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Abstract

Sharp Switching in Tunnel Transistors and Physics-based Machines for Optimization

by

Sri Krishna Vadlamani

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Eli Yablonovitch, Chair

In this thesis, I report my work on two different projects in the field of energy-efficient
computation:

Part 1 (Device Physics): Tunnel Field-Effect Transistors (tFETs) are one of the candidate
devices being studied as energy-efficient alternatives to the present-day MOSFETs. In these
devices, the preferred switching mechanism is the alignment (ON) or misalignment (OFF)
of two energy levels or band edges. Unfortunately, energy levels are never perfectly sharp.
When a quantum dot interacts with a wire, its energy level is broadened. Its actual spectral
shape controls the current/voltage response of such transistor switches, from on (aligned) to
off (misaligned). The most common model of spectral line shape is the Lorentzian, which falls
off as reciprocal energy offset squared. Unfortunately, this is too slow a turnoff, algebraically,
to be useful as a transistor switch. Electronic switches generally demand an ON/OFF ratio of
at least a million. Steep exponentially falling spectral tails would be needed for rapid off-state
switching. This requires a new electronic feature, not previously recognized: narrowband,
heavy-effective mass, quantum wire electrical contacts, to the tunneling quantum states.

Part 2 (Systems Physics): Optimization is built into the fundamentals of physics. For exam-
ple, physics has the principle of least action, the principle of minimum power dissipation, also
called minimum entropy generation, and the adiabatic principle, which, in its quantum form,
is called quantum annealing. Machines built on these principles can solve the mathemati-
cal problem of optimization, even when constraints are included. Further, these machines
become digital in the same sense that a flip–flop is digital when binary constraints are in-
cluded. A wide variety of machines have had recent success at approximately optimizing
the Ising magnetic energy. We demonstrate that almost all those machines perform opti-
mization according to the principle of minimum power dissipation as put forth by Onsager.
Moreover, we show that this optimization is equivalent to Lagrange multiplier optimization
for constrained problems.
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Chapter 1

Introduction

1.1 Part 1: MOSFETs, subthreshold slope, tunnel

transistors

The fundamental building blocks of electronic computing systems today are electronic devices
called transistors. The transistor was invented at the Bell Telephone Laboratories in 1947
by Shockley, Bardeen, and Brattain; they were later awarded the Nobel Prize for this world-
changing innovation.

Transistors are three-terminal electronic devices that perform two very important func-
tions—amplification in analog circuits, and switching in digital logic circuits. The most
popular transistor today, by far, is the Metal Oxide Semiconductor Field Effect Transistor
(MOSFET). The MOSFET switch has truly revolutionized computation; its intrinsically low-
power operation and the exponential miniaturization of the device effected by researchers
and engineers in the past few decades have given us access to tremendous computational
power today in the form of smartphones, laptops, and supercomputers.

The MOSFET has three terminals, the source, the drain, and the gate. When a voltage
is applied between the source and the drain terminals, current flows between them through
an intermediary channel. The switching mechanism in a MOSFET switch is based on the
fact that the conductance of the channel can be modulated using the gate terminal. In the
conventional NMOS transistor depicted in Fig. 1.1, a high gate voltage makes the channel
highly conducting and causes current to flow between the source and the drain. This is
the ON state of the switch. A low gate voltage, on the other hand, turns the transistor
OFF because it greatly reduces the channel conductance. The ratio between the ON and
OFF state currents is called the ON-OFF ratio of the device. We now look at the switching
mechanism in more detail.

The transition of the MOSFET from the ON state to the OFF state is composed of
two stages. As the gate voltage Vgs is reduced from a high starting value, the source-drain
current Ids falls off slowly initially, in the ‘above-threshold’ region, and then decays rapidly
in the ‘subthreshold’ regime. The subthreshold decay of Ids is in fact exponential with a
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Figure 1.1: A standard MOSFET has three terminals, the source, the drain, and the gate. When
a voltage is applied between the source and the drain terminals, current flows between them through
an intermediary channel. The conductance of the channel is modulated using the gate terminal.

characteristic voltage that is proportional to kT :

Ids ∝ eqVgs/ηkT (1.1)

In the above equation, k is the Boltzmann constant, T is the temperature, and η is a
dimensionless factor that we will explain in the next paragraph. The mechanism underlying
this exponential dependence is depicted in Fig. 1.2.
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Figure 1.2: (a) When the gate voltage is low, the channel barrier is high, allowing only a few
source electrons to the drain. (b) A higher gate voltage pushes the barrier down and allows an
exponentially greater number of electrons to flow to the drain.

The MOSFET channel acts as a potential barrier to the many electrons in the n+ doped
source and drain. Only the electrons in the source that have energies that are higher than the
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barrier can participate in electrical conduction. The barrier is high when the gate voltage is
zero, and gets gradually lowered as the gate voltage is increased. Since the Fermi occupation
number looks like the Boltzmann factor far way from the Fermi level, the number of electrons
that are free to participate in conduction as the barrier is lowered increases exponentially
with the magnitude of barrier lowering. The fraction of the applied gate voltage that is
dropped across the semiconductor body is given by the dimensionless factor 1/η—this same
η appears in Eq. (1.1). Since 1/η is a proper fraction, η is atleast 1.

Eq. (1.1) tells us that, in the subthreshold region at room temperature, the plot of
log10(Ids) vs Vgs is a straight line on which Ids increases by a factor of 10 for the application
of every 60ηmV of gate voltage. The quantity 60ηmV/decade is called the subthreshold slope
VSS of the device and it captures the amount of voltage that needs to be applied in order to
turn the device ON. Even in the best case of η = 1, the subthreshold slope of the MOSFET
can only be 60mV/decade, and no lower (we get back to this point later in this section).
This fundamental statistical mechanical limit on the subthreshold slope of MOSFETs has
important implications for the ON state operating voltage and power consumption of circuits
as we see next.

Requirements of a good switch

A switch of industrial caliber is required to have three important properties:

1. high ON current—to drive the downstream logic components at high speed,

2. low OFF current, or equivalently, high ON-OFF ratio—to minimize power losses when
the device is idle (also called the static power consumption), and

3. low ON voltage, or equivalently, low subthreshold slope—to minimize the total oper-
ating power of the circuit (also called the dynamic power consumption).

The MOSFET scores high on the first two criteria. According to the 2020 edition of the
International Roadmap for Devices and Systems (IRDS) [1] published by the IEEE, the
specifications of the FinFET, the state-of-the-art MOSFET in 2020, were: ON voltage =
0.7 V, VSS=72 mV/decade, VT=0.345 V, ON current = 484 µA/µm, OFF current = 100
pA/µm. From these numbers, the ON-OFF ratio is nearly 5 × 106. All these numbers are
excellent, but the high ON voltage, caused by the high subthreshold slope, means that today’s
super-densely packed circuits consume large amounts of power in dynamic operation. Since
MOSFETs can have a slope of only VSS=60 mV/decade in the best case, the ON voltage
will still have to be of the order of 0.5V in order to obtain an ON/OFF ratio of a million.

Getting around this fundamental limit will require groundbreaking new research in MOS-
FETs or totally new device concepts and mechanisms. One of the most seminal recent ideas
in the first category is the use of ferroelectric materials as a negative capacitance in
MOSFETs, first proposed in 2008 by Salahuddin et al [2]. The negative capacitance helps us
achieve η < 1, pushing the subthreshold slope below 60mV /decade. Ferroelectric negative
capacitance transistors are now being fabricated and studied intensively around the world.
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Novel transistor concepts; Tunnel transistors

Over the past few decades, there has also been a sustained research effort in the device
research community in the second direction mentioned earlier, that is, in conceptualizing
and building new transistors based on novel switching mechanisms different from the thermal
barrier hopping mechanism of the MOSFET. Tunnel transistors and electromechanical
relays are examples of novel devices that rely on mechanisms different from thermal barrier
hopping for switching. The decade-long Center for Energy Efficient Electronics Science
(E3S) was established by the National Science Foundation (NSF) in 2010 to study tunnel
transistors and mechanical relays in more detail. My work in Part 1 of this thesis deals
with the physics of tunnel transistors. We show that tunnel transistors of the so-
called ‘energy-filtering’ variety have to be constructed using narrow-band, heavy-
effective mass wires to avoid large penalties in the subthreshold regime that arise
from fundamental spectroscopy theory.

1.2 Part 2: Physics-based optimization—Ising solvers

Optimization is ubiquitous in today’s world. Everyday applications of optimization range
from aerodynamic design of vehicles and physical stress optimization of bridges to airline
crew scheduling and delivery truck routing. Furthermore, optimization is also indispensable
in machine learning, reinforcement learning, computer vision, and speech processing. Given
the preponderance of massive datasets and computations today, there has been a surge of
activity in the design of hardware accelerators for neural network training and inference [3].

In this context, physicists and electrical engineers can ask whether physics can be ex-
ploited to address optimization and contribute to large-scale industrial problems. Luckily,
nature is so structured that almost every fundamental physics principle can be thought of in
terms of optimization. Newton’s laws, for instance, are recast as an optimization principle
in Lagrangian mechanics where the paths of particles are those that minimize a certain time
integral. This is the famous ‘Principle of Least Action’. In dissipative systems, thermody-
namic currents (fluxes) adjust themselves to given thermodynamic forces such that, in steady
state, the power dissipation is minimized. This is the ‘Principle of Minimum Power Dissipa-
tion’ (also called Minimum Entropy Generation). In quantum mechanics, the measurement
of a system observable leads to the collapse of the state to an eigenvector of the observ-
able. Therefore, the measurement of quantum systems automatically solves the eigenvector
problem for arbitrary Hermitian matrices, and it is common knowledge that the eigenvector
problem can be recast as a variational problem. The slow reduction of temperature, or an-
nealing, of crystals causes them to gradually adopt crystal configurations of lower and lower
potential energy. Physical annealing, therefore, optimizes the potential energy with the use
of thermal noise. This fact inspired algorithms like Simulated Annealing several decades ago.
Finally, the adiabatic theorem in physics that tells us how the state of a system evolves when
the interactions in the system are slowly varied. This principle, which is also referred to as
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‘quantum annealing’ in the quantum computing community, is exploited in several quantum
optimizers today.

In due course, the research community may learn how to use each of these principles
efficiently to build industrial-scale non-digital optimization accelerators and solvers that
offer time and energy benefits in problem solving. Let us consider the principle of minimum
power dissipation in dissipative physical systems such as resistive electrical circuits. It was
shown by Onsager [4] that the equations of linear systems, like those of resistor networks,
can be thought of as minimizing a power dissipation function f(i1, i2, . . . , in) for currents in
in various branches of the resistor network. This means that, in steady state, the currents
in the circuit are such that the power dissipation is minimized. If one designs a physical
system that has the same functional form for the power dissipation as the mathematical
merit function of interest, the circuit itself will find the minimum of the merit function.

Optimization is generally accompanied by constraints. For example, perhaps the con-
straint is that the final answers must be restricted to be ±1. Such a digitally constrained
optimization produces answers compatible with any digital computer. So, if we could con-
struct a physical system that performs optimization subject to this binary constraint, we
could then directly integrate it with the digital pipeline of mainstream computation. As a
step in this direction, a series of physics-based machines have been developed in the physics
and engineering community in the past decade to approximately solve the Ising problem,
a difficult optimization problem with binary constraints.

Ising solvers

x1

x2

J12

Figure 1.3: The Ising problem setup. A collection of N spins, which can each individually only
point up (xi = 1 if the i-th spin is up) or down (xi = −1), interact via pairwise interaction energies
−Jijxixj . The problem is to find the vector of orientations of the N spins, x, that minimizes the
sum of all the pairwise energies.

The Ising challenge is to find the minimum energy configuration of a large set of magnets.
It is NP-hard when the magnets are restricted to two orientations, North pole up or down
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[5]. The problem setup is depicted in Fig. 1.3.
Mathematically, let the orientation of the i-th spin be represented by a binary variable

xi which is +1 if the spin is pointed along +z and −1 otherwise. The interaction energy
between the i-th and j-th spins is specified by the interaction strength Jij and their respective
orientations xi and xj. Further, the i-th spin could also interact with a local magnetic field
specified by hi. The problem is to find the assignment x∗ that minimizes the total Ising
magnetic energy:

x∗ = arg min
x: xi=±1 ∀ i

(
−

N∑
i=1

hixi −
1

2

N∑
i=1

N∑
j=1

Jijxixj

)
= arg max
x: xi=±1 ∀ i

(
hTx+

1

2
xTJx

)
(1.2)

This problem is NP-hard, and consequently, there is no known polynomial-time algorithm
that solves it exactly.

The recently proposed physics-based Ising solvers in the literature were implemented on
a range of platforms including coupled optical parametric oscillators, RLC electrical circuits,
coupled exciton-polaritons, and silicon photonic coupler arrays. The main insights in our
work are that most of these Ising solvers use hardware based on the Principle
of Minimum Power Dissipation and that almost all of them implement the well-
known Lagrange Multipliers method for constrained optimization.

We recognized that the solution procedure in each case is fundamentally based on the
application of Lagrange multipliers to the Ising problem with different physical quantities in
each system playing the role of the Lagrange multipliers. The machines inherently perform
gradient descent on the Lagrange function. For this reason, they can become stuck in local
optima. However, they have the advantage that they can possibly converge to good local
optima orders-of-magnitude faster, and in a more energy-efficient manner, than conventional
digital chips that are limited by latency and the energy cost. Moreover, recent work [6] has
demonstrated that these systems are also adaptable toward more advanced techniques for
escaping from local optima and cleverly exploring the search space. Our viewpoint is that,
these machines can, at the very least, help us perform rapid, energy-efficient searches for
local optima, and thus narrow down on the global optimum.

Applications to machine learning

The potential time and energy savings these kinds of optimization solvers seem to offer can
have a major impact on contemporary machine learning. Artificial intelligence today runs on
neural network models with billions of parameters that are chosen by minimizing the error
of the neural network on massive datasets of image, video, or natural language samples.
The training process can be very energy-intensive [7] and there are already several start-ups
building specialized low-power accelerator hardware for this purpose. Examples of non-
digital hardware in the industry and academic literature are the CMOS matrix multipliers
of Mythic [8], the optical beam-splitter multipliers of Shen et al. [3], and the highly-efficient



CHAPTER 1. INTRODUCTION 7

photodetector matrix multipliers of Hamerly et al. [9]. In this spirit, we present a straight-
forward generalization of physics-based Ising solvers to the problem of least-squares linear
regression at the end of Part 2.
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Part I

Spectral lineshape theory for tunnel
transistors and optical absorption
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Chapter 2

Tunnel Transistors and Spectroscopy

Spectroscopy is the branch of physical science that deals with predicting and understanding
the frequency response of systems to external perturbations. An example of such a frequency
response is the absorption coefficient, α(ω), that quantifies the extent to which the light
incident on a system is absorbed by it at different frequencies. The exact mathematical shape
of the frequency response function is commonly called the spectral line shape. A Lorentzian
line shape function 1/

(
(ω − ω0)2 + (Γ/2)2), where ω0 is the peak resonance frequency and

Γ is the associated ‘linewidth’, is often encountered in theoretical calculations. However,
this form rarely applies in experimental condensed matter physics. In the solid state, the
optical spectrum of electronic transitions usually decays exponentially—this is the so-called
Urbach tail, e−(ω−ω0)/ΓU , where ΓU is the characteristic Urbach decay frequency [10]. The
importance of the exponential Urbach tail, especially for optical communications, is discussed
in Chapter 3.

In this chapter, we introduce another instance in which an exponentially decaying spec-
trum has important consequences for technology—the switching behavior of the tunnel field-
effect transistor (tFET). Tunnel transistors are attractive as an alternative to the MOSFET
because they are not fundamentally limited by the thermal subthreshold slope limit of 60
mV/dec [11]. These devices were first conceived of in the late 1970s [12] and several early
theoretical proposals and experimental demonstrations followed in the ensuing couple of
decades [13–17], although none of them exhibited subthermal subthreshold slopes. In the
2000s and the 2010s, a large variety of device structures and material systems under various
thermal, stress, and other physical conditions were investigated [18–35], and we now have
several theoretical proposals, backed by simulations [36–42], and experimental demonstra-
tions [43–58] of devices with subthreshold slopes either below 60 mV/dec or very close to it.
Unfortunately, subthermal subthreshold slopes are achieved only for a few decades of current
or at very low current levels.

In tFETs, there are two mechanisms which can be exploited to obtain improvements in
the subthreshold slope [59]. They are: (1) the tunneling distance can be modulated [60–62],
(2) the energy levels can be aligned or misaligned between the source and drain—this is
sometimes called the energy-filtering mechanism [63, 64].
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(a) No gate voltage
Thicker barrier

(b) High gate voltage
Thinner barrier

p Source i Channel n Drain p Source i Channel n Drain

OFF ON

Figure 2.1: Tunnel distance modulating tunnel transistors. The barrier between the source and
the channel is large in the absence of gate voltage and the device is OFF (left). A positive gate
voltage narrows the barrier and turns the device ON (right).
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Figure 2.2: Näıve picture of energy-filtering tunnel transistors. A slight offset in the drain and
source quantum dots leads to the current between them immediately going to zero so that energy
conservation remains satisfied.

Tunnel distance modulation, shown in Fig. 2.1 is more common, but its response to
control signals becomes less steep and more gradual at precisely the higher conductance
densities that are actually needed for driving wires in a circuit [65]. Thus, the preferred
mechanism for switching is energy filtering—alignment (ON) or misalignment (OFF) of two
energy levels or band edges.
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In energy filtering, the channel comprises two quantum dots, a source dot coupled to
the source contact and a drain dot coupled to the drain, as shown in Fig. 2.2. Agarwal et
al. [66] discuss a variety of other geometries for energy-filtering tunnel transistors, but the
dot-to-dot (0D-0D) tunneling case suffices for our purposes. Returning to our picture, the
drain dot is also capacitively coupled to a gate terminal, not shown in the figure. Since the
dots are nanoscopic, the energy levels in the dots are quantized. Adjusting the gate voltage
allows us to control the alignment of the energy levels, and consequently, the state of the
switch—when the levels are aligned, current flows and the device is ON, while misaligned
levels block the flow of current and turn the device OFF.

Unfortunately, energy levels are never perfectly sharp. The exact shape of the spectral
line shape plays a crucial role in determining the current/voltage response of such transistors
as they are switched from on (aligned) to off (misaligned). In other words, the spectral shape
of the energy levels decides the subthreshold slope of tFETs. This is not widely recognized,
though some prior work has been done in this regard [67, 68]. In our work, we study the
problem of spectral line shape in tunnel transistors and deduce criteria that are necessary
for a tFET to have exponential subthreshold behavior. The remainder of this chapter is the
basis of my IEEE publication [69].

2.1 The performance of energy-filtering transistors

depends on lineshape

Essence of this section: In this section, we argue that the performance evaluation of
quantum dot energy-filtering transistors has to take into account the so-called energy
broadening or spectral lineshapes of the energy levels in the quantum dots. The
concept of a spectral lineshape is introduced and discussed and the procedure to compute
it is presented. The exact lineshape determines the amount of leakage current when the
device is turned off.

The energy-filtering tunnel transistor, at first sight, seems to achieve the goal of sharp
switching with ease. When no gate voltage is applied on the drain-side quantum dot, the
energy levels of the source-side and the drain-side quantum dots are aligned and there is
current flow from one side to the other. This is the ON state. To turn the device off, one
only requires the application of an infinitesimally small gate voltage to break the alignment
of the energy levels in the two quantum dots and shut off the flow of current completely.
The device is then in the OFF state. These situations are depicted in Fig. 2.2. If this were
the case, one would be able to design switches that turned on and off on the application of
a negligible amount of voltage, rendering the present-day MOSFET completely obsolete.

Unfortunately, this simplistic interpretation of the tunnel transistor mechanism, though
very appealing, is incomplete. Since the quantum dots are in close contact with the the
source and drain wires, their energy levels hybridize with those of the metallic wires to
produce new stationary states that are delocalized over both the dot and the wire. In other
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words, the spatially confined wavefunctions that were originally the stationary states of the
isolated quantum dot, with well-defined sharp energies, are now linear superpositions of
the new stationary states of the joint dot-wire system. Consequently, the spatially confined
quantum dot wavefunctions no longer have well-defined energies. Instead, one would obtain a
distribution of values when the energy of an electron in such a state is measured. This effect
is called ‘energy-level broadening’ or ‘spectral broadening’. Spectral broadening is by no
means a surprising phenomenon, and the exact same effect occurs in RLC electrical circuits
and damped optical cavities. A perfectly lossless LC circuit supports oscillations precisely
at one frequency. However, the addition of a resistor, R, to the circuit allows it to support
other neighboring frequencies too, albeit at lower strengths than the natural frequency.
Similarly, a Fabry-Pérot cavity that is perfectly sealed off from its surroundings supports
optical oscillations of only those special frequencies that satisfy the boundary conditions
at the walls of the cavity. Once the cavity is exposed to optical loss, either through the
introduction of absorbing material in the cavity or by making the cavity walls permeable,
its frequency response broadens along the frequency axis and the cavity begins to support
many more frequencies than before. In summary, the energy filtering response function
of the drain-side quantum dot is perfectly sharp only in the complete absence of external
disturbances. Once the quantum dot is augmented with a channel of electron escape, in the
form of a metallic wire, the energy-filter response gets broadened.

The broadening of the energy-filtering response has spectacular implications for our ear-
lier näive understanding of the working of an energy-filtering tunnel transistor. The transistor
conducts current through the tails of the broadened quantum dot energy levels even after
the levels have been displaced through the application of a gate voltage. This is shown in
Fig. 2.3. The exact mathematical shape of the broadening, which we shall call ‘lineshape’,
determines the nature of the current reduction as the quantum dot energy levels become
more and more misaligned. That is, the drain-current-vs-gate-voltage (Id − Vg) characteris-
tics of a tunnel transistor can be calculated precisely if one has access to the quantum dot
lineshapes.

Computation of lineshapes

In this subsection, we derive an expression for the lineshape of a quantum dot energy level
that is in contact with a metallic reservoir. That is, we want to compute the energy distri-
bution of an originally unperturbed quantum dot state in the new joint dot-wire system.

For the sake of clarity, we shall focus only on the broadening of the lowest energy eigen-
state of the quantum dot. To find the broadening of this level, one simply has to place an
electron in this state at t = 0 and observe the evolution of the electron wavefunction as
time t progresses. It turns out that the electron decays gradually into the continuum of wire
states from the dot. The Fourier transform of this time-domain decay of electron amplitude
from the dot to the wire gives us the energy distribution (or lineshape) of the initial state.
We remark here that this procedure is again exactly analogous to the way electromagnetic
cavity lineshapes are obtained from the details of the time-domain decay of electric fields
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Figure 2.3: More realistic picture of energy-filtering tunnel transistors. Current keeps flowing
between the source and drain dots even after they are offset by a gate voltage because of spectral
broadening of the energy levels. Current flows between the energy tails and contributes to off-state
leakage.

inside the cavity. We explain next why the Fourier transform of the time-domain decay of
the electron wavefunction’s amplitude on the initial quantum dot state should give us that
initial state’s lineshape.

Let this initial state (the lowest eigenstate of the unperturbed quantum dot) be denoted
|ψ〉. Since |ψ〉 is no longer a stationary state of the joint dot-wire system, an electron that
starts out in |ψ〉 at t = 0 evolves in time as |ψ(t)〉. Let the true eigenstates of the joint
dot-wire system by denoted |φi〉. Since the |φi〉 form a basis, we can now express |ψ〉 in
terms of them, using a set of complex coefficients ci:

|ψ〉 =
∑
i

ci |φi〉 (2.1)

It follows that |ψ(t)〉 can be expressed as:

|ψ(t)〉 =
∑
i

cie
−iEit/~ |φi〉 (2.2)

It is clear that |ψ(0)〉 = |ψ〉. From the above formulae, we note that the energy distribution
of |ψ(t)〉 doesn’t change with time. The total probability that the state |ψ(t)〉 yields a value
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E upon the performance of an energy measurement is equal to
∑

i:Ei=E
|ci|2, independent of

the time t.
A function that naturally captures information about these total probabilities is the

autocorrelation function for state evolution. The autocorrelation function, which we
shall denote by C(t1, t2), is simply defined as the dot product between the states of the
electron at two different times 〈ψ(t1)|ψ(t2)〉. Setting t1 = t and t2 = 0, we get:

C(t, 0) = 〈ψ(t)|ψ(0)〉 =
∑
i

|ci|2eiEit/~ (2.3)

The coefficient of eiEt/~ in the above expression is given by
∑

i:Ei=E
|ci|2, which is exactly

what we were looking for. To extract this information as an energy distribution, or lineshape,
we perform the Fourier transform on C(t, 0) to obtain χ(ω):

χ(ω) =

∫ ∞
−∞

C(t, 0)e−iωtdt = 2π
∑
i

|ci|2δ
(
ω − Ei

~

)
(2.4)

Choosing a change of variables ω = E/~, we get the following distribution over energies:

L(E) =
χ(E/~)

2π~
=
∑
i

|ci|2δ (E − Ei) (2.5)

For a discrete spectrum of true eigenenergies, Ei, we observe that L(E) is a train of Dirac
delta functions with the total probability of each energy being the coefficient of a Dirac delta
function centered at that energy. For continuous spectra, L(E) is a probability distribution
function over energy.

Now that we agree that L(E) gives us the lineshape we have been looking for, how do we
compute 〈ψ(t)|ψ(0)〉 for the dot-wire system in the tunnel transistor? For this purpose, let
us move from the basis of eigenstates of the joint dot-wire system to that of the eigenstates of
the separate unperturbed dot and wire. This ‘unperturbed’ basis consists of |ψ〉 contributed
by the dot and the set {|k〉} contributed by the wire. k here represents the quantum numbers,
such as k-vector and band index, that are needed to uniquely identify the eigenstates of the
unperturbed wire. It has to be kept in mind that these states are not eigenstates of the
joint dot-wire system. The unperturbed wire states {|k〉} are orthogonal to the unperturbed
quantum dot state |ψ〉. Therefore, in this ‘uncoupled’ basis, we have:

|ψ(0)〉 = |ψ〉 (2.6)

|ψ(t)〉 = d1(t) |ψ〉+
∑
k

d(k, t) |k〉 (2.7)

〈ψ(t)|ψ(0)〉 = d∗1(t) (2.8)

where d1(t) is the coefficient of the wavefunction at time t on |ψ〉 and d(k, t) is the coefficient
of the wavefunction at time t on |k〉. Therefore, C(t, 0) is simply the amplitude of the
electron wavefunction, at time t, on the starting state (but with complex conjugation)!
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The conclusion of this section is that the energy distribution of a state is the Fourier
transform of its autocorrelation function. The autocorrelation function is obtained by placing
an electron in the state of interest at t = 0 and noting down the time-evolution of the electron
wavefunction’s amplitude on that starting state, d1(t), and taking its complex conjugate.

2.2 Standard derivation of Lorentzian lineshapes;

Fermi’s Golden Rule

Essence of this section: In this section, we show how Lorentzian lineshapes are de-
rived from Schrödinger’s equation using standard approximations. The key point is that
Lorentzian lineshapes are inevitable if the electron tunnels from a quantum dot into a
wire with a broad density of states.

Next, we start from Schrödinger’s equation and derive the autocorrelation function, C(t, 0),
for an electron that is initially placed on the quantum dot and leaks into the wire as time
passes. We will perform some standard approximations along the way, and finally derive a
purely exponential time-domain decay of d1(t), or equivalently, C(0, t). The derivation in this
section is borrowed from the excellent Quantum Mechanics textbook by Cohen-Tannoudji
et al. [70].

Setup

Let the Hamiltonian of the unperturbed quantum dot and wire that are initially placed far
apart be H0. The unperturbed dot state, |ψ〉, and the set of unperturbed wire states, {|k〉},
are eigenstates of H0. They satisfy:

H0 |ψ〉 = E1 |ψ〉 (2.9)

H0 |k〉 = E(k) |k〉 (2.10)

where the energy of the unperturbed state |ψ〉 is E1 and the energy of the unperturbed wire
state |k〉 is E(k).

Since the dot and the wire need to be in close proximity for a working device, the
perturbed Hamiltonian has an additional interaction term, V . The net Hamiltonian is then
given by:

H = H0 + V (2.11)

We shall assume that the interaction V has non-zero matrix elements only between the dot
state and a wire state. That is, 〈ψ|V |ψ〉 = 0 and 〈k|V |k〉 = 0 for every k. Only the elements
〈k|V |ψ〉 are allowed to be non-zero.
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Schrödinger equation

As earlier, let the electron wavefunction at time t be |ψ(t)〉, with the initial condition being
|ψ(0)〉 = |ψ〉. The unperturbed wire states are the set {|k〉}. The Schrödinger equation is:

d

dt
|ψ(t)〉 = − i

~
|ψ(t)〉 (2.12)

Using the uncoupled basis to expand |ψ(t)〉 as in Eq. 2.7, we get the following for the
coefficients d1(t) and d(k, t):

d

dt
d1(t) = − i

~
E1d1(t)− i

~

∫
dk d(k, t) 〈ψ|V |k〉 (2.13)

d

dt
d(k, t) = − i

~
E(k)d(k, t)− i

~
d1(t) 〈k|V |ψ〉 (2.14)

We now make a change of variables that is popularly called the ‘Interaction Picture’. It
is nothing but the use of an integrating factor. Setting d̃1(t) = d1(t)eiE1t/~ and
d̃(k, t) = d(k, t)eiE(k)t/~, we get:

d

dt
d̃1(t) = − i

~

∫
dk 〈ψ|V |k〉 d̃(k, t)ei(E1−E(k))t/~ (2.15)

d

dt
d̃(k, t) = − i

~
〈k|V |ψ〉 d̃1(t)e−i(E1−E(k))t/~ (2.16)

The variables b̃1(t) and b̃(k, t) can also be interpreted as ‘slowly varying amplitudes’ because
they are what remain when the fast natural oscillatory phase factors are removed from b1(t)
and b(k, t). Integrating (2.16) from t = 0 to t = t, and recalling that d(k, 0) = d̃(k, 0) = 0
for all k, we get:

d̃(k, t) = − i
~
〈k|V |ψ〉

∫ t

0

dτ e−i(E1−E(k))τ/~d̃1(τ) (2.17)

Substituting (2.17) into (2.15), and setting τ = t− τ in the integral, we obtain:

d

dt
d̃1(t) = − 1

~2

∫ t

0

dτ

∫
dk | 〈ψ|V |k〉 |2ei(E1−E(k))τ/~d̃1(t− τ) (2.18)

=⇒ d

dt
d̃1(t) = −

∫ t

0

dτ M(τ)d̃1(t− τ) = −
∫ t

0

dτ M(t− τ)d̃1(τ) (2.19)

On the right side above, we have a convolution between a memory function, given by M(t) =
1
~2

∫
dk | 〈ψ|V |k〉 |2ei(E1−E(k))t/~, and d̃1(t). Let us make the simplifying assumption that the

matrix element 〈ψ|V |k〉 = V (E(k)) depends only on the energy E(k) of the unperturbed
state |k〉. This assumption doesn’t change the essential nature of the calculation, and it can
be easily removed with some extra notation. Then, we can rewrite the memory function as:

M(t) =
1

~2

∫
dE ρ(E)|V (E)|2ei(E1−E)t/~ = r(t) + is(t) (2.20)

where ρ(E) is the density of states in the wire, and r(t) and s(t) are the real and imaginary
parts of M(t).
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Infinitely broad final density of states leads to pure exponential decays of
amplitude

We shall first solve Eq. (2.19) for the simplest case of ρ(E) = ρ and |V (E)| = |V | being
constant and spread out over an infinite energy range, from E = −∞ to E = −∞. The
memory function M(t) is then:

M(t) =
1

~2

∫ ∞
−∞

dE ρ(E)|V (E)|2ei(E1−E)t/~ (2.21)

=
ρ|V |2

~2

∫ ∞
−∞

dE ei(E1−E)t/~ =
2π

~
ρ|V |2δ(t) = Γδ(t) (2.22)

where we have defined Γ = 2π
~ ρ|V |

2. Plugging this into Eq. (2.19) gives:

d

dt
d̃1(t) = −2π

~
ρ|V |2

∫ t

0

dτ δ(t− τ)d̃1(τ) = −π
~
ρ|V |2d̃1(t) = −Γd̃1(t)/2 (2.23)

where the integral of the Dirac delta only has half the strength since the integral doesn’t
straddle τ = t. Thus d1(t), the amplitude of the electron’s wavefunction on the dot state,
decays in a purely exponential manner:

d1(t) = e−Γt/2e−iE1t/~ (2.24)

Markov and time-independent coefficient approximations also lead
to pure exponential decays

We can derive a similar exponential formula in a more general context where the energy
range is not infinite but simply much broader compared to ~Γ, the energy unit we just
encountered that captures both the strength of the perturbation and the magnitude of the
available density of states for tunneling.

Let us assume that the wire density of states ρ(E) and the matrix element |V (E)| are
broad along the E axis, that is, that they are of appreciable magnitude over a large range
of energy values ∆E. If ∆E is sufficiently large, it is enough for t to cross a certain small
threshold time (t > ∆t) to render the memory function M(t) approximately equal to 0. The
reason for this is the ‘high’ frequency oscillation ei(E1−E)t/~ that modulates ρ(E)|V (E)|2 in
the integrand in Eq. (2.20). The product, which is still highly oscillatory, roughly integrates
out to 0, making M(t) ≈ 0 for t > ∆t. This assumption that the final density of states is
broad enough, resulting in a sharp memory function, is called the Markov approximation.

Since the memory function M(t) is non-zero only over a small time interval [0,∆t], the
memory inherent in (2.19) is short. If we further assume that V is only a weak perturbation,
we can safely assert that the slowly varying amplitudes d̃1(t) and d̃(k, t) change very little in
the time span ∆t in which the memory function is non-zero. This means d̃1(t − τ) ≈ d̃1(t)
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in (2.19) and we can pull it out of the integral. We get:

d

dt
d̃1(t) = −

(∫ t

0

dτ M(τ)

)
d̃1(t) (2.25)

From (2.19) to (2.25), the right hand side has reduced from a linear convolution to a mem-
oryless linear term with a time-dependent coefficient.

The next approximation in the standard approach involves turning the time-dependent
coefficient into a time-independent quantity. We are not aware of a name for this approxima-
tion, and shall simply call it the ‘time-independent coefficient approximation’. The
approximation involves asserting that one is interested in the decay of the electron at large
enough times t, and not times that are extremely close to t = 0. In that case, since M(t) is
anyway approximately zero for t > ∆t, we can replace the integral in (2.25) from τ = 0 to
τ = t with the full integral of M(τ) from τ = 0 to τ = ∞. This integral can be computed
as follows: ∫ ∞

0

dτ M(τ) =
1

~2

∫
dE ρ(E)|V (E)|2

∫ ∞
0

dτ ei(E1−E)τ/~ (2.26)

=
1

~2

∫
dE ρ(E)|V (E)|2

(
π~δ (E1 − E) +

i~
E1 − E

)
(2.27)

=

(
π

~
ρ(E1)|V (E1)|2 + i

1

~

∫
dE

ρ(E)|V (E)|2

E1 − E

)
(2.28)

=

(
Γ

2
+ i

∆

~

)
(2.29)

where we introduced a rate constant Γ and an energy offset ∆ defined as follows:

Γ =
2π

~
ρ(E1)|V (E1)|2 (2.30)

∆ =

∫
dE

ρ(E)|V (E)|2

E1 − E
(2.31)

Plugging (2.29) into (2.25), we get the following simple form:

d

dt
d̃1(t) = −

(
Γ

2
+ i

∆

~

)
d̃1(t) (2.32)

Recalling that d̃1(0) = 1, this yields:

d1(t) = e−(Γ
2

+i∆
~ )te−iE1t/~ (2.33)

Exponential decay holds as t→∞ irrespective of the memory function: It should
be kept in mind that, if the memory function is not ‘thin’ enough, the time-independent
coefficient approximation may not hold at even moderately large times t. However, since a
physical memory function decays to 0, the approximation will always hold as t → ∞. This
implies that exponential decay of amplitude, with the rate given by Fermi’s golden rule, is
always accurate at sufficiently large times.
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Getting the full autocorrelation function from one-sided time
decay

We have only computed C(0, t) = d1(t) for t ≥ 0 so far. This result can be extended to t < 0
in a straightforward fashion if one uses the unitary property of time-evolution in quantum
mechanics. Let U(t) be the unitary operator that propagates a wavefunction forward in time
by an amount of time t. Then, we have:

C(0, t) = 〈ψ(0)|ψ(t)〉 = 〈ψ(0)|U(t)|ψ(0)〉 (2.34)

For negative time, we have the following:

C(0,−t) = 〈ψ(0)|U(−t)|ψ(0)〉 = 〈ψ(0)|U †(t)|ψ(0)〉 = (〈ψ(0)|U(t)|ψ(0)〉)∗ (2.35)

where t is a positive quantity. Therefore, for t < 0, we have C(0, t) = e(
Γ
2
−i∆

~ )te−iE1t/~ which
results in the following formula for C(t, 0) for all time t:

C(t, 0) = e−
Γ
2
|t|ei

∆
~ teiE1t/~ for all t (2.36)

Lorentzian lineshape

The calculation is completed by taking the Fourier transform of Eq. (2.36). The phase
factors on the right hand side of Eq. (2.36) simply cause the lineshape to shift along the

E axis. Since the amplitude part, e−
Γ
2
|t|, is real and even in t, its Fourier transform can be

computed as:∫ 0

−∞
e−

Γ
2
|t|e−iωtdt+

∫ ∞
0

e−
Γ
2
|t|e−iωtdt =

∫ ∞
0

e−
Γ
2
|t|eiωtdt+

∫ ∞
0

e−
Γ
2
|t|e−iωtdt (2.37)

= 2Re

{∫ ∞
0

e−
Γ
2
te−iωtdt

}
(2.38)

=
Γ

ω2 +
(

Γ
2

)2 (2.39)

Plugging in the shifts induced by the phase factors, we get for the lineshape:

L(E) =
1

π

~Γ
2

(E − (E1 + ∆))2 +
(~Γ

2

)2 (2.40)

Eq. (2.40) is the famed Lorentzian lineshape that is central to spectroscopy. It is peaked
near the original unperturbed energy level E1—with a small shift ∆ due to the interaction
with the wire energy levels—and falls off as 1/E2 in the tails on both sides. We will see next
that this ‘heavy’ tail is detrimental to the Id − Vg performance of tunnel transistors.
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Figure 2.4: (a) The pure exponential decay of amplitude from a quantum dot level into a wire
with a broad density of states. (b) The lineshape is proportional to the Fourier transform of the
time domain decay. The Fourier transform of a pure exponential time decay is a Lorentzian function
in frequency. Lorentzians have slow decay 1/ω2 at large ω.

2.3 Id − Vg characteristics from lineshape

Essence of this section: In this section, we show how to compute the current flow
Id between two broadened quantum dots when a drain-source voltage Vds is applied
across them and a gate voltage Vg is applied on the second quantum dot. The final
current expression takes into account the lineshapes of the two levels, the strength of the
interaction between them, the offset between the two levels caused by the gate voltage,
and their electron occupations which are determined by the offset caused by the drain-
source voltage between the drain and source quasi-Fermi levels.

We now tackle the problem of computing the Id − Vg characteristics of a tunnel transistor
from the lineshapes of the quantum dots that comprise it. To do this, we refer to Fig. 2.5.
We have so far dealt with the broadening of the quantum dot levels that is induced by the
dot-wire interaction X. Current flows through this device from the source-side quantum dot
to the drain-side quantum dot due to the interaction M . Since the effect of X is already
included in our lineshapes, the inputs to our current calculation will be M , L1(E), and
L2(E), the latter two functions being the lineshapes of the source-side and the drain-side
quantum dots respectively.

For convenience, we will assume that the Fermi levels in the source and drain are such
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that the source-side dot is fully filled and the drain-side dot is fully empty. This assumption
is removed towards the end of this section.

quantum
dot v

quantum
dot c

E

wire

E

wire

|X|
|M|

!"
!#

ℏ
%

ℏ
%

!"
!#

|X|

Figure 2.5: The full tunnel transistor. The source wire is coupled to the source quantum dot
via the interaction X as is the drain wire to its own quantum dot. This interaction X led to the
broadening of the quantum dot’s energy levels. The quantum dots themselves interact via the
coupling M and it is this interaction that leads to current in the device.

Sharp source dot into broadened drain dot

Let us inspect the case of a single electron leaking from a sharp source dot to a broadened
drain dot through the interaction M . The decay of the electrons wavefunction’s amplitude
on the source-dot can be computed in exactly the same way as discussed in the previous
section. M would take the place of X, and the lineshape of the drain dot, L2(E), would take
the place of the final density of states ρ(E). The amplitude on the source dot falls off as:

d1(t) = e−(Γ
2

+i∆
~ )te−iE1t/~ (2.41)

where Γ = 2π
~ L2(E1)|M(E1)|2 and ∆ =

∫
dE L2(E)|M(E)|2

E1−E . That means the probability that

the electron is on the source-side falls off with t as e−Γt. Interpreting this further:

P (electron is on the drain side at time t) = 1− e−Γt (2.42)

=⇒ P (electron left the source side before time t) = 1− e−Γt (2.43)

=⇒ P (electron left the source side between time t and t+ dt) = Γe−Γtdt (2.44)

The last line of reasoning essentially tells us that the time at which the electron leaves the
source and goes to the drain is a random variable that is exponentially distributed with
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parameter Γ. The mean of an exponential distribution with parameter Γ is simply 1/Γ.
Therefore, 1/Γ is the average time taken by an electron in the source-dot to tunnel into the
drain-dot. Since one unit of charge is transported in time 1/Γ on average, and there are two
spin states per energy level, the average current is:

I =
−2e

1/Γ
= −2

2πe

~
L2(E1)|M(E1)|2 (2.45)

Broadened source dot into broadened drain dot

For the case of electron tunneling from a broadened source dot to a broadened drain dot, we
write down the tunneling current originating from an energy range dE1 around E1 on the
source-side to the drain dot, and then integrate it over all E1 to obtain the full current. Since
the ‘number of states’ in the source-dot between energies E1 and E1 + dE1 is L1(E1)dE1, we
multiply Eq. (2.45) with this amount to get:

I(e− originating between E1 & E1 + dE1) =
−2eL1(E1)dE1

1/Γ
(2.46)

= −dE1 2
2πe

~
L1(E1)L2(E1)|M(E1)|2 (2.47)

Therefore, the full current is:

Ifull = −2
2πe

~

∫
dE L1(E)L2(E)|M(E)|2 (2.48)

Once simply tacks the factor (f1(E)− f2(E)) onto the integrand, where f1(E) and f2(E)
are the Fermi occupations of the source and drain respectively, to take partial occupation of
the quantum dots into account. Further, the gate voltage Vg serves to offset the drain-dot
levels from the source-dot levels.

Ifull = −2
2πe

~

∫
dE L1(E)L2(E + eVg)|M(E)|2 (f1(E)− f2(E)) (2.49)

Equation (2.49) is the important equation that takes as input the interaction M and the
two lineshapes L1(E), L2(E), and outputs the Id − Vg characteristic of the device. When
the Lorentzian lineshape obtained in Eq. (2.40) is plugged into Eq. (2.49), a Lorentzian
shaped Id − Vg plot is obtained. This is disastrous for devices whose primary aim is to beat
MOSFETs. A Lorentzian Id − Vg characteristic not only fails to surpass the MOSFET’s
subthreshold slope of 60mV/dec, it is not even exponentially shaped in the first place! The
sequence of derivations we have seen so far seem to indicate that tunnel transistors are
doomed to failure.
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2.4 Deriving non-Lorentzian lineshapes — Exact

solution using Laplace transforms

Essence of this section: In this section, we derive the exact formula for the lineshape
of a quantum dot level coupled to a wire that has an arbitrary density of states via an
arbitrary coupling interaction.

In order to be able to design sharper-switching tunnel transistors, with exponential line-
shapes and Id − Vg curves, we have to first develop a deeper understanding of the origin of
Lorentzian lineshapes. We have already seen that coupling the dot to a wire possessing a
broad density of states leads to the validity of the Markov and time-independent coefficient
approximations and eventually to purely exponential time-domain decays and frequency-
domain Lorentzians. An immediate course of action would then be to study the dot-wire
system when the wire has a narrower density of states, that is, when most of its states lie in
a restricted range of energies.

One could imagine that solving Eq. (2.19), reproduced below, exactly would lead to
expressions for d̃1(t) that would help us deduce the conditions that the matrix element X
and the wire density of states ρ(E) should satisfy in order for exponential lineshapes to
emerge.

d

dt
d̃1(t) = −

∫ t

0

dτ M(τ)d̃1(t− τ) (2.50)

To that end, we now present a standard exact solution of Eq. (2.50) using Laplace transforms.
The derivation in this section is adapted from the textbook on atom-photon interactions by
Cohen-Tannoudji et al. [71].

We start out by recalling the definition of the Laplace transform fL(s) of a function f(t):

fL(s) =

∫ ∞
0

dt f(t)e−st (2.51)

Representing the Laplace transform of d̃1(t) by d̃1
L
(s) and that ofM(t) byML(s), we perform

the Laplace transform on both sides of Eq. (2.50):

sd̃1
L
(s)− d̃1(0) = −ML(s)d̃1

L
(s) (2.52)

d̃1
L
(s) =

1

ML(s) + s
(2.53)

We used the fact that the initial condition d̃1(t = 0) = 1 while moving from Eq. (2.52) to
Eq. (2.53). Since we know the exact form of M(t), reproduced next, we can compute ML(s):

M(t) =
1

~2

∫
dE ′ ρ(E ′)|V (E ′)|2ei(E1−E′)t/~ (2.54)

=⇒ ML(s) =
1

~2

∫
dE ′ ρ(E ′)|V (E ′)|2 1

s− iE1−E′
~

(2.55)
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All that remains now is to express the Fourier transform of d∗1(t) in terms of the Laplace
transform of d̃1(t):∫ ∞
−∞

dt d∗1(t)e−iωt =

∫ 0

−∞
dt d̃1

∗
(t)eiE1t/~e−iωt +

∫ ∞
0

dt d̃1
∗
(t)eiE1t/~e−iωt (2.56)

=

(∫ ∞
0

dt d̃1
∗
(−t)e−iE1t/~eiωt

)
+ lim

η→0

(
d̃1
L
(
−i
(
ω − E1

~

)
+ η

))∗
(2.57)

=

(∫ ∞
0

dt d̃1(t)e−iE1t/~eiωt
)

+ lim
η→0

(
d̃1
L
(
−i
(
ω − E1

~

)
+ η

))∗
(2.58)

= lim
η→0

d̃1
L
(
−i
(
ω − E1

~

)
+ η

)
+ lim

η→0

(
d̃1
L
(
−i
(
ω − E1

~

)
+ η

))∗
(2.59)

= 2Re

{
lim
η→0

d̃1
L
(
−i
(
ω − E1

~

)
+ η

)}
(2.60)

In moving from (2.57) to (2.58), we used d1(−t) = d∗1(t) from Eq. (2.35). In moving from

(2.56) to (2.57), the fact that the Laplace transform of d̃1
∗
(t) at s is equal to the complex

conjugate of the Laplace transform of d̃1(t) at s∗ was used. The algebra is continued as
follows:∫ ∞
−∞

dt d∗1(t)e−iωt = lim
η→0

2Re

 1

−i
(
ω − E1

~

)
+ η + 1

~2

∫
dE ′ ρ(E ′)|V (E ′)|2 1

−i(ω−E1
~ )+η−iE1−E′

~


(2.61)

= lim
η→0

2Re

 1

−i
(
ω − E1+∆(~ω)

~

)
+ η + Γ(~ω)

2

 (2.62)

=
Γ(~ω)(

ω − E1+∆(~ω)
~

)2

+
(

Γ(~ω)
2

)2 (2.63)

where we defined:

Γ(E) =
2π

~
ρ(E)|V (E)|2 (2.64)

∆(E) =

∫
dE ′ ρ(E ′)|V (E ′)|2 1

E − E ′
(2.65)

The final lineshape L(E) is:

L(E) =
1

π

~Γ(E)
2

(E − (E1 + ∆(E)))2 +
(

~Γ(E)
2

)2 (2.66)
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Eq. (2.66) is an exact expression, with no approximation whatsoever. It looks exactly like
the Lorentzian lineshape we derived earlier, Eq. (2.40), except for the important difference
that Γ(E) and ∆(E) are not constant but are now dependent on E. Near the peak of the
lineshape, for E ∼ E1, both Γ(E) and ∆(E) are roughly constant and are equal to Γ(E1)
and ∆(E1) respectively. This gives us the Lorentzian shape near the center of the lineshape.
However, the shape of the tails depends on the behavior of Γ(E) and ∆(E) far away from
the peak, and this is intimately connected to the structure of the wire density of states,
ρ(E), and the dot-wire interaction strength, |V (E)|. For instance, if the wire density of
states ρ(E) falls off exponentially on either side of E1, then the lineshape L(E) is going to
be exponential on either side of E1 too.

2.5 Deriving non-Lorentzian lineshapes — Tunneling

from a dot into a wire that has a Lorentzian

density of states

Essence of this section: In this section, we derive the lineshape of a quantum dot
level coupled to a wire that has a Lorentzian density of states and find that it falls off as
1/E4 instead of the typical Lorentzian decay, 1/E2. We also discuss a useful equivalence
between this system and another system that consists of two quantum dots and a wire
with constant density of states.

It is difficult to draw conclusions from Eq. (2.66) because of the seeming opacity of the
functions Γ(E) and ∆(E). Therefore, we shall put the general formula aside and work out
a special case now.

Let us assume the wire density of states takes on the Lorentzian form ρ(E) = B
E2+A2 for

some energy parameters A and B. Further, let the energy of the dot level, E1, be at the
center of this Lorentzian, that is, E1 = 0. Next, let the matrix element, |V (E)| = |V |, be a
constant. Then, the corresponding memory function is going to be:

M(t) =
|V |2

~2
eiE1t/~

∫ ∞
−∞

dE
B

E2 + A2
e−iEt/~ (2.67)

=
|V |2

~2

πB

A
e−A|t|/~eiE1t/~ =

|V |2

~2

πB

A
e−A|t|/~ (2.68)

We next use the method of Laplace transforms to solve Eq. (2.19) exactly with this particular
memory function. Denoting the Laplace transform of M(t) by ML(s) and that of d̃1(t) by
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d̃1
L
(s), we have:

ML(s) =
|V |2

~2

πB

A

1

s+ A
~

(2.69)

d̃1
L
(s) =

s+ A
~

s2 + sA~ + |V |2
~2

πB
A

(2.70)

Denoting the two complex roots of s2 +sA~ + |V |2
~2

πB
A

= 0 by −z1 and −z2, and using standard

inverse Laplace transform formulas, we get the following expression for d̃1(t), for t > 0:

d̃1(t) =
z2e
−z1t − z1e

−z2t

z2 − z1

(2.71)

The autocorrelation function C(t, 0), for all t, is given by:

C(t, 0) = d∗1(t) =

{(
z∗2e
−z∗1 t − z∗1e−z

∗
2 t
)
/ (z∗2 − z∗1) , t ≥ 0

(z2e
z1t − z1e

z2t) / (z2 − z1) , t < 0
(2.72)

The nature of the roots −z1 and −z2 of s2 + sA~ + |V |2
~2

πB
A

= 0 depends on whether the
discriminant D = A2 − 4|V |2 πB

A
is positive, negative, or zero. If D is positive, it means

the width of the Lorentzian, A, is larger than the dot-wire interaction strength, |V |, which
implies that the system is in the ‘weak coupling’ regime. The equation has two real roots,
and the decay C(t, 0) is exponential. If D is negative, on the other hand, it means the width
of the Lorentzian, A, is smaller than the dot-wire interaction strength, |V |, and the system
is said to be in the ‘strong coupling’ regime. The equation has two complex conjugate roots,
and the decay C(t, 0) is a damped Rabi oscillation.

Irrespective of the regime however, eyeballing Eq. (2.72) reveals that C(t, 0) decays
quadratically at small t, and not linearly as was the case when the wire had constant density
of states (Fig. 2.4). C(t, 0) now has a continuous first derivative in t, while there was a
discontinuity in the first derivative of d̃1(t), Eq. (2.36), for the constant wire density of
states case. The close connection between the continuity of the derivatives of d̃1(t) and
lineshape will be discussed in the next section.

The lineshape L(E) obtained from the above autocorrelation is:

L(E) =
1

π~
Re

{
lim
η→0

d̃1
L

(−iω + η)

}
(2.73)

=
B
~2

|V |2
~2(

ω2 − |V |2~2
πB
A

)2

+ ω2A2

~2

(2.74)

=
B|V |2(

E2 − |V |2 πB
A

)2
+ E2A2

(2.75)
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The lineshape L(E) now decays as 1/E4 instead of as 1/E2 in the tail! We still have a slow,
reciprocal polynomial lineshape but it now falls off faster than before. The immediate, and
correct, interpretation of this result is that since a constant wire density of states produces a
Lorentzian lineshape on the quantum dot, it seems reasonable that a Lorentzian wire density
of states should produce a squared-Lorentzian-like lineshape. A different way of thinking
about and interpreting the result would be to carefully look at the analytical behavior of
d̃1(t). Specifically, the first derivative of d̃1(t) is continuous, unlike in the case of the constant
wire density of states. One could speculate that there is a connection between the emergence
of continuity in the first derivative of d̃1(t) and the sharpening of the aysmptotic tail of the
lineshape from 1/E2 to 1/E4. This is indeed the case, as we discuss in Section 2.6.

Reinterpreting the dot and Lorentzian wire system as a 2-dot and
flat wire system

Before proceeding to the discussion of the smoothness of d̃1(t), we provide a useful reinter-
pretation of the system we just studied, the quantum dot coupled to a wire with a Lorentzian
density of states. This remolding of the problem will be of use when we attempt to build a
good tunnel transistor.

We know that a quantum dot coupled to a wire with constant density of states assumes
a Lorentzian lineshape. What this means is that when the joint energy eigenstates of the
coupled dot-wire system are expressed as linear combinations of the old uncoupled dot and
wire states, the coupled eigenstates with energy closest to the uncoupled dot energy have
the highest contribution from the uncoupled dot state (measured in terms of the absolute
squared coefficient in the linear combination) and the coupled eigenstates with energy farther
away from the uncoupled dot energy have lower contribution from the uncoupled dot state.
Moreover, the contribution falls off in a Lorentzian fashion.

Every physical system that was originally interacting only with the uncoupled quantum
dot before the dot was coupled to the wire (which has constant density of states) now
interacts with the joint eigenstates of the coupled dot-wire system. The strength of the
physical system’s interaction with a joint eigenstate depends on how much of that eigenstate
was formed from the uncoupled dot state. In other words, if one were to plot the energies
of the coupled eigenstates of the dot-wire system on the x-axis, and the interaction strength
of the physical system with those eigenstates on the y-axis, one would get a Lorentzian
function. It is as if the physical system were interacting with a different wire which had only
a Lorentzian density of states! The bottomline is: A quantum dot that is coupled to a wire
with constant density of states appears effectively like a wire with an effective Lorentzian
density of states to any physical system that was originally interacting with the quantum
dot. The wire ‘dresses’ the dot and makes it appear like a wire with Lorentzian density of
states. This equivalence is shown in Fig. 2.6. The systems in the red dotted boxes in parts
(a) and (b) are exactly equivalent to one another from the point of view of the left quantum
dot.
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When this interpretation is used, care should be taken regarding the normalization of the
Lorentzians. The Lorentzian wire in Fig. 2.6 (a) generally has many states in it whereas the
Lorentzian lineshape in Fig. 2.6 (b) has only 1 state in it. In order to move from picture (a)
to picture (b), one has to set:

A =
~
2

2π

~
|X ′′|2ρ =

~
2

1

τp
(2.76)

πB

A
|X|2 = |X ′|2 (2.77)

where ρ is the constant density of states of the wire in Fig. 2.6 (b) and τp is the time constant
for the decay of electrons from the intermediary quantum dot to the constant density of states
wire in Fig. 2.6 (b).

We end this section by quickly revisiting ‘weak’ and ‘strong’ coupling. If the wire were
absent in Fig. 2.6 (b), an electron starting out on the left quantum dot would undergo Rabi
oscillations between the two quantum dots. The addition of the wire induces ‘damping’ to
the system because the electron now has a choice of escaping from the 2 quantum dot system
into the wire. If the coupling |X ′| between the left and the right quantum dots in Fig. 2.6
(b) is weaker than the coupling |X ′′| between the wire and the right quantum dot, the system
is in ‘weak coupling’. In the equivalent (a) picture, it means the width of the Lorentzian
is larger than |X|. The electron undergoes exponential decay from the left dot into the red
dotted box. If the coupling |X ′| between the left and the right quantum dots in Fig. 2.6 (b)
is stronger than the coupling |X ′′| between the wire and the right quantum dot, the system
is in ‘strong coupling’. In the equivalent (a) picture, it means the width of the Lorentzian
is smaller than |X|. The electron undergoes damped sinusoidal decay from the left dot into
the red dotted box.

2.6 Smoothness of d̃1(t) and spectral lineshape tails

Essence of this section: In this section, we show that jump discontinuities in either
d̃1(t) or any of its time derivatives lead to slowly decaying, reciprocal polynomial tails in
the spectral lineshape. Conversely, a time evolution d̃1(t) that is infinitely differentiable
leads to spectral lineshapes that decay faster than any reciprocal polynomial. The con-
ditions under which d̃1(t) is infinitely differentiable, that is, d̃1(t) possesses continuous
derivatives of all orders, are derived.

We start out by expressing d̃1(t) in polar form:

d̃1(t) = A(t)eiφ(t) (2.78)
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Figure 2.6: From the point of view of an electron leaking from a quantum dot into a wire, these
two systems are equivalent: (a) The quantum dot is coupled to a wire with a Lorentzian density of
states, and (b) The quantum dot is coupled to an intermediary quantum dot that is then coupled
to a wire with a broad flat density of states through an appropriate interaction |X ′′|. The electron
decay amplitude d1(t), and the resultant lineshape L(E) induced on the main quantum dot, will
be the same in both cases. Moreover, L(E) goes as 1/E4, sharper than the 1/E2 that we get in
the absence of an intermediary quantum dot.

where A(t) is the magnitude function and φ(t) is the phase function. Eq. (2.35) tells us that

d̃1(t) = d̃1
∗
(−t). Consequently, we have:

A(t) = A(−t) (2.79)

φ(t) = −φ(−t) (2.80)

A(t) is an even function of time while φ(t) is an odd function.
Next, let us make the reasonable assumption that the matrix element V (E) and the

wire density of states ρ(E) are ‘physically well-behaved’ functions of E. By ‘physically well-
behaved’, we mean that V (E) and ρ(E) lead to a solution d̃1(t) of Eq. (2.19) that is infinitely
differentiable for all t > 0. Then, A(t) and φ(t) are infinitely differentiable for t > 0 too. We
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shall also assume that the right-hand derivatives of both A(t) and φ(t) (of all orders) exist
at t = 0. All these conditions were indeed true for both the flat wire density of states case
and the Lorentzian wire density of states case that we studied. From the assumptions we
have made, we can write a Taylor expansion for both A(t) and φ(t) for t ≥ 0:

A(t) =
∞∑
k=0

1

k!

dk

dtk
A(t)

∣∣∣∣
t=0

tk, t ≥ 0 (2.81)

φ(t) =
∞∑
k=0

1

k!

dk

dtk
φ(t)

∣∣∣∣
t=0

tk, t ≥ 0 (2.82)

We know that A(t) is an even function of t, but this doesn’t automatically mean that A(t)
has to have only even powers of t in its Taylor expansion. It could have odd powers of t too,
and we already saw an example of this when we studied the case of constant wire density of
states. There, the amplitude function was A(t) = e−Γt for t ≥ 0 but A(t) = e−Γ|t| for all t.
The exponential function has both odd and even powers in its Taylor series. Therefore, the
way to construct an even function from a one-sided Taylor series that has odd powers is to
simply change t to |t|. In other words, if A(t) and φ(t) are given by Eqs. (2.81) and (2.82)
for t ≥ 0, the corresponding Taylor expansions for t < 0 will be:

A(t) =
∞∑
k=0

(−1)k

k!

dk

dtk
A(t)

∣∣∣∣
t=0

tk, t < 0 (2.83)

φ(t) =
∞∑
k=0

(−1)k+1

k!

dk

dtk
φ(t)

∣∣∣∣
t=0

tk, t < 0 (2.84)

Differentiability of A(t) and φ(t)

Before proceeding, we make a few observations about A(t) and φ(t) and their derivatives.
First, both functions are continuous for all t. Next, from the Taylor series for positive time
and negative time, it is clear that the k-th derivative of A(t) for every even k exists at t = 0
because the left-hand even derivatives and the right-hand even derivatives are equal to one
another at t = 0. For odd k, on the other hand, the left-hand derivative and the right-hand
derivative differ by a - sign at t = 0. Therefore, if A(t) has an odd power, k, in its Taylor
series, the k-th derivative of A(t) will be discontinuous at t = 0. Similar conclusions hold for
φ(t), but with odd and even switched, due to it being an odd function of t. If φ(t) has an
even power, k, in its Taylor series, the k-th derivative of φ(t) will be discontinuous at t = 0.

Discontinuities in either d̃1(t) or its time derivatives lead to
Lorentzian-like tails

As alluded to earlier, it turns out that Lorentzian and other reciprocal polynomial lineshapes
arise from jump discontinuities in t of either d̃1(t) or any of its time derivatives. A function
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x(t) is said to have a jump discontinuity at a point t0 if the left-hand side limit and the
right-hand side limit both exist at that point but are not equal to each other. Whenever we
say ‘discontinuity’ in this chapter, we are referring only to jump discontinuities.

Since d̃1(0) = 1 and d̃1(t) = d̃1
∗
(−t), there is no discontinuity in d̃1(t) itself at any time

t. However, there could be discontinuities in its time derivatives. We present the connection
between discontinuities in the derivatives of d̃1(t) and the shape of L(E) first through the
examples we have already encountered.

Constant wire density of states

In this case, we had A(t) = e−Γ|t|/2 and φ(t) = 0. A(t) is even in t, and φ(t) is odd,
so these expressions pass the sanity checks. The lineshape L(E) derived from this d̃1(t)
was a Lorentzian shape, decaying as 1/E2 at large E. It should be noted that, while φ(t)
is obviously infinitely differentiable for all t, the amplitude function, A(t), is not. When
considered as a function of all t, both positive and negative, A(t) has discontinuities at t = 0
in all its odd derivatives. For instance, the first derivative of A(t) is −Γ/2 immediately to
the right of t = 0 but Γ/2 immediately to the left of t = 0. The first derivative of A(t),
therefore, has a jump discontinuity at t = 0. It can be checked that this is case with all the
odd derivatives of A(t). One can check that the discontinuities in the odd derivatives appear
because of the presence of non-zero odd powers of t in the Taylor series of A(t) for t ≥ 0. If
all the odd powers were absent, there would have been no discontinuity in A(t) whatsoever,

and ˜d1(t) would have been infinitely differentiable. These odd powers are the cause of the
heavy Lorentzian tail in the Fourier domain.

Lorentzian wire density of states, weak coupling

In this case, we had A(t) =
(
z2e
−z1|t| − z1e

−z2|t|
)
/ (z2 − z1) and φ(t) = 0. A(t) is even in

t, and φ(t) is odd, so these expressions pass the sanity checks. The lineshape L(E) derived
from this d̃1(t) was like a squared Lorentzian and decayed as 1/E4 at large E. As before, φ(t)
is infinitely differentiable for all t but the amplitude function is not. A(t) has discontinuities
at t = 0 in all its odd derivatives except the first derivative. The first derivative is zero at
t = 0 on both sides. This can again be deduced directly by looking at the Taylor series of
A(t) for t ≥ 0. The series contains powers of t for all odd numbers strictly greater than
1. These discontinuities are the cause of the heavy reciprocal polynomial tail, 1/E4, in the
Fourier domain. However, since the linear power is absent in the Taylor series, the amplitude
function in this case is slightly smoother than the A(t) in the constant density of states case.
This slight extra smoothness is the reason for the sharpening of the spectral lineshape tail
from 1/E2 to 1/E4.

General case

Now, we generalize our observations from the previous subsection. To keep matters simple,
we assume that the phase φ(t) is a simple linear function of time ∆t/~ that arises from
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the energy shift ∆ of the dot energy level caused by the wire energy levels. We had first
encountered this energy shift towards the end of Section 2 of this chapter. Since ∆t/~ is an
odd function of time t, it is a legitimate phase function, and since it is infinitely differentiable,
we can forget about it altogether and focus on A(t).

Why should discontinuities in the derivatives of A(t), which arise from odd powers of t in
the Taylor expansion, lead to heavy tails? To answer this, we look at the simplest example
of a function with a jump discontinuity, the Heaviside step function, H(t), and its Fourier
transform, HF (ω):

H(t) =

{
1, t ≥ 0

0, t < 0
(2.85)

HF (ω) = πδ(ω)− i 1

ω
(2.86)

HF (ω) already has a slowly decaying, reciprocal polynomial tail, i
ω

. This is fundamentally
the origin of heavy tails in functions with discontinuities in their derivatives.

Let us say the k-th derivative of A(t) has a jump discontinuity at t = 0. From Eqs.
(2.81) and (2.83), we see that k can only be odd. There cannot be a discontinuity in an even
derivative. Since A(t) decays exponentially at large times, we know that A(t) is absolutely
integrable from −∞ to ∞, along with all its derivatives. Using the absolute integrability
of A(t) and all its derivatives, and the fact that there are no discontinuities in the even
derivatives, it can be proven using tools from Fourier analysis that the Fourier transform of
A(t) has tails that decay as 1/ωk+1. The proof is discussed by Saichev and Woyczynski in
[72].

This is an exact generalization of what we have encountered in our calculations. The
constant density of states case had a discontinuity in the first derivative, and this led to a
1/E2 lineshape. Similarly, the constant density of states case had a discontinuity in the third
derivative, and this led to a 1/E4 lineshape.

Absence of discontinuities in either d̃1(t) or its derivatives leads to
rapidly decaying lineshapes; Schwartz space

We have learned that the presence of discontinuities in d̃1(t) or its derivatives leads to
slow, reciprocal polynomial lineshapes. But what about the converse? Does the absence of
discontinuities in d̃1(t) or its derivatives leads to rapidly decaying lineshapes? Pleasantly,
it turns out that the converse is indeed true for functions like d̃1(t). The set of functions
that are infinitely differentiable and fall off faster than any reciprocal polynomial is called
the Schwartz space in math. This definition rules out functions like the Lorentzian and
other power law decays, but includes Gaussian and hyperbolic secant functions. Since d̃1(t)
decays exponentially at large t, and is assumed to be infinitely differentiable, it belongs to
the Schwartz space.



CHAPTER 2. TUNNEL TRANSISTORS AND SPECTROSCOPY 33

It is well known in Fourier theory that the Fourier transform of a Schwartz space function
is also a Schwartz space function. This means the lineshape that results from an infinitely
differentiable d̃1(t) will be rapidly decaying in E, i.e., it will decay faster than any recipro-
cal polynomial of E! In the next section, we construct a physically inspired Schwartz space
candidate for the amplitude A(t) of d̃1(t).

A derivation of infinitely differentiable d̃1(t) using the Markov
approximation with time-dependent coefficients

We return to the derivation of Sec. 2.2 to try and derive an infinitely differentiable d̃1(t). In
particular, we recall the exact Eq. (2.19):

d

dt
d̃1(t) = −

∫ t

0

dτ M(τ)d̃1(t− τ) (2.87)

and the result of performing the Markov approximation on it, Eq. (2.25):

d

dt
d̃1(t) = −

(∫ t

0

dτ M(τ)

)
d̃1(t) (2.88)

Let us now try to stay at this level of approximation and avoid making the ‘time-independent
coefficient approximation’ that we made in Sec. 2.2. Physically speaking, this stance corre-
sponds to asserting that the memory function M(t) is ‘thin’ enough that d̃1(t) doesn’t evolve
much in that duration, but not so negligible in width that it can be approximated by a Dirac
delta function (Sec. 2.2 essentially reduces the memory function to a Dirac delta function).
Since we know M(t) exactly, we can integrate it to obtain:

d

dt
d̃1(t) = − [f(t) + ig(t)] d̃1(t) (2.89)

where we used f(t) and g(t) to abbreviate the functions that resulted from the integration
of M(t). M(t) is reproduced here for our convenience:

M(t) =
1

~2

∫
dE ρ(E)|V (E)|2ei(E1−E)t/~ = r(t) + is(t) (2.90)

It is clear that f(t) and g(t) are the time integrals of r(t) and s(t) respectively. If we assume
that ρ(E) and |V (E)|2 are symmetric on either side of the initial dot energy E1, then the
imaginary part s(t) will be 0. Setting E1 = 0, we have:

f(t) =

∫ t

0

dτM(τ) =

∫ t

0

dτ

(
1

~2

∫
dE ρ(E)|V (E)|2e−iEτ/~

)
(2.91)

=

∫ t

0

dτ

(
1

~2

∫
dE ρ(E)|V (E)|2 cos (Eτ/~)

)
(2.92)

=
1

~2

∫
dE ρ(E)|V (E)|2 sin (Et/~)

E/~
(2.93)
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As t goes to ∞, f(t) tends to Γ/2 as before. However, the interesting thing to note is that
f(t) is a linear combination of sine functions of t indicating that it could be an infinitely
differentiable, odd function of time if ρ(E) and |V (E)|2 are chosen ‘appropriately’. This
infinite differentiability will eventually lead to rapidly decaying lineshapes. The ‘appropriate’
choice of ρ(E) and |V (E)|2 will be discussed momentarily. For now, integrating Eq. (2.89)
yields:

d̃1(t) = e−F (t) (2.94)

where F (t) =
∫ t

0
dτf(τ). If f(t) is an infinitely differentiable, odd function of t, then F (t)

will be an infinitely differentiable, even function of t. Then, concomitantly, e−F (t), will
be infinitely differentiable and even in t too. Further, at large t, e−F (t) decays asymptotically
as ∼ e−Γ|t|/2. Therefore, e−F (t) will belong to the Schwartz space, which means the lineshape
that results from Fourier transforming it will be rapidly decaying in E! In other words,
when we work in this approximation, we can confidently rule out Lorentzians and all other
reciprocal polynomial decays in E if f(t) is infinitely differentiable and odd.

Since f(t) is the time integral of M(t), it will be infinitely differentiable and odd if and
only if M(t) is infinitely differentiable and even. We also know that M(t) is absolutely
integrable, meaning that the integral of its absolute value from t = 0 to t =∞ is finite and
equal to Γ/2. Finally, we note that M(t) is the Fourier transform of ρ(E)|V (E)|2. Fourier
theory tells us that, if p(ω) is a function and pF (t) its Fourier transform, then the absolute
integrability of pF (t) implies that p(ω) is continuous, and the infinite differentiability of pF (t)
implies that p(ω) decays more rapidly than any reciprocal polynomial of ω. Therefore, it
seems plausible that, if the wire density of states ρ(E) and the dot-wire interaction |V (E)|
are chosen such that ρ(E)|V (E)|2 is continuous in E and narrow, then the resulting lineshape
L(E) on the quantum dot will be rapidly decaying too. For ρ(E)|V (E)|2 to be narrow, the
density of states and the interaction matrix element cannot both simultaneously be broad
functions of E. In our previous examples, both ρ(E) and |V (E)| were broad, leading to
heavy reciprocal polynomial tails.

The arguments of this section seem to indicate that it is essential to choose either a
narrow-band wire at the outset, or set the dot-wire interaction such that only a narrow band
of wire states interact with the dot, in order to obtain rapidly decaying lineshapes on the
dot. This is what we will explore in more detail in the upcoming sections.

2.7 Proposed tunnel transistor design and its analysis

Essence of this section: In this section, we combine insights from the previous sections
to argue that inserting a narrow-band wire between the main quantum dots and their
corresponding wire contacts in the tunnel transistor will result in lineshapes that decay
more rapidly than any reciprocal power law. An original candidate function Ac(t) for the
true, complicated, d1(t) is proposed, its physical meaning is discussed, and the lineshape
it produces is shown to decay exponentially in E.
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In this section, we combine our insights from Secs. 2.2, 2.5, and 2.6. The summary of what
we have learned so far is:

1. Coupling a quantum dot to a wire with an infinitely broad, constant density of states
leads to purely exponential decay of electron amplitude from the dot into the wire.

2. The initial time decay of d̃1(t) is linear in t, and the odd powers of t in the pure
exponential decay lead to lineshapes with heavy Lorentzian tails that go as 1/E2.

3. Coupling a quantum dot to a wire with a narrower, Lorentzian density of states leads
to exponential decay of electron amplitude from the dot into the wire, but with no
linear power in t. The time decay is quadratic at small t. The odd powers of t from 3
onwards still exist.

4. The improved smoothness of d̃1(t) for this case leads to sharper tails, 1/E4.

5. Coupling a quantum dot to Lorentzian wire is equivalent to coupling the quantum dot
to another dot which is itself coupled to a wire with a broad, constant density of states.

These points suggest a procedure to construct a sharper lineshape. Coupling a quantum dot
to a wire with constant density of states leads to d̃1(t) with all odd powers of t. Coupling
a quantum dot to a wire with constant density of states, but through an intermediary
quantum dot, gets rid of the linear power of t in d̃1(t), though all the other odd powers of t
remain. Why don’t we keep adding intermediary quantum dots one after the other between
the main quantum dot and the wideband wire? Each intermediary quantum dot should get
rid of one additional odd power of t.
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Figure 2.7: Since the addition of one intermediary quantum dot between the main quantum dot
and the wire sharpened the tails of the lineshape from 1/E2 to 1/E4, one can sharpen it further
by adding a sequence of intermediary dots. The series of intermediary dots will effectively form a
narrow-band wire between the main quantum dot and the broadband contact wire.
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If we place many intermediary dots in succession, they effectly form a wire in their own
right. This is illustrated in Fig. 2.7. The interaction |X ′1| cannot be stronger than the inter-
atom interactions within the infinite-bandwidth wire, else the first intermediary quantum
dot will simply become a part of the wide-band wire. Further, we had reasoned that each
successive intermediary quantum dot would sharpen the lineshape of the main quantum dot.
For this argument to go through, each intermediary quantum dot has to be weakly coupled
to its preceding intermediary quantum dot. Since the entire chain of intermediary quantum
dots is only weakly held together, and the tight-binding method tells us that the bandwidth
depends on the inter-atom coupling, we deduce that the bandwidth of this chain will be
small. That is, the chain of intermediary quantum dots acts like a narrow-band wire.

Now that the wire has been constructed, we simply have to compute d̃1(t) for the decay
of the electron from the leftmost quantum dot into the narrow-band wire. In order to avoid
the detailed calculations that would be necessitated by an exact analysis, we obtain direct
physical intuition about the decay by first proposing an ansatz for the decay, Ac(t), and then
giving it physical meaning by matching its parameters with the cases we have studied so far.
This is the subject of the next two subsections.

A candidate Ac(t) for the decay from the dot to the narrow-band
wire

When a quantum dot is coupled to such a narrow-band wire, an electron starting out on
it will undergo quantum amplitude decay d̃1(t) that is infinitely differentiable. We assume
that the phase part of d̃1(t) is a simple energy shift e−i∆t/~. The amplitude part A(t) has
to decay exponentially at large t. We propose the following function, Ac(t), as a candidate
ansatz for A(t) that captures the essential physics of the system:

Ac(t) = exp

(
b

2
− 1

2

√
b2 +

t2

τ 2

)
(2.95)

where b is a dimensionless parameter and τ is a time constant. We shall assign physical
meaning to these parameters and interpret them in the next subsection. It is easily verified
that this function decays exponentially at large t, as a correct amplitude function should.
The decay coefficient is 1/2τ . Further, Ac(t) decays quadratically at small t, and not linearly,
with the coefficient of t2 in the Taylor series being −1/4bτ 2.

The most attractive feature of this candidate function is that it is infinitely differentiable
and decays exponentially asymptotically, which means it belongs to the Schwartz space. Its
Fourier transform, AFc (ω), belongs to the Schwartz space too. The exact formula for AFc (ω),
taken from the comprehensive table of integrals by Bateman [73], is:

AFc (ω) =
2bτeb/2√
1 + 4ω2τ 2

K1

(
b

2

√
1 + 4ω2τ 2

)
(2.96)



CHAPTER 2. TUNNEL TRANSISTORS AND SPECTROSCOPY 37

where K1(·) is the ν = 1 member of a family of functions called the modified Bessel functions
of the second kind, {Kν(·)}ν∈C. For large ω, the famous mathematical functions handbook
by Abramovich and Stegun [74] tells us that K1(·) decays exponentially for large values of
the argument. The asymptotic behavior of AFc (ω), for ω2 � (4− b2) / (4b2τ 2), is:

AFc (ω) ≈ 2bτeb/2√
1 + 4ω2τ 2

√
π

b
√

1 + 4ω2τ 2
e−

b
2

√
1+4ω2τ2

(2.97)

= O
(
e−bτ |ω|

)
(2.98)

where O is the standard asymptotic ‘big-oh’ notation used in computer science. In the
opposite limit, for small values of the argument, the modified Bessel function K1(p) goes as
1/p. This means that, for small ω and b, AFc (ω) has the following asymptotic expression:

AFc (ω) ≈ 4τ

1 + 4ω2τ 2
(2.99)

We recover the familiar Lorentzian form of lineshape close to ω = 0. We chose the candi-
date function Ac(t) for precisely this reason. The function AFc (ω) looks like a traditional
Lorentzian near its center ω = 0 but has exponential decays in its far tails.

The final lineshape Lc(E) that is produced by the Fourier transform AFc (ω) is:

Lc(E) =
1

2π~
AFc (E/~) =

1

2π

2beb/2√
~2

τ2 + 4E2

K1

(
bτ

2~

√
~2

τ 2
+ 4E2

)
(2.100)

For large |E|, the asymptotic form is:

Lc(E) = O
(
e−

|E|
~/bτ

)
(2.101)

Lc(E) has exponential decays in E at both ends of the spectrum—let us call it a double-sided
exponential—with a characteristic decay energy of ~/ (bτ).

Physical interpretation of the candidate Ac(t)

As already indicated earlier, Ac(t) is simply our mathematical candidate function that cap-
tures the essential nature of the true amplitude decay from the dot to the narrow-band
wire. In order to infuse this abstract function with physical meaning, we need to define the
parameters b and τ in physical terms. Our approach will be to apply Ac(t) to the simpler
case of amplitude decay into a Lorentzian wire, which was solved in Sec 2.5 (Eq. (2.72),
denoted by Al(t) in this subsection). Since Ac(t) has two parameters, we need to match two
temporal properties of Ac(t) with the corresponding properties of Al(t) to express both b
and τ in terms of the physical parameters of the Lorentzian wire case. Once we have these
expressions, we shall take a leap of faith and generalize their meaning to the case of any
narrow-band wire.
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Figure 2.8: (a) The candidate function Ac(t) is exponentially decaying at large t in accordance
with Fermi’s Golden Rule, but is infinitely differentiable. This brings about an initial quadratic
decay near t = 0 as shown in the inset. (b) This seemingly small change in time-domain has
startling consequences for the frequency-domain. The tails of the candidate AFc (ω) are now steep
exponentials compared to the heavy Lorentzian tails in the normal Fermi Golden Rule case.

Our first step is to set the long-time asymptotic decay coefficients of Ac(t) and Al(t)
equal to one another. Next, we set the small-time quadratic decay coefficients equal to one
another. In terms of the parameters in the picture, Fig. 2.6 (b), we get:

1

2τ
= 2
|X ′|2

~2
τp (2.102)

− 1

4bτ 2
= −|X

′|2

2~2
(2.103)

where |X ′| is the interaction strength between the main quantum dot and the intermediary
quantum dot and τp is the decay time constant from the intermediary quantum dot to the
wide-band wire. Equivalently, ~/τp is the Full-Width-at-Half-Maximum of the Lorentzian
lineshape induced on the intermediary dot by the wide-band wire. These equations together
imply that AFc (ω) decays with the constant bτ = 2τp. Since we have physically motivated
choices of b and τ now, we compare Ac(t) and pure exponential decay on the same plot in
Fig. 2.8 (a), and their respective Fourier transforms in Fig. 2.8 (b).

We generalize this exact definition of τ and b to the dot-and-narrow-band-wire system
in Fig 2.7. The role of |X ′| in Eqs. (2.102) ad (2.103) will be played by the interaction |X|
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between the main quantum dot and the narrow-band wire in Fig 2.7. The role of ~/τp will
be played by the effective Full-Width-at-Half-Maximum of the narrow-band wire.

It might be surprising at first sight that the decay constant of AFc (ω), given by bτ = 2τp,
depends only on the bandwidth of the narrow-band wire and has no dependence at all on
the coupling strength between the main quantum dot and the narrow-band wire. In the
Lorentzian lineshapes we studied earlier in this chapter, the lineshape became broader as
the coupling to the wire got stronger. It only seems reasonable that a similar effect should
be observable here. This confusion is resolved when one notes that, though the dot-narrow-
band-wire coupling does not affect the behavior of AFc (ω) as ω →∞, it does affect its form
close to the origin. Eq. (2.99) tells us that the lineshape behaves like a Lorentzian as ω → 0.
As the dot-narrow-band-wire coupling strengthens, this Lorentzian broadens, so we recover
the familiar relation between ‘linewidth’ and the dot-wire coupling strength. It is only the
far tail of AFc (ω) that is independent of the dot-narrow-band-wire coupling.

2.8 Final structure and Id − Vg characteristics

Essence of this section: In this section, we present the Id − Vg characteristics of the
modified tunnel transistor device with a narrow-band wire inserted between the main
quantum dots and their corresponding wire contacts. The characteristics are computed
using the candidate function Ac(t) for the true d1(t). A physical platform for the fabri-
cation of such a device is also briefly discussed.
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Figure 2.9: Energy band depiction of our proposed narrow-band tunnel transistor. The source and
drain quantum dots are coupled to each other via interaction |M |. Each of them is coupled to its
associated narrow-band wire via interaction |X|. The narrow-band wires couple to the broadband
contact wires via the interaction |W |. The width of the density of states of the narrow-band wires
is ~/τp.



CHAPTER 2. TUNNEL TRANSISTORS AND SPECTROSCOPY 40

Our final design for the tunnel transistor simply consists of the inclusion of a narrow-
band wire between the main quantum dots and their respective wide-band wire contacts.
The inclusion of the narrow-band wire sharpens the lineshapes of the main quantum dots
and leads to sharper I-V characteristics. An energy band depiction of this structure is given
in Fig. 2.9. The source and drain quantum dots are coupled to each other via interaction
|M |, each of them is coupled to its associated narrow-band wire via interaction |X|, and the
narrow-band wires couple to the broadband contact wires via the interaction |W |. The width
of the density of states of the narrow-band wires is ~/τp. In [66] and [75], it was shown that
the matrix element |M | coupling the two quantum dots cannot be made arbitrarily large. |M |
must be smaller than the dot linewidth, |M | < ~/4τ . If |M | were any larger, strong coupling
between the two dots would occur. Under strong coupling, the electron would oscillate back
and forth between the quantum dots leading to the disappearance of the energy-filtering-
based switching mechanism and the reemergence of the thermal 60mV/decade slope.

Metal contact

Metal contact
Narro

w-band wire

Narrow-band 

wire
barrier

barrier
barrier

quantum dot quantum dot

New feature: narrow-band wire leads

Gate

Figure 2.10: Physical construction of our proposed narrow-band tunnel transistor. All the com-
ponents of the transistor, the quantum dots, the tunnel barriers, and the narrow-band wires, can
be made using graphene nanoribbons of the appropriate size and width. The drain-side quantum
dot is controlled via a gate terminal.

In order to avoid leakage current arising from tunneling through defect states, we would
like our devices to be defect-free. Defects are one of the banes of present-day bulk tunnel
transistors. To overcome these challenges, scientists have investigated the performance of
tunnel transistors constructed in the bottom-up fashion from the molecular level. Based
on the extensive work done on graphene and its derivatives, we propose that the tunnel
transistor should be built from graphene nanoribbons. Recent results from Mutlu et al.
indicate that we now have the ability to synthesize precisely controlled, defect-free graphene
nanoribbons [76]. Equally important for our proposal is the question of whether it is possible
to synthesize wires with narrow bands. It is known that zigzag graphene nanoribbons can
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be designed to possess nearly flat bands in their electronic structure, giving rise to peaked,
narrow density of states [77, 78].

Further, the width of the ribbons and the edge type can also be modulated to produce in-
sulating and conducting states of graphene. In summary, the entirety of the tunnel transistor,
including the main quantum dots, the insulating tunnel barriers, and the narrow-band wires,
can be fabricated in the graphene nanoribbon platform. A schematic of such a transistor is
depicted in Fig. 2.10.
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Figure 2.11: Based on the overlap between the source and drain dot spectral lineshapes, the
subthreshold current-voltage characteristic is shown. The exponential spectral tails produce a
leakage that can be characterized in terms of steepness or voltage swing: “millivolts per decade.”
For this numerical example, ~/2qτp = 2.6mV , τ = 500fs = 4τp, and the steepness 2.303~/2qτp =
6mV /decade. The Lorentzian spectrum has unacceptable leakage. The current I0 used to normalize
the two plots is the full on-state current for aligned Lorentzian quantum dots.
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Lastly, we present the Id− Vg characteristics for the narrow-band wire tunnel transistor.
The lineshape induced on the quantum dots by the narrow-band wire is modeled by the
candidate lineshape function, (1/ (2π~))AFc (E/~), that we discussed in detail in the previous
section. We recall from Sec. 2.3 that the Id−Vg characteristics are obtained from the source-
dot-drain-dot interaction strength |M(E)| and the lineshape functions of the two quantum
dots as follows:

Ifull(Vg) = −2
2πe

~

∫
dE L1(E)L2(E + eVg)|M(E1)|2 (f1(E)− f2(E)) (2.104)

Temperature T appears in the above expression essentially only through the Fermi factors
f1(E) and f2(E). For now, we will just set T = 0 and assume that the source and drain
Fermi levels are so widely separated that the source dot is fully occupied and the drain
dot is fully unoccupied. The case of non-zero T is discussed at the end of this subsection.
We also set the inter-dot coupling to a constant, |M(E)| = |M |. Then, the expression for
the current reduces to a simple convolution of the source-side and drain-side lineshapes. It
is easily shown that the convolution of two exponential functions in ω, each with a decay
constant of 1/2τp, is itself exponential with a decay constant 1/2τp. Shifting from the ω
domain (frequency) to energy and then to the V domain (voltage) through the introduction
of ~ and q, the decay constant becomes ~/2qτp. This means that the subthreshold slope, in
units of V /decade, is given by:

VSS = 2.303
~

2qτp
(2.105)

This expression says that the subthreshold slope of the device depends only on the width
of the density of states of the narrow-band wire, ~

τp
. The narrower the bandwidth of the

narrow-band wire, the smaller the subthreshold slope will be according to our model. In Fig.
2.11, we plot the IV curve that results from taking a narrow-band wire that has a bandwidth
of 5.2 meV. The resulting sub-threshold slope is shown to be a remarkable 6 mV/decade. We
look forward to future tunnel transistor work using narrow-band wires by the experimental
community in order to confirm our predictions.

Eq. (2.104) can be used to compute the peak current, that is the current at 0 level offset
Vg = 0, under the same assumptions of T = 0, source fully occupied and drain empty, and
|M | being constant. We have:

Ipeak ≈ −2
2πe

~
|M |2 τ

π~
(2.106)

where τ is the exponential decay lifetime of the dots.

Effect of temperature on the sub-threshold slope

When the temperature T is non-zero, the function f1(E)− f2(E) has exponential tails in E
at both extremes, E →∞ and E → −∞, with slope VT = 60mV/decade.

Since L1(E) is a double-sided exponential with slope given by Eq. (2.105), it is clear
that N(E) = L1(E) (f1(E)− f2(E)) is a double-sided exponential function with slope
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1
VN

= 1
VSS

+ 1
VT

. Again assuming that |M(E)| = |M | for all E, the right-hand side of Eq.
(2.104) reduces to a convolution of N(E), a double-sided exponential with slope VN , and
L2(E), a double-sided exponential with slope VSS. It is easy to verify that the convolution
of two double-sided exponential functions is another double-sided exponential function with
an asymptotic slope that is equal to the larger of the two slopes. That is, when two double-
sided exponentials are convolved, the slower one dominates and the passes on its slope to
the resultant convolution. Since VN is smaller than VSS, the resultant Id − Vg curve has
an asymptotic slope given by VSSV/decade even at finite temperatures. The asymptotic
subthreshold slope of the device in the far tails is essentially independent of temperature!

2.9 Conclusion

The conclusions of this chapter are:

1. Quantum dots that are coupled to their surroundings hybridize with them and expe-
rience an effective broadening of their original sharp energy levels. The shape of the
broadening is related to the time-domain behavior of the wavefunction of an electron
placed on the quantum dot.

2. The Id − Vg performance of a tunnel transistor composed of quantum dots coupled to
wires depends on the exact shape of the energy broadening or lineshape of the quantum
dots.

3. Coupling source and drain quantum dots directly to broadband contact wires results
in Lorentzian broadening of the quantum dots. Lorentzian lineshapes lead to unac-
ceptable leakage in the off state.

4. Inserting an intermediary quantum dot between the main quantum dots and their
contacts smoothens the time-domain electron wavefunction and leads to a sharper-
than-Lorentzian lineshape.

5. Smoothness of the time-domain decay of the wavefunction is intimately connected to
the tails of the energy-domain lineshape.

6. Inserting a series of intermediary quantum dots, effectively narrow-band wires, between
the main quantum dots and their contacts leads to lineshapes that decay faster than
any reciprocal power law in E.

7. The subthreshold slope of the Id − Vg characteristic depends on the bandwidth of the
narrow-band wire. The narrower the bandwidth, the lower the subthreshold slope.

8. Graphene nanoribbons seem to be a promising platform for the fabrication of high-
purity, narrow-band wire tunnel transistors.
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Chapter 3

Optical Spectroscopy and the Quest
for the Urbach Tail

We turn next to the problem of optical absorption in crystals. The absorption coefficient,
α(ω), quantifies the extent to which the light incident on a system is absorbed by it at
different frequencies. Theoretical calculations often yield Lorentzian absorption line shapes
of the form 1/

(
(ω − ω0)2 + (Γ/2)2), where ω0 is the peak resonance frequency and Γ is

the associated ‘linewidth’. However, in the solid state, the optical spectrum of electronic
transitions usually decays exponentially below the bandgap via the so-called Urbach tail,
e(ω−ω0)/ΓU (valid for ω < ω0), where ~ω0 is the bandgap of the material and ΓU is the
characteristic Urbach decay frequency [10].

A sector where this exponential falloff has far-reaching consequences is optical communi-
cations. The Urbach tail permits glass to be very transparent in the infrared—this essential
property of glass makes possible the long-distance optical communication that underlies the
internet today. If the electronic transitions in glass had a Lorentzian line shape instead, the
infrared optical absorption would never quite turn off due to the slow decay ∼ 1/∆ω2 and
the attenuation length at the communication frequencies would be ∼ 1 meter. Lorentzian
line shape in glass would be a catastrophe for modern civilization, which relies upon optical
fibers for worldwide connectivity. Urbach tails are found not only in amorphous glass but
also in almost every crystalline semiconductor, even when the sample is defect-free.

Despite its universality and critical importance to telecommunications, there is no physics
consensus for a simple, common origin of Urbach tail spectra, though many different physical
models have been proposed in the past [79–85]. Mahr [86] and Keil [84] compute absorp-
tion lineshapes by performing a weighted-averaging of the absorption shape for each possible
crystal lattice distortion due to thermal vibrations but do not obtain satisfactory Urbach
tails. Halperin and Lax [87] only derive impurity-induced band-tails. Dow and Redfield
[85] deduce the absorption by computing the effect of internal electric microfields on excited
electron-hole pairs. Sumi and Toyozawa [88] compute the absorption using the Laplace trans-
form approach that we ourselves adopt in this chapter, but perform different approximations
and do not succeed in obtaining a clear exponential shape with the right temperature de-
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pendence. John et al. [81] propose a complex theory for disordered crystals by modeling the
phonon dynamics via random Gaussian fields.

In this chapter, we contribute to the question of the Urbach tail by applying the tech-
nique of ‘Markov approximation with time-dependent coefficients’ that we encountered in
the previous chapter to various model optical systems. In the process, we succeed in ob-
taining rapidly decaying absorption spectral lineshapes that belong to the Schwartz class
(introduced in Chapter 2) though we are still unable to pinpoint the exact exponential decay
coefficient and the exact temperature dependence. Future novel work on this problem using
our approach and approximation might eventually lead to a transparent universal derivation
of the Urbach tail.

3.1 Absorption coefficient α(ω) in terms of the

susceptibility χ(ω)

Absorption α(ω)

The absorption coefficient of a material is a measure of the fraction of the incident light that
remains unabsorbed in a material after propagating a unit distance in it. More precisely, if
I0 is the incident light intensity, I(x) is the intensity at distance x in the medium, and the
absorption coefficient of the medium is α, we have:

I(x) = I0e
−αx (3.1)

α has units of reciprocal distance and usually has a strong dependence on the frequency
of the incident light. The function α(ω), called the absorption spectrum or the absorption
lineshape, is very important in optical engineering.

Susceptibility χ(ω)

The susceptibility is the linear response coefficient that captures the effect of incident electric
fields E on the electric dipole moment density or polarization of the material P . Again, this
quantity depends on the frequency of the electric field, ω. The linear response relation is
given by:

P (ω) = ε0χ(ω)E(ω) (3.2)

The response coefficient is, in general, a complex number:

χ(ω) = χ′(ω) + iχ′′(ω) (3.3)

Eq. (3.2) can be rewritten in the time domain as a convolution:

P (t) = ε0

∫ ∞
−∞

dτ χ(t− τ)E(τ) (3.4)
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Since real-life processes have to be causal, χ(t) is non-zero only for t ≥ 0. Further, the
material is assumed to be passive, that is, it is not driven or pumped in any form. Therefore,
there is no optical gain. Then, one can use the ideas of complex contour integration and
derive the famous Kramers-Kronig relations between the real and imaginary parts of χ(ω):

χ′(ω) =
1

π

∫ ∞
−∞

dω′
χ′′(ω′)

ω′ − ω
(3.5)

χ′′(ω) = − 1

π

∫ ∞
−∞

dω′
χ′(ω′)

ω′ − ω
(3.6)

The meaning of these relations is that the real and imaginary parts of χ(ω) cannot behave
arbitrarily. One does not have independent control over the two of them. Fixing one of them
as a function of ω decides the other immediately through these relations. A derivation of
the Kramers-Kronig relations is given in the optics textbook by Amnon Yariv [89].

The relation between α(ω) and χ(ω)

It turns out that the absorption coefficient α(ω) is linearly related to the imaginary part of
the susceptibility χ′′(ω). The simple derivation of this fact is as follows.

A wave ei(ωt−kx) propagating in a lossy medium can be described using a complex wave
number k = k′(ω) − ik′′(ω). The imaginary part means that the field amplitude falls off
exponentially with decay coefficient k′′(ω). The intensity, therefore, has a decay coefficient
α(ω) = 2k′′(ω), since it is the square of the field amplitudes. The wave number can be
expressed in terms of a complex refractive index as:

k′(ω)− ik′′(ω) =
ω

c
(n′(ω) + in′′(ω)) (3.7)

where n′(ω) and n′′(ω) are the real and imaginary refractive indices of the eiωt wave. More-
over, it is known that n2 = εr = 1 + χ. Comparing real and imaginary parts on both sides,
we have:

n′2 − n′′2 = 1 + χ′ (3.8)

2n′n′′ = χ′′ (3.9)

Therefore, the decay coefficient α is:

α(ω) = 2k′′(ω) = −2
ω

c
n′′(ω) = −ω

c

χ′′(ω)

n′(ω)
(3.10)

We assume that the real refractive index n′(ω) is roughly constant in the frequency range of
interest. Then, α(ω) becomes directly proportional to χ′′(ω). The rest of the chapter will
focus on computing χ′′(ω).
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3.2 Lorentz-Lorenz model

Essence of this section: In this section, we present the simple classical Lorentz-Lorenz
model for the refractive index and derive from it the standard Lorentzian lineshape for
χ′′(ω). We need to go beyond this simple model to get exponential lineshapes like the
Urbach tail.

The Lorentz-Lorenz model is a simple classical model for the susceptibility χ(ω) that predicts
reciprocal polynomial lineshapes that look Lorentzian near the peak. We quickly discuss this
model to see what we are up against in our quest for the Urbach tail.

We focus on one electron in the medium, described by its position x(t). The net force
experienced by the electron includes the electric field force, the Drude damping due to the
resistance of the medium, and a possible spring force that keeps the electron bound to its
nucleus (this force is very important in insulators, where free electrons are a rarity). Newton’s
force equation tells us:

mẍ = qE −mω2
0x−m

1

τ
ẋ (3.11)

where q = −e is the electron charge, m is the electron mass, ω0 is the spring’s natural
frequency, and 1/τ is the resistive damping rate. If the electric field is sinusoidal and has
frequency ω, we can write x(t) = Xeiωt for some amplitude X. Plugging this in, we get:

X =
qE/m

(ω2
0 − ω2) + iω

τ

(3.12)

The dipole moment of the separated electron-nucleus pair (let the nucleus have only one
proton) is then just p = qX. If there are N such pairs in a unit volume in the material, the
susceptibility χ(ω) will be given by:

χ(ω) =
Nq2/m

(ω2
0 − ω2) + iω

τ

(3.13)

The imaginary part of this expression is:

χ′′(ω) = −
Nq2

m
ω
τ

(ω2
0 − ω2)

2
+
(
ω
τ

)2 (3.14)

We see that the absorption lineshape decays as 1/ω3, a reciprocal polynomial, at large fre-
quencies. Further, there is no hint of temperature dependence at all in the above expression.
It should be recalled that the Urbach tail is an exponential decay with an energy decay
coefficient that is approximately kT/2. In order to derive exponential Urbach tails that
correctly capture the temperature dependence, it seems essential that more nuanced
physics be included in the computation.
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3.3 Statistical models of lineshape based on dipole

moment fluctuations; Brownian motion; Kubo’s

lineshape

Essence of this section: In this section, we introduce the fact that the absorption
spectrum of a system is intimately connected to the random equilibrium fluctuations of
its dipole moment. A specific statistical model of lineshape originally proposed by Kubo
is presented, and the reasons why it does not lead to Urbach tails are discussed.

One of the fundamental discoveries in the history of non-equilibrium statistical mechanics
was the ‘fluctuation-dissipation theorem’. This result gives the relationship between the
linear response of a driven, out-of-equilibrium system, and the fluctuations of the system
variables at equilibrium. We will derive this theorem in the next section, Sec. 3.4. For
now, however, we will simply take on faith the fact that the susceptibility χ(ω) of a system
is directly related to equilibrium time-domain fluctuations of its dipole moment p.

χ(ω) is in fact proportional to the Fourier transform of the autocorrelation function
〈p(t)p(0)〉 of the equilibrium time-domain dipole moment fluctuations of the system. The
autocorrelation function of a system variable is a 2-time statistical average, meaning, it
measures how correlated that system variable is at two different times. The dipole moment
autocorrelation R(t1, t2) is the equilibrium average of the product of the system’s dipole
moments at time t1 and t2: R(t1, t2) = 〈p(t1)p(t2)〉. The angular brackets denote ensemble
averaging of this quantity over several copies of the system.

Such an autocorrelation function is computable if one has a model for the dynamics
of the variable under question—we are interested in the dipole moment here. The dipole
moment p(t) of a system evolves both due to external driving and due to noisy perturbations
from the system’s surroundings. This type of dynamics is similar to the Brownian motion
of a particle suspended in a liquid. Stochastic differential equations are a natural way of
describing Brownian motion, and can similarly be used to form a statistical model for the
evolution of the dipole moment. We take a brief look at Brownian motion next.

Brownian motion

The dipole moment p(t) of a system evolves both due to external driving and due to noisy
perturbations from the system’s surroundings. This type of dynamics is similar to the Brow-
nian motion of a particle suspended in a liquid. In Brownian motion, the particle’s motion
involves directed drift that is caused by structured external driving forces, and random dif-
fusion caused by the particle’s interaction with the random thermal motion of the liquid’s
molecules. Such dynamics is well described using stochastic differential equations that rep-
resent the effect of the reservoir’s random thermal motion on the particle using a random
process in time n(t). The following is an example of a stochastic differential equation that
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can be used to describe the particle’s velocity:

dv(t)

dt
= −αv(t) + n(t) (3.15)

α is a viscosity coefficient or resistance that the particle experiences, and the n(t) is the
random process that dictates how the environment affects the particle’s acceleration.

In equilibrium, the particle has zero average velocity, but the mean-squared velocity is
non-zero and is proportional to kT , where k is the Boltzmann constant and T is the ambient
temperature. The particle’s mean-squared velocity can also be computed from Eq. (3.15)
in terms of the viscosity α, and the strength A of the noise process n(t). Equating the
two expressions for the mean-squared velocity yields a relationship between the dissipation
coefficient α, the noise strength A, and the temperature T . This is the famous Einstein
relation that connects drift (mobility) and diffusion (diffusivity). The simplest treatment of
Brownian motion assumes that n(t) is Gaussian white noise. It is then fairly straightforward
to explicitly derive an Einstein relation.

Kubo’s model

To derive the dipole moment autocorrelation R(t1, t2) = 〈p(t1)p(t2)〉, we need a model for the
dynamics of the dipole moment. A popular model for the dipole moment is the one presented
by Kubo in [90]. This model succeeds in capturing the effect of motional narrowing that is
observed in Nuclear Magnetic Resonance and other spectroscopic settings. Kubo’s model is
described in Appendix 2. From the Appendix, the formula for the dipole autocorrelation is:

〈p(0)p(t)〉 = p(0)2 exp

(
−∆2τ 2

c

(
e−t/τc +

t

τc
− 1

))
(3.16)

where ∆ is the width of the background Gaussian frequency distribution and 1/τc is the rate
at which the dipole moment ‘jumps’ around. The meaning of these terms and parameters is
explained in Appendix 2.

Discussion

It can be verified that the above formula, when Taylor expanded about t = 0, has cubic
terms in |t|. This indicates a discontinuity in the third derivative of the autocorrelation
function at t = 0. We saw in Chapter 2 that discontinuities in any of the derivatives of a
function generates reciprocal polynomial tails in its Fourier transform. Therefore, this model
cannot produce asymptotic exponential tails in χ(ω) for any choice of the two parameters
involved. One fundamental cause of this discontinuity is the pure linear decay of the angular
frequency ω with rate 1/τc in the equations in the Appendix. The real-world autocorrelation
has a quadratic behavior at short times that is not captured by such a linear decay. In the
remaining sections, we will move away from models that involve ad hoc assumptions like pure
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linear decay terms and instead turn to more rigorous quantum mechanical treatments. To
capture the ‘smooth’ behavior of the dipole autocorrelation function in time more precisely,
we will rigorously solve for the quantum mechanical evolution of the dipole moment in several
model systems in an attempt to tease out an Urbach tail.

3.4 Linear response and autocorrelations

Essence of this section: In this section, we derive the important Green-Kubo formula
that connects (1) the linear response of a system to a driving force, and (2) the statistical
fluctutations of the system in equilibrium, before the driving force was applied. We
will specifically relate the susceptibility χ(ω) to the Fourier transform of the dipole
autocorrelation function.

In this section, we derive the important Green-Kubo formula that connects the (1) linear
response of a system to a driving force and the (2) statistical fluctutations of the system in
equilibrium, before the driving force was applied. This relation is also called the ‘fluctuation-
dissipation theorem’ and dates back in its original form to Onsager [4].

Although the derivation is completely general, the notation will be oriented towards opti-
cal response, that is, the connection between the (1) linear response of the dipole moment to
driving electric fields, which is simply the susceptibility, and (2) the equilibrium fluctuations
of the dipole moment. We shall also switch to quantum mechanics for the derivation because
the rest of the chapter involves quantum mechanical calculations.

Setup

Let the Hamiltonian of the equilibrium system be H0. The driving force is the classical
electric field, E(t) = (E∗e−iωt + Eeiωt) /2. The system, which is charge-neutral, interacts
with the electric field through its dipole moment, p, resulting in an interaction energy of
V = −p ·E(t). We shall assume that the electric field is linearly polarized along a particular
direction, so only the dipole moment operator along that direction plays a role. The full
Hamiltonian is:

H = H0 + V = H0 − pE(t) (3.17)

Schrödinger equation; Interaction picture

The Schrödinger equation in density matrix notation is:

dρ(t)

dt
= − i

~
[H, ρ(t)] = − i

~
[H0 + V, ρ(t)] (3.18)

The version of quantum mechanics with constant operators and time-dependent states is
called the Schrödinger picture. In order to get rid of the equilibrium Hamiltonian H0 and to
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understand the novel dynamics caused by the driving −pE(t), we perform the ‘Interaction
picture’ change of variables. This change of variables effectively amounts to removing the
fast oscillations caused by H0 from the density matrix and looking only at the slowly varying
envelope of the wavefunction caused by −pE(t). As an aside, we mention that if one were
to shift the entire time-dependence, both fast and slow, to the operators and make the state
constant (not just slowly-varying), then we are said to be using the ‘Heisenberg picture’. All
of these are simply changes of variables, there is no difference in their physical content.

We denote the operators after the variable change with tildes. The interaction picture
operator Ã(t) that corresponds to an arbitrary Schrödinger operator A is:

Ã(t) = ei
H0
~ tAe−i

H0
~ t (3.19)

The density matrix in the interaction picture is:

ρ̃(t) = ei
H0
~ tρ(t)e−i

H0
~ t (3.20)

With this change of variables, the Schrödinger equation becomes:

dρ̃(t)

dt
= − i

~
[Ṽ (t), ρ̃(t)] (3.21)

Linear response

Since we are interested only in linear response, we will look at the first order change in ρ̃(t)
caused by the driving. Expressing ρ̃(t) as ρ̃(t) = ρ̃(0)(t) + ρ̃(1)(t) + . . . where ρ̃(i)(t) depends
on the i-th power of the perturbation Ṽ , we have, for the zeroth and first orders:

dρ̃(0)

dt
= 0 (3.22)

dρ̃(1)

dt
= − i

~
[Ṽ (t), ρ̃(0)(t)] (3.23)

Let us say the electric field was turned on at time t = 0. The density matrix at t = 0
should then be the equilibrium density matrix of the system, ρ(0) = e−H0/kT/Z, where Z
is the normalization constant, and T is the temperature. From this, it is also clear that
ρ̃(0)(0) = e−H0/kT/Z and ρ̃(1)(0) = 0.

Solving (3.22) gives us ρ̃(0)(t) = ρ̃(0)(0) = ρ(0). Plugging this into (3.23) and integrating
from 0 to t, we get:

ρ̃(1)(t) = − i
~

∫ t

0

[Ṽ (τ), ρ(0)]dτ (3.24)

The expected dipole moment of the system is obtained by taking the trace of the product of
the dipole operator and the density matrix:

〈p(t)〉 = Tr {p̃(t)ρ̃(t)} (3.25)
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Then, to first order in the perturbation, the expected dipole moment at time t is:

〈p(t)〉 = Tr
{
p̃(t)ρ̃(1)(t)

}
(3.26)

=− i

~

∫ t

0

Tr
{
p̃(t)

[
Ṽ (τ), ρ(0)

]}
dτ (3.27)

=− i

~

∫ t

0

Tr
{[
p̃(t), Ṽ (τ)

]
ρ(0)

}
dτ (3.28)

=
i

~

∫ t

0

Tr

{[
p̃(t), p̃(τ)

1

2

(
Eeiωτ + E∗e−iωτ

)]
ρ(0)

}
dτ (3.29)

=
i

~

∫ t

0

Tr {[p̃(t− τ), p̃(0)] ρ(0)} 1

2

(
Eeiωτ + E∗e−iωτ

)
dτ (3.30)

=
i

~
E

2
eiωt

∫ t

0

dτ Tr {[p̃(τ), p̃(0)] ρ(0)} e−iωτ

+
i

~
E∗

2
e−iωt

∫ t

0

dτ Tr {[p̃(τ), p̃(0)] ρ(0)} eiωτ
(3.31)

In the above sequence, we assumed that ρ(0) is diagonal in the unperturbed eigenstate basis
which is indeed the case. The steady state dipole moment, after all the transients die down,
is obtained by setting t→∞ in the above expression. The susceptibility χ(ω) is then given
by:

χ(ω) =
i

~

∫ ∞
0

Tr {[p̃(τ), p̃(0)] ρ(0)} e−iωτdτ (3.32)

Since we have p̃(τ) = ei
H0
~ tAe−i

H0
~ t, p̃(τ) is in fact the Heisenberg dipole operator at time

τ in the absence of the light probe. The trace on the right-hand side above is then the
average of the dipole-dipole commutator at two different times in thermal equilibrium. By
thermal equilibrium, we mean that the system is not driven in any manner. The input
driving electric field E(t) is absent, as is the interaction term V . Since we are computing a
2-time average of the same physical quantity, we will call it an autocorrelation. Therefore,
χ(ω), which is the linear response of the material polarization to input light, is related to
the equilibrium dipole-dipole autocorrelation function. We have successfully related linear
response to equilibrium fluctuations.

χ′′(ω) is the Fourier transform of the dipole autocorrelation

The imaginary part of χ(ω), which is what we are interested in, is given by:

χ′′(ω) =
1

2~

∫ ∞
−∞

Tr {[p̃(τ), p̃(0)] ρ(0)} e−iωτdτ (3.33)

The right-hand side is in fact a Fourier transform. In summary, the procedure to get the op-
tical absorption lineshape α(ω) is to compute the dipole-dipole commutator autocorrelation,
take its Fourier transform, and scale it by the relevant prefactors.
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Building up to absorption in a semiconductor

Trying to derive Urbach tails by directly applying this machinery to semiconductors and
insulators is not directly tractable because of the complexity of those systems. It is well-
understood that phonons, or mechanical vibrations, are the cause of the Urbach tail in
crystals. Our approach toward this problem will be to study a few simple electronic systems
that are coupled to phonon reservoirs and then attempt to draw more general conclusions
from those results. In the rest of the chapter, we shall study optical absorption of (1) an
electron in a harmonic potential well that is coupled to a bath of phonons, and (2) an
electron in a 2-level atom that is coupled to a bath of phonons. Though these examples do
not directly lead to Urbach tails, they are very instructive.

Since Eq. (3.33) involves the time-evolution of the dipole operator, we will use the
Heisenberg equation of motion for operators. The Heisenberg picture involves capturing the
dynamics in the operators, instead of in the state as the Schrödinger picture does. The
Heisenberg equation of motion for an operator A(t), which is completely equivalent to the
Schrödinger equation for states, is given by:

d

dt
A(t) =

i

~
[H,A(t)] (3.34)

where H, the Hamiltonian of the system, is assumed to be time-independent.

3.5 Warm-up: Absorption in a harmonic potential

well

Essence of this section: In this section, we apply the Green-Kubo formula to the
simple case of optical absorption by an electron in a harmonic potential well as a warm-
up problem. This same procedure will be consistently applied to the other systems in
the rest of the chapter.

Our very first application of the dipole autocorrelation formula to find χ′′(ω) will be for the
optical absorption of an electron in a harmonic potential well. The harmonic oscillator has
discrete equally spaced levels, so the absorption should simply be a set of delta functions
at various harmonics of the harmonic oscillator natural frequency ω0. When we consider
optical absorption due to the dipole interaction alone, we in fact get absorption only at the
natural frequency ω0.
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There is only one electron in the well

Hamiltonian

The Hamiltonian of the harmonic oscillator, H0, is:

Ho = ~ω0

(
b†b+

1

2

)
(3.35)

where b/b† are the destruction/construction operators of the electron’s oscillator, and ω0 is
the natural frequency of the electron’s oscillator.

Heisenberg equations

The Heisenberg equation for the harmonic oscillator destruction operator is:

i~
d

dt
b(t) = ~ω0b(t) (3.36)

which yields:

b(t) = be−iω0t (3.37)

Dipole commutator autocorrelation

Now, the dipole operator of the electron is p = −eX, where X is the electron’s position
operator. In a harmonic oscillator, the position can be expressed in terms of the creation
and destruction operators giving us:

p(t) = − e
√
~√

2meω0

(
b(t) + b†(t)

)
(3.38)

We are interested in the average value of the commutator of p(t) and p(0):

〈[p(t), p(0)]〉 =
e2~

2meω0

(
〈[b(t), b]〉+

〈[
b(t), b†

]〉
+
〈[
b†(t), b

]〉
+
〈[
b†(t), b†

]〉)
(3.39)

The first and last terms on the right-hand side of Eq. (3.39) are clearly 0 due to the form
of b(t) in Eq. (3.37). From the relation

[
b, b†

]
= 1, we see that the second term on the

right-hand side of Eq. (3.39) is e−iω0t while the third term on the right-hand side of Eq.
(3.39) is −eiω0t. Plugging these in and using Eq. (3.33), the imaginary part of χ(ω) is:

χ′′(ω) =
e2π

2meω0

(δ (ω + ω0)− δ (ω − ω0)) (3.40)
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Discussion

χ′′(ω) is composed of delta functions at ω0 and −ω0, indicating that there is sharp absorption
of light at ~ω = ~ω0, the energy difference between adjacent states of the harmonic oscil-
lator. The oscillator levels are not broadened because there is no reservoir or environment
that is interacting with and disturbing the oscillator. One curious feature of Eq. (3.40) is
that it contains no temperature dependence at all—one would have expected the electron
thermal occupations of the oscillator levels to have played a role in the absorption, but that
temperature dependence is evidently missing here. The reason is that our present analysis
only considered a single electron in the harmonic well. We rectify this in the next subsection
by filling the harmonic well with several non-interacting electrons.

There are several non-interacting electrons in the well

The natural way to express the Hamiltonian of a multi-electron system is via the use of
Fermionic construction and destruction operators—this approach is also commonly known
as the second quantization formalism. Just like their bosonic counterparts, the fermionic
construction operators add electrons to modes/energy levels while the destruction operators
remove electrons from energy levels. One key difference is that the fermionic operators satisfy
anti-commutation relations as opposed to the commutation relations satisfied by the bosonic
operators. This difference is fundamentally due to the fact that bosons can be exchanged
between states with no change to the wavefunction while fermion exchange leads to a phase
factor of -1 in the wavefunction. If ck/c

†
k are the destruction/construction operators for an

electronic state |k〉, they satisfy the anticommutation relation
{
ck, c

†
k

}
= ckc

†
k + c†kck = 1.

Hamiltonian

The Hamiltonian of the harmonic oscillator in second quantization is:

Ho =
∞∑
n=0

~ω0

(
n+

1

2

)
c†ncn (3.41)

where cn/c†n are the destruction/construction operators for the n-th energy level in the har-
monic oscillator, and ω0 is the natural frequency of the electron’s oscillator.

Heisenberg equations

The Heisenberg equations are:

i~
d

dt
ck(t) = ~ω0

(
k +

1

2

)
ck(t) (3.42)

which yields:

ck(t) = cke
−iω0(k+ 1

2)t (3.43)
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Dipole commutator autocorrelation

Recalling that the dipole operator for a single electron is given by:

p(t) = − e
√
~√

2meω0

(
b(t) + b†(t)

)
(3.44)

one can write the sum of the dipole operators of all the electrons in the system as:

pall(t) = − e
√
~√

2meω0

(
∞∑
k=0

√
k + 1

(
c†k(t)ck+1(t) + c†k+1(t)ck(t)

))
(3.45)

The average value of the commutator of p(t) and p(0) is then:

〈[p(t), p(0)]〉 =
e2~

2meω0

∞∑
k=0

∞∑
l=0

√
k + 1

√
l + 1

(〈[
c†k(t)ck+1(t), c†l cl+1

]〉
+
〈[
c†k(t)ck+1(t), c†l+1cl

]〉
+
〈[
c†k+1(t)ck(t), c

†
l cl+1

]〉
+
〈[
c†k+1(t)ck(t), c

†
l+1cl

]〉) (3.46)

Patient algebra on the commutators reveals that the first and last terms reduce to terms

of the form
〈
ckc
†
k+2

〉
,
〈
c†k+1ck−1

〉
, and the like. All these averages, which correspond to

‘coherences’ between different harmonic oscillator energy levels, can be set to 0 in thermal

equilibrium. On the other hand, the second term,
〈[
c†k(t)ck+1(t), c†l+1cl

]〉
, reduces to some-

thing like
〈
c†kck − c

†
k+1ck+1

〉
, which can be expressed in terms of the thermal occupations of

the energy levels. The third term also reduces to a similar form. The final expression for
the dipole commutator autocorrelation is:

〈[p(t), p(0)]〉 =
e2~

2meω0

(
e−iω0t − eiω0t

) ∞∑
k=0

(k + 1) (〈n(k)〉 − 〈n(k + 1)〉) (3.47)

=
e2~

2meω0

(
e−iω0t − eiω0t

) ∞∑
k=0

(k + 1)

(
1

1 + e
~ω0(k+0.5)−µ

kT

− 1

1 + e
~ω0(k+1.5)−µ

kT

)
(3.48)

where 〈n(k)〉 is the thermal occupation of the k-th energy level. We will assume that the
spacing between the energy levels, ~ω0, is much larger than kT , as is the case for absorption
in semiconductors. Then, only the two levels, k0 and k0 + 1, that are on either side of the
Fermi level µ contribute significantly to the summation above.

〈[p(t), p(0)]〉 ≈ e2~
2meω0

(
e−iω0t − eiω0t

)
(k0 + 1) (〈n(k0)〉 − 〈n(k0 + 1)〉) (3.49)

The imaginary part of χ(ω) is then:

χ′′(ω) ≈ e2π

2meω0

(δ (ω + ω0)− δ (ω − ω0)) (k0 + 1) (〈n(k0)〉 − 〈n(k0 + 1)〉) (3.50)
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Discussion

χ′′(ω) again has the same form as before—it has delta functions at ω0 and −ω0. However,
the correct dependence of the absorption on the difference of the thermal populations of the
lower and upper levels is now recovered.

A key lesson to be learned here is that, though second quantization calculations recover
the exact dependence of the absorption lineshape on the electronic thermal occupations,
the single electron calculation was accurate enough to capture the essential shape of the
absorption. The electron thermal occupation dependence is a very intuitive correction that
can be tacked onto the lineshape later on, in the spirit of the Id − Vg curve calculation for
finite temperature in Chapter 2. Further, the electron thermal occupation difference term
seemingly has no effect on the shape of the absorption, and, above it all, is nearly 1 for
semiconductors at room temperature. It cannot possibly play a role in the creation of the
Urbach tail. For this reason, all our calculations in the succeeding sections will be in the
single-electron picture.

3.6 Absorption by an electron in a harmonic

potential well coupled to a phonon reservoir

Essence of this section: In this section, we apply the Green-Kubo formula to the
slightly more involved case of optical absorption by an electron in a harmonic potential
well that is coupled to a reservoir of phonons. The harmonic potential well is coupled
to a large crystal which is at thermal equilibrium. The phonons in the crystal interact
with the electron and broaden its absorption spectrum.

Our next χ′′(ω) calculation will be for the optical absorption of an electron in a harmonic
potential well that is coupled to a phonon bath as depicted in Fig 3.1. The electron is
attached to its home stationary atom via a spring. This harmonic oscillator has the well-
known equally-spaced energy spectrum. Its absorption spectrum consists of a sharp Dirac
delta function at the natural frequency of the oscillator ω0. When the electron is weakly
connected to a lattice of springs, the vibrations of the lattice hybridize with, and consequently
broaden, the originally sharp energy levels of the harmonic electron. This also broadens the
absorption spectrum, which will be computed in this section.
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Figure 3.1: The electron is in a harmonic potential well and is also coupled to a large crystal
which is at thermal equilibrium. The phonons in the crystal interact with the electron and broaden
its absorption spectrum. The phonons are described by the Hamiltonian Hs, the harmonic well by
H0, and their interaction by V .

Hamiltonian

The Hamiltonian of the damped harmonic oscillator is sum of three terms, the harmonic
oscillator’s own Hamiltonian, H0, the reservoir term, Hs, and the coupling term, V :

Ho = ~ω0

(
b†b+

1

2

)
(3.51)

Hs =
∑
i

~ωi
(
a†iai +

1

2

)
(3.52)

V =
∑
i

(
gib
†ai + g∗i ba

†
i

)
(3.53)

where b/b† are the destruction/construction operators of the electron’s oscillator, ai/a
†
i are

the destruction/construction operators of the i-th phonon mode, ω0 is the natural frequency
of the electron’s oscillator, ωi are the phonon frequencies, and the gi are the coupling
strengths between the electron and the i-th phonon. In the coupling term V , we are consid-
ering only those processes that result in the creation of an electron excitation when a phonon
is destroyed, and the destruction of an electron excitation when a phonon is created. When
the offset between ωi and ω0 is large, this is only an approximation, and other processes such
as the simultaneous creation of electron and phonon excitations should also be considered.
This is done in Appendix A.
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Heisenberg equations

The Heisenberg equations for the operators are:

i~
d

dt
b(t) = ~ω0b(t) +

∑
i

giai(t) (3.54)

i~
d

dt
ai(t) = ~ωiai(t) + g∗i b(t) (3.55)

Introducing ‘slowly-varying’ operators:

b(t) = b̂(t)e−iω0t (3.56)

ai(t) = âi(t)e
−iωit (3.57)

The Heisenberg equations become:

i~
d

dt
b̂(t) =

∑
i

giâi(t)e
i(ω0−ωi)t (3.58)

i~
d

dt
âi(t) = g∗i b̂(t)e

i(ωi−ω0)t (3.59)

We integrate the âi equations from 0 to t and substitute the result into the b̂ equation to
get:

d

dt
b̂(t) = −

∫ t

0

dτκ(τ)b̂(t− τ) + F̂ (t) (3.60)

where

κ(τ) =
1

~2

∑
i

|gi|2ei(ω0−ωi)τ (3.61)

F̂ (t) = − i
~
∑
i

giâi(0)ei(ω0−ωi)t (3.62)

The Heisenberg equation for b̂(t), Eq. (3.60), is a linear equation with a memory kernel
κ(τ) and an added ‘noise’ input term, F̂ (t). Laplace transforms are a standard technique
to solve such equations. In our notation, the Laplace transform of a function x(t) will be
xL(s). Following the standard procedure, the solution to (3.60) turns out to be:

b̂(t) =

∫ t

0

h(t− s)F̂ (s)ds+ h(t)b̂(0) (3.63)

b̂†(t) =

∫ t

0

h∗(t− s)F̂ †(s)ds+ h∗(t)b̂†(0) (3.64)
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where h(t) is the function whose Laplace transform is given by:

hL(s) =
1

s+ κL(s)
(3.65)

The Laplace transform of h∗(t) is denoted by (h∗)L (s) and given by:

(h∗)L (s) =
1

s+ (κL(s∗))∗
(3.66)

κL(s) is the Laplace transform of κ(τ), and is given by:

κL(s) =
1

~2

∑
i

|gi|2

s− i (ω0 − ωi)
(3.67)

Dipole commutator autocorrelation

Now, the dipole operator of the electron is p = −eX, where X is the electron’s position
operator. In a harmonic oscillator, the position can be expressed in terms of the creation
and destruction operators giving us:

p(t) = − e
√
~√

2meω0

(
b(t) + b†(t)

)
(3.68)

We are interested in the average value of the commutator of p(t) and p(0):

〈[p(t), p(0)]〉 =
e2~

2meω0

(
〈[b(t), b]〉+

〈[
b(t), b†

]〉
+
〈[
b†(t), b

]〉
+
〈[
b†(t), b†

]〉)
(3.69)

Now, the first commutator in Eq. (3.69) is:

〈[b(t), b]〉 = e−iω0t

(∫ t

0

h(t− s)
〈[
F̂ (s), b

]〉
ds+ h(t) 〈[b, b]〉

)
= 0 (3.70)

The first term is zero because ai commutes with b, and the second is zero because [b, b] = 0.
A similar cancellation happens in the fourth commutator and renders it equal to zero. The
second commutator in (3.69) is:〈[

b(t), b†
]〉

= e−iω0t

(∫ t

0

h(t− s)
〈[
F̂ (s), b†

]〉
ds+ h(t)

〈[
b, b†

]〉)
(3.71)

= h(t)e−iω0t (3.72)

A similar calculation for the third commutator of Eq. (3.69) yields:〈[
b†(t), b

]〉
= −h∗(t)eiω0t (3.73)

Therefore, the full dipole commutator autocorrelation is:

〈[p(t), p(0)]〉 =
e2~

2meω0

(
h(t)e−iω0t − h∗(t)eiω0t

)
(3.74)
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Susceptibility χ(ω)

Applying Eq. (3.32) for the susceptibility, we have:

χ(ω) =
i

~
e2~

2me0

∫ ∞
0

(
h(τ)e−iω0τ − h∗(τ)eiω0τ

)
e−iωτdτ (3.75)

=
i

~
e2~

2meω0

lim
η→0

(
hL(i(ω0 + ω) + η)− (h∗)L (i(ω − ω0) + η)

)
(3.76)

=
i

~
e2~

2meω0

lim
η→0

(
1

i(ω0 + ω) + η + κL(i(ω0 + ω) + η)
(3.77)

− 1

i(ω − ω0) + η + (κL(−i(ω − ω0) + η))∗

)
(3.78)

Plugging in the expression for κL(s), we continue:

χ(ω) =
i

~
e2~

2meω0

lim
η→0

(
1

i(ω0 + ω) + η + 1
~2

∑
i

|gi|2
i(ω+ωi)+η

− 1

i(ω − ω0) + η + 1
~2

∑
i

|gi|2
i(ω−ωi)+η

)
(3.79)

=
i

~
e2~

2meω0

lim
η→0

 1

i(ω0 + ω) + η + 1
~2

∑
i |gi|2

(
−i

ω+ωi
+ πδ (ω + ωi)

) (3.80)

− 1

i(ω − ω0) + η + 1
~2

∑
i |gi|2

(
−i

ω−ωi + πδ (ω − ωi)
)
 (3.81)

At this point, we define the ‘generalized’ decay rate and energy shift, Γ(ω) and ∆(ω) respec-
tively, as follows:

Γ(ω) =
1

~2

∑
i

|gi|2πδ (ω + ωi) (3.82)

∆(ω) =
1

~2

∑
i

|gi|2
(
−1

ω + ωi

)
(3.83)

χ(ω) then reduces to:

χ(ω) =
ie2

2meω0

lim
η→0

(
1

i (ω0 + ω + ∆(ω)) + Γ(ω) + η
− 1

i (ω − ω0 −∆(−ω)) + Γ(−ω) + η

)
(3.84)

The imaginary part, χ′′(ω), is given by:

χ′′(ω) =
e2

2meω0

(
Γ(ω)

(ω + ω0 + ∆(ω))2 + Γ2(ω)
− Γ(−ω)

(ω − ω0 −∆(−ω))2 + Γ2(−ω)

)
(3.85)

We have successfully derived an exact χ′′(ω) for our model.
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Discussion

Eq. (3.85) looks like the general lineshape for the tunneling problem that was derived in
Chap. 2. If the ‘generalized’ decay rate and energy shift are assumed to be constant in ω,
Eq. (3.85) reduces to a difference of two Lorentzian lineshapes which yields a reciprocal poly-
nomial absorption lineshape. However, the generalized quantities are usually not constant
away from the peaks, so the tails should be expected to be non-Lorentzian.

A disappointing feature of Eq. (3.85), however, is that it too doesn’t have any phonon-
population-induced temperature dependence, just like the result of the Lorentz-Lorenz model.
The simple linear dynamics of the physical operators in this system, which we were able to
solve exactly using standard techniques, seems to be insufficient to introduce temperature de-
pendence in the absorption lineshape. This motivates us to next look at a more complicated
model system whose physical variables do indeed obey non-linear dynamics.

3.7 Optical absorption in a 2-level system coupled to

a phonon reservoir

Essence of this section: In this section, we apply the Green-Kubo formula to the
most complicated problem in this chapter—optical absorption by an electron in a 2-level
system that is coupled to a reservoir of phonons. The phonons in the crystal interact
with the 2-level system and broaden its absorption spectrum.

Relevance of absorption in 2-level systems

In this section, we will study the optical absorption of an electron in a 2-level system or
atom that is perturbed by a phonon reservoir. This system can be used to approximate the
absorption in a real semiconductor. When a probe light signal is incident on a semiconductor,
transitions occur between conduction-band and valence-band states that have the same Bloch
vectors k. Each such ‘compatible’ pair of valence and conduction band states is effectively a
2-level system. A zeroth-order method to obtain the full absorption spectrum of the crystal
is to sum the spectra of all the individual ‘compatible’ pairs of valence band and conduction
band states, that is, by summing the spectra of many 2-level systems. Of course, this is only
an approximation, and doesn’t take into account the additional broadening of conduction
and valence band states in crystals that occurs due to intra-band electron scattering caused
by the phonons. More importantly, however, we think one needs to exercise more care while
adopting this kind of procedure. The full absorption spectrum is possibly not a simple sum
of individual 2-level spectra but something like the squared absolute value of the sum of the
individual complex square-root responses of all the component 2-level systems. Nevertheless,
computing the 2-level system spectrum is likely to be an important step in the final derivation
of semiconductor spectra, so we go ahead with it now.
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Figure 3.2: The electron is in a 2-level system and is also coupled to a large crystal which is
at thermal equilibrium. The phonons in the crystal interact with the electron and broaden its
absorption spectrum. The phonons are described by the Hamiltonian Hs, the 2-level system by
H0, and their interaction by V .

Hamiltonian

All 2-level system Hermitian operators can be expressed in terms of the Pauli matrices and
the identity matrix. The three Pauli matrices are:

Sx =

(
0 1
1 0

)
, Sy =

(
0 −i
i 0

)
, Sz =

(
1 0
0 −1

)
(3.86)

Let the energy of the excited state, |e〉, of the 2-level atom be E, and the energy of the
ground state, |g〉, be −E. Then, the Hamiltonian H0 of the 2-level system is:

H0 = ESz (3.87)

The phonon bath has the same Hamiltonian as before:

Hs =
∑
i

~ωi
(
a†iai +

1

2

)
(3.88)

For the interaction V , we shall again consider only those processes which involve the excita-
tion of the 2-level atom upon the destruction of a phonon or the de-excitation of the 2-level
atom upon the creation of a phonon. Defining the 2-level atom ‘creation’ and ‘destruction’
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operators, S+ = (Sx + iSy)/2 and S− = (Sx − iSy)/2, we can write V as:

V =
∑
i

(
giaiS+ + g∗i a

†
iS−

)
(3.89)

where gi is the strength of the coupling between the 2-level atom and the i-th phonon mode.
The full Hamiltonian is then H = H0 +Hs + V .

Heisenberg equations

The Heisenberg equations are:

d

dt
S+(t) =

i

~

[
2ES+(t)−

∑
i

g∗i a
†
i (t)Sz(t)

]
(3.90)

d

dt
S−(t) =

i

~

[
−2ES−(t) +

∑
i

giai(t)Sz(t)

]
(3.91)

d

dt
Sz(t) =

2i

~

[
−
∑
i

giai(t)S+(t) +
∑
i

g∗i a
†
i (t)S−(t)

]
(3.92)

d

dt
ai(t) =

i

~
[−~ωiai(t)− g∗i S−(t)] (3.93)

We follow the exact same procedure again and introduce the ‘slowly-varying’ operators:

ai(t) = âi(t)e
−iωit, S+(t) = Ŝ+(t)ei2Et/~, S−(t) = Ŝ−(t)e−i2Et/~ (3.94)

After some algebra which involves plugging in these operators into the four equations, in-
tegrating the differential equation for ai(t) from 0 to t, and substituting the resultant ai(t)
expression into the three system spin equations, we get:

d

dt
Ŝ+(t) = − i

~
∑
i

g∗i a
†
ie
i(ωi−2E/~)(t)Sz(t) +

(
1

~2

∫ t

0

dτ
∑
i

|gi|2ei(ωi−2E/~)τ Ŝ+(t− τ)

)
Sz(t)

(3.95)

d

dt
Ŝ−(t) =

i

~
∑
i

giaie
−i(ωi−2E/~)(t)Sz(t) +

(
1

~2

∫ t

0

dτ
∑
i

|gi|2e−i(ωi−2E/~)τ Ŝ−(t− τ)

)
Sz(t)

(3.96)
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d

dt
Sz(t) =

2i

~

(
−
∑
i

giaie
−i(ωi−2E/~)(t)Ŝ+(t) +

(
i

~

∫ t

0

dτ
∑
i

|gi|2e−i(ωi−2E/~)τ Ŝ−(t− τ)

)
Ŝ+(t)

+
∑
i

g∗i a
†
ie
i(ωi−2E/~)(t)Ŝ−(t) +

(
i

~

∫ t

0

dτ
∑
i

|gi|2ei(ωi−2E/~)τ Ŝ+(t− τ)

)
Ŝ−(t)

)
(3.97)

These equations indeed look quite unwieldy but a prominent feature that stands out upon
casual inspection is their nonlinear nature. The terms that contain integrals all have products
of spin operators in their integrands.

Markov approximation with time-dependent coefficients

Since it seems difficult to solve the coupled nonlinear equations directly, we recall the Markov
approximation that we made in Chapter 2 and see if it can be applied. The first equation,
for instance, has a memory-kernel convolution in parenthesis in the second term on the right-
hand side, with an additional Sz(t) outside the parenthesis. The same structure appears in
the other equations. The memory function, M(t), that we are referring to is:

M(t) =
1

~2

∑
i

|gi|2ei(ωi−2E/~)t = r(t) + is(t) (3.98)

where we have labelled the real and imaginary part of the memory function r(t) and s(t)
respectively. If we make the usual Markov assumption that the memory function is very
thin in t, the Ŝ+(t − τ) in the integral in the first equation becomes approximately equal
to Ŝ+(t) for the purposes of the integration and can be pulled out of it. Next, the Ŝ+(t)
term multiplies the Sz(t) term outside the integral and gives −Ŝ+(t). We perform the same
two steps, Markov approximation with on operator getting pulled out, and simplification of
possible products of operators, in all the other equations too. Setting f(t) =

∫ t
0
dτ r(τ) and

g(t) =
∫ t

0
dτ s(τ), we finally get:

d

dt
Ŝ+(t) = − i

~
∑
i

g∗i a
†
ie
i(ωi−2E/~)(t)Sz(t)− (f(t) + ig(t)) Ŝ+(t) (3.99)

d

dt
Ŝ−(t) =

i

~
∑
i

giaie
−i(ωi−2E/~)(t)Sz(t) + (f(t)− ig(t)) Ŝ−(t) (3.100)

d

dt
Sz(t) = 2

(
− i
~
∑
i

giaie
−i(ωi−2E/~)(t)Ŝ+(t)− f(t)− ig(t)Sz(t)

+
i

~
∑
i

g∗i a
†
ie
i(ωi−2E/~)(t)Ŝ−(t)

) (3.101)
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If one were to apply the Markov approximation with time-independent coefficients instead,
we would have gotten the same equations, but with f(t) replaced by a rate Γ, and g(t)
replaced by a frequency shift ∆. We shall retain f(t) but replace g(t) with ∆ towards the
end of the next subsection.

Dipole commutator autocorrelation

The dipole operator of the 2-level system is given by p = dS+ + d∗S−, where d is the matrix
element of the dipole moment between the excited and ground states, d = 〈e|p|g〉. The
commutator of interest for optical absorption is [dS+(t) + d∗S−(t), dS+ + d∗S−].

From the first two differential equations, it is clear that the computation of [S+(t), A] and
[S−(t), A] for any A involves computing [Sz(t), A]. The equation that governs [S+(t), S+] is:

d

dt

[
Ŝ+(t), S+

]
= − i

~
∑
i

g∗i a
†
ie
i(ωi−2E/~)(t) [Sz(t), S+]− (f(t) + ig(t))

[
Ŝ+(t), S+

]
(3.102)

The term [Sz(t), S+] is computed as follows:

d

dt
[Sz(t), S+] = 2

(
− i
~
∑
i

giaie
−i(ωi−2E/~)(t)

[
Ŝ+(t), S+

]
− ig(t) [Sz(t), S+]

+
i

~
∑
i

g∗i a
†
ie
i(ωi−2E/~)(t)

[
Ŝ−(t), S+

]) (3.103)

There is a similar equation for [Sz(t), S−]. Setting G(t) =
∫ t

0
dτ g(τ) and solving Eq. (3.103)

using the standard integrating factor technique gives us:

[Sz(t), S+] =2S+e
−2iG(t) + 2e−2iG(t)

∫ t

0

dτ e2iG(τ)

(
− i
~
∑
i

giaie
−i(ωi−2E/~)τ

[
Ŝ+(τ), S+

])

+ 2e−2iG(t)

∫ t

0

dτ e2iG(τ)

(
i

~
∑
i

g∗i a
†
ie
i(ωi−2E/~)τ

[
Ŝ−(τ), S+

])
(3.104)

Plugging this expression into Eq. (3.102) gives us:

d

dt

[
Ŝ+(t), S+

]
= − (f(t) + ig(t))

[
Ŝ+(t), S+

]
− i

~
∑
i

g∗i a
†
ie
i(ωi−2E/~)(t)

(
2S+e

−2iG(t)
)

+ 2e−2iG(t)

∫ t

0

dτ e2iG(τ)

(
− 1

~2

∑
ij

g∗i gja
†
iaje

i(ωi−2E/~)te−i(ωj−2E/~)τ
[
Ŝ+(τ), S+

])

+ 2e−2iG(t)

∫ t

0

dτ e2iG(τ)

(
1

~2

∑
ij

g∗i g
∗
ja
†
ia
†
je
i(ωi−2E/~)tei(ωj−2E/~)τ

[
Ŝ−(τ), S+

])
(3.105)
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We now take the average of both sides of this expression in the equilibrium thermal density
matrix, ρ = e−H/kT/Z. Since the phonon bath is too large to be significantly affected by
the 2-level system, it is reasonable to assume that the full density matrix can be decomposed
into a tensor product, ρ = ρ0 ⊗ ρs. Here, ρ0 and ρs are the reduced density matrices of the
2-level system and the phonon bath respectively, and ρs is given by ρs = e−Hs/kT/Zs.

Now, the computation of the averages of the terms in Eq. (3.105) becomes straightfor-
ward: 〈

a†iS+

〉
=
〈
a†i

〉
〈S+〉 = 0 (3.106)〈

a†iaj

[
Ŝ+(τ), S+

]〉
=
〈
a†iaj

〉〈[
Ŝ+(τ), S+

]〉
= 〈ni〉 δij

〈[
Ŝ+(τ), S+

]〉
(3.107)〈

a†ia
†
j

[
Ŝ−(τ), S+

]〉
=
〈
a†ia
†
j

〉〈[
Ŝ−(τ), S+

]〉
= 0 (3.108)

We then have:

d

dt

〈[
Ŝ+(t), S+

]〉
= − (f(t) + ig(t))

〈[
Ŝ+(t), S+

]〉
+ 2e−2iG(t)

∫ t

0

dτ e2iG(τ)

(
− 1

~2

∑
i

|gi|2 〈ni〉 ei(ωi−2E/~)(t−τ)
〈[
Ŝ+(τ), S+

]〉)
(3.109)

Next, in the second term above, we replace g(t) with its value at t = ∞ which is nothing
but ∆, giving us G(t) = ∆t. We also make the substitution f(t) + ig(t) =

∫ t
0
dτ M(τ) in the

first term to get:

d

dt

〈[
Ŝ+(t), S+

]〉
= −

(∫ t

0

dτ

(
1

~2

∑
i

|gi|2ei(ωi−2E/~)τ

))〈[
Ŝ+(t), S+

]〉
− 2

∫ t

0

dτ

(
1

~2

∑
i

|gi|2 〈ni〉 ei(ωi−2E/~−2∆)τ

)〈[
Ŝ+(t− τ), S+

]〉 (3.110)

Performing the Markov approximation on the second term and pulling〈[
Ŝ+(t− τ), S+

]〉
out of the integral, we get:

d

dt

〈[
Ŝ+(t), S+

]〉
= −

(∫ t

0

dτ

(
1

~2

∑
i

|gi|2ei(ωi−2E/~)τ
(
1 + 2 〈ni〉 e−2i∆τ

)))〈[
Ŝ+(t), S+

]〉
(3.111)

= −U(t)
〈[
Ŝ+(t), S+

]〉
(3.112)

where we defined a new function U(t) to be equal to the time-dependent coefficient in paren-
thesis. We are finally done with the long sequence of manipulations, this is our final equation
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of motion. It is a simple linear differential equation with a time-dependent coefficient. In

this particular case, however, the solution is
〈[
Ŝ+(t), S+

]〉
= 0 because the initial condition

is [S+, S+] = 0. But
〈[
Ŝ+(t), S−

]〉
also satisfies the exact same differential equation, with

the initial condition being
〈[
Ŝ+(0), S−

]〉
= 〈Sz〉. Therefore, we have:〈[

Ŝ+(t), S−

]〉
= 〈Sz〉 e−

∫ t
0 dτ U(τ) (3.113)

Next, it turns out that
〈[
Ŝ−(t), S−

]〉
= 0 too. The final commutator,

〈[
Ŝ−(t), S+

]〉
,

satisfies:

d

dt

〈[
Ŝ−(t), S+

]〉
(3.114)

=

(∫ t

0

dτ

(
1

~2

∑
i

|gi|2e−i(ωi−2E/~)τ
(
1− 2 (1 + 〈ni〉) e−2i∆τ

)))〈[
Ŝ−(t), S+

]〉
(3.115)

= −W (t)
〈[
Ŝ−(t), S+

]〉
(3.116)

where we introduced a new function W (t) that is the negative of the time-dependent coef-

ficient in parenthesis. For the initial condition,
〈[
Ŝ−(0), S+

]〉
= − 〈Sz〉, the solution

is: 〈[
Ŝ−(t), S+

]〉
= −〈Sz〉 e−

∫ t
0 dτ W (τ) (3.117)

In summary, the full dipole commutator autocorrelation is:

〈[p(t), p]〉 = |d|2 〈Sz〉
(
e2iEt/~e−

∫ t
0 dτ U(τ) − e−2iEt/~e−

∫ t
0 dτ W (τ)

)
(3.118)

Susceptibility χ(ω)

In order to get an interpretable expression for the susceptibility, we set ∆ = 0 inside both
U(t) and W (t). We define a new memory function M̂(t), its real part r̂(t), its imaginary
part ŝ(t), and their time integrals θ(t) and π(t) in the following manner:

U(t) =

∫ t

0

dτ

(
1

~2

∑
i

|gi|2ei(ωi−2E/~)τ (1 + 2 〈ni〉)

)
(3.119)

=

∫ t

0

dτ M̂(τ) =

∫ t

0

dτ (r̂(τ)− iŝ(τ)) = θ(t)− iπ(t) (3.120)

M̂(t) can be decomposed into a temperature-dependent and temperature-independent parts:

M̂(t) = M̂temp(t) + M̂notemp(t) (3.121)

=
1

~2

∑
i

2|gi|2ei(ωi−2E/~)τ 〈ni〉+
1

~2

∑
i

|gi|2ei(ωi−2E/~)τ (3.122)
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indicating that θ(t) can also be decomposed the same way. In the same notation, W (t) turns
out to be:

W (t) =

∫ t

0

dτ

(
1

~2

∑
i

|gi|2e−i(ωi−2E/~)τ (1 + 2 〈ni〉)

)
= θ(t) + iπ(t) (3.123)

Defining Θ(t) =
∫ t

0
dτ θ(τ) and Π(t) =

∫ t
0
dτ π(τ), we have:

〈[p(t), p]〉 = 2i|d|2 〈Sz〉 e−Θ(t) sin (Π(t) + 2Et/~) (3.124)

In the above, Θ(t) is a sum of Θtemp(t) and Θnotemp(t) implying that e−Θ(t) is a product of
a temperature-dependent piece and a temperature-independent piece. This temperature-
dependence is non-trivial because it involves phonon populations, not electron
populations.

The final expression for χ′′(ω) is:

χ′′(ω) =
|d|2 〈Sz〉

~

∫ ∞
−∞

dt ie−Θ(t) sin (Π(t) + 2Et/~)e−iωt (3.125)

Again we assume that the ‘phase’ function Π(t), just like G(t) earlier, is a simple linear
function Π(t) = ζt. Referring to the Fourier transform of e−Θ(t) as L(ω) we have:

χ′′(ω) =
|d|2 〈Sz〉

2~
(L(ω − ζ − 2E/~)− L(ω + ζ + 2E/~)) (3.126)

Since e−Θ(t) is a product of a temperature-dependent piece and a temperature-independent
piece, L(·) is the convolution of a temperature-dependent piece and a temperature-independent
piece. This lineshape is interpreted in the next subsection.

Discussion

We draw conclusions for this case in exactly the same spirit as that of our discussion in
Chapter 2, Section 2.7. There, we had noted that an ‘appropriate’ choice of the wire density
of states ρ(E) and the dot-wire interaction strength |V (E)|2 would lead to rapidly decaying
lineshapes.

As in that case, θ(t) and π(t) here arise from the time integral of the memory function
M̂(t) in the integrand of Eq. (3.120). If M̂(t) is infinitely differentiable and has an even real
part r̂(t) and an odd imaginary part ŝ(t), then both θ(t) and π(t) will be infinitely differen-
tiable with θ(t) containing only odd powers of t in its Taylor series and π(t) containing only
even powers of t. This will imply that Θ(t) also contains only even powers of t in its Taylor
series, which in turn tells us that e−Θ(t) is in the Schwartz space. Hence, L(ω) also belongs to
the Schwartz space and is rapidly decaying in ω. Moreover, since θ(t) contains temperature
dependence in the form of the phonon thermal occupations, L(ω) too has a T dependence!
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This is finally a breakthrough from the previous models where we repeatedly obtained T -
independent absorption lineshapes (setting aside the simple temperature dependence of the
electron Fermi occupations).

Before ending this section, we rewrite the memory function M̂(t) as follows:

M̂(t) =
1

~2

∫
dω ρ(ω)|g(ω)|2 (1 + 2 〈n(ω)〉) ei(ω−2E/~)t (3.127)

Since M̂(t) is the Fourier transform of ρ(ω)|g(ω)|2 (1 + 2 〈n(ω)〉), we suspect Fourier theory
demands that this product has to be continuous and rapidly decaying in ω in order to produce
an infinitely differentiable M̂(t), and consequently, a rapidly decaying lineshape L(ω) by the
reasoning in the previous paragraph. In summary, we have successfully derived a rapidly
decaying spectral lineshape L(ω), but unfortunately, we are still unable to deduce the exact
asymptotic formula for the rapidly decaying tails of L(ω) at our level of analysis.

3.8 Optical absorption in a general crystal

Essence of this section: In the penultimate section of this chapter, we write down the
Heisenberg equations for the general problem of optical absorption by an electron in a
periodic crystal. We do this simply as a means of depicting the immense complexity of
the equations, and to emphasize the need for clever simplifications and/or reformulations
in terms of 2-level systems in the future in order to obtain a general derivation of the
Urbach tail.

Hamiltonian

We now shift our attention to the case of several electrons in a general crystal. The Hamil-
tonian is given by:

He =
∑
kn

Eknc
†
knckn (3.128)

Hph =
∑
qα

~ωqα
(
a†qαaqα +

1

2

)
(3.129)

Heph =
∑

qαk′n′kn

M(qαk′n′kn)c†k′n′ckn

(
aqα + a†−qα

)
(3.130)

where Ekn is the energy of the electron state with crystal momentum k in band n, ωqα is the
frequency of the phonon state with crystal momentum q in band α, and the operators have
their usual meanings. The matrix element M(qαk′n′kn) is the strength of the interaction
that causes electrons to be scattered between the kn and k′n′ states by phonons in the qα
state. The exact form of this matrix element can be found in the solid-state physics textbook
by Cohen and Louie [91].
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Heisenberg equations

dckn(t)

dt
=− i

~
Eknckn(t)− i

~
∑
qαk′n′

M(qαknk′n′)ck′n′(t)
(
aqα(t) + a†−qα(t)

)
(3.131)

daqα(t)

dt
=− iωqαaqα(t)− i

~
∑
k′n′kn

M(−qαk′n′kn)c†k′n′(t)ckn(t) (3.132)

Define:

ckn(t) =ĉkn(t)e−iωknt (3.133)

aqα(t) =âqα(t)e−iωqαt (3.134)

Rewriting the equations, we get:

dĉkn(t)

dt
=− i

~
∑
qαk′n′

M(qαknk′n′)ĉk′n′(t)
(
âqα(t)ei(ωkn−ωk′n′−ωqα)t + â†−qα(t)ei(ωkn−ωk′n′+ω−qα)t

)
(3.135)

dâqα(t)

dt
=− i

~
∑
k′n′kn

M(−qαk′n′kn)ĉ†k′n′(t)ĉkn(t)ei(ωqα+ωk′n′−ωkn)t (3.136)

dâ†−qα(t)

dt
=
i

~
∑
k′n′kn

M(−qαknk′n′)ĉ†kn(t)ĉk′n′(t)e
i(−ω−qα−ωk′n′+ωkn)t (3.137)

Elimination of phonon variables

Eliminating the phonon variables, we get:

dĉkn(t)

dt
=− 1

~2

∑
qαk′n′k′′′n′′′k′′n′′

M(qαknk′n′)M(−qαk′′′n′′′k′′n′′)ĉk′n′(t)ei(ωkn−ωk′n′−ωqα)t

∫ t

0

dτ ĉ†k′′′n′′′(τ)ĉk′′n′′(τ)ei(ωqα+ωk′′′n′′′−ωk′′n′′ )τ

+
1

~2

∑
qαk′n′k′′′n′′′k′′n′′

M(qαknk′n′)M(−qαk′′n′′k′′′n′′′)ĉk′n′(t)ei(ωkn−ωk′n′−ωqα)t

∫ t

0

dτ ĉ†k′′′n′′′(τ)ĉk′′n′′(τ)ei(ωqα+ωk′′′n′′′−ωk′′n′′ )τ

− i

~
∑
qαk′n′

M(qαknk′n′)ĉk′n′(t)
(
âqα(0)ei(ωkn−ωk′n′−ωqα)t + â†−qα(0)ei(ωkn−ωk′n′+ω−qα)t

)
(3.138)

We note the tremendous complexity of this differential equation and admit that we are not
aware of a method of solving it. Given the near universality of the Urbach tail, we believe
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it is not necessary to actually solve this problem in this brute-force fashion, and that an
elegant derivation exists through simpler model systems. It should be possible to combine
the spectra of the individual 2-level systems that make up a semiconductor in a certain way
to derive the final Urbach tail of the entire material. However, we do not yet know the exact
way to do this.

3.9 Conclusion

The summary of this chapter is:

1. The absorption coefficient α(ω) is directly proportional to the imaginary part of the
susceptibility χ′′(ω).

2. The imaginary susceptibility χ′′(ω) is obtained by taking the Fourier transform of the
system’s dipole moment autocorrelation function. This is the Green-Kubo relation.

3. The traditional Lorentz-Lorenz model and Kubo’s statistical model fail to give us
Urbach tails.

4. The absorption by an electron in a harmonic well that is coupled to a bath of phonons,
computed via the Green-Kubo relation, fails to display temperature-dependent expo-
nential spectral tails. This might be due to the simple linear nature of the dipole
moment dynamics.

5. The exact description of the absorption in a semiconductor, as presented in the previous
section, is highly complex, and we think such a brute-force approach is likely to not
yield a derivation of the Urbach tail.

6. Our final complete calculation, the absorption by an electron in a 2-level system that
is coupled to a bath of phonons, does succeed in producing temperature-dependent
exponential spectral tails. The temperature dependence arises from the thermal occu-
pations of the various modes in the phonon bath. We believe the nonlinear coupling
of the physical variables involved—the spin operators and the phonon operators—gave
rise to this temperature dependence. We could not, however, isolate the exact formula
of the spectral tail in terms of the temperature at the point of this writing. This di-
rection seems quite promising and some more work along these lines could lead to a
derivation of the Urbach tail.

7. We conjecture that a good approximation of the semiconductor absorption can be ob-
tained by interpreting it as a collection of many 2-level systems and carefully convolving
the susceptibility responses of all of them. Interference of 2-level system spectra with
complex coefficients could arise and the spectral tail of the result could be exponential.
We recognize this approach as a promising direction for future work on this problem.
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Part II

Physics-based Optimization
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Chapter 4

Physics principles as Optimization
tools

In this part of the thesis, we ask whether physics can be exploited to address optimization
and contribute to large-scale industrial problems. As we mentioned in Chapter 1, nature is
so structured that almost every fundamental physics principle can be thought of in terms
of optimization. We have principles like the ‘Principle of Least Action’ and the ‘Principle
of Minimum Power Dissipation’ (also called Minimum Entropy Generation) and physics-
based algorithms such as annealing and the adiabatic method (also referred to as ‘quantum
annealing’ in the quantum computing community).

In due course, the research community may learn how to use each of these principles to
build industrial-scale non-digital optimization accelerators and solvers that offer time and
energy benefits in problem solving. We discuss each principle briefly in this chapter but the
main focus will be on minimum power dissipation for the remainder of this thesis.

Optimization is generally accompanied by constraints. For example, perhaps the con-
straint is that the final answers must be restricted to be ±1. Such a digitally constrained
optimization produces answers compatible with any digital computer. So, if we could perhaps
construct a physical system that performs optimization subject to this binary constraint, we
could then directly integrate it with the digital pipeline of mainstream computation. As a
step in this direction, a series of physics-based machines have been created in the physics
and engineering community in the past decade to approximately solve the NP-hard Ising
problem. The main insights in our work are that most of these Ising solvers use hardware
based on the Principle of Minimum Power Dissipation and that almost all of them implement
the well-known Lagrange Multipliers method for constrained optimization.

An early work was by Yamamoto et al. in [92] and this was followed by further work
from their group [6, 93–95], and other groups [96–103]. These entropy generating machines
range from coupled optical parametric oscillators, to RLC electrical circuits, to coupled
exciton-polaritons, and silicon photonic coupler arrays. These machines have the advantage
that they solve digital problems orders-of-magnitude faster, and in a more energy-efficient
manner, than conventional digital chips that are limited by latency and the energy cost [6].
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Within the framework of these dissipative machines, constraints are readily included.
These machines in fact perform constrained optimization equivalent to the technique of
Lagrange multipliers. We illustrate this connection by surveying 5 published physically
distinct machines and showing that each minimizes power dissipation in its own way, subject
to constraints; in fact, they perform Lagrange multiplier optimization. Digging further into
their dynamics, one notices that these physical machines perform local steepest descent
in the power dissipation rate. For this reason, they can become stuck in local optima.
However, recent work [6] has demonstrated that these systems are also adaptable toward
more advanced techniques for approaching a global optimum. Our viewpoint is that, these
machines can, at the very least, help us perform rapid searches for local optima, and thus
narrow down on the global optimum.

At this point, we note that there are several other streams of work on physical optimiza-
tion in the literature that we shall not be dealing with in detail in the following chapters.
These works include a variety of Lagrange-like continuous-time solvers [104, 105], Memcom-
puting methods [106], Reservoir Computing [107, 108], adiabatic solvers using Kerr nonlinear
oscillators [109], and probabilistic bit logic [110].

In the remainder of the chapter, we discuss all the aforementioned optimization principles
of physics in some detail and then move on to the principle of minimum power dissipation. In
the next chapter, we discuss how coupled nonlinear oscillator networks, the underlying
physical prototype in most of the publications we have mentioned, can be used to solve
constrained optimization problems through the principle of minimum power dissipation.

4.1 Optimization in Physics: Principles and

Algorithms

We survey the minimization principles of physics and the important optimization algorithms
derived from them. The aim is to design physical optimization machines that are ‘initial-
ization agnostic’, that is, machines that converge to the global optimum, or a good local
optimum, irrespective of the initial point for the search.

The principle of Least Action

The principle of Least Action is the most fundamental principle in physics. Newton’s Laws of
Mechanics, Maxwell’s Equations of Electromagnetism, Schrödinger’s Equation in Quantum
Mechanics, and Quantum Field Theory can all be interpreted as minimizing a quantity called
Action. For the special case of light propagation, this reduces to the principle of Least Time,
as shown in Fig. 4.1.

A conservative system without friction or losses evolves according to the principle of
Least Action. The fundamental equations of physics are reversible. A consequence of this
reversibility is the Liouville Theorem which states that volumes in the phase space of the
system are left unchanged as the system evolves. Since phase space volumes don’t change,
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it means each initial condition of the system will lead to a different final state. There is
no contraction of a set of initial conditions to a smaller set or a single point in the end.
Therefore, one has to cleverly design both an initial state and a set of dynamics to take
the reversible system from that initial state to the final answer. In other words, we are
talking about algorithm design. An algorithm has to be designed and a reversible system
that implements that algorithm has to constructed to solve the optimization problem. While
many of the problems we encounter already have fast algorithms, we look forward to future
computer science breakthroughs in algorithms and quantum computing that would allow the
Principle of Least Action to address NP-hard problems like the Ising problem.

One needs to keep in mind that, even in reversible computing, there is a final energy
cost that arises from recording the result of the computation by overwriting the previous
answer bits. This energy cost, first discussed by Landauer [111] and Bennett, depends on
the number of bits in the answer N and the temperature T as kTN ln 2. This is only an
energy cost, not continuous power dissipation.

An alternative approach to computing would involve physical systems that continuously
dissipate power, aiding in the contraction of phase space toward a final solution. This brings
us to the principle of Least Power Dissipation.
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Figure 4.1: The principle of Least Time, a subset of the principle of Least Action: The actual path
that light takes to travel from point A to point B is the one that takes the least time to traverse.
Recording the correct path entails a small energy cost consistent with the Landauer Limit.

The principle of Least Power Dissipation

If we consider systems that continuously dissipate power, we are led to a second optimiza-
tion principle in physics, the principle of Least Entropy Generation or Minimum Power
Dissipation.
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Figure 4.2: The principle of Least Power Dissipation: In a parallel connection, the current
distributes itself in a manner that minimizes the power dissipation, subject to the constraint of
fixed input current I.

This principle states that any lossy physical system will evolve into a steady-state config-
uration of currents or fluxes that minimizes the rate of power dissipation subject to the input
driving constraints (such as fixed thermodynamic forces, voltage sources, or input power)
that are imposed on the system. An early version of this statement is provided by Onsager
in his celebrated papers on the reciprocal relations [4]. This was followed by further founda-
tional work on this principle by Prigogine, [112], and de Groot, [113]. This principle is readily
seen in action in electrical circuits and is illustrated in Fig. 4.2. When the input driving
current into the two branches is fixed at I, the currents rearrange themselves to I/2 in each
branch in steady state and that configuration of currents minimizes the power dissipation.
The general lesson is that, if we can construct a system that has the same power dissipation
function as the objective function in our optimization problem, the dynamical variables in
that system will settle down in steady state to a configuration that minimizes the objective
function, that is, to a solution of our problem. This will be the focus of the next chapter. It
should be kept in mind that minimum power dissipation gives significant information only
when the system is driven. Else, the system will trivially minimize power dissipation by
evolving towards the steady-state configuration where all the dynamical variables are zero.
We provide a detailed discussion of this principle in Appendix C.

Since Minimum power dissipation is inherently lossy, volumes in the phase space of the
system shrink as the system evolves. This means several different initial conditions of the
system all lead to the same final state or small set of final states. There is a contraction of a
set of initial conditions to a smaller set or a single point in the end. However, it is still essential
to design a good contractive dynamics that will take the lossy system to the final answer
quickly and in a reliable manner. We study the dynamics of a variety of lossy physical Ising
solvers in the literature, and show that almost all of them implement the method of Lagrange
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Multipliers in some manner in this thesis. It remains an open question as to whether we
can design irreversible dynamics that can solve NP-hard problems. However, the natural
way in which these solvers perform Lagrange multiplier optimization, and the possibility of
time and energy savings, indicates that the primary application of these machines should
be as accelerators for the less fundamentally daunting but more power hungry optimization
problems that may arise in machine learning.

Physical Annealing; Energy Minimization

Physical annealing is widely used in materials science and metallurgy to correct material
defects, and involves the slow cooling of a material starting from a high-temperature. As the
cooling proceeds, the system tries to maintain thermodynamic equilibrium by reorganizing
itself into the lowest energy minimum in its phase space. The Boltzmann factor e−E/kT

tells us that higher energy configurations become less likely at low temperatures. Physically,
annealing corresponds to the making and breaking of bonds and the rearrangement of atoms
towards configurations of progressively lower potential energy as the temperature is reduced.
Due to thermal noise, however, the material never settles down into one fixed configuration
but keeps jumping between configurations with similar energies.

This physical phenomenon was adapted into an optimization algorithm called Simulated
Annealing several decades ago [114]. The optimization starts out at an initial point and
performs gradient descent on the objective function, but with artificial ‘thermal’ noise added
to its dynamics. This noise is chosen according to a ‘temperature’ parameter that is gradu-
ally reduced as the optimization proceeds. Fluctuations due to finite temperature help the
algorithm escape from local optima as shown in Fig. 4.3. This procedure leads to global
optima as the temperature tends to zero in theory, but for some difficult problems like the
NP-hard ones, the temperature has to be lowered prohibitively slowly for this to happen.
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Figure 4.3: Physical annealing involves the slow cooling down of a system. The system performs
gradient descent in configuration space with occasional jumps activated by finite temperature. If
the cooling is done slowly enough, the system ends up in the ground state of configuration space.
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Adiabatic Method

The Adiabatic Method, illustrated in Fig. 4.4, involves the slow transformation of a system
from initial conditions that are easily constructed to final conditions that capture the difficult
problem at hand.

More specifically, to solve the Ising problem, one initializes the system of spins in the
ground state of a simple Hamiltonian and then transforms this Hamiltonian into the Ising
problem by slowly varying some system parameters. If the parameters are varied slowly
enough, the adiabatic theorem guarantees that the system stays in the instantaneous ground
state throughout, and the problem gets solved. In a quantum mechanical system, this
is sometimes referred to as ‘quantum annealing’. Several proposals and demonstrations,
including the well-known D-Wave machine [115], utilize this algorithm.

The slow rate of variation of the Hamiltonian parameters is determined by the minimum
energy spacing between the instantaneous ground state and first excited state that occurs
as we move from the initial Hamiltonian to the final one. The smaller the gap is, the slower
the rate at which we need to perform the variation to successfully solve the problem. It has
been shown that the gap can become exponentially small in the problem size for NP-hard
problems in the worst case, implying that this algorithm takes exponential time in the worst
case.
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Figure 4.4: A system initialized in the ground state of a simple Hamiltonian continues to stay in
the ground state as long as the Hamiltonian is changed slowly enough.

Laser physics

A laser is an optoelectronic device where light bounces around in an optical cavity that is
composed of a gain medium. The gain medium, upon being pumped with external energy,
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becomes an amplifier of light, instead of absorbing it like most materials. The spontaneously
emitted light from the laser gain medium couples into the various cavity modes which have
different loss coefficients due to their differing spatial profiles. The interplay between the
gain provided to a mode by the gain medium, and the losses experienced by the mode, leads
to each mode settling down to a steady-state amplitude. As intuition suggests, the optical
mode with the least loss has the highest steady-state intensity for a given gain.

The idea introduced by [92] and [93] was to essentially use these concepts, but applied to
networks of lasers, to solve optimization problems. Each candidate solution of the optimiza-
tion problem is mapped onto a joint oscillatory mode of the laser network. The connectivity
of the lasers is designed such that the objective function value at the candidate solution gets
mapped to the loss coefficients of the corresponding joint network oscillatory mode. Then,
when the entire laser network is pumped with gain, the joint network oscillatory mode with
the least loss (that is, least objective function value) dominates and reaches the highest
steady-state amplitude. By raising the gain value from 0 to a value that is very close to the
value of the least-loss, one can ensure that only the least-loss mode has almost all the inten-
sity. One can then read out the solution to the optimization problem from the steady-state
joint network oscillatory mode.

We consider only classical coupled laser networks in this thesis. It is not yet clear how
one would employ quantum coupled laser networks in this context or whether they offer any
benefits at all. Since the N -spin Ising problem has 2N candidate solutions, and a classical
coupled laser network composed of N lasers supports only N joint oscillatory modes, it is
immediately clear that the solution mechanism from the previous paragraph does not directly
carry over to the Ising problem. We discuss the application of a version of this idea to the
Ising problem in detail in the next chapter and illustrate its connection to the principle of
minimum power dissipation.

4.2 The Ising problem

The Ising problem is a famously difficult problem in physics that asks for the ground state
of a set of interacting magnets or spins. More precisely, let us say we have N electronic spins
that can either point in the +z or −z direction as shown in Fig. 4.5.

Since this is an entirely classical problem, the electrons are not allowed to be in super-
positions. The orientation of the i-th spin is represented by a ±1 binary variable xi which
is +1 if the spin is pointed along +z and −1 otherwise. The interaction energy between the
i-th and j-th spins is specified by the quantity Jij and their respective orientations xi and
xj. Further, the i-th spin could also interact with a local magnetic field specified by hi. The
total interaction energy of the N spins is the sum of all the pairwise interaction energies and
the interaction energies with the local magnetic fields and is given by:

H = −
N∑
i=1

hixi −
1

2

N∑
i=1

N∑
j=1

Jijxixj. (4.1)
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x1

x2

J12

Figure 4.5: The Ising problem setup. A collection of N spins, which can each individually only
point up (xi = 1 if the i-th spin is up) or down (xi = −1), interact via pairwise interaction energies
−Jijxixj . The problem is to find the vector of orientations of the N spins, x, that minimizes the
sum of all the pairwise energies.

This expression is called the Ising Hamiltonian. We will assume that Jii = 0 for all i. The
Ising problem asks us to find the assignment of binary spin directions x∗i that minimizes the
Ising Hamiltonian, or equivalently, to find x∗:

x∗ := arg max
x: xi=±1 ∀ i

(
N∑
i=1

hixi +
1

2

N∑
i=1

N∑
j=1

Jijxixj

)
= arg max
x: xi=±1 ∀ i

(
hTx+

1

2
xTJx

)
. (4.2)

The second line is written in matrix notation. The Ising problem is therefore a discrete
constrained optimization problem. It is NP-hard [5], and consequently, there is no known
polynomial-time algorithm that solves it exactly.
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Chapter 5

Coupled LC Oscillator Ising Solver
and Lagrange Multipliers

The fact that the least loss-mode in a laser builds up the most intensity for a given gain was
first used by Yamamoto et al. in [92] to construct coupled laser pulse solvers for the Ising
problem. Each laser pulse is rendered bistable through the use of nonlinear physics. The
number of laser pulses is equal to the number of spins in the specified Ising problem. The
up and down spins of the Ising problem are mapped to the two bistable oscillatory states
of each pulse. We note that using phases to represent digital bits is not an entirely new
idea—it was first proposed by von Neumann [116] and Goto [117]. Next, the interactions
between the laser pulses are designed so as to mimic the dynamics of the Ising model in a
certain way.

Further work in various platforms was done by other groups [97, 99–101, 103], including
a prominent machine in the electrical oscillator domain designed by Wang et al. [98]. A
simple coupled LC electrical oscillator system that incorporated elements of both Yamamoto
et al.’s optical system and Wang et al.’s electrical system was designed by Xiao [96]. We
study Xiao’s machine in detail in this chapter because it brings out the essential features of
all the other machines.

5.1 Coupled LC oscillator Ising solver

Essence of this section: In this section, we describe (1) the implementation of spins of
the Ising problem using bistable LC oscillators, and (2) the implementation of the Ising
couplings Jij using resistive connections between the LC oscillators. Further, we derive
the equations of motion of the circuit voltages and simplify them using the slowly-varying
amplitude approximation.

The coupled LC oscillator solver, as its name suggests, is composed of several nonlinear
LC oscillators that are resistively coupled to one another. The number of oscillators in the
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network is equal to the number of spins N in the specified Ising problem.

Parametric amplification

A simple LC cavity with linear components supports sinusoidal oscillations of arbitrary am-
plitude and phase. The voltage across the capacitor Vc(t) can be of the form A cos (ω0t+ φ)
for any arbitrary A and φ. Here, ω0 is the natural frequency of the LC cavity, ω0 = 1/

√
LC0.

When one incorporates nonlinear components in the LC cavity, it turns out that one can
force the circuit to choose a specific set of phases. What we mean by nonlinear components
is very simple—the charge and voltage of a nonlinear capacitor are related to one another by
a nonlinear equation. For instance, a capacitor is said to have a second-order nonlinearity if
its charge is proportional to the square of its voltage. The characteristic equation of such a
capacitor is:

Q = C0Vc + C(2)V 2
c (5.1)

where C0 is the linear capacitance and C(2) is the second-order capacitance that connects
the squared voltage to the charge.

Parametric capacitor:
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Figure 5.1: Parametric pumping induces bistability in phase in LC oscillators. A normal LC
oscillator, shown on the left, can support oscillations of any phase. A parametric LC oscillator,
shown on the right, can support oscillations only at two phases, φ0 and φ0 + π, for some φ0.
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We now describe the concept of parametric bistability in a nutshell. The same material
is covered more elaborately as we progress. If the LC cavity has a capacitor with a second-
order nonlinearity, it is possible to force the phase φ to take on only two specific values, φ0

and φ0 + π, through a process called parametric amplification. Let us say the voltage of the
nonlinear capacitor takes on the form Vc(t) = Vs + Vp where Vs is the ‘signal’ voltage, or
the voltage we are interested in, and Vp is the so-called ‘pump’ voltage. Vs oscillates at the
natural frequency ω0 while Vp oscillates at 2ω0. The pump voltage is so called because it
provides gain to the signal voltage through their nonlinear interaction. If the phase of the
signal voltage is in two particular alignments with respect to the pump’s phase, the signal
is able to receive energy gain from the pump. In other phase configurations, the signal loses
its energy to the pump. That is, only two signal phases are ‘encouraged’ to exist in the
circuit in steady-state by the pump. All other phases decay to zero in steady-state by losing
their energy to the pump. The signal voltage, therefore, experiences phase bistability in the
presence of a second-harmonic pump and a second-order nonlinearity. We will be mapping
pulses of specific fixed amplitudes along these phases to the downward and upward pointing
spins in the Ising problem. In our specific study, the two spins of the Ising problem are
mapped to cosine oscillations of amplitude +1 in the 0 phase or amplitude +1 in the π
phase. Phase bistability by itself is not enough; we also need the voltages to settle down to
fixed amplitudes along those phases. For this reason, we also call the LC oscillator system
‘coupled oscillators on the real axis’. This point will be elaborated on when we discuss the
equations of motion of the system.

Before moving on, we point out that a second-order nonlinear capacitor with a pump
voltage at 2ω0 can be simulated by a linear capacitor whose capacitance value is modulated
at frequency 2ω0. To see this, we expand Eq. (5.1) with Vc = Vs + Vp:

Q = C0 (Vs + Vp) + C(2)
(
V 2
s + 2VsVp + V 2

p

)
. (5.2)

If we are only interested in capturing the behavior of the capacitor accurately at the frequency
ω0, we are allowed to drop the second term in the first parenthesis and the first and third
terms in the second parenthesis since they do not contribute to ω0. We then have:

Q =
(
C0 + 2C(2)Vp

)
Vs = (C0 + ∆C(t))Vs (5.3)

where we introduced the capacitance modulation ∆C(t) = 2C(2)Vp. Since Vp oscillates at
2ω0, the modulation ∆C(t) oscillates at 2ω0 too.

Coupling

We have seen that each spin in the Ising problem will be represented by a phase-bistable
nonlinear LC oscillator. We now specify the coupling scheme for the oscillators that im-
plements the spin-spin interactions Jij. This scheme is well-known and was used earlier in
Wang et al.’s Ising solver [98].
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The scheme is very simple to state for the case where all the Jij in the specified Ising
problem take values ±1. Jij = 1 means that the i-th and the j-th spins have a force that
pushing them to align their spins with each other. Since spin is oscillator phase in our
circuit, we want to couple the i-th and j-th oscillators in a fashion that induces them to
oscillate together in the same phase. This can be achieved by linking their terminals up via
a ‘straight-linking’ pair of resistors as shown in Fig. 5.2. If the i-th and j-th oscillators were
oscillating in opposite phases, the ends of the resistors would experience large voltage drops,
causing large currents to flow from one oscillator to the other and potentially resulting in
phase flips. If they were oscillating in the same phase, little current would flow and the
status quo would be maintained. Using similar reasoning, one can see that we would need
to use a ‘cross-linking’ pair of resistors to represent Jij = −1.

With this, we have completed the specification of the coupled LC oscillator Ising solver.
Bistable oscillators represent the spins, and ‘straight-linking’ or ‘cross-linking’ resistive con-
nections between them represent the Jij in the specified Ising problem. However, what
exactly does the circuit implement? This is answered only by looking at its equations of
motion which were derived by Xiao [96]. The derivation of the circuit equations and the
slowly-varying amplitude equations presented in the next subsection and in Appendix D is
a simplified and slightly more general version of the original derivation by Xiao [96].
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Figure 5.2: Coupled LC oscillator circuit for two coupled magnets. The oscillation of the LC
oscillators represents the magnetic moments, while the parallel or antiparallel cross-connections
represent ferromagnetic Jij = 1 or antiferromagnetic Jij = −1 coupling, respectively. The nonlinear
capacitors are pumped by V (2ω0) at frequency 2ω0, providing parametric gain at ω0.
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Equations of motion

Deriving the equations of motion involves the application of the Kirchhoff voltage law (KVL)
and current law (KCL) to the entire circuit. This requires a little care as the circuit is slightly
complicated. The notation we will use is indicated in Fig. 5.2. One of the terminals of the
capacitor in the oscillator labelled i = 1 is arbitrarily chosen as its ‘bottom’ terminal, and
its other terminal is labelled its ‘top’ terminal. For each oscillator that is connected to i = 1
through a +1 connection, the terminal in that oscillator that is directly connected to the
bottom terminal of i = 1 is labelled its ‘bottom’ terminal. Similarly, for each oscillator that
is connected to i = 1 through a -1 connection, the terminal in that oscillator that is directly
connected to the bottom terminal of i = 1 is labelled its top terminal. We continue this
process recursively. If two terminals are connected by a + connection and one of them is the
bottom terminal of its host oscillator, the other terminal is labelled the bottom terminal of
its own host oscillator. If two terminals are connected by a - connection and one of them
is the bottom terminal of its host oscillator, the other terminal is labelled the top terminal
of its own host oscillator. Through this process, we can identify the bottom terminals of all
the oscillators. The ‘bottom’ labelling is shown in Fig. 5.2 for the 2-spin case.

Now that this is settled, let the potential at the ‘bottom’ terminal of oscillator i be Vbi.
The current that flows out from the bottom terminal of the i-th oscillator into the resistor
that connects it to the j-th oscillator is iij1. Similarly, the current that flows out from the
top terminal of the i-th oscillator into the resistor that connects it to the j-th oscillator is
iij0. In the i-th oscillator, the voltage difference between the top and the bottom terminals
of the capacitor is denoted by Vi, the current passing through the inductor towards the top
terminal is ili, and the current passing through the capacitor from the top to the bottom
terminals is ici. All of this notation is again indicated on Fig. 5.2 for the 2-spin case.

KCL and KVL for the circuit can be written as:

ici = fi(vi, v̇i), for all i ∈ {1, 2, . . . , N} (5.4)

vi = −Li̇li, for all i ∈ {1, 2, . . . , N} (5.5)∑
j

iij0 = ili − ici, for all i ∈ {1, 2, . . . , N} (5.6)∑
j

iij0 +
∑
j

iij1 = 0, for all i ∈ {1, 2, . . . , N} (5.7)

vb1 = 0 (5.8)

iijk = k

[(
vbi − vbj

R

)(
1 + Jij

2

)
+

(
vbi − vbj − vj

R

)(
1− Jij

2

)]
+ (1− k)

[(
vbi + vi − vbj − vj

R

)(
1 + Jij

2

)
+

(
vbi + vi − vbj

R

)(
1− Jij

2

)]
,

for all i ∈ {1, 2, . . . , N}, for all j ∈ {1, 2, . . . , N}, j 6= i, for all k ∈ {0, 1}

(5.9)

The first equation is the current characteristic of the i-th capacitor. Since the capacitor



CHAPTER 5. COUPLED LC OSCILLATOR ISING SOLVER AND LAGRANGE
MULTIPLIERS 87

is time-varying, we have chosen to simply represent its current by some function fi of its
voltage and voltage velocity. fi will be specified later on. The second equation is simply the
inductor’s characteristic, the third one is the current law at the top terminal, the fourth one
is a combination of the current laws at the top and the bottom terminals, the fifth one fixes
the voltage reference by setting the potential of the bottom terminal of the first oscillator to
0, and the final equation writes out the characteristic of all the straight- and cross-linking
resistors in the system.

Some simple algebra on the above equations, worked out in Appendix D, leads to the
following vector equation for the capacitor voltages in all the oscillators:

(J − (N − 1) I) v̇ = 2Rc

(
ḟ +

v

L

)
(5.10)

where v̇ = dv
dt

, ḟ = df
dt

, J is the specified Ising matrix, I is the N × N identity matrix, Rc

is the coupling resistance, and L is the value of the inductance inside each LC oscillator.
All-to-all coupling is assumed in the derivation of this equation.

Slowly varying amplitude approximation

Next, we introduce the time-dependence of the capacitor through this following explicit form
for fi(vi, v̇i):

Qi = (C0 + ∆Ci cos (2ω0t)) vi (5.11)

=⇒ ici = (C0 + ∆Ci cos (2ω0t)) v̇i − 2ω0∆Ci sin (2ω0t)vi = fi(vi, v̇i) (5.12)

For now, let us assume that the capacitance modulation is the same for all the oscillators,
that is, ∆Ci = ∆C for all i (all the functions fi are equal to the same function f). Rewriting
Eq. (5.10) for this form of f , we get:[

J − (N − 1) I

2RcC0

+ 4ω0
∆C

C0

sin (2ω0t)

]
v̇ =

(
1 +

∆C

C0

cos (2ω0t)

)
v̈

+

(
1

LC0

− 4ω2
0

∆C

C0

cos (2ω0t)

)
v

(5.13)

Our next step will be to apply the slowly-varying amplitude approximation to this equation.
We are interested in voltage solutions to this equation that have frequencies near ω0. For this
purpose, let us decompose the capacitor voltage as v(t) = A(t) cos(ω0t+φ)+B(t) sin(ω0t+φ)
where φ is some arbitrary phase and A(t) and B(t) are the amplitudes of the cosine and
sine components respectively. We have the following for v̇ and v̈:

v̇ =Ȧ cos(ω0t+ φ)−Aω0 sin(ω0t+ φ) + Ḃ sin(ω0t+ φ) +Bω0 cos(ω0t+ φ) (5.14)

v̈ =Ä cos(ω0t+ φ)− 2Ȧω0 sin(ω0t+ φ)−Aω2
0 cos(ω0t+ φ)

+ B̈ sin(ω0t+ φ) + 2Ḃω0 cos(ω0t+ φ)−Bω2
0 sin(ω0t+ φ)

(5.15)
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The slowly-varying amplitude approximation is applicable when the amplitudes A(t) and
B(t) vary at a rate that is much slower than the frequency ω0, that is, when Ä � Ȧω0

holds element-wise. We shall design our system to have this property, so the approximation
becomes applicable. The approximation simply involves dropping Ä in the presence of Ȧω0.
On the application of the approximation, the first and fourth terms on the right side of Eq.
(5.15) get dropped. Plugging these expressions into Eq. (5.13), we get:[

J − (N − 1) I

2RcC0

+ 4ω0
∆C

C0

sin (2ω0t)

]((
Ȧ+Bω0

)
cos(ω0t+ φ) +

(
Ḃ −Aω0

)
sin(ω0t+ φ)

)
=

(
1 +

∆C

C0

cos (2ω0t)

)((
−2Ȧω0 −Bω2

0

)
sin(ω0t+ φ) +

(
2Ḃω0 −Aω2

0

)
cos(ω0t+ φ)

)
+

(
1

LC0

− 4ω2
0

∆C

C0

cos (2ω0t)

)
(A cos(ω0t+ φ) +B sin(ω0t+ φ))

(5.16)

Since our quadrature basis, cos (ω0t+ φ) and sin (ω0t+ φ), was very general, we are allowed
to choose any particular basis we are interested in by picking φ. It is the case that φ = 3π/4
is the most convenient. In Appendix D, we multiply everything out, compare the coefficients
of cos (ω0t) and sin (ω0t) on both sides, perform some more approximations, and set φ = 3π/4
to get the following two equations:

Ȧ =

(
J − (N − 1) I

4RcC0

+
ω0∆C

4C0

)
A (5.17)

Ḃ =

(
J − (N − 1) I

4RcC0

− ω0∆C

4C0

)
B (5.18)

Both the cosine and the sine components evolve exponentially from their starting conditions.
Since all the eigenvalues of the loss matrix (J − (N − 1) I) / (4RcC0) are negative, the cosine
componentA grows if there is enough gain g = ω0∆C/ (4C0) while the sine component decays
always, even at zero gain. Since both A and B start out at the noise level in the circuit,
and A quickly rises above the noise, we are justified in dropping the B equation altogether.

Our final evolution equation is:

Ȧ =

(
J − (N − 1) I

4RcC0

+
ω0∆C

4C0

)
A (5.19)

This is the evolution equation for the slowly-varying amplitudeA(t) of the cosine component
of the capacitor voltages in our coupled network. In this form, it looks like A(t) can grow
indefinitely if the gain is large enough, but that is because we have approximated the behavior
of the gain and totally ignored the dynamics of the pump circuit that drives each oscillator.
In reality, the gain ω0∆C/4C0 itself varies with time too. If the amplitude A(t) grows too
much, the gain gets depleted andA(t) falls. We will return to this natural control mechanism
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in a couple of sections. One final thing we note before moving to the next subsection is the
fact the right-hand side of Eq. (5.19) can be written as the gradient of a quadratic form:(

J − (N − 1) I

4RcC0

+
ω0∆C

4C0

)
A =∇A

[
1

2
AT

(
J − (N − 1) I

4RcC0

+
ω0∆C

4C0

)
A

]
(5.20)

If we define a new function h(A) as follows:

h(A) = AT

(
(N − 1) I − J

4Rc

− ω0∆C

4

)
A, (5.21)

we can rewrite Eq. (5.19) as:

Ȧ = − 1

2C0

∇Ah(A) (5.22)

Therefore, as time passes, Eq. (5.19) actually performs gradient descent on h(A)! We will
now show that h(A) is directly related to the power dissipation of the circuit in Fig.
5.2.

5.2 The circuit follows the principle of minimum

power dissipation

Essence of this section: In this section, we show how the slowly-varying amplitude
circuit equations perform gradient on a natural ‘power dissipation function’ that can be
defined for the circuit. We show that this power dissipation function is identical to the
one discussed by Onsager.

In this section, we will tie the slowly-varying amplitude dynamics of the circuit derived in the
previous section to the power dissipation in the circuit. It will turn out that the dynamics
Eq. (5.19) performs gradient descent on the power dissipation as time proceeds and finally
ends up in a local minimum of the dissipation function in steady state.

Power is dissipated in the circuit in Fig. 5.2 only in the coupling resistors; the oscillators
themselves have been assumed to be lossless and that shall continue to be the case. The
power dissipated in each coupling resistor is simply the squared voltage difference across the
resistor divided by the resistance value. We need access to the potentials of the top and
bottom terminals of all the oscillators to be able to compute the voltage differences across
all the coupling resistors. This can be done elegantly through a little linear algebra as shown
in Appendix D. The formula for the dissipated power as a function of the voltages across
the capacitors v(t) is derived there and is expressed as follows in matrix form:

P (t) = vT (t)

(
(N − 1) I − J

2Rc

)
v(t) (5.23)
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Plugging in v(t) = A(t) cos
(
ω0t+ 3π

4

)
and averaging over the cycle time period of 2π/ω0

on both sides, we see that the time-averaged power can be expressed in terms of the slowly-
varying amplitude A as follows:

〈P (A)〉 = AT

(
(N − 1) I − J

4Rc

)
A (5.24)

This expression is exactly the first term in h(A)! What about the second term? The
term ω0∆C/4C0 acts like a 1/RC0 time constant in Eq. (5.19), the only difference being
that it gives energy to the signal rather than taking away energy as a normal resistor would.
Therefore, ω0∆C/4 is a kind of effective negative conductance that the cosine component
experiences due to the parametric pumping. Some care should be exercised here since Eq.
(5.19) is a slowly-varying amplitude equation. Resistances appear in slowly-varying equations
as 1/2RC instead of as 1/RC. Therefore, the actual negative conductance is ω0∆C/2. The
time-averaged power supplied by this negative resistor is:

〈Pgain(t)〉 =

〈
vT (t)

ω0∆C

2
v(t)

〉
=⇒ 〈P (A)〉 = AT ω0∆C

4
A (5.25)

We recover the second term of h(A) too. Since the parametric terms acts as a negative
resistance, the power ‘dissipation’ that happens in it is negative. The net power dissipation
is therefore:

〈P (A)〉 = AT

(
(N − 1) I − J

4Rc

− ω0∆C

4

)
A (5.26)

and we get the result h(A) = 〈P (A)〉; the function h(A) and the net power dissipation
〈P (A)〉 are exactly the same! Rewriting the slowly-varying amplitude equation, we get:

Ȧ(t) = − 1

2C0

∇A 〈P (A(t))〉 (5.27)

The circuit performs gradient descent on the total instantaneous cycle-averaged power dissi-
pation! This power dissipation includes both the positive dissipation in the coupling resistors
and the negative ‘dissipation’ through the parametric capacitors. Eventually, the capacitor
voltage amplitudes will settle down to a local minimum of the power dissipation in steady
state.

Connection to Onsager’s power dissipation

The fact that the circuit operates by the principle of minimum power dissipation is not
surprising due to the linear nature of the signal circuit at the frequency ω0. At our level
of approximation so far, the time-varying capacitor, which provides the gain, only acts as a
constant phase-dependent linear negative resistance. In 1930, Onsager noted in his influential
reciprocity relations papers [4] that the equations of linear response could be recast as a
‘minimum power dissipation’ principle. Consider a general thermodynamic system with
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thermodynamic forces given by the vector V and the fluxes given by the vector J . In the
linear response regime, they are connected by a symmetric matrix R:

V = RJ (5.28)

The fact that R is symmetric when time-reversal symmetry holds, the famous Onsager
reciprocity relation, was the main subject of his papers. However, he did note that the linear
response equation could equivalently be expressed in a variational form as:

V = RJ ⇐⇒ ∇J
(

1

2
JTRJ − V TJ

)
=∇JP (J) = 0 (5.29)

where we defined P (J) = 1
2
JTRJ − V TJ , the ‘net power dissipation’ function. For a

given driving force V , the currents J will adjust themselves such that, at steady-state, they
render the net dissipation P (J) stationary. This is the essence of Eq. (5.26) too. We had a
positive dissipation term and a negative dissipation driving term, and, for fixed driving/gain
(ω0∆C/2) the equations move toward a local minimum of the net dissipation function. This
variational formulation of the linear response equations makes it clear why it is critical to take
into account ‘negative dissipation’ or the driving in the net dissipation function. Without
that, one simply ends up with zero currents everywhere in steady-state. A driving force or
gain or negative dissipation is necessary for non-zero currents and voltages to be maintained
in any system.

Eq. (5.19) contains more information; it says that our particular coupled oscillator system
approaches the stationary steady-state point via gradient descent of the dissipation function
in time. This is an interesting curiosity of our particular system. It need not always be true;
systems could also ‘spiral’ into the same local minimum via a ‘spiralling gradient descent’ in
time.

We conclude this section by saying that our slowly-varying equations of motion and their
implications are consistent with the minimum power dissipation principle as put forth by
Onsager. We comment on the principle of minimum power dissipation for nonlinear systems
in Appendix C.

5.3 Lagrange multipliers

Essence of this section: In this section, we point out a similarity between the power
dissipation and the method of Lagrange multipliers. Next, we present a quick concep-
tual recap of Lagrange multipliers, and end with a discussion of the iterative ‘method
of multipliers’ algorithm that helps us find local optima in constrained optimization
problems.

The function h(A) that is minimized by the slowly-varying amplitude dynamics has a nice
physical interpretation in terms of power dissipation that we just discussed. It has an equally
elegant mathematical interpretation—this will be the subject of the current section.
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Since h(A) is so important, we repeat it here for our present discussion:

h(A) = 〈P (A)〉 = AT

(
(N − 1) I − J

4Rc

− ω0∆C

4

)
A (5.30)

Let us say we were to supply different gains to each of the oscillators. That is, let the
capacitor modulation of the i-th capacitor be ∆Ci. The function h(A) would then be:

h(A) = AT

(
(N − 1) I − J

4Rc

)
A−

N∑
i=1

ω0∆Ci
4

A2
i (5.31)

The first term is essentially the Ising objective function xTJx with some additional decora-
tion. The second term, the sum, looks like a set of penalties that were added to the original
objective function. In fact, they are the Ising constraints added to the objective function
as penalty terms in exactly the same fashion as in the method of Lagrange multipliers! We
now present a brief review of Lagrange multipliers and then show the explicit isomorphism
between h(A) and the Lagrange objective function. Much of the material that is presented
here—the KKT conditions, the method of multipliers, and the Augmented Lagrange func-
tion—is drawn from the excellent optimization textbook by Bertsekas [118].

Review of Lagrange multipliers

The method of Lagrange multipliers is a very well-known procedure for solving constrained
optimization problems. Let us say we wish to minimize a merit function of n variables, f(x),
within the set of all the x that satisfy the constraint g(x) = 0. Let x∗ be a local minimum of
the merit function subject to the constraint. The local minimum in a general unconstrained
problem has the property that the slope of the merit function is zero as infinitesimal steps
are taken away from x∗ in any direction. In constrained optimization, however, we only ask
that the merit function remain unchanged for small deviations that respect the constraints.
In our example, the infinitesimal steps are restricted to the constraint curve g(x) = 0. The
slope of f(x) will be zero in the direction of small displacements along g(x) = 0 if and only
if the gradient of f(x) is normal to g(x) = 0. This means ∇f(x∗) and ∇g(x∗) should be
parallel to each other:

∇f(x∗) = −λ∗∇g(x∗). (5.32)

The proportionality constant λ∗ is called the Lagrange multiplier corresponding to the con-
straint g(x) = 0. A 2-dimensional example for maximization is shown in Fig. 5.3. The
Lagrange method can be used both for minimization and maximization, and a gradient pro-
portionality relation holds at all stationary points (local minima, local maxima, and saddle
points). In this example, the isocontour lines of the function f(x) increase until they are
limited by, and just touch, the constraint curve g(x) = 0 at the point x∗.

When there are multiple constraints g1 = 0, . . . , gp = 0, (5.32) is generalized as follows:

∇f(x∗) = −
p∑
i=1

λ∗i∇gi(x∗), (5.33)
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Figure 5.3: Maximization of function f(x, y) subject to the constraint g(x, y) = 0. At the
constrained local optimum, the gradients of f and g, namely ∇f(x, y) and ∇g(x, y), are parallel.

The gradient vector ∇ represents n equations, accompanied by the p constraint equations
gi(x) = 0, resulting in n + p equations. These equations solve for the n components in the
vector x∗, and the p unknown Lagrange Multipliers λ∗i . That would be n + p equations for
n + p unknowns. Every point x∗ that locally minimizes or maximizes f(x) subject to the
constraints satisfies Eq. (5.33) for some λ∗.

Eq. (5.33) suggests that we introduce a Lagrange function L(x,λ) defined as follows:

L(x,λ) = f(x) +

p∑
i=1

λigi(x), (5.34)

This function has the property that the local minimum x∗ and its associated multipliers λ∗

satisfy:
∇xL(x∗,λ∗) = 0, ∇λL(x∗,λ∗) = 0. (5.35)

These are n + p equations in all. These conditions are widely known as the Karush-Kuhn-
Tucker (KKT) necessary and sufficient conditions for local stationarity. If a candidate point
(x′,λ′) satisfies these conditions, then x′ is a stationary point (local minimum, local max-
imum, or saddle point) of f(x) subject to the constraints. As in normal calculus, one has
to look at the second derivatives of L(x,λ) at (x′,λ′) to decide if the stationary point x′

is specifically a local minimum , a local maximum, or a saddle point of f(x) subject to the
constraints.



CHAPTER 5. COUPLED LC OSCILLATOR ISING SOLVER AND LAGRANGE
MULTIPLIERS 94

Duality and the saddle point nature of (x∗,λ∗)

Let us say we are searching for constrained global minima instead of constrained local
minima. The problem we are trying to solve is:

minimize f(x)

subject to gi(x) = 0, i = 1, . . . , p.

Standard optimization textbooks show that this problem can be rewritten as:

min
x: gi(x)=0 ∀ i

f(x) = min
x

(
max
λ

L(x,λ)
)

(5.36)

where L(x,λ) = f(x) +
∑

i λigi(x) is the Lagrange function. We have converted a con-
strained optimization problem into an unconstrained nested min-max optimization prob-
lem. The well-known min-max inequality that is true for arbitrary functions tells us that:

min
x

(
max
λ

L(x,λ)
)
≥ max

λ

(
min
x
L(x,λ)

)
(5.37)

This relation holds for any optimization problem and is also called ‘weak duality’. For
some special optimization problems—which includes many common convex optimization
problems—we actually have equality:

min
x

(
max
λ

L(x,λ)
)

= max
λ

(
min
x
L(x,λ)

)
(5.38)

The above relation says that the constrained global minimum x∗ of f(x) and its associated
multiplier λ∗ form a saddle point of L(x,λ). To see why they form a saddle point of L(x,λ),
note that (x, arg maxλ L(x,λ)) on the left-hand side represents a ‘1D’ curved slice of the full
space that passes through (x∗,λ∗). Moreover L(x,λ) is minimized over this slice at (x∗,λ∗).
Therefore, moving away from (x∗,λ∗) along the tangent to this slice increases L. Similarly,
the right-hand side says that, over the ‘1D’ curved slice represented by (arg minx L(x,λ),λ),
L(x,λ) is maximized at (x∗,λ∗). Therefore, moving away from (x∗,λ∗) along the tangent
to this slice decreases L.

Algorithm to find constrained global minimum x∗ and its
multipliers λ∗

One of the standard ways to find the constrained global minimum x∗ and its multipliers λ∗

is to solve the nested max-min optimization problem on the right-hand side of Eq. (5.38)
iteratively. For a fixed λ, we minimize L(x,λ) in the x directions. Then, we take take
one ascent step in the λ directions. We again solve the inner optimization problem for
this slightly different λ. The nested problem is solved iteratively through an inner loop of
gradient descent in the x directions and an outer loop of gradient ascent in the λ directions.
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More precisely, we choose an initial
(
x(0),λ(0)

)
, run gradient descent on L(x,λ(0)) in the

x directions till we reach a local optimum
(
x(1),λ(0)

)
, then take one gradient ascent step

on L(x(1),λ) in the λ directions to reach L(x(1),λ(1)), and repeat. The i + 1-th iteration
looks like the following:

1. Starting from (x(i),λ(i)), perform gradient descent on L(x,λ(i)) in the x directions
till a local minimum is reached. Label that local minimum (x(i+1),λ(i)).

2. Perform one step of gradient ascent on L(x(i+1),λ) in the λ directions to reach
(x(i+1),λ(i+1)).

This is the standard ‘Method of Multipliers’. This algorithm outputs the global optimal
(x∗,λ∗) for a minimization problem which satisfies strong duality. Unfortunately, most
difficult problems are highly non-convex and do not satisfy strong duality. For the time
being, however, we will stick to this algorithm and see whether our coupled LC oscillator
system implements some dynamics of this kind. A similar alternating procedure also exists
to find local minima in problems with only weak duality—the ‘Augmented Lagrangian
Method of Multipliers’—and we shall take a look at it in the final section of this chapter.

5.4 Exact equivalence between coupled LC oscillators

and Lagrange multipliers

Essence of this section: In this section, we show that the coupled LC oscillator cir-
cuit exactly implements the method of multipliers. The net gain of each oscillator
plays the role of the Lagrange multiplier of the associated spin. The signal circuit
equations perform gradient descent on L(x,λ) in the x directions whereas the pump
circuit implements gradient ascent on L(x,λ) in the λ directions. To show the latter, a
common pump circuit is presented and its equations of motion are derived.

The signal circuit performs gradient descent on the Lagrange
function

In this subsection, we show that the dynamics of the coupled LC oscillator circuit performs
step 1 in the ‘Method of Multipliers’.

For an Ising problem with N spins, the merit function to be minimized is
−
∑N

i=1

∑N
j=1 Jijxixj. There are p = N constraints, one for each of the spins i, given by

gi(x) = 1 − x2
i = 0. Therefore, the Lagrange function for the Ising problem, with these

digital constraints, is given by:

L(x,λ) = −
n∑
i=1

n∑
j=1

Jijxixj +
n∑
i=1

λi
(
1− x2

i

)
(5.39)
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where λi is the Lagrange Multiplier associated with the constraint on the i-th spin. Step 1
in the method of multipliers performs gradient descent on L(x,λ) in x. In iteration form,
step 1 looks like:

x[k + 1] = x[k]− ε∇xL(x,λ) (5.40)

where ε is a gradient descent step size that converts the units of the gradient to those of x.
This discrete time equation can be written in continuous time as below:

ẋ(t) = −κ∇xL(x,λ) = 2κ (Jx(t) + Λx(t)) (5.41)

where κ is a gradient descent step size that converts the units of the gradient to those of ẋ,
and Λ is a diagonal matrix that contains the λis on its diagonal.

Let us compare this with h(A) repeated below:

h(A) = − 1

4Rc

N∑
i=1

N∑
j=1

JijAiAj +
N∑
i=1

(
ω0∆Ci

4
− N − 1

4Rc

)(
−A2

i

)
(5.42)

h(A) is essentially the same as Eq. (5.39), but with a missing ‘1’ adjacent to the −A2
i in the

brackets at the end. If that is put in, we exactly retrieve the Lagrange function. The net
gain of each oscillator acts like the Lagrange multiplier for the corresponding spin. For
the purpose of taking gradients with respect to A, the missing ‘1’ in h(A) doesn’t matter.
The Lagrange function for the circuit is:

L(A1, . . . , AN ,∆C1, . . . ,∆CN) = − 1

4Rc

N∑
i=1

N∑
j=1

JijAiAj +
N∑
i=1

(
ω0∆Ci

4
− N − 1

4Rc

)(
1− A2

i

)
(5.43)

It is clear from the form of the Lagrange function of the circuit that the two spins of the Ising
problem are being mapped to cosine oscillations of amplitude +1 in the 0 phase or +1 in the
π phase. Phase bistability by itself is not enough; we also need the voltages to settle down
to fixed amplitudes along those phases. Since h(A) and L(A1, . . . , AN ,∆C1, . . . ,∆CN) both
have the same partial derivatives with respect to Ai, and we already saw that the circuit was
performing gradient descent on h(A), we conclude that it equivalently performs gradient
descent on L(A1, . . . , AN ,∆C1, . . . ,∆CN). The circuit evolution equation is:

Ȧ(t) = − 1

2C0

∇Ah(A(t)) =
1

4RcC0

(JA(t) + ΓA(t)) (5.44)

where Γ is a diagonal matrix whose i-th diagonal element is Γii = ω0∆CiRc − (N − 1), a
measure of the net gain received by the i-th oscillator. It can be verified that the right-hand
side of the above dynamics is indeed the gradient of the aforementioned Lagrange function.

We have shown that the signal circuit’s natural slowly-varying amplitude dynamics ex-
actly implements gradient descent on the Lagrange function in the A directions.
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The pump circuit performs gradient ascent on the Lagrange
function

Step 2 in the method of multipliers performs gradient ascent on L(x,λ) in λ. In iteration
form, step 2 looks like:

λ[k + 1] = λ[k] + ε′∇λL(x,λ) (5.45)

where ε′ is a gradient descent step size that converts the units of the gradient to those of λ.
This discrete time equation can be written in continuous time as below:

λ̇(t) = κ′∇λL(x,λ) = κ′
(
1− x2(t)

)
(5.46)

where κ′ is a gradient descent step size that converts the units of the gradient to those of
λ̇, and x2(t) is a vector whose individual elements are the squares of the corresponding
elements in the vector x(t). Does the coupled LC oscillator circuit implement something
similar? The answer is yes. To see how this gradient ascent takes place in the circuit, we
have to study the gain that is provided by the pump circuit. We already identified the gain
of an oscillator with the Lagrange multiplier of the corresponding Ising spin. Therefore, it is
natural that the time dynamics of λ the Lagrange multipliers is implemented by the pump
circuit which provides the gain.

Pump circuit

In Fig. 5.4, we depict one of the standard parametric pump-signal coupling circuits [119]. Our
analysis of this circuit will lead directly to the gradient ascent equations for the gains/Lagrange
multipliers. The circuit equations are:

C1V̇s = I3 − I4, C2V̇p = I2 − I3, (5.47)

Vs = L1

(
İ4 − İ5

)
, Vp = L2

(
İ1 − İ2

)
, (5.48)

Vs = R1 (Is + I5) , Vp = R2 (Ip − I1) (5.49)

I3 = C0

(
V̇p − V̇s

)
+ 2CN (Vp − Vs)

(
V̇p − V̇s

)
(5.50)

These equations are solved in Appendix D. As usual, we use slowly-varying amplitudes in
that derivation by setting Vs(t) = As(t) cos (ω0t+ 3π/4) and Vp(t) = Ap(t) cos (2ω0t). Note
that we are already dropping the sine component of the signal voltage Vs(t) because it will
decay anyway. The result is:

Ȧs =
Is

2 (C0 + C1)
− As

2R1 (C0 + C1)
+
CNω0AsAp
2 (C0 + C1)

(5.51)

Ȧp =
Ip

2 (C0 + C2)
− Ap

2R2 (C0 + C2)
− CNω0A

2
s

2 (C0 + C2)
(5.52)
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Figure 5.4: The i-th ‘signal’ oscillator, on the left, shown along with its pumping oscillator, on the
right. The signal oscillator and the pump oscillator are coupled via a nonlinear capacitor, shown
at the top. The terminals of the left signal capacitor C1 are coupled to the other capacitors via the
parallel and antiparallel coupling scheme.
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Figure 5.5: The complete circuit for two coupled magnets. The inner signal oscillators are exactly
as shown in Fig. 5.2. The only difference is that the pumping circuits for the two oscillators are
also depicted now.

where As and Ap are the slowly-varying amplitudes of voltage across the capacitors in the
signal and pump circuits respectively. Both equations are very intuitive. The signal equation
has an input term, Is, the resistive decay term due to the internal resistance, and the final
term is the gain which is directly proportional to Vp, the pump capacitor voltage. The pump
equation has an input term, Ip, the resistive decay term due to the internal resistance, and
the final term is the ‘pump depletion’ term. Pump depletion refers to the loss of the pump
amplitude in response to an increase in the signal amplitude.

To make these equations look like the Lagrange multiplier equations, we set Is = 0 and
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R1 = R2 =∞. The equations reduce to:

Ȧs =
CNω0AsAp
2 (C0 + C1)

(5.53)

Ȧp =
Ip

2 (C0 + C2)
− CNω0A

2
s

2 (C0 + C2)
(5.54)

These are the equations for a signal-pump pair that is not connected to anything else. In
Fig. 5.5, we show that the signal part of the signal-pump pair has to be connected with
other spins in the usual way using straight-linking and cross-linking resistors. The signal
and pump voltage amplitudes in the i-th spin then satisfy:

Ȧsi =

(
N∑
j=1

Jij − (N − 1) δij
4Rc (C0 + C1)

Asj

)
+

(
CNω0Api

2 (C0 + C1)

)
Asi (5.55)

Ȧpi =
Ipi

2 (C0 + C2)
− CNω0A

2
si

2 (C0 + C2)
(5.56)

where δij is the Kronecker delta. Equation (5.55) is only a rewriting of Eq. (5.19), but with
a more accurate treatment of the final parametric gain term. There is nothing entirely new
there. The pump equation is the new thing here, and we look at it a bit more closely. If Ipi,
the pump driving current source, is chosen to be Ipi = CNω0 for all the spins i, then we can
rewrite Eq. (5.56) as:

Ȧpi =
Ipi

2 (C0 + C2)

(
1− A2

si

)
(5.57)

This is exactly like the Lagrange multiplier gradient ascent equation. We summarize the
exact equivalence below.

Exact equivalence between coupled LC oscillators and Lagrange
multipliers

The Lagrange multiplier ‘Method of Multipliers’ is given by:

ẋi(t) = 2κ

(
N∑
j=1

Jijxj(t) + λi(t)xi(t)

)
(5.58)

λ̇i(t) = κ′
(
1− x2

i (t)
)

(5.59)

The coupled LC oscillator network is described by:

Ȧsi(t) =

(
N∑
j=1

Jij − (N − 1) δij
4Rc (C0 + C1)

Asj(t)

)
+

(
CNω0Api(t)

2 (C0 + C1)

)
Asi(t) (5.60)

Ȧpi(t) =
Ipi

2 (C0 + C2)

(
1− A2

si(t)
)

(5.61)
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The equivalence is exact. The gains play the role of the Lagrange multipliers, the signal
circuit performs the gradient descent in the original variable directions while the pump
circuit performs gradient ascent in the Lagrange multiplier directions.

5.5 Augmented Lagrange function

Essence of this section: In this section, a drawback of the ‘method of multipliers’ is
discussed, and a well-known way to fix it through the use of the ‘Augmented Lagrange
function’ is presented. Finally, a circuit implementation of the ‘Augmented Lagrange
method’ is provided and its equations of motion are derived.

The ‘Method of Multipliers’ finds constrained global minima in special optimization problems
(those that satisfy strong duality; these problems tend to be convex). It doesn’t work very
well in finding constrained local minima of f(x) in general optimization problems. The
reason for this is explained in the next subsection.

Why the method of multipliers might fail in finding constrained
local minima

Every constrained local minimum x∗ satisfies the following KKT conditions for some λ∗:

∇xL(x∗,λ∗) = 0, ∇λL(x∗,λ∗) = 0. (5.62)

However, these are only first-order conditions. If the objective function and the constraints
are twice-differentiable (as is the case with the Ising objective function and its constraints),
we can say more. Every constrained local minimum x∗ satisfies the following second-order
KKT conditions for the same λ∗ as before:

∆xT∇2
xxL(x∗,λ∗)∆x ≥ 0 ∀ feasible displacements ∆x ∈ Rn (5.63)

By ‘feasible displacements’, we mean displacements that are tangential to the constraint
surfaces g1(x) = 0, . . . , gp(x) = 0. Small tangential displacements do not move the point
away from the constraint surfaces, which means x∗+ ∆x still lies within the feasible region.
The meaning of the second-order condition is that, for all feasible displacements away from
(x∗,λ∗) in the x directions, the Lagrange function L(x,λ) necessarily increases. In the
‘infeasible’ directions on the other hand, the Lagrange function could decrease. This decrease
of the Lagrange function in the other directions around (x∗,λ∗) poses problems for the
method of multipliers when it is employed to find (x∗,λ∗).

The method of multipliers solves a nested max-min problem. For a fixed λ, it minimizes
L(x,λ) over x using gradient descent. Let us say we know the λ∗ corresponding to a
particular constrained local minimum x∗. Let us also say that our initial point for the
method of multipliers is

(
x(0),λ∗

)
for some x(0) that is already close to x∗. The method
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of multipliers then performs gradient descent in the x directions starting from
(
x(0),λ∗

)
. If

x(0) is separated from x∗ by a feasible displacement (that is, if ∆x = x(0)−x∗ is a feasible
displacement), the gradient descent will work and we will reach (x∗,λ∗). For infeasible
displacements, however, we know that Lagrange function can decrease as one moves away
from (x∗,λ∗). If x(0) is separated from x∗ by an infeasible displacement, the gradient
descent could take the algorithm in a direction that is opposite to where (x∗,λ∗) is situated.
In summary, even if one is given the right λ∗ and a starting x(0) that is close to x∗, the
method of multipliers could fail spectacularly in finding x∗.

The solution: Method of multipliers on the Augmented Lagrange
function

The solution to this problem is to modify the Lagrange function L (x,λ) and get a new
function, Lc (x,λ), that has the property that every displacement ∆x in the x directions
away from (x∗,λ∗), feasible or otherwise, leads to an increase in Lc (x,λ). The Augmented
Lagrange function Lc (x,λ) does the job [118]. The Augmented Lagrange function for a
problem with objective function f(x) and constraints g1(x) = 0, . . . , gp(x) = 0 is given by:

Lc(x,λ) = f(x) +

p∑
i=1

λigi(x) +
c

2

(
p∑
i=1

(gi(x))2

)
(5.64)

= L(x,λ) +
c

2

(
p∑
i=1

(gi(x))2

)
(5.65)

It is simply the original Lagrange function but with the sum of squares of the constraints
functions added on. It is shown in [118] that every constrained strict local minimum x∗,
along with its associated λ∗, satisfies the following first-order ‘Augmented Lagrange’ KKT
conditions:

∇xLc(x∗,λ∗) = 0, ∇λLc(x∗,λ∗) = 0. (5.66)

x∗ also satisfies the following second-order ‘Augmented Lagrange’ KKT conditions for the
same λ∗ as before, this time, for all displacements ∆x:

∆xT∇2
xxLc(x

∗,λ∗)∆x ≥ 0 ∀ displacements ∆x ∈ Rn (5.67)

The method of multipliers will now succeed in finding constrained local minima if it is applied
to Lc (x,λ). Returning to the particular example we saw before, let us again say we know the
λ∗ corresponding to x∗, and that our initial point for the method of multipliers is

(
x(0),λ∗

)
for some x(0) that is already close to x∗. Since there are no directions (∆x,0) around
(x∗,λ∗) in which the Augmented Lagrange function Lc (x,λ) decreases, there is no danger
of the algorithm slipping away from (x∗,λ∗) whatever the initial point

(
x(0),λ∗

)
is.

The ‘Augmented Lagrange’ method of multipliers works as follows. Choose an initial
point

(
x(0),λ(0)

)
, run gradient descent on Lc(x,λ

(0)) in the x directions till we reach a local
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optimum
(
x(1),λ(0)

)
, then take one gradient ascent step on Lc(x

(1),λ) in the λ directions

to reach L(x(1),λ(1)), and repeat. The i+ 1-th iteration looks like the following:

1. Starting from (x(i),λ(i)), perform gradient descent on Lc(x,λ
(i)) in the x directions

till a local minimum is reached. Label that local minimum (x(i+1),λ(i)).

2. Perform one step of gradient ascent on Lc(x
(i+1),λ) in the λ directions to reach

(x(i+1),λ(i+1)).

More details of this method, including the proof that it works, may be found in the textbook
by Bertsekas [118].

Augmented Lagrange function for the Ising problem

The Augmented Lagrange function for the Ising problem is:

Lc(x,λ) = −
N∑
i=1

N∑
j=1

Jijxixj +
N∑
i=1

λi
(
1− x2

i

)
+
c

2

(
N∑
i=1

(
x2
i − 1

)2

)
(5.68)

Then, the Augmented Lagrange method of multipliers can be expressed as:

ẋi(t) = 2κ

(
N∑
j=1

Jijxj(t) + λi(t)xi(t) + cxi(t)− cx3
i (t)

)
(5.69)

λ̇i(t) = κ′
(
1− x2

i (t)
)

(5.70)

In the next subsection, we show how the coupled LC oscillator network can be modified to
implement the Augmented Lagrange method of multipliers.

Augmented Lagrange coupled LC oscillator Ising solver

Since the λ equation is the same in both the methods of multipliers, we need not make
any changes to the pump circuit. The appearance of a cubic decay term in the x equation
suggests that we should add a nonlinear resistor with a cubic nonlinearity to each oscillator.
Let the cubic resistor be described by:

I = V G0 + V 3GN = V Gnlin(V ) (5.71)

The nonlinear resistor Rnlin is added in parallel to the parametric capacitor in the signal
circuit as shown in Fig. 5.6. The equation of motion that was derived in Sec. 1 of this
chapter for the original circuit was:

(J − (N − 1) I) v̇ = 2Rc

(
ḟ +

v

L

)
(5.72)
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The current passing through the i-th capacitor was ici = fi(vi, v̇i). We had then set fi to:

ici = fi(vi, v̇i) = (C0 + ∆Ci cos (2ω0t)) v̇i − 2ω0∆Ci sin (2ω0t)vi (5.73)

To account for the nonlinear resistor in our new circuit, we simply add the current through
the nonlinear resistor to fi:

ici = fi(vi, v̇i) = (C0 + ∆Ci cos (2ω0t)) v̇i − 2ω0∆Ci sin (2ω0t)vi +G0vi +GNv
3
i (5.74)

In Appendix D, we substitute this expression into the equation of motion and perform the
usual slowly-varying amplitude approximation and retain only the cosine component of the
capacitor voltage in each oscillator to obtain the following equation:

Ȧ =

(
J − (N − 1) I

4RcC0

− G0

2C0

+ g(t)

)
A− 3GN

8C0

A3 (5.75)

where g(t) is a diagonal matrix that contains the gain of the i-th oscillator, gi(t), as its i-th
diagonal element for every i, and A3 is the vector whose i-th element is the cube of the i-th
element of A for every i. It is clear that this equation of motion implements Eq. (5.69).
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Figure 5.6: The coupled LC circuit that implements the Augmented Lagrange method for two
spins. A nonlinear resistor Rnlin is placed in parallel with the parametric capacitor in each spin.
The pumping circuit is only represented by an arrow over the capacitors for brevity.
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It should be noted that we inserted cubic resistors in parallel with the parametric capac-
itors to implement our particular choice of the Augmented Lagrange function, taken from
[118]. It is possible that there are other ways of constructing Augmented Lagrange functions
in the optimization literature. One would simply use the appropriate nonlinear resistive el-
ement in parallel with the parametric capacitor to implement those functions. For instance,
Xiao [96] used p-n diodes as the nonlinear resistive element in their circuit.

In the next chapter, we discuss a variety of coupled oscillator Ising solvers published in
the literature in the past decade and show that they all work by the same mechanism as the
coupled LC oscillator system.

5.6 Conclusion

The summary of this chapter is:

1. We presented a coupled nonlinear LC oscillator network circuit that functions as an
Ising solver. The spins are mapped onto parametrically pumped oscillators and the
Ising connections are implemented using parallel or antiparallel resistive connections
between the oscillators.

2. The slowly-varying amplitude equations of motion of the capacitor voltages in the cir-
cuit perform gradient descent on the power dissipation function. This power dissipation
is the same function discussed by Onsager in his work.

3. The network actually performs Lagrange multiplier optimization of the Ising problem.
The net gain of each oscillator plays the role of the Lagrange multiplier of that spin.

4. The signal circuit performs gradient descent of the Lagrange function in the spin vari-
ables while the pump circuit performs gradient ascent of the Lagrange function in the
gain/multiplier variables.

5. It is possible to implement more sophisticated procedures such as the ‘Augmented
Lagrange method of multipliers’ by introducing additional nonlinear circuit elements.
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Chapter 6

Other Physical Ising Solvers

In this chapter, we discuss some published coupled oscillator Ising solvers and show that
they all perform Lagrange multiplier optimization and work by the same mechanism as the
coupled LC oscillator system. We will also comment on a couple of published physics-based
solvers which are less obviously connected to Lagrange multipliers. Finally, we will present
a simple application of these solvers to perform linear regression in statistics.

6.1 Other Physical Ising Solvers

Essence of this section: In this section, we discuss a variety of physical Ising solvers
in the literature and show that almost all of them perform Lagrange multiplier optimiza-
tion. Moreover, there is an equivalence between the power dissipation and the Lagrange
function in many of them.

We now discuss some physical methods proposed in the literature and show how each
scheme implements the method of Lagrange multipliers. They all obtain good performance
on the Gset benchmark problem set [120], and many of them demonstrate better performance
than the heuristic algorithm, Breakout Local Search [121].

The available physical solvers in the literature, we entitle as follows: Optical Parametric
Oscillators, Coupled laser cavities using multicore fibers, Coupled Radio Oscillators on the
Unit Circle, Coupled polariton condensates.

Optical Parametric Oscillators

Overview

An early optical machine for solving the Ising problem was presented by Yamamoto et al.
[92] and [122]. Their system consists of several pulses of light circulating in an optical
fiber loop, with the a fixed amplitude in one phase representing an Ising spin and the same
fixed amplitude in the opposite phase representing the other spin. The pulses are pumped
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through parametric gain which serves a dual purpose. (1) When the gain overcomes the
intrinsic losses of the fiber, the optical pulse builds up. (2) It restricts the oscillatory phase
to the Real Axis of the complex plane, that is, only the cosine phases survive.

The Ising coupling J is achieved in this system by specified interactions between the
optical pulses. In Yamamoto’s approach, one pulse i is first plucked out by an optical gate,
amplitude modulated by the proper connection weight Jij specified in the Ising Hamiltonian,
and then reinjected and superposed onto the other optical pulse j, producing constructive
or destructive interference, representing ferromagnetic or anti-ferromagnetic coupling. This
‘plucking out’ and reinjection happens in every round-trip of the pulses around the fiber
loop.

Our findings from the previous chapter hold here. The pulse amplitudes evolve according
to the Principle of Minimum Power Dissipation. Each Lagrange Multiplier turns out to be
equal to the gain or loss associated with the corresponding optical pulse.

Equations of motion

Yamamoto et al. [93] analyze their parametric oscillator system using slowly varying cou-
pled wave equations for the circulating optical pulses. Owing to the nature of parametric
amplification, the quadrature sine components si of the electric fields die out rapidly. The
equation for the slowly varying amplitude ci of the cosine component of the i-th optical pulse
is as follows:

dci
dt

=
(−αi + γi)

2
ci +

∑
j

Jijcj (6.1)

where the weights, Jij, are the magnetic cross-couplings, γi represents the parametric gain
supplied to the i-th pulse, and αi is the corresponding loss. For clarity of discussion, we
dropped the cubic terms in (6.1) that Yamamoto et al. originally had. A discussion of these
terms is given at the end of this subsection. A quick way to derive the above continuous-time
equation from the iterative dynamics of this system is as follows. The amplitude of the i-th
pulse at the beginning of the k-th iteration or round-trip is ci[k]. In the course of the k-th
iteration, this pulse loses amplitude to fiber losses α, gains amplitude due to the parametric
gain γ, and is enhanced by the injection of modulated amplitude from the other pulses. If
the length of the fiber loop is L, the amplitude of the i-th pulse at the beginning of the
k + 1-th iteration is:

ci[k + 1] = e−(α−γ)L/2ci[k] + β
∑
j

Jijcj[k] (6.2)

where β is some small constant. If T is the round-trip time and αL � 1 and γL � 1, we
have:

ci[k + 1]− ci[k]

T
=

(−α + γ)

2

L

T
ci[k] +

β

T

∑
j

Jijcj[k] (6.3)

which reproduces Eq. (6.1).
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Power dissipation

The average power dissipation in the system is computed by dividing the average energy
change of the system in one round-trip by the round-trip time T :

〈P [k]〉 = −ε0V
T

∑
i

(
c2
i [k + 1]− c2

i [k]
)

(6.4)

= ε0V

(
−2

β

T

∑
i,j

Jijci[k]cj[k] +
∑
i

αi
L

T
c2
i [k]−

∑
i

γi
L

T
c2
i [k]

)
(6.5)

where V is the volume of each optical pulse and ε0 is the permittivity of free space. Clearly,
the partial derivative of the power dissipation with respect to the amplitude ci[k] is propor-
tional to the right-hand side of Eq. (6.1). Therefore, the dynamics of the system perform
gradient descent on the power dissipation function. Each mode, represented by the sub-
scripts in ci, must adjust to a particular gain γi and the other amplitudes such that the total
power dissipation is minimized.

Lagrange function

The Lagrange function on which gradient descent is being performed is:

L(c,γ) = −
∑
i,j

Jijcicj +
∑
i

(
γi − αi

2

)(
1− c2

i

)
(6.6)

The power dissipation function (6.5) and the Lagrange function (6.6) differ only in the (+1)
in the final term. (6.6) is also identical in form to the Lagrange function for the LC oscillator
solver. As before, the net gains play the role of Lagrange Multipliers. Minimization of the
Lagrange function (6.6) provides the final steady state of the system dynamics. In fact, the
right-hand side of (6.1) is the gradient of (6.6), demonstrating that the dynamical system
performs gradient descent on the Lagrange function.

Cubic terms

The full equation derived in [93] is of the form:

dci
dt

=
(−αi + γi)

2
ci − ζc3

i +
∑
j

Jijcj (6.7)

for some nonlinear coefficient ζ. This equation looks like it was obtained through the use of
a nonlinear resistor in order to implement the Augmented Lagrange method. However, [123]
explains that it was obtained from the plain signal-pump system but with very fast pump
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depletion. Recalling the signal-pump equations from the previous chapter:

Ȧs =
Is

2 (C0 + C1)
− As

2R1 (C0 + C1)
+
CNω0AsAp
2 (C0 + C1)

(6.8)

Ȧp =
Ip

2 (C0 + C2)
− Ap

2R2 (C0 + C2)
− CNω0A

2
s

2 (C0 + C2)
(6.9)

we see that if the pump dynamics is very fast, the latter rate will almost always be close to 0,
giving Ap ∝ Ip−CNω0A

2
s. When this quadratic expression for Ap is substituted back into the

signal equation, we get a A3
s term. Therefore, a cubic ‘Augmented Lagrange’-like saturation is

obtained at the price of losing the critical pump evolution equation which performed ascent
on the Lagrange function in the λ directions. In our opinion, a more complete approach
would be to include a nonlinear resistor to implement the Augmented Lagrange cubic term,
and retain the important Lagrange function gradient ascent performed by the pump.

Coupled laser cavities using multicore fibers

Overview

The Ising solver designed by Babaeian et al., [97], makes use of coupled laser modes in a
multicore optical fiber. Polarized light in each core of the optical fiber corresponds to a spin
in the Ising problem. The number of cores is equal to the number of magnets in the given
Ising instance. The right-hand and left-hand circular polarization of the laser light in each
core represent the two polarities (up and down) of the corresponding magnet. The mutual
coherence of the various cores is maintained by injecting seed light from a master laser.

The coupling between the fiber cores is achieved through amplitude mixing of the laser
modes by Spatial Light Modulators at one end of the multicore fiber [97]. These Spatial
Light Modulators couple light amplitude from the i-th core to the j-th core according to
the prescribed connection weight Jij. This coupling scheme is very similar to the one in the
previous subsection.

Equations and comparison with Lagrange multipliers

As in prior physical examples, the dynamics can be expressed using slowly-varying equa-
tions for the polarization modes of the i-th core, EiL and EiR, where the two electric field
amplitudes are in-phase temporally, are positive real, but have different polarization. They
are,

d

dt
EiL =− αi

2
EiL +

γi
2
EiL +

1

2

∑
j

Jij (EjR − EjL)

d

dt
EiR =− αi

2
EiR +

γi
2
EiR −

1

2

∑
j

Jij (EjR − EjL)
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where αi is the decay rate in the i-th core, and γi is the gain in the i-th core. The third
term on the right-hand side represents the coupling between the j-th and i-th cores that is
provided by the Spatial Light Modulators. They next define the degree of polarization as
µi ≡ EiL − EiR. Subtracting the two equations above, we obtain the following evolution
equation for µi:

d

dt
µi = −αi

2
µi +

γi
2
µi +

∑
j

Jijµj (6.10)

The power dissipation is proportional to |EiL|2 + |EiR|2. But this can also be written
|EiL − EiR|2 + |EiL + EiR|2 = |µi|2 + |EiL + EiR|2. |EiL + EiR|2 can be regarded
as relatively constant as energy switches back and forth between right and left circular po-
larization. Then, power dissipation h(µ) would be most influenced by quadratic terms in
µ:

h(µ,γ) ∝ −2
∑
i,j

Jijµiµj +
∑
i

αiµ
2
i −

∑
i

γiµ
2
i

The right-hand side of the dynamics is again the partial derivative of the power dissipation
function with respect to µi. Thus, the system performs a gradient descent minimization
of the power dissipation, subject to the optical gain γi. Further, as before, we note that
the dynamics equivalently perform gradient descent on the Lagrange function of the Ising
problem defined by the Jij couplings:

L(µ,γ) = −
∑
i,j

Jijµiµj +
∑
i

(
γi − αi

2

)(
1− µ2

i

)
(6.11)

The net gains γi − αi play the role of Lagrange multipliers.

Coupled Electrical Oscillators on the Unit Circle

We label this section ‘Oscillators on the Unit Circle’ to point out that the amplitudes of
all the oscillators in this system are always nearly constant. The entire dynamics is in the
phases. Hence, in quadrature space, the voltages move about on the unit circle. This is in
contrast to Xiao’s LC oscillator system from the previous chapter, where the phases of the
oscillations collapsed early on to the cosine axis or the real axis. The dynamics was entirely
in the amplitudes, and for that reason, Xiao’s system may also be called ‘Oscillators on the
Real Axis’.

Overview

Networks of nonlinear, amplitude-stable electrical oscillators were designed by Roychowd-
hury et al. [98] to represent Ising systems. Their system consisted of dissipative coupled LC
oscillators with clamped amplitude and the phase φi = 0 or π revealing the preferred mag-
netic dipole orientation µiz = ±1. It is noteworthy that Roychowdhury goes beyond Ising
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machines and constructs general digital logic gates using these amplitude-stable oscillators
in [124].

In their construction, Roychowdhury et al. [98] use nonlinear elements that behave like
phase-independent negative resistors at low voltage amplitudes but as saturating resistance at
high voltage amplitudes in order to keep the voltage amplitudes clamped at an intermediate
value. This produces amplitude-stable oscillators. In addition, Roychowdhury et al. [98]
provide a weak second harmonic pump and use a form of parametric amplification (referred
to as sub-harmonic injection locking in [98]) to obtain bistability with respect to phase.

With the amplitudes being essentially clamped, it is the phases, 0 or π, that provide
the magnetic dipole orientation µiz = ±1. One key difference between this system and
Yamamoto’s system is that the latter had fast phase dynamics and slow amplitude dynamics,
while Roychowdhury’s system has the reverse. In the end, both methods map the Ising states
to oscillations of a predetermined fixed amplitude but opposite phases.

Power dissipation

Roychowdhury et al. [98] derived the dynamics of their amplitude stable oscillator network
using perturbation concepts developed in [125]. While a circuit diagram is not explicitly
shown, [98] invokes the following dynamical equation for the phases of their electrical oscil-
lators:

dφi
dt

= − 1

Rc

∑
j

Jij sin (φi(t)− φj(t))− λi sin (2φi(t)) (6.12)

where Rc is a coupling resistance in their system, φi is the phase of the i-th oscillator, and the
λi are decay parameters that dictate how fast the phase angles settle towards their steady
state values. The λi is related to the strength of the second-harmonic pump signal injected
into the i-th oscillator.

(6.12) can be reproduced by iteratively minimizing the power dissipation in their system.
Power dissipation across a resistor Rc is (Vi−Vj)2/Rc where (Vi−Vj) is the voltage difference.
Since Vi and Vj are sinusoidal, the power dissipation P (φi, φj) consists of constant terms and
a cross-term of the form:

P (φi, φj) =
|V |2 cos (φi − φj)

Rc

Differentiating this with respect to φi leads to sine terms that resemble the first terms on
the right-hand side of Eq. (6.12). We believe differentiating the power dissipation between
the oscillators and their pumps will lead to the second term in Eq. (6.12).

Lagrange Multipliers

Magnetic dipole orientation parallel or anti-parallel is represented by whether φi−φj = 0 or
π respectively. If the pump phase is chosen appropriately, we get φi = 0 or π for all i. This
can be implemented as:

gi(φi) = (cos (2φi)− 1) = 0
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The Ising Lagrange function with constraints gi(φi) = 0 is proportional to:

L(φ,λ) =
1

Rc

∑
i,j

Jij cos (φi − φj) +
∑
i

λi (cos (2φi)− 1) (6.13)

where λi is the Lagrange Multiplier corresponding to the phase angle constraint, and Jij =
±1. The right-hand side of (6.12) is the gradient of (6.13), demonstrating that the dynamical
system performs gradient descent on the Lagrange function.

The Lagrange function above implies that the system optimizes the following merit func-
tion f subject to constraints gi:

f(φ) =
1

Rc

∑
i,j

Jij cos (φi − φj),

gi(φi) = (cos (2φi)− 1) = 0, for i = 1, 2, . . . , n.

Coupled polariton condensates

Overview

Kalinin and Berloff [99] proposed a system consisting of coupled polariton condensates to
minimize the XY Hamiltonian. The XY Hamiltonian is a 2 dimensional version of the Ising
Hamiltonian and is given by:

H(µ) =
∑
ij

Jijµi · µj

where the µi represents the magnetic moment vector of the i-th spin restricted to the spin-
space XY plane. This formulation of the XY problem in the 2D plane is in fact easy to
solve [126] because it can be recast as an semi-definite program (SDP), a type of very well-
understood convex program.

Kalinin et al. pump a grid of coupled semiconductor microcavities with laser beams and
observe the formation of strongly coupled exciton-photon states called polaritons. The laser
pump, like those used in normal lasers, provides phase-independent gain. For our purposes,
the polaritonic nomenclature is irrelevant. For us, these are simply coupled electromagnetic
cavities that operate by the principle of minimum power dissipation similar to the previous
cases. The complex electromagnetic amplitude in the i-th microcavity can be written Ei =
ci + jsi, where ci and si represent the cosine and sine quadrature components of Ei, and j is
the unit imaginary. ci is mapped to the X-component of the magnetic dipole vector, and si to
the Y-component. The electromagnetic microcavity system settles into a state of minimum
power dissipation as the laser pump and optical gain are ramped up to compensate for the
intrinsic cavity losses. The phase angles in the complex plane of the final electromagnetic
modes are then reported as the corresponding µ-magnetic moment angles in the XY plane.

Since the electromagnetic cavities experience phase-independent gain, this system does
not seek phase bistability. However, since we are actually searching for the magnetic dipole
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vector angles on the unit circle in the XY plane, an amplitude constraint is required to
remain on the unit circle, and it is indeed implemented.

Power dissipation and Lagrange function

Ref. [99] uses ‘Ginzburg-Landau’ equations to analyze their system resulting in equations
for the complex amplitudes Ψi of the polariton wavefunctions. But the Ψi are actually the
complex electric field amplitudes Ei of the i-th cavity. The electric field amplitudes satisfy
the slowly-varying-amplitude equation:

dEi
dt

=
(γi

2
− αi

2
− β|Ei|2

)
Ei − iU |Ei|2Ei −

∑
j

JijEj (6.14)

where γi is optical gain, αi is linear loss, β is nonlinear attenuation, U is nonlinear phase
shift, and Jij is a dissipative cross-coupling-term representing linear loss. We note that both
the amplitudes and phases of the electromagnetic modes are coupled to each other and evolve
on comparable timescales. This is in contrast to ref. [98] where the main dynamics were
embedded in phase—amplitude was fast and almost fixed—and to [96] where the dynamics
were embedded in amplitude—phase was fast and almost fixed.

We show now that the method of ref. [99] is essentially the method of Lagrange multipliers
with an added ‘rotation’. The power dissipation rate is:

h(E) =− d

dt

N∑
i=1

(
E∗i
2

+
Ei
2

)2

=
1

2

N∑
i=1

N∑
j=1,j 6=i

Jij
(
E∗iEj + EiE

∗
j

)
+

N∑
i=1

β|Ei|4 +
N∑
i=1

αi
2
|Ei|2 −

N∑
i=1

γi
2
|Ei|2.

The Lagrange function L(E,γ) for the saturation constraint, gi(Ei) = (1− |Ei|2) = 0, is:

L(E,γ) =
1

2

N∑
i=1

N∑
j=1,j 6=i

Jij
(
E∗iEj + EiE

∗
j

)
+

N∑
i=1

β|Ei|4 +
N∑
i=1

(
γi − αi

2

)(
1− |Ei|2

)
(6.15)

Consistently with the previous subsections, the net linear gains are again reinterpreted as
Lagrange Multipliers.

The steady state of the coupled polaritonic resonators scheme renders the power dis-
sipation/Lagrange function stationary with respect to perturbations in the electric field.
However, the dynamics does not go to that minimum via simple gradient descent as was the
case in the previous systems. All the previous systems were performing gradient descent in
time to reach the final steady-state, the steady-state which is characterized by the princi-
ple of minimum power dissipation. Dynamics (6.14), on the other hand, performs gradient
descent on the power dissipation function (or, equivalently, the Lagrange function) in con-
junction with a rotation about the origin, iU . This rotation term, iU , is not captured
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by the power dissipation or Lagrange multiplier interpretations. It could, however, be useful
in developing more sophisticated algorithms than the method of Lagrange multipliers and
we comment on this prospect in Section 6.2 where a system with a more general ‘rotation’
term is discussed. The β term in the above equation is simply the nonlinear Augmented
Lagrange term.

Evolution of Lagrange Multipliers

The papers of the previous subsections used simple heuristics like linear ramping to adjust
their gains (which we have shown to be Lagrange multipliers). However, Kalinin et al.
adjust their gains exactly according to the method of multipliers. We recall that the method
of multipliers finds the optimal x∗ and λ∗ by performing gradient descent of L in x and
gradient ascent of L in λ.

Kalinin et al. employ the following dynamical equation for the gains γi in their coupled
polariton system:

dγi
dt

= κ′
(
1− |Ei|2

)
(6.16)

where κ′ is some constant. This exactly matches the gradient ascent equation in the method
of multipliers for the λ variables.

We conclude this sub-section by splitting the Lagrange function into the effective merit
function f , and the constraint function gi. The extra ‘phase rotation’ U is not captured by
this interpretation.

f(E1, . . . , En) =
1

2

∑
i,j

Jij
(
E∗iEj + EiE

∗
j

)
,

gi(Ei) =
(
1− |Ei|2

)
= 0, for i = 1, 2, . . . , n

We do not show the β terms because they are simply the Augmented Lagrange penalty
terms.

General conclusions from coupled multi-oscillator array Ising
solvers

1. When subjected to input driving or gain, physical systems reach steady-states that
minimize the net power dissipation rate.

2. All these systems actually perform Lagrange Multiplier optimization with the net gain
γi − αi (or some other appropriate physical variable in each oscillator i) playing the
role of the Lagrange Multiplier for the i-th digital constraint.

3. Under the digital constraint, amplitudes ci = ±1 or phases φi = 0 or π, power dissipa-
tion minimization schemes are actually binary, similar to a flip-flop.
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4. In many of the studied cases, the system dynamics approached a power dissipation
minimum through gradient descent on the power dissipation function in the appropriate
variables xi. In one of the cases, the polariton condensate case, there was a rotation
superimposed on this gradient descent.

6.2 Other methods in the literature

We now look at two other methods in the literature that do not explicitly implement the
method of Lagrange Multipliers but nevertheless end up with dynamics that resemble it
to varying extents. Both these methods offer operation regimes where the dynamics is not
analogous to Lagrange multiplier optimization, and we believe it is an interesting avenue of
future work to study the capabilities of these regimes.

Iterative Analog Matrix Multipliers

Soljacic et al. [100] developed an iterative procedure consisting of repeated matrix multipli-
cation to solve the Ising problem. Their algorithm was implemented on a photonic circuit
that utilized on-chip optical matrix multiplication units composed of Mach-Zehnder inter-
ferometers that were first introduced for matrix algebra by Zeilinger et al. in [127]. Soljacic
et al. [100] showed that their algorithm optimized an effective merit function; we recast this
function in the form of a Lagrange function in Appendix E. In this subsection, we use our
insights from the previous sections to implement a simplified iterative Lagrange optimization
using their platform of optical matrix multipliers. Details of the specific implementation of
[100] can be found in Appendix E.

A block diagram of our iterative scheme is shown in Fig. 6.1. We found out after our work
was published [128] that a similar scheme was proposed earlier in [129]. Let the multiple
magnetic moment configuration of the Ising problem be represented as a vector of electric
field amplitudes, Ei, of the spatially-separated optical modes. Each mode field amplitude
represents the value of an Ising spin. In each iteration, the optical modes are fed into the
optical circuit which performs matrix multiplication, and the resulting output optical modes
are then fed back to the optical circuit input for the next iteration. Optical parametric gain
sustains the successive iterations and enforces phase collapse on the optical pulses. Let ci be
the cosine component of the electric field of the i-th pulse Ei.

We wish to design the matrix multiplication unit such that it has a power dissipation
function similar to the one found in Yamamoto et al.’s system:

h(c) ∝ −2
∑
i,j

Jijcicj +
∑
i

(αi − γi) c2
i

The Lagrange function, including the binary constraint c2
i = 1, is given by:

L(c,γ) = −
∑
i,j

Jijcicj +
∑
i

(
γi − αi

2

)(
1− c2

i

)
, (6.17)
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Matrix multiplier composed of 2X2 optical splitters and gain

Output of current iteration 
fed back as input for the next iteration

Figure 6.1: An optical circuit performing iterative multiplications converges on a solution of the
Ising problem. Optical pulses are fed as input from the left hand side at the beginning of each
iteration, pass through the matrix multiplication unit and are passed back from the outputs to the
inputs for the next iteration. Distributed optical gain sustains the iterations.

where the Jij is the dissipative loss associated with electric field interference between optical
modes in the Mach-Zehnder interferometers, and γi is the optical gain.

The iterative multiplicative procedure that evolves the electric fields toward the minimum
of the Lagrange function (6.17) is given by:

ci(t+ 1)− ci(t) = −κ∆t
∂

∂ci

(
−
∑
i,j

Jijcicj +
∑
i

(
γi − αi

2

)(
1− c2

i

))
,

where κ is a constant step size with the appropriate units and each iteration involves taking
steps in ci proportional to the partial derivatives ∂/∂ci of the Lagrange function. Simplifying
and sending all the terms involving time step t to one side, we get:

ci(t+ 1) =
∑
j

[(1 + κ∆t (γi − αi)) δij + 2κ∆tJij] cj(t), (6.18)

where δij is the Kronecker delta (1 only if i = j). The Mach-Zehnder interferometers should
be tuned to the matrix [(1 + κ∆t (γi − αi)) δij + 2κ∆tJij]. Thus, we have an iterative matrix
multiplier scheme that minimizes the Lagrange function of the Ising problem. In effect,
a lump of dissipative optical circuitry, compensated by optical gain, will, in a series of
iterations, settle into a solution of the Ising problem.
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The simple system above differs from that of Soljacic et al. [100] in that their method
has added noise and nonlinear thresholding in each iteration. A description of their original
approach is presented in Appendix E.

Leleu Mathematical Ising Solver

Leleu et al. [6] proposed a modified version of Yamamoto’s Ising machine [93] that sig-
nificantly resembles the Augmented Lagrange method while incorporating important new
features. To understand the similarities and differences between Leleu’s method and that
of Lagrange multipliers, we recall the Augmented Lagrange function for the Ising problem
from the previous chapter:

Lc(x,λ) = −
N∑
i=1

N∑
j=1

Jijxixj +
N∑
i=1

(
γi − αi

2

)(
1− x2

i

)
+
c

2

(
N∑
i=1

(
x2
i − 1

)2

)
(6.19)

In the above, xi are the optimization variables, Jij is the interaction matrix, γi is the gain
provided to the i-th variable, and αi is the loss experienced by the i-th variable. To find a
local optimum (x∗,γ∗) that satisfies the constraints, one performs gradient descent on the
Lagrange function in the x variables and gradient ascent in the γ variables. The equations
are:

ẋi(t) = 2κ

((
γi(t)− αi

2

)
xi(t) + cxi(t)− cx3

i (t) +
N∑
j=1

Jijxj(t)

)
(6.20)

γ̇i(t) =
κ′

2

(
1− x2

i (t)
)

(6.21)

On the other hand, Leleu et al. [6] propose the following system:

dxi
dt

= (γ − α)xi − ζx3
i + ei

∑
j

Jijxj, (6.22)

dei
dt

= β(1− x2
i )ei, (6.23)

where the xi are the optimization variables, α is the loss experienced by each variable, γ
is a common gain supplied to each variable, ζ is a nonlinear loss coefficient, β is a positive
parameter, and the ei are error coefficients that capture how far away each xi is from its
saturation amplitude. Leleu’s system achieves excellent performance on the Gset problem
set as demonstrated in [6]. In their analysis, Leleu et al. show that all the fixed points of
their system correspond to 1-flip local optima of the Ising problem, that is, flipping any one
spin in a fixed point solution of the system cannot lead to a lower Ising energy.

It is clear that there are significant similarities between Leleu’s system and the Lagrange
multiplier system. The optimization variables in both systems experience linear losses and
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gains and have interaction terms that capture the Ising interaction. Both systems have
auxiliary variables that are varied according to how far away each degree of freedom is from its
preferred saturation amplitude. However, the similarities end here. A major differentiation
in Leleu’s system is that ei multiplies the Ising interaction felt by the i-th variable resulting
in eiJij. The complementary coefficient is ejJij. Consequently, Leleu’s equations implement
asymmetric interactions eiJij 6= ejJij between vector components xi and xj. We obtain
some intuition about this system by splitting the asymmetric term eiJij into a symmetric
and anti-symmetric part. This follows from the fact that any matrix A can be written as the
sum of a symmetric matrix, (A + AT )/2, and an anti-symmetric matrix, (A − AT )/2. The
symmetric part leads to gradient descent dynamics similar to all the other systems in this
chapter. The anti-symmetric part causes a energy-conserving ‘rotary’ motion in the vector
space of xi.

It is possible that the secret of Leleu et al.’s improved performance lies in this anti-
symmetric part. The dynamical freedom associated with asymmetry might provide a fruitful
future research direction in optimization and deserves further study to ascertain its power.

6.3 Applications in Linear Algebra and Statistics

We have seen that minimum power dissipation machines serve as good Lagrange multiplier
solvers for the Ising problem and other NP-hard problems that reduce to the Ising prob-
lem. In this section, we provide a straightforward application of minimum power dissipation
solvers to the simple problem of linear regression in statistics. The problem of linear least
squares regression, linear curve fitting with a quadratic error function, resembles the Ising
problem. Since the error function to be minimized is quadratic anyway, the equivalence
between linear least squares and Ising becomes exact when one demands that the regression
weights be found in binary form to a certain number of bits. For this reason, the LC electrical
circuit we presented in the previous chapter can be applied directly to linear regression. The
circuit provides digital weights as the output but requires a series of binary resistance values,
that is, . . . , 2R0, R0, 0.5R0, . . . , to represent the input statistical observations/training data
set.

The goal of linear least squares regression is to fit a linear function to a given set of data
{(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)}. The xi s are input vectors of dimension d while
the yi are the observed outputs that we want our regression to capture. The linear function
that is being fit to the data set is of the form y(a) =

∑d
i=1 wiai where a is a feature vector

of length d and w is a vector of unknown weights. The vector w is calculated by minimizing
the sum of the squared errors it causes when used on the data set:

w∗ = arg min
w

n∑
i=1

[(
d∑
j=1

wjxij

)
− yi

]2

,

where xij is the j-th component of the vector xi. This functional form is identical to the
Ising Hamiltonian and we may construct an Ising circuit with Jij =

∑n
k=1 xkixkj with the
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weights w acting like the unknown magnetic moments. There is an effective magnetic field
in the problem, hi = −2

∑n
j=1 xjiyj. These local magnetic field terms hi can be implemented

in the LC Ising solver in a very straightforward fashion by introducing ‘artificial spins with
fixed phases and amplitudes’, which is just a verbose definition of AC voltage sources. A
simple circuit that solves this problem for d = 2 (each instance has two features) is provided
in Fig. 6.2. Since the input data set decides the J matrix of the equivalent Ising problem,
the input data are encoded in the values of the cross-coupling resistors. This circuit outputs
each of the two weights to 2-‘bit’ precision. When we expand weights wi in terms of ‘bits’
in our system, we use ±1 ‘bits’ and not the usual 0,1 bits.
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Figure 6.2: A two-bit, linear regression circuit, to find the best two curve-fitting weights wd, using
the Principle of Minimum Power Dissipation.

The oscillators on the left-hand side of the figure represent the 20 and 21 bits of the first
weight while the oscillators on the other side represent the second weight.

The cross-resistance R that one would need to represent the Jij that connects the units
bit oscillator of the i-th weight with the units bit oscillator of the j-th weight is calculated
as:

1

R ij
=

b1

R−1

+
b0

R0

+
b−1

R1

=
1

R0

|Jij| ,
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where Rm = 2mR0 is a binary hierarchy of resistances based on a reference resistor R0, and
bm are the bits of |Jij|: |Jij| = b1 × 21 + b0 × 20 + b−1 × 2−1. This expansion for Jij is
the traditional binary expansion, with the bi taking on values 0 or 1. The Jij are encoded
in the resistors. It is only the regression weights wi, which are mapped onto the oscillator
phase and amplitude, that are represented in a ±1 ‘bit’ representation. Representing Jij to
3-bit precision requires resistors that span a dynamic range 22 = 4. Further, the sign of
the coupling is allotted according to whether the resistors R are parallel-connected or cross-
connected. For connections between other bit places, say the 21 bit place oscillator of the
i-th weight with the 2−2 bit place oscillator of the j-th weight, one needs to take those bit
positions into account while computing the J , and hence the resistance value, that connects
them. For this example, the effective J that connects the 21 bit of the i-th weight with the
2−2 bit of the i-th weight will be Jij × 21 × 2−2. This effective J is then expressed in binary
form and the corresponding bits b1, b0, b−1 are used to construct the resistor between those
two oscillators. In practice, the resistors Rij would be externally programmed to the correct
binary values using MOSFET switches that will determine which resistors take part in the
coupling. If we have access to a resistor series that spans several orders of magnitude, we
can implement Jij to several bits of accuracy.

We have just solved the regression problem of the form Xw = y, where matrix X and
vector y were known measurements and the corresponding best weight vector w for fitting
was the unknown. We conclude by noting that this same procedure can be adopted to solve
linear systems of equations of the form Xw = y.

6.4 Conclusion

The summary of this chapter is:

1. We discussed a variety of physical Ising solvers in the literature and showed that
almost all of them performed Lagrange multiplier optimization. Moreover, there was
an equivalence between the power dissipation and the Lagrange function in many of
them.

2. Leleu’s solver shows that it is possible to go beyond the basic Lagrange multipliers
framework in intelligent ways to improve performance on benchmark problems.

3. We presented a straightforward application of the coupled LC oscillator Ising solver to
perform least squares linear regression. Future work in this direction will tackle the
challenge of extending these methods to the large-scale neural network optimizations
prevalent today.
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Chapter 7

Conclusion

7.1 Part 1: MOSFETs, subthreshold slope, tunnel

transistors

To achieve a very steep slope in tunnel transistor response, many requirements must be
fulfilled. Gate efficiency must be good. The concentration of defect energy levels, which are
responsible for producing parasitic leakage, must be very low. In addition, the energy levels
must themselves be very sharp. The usual assumption of Lorentzian spectral broadening
would not provide sufficient ON/OFF ratio to satisfy system needs.

A correct use of Fermi’s golden rule provides a mechanism for exponentially falling spec-
tral tails, as required for a steep response. This demands that a narrowband, heavy effective
mass wire should mediate between the tunneling energy levels and the external metallic
contacts. There are many additional requirements, including the need for the inter-dot tun-
neling matrix element |M | to be reduced such that the system does not enter strong coupling
but large enough to provide the maximum conductance. In summary, we have shown that
exponential spectral tails can arise naturally as part of lifetime broadening, from the initial
parabolic decay of population as provided by the more complete form of Fermi’s golden rule
given here. In turn, exponential spectral tails justify the concept of exponential steepness
or voltage swing, as had always been assumed in tFETs. We look forward to experimental
verification of our predictions of ultra-sharp switching in the near future by groups working
on high-purity, defect-free tunnel transistor systems.

We also presented a sequence of calculations of optical absorption in various model sys-
tems with the main aim of deriving the Urbach tail in the optical absorption of crystals.
While we weren’t able to achieve our main goal, we think it should be possible to decompose
the spectrum of the crystal into a superposition of 2-level system spectra in a clever fash-
ion. Then, the phonon-population-induced temperature dependent 2-level system spectrum
that we derived can be plugged into that expression and an Urbach tail could possibly be
obtained. We think this is a good direction for future work on this problem.
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7.2 Part 2: Physics-based optimization—Ising solvers

In Part 2, we made the observation that physics has optimization principles at its heart, and
that they can be exploited to design fast, low power, digital solvers that avoid the limits of
standard computational paradigms. By appropriate choice of parameter values, the physical
solvers we discussed can be used to perform Lagrange multiplier optimization orders-of-
magnitude faster and with lower power than conventional digital computers. This perfor-
mance advantage can be utilized for optimization in machine learning applications where
energy and time considerations are critical. Large chip-scale implementations of minimum
power dissipation Ising solvers have already been built by [103] and [98]. The important
challenge ahead is to extend the scope of these machines to cover the large optimization
problems involved in neural network training.

We add a note here about the power consumption of these machines. The act of com-
putation can be regarded as a search among many possible answers. Finally, the circuit
converges to a final correct configuration. Thus the initial conditions may include a huge
phase space volume=2n of possible solutions, ultimately transitioning into a final configura-
tion representing a small or modest-sized binary number. This type of computing implies
a substantial entropy reduction. This led to Landauer’s admonition that computation costs
kn log 2 of entropy decrease, and kTn log 2 of energy, for a final answer with n binary digits.
By the 2nd Law of Thermodynamics, such an entropy reduction must be accompanied by an
entropy increase elsewhere. In Landauer’s viewpoint, the energy and entropy limit of com-
puting was associated with the final acting of writing out the answer in n-bits, assuming the
rest of the computer was reversible. In practice, technology consumes ∼ 104× times more
than the Landauer limit, owing to the insensitivity of the transistors operating at ∼1Volt,
when they could be operating at ∼10mVolts.

In the continuously dissipative circuits we have described here, the total energy consumed
would be very large if the machine is never turned off. If we terminate the powering of
our optimizer systems after a desired final state answer is reached, the energy consumed
becomes finite. By operating at voltage <1Volt and by powering off after the desired answer
is achieved, our continuously dissipating Lagrange optimizers could actually be closer to the
Landauer limit than a conventional digital computer.

It is important to keep in mind that the physical systems we studied evolve by steepest
descent toward a local optimum, not a global optimum. Some of these systems make use of
special adjustments to improve the quality of their solutions. Undoubtedly, more improve-
ments might be possible, but none of the methods we discussed can always find the one
global optimum which would be NP-hard [130].

In conclusion, the systems we studied here evolve toward an extremum through Lagrange
function optimization where the Lagrange Multipliers are given by the gain or loss coefficients
that keep the machine running. Nature provides us with a series of physical Optimization
machines that are much faster and possibly more energy efficient than conventional comput-
ers. The next important challenge is to discover techniques to harness this power to solve
power-hungry optimization problems in artificial intelligence.
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Appendix A

Optical absorption in a damped
harmonic potential well—No rotating
wave approximation
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Figure A.1: The electron is in a harmonic potential well and is also coupled to a large crystal
which is at thermal equilibrium. The phonons in the crystal interact with the electron and broaden
its absorption spectrum. The phonons are described by the Hamiltonian Hs, the harmonic well by
H0, and their interaction by V .

In this appendix, we rederive the optical absorption of an electron in a phonon-damped
harmonic potential, but for a more complete Hamiltonian that takes into account processes
that were ignored in the main text.
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Hamiltonian

The first two terms, the harmonic oscillator’s own Hamiltonian, H0, and the reservoir term,
Hs, will be the same:

Ho = ~ω0

(
b†b+

1

2

)
(A.1)

Hs =
∑
i

~ωi
(
a†iai +

1

2

)
(A.2)

where b/b†, ai/a
†
i , ω0, and ωi have the same meanings as before. We are going to add

additional terms to the coupling term, V :

V =
∑
i

(
fibai + f ∗i b

†a†i + gib
†ai + g∗i ba

†
i

)
(A.3)

where the fi and gi are the coupling strengths between the electron and the i-th phonon. We
originally had only the gi terms, which physically correspond to the creation or destruction of
an electron excitation in response to a phonon destruction or creation respectively. To make
the analysis more complete, we have now added the fi terms which physically correspond to
the creation of an electron excitation in response to a phonon creation and the destruction
of an electron excitation in response to a phonon destruction. These terms are ignored
in the ‘Rotating Wave Approximation’, which we performed implicitly in the main text.
However, this approximation is accurate only if the phonon frequencies are close to the
electron frequency. If there is a big offset between the phonon and electron frequencies, as
is often the case, all these terms have to be taken into account.

Heisenberg equations

The Heisenberg equations for the operators are:

i~
d

dt
b(t) = ~ω0b(t) +

∑
i

giai(t) +
∑
i

f ∗i a
†
i (t) (A.4)

i~
d

dt
ai(t) = ~ωiai(t) + g∗i b(t) + f ∗i b

†(t) (A.5)

Introducing ‘slowly-varying’ operators:

b(t) = b̂(t)e−iω0t (A.6)

ai(t) = âi(t)e
−iωit (A.7)

The Heisenberg equations become:

i~
d

dt
b̂(t) =

∑
i

giâi(t)e
i(ω0−ωi)t +

∑
i

f ∗i âi
†(t)ei(ω0+ωi)t (A.8)

i~
d

dt
âi(t) = g∗i b̂(t)e

i(ωi−ω0)t + f ∗i b̂
†(t)ei(ωi+ω0)t (A.9)
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We integrate the âi(t) differential equations (and the â†i (t) equations too) from 0 to t and

substitute the result into the b̂(t) differential equation to get:

d

dt
b̂(t) =− i

~
∑
i

[
giaie

i(ω0−ωi)t + f ∗i a
†
ie
i(ω0+ωi)t

]
− 1

~2

∫ t

0

dτ

[∑
i

|gi|2ei(ω0−ωi)τ −
∑
i

|fi|2ei(ω0+ωi)τ

]
b̂(t− τ)

− e2iω0t
1

~2

∫ t

0

dτ

[∑
i

gif
∗
i e
−i(ω0+ωi)τ −

∑
i

gif
∗
i e
−i(ω0−ωi)τ

]
b̂†(t− τ)

(A.10)

The equation for b̂†(t) is obtained simply by conjugating the above. We condense the above
equation by introducing new functions:

F̂ (t) = − i
~
∑
i

[
giaie

i(ω0−ωi)t + f ∗i a
†
ie
i(ω0+ωi)t

]
(A.11)

κ(τ) =
1

~2

[∑
i

|gi|2ei(ω0−ωi)τ −
∑
i

|fi|2ei(ω0+ωi)τ

]
(A.12)

λ(τ) =
1

~2

[∑
i

gif
∗
i e
−i(ω0+ωi)τ −

∑
i

gif
∗
i e
−i(ω0−ωi)τ

]
(A.13)

Then, Eq. (A.10) reduces to:

d

dt
b̂(t) = −

∫ t

0

dτ κ(τ)b̂(t− τ)− e2iω0t

∫ t

0

dτ λ(τ)b̂†(t− τ) + F̂ (t) (A.14)

The equivalent equation for b̂†(t) is:

d

dt
b̂†(t) = −

∫ t

0

dτ κ∗(τ)b̂†(t− τ)− e−2iω0t

∫ t

0

dτ λ∗(τ)b̂(t− τ) + F̂ †(t) (A.15)

We have coupled equations with memory kernels but they are still solvable through the use
of Laplace transforms. Recall that we are denoting the Laplace transform of a function x(t)
by xL(s). Then, the solution to Eq. (A.14) is:

b̂(t) =

(∫ t

0

dτ h(t− τ)F̂ (τ)

)
−
(∫ t

0

dτ h(t− τ)e2iω0τ

∫ τ

0

dτ ′ λ(τ ′)b̂†(τ − τ ′)
)

+ h(t)b̂

(A.16)
while b̂†(t) is given by:

b̂†(t) =

(∫ t

0

dτ h∗(t− τ)F̂ †(τ)

)
−
(∫ t

0

dτ h∗(t− τ)e−2iω0τ

∫ τ

0

dτ ′ λ∗(τ ′)b̂(τ − τ ′)
)

+h∗(t)b̂†

(A.17)
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where h(t), like in the main chapter, is the function whose Laplace transform is given by:

hL(s) =
1

s+ κL(s)
(A.18)

κL(s) is the Laplace transform of κ(τ), and is given by:

κL(s) =
1

~2

∑
i

|gi|2

s− i (ω0 − ωi)
− 1

~2

∑
i

|fi|2

s− i (ω0 + ωi)
(A.19)

λL(s) is the Laplace transform of λ(τ), and is given by:

λL(s) =
1

~2

∑
i

gif
∗
i

s+ i (ω0 + ωi)
− 1

~2

∑
i

gif
∗
i

s+ i (ω0 − ωi)
(A.20)

The Laplace transform of h∗(t) is denoted by (h∗)L (s) and given by:

(h∗)L (s) =
(
hL(s∗)

)∗
=

1

s+ (κL(s∗))∗
(A.21)

Dipole commutator autocorrelation

The expression for the dipole commutator autocorrelation is the same as before:

〈[p(t), p(0)]〉 =
e2~

2meω0

(
〈[b(t), b]〉+

〈[
b(t), b†

]〉
+
〈[
b†(t), b

]〉
+
〈[
b†(t), b†

]〉)
(A.22)

The first commutator is:〈[
b̂(t), b

]〉
= −

(∫ t

0

dτ h(t− τ)e2iω0τ

∫ τ

0

dτ ′ λ(τ ′)
〈[
b̂†(τ − τ ′), b

]〉)
(A.23)

The second commutator is:〈[
b̂(t), b†

]〉
= h(t)−

(∫ t

0

dτ h(t− τ)e2iω0τ

∫ τ

0

dτ ′ λ(τ ′)
〈[
b̂†(τ − τ ′), b†

]〉)
(A.24)

The third commutator is:〈[
b̂†(t), b

]〉
= −h∗(t)−

(∫ t

0

dτ h∗(t− τ)e−2iω0τ

∫ τ

0

dτ ′ λ∗(τ ′)
〈[
b̂(τ − τ ′), b

]〉)
(A.25)

The fourth commutator is:〈[
b̂†(t), b†

]〉
= −

(∫ t

0

dτ h∗(t− τ)e−2iω0τ

∫ τ

0

dτ ′ λ∗(τ ′)
〈[
b̂(τ − τ ′), b†

]〉)
(A.26)
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Susceptibility χ(ω)

We take the Laplace transform on both sides of each of the four commutator equations above.

Denoting the Laplace transform of
〈[
b̂(t), b

]〉
by B̂B(s), that of

〈[
b̂(t), b†

]〉
by B̂B†(s), and

so on, we have:

B̂B(s) = −hL(s)λL(s− 2iω0)B̂†B(s− 2iω0) (A.27)

B̂B†(s) = hL(s)− hL(s)λL(s− 2iω0)B̂†B†(s− 2iω0) (A.28)

B̂†B(s) = − (h∗)L (s)− (h∗)L (s) (λ∗)L (s+ 2iω0)B̂B(s+ 2iω0) (A.29)

B̂†B†(s) = − (h∗)L (s) (λ∗)L (s+ 2iω0)B̂B†(s+ 2iω0) (A.30)

Solving these equations and denoting the Laplace transform of 〈[b(t), b]〉 by BB(s), that of〈[
b(t), b†

]〉
by BB†(s), and so on, we have:

BB(s) =
hL(s+ iω0)λL(s− iω0)

(
hL(s∗ + iω0)

)∗
1− (hL(s∗ + iω0))∗ (λL(s∗ − iω0))∗ hL(s+ iω0)λL(s− iω0)

(A.31)

B†B(s) =
−
(
hL(s∗ + iω0)

)∗
1− (hL(s∗ + iω0))∗ (λL(s∗ − iω0))∗ hL(s+ iω0)λL(s− iω0)

(A.32)

BB†(s) =
hL(s+ iω0)

1− hL(s+ iω0)λL(s− iω0) (hL(s∗ + iω0))∗ (λL(s∗ − iω0))∗
(A.33)

B†B†(s) =
− (h∗)L (s− iω0)

(
λL(s∗ − iω0)

)∗
hL(s+ iω0)

1− hL(s+ iω0)λL(s− iω0) (hL(s∗ + iω0))∗ (λL(s∗ − iω0))∗
(A.34)

The susceptibility is then:

χ(ω) =
i

~
e2~

2meω0

∫ ∞
0

〈[p(t), p(0)]〉 e−iωτdτ (A.35)

=
i

~
e2~

2meω0

lim
η→0

(
BB(iω + η) +B†B(iω + η) +BB†(iω + η) +B†B†(iω + η)

)
(A.36)

=
i

~
e2~

2meω0

(
2 (Γλ(ω) + i∆λ(ω))− i (2ω0 + ∆(ω) + ∆(−ω))− Γ(ω) + Γ(−ω)

[i (ω − ω0 −∆(−ω)) + Γ(−ω)] [i (ω + ω0 + ∆(ω)) + Γ(ω)] + (Γλ(ω) + i∆λ(ω))2

)
(A.37)
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where we have defined:

Γ(ω) =
π

~2

(∑
i

|gi|2δ (ω + ωi)−
∑
i

|fi|2δ (ω − ωi)

)
(A.38)

∆(ω) =
1

~2

(∑
i

|fi|2

ω − ωi
−
∑
i

|gi|2

ω + ωi

)
(A.39)

Γλ(ω) =
1

~2

∑
i

gif
∗
i π [δ (ω + ωi)− δ (ω − ωi)] (A.40)

∆λ(ω) =
i

~2

∑
i

gif
∗
i

2ωi
ω2 − ω2

i

(A.41)

We do not explicitly extract the imaginary part, χ′′(ω), from the above formula due to the
tedium involved, and the fact that it doesn’t add physically significant information to our
understanding.

Discussion

Unfortunately, Eq. (A.37) is still completely independent of temperature. It seems like
simple linear dynamics of the physical operators is insufficient to introduce temperature
dependence in the absorption lineshape.
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Appendix B

Motional Narrowing

Let us consider the setting of Nuclear Magnetic Resonance (NMR). A nuclear spin is placed
in a certain medium that is entirely immersed in an external magnetic field. The magnetic
field causes Zeeman splitting of the nucleus’s energy levels and one can observe transitions
between the two different spin states of the nucleus via absorption of light. If the nucleus
and its environment are stationary and the magnetic field is time-invariant, the absorption
takes place at a fixed frequency. However, if the nucleus randomly jumps around spatially,
it could experience different values of local magnetic field through the course of its journey
due to inhomogeneities in the applied magnetic field or inhomogeneities in the nucleus’s
environment. That is, the energy level splitting could vary with time, leading to a ‘jumping’
of the absorption frequency of the nucleus.

In this appendix, we consider a system whose absorption (or dipole oscillation) frequency
jumps randomly, due to external disturbances, within a Gaussian distribution G(ω) of fre-
quencies generated by its inhomogeneous surroundings. If the frequency jumps around slowly
compared to the spread of frequencies in G(ω), the absorption spectrum of the system es-
sentially matches the Gaussian distribution G(ω). If, on the other hand, the frequency
jumps are very fast compared to the width of G(ω), one obtains an absorption spectrum
that is surprisingly much narrower than the external distribution of frequencies G(ω). This
phenomenon, called ‘Motional Narrowing’, was discovered by Bloembergen and was later
extensively studied by researchers. Kubo [90] studied a particular 2-parameter statistical
model of this problem and derived absorption lineshapes. We look at this model and point
out that it does not yield exponential tails in frequency for any setting of parameter values.
We present here the calculation in Andrei Tokmakoff’s MIT OpenCourseWare notes [131].

B.1 Jumping within a Gaussian distribution of

frequencies

The dipole moment at time t is given by p(t) = p(0)e−i
∫ t
0 dt1 ω(t1). The frequency ω(t1) is

jumping around randomly in time within a background Gaussian frequency distribution that
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has variance ∆2. Let the average time interval at which jumps occur be τc. We will assume
for simplicity that the Gaussian is centered about ω = 0.

!

" = 1 " = 2" = 3 " = 4

!( !)!* !+

Figure B.1: The frequency of the absorption is jumping around randomly as time passes within
a Gaussian distribution of frequencies. At t=1, it is at ω1, at t = 2 at ω2, and so on.

Now, it turns out that the above ‘jump’ dynamics of the frequency can be described using
a stochastic Langevin equation:

d

dt
ω(t) = − 1

τc
ω(t) + n(t) (B.1)

where τc is the jumping time constant and n(t) is a Gaussian white-noise process with
strength σ2, that is, 〈n(t1)n(t2)〉 = σ2δ(t1 − t2). We will now relate σ2 to ∆ and τc. From
the above, we have:

ω(t) = e−t/τc
∫ t

−∞
dτ1 e

τ1/τcn(τ1) (B.2)

which further yields, for t2 > t1:

〈ω(t1)ω(t2)〉 = e−(t2−t1)/τc
σ2

2/τc
(B.3)

Since we know that the variance of ω’s distribution is ∆2, we have:

∆2 =
σ2

2/τc
(B.4)

Now that we have exactly captured our jumping process using the Langevin equation with
the appropriate parameters, we compute the dipole autocorrelation:

〈p(0)p(t)〉 = p(0)2
〈
e−i

∫ t
0 dt1 ω(t1)

〉
(B.5)
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The average on the right is the characteristic function of the Gaussian random variable∫ t
0
dt1 ω(t1). For Gaussian random variables, one can rewrite the characteristic function

using the two-term cumulant expansion [131]:〈
e−i

∫ t
0 dt1 ω(t1)

〉
= e−i

∫ t
0 dt1 〈ω(t1)〉e−

1
2

∫ t
0 dτ

′ ∫ t
0 dτ

′′〈ω(τ ′)ω(τ ′′)〉 (B.6)

Since we have assumed that the distribution of ω is centered around ω = 0, the first term in
the product on the right is just 1. The right-side simplifies to:〈

e−i
∫ t
0 dt1 ω(t1)

〉
= e−

1
2

∫ t
0 dτ

′ ∫ t
0 dτ

′′〈ω(τ ′)ω(τ ′′)〉 = e−
∫ t
0 dτ (t−τ)〈ω(τ)ω(0)〉 (B.7)

Plugging in our expression for the autocorrelation of ω(t), we have [131]:

〈p(0)p(t)〉 = p(0)2 exp

(
−∆2τ 2

c

(
e−t/τc +

t

τc
− 1

))
(B.8)

The absorption spectrum is the Fourier transform of the dipole autocorrelation. The auto-
correlation is simplified in the two limits ∆ � 1/τc and ∆ � 1/τc to obtain the standard
background Gaussian lineshape and the motionally narrowed Lorentzian lineshape respec-
tively.

B.2 Impossibility of getting asymptotically

exponential lineshapes

If we Taylor expand the exponent of e on the right-hand side, we see something interesting.
The constant and linear terms of e−t/τc get canceled by the other two terms, but the other
Taylor terms remain. In particular, the odd powers of t, 3 and above, all survive.

We recall now the discussion of Chapter 2, Section 6. The absorption spectrum is the
Fourier transform of the dipole autocorrelation. Since the dipole autocorrelation has odd
powers of t in it, it has discontinuities in its odd derivatives. Its Fourier transform will
therefore have a heavy, reciprocal polynomial tail in ω for any choices of the Gaussian width
∆ and the jump rate 1/τc.
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Appendix C

Minimum Power Dissipation

In this appendix, we will show the connection between minimum power dissipation and the
Kirchoff circuit laws through the example of a simple linear circuit. The connections we
discuss should be true for arbitrary linear circuits in steady-state though we will not prove
them at that level of generality. In the final section of this appendix, we will also comment
on the validity of minimum power dissipation for nonlinear systems.

C.1 Minimum power dissipation implies circuit laws

It makes sense to talk about the principle of minimum power dissipation in a circuit only if
it is being driven. In an undriven circuit, the configuration of currents that minimizes the
power dissipation is the all-zero current configuration. Therefore, we get meaningful results
from the application of minimum power dissipation only if there are constraints associated
with the minimization. We show next that if one minimizes the power dissipation subject
to the constraint that the Kirchoff current law is satisfied, the resulting circuit steady-state
configuration satisfies the Kirchoff voltage law. Conversely, one can also recover the Kirchoff
current law by minimizing the power dissipation subject to the constraint that the Kirchoff
voltage law is satisfied.

Minimization of power dissipation subject to the current law
constraint yields the voltage law

Consider the circuit shown in Fig. C.1. There is a current source I0 that is driving the two
parallel RL branches, with the current in the left branch being I1 and the current in the
other branch being I2. The power dissipation in the circuit is:

P (I1, I2) = I2
1R1 + I2

2R2 (C.1)

The steady state of the circuit may be found by minimizing the power dissipation function
with respect to I1 and I2 subject to the constraint that I1 and I2 respect the Kirchoff current
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law in steady state. Therefore, the constrained optimization problem we have is:

minimize I2
1R1 + I2

2R2

subject to (I1, I2) ∈ {(I1, I2) | I1 + I2 = I0}

We can solve this problem using Lagrange multipliers. The Lagrange function is:

L(I1, I2, λ) = I2
1R1 + I2

2R2 + λ (I1 + I2 − I0) (C.2)

Setting ∂
∂I1
L(I1, I2, λ) = 0, ∂

∂I2
L(I1, I2, λ) = 0, and ∂

∂λ
L(I1, I2, λ) = 0, we get:

∂

∂I1

L(I1, I2, λ) = 2I1R1 + λ = 0 (C.3)

∂

∂I2

L(I1, I2, λ) = 2I2R2 + λ = 0 (C.4)

∂

∂λ
L(I1, I2, λ) = I1 + I2 − I0 = 0 (C.5)

The first two equations give us I1R1 = I2R2 which is the correct Kirchoff voltage law for the
two parallel branches in steady state.
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Figure C.1: Current source driving a parallel RL circuit. The Kirchoff current law and the
principle of minimum power dissipation together imply the Kirchoff voltage law in steady state.

Minimization of power dissipation subject to the voltage law
constraint yields the current law

Now, we consider the converse problem of deriving the current law by assuming the voltage
law and minimum power dissipation. The circuit for this case is shown in Fig. C.2. There is
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a voltage source V0 that is driving the two parallel RL branches, with the current in the left
branch being I1 and the current in the other branch being I2. Rs is the source resistance.
The power dissipation in the circuit is:

P (I0, I1, I2) = I2
1R1 + I2

2R2 + I2
0Rs (C.6)
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Figure C.2: Voltage source driving a parallel RL circuit. The Kirchoff voltage law and the
principle of minimum power dissipation together imply the Kirchoff current law in steady state.

The steady state of the circuit may be found by minimizing the power dissipation function
with respect to I1 and I2 subject to the constraint that I0, I1, and I2 respect the Kirchoff
voltage law in steady state. Therefore, the constrained optimization problem we have is:

minimize I2
1R1 + I2

2R2 + I2
0Rs

subject to (I0, I1, I2) ∈ {(I0, I1, I2) | V0 − I0Rs = I1R1, V0 − I0Rs = I2R2}

We again solve this problem using Lagrange multipliers. The Lagrange function is:

L(I0, I1, I2, λ1, λ2) = I2
1R1 + I2

2R2 + I2
0Rs + λ1 (V0 − I0Rs − I1R1) + λ2 (V0 − I0Rs − I2R2)

(C.7)
Setting all the partial derivatives to zero, we get:

∂

∂I0

L(I0, I1, I2, λ1, λ2) = 2I0Rs − λ1Rs − λ2Rs = 0 (C.8)

∂

∂I1

L(I0, I1, I2, λ1, λ2) = 2I1R1 − λ1R1 = 0 (C.9)

∂

∂I2

L(I0, I1, I2, λ1, λ2) = 2I2R2 − λ2R2 = 0 (C.10)

∂

∂λ1

L(I0, I1, I2, λ1, λ2) = V0 − I0Rs − I1R1 = 0 (C.11)
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∂

∂λ2

L(I0, I1, I2, λ1, λ2) = V0 − I0Rs − I2R2 = 0 (C.12)

The first three equations give us I0 = I1 + I2 which is the correct Kirchoff current law for
the two parallel branches.

C.2 Onsager’s dissipation and the standard power

dissipation

In Section 5.2 in the main text, we saw that Onsager recast the equations of linear systems
in steady state as a minimization principle:

V = RJ ⇐⇒ ∇J
(
JTRJ − 2V TJ

)
=∇JH(J) = 0 (C.13)

The dissipation function H(J), which we will call Onsager’s dissipation in this section, is a
bit strange because it is the sum of the power dissipated in the resistors and the negative
of twice the power injected by the voltage sources. We will now discuss how Onsager’s
dissipation arises from the standard dissipation function P (J).

We again consider the circuit in Fig. C.2. This time, let the inductors in the two branches
have different values, L1 in the left branch and L2 in the right. The instantaneous Kirchoff
current and voltage laws are:

d

dt
I1 =

1

L1

(V0 − I1Rs − I2Rs − I1R1) (C.14)

d

dt
I2 =

1

L2

(V0 − I1Rs − I2Rs − I2R2) (C.15)

It is clear that the expressions in the parentheses on the right-hand sides of the two equations
above are proportional to the partial derivatives with respect to I1 and I2 of the following
Onsager dissipation function:

H(I1, I2) = (I1 + I2)2Rs + I2
1R1 + I2

2R2 − 2V0 (I1 + I2) (C.16)

At steady state, the equations of motion settle down at a minimum of H(I1, I2). The true
power dissipation function, on the other hand, is:

P (I1, I2) = (I1 + I2)2Rs + I2
1R1 + I2

2R2 (C.17)

How are the two related? To understand that, we will have to recall the concept of strong
duality from the main text.
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Lagrange duality

Let us say we have an optimization problem given by:

minimize f(x)

subject to gi(x) = 0, i = 1, . . . , p.

Let the optimal value of this problem be Z. The Lagrange function is:

L(x,λ) = f(x) +

p∑
i=1

λigi(x), (C.18)

The optimization problem is said to be strongly dual if:

Z = min
x

(
max
λ

L(x,λ)
)

= max
λ

(
min
x
L(x,λ)

)
(C.19)

We will define the dual function D(λ) as the function in the parenthesis in the right-most
expression of the above equation:

D(λ) = min
x
L(x,λ) (C.20)

Onsager’s dissipation is the negative of the dual function of the
standard power dissipation

Let us consider the following minimization problem that we encountered in the previous
section:

minimize I2
1R1 + I2

2R2 + I2
0Rs

subject to (I0, I1, I2) ∈ {(I0, I1, I2) | V0 − I0Rs = I1R1, V0 − I0Rs = I2R2}

Next, we set I0 = I1 + I2 in it:

minimize I2
1R1 + I2

2R2 + (I1 + I2)2Rs (C.21)

subject to (I1, I2) ∈ {(I1, I2) | V0 − (I1 + I2)Rs = I1R1, V0 − (I1 + I2)Rs = I2R2}
(C.22)

The constraint set trivially contains only one point (I1, I2) because we incorporated both
the current law and the voltage law into it. Nevertheless, it is a strongly dual problem so we
will go ahead and compute its dual function D(λ1, λ2). The Lagrange function is:

L(I1, I2, λ1, λ2) =I2
1R1 + I2

2R2 + (I1 + I2)2Rs + λ1 (V0 − (I1 + I2)Rs − I1R1)

+ λ2 (V0 − (I1 + I2)Rs − I2R2)
(C.23)
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The Lagrange dual function D(λ1, λ2) is defined as:

D(λ1, λ2) = min
I1,I2

L(I1, I2, λ1, λ2) (C.24)

To find the I1, I2 that minimize L, we set the partial derivatives to 0:

∂

∂I1

L(I1, I2, λ1, λ2) = 2I1R1 − λ1R1 + 2 (I1 + I2)Rs − (λ1 + λ2)Rs = 0 (C.25)

∂

∂I2

L(I1, I2, λ1, λ2) = 2I2R2 − λ2R2 + 2 (I1 + I2)Rs − (λ1 + λ2)Rs = 0 (C.26)

From the above, we get I1 = 1
2
λ1 and I2 = 1

2
λ2, and the dual function works out to:

D(λ1, λ2) = (λ1 + λ2)V0 −
(λ1 + λ2)2

4
Rs −

λ2
1

4
R1 −

λ2
2

4
R2 (C.27)

By duality, the power dissipation at the steady state, which is obtained by solving the original
minimization problem Eqs. C.21 and C.22, can be obtained instead by maximizing Eq. C.27
over all λ1, λ2. The current configuration I1, I2 at steady state is obtained by taking the
optimal λ∗1, λ

∗
2 and multiplying them by 2. Instead of performing the 2-step procedure of

maximizing D(λ1, λ2) and multiplying the optimal λ∗1, λ
∗
2 by 2, one could directly maximize

the following function of I1, I2:

D′(I1, I2) = 2 (I1 + I2)V0 − (I1 + I2)2Rs − I2
1R1 − I2

2R2 (C.28)

Maximizing the above function is equivalent to minimizing its negative:

−D′(I1, I2) = (I1 + I2)2Rs + I2
1R1 + I2

2R2 − 2 (I1 + I2)V0 = H(I1, I2) (C.29)

This function is exactly the same as Onsager’s dissipation function!

C.3 Minimum power dissipation in nonlinear circuits

The principle of minimum power dissipation, in its native form, seems to invalid in general
nonlinear circuits. We study a simple nonlinear circuit in this section to understand this
point. It is possible that a more generalized version of the principle of minimum power
dissipation holds in nonlinear systems but we are not currently aware of such an extension.

Consider the circuit in Fig. C.3. The resistor R2 in the right branch is nonlinear and is
given by R2 = Rl + I2

2Rnl. Let us assume the current law and try to obtain the steady state
voltage law by minimizing the power dissipation. The constrained optimization problem we
have is:

minimize I2
1R1 + I2

2Rl + I4
2Rnl

subject to (I1, I2) ∈ {(I1, I2) | I1 + I2 = I0}
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The Lagrange function is:

L(I1, I2, λ) = I2
1R1 + I2

2Rl + I4
2Rnl + λ (I1 + I2 − I0) (C.30)

Setting the partial derivatives to 0, we get:

∂

∂I1

L(I1, I2, λ) = 2I1R1 + λ = 0 (C.31)

∂

∂I2

L(I1, I2, λ) = 2I2Rl + 4I3
2Rnl + λ = 0 (C.32)

∂

∂λ
L(I1, I2, λ) = I1 + I2 − I0 = 0 (C.33)

The first two equations give us I1R1 = I2 (Rl + 2I2
2Rnl) which is not the correct steady state

Kirchoff voltage law for the two parallel branches. The correct voltage law is
I1R1 = I2 (Rl + I2

2Rnl).

!" !# = !% + '##!(%
) )

'#

'*

'"
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Figure C.3: Current source driving a parallel RL circuit with a nonlinear resistance in one branch.
The Kirchoff current law and the principle of minimum power dissipation together do not yield the
steady state Kirchoff voltage law.
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Appendix D

Equations of motion derivation

In this appendix, we fill in the missing details of the derivations of the equations of motions
for the coupled LC oscillator system. The first section deals with the equations for the main
coupled oscillator system (‘signal circuit’) while the second section derives the interaction
between each LC oscillator and its associated pump circuit.

D.1 Signal circuit

ferromagnetic, J12 = +1, the circuit optimizes !"# µ"µ#

anti-ferromagnetic, J12 = –1, the circuit optimizes !"#µ"µ#

V1(t) V2(t)spin 1 spin 2

Rc

Rc

$%" $%#

V1(t) V2(t)
spin 1

spin 2
noise

Rc

Rc

&'" &'#

&"#(&)" &)#
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&#""

$%" $%#

&'" &'#

&"#(&)" &)#

&"#"

&#"(

&#""

Figure D.1: Coupled LC oscillator circuit for two coupled magnets. The oscillation of the LC
oscillators represents the magnetic moments, while the parallel or antiparallel cross-connections
represent ferromagnetic Jij = 1 or antiferromagnetic Jij = −1 coupling, respectively. The nonlinear
capacitors are pumped by V (2ω0) at frequency 2ω0, providing parametric gain at ω0.
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The circuit equations we had compiled in the main text are reproduced here:

ici = f(vi, v̇i), for all i ∈ {1, 2, . . . , N} (D.1)

vi = −Li̇li, for all i ∈ {1, 2, . . . , N} (D.2)∑
j

iij0 = ili − ici, for all i ∈ {1, 2, . . . , N} (D.3)∑
j

iij0 +
∑
j

iij1 = 0, for all i ∈ {1, 2, . . . , N} (D.4)

vb1 = 0 (D.5)

iijk = k

[(
vbi − vbj

R

)(
1 + Jij

2

)
+

(
vbi − vbj − vj

R

)(
1− Jij

2

)]
+ (1− k)

[(
vbi + vi − vbj − vj

R

)(
1 + Jij

2

)
+

(
vbi + vi − vbj

R

)(
1− Jij

2

)]
,

for all i ∈ {1, 2, . . . , N}, for all j ∈ {1, 2, . . . , N}, j 6= i, for all k ∈ {0, 1}

(D.6)

Plugging Eq. (D.6) into Eq. (D.3), we get:

ili − ici =
∑
j:j 6=i

[
vbi − vbj + vi

R
− vj
R

(
1 + Jij

2

)]
(D.7)

Next, plugging Eq. (D.6) into Eq. (D.4), we get:∑
j:j 6=i

[
vbi − vbj + vi

R
− vj
R

(
1 + Jij

2

)]
= −

∑
j:j 6=i

[
vbi − vbj

R
− vj
R

(
1− Jij

2

)]
(D.8)

which leads to: ∑
j:j 6=i

2

(
vbi − vbj

R

)
= −(N − 1) vi

R
+
∑
j:j 6=i

vj
R

(D.9)

Finally, substituting Eq. (D.9) into Eq. (D.7), we get:

2R (ili − ici) = (N − 1) vi −
∑
j:j 6=i

Jijvj (D.10)

which upon differentiation leads to the following final equation in vector form:

(J − (N − 1) I) v̇ = 2R
(
ḟ +

v

L

)
(D.11)
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Slowly-varying amplitude approximation

We start with:[
J − (N − 1) I

2RcC0

+ 4ω0
∆C

C0

sin (2ω0t)

]
((
Ȧ+Bω0

)
cos(ω0t+ φ) +

(
Ḃ − Aω0

)
sin(ω0t+ φ)

)
=

(
1 +

∆C

C0

cos (2ω0t)

)((
−2Ȧω0 −Bω2

0

)
sin(ω0t+ φ) +

(
2Ḃω0 − Aω2

0

)
cos(ω0t+ φ)

)
+

(
1

LC0

− 4ω2
0

∆C

C0

cos (2ω0t)

)
(A cos(ω0t+ φ) +B sin(ω0t+ φ))

(D.12)

For notational convenience, we set J ′ = J−(N−1)I
2RcC0

and g′ = ω0
∆C
C0

. Comparing the coefficient
of cos (ω0t) on both sides, we have:

J ′
[(
Ȧ+Bω0

)
cosφ+

(
Ḃ − Aω0

)
sinφ

]
= (2ω0 − g′)

(
Ḃ cosφ− Ȧ sinφ

)
− g′

2
ω0 (A cosφ+B sinφ)

(D.13)

Similarly, comparing the coefficient of sin (ω0t) on both sides, we have:

J ′
[
−
(
Ȧ+Bω0

)
sinφ+

(
Ḃ − Aω0

)
cosφ

]
=− (2ω0 + g′)

(
Ḃ sinφ+ Ȧ cosφ

)
− g′

2
ω0 (A sinφ−B cosφ)

(D.14)

Taking linear combinations of the above, we get:

J ′
(
Ȧ+Bω0

)
= 2ω0Ḃ − g′Ḃ cos 2φ+ g′Ȧ sin 2φ− g′

2
ω0 (A cos 2φ+B sin 2φ) (D.15)

J ′
(
Ḃ − Aω0

)
= −2ω0Ȧ− g′Ḃ sin 2φ− g′Ȧ cos 2φ− g′

2
ω0 (A sin 2φ−B cos 2φ) (D.16)

Writing it in matrix form, we get:(
J ′ − g′ sin 2φ g′ cos 2φ− 2ω0

g′ cos 2φ+ 2ω0 J ′ + g′ sin 2φ

)(
Ȧ

Ḃ

)
=

(
−g′

2
ω0 cos 2φ −g′

2
ω0 sin 2φ− J ′ω0

−g′

2
ω0 sin 2φ+ J ′ω0

g′

2
ω0 cos 2φ

)(
A
B

)
(D.17)

J ′ contains the resistance value and is essentially the loss experienced by the system whereas
g′ is the parametric gain supplied to the system. They together decide the rate of growth
of the amplitudes A(t) and B(t) as Eq. (D.17) indicates. We divide by ω0 on both sides
and drop terms of the order of J ′/ω0 or g′/ω0. J ′/ω0 and g′/ω0 are intentionally chosen
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to be much smaller than 1 during the design as they directly control the evolution of the
amplitudes A(t) and B(t). For the slowly-varying amplitude approximation to hold, the
envelope, which evolves according to J ′ and g′, has to change at a slower rate than the
‘carrier’ frequency of ω0. Doing this (and the switching the order of the equations), we get:

Ȧ =

(
J ′

2
− g′

4
sin 2φ

)
A+

g′

4
cos 2φB (D.18)

Ḃ =

(
J ′

2
+
g′

4
sin 2φ

)
B +

g′

4
cos 2φA (D.19)

Since our quadrature basis, cos (ω0t+ φ) and sin (ω0t+ φ), was very general, we can choose
any particular basis we are interested in by picking φ. Setting φ = 3π/4, and resubstituting
J ′ and g′, we have:

Ȧ =

(
J − (N − 1) I

4RcC0

+
ω0∆C

4C0

)
A (D.20)

Ḃ =

(
J − (N − 1) I

4RcC0

− ω0∆C

4C0

)
B (D.21)

Both the cosine and the sine components evolve exponentially from their starting conditions.
Since all the eigenvalues of the loss matrix (J − (N − 1) I) / (4RcC0) are negative, the cosine
component A grows if there is enough gain g = ω0∆C/ (4C0) while the sine component
decays always, even at zero gain.

D.2 Power dissipation

To obtain the power dissipation in the coupling resistors, we need to find the potentials at
the top and bottom terminals of all the oscillators. This can be done by using Eq. D.9. We
have: ∑

j:j 6=i

2

(
vbi − vbj

R

)
+

(N − 1) vi
R

−
∑
j:j 6=i

vj
R

= 0 (D.22)

=⇒ (N − 1) (2vbi + vi)−
∑
j:j 6=i

(2vbj + vj) = 0 (D.23)

In matrix form, this equation is:
N − 1 −1 . . . −1
−1 N − 1 . . . −1
...

...
. . .

...
−1 −1 . . . N − 1




2vb1 + v1

2vb2 + v2
...

2vbN + vN

 =


0
0
...
0

 (D.24)
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The matrix on the left can be written as NI − 1 where 1 is the matrix with all ones. Since
1 is a rank one matrix with N as its only non-zero eigenvalue, NI − 1 has rank N − 1. The
only vector in the nullspace of NI − 1 is the all ones vector. Therefore, the vector 2vb + v
has to be a multiple of the all ones vector which means that all its components are equal.
Using vb1 = 0, we have for i 6= 1:

vbi =
v1 − vi

2
(D.25)

Then, the power dissipation in the coupling resistors that implements Jij between the i-th
and j-th oscillators is:

P =

{
2
(vi−vj

2

)2 1
Rc

=
v2
i+v2

j−2vivj

2Rc
, Jij = 1

2
(vi+vj

2

)2 1
Rc

=
v2
i+v2

j+2vivj

2Rc
, Jij = −1

(D.26)

The total power dissipation is then:

P (t) =
1

2

N∑
i=1

N∑
j=1,j 6=i

(
v2
i (t) + v2

j (t)− 2Jijvi(t)vj(t)

2Rc

)
= vT (t)

(
(N − 1) I − J

2Rc

)
v(t) (D.27)

Plugging in v(t) = A(t) cos
(
ω0t+ 3π

4

)
and averaging over the cycle time period of 2π/ω0 on

both sides, we see that the time-averaged power can be expressed in terms of the slowly-
varying amplitude A(t) as follows:

〈P 〉 = AT (t)

(
(N − 1) I − J

4Rc

)
A(t) (D.28)

D.3 Pump circuit

The pump circuit equations are:

C1V̇s = I3 − I4, C2V̇p = I2 − I3, (D.29)

Vs = L1

(
İ4 − İ5

)
, Vp = L2

(
İ1 − İ2

)
, (D.30)

Vs = R1 (Is + I5) , Vp = R2 (Ip − I1) (D.31)

I3 = C0

(
V̇p − V̇s

)
+ 2CN (Vp − Vs)

(
V̇p − V̇s

)
(D.32)

I3 can be eliminated by substituting the expression in the last line into the equations
on the top line. Using the equations (D.29) and (D.31), we can express I1, I2, I4, and I5

in terms of voltages and the current sources. Finally, we plug all those expressions into
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i-th signal circuit
connects to other spins

pump circuit
provides gain to the signal circuit
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Figure D.2: The i-th ‘signal’ oscillator, on the left, shown along with its pumping oscillator,
on the right. The signal oscillator and the pump oscillator are coupled via a nonlinear capacitor,
shown at the top. The terminals of the left signal capacitor C1 are coupled to the other capacitors
via the parallel and antiparallel coupling scheme.

equations (D.30) to get:

Vs = L1

(
C0

(
V̈p − V̈s

)
+ 2CN

(
V̇p − V̇s

)2

+ 2CN (Vp − Vs)
(
V̈p − V̈s

)
− C1V̈s −

V̇s
R1

+ İs

)
(D.33)

Vp = L2

(
−C0

(
V̈p − V̈s

)
− 2CN

(
V̇p − V̇s

)2

− 2CN (Vp − Vs)
(
V̈p − V̈s

)
− C2V̈p −

V̇p
R2

+ İp

)
(D.34)

Next, we perform the slowly-varying amplitude approximation by using the following ex-
pressions for all the currents and voltages involved:

Ip =
Ip
2
e2iω0t + c.c İp = 2iω0

Ip
2
e2iω0t + c.c (D.35)

Is =
Is
2
ei(ω0t+φs) + c.c İs = iω0

Is
2
ei(ω0t+φs) + c.c (D.36)

Vs =
As
2
ei(ω0t+φs) + c.c V̇s = iω0

As
2
ei(ω0t+φs) +

Ȧs
2
ei(ω0t+φs) + c.c

(D.37)

V̈s = 2iω0
Ȧs
2
ei(ω0t+φs) − ω2

0

As
2
ei(ω0t+φs) + c.c (D.38)

Vp =
Ap
2
ei(2ω0t) + c.c V̇p = 2iω0

Ap
2
ei(2ω0t) +

Ȧp
2
ei(2ω0t) + c.c (D.39)

V̈p = 4iω0
Ȧp
2
ei(2ω0t) − 4ω2

0

Ap
2
ei(2ω0t) + c.c (D.40)
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All the slowly-varying amplitudes are assumed to be real, that is, we are already ignoring
the ‘sine’ components and only considering the ‘cosine’ components of oscillation because
they are the only ones that will eventually survive. In Eq. (D.33), we retain only terms that
oscillate at ω0 or contribute to oscillations at ω0. Similarly, in Eq. (D.34) we retain only
terms that oscillate at 2ω0 or contribute to oscillations at 2ω0. These equations simplify to:

İs =
Vs
L1

+ (C0 + C1) V̈s +
V̇s
R1

+ 4CN V̇pV̇s + 2CNVpV̈s + 2CNVsV̈p (D.41)

İp =
Vp
L2

+ (C0 + C2) V̈p +
V̇p
R2

+ 2CN V̇
2
s + 2CNVsV̈s (D.42)

Plugging the slowly-varying expressions into the first of these equations, we get:

iω0Is =
As
L1

+ (C0 + C1)
(

2iω0Ȧs − ω2
0As

)
+
iω0As + Ȧs

R1

+ CN

[
2
(

2iω0Ap + Ȧp

)(
−iω0As + Ȧs

)
+Ap

(
−2iω0Ȧs − ω2

0As

)
+ As

(
4iω0Ȧp − 4ω2

0Ap

)]
ei(−2φs)

(D.43)

Equating the imaginary parts on both sides and setting φs = 3π/4, we have:

ω0Is = (C0 + C1) 2ω0Ȧs +
ω0As
R1

+ CN

(
2ȦsȦp − ω2

0AsAp

)
(D.44)

In the last parenthesis, we ignore the first term because of the slowly-varying amplitude
approximation leading to the following final equation:

Ȧs =
Is

2 (C0 + C1)
− As

2R1 (C0 + C1)
+
CNω0AsAp
2 (C0 + C1)

(D.45)

This is how the ‘cosine’ component of the capacitor voltage in the signal circuit evolves in
time. It has a noise term, Is, the resistive decay term due to the internal resistance, and
the final term is the gain which is directly proportional to Ap, the pump capacitor voltage.
Performing an identical sequence of operations on the second equation (D.42), we get:

Ȧp =
Ip

2 (C0 + C2)
− Ap

2R2 (C0 + C2)
− CNω0A

2
s

2 (C0 + C2)
(D.46)

This equation describes the evolution of the pump voltage Ap. The first two terms are
again intuitive, but the last term is more important. It illustrates ‘pump depletion’, the fact
that the pump loses its amplitude if the signal grows too much. When the pump falls, the
gain it supplies to the signal gets reduced and the signal’s amplitude gets saturated. It is
not surprising that the equations for the signal and pump voltage amplitudes are exactly
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isomorphic to the standard laser rate equations:

dS

dt
= ΓβRsp −

S

τp
+ Γvgg(N)S (D.47)

dN

dt
=
ηiI

qV
− N

τ
− vgg(N)S (D.48)

where N is the electron density, S is the photon density in the lasing mode, I is the injected
current into the laser, ηi is the injection efficiency, βRsp is the spontaneous emission rate into
the lasing mode, 1/τ is the electron population decay rate, 1/τp is the cavity photon lifetime,
vg is the group velocity of the light, and g(N) is the electron-density-dependent gain.

D.4 Augmented Lagrange equations of motion

For notational convenience, we set J ′ = J−(N−1)I
2RcC0

and g′ = ω0
∆C
C0

. Comparing the coefficient
of cos (ω0t) on both sides, we have:

J ′
[(
Ȧ+Bω0

)
cosφ+

(
Ḃ − Aω0

)
sinφ

]
− 3GN

C0

cosφ


(
Ȧ+Bω0

)
(3A2 +B2)

4
+
ABḂ − A2Bω0

2


− 3GN

C0

sinφ


(
Ḃ − Aω0

)
(A2 + 3B2)

4
+
ABȦ+ AB2ω0

2

 = (2ω0 − g′)
(
Ḃ cosφ− Ȧ sinφ

)
− g′

2
ω0 (A cosφ+B sinφ)

(D.49)

Similarly, comparing the coefficient of sin (ω0t) on both sides, we have:

J ′
[
−
(
Ȧ+Bω0

)
sinφ+

(
Ḃ − Aω0

)
cosφ

]
+

3GN

C0

sinφ


(
Ȧ+Bω0

)
(3A2 +B2)

4
+
ABḂ − A2Bω0

2


− 3GN

C0

cosφ


(
Ḃ − Aω0

)
(A2 + 3B2)

4
+
ABȦ+ AB2ω0

2


= − (2ω0 + g′)

(
Ḃ sinφ+ Ȧ cosφ

)
− g′

2
ω0 (A sinφ−B cosφ)

(D.50)
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Taking linear combinations of the above, we get:

J ′
(
Ȧ+Bω0

)
− 3GN

C0


(
Ȧ+Bω0

)
(3A2 +B2)

4
+
ABḂ − A2Bω0

2


= 2ω0Ḃ − g′Ḃ cos 2φ+ g′Ȧ sin 2φ− g′

2
ω0 (A cos 2φ+B sin 2φ)

(D.51)

J ′
(
Ḃ − Aω0

)
− 3GN

C0


(
Ḃ − Aω0

)
(A2 + 3B2)

4
+
ABȦ+ AB2ω0

2


= −2ω0Ȧ− g′Ḃ sin 2φ− g′Ȧ cos 2φ− g′

2
ω0 (A sin 2φ−B cos 2φ)

(D.52)

Simplifying the equations as before, we get:(
Ḃ

Ȧ

)
− 3GN

8C0ω0

−(Ȧ+Bω0

)
(3A2 +B2)− 2

(
ABḂ − A2Bω0

)(
Ḃ − Aω0

)
(A2 + 3B2) + 2

(
ABȦ+ AB2ω0

)  =

(J ′2 − g′

4

)
B(

J ′

2
+ g′

4

)
A


(D.53)

We set B = 0 and look only at the bottom equation:

Ȧ =

(
J ′

2
+
g′

4

)
A− 3GN

8C0

A3 (D.54)

D.5 Circuit for arbitrary real values in the Ising J

matrix

So far, we have only considered J matrices in which all the entries were chosen from {−1, 1}.
In this section, we describe the modifications required to generalize the coupled LC os-
cillator circuit when the J values take on arbitrary real values expressed in binary form
. . . b2b1b0.b−1b−2 . . . . We will let the sign of Jij, positive or negative, be represented by sij.
That is, we are going to set Jij = sij |Jij|. The circuit equations from before are reproduced
here:

ici = f(vi, v̇i), for all i ∈ {1, 2, . . . , N} (D.55)

vi = −Li̇li, for all i ∈ {1, 2, . . . , N} (D.56)∑
j

iij0 = ili − ici, for all i ∈ {1, 2, . . . , N} (D.57)∑
j

iij0 +
∑
j

iij1 = 0, for all i ∈ {1, 2, . . . , N} (D.58)

vb1 = 0 (D.59)
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iijk = k

[(
vbi − vbj
Rij

)(
1 + sij

2

)
+

(
vbi − vbj − vj

Rij

)(
1− sij

2

)]
+ (1− k)

[(
vbi + vi − vbj − vj

Rij

)(
1 + sij

2

)
+

(
vbi + vi − vbj

Rij

)(
1− sij

2

)]
,

for all i ∈ {1, 2, . . . , N}, for all j ∈ {1, 2, . . . , N}, j 6= i, for all k ∈ {0, 1}

(D.60)

Plugging Eq. (D.60) into Eq. (D.57), we get:

ili − ici =
∑
j:j 6=i

[
vbi − vbj + vi

Rij

− vj
Rij

(
1 + sij

2

)]
(D.61)

Next, plugging Eq. (D.60) into Eq. (D.58), we get:∑
j:j 6=i

[
vbi − vbj + vi

Rij

− vj
Rij

(
1 + sij

2

)]
= −

∑
j:j 6=i

[
vbi − vbj
Rij

− vj
Rij

(
1− sij

2

)]
(D.62)

which leads to: ∑
j:j 6=i

2

(
vbi − vbj
Rij

)
= −

∑
j:j 6=i

vi
Rij

+
∑
j:j 6=i

vj
Rij

(D.63)

In our circuit, we are going to use a reference resistor R0, and binary multiples of it, Rm =
2mR0. That is, R−1 will be R0/2 and R2 will be 4R0. If |Jij| is written in binary form upto
3-bit precision as

|Jij| = b121 + b020 + b−12−1, (D.64)

we can implement Jij in our circuit by setting:

1

Rij

=
b1

R−1

+
b0

R0

+
b−1

R1

=
1

R0

|Jij| (D.65)

To see that this setting indeed does the job, we plug this expression for Rij into the preceding
equations and substitute Eq. (D.63) into Eq. (D.61) to get:

2R0 (ili − ici) = vi
∑
j:j 6=i

|Jij| −
∑
j:j 6=i

Jijvj (D.66)

In the above equation, we used Jij = sij |Jij|. Differentiating the above leads to the following
final equation in vector form:

(J −D) v̇ = 2R0

(
ḟ +

v

L

)
(D.67)

where D is a diagonal matrix with the diagonal values given by Dii =
∑

j:j 6=i |Jij|.
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Appendix E

Lagrange Multipliers

E.1 Lagrange multipliers theory

In this appendix, we shall study in greater detail the method of Lagrange multipliers, one
of the most well-known techniques for the solution of constrained optimization problems.
At its core, it simply involves the modification of the merit function by adding terms that
penalize constraint violations. Much of the material here is drawn from [132] and [118].

In the setting of constrained optimization, we are required to minimize an objective
function f(x) with respect to all points that satisfy certain given inequality (hj(x) ≤ 0)
and equality (gi(x) = 0) constraints. Let us assume that the domain set D, that is, the
intersection of the domains of f(x), gi(x), hj(x), is a subset of Rn. Further, let the set of
points in D that satisfy all the constraints gi, hj be called F , the feasible set. Then, the
optimization problem can be written as:

minimize f(x)

subject to hj(x) ≤ 0, j = 1, . . . ,m,

gi(x) = 0, i = 1, . . . , p,

x ∈ D.

Lagrange function

We now define a new function in n+m+p variables, called the Lagrange function, as follows:

L(x,λ,µ) = f(x) +
m∑
j=1

µjhj(x) +

p∑
i=1

λigi(x).

The summations that were added to the plain objective function f(x) serve as constraint
violation penalty terms. The coefficients multiplying the penalty terms, λi and µj, are known
as Lagrange multipliers. The inequality Lagrange multipliers µj are constrained to be non-
negative in order that the penalty that arises when the inequality constraints are not satisfied
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(i.e. when hj(x) > 0) is non-negative. The equality Lagrange multipliers, λi, have no such
restrictions.

The Lagrange function has the advantage that it helps us express the constrained opti-
mization of f as an unconstrained optimization of L. That is, it can be shown that:

min
x∈F

f(x) = min
x∈D

max
(µ≥0),λ

L(x,λ,µ).

The minimization over x in the feasible set, F , on the left-hand side has turned into a
minimization over x in the entire domain, D, on the right-hand side.

Karush-Kuhn-Tucker (KKT) sufficient conditions

The Lagrange function also appears in an important, related role. While the conditions for a
point x∗ to be an unconstrained optimum of a differentiable function f are expressed in terms
of the gradient of f(x), the optimality conditions for constrained optimization problems are
naturally expressed in terms of the Lagrange function. These conditions are presented next.

A point x∗ is a local optimum of the function f(x) subject to the constraints gi, hj if it
satisfies the Karush-Kuhn-Tucker (KKT) sufficient conditions:

1. Primal feasibility: The point x∗ is feasible, that is, it satisfies all the constraints.

hj(x
∗) ≤ 0, j = 1, . . . ,m,

gi(x
∗) = 0, i = 1, . . . , p.

2. First-order condition: There exist Lagrange multipliers µ∗1, . . . , µ
∗
m, λ

∗
1, . . . , λ

∗
p such that

the following equation is satisfied:

∇xL(x∗,µ∗,λ∗) =∇xf(x∗) +
m∑
j=1

µ∗j∇xhj(x∗) +

p∑
i=1

λ∗i∇xgi(x∗) = 0.

3. Second-order condition: In addition to the first-order condition, if all the concerned
functions are twice differentiable, we require that the Hessian of L with respect to x
be positive definite along all directions that respect the active constraints. That is, the
following equation has to be satisfied:

vT∇2
xxL(x∗,µ∗,λ∗)v > 0, ∀v ∈ T,

where T is defined as T = {v : (∇xhj(x∗))T v = 0, j = active constraints at

x∗, (∇xgi(x∗))T v = 0, i = 1, . . . , p}.

4. Complementary slackness: µ∗jhj(x
∗) = 0 is satisfied for all the inequality constraints,

j = 1, . . . ,m.

5. Dual feasibility: The Lagrange multipliers of all the inequality constraints satisfy µ∗j ≥
0, j = 1, . . . ,m, with the inequality being strict for active constraints.
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E.2 Lagrange multipliers algorithms: Augmented

Lagrangian

In this section, we discuss the so-called ‘Augmented Lagrangian method of multipliers’, a
popular algorithm used to obtain locally optimal solutions (x∗,λ∗) that satisfy the KKT
conditions. We shall be only considering the case where there are no inequality constraints
hj (and, consequently, no µ multipliers). This algorithm is discussed in detail in [118].

To motivate the ‘Augmented Lagrangian’ approach, let us observe the KKT conditions
a bit closely. We conclude from the first-order condition that a locally optimum x∗ renders
the function L(x,λ∗) stationary. However, this doesn’t guarantee that x∗ is a minimum of
L(x,λ∗). Indeed, observation of the second-order condition tells us that x∗ could be a saddle
point of L(x,λ∗). This means that gradient descent-based algorithms will not converge to
x∗ if the starting point is not in the correct region. It was to solve this problem that the
‘Augmented Lagrangian’ method was invented.

The Augmented Lagrange function, Lc(x,λ), is given by:

Lc(x,λ) = f(x) +

p∑
i=1

λigi(x) +
c

2

(
p∑
i=1

(gi(x))2

)
.

This function Lc(x,λ), for a suitable choice of c, has the property that x∗ forms a minimum
of Lc(x,λ

∗) and not just a saddle point as was the case with L(x,λ∗).
In other words, local optima of the original constrained optimization problem can be

obtained if we perform an unconstrained optimization of Lc(x,λ
∗). However, for this pro-

cedure to be a feasible solution approach, we would have to know the right λ∗. It has been
shown in [118] that the way to do this is to perform gradient ascent of Lc in the λ variables.

The ‘Augmented Lagrangian method of multipliers’ involves the repeated minimization
of Lc(x,λ

(k)) using progressively better estimates, λ(k), of λ∗. The algorithm starts off with
an arbitrary starting point (x(0), λ(0)). It then performs the following steps repeatedly:

1. Locally minimize Lc(x,λ
(k)) and call the minimum point x(k).

2. λ
(k+1)
i = λ

(k)
i + cgi(x

(k)).

The second step above corresponds to gradient ascent of Lc(x,λ) in the λ variables.
Basically, this method performs a fast gradient descent of Lc in the x directions in conjunction
with a slow gradient ascent of Lc in the λ directions. A dynamical system that performs
this process in continuous time is given below:

dxi
dt

= −κ ∂

∂xi
Lc(x,λ),

dλi
dt

= κ′
∂

∂λi
Lc(x,λ),

where κ and κ′ are suitable step sizes.
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E.3 Application of Lagrange multipliers to the Ising

problem; Cubic terms

In this section, we shall provide an explanation of the role that is played by the cubic terms—
which were neglected in the main text—in the methods of Yamamoto et al. [93], Kalinin et
al. [99], and others. It will turn out that the inclusion of cubic terms helps us implement
the ‘Augmented Lagrangian method of multipliers’ from Supplementary Section 2.

The statement of the Ising problem is as follows:

minimize − xTJx
subject to x2

i − 1 = 0, i = 1, . . . , n.

The corresponding Lagrange function is given by:

L(x,λ) = −xTJx−
n∑
i=1

λi(x
2
i − 1).

Next, we write down the Augmented Lagrange function:

Lc(x,λ) = −xTJx−
n∑
i=1

λi(x
2
i − 1) +

c

2

(
n∑
i=1

(
x2
i − 1

)2

)
.

Substituting the above Augmented Lagrange function into the dynamical system provided
at the end of Supplementary Section 2, we get:

dxi
dt

= 2κ

(
λixi + 2cxi − 2cx3

i +
n∑
j=1

Jijxj

)
,

dλi
dt

= κ′(1− x2
i ),

where κ and κ′ are appropriately chosen step sizes. We notice the equivalence in form between
this dynamical system and those in the papers discussed in the main text and conclude that
the cubic terms that appear in most of those systems are in fact helping to implement the
Augmented Lagrangian method of multipliers.

E.4 Iterative Analog Matrix Multipliers

In this section, we present the system designed by Soljacic et al. [100]. We shall see that the
simplified system we presented in Section 5.A of the main text differs from that of Soljacic
et al. significantly in that their method has added noise and nonlinear thresholding after
each iteration. It is possible that their modifications lead to performance improvements.
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Formally, their iteration is given by:

E(t+ 1) = u (2KE(t) +N (t)) ,

where E(t) is the vector of electric field amplitude values at the beginning of the t-th itera-
tion, u(x) is the Heaviside step function that is 1 for positive x and 0 for negative x, N (t)
is a zero-mean Gaussian random noise vector, and K is a matrix given by K =

√
J + αM ,

J is the Ising connectivity matrix, α, a real number, and M , some suitably chosen matrix.
More specifically, M is chosen to have the same eigenvectors as J . It will turn out that the
eigenvalues of M play the role of Lagrange multipliers.

The authors showed that under the condition of high noise N (t), their system performs
minimization of the following effective merit function:

H = −β
2

∑
ij

(Jij + αMij)EiEj,

where β is some parameter dependent on the noise.
Using the fact that the matrixM is chosen to have the same eigenvectors as J , we rewrite

the above merit function, modulo additive constants, as the following Lagrange function:

H = L(E,γ) = −β
2

(∑
ij

JijEiEj + α
∑
i

γi
(
z2
i − 1

))
,

where the γi are the eigenvalues of the matrix M , and the vector z is the vector of electric
field amplitudes E expressed in the basis of eigenvectors of M (that is, the eigenvectors
of J). We see that the eigenvalues of M play the role of Lagrange multipliers, albeit for
different constraints than those required by the Ising problem. This difference is caused by
M not being a diagonal matrix.

In conclusion, we interpret their algorithm as optimizing a Lagrange function with the
merit function being the Ising Hamiltonian itself, and the constraints being that the compo-
nents of the spin vector when expressed in the eigenvector basis of J be restricted to 1 and
-1.




