to an increase in the multiple testing burden for

common SNP architectures, but it has increased power for SNPs with <0.05 minor allele

87



frequency and haplotype-based architectures. When we apply our approach to real gene

expression data, we see increased power to detect eGenes as compared to the standard

marginal SNP approach. Most importantly, we observe a large number of eGenes that

are detected by the HapSet approach yet undetected by the SNP approach. Since the SNP

approach is a subset of the HapSet approach, but with a less stringent significance threshold,

this indicates that in many genes there are effects that are not well tagged by common SNPs.

Our method gives no indication of the specific causal architectures underlying each of

the eGenes found with the HapSet approach. Further analyses must be performed in order

to identify if there are multiple independent causal SNPs, a SNPxSNP interaction or a more

complicated haplotype based effect. It is possible that our method may be identifying rare

SNPs or un-typed genetic variation. Confounding from such variables has been observed in

tests associating SNPxSNP interactions with gene expression[74, 196, 75, 52].

Future work can implement a version of our approach for identification of associated loci

in complex traits. Many complex traits have GWAS loci that overlap known eQTLs[137],

and applying the HapSet approach to complex trait data is a natural extension. The second

direction is to apply the HapSet approach to fine mapping. Modeling more than 2 or 3 causal

SNPs in a region for fine mapping can be computationally challenging[89, 175, 195, 50, 79,

148, 54]. However, knowing which combinations of haplotypes are associated, and to what

degree, may improve efficient selection of SNPs and interactions between SNPs for testing.
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CHAPTER 6

Detecting causal gene-on-gene regulatory effects acting

through expression level

6.1 Introduction

Over the past decade, expression quantitative trait loci (eQTL) studies have identified many

single nucleotide polymorphisms (SNPs) that regulate gene expression levels [67, 180, 40].

These studies have shown that a substantial amount of gene expression variation is accounted

for by SNPs close to the gene, referred to as cis-eQTLs. Furthermore, a central interest of

these studies is to identify SNPs affecting expression of genes that are distant in the genome,

referred to as trans-eQTLs. One possible mechanism of these trans-eQTLs is that they are

cis-eQTLs for one gene; in other words, the expression of the cis-gene interacts directly with

a distant gene. We refer to this as a gene-on-gene effect. Identifying gene-on-gene effects is a

step forward in constructing gene regulatory networks. A major problem in identifying these

effects is the presences of noise created by unobserved confounding factors. In many cases,

the noise can create correlation between gene expressions not due to the genetic variation.

[37, 49, 11].

If the confounder influences expression from two genes in the data that have no gene-on-

gene effect, the genes may appear to be correlated to each other even though this correlation

arises only from the confounder. It has been well documented in the literature that con-

founding factors greatly affect gene expression levels and induce observed correlation between

genes [104, 87, 176, 84]. Common confounders include gender, shared trans-regulators or en-

vironmental effects and population structure. Traditional statistical inference methodologies

correct for the known confounding effects such as gender and population structure by in-
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cluding them (or their proxies) as covariates in the analysis. However, unknown confounding

effects cannot be corrected for in this way. Even after correcting for known confounders, an

observed correlation between gene expression levels cannot be interpreted as a gene-on-gene

effect since the correlation may be due to an unobserved confounder.

Several existing methods use a causal inference framework to infer the relationships

between genes[164, 29, 85, 132]. The overarching difficulty of these approaches is that a

confounding factor, either biological or technical, may affect the expression of both genes

and obscure the causal relationships. For example, the Chen et al. [29] method considers

a“triple” of a SNP and two genes in yeast, and it determines regulatory networks based on

the probability that one gene regulates another. Similarly Neto et al. [132] use quantitative

trait loci (QTLs) to infer the causal relationships in correlated phenotype networks. While

different, these approaches attempt to intuitively identify if there is a causal relationship

between the two genes by examining the joint distributions and conditional distributions

between the genes and the SNP. These approaches are related to Mendelian randomization,

which is rooted in classical randomized control trial theory and causal inference [147], where

the SNP is treated as an instrumental variable.

We leverage insights from recent eQTL studies in our approach to estimate the direction

and the magnitude of causal relationships between genes. Because wide-spread cis-eQTLs are

present throughout the genome, we focus on a quartet of two genes and their corresponding

two cis-eQTLs. Our quartet idea is related to the use of multiple instrumental variables

in Mendelian randomization (referred to as bi-directional Mendelian randomization). These

types of structures have been of interest in the community (e.g. see Kreimer and Pe’er 2014

[98]). To examine our method, we utilized both simulated and real datasets. When applied

to several simulated datasets, our method is robust to different levels of confounding effects.

From the simulations it is clear that when we apply our method to the Genotype-Tissue

Expression (GTEx) data where at mosts there are only 338 individuals per tissue sample,

the method will only have power to identify very strong gene-on-gene effects. Applied to four

tissues in the GTEx data [40], we find a single gene pair that is significant after controlling

the false discovery rate (FDR) at α = 0.05.
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Figure 6.1: Possible causal graphs relating two eGenes, g1 and g2. s1 is the cis-eQTL of g1,
s2 is the cis-eQTL of g2. We use U to represent all unobserved factors u1 and u2. u1 and
u2 may have unknown correlation ρ that may create correlation between g1 and g2 in all
models, even when there is no gene-on-gene effect.

6.2 Methods

6.2.1 Overview

eQTL studies have verified several genes with cis-acting SNP effects, referred to as eGenes

[40]. We model the relationship in a quartet of two eGenes and their two cis-acting SNPs,

including unknown confounding factors that affect both of the eGenes. Figure 6.1 shows the

possible causal graphs for a quartet. U represents u1 and u2 that are the unobserved factors

and the noise that may or may not be correlated. This noise creates correlation in g1 and g2

that is not due to a gene-on-gene effect.

H0 in Figure 6.1 shows the case when there is no gene-on-gene effect between the two

eGenes, however, the unknown confounding effects may induce indirect correlations between

the eGenes. H1 and H2 in Figure 6.1 show causal graphs when the two eGenes contain direct

gene-on-gene effects from one to another. Regressing g2 on g1, or the reverse, to determine a

gene-on-gene effect would be confounded and result in a false positive. However, regressing

g2 on the cis-component of g1 due to s1 will not be confounded because there is no back

door path connecting s1 to U . This is because s1 is subject to Mendelian randomization.

Using this approach and the known cis-effects, we can estimate the gene-on-gene effects and
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perform permutations to establish significance.

6.2.2 Generative model

Our method is based on a linear model framework with the following generative model:

g1 = βs1g1s1 + βg2g1g2 + u1 (6.1)

g2 = βs2g2s2 + βg1g2g1 + u2 (6.2)u1
u2

 ∼ N

(
0,

 σ2
1 ρσ1σ2

ρσ2σ1 σ2
2

) (6.3)

Let n be the number of samples, then gi is a vector of length n, which contains the expression

levels of gene i, where each element in gi represents the expression of gene i on individual. si

is a vector of length n, which contains the genotype values of a SNP that cis-regulates gene i

and has mean 0 and variance 1. βs1g2 is the cis-effects of s1 on g2, βs2g1 is similar. βg1g2 is the

gene-on-gene causal effect of g1 on g2 and βg2g1 is similar. u1 and u2 are the noise of g1 and

g2 and may be correlated due to unobserved confounders. u1 and u2 follow a multivariate

normal distribution with means 0 and a variance covariance structure such that u1 and u2

have a correlation of ρ and variances of σ2
1 and σ2

2.

We assume that the gene-on-gene effect can only be in one direction (no feedback and

therefore require that either βg1g2 or βg2g1 , or both, be zero. Assuming that βg2g1 = 0, we

can rewrite Equation 6.1 and substitute it into Equation 6.2 for the g1 term as follows:

g1 = βs1g1s1 + u1 (6.4)

g2 = βs2g2s2 + βg1g2βs1g1s1 + βg1g2u1 + u2 (6.5)

From these equations, the effect of g1 on g2 is broken into the two components βg1g2βs1g1s1

and βg1g2u1. We assume that s1 and s2 are independent of each other and of u1 and u2,

therefore regressing g2 on s1 will have an expected regression coefficient of βg1g2βs1g1 .
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6.2.3 Gene-on-gene effect size estimation

In all three models shown in Figure 6.1 there is no variable that d-separates g1 and g2. Since

u1 and u2 are unobserved with unknown correlation and cannot be conditioned on, g1 and

g2 can be dependent on each other due to the confounding effects even though there is no

gene-on-gene effect between g1 and g2. Since s1 is d-connected to g1 and d-separated from

g2, we use it as an instrumental variable to determine the effect of g1 on g2.

We are able to use s1 and s2 as instrumental variables because they are subject to

Mendelian randomization [103, 172, 25], which can be assumed to be independent of the

traits of interest. We can thus assume that the observed genotype values are independent

of any observed or unobserved confounders that would create correlation between g1 and

g2. One assumption of this method is that the only way the instrumental variable s1 can

influence g2 is through the modeled causal pathway. In order to assure this in real data, we

require that gene pairs be on different haplotypes. Thus any observed effect cannot be a

cis-effect.

The following procedure is used in our method to determine if there is a direct effect of

g2 on g1 such as in H2 in Figure 6.1. We separately regress g1 and g2 on the instrumental

variable s1 to fit the following regression equations:

g1 = r1s1 + ε1 (6.6)

g2 = r2s1 + ε2 (6.7)

where r1 is the ordinary least squares estimate of βs1g1 , r2 is the estimate of βg1g2βs1g1 . ε1

and ε2 represent the residuals. To reduce the noise in the estimates, first we regress out the

cis-effect of the opposite gene. For example, we regress s2 out of g2, then regress the residual

on s1. This removes a portion of the variance in g2 due to the βs2g2s2 term in Equation 6.2

and Equation 6.5, resulting in a less noisy estimate of r2. The correlation between u1 and u2

will also affect the variance in the estimate of r2 but will not affect the expected estimate.

Since s1 and s2 are both independent of u1 and u2 (see Equations 6.4, 6.5, 6.8 and 6.9),

E(r1) = βs1g1 and E(r2) = βg1g2βs1g1 , the ratio E(r2/r1) = βg1g2βs1g1/βs1g1 = βg1g2 provides an
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estimate of the effect of g1 on g2. This allows us to circumvent the effect of confounding due

to the correlation of u1 and u2. We use the same approach to estimate βg2g1 . We assume

that there is no feedback, therefore only one of the gene-on-gene effects can be non-zero. We

take the absolute maximum of βg1g2 and βg2g1 to have a non-zero value.

6.2.4 Estimate p-values through permutations

In order to determine if βg1g2 or βg2g1 are significant, we use a permutation approach. We

permute the labels of one expression and a set of genotypes from one of the genes. While this

maintains the cis-effects of SNPs on gene expression levels and the observed distributions

of genotypes and expressions, it breaks any gene-on-gene effect and the covariance in the

expression levels (see Section 6.3.1 for further discussion). We then estimate βg1g2 and βg2g1

for each permuted dataset and record the absolute maximum of those. We repeat this

procedure 2,000 times for the power analysis and 50,000 times for the GTEx data analysis.

We estimate an empirical p-value as the percentage of permutations with larger gene-on-gene

effect than in the unpermuted data.

6.2.5 Simulated Data

We simulate data using the generative model described in Section 6.2.2. We draw s1 and s2

from standard normal distributions. We fix the cis-effects to be βs1g1 = 0.2 and βs2g2 = 0.2

Since our estimate of βg1g2 is based on the ratio r2/r1, we want to avoid very small estimates

of r1 as the ratio would approach dividing by 0. We then choose values for βg1g2 of 0, 0.15,

0.2 and 0.9. The correlation between u1 and u2, ρ, is set to be -0.9, -0.5, -0.2, 0, 0.2, 0.5 or

0.9. Finally, we solve for σ1 and σ2 from the following equations based on taking the variance

of Equations 6.4 and 6.5 and recognizing that the variance of the all si and gi are set to 1:

1 = β2
s1g1

+ σ2
1 (6.8)

1 = β2
s2g2

+ β2
g1g2

β2
s1g1

+ β2
g1g2

σ2
1 + σ2

2 + 2βg1g2ρσ1σ2 (6.9)

We then have all the parameters for simulating under the generative model laid out in

Equations 6.1, 6.2 and 6.3. For each set of simulation parameters, we estimate the family-

94



wise error rate (FWER) by setting βg1g2 = 0) and the power by setting βg1g2 6= 0). We use

24,000 simulations for each set of parameters.

6.2.6 GTEx Data: Tissues and Filtering

We apply our method to four of tissues from the GTEx project: Whole Blood from 338

samples, Muscle-Skeletal from 361 samples, Artery-Tibial from 285 samples and Adipose-

Subcutaneous from 298 samples. We transform the genotype data and the expression data

for each gene to have mean 0 and variance 1 within each tissue. We regress out the top

three principle components. We do not assume that they correct for all of the confounding.

We then filter out all genes where the eQTL has an absolute effect size < 0.2. Since genes

that have highly correlated expression are likely to be in the same network, it is probable

that a gene in a network can have a regulatory effect on other genes in that same network.

Therefore we only look for gene-on-gene effects between genes that have absolute expression

correlations of at least 0.8. In order to ensure that a SNP eQTL does not have a direct

cis-effect on both genes (which would lead to a false positive), we require that the genes

in each pair be located on different chromosomes. In the future, a Hi-C study could also

confirm that there is no interacting chromatin region near the two genes. We assume that

this also eliminates the correlation between s1 and s2. We summarize the effects of this

filtering scheme in Table 6.3. We then apply our method as described in Sections 6.2.3 and

6.2.4 to estimate the magnitude, direction and significance of the gene-on-gene effects for

each gene pair. We use the Benjamini-Hochberg procedure to control for a 0.05 FDR of

gene-on-gene effects in each tissue.

6.3 Results

6.3.1 Simulated Study

Using the model described in the Section 6.2.2, we simulated gene-on-gene effects in 24,000

simulations for each combination of parameters. We fix βs1g1 = βs2g2 = 0.2 and draw
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Figure 6.2: Discovery rate as a function of sample size n, gene-on-gene effect βg1g2 and
correlation between u1 and u2 (ρ, rho). The discovery rates in the n = 2, 000 simulations are
robust to changes in correlation between u1 and u2. Simulations with smaller sample sizes
have a decrease in discovery rate with increasing correlation.

genotype values from a standard normal distribution for simulations under both H0 and

H1. We run our simulation set up with βg1g2 = 0 in order to estimate the FWER. Table

6.1 shows that for ρ values ranging from -0.9 to 0.9, our method is well calibrated under

the null regardless of sample sizes. According to our results, permutations that break the

correlations in the confounding factors do not have an effect on the FWER.

As expected, simulations demonstrate that the power of our method increases as the

sample size n and the magnitude of βg1g2 increase. This is observed regardless of the cor-

relation between u1 and u2 (see Figure 6.2 and Table 6.2). While the discovery rate for a

sample size of 2,000 and βg1g2 = 0.2 remains near constant around 0.52, the discovery rate

for the smaller samples sizes of n=1,000 and n=338, is largely influenced by ρ. We expect

this, because a large and negative correlation reduces noise in the estimate of βg1g2 relative to

when the correlation is large and positive. For larger sample sizes, the effect of confounding

is less pronounced since the sample size makes the estimate more accurate. Unfortunately,

the largest GTEx sample size is n = 338, which means power will be quite low to observe

anything but extremely large βg1g2 effects in the real data.
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n -0.9 -0.5 -0.2 0.0 0.2 0.5 0.9

338 0.050 0.054 0.052 0.050 0.051 0.053 0.048

1000 0.051 0.050 0.048 0.050 0.051 0.051 0.049

2000 0.054 0.054 0.051 0.051 0.052 0.051 0.048

Table 6.1: Family-wise error rate as a function of sample size and correlation of u1 and u2
ranging from -0.9 to 0.9 when simulating under H0.

n -0.9 -0.5 -0.2 0.0 0.2 0.5 0.9

338 0.151 0.123 0.113 0.106 0.093 0.081 0.065

1000 0.304 0.279 0.273 0.264 0.256 0.246 0.232

2000 0.521 0.520 0.526 0.520 0.518 0.516 0.520

Table 6.2: Power to detect a βg1g2 = 0.2 effect as a function of sample size and correlation
(ρ) between u1 and u2.

6.3.2 GTEx data

We apply our method to four tissues from the GTEx project that have the largest number of

individuals with both expression data and genotype data. We summarize effects of filtering

and the top result from each tissue in Tables 6.3 and 6.4. When controlling the FDR at α =

0.05 using the Benjamini-Hochberg procedure, the Artery-Tibial data contains a significant

gene-on-gene effect for with the genes ENSG00000130300.4 and ENSG00000184497.8. With

only 5 gene pairs passing the filtering requirements, the p-value for the gene pair (0.005)

would still be significant when controlling FDR at α = 0.02. This gene pair is also reported

in a co-expression network in BRCA tumors as one of the 20 most highly correlated gene

pairs[92].

The Whole Blood analysis had the second largest sample size. 49 gene pairs passed the

filtering criteria. This tissue contains the most marginally significant βg1g2 estimate (p-value

= 0.003) for the genes ENSG00000075303.8 and ENSG00000173890.12, however this gene

pair would only be significant if controlling the FDR at α = 0.14. In the Muscle-Skeletal
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Tissue Samples eGenes |cis-effect| >0.2 |ρ| > 0.8

Artery-Tibial 285 8056 4523 5

Muscle-Skeletal 361 7082 3572 5

Whole Blood 338 6784 3182 49

Adipose-Subcontaneous 298 8500 4908 3

Table 6.3: Effect of filtering criteria on genes in the four GTEx tissues. eGenes represents
the total number of eGenes identified in the tissue. |cis-effect| >0.2 is the number of eGenes
remaining after filtering out eGenes with small cis-effects. |ρ| > 0.8 represents the number
of eGene pairs evaluated after the cis-effect filtering and requiring that eGenes been on
different chromosomes and have an absolute correlation of at least 0.8.

tissue, the ENSG00000128928.4 and ENSG00000114054.9 gene pair as a marginal p-value

of 0.012 but would only pass FDR filtering if controlling at an α = 0.06. There were no

marginally significant gene pairs observed in the Adipose-Subcutaneous tissue.

In order to see if the gene-on-gene effects are maintained across tissues, we take the four

gene pairs reported in Table 6.4 and examine the observed effect in the tissues where it was

not found (see Table 6.5). We do not observe any significant effect sizes. When looking

across tissues, cis-effects can significantly differ across tissues and this results in division by

very small numbers when estimating E(r2/r1) = βg1g2βs1g1/βs1g1 = βg1g2 . Finally, due to the

complex regulatory and epigenetic changes that occur across tissues[41, 6], it is very possible

that a gene-on-gene effect in one tissue will not exist in another.

6.4 Discussion

In this work we present a method to use SNPs as instrumental variables for identification

of causal relationships between the expression levels of genes. By drawing on concepts from

Mendelian randomization we are able to estimate both the effect size and the direction of

these gene-on-gene effects. Gene-gene correlation networks have been used extensively, but

are limited because identified correlations may be either causal relationships in the network or

due to confounders. Our new method will allows estimation of effect direction and magnitude
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Tissue Gene Pair P-value FDR threshold |βg1g2|

Artery-Tibial
ENSG00000130300.4

ENSG00000184497.8
0.005 0.02 0.75

Muscle-

Skeletal

ENSG00000128928.4

ENSG00000114054.9
0.012 0.06 0.54

Whole Blood
ENSG00000075303.8

ENSG00000173890.12
0.003 0.14 0.77

Adipose-

Subcontaneous

ENSG00000170889.9

ENSG00000149273.10
0.086 0.259 0.44

Table 6.4: Top results form GTEx analysis in four tissues. the Gene Pair column is the pair
of genes with the most significant gene-on-gene effect, P-value is the p-value for this gene
pair. FDR threshold can be interpreted as the smallest FDR that can be controlled for such
that the gene-on-gene effect passes FDR control.

and this forms a valuable additional component for gene network analysis studies.

While our method is robust to most forms of confounding, a false positive will occur if

the confounder is correlated to the SNP genotype that is used as the instrumental variable.

Such a false positive would likely still involve a gene-on-gene effect as the means for the SNP

to affect the confounder, but the true model would not match either H1 or H2 in Figure 6.1.

It is also possible that a SNP coud be a cis regulator for genes g1 and g2 and that g2 could

have a tran effect on a third gene g3. This would result in a false detection of a gene-on-gene

effect of g1 on g3, but the effect of g2 on g3 would still be a true gene-on-gene effect if it were

detected.

The main limitation of applying our method to the GTEx data is the small sample sizes.

Especially after controlling the FDR, due to sample sizes, our method is limited to finding

genes with the largest effect size. This can be seen with the large effect size estimates for

the top gene pairs in the GTEx data. Future work could increase the power of analysis by

leveraging cross-tissue gene-on-gene effect estimates.

99



Gene Pair
Artery-

Tibial

Muscle-

Skeletal

Whole

Blood

Adipose-

Subcontaneous

ENSG00000130300.4

ENSG00000184497.8
0.75* 49.92 0.16 0.66

ENSG00000128928.4

ENSG00000114054.9
0.33 0.54* .27 -0.29

ENSG00000075303.8

ENSG00000173890.12
-0.55 -2.47 0.77* -5.98

ENSG00000170889.9

ENSG00000149273.10
-1.12 -0.13 0.40 0.44*

Table 6.5: The estimated gene-on-gene effects for the top gene-pairs from each tissue, esti-
mated in each tissue. The * indicates the tissue where the gene pair had the top gene-on-gene
effect (see Table 6.4). None of the estimated gene-on-gene effects in other tissues were sta-
tistically significant based on permutations.
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