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ABSTRACT OF THE DISSERTATION 

 

MIMO Accelerator: 

Programmable MIMO Decoder Chip and Design Environment 

 

by 

Mohamed Ismail Ali Mohamed 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles 2012 

Professor Babak Daneshrad, Chair 

 

With wireless communications becoming an essential part of human life, wireless technology 

advances to meet the increasing demands. New standards are introduced every couple of years to 

regulate the implementation of wireless systems. Most of modern standards are based on MIMO 

and OFDM signaling, which makes any time saving in a MIMO-OFDM receiver design cycle 

essential and the support of multi-standards in the same device highly desirable.  

 

This work introduces a hardware implementation for a MIMO decoder accelerator, which is a 

software-programmable device that specializes in MIMO decoding, and MIMO signal 

processing in general, for OFDM systems. A VLSI implementation of the accelerator is 

introduced highlighting some of the implementation decisions and techniques to minimize the 

overall energy consumption of the accelerator hardware. The accelerator chip core area is 

2.48mm2 in 65nm CMOS technology. Its average power consumption is 224.3 at 166MHz clock 
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frequency. A deeply pipelined design for a powerful processing core allows the accelerator to 

achieve energy consumption figures competing with specialized designs. A single accelerator 

chip can be programmed to complete 4x4 QR decomposition, 4x4 Singular-Value 

Decomposition (SVD), 2x2 MMSE MIMO decoding, 4x4 MMSE MIMO decoding, or many 

other possible applications.  

 

A simple design flow is presented to assist a MIMO-accelerator user in mapping a MIMO-

related algorithm to a successful accelerator-based hardware implementation in no time. The 

accelerator, with its diversity and energy efficiency, can empower a wireless MIMO-OFDM 

receiver giving it an unparalleled advantage over regular fixed-data-path systems.  
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1.	  Introduction	  
In a wireless transceiver design, three major steps form a typical process of translating a digital-

signal processing task into hardware implementation. First is to choose and design the algorithm 

that will be used to achieve this task. This step usually includes a high level simulation, whether 

it is a floating-point simulation or a fixed-point simulation or both, to check if this particular 

algorithm satisfies the performance constraints, such as bit error rate (BER) or packet error rate 

(PER). Second is the design of a digital circuit that implements the chosen algorithm. The circuit 

design takes into account all the hardware requirements in terms of area (cost), speed 

(throughput and latency), and power consumption. The digital circuit design is usually based on 

a hardware description language (HDL) such as Verilog and VHDL. A test bench in HDL is 

written to perform a function test based on test vectors for the circuit inputs and its expected 

outputs. These test vectors are usually generated from the simulation model of the first design 

step. Third is combining this particular circuit with different ones for the physical 

implementation of the complete transceiver (or part of it) into a chip. The physical 

implementation means – in abbreviation – to synthesize the HDL into a standard-cells library for 

an application-specific integrated circuit (ASIC) implementation or into logic cells for a field-

programmable gate array (FPGA), and then perform placement and routing for the final chip. 

This physical implementation process usually contains some kind of iteration based on the 

results of post-synthesis and post-layout simulations or based on formal verification. 

 

Despite the fact that this design process is time consuming, it has to be repeated for the same 

transceiver component if the system requirements change. The requirements usually change with 

the release of new wireless communication standards, which occurs as frequent as every year. 
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Reducing the consumed time in a repeated design cycle is essential for cost and time-to-market 

reduction. Time saving can be achieved by attacking the third design step, the physical design, 

by using a FPGA instead of an ASIC as the final implementation platform. This might be 

possible if the hardware requirements allow the speed degradation and the boost in power 

consumption that comes with a FPGA. But the unit cost for a FPGA solution will be much higher 

than an ASIC solution for a mass production. 

 

Design time saving can also be achieved by attacking the digital-circuit design step. One 

approach is to use High-Level Synthesis (HLS). In HLS, the algorithm is written in C, C++, or 

SystemC and a HLS tool translates it directly to HDL. The time saving comes from the fact that 

writing the algorithm in a high-level language like C++ is simpler than implementing the digital 

circuit from scratch. The drawback of this solution is that the outcome is highly dependent on the 

used HLS tool and whether it can produce a hardware that is as optimized as a hand-written HDL 

can be. And to reach a better result from a HLS tool, the designer has to closely control the HLS 

process to guide the tool to the required results. While the HLS technology is appealing, it will 

take more time for it to be the industry standard. 

 

Another approach to reduce the time consumed in circuit design is to use a programmable 

solution such as a Digital-Signal Processor (DSP). Using a DSP converts the circuit design task 

into a much easier problem of translating the algorithm into an efficient software program for the 

DSP in hand. The drawback of this approach is the expected degradation in performance and 

power consumption due to the use of a general-purpose processor to solve a specific problem.  
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In some cases, the programmability of the final design may be the drive factor for using a DSP. 

The saving in design time makes a programmable solution very appealing, but adds up to this is 

the increasing demand for multi-standard devices. Devices such as smart phones and tablets, for 

example, support WiFi and LTE. Both standards are based on Orthogonal Frequency Division 

Multiplexing (OFDM) and, currently, Multiple-Input Multiple-Output (MIMO) operation. If a 

programmable hardware is used, it can support the two standards with the same piece of 

hardware. 

 

Based on the mentioned motivations, the goal of this work is to present the MIMO accelerator as 

a programmable solution for the MIMO decoding problem for OFDM systems without 

sacrificing the performance. As shown in Fig. 1.1, this work will sacrifice some re-usability by 

limiting our target to MIMO decoding for OFDM systems instead of general purpose DSP 

design. But we aim to gain a huge performance improvement that will take this programmable 

device to a performance that is very close to dedicated ASIC designs. The performance metric 

that we use is the energy consumption as it is the limiting factor of hardware performance on 

mobile devices. 

 

Fig. 1.1. Our goal compared to programmable hardware (such as DSP) and dedicated ASICs 
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With a complete framework for MIMO decoder implementation, the MIMO accelerator almost 

completely eliminates the effort and time for the hardware circuit design without compromising 

the hardware requirements. The MIMO accelerator framework builds upon a complex-vectors-

based processor that targets the MIMO decoding problem. Before diving into the MIMO 

accelerator details, a brief introduction for MIMO and OFDM operation is presented. 

1.1.	  MIMO	  and	  OFDM	  Operation	  

Most, if not all, of the recently released (and the upcoming in the near future) wireless-

communication standards are based on MIMO-OFDM operation. This applies to small-scale 

modern wireless data networks such as the 802.11 wireless LAN standard [1], and also applies to 

large-scale cellular systems such as WiMAX [2] and LTE [3] (and its enhanced version LTE-A 

[4]) that are considered 4G candidates. As this work focuses on MIMO decoders for OFDM 

systems, this section will give a brief introduction to both MIMO and OFDM operation. 

1.1.1. MIMO	  and	  Spatial	  Multiplexing	  

A MIMO system uses multiple antennas at both ends of the system – the transmitter and the 

receiver. For a narrow-band system, Fig. 1.2 shows a simple diagram for a transmitter with M 

antennas and a receiver with N antennas. Each antenna at the receiver side receives signals from 

all the M transmitting antennas with different channel coefficients. This is called an MxN MIMO 

system and can be represented in a matrix format as 

𝑦!
𝑦!
⋮
𝑦!

=

ℎ!!
ℎ!"

⋯ ℎ!!
ℎ!!

⋮ ⋱ ⋮
ℎ!! ⋯ ℎ!"

.

𝑥!
𝑥!
⋮
𝑥!

+

𝑧!
𝑧!
⋮
𝑧!

   (1.1) 
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Fig. 1.2. Channel coefficients for M transmitters and N receivers 

Where 𝑦! to 𝑦!  are the received symbols at the N receive antennas and 𝑥!  to 𝑥!  are the 

transmitted symbols from the M transmit antennas. ℎ!" is the channel coefficient from the 

transmit antenna m to the receive antenna n. And 𝑧! to 𝑧! are the AWGN. For simplification, 
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𝒚 = 𝐻.𝒙+ 𝒛   (1.2) 

Where 𝒚 is the received vector, 𝒙 is the transmitted vector, 𝒛 is the noise vector, and 𝐻 is the 

channel matrix. 

 

Based on the channel characteristics and the receiver signal-to-noise ratio (SNR), a transmitter 

can send a different data stream per antenna to increase the system throughput (capacity), or it 

can use the antennas for redundancy to increase the system reliability. In a high scattering 

environment, a city for example, a channel can support more independent paths. This is reflected 

in the rank of the channel matrix H; a higher rank means more independent paths. In such a case, 

the transmitter will transmit M data streams over the M transmit antennas in the same time slot 
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and frequency band, which is called spatial multiplexing given the fact that the antennas are 

scattered in space. For spatial multiplexing without any added diversity, the receiver needs a 

number of antennas (N) to be the same as the number of spatial data streams leading to an NxN 

system. 

 

If the channel status doesn’t allow multiple data streams, a MIMO system can be used to 

introduce diversity. A single data stream can be transmitted over a 1xN system to introduce 

receiver diversity. Techniques such as selection combining, threshold combining, and maximal-

ratio combining can be used to increase the effective receiver SNR for better reliability [5]. A 

single data stream can also be transmitted over an Mx1 system to introduce transmitter diversity 

by applying techniques such as Alamouti scheme or space-time block codes (STBC) in general 

[6]. 

 

In general, a system doesn’t have to be limited to either use spatial multiplexing or spatial 

diversity. A combination of the two may be used to maximize the benefit from the available 

hardware. Adaptive systems can change from an antenna configuration to another or from 

introducing diversity to multiplexing based on channel status and variation [7]. In this 

dissertation, a spatial multiplexing system – with the same number of antennas at the two sides –

is always assumed except if mentioned otherwise. 

1.1.2.	  OFDM	  for	  Wide	  Band	  Signaling	  

In a system that uses a wide bandwidth for higher throughputs, transmitting the data symbols 

over a single carrier suffers from the frequency selectivity of the channel. Sophisticated 

techniques have to be used for channel equalization at the receiver to avoid inter-symbol 
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interference (ISI). An OFDM system avoids this problem by dividing a wide channel into a 

number of narrow sub-channels in a hardware-efficient manner.  

 

From frequency selectivity point of view, transmitting multiple subcarriers (a subcarrier per sub-

channel) transforms the wide-band fading problem to several narrow-band fading problems, as 

shown in Fig. 1.3. Narrow-band fading channel equalization can be as easy as dividing the 

received symbols by a channel coefficient. From another perspective, the symbol time of a wide 

band signal is very small (the inverse of the bandwidth) compared to the channel delay spread 

Tm, which causes a severe ISI. By using several subcarriers, the symbol time is multiplied by the 

number of subcarriers, which decreases the effect of the channel delay spread and the ISI. The 

small ratio of Tm to the symbol time allows OFDM systems to introduce guard intervals to 

eliminate the effect of the ISI without a big loss in throughput. A cyclic prefix is used in this 

guard interval for phase continuity, reducing the linear convolution to a cyclic-convolution for 

discrete systems [5]. 

 

Fig. 1.3. Each OFDM subchannel effectively suffers only flat fading 

|h|

Frequency

Subchannel
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1.2.	  Channel	  Equalization	  for	  MIMO-‐OFDM	  Systems	  

For an OFDM system, each sub-channel faces flat fading leading to a relatively easy channel 

equalization task. But this comes with the cost of parallel processing requirements that result 

from dividing the frequency band into a number of sub-channels. If an OFDM system uses Nsc 

subcarriers, the flat-fading channel equalization has to be repeated Nsc times. And for MIMO-

OFDM, each subcarrier carries a MIMO signal. MIMO signaling transforms the equalization 

problem formulation and solution into complex matrix operations. For a spatial-multiplexing 

MIMO system, with Nrx receive antennas, the complexity of an equalizer increases exponentially 

with Nrx. These extensive computation requirements for both OFDM and MIMO signaling raise 

the challenges for the hardware implementation of MIMO-OFDM channel equalizers. 

 

Fig. 1.4 shows a simplified block diagram for a 2x2 MIMO-OFDM transceiver. In the 

transmitter side, the data bit stream is scrambled, encoded, interleaved, and then divided into the 

MIMO spatial streams. As shown in Fig. 1.4, many elements throughout the transceiver are 

repeated for the MIMO operation. The Inverse Fast Fourier Transform (IFFT) is used at the 

transmitter side to construct the time-domain OFDM signal in a hardware efficient manner. The 

inverse operation (FFT) is used on the receiver side to reconstruct the frequency-domain OFDM 

signal. In addition to the reverse operations of the transmitter, a MIMO-OFDM receiver 

performs extra operations for timing-synchronization – such as packet and symbol timing 

detection – and extra operations for frequency synchronization – such as the frequency offset 

estimation and correction. 



  9 

Fig. 1.4. A block diagram for a 2x2 MIMO-OFDM system 

 

The receiver block of interest in Fig. 1.4 is the MIMO decoder. A MIMO decoder carries the task 

of channel equalization for a MIMO system. A receiver uses a preamble and pilots in the system 

data frame structure to estimate the channel coefficients [1-3]; a coefficient is estimated for every 

transmit-receive antenna pair to form a channel matrix. This is repeated for each subcarrier. A 

MIMO decoder then takes these channel estimates and uses them to estimate the transmitted data 

symbols using the received data symbols. 

 

To describe the MIMO decoder operation and various algorithms, equation (1.3) repeats the 

model of equation (1.2) but for a MIMO-OFDM system. If 𝒚! 𝑛  is the received data vector at 
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𝒚! 𝑛 = 𝐻! .𝒙! 𝑛 + 𝒛![𝑛]  (1.3) 
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antennas on both sides of the channel (spatial multiplexing). 𝒙! 𝑛  is the 𝑁!"×1  transmitted 

complex data vector for subcarrier i and OFDM symbol n. And 𝑧! 𝑛  is the AWGN vector of size 

𝑁!"×1. A MIMO decoder task is to estimate the transmitted data vector 𝒙![𝑛] for every 

subcarrier i and OFDM symbol n. 

1.2.1.	  Linear	  MIMO	  Decoders	  

MIMO decoding algorithms can be divided into two groups: linear and non-linear MIMO 

decoders. A linear MIMO decoder is based on the computation of the inverse of the channel 

matrix H – or a variant of it. The received symbols are then multiplied by the inversion result, W, 

as shown in equation (1.4), omitting the time and subcarrier indexes for brevity. 

𝒙 =𝑊𝒚 =𝑊𝐻𝒙+𝑊𝒛  (1.4) 

Where 𝒙 is an estimation of the transmitted vector 𝒙. 

 

The direct implementation of a linear MIMO decoder is a Zero Forcing (ZF) decoder. In ZF, the 

W matrix is the inverse of the channel matrix (𝑊 = 𝐻!!). The pseudo-inverse of the channel 

matrix, equation (1.5), is used to guarantee an inverse. 

𝑊!" = (𝐻!𝐻)!!𝐻!   (1.5) 

Where 𝐻!  indicates the Hermitian transpose (complex-conjugate transpose) of the channel 

matrix H.  

 

The ZF algorithm suffers from noise enhancement in highly faded channels [8][9]. The channel 

inverse in such cases boosts the amplitude (power) of the noise vector 𝒛, which leads to a SNR 

reduction that directly affects the BER and PER of the system. To avoid this problem, the 
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Minimum Mean-Square Error (MMSE) linear MIMO decoder takes the noise variance into 

account for computing the W matrix [8][5], equation (1.6). 

 𝑊!!"# = (𝐻!𝐻 + 𝑁!𝐼)!!𝐻!   (1.6) 

Where 𝑁! is the noise variance and 𝐼 is the identity matrix. 

 

The hardware implementation of a linear MIMO decoder – whether it is a ZF or a MMSE 

decoder – mainly requires matrix-matrix multiplication, vector-matrix multiplication, and matrix 

inversion. In the literature, hardware implementation of MMSE focuses on efficiently 

implementing matrix inversion by relaxing the hardware requirements in terms of area and 

throughput – such as [10], [11], [12], [13], and [14]. The hardware implementation in [10] is 

based on the Sherman-Morrison formula [15] as a special case of the matrix inversion lemma. 

While in [11], [12], [13], and [14] the hardware implementation is based on a QR factorization of 

the matrix-to-be-inverted.  

 

A QR factorization of a matrix A (𝐴 = 𝑄𝑅) represents the matrix as a multiplication of a unitary 

matrix Q and an upper-triangular matrix R. A unitary matrix is a matrix whose inverse is the 

Hermitian transpose of the matrix (𝑄!𝑄 = 𝐼). And the matrix inversion of an upper-triangular 

matrix is simple compared to a regular matrix [11]. By performing the QR factorization for the 

matrix to-be-inverted in 𝑊!"  or 𝑊!!"# , the hardware requirements will be reduced to 

computing the matrix inverse of a triangular matrix as shown in equation (1.7). 

𝐴!! = (𝑄𝑅)!! = 𝑅!!𝑄!! = 𝑅!!𝑄!   (1.7) 
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In [16], a matrix-inversion-free implementation of the MMSE is reported based on a higher order 

QR factorization. Based on the notions in equation (1.6) for 𝑊!!"#, and assuming the channel 

matrix H to be of size 𝑁!"×𝑁!", a matrix G can be formed and QR-factorized such as 

𝐺!!!"×!!" =
𝐻!!"×!!"
𝑁!𝐼!!"×!!"

= 𝑄!!!"×!!"𝑅!!"×!!" =
𝑄!,!!"×!!"
𝑄!,!!"×!!"

𝑅!!"×!!"   (1.8) 

Where 𝑄  is a unitary matrix and both 𝑄!  and R are upper-triangular matrices. From this 

2𝑁!"×𝑁!" QR factorization, the channel matrix can be rewritten as 

𝐻 = 𝑄!𝑅          ,            𝐻! = 𝑅!𝑄!!  (1.9) 

And  

𝑅!! = !
!!
𝑄!    (1.10) 

Based on (1.9), (1.10), and the fact that 𝑄 is a unitary matrix, 𝑊!!"# can be rewritten as 

𝑊!!"# = 𝐻!𝐻 + 𝑁!𝐼 !!𝐻! = !
!!
𝑄!𝑄!!    (1.11) 

Using this technique for a MMSE MIMO decoder reduces the hardware requirements to a single 

QR factorization, a matrix multiplication, and a reciprocal calculation. 

1.2.2.	  Maximum-‐Likelihood	  MIMO	  Decoders	  

In a linear MIMO decoder, an explicit inverse of the channel matrix, or a variant of it, is 

calculated as an initial step. The inversion result is then multiplied by the received vector in a 

linear equation to eliminate the channel effect. Non-linear MIMO decoders follow a different 

route. Maximum-Likelihood (ML), as a non-linear MIMO decoder, follows a more intuitive way. 

In a ML decoder, an exhaustive search in all possible vectors is done to find the best candidate to 

be considered the received vector. This search detects the minimum Euclidean distance between 
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the received vector and each possible vector if it is to be received, as shown in the following 

equation.   

𝒙 = 𝑎𝑟𝑔 min
𝒙!!!!"

𝒚− 𝐻𝒙 ! 

     (1.12) 

Where P is a pool of all constellation points and 𝑁!" is the number of receive streams.  

 

The complexity of a direct implementation of equation (1.12) in a ML MIMO decoder 

exponentially increases with both the number of constellation points and the number of received 

streams, 𝑁!"  [17]. And for an OFDM system, this calculation has to be repeated for 𝑁!" 

subcarriers. To avoid the exhaustive search of a ML decoder, more efficient search methods, 

such as Sphere Decoder (SD), is used. 

 

In a SD, the received vector 𝒚 is considered a point in a space with 𝑁!" dimensions. A candidate 

vector in the pool of possible vectors, or points, is excluded if its distance from 𝒚 is greater than 

a radius 𝑑 of a hypothetical sphere that spans all the 𝑁!" dimensions. The choice of this radius 𝑑 

is a design problem; it may depend on the SNR for example. A point survives if it passes the test 

of equation (1.13). 

𝒚− 𝐻𝒙 ! < 𝑑!   (1.13) 

Where 𝒙 is a candidate point, which is a vector with 𝑁!"  elements and each elements is a 

constellation point. 

 

To reduce the complexity from an exhaustive search, SD starts with a QR factorization for the 

channel matrix H. 
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𝒚− 𝑄𝑅𝒙 ! < 𝑑!   (1.14) 

Given the fact that a unitary transformation doesn’t affect a vector’s norm, equation (1.14) can 

be modified to be 

𝑄!𝒚− 𝑅𝒙 ! < 𝑑!   (1.15) 

𝒍− 𝑅𝒙 ! < 𝑑!              ,              𝒍 = 𝑄!𝒚   (1.16) 

Then based on the triangular matrix R, equation (1.16) can be expanded to 

𝑙! − 𝑟!,!𝑥!

!!"

!!!

!!!"

!!!

< 𝑑! 

𝑝!!
!!"

!!!

< 𝑑!              ,              𝑝!! = 𝑙! − 𝑟!,!𝑥!

!!"

!!!

!

 

        (1.17) 

Where 𝑙!, 𝑟!,!, and 𝑥! are elements of 𝒍, 𝑅, and 𝒙 respectively. 

 

Equation (1.17) is the base for the SD reduction in the candidate search. If only one term, 𝑝!!, of 

the 𝑁!" terms of the outer summation of equation (1.17) dissatisfies the condition, then the whole 

candidate vector 𝒙 dissatisfies the condition. A search can then be considered a tree that starts 

with the simpler calculation of 𝑝!!"
! . If for a particular 𝒙 the value of 𝑝!!"

!  came out to be greater 

than 𝑑!, then all candidates that share the 𝑁!" th element of this particular 𝒙 are excluded from the 

candidate search. For the remaining candidates, on the first level of the tree, 𝑝!!"
! + 𝑝!!"!!

!  is 

calculated. When this calculation exceeds the limit, all candidates that share the last two 

elements of the candidate-under-test are excluded. This continues until all 𝑁!" levels of the tree 

are visited. More about this formulation of the SD and the tree explanation can be found in [17].  
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A SD, as described, can be used to reach the maximum likelihood solution of MIMO decoding. 

But its hardware implementation usually suffers from an unfixed throughput, which might 

generate problems when integrated in a bigger system. Many papers for SD hardware 

implementation have been published to tackle the hardware complexity and throughput 

challenges such as [18][19]. Some SD designs and variants reduce the hardware complexity on 

the expense of not guaranteeing ML detection, such designs are usually called near-ML or close-

to-ML sphere decoders [20]. 

1.2.3.	  Singular-‐Value	  Decomposition	  for	  MIMO	  Decoding	  

In a MIMO system, each receive-antenna gets a version of the data that is transmitted by each 

and every transmit-antenna. The channel effect on those data paths forms the channel matrix H, 

as discussed. The complexity of the MIMO decoder rises from the matrix operations, or the 

exponentially increasing exhaustive search, that is needed to estimate the received data. Using a 

Singular-Value Decomposition (SVD) on the channel matrix is a mean to decouple the data 

streams on the receiver side. This decoupling transforms the problem of MIMO decoding 𝑁!" 

correlated data streams to decoding 𝑁!" Single-Input Single-Output (SISO) data streams [5]. 

 

 

The SVD of the channel matrix is a factorization of the channel matrix H into two unitary 

matrices, 𝑈 and 𝑉, and a diagonal matrix Σ. 

𝐻 = 𝑈Σ𝑉!   (1.18) 

In the literature, as shown in equation (1.18), the unitary matrix 𝑉 is usually stated in its 

Hermitian transpose form for a reason that will be clear shortly. 
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If the transmitter has channel state information, it multiplies the transmit vector 𝒙 by the unitary 

matrix 𝑉, as shown in equation (1.19) 

𝒙 = 𝑉𝒙   (1.19) 

Then the received signal can be written as 

𝒚 = 𝐻𝒙 = 𝑈Σ𝑉!𝑉𝒙 = 𝑈Σ𝒙   (1.20) 

And given the fact that 𝑈 is a unitary matrix, the receiver calculates 

𝒚 = 𝑈!𝒚 = 𝑈!𝑈Σ𝒙 = Σ𝒙   (1.21) 

This way, each element in the 𝒚 vector depends on one element in the 𝒙 vector, as Σ  is a diagonal 

matrix. The receiver can deal with the MIMO signal as a group of SISO signals. 

 

The hardware complexity of this way of decoding the MIMO signal is in the implementation of 

the SVD itself [21][22]. There is also the necessity of giving the transmitter information about 

the channel state. The channel information is usually available on the receiver side, and it adds to 

the latency of the system to supply the transmitter by this information as well. 

 

The SVD can also be used to simplify the matrix inversion of linear MIMO decoder. The inverse 

of the unitary matrices (𝑈 and 𝑉) is just the Hermitian transpose. And the inverse of the diagonal 

matrix is to invert the diagonal elements. 

 

1.2.4.	  Iterative	  MIMO	  Decoders	  

One of the methods that can be used for MIMO decoding is to perform the decoding task 

iteratively. An iterative decoder starts to decode one of the 𝑁!"  receive streams by considering 
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the other 𝑁!" − 1  signal as noise or interference. After decoding that first signal, the receiver 

subtracts its effect from the rest of the receive streams. The decoder then repeats the operation 

over the remaining 𝑁!" − 1  streams. An example for iterative decoding is the Vertical Bell-labs 

Layered Space-Time (V-BLAST) architecture [23][24]. 

 

Despite the simplicity of the algorithm, iterative decoding suffers from two drawbacks. First is 

the error propagation. An error in decoding the first stream affects the decoding of the remaining 

streams. To reduce the effect of error propagation in V-BLAST, the decoder starts the iterations 

by the stream with the highest SNR. Second drawback is the latency in the system due to the 

need of completely decoding a stream before starting the next. The iterative decoding is 

simplified by starting with QR decomposition [25]. In V-BLAST, this QR is sorted to start with 

the highest SNR, as mentioned before.  

 

1.3.	  Outline	  

Based on this brief introduction about our goal and motivations, and after going through a 

description of MIMO, OFDM, and MIMO decoding algorithms, the next chapter (chapter 2) 

gives an overview of the MIMO accelerator hardware, and how it can be used for MIMO 

decoding of OFDM systems. 

 

Chapter 3 goes through some of the hardware implementation challenges and tradeoffs. It will 

show how the processing core, memory access, and system integration are all optimized for a 

better performance in terms of throughput and energy consumption. 
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Chapter 4 presents the software part of the MIMO accelerator. It describes the hardware 

parameters and how it can be used and configured. It also describes the accelerator programming 

language and tool flow. 

 

Chapter 5 discusses a prototype chip for the MIMO accelerator. The chip test setup and 

measurement results are discusses in details. This chapter also compares the test results with 

state of the art ASIC implementations. 

 

Finally this dissertation concludes with a list of contributions and possible future work. 
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	  2.	  MIMO	  Accelerator	  Hardware:	  Overview	  
The MIMO accelerator is a programmable device that targets MIMO decoding operations for 

MIMO-OFDM systems. To achieve this task, the MIMO accelerator is required to be able to 

implement the MIMO decoder algorithms that are reviewed in the previous chapter. This chapter 

will go through the hardware implementation of the MIMO accelerator that allows it to cover the 

mentioned algorithms. 

2.1.	  Top	  View	  of	  the	  Accelerator	  

The accelerator follows the hardware architecture of a processor, as shown in Fig. 2.1. It is 

divided into a data path and a control path. The data path of the accelerator depends on a 

complex-matrix-based processing core. The processing core performs all the matrix operations 

that are necessary for MIMO decoding implementation and its pre-processing requirements. The 

processing core consists of four separate units: an addition/subtraction unit, a reciprocal unit, a 

multiplication unit, and a rotation unit. The next section will give more details about those four 

units. 

 

The data path is completed by the data memory. This memory carries all the variables that are 

used as operands for the matrix operations and that are also used to store the operation results. 

Given the problem that the accelerator is designed to solve, all the variables in the data memory 

are matrices that are composed of 𝑁!"×𝑁!"  elements (where 𝑁!"  is the number of receive 

antennas), and each element is a complex-valued number. This data memory is connected to the 

processing core by two groups of multiplexers: the core-input switch and the memory-input 
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switch. The core-input switch delivers the right variables to the right inputs of the processing 

core based on the running instruction. And the same applies for the memory-input switch as it 

delivers the operation result from the right processing core output to the right ports of the data 

memory. 

 

 

Fig. 2.1. MIMO Accelerator block diagram 

 

The control path of the MIMO accelerator consists of two blocks: the instruction memory and 

the controller. The instruction memory carries the programs that are executed on the accelerator. 

Those programs are in the form of pre-decoded instructions that directly controls all parts of the 

data path. The choice to use pre-decoded instructions gives the accelerator user complete 
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flexibility in utilizing the accelerator resources. While a single instruction is wide (326 bits in the 

accelerator prototype), the number of instructions that are needed to run a complete MIMO 

decoder is limited (doesn’t go higher than 64 instructions). The small number of instructions is a 

result of the parallel processing that is introduced in the processing units, as will be discussed 

later. 

 

The controller, the second part of the control path, is mainly a Finite-State Machine (FSM) that 

controls the timing of memory read, memory write, and instruction execution. It controls the 

instruction counter, which is the address of the instruction memory. And it also controls the 

subcarrier counter, which is the address of the data memory (the relation between the OFDM 

subcarriers and data memory will be discussed in the next chapter). This FSM decides when to 

increment each counter based on the execution progress and the instruction being executed.  

 

Fig. 2.1 shows three memories, both the data and the instruction memories have been discussed. 

The third memory is the phase memory. The phase memory is an SRAM that is limited to the 

storage of the rotation-unit phase outputs. This stored phase can be reused as the input to the 

internal blocks of the rotation unit for future instructions.  

2.2.	  Processing	  Core	  

The processing core is the hardware block that is used to perform all the mathematical operations 

needed for the MIMO decoding algorithms that are reviewed in the previous chapter. It consists 

of four processing units. This section gives a detailed look into each of these units for four 

receive streams (𝑁!" = 4). 
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2.2.1.	  Addition	  and	  Subtraction	  Unit	  

First processing unit is the addition/subtraction unit (or simply the addition unit). A block 

diagram of this unit is shown in Fig. 2.2. The inputs of the addition unit are two sets of two 

vectors of 𝑁!"  elements each. This means that the addition unit performs two two-vector 

additions in one execution cycle, hence the eight adders shown in Fig. 2.2 for 𝑁!" = 4. Each of 

the elements of these vectors is a complex number, leading to the fact that each addition block in 

Fig. 2.2 is in fact two adders. Based on a control bit from the pre-decoded instruction, the 

performed operation can be an addition or subtraction. 

 

Fig. 2.2. Block diagram for the addition/subtraction processing unit for four receive streams 

• Nrx is the number of receive streams (4 in this figure, but it might change as will be explained) 
• C is the precision of one complex number 
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The addition unit is essential for matrix addition and subtraction, which is needed – for example 

– in the formulation of the MMSE matrix that should be inverted (equation 1.6). Another 

example is the metric calculation of ML and SD MIMO decoders. 

2.2.2.	  Reciprocal	  Unit	  

The reciprocal unit is used to invert real numbers. Its main usage is in signal scaling, such as the 

multiplication by the inverse of the noise standard deviation in MMSE (equation 1.11). For four 

receive streams, it consists of four real dividers as shown in Fig. 2.3. Each divider directly 

implements a signed long division operation with the dividend fixed on +1. A reciprocal 

instruction controls the core-input switch to choose which variable matrix elements are used as 

operands. The divisors are routed from the data memory as the real parts or the imaginary parts 

of the routed complex numbers. The choice between real or imaginary parts to be the divisors is 

controlled by the pre-decoded instruction as well. 

 

Fig. 2.3. Block diagram for the reciprocal processing unit for four receive streams 

• Nrx is the number of receive streams (4 in this figure) 
• R is the precision of one real number 
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2.2.3.	  Multiplication	  Unit	  

Multiplication operations are essential in any MIMO decoding algorithm. It is used for matrix 

formulation of linear decoders, as explained in equations (1.5) and (1.6). And it is also used to 

perform the actual decoding in the form of multiplying the received symbols and the W matrix in 

a linear decoder. In other decoders, such as ML, it is also essential. The required multiplication is 

always based on matrix operations. It can be vector-matrix multiplication or matrix-matrix 

multiplication. The structure of the multiplication unit performs this intensive computation by 

implementing dot products, as shown in Fig. 2.4. 

 

 

Fig. 2.4. Block diagram for the multiplication processing unit for four receive streams 

• Nrx is the number of receive streams (4 in this figure) 
• C is the precision of one complex number 
• Re and Im stand for Real and Imaginary parts of a complex number 
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The multiplication unit is composed of 𝑁!" dot product blocks. Each block computes the dot 

product of two complex vectors (𝑐 = 𝒂!𝒃, where 𝒂 and 𝒃 are column vectors and 𝑐 is a complex 

number). And each vector consists of 𝑁!"  elements. The block diagram of Fig. 2.4 is based on 

𝑁!" = 4. Only three real multipliers are used to implement the complex multiplication instead of 

four, as shown in Fig. 2.4. This is explained in equations (2.1) to (2.3) as follows: 

𝐼𝑓  𝑥 = 𝑎 + 𝑖. 𝑏 = 𝑐 + 𝑖.𝑑 ×(𝑒 + 𝑖. 𝑓)   (2.1) 

𝑎 = 𝑐. 𝑒 − 𝑑. 𝑓          𝑎𝑛𝑑            𝑏 = 𝑑. 𝑒 + 𝑐. 𝑓   (2.2) 

Then 𝑎 and 𝑏 can be rewritten as: 

𝑎 = 𝑐. 𝑒 + 𝑓 − 𝑓. 𝑐 + 𝑑       𝑎𝑛𝑑            𝑏 = 𝑐. 𝑒 + 𝑓 + 𝑒. (𝑑 − 𝑐)   (2.3) 

 

This multiplication unit with this parallel processing allows a complete vector-matrix 

multiplication to be executed in one instruction. A complete matrix-matrix multiplication can be 

performed in 𝑁!" instructions. 

2.2.4.	  Rotation	  Unit	  

The rotation unit is responsible of all matrix factorization operations such as QR decomposition 

and SVD. These decompositions are used in MIMO decoding as a part of the decoding operation 

itself or as pre-processing operations to simplify the decoding task. 

 

The hardware of the rotation unit is based on COordinate Rotation DIgital Computer (CORDIC) 

blocks, or more precisely complex CORDIC blocks as shown in Fig. 2.5. For four receive 

streams (𝑁!" = 4), four complex rotation CORDICs are used for vector rotation and one 

complex vectoring CORDIC is used for phase detection. 
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Fig. 2.5. Block diagram of the rotation processing-unit for four receive streams. 

• CV stands for Complex Vectoring 
• CR stands for Complex Rotation 
• 𝑁!" is the number of receive streams 
• C is the precision of one complex number 
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the two phases of the complex vectoring to rotate a complex vector. A block diagram of complex 

rotation CORDIC is shown in Fig. 2.7. 

 

Fig. 2.6. Complex vectoring CORDIC 

 

Fig. 2.7. Complex rotation CORDIC 

The direct usage of the combination of a complex vectoring and a complex rotation CORDICs is 

in nulling an element of a complex matrix, which is the base of matrix decomposition using 

Givens rotations [26]. To null a complex element C of a 2x2 matrix – as shown in equation (2.4), 

the unitary transformation that is shown in the same equation is used. 
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The complex vectoring computes ∅ and 𝜃 assuming 𝐴 is a pure real number. For a 2x2 matrix, 

the transformation is applied on the two column vectors of the matrix; this results in the need of 

two complex rotation CORDICs. For a 4x4 matrix as in our rotation unit, the four elements of 

the unitary transformation of equation (2.4) replace the corresponding elements of a 4x4 unit 

matrix. The unitary transformation is then applied to the four column vectors of the 4x4 matrix, 

hence the need of four complex rotation CORDICs. 

 

Fig. 2.5 also shows a hardware block that is called phase processing (PP). This PP is shown in 

Fig. 2.8. Part of the pre-decoded instruction controls this PP to select the source of the two 

phases that are used in the complex rotation CORDICs. This phase can be directly routed from 

the complex vectoring CORDIC. It can also be a one-instruction-delayed version of the complex 

vectoring output, which is useful in formulating the unitary matrices in the process of running a 

factorization algorithm. Phases read from the phase memory can also be used. The phases stored 

in the phase memory can be a result of a regular processing operation and it can be the output of 

an earlier instruction’s complex vectoring operation. The PP gets the name from the fact that it 

performs the processing that is needed on the phase to decide the sign of each micro-rotation 

inside the three rotation CORDICs of each complex rotation CORDIC. 

 

Fig. 2.8. Phase Processing (PP) block diagram as a part of the rotation unit. 
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The rotation unit is equipped with a group of multiplexers for signal re-routing. These 

multiplexers are controlled by the pre-decoded instruction and can be used to reconfigure the 

complex CORDICs to perform different operations. For example, the complex vectoring 

CORDIC signals can be re-routed to be as shown in Fig. 2.9. These modified connections allow 

the two simple vectoring CORDIC of the complex CORDIC to work independently to pick up 

phases of the complex inputs. This, combined by a re-routed version of the complex rotation, can 

be used for a unitary transformation for phase elimination of a complex matrix element. Re-

routed versions of the complex rotation CORDIC are shown in Fig. 2.10. 

 

 

Fig. 2.9. A rerouted version of the complex vectoring CORDIC 

 

Fig. 2.10. Rerouted versions of the complex rotation CORDIC.  

The left figure performs two completely independent rotations. The right figure can be used to rotate real vectors. 
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2.3.	  Dynamic	  Scaling	  

The output precision of both the multiplication and reciprocal units is double the precision of 

their inputs. This is to preserve the accuracy of the result. But for a programmable device like the 

MIMO accelerator, the precision has to be preserved for the limits of the memory size and the re-

use of the same hardware for consecutive operations.  

 

Instead of truncating a fixed part of the multiplication or division outputs, the accelerator uses 

dynamic scaling [16]. Using a group of OR gates, the dynamic scaling hardware detects the most 

significant non-zero bit among the absolute values of all elements of the vector output of the 

current operation (whether this operation is a multiplication or division). The higher order bits 

are then truncated in all elements, which guarantees that at least one vector element reaches the 

most significant remaining bits with a non-zero bit. To keep the output with the same precision 

of the input, the remaining bits to be truncated are taken from the least significant side. This 

operation guarantees no more than 3dB quantization loss using 16-bits of precision for matrix-

matrix multiplication, compared to floating point operation. Instructions control whether the 

dynamic scaling is used based on a single instruction result, or based on the result of consecutive 

instructions. 

2.4.	  Memory	  Switches	  

The memory switches are responsible for delivering the operands from the data memory to the 

processing core, and delivering the results from the processing core to the data memory. Fig. 

2.11 shows block diagrams of the two switches.  
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Fig. 2.11. Memory switches: (a) Core-Input Switch, Right, (b) Memory-Input Switch 

• Nm is the number of variable matrices in memory 
• Nrx is the number of receive antennas 
• C is the precision of one complex number 
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on choosing operands. The complete core-input switch of Fig. 2.11a is repeated twice in 

hardware, one switch for each operand. 

 

The memory-input switch has a similar structure, as shown in Fig. 2.11b. Its first level of 

multiplexing chooses one of three processing core outputs: the addition/subtraction unit output, 

the rotation unit output, or the dynamic scaling output (which is the output of the multiplication 

unit or the reciprocal unit). The second level of multiplexing contains a multiplexer for each 

complex number of two matrices of the data memory input. The choice of those two matrices is 

controlled by the instruction. Each multiplexer selects any complex number from the chosen unit 

output. This again gives the flexibility of arranging the result as a row vector, column vector, 

matrix diagonal, or an arbitrary arrangement. 
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3.	  MIMO	  Accelerator	  Hardware:	  
Implementation	  Challenges	  and	  Tradeoffs	  
Chapter 2 gave an overview of the accelerator hardware implementation and how it can be used 

to implement MIMO decoding. It also went through some of the flexibility that is given to the 

programmer through the pre-decoded instructions. This chapter dives deeper into the hardware 

implementation by showing some of the design challenges and how they are solved.  

 

The main performance metric of the accelerator is energy consumption. This was always kept in 

mind when the hardware is implemented. Solutions for the hardware challenges were based on 

minimizing the energy consumption whether it was by reducing the power consumption keeping 

the throughput, or by reducing the area keeping the same flexibility of the accelerator, which in 

turn allows smaller programs and hence lower energy consumption.   

 

This chapter will discuss six different implementation challenges and the tradeoffs that are 

inspected for their hardware solutions. 

3.1.	  Instruction	  Fetch	  and	  Pipeline	  

The MIMO accelerator is a pipelined processor, which means that the accelerator accepts a new 

instruction every clock cycle. Fig. 3.1 gives an illustration on how the accelerator handles the 

instruction execution. Every clock cycle an instruction enters the accelerator pipeline starting 

with an instruction fetch, which is the instruction read from the instruction memory. The second 

stage in instruction processing is the operand read stage, which is reading the data memory 
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contents that are required by the instruction and routing it to the operands through the core-input 

switch. The third stage is the execution, where the operands go through the processing core. This 

execution stage takes 68 clock cycles to finish as the processing core is deeply pipelined for 

higher throughput. The fourth and final stage for instruction processing is the result write-back. 

In this stage the processing core result is routed through the memory-input switch to the data 

memory to store the result. During the first clock of an operand read for an instruction with index 

n, the next instruction with index n+1 enters the fetch stage. This behavior of the accelerator (and 

pipelined processors in general) means that, after the initial latency, all the four stages of 

instruction processing will be running simultaneously on different instructions. A side note here 

is that there isn’t a decode stage because the accelerator uses pre-decoded instruction. This way 

the user has full access to the accelerator hardware. 

 

 

Fig. 3.1. Accelerator instruction pipeline with four stages 

 

The challenge in the hardware implementation of this processing cycle arises from the bit width 

of the instruction. The pre-decoded instructions of the accelerator are 326 bits wide, as shown in 
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the instruction structure in Fig. 3.2. As a new instruction enters the accelerator pipeline, the old 

instruction should be kept registered throughout its processing stages. This is called pipelining 

the instruction by delivering it from one register to the next, and the number of registers is the 

number of the pipelining clock cycles. As the pipeline cycles are long (the execution stage is 68 

clock cycles) and the instruction is wide, those instruction pipeline registers occupy a huge area. 

 

 

Fig. 3.2. Accelerator pre-decoded instruction structure 
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part of the instruction (99 bits) is used to route the processing core output to the data memory 

input through the multiplexers of the memory-input switch. These 99 bits are divided as follows: 

2 bits to choose which processing unit of the three results is used, 2x16x3 bits are used to select 

which result element (out of 8 elements) is routed to which variable matrix elements (covering 

two variable matrices as mentioned earlier), and 1 bit to pick-up which two matrices out of the 

four are the target. The write mask (64 bits) is used to control which elements of the data 

memory are overwritten by the result, and it will be discussed in the data memory section of this 

chapter. Pipelining those 163 bits throughout the long processing cycle is still a waste of area. 

 

Based on the fact that the waste in area is only caused by the write-back stage, we introduced an 

extra processing stage to avoid this problem. Fig. 3.3 shows the new instruction pipeline with the 

five processing stages. The extra stage is a new instruction-fetch stage that is performed directly 

before the result write-back stage. Instead of pipelining the instruction from the original fetch, 

we fetch it again naming the original fetch the read fetch and the second fetch is named the write 

fetch. By introducing this write fetch stage, the instruction memory has two be a dual-port 

memory to allow the two fetches to run simultaneously. But, on the other hand, the long and 

wide pipeline registers are avoided.  
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Fig. 3.3. Accelerator instruction pipeline with five stages after introducing the extra fetch stage 

 

This solution introduced an area saving of 5.3% of the complete accelerator area (this includes 

all memories ad processing units). This saving in area didn’t introduce any more latency to the 

instruction processing. The write-fetch stage doesn’t depend on the execution stage result. The 

write fetch is performed simultaneously with the last clock cycle of the execute stage. 

3.2.	  Controller	  Counters	  Pipeline	  

As mentioned in the previous chapter, the controller is a FSM that controls the instruction and 

subcarrier counter. These two counters are the addresses for the instruction and data memories 

respectively (the relation between the data memory and the OFDM subcarriers is discussed in the 

next section). The subcarrier counter has to be present for a certain instruction execution during 

the operand read and the result write-back stages. That means it has to be pipelined throughout 

the long processing cycle. The same goes for the instruction counter; by introducing the write 
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fetch stage, the instruction counter has to be pipelined during the processing cycle to reach the 

write fetch stage.  

 

The complete controller area, including the FSM hardware and the counters, is only 3.5% of the 

area of the added registers for this pipeline. This obviously is a waste of hardware area. Given 

this small area of the controller, we introduced the solution of this waste. The solution is to 

repeat the complete controller hardware, including the FSM. That is to say that the accelerator 

now has two instances of the controller, one to control the timing and the addresses of the read 

fetch and the operand read. This controller is called the read controller. The other controller is to 

control the timing and addresses of the write fetch and the result write-back. This second 

controller is called the write controller. The two controllers are shown in Fig. 3.4. 

 

Fig. 3.4. The two instances of the controller: read controller (left) and write controller (right) 

The state machines of the two controllers have the same hardware structure and state tables, but 
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Register

Bit Width
2 x Precision x Nm x Nrx x Nrx

is kept in a reset state for the duration of the latency of the processing cycle of the first 

instruction until this first instruction reaches its write fetch stage. 

3.3.	  Data	  Memory	  Structure	  

The accelerator operation is based on complex matrix and vector operands and results. The usage 

of a regular linear memory structure for complex numbers, as shown in Fig. 3.5a, is not efficient. 

A linear memory will result in a huge latency to form the inputs that are required for a 

multiplication operation as an example. This parallel load requirement is added to the flexibility 

of forming row, column, diagonal, and arbitrary vectors to lead to the idea of using a register for 

the complete data variables.  

 

                                           

(a)                                                            (b) 

Fig. 3.5. (a) Linear data memory structure, (b) One register for the data memory 

• Nrx is the number of receive antennas 
• Precision is the bit width for a real number 
• Nm is the number of variable matrices 
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matrix element is a complex number of bit width 2xPrecision (Precision is the bit width of a real 

number throughout the MIMO accelerator hardware). This structure allows complete access to 

all the data variables with the help of the two switches (core-input and memory-input switches). 

This big register is logically divided into matrices called A, B, C, and so on. Fig. 3.5b shows this 

logical division for Nm=4. 

 

The complete data set, as shown in Fig. 3.5, is repeated for every OFDM subcarrier. The 

subcarriers are independent, this allows the arrangement of the variables of all subcarriers in one 

data memory, as shown in Fig. 3.6. Every memory location is dedicated to a subcarrier. This is a 

return to the linear memory but with every memory location carrying a very wide word for the 

complete data set of a subcarrier. A memory location carries 2048 bits for four variable matrices 

(Nm=4), four receive antennas (Nrx=4), and a 32 bits complex number (Precision=16). 

 

 
Fig. 3.6. Proposed data memory structure (for Nm=4) 

• Nsc is the number of OFDM subcarriers 
• Nrx is the number of receive antennas 
• Precision is the bit width for a real number 
• Nm is the number of variable matrices 

 

A B

C D

2 x Precision x Nrx

2 x
 P

rec
isi

on
 x 

N rx

S
iz

e 
= 

N
sc



  41 

This memory arrangement is suitable for the required data access parallelism and flexibility, but 

it causes a problem in the result write-back stage. A result of an instruction is a combination of 

complex vectors that should replace only a small part of the data variables, based on the result 

destination part of the pre-decoded instruction (Fig. 3.2). Writing a result for a subcarrier in the 

memory structure of Fig. 3.6 will replace the complete data set of this particular subcarrier 

leading to a loss of essential data for the remaining instructions. 

 

Three solutions are possible for the result write-back problem. First solution is to pipeline the 

complete data set of a subcarrier from the operand read stage to the result write back stage. The 

result then replaces the specific required locations in the last pipeline register. This last pipeline 

register is then written to memory keeping the un-overwritten variables safe. This completely 

solves the problem but causes an overhead of registers that are too wide (2048 bits) and too 

many (the pipeline length is the more than 68 cycles). The area penalty is 50% of the complete 

accelerator area. 

 

The second possible solution is to avoid this pipeline with the same design technique used in the 

instruction pipeline problem. This is to re-read the data memory location again directly before 

the result write-back stage, replace the target elements, and then write the data back in memory. 

This solution requires a triple port memory. The operand read and result write-back stages are 

running simultaneously (pipelined processor structure); adding another data memory access 

operation requires a third port. Triple port memories are built by doubling the memory into two 

dual-port memories, write in both, and then read separately. This obviously is a waste of area; 

especially as the data memory is about 44% of the accelerator area (as will be detailed in Chapter 
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5). Another way of implementing a triple port memory, as used in quad-port FPGA block 

memories [27], is by overloading one port with double-frequency access and using this port as 

two ports by time multiplexing. This design concept has drawbacks in terms of power and 

reliability as will be discussed in section 3.5. 

 

The third and implemented solution is to give a small waste in area by dividing the data memory 

block into sectors, as shown in Fig. 3.7. A sector is an independent memory block that carries 

one matrix element (a complex number) for all subcarriers. This is a combination of linear 

memories leading to a small waste in area due to the overhead of each memory (sense amplifier, 

decoders, etc.) but allows complete control over which data elements are replaced. All memory 

sectors share the same address (read and write addresses for the two ports), but their write-

enables are separate. The write enables are part of the pre-decoded instruction (write mask in 

Fig. 3.2. 

 

Fig. 3.7. Implemented sectored data memory (for Nm=4) 

• Nsc is the number of OFDM subcarriers 
• Nrx is the number of receive antennas 
• Precision is the bit width for a real number 
• Nm is the number of variable matrices 
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3.4.	  Processing	  Core	  Input-‐Gating	  

 

Fig. 3.8. Processing core after gating the four processing units 

• Nrx is the number of receive antennas 
• C is the bit width for one complex number 

 

By performing complex mathematical operations with matrix operands in a deep-pipeline 

fashion, the four processing units are the most power hungry blocks in the accelerator. In the 

same way a regular arithmetic-logic unit (ALU) is designed, if the inputs to the four processing 

units are connected directly to the outputs of the core-input switch, the four units would be 

processing the two operands and just one result is selected using the memory input switch. This 
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is obviously a waste of power. To avoid this extra power consumption, extra hardware is 

introduced as shown in Fig. 3.8. Each processing-unit input is multiplexed between its old value 

and the new value coming from the core-input switch. Moreover, a small portion of the result 

destination part of the instruction is pipelined (from the read fetch stage) to provide the selection 

lines for the gating multiplexers.  

 

The decision to add extra hardware in the operands path is non-trivial. The wide operands 

formed as complex matrices require wide registers and numerous parallel processing elements. 

This extra hardware increases the processing core area by 2.5% in addition of adding an extra 

latency stage. This cost of area and latency is acceptable as the resulting saving of power 

consumption is 15% of the power consumption of the processing core  

3.5.	  System	  Integration	  

One of the design challenges that face the MIMO accelerator is how it will be integrated in a 

complete wireless receiver (a top level to the accelerator). As the data memory is the place where 

the initial values and the processing results are stored, such integration will be possible by 

granting the wireless receiver direct access to the data memory. This access will enable the 

receiver to exchange data with the MIMO decoder that is implemented on the accelerator.  

 

Using a dual-port SRAM for the data memory is a necessity to achieve the required memory 

access. But, being a pipelined processor, the accelerator actually uses a dual-port SRAM to allow 

reading operands from a port and writing results through another port simultaneously. This 

means the accelerator needs a third data-memory port for top-level access. As mentioned in 
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section 3.3, triple port memories can be built by using two dual-port memories and perform the 

write operations on the two memories simultaneously, and perform two independent read 

operations. This way of implementing a triple port memory causes a huge waste of area given the 

big portion the data memory is compared to the accelerator (44%). 

 

Another way of implementing a third port for the data memory to allow top-level access is to 

overload the data memory ports. Port overloading means using double the processing frequency 

for the memory ports, and time multiplex a single port between two tasks. The memory hardware 

is still a dual-port memory, which can be generated by a memory compiler, but the effective 

result is a higher number of ports (up to four effective port). Fig. 3.9 shows an illustration to such 

a design for the MIMO accelerator data memory. 

 

Fig. 3.9. Overloading one memory port to allow top-level access to the data memory contents 
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Port 1 in Fig. 3.9 runs on double the accelerator frequency. The address and write enables of this 

port are multiplexed between the operand-read and the result write-back processing stages. Port 2 

is dedicated to the top-level access. This implementation gives an advantage of complete 

flexibility for the top-level to access the data memory. The top-level access doesn’t interrupt the 

accelerator execution, and doesn’t require any controls from the accelerator controller for 

memory access. 

 

The port-overloading solution gives the required access for the top-level design but it has two 

major drawbacks. The first is the required synchronization between the regular accelerator clock 

and the memory port 1 clock. The frequency of the memory port 1 clock has to be precisely 

twice the processing clock. The phases of the two clocks also have to be perfectly aligned due to 

the fact that the two edges of the slow processing clock are used for memory access in the data 

memory. This synchronization requirement puts a limit on the maximum clock speed that the 

accelerator can work on in order to guarantee a high reliability for the final fabricated circuit. 

 

The second drawback is the unnecessary increase in the power consumption that results from the 

usage of double the clock frequency in part of the system. This power consumption is 

unnecessary because this higher clock speed is not part of the accelerator processing 

requirements, but it is only to provide the top-level design an access to the data memory. As the 

accelerator goal is to achieve energy consumption close to dedicated designs, the extra power 

consumption that is not needed for processing has to be avoided. 
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To avoid the synchronization and extra power consumption issues, the flexibility of the top-level 

access has to be sacrificed. Fig. 3.10 shows the memory access circuit that is implemented in the 

MIMO accelerator. 

 

 

Fig. 3.10. Multiplexing the two data memory ports between regular operation and top-level access 

As shown in Fig. 3.10, the two data memory ports are multiplexed between the regular 

accelerator operation (operand-read and result write-back) and the top-level access. For the top-
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flexibility but results in the use of one clock for the complete accelerator design, avoiding the 

extra power of a double-frequency clock and avoiding the reliability issues. 

 

The multiplexing between the regular operation and top-level access is designed such that the 

data lines are not multiplexed. Regular operation writes through port 2 and reads from port 1, 

while the top-level access writes through port 1 and reads from port2. This saves the wide 

multiplexers that would have been used for the wide data lines on the two memory ports. 

3.6.	  Multi-‐Algorithm	  Switching	  

 The MIMO accelerator is designed to be able to run different algorithms and to give the system 

designed the ability to switch from an algorithm to another. Based on the way the accelerator is 

used, this algorithm switching might be needed on the fly, which means switching between 

algorithms without the need to re-write the instruction memory contents with a new program. 

Even for one algorithm, multiple programs might be needed. For example, in linear MIMO 

decoding (such as MMSE) one program is used for channel-matrix processing (inversion) and 

another program is used for the actual decoding (multiplying the received symbol by the result of 

channel-matrix processing). To switch between two programs that implement a single algorithm, 

a receiver wouldn’t stop processing to rewrite the instruction memory.  

 

To allow program switching, branching in the software (the program in the instruction memory) 

is not enough. The top-level hardware has to be the controller of such switching. To allow the 

top-level hardware to control program switching, the two most significant bits of the instruction 

memory address are given as inputs to the MIMO accelerator, as shown in Fig. 3.11. This means 
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that the instruction memory is logically divided into four sections and the top-level hardware 

controls which section is being executed. Given the parallel processing in the accelerator 

processing-core, a section can be as small as 64 instructions and be enough to carry the longest 

possible programs (more details about programming in Chapter 4). 

 

Fig. 3.11. Top-level control over the running program through the address of the instruction memory 
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4.	   MIMO	   Accelerator	   Design	   Flows	   and	  
Programming	  
After introducing the MIMO accelerator hardware architecture and design concepts, this chapter 

goes through the software side of the MIMO accelerator. This chapter focuses on programming 

the MIMO accelerator by introducing its special programming language and tool flow.  

 

Before going into the depths of the software-side of the accelerator, this chapter reviews one 

more aspect of the hardware: the HDL parameters. And introduces the design flows that the 

accelerator can be part of to have a complete MIMO decoder implemented on chip. 

4.1.	  Hardware	  Parameters	  

The MIMO accelerator hardware description in VHDL is highly reconfigurable using a set of 

VHDL parameters. Those parameters control every aspect of the accelerator such as precision, 

number of OFDM subcarriers, number of MIMO receive streams, number of matrix variables, 

presence or removal of individual processing units, and etc. Table 4.1 shows a brief description 

of the main parameters. 

 

Parameterizing the description of the accelerator gives the system designer the ability to map the 

accelerator hardware to a particular standard. If the system designer will use the accelerator for a 

2x2 802.11n system, the parameters can be used to map the hardware for 2x2 802.11n. And if the 

design is for 8x8 LTE system, the parameters can be set for that. And also if the accelerator will 
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be used for multi-standards, the parameters can be mapped to the most complex one and used to 

run any standard.  

Table 4.1. MIMO accelerator HDL parameters and their values for the ASIC prototype 

Parameter Description Prototype Value 

Nrx Number of data streams (vector size) 4 

Nm Number of data-memory variable matrices 4 

Nsc Number of OFDM subcarriers (data memory depth) 52 

P Fixed point precision per rail 16 

Nins Maximum possible number of instruction (instruction memory depth) 256 

Ta, Tr, Tm, Tv Availability of individual processing units 1, 1, 1, 1 

Mv/Md 
0/1: All processing units have the same number of outputs 

1/0: All processing units have the same number of inputs 
0/1 

Dr/Dq 
0/1: A complete data matrix can be routed to an operand 

1/0: One vector only can be routed to an operand 
0/1 

4.2.	  MIMO	  Accelerator	  Design	  Flows	  

Based on the HDL parameters of the previous section and the tools that will be introduced later 

in this chapter, this section introduces two design flows that employ the flexibility and 

configurability of the accelerator. 

4.2.1.	  Hardware-‐First	  Design	  flow	  

Based on the programmability and the parallelism of the MIMO accelerator hardware, this 

design flow is considered the basic way of using the MIMO accelerator. A flow chart of the 

hardware-first design flow is shown in Fig. 4.1. 
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Fig. 4.1. Hardware-first design flow to utilize the MIMO accelerator programmability 

As its name indicates, the hardware-first flow starts from the hardware constraints of the system 

– such as chip area, power budget, and clock period that are allowed for the accelerator. The 

HDL parameters are chosen based on these hardware constraints such that the accelerator 

processing is as powerful as the constraints permit. For example, if the area allows a 4-antenna 

and 1024-subcarrier accelerator, then the parameters are chosen to allow that configuration 

without any saving in the assigned area by choosing a smaller configuration. 

 

The instance-generation tool (that will be introduced later in this chapter) uses those chosen 

parameters to generate a synthesizable VHDL description of the accelerator and its test bench. 
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starting by the hardware constraints, this accelerator chip is as powerful as possible in terms of 

throughput and standard variations support. 

 

After the chip is implemented, algorithms that will be running on the accelerator are written in 

the high-level programming language of the accelerator, as shown in the right side of Fig. 4.1. 

Those programs are compiled through the accelerator compiler to generate the instruction 

memory contents. The programming language and the compiler will be discussed later in this 

chapter. After testing the programs on the accelerator generated test bench, they can be written 

on the on-chip instruction memory. The instruction memory in this case has to be implemented 

as a RAM. 

 

This flow allows the usage of the accelerator for multiple algorithms with the highest possible 

throughput, which is the most intuitive way of using the MIMO accelerator.  

4.2.2.	  Algorithm-‐First	  Design	  Flow	  

The algorithm-first design flow depends on the accelerator HDL parameters to optimize the 

hardware implementation for a certain algorithm. Fig. 4.2 shows a flow chart for the algorithm-

first design flow. 

 

If the application that will employ the MIMO accelerator hardware is known before the chip is 

implemented, the MIMO accelerator might not be reprogrammed after implementation. The 

designer can then start from the algorithm as shown in Fig. 4.2 by writing the high-level 

accelerator program based on the application in hand. The HDL parameters are then chosen 

based on this written program as it will be the only program running. A parameter extraction 
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tool can be used to detect which parameter values are suitable for a certain program. This tool 

will be introduced later in this chapter. This way, the accelerator hardware will be optimized in 

area, throughput, and power consumption for a particular application. 

 

Fig. 4.2. Algorithm-first design flow to optimize the MIMO accelerator hardware for a specific application 

The instance-generation tool takes the application-based HDL parameters and produces a VHDL 

description for the accelerator and a matched test bench. The generated instance and the test 

bench are used with the compiled program to test the program. The compilation output 

HDL
Test Bench

Algorithm

Write Optimized 
High-Level program

Parameter 
Extraction

Program 
File

Instance 
Generation

Recommended 
Parameters

Compile
HDL

Parameters
VHDL 

Instance

Instruction
Memory
Contents

Error Y

Error
Y Physical

Implementation
VHDL 

Instance



  55 

(instruction memory contents) and the generated hardware description are used in the physical 

implementation to produce the final accelerator chip. The instruction memory here can be 

implemented as a ROM as it is not meant to be changed. 

 

The final product of this flow is a MIMO accelerator that is optimized for a single application. 

But the produced chip is still re-programmable, if needed. The instruction memory might be 

overwritten with another algorithm. 

4.3.	  MIMO	  Accelerator	  Programming 

The MIMO accelerator is a processor that executes a pre-decoded programs stored in the 

instruction memory. Any accelerator user will face a very challenging task of writing the bit-

level instructions, given the fact that these instructions control each and every part of the 

accelerator. A user will have to deeply study the accelerator hardware before writing programs 

that efficiently use the available hardware resources to achieve a certain task. This will be 

counter-productive as one of the accelerator objectives is to reduce the time needed to design a 

MIMO decoder. To simplify a programmer’s task, an instruction set is developed for the 

accelerator, used in the design flows in the previous section, to cover the expected instructions 

that a user might need. This section covers this instruction set as well as the compiler interface, 

assuming Nrx (number of receive streams) of 4 and number of variable matrices per subcarrier 

(Nm) of 4 as well. Both Nrx and Nm are HDL parameters, as previously discussed.  

4.3.1.	  Bit-‐Level	  Instruction	  

As previously mentioned in section 3.1 – and as shown in Fig. 4.3, an accelerator bit-level 

instruction consists of five main parts: flow control, processing-unit configuration, operand 
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selection, result destination, and write mask. Table 4.2 summarizes their usage showing that an 

instruction is 326 bits wide. This bit width of an instruction varies based on the HDL parameter 

values. 

 

Fig. 4.3. Accelerator pre-decoded instruction structure 

 

Table 4.2. The structure of a MIMO accelerator bit-level instruction 

Field Bit width Description 

Flow Control 16 

Carries controller configuration bits. The relationship between 

the instruction counter and the subcarrier counter is controlled 

by this part of the instruction. 

Processing Unit 

Configuration 
15 

Configures the four processing cores. This part is used to 

determine whether an addition or subtraction is used in the 

addition core. It also controls the dynamic scaling behavior for 

the outputs of both the multiplication and the reciprocal units. 

The applied unitary transformation from the rotation core is 

modified and configured by this part as well. 

Operand 

Selection 
132 

Carries all the selection lines for the two-level multiplexers of 

the core-input switch. For each processing unit operand, 2 

selection lines are used for the first level, and 4x16 selection 

lines are used for the second level to pick up one matrix element 

for each of the 16 elements of the operand. This gives the 

complete routing flexibility for the operands. 

Flow Control
16b

Proc. Config.
15b

Operand Selection
132b

Result Destination
99b

Write Mask
64b
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Field Bit width Description 

Result 

Destination 
99 

Carries the selection lines for the two-level multiplexers of the 

memory-input switch. 2 bits are used to select which core 

delivers the result. Those two bits are also used to determine the 

passive cores whose inputs will be fixed while this particular 

instruction is executed. 1 bit is used to determine if phases of the 

rotation core will replace part of the outputs. And 2x16x3 bits 

are used to select one element of 2x4 outputs of the processing 

unit (3 bits selection) to be routed to each element of two 

matrices in the data memory (2x16 matrix elements). This 

allows complete flexibility in routing any element of the result to 

any memory location spanning two different matrices in the data 

memory. 

Write Mask 64 

All the variable matrices occupy one memory location for each 

subcarrier. This part of the instruction controls which element of 

the 4x16 elements will be overwritten by the result and which 

elements will keep their old values unchanged. 

 

4.3.2.	  High-‐Level	  Instructions	  

Based on the bit-level structure of table 4.2, the higher-level instruction has the following 

structure: “Result = Opearnd_1 Operator Operand_2 Pivot;”. The result and the two operands 

use a MATLAB-like structure for the ease of use. The variable matrices in the data memory have 

the fixed names A, B, C, and D. If more than four matrices are available, the naming continues 
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up to Z giving 24 as a maximum number of supported matrices by the instruction-set (P and Q 

have special use in the compiler as will be discussed later). Table 4.3 summarizes the various 

ways the result and the operands can be written.  

Table 4.3. Styles for the result and the operands in a high-level instruction 

Usage Example Allowed for 
Results 

Allowed for 
Operands 

Row Vector A(2, :) Yes Yes 

Column Vector C(:, 3) Yes Yes 

Matrix Diagonal  B(::) Yes Yes 

Complete Matrix D Yes Yes 

Two Row Vectors 
C(1:3, :) 

1st and 3rd rows of C 
Yes Yes 

Two Column Vectors 
D(:, 2:3) 

2nd and 3rd columns of D 
Yes Yes 

Two Row Vectors 

Spanning Two Matrices 

AB(2:2, :) 

2nd row of A and 2nd row of B 
Yes No 

Two Column Vectors 

Spanning Two Matrices 

CD(:, 1:3) 

1st column of C and 3rd column of D 
Yes No 

Complex-Conjugate 

Modifier (~) 

A(2,:)~ No Yes 

D~ No Yes 
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The high-level instruction also contains the operator, which obviously determines the operation 

to be performed on the two operands. Tables 4.4 to 4.6 list all the available operators and their 

use.  

Table 4.4. Multiplication, addition, and reciprocal operators in the accelerator instruction set 

Processing 
Core Operator Usage Example 

Multiplication * 

Vector-Vector Multiplication. A(1, :) = B(2, :) * C(4, :); 

Vector-Matrix Multiplication. A(:, 3) = C(2, :) * D; 

Matrix Multiplication. C = A*B; 

Addition +/- 

Single-Vector 

Addition/Subtraction. 
A(1, :) = B(2, :) - C(4, :); 

Two-Vector 

Addition/Subtraction. 

B(:, 1:4) =  

C(:, 2:3)~ + D(:, 3:4); 

Matrix Addition/Subtraction. C = A + B~; 

Reciprocal ./ 

Compute 1/X for the real parts 

of the second operand. The first 

operand is always replaced by 

one. 

A(::) = 1 ./ D(::); 

 

For the multiplication instructions, a vector-vector multiplication performs a dot product between 

the two vectors whether they are column-vectors, row-vectors, matrix-diagonals, or a 

combination. In this case, the four dot-product hardware blocks in the processing unit perform 

the same operation with the same operands giving a repeated number that will be stored in the 
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result vector. For the matrix multiplication, the compiler translates one high-level instruction into 

4 bit-level instructions (or Nrx in general). 

 

The addition and subtraction, in hardware, processes two vectors simultaneously. The compiler 

then translates a matrix addition/subtraction into 2 bit-level instructions (or Nrx/2 in general). 

When the compiler detects two consecutive single-vector addition or subtraction high-level 

instructions, it combines them in a single bit-level instruction. But if only one instruction is 

detected, it is repeated over the two parallel hardware blocks discarding one of the two results.  

 

Table 4.5. Branching operators in the MIMO accelerator instruction set  

Processing 
Core Operator Usage Example 

N/A JMP 

Unconditional branching. With no operands, the 

result is the absolute value of the branching 

address in the instruction memory. 

8 = JMP; 

Conditional Branching. When operand 1 is 

present, this instruction checks the sign bit of the 

real part of first number of the last 

addition/subtraction result. If positive, the next 

executed instruction address is the result value. If 

negative, the next executed instruction address is 

the operand 1 value. 

8 = 15 JMP; 

 

Branching instructions are built with the same structure of regular instructions whether it is the 

conditional or unconditional branching as shown in table 4.5. 
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An odd part of the instruction is the pivot that is written between the second operator and the 

semi colon. This pivot is only used for some of the instructions that use the rotation unit, as 

explained in table 4.6. It is a number that determines which element of the two-operand vectors 

that will be used to calculate θ and ϕ using the super vectoring CORDIC. ϕ is the phase of the 

pivot element of the first operand vector. And 𝜃 = tan!! !
!
 where x is the amplitude of the pivot 

element of the second operand vector and y is the amplitude of the pivot element of the first 

operand vector. This is the arrangement needed to null an element using a complex Givens 

rotation. If the pivot is set to 0, the phases are picked up from the phase memory and divided by 

2 (right shifted). And if the pivot is set to -1, the phases are picked up from the phase memory 

and divided by -2 (sign change and right shift). 

 

Table 4.6. Rotation operators in the MIMO accelerator instruction set 

Processing 
Core Operator Usage Example 

Rotation 

@ 

Perform a complex Givens 

rotation cos𝜃 sin𝜃𝑒!!"
−sin𝜃 cos𝜃 𝑒!!"

 

for the two operand vectors 

based on operand 1, θ and ϕ are 

calculated from the two 

operands from the pivot 

elements. 

A(1:2, :) = A(1, :) @ A(2, :) 1; 

^ 
Same as @ but uses the θ and ϕ 

from the previous instruction. 
B(1:2, :) = B(1, :) ^ B(2, :); 
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Processing 
Core Operator Usage Example 

Rotation 

# 

Perform the unitary 

transformation 𝑒
!!∅ 0
0 1

 to 

eliminate the phase of a certain 

matrix element. ϕ is calculated 

from the first operand pivot 

element. There isn’t a second 

operand for this operation. 

A(1, :) = A(1, :) # 1; 

! 
Same as # but uses ϕ of the 

previous instruction. 
B(1, :) = B(1, :) !; 

p 

Performs the same exact 

operation of # and stores the 

calculated ϕ in the phase memory. 

A(1, :) = A(1, :) p 1; 

q 

Performs the same exact 

operation of # and stores the 

calculated ϕ in the data memory 

to be used later for additional 

processing. 

A(1, :) = A(1, :) q 1; 

P 

Performs the same exact 

operation of @ and stores the 

calculated θ and ϕ in the phase 

memory. 

A(1:2, :) = A(1, :) P A(2, :) 1; 
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Processing 
Core Operator Usage Example 

Rotation 

Q 

Performs the same exact 

operation of @ and stores the 

calculated θ and ϕ in the data 

memory to be used later for 

additional processing. 

A(1:2, :) = A(1, :) Q A(2, :) 1; 

$ 

Perform a real Givens rotation 

cos𝜃 sin𝜃
−sin𝜃 cos𝜃  for the two 

operand vectors based on 

operand 1, θ is the phase 

memory output divided by 2. 

B(:, 1:2) = B(:, 1) $ B(:,2); 

 

The MIMO accelerator is not a stand-alone processor; it is a part of a bigger system in hardware. 

For interaction between the accelerator software and the top-level hardware, special no-operation 

instructions are added as shown in table 4.7. The NOPS (No-Operation-Stop) instruction is 

meant to save the unnecessary energy consumed after the program is done. Instead of using an 

infinite loop that keeps the complete accelerator running, the accelerator stops all operations and 

memory interactions waiting for the top-level to read the results and re-initialize the data 

memory. NOPI (No-Operation-Invert) is used to inform the hardware that this place of the 

program is reached. This allows the top-level hardware to start a side job in parallel to the 

accelerator at the correct timing. 
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Table 4.7. Special NOP instructions 

Instruction Usage 

NOP An actual No Operation instruction. 

NOPS 

Stops the operation, nothing is executed after the last stage of the 

previous instruction. It also de-activates a “work indicator” signal to 

the top level. 

NOPI 
No operation but inverts a signal to the top level indicating the 

execution of this instruction. 

 

To build a bit-level instruction, the compiler translates the result of a high-level instruction into 

the “result destination” and the “write mask” fields of the bit-level instruction. The used operator 

determines a part of the “result destination” and controls which processing unit operands are 

updated and which are gated. A two-vector result is allowed to span two variable matrices in 

memory, as shown in Table 4.3. But due to the hardware restrictions, the only two-matrix access 

combinations allowed as a result are AB and CD. The compiler also translates the two operands 

into the “operand selection” field. And obviously the “processing-unit configuration” part of the 

instruction is extracted from the operator and the pivot. The complex-conjugate modifier appears 

as a part of the “processing-unit configuration” as well. It directly controls a complex-conjugate 

hardware modifier at the processing unit inputs. 

 

To generate the remaining field, “flow control”, the compiler uses the order of instructions. 

Regularly, each instruction is executed over all the subcarriers. That makes the regular operation 

is to always increment the subcarrier counter, and increment the instruction counter when the 

subcarrier counter resets. This flow can change based on the running instructions. For example, 
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if instruction number i is a rotation instruction that uses the phase from the previous instruction i-

1, then both instructions i-1 and i should be executed before incrementing the subcarrier counter. 

Then for every increment in the subcarrier counter, the instruction counter jumps between i-1 

and i. This kind of irregularity is called a multi-cycle operation. The compiler captures it from the 

order and type of instructions, and the hardware picks it up from the “flow control” field. The 

“flow control” also indicates if a certain instruction is a branching instruction. In this case, the 

“operand selection” field is replaced by the new value of the instruction counter, or two values if 

it is a conditional branching. 

4.3.3.	  Compiler	  Interface	  

For a simple and a quick access, a GUI is created as an interface to the compiler with the 

addition of some useful features. Fig. 4.4 shows that the compiler GUI is divided into three main 

sections. The first section (Fig. 4.4a) is the code entry and compilation part. A user can load a 

program from an ASCII file or enter a new program in the text window and save it to disk. When 

the compile button is clicked, it first checks the syntax of the entered program. Part of the syntax 

checking is to guarantee that the hardware parameters are not violated. For example, if Nm and 

Nrx are both set to 4 in the hardware parameters, the compiler detects any vector or matrix 

dimension higher than 4 and any operand (or result) out of {A, B, C, D}, and the compiler then 

reports a parameter violation as a warning. After checking the syntax, the compiler starts the 

translation process from the high-level to bit-level instructions. The instruction memory contents 

are saved in ASCII to the target file. 
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Fig. 4.4. MIMO accelerator compiler graphical user interface 

 

The second section of the GUI (Fig. 4.4b) is for HDL simulation. The generate memory button is 

used to generate random contents for the data memory, which is displayed in the original 

memory display box for the chosen subcarrier. This generated data memory contents with the 

generated instruction memory are used as an input for a VHDL test bench for hardware 

simulation. The simulation results (the final values in the data memory after simulation) are 

displayed in the final memory box for the chosen subcarrier.  

 

The third section of the compiler GUI (Fig. 4.4c) calculates the error between the accelerator 

results and a floating-point simulation results. It uses the generated data memory, but it doesn’t 

use the generated instructions. A fixed set of instructions is used for this simulation to cover all 

the processing cores. The average error in the final memory is then displayed per processing core 

and plotted per subcarrier. This simulation is useful to check whether the error due to the fixed-

point and the used precision is acceptable or not. 
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4.3.4.	  Example	  Program	  

As an example, Fig. 4.4 also shows a program, in the program entry section, that calculates the 

W matrix of an MMSE decoder, based on [16]. This program is repeated in Table 4.8 with 

instruction-by-instruction explanation.  

 

The channel matrix 𝐻!×! is used with the noise variance 𝑁! to form the matrix 
𝐻!×!
𝑁!𝐼!×!

, 

which is stored in the first two columns of the variable matrix 𝐴. And the 𝐼!×! matrix is stored in 

the variable matrix 𝐵. Instructions 1 to 14 in table 4 perform the QR decomposition with the 

final 𝑅!×!  matrix stored in 𝐴. The 𝑄!×!  matrix inverse (𝑄!! = 𝑄! ) is computed in B by 

applying the same unitary transformation of 𝐴 on the 𝐼 matrix in 𝐵. And let 𝑄!×! =
𝑄!,!×!
𝑄!,!×!

. 

The MMSE matrix is then computed as 𝑊!×! =
!!×!!!

!!
 by the remaining instructions assuming 

an initialization of 𝐷!×! = 𝑁!𝐼!×!. This 𝑊 matrix is used by simple multiplication instructions 

to compute the estimated transmitted symbols (𝑥! 𝑛 =𝑊𝑦[𝑛]). 

Table 4.8. Example program used for 2x2 MMSE MIMO decoding 

Index Instruction Description 

1 A(1,:)=A(1,:)#1; Unitary transformation to eliminate the phase of A(1,1) 

2 B(1,:)=B(1,:)!1;  Repeat the last operation on the I matrix 

3 A(1:2,:)=A(1,:)@A(2,:)1;  Unitary transformation to null A(2,1) 

4 B(1:2,:)=B(1,:)^B(2,:)1;  Repeat the last operation on the I matrix 

5 A(1:3,:)=A(1,:)@A(3,:)1;  Unitary transformation to null A(3,1) 

6 B(1:3,:)=B(1,:)^B(3,:)1;  Repeat the last operation on the I matrix 
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Index Instruction Description 

7 A(1:4,:)=A(1,:)@A(4,:)1;  Unitary transformation to null A(4,1) 

8 B(1:4,:)=B(1,:)^B(4,:)1;  Repeat the last operation on the I matrix 

9 A(2,:)=A(2,:)#2;  Unitary transformation to eliminate the phase of A(2,2) 

10 B(2,:)=B(2,:)!2;  Repeat the last operation on the I matrix 

11 A(2:3,:)=A(2,:)@A(3,:)2;  Unitary transformation to null A(3,2) 

12 B(2:3,:)=B(2,:)^B(3,:)2;  Repeat the last operation on the I matrix 

13 A(2:4,:)=A(2,:)@A(4,:)2;  Unitary transformation to null A(4,2) 

14 B(2:4,:)=B(2,:)^B(4,:)2;  Repeat the last operation on the I matrix 

15 D(::)=1./D(::);  Compute 1 𝑁! by inverting the diagonal of D 

16 C(1,:)=C(1,:)+B(3,:);  Move 𝑄! from the last two rows of B to the first two 

rows of C (C starts with zeros) 17 C(2,:)=C(2,:)+B(4,:);  

18 B(3,:)=C(3,:)+C(3,:);  Store zeros in the last two rows of B (C starts with 

zeros) 19 B(4,:)=C(4,:)+C(4,:);  

20 C=D*C~;  Computes 𝐶 = !!
!!

  

21 A=B*C; Computes 𝐴 = !!×!!∗!

!!
 

4.4.	  Hardware	  Instance	  Generation	  

Processor-like hardware architecture accompanied with an easy-to-use compiler gives the MIMO 

accelerator a programmability aspect that allows a single hardware block to be capable of 

changing algorithms (programs) based on the updates in requirements. This section discusses the 

other aspect of the MIMO accelerator, which is the hardware configurability via the HDL 
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parameters. As discussed in section 4.1, The MIMO accelerator design in HDL is highly 

reconfigurable using a set of HDL parameters. An accelerator hardware instance is a VHDL 

description of the accelerator with the parameters set to specific values such as the prototype 

values shown in Table 4.1 

 

To reconfigure the HDL with new parameter values, an accelerator user can directly change the 

HDL description. But to avoid involving a user with the hardware design, a simple interface GUI 

is designed for instance generation. As shown in Fig. 4.5, an accelerator user enters the HDL 

parameters in the left section of the instance generation GUI. Text boxes are used for the 

parameters with continuous values, such as Nrx and Nsc. Check boxes and option boxes are used 

for the binary parameters.  

 

 

Fig. 4.5. MIMO accelerator instance generation graphical user interface 
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The instance generation GUI provides a user with an estimation of the expected hardware based 

on the entered parameters. The middle section of the GUI (Fig. 4.5) gives a plot for the 

individual areas of various building blocks of the accelerator, and the right section shows the 

corresponding numbers with estimation of the clock frequency and throughput. All estimations 

are provided for Xilinx V4 FPGA and for TSMC 65nm process based on a combination of a 

database of synthesis results, curves generated by interpolation and extrapolation, and empiric 

correction factors. The instance generation GUI provides the hardware estimates to be used for a 

quick comparison only; a full synthesis, whether for an FPGA flow or an ASIC flow, should be 

used to get final numbers.  

 

The instance-generation GUI produces the VHDL of the MIMO accelerator with the required 

parameters. It also generates a setup file that contains those parameters. The compiler uses this 

setup file to check parameter-violations in a program. The VHDL test bench also uses the same 

setup file to simulate the generated hardware instance. 

4.5.	  Parameter	  Extraction	  

If the programs that will run on the accelerator are known before the hardware generation 

process (algorithm-first design flow), a tool can give a recommendation for the parameter values 

based on those programs. The parameter-extraction GUI, as shown in Fig. 4.6, uses an ASCII 

list of programs as an input. It picks-up the required parameters to allow the execution of that list 

of programs. The recommendations of the parameter-extraction GUI can be loaded and used in 

the instance-generation GUI. 
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Fig. 4.6. Parameter extraction graphical user interface 

 

In the parameter-extraction GUI, a user controls – through the “Allow memory gaps” check box 

– whether the number of variable matrices of the data memory will be based on the number of 

matrices used in the program list (no gaps), or it will be based on the actual used letter (allow 

gaps). For example, if the program list uses D as the only variable matrix, allowing memory gaps 

will recommend the number of matrices Nm to be 4. But a no-gaps setting will recommend Nm to 

be just 1. The same applies for the matrix dimensions (Nrx) through the “allow matrix gaps” 

check box. 

 

The precision parameter P doesn’t depend on the program list. The parameter-extraction GUI 

uses fixed-point simulation data for matrix multiplication, with dynamic scaling, to estimate the 

minimum possible precision for the user-provided SNR constraint. Mv/Md parameters don’t 

depend on the programs list either. Their values are recommended based on the area and latency 

estimation of the hardware. 
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5.	  MIMO	  Accelerator	  Prototype	  Chip	  
Based on the hardware-first design flow, a prototype MIMO accelerator chip is fabricated in 

65nm IBM 10SF CMOS technology. This chip is meant to test the accelerator operation for 

various algorithms and programs and to compare its energy consumption with the dedicated 

ASIC implementations in the literature. 

 

The chosen parameters for the prototype chip are shown in table 4.1, which is repeated here in 

table 5.1. 

Table 5.1. MIMO accelerator HDL parameters and their values for the ASIC prototype 

Parameter Description Prototype Value 

Nrx Number of data streams (vector size) 4 

Nm Number of data-memory variable matrices 4 

Nsc Number of OFDM subcarriers (data memory depth) 52 

P Fixed point precision per rail 16 

Nins Maximum possible number of instruction (instruction memory depth) 256 

Ta, Tr, Tm, Tv Availability of individual processing units 1, 1, 1, 1 

Mv/Md 
0/1: All processing units have the same number of outputs 

1/0: All processing units have the same number of inputs 
0/1 

Dr/Dq 
0/1: A complete data matrix can be routed to an operand 

1/0: One vector only can be routed to an operand 
0/1 

 

This chapter starts with the test setup for the chip and then will go through the chip measurement 

results and their significance. 
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5.1.	  Test	  Setup	  and	  Procedure	  

To build a prototype chip for a custom and complex system like the MIMO accelerator, a 

complete test plan has to be in place by the design-freeze time for the tape-out. Fig. 5.1 shows a 

block diagram of the overall testing setup. A VHDL test bench is used for generating the 

accelerator test vectors. This means to generate the initial contents and the expected final 

contents of the data memory for a certain algorithm that is to be stored in the instruction 

memory.  

 

Fig. 5.1. Test setup for the MIMO accelerator chip 

A Virtex-4 (4VLX160-11) FPGA on a Nallatech BenIO FPGA board is used to transfer the 

memory contents to and from the accelerator. The BenIO FPGA board is a daughter board 
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mounted on a Nallatech Bennuey board that is connected to the PCI bus of a PC. Custom 

software is written for the interaction between the VHDL test bench and the FPGA.  

 

A custom printed circuit board (PCB) is designed and fabricated to connect the accelerator to the 

supply regulators, clock generator, logic analyzer probes, and the FPGA test signals. Fig. 5.2 

shows a photo for the test setup in the lab, highlighting the built PCB, the FPGA board, and lab 

equipment. 

 

 

Fig. 5.2. Photo for the lab test setup in 
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An obvious problem facing the accelerator testing is that both the data and instruction memories 

have wide word lengths per location (2048 bits and 326 bits respectively). This huge number of 

bits can’t be directly connected between the FPGA and the accelerator chip. To solve this 

problem, extra hardware blocks are designed and added on-chip only for testing as shown in Fig. 

5.3. The on-chip test hardware acts as the top-level design for the MIMO accelerator. It controls 

the operation of the accelerator and arranges the data transfer between the accelerator and the 

FPGA. 

 

 

Fig. 5.3. On-chip test hardware blocks 

 

The memory-input serializer, in Fig. 5.3, works as a serial-to-parallel converter from the FPGA 

side to the accelerator. The memory-output serializer does the same job in the other direction. On 

one side, the two serializers are connected to the accelerator through the top-level ports. And, on 

the other side, they are connected to the FPGA by two 8-bits data busses.  
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Moving into the details of the serializers, each one is a wide shift register – as shown in Fig. 5.4. 

For the output serializer, as an example, the output-data bus is always connected to the least 

significant eight bits of the shift register. One complete data memory location is read and stored 

in the shift register with a parallel load input. After receiving a ready-to-receive signal from the 

FPGA, the serializer performs an 8-bit right shift and gives an output enable signal. This shifting, 

which is based on the handshaking signals, is then repeated until the complete data location is 

transferred from the accelerator to the FPGA, and then a new memory location is loaded and 

transferred. The input serializer follows the same sequence of operation but in the other direction 

for both the data and instruction memories. The memory address used by the input and the output 

serializers can be generated internally using an address counter, the address in this case is given 

as a chip output to the FPGA tester. The input address can also be used to give the FPGA tester a 

full control on the accelerator and its on-chip testing hardware. 

 

 

Fig. 5.4. On-chip parallel-to-serial and serial-to-parallel converters 

 

In addition to the serializers, Fig. 5.3 also shows a FSM that is used to control the test procedure 

on chip. It acts as the top level control for the accelerator by generating the accelerator reset 
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signal and by controlling the memory read and write operations. This FSM also insures the 

synchronization between the chip and the FPGA for the time boundaries separating the 

initialization, accelerator run, and the results-read operations. The test FSM uses a work-

indicator flag generated by the accelerator. This work indicator is asserted when the first 

instruction execution starts, and it is reset when a NOPS instruction is executed.  

 

By creating this test setup, an extra effort is needed to guarantee correct data transfer between the 

FPGA and the accelerator chip despite the possible presence of a large clock skew between the 

two sides. A slow clock (20MHz) is generated and used by the FPGA tester and supplied to the 

accelerator chip during the data transfer times as its main clock of operation. During the 

accelerator run time, the actual test clock (fast clock – 166MHz) is supplied to the accelerator 

from a signal generator. This clock transition is made possible by a high speed MUX that is 

controlled by the FPGA tester. As shown in Fig. 5.5, the slow clock is supplied to the accelerator 

during the initialization time. After the final initialization data word is enabled on the data bus, 

the FPGA tester routes the test clock to the accelerator chip. When the work indicator is reset, 

the FPGA tester reroutes the slow clock back to the accelerator chip. This scheme guarantees a 

reliable link between the FPGA and the accelerator, and in the same time it allows the 

accelerator to run at full speed. 
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Fig. 5.5. Timing diagram for the interaction between the test signals to control the clock multiplexing 

5.2.	  Measurement	  Results	  

The MIMO accelerator ASIC was fabricated in IBM 65nm regular CMOS (10SF) technology. 

The complete die area is 7.56mm2, and the chip core area (excluding the IO pads) is 6.05mm2. 

Excluding the memory, the accelerator is 2.48mm2, which is equivalent to 469k gates. Fig. 5.6 

shows the MIMO accelerator chip micrograph. 

 

Fig. 5.6. MIMO Accelerator chip micrograph 
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Big part of the chip area is used for memory, whether it is the data memory or the instruction 

memory. Table 5.2 shows the area breakdown for the main blocks of the MIMO accelerator. The 

data memory is 44% of the accelerator due to the fact of using 4 antennas and 4 data variables. 

This number of variable matrices might not be necessary for all programs, but – as a prototype 

chip – this wide memory is added to open new possibilities in test programs, such as 8x4 QR 

factorization and complete 4x4 MMSE MIMO decoding. 

 

Table 5.2. The percentage of the main blocks area to the complete chip core area 

Block Processing 
Core Controller Memory 

Switches 
Phase 

Memory 
Instruction 
Memory 

Data 
Memory 

Serializers 
& Test  

Area% 36% 0.05% 2.3% 0.7% 14.9% 44% 1.05% 

 

 

The minimum possible clock period (in measurements) is 6ns (166MHz). This clock frequency 

number is not useful without exploring its significance on the accelerator applications. Table 5.3 

shows the number of clock cycles needed to finish an algorithm per subcarrier. The numbers are 

based on the measured throughput; table 5.3 assumes a continuous accelerator operation and 

doesn’t count the initial latency in the reported number of clock cycles. The table also translates 

the number of clocks to an actual time, based on the maximum clock frequency of 166MHz. The 

MMSE decoding mentioned in Table III is based on [16]. 
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Table 5.3. Time needed to finish an algorithm running on the accelerator prototype 

Algorithm Clocks Per 
Subcarrier 

Time Per 
Subcarrier Comments 

4x4 QR Decomposition 20 120ns Both Q and R available 

8x4 QR Decomposition 40 240ns Both Q and R available 

4x4 SVD 52 313ns  

Complete 2x2 MMSE 35 210ns W-matrix computation including the QRD 

Complete 4x4 MMSE 58 348ns W-matrix computation including the QRD 

One symbol decode in 2x2 0.5 3ns Vector-Matrix multiplication 

One symbol decode in 4x4 1 6ns Vector-Matrix multiplication 

 

To complete the analysis, Table 5.4 shows the time requirements for two MIMO-OFDM 

communication standards: 802.11n [1] as a simple standard in terms of processing speed 

requirements, and LTE-A [4] as a more demanding standard. For 802.11n, a re-sync is done 

every packet, which is assumed to be a long packet of 2ms (the packet length is variable). On the 

other side, the LTE-A requires a re-sync every 5 sub-frames, and a sub-frame is composed of 2 

slots, which gives a re-sync interval of 5ms. Assuming MMSE is used for MIMO decoding on 

the accelerator, calculating the W matrix is required for every re-sync, and decoding (multiply 

the received vector by W) is required with a rate related to the bandwidth (subcarrier spacing and 

number of subcarriers). Equation (5.1) is used for calculating the minimum required clock 

frequency to calculate W (F1) under the assumption that a receiver is allowed 10% of the re-sync 

time to calculate W – which is dependent on the system memory. And equation (5.2) is used for 

calculating the minimum required clock frequency to decode (F2).  

𝐹1 = !!"×!!
!!"#$×!.!

   (5.1) 

𝐹2 = 𝐹!"×𝑁!"×𝑁!   (5.2) 
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Where Nsc is the number of subcarriers, Nw is the number of clock cycles the accelerator uses to 

compute W for a subcarrier, Tsync is the re-sync time interval, Fsc is the subcarrier spacing, and 

ND is the number of clock cycles the accelerator uses to decode a subcarrier. 

 

Table 5.4. Summary for a subset of relevant 802.11n and LTE-A parameters 

Subcarrier 
Spacing 

OFDM 
Subcarriers 

MIMO 
Operation 

Slot/Packet 
Time Interval 

Re-sync 
Time Interval 

Min Clock to 
Calculate W (F1) 

Min Clock to 
Decode (F2) 

802.11n 

312.5kHz 64 4x4 2ms 2ms 19MHz 20MHz 

LTE-A 

15kHz 1024 4x4 0.5ms 5ms 119MHz 16MHz 

 

Equations (1) and (2) are considered the worst case analysis as the subcarriers are not all used for 

data, and the 10% time limit in equation (5.1) is an aggressive limit. One more thing to notice is 

that the number of subcarriers only affects the data memory size of the accelerator. Which means 

the assumption that the clock speed will stay the same in hardware for a different number of 

subcarriers is a reasonable assumption. 

 

Tables 5.3 and 5.4 with the rest of the analysis shows that the 166MHz is actually significantly 

better than what is the required by the modern communication standards. 

 

The average power consumption of the accelerator is 300.9mW at 166MHz clock and 1V supply. 

Fig. 5.7 shows the measured power consumption for different clock frequencies and the energy 

consumed per clock cycle. The plot shows that as the clock frequency increases the power 

increases linearly. But the energy consumed in a clock cycle follows a 1/X trend. This is due to 
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the leakage power, which is not affected by the change in frequency. This leads to the fact that 

the higher the clock frequency is, the more energy efficient the accelerator will be.  

 

Fig. 5.7: Power consumption and energy per one clock cycle versus clock frequency,  

And leakage power versus supply voltage 

 

The measured leakage power consumption falls exponentially by reducing the supply voltage, as 

Fig. 5.7 also shows. This leads to the fact that if an application requires a low throughput, a 
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slower clock can be used with a reduction in the supply voltage to reduce the leakage power 

consumption, and hence the overall power consumption. 

 

To guarantee correct operation in an actual receiver, a floating-point MATLAB model for the 

802.11n is used to test the accelerator. The inputs to the MIMO decoder (channel matrices and 

received symbols) are quantized and stored as input test vectors for the MIMO accelerator. The 

results of the accelerator are then fed back to the MATLAB model to complete the receiver 

processing. Fig. 5.9 and Fig. 5.10 show a comparison between the accelerator and floating-point 

MMSE MIMO decoding for 16-QAM and 64-QAM. 100 packets are simulated for each point 

with a payload of 12k bits under channel D of the Wi-Fi channel models. 

 

 

Fig. 5.9. BER comparison between MMSE on the accelerator and floating point simulation 
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Fig. 5.9. PER comparison between MMSE on the accelerator and floating point simulation 

 

Table 5.5 compares the accelerator with specialized ASIC designs for different MIMO 

processing algorithms. In the 4x4 QRD category, the accelerator is compared to two designs 

reported in [21]. The accelerator penalty in energy consumption is only 10% compared to the 

two dedicated designs. In [28], a 4x4 QRD ASIC is reported without the power numbers, but the 

comparison highlights the higher throughput of the accelerator. 

 

In [21], the two QRD designs are re-used for implementing 4x4 SVD. The accelerator consumes 

half the energy of the two designs. This shows the benefit of the accelerator programmability. 

Also in [22], a 4x4 SVD is reported based on iterative methods to track the Eigen values of a 

channel matrix. To reach the first SVD before tracking, it takes 500 clock cycles. The accelerator 

is 30% better in energy consumption when compared to this first computation of the SVD. 
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Table 5.5. Comparison to other ASIC designs 
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In [30], a 2x2 MMSE is reported as part of a receiver. The throughput of the MIMO decoder is 

not included. This comparison is only for the energy in one clock cycle, which maps to the 

power consumption. We included this comparison to show that the accelerator can be compared 

to completely different dedicated designs. 

 

Finally, Table V compares the accelerator to the programmable implementation in [29] based on 

the reported synthesis results. As the power numbers are not included in [29], the comparison 

shows the throughput improvement of the accelerator despite the lower clock frequency. 
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6.	  Conclusions	  
This work introduced the MIMO accelerator as a programmable and energy efficient hardware 

block for MIMO decoding tasks in an OFDM system. Based on a processor-like structure that 

includes data and instruction memories, the accelerator design is optimized to reduce the overall 

energy consumption of a running algorithm. The accelerator processing-core, with its parallel 

and reconfigurable processing elements, is powerful enough to perform any required algorithm 

in less than 64 instructions. 

 

The hardware implementation of the accelerator overcame many challenges such as the 

instruction memory access, data memory arrangement, system integration, and processing unit 

power-saving. This hardware design led to a prototype chip in 65nm CMOS that can be 

compared to various designs such as QR decomposition, SVD, MMSE linear decoders, and other 

algorithms. The chip testing has proven that the accelerator can – in some cases – be twice as 

energy efficient as dedicated ASIC designs, and 9% worse in energy consumption in the worst 

comparison. 

 

The accelerator high-level programming language and design tools were introduced with their 

graphical user interfaces. Two design flows that utilize the accelerator to its maximum value 

were introduced based on those tools. 
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7.	  Future	  Work	  
This work may be extended, in future research, in the following directions: 

• The MIMO accelerator can be integrated in a complete receiver in hardware to test the 

overall performance of a system that depends on the accelerator. 

 

• The prototype chip of the accelerator is powerful enough to run multiple algorithms. 

Another chip might be fabricated based on the algorithm-first design flow. This might 

lead to better energy efficiency for this particular algorithm. 

 

• Based on the idea of building an accelerator for MIMO decoding in OFDM systems, the 

same idea of a specialized processor can be applied to other parts of wireless transceivers 

in the direction of creating a software-defined radio. 
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