
UCLA
UCLA Electronic Theses and Dissertations

Title
MIMO Accelerator: Programmable MIMO Decoder Chip and Design Environment

Permalink
https://escholarship.org/uc/item/0x34m19n

Author
Mohamed, Mohamed Ismail Ali

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0x34m19n
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

MIMO Accelerator:

Programmable MIMO Decoder Chip and Design Environment

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical Engineering

by

Mohamed Ismail Ali Mohamed

2012

 ii

ABSTRACT OF THE DISSERTATION

MIMO Accelerator:

Programmable MIMO Decoder Chip and Design Environment

by

Mohamed Ismail Ali Mohamed

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles 2012

Professor Babak Daneshrad, Chair

With wireless communications becoming an essential part of human life, wireless technology

advances to meet the increasing demands. New standards are introduced every couple of years to

regulate the implementation of wireless systems. Most of modern standards are based on MIMO

and OFDM signaling, which makes any time saving in a MIMO-OFDM receiver design cycle

essential and the support of multi-standards in the same device highly desirable.

This work introduces a hardware implementation for a MIMO decoder accelerator, which is a

software-programmable device that specializes in MIMO decoding, and MIMO signal

processing in general, for OFDM systems. A VLSI implementation of the accelerator is

introduced highlighting some of the implementation decisions and techniques to minimize the

overall energy consumption of the accelerator hardware. The accelerator chip core area is

2.48mm2 in 65nm CMOS technology. Its average power consumption is 224.3 at 166MHz clock

 iii

frequency. A deeply pipelined design for a powerful processing core allows the accelerator to

achieve energy consumption figures competing with specialized designs. A single accelerator

chip can be programmed to complete 4x4 QR decomposition, 4x4 Singular-Value

Decomposition (SVD), 2x2 MMSE MIMO decoding, 4x4 MMSE MIMO decoding, or many

other possible applications.

A simple design flow is presented to assist a MIMO-accelerator user in mapping a MIMO-

related algorithm to a successful accelerator-based hardware implementation in no time. The

accelerator, with its diversity and energy efficiency, can empower a wireless MIMO-OFDM

receiver giving it an unparalleled advantage over regular fixed-data-path systems.

 iv

The Dissertation of Mohamed Ismail Ali Mohamed is approved.

Danijela Cabric

William Kaiser

Milos Ercegovac

Babak Daneshrad, Committee Chair

University of California, Los Angeles

2012

 v

To my dear wife, Tasnim

And to the victims of the great Egyptian revolution of Jan 25th 2011

which I missed while producing this work

 vi

Table	 of	 Contents	
1.	 INTRODUCTION	 ..	 1	

1.1.	 MIMO	 AND	 OFDM	 OPERATION	 ..	 4	

1.1.1.	 MIMO	 and	 Spatial	 Multiplexing	 ...	 4	

1.1.2.	 OFDM	 for	 Wide	 Band	 Signaling	 ..	 6	

1.2.	 CHANNEL	 EQUALIZATION	 FOR	 MIMO-‐OFDM	 SYSTEMS	 ..	 8	

1.2.1.	 Linear	 MIMO	 Decoders	 ..	 10	

1.2.2.	 Maximum-‐Likelihood	 MIMO	 Decoders	 ...	 12	

1.2.3.	 Singular-‐Value	 Decomposition	 for	 MIMO	 Decoding	 ...	 15	

1.2.4.	 Iterative	 MIMO	 Decoders	 ..	 16	

1.3.	 OUTLINE	 ..	 17	

2.	 MIMO	 ACCELERATOR	 HARDWARE:	 OVERVIEW	 ...	 19	

2.1.	 TOP	 VIEW	 OF	 THE	 ACCELERATOR	 ...	 19	

2.2.	 PROCESSING	 CORE	 ...	 21	

2.2.1.	 Addition	 and	 Subtraction	 Unit	 ...	 22	

2.2.2.	 Reciprocal	 Unit	 ..	 23	

2.2.3.	 Multiplication	 Unit	 ..	 24	

2.2.4.	 Rotation	 Unit	 ..	 25	

2.3.	 DYNAMIC	 SCALING	 ...	 30	

2.4.	 MEMORY	 SWITCHES	 ..	 30	

3.	 MIMO	 ACCELERATOR	 HARDWARE:	 IMPLEMENTATION	 CHALLENGES	 AND	 TRADEOFFS	 	 33	

3.1.	 INSTRUCTION	 FETCH	 AND	 PIPELINE	 ..	 33	

3.2.	 CONTROLLER	 COUNTERS	 PIPELINE	 ..	 37	

3.3.	 DATA	 MEMORY	 STRUCTURE	 ..	 39	

 vii

3.4.	 PROCESSING	 CORE	 INPUT-‐GATING	 ...	 43	

3.5.	 SYSTEM	 INTEGRATION	 ..	 44	

3.6.	 MULTI-‐ALGORITHM	 SWITCHING	 ...	 48	

4.	 MIMO	 ACCELERATOR	 DESIGN	 FLOWS	 AND	 PROGRAMMING	 ...	 50	

4.1.	 HARDWARE	 PARAMETERS	 ...	 50	

4.2.	 MIMO	 ACCELERATOR	 DESIGN	 FLOWS	 ..	 51	

4.2.1.	 Hardware-‐First	 Design	 flow	 ..	 51	

4.2.2.	 Algorithm-‐First	 Design	 Flow	 ...	 53	

4.3.	 MIMO	 ACCELERATOR	 PROGRAMMING	 ..	 55	

4.3.1.	 Bit-‐Level	 Instruction	 ...	 55	

4.3.2.	 High-‐Level	 Instructions	 ...	 57	

4.3.3.	 Compiler	 Interface	 ...	 65	

4.3.4.	 Example	 Program	 ..	 67	

4.4.	 HARDWARE	 INSTANCE	 GENERATION	 ...	 68	

4.5.	 PARAMETER	 EXTRACTION	 ..	 70	

5.	 MIMO	 ACCELERATOR	 PROTOTYPE	 CHIP	 ..	 72	

5.1.	 TEST	 SETUP	 AND	 PROCEDURE	 ...	 73	

5.2.	 MEASUREMENT	 RESULTS	 ...	 78	

6.	 CONCLUSIONS	 ..	 87	

7.	 FUTURE	 WORK	 ..	 88	

REFERENCES	 ...	 89	

	

 viii

List	 of	 Figures	
FIG.	 1.1.	 OUR	 GOAL	 COMPARED	 TO	 PROGRAMMABLE	 HARDWARE	 (SUCH	 AS	 DSP)	 AND	 DEDICATED	 ASICS	 	 3	

FIG.	 1.2.	 CHANNEL	 COEFFICIENTS	 FOR	 M	 TRANSMITTERS	 AND	 N	 RECEIVERS	 ..	 5	

FIG.	 1.3.	 EACH	 OFDM	 SUBCHANNEL	 EFFECTIVELY	 SUFFERS	 ONLY	 FLAT	 FADING	 ..	 7	

FIG.	 1.4.	 A	 BLOCK	 DIAGRAM	 FOR	 A	 2X2	 MIMO-‐OFDM	 SYSTEM	 ..	 9	

FIG.	 2.1.	 MIMO	 ACCELERATOR	 BLOCK	 DIAGRAM	 ..	 20	

FIG.	 2.2.	 BLOCK	 DIAGRAM	 FOR	 THE	 ADDITION/SUBTRACTION	 PROCESSING	 UNIT	 FOR	 FOUR	 RECEIVE	 STREAMS	 	 22	

FIG.	 2.3.	 BLOCK	 DIAGRAM	 FOR	 THE	 RECIPROCAL	 PROCESSING	 UNIT	 FOR	 FOUR	 RECEIVE	 STREAMS	 ...	 23	

FIG.	 2.4.	 BLOCK	 DIAGRAM	 FOR	 THE	 MULTIPLICATION	 PROCESSING	 UNIT	 FOR	 FOUR	 RECEIVE	 STREAMS	 ...	 24	

FIG.	 2.5.	 BLOCK	 DIAGRAM	 OF	 THE	 ROTATION	 PROCESSING-‐UNIT	 FOR	 FOUR	 RECEIVE	 STREAMS.	 ...	 26	

FIG.	 2.6.	 COMPLEX	 VECTORING	 CORDIC	 ..	 27	

FIG.	 2.7.	 COMPLEX	 ROTATION	 CORDIC	 ...	 27	

FIG.	 2.8.	 PHASE	 PROCESSING	 (PP)	 BLOCK	 DIAGRAM	 AS	 A	 PART	 OF	 THE	 ROTATION	 UNIT.	 ..	 28	

FIG.	 2.9.	 A	 REROUTED	 VERSION	 OF	 THE	 COMPLEX	 VECTORING	 CORDIC	 ..	 29	

FIG.	 2.10.	 REROUTED	 VERSIONS	 OF	 THE	 COMPLEX	 ROTATION	 CORDIC.	 ..	 29	

FIG.	 2.11.	 MEMORY	 SWITCHES:	 (A)	 CORE-‐INPUT	 SWITCH,	 RIGHT,	 (B)	 MEMORY-‐INPUT	 SWITCH	 ...	 31	

FIG.	 3.1.	 ACCELERATOR	 INSTRUCTION	 PIPELINE	 WITH	 FOUR	 STAGES	 ..	 34	

FIG.	 3.2.	 ACCELERATOR	 PRE-‐DECODED	 INSTRUCTION	 STRUCTURE	 ..	 35	

FIG.	 3.3.	 ACCELERATOR	 INSTRUCTION	 PIPELINE	 WITH	 FIVE	 STAGES	 AFTER	 INTRODUCING	 THE	 EXTRA	 FETCH	 STAGE	 	 37	

FIG.	 3.4.	 THE	 TWO	 INSTANCES	 OF	 THE	 CONTROLLER:	 READ	 CONTROLLER	 (LEFT)	 AND	 WRITE	 CONTROLLER	 (RIGHT)	 	 38	

FIG.	 3.5.	 (A)	 LINEAR	 DATA	 MEMORY	 STRUCTURE,	 (B)	 ONE	 REGISTER	 FOR	 THE	 DATA	 MEMORY	 ...	 39	

FIG.	 3.6.	 PROPOSED	 DATA	 MEMORY	 STRUCTURE	 (FOR	 NM=4)	 ..	 40	

FIG.	 3.7.	 IMPLEMENTED	 SECTORED	 DATA	 MEMORY	 (FOR	 NM=4)	 ...	 42	

FIG.	 3.8.	 PROCESSING	 CORE	 AFTER	 GATING	 THE	 FOUR	 PROCESSING	 UNITS	 ...	 43	

FIG.	 3.9.	 OVERLOADING	 ONE	 MEMORY	 PORT	 TO	 ALLOW	 TOP-‐LEVEL	 ACCESS	 TO	 THE	 DATA	 MEMORY	 CONTENTS	 	 45	

FIG.	 3.10.	 MULTIPLEXING	 THE	 TWO	 DATA	 MEMORY	 PORTS	 BETWEEN	 REGULAR	 OPERATION	 AND	 TOP-‐LEVEL	 ACCESS	 	 47	

 ix

FIG.	 3.11.	 TOP-‐LEVEL	 CONTROL	 OVER	 THE	 RUNNING	 PROGRAM	 THROUGH	 THE	 ADDRESS	 OF	 THE	 INSTRUCTION	 MEMORY	 	 49	

FIG.	 4.1.	 HARDWARE-‐FIRST	 DESIGN	 FLOW	 TO	 UTILIZE	 THE	 MIMO	 ACCELERATOR	 PROGRAMMABILITY	 ...	 52	

FIG.	 4.2.	 ALGORITHM-‐FIRST	 DESIGN	 FLOW	 TO	 OPTIMIZE	 THE	 MIMO	 ACCELERATOR	 HARDWARE	 FOR	 A	 SPECIFIC	 APPLICATION	 .	 54	

FIG.	 4.3.	 ACCELERATOR	 PRE-‐DECODED	 INSTRUCTION	 STRUCTURE	 ..	 56	

FIG.	 4.4.	 MIMO	 ACCELERATOR	 COMPILER	 GRAPHICAL	 USER	 INTERFACE	 ..	 66	

FIG.	 4.5.	 MIMO	 ACCELERATOR	 INSTANCE	 GENERATION	 GRAPHICAL	 USER	 INTERFACE	 ..	 69	

FIG.	 4.6.	 PARAMETER	 EXTRACTION	 GRAPHICAL	 USER	 INTERFACE	 ..	 71	

FIG.	 5.1.	 TEST	 SETUP	 FOR	 THE	 MIMO	 ACCELERATOR	 CHIP	 ...	 73	

FIG.	 5.2.	 PHOTO	 FOR	 THE	 LAB	 TEST	 SETUP	 IN	 ..	 74	

FIG.	 5.3.	 ON-‐CHIP	 TEST	 HARDWARE	 BLOCKS	 ..	 75	

FIG.	 5.4.	 ON-‐CHIP	 PARALLEL-‐TO-‐SERIAL	 AND	 SERIAL-‐TO-‐PARALLEL	 CONVERTERS	 ..	 76	

FIG.	 5.5.	 TIMING	 DIAGRAM	 FOR	 THE	 INTERACTION	 BETWEEN	 THE	 TEST	 SIGNALS	 TO	 CONTROL	 THE	 CLOCK	 MULTIPLEXING	 	 78	

FIG.	 5.6.	 MIMO	 ACCELERATOR	 CHIP	 MICROGRAPH	 ..	 78	

FIG.	 5.7:	 POWER	 CONSUMPTION	 AND	 ENERGY	 PER	 ONE	 CLOCK	 CYCLE	 VERSUS	 CLOCK	 FREQUENCY,	 ...	 82	

	 AND	 LEAKAGE	 POWER	 VERSUS	 SUPPLY	 VOLTAGE	 ...	 82	

FIG.	 5.9.	 BER	 COMPARISON	 BETWEEN	 MMSE	 ON	 THE	 ACCELERATOR	 AND	 FLOATING	 POINT	 SIMULATION	 	 83	

FIG.	 5.9.	 PER	 COMPARISON	 BETWEEN	 MMSE	 ON	 THE	 ACCELERATOR	 AND	 FLOATING	 POINT	 SIMULATION	 	 84	

 x

List	 of	 Tables	
TABLE	 4.1.	 MIMO	 ACCELERATOR	 HDL	 PARAMETERS	 AND	 THEIR	 VALUES	 FOR	 THE	 ASIC	 PROTOTYPE	 ..	 51	

TABLE	 4.2.	 THE	 STRUCTURE	 OF	 A	 MIMO	 ACCELERATOR	 BIT-‐LEVEL	 INSTRUCTION	 ..	 56	

TABLE	 4.3.	 STYLES	 FOR	 THE	 RESULT	 AND	 THE	 OPERANDS	 IN	 A	 HIGH-‐LEVEL	 INSTRUCTION	 ...	 58	

TABLE	 4.4.	 MULTIPLICATION,	 ADDITION,	 AND	 RECIPROCAL	 OPERATORS	 IN	 THE	 ACCELERATOR	 INSTRUCTION	 SET	 	 59	

TABLE	 4.5.	 BRANCHING	 OPERATORS	 IN	 THE	 MIMO	 ACCELERATOR	 INSTRUCTION	 SET	 ..	 60	

TABLE	 4.6.	 ROTATION	 OPERATORS	 IN	 THE	 MIMO	 ACCELERATOR	 INSTRUCTION	 SET	 ..	 61	

TABLE	 4.7.	 SPECIAL	 NOP	 INSTRUCTIONS	 ...	 64	

TABLE	 4.8.	 EXAMPLE	 PROGRAM	 USED	 FOR	 2X2	 MMSE	 MIMO	 DECODING	 ..	 67	

TABLE	 5.1.	 MIMO	 ACCELERATOR	 HDL	 PARAMETERS	 AND	 THEIR	 VALUES	 FOR	 THE	 ASIC	 PROTOTYPE	 ..	 72	

TABLE	 5.2.	 THE	 PERCENTAGE	 OF	 THE	 MAIN	 BLOCKS	 AREA	 TO	 THE	 COMPLETE	 CHIP	 CORE	 AREA	 ..	 79	

TABLE	 5.3.	 TIME	 NEEDED	 TO	 FINISH	 AN	 ALGORITHM	 RUNNING	 ON	 THE	 ACCELERATOR	 PROTOTYPE	 ...	 80	

TABLE	 5.4.	 SUMMARY	 FOR	 A	 SUBSET	 OF	 RELEVANT	 802.11N	 AND	 LTE-‐A	 PARAMETERS	 ...	 81	

TABLE	 5.5.	 COMPARISON	 TO	 OTHER	 ASIC	 DESIGNS	 ...	 85	

 1

1.	 Introduction	
In a wireless transceiver design, three major steps form a typical process of translating a digital-

signal processing task into hardware implementation. First is to choose and design the algorithm

that will be used to achieve this task. This step usually includes a high level simulation, whether

it is a floating-point simulation or a fixed-point simulation or both, to check if this particular

algorithm satisfies the performance constraints, such as bit error rate (BER) or packet error rate

(PER). Second is the design of a digital circuit that implements the chosen algorithm. The circuit

design takes into account all the hardware requirements in terms of area (cost), speed

(throughput and latency), and power consumption. The digital circuit design is usually based on

a hardware description language (HDL) such as Verilog and VHDL. A test bench in HDL is

written to perform a function test based on test vectors for the circuit inputs and its expected

outputs. These test vectors are usually generated from the simulation model of the first design

step. Third is combining this particular circuit with different ones for the physical

implementation of the complete transceiver (or part of it) into a chip. The physical

implementation means – in abbreviation – to synthesize the HDL into a standard-cells library for

an application-specific integrated circuit (ASIC) implementation or into logic cells for a field-

programmable gate array (FPGA), and then perform placement and routing for the final chip.

This physical implementation process usually contains some kind of iteration based on the

results of post-synthesis and post-layout simulations or based on formal verification.

Despite the fact that this design process is time consuming, it has to be repeated for the same

transceiver component if the system requirements change. The requirements usually change with

the release of new wireless communication standards, which occurs as frequent as every year.

 2

Reducing the consumed time in a repeated design cycle is essential for cost and time-to-market

reduction. Time saving can be achieved by attacking the third design step, the physical design,

by using a FPGA instead of an ASIC as the final implementation platform. This might be

possible if the hardware requirements allow the speed degradation and the boost in power

consumption that comes with a FPGA. But the unit cost for a FPGA solution will be much higher

than an ASIC solution for a mass production.

Design time saving can also be achieved by attacking the digital-circuit design step. One

approach is to use High-Level Synthesis (HLS). In HLS, the algorithm is written in C, C++, or

SystemC and a HLS tool translates it directly to HDL. The time saving comes from the fact that

writing the algorithm in a high-level language like C++ is simpler than implementing the digital

circuit from scratch. The drawback of this solution is that the outcome is highly dependent on the

used HLS tool and whether it can produce a hardware that is as optimized as a hand-written HDL

can be. And to reach a better result from a HLS tool, the designer has to closely control the HLS

process to guide the tool to the required results. While the HLS technology is appealing, it will

take more time for it to be the industry standard.

Another approach to reduce the time consumed in circuit design is to use a programmable

solution such as a Digital-Signal Processor (DSP). Using a DSP converts the circuit design task

into a much easier problem of translating the algorithm into an efficient software program for the

DSP in hand. The drawback of this approach is the expected degradation in performance and

power consumption due to the use of a general-purpose processor to solve a specific problem.

 3

In some cases, the programmability of the final design may be the drive factor for using a DSP.

The saving in design time makes a programmable solution very appealing, but adds up to this is

the increasing demand for multi-standard devices. Devices such as smart phones and tablets, for

example, support WiFi and LTE. Both standards are based on Orthogonal Frequency Division

Multiplexing (OFDM) and, currently, Multiple-Input Multiple-Output (MIMO) operation. If a

programmable hardware is used, it can support the two standards with the same piece of

hardware.

Based on the mentioned motivations, the goal of this work is to present the MIMO accelerator as

a programmable solution for the MIMO decoding problem for OFDM systems without

sacrificing the performance. As shown in Fig. 1.1, this work will sacrifice some re-usability by

limiting our target to MIMO decoding for OFDM systems instead of general purpose DSP

design. But we aim to gain a huge performance improvement that will take this programmable

device to a performance that is very close to dedicated ASIC designs. The performance metric

that we use is the energy consumption as it is the limiting factor of hardware performance on

mobile devices.

Fig. 1.1. Our goal compared to programmable hardware (such as DSP) and dedicated ASICs

Re-usability

P
er
fo
rm
an
ce

Programmable
Hardware

Dedicated
ASIC

Target

Ideal
Target

 4

With a complete framework for MIMO decoder implementation, the MIMO accelerator almost

completely eliminates the effort and time for the hardware circuit design without compromising

the hardware requirements. The MIMO accelerator framework builds upon a complex-vectors-

based processor that targets the MIMO decoding problem. Before diving into the MIMO

accelerator details, a brief introduction for MIMO and OFDM operation is presented.

1.1.	 MIMO	 and	 OFDM	 Operation	

Most, if not all, of the recently released (and the upcoming in the near future) wireless-

communication standards are based on MIMO-OFDM operation. This applies to small-scale

modern wireless data networks such as the 802.11 wireless LAN standard [1], and also applies to

large-scale cellular systems such as WiMAX [2] and LTE [3] (and its enhanced version LTE-A

[4]) that are considered 4G candidates. As this work focuses on MIMO decoders for OFDM

systems, this section will give a brief introduction to both MIMO and OFDM operation.

1.1.1. MIMO	 and	 Spatial	 Multiplexing	

A MIMO system uses multiple antennas at both ends of the system – the transmitter and the

receiver. For a narrow-band system, Fig. 1.2 shows a simple diagram for a transmitter with M

antennas and a receiver with N antennas. Each antenna at the receiver side receives signals from

all the M transmitting antennas with different channel coefficients. This is called an MxN MIMO

system and can be represented in a matrix format as

𝑦!
𝑦!
⋮
𝑦!

=

ℎ!!
ℎ!"

⋯ ℎ!!
ℎ!!

⋮ ⋱ ⋮
ℎ!! ⋯ ℎ!"

.

𝑥!
𝑥!
⋮
𝑥!

+

𝑧!
𝑧!
⋮
𝑧!

 (1.1)

 5

Fig. 1.2. Channel coefficients for M transmitters and N receivers

Where 𝑦! to 𝑦! are the received symbols at the N receive antennas and 𝑥! to 𝑥! are the

transmitted symbols from the M transmit antennas. ℎ!" is the channel coefficient from the

transmit antenna m to the receive antenna n. And 𝑧! to 𝑧! are the AWGN. For simplification,

equation (1.1) can be rewritten as

𝒚 = 𝐻.𝒙+ 𝒛 (1.2)

Where 𝒚 is the received vector, 𝒙 is the transmitted vector, 𝒛 is the noise vector, and 𝐻 is the

channel matrix.

Based on the channel characteristics and the receiver signal-to-noise ratio (SNR), a transmitter

can send a different data stream per antenna to increase the system throughput (capacity), or it

can use the antennas for redundancy to increase the system reliability. In a high scattering

environment, a city for example, a channel can support more independent paths. This is reflected

in the rank of the channel matrix H; a higher rank means more independent paths. In such a case,

the transmitter will transmit M data streams over the M transmit antennas in the same time slot

Tr
an

sm
itt

er . . .

R
eceiver. .

 .

1

2

M

1

2

N

h11

h12

h1N

h21 h22

h2N

hM1 hM2

hMN

 6

and frequency band, which is called spatial multiplexing given the fact that the antennas are

scattered in space. For spatial multiplexing without any added diversity, the receiver needs a

number of antennas (N) to be the same as the number of spatial data streams leading to an NxN

system.

If the channel status doesn’t allow multiple data streams, a MIMO system can be used to

introduce diversity. A single data stream can be transmitted over a 1xN system to introduce

receiver diversity. Techniques such as selection combining, threshold combining, and maximal-

ratio combining can be used to increase the effective receiver SNR for better reliability [5]. A

single data stream can also be transmitted over an Mx1 system to introduce transmitter diversity

by applying techniques such as Alamouti scheme or space-time block codes (STBC) in general

[6].

In general, a system doesn’t have to be limited to either use spatial multiplexing or spatial

diversity. A combination of the two may be used to maximize the benefit from the available

hardware. Adaptive systems can change from an antenna configuration to another or from

introducing diversity to multiplexing based on channel status and variation [7]. In this

dissertation, a spatial multiplexing system – with the same number of antennas at the two sides –

is always assumed except if mentioned otherwise.

1.1.2.	 OFDM	 for	 Wide	 Band	 Signaling	

In a system that uses a wide bandwidth for higher throughputs, transmitting the data symbols

over a single carrier suffers from the frequency selectivity of the channel. Sophisticated

techniques have to be used for channel equalization at the receiver to avoid inter-symbol

 7

interference (ISI). An OFDM system avoids this problem by dividing a wide channel into a

number of narrow sub-channels in a hardware-efficient manner.

From frequency selectivity point of view, transmitting multiple subcarriers (a subcarrier per sub-

channel) transforms the wide-band fading problem to several narrow-band fading problems, as

shown in Fig. 1.3. Narrow-band fading channel equalization can be as easy as dividing the

received symbols by a channel coefficient. From another perspective, the symbol time of a wide

band signal is very small (the inverse of the bandwidth) compared to the channel delay spread

Tm, which causes a severe ISI. By using several subcarriers, the symbol time is multiplied by the

number of subcarriers, which decreases the effect of the channel delay spread and the ISI. The

small ratio of Tm to the symbol time allows OFDM systems to introduce guard intervals to

eliminate the effect of the ISI without a big loss in throughput. A cyclic prefix is used in this

guard interval for phase continuity, reducing the linear convolution to a cyclic-convolution for

discrete systems [5].

Fig. 1.3. Each OFDM subchannel effectively suffers only flat fading

|h|

Frequency

Subchannel

 8

1.2.	 Channel	 Equalization	 for	 MIMO-‐OFDM	 Systems	

For an OFDM system, each sub-channel faces flat fading leading to a relatively easy channel

equalization task. But this comes with the cost of parallel processing requirements that result

from dividing the frequency band into a number of sub-channels. If an OFDM system uses Nsc

subcarriers, the flat-fading channel equalization has to be repeated Nsc times. And for MIMO-

OFDM, each subcarrier carries a MIMO signal. MIMO signaling transforms the equalization

problem formulation and solution into complex matrix operations. For a spatial-multiplexing

MIMO system, with Nrx receive antennas, the complexity of an equalizer increases exponentially

with Nrx. These extensive computation requirements for both OFDM and MIMO signaling raise

the challenges for the hardware implementation of MIMO-OFDM channel equalizers.

Fig. 1.4 shows a simplified block diagram for a 2x2 MIMO-OFDM transceiver. In the

transmitter side, the data bit stream is scrambled, encoded, interleaved, and then divided into the

MIMO spatial streams. As shown in Fig. 1.4, many elements throughout the transceiver are

repeated for the MIMO operation. The Inverse Fast Fourier Transform (IFFT) is used at the

transmitter side to construct the time-domain OFDM signal in a hardware efficient manner. The

inverse operation (FFT) is used on the receiver side to reconstruct the frequency-domain OFDM

signal. In addition to the reverse operations of the transmitter, a MIMO-OFDM receiver

performs extra operations for timing-synchronization – such as packet and symbol timing

detection – and extra operations for frequency synchronization – such as the frequency offset

estimation and correction.

 9

Fig. 1.4. A block diagram for a 2x2 MIMO-OFDM system

The receiver block of interest in Fig. 1.4 is the MIMO decoder. A MIMO decoder carries the task

of channel equalization for a MIMO system. A receiver uses a preamble and pilots in the system

data frame structure to estimate the channel coefficients [1-3]; a coefficient is estimated for every

transmit-receive antenna pair to form a channel matrix. This is repeated for each subcarrier. A

MIMO decoder then takes these channel estimates and uses them to estimate the transmitted data

symbols using the received data symbols.

To describe the MIMO decoder operation and various algorithms, equation (1.3) repeats the

model of equation (1.2) but for a MIMO-OFDM system. If 𝒚! 𝑛 is the received data vector at

the MIMO decoder input for a subcarrier index i and OFDM symbol with time-index n, then

𝒚! 𝑛 = 𝐻! .𝒙! 𝑛 + 𝒛![𝑛] (1.3)

𝒚! 𝑛 is a complex vector of size 𝑁!"×1, where 𝑁!" is the number of receive streams (antennas).

𝐻! is the 𝑁!"×𝑁!" estimated channel matrix for subcarrier i, assuming the same number of

Scrambler Encoder Interleaver

Bit-Level Processing

Bit Stream Stream
Parser

QAM
Mapper

QAM
Mapper

IFFT

IFFT Cyclic Shift CP
Insertion

CP
Insertion

Analog &
RF

Analog &
RF

Cyclic Shift CP
Removal

CP
Removal

Analog &
RF

Analog &
RF

MIMO

Decoder

QAM
Demapper

QAM
Demapper

Stream
De-Parser

Bit-Level
Processing

Bit Stream

Channel
Estimation

AGC

AGC

Packet
Detection

Symbol
Timing

&
Sampling

Sync

Freq. Offset
Estimation

Freq. Off.
Correction

Freq. Off.
Correction

FFT

FFT

C
hannel

 10

antennas on both sides of the channel (spatial multiplexing). 𝒙! 𝑛 is the 𝑁!"×1 transmitted

complex data vector for subcarrier i and OFDM symbol n. And 𝑧! 𝑛 is the AWGN vector of size

𝑁!"×1. A MIMO decoder task is to estimate the transmitted data vector 𝒙![𝑛] for every

subcarrier i and OFDM symbol n.

1.2.1.	 Linear	 MIMO	 Decoders	

MIMO decoding algorithms can be divided into two groups: linear and non-linear MIMO

decoders. A linear MIMO decoder is based on the computation of the inverse of the channel

matrix H – or a variant of it. The received symbols are then multiplied by the inversion result, W,

as shown in equation (1.4), omitting the time and subcarrier indexes for brevity.

𝒙 =𝑊𝒚 =𝑊𝐻𝒙+𝑊𝒛 (1.4)

Where 𝒙 is an estimation of the transmitted vector 𝒙.

The direct implementation of a linear MIMO decoder is a Zero Forcing (ZF) decoder. In ZF, the

W matrix is the inverse of the channel matrix (𝑊 = 𝐻!!). The pseudo-inverse of the channel

matrix, equation (1.5), is used to guarantee an inverse.

𝑊!" = (𝐻!𝐻)!!𝐻! (1.5)

Where 𝐻! indicates the Hermitian transpose (complex-conjugate transpose) of the channel

matrix H.

The ZF algorithm suffers from noise enhancement in highly faded channels [8][9]. The channel

inverse in such cases boosts the amplitude (power) of the noise vector 𝒛, which leads to a SNR

reduction that directly affects the BER and PER of the system. To avoid this problem, the

 11

Minimum Mean-Square Error (MMSE) linear MIMO decoder takes the noise variance into

account for computing the W matrix [8][5], equation (1.6).

 𝑊!!"# = (𝐻!𝐻 + 𝑁!𝐼)!!𝐻! (1.6)

Where 𝑁! is the noise variance and 𝐼 is the identity matrix.

The hardware implementation of a linear MIMO decoder – whether it is a ZF or a MMSE

decoder – mainly requires matrix-matrix multiplication, vector-matrix multiplication, and matrix

inversion. In the literature, hardware implementation of MMSE focuses on efficiently

implementing matrix inversion by relaxing the hardware requirements in terms of area and

throughput – such as [10], [11], [12], [13], and [14]. The hardware implementation in [10] is

based on the Sherman-Morrison formula [15] as a special case of the matrix inversion lemma.

While in [11], [12], [13], and [14] the hardware implementation is based on a QR factorization of

the matrix-to-be-inverted.

A QR factorization of a matrix A (𝐴 = 𝑄𝑅) represents the matrix as a multiplication of a unitary

matrix Q and an upper-triangular matrix R. A unitary matrix is a matrix whose inverse is the

Hermitian transpose of the matrix (𝑄!𝑄 = 𝐼). And the matrix inversion of an upper-triangular

matrix is simple compared to a regular matrix [11]. By performing the QR factorization for the

matrix to-be-inverted in 𝑊!" or 𝑊!!"# , the hardware requirements will be reduced to

computing the matrix inverse of a triangular matrix as shown in equation (1.7).

𝐴!! = (𝑄𝑅)!! = 𝑅!!𝑄!! = 𝑅!!𝑄! (1.7)

 12

In [16], a matrix-inversion-free implementation of the MMSE is reported based on a higher order

QR factorization. Based on the notions in equation (1.6) for 𝑊!!"#, and assuming the channel

matrix H to be of size 𝑁!"×𝑁!", a matrix G can be formed and QR-factorized such as

𝐺!!!"×!!" =
𝐻!!"×!!"
𝑁!𝐼!!"×!!"

= 𝑄!!!"×!!"𝑅!!"×!!" =
𝑄!,!!"×!!"
𝑄!,!!"×!!"

𝑅!!"×!!" (1.8)

Where 𝑄 is a unitary matrix and both 𝑄! and R are upper-triangular matrices. From this

2𝑁!"×𝑁!" QR factorization, the channel matrix can be rewritten as

𝐻 = 𝑄!𝑅 , 𝐻! = 𝑅!𝑄!! (1.9)

And

𝑅!! = !
!!
𝑄! (1.10)

Based on (1.9), (1.10), and the fact that 𝑄 is a unitary matrix, 𝑊!!"# can be rewritten as

𝑊!!"# = 𝐻!𝐻 + 𝑁!𝐼 !!𝐻! = !
!!
𝑄!𝑄!! (1.11)

Using this technique for a MMSE MIMO decoder reduces the hardware requirements to a single

QR factorization, a matrix multiplication, and a reciprocal calculation.

1.2.2.	 Maximum-‐Likelihood	 MIMO	 Decoders	

In a linear MIMO decoder, an explicit inverse of the channel matrix, or a variant of it, is

calculated as an initial step. The inversion result is then multiplied by the received vector in a

linear equation to eliminate the channel effect. Non-linear MIMO decoders follow a different

route. Maximum-Likelihood (ML), as a non-linear MIMO decoder, follows a more intuitive way.

In a ML decoder, an exhaustive search in all possible vectors is done to find the best candidate to

be considered the received vector. This search detects the minimum Euclidean distance between

 13

the received vector and each possible vector if it is to be received, as shown in the following

equation.

𝒙 = 𝑎𝑟𝑔 min
𝒙!!!!"

𝒚− 𝐻𝒙 !

 (1.12)

Where P is a pool of all constellation points and 𝑁!" is the number of receive streams.

The complexity of a direct implementation of equation (1.12) in a ML MIMO decoder

exponentially increases with both the number of constellation points and the number of received

streams, 𝑁!" [17]. And for an OFDM system, this calculation has to be repeated for 𝑁!"

subcarriers. To avoid the exhaustive search of a ML decoder, more efficient search methods,

such as Sphere Decoder (SD), is used.

In a SD, the received vector 𝒚 is considered a point in a space with 𝑁!" dimensions. A candidate

vector in the pool of possible vectors, or points, is excluded if its distance from 𝒚 is greater than

a radius 𝑑 of a hypothetical sphere that spans all the 𝑁!" dimensions. The choice of this radius 𝑑

is a design problem; it may depend on the SNR for example. A point survives if it passes the test

of equation (1.13).

𝒚− 𝐻𝒙 ! < 𝑑! (1.13)

Where 𝒙 is a candidate point, which is a vector with 𝑁!" elements and each elements is a

constellation point.

To reduce the complexity from an exhaustive search, SD starts with a QR factorization for the

channel matrix H.

 14

𝒚− 𝑄𝑅𝒙 ! < 𝑑! (1.14)

Given the fact that a unitary transformation doesn’t affect a vector’s norm, equation (1.14) can

be modified to be

𝑄!𝒚− 𝑅𝒙 ! < 𝑑! (1.15)

𝒍− 𝑅𝒙 ! < 𝑑! , 𝒍 = 𝑄!𝒚 (1.16)

Then based on the triangular matrix R, equation (1.16) can be expanded to

𝑙! − 𝑟!,!𝑥!

!!"

!!!

!!!"

!!!

< 𝑑!

𝑝!!
!!"

!!!

< 𝑑! , 𝑝!! = 𝑙! − 𝑟!,!𝑥!

!!"

!!!

!

 (1.17)

Where 𝑙!, 𝑟!,!, and 𝑥! are elements of 𝒍, 𝑅, and 𝒙 respectively.

Equation (1.17) is the base for the SD reduction in the candidate search. If only one term, 𝑝!!, of

the 𝑁!" terms of the outer summation of equation (1.17) dissatisfies the condition, then the whole

candidate vector 𝒙 dissatisfies the condition. A search can then be considered a tree that starts

with the simpler calculation of 𝑝!!"
! . If for a particular 𝒙 the value of 𝑝!!"

! came out to be greater

than 𝑑!, then all candidates that share the 𝑁!" th element of this particular 𝒙 are excluded from the

candidate search. For the remaining candidates, on the first level of the tree, 𝑝!!"
! + 𝑝!!"!!

! is

calculated. When this calculation exceeds the limit, all candidates that share the last two

elements of the candidate-under-test are excluded. This continues until all 𝑁!" levels of the tree

are visited. More about this formulation of the SD and the tree explanation can be found in [17].

 15

A SD, as described, can be used to reach the maximum likelihood solution of MIMO decoding.

But its hardware implementation usually suffers from an unfixed throughput, which might

generate problems when integrated in a bigger system. Many papers for SD hardware

implementation have been published to tackle the hardware complexity and throughput

challenges such as [18][19]. Some SD designs and variants reduce the hardware complexity on

the expense of not guaranteeing ML detection, such designs are usually called near-ML or close-

to-ML sphere decoders [20].

1.2.3.	 Singular-‐Value	 Decomposition	 for	 MIMO	 Decoding	

In a MIMO system, each receive-antenna gets a version of the data that is transmitted by each

and every transmit-antenna. The channel effect on those data paths forms the channel matrix H,

as discussed. The complexity of the MIMO decoder rises from the matrix operations, or the

exponentially increasing exhaustive search, that is needed to estimate the received data. Using a

Singular-Value Decomposition (SVD) on the channel matrix is a mean to decouple the data

streams on the receiver side. This decoupling transforms the problem of MIMO decoding 𝑁!"

correlated data streams to decoding 𝑁!" Single-Input Single-Output (SISO) data streams [5].

The SVD of the channel matrix is a factorization of the channel matrix H into two unitary

matrices, 𝑈 and 𝑉, and a diagonal matrix Σ.

𝐻 = 𝑈Σ𝑉! (1.18)

In the literature, as shown in equation (1.18), the unitary matrix 𝑉 is usually stated in its

Hermitian transpose form for a reason that will be clear shortly.

 16

If the transmitter has channel state information, it multiplies the transmit vector 𝒙 by the unitary

matrix 𝑉, as shown in equation (1.19)

𝒙 = 𝑉𝒙 (1.19)

Then the received signal can be written as

𝒚 = 𝐻𝒙 = 𝑈Σ𝑉!𝑉𝒙 = 𝑈Σ𝒙 (1.20)

And given the fact that 𝑈 is a unitary matrix, the receiver calculates

𝒚 = 𝑈!𝒚 = 𝑈!𝑈Σ𝒙 = Σ𝒙 (1.21)

This way, each element in the 𝒚 vector depends on one element in the 𝒙 vector, as Σ is a diagonal

matrix. The receiver can deal with the MIMO signal as a group of SISO signals.

The hardware complexity of this way of decoding the MIMO signal is in the implementation of

the SVD itself [21][22]. There is also the necessity of giving the transmitter information about

the channel state. The channel information is usually available on the receiver side, and it adds to

the latency of the system to supply the transmitter by this information as well.

The SVD can also be used to simplify the matrix inversion of linear MIMO decoder. The inverse

of the unitary matrices (𝑈 and 𝑉) is just the Hermitian transpose. And the inverse of the diagonal

matrix is to invert the diagonal elements.

1.2.4.	 Iterative	 MIMO	 Decoders	

One of the methods that can be used for MIMO decoding is to perform the decoding task

iteratively. An iterative decoder starts to decode one of the 𝑁!" receive streams by considering

 17

the other 𝑁!" − 1 signal as noise or interference. After decoding that first signal, the receiver

subtracts its effect from the rest of the receive streams. The decoder then repeats the operation

over the remaining 𝑁!" − 1 streams. An example for iterative decoding is the Vertical Bell-labs

Layered Space-Time (V-BLAST) architecture [23][24].

Despite the simplicity of the algorithm, iterative decoding suffers from two drawbacks. First is

the error propagation. An error in decoding the first stream affects the decoding of the remaining

streams. To reduce the effect of error propagation in V-BLAST, the decoder starts the iterations

by the stream with the highest SNR. Second drawback is the latency in the system due to the

need of completely decoding a stream before starting the next. The iterative decoding is

simplified by starting with QR decomposition [25]. In V-BLAST, this QR is sorted to start with

the highest SNR, as mentioned before.

1.3.	 Outline	

Based on this brief introduction about our goal and motivations, and after going through a

description of MIMO, OFDM, and MIMO decoding algorithms, the next chapter (chapter 2)

gives an overview of the MIMO accelerator hardware, and how it can be used for MIMO

decoding of OFDM systems.

Chapter 3 goes through some of the hardware implementation challenges and tradeoffs. It will

show how the processing core, memory access, and system integration are all optimized for a

better performance in terms of throughput and energy consumption.

 18

Chapter 4 presents the software part of the MIMO accelerator. It describes the hardware

parameters and how it can be used and configured. It also describes the accelerator programming

language and tool flow.

Chapter 5 discusses a prototype chip for the MIMO accelerator. The chip test setup and

measurement results are discusses in details. This chapter also compares the test results with

state of the art ASIC implementations.

Finally this dissertation concludes with a list of contributions and possible future work.

 19

	 2.	 MIMO	 Accelerator	 Hardware:	 Overview	
The MIMO accelerator is a programmable device that targets MIMO decoding operations for

MIMO-OFDM systems. To achieve this task, the MIMO accelerator is required to be able to

implement the MIMO decoder algorithms that are reviewed in the previous chapter. This chapter

will go through the hardware implementation of the MIMO accelerator that allows it to cover the

mentioned algorithms.

2.1.	 Top	 View	 of	 the	 Accelerator	

The accelerator follows the hardware architecture of a processor, as shown in Fig. 2.1. It is

divided into a data path and a control path. The data path of the accelerator depends on a

complex-matrix-based processing core. The processing core performs all the matrix operations

that are necessary for MIMO decoding implementation and its pre-processing requirements. The

processing core consists of four separate units: an addition/subtraction unit, a reciprocal unit, a

multiplication unit, and a rotation unit. The next section will give more details about those four

units.

The data path is completed by the data memory. This memory carries all the variables that are

used as operands for the matrix operations and that are also used to store the operation results.

Given the problem that the accelerator is designed to solve, all the variables in the data memory

are matrices that are composed of 𝑁!"×𝑁!" elements (where 𝑁!" is the number of receive

antennas), and each element is a complex-valued number. This data memory is connected to the

processing core by two groups of multiplexers: the core-input switch and the memory-input

 20

switch. The core-input switch delivers the right variables to the right inputs of the processing

core based on the running instruction. And the same applies for the memory-input switch as it

delivers the operation result from the right processing core output to the right ports of the data

memory.

Fig. 2.1. MIMO Accelerator block diagram

The control path of the MIMO accelerator consists of two blocks: the instruction memory and

the controller. The instruction memory carries the programs that are executed on the accelerator.

Those programs are in the form of pre-decoded instructions that directly controls all parts of the

data path. The choice to use pre-decoded instructions gives the accelerator user complete

Core-Input Switch

Memory-Input Switch

Controller

Phase
Memory

D
at

a
M

em
or

y
Instruction M

em
ory

Address

Selection

Selection

D
at

a
D

at
a

Address

A
dd

re
ss

Processing Core

Multiplier
Unit

Rotation
Unit

1/X Unit
Adder/

Subtractor
Unit

 21

flexibility in utilizing the accelerator resources. While a single instruction is wide (326 bits in the

accelerator prototype), the number of instructions that are needed to run a complete MIMO

decoder is limited (doesn’t go higher than 64 instructions). The small number of instructions is a

result of the parallel processing that is introduced in the processing units, as will be discussed

later.

The controller, the second part of the control path, is mainly a Finite-State Machine (FSM) that

controls the timing of memory read, memory write, and instruction execution. It controls the

instruction counter, which is the address of the instruction memory. And it also controls the

subcarrier counter, which is the address of the data memory (the relation between the OFDM

subcarriers and data memory will be discussed in the next chapter). This FSM decides when to

increment each counter based on the execution progress and the instruction being executed.

Fig. 2.1 shows three memories, both the data and the instruction memories have been discussed.

The third memory is the phase memory. The phase memory is an SRAM that is limited to the

storage of the rotation-unit phase outputs. This stored phase can be reused as the input to the

internal blocks of the rotation unit for future instructions.

2.2.	 Processing	 Core	

The processing core is the hardware block that is used to perform all the mathematical operations

needed for the MIMO decoding algorithms that are reviewed in the previous chapter. It consists

of four processing units. This section gives a detailed look into each of these units for four

receive streams (𝑁!" = 4).

 22

2.2.1.	 Addition	 and	 Subtraction	 Unit	

First processing unit is the addition/subtraction unit (or simply the addition unit). A block

diagram of this unit is shown in Fig. 2.2. The inputs of the addition unit are two sets of two

vectors of 𝑁!" elements each. This means that the addition unit performs two two-vector

additions in one execution cycle, hence the eight adders shown in Fig. 2.2 for 𝑁!" = 4. Each of

the elements of these vectors is a complex number, leading to the fact that each addition block in

Fig. 2.2 is in fact two adders. Based on a control bit from the pre-decoded instruction, the

performed operation can be an addition or subtraction.

Fig. 2.2. Block diagram for the addition/subtraction processing unit for four receive streams

• Nrx is the number of receive streams (4 in this figure, but it might change as will be explained)
• C is the precision of one complex number

+c +c +c +c +c +c +c +c

D D D

2*
N

rx
*C

2*
N

rx
*C

Operand 1 Operand 2
Add/Sub

D

2*
N

rx
*C

1*
C

+-

A
dd

/S
ub

1*
C

1*
C

1*
C

 23

The addition unit is essential for matrix addition and subtraction, which is needed – for example

– in the formulation of the MMSE matrix that should be inverted (equation 1.6). Another

example is the metric calculation of ML and SD MIMO decoders.

2.2.2.	 Reciprocal	 Unit	

The reciprocal unit is used to invert real numbers. Its main usage is in signal scaling, such as the

multiplication by the inverse of the noise standard deviation in MMSE (equation 1.11). For four

receive streams, it consists of four real dividers as shown in Fig. 2.3. Each divider directly

implements a signed long division operation with the dividend fixed on +1. A reciprocal

instruction controls the core-input switch to choose which variable matrix elements are used as

operands. The divisors are routed from the data memory as the real parts or the imaginary parts

of the routed complex numbers. The choice between real or imaginary parts to be the divisors is

controlled by the pre-decoded instruction as well.

Fig. 2.3. Block diagram for the reciprocal processing unit for four receive streams

• Nrx is the number of receive streams (4 in this figure)
• R is the precision of one real number

1/X 1/X 1/X 1/X

N
rx
*R

1*R 1*R
1*R 1*R

N
rx
*R

1*R 1*R 1*R 1*R

 24

2.2.3.	 Multiplication	 Unit	

Multiplication operations are essential in any MIMO decoding algorithm. It is used for matrix

formulation of linear decoders, as explained in equations (1.5) and (1.6). And it is also used to

perform the actual decoding in the form of multiplying the received symbols and the W matrix in

a linear decoder. In other decoders, such as ML, it is also essential. The required multiplication is

always based on matrix operations. It can be vector-matrix multiplication or matrix-matrix

multiplication. The structure of the multiplication unit performs this intensive computation by

implementing dot products, as shown in Fig. 2.4.

Fig. 2.4. Block diagram for the multiplication processing unit for four receive streams

• Nrx is the number of receive streams (4 in this figure)
• C is the precision of one complex number
• Re and Im stand for Real and Imaginary parts of a complex number

(.) (.) (.) (.)

Nr
x*

C

N
rx

*N
rx

*C

N
rx

*N
rx

*C

N
rx

*C

1*C

D D

D D D D

*c *c *c *c

N
rx

*C

N
rx

*C

1*
C

1*C

1*
C

1*
C

1*
C

1*
C

Complex Adder

D

1*
C

Operand 1 Operand 2

+
1*

C
Re

Im

1*
C

ReIm

+ +
-1

x x x

+ +
-1

R
e Im

DDDDDD

DDD

 25

The multiplication unit is composed of 𝑁!" dot product blocks. Each block computes the dot

product of two complex vectors (𝑐 = 𝒂!𝒃, where 𝒂 and 𝒃 are column vectors and 𝑐 is a complex

number). And each vector consists of 𝑁!" elements. The block diagram of Fig. 2.4 is based on

𝑁!" = 4. Only three real multipliers are used to implement the complex multiplication instead of

four, as shown in Fig. 2.4. This is explained in equations (2.1) to (2.3) as follows:

𝐼𝑓 𝑥 = 𝑎 + 𝑖. 𝑏 = 𝑐 + 𝑖.𝑑 ×(𝑒 + 𝑖. 𝑓) (2.1)

𝑎 = 𝑐. 𝑒 − 𝑑. 𝑓 𝑎𝑛𝑑 𝑏 = 𝑑. 𝑒 + 𝑐. 𝑓 (2.2)

Then 𝑎 and 𝑏 can be rewritten as:

𝑎 = 𝑐. 𝑒 + 𝑓 − 𝑓. 𝑐 + 𝑑 𝑎𝑛𝑑 𝑏 = 𝑐. 𝑒 + 𝑓 + 𝑒. (𝑑 − 𝑐) (2.3)

This multiplication unit with this parallel processing allows a complete vector-matrix

multiplication to be executed in one instruction. A complete matrix-matrix multiplication can be

performed in 𝑁!" instructions.

2.2.4.	 Rotation	 Unit	

The rotation unit is responsible of all matrix factorization operations such as QR decomposition

and SVD. These decompositions are used in MIMO decoding as a part of the decoding operation

itself or as pre-processing operations to simplify the decoding task.

The hardware of the rotation unit is based on COordinate Rotation DIgital Computer (CORDIC)

blocks, or more precisely complex CORDIC blocks as shown in Fig. 2.5. For four receive

streams (𝑁!" = 4), four complex rotation CORDICs are used for vector rotation and one

complex vectoring CORDIC is used for phase detection.

 26

Fig. 2.5. Block diagram of the rotation processing-unit for four receive streams.

• CV stands for Complex Vectoring
• CR stands for Complex Rotation
• 𝑁!" is the number of receive streams
• C is the precision of one complex number

A complex vectoring CORDIC consists of two vectoring CORDICs, as shown in Fig. 2.6. Those

two vectoring CORDICs detect two phases. The first phase is an actual measured phase of

complex number, and the other phase is computed from the absolute values of two numbers. On

the other hand, a complex rotation CORDIC consists of three simple rotation CORDICs that use

CR
CORDIC

CR
CORDIC

CR
CORDIC

CR
CORDIC

CV
CORDIC

PP

PP
(N

rx
+1

)*
C

(N
rx

+1
)*

C

1*C

Operand 1 Operand 2

1*
C

1*
C

2*
C

1*
C

1*
C

2*
C

1*
C

1*
C

2*
C

1*
C

1*
C

2*
C

1*
C

1*
C

2*
C

From
Phase

Memory

2*
C

2*
C

2*
N

rx
*C

 27

the two phases of the complex vectoring to rotate a complex vector. A block diagram of complex

rotation CORDIC is shown in Fig. 2.7.

Fig. 2.6. Complex vectoring CORDIC

Fig. 2.7. Complex rotation CORDIC

The direct usage of the combination of a complex vectoring and a complex rotation CORDICs is

in nulling an element of a complex matrix, which is the base of matrix decomposition using

Givens rotations [26]. To null a complex element C of a 2x2 matrix – as shown in equation (2.4),

the unitary transformation that is shown in the same equation is used.

cos𝜃 sin𝜃𝑒!!"
−sin𝜃 cos𝜃 𝑒!!"

𝐴 𝐵
𝐶 𝐷 ,𝑤ℎ𝑒𝑟𝑒 𝜃 = 𝑡𝑎𝑛!! 𝐶 𝐴 𝑎𝑛𝑑 ∅ = ∅! (2.4)

Vectoring CORDIC

Re(C) Im(C)

Vectoring CORDIC

|C| ϕ

θ

Re(A)

Rotation CORDIC

Rotation CORDIC

ϕ

θ

Re(D) Im(D)Re(B) Im(B)

Rotation CORDICθ

Re(B_new) Im(B_new) Re(D_new) Im(D_new)

 28

The complex vectoring computes ∅ and 𝜃 assuming 𝐴 is a pure real number. For a 2x2 matrix,

the transformation is applied on the two column vectors of the matrix; this results in the need of

two complex rotation CORDICs. For a 4x4 matrix as in our rotation unit, the four elements of

the unitary transformation of equation (2.4) replace the corresponding elements of a 4x4 unit

matrix. The unitary transformation is then applied to the four column vectors of the 4x4 matrix,

hence the need of four complex rotation CORDICs.

Fig. 2.5 also shows a hardware block that is called phase processing (PP). This PP is shown in

Fig. 2.8. Part of the pre-decoded instruction controls this PP to select the source of the two

phases that are used in the complex rotation CORDICs. This phase can be directly routed from

the complex vectoring CORDIC. It can also be a one-instruction-delayed version of the complex

vectoring output, which is useful in formulating the unitary matrices in the process of running a

factorization algorithm. Phases read from the phase memory can also be used. The phases stored

in the phase memory can be a result of a regular processing operation and it can be the output of

an earlier instruction’s complex vectoring operation. The PP gets the name from the fact that it

performs the processing that is needed on the phase to decide the sign of each micro-rotation

inside the three rotation CORDICs of each complex rotation CORDIC.

Fig. 2.8. Phase Processing (PP) block diagram as a part of the rotation unit.

Phase Processing (PP)

From CV
CORDIC

From Phase
Memory

D
/ 2

/ (-2)

Convert
Phase to
CORDIC

Micro-
Rotation
Vector

 29

The rotation unit is equipped with a group of multiplexers for signal re-routing. These

multiplexers are controlled by the pre-decoded instruction and can be used to reconfigure the

complex CORDICs to perform different operations. For example, the complex vectoring

CORDIC signals can be re-routed to be as shown in Fig. 2.9. These modified connections allow

the two simple vectoring CORDIC of the complex CORDIC to work independently to pick up

phases of the complex inputs. This, combined by a re-routed version of the complex rotation, can

be used for a unitary transformation for phase elimination of a complex matrix element. Re-

routed versions of the complex rotation CORDIC are shown in Fig. 2.10.

Fig. 2.9. A rerouted version of the complex vectoring CORDIC

Fig. 2.10. Rerouted versions of the complex rotation CORDIC.

The left figure performs two completely independent rotations. The right figure can be used to rotate real vectors.

Vectoring CORDIC

Vectoring CORDIC

ϕ

θ

Re ImRe Im

Rotation CORDIC

Rotation CORDIC

ϕ

θ

Re(D) Im(D)Re(B) Im(B)

Re(B_new) Im(B_new) Re(D_new) Im(D_new)

Rotation CORDICθ Rotation CORDICθ

Re(B_new) Im(B_new) Re(D_new) Im(D_new)

Re(D) Im(D)Re(B) Im(B)

 30

2.3.	 Dynamic	 Scaling	

The output precision of both the multiplication and reciprocal units is double the precision of

their inputs. This is to preserve the accuracy of the result. But for a programmable device like the

MIMO accelerator, the precision has to be preserved for the limits of the memory size and the re-

use of the same hardware for consecutive operations.

Instead of truncating a fixed part of the multiplication or division outputs, the accelerator uses

dynamic scaling [16]. Using a group of OR gates, the dynamic scaling hardware detects the most

significant non-zero bit among the absolute values of all elements of the vector output of the

current operation (whether this operation is a multiplication or division). The higher order bits

are then truncated in all elements, which guarantees that at least one vector element reaches the

most significant remaining bits with a non-zero bit. To keep the output with the same precision

of the input, the remaining bits to be truncated are taken from the least significant side. This

operation guarantees no more than 3dB quantization loss using 16-bits of precision for matrix-

matrix multiplication, compared to floating point operation. Instructions control whether the

dynamic scaling is used based on a single instruction result, or based on the result of consecutive

instructions.

2.4.	 Memory	 Switches	

The memory switches are responsible for delivering the operands from the data memory to the

processing core, and delivering the results from the processing core to the data memory. Fig.

2.11 shows block diagrams of the two switches.

 31

Fig. 2.11. Memory switches: (a) Core-Input Switch, Right, (b) Memory-Input Switch

• Nm is the number of variable matrices in memory
• Nrx is the number of receive antennas
• C is the precision of one complex number

The core-input switch, as shown in Fig. 2.11a, is a two-level multiplexing circuit. The first level

takes the data memory output as an input. This data memory output is a group of all complex

matrix variables. The first multiplexing level selects one variable matrix and delivers its NrxxNrx

elements to the second multiplexing level. The second multiplexing level has a number of

multiplexers that is equal to the number of complex numbers in one processing core operand.

That means it has NrxxNrx multiplexers, each of those has its output connected to one complex

number of the operand. The inputs of each multiplexer of the second level are all the elements of

the matrix that is chosen by the first level. This allows delivering any matrix element to any

operand output. This permits operations on row vectors, column vectors, matrix diagonals, or

any arbitrary combination of complex numbers. The selection lines of the two multiplexing

levels are part of the pre-decoded instruction, which gives the programmer a complete flexibility

N
m

*N
rx

*N
rx

*C

From Data
Memory

N
rx

*N
rx

*C Matrix Selection

1 2 .. Nrx*Nrx

Repeat

Nrx*
Nrx*

C

1*
C

1*
C

1*
C

N
rx

*N
rx

*C Correct Order for
Processing

Operand 1

From Instruction
Memory

2*
N

rx
*C

From Processing Core

2*
N

rx
*C

2*
N

rx
*C

(a)

2*
N

rx
*C

1 2 .. 2*Nrx*Nrx

Repeat

2*
Nrx*

C

1*
C

1*
C

1*
C

2*
N

rx
*N

rx
*C Correct Order for

Memory Storage

To Data
Memory

From Instruction
Memory

(b)

Processing Unit Selection

 32

on choosing operands. The complete core-input switch of Fig. 2.11a is repeated twice in

hardware, one switch for each operand.

The memory-input switch has a similar structure, as shown in Fig. 2.11b. Its first level of

multiplexing chooses one of three processing core outputs: the addition/subtraction unit output,

the rotation unit output, or the dynamic scaling output (which is the output of the multiplication

unit or the reciprocal unit). The second level of multiplexing contains a multiplexer for each

complex number of two matrices of the data memory input. The choice of those two matrices is

controlled by the instruction. Each multiplexer selects any complex number from the chosen unit

output. This again gives the flexibility of arranging the result as a row vector, column vector,

matrix diagonal, or an arbitrary arrangement.

 33

3.	 MIMO	 Accelerator	 Hardware:	
Implementation	 Challenges	 and	 Tradeoffs	
Chapter 2 gave an overview of the accelerator hardware implementation and how it can be used

to implement MIMO decoding. It also went through some of the flexibility that is given to the

programmer through the pre-decoded instructions. This chapter dives deeper into the hardware

implementation by showing some of the design challenges and how they are solved.

The main performance metric of the accelerator is energy consumption. This was always kept in

mind when the hardware is implemented. Solutions for the hardware challenges were based on

minimizing the energy consumption whether it was by reducing the power consumption keeping

the throughput, or by reducing the area keeping the same flexibility of the accelerator, which in

turn allows smaller programs and hence lower energy consumption.

This chapter will discuss six different implementation challenges and the tradeoffs that are

inspected for their hardware solutions.

3.1.	 Instruction	 Fetch	 and	 Pipeline	

The MIMO accelerator is a pipelined processor, which means that the accelerator accepts a new

instruction every clock cycle. Fig. 3.1 gives an illustration on how the accelerator handles the

instruction execution. Every clock cycle an instruction enters the accelerator pipeline starting

with an instruction fetch, which is the instruction read from the instruction memory. The second

stage in instruction processing is the operand read stage, which is reading the data memory

 34

contents that are required by the instruction and routing it to the operands through the core-input

switch. The third stage is the execution, where the operands go through the processing core. This

execution stage takes 68 clock cycles to finish as the processing core is deeply pipelined for

higher throughput. The fourth and final stage for instruction processing is the result write-back.

In this stage the processing core result is routed through the memory-input switch to the data

memory to store the result. During the first clock of an operand read for an instruction with index

n, the next instruction with index n+1 enters the fetch stage. This behavior of the accelerator (and

pipelined processors in general) means that, after the initial latency, all the four stages of

instruction processing will be running simultaneously on different instructions. A side note here

is that there isn’t a decode stage because the accelerator uses pre-decoded instruction. This way

the user has full access to the accelerator hardware.

Fig. 3.1. Accelerator instruction pipeline with four stages

The challenge in the hardware implementation of this processing cycle arises from the bit width

of the instruction. The pre-decoded instructions of the accelerator are 326 bits wide, as shown in

Instruction
Index

Time

Instruction
Fetch

Execute Result
Write-Back

Operand
Read

68 Clocks

 35

the instruction structure in Fig. 3.2. As a new instruction enters the accelerator pipeline, the old

instruction should be kept registered throughout its processing stages. This is called pipelining

the instruction by delivering it from one register to the next, and the number of registers is the

number of the pipelining clock cycles. As the pipeline cycles are long (the execution stage is 68

clock cycles) and the instruction is wide, those instruction pipeline registers occupy a huge area.

Fig. 3.2. Accelerator pre-decoded instruction structure

The solution of this waste in area lies in the structure of the instruction that is shown in Fig. 3.2.

The processing configuration part of the instruction is the only part that is needed during the

execution stage; it controls the internal operations of the execution like the re-routing

multiplexers. This means that the processing configuration part of the instruction has to be

pipelined throughout the execution stage, which is acceptable given the small width (15 bits).

The widest part, the operand selection, is only needed in the operand read stage. Its 132 bits are

divided as follows: 2 bits per operand to pick up a variable matrix, and 16x4 bits per operand to

select which element of the memory matrix (16 elements per matrix) is routed to which element

of the operand (16 elements per operand). This operand selection part can be dropped from the

long pipeline.

The problem remains in the result destination and the write mask parts. These two parts are

combined for 163 bits and they are needed in the result write-back stage. The result destination

Flow Control
16b

Proc. Config.
15b

Operand Selection
132b

Result Destination
99b

Write Mask
64b

 36

part of the instruction (99 bits) is used to route the processing core output to the data memory

input through the multiplexers of the memory-input switch. These 99 bits are divided as follows:

2 bits to choose which processing unit of the three results is used, 2x16x3 bits are used to select

which result element (out of 8 elements) is routed to which variable matrix elements (covering

two variable matrices as mentioned earlier), and 1 bit to pick-up which two matrices out of the

four are the target. The write mask (64 bits) is used to control which elements of the data

memory are overwritten by the result, and it will be discussed in the data memory section of this

chapter. Pipelining those 163 bits throughout the long processing cycle is still a waste of area.

Based on the fact that the waste in area is only caused by the write-back stage, we introduced an

extra processing stage to avoid this problem. Fig. 3.3 shows the new instruction pipeline with the

five processing stages. The extra stage is a new instruction-fetch stage that is performed directly

before the result write-back stage. Instead of pipelining the instruction from the original fetch,

we fetch it again naming the original fetch the read fetch and the second fetch is named the write

fetch. By introducing this write fetch stage, the instruction memory has two be a dual-port

memory to allow the two fetches to run simultaneously. But, on the other hand, the long and

wide pipeline registers are avoided.

 37

Fig. 3.3. Accelerator instruction pipeline with five stages after introducing the extra fetch stage

This solution introduced an area saving of 5.3% of the complete accelerator area (this includes

all memories ad processing units). This saving in area didn’t introduce any more latency to the

instruction processing. The write-fetch stage doesn’t depend on the execution stage result. The

write fetch is performed simultaneously with the last clock cycle of the execute stage.

3.2.	 Controller	 Counters	 Pipeline	

As mentioned in the previous chapter, the controller is a FSM that controls the instruction and

subcarrier counter. These two counters are the addresses for the instruction and data memories

respectively (the relation between the data memory and the OFDM subcarriers is discussed in the

next section). The subcarrier counter has to be present for a certain instruction execution during

the operand read and the result write-back stages. That means it has to be pipelined throughout

the long processing cycle. The same goes for the instruction counter; by introducing the write

Instruction
Index

Time
67 Clocks

Read
Instruction

Fetch
Execute Result

Write-Back
Operand

Read

Write
Instruction Fetch

+ Execute

 38

fetch stage, the instruction counter has to be pipelined during the processing cycle to reach the

write fetch stage.

The complete controller area, including the FSM hardware and the counters, is only 3.5% of the

area of the added registers for this pipeline. This obviously is a waste of hardware area. Given

this small area of the controller, we introduced the solution of this waste. The solution is to

repeat the complete controller hardware, including the FSM. That is to say that the accelerator

now has two instances of the controller, one to control the timing and the addresses of the read

fetch and the operand read. This controller is called the read controller. The other controller is to

control the timing and addresses of the write fetch and the result write-back. This second

controller is called the write controller. The two controllers are shown in Fig. 3.4.

Fig. 3.4. The two instances of the controller: read controller (left) and write controller (right)

The state machines of the two controllers have the same hardware structure and state tables, but

the write controller FSM is delayed from the read controller state machine. The write controller

Read
FSM

Write
FSM

From Instruction Memory

Read
Instruction
Counter

Read
Subcarrier
Counter

Write
Instruction
Counter

Write
Subcarrier
Counter

Read
Multi-Cycle

Counter

Write
Multi-Cycle

Counter

Controls Controls

Value

ValueValue

Value

To Data Memory
Address 1

To Data Memory
Address 2

To Instruction Memory
Address 1

To Instruction Memory
Address 2

C
on

tro
ls

C
ontrolsV

al
ue

V
alue

 39

Register

Bit Width
2 x Precision x Nm x Nrx x Nrx

is kept in a reset state for the duration of the latency of the processing cycle of the first

instruction until this first instruction reaches its write fetch stage.

3.3.	 Data	 Memory	 Structure	

The accelerator operation is based on complex matrix and vector operands and results. The usage

of a regular linear memory structure for complex numbers, as shown in Fig. 3.5a, is not efficient.

A linear memory will result in a huge latency to form the inputs that are required for a

multiplication operation as an example. This parallel load requirement is added to the flexibility

of forming row, column, diagonal, and arbitrary vectors to lead to the idea of using a register for

the complete data variables.

(a) (b)

Fig. 3.5. (a) Linear data memory structure, (b) One register for the data memory

• Nrx is the number of receive antennas
• Precision is the bit width for a real number
• Nm is the number of variable matrices

Fig. 3.5b shows the design of the complete data set as one register. The complete data set is Nm

variable matrices, each matrix is NrxxNrx where Nrx is the number of receive antennas, and each

Width
2 x Precision

S
iz

e
N

m
 x

 N
rx

 x
 N

rx

A

2
x

P
re

ci
si

on
 x

 N
rx

B

C D

2 x Precision x Nrx

Nm = 4

 40

matrix element is a complex number of bit width 2xPrecision (Precision is the bit width of a real

number throughout the MIMO accelerator hardware). This structure allows complete access to

all the data variables with the help of the two switches (core-input and memory-input switches).

This big register is logically divided into matrices called A, B, C, and so on. Fig. 3.5b shows this

logical division for Nm=4.

The complete data set, as shown in Fig. 3.5, is repeated for every OFDM subcarrier. The

subcarriers are independent, this allows the arrangement of the variables of all subcarriers in one

data memory, as shown in Fig. 3.6. Every memory location is dedicated to a subcarrier. This is a

return to the linear memory but with every memory location carrying a very wide word for the

complete data set of a subcarrier. A memory location carries 2048 bits for four variable matrices

(Nm=4), four receive antennas (Nrx=4), and a 32 bits complex number (Precision=16).

Fig. 3.6. Proposed data memory structure (for Nm=4)

• Nsc is the number of OFDM subcarriers
• Nrx is the number of receive antennas
• Precision is the bit width for a real number
• Nm is the number of variable matrices

A B

C D

2 x Precision x Nrx

2 x
 P

rec
isi

on
 x

N rx

S
iz

e
=

N
sc

 41

This memory arrangement is suitable for the required data access parallelism and flexibility, but

it causes a problem in the result write-back stage. A result of an instruction is a combination of

complex vectors that should replace only a small part of the data variables, based on the result

destination part of the pre-decoded instruction (Fig. 3.2). Writing a result for a subcarrier in the

memory structure of Fig. 3.6 will replace the complete data set of this particular subcarrier

leading to a loss of essential data for the remaining instructions.

Three solutions are possible for the result write-back problem. First solution is to pipeline the

complete data set of a subcarrier from the operand read stage to the result write back stage. The

result then replaces the specific required locations in the last pipeline register. This last pipeline

register is then written to memory keeping the un-overwritten variables safe. This completely

solves the problem but causes an overhead of registers that are too wide (2048 bits) and too

many (the pipeline length is the more than 68 cycles). The area penalty is 50% of the complete

accelerator area.

The second possible solution is to avoid this pipeline with the same design technique used in the

instruction pipeline problem. This is to re-read the data memory location again directly before

the result write-back stage, replace the target elements, and then write the data back in memory.

This solution requires a triple port memory. The operand read and result write-back stages are

running simultaneously (pipelined processor structure); adding another data memory access

operation requires a third port. Triple port memories are built by doubling the memory into two

dual-port memories, write in both, and then read separately. This obviously is a waste of area;

especially as the data memory is about 44% of the accelerator area (as will be detailed in Chapter

 42

5). Another way of implementing a triple port memory, as used in quad-port FPGA block

memories [27], is by overloading one port with double-frequency access and using this port as

two ports by time multiplexing. This design concept has drawbacks in terms of power and

reliability as will be discussed in section 3.5.

The third and implemented solution is to give a small waste in area by dividing the data memory

block into sectors, as shown in Fig. 3.7. A sector is an independent memory block that carries

one matrix element (a complex number) for all subcarriers. This is a combination of linear

memories leading to a small waste in area due to the overhead of each memory (sense amplifier,

decoders, etc.) but allows complete control over which data elements are replaced. All memory

sectors share the same address (read and write addresses for the two ports), but their write-

enables are separate. The write enables are part of the pre-decoded instruction (write mask in

Fig. 3.2.

Fig. 3.7. Implemented sectored data memory (for Nm=4)

• Nsc is the number of OFDM subcarriers
• Nrx is the number of receive antennas
• Precision is the bit width for a real number
• Nm is the number of variable matrices

2 x Precision

S
iz

e
=

N
sc

A11 A12 A1Nrx...
A21

ANrx1 ANrxNrx

...

C11 C12 C1Nrx...
C21

CNrx1 CNrxNrx

...

B11 B12 B1Nrx...
B21

BNrx1 BNrxNrx

...

D11 D12 D1Nrx...
D21

DNrx1 DNrxNrx

...

 43

3.4.	 Processing	 Core	 Input-‐Gating	

Fig. 3.8. Processing core after gating the four processing units

• Nrx is the number of receive antennas
• C is the bit width for one complex number

By performing complex mathematical operations with matrix operands in a deep-pipeline

fashion, the four processing units are the most power hungry blocks in the accelerator. In the

same way a regular arithmetic-logic unit (ALU) is designed, if the inputs to the four processing

units are connected directly to the outputs of the core-input switch, the four units would be

processing the two operands and just one result is selected using the memory input switch. This

Addition
Unit

Reciprocal
Unit

Multiplication
Unit

Rotation
Unit

Dynamic Scaling

2*
N

rx
*C

2*
N

rx
*C

N
rx

*R

N
rx

*N
rx

*C

N
rx

*N
rx

*C

(N
rx

+1
)*

C

(N
rx

+1
)*

C

N
rx

*R

N
rx

*C

N
rx

*C

2*
N

rx
*C

2*
N

rx
*C

N
rx

*N
rx

*C

N
rx

*N
rx

*C

Operand 1 Operand 2

D D D D D D D

P
ip

el
in

e

From
Instruction
Memory

 44

is obviously a waste of power. To avoid this extra power consumption, extra hardware is

introduced as shown in Fig. 3.8. Each processing-unit input is multiplexed between its old value

and the new value coming from the core-input switch. Moreover, a small portion of the result

destination part of the instruction is pipelined (from the read fetch stage) to provide the selection

lines for the gating multiplexers.

The decision to add extra hardware in the operands path is non-trivial. The wide operands

formed as complex matrices require wide registers and numerous parallel processing elements.

This extra hardware increases the processing core area by 2.5% in addition of adding an extra

latency stage. This cost of area and latency is acceptable as the resulting saving of power

consumption is 15% of the power consumption of the processing core

3.5.	 System	 Integration	

One of the design challenges that face the MIMO accelerator is how it will be integrated in a

complete wireless receiver (a top level to the accelerator). As the data memory is the place where

the initial values and the processing results are stored, such integration will be possible by

granting the wireless receiver direct access to the data memory. This access will enable the

receiver to exchange data with the MIMO decoder that is implemented on the accelerator.

Using a dual-port SRAM for the data memory is a necessity to achieve the required memory

access. But, being a pipelined processor, the accelerator actually uses a dual-port SRAM to allow

reading operands from a port and writing results through another port simultaneously. This

means the accelerator needs a third data-memory port for top-level access. As mentioned in

 45

section 3.3, triple port memories can be built by using two dual-port memories and perform the

write operations on the two memories simultaneously, and perform two independent read

operations. This way of implementing a triple port memory causes a huge waste of area given the

big portion the data memory is compared to the accelerator (44%).

Another way of implementing a third port for the data memory to allow top-level access is to

overload the data memory ports. Port overloading means using double the processing frequency

for the memory ports, and time multiplex a single port between two tasks. The memory hardware

is still a dual-port memory, which can be generated by a memory compiler, but the effective

result is a higher number of ports (up to four effective port). Fig. 3.9 shows an illustration to such

a design for the MIMO accelerator data memory.

Fig. 3.9. Overloading one memory port to allow top-level access to the data memory contents

Data
Memory

Double
Clock

Address
Regular Read

Address

Regular Write
Address

Input
Data

Output
Data

Write
Enable

Zeros

Regular Write
Enable

Regular
Clock

From Memory-Input Switch

To Core-Input Switch

Address

Input
Data

Output
Data

Write
Enable

Port 1 Port 2

Regular
Clock

Top Level
Address

Top Level
Data In

Top Level
Data Out

Top Level
Write Enable

 46

Port 1 in Fig. 3.9 runs on double the accelerator frequency. The address and write enables of this

port are multiplexed between the operand-read and the result write-back processing stages. Port 2

is dedicated to the top-level access. This implementation gives an advantage of complete

flexibility for the top-level to access the data memory. The top-level access doesn’t interrupt the

accelerator execution, and doesn’t require any controls from the accelerator controller for

memory access.

The port-overloading solution gives the required access for the top-level design but it has two

major drawbacks. The first is the required synchronization between the regular accelerator clock

and the memory port 1 clock. The frequency of the memory port 1 clock has to be precisely

twice the processing clock. The phases of the two clocks also have to be perfectly aligned due to

the fact that the two edges of the slow processing clock are used for memory access in the data

memory. This synchronization requirement puts a limit on the maximum clock speed that the

accelerator can work on in order to guarantee a high reliability for the final fabricated circuit.

The second drawback is the unnecessary increase in the power consumption that results from the

usage of double the clock frequency in part of the system. This power consumption is

unnecessary because this higher clock speed is not part of the accelerator processing

requirements, but it is only to provide the top-level design an access to the data memory. As the

accelerator goal is to achieve energy consumption close to dedicated designs, the extra power

consumption that is not needed for processing has to be avoided.

 47

To avoid the synchronization and extra power consumption issues, the flexibility of the top-level

access has to be sacrificed. Fig. 3.10 shows the memory access circuit that is implemented in the

MIMO accelerator.

Fig. 3.10. Multiplexing the two data memory ports between regular operation and top-level access

As shown in Fig. 3.10, the two data memory ports are multiplexed between the regular

accelerator operation (operand-read and result write-back) and the top-level access. For the top-

level design to access the data memory to read previous results or to initialize the memory with

new data, the accelerator operation has to be interrupted. This is a degradation of top-level access

Data
Memory

Regular
Clock

Address
Regular Read

Address

Input
Data

Output
Data

Write
Enable

Zeros Regular
Write Enable

Control

From Memory-Input Switch

To Core-Input Switch

Address

Input
Data

Output
Data

Write
Enable

Port 1 Port 2

Top Level
Address

Top Level
Data In

Top Level
Data Out

Top Level
Write Enable

Regular Write
Address

Control

Control Control

Top Level
Address

Zeros

Control = 0 à Regular Operation
Control = 1 à Top Level Access

0

1

0

1

0

1

0

1

 48

flexibility but results in the use of one clock for the complete accelerator design, avoiding the

extra power of a double-frequency clock and avoiding the reliability issues.

The multiplexing between the regular operation and top-level access is designed such that the

data lines are not multiplexed. Regular operation writes through port 2 and reads from port 1,

while the top-level access writes through port 1 and reads from port2. This saves the wide

multiplexers that would have been used for the wide data lines on the two memory ports.

3.6.	 Multi-‐Algorithm	 Switching	

 The MIMO accelerator is designed to be able to run different algorithms and to give the system

designed the ability to switch from an algorithm to another. Based on the way the accelerator is

used, this algorithm switching might be needed on the fly, which means switching between

algorithms without the need to re-write the instruction memory contents with a new program.

Even for one algorithm, multiple programs might be needed. For example, in linear MIMO

decoding (such as MMSE) one program is used for channel-matrix processing (inversion) and

another program is used for the actual decoding (multiplying the received symbol by the result of

channel-matrix processing). To switch between two programs that implement a single algorithm,

a receiver wouldn’t stop processing to rewrite the instruction memory.

To allow program switching, branching in the software (the program in the instruction memory)

is not enough. The top-level hardware has to be the controller of such switching. To allow the

top-level hardware to control program switching, the two most significant bits of the instruction

memory address are given as inputs to the MIMO accelerator, as shown in Fig. 3.11. This means

 49

that the instruction memory is logically divided into four sections and the top-level hardware

controls which section is being executed. Given the parallel processing in the accelerator

processing-core, a section can be as small as 64 instructions and be enough to carry the longest

possible programs (more details about programming in Chapter 4).

Fig. 3.11. Top-level control over the running program through the address of the instruction memory

Core-Input Switch

Memory-Input Switch

Controller

Phase
Memory

D
at

a
M

em
or

y

Instruction M
em

ory
Address

Selection

Selection

D
at

a
D

at
a

Address

A
dd

re
ss

Processing Core

Multiplier
Unit

Rotation
Unit

1/X Unit
Adder/

Subtractor
Unit

2 Top Level
Program Selection

 50

4.	 MIMO	 Accelerator	 Design	 Flows	 and	
Programming	
After introducing the MIMO accelerator hardware architecture and design concepts, this chapter

goes through the software side of the MIMO accelerator. This chapter focuses on programming

the MIMO accelerator by introducing its special programming language and tool flow.

Before going into the depths of the software-side of the accelerator, this chapter reviews one

more aspect of the hardware: the HDL parameters. And introduces the design flows that the

accelerator can be part of to have a complete MIMO decoder implemented on chip.

4.1.	 Hardware	 Parameters	

The MIMO accelerator hardware description in VHDL is highly reconfigurable using a set of

VHDL parameters. Those parameters control every aspect of the accelerator such as precision,

number of OFDM subcarriers, number of MIMO receive streams, number of matrix variables,

presence or removal of individual processing units, and etc. Table 4.1 shows a brief description

of the main parameters.

Parameterizing the description of the accelerator gives the system designer the ability to map the

accelerator hardware to a particular standard. If the system designer will use the accelerator for a

2x2 802.11n system, the parameters can be used to map the hardware for 2x2 802.11n. And if the

design is for 8x8 LTE system, the parameters can be set for that. And also if the accelerator will

 51

be used for multi-standards, the parameters can be mapped to the most complex one and used to

run any standard.

Table 4.1. MIMO accelerator HDL parameters and their values for the ASIC prototype

Parameter Description Prototype Value

Nrx Number of data streams (vector size) 4

Nm Number of data-memory variable matrices 4

Nsc Number of OFDM subcarriers (data memory depth) 52

P Fixed point precision per rail 16

Nins Maximum possible number of instruction (instruction memory depth) 256

Ta, Tr, Tm, Tv Availability of individual processing units 1, 1, 1, 1

Mv/Md
0/1: All processing units have the same number of outputs

1/0: All processing units have the same number of inputs
0/1

Dr/Dq
0/1: A complete data matrix can be routed to an operand

1/0: One vector only can be routed to an operand
0/1

4.2.	 MIMO	 Accelerator	 Design	 Flows	

Based on the HDL parameters of the previous section and the tools that will be introduced later

in this chapter, this section introduces two design flows that employ the flexibility and

configurability of the accelerator.

4.2.1.	 Hardware-‐First	 Design	 flow	

Based on the programmability and the parallelism of the MIMO accelerator hardware, this

design flow is considered the basic way of using the MIMO accelerator. A flow chart of the

hardware-first design flow is shown in Fig. 4.1.

 52

Fig. 4.1. Hardware-first design flow to utilize the MIMO accelerator programmability

As its name indicates, the hardware-first flow starts from the hardware constraints of the system

– such as chip area, power budget, and clock period that are allowed for the accelerator. The

HDL parameters are chosen based on these hardware constraints such that the accelerator

processing is as powerful as the constraints permit. For example, if the area allows a 4-antenna

and 1024-subcarrier accelerator, then the parameters are chosen to allow that configuration

without any saving in the assigned area by choosing a smaller configuration.

The instance-generation tool (that will be introduced later in this chapter) uses those chosen

parameters to generate a synthesizable VHDL description of the accelerator and its test bench.

The generated design goes through the physical implementation to produce the final chip. By

Y

Hardware
Constraints

Instance
Generation Compile

Chip

VHDL
Instance

Instruction
Memory
Contents

Error

Error Y

Physical
Implementation

HDL
Parameters

Algorithm

Write Optimized
High-Level program

Instruction
Memory
Contents

HDL
Test Bench

 53

starting by the hardware constraints, this accelerator chip is as powerful as possible in terms of

throughput and standard variations support.

After the chip is implemented, algorithms that will be running on the accelerator are written in

the high-level programming language of the accelerator, as shown in the right side of Fig. 4.1.

Those programs are compiled through the accelerator compiler to generate the instruction

memory contents. The programming language and the compiler will be discussed later in this

chapter. After testing the programs on the accelerator generated test bench, they can be written

on the on-chip instruction memory. The instruction memory in this case has to be implemented

as a RAM.

This flow allows the usage of the accelerator for multiple algorithms with the highest possible

throughput, which is the most intuitive way of using the MIMO accelerator.

4.2.2.	 Algorithm-‐First	 Design	 Flow	

The algorithm-first design flow depends on the accelerator HDL parameters to optimize the

hardware implementation for a certain algorithm. Fig. 4.2 shows a flow chart for the algorithm-

first design flow.

If the application that will employ the MIMO accelerator hardware is known before the chip is

implemented, the MIMO accelerator might not be reprogrammed after implementation. The

designer can then start from the algorithm as shown in Fig. 4.2 by writing the high-level

accelerator program based on the application in hand. The HDL parameters are then chosen

based on this written program as it will be the only program running. A parameter extraction

 54

tool can be used to detect which parameter values are suitable for a certain program. This tool

will be introduced later in this chapter. This way, the accelerator hardware will be optimized in

area, throughput, and power consumption for a particular application.

Fig. 4.2. Algorithm-first design flow to optimize the MIMO accelerator hardware for a specific application

The instance-generation tool takes the application-based HDL parameters and produces a VHDL

description for the accelerator and a matched test bench. The generated instance and the test

bench are used with the compiled program to test the program. The compilation output

HDL
Test Bench

Algorithm

Write Optimized
High-Level program

Parameter
Extraction

Program
File

Instance
Generation

Recommended
Parameters

Compile
HDL

Parameters
VHDL

Instance

Instruction
Memory
Contents

Error Y

Error
Y Physical

Implementation
VHDL

Instance

 55

(instruction memory contents) and the generated hardware description are used in the physical

implementation to produce the final accelerator chip. The instruction memory here can be

implemented as a ROM as it is not meant to be changed.

The final product of this flow is a MIMO accelerator that is optimized for a single application.

But the produced chip is still re-programmable, if needed. The instruction memory might be

overwritten with another algorithm.

4.3.	 MIMO	 Accelerator	 Programming

The MIMO accelerator is a processor that executes a pre-decoded programs stored in the

instruction memory. Any accelerator user will face a very challenging task of writing the bit-

level instructions, given the fact that these instructions control each and every part of the

accelerator. A user will have to deeply study the accelerator hardware before writing programs

that efficiently use the available hardware resources to achieve a certain task. This will be

counter-productive as one of the accelerator objectives is to reduce the time needed to design a

MIMO decoder. To simplify a programmer’s task, an instruction set is developed for the

accelerator, used in the design flows in the previous section, to cover the expected instructions

that a user might need. This section covers this instruction set as well as the compiler interface,

assuming Nrx (number of receive streams) of 4 and number of variable matrices per subcarrier

(Nm) of 4 as well. Both Nrx and Nm are HDL parameters, as previously discussed.

4.3.1.	 Bit-‐Level	 Instruction	

As previously mentioned in section 3.1 – and as shown in Fig. 4.3, an accelerator bit-level

instruction consists of five main parts: flow control, processing-unit configuration, operand

 56

selection, result destination, and write mask. Table 4.2 summarizes their usage showing that an

instruction is 326 bits wide. This bit width of an instruction varies based on the HDL parameter

values.

Fig. 4.3. Accelerator pre-decoded instruction structure

Table 4.2. The structure of a MIMO accelerator bit-level instruction

Field Bit width Description

Flow Control 16

Carries controller configuration bits. The relationship between

the instruction counter and the subcarrier counter is controlled

by this part of the instruction.

Processing Unit

Configuration
15

Configures the four processing cores. This part is used to

determine whether an addition or subtraction is used in the

addition core. It also controls the dynamic scaling behavior for

the outputs of both the multiplication and the reciprocal units.

The applied unitary transformation from the rotation core is

modified and configured by this part as well.

Operand

Selection
132

Carries all the selection lines for the two-level multiplexers of

the core-input switch. For each processing unit operand, 2

selection lines are used for the first level, and 4x16 selection

lines are used for the second level to pick up one matrix element

for each of the 16 elements of the operand. This gives the

complete routing flexibility for the operands.

Flow Control
16b

Proc. Config.
15b

Operand Selection
132b

Result Destination
99b

Write Mask
64b

 57

Field Bit width Description

Result

Destination
99

Carries the selection lines for the two-level multiplexers of the

memory-input switch. 2 bits are used to select which core

delivers the result. Those two bits are also used to determine the

passive cores whose inputs will be fixed while this particular

instruction is executed. 1 bit is used to determine if phases of the

rotation core will replace part of the outputs. And 2x16x3 bits

are used to select one element of 2x4 outputs of the processing

unit (3 bits selection) to be routed to each element of two

matrices in the data memory (2x16 matrix elements). This

allows complete flexibility in routing any element of the result to

any memory location spanning two different matrices in the data

memory.

Write Mask 64

All the variable matrices occupy one memory location for each

subcarrier. This part of the instruction controls which element of

the 4x16 elements will be overwritten by the result and which

elements will keep their old values unchanged.

4.3.2.	 High-‐Level	 Instructions	

Based on the bit-level structure of table 4.2, the higher-level instruction has the following

structure: “Result = Opearnd_1 Operator Operand_2 Pivot;”. The result and the two operands

use a MATLAB-like structure for the ease of use. The variable matrices in the data memory have

the fixed names A, B, C, and D. If more than four matrices are available, the naming continues

 58

up to Z giving 24 as a maximum number of supported matrices by the instruction-set (P and Q

have special use in the compiler as will be discussed later). Table 4.3 summarizes the various

ways the result and the operands can be written.

Table 4.3. Styles for the result and the operands in a high-level instruction

Usage Example Allowed for
Results

Allowed for
Operands

Row Vector A(2, :) Yes Yes

Column Vector C(:, 3) Yes Yes

Matrix Diagonal B(::) Yes Yes

Complete Matrix D Yes Yes

Two Row Vectors
C(1:3, :)

1st and 3rd rows of C
Yes Yes

Two Column Vectors
D(:, 2:3)

2nd and 3rd columns of D
Yes Yes

Two Row Vectors

Spanning Two Matrices

AB(2:2, :)

2nd row of A and 2nd row of B
Yes No

Two Column Vectors

Spanning Two Matrices

CD(:, 1:3)

1st column of C and 3rd column of D
Yes No

Complex-Conjugate

Modifier (~)

A(2,:)~ No Yes

D~ No Yes

 59

The high-level instruction also contains the operator, which obviously determines the operation

to be performed on the two operands. Tables 4.4 to 4.6 list all the available operators and their

use.

Table 4.4. Multiplication, addition, and reciprocal operators in the accelerator instruction set

Processing
Core Operator Usage Example

Multiplication *

Vector-Vector Multiplication. A(1, :) = B(2, :) * C(4, :);

Vector-Matrix Multiplication. A(:, 3) = C(2, :) * D;

Matrix Multiplication. C = A*B;

Addition +/-

Single-Vector

Addition/Subtraction.
A(1, :) = B(2, :) - C(4, :);

Two-Vector

Addition/Subtraction.

B(:, 1:4) =

C(:, 2:3)~ + D(:, 3:4);

Matrix Addition/Subtraction. C = A + B~;

Reciprocal ./

Compute 1/X for the real parts

of the second operand. The first

operand is always replaced by

one.

A(::) = 1 ./ D(::);

For the multiplication instructions, a vector-vector multiplication performs a dot product between

the two vectors whether they are column-vectors, row-vectors, matrix-diagonals, or a

combination. In this case, the four dot-product hardware blocks in the processing unit perform

the same operation with the same operands giving a repeated number that will be stored in the

 60

result vector. For the matrix multiplication, the compiler translates one high-level instruction into

4 bit-level instructions (or Nrx in general).

The addition and subtraction, in hardware, processes two vectors simultaneously. The compiler

then translates a matrix addition/subtraction into 2 bit-level instructions (or Nrx/2 in general).

When the compiler detects two consecutive single-vector addition or subtraction high-level

instructions, it combines them in a single bit-level instruction. But if only one instruction is

detected, it is repeated over the two parallel hardware blocks discarding one of the two results.

Table 4.5. Branching operators in the MIMO accelerator instruction set

Processing
Core Operator Usage Example

N/A JMP

Unconditional branching. With no operands, the

result is the absolute value of the branching

address in the instruction memory.

8 = JMP;

Conditional Branching. When operand 1 is

present, this instruction checks the sign bit of the

real part of first number of the last

addition/subtraction result. If positive, the next

executed instruction address is the result value. If

negative, the next executed instruction address is

the operand 1 value.

8 = 15 JMP;

Branching instructions are built with the same structure of regular instructions whether it is the

conditional or unconditional branching as shown in table 4.5.

 61

An odd part of the instruction is the pivot that is written between the second operator and the

semi colon. This pivot is only used for some of the instructions that use the rotation unit, as

explained in table 4.6. It is a number that determines which element of the two-operand vectors

that will be used to calculate θ and ϕ using the super vectoring CORDIC. ϕ is the phase of the

pivot element of the first operand vector. And 𝜃 = tan!! !
!
 where x is the amplitude of the pivot

element of the second operand vector and y is the amplitude of the pivot element of the first

operand vector. This is the arrangement needed to null an element using a complex Givens

rotation. If the pivot is set to 0, the phases are picked up from the phase memory and divided by

2 (right shifted). And if the pivot is set to -1, the phases are picked up from the phase memory

and divided by -2 (sign change and right shift).

Table 4.6. Rotation operators in the MIMO accelerator instruction set

Processing
Core Operator Usage Example

Rotation

@

Perform a complex Givens

rotation cos𝜃 sin𝜃𝑒!!"
−sin𝜃 cos𝜃 𝑒!!"

for the two operand vectors

based on operand 1, θ and ϕ are

calculated from the two

operands from the pivot

elements.

A(1:2, :) = A(1, :) @ A(2, :) 1;

^
Same as @ but uses the θ and ϕ

from the previous instruction.
B(1:2, :) = B(1, :) ^ B(2, :);

 62

Processing
Core Operator Usage Example

Rotation

Perform the unitary

transformation 𝑒
!!∅ 0
0 1

 to

eliminate the phase of a certain

matrix element. ϕ is calculated

from the first operand pivot

element. There isn’t a second

operand for this operation.

A(1, :) = A(1, :) # 1;

!
Same as # but uses ϕ of the

previous instruction.
B(1, :) = B(1, :) !;

p

Performs the same exact

operation of # and stores the

calculated ϕ in the phase memory.

A(1, :) = A(1, :) p 1;

q

Performs the same exact

operation of # and stores the

calculated ϕ in the data memory

to be used later for additional

processing.

A(1, :) = A(1, :) q 1;

P

Performs the same exact

operation of @ and stores the

calculated θ and ϕ in the phase

memory.

A(1:2, :) = A(1, :) P A(2, :) 1;

 63

Processing
Core Operator Usage Example

Rotation

Q

Performs the same exact

operation of @ and stores the

calculated θ and ϕ in the data

memory to be used later for

additional processing.

A(1:2, :) = A(1, :) Q A(2, :) 1;

$

Perform a real Givens rotation

cos𝜃 sin𝜃
−sin𝜃 cos𝜃 for the two

operand vectors based on

operand 1, θ is the phase

memory output divided by 2.

B(:, 1:2) = B(:, 1) $ B(:,2);

The MIMO accelerator is not a stand-alone processor; it is a part of a bigger system in hardware.

For interaction between the accelerator software and the top-level hardware, special no-operation

instructions are added as shown in table 4.7. The NOPS (No-Operation-Stop) instruction is

meant to save the unnecessary energy consumed after the program is done. Instead of using an

infinite loop that keeps the complete accelerator running, the accelerator stops all operations and

memory interactions waiting for the top-level to read the results and re-initialize the data

memory. NOPI (No-Operation-Invert) is used to inform the hardware that this place of the

program is reached. This allows the top-level hardware to start a side job in parallel to the

accelerator at the correct timing.

 64

Table 4.7. Special NOP instructions

Instruction Usage

NOP An actual No Operation instruction.

NOPS

Stops the operation, nothing is executed after the last stage of the

previous instruction. It also de-activates a “work indicator” signal to

the top level.

NOPI
No operation but inverts a signal to the top level indicating the

execution of this instruction.

To build a bit-level instruction, the compiler translates the result of a high-level instruction into

the “result destination” and the “write mask” fields of the bit-level instruction. The used operator

determines a part of the “result destination” and controls which processing unit operands are

updated and which are gated. A two-vector result is allowed to span two variable matrices in

memory, as shown in Table 4.3. But due to the hardware restrictions, the only two-matrix access

combinations allowed as a result are AB and CD. The compiler also translates the two operands

into the “operand selection” field. And obviously the “processing-unit configuration” part of the

instruction is extracted from the operator and the pivot. The complex-conjugate modifier appears

as a part of the “processing-unit configuration” as well. It directly controls a complex-conjugate

hardware modifier at the processing unit inputs.

To generate the remaining field, “flow control”, the compiler uses the order of instructions.

Regularly, each instruction is executed over all the subcarriers. That makes the regular operation

is to always increment the subcarrier counter, and increment the instruction counter when the

subcarrier counter resets. This flow can change based on the running instructions. For example,

 65

if instruction number i is a rotation instruction that uses the phase from the previous instruction i-

1, then both instructions i-1 and i should be executed before incrementing the subcarrier counter.

Then for every increment in the subcarrier counter, the instruction counter jumps between i-1

and i. This kind of irregularity is called a multi-cycle operation. The compiler captures it from the

order and type of instructions, and the hardware picks it up from the “flow control” field. The

“flow control” also indicates if a certain instruction is a branching instruction. In this case, the

“operand selection” field is replaced by the new value of the instruction counter, or two values if

it is a conditional branching.

4.3.3.	 Compiler	 Interface	

For a simple and a quick access, a GUI is created as an interface to the compiler with the

addition of some useful features. Fig. 4.4 shows that the compiler GUI is divided into three main

sections. The first section (Fig. 4.4a) is the code entry and compilation part. A user can load a

program from an ASCII file or enter a new program in the text window and save it to disk. When

the compile button is clicked, it first checks the syntax of the entered program. Part of the syntax

checking is to guarantee that the hardware parameters are not violated. For example, if Nm and

Nrx are both set to 4 in the hardware parameters, the compiler detects any vector or matrix

dimension higher than 4 and any operand (or result) out of {A, B, C, D}, and the compiler then

reports a parameter violation as a warning. After checking the syntax, the compiler starts the

translation process from the high-level to bit-level instructions. The instruction memory contents

are saved in ASCII to the target file.

 66

Fig. 4.4. MIMO accelerator compiler graphical user interface

The second section of the GUI (Fig. 4.4b) is for HDL simulation. The generate memory button is

used to generate random contents for the data memory, which is displayed in the original

memory display box for the chosen subcarrier. This generated data memory contents with the

generated instruction memory are used as an input for a VHDL test bench for hardware

simulation. The simulation results (the final values in the data memory after simulation) are

displayed in the final memory box for the chosen subcarrier.

The third section of the compiler GUI (Fig. 4.4c) calculates the error between the accelerator

results and a floating-point simulation results. It uses the generated data memory, but it doesn’t

use the generated instructions. A fixed set of instructions is used for this simulation to cover all

the processing cores. The average error in the final memory is then displayed per processing core

and plotted per subcarrier. This simulation is useful to check whether the error due to the fixed-

point and the used precision is acceptable or not.

 67

4.3.4.	 Example	 Program	

As an example, Fig. 4.4 also shows a program, in the program entry section, that calculates the

W matrix of an MMSE decoder, based on [16]. This program is repeated in Table 4.8 with

instruction-by-instruction explanation.

The channel matrix 𝐻!×! is used with the noise variance 𝑁! to form the matrix
𝐻!×!
𝑁!𝐼!×!

,

which is stored in the first two columns of the variable matrix 𝐴. And the 𝐼!×! matrix is stored in

the variable matrix 𝐵. Instructions 1 to 14 in table 4 perform the QR decomposition with the

final 𝑅!×! matrix stored in 𝐴. The 𝑄!×! matrix inverse (𝑄!! = 𝑄!) is computed in B by

applying the same unitary transformation of 𝐴 on the 𝐼 matrix in 𝐵. And let 𝑄!×! =
𝑄!,!×!
𝑄!,!×!

.

The MMSE matrix is then computed as 𝑊!×! =
!!×!!!

!!
 by the remaining instructions assuming

an initialization of 𝐷!×! = 𝑁!𝐼!×!. This 𝑊 matrix is used by simple multiplication instructions

to compute the estimated transmitted symbols (𝑥! 𝑛 =𝑊𝑦[𝑛]).

Table 4.8. Example program used for 2x2 MMSE MIMO decoding

Index Instruction Description

1 A(1,:)=A(1,:)#1; Unitary transformation to eliminate the phase of A(1,1)

2 B(1,:)=B(1,:)!1; Repeat the last operation on the I matrix

3 A(1:2,:)=A(1,:)@A(2,:)1; Unitary transformation to null A(2,1)

4 B(1:2,:)=B(1,:)^B(2,:)1; Repeat the last operation on the I matrix

5 A(1:3,:)=A(1,:)@A(3,:)1; Unitary transformation to null A(3,1)

6 B(1:3,:)=B(1,:)^B(3,:)1; Repeat the last operation on the I matrix

 68

Index Instruction Description

7 A(1:4,:)=A(1,:)@A(4,:)1; Unitary transformation to null A(4,1)

8 B(1:4,:)=B(1,:)^B(4,:)1; Repeat the last operation on the I matrix

9 A(2,:)=A(2,:)#2; Unitary transformation to eliminate the phase of A(2,2)

10 B(2,:)=B(2,:)!2; Repeat the last operation on the I matrix

11 A(2:3,:)=A(2,:)@A(3,:)2; Unitary transformation to null A(3,2)

12 B(2:3,:)=B(2,:)^B(3,:)2; Repeat the last operation on the I matrix

13 A(2:4,:)=A(2,:)@A(4,:)2; Unitary transformation to null A(4,2)

14 B(2:4,:)=B(2,:)^B(4,:)2; Repeat the last operation on the I matrix

15 D(::)=1./D(::); Compute 1 𝑁! by inverting the diagonal of D

16 C(1,:)=C(1,:)+B(3,:); Move 𝑄! from the last two rows of B to the first two

rows of C (C starts with zeros) 17 C(2,:)=C(2,:)+B(4,:);

18 B(3,:)=C(3,:)+C(3,:); Store zeros in the last two rows of B (C starts with

zeros) 19 B(4,:)=C(4,:)+C(4,:);

20 C=D*C~; Computes 𝐶 = !!
!!

21 A=B*C; Computes 𝐴 = !!×!!∗!

!!

4.4.	 Hardware	 Instance	 Generation	

Processor-like hardware architecture accompanied with an easy-to-use compiler gives the MIMO

accelerator a programmability aspect that allows a single hardware block to be capable of

changing algorithms (programs) based on the updates in requirements. This section discusses the

other aspect of the MIMO accelerator, which is the hardware configurability via the HDL

 69

parameters. As discussed in section 4.1, The MIMO accelerator design in HDL is highly

reconfigurable using a set of HDL parameters. An accelerator hardware instance is a VHDL

description of the accelerator with the parameters set to specific values such as the prototype

values shown in Table 4.1

To reconfigure the HDL with new parameter values, an accelerator user can directly change the

HDL description. But to avoid involving a user with the hardware design, a simple interface GUI

is designed for instance generation. As shown in Fig. 4.5, an accelerator user enters the HDL

parameters in the left section of the instance generation GUI. Text boxes are used for the

parameters with continuous values, such as Nrx and Nsc. Check boxes and option boxes are used

for the binary parameters.

Fig. 4.5. MIMO accelerator instance generation graphical user interface

 70

The instance generation GUI provides a user with an estimation of the expected hardware based

on the entered parameters. The middle section of the GUI (Fig. 4.5) gives a plot for the

individual areas of various building blocks of the accelerator, and the right section shows the

corresponding numbers with estimation of the clock frequency and throughput. All estimations

are provided for Xilinx V4 FPGA and for TSMC 65nm process based on a combination of a

database of synthesis results, curves generated by interpolation and extrapolation, and empiric

correction factors. The instance generation GUI provides the hardware estimates to be used for a

quick comparison only; a full synthesis, whether for an FPGA flow or an ASIC flow, should be

used to get final numbers.

The instance-generation GUI produces the VHDL of the MIMO accelerator with the required

parameters. It also generates a setup file that contains those parameters. The compiler uses this

setup file to check parameter-violations in a program. The VHDL test bench also uses the same

setup file to simulate the generated hardware instance.

4.5.	 Parameter	 Extraction	

If the programs that will run on the accelerator are known before the hardware generation

process (algorithm-first design flow), a tool can give a recommendation for the parameter values

based on those programs. The parameter-extraction GUI, as shown in Fig. 4.6, uses an ASCII

list of programs as an input. It picks-up the required parameters to allow the execution of that list

of programs. The recommendations of the parameter-extraction GUI can be loaded and used in

the instance-generation GUI.

 71

Fig. 4.6. Parameter extraction graphical user interface

In the parameter-extraction GUI, a user controls – through the “Allow memory gaps” check box

– whether the number of variable matrices of the data memory will be based on the number of

matrices used in the program list (no gaps), or it will be based on the actual used letter (allow

gaps). For example, if the program list uses D as the only variable matrix, allowing memory gaps

will recommend the number of matrices Nm to be 4. But a no-gaps setting will recommend Nm to

be just 1. The same applies for the matrix dimensions (Nrx) through the “allow matrix gaps”

check box.

The precision parameter P doesn’t depend on the program list. The parameter-extraction GUI

uses fixed-point simulation data for matrix multiplication, with dynamic scaling, to estimate the

minimum possible precision for the user-provided SNR constraint. Mv/Md parameters don’t

depend on the programs list either. Their values are recommended based on the area and latency

estimation of the hardware.

 72

5.	 MIMO	 Accelerator	 Prototype	 Chip	
Based on the hardware-first design flow, a prototype MIMO accelerator chip is fabricated in

65nm IBM 10SF CMOS technology. This chip is meant to test the accelerator operation for

various algorithms and programs and to compare its energy consumption with the dedicated

ASIC implementations in the literature.

The chosen parameters for the prototype chip are shown in table 4.1, which is repeated here in

table 5.1.

Table 5.1. MIMO accelerator HDL parameters and their values for the ASIC prototype

Parameter Description Prototype Value

Nrx Number of data streams (vector size) 4

Nm Number of data-memory variable matrices 4

Nsc Number of OFDM subcarriers (data memory depth) 52

P Fixed point precision per rail 16

Nins Maximum possible number of instruction (instruction memory depth) 256

Ta, Tr, Tm, Tv Availability of individual processing units 1, 1, 1, 1

Mv/Md
0/1: All processing units have the same number of outputs

1/0: All processing units have the same number of inputs
0/1

Dr/Dq
0/1: A complete data matrix can be routed to an operand

1/0: One vector only can be routed to an operand
0/1

This chapter starts with the test setup for the chip and then will go through the chip measurement

results and their significance.

 73

5.1.	 Test	 Setup	 and	 Procedure	

To build a prototype chip for a custom and complex system like the MIMO accelerator, a

complete test plan has to be in place by the design-freeze time for the tape-out. Fig. 5.1 shows a

block diagram of the overall testing setup. A VHDL test bench is used for generating the

accelerator test vectors. This means to generate the initial contents and the expected final

contents of the data memory for a certain algorithm that is to be stored in the instruction

memory.

Fig. 5.1. Test setup for the MIMO accelerator chip

A Virtex-4 (4VLX160-11) FPGA on a Nallatech BenIO FPGA board is used to transfer the

memory contents to and from the accelerator. The BenIO FPGA board is a daughter board

VHDL
Testbench

Modelsim

FPGA
Interface

C++

Software

MIMO
Accelerator

Custom PCB

Virtex 4
FPGA

FPGA Test Board

Hardware

Test Files

Test
Vectors

Memory
Initialization

Final Memory
Contents

R
es

ul
t

Ve
ct

or
s

Result
Files

Transfer
Clock

Clock
Generator

Logic
Analyzer

Processing
Clock

Test
Probes

 74

mounted on a Nallatech Bennuey board that is connected to the PCI bus of a PC. Custom

software is written for the interaction between the VHDL test bench and the FPGA.

A custom printed circuit board (PCB) is designed and fabricated to connect the accelerator to the

supply regulators, clock generator, logic analyzer probes, and the FPGA test signals. Fig. 5.2

shows a photo for the test setup in the lab, highlighting the built PCB, the FPGA board, and lab

equipment.

Fig. 5.2. Photo for the lab test setup in

Logic
Analyzer

DC Supplies
And

Multimeter

Nallatech
Virtex-4

FPGA Board

Clock
Generator

PCB

 75

An obvious problem facing the accelerator testing is that both the data and instruction memories

have wide word lengths per location (2048 bits and 326 bits respectively). This huge number of

bits can’t be directly connected between the FPGA and the accelerator chip. To solve this

problem, extra hardware blocks are designed and added on-chip only for testing as shown in Fig.

5.3. The on-chip test hardware acts as the top-level design for the MIMO accelerator. It controls

the operation of the accelerator and arranges the data transfer between the accelerator and the

FPGA.

Fig. 5.3. On-chip test hardware blocks

The memory-input serializer, in Fig. 5.3, works as a serial-to-parallel converter from the FPGA

side to the accelerator. The memory-output serializer does the same job in the other direction. On

one side, the two serializers are connected to the accelerator through the top-level ports. And, on

the other side, they are connected to the FPGA by two 8-bits data busses.

MIMO
Accelerator

Test FSM

M
em

or
y

In
pu

t S
er

ia
liz

er

M
em

ory O
utput S

erializer

To Instruction
Memory

To Data
Memory

From Data
Memory

R
es

et Work
IndicatorTe

st
M

od
e

Serial
Input

FPGA-Generated
Memory-Address

Serial
Output

Serializers-Generated
Memory-Address

Address

Address

Work
Indicator

Output
En

Input
En

On Chip

Address Source
Control

Initialization
Controls

Read
Controls

 76

Moving into the details of the serializers, each one is a wide shift register – as shown in Fig. 5.4.

For the output serializer, as an example, the output-data bus is always connected to the least

significant eight bits of the shift register. One complete data memory location is read and stored

in the shift register with a parallel load input. After receiving a ready-to-receive signal from the

FPGA, the serializer performs an 8-bit right shift and gives an output enable signal. This shifting,

which is based on the handshaking signals, is then repeated until the complete data location is

transferred from the accelerator to the FPGA, and then a new memory location is loaded and

transferred. The input serializer follows the same sequence of operation but in the other direction

for both the data and instruction memories. The memory address used by the input and the output

serializers can be generated internally using an address counter, the address in this case is given

as a chip output to the FPGA tester. The input address can also be used to give the FPGA tester a

full control on the accelerator and its on-chip testing hardware.

Fig. 5.4. On-chip parallel-to-serial and serial-to-parallel converters

In addition to the serializers, Fig. 5.3 also shows a FSM that is used to control the test procedure

on chip. It acts as the top level control for the accelerator by generating the accelerator reset

...

Memory location width
(2048b data or 326b Instruction)

8 Bits

To FPGA

Parallel Load from Internal MemoryShift Enable

 77

signal and by controlling the memory read and write operations. This FSM also insures the

synchronization between the chip and the FPGA for the time boundaries separating the

initialization, accelerator run, and the results-read operations. The test FSM uses a work-

indicator flag generated by the accelerator. This work indicator is asserted when the first

instruction execution starts, and it is reset when a NOPS instruction is executed.

By creating this test setup, an extra effort is needed to guarantee correct data transfer between the

FPGA and the accelerator chip despite the possible presence of a large clock skew between the

two sides. A slow clock (20MHz) is generated and used by the FPGA tester and supplied to the

accelerator chip during the data transfer times as its main clock of operation. During the

accelerator run time, the actual test clock (fast clock – 166MHz) is supplied to the accelerator

from a signal generator. This clock transition is made possible by a high speed MUX that is

controlled by the FPGA tester. As shown in Fig. 5.5, the slow clock is supplied to the accelerator

during the initialization time. After the final initialization data word is enabled on the data bus,

the FPGA tester routes the test clock to the accelerator chip. When the work indicator is reset,

the FPGA tester reroutes the slow clock back to the accelerator chip. This scheme guarantees a

reliable link between the FPGA and the accelerator, and in the same time it allows the

accelerator to run at full speed.

 78

Fig. 5.5. Timing diagram for the interaction between the test signals to control the clock multiplexing

5.2.	 Measurement	 Results	

The MIMO accelerator ASIC was fabricated in IBM 65nm regular CMOS (10SF) technology.

The complete die area is 7.56mm2, and the chip core area (excluding the IO pads) is 6.05mm2.

Excluding the memory, the accelerator is 2.48mm2, which is equivalent to 469k gates. Fig. 5.6

shows the MIMO accelerator chip micrograph.

Fig. 5.6. MIMO Accelerator chip micrograph

Data Transfer
Clock

Processing
Clock

Accelerator
Clock

Work
Indicator

Initialization
Active

Read
Active

Initialization
Request

Read
Request

From
Chip
To

FPGA

From
FPGA

To
Chip

2.46mm

2.
46

m
m

Instruction Memory

Instruction Memory

Processing
Core

&
Data

Switches

Data
Memory

Phase
Memory

 79

Big part of the chip area is used for memory, whether it is the data memory or the instruction

memory. Table 5.2 shows the area breakdown for the main blocks of the MIMO accelerator. The

data memory is 44% of the accelerator due to the fact of using 4 antennas and 4 data variables.

This number of variable matrices might not be necessary for all programs, but – as a prototype

chip – this wide memory is added to open new possibilities in test programs, such as 8x4 QR

factorization and complete 4x4 MMSE MIMO decoding.

Table 5.2. The percentage of the main blocks area to the complete chip core area

Block Processing
Core Controller Memory

Switches
Phase

Memory
Instruction
Memory

Data
Memory

Serializers
& Test

Area% 36% 0.05% 2.3% 0.7% 14.9% 44% 1.05%

The minimum possible clock period (in measurements) is 6ns (166MHz). This clock frequency

number is not useful without exploring its significance on the accelerator applications. Table 5.3

shows the number of clock cycles needed to finish an algorithm per subcarrier. The numbers are

based on the measured throughput; table 5.3 assumes a continuous accelerator operation and

doesn’t count the initial latency in the reported number of clock cycles. The table also translates

the number of clocks to an actual time, based on the maximum clock frequency of 166MHz. The

MMSE decoding mentioned in Table III is based on [16].

 80

Table 5.3. Time needed to finish an algorithm running on the accelerator prototype

Algorithm Clocks Per
Subcarrier

Time Per
Subcarrier Comments

4x4 QR Decomposition 20 120ns Both Q and R available

8x4 QR Decomposition 40 240ns Both Q and R available

4x4 SVD 52 313ns

Complete 2x2 MMSE 35 210ns W-matrix computation including the QRD

Complete 4x4 MMSE 58 348ns W-matrix computation including the QRD

One symbol decode in 2x2 0.5 3ns Vector-Matrix multiplication

One symbol decode in 4x4 1 6ns Vector-Matrix multiplication

To complete the analysis, Table 5.4 shows the time requirements for two MIMO-OFDM

communication standards: 802.11n [1] as a simple standard in terms of processing speed

requirements, and LTE-A [4] as a more demanding standard. For 802.11n, a re-sync is done

every packet, which is assumed to be a long packet of 2ms (the packet length is variable). On the

other side, the LTE-A requires a re-sync every 5 sub-frames, and a sub-frame is composed of 2

slots, which gives a re-sync interval of 5ms. Assuming MMSE is used for MIMO decoding on

the accelerator, calculating the W matrix is required for every re-sync, and decoding (multiply

the received vector by W) is required with a rate related to the bandwidth (subcarrier spacing and

number of subcarriers). Equation (5.1) is used for calculating the minimum required clock

frequency to calculate W (F1) under the assumption that a receiver is allowed 10% of the re-sync

time to calculate W – which is dependent on the system memory. And equation (5.2) is used for

calculating the minimum required clock frequency to decode (F2).

𝐹1 = !!"×!!
!!"#$×!.!

 (5.1)

𝐹2 = 𝐹!"×𝑁!"×𝑁! (5.2)

 81

Where Nsc is the number of subcarriers, Nw is the number of clock cycles the accelerator uses to

compute W for a subcarrier, Tsync is the re-sync time interval, Fsc is the subcarrier spacing, and

ND is the number of clock cycles the accelerator uses to decode a subcarrier.

Table 5.4. Summary for a subset of relevant 802.11n and LTE-A parameters

Subcarrier
Spacing

OFDM
Subcarriers

MIMO
Operation

Slot/Packet
Time Interval

Re-sync
Time Interval

Min Clock to
Calculate W (F1)

Min Clock to
Decode (F2)

802.11n

312.5kHz 64 4x4 2ms 2ms 19MHz 20MHz

LTE-A

15kHz 1024 4x4 0.5ms 5ms 119MHz 16MHz

Equations (1) and (2) are considered the worst case analysis as the subcarriers are not all used for

data, and the 10% time limit in equation (5.1) is an aggressive limit. One more thing to notice is

that the number of subcarriers only affects the data memory size of the accelerator. Which means

the assumption that the clock speed will stay the same in hardware for a different number of

subcarriers is a reasonable assumption.

Tables 5.3 and 5.4 with the rest of the analysis shows that the 166MHz is actually significantly

better than what is the required by the modern communication standards.

The average power consumption of the accelerator is 300.9mW at 166MHz clock and 1V supply.

Fig. 5.7 shows the measured power consumption for different clock frequencies and the energy

consumed per clock cycle. The plot shows that as the clock frequency increases the power

increases linearly. But the energy consumed in a clock cycle follows a 1/X trend. This is due to

 82

the leakage power, which is not affected by the change in frequency. This leads to the fact that

the higher the clock frequency is, the more energy efficient the accelerator will be.

Fig. 5.7: Power consumption and energy per one clock cycle versus clock frequency,

And leakage power versus supply voltage

The measured leakage power consumption falls exponentially by reducing the supply voltage, as

Fig. 5.7 also shows. This leads to the fact that if an application requires a low throughput, a

 83

slower clock can be used with a reduction in the supply voltage to reduce the leakage power

consumption, and hence the overall power consumption.

To guarantee correct operation in an actual receiver, a floating-point MATLAB model for the

802.11n is used to test the accelerator. The inputs to the MIMO decoder (channel matrices and

received symbols) are quantized and stored as input test vectors for the MIMO accelerator. The

results of the accelerator are then fed back to the MATLAB model to complete the receiver

processing. Fig. 5.9 and Fig. 5.10 show a comparison between the accelerator and floating-point

MMSE MIMO decoding for 16-QAM and 64-QAM. 100 packets are simulated for each point

with a payload of 12k bits under channel D of the Wi-Fi channel models.

Fig. 5.9. BER comparison between MMSE on the accelerator and floating point simulation

 84

Fig. 5.9. PER comparison between MMSE on the accelerator and floating point simulation

Table 5.5 compares the accelerator with specialized ASIC designs for different MIMO

processing algorithms. In the 4x4 QRD category, the accelerator is compared to two designs

reported in [21]. The accelerator penalty in energy consumption is only 10% compared to the

two dedicated designs. In [28], a 4x4 QRD ASIC is reported without the power numbers, but the

comparison highlights the higher throughput of the accelerator.

In [21], the two QRD designs are re-used for implementing 4x4 SVD. The accelerator consumes

half the energy of the two designs. This shows the benefit of the accelerator programmability.

Also in [22], a 4x4 SVD is reported based on iterative methods to track the Eigen values of a

channel matrix. To reach the first SVD before tracking, it takes 500 clock cycles. The accelerator

is 30% better in energy consumption when compared to this first computation of the SVD.

 85

Table 5.5. Comparison to other ASIC designs
N

or
m

al
iz

ed

Te
ch

 S
ca

le
d

En
er

gy

0.
92

2

0.
91

6

N
A

**

1 2.
20

1.
99

1.
31

1

0.
38

1
w

1
w

N
A

**

1

En
er

gy

C
on

su
m

pt
io

n/

Te
ch

 S
ca

le
d

29
7.

6n
J /

 3
3.

2n
J

29
6.

1n
J /

 3
3n

J

N
A

**

36
nJ

 /
36

nJ

1.
85

µJ
 /

20
6.

3n
J

1.
67

µJ
 /

18
7n

J

17
0n

J /
 1

22
.8

nJ

94
nJ

 /
94

nJ

0.
69

nJ
 w

1.
81

nJ
 w

N
A

**

10
4.

7n
J /

 1
04

.7
nJ

C
om

pu
ta

tio
n

Ti
m

e*
/T

ec
h

Sc
al

ed

1.
92

µs
 /

45
0n

s

2.
82

µs
 /

66
2n

s

64
2n

s /
 1

50
ns

12
0n

s /
 1

20
ns

11
.5

7µ
s /

2.

7µ
s

15
.8

3µ
s /

3.

7µ
s

5µ
s /

 2
.6

µs

31
3n

s

N
A

**

21
0n

s /
 2

10
ns

50
5n

s /
 5

05
ns

34
8n

s /
 3

48
ns

Te
ch

.

0.
18

µm

0.
18

µm

0.
18

µm

65
nm

0.
18

µm

0.
18

µm

90
nm

65
nm

0.
18

µm

65
nm

65
nm

65
nm

A
re

a

0.
41

m
m

2

0.
37

m
m

2

1m
m

2

2.
48

m
m

2

0.
41

m
m

2

0.
37

m
m

2

3.
5m

m
2

2.
48

m
m

2

2.
3M

G

at
es

46
9K

G

at
es

90
K

G

at
es

46
9K

G

at
es

A
ve

ra
ge

Po

w
er

15
5m

W

10
5m

W

N
A

**

30
0.

9m
W

16
0m

W

10
6m

W

34
m

W

30
0.

9m
W

36
0m

W

30
0.

9m
W

N
A

**

30
0.

9m
W

C
lk

 F
re

q

13
3M

H
z

27
2M

H
z

16
2M

H
z

16
6M

H
z

13
3M

H
z

27
2M

H
z

10
0M

H
z

16
6M

H
z

58
M

H
z

16
6M

H
z

40
0M

H
z

16
6M

H
z

R
ef

er
en

ce

[2
1]

a

[2
1]

b

[2
8]

A
cc

el
er

at
or

[2
1]

a

[2
1]

b

[2
2]

A
cc

el
er

at
or

[3
0]

A
cc

el
er

at
or

[2
9]

 w
w

A
cc

el
er

at
or

A
lg

or
ith

m

4x
4

Q
R

D

4x
4

SV
D

2x
2

M
M

SE

4x
4

M
M

SE

*

Th
e

re
qu

ire
d

tim
e

to

co
m

pl
et

e
th

e
ru

nn
in

g
al

go
rit

hm
 o

nc
e.

 **

N

ot
 re

po
rte

d
an

d
no

t e
no

ug
h

da
ta

 to

co
m

pu
te

.
 w
 En

er
gy

co

ns
um

pt
io

n
in

on

e
cl

oc
k

pe
rio

d.

 w
w

Sy

nt
he

si
s

re
su

lts
 o

nl
y.

 86

In [30], a 2x2 MMSE is reported as part of a receiver. The throughput of the MIMO decoder is

not included. This comparison is only for the energy in one clock cycle, which maps to the

power consumption. We included this comparison to show that the accelerator can be compared

to completely different dedicated designs.

Finally, Table V compares the accelerator to the programmable implementation in [29] based on

the reported synthesis results. As the power numbers are not included in [29], the comparison

shows the throughput improvement of the accelerator despite the lower clock frequency.

 87

6.	 Conclusions	
This work introduced the MIMO accelerator as a programmable and energy efficient hardware

block for MIMO decoding tasks in an OFDM system. Based on a processor-like structure that

includes data and instruction memories, the accelerator design is optimized to reduce the overall

energy consumption of a running algorithm. The accelerator processing-core, with its parallel

and reconfigurable processing elements, is powerful enough to perform any required algorithm

in less than 64 instructions.

The hardware implementation of the accelerator overcame many challenges such as the

instruction memory access, data memory arrangement, system integration, and processing unit

power-saving. This hardware design led to a prototype chip in 65nm CMOS that can be

compared to various designs such as QR decomposition, SVD, MMSE linear decoders, and other

algorithms. The chip testing has proven that the accelerator can – in some cases – be twice as

energy efficient as dedicated ASIC designs, and 9% worse in energy consumption in the worst

comparison.

The accelerator high-level programming language and design tools were introduced with their

graphical user interfaces. Two design flows that utilize the accelerator to its maximum value

were introduced based on those tools.

 88

7.	 Future	 Work	
This work may be extended, in future research, in the following directions:

• The MIMO accelerator can be integrated in a complete receiver in hardware to test the

overall performance of a system that depends on the accelerator.

• The prototype chip of the accelerator is powerful enough to run multiple algorithms.

Another chip might be fabricated based on the algorithm-first design flow. This might

lead to better energy efficiency for this particular algorithm.

• Based on the idea of building an accelerator for MIMO decoding in OFDM systems, the

same idea of a specialized processor can be applied to other parts of wireless transceivers

in the direction of creating a software-defined radio.

 89

References	
[1] "IEEE Standard for Information technology-- Local and metropolitan area networks--
Specific requirements-- Part 11: Wireless LAN Medium Access Control (MAC)and Physical
Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput," IEEE Std
802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008,
IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009), Oct. 29, 2009.

[2] "IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for
Broadband Wireless Access Systems Amendment 3: Advanced Air Interface," IEEE Std
802.16m-2011(Amendment to IEEE Std 802.16-2009) , May 5, 2011.
	
[3] 3GPP TS 36.201 V8.3.0 (2009-03).

[4] “LTE-Advanced Physical Layer”, REV-090003r1, IMT-Advanced Evaluation Workshop 17
– 18 December, 2009, Beijing.

[5] Andrea Goldsmith, “Wireless Communications”, Cambridge University Press, 2005.

[6] S. M. Alamouti, "A simple transmit diversity technique for wireless communications ," IEEE
Journal on Selected Areas in Communications, 1998.

[7] W. Gabran, B. Daneshrad, "Hardware and Physical Layer Adaptation for a Power
Constrained MIMO OFDM System," IEEE International Conference on Communications (ICC),
2011.

[8] A. J. Paulraj, D. A. Gore, R. U. Nabar, H. Bolcskei, "An overview of MIMO communications
- a key to gigabit wireless," Proceedings of the IEEE , 2004.

[9] David Tse, Pramod Viswanath, “Fundamentals of Wireless Communcation”, Cambridge
University Press, 2005.

[10] I. LaRoche, S. Roy, "An efficient regular matrix inversion circuit architecture for MIMO
processing," IEEE International Symposium on Circuits and Systems, 2006.

[11] Lei Ma, K. Dickson, J. McAllister, J. McCanny, "QR Decomposition-Based Matrix
Inversion for High Performance Embedded MIMO Receivers," IEEE Transactions on Signal
Processing, 2011.

[12] M. Myllyla, J. H. Hintikka, J. R. Cavallaro, M. Juntti, M. Limingoja, A. Byman,
"Complexity Analysis of MMSE Detector Architectures for MIMO OFDM Systems,"
Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and
Computers, 2005.

 90

[13] F. Echman, V. Owall, "A scalable pipelined complex valued matrix inversion architecture,"
IEEE International Symposium on Circuits and Systems, 2005

[14] M. Karkooti, J. R. Cavallaro, C. Dick, "FPGA Implementation of Matrix Inversion Using
QRD-RLS Algorithm," Conference Record of the Thirty-Ninth Asilomar Conference on Signals,
Systems and Computers, 2005.

[15] M. Ylinen, A. Burian, J. Takala, "Updating matrix inverse in fixed-point representation:
Direct versus iterative methods," in IEEE International Symposium on System-on-Chip,
Tampere, Finland, November 2003.

[16] H. S. Kim, W. Zhu, J. Bhatia, K. Mohammed, A. Shah, B. Daneshrad, “A practical,
hardware friendly MMSE detector for MIMO-OFDM based systems,” EURASIP Journal on
Advances in Signal Processing, vol. 2008.

[17] B. Hassibi, H. Vikalo, "On the sphere-decoding algorithm I. Expected complexity," IEEE
Transactions on Signal Processing, 2005.

[18] R. Shariat-Yazdi, T. Kwasniewski, "A multi-mode sphere detector architecture for WLAN
applications," IEEE International SOC Conference, 2008.

[19] Chia-Hsiang Yang, D. Markovic, "A Flexible DSP Architecture for MIMO Sphere
Decoding," IEEE Transactions on Circuits and Systems I, 2009.

[20] Zhan Guo, P. Nilsson, "Algorithm and implementation of the K-best sphere decoding for
MIMO detection," IEEE Journal on Selected Areas in Communications, 2006.

[21] C. Studer, P. Blosch, P. Friedli, A. Burg, "Matrix Decomposition Architecture for MIMO
Systems: Design and Implementation Trade-offs," Conference Record of the Forty-First
Asilomar Conference on Signals, Systems and Computers, 2007.

[22] D. Markovic, R. W. Brodersen, B. Nikolic, "A 70GOPS, 34mW Multi-Carrier MIMO Chip
in 3.5mm2," Symposium on VLSI Circuits, 2006.

[23] P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela, "V-BLAST: an
architecture for realizing very high data rates over the rich-scattering wireless channel,"
International Symposium on Signals, Systems, and Electronics, 1998.

[24] Wong Kwan Wai, Chi-Ying Tsui, R. S. Cheng, "A low complexity architecture of the V-
BLAST system," Wireless Communications and Networking Confernce, 2000.

[25] D. Wubben, R. Bohnke, V. Kuhn, K. D. Kammeyer, "MMSE extension of V-BLAST based
on sorted QR decomposition," IEEE 58th Vehicular Technology Conference, 2003.

[26] G. H. Golub and C. F. Van Loan, “Matrix Computations”, Johns Hopkins University Press,
Baltimore, Md, USA, 3rd edition, 1996.

 91

[27] A. Jain, G. Staino, P. Corsonello, “Quad-port memory blocks in radiation-tolerant FPGAs:
an application for image processing systems,” 2nd International Conference On Emerging Trends
in Engineering and Technology, 2009.

[28] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber, W. Fichtner, "Gram-
Schmidt-based QR decomposition for MIMO detection: VLSI implementation and comparison,"
IEEE Asia Pacific Conference on Circuits and Systems, 2008.

[29] J. Eilert, Di Wu, Dake Liu, "Implementation of a programmable linear MMSE detector for
MIMO-OFDM," IEEE International Conference on Acoustics, Speech and Signal Processing,
2008.

[30] J. Wang, “A recursive least-squares ASIC for broadband 8 x 8 multiple-input multiple-
output wireless communications,” Ph.D. dissertation, Henry Samueli School on Engineering and
Applied Science, University of California in Los Angeles, Los Angeles, CA, 2005.

