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Abstract of the Dissertation

Random Homogenization of Coercive Hamilton-Jacobi

equations in 1-D
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This dissertation considers the random homogenization of coercive Hamilton-

Jacobi equations and it gives the most generalized result in 1-D. Basically, we can

prove that in the stationary ergodic media, the random homogenization holds as long

as the Hamiltonian is coercive. This is an extension of the result by Armstrong, Tran

and Yu when the Hamiltonain is separable. We also provide some application of ran-

dom homogenizaton in front propagation based on the analysis of inviscid G-equation

model, it is proved that with 2-d random shear flows, the strain effect reduces the

propagation of the flame front.
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Introduction

0.0.1 The problem of homogenization

We study the Hamilton-Jacobi equation (see [10, 9, 8]) of the following form:ut +H(Du, x, ω) = 0 (x, t) ∈ Rd × (0,∞)

u(x, 0) = g(x) x ∈ Rd

The Hamiltonian H = H(p, x, ω) : Rd×Rd×Ω→ R is coercive in p, and stationary

ergodic in (x, ω) (see precise definitions in section 1.1), where ω is an element of the

underlying probability space (Ω,F ,P). The initial condition g(x) ∈ BUC(Rd), the

space of bounded uniformly continuous functions in Rd. For each ε > 0, ω ∈ Ω, let

uε(x, t, ω) be the unique solution of the equation:u
ε
t +H

(
Duε, x

ε
, ω
)

= 0 (x, t) ∈ Rd × (0,+∞)

uε(x, 0) = g(x) x ∈ Rd

The central goal of stochastic homogenization is to prove that for a.e. ω ∈ Ω, as

ε → 0, uε(x, t, ω) → u(x, t) locally uniformly, where u(x, t) is the unique solution of
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the homogenized equation:ut +H(Du) = 0 (x, t) ∈ Rd × (0,+∞)

u(x, 0) = g(x) x ∈ Rd

0.0.2 Periodic environment

The periodic homogenization of Hamilton-Jacobi equations was first studied by Lions,

Papanicolaou and Varadhan [24]. By the introduction of perturbed test function

method, periodic homogenization of the general case was established by Evans [16][17],

which was later extended to almost periodic environment by Ishii [20].

0.0.3 Random environment

Stationary ergodic media

If H(p, x, ω) is convex with respect to p ∈ Rd, stochastic homogenization was proved

independently by Souganidis [34] and by Rezakhanlou and Tarver [31]. This result

was extended to time-dependent Hamiltonians by Schwab [33] when the Hamiltonian

has super-linear growth in p and by Jing, Souganidis and Tran [21] for Hamiltonians

with the form a(x, t, ω)|p|. For those quasi-convex Hamiltonians, Siconolfi and Davini

[14] established the random homogenization in 1d, and the general dimensional case

was proved by Amstrong and Souganidis [4]. It remains an open problem of whether

random homogenization still holds if the Hamiltonian is non-convex. The first gen-

uinely non-convex example of stochastic homogenization was provided by Amstrong,

Tran and Yu [6] for a special class of Hamiltonians with the following typical form:

H(p, x, ω) = (|p|2 − 1)2 + V (x, ω), (p, x) ∈ Rd ×Rd

In the one dimensional case, the same author established in another paper [7] the

random homogenization of separable Hamiltonians:

H(p, x, ω) = H(p) + V (x, ω), (p, x) ∈ R×R for any coercive H(p)

The purpose of this dissertation is to extend the result of Amstrong, Tran and Yu [7]

to general coercive H(p, x, ω).
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Other random environments

Another typical random case is the independent and identically distributed (i.i.d.)

random enviroment. Precisely speaking, it assumes that H(p, x, ω) is stationry and

has a finite range of dependece or mixing condition. The homogenization of Hamilton-

Jacobi equations in such kind of samplings are studied by Armstrong and Cardaliaguet

[1], Armstrong and Souganidis [3], Armstrong, Cardaliaguet and Souganidis [2].

In [1], Armstrong and Cardaliaguet considered the homogenization of Hamiltonian

H(p, x, ω) that is homogeneous in p and under the assumption of unit range of depen-

dence on (x, ω) (basically, it means that H(p, x, ω) and H(p, y, ω) are independent

once |x− y| > 1).

A counter example

When the dimension is larger than one, there indeed exists counter examples, see

Ziliotto [38], for example.

0.0.4 Homogenization of second order Hamilton-Jacobi equa-

tions

The same random homogenization question can be asked to the Hamilton-Jacobi

equation with viscous term, for example, see the following equation.

uεt − ε∆uε +H
(
Duε,

x

ε
, ω
)

= 0

When the Hamitonian H(p, x, ω) is convex in the gradient variable, the homoge-

nization has been widely studied by Lions-Souganidis [26, 27], Kosygina-Rezakhanlou-

Varadhan [22], Kosygina-Varadhan [23] and Armstrong-Tran [5]. But it is open when

H(p, x, ω) is nonconvex (except [1] with i.i.d. assumption for homogeneous Hamilto-

nian), even the 1d case as H(p, x, ω) = H(p) + V (x, ω) with a simply “W”-shaped

H(p) has not been solved.
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Chapter 1

Random Homogenization of

coercive Hamilton-Jacobi

equations in 1-D

This chapter is based mainly on the author’s recent work on random homogenization

of nonconvex Hamilton-Jacobi equations. The author acknowledge Springer for ac-

cepting the paper for publication. The final publication is available at Springer via

http://dx.doi.org/ 10.1007/s00526-016-0968-9

1.1 Assumptions and main result

Consider the Hamiltonian H(p, x, ω) that is continuous in (p, x) ∈ R ×R and mea-

surable in ω ∈ Ω, assume H satisfies the following assumptions:

(A1) Stationary Ergodic: there exists a probability space (Ω,F ,P) and a group

{τy}y∈R of F -measurable, measure-preserving transformations τy : Ω → Ω, i.e. for

any x, y ∈ R:

τx+y = τx ◦ τy and P[τy(A)] = P[A]

Ergodic: A ∈ F , τz(A) = A for every z ∈ R ⇒ P[A] ∈ {0, 1}.
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Stationary: H(p, y, τzω) = H(p, y + z, ω) for any y, z ∈ R and ω ∈ Ω.

(A2) Coercive:

lim inf
|p|→+∞

ess inf
(x,ω)∈R×Ω

H(p, x, ω) = +∞

(A3) Local Uniformly Continuous: for any compact set K ⊂ R,

|H(p, x, ω)−H(q, y, ω)| ≤ ρK(|p− q|+ |x− y|), (p, x, ω), (q, y, ω) ∈ K ×R× Ω

The above ρK is the modulus of continuity.

Theorem 1.1.1. Assume (A1)-(A3) hold and g(x) ∈ BUC(R), for each ε > 0 and

ω ∈ Ω, let uε(x, t, ω) be the solution of the Hamilton-Jacobi equationu
ε
t +H

(
Duε, x

ε
, ω
)

= 0 (x, t) ∈ R× (0,+∞)

uε(x, 0) = g(x) x ∈ R

Then, there exists an effective Hamiltonian H(p) ∈ C(R) with lim
|p|→+∞

H(p) = +∞,

such that for a.e. ω ∈ Ω, lim
ε→0+

uε(x, t, ω) = u(x, t) locally uniformly, where u(x, t) is

the solution of the homogenized Hamilton-Jacobi equationut +H(Du) = 0 (x, t) ∈ R× (0,+∞)

u(x, 0) = g(x) x ∈ R

1.2 Stability of homogenization

Definition 1.2.1. (Definition 1.1 in [7]) H(p, x, ω) is called regularly homogenizable

at p ∈ R if there exists an H(p) ∈ R such that: for any λ > 0, if vλ(x, p, ω) ∈

W 1,∞(R) is the unique viscosity solution of the equation

λvλ +H(v′λ, x, ω) = 0, x ∈ R

Then

P

[
ω ∈ Ω : lim sup

λ→0
max
|x|≤R

λ

∣∣λvλ(x, p, ω) +H(p)
∣∣ = 0

]
= 1, for any R > 0(1.1)
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Remark 1. By Armstrong and Souganidis [4], with (A1), (1.1) is equivalent to the

identity:

P
[
ω ∈ Ω : lim

λ→0

∣∣λvλ(0, p, ω) +H(p)
∣∣ = 0

]
= 1

Remark 2. Homogenization with H(p, x, ω) holds if H(p, x, ω) is regularly homoge-

nizable for each p ∈ R (see [3]). If the cell problem at p is solvable, then H(p, x, ω)

is regularly homogenizable at p.

Definition 1.2.2. Let G(p, x, ω) : R×R× Ω→ R satisfy (A1), denote

Ginf(p) := ess inf
(x,ω)∈R×Ω

G(p, x, ω)

Gsup(p) := ess sup
(x,ω)∈R×Ω

G(p, x, ω)

Lemma 1.2.1. If G(p, x, ω) satisfies (A1) and is continuous in x, Ginf(p), Gsup(p) ∈

R, then for a.e. ω ∈ Ω,

Ginf(p) = ess inf
x∈R

G(p, x, ω)

Gsup(p) = ess sup
x∈R

G(p, x, ω)

Proof. Fix p ∈ R, denote g(x, ω) := G(p, x, ω). For any α ∈ R, define

Aα := {ω ∈ Ω : g(x, ω) > α, for all x ∈ R}(1.2)

Stationary implies τzAα = Aα for any z ∈ R. By ergodicity, we have P[Aα] = 0 or

1. Now let α0 := sup{α : P[Aα] = 1}. By (1.2), α0 = Ginf(p). Since P
[
Aα0− 1

n

]
= 1,

n ∈ N, P

[
∞⋂
n=1

Aα0− 1
n

]
= 1. Hence

Ginf(p) = ess inf
x∈R

G(p, x, ω), ω ∈
∞⋂
n=1

Aα0− 1
n

The other equality can be established similarly.

Lemma 1.2.2. Given uniformly coercive Hamiltonians {Hn(p, x, ω)}n≥1

⋃
{H(p, x, ω)}

that satisfy (A1), each Hn(p, x, ω) is regularly homogenizable for all p ∈ R and has

effective Hamiltonian Hn(p). Assume for a.e. ω ∈ Ω that:

lim
n→+∞

||Hn(p, x, ω)−H(p, x, ω)||L∞(K×R) = 0

for each compact set K ⊂ R

6



Then, H(p, x, ω) is regularly homogenizable and has effective Hamiltonian H(p). More-

over,

lim
n→+∞

Hn(p) = H(p)

Proof. Fix p ∈ R, for each λ > 0, let vn,λ(x, p, ω) and vλ(p, x, ω) be solutions of the

following equations:

λvn,λ +Hn(p+ v′n,λ, x, ω) = 0, x ∈ R

λvλ +H(p+ v′λ, x, ω) = 0, x ∈ R

Then,

−λvn,λ ∈ [Hn,inf(p), Hn,sup(p)] and −λvλ ∈ [Hinf(p), Hsup(p)

By uniform coercive, there exists an r = r(p), such that |v′n,λ(x, ω)|, |v′λ(x, ω)| < r. If

we denote the compact set K := [p− r, p+ r], then by comparison principle,

|λvn,λ(0, p, ω)− λvλ(0, p, ω)| ≤ sup
x∈R
|λvn,λ(x, p, ω)− λvλ(x, p, ω)|

≤ ||Hn(·, ·, ω)−H(·, ·, ω)||L∞(K×R)

Boundedness of −λvn,λ implies that
{
Hn(p)

}
n≥1

is bounded. Thus, for any subse-

quence {nj}j≥1, there exists a sub-subsequence {njk}k≥1, such that lim
k→∞

Hnjk
(p0) =

h∗. So

|(−λvλ(0, p, ω))− h∗|

≤
∣∣∣(−λvλ(0, p, ω))−

(
−λvnjk ,λ(0, p, ω)

)∣∣∣+
∣∣∣(−λvnjk ,λ(0, p, ω)

)
−Hnjk

(p)
∣∣∣

+
∣∣∣Hnjk

(p)− h∗
∣∣∣

≤ ||Hnjk
(·, ·, ω)−H(·, ·, ω)||

L∞
(
K×R

) +
∣∣∣(−λvnjk ,λ(0, p, ω)

)
−Hnjk

(p)
∣∣∣

+
∣∣∣Hnjk

(p)− h∗
∣∣∣

=: 1©+ 2©+ 3©

For any ε > 0, when k is large enough, 1© < ε
3

and 3© < ε
3
. Fix such k, there exists

some λ0 = λ0(k), such that, 2© < ε
3

once 0 < λ < λ0. Thus lim
λ→0
−λvλ(0, p, ω) = h∗,
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which means H(p) = h∗. Observe that the above limit is independent of the choice

of {nj}j≥1, then lim
n→∞

Hn(p) = h∗. As a consequence,

lim
n→∞

Hn(p) = H(p)

Remark 3. Based on this lemma, we will construct the approximation of H(p, x, ω)

by constrained Hamiltonians (see Definition 1.3.1), this is the first step of reduction

in this paper.

Corollary 1.2.1. Let H(p, x, ω) satisfy (A1)-(A3) and fix p0 ∈ R, then

(1) If H(p, x, ω) is regularly homogenizable on (−∞, p0) and H(p) is continuous, then

H(p, x, ω) is also homogenizable at p0 and lim
p→p−0

H(p) = H(p0).

(2) If H(p, x, ω) is regularly homogenizable on (p0,+∞) and H(p) is continuous, then

H(p, x, ω) is also homogenizable at p0 and lim
p→p+0

H(p) = H(p0).

Proof. We only give the proof of (1), since the proof of (2) is similar. Fix any sequence

δn → 0+ and denote

Hn(p, x, ω) := H (p− δn, x, ω)

By assumption, each Hn(p, x, ω) is regularly homogenizable at p0. According to

(A3), for each ω ∈ Ω and any compact set K ⊂ R, we have lim
n→∞

||Hn(p, x, ω) −

H(p, x, ω)||L∞(K×R) = 0. Thanks to Lemma 1.2.2, H(p, x, ω) is regularly homogeniz-

able at p0 and

H(p0) = lim
n→+∞

Hn(p0, x, ω) = lim
n→+∞

H (p0 − δn, x, ω)

This is true for any sequence δn → 0+, hence

lim
p→p−0

H(p, x, ω) = H(p0, x, ω)

8



1.2.1 Comparison Principle

Lemma 1.2.3. Let H(p, x, ω) satisfy (A1)-(A3), for R > 0, 1 � λ > 0, p ∈ R, let

u and v both be viscosity solutions of the equation

λγ +H(p+ γ′, x, ω) = 0, for x ∈
[
−R

λ
, R
λ

]
If there exists a constant M = M(p) > 0, such that |λu|+ |λv| ≤M(p).

Then, there exists a constant C = C(p) > 0, such that

|λu− λv| ≤ M(p)

R

√
|x|2 + 1 +

M(p)C(p)

R
, for x ∈

[
−R

λ
, R
λ

]
Proof. By |λu|+ |λv| ≤M(p), we have H(p+ u′, x, ω) ≤M(p) and H(p+ v′, x, ω) ≤

M(p).

By (A2), there exists some r = r(p) > 0, such that |u′|, |v′| ≤ r(p).

By (A3), there exists some δ = δ(p) > 0, such that |H(q1, x, ω)−H(q2, x, ω)| < 1 if

q1, q2 ∈
[
p− r(p)− M(p)

R
, p+ r(p) +

M(p)

R

]
and |q1 − q2| < δ

Now define

w(x) := v +
M(p)

R

√
|x|2 + 1 +

M(p)

δ(p)Rλ

Immediately, we see that |w′| ≤ r(p) + M(p)
R

. Thus

H(p+ w′, x, ω) ≥ H(p+ v′, x, ω)− M(p)

δ(p)R

And

λw +H(p+ w′, x, ω)

= λv +
λM(p)

R

√
|x|2 + 1 +

M(p)

δ(p)R
+H(p+ w′, x, ω)

≥ λv +
λM(p)

R

√
|x|2 + 1 +

M(p)

δ(p)R
+H(p+ v′, x, ω)− M(p)

δ(p)R

> 0

Furthermore,

|λu|+ |λv| ≤M(p)⇒ w||x|=R
λ
≥ v||x|=R

λ
+
M(p)

λ
≥ u||x|=R

λ

9



Recall the classical comparison principle, we have w(x) ≥ u(x) for x ∈
[
−R

λ
, R
λ

]
. So

u− v ≤ M(p)

R

√
|x|2 + 1 +

M(p)

δ(p)Rλ
, for x ∈

[
−R

λ
, R
λ

]
Similarly,

v − u ≤ M(p)

R

√
|x|2 + 1 +

M(p)

δ(p)Rλ
, for x ∈

[
−R

λ
, R
λ

]
Thus when λ ≤ 1, let C(p) := 1

δ(p)
, then for x ∈

[
−R

λ
, R
λ

]
, we have

|λu− λv| ≤
λM(p)

√
|x|2 + 1

R
+
C(p)M(p)

R
≤
M(p)

√
|x|2 + 1

R
+
C(p)M(p)

R

1.3 Reduction by constrained Hamiltonian with

index (L̃, L)

1.3.1 Approximation by cluster-point-free Hamiltonians

Let H(p, x, ω) satisfy (A1)-(A3) and denote

h
(n)
i (x, ω) := H

(
i

n
, x, ω

)
and En := {h(n)

i (x, ω)}−n2≤i≤n2

Let E+
n = {g(n)

i (x, ω)}−n2≤i≤n2 be another family of stationary functions and define

∆En,E+n (p, x, ω) =


g

(n)

−n2 − h(n)

−n2 p ∈ (−∞,−n)

(np− i)
[
g

(n)
i+1 − h

(n)
i+1

]
+ (i+ 1− np)

[
g

(n)
i − h

(n)
i

]
p ∈

[
i
n
, i+1
n

]
g

(n)

n2 − h(n)

n2 p ∈ (n,+∞)

So ∆E,E+(p, x, ω) is a stationary function which is also continuous with respect to

(p, x).

Lemma 1.3.1. If H(p, x, ω) satisfies (A1)-(A3), then there exists {H(n)(p, x, ω)}n=2j ,j∈N,

such that

10



(1) H(n)(p, x, ω) satisfies (A1)-(A3), ∀n = 2j, j ∈ N.

(2) For −n2 ≤ i ≤ n2, H(n)
(
i
n
, x, ω

)
, as functions of x, have no cluster point.

(3) ||H(p, x, ω)−H(n)(p, x, ω)||L∞(R×R×Ω) ≤ 1
n

.

Proof. For each ε > 0, −n2 ≤ i ≤ n2, denote

Hε

(
i
n
, x, ω

)
:= 1√

2πε

∫
R
e−

(x−y)2
2ε H

(
i
n
, y, ω

)
dy

By (A1), either Hε

(
i
n
, x, ω

)
has no cluster for a.e. ω ∈ Ω or Hε

(
i
n
, x, ω

)
has some

cluster point for a.e. ω ∈ Ω. If Hε

(
i
n
, x, ω

)
has a cluster point x0, without loss of

generality, we can assume x0 = 0 and Hε

(
i
n
, 0, ω

)
= 0. Then ∂k

∂xk
Hε

(
i
n
, 0, ω

)
= 0,

k = 0, 1, 2, · · · , which means∫
R

yke−
y2

2εH

(
i

n
, y, ω

)
dy = 0

By Fourier analysis, we have H
(
i
n
, x, ω

)
≡ 0. Denote

Dj :=

{
i

2j

}
−4j≤i≤4j

and D :=
∞⋃
j=1

Dj

Then D is dense in R, if for every d ∈ D, Hε (d, x, ω) has a cluster point, then for every

d ∈ D, H(d, x, ω) is independent of (x, ω). By continuity, for all p ∈ R, H(p, x, ω) is

independent of (x, ω), so it is already homogenized. Thus, assume for some d0 ∈ D,

Hε(d0, x, ω) has no cluster point. Since Dj is increasing, without loss of generality,

assume d0 = 0 ∈ Dj, j ∈ N. For j ∈ N and −4j ≤ i ≤ 4j, define

g
(2j)
i (x, ω) :=

H
(
i

2j
, x, ω

)
if H

(
i

2j
, x, ω

)
has no cluster point

H
(
i

2j
, x, ω

)
+ Hε(0,x,ω)

2jqε
if H

(
i

2j
, x, ω

)
has a cluster point

Here qε := ||Hε (0, x, ω) ||L∞(R×Ω) + 1

Denote

E2j := {h(2j)
i (x, ω)}−4j≤i≤4j and E+

2j
:= {g(2j)

i (x, ω)}−4j≤i≤4j

11



We can finish the proof by defining

H(n)(p, x, ω) := H(p, x, ω) + ∆E
2j
,E+

2j
(p, x, ω), n = 2j, j ∈ N

1.3.2 Approximation by constrained Hamiltonians

In this subsection, we find a way to approximate H(p, x, ω) by {Hn(p, x, ω)}n≥1 in

the sense of Lemma 1.2.2. Here each Hn(p, x, ω) is constrained in the following sense.

Definition 1.3.1 (Constrained Hamiltonian). A Hamiltonian H(p, x, ω) is called

constrained if it satisfies the following (1)-(5).

(1) There exists k ∈ N and −∞ < a1 < b1 < a2 < b2 < · · · < ak−1 < bk−1 < ak <

+∞.

(2) For each (x, ω), H(p, x, ω)|(−∞,a1), H(p, x, ω)|(b1,a2), · · · , H(p, x, ω)|(bk−1,ak) are

decreasing.

(3) For each (x, ω), H(p, x, ω)|(ak,+∞), H(p, x, ω)|(ak−1,bk−1), · · · , H(p, x, ω)|(a1, b1) are

increasing.

(4) H(p, x, ω) is Lipschitz w. r. t. p (with Lipschitz constant L), uniformly in

(x, ω) ∈ R× Ω.

(5) Each of H(ai, x, ω), H(bj, x, ω), 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1 has no cluster point.

Lemma 1.3.2. If H(p, x, ω) satisfies (A1)-(A3), then for n = 2j, j ∈ N, there exists

Hn(p, x, ω), such that

(a) {H(p, x, ω)}n≥1 is uniformly coercive.

(b) Each Hn(p, x, ω) satisfies (A1)-(A3).

(c) Each Hn(p, x, ω) is constrained.

(d) Fix any δ > 0, then for any compact set K ⊂ R, there exists an N ∈ N, such

that

||Hn(p, x, ω)−H(p, x, ω)||L∞(K×R×Ω) < δ, if n > N

Proof. According to Lemma 1.3.1, without loss of generality, we can assume each of

H
(
i
n
, x, ω

)
, −n2 ≤ i ≤ n2 has no cluster point. We construct Hn(p, x, ω) by the

12



following procedure.

STEP 1: For each p ∈ (−∞, n) ∪ (n,∞), define

Hn(p, x, ω) =

|p+ n|+H(−n, x, ω) p ∈ (−∞,−n)

|p− n|+H(n, x, ω) p ∈ (n,+∞)

STEP 2: For k = 0, 1, 2, · · · , 2n2, define

Hn

(
−n+

k

n
, x, ω

)
= H

(
−n+

k

n
, x, ω

)
STEP 3: For i = 0, 1, 2, · · · , 2n2 − 1, define

Hn

(
−n+

i

n
+

1

2n
, x, ω

)
= max

{
H

(
−n+

i

n
, x, ω

)
, H

(
−n+

i+ 1

n
, x, ω

)}
+

1

n

STEP 4: For i = 0, 1, 2, · · · , 2n2 − 1,

(1) If p ∈
(
−n+ i

n
,−n+ i

n
+ 1

2n

)
, then there exists some θ ∈ (0, 1), such that

p = θ ×
(
−n+

i

n

)
+ (1− θ)×

(
−n+

i

n
+

1

2n

)
Then we define

Hn(p, x, ω) = θH

(
−n+

i

n
, x, ω

)
+ (1− θ)H

(
−n+

i

n
+

1

2n
, x, ω

)
(2) If p ∈

(
−n+ i

n
+ 1

2n
,−n+ i+1

n

)
, then there exists some θ ∈ (0, 1), such that

p = θ ×
(
−n+

i

n
+

1

2n

)
+ (1− θ)×

(
−n+

i+ 1

n

)
Then we define

Hn(p, x, ω) = θH

(
−n+

i

n
+

1

2n
, x, ω

)
+ (1− θ)H

(
−n+

i+ 1

n
, x, ω

)
(a) Since H(p, x, ω) satisfies (A2), {Hn(p, x, ω)}n≥1 is uniformly coercive.

(b) By (A1), H
(
−n+ k

n
, x, ω

)
is stationary, for k = 0, 1, 2, · · · , 2n2. So, Hn(p, x, ω),

as a linear combination of these functions, is stationary and satisfies (A1)-(A3).

(c) By the above construction, such Hn(p, x, ω) is constrained with 2n2 +1 wells. And

Hn(p, x, ω) has Lipschitz constant L = 1 + nρ[−n2,n2](
1
n
) in p variable, uniformly in

13



(x, ω) ∈ R.

(d) By (A3), there exists N ∈ N, such that N > 3
δ
, K ⊂ [−N,N ] and

p, q ∈ K, |p− q| < 1

N
⇒ |H(p, x, ω)−H(q, x, ω)| < δ

3

To prove (d), it suffices to show that,

||Hn(p, x, ω)−H(p, x, ω)||L∞((K∩(−n+ k
n
,−n+ k+1

n
))×R) < δ

for any k ∈ {0, 1, 2, · · · , 2n2 − 1}

Denote

p1 = −n+
k

n
, p2 = −n+

k

n
+

1

2n
, p3 = −n+

k + 1

n

Without loss of generality, assume that

H (p1, x, ω) ≤ H (p3, x, ω)

Case 1: p ∈ K ∩ (p1, p2). Then there exists some θ ∈ (0, 1) such that p = θp1 + (1−

θ)p2,

|Hn(p, x, ω)−H(p, x, ω)|

= |Hn(θp1 + (1− θ)p2, x, ω)−H(θp1 + (1− θ)p2, x, ω)|

=
∣∣∣θH(p1, x, ω) + (1− θ)

[
H(p3, x, ω) +

1

n

]
−H(θp1 + (1− θ)p2, x, ω)

∣∣∣
≤ θ|H(p1, x, ω)−H(θp1 + (1− θ)p2, x, ω)|

+(1− θ)|H(p3, x, ω)−H(θp1 + (1− θ)p2, x, ω)|+ 1− θ
n

< δ

Case 2: p ∈ K ∩ (p2, p3). Then there exists some θ ∈ (0, 1) such that p = θp2 + (1−

θ)p3,

|Hn(p, x, ω)−H(p, x, ω)|

= |Hn(θp2 + (1− θ)p3, x, ω)−H(θp2 + (1− θ)p3, x, ω)|

=
∣∣∣θ [H(p3, x, ω) +

1

n

]
+ (1− θ)H(p3, x, ω)−H(θp1 + (1− θ)p2, x, ω)

∣∣∣
≤ |H(p3, x, ω)−H(θp1 + (1− θ)p2, x, ω)|+ θ

n

< δ

14



The above is true for all k = 0, 1, 2, · · · , 2n2 − 1, thus

||Hn(p, x, ω)−H(p, x, ω)||L∞(K×R×R) < δ

Remark 4. By Lemma 1.2.2 and Lemma 1.3.2, to prove Theorem 2.3.1, it suffices

to consider such Hamiltonian H(p, x, ω) that is constrained (see Definition 1.3.1)

and satisfies (A1)-(A3). So in the following sections, we only consider constrained

Hamiltonians.

1.3.3 Constrained Hamiltonian with index (L̃, L)

Definition 1.3.2. H(p, x, ω) is called constrained Hamiltonian with index (L̃, L) if

(1) H(p, x, ω) is constrained in the sense of Definition 1.3.1.

(2) (a1, b1, a2, b2, · · · , ak−1, bk−1, ak) = (p̃1, q̃1, p̃2, q̃2, · · · , p̃L̃, q̃L̃, 0, qL, pL, qL−1, pL−1, · · · , q1, p1).

(3) ess sup
(x,ω)

H(p̃i, x, ω) > 0, 1 ≤ i ≤ L̃; ess sup
(x,ω)

H(0, x, ω) = 0; ess sup
(x,ω)

H(pj, x, ω) > 0,

1 ≤ j ≤ L.

(4) Each of H(ai, x, ω), H(bi, x, ω), 1 ≤ i ≤ k has no cluster point.

Remark 5. Apply perturbation and shift coordinates if necessary, it suffices to con-

sider homogenization of any constrained Hamiltonian with index (L̃, L).

Definition 1.3.3. Let H(p, x, ω) be a constrained Hamiltonian with index (L̃, L).

(1) For each (x, ω), denote monotone branches of H(p, x, ω) by

H|[p1,∞) := φ1,(x,ω)(p), H|[q1,p1] := φ2,(x,ω)(p), · · · , H|[0,qL] := φ2L+1,(x,ω)(p)

H|[−∞,p̃1) := φ̃1,(x,ω)(p), H|[p̃1,q̃1] := φ̃2,(x,ω)(p), · · · , H|[q̃
L̃
,0] := φ̃2L̃+1,(x,ω)(p)

(2) Denote the inverse function of each branch by(
φi,(x,ω)(·)

)−1
:= ψi,(x,ω)(·),

(
φ̃i,(x,ω)(·)

)−1

:= ψ̃i,(x,ω)(·)

(3) Denote the local extreme values by

mi(x, ω) := H(pi, x, ω) , m̃i(x, ω) := H(p̃i, x, ω)

Mi(x, ω) := H(qi, x, ω) , M̃i(x, ω) := H(q̃i, x, ω)
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(4) Define the two functions

m(x, ω) := min

{
min

1≤i≤L
mi(x, ω), min

1≤j≤L̃
m̃j(x, ω)

}
(1.3)

M(x, ω) := max

{
max
1≤i≤L

Mi(x, ω), max
1≤j≤L̃

M̃j(x, ω)

}
(1.4)

1.4 Auxiliary Lemmas for Gluing Lemmas

1.4.1 Two Lemmas on the bound of gradient in the ergodic

problem

Lemma 1.4.1. Let Hamiltonian H(p, x, ω) satisfy (A1)-(A3) and be regularly ho-

mogenizable at p0, for each λ > 0, let vλ(x, p0, ω) be the viscosity solution of the

equation:

λvλ +H(p0 + v′λ, x, ω) = 0, x ∈ R

fix P ∈ R, denote P := ess inf
(x,ω)

H(P, x, ω) and P := ess sup
(x,ω)

H(P, x, ω), then there

exists an Ω̃ ⊂ Ω with P[Ω̃] = 1, such that, for each ω ∈ Ω̃, the followings are true.

(1) If H(p0) < P , p0 < P , then for any R > 0, there exists λ0 = λ0(R, p0, ω) > 0,

0 < λ < λ0 ⇒ p0 + v′λ(x, p0, ω) ≤ P for x ∈
[
−R

λ
, R
λ

]
(2) If H(p0) < P , p0 > P , then for any R > 0, there exists λ0 = λ0(R, p0, ω) > 0,

0 < λ < λ0 ⇒ p0 + v′λ(x, p0, ω) ≥ P for x ∈
[
−R

λ
, R
λ

]
(3) If H(p0) > P , p0 < P , then for any R > 0, there exists λ0 = λ0(R, p0, ω) > 0,

0 < λ < λ0 ⇒ p0 + v′λ(x, p0, ω) ≤ P for x ∈
[
−R

λ
, R
λ

]
(4) If H(p0) > P , p0 > P , then for any R > 0, there exists λ0 = λ0(R, p0, ω) > 0,

0 < λ < λ0 ⇒ p0 + v′λ(x, p0, ω) ≥ P for x ∈
[
−R

λ
, R
λ

]
All these inequalities are understood in the viscosity sense.
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Proof. of the periodic case (1) For p0, we have the cell problem

H(p0 + v′, x) = H(p0)

Suppose (1) is not true, then there exists an x1 ∈ [0, 1], such that p0 + v′(x1) > P .

On the other hand, ∫ 2

1

p0 + v′(x)− Pdx = p0 − P < 0

So there exists some y1 ∈ [1, 2], such that p0 + v′(y1) − P < 0. Then Ψ(x) :=

p0 + v(x)− Px attains local maximum at some z1 ∈ [x1, y1], which means that

P ≤ H(P, z1) ≤ H(p0) < P

This is a contradiction, so we proved (1). The proofs of (2), (3) and (4) are similar.

Proof. of the random case (1) If it is not true, then there exists some Ω1 ⊂ Ω,

P[Ω1] > 0, such that for any ω ∈ Ω1, there are R1 = R1(p0, ω) > 0 and λn → 0 such

that

p0 + v′λn(xλn , p0, ω) > P for some xλn ∈
[
−R1

λn
, R1

λn

]
Denote δ := P − p0 > 0. For any R > 0, we have∣∣∣∣∣ λR

∫ R+R1
λ

R1
λ

v′λ(s, ω)ds

∣∣∣∣∣ ≤ 2
(
Hsup(p0)−Hinf(p0)

)
R

Fix any R2 = R2(p0) > 4(Hsup(p0)−Hinf(p0))

δ
, thus for any R ≥ R2, we have∣∣∣∣∣ λR

∫ R+R1
λ

R1
λ

v′λ(s, p0, ω)ds

∣∣∣∣∣ < δ

2
for any λ > 0

So

λn
R2

∫ R2+R1
λn

R1
λn

p0 + v′λn(s, p0, ω)− Pds ≤ p0 − P +
δ

2
< 0

This implies

p0 + v′λn(yλn , ω)− P < 0 for some yλn ∈
(
R1

λn
, R2+R1

λn

)
17



Denote Ψ(x, ω) = p0x+ vλn(x, ω)− Px, then

Ψ(x, ω) is increasing (decreasing) in a neighborhood of xλn(yλn)

Since xλn < yλn , Ψ(x, ω) attains local maximum at some zλn ∈ (xλn , yλn). So

λnvλn(zλn , ω) +H(P, zλn , ω) ≤ 0(1.5)

Since H(p, x, ω) is regularly homogenizable at p0, there exists Ω2 ⊂ Ω, such that

P[Ω2] = 1,

lim sup
λ⇒0

sup
|x|≤R1+R2

λ

|λvλ(x, ω) +H(p0)| = 0 for each ω ∈ Ω2

Denote τ := P −H(p0) > 0, Ω̂ := Ω1 ∩ Ω2. So there exists some N1(ω),

sup
|x|≤R1+R2

λn

|λnvλn +H(p0)| < τ

2
for any n ≥ N1(1.6)

P[Ω1] > 0,P[Ω2] = 1⇒ P[Ω̂] > 0⇒ Ω̂ 6= ∅

Choose any ω ∈ Ω̂ and n ≥ N1(ω), by (1.5) and (1.6),

P ≤ H(P, zλn , ω) ≤ −λnvλn(zλn , ω) ≤ H(p0) + τ
2

= P − τ + τ
2

= P − τ
2

This is a contradiction. Thus (1) is proved. The proofs of (2), (3) and (4) are

similar.

Lemma 1.4.2. Let H(p, x, ω) be the Hamiltonian that satisfies (A1)-(A3) and be

regularly homogenizable at p0 ∈ R to H(p0), for each λ, let vλ(x) be the viscosity

solution of the following equation:

λvλ(x) +H(p0 + v′λ(x), x, ω) = 0, x ∈ R

For P , Q ∈ R, denote

P := ess inf
(x,ω)

H(P, x, ω) , P := ess sup
(x,ω)

H(P, x, ω)

Q := ess inf
(x,ω)

H(Q, x, ω) , Q := ess sup
(x,ω)

H(Q, x, ω)
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Then, there exists an Ω̃ ⊂ Ω with P[Ω̃] = 1, such that for each ω ∈ Ω̃, the followings

are true.

(1) If p0 < P , P < Q and P < Q, then for each R > 0, there exists λ0 = λ0(R, p0, ω),

0 < λ < λ0 ⇒ p0 + v′λ(x) ≤ Q for x ∈
[
−R

λ
, R
λ

]
(2) If p0 < P , P < Q and P > Q, then for each R > 0, there exists λ0 = λ0(R, p0, ω),

0 < λ < λ0 ⇒ p0 + v′λ(x) ≤ Q for x ∈
[
−R

λ
, R
λ

]
(3) If p0 > P , P > Q and P < Q, then for each R > 0, there exists λ0 = λ0(R, p0, ω),

0 < λ < λ0 ⇒ p0 + v′λ(x) ≥ Q for x ∈
[
−R

λ
, R
λ

]
(4) If p0 > P , P > Q and P > Q, then for each R > 0, there exists λ0 = λ0(R, p0, ω),

0 < λ < λ0 ⇒ p0 + v′λ(x) ≥ Q for x ∈
[
−R

λ
, R
λ

]
All these inequalities are understood in the viscosity sense.

Proof. We only give the proof of (1), since the proofs of (2), (3) and (4) are similar.

Case 1: H(p0) < P , apply (1) of Lemma 1.4.1 to (p0, P ).

Case 2: H(p0) > P , apply (3) of Lemma 1.4.1 to (p0, P ).

Case 3: H(p0) ∈
[
P , P

]
, apply (1) of Lemma 1.4.1 to (p0, Q).

1.4.2 Squeeze Lemma

Lemma 1.4.3. Let H(p, x, ω) satisfy (A1)-(A3) and be constrained with index (L̃, L).

If H(p, x, ω) has effective Hamiltonian H(p) with H(q) = 0, then the followings are

true.

(1) If q > 0 and H|(q,+∞) > 0, then H(p) ≡ 0 for all p ∈ [0, q].

(2) If q < 0 and H|(−∞,q) > 0, then H(p) ≡ 0 for all p ∈ [q, 0].

Proof. (1) Recall the notation (1.3) and H(p, x, ω) is constrained with index (L̃, L),

we have

E[m(x, ω) > 0] > 0(1.7)
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Denote:

M i := ess inf
(x,ω)∈R×Ω

Mi(x, ω), M+ := max
1≤i≤L

M i

M̃ i := ess inf
(x,ω)∈R×Ω

M̃i(x, ω), M− := max
1≤i≤L̃

M̃ i

Case 1: min
{
M+,M−} > 0. Denote

k+ = max{1 ≤ i ≤ L|M i > 0}, k− = max{1 ≤ i ≤ L̃|M̃ i > 0}

Ĥ(p, x, ω) :=


L|p− q̃k− |+H(q̃k− , x, ω) p ∈ (−∞, q̃k−)

H(p, x, ω) p ∈ [q̃k− , qk+ ]

L|p− qk+|+H(qk+ , x, ω) p ∈ (qk+ ,+∞)

By section 1.8, Ĥ(p, x, ω) has a level-set convex effective Hamiltonian Ĥ(p) ≥ 0 with

Ĥ(0) = 0. For any λ > 0, let vλ(x, q, ω) and v̂λ(x, q, ω) be solutions of the following

equations respectively,

λvλ +H(q + v′λ, x, ω) = 0, x ∈ R, λv̂λ + Ĥ(q + v̂′λ, x, ω) = 0, x ∈ R

Claim: qk− < q < qk+ .

Proof of the Claim: Suppose it is not true.

(I) If q = qk+ , then 0 = H(q) = H(qk+) ≥Mk+ > 0, this is a contradiction.

(II) If q > qk+ . The arguments are divided into the following (II-1), (II-2) and (II-3).

(II-1) By Lemma 1.4.1, there exists Ω1 ⊂ Ω, P[Ω1] = 1 such that if ω ∈ Ω1, then for

any R > 0, there exists λ1 = λ1(R, q, ω) > 0,

0 < λ < λ1 ⇒ q + v′λ(x, q, ω) ≥ qk+ for x ∈
[
−R

λ
, R
λ

]
(II-2) By (1.7), there are δ > 0 and τ > 0 such that E [m(x, ω) > δ] = τ . By ergodic

theorem, there exists Ω2 ⊂ Ω, P[Ω2] = 1, for each ω ∈ Ω2 and R > 0,

lim
λ→0

2λ

R

∫ R
λ

−R
λ

1{m(·,ω)>δ}(x)dx = E [m(x, ω) > δ] = τ

So there exists some λ2(R, q, ω) > 0, such that

0 < λ < λ2(R, q, ω)⇒ 2λ

R

∫ R
λ

−R
λ

1{m(·,ω)>δ}(x)dx >
τ

2
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(II-3) Since H(q) = 0, there exists Ω3 ⊂ Ω, P[Ω3] = 1. For each ω ∈ Ω3 and R > 0,

there exists λ3 = λ3(R, q, ω) > 0,

0 < λ < λ3 ⇒ |λvλ(x, q, ω)| < δ for x ∈
[
−R

λ
, R
λ

]
Denote

λ̃(R, q, ω) := min{λ1(R, q, ω), λ2(R, q, ω), λ3(R, q, ω)} > 0

Ω̃ := Ω1

⋂
Ω2

⋂
Ω3

Then P[Ω̃] = 1.

For each ω ∈ Ω̃, when λ < λ̃(R, q, ω), there exists xλ ∈
[
−R

λ
, R
λ

]
, m(xλ, ω) > δ, and

then

δ < m(xλ, ω) ≤ H(q + v′λ(xλ, q, ω), xλ, ω) = −λvλ(xλ, q, ω) < δ

This is a contradiction. (The second inequality is because we have q + v′λ(xλ, q, ω) ≥

qk+).

So, we conclude q < qk+ . Similarly, we can prove qk− < q. This ends the proof of the

Claim.

By Lemma 1.4.1, there exists Ω̂, P[Ω̂] = 1, for ω ∈ Ω̂ and any R > 0, there exists

λ̂(R, q, ω) > 0,

0 < λ < λ̂⇒ qk+ ≤ q + v′λ(x, q, ω) ≤ qk+ for x ∈
[
−R

λ
, R
λ

]
So

λvλ(x, q, ω) + Ĥ(q + v′λ(x, q, ω), x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
By Lemma 1.2.3, there exists some constant C > 0, such that

|λvλ(0, q, ω)− λv̂λ(0, q, ω)| ≤ C

R

R > 0 can be chosen arbitrarily large, then

Ĥ(q) = lim
λ→0
−λv̂λ(0, q, ω) = lim

λ→0
−λvλ(0, q, ω) = H(q) = 0
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By level-set convexity of Ĥ(p) and Ĥ(0) = 0, Ĥ|[0,q] ≡ 0. Since Ĥ(p, x, ω) ≥

H(p, x, ω), Ĥ(p) ≥ H(p). On the other hand, H(p) ≥ 0. So H|[0,q] ≡ 0.

Case 2: min
{
M+,M−} ≤ 0 < max

{
M+,M−}.

Construct Ĥ(p, x, ω) by modifying one side and similar arguments thereafter.

Case 3: max
{
M+,M−} ≤ 0.

By section 1.8, H(p) is level-set convex. Define Ĥ(p, x, ω) := H(p, x, ω) and apply

the result of Case 1. This finishes the proof of (1).

The proof for (2) is similar.

1.5 Reduction by Constrained Hamiltonian with

Index (L̃, 0) and (0, L)

Let H(p, x, ω) be a constrained Hamiltonian that satisfies (A1)-(A3). Define

H+(p, x, ω) :=

H(p, x, ω) p ≥ 0

L|p|+H(0, x, ω) p < 0

H−(p, x, ω) :=

L|p|+H(0, x, ω) p ≥ 0

H(p, x, ω) p < 0

Lemma 1.5.1. If both H+(p, x, ω) and H−(p, x, ω) are regularly homogenizable for

all p ∈ R, then H(p, x, ω) is also regularly homogenizable for all p ∈ R and

H(p) =

H
+(p) p ≥ 0

H−(p) p < 0

Proof. Fix p ≥ 0, ω ∈ Ω and λ > 0, let vλ(x, p, ω) and v+,λ(x, p, ω) be solutions of

the equations respectively,

λvλ +H(p+ v′λ, x, ω) = 0, x ∈ R; λv+,λ +H+(p+ v′+,λ, x, ω) = 0, x ∈ R
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By H+(p, x, ω) ≥ H(p, x, ω), ess sup
(x,ω)

H(p, x, ω) ≥ 0 and classical comparison principle,

we have

lim inf
λ→0

−λv+,λ(0, p, ω) ≥ lim inf
λ→0

−λvλ(0, p, ω) ≥ 0

Thus, if H+(p) = 0, then H(p) = 0. Since H+(0) = 0, we can only consider the case:

p > 0 and H+(p) > 0. By Lemma 1.4.1, for a.e. ω ∈ Ω, any R > 0, there exists

λ0 = λ0(R, p, ω) > 0, such that

0 < λ < λ0 ⇒ p+ v′+,λ(x, , ω) ≥ 0, for x ∈
[
−R

λ
, R
λ

]
So

λv+,λ +H(p+ v′+,λ, x, ω) = 0, for x ∈
[
−R

λ
, R
λ

]
By Lemma 1.2.3, there exists a constant C > 0 such that

|λv+,λ(0, p, ω)− λvλ(0, p, ω)| ≤ C

R

Since R can be chosen arbitrarily large,

lim
λ→0
−λvλ(0, p, ω) = lim

λ→0
−λv+,λ(0, p, ω) = H+(p)

So H(p) = H+(p), p ≥ 0. Similarly, we can prove H(p) = H−(p), p ≤ 0.

Remark 6. By Lemma 1.5.1, to prove the homogenization of a Hamiltonian that

satisfies (A1)-(A3) and is constrained with index (L̃, L), it suffices to study those

Hamiltonians that have index (0, L) or (L̃, 0). Without loss of generality, in the

following sections, we only consider the Hamiltonian under assumptions (A1)-(A3)

and be constrained with index (0, L).

1.6 Gluing Lemmas: Reduction from Small Oscil-

lation to Large Oscillation

In this section, H(p, x, ω) satisfies (A1)-(A3) and is constrained with index (0, L).

Denote
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M := ess inf
(x,ω)∈R×Ω

M(x, ω), m := ess sup
(x,ω)∈R×Ω

m(x, ω)

There are 1 ≤ k, k ≤ L, such that

M := ess inf
(x,ω)∈R×Ω

Mk(x, ω), m := ess sup
(x,ω)∈R×Ω

mk(x, ω)

Definition 1.6.1 (Oscillation). Let H(p, x, ω) be constrained (see Definition 1.3.1)

and satisfies (A1)-(A3).

(1) H(p, x, ω) has small oscillation if M ≥ m.

(2) H(p, x, ω) has large oscillation if M < m.

Throughout this section, we assume small oscillation and denote

P := pk and Q := qk

1.6.1 Left Steep Side

Left steep side means M > m and P < Q. Define

H1(p, x, ω) :=

H(p, x, ω) p ≤ Q

L|p−Q|+H(Q, x, ω) p > Q

H3(p, x, ω) :=

H(p, x, ω) p ≥ qk̄

L|p− qk̄|+H(qk̄, x, ω) p < qk̄

H2(p, x, ω) := max{H1(p, x, ω), H3(p, x, ω)}

Lemma 1.6.1. Assume Hi(p, x, ω), i = 1, 2, 3 are all regularly homogenizable for any

p ∈ R. Then H(p, x, ω) is also regularly homogenizable for any p ∈ R and

H(p) = min
{
H1(p), H3(p)

}
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Proof. of the periodic case For any p ∈ R, we have the cell problem

H(p+ v′(x), x) = H(p)(1.8)

Proof by contradiction, if there are x1, x2 ∈ [0, 1], such that p + v′(x1) > Q and

p+v′(x2) < P . Then px+v(x)−Qx attains local maximum at some y1 ∈ (x1, x2 +1)

and px+ v(x)− Px attains local minimum at some y2 ∈ (x2, x1 + 1). Thus we get a

contradiction from equalities:

min
x∈[0,1]

H(Q, x) = M ≤ H(Q, y1) ≤ H(p) ≤ H(P, y2) ≤ m = max
x∈[0,1]

H(P, x)

Thus, either p + v′(x) ≤ Q for all x ∈ [0, 1] or p + v′(x) ≥ P for all x ∈ [0, 1]. By

(1.8), either H(p) = H1(p) or H(p) = H3(p). On the other hand, since H(p, x, ω) =

min{H1(p, x, ω), H3(p, x, ω)}, by comparison principle, we haveH(p) ≤ {H1(p), H3(p)}.

Eventually, we conclude

H(p) = {H1(p), H3(p)}

Proof. of the random case Decompose R into three parts.

(1) If p ∈ (−∞, P ), then H(p) = H1(p).

For each ω ∈ Ω and λ > 0, let vλ(x, p, ω) and v1,λ(x, p, ω) be solutions of the equations

respectively,

λvλ +H(p+ v′λ, x, ω) = 0, x ∈ R; λv1,λ +H1(p+ v′1,λ, x, ω) = 0, x ∈ R

By Lemma 1.4.2, there exists Ω̃ ⊂ Ω, P[Ω̃] = 1. For ω ∈ Ω̃, any R > 0, there exists

λ0 = λ0(R, p, ω) > 0,

0 < λ < λ0 ⇒ p+ v′1,λ(x, p, ω) ≤ Q for x ∈
[
−R

λ
, R
λ

]
Thus, for 0 < λ < λ0(R, p, ω),

λvλ +H(p+ v′λ, x, ω) = 0 and λv1,λ +H(p+ v′1,λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
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By Lemma 1.2.3, there exists C = C(p), such that

|λvλ(0, p, ω)− λv1,λ(0, p, ω)| ≤ C

R

Since R can be chosen arbitrarily large

lim
λ→0+

−λvλ(0, p, ω) = lim
λ→0+

−λv1,λ(0, p, ω) = H1(p)

Thus H(p, x, ω) is regularly homogenizable at p and H(p) = H1(p), p ∈ (−∞, P ).

(2) p ∈ (Q,∞), then H(p) = H3(p).

For each ω ∈ Ω and λ > 0, let vλ(x, p, ω) and v3,λ(x, p, ω) be solutions of the equations

respectively,

λvλ +H(p+ v′λ, x, ω) = 0, x ∈ R; λv3,λ +H3(p+ v′3,λ, x, ω) = 0, x ∈ R

By Lemma 1.4.2, there exists Ω̃ ⊂ Ω, P[Ω̃] = 1. For ω ∈ Ω̃, any R > 0, there exists

some λ0 = λ0(R,ω, p) > 0,

0 < λ < λ0 ⇒ p+ v′3,λ(x, p, ω) ≥ P, x ∈
[
−R

λ
, R
λ

]
Thus, for 0 < λ < λ0(R, p, ω), we have

λvλ +H(p+ v′λ, x, ω) = 0 and λv3,λ +H(p+ v′3,λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
By Lemma 1.2.3, there exists C = C(p), such that

|λvλ(0, p, ω)− λv3,λ(0, p, ω)| ≤ C

R

Since R can be chosen arbitrarily large

lim
λ→0+

−λvλ(0, p, ω) = lim
λ→0+

−λv3,λ(0, p, ω) = H3(p)

Thus H(p, x, ω) is regularly homogenizable at p and H(p) = H3(p), p ∈ (Q,∞).

The proof of part (3) is divided into the following smaller parts:

(3.1) Denote:

A :=
{
p ∈ (P,Q)

∣∣m < H2(p) < M
}
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Fix any p ∈ A, for any λ > 0, let vλ(x, p, ω), v2,λ(x, p, ω) be solutions of the equations

respectively,

λvλ +H(p+ v′λ, x, ω) = 0, x ∈ R; λv2,λ +H2(p+ v′2,λ, x, ω) = 0, x ∈ R

By Lemma 1.4.1, for each ω ∈ Ω̃, any R > 0, there exists λ0 = λ0(R, p, ω) > 0, such

that

0 < λ < λ0 ⇒ P ≤ p+ v′2,λ(x, ω) ≤ Q for x ∈
[
−R

λ
, R
λ

]
So

λvλ +H(p+ v′λ, x, ω) = 0 and λv2,λ +H(p+ v′2,λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
By Lemma 1.2.3, there exists C = C(p), such that

|λvλ(0, p, ω)− λv2,λ(0, p, ω)| ≤ C

R

Since R can be chosen arbitrarily large

lim
λ→0+

−λvλ(0, p, ω) = lim
λ→0+

−λv2,λ(0, p, ω) = H2(p)

Thus H(p, x, ω) is regularly homogenizable at p and

H(p) = H2(p) ≥ {H1(p), H3(p)}

On the other hand,

H(p) ≤ min{H1(p), H3(p)}

As a consequence,

H(p) = H1(p) = H2(p) = H3(p), p ∈ A

(3.2) For p ∈ R, if H1(p) < M , then H(p) = H1(p). The assumption H1(p) < M

implies p < Q. By Lemma 1.4.1, for ω ∈ Ω̃, any R > 0, there exists λ0 = λ0(R, p, ω) >

0, such that

0 < λ < λ0 ⇒ p+ λv1,λ(x, p, ω) ≤ Q for x ∈
[
−R

λ
, R
λ

]
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So

λvλ +H(p+ v′λ, x, ω) = 0 and λv1,λ +H(p+ v′1,λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
By Lemma 1.2.3, there exists C = C(p), such that

|λvλ(0, p, ω)− λv1,λ(0, p, ω)| ≤ C

R

Since R can be chosen arbitrarily large,

lim
λ→0+

−λvλ(0, p, ω) = lim
λ→0+

−λv1,λ(0, p, ω) = H1(p)

Thus H(p, x, ω) is regularly homogenizable at p and H(p) = H1(p).

(3.3) For p > P , if H3(p) > m, then H(p) = H3(p).

By Lemma 1.4.1, for each ω ∈ Ω̃, any R > 0, there exists λ0 = λ0(R, p, ω) > 0, such

that

0 < λ < λ0 ⇒ p+ v′3,λ(x, p, ω) ≥ P for x ∈
[
−R

λ
, R
λ

]
So

λvλ +H(p+ v′λ, x, ω) = 0 and λv3,λ +H(p+ v′3,λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
By Lemma 1.2.3, there exists C = C(p), such that

|λvλ(0, p, ω)− λv3,λ(0, p, ω)| ≤ C

R

Since R can be chosen arbitrarily large

lim
λ→0+

−λvλ(0, p, ω) = lim
λ→0+

−λv3,λ(0, p, ω) = H3(p)

Thus H(p, x, ω) is regularly homogenizable at p and H(p) = H3(p).

(3.4) For p < Q, if H3(p) < M , then H2(p) = H3(p) < M . By Lemma 1.4.1, for each

ω ∈ Ω̃, any R > 0, there exists λ0 = λ0(R, p, ω) > 0, such that

0 < λ < λ0 ⇒ p+ v′3,λ(x, p, ω, ) ≤ Q for x ∈
[
−R

λ
, R
λ

]
Here, for any λ > 0, v3,λ is the solution of the equation

λv3,λ +H3(p+ v′3,λ, x, ω) = 0, x ∈ R
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However, by the above upper bound,

λv3,λ +H2(p+ v′3,λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
Suppose for any λ > 0, v2,λ(x, p, ω) is the solution of the equation:

λv2,λ +H2(p+ v′2,λ, x, ω) = 0, x ∈ R

By Lemma 1.2.3, there exists C = C(p), such that

|λv2,λ(0, p, ω)− λv3,λ(0, p, ω)| ≤ C

R

Since R can be chosen arbitrarily large

H2(p) = lim
λ→0+

−λv2,λ(0, p, ω) = lim
λ→0+

−λv3,λ(0, p, ω) = H3(p)

Now, we discuss the regularly homogenization of H(p) for p ∈ [P,Q] ∩ Ac.

(I) If p ∈ (P,Q) and H2(p) ≤ m, by the fact m < M and

max{H1(p), H3(p)} ≤ H2(p)

we have H1(p) < M , by (3.2), H(p) = H1(p).

(II) If p ∈ (P,Q) and H2(p) ≥ M , then by (3.4), H3(p) ≥ M > m. By (3.3),

H(p) = H3(p).

(III) By Corollary 1.2.1, we have

H(P ) = H1(P ) and H(Q) = H3(Q)

In all, for any p ∈ R, either H(p) = H1(p) or H(p) = H3(p), so

H(p) ≥ min
{
H1(p), H3(p)

}
On the other hand, by classical comparison principle,

H(p) ≤ min
{
H1(p), H3(p)

}
So, we have proved:

H(p) = min
{
H1(p), H3(p)

}
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1.6.2 Right Steep Side:

Right steep side means M > m and Q ≤ P . Define

H1(p, x, ω) :=

H(p, x, ω) p ≤ Q

L|p−Q|+H(Q, x, ω) p > Q

H2(p, x, ω) =


−L|p|+H(0, x, ω) p < 0

H(p, x, ω) 0 ≤ p ≤ P

−L|p− P |+H(P, x, ω) p > P

H3(p, x, ω) :=

H(p, x, ω) p ≥ Q

L|p−Q|+H(Q, x, ω) p < Q

Lemma 1.6.2. Assume both H1(p, x, ω) and H3(p, x, ω) are regularly homogenizable

for all p ∈ R, then H(p, x, ω) is also regularly homogenizable for all p and

H(p) =


H1(p) p ≤ 0

min{H1(p), H3(p),M} p ∈ (0, P )

H3(p) p ≥ P

Proof. of the periodic case for the middle equality For p ∈ (0, P ), we have the cell

problem

H(p+ v′(x), x) = H(p)

If p + v′(x) ≤ Q, ∀x ∈ [0, 1] or p + v′(x) ≥ Q, ∀x ∈ [0, 1], then H(p) = H1(p) or

H(p) = H3(p). Otherwise, by the assumption that M > m, we have p+v′(x) ∈ [0, P ],

∀x ∈ [0, 1]. There exists some x0 ∈ [0, 1], such that H(Q, x0) = min
x

max
q∈[0,P ]

H(q, x) =

M .

So we have H(p) = H(p+ v′(x0), x0) ≤M . Therefore,

H(p) ≤ min{H1(p), H3(p),M}

If H(p) < M , then by Lemma 1.4.1, we have either p + v′(x) ≤ Q, ∀x ∈ [0, 1] or

p+ v′(x) ≥ Q, ∀x ∈ [0, 1] and so H(p) = H1(p) or H(p) = H3(p).
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Proof. of the random case STEP 1: Proof of the first equality. First define

f(θ) := ess sup
(x,ω)∈R×Ω

[H(θQ, x, ω)]

Then f(0) = 0, f(1) ≥ M > m > 0. By the continuity of f , there exists some

θ0 ∈ (0, 1), such that 0 < f(θ0) < M . For any p ≤ 0, λ > 0, let v1,λ(x, p, ω) be the

solution of the equation

λv1,λ +H1(p+ v′1,λ, x, ω) = 0, x ∈ R

Apply Lemma 1.4.2 to (p, θ0Q,Q) and H1(p, x, ω), then for a.e. ω ∈ Ω, we have that

for any R > 0, there exists λ0 = λ0(R, p, ω) > 0,

0 < λ < λ0 ⇒ p+ v′1,λ(x, p, ω) ≤ Q, for x ∈
[
−R

λ
, R
λ

]
Then by the definition of H1(p, x, ω), we have

λv1,λ +H(p+ v′1,λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
For any λ > 0, let vλ be the unique viscosity solution of the equation

λvλ +H(p+ v′λ, x, ω) = 0 for x ∈ R

By Lemma 1.2.3, there exists C = C(p) > 0, such that

|λvλ(0, p, ω)− λv1,λ(0, p, ω)| ≤ C

R

Since R can be chosen arbitrarily large,

lim
λ→0
−λvλ(0, p, ω) = lim

λ→0
−λv1,λ(0, p, ω) = H1(p)

Thus, H is regularly homogenizable at p and

H(p) = H1(p), p ≤ 0

STEP 2: Proof of the third equality. Similar as the proof of STEP 1.

STEP 3: The second equality. We divide the proofs into the following sub-STEPs

(3.1) Claim: For p0 ∈ R, if H1(p0) < M , then H(p, x, ω) is regularly homogenizable

at p0 and H(p0) = H1(p0).
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Proof. of Claim (3.1) By the definition of H1(p, x, ω), H1(p0) < M implies p < Q

(since H1(p) ≥ M for p ≥ Q). For each ω ∈ Ω and λ > 0, let vλ(x, p0, ω) and

v1,λ(x, p0, ω) be solutions of the equations respectively,

λvλ +H(p0 + v′λ, x, ω) = 0, x ∈ R; λv1,λ +H1(p0 + v′1,λ, x, ω) = 0, x ∈ R

By Lemma 1.4.1, for a.e. ω ∈ Ω, we have the following: for each R > 0, there exists

λ1 = λ1(R, p0, ω) > 0, such that

0 < λ < λ0 ⇒ p0 + v′1,λ ≤ Q for x ∈
[
−R

λ
, R
λ

]
So

λv1,λ +H(p0 + v′1,λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
By Lemma 1.2.3, there exists C = C(p0) > 0, such that

|λvλ(0, p0, ω)− λv1,λ(0, p0, ω)| < C

R

Since we can choose arbitrarily large R, we have that

lim
λ→0
−λvλ(0, p0, ω) = lim

λ→0
−λv1,λ(0, p0, ω) = H1(p0)

Thus H(p, x, ω) is regularly homogenizable at p0 and H(p0) = H1(p0).

(3.2) Claim: For p0 ∈ R, if H3(p0) < M , then H(p, x, ω) is regularly homogeniz-

able at p0 and H(p0) = H3(p0).

Proof. of Claim (3.2) The proof is similar to the proof of Claim (3.1).

(3.3) Denote

q1 = min
{
p ∈ [0, P ]

∣∣H1(p) = M
}

and q2 = max
{
p ∈ [0, P ]

∣∣H3(p) = M
}

(3.1), (3.2) ⇒ H(p, x, ω) is regularly homogenizable for p ∈ (0, q1)
⋃

(q2, P ) and

H(p) =

H1(p) p ∈ (0, q1)

H3(p) p ∈ (q2, P )
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By Corollary 1.2.1, H(p, x, ω) is regularly homogenizable at q1 and q2 and

H(q1) = H(q2) = M

(3.4) Claim: H2(p, x, ω) is regularly homogenizable at q1 and q2, moreover,

H2(q1) = H2(q2) = M

Proof. of Claim (3.4) By the definition, we have q1, q2 ∈ (0, P0). For any ω ∈ Ω,

λ > 0, let vλ(x, qi, ω) and v2,λ(x, qi, ω) (i = 1, 2) be solutions to the following equations

respectively,

λvλ +H(qi + v′λ, x, ω) = 0, x ∈ R; λv2,λ +H2(qi + v′2,λ, x, ω) = 0, x ∈ R

By the fact that

H(qi) = M > max{ess sup
(x,ω)

H(0, x, ω), ess sup
(x,ω)

H(P, x, ω)} = m

By Lemma 1.4.1, then for a.e. ω ∈ Ω, for anyR > 0, there exists λ2 = λ2(qi, R, ω) > 0,

0 < λ < λ2 ⇒ 0 ≤ qi + v′λ(x, qi, ω) ≤ Q, for x ∈
[
−R

λ
, R
λ

]
So we have

λvλ +H2(qi + v′λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
Apply Lemma 1.2.3, there exists some constant C = C(qi) > 0, such that

|λvλ(0, qi, ω)− λv2,λ(0, qi, ω)| < C

R

We can choose arbitrarily large R, so

lim
λ→0
−λv2,λ(0, qi, ω) = lim

λ→0
−λvλ(0, qi, ω) = H(qi) = M

Thus, H2(p, x, ω) is regularly homogenizable at qi and H2(qi) = M .

(3.5) Denote

M̂(x, ω) := max
k≤j≤L,j 6=k

Mj(x, ω)
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Then we have

M̂ := ess inf
(x,ω)∈R×Ω

M̂(x, ω) ≤M

By Lemma 1.2.2, without loss of generality, we can further assume M̂ < M . This

means that E[M̂(x, ω) < M ] > 0. Denote H̃(p, x, ω) := −H2(qk,0 − p, x, ω) +M .

If wλ(x, p, ω) is a viscosity solution to

λwλ +H2(p+ w′λ, x, ω) = 0, x ∈ R

Then w̃λ(x, p, ω) := −wλ(x, p, ω) is a viscosity solution to

λw̃λ + H̃(qk,0 − p+ w̃′λ, x, ω) +M = 0, x ∈ R

Apply Lemma 1.4.3 to H̃(p, x, ω), we deduce that H2|[q1,q2] ≡M .

(3.6) For each p ∈ [q1, q2], let vλ(x, p, ω) be the solution to

λvλ(x, p, ω) +H(p+ v′λ(x, p, ω), x, ω) = 0, x ∈ R

By that fact that H(p, x, ω) ≥ H2(p, x, ω), we have

E[ω ∈ Ω| lim inf
λ→0

−λvλ(0, p, ω) ≥M ] = 1

We only need to show that

E[ω ∈ Ω| lim sup
λ→0

−λvλ(0, p, ω) ≤M ] = 1

(3.7) For each (x, ω), define Ĥ2(p, x, ω) as following:

Ĥ2(p, x, ω) :=

H2(p, x, ω) p ∈ (−∞, 0) ∪ (P,∞)

Concave Envelope of H2(p, x, ω)|p∈[0,P ] p ∈ [0, P ]

By definition, Ĥ2(p, x, ω) is determined by those stationary functions: mi(x, ω),Mj(x, ω),

1 ≤ i, j ≤ L, so Ĥ2(p, x, ω) is stationary. Then by the theory of level-set con-

vex homogenization (see [4]), Ĥ2(p, x, ω) can be homogenized to some level-set con-

cave effective Hamiltonian Ĥ2(p) ≤ M . Since Ĥ2(p, x, ω) ≥ H2(p, x, ω), there exists
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q̂1 < q̂2 such that [q1, q2] ⊂ [q̂1, q̂2] and Ĥ2(q̂1) = Ĥ2(q̂2) = M . By level-set concavity,

Ĥ2|[q̂1,q̂2] = M. Denote

H̃2(p, x, ω) = min{Ĥ2(p, x, ω),M}

Then H̃2(p, x, ω) has a level-set concave effective Hamiltonian H̃2(p) with

H̃2|[q̂1,q̂2] = M

For any p1 ∈ [q̂1, q̂2] and λ > 0, let v̂λ(x, p1, ω) be the solution of the equation

λv̂2,λ + Ĥ2(p1 + v̂′2,λ, x, ω) = 0, x ∈ R

We will have

lim
λ→0

inf
|x|≤R

λ

−λv̂2,λ(x, p1, ω) ≥M

Since p1 < P and 0 < m < M , by Lemma 1.4.1, we have that for a.e. ω ∈ Ω, any

R > 0, there exists some λ0 = λ0(R, p1, ω) > 0,

0 < λ < λ0 ⇒ 0 ≤ p1 + v̂′2,λ(x, p1, ω) ≤ P for x ∈
[
−R

λ
, R
λ

]
Define

Ĥ(p, x, ω) :=

H(p, x, ω) p ∈ (−∞, 0) ∪ (P,∞)

Ĥ2(p, x, ω) p ∈ [0, P ]

For each ω ∈ Ω and λ > 0, let v̂λ(x, p1, ω) be the solution of the equation

λv̂λ + Ĥ(p1 + v̂′λ, x, ω) = 0, x ∈ R

Thus

λv̂2,λ + Ĥ(p1 + v̂′2,λ, x, ω) = 0 for x ∈
[
−R

λ
, R
λ

]
By Lemma 1.2.3, there exists some constant C = C(p1) > 0, such that∣∣∣λv̂λ(0, p1, ω)− λv̂2,λ(0, p1, ω)

∣∣∣ ≤ C

R
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We can choose arbitrarily large R, so

lim
λ→0
−λv̂λ(0, p1, ω) = lim

λ→0
−λv̂2,λ(0, p1, ω) = M

This means that

Ĥ|[q1,q2] ≡M

By the fact that Ĥ(p, x, ω) ≥ H(p, x, ω), we have

E

[
ω ∈ Ω

∣∣∣ lim sup
λ→0

−λvλ(0, p, ω) ≤M

]
= 1

This completes the proof.

Lemma 1.6.3. Let H(p, x, ω) be constrained Hamiltonian that satisfies (A1)-(A3)

and M = m, then there exists a family of Hamiltonians {Hn(p, x, ω)}n∈N, each

Hn(p, x, ω) is a constrained Hamiltonian and satisfies (A1)-(A3), moreover, we have

Mn > mn and

||Hn(p, x, ω)−H(p, x, ω)||L∞(R×R×Ω) ≤
1

n

Proof. For each n ∈ N, define the function

hn(p, x, ω) :=



p−qk
n(pk−qk)

p ∈ [qk, pk]

− p−pk
n(qk−1−pk)

+ 1
n

p ∈ (pk, qk−1)

0 elsewhere

And define

Hn(p, x, ω) := H(p, x, ω)− hn(p, x, ω)

Since qk(x, ω), pk(x, ω) and qk−1(x, ω) are all stationary, Hn(p, x, ω) is also stationary.

By the construction, we have

mn = m− 1

n
= M − 1

n
< Mn −

1

n
< Mn

Moreover,

||Hn(p, x, ω)−H(p, x, ω)||L∞(R×R×Ω) =
1

n
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Remark 7. In Lemma 1.6.3, if those Hn(p, x, ω) are regularly homogenizable for all

p ∈ R, then according to Lemma 1.2.2, H(p, x, ω) is also regularly homogenizable and

H(p) = lim
n→∞

Hn(p).

Remark 8. The point of Lemma 1.6.1, Lemma 1.6.2 and Lemma 1.6.3 is the fol-

lowing: to prove the homogenization of constrained Hamiltonian H(p, x, ω) with index

(0, L) and with small oscillation, it suffices to study the homogenization of constrained

Hamiltonian H(p, x, ω) with index (0, L) and has large oscillation.

1.7 Auxiliary Lemmas for Large Oscillation

1.7.1 Existence Lemma

Lemma 1.7.1. Let Hamiltonian H(p, x, ω) satisfy (A1)-(A3) and be constrained with

index (0, L), then for any µ ≥ 0, ω ∈ Ω, there exists a Lipschitz continuous viscosity

solution u(x, ω) to the equation:H(u′, x, ω) = µ, x ∈ R

u′ ≥ 0

Proof. Fix µ ≥ 0 and ω ∈ Ω. By (A2), there exists p0 > 0, such that H(p0, x, ω) > µ.

Since H(0, x, ω) ≤ µ, u+ := p0x is a super-solution and u− := C is a sub-solution for

any constant C.

STEP 1. Fix a ∈ R and let u− = Ca := p0a, then

u+(a, ω) = u−(a, ω) and u+(x, ω) > u−(x, ω), ∀x ∈ (a,∞)

Define

ua(x, ω) := sup
v
{v(x, ω) ∈ C([a,∞))|H(v′, x, ω) ≤ µ,Ca ≤ v(x, ω) ≤ p0x}

Then H(u′a, x, ω) = µ, x ∈ (a,∞)

ua(a, ω) = p0a
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STEP 2. Fix any a < b, denote

w(x, ω) := ua(x, ω) + [ub(b, ω)− ua(b, ω)], x ≥ b

Then H(w′, x, ω) = µ, x ∈ (b,∞)

w(b, ω) = p0b

So ub(x, ω) ≥ w(x, ω) on [b,∞). Denote

ũa(x, ω) :=

ua(x, ω) x ∈ [a, b]

ub(x, ω)− ub(b, ω) + ua(b, ω) x ∈ (b,∞)

Then

p0x ≥ ũa(x, ω) ≥ ua(x, ω) ≥ Ca, x ∈ [a,∞)

On the other hand, by the construction, ũa(x, ω) is a sub-solution, so ũa(x, ω) ≤

ua(x, ω).

Thus ũa(x, ω) ≡ ua(x, ω), which means

(ub(x, ω)− ua(x, ω)) |(b,∞) ≡ ub(b, ω)− ua(b, ω)

The above equality is true for any a < b, this also implies u′a(x, ω) ≥ 0.

STEP 3. For any n ∈ Z, then

un(x, ω)− un(0, ω) = un+1(x, ω)− un+1(0, ω), ∀x ≥ n+ 1

For any x ∈ R let m := [x] and define

u(x, ω) := um(x, ω)− um(0, ω)

So u(x, ω) is a well-defined Lipschitz function on R and it is the solution of the

equation H(u′, x, ω) = µ x ∈ R

u′ ≥ 0
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1.7.2 Decomposition Lemma

Lemma 1.7.2. Let H(p, x, ω) satisfy (A1)-(A3) and be constrained with index (0, L).

Fix µ ≥ 0 and let u be a Lipschitz continuous viscosity solution of the equationH(u′(x, ω), x, ω) = µ x ∈ R

u′(x, ω) ≥ 0

Then there exists a sequence {bi}i∈Z, such that

lim
i→±∞

bi = ±∞, u ∈ C1(Ii), with Ii = (bi, bi+1)

Moreover,

u′(x, ω)|Ii = ψki,(x,ω)(µ) for some ki ∈ {1, 2, · · · , 2L+ 1}

Proof. Fix ω ∈ Ω and omit the notation ω.

STEP 1. Claim: for each x ∈ R, there exist δx > 0 and lx, rx ∈ {1, 2, · · · , 2L + 1},

such that

u′(y) =

ψlx,y(µ) y ∈ (x− δx, x)

ψrx,y(µ) y ∈ (x, x+ δx)

We only give the proof of the first equality, since the proof for the second one is

similar. Proof by contradiction, suppose this is not true at some x0, then there exist

two sequences xn → x−0 and yn → x−0 , 1 ≤ k2 < k1 ≤ 2L+ 1, such that

x1 < y1 < x2 < y2 < · · · < x0, u′(xn) = ψk1,xn(µ), u′(yn) = ψk2,yn(µ)

Case 1: k1 ≥ k2 + 2. Then there exists a branch between the k1-th branch and the

k2-th branch. By (A3), there exist a < b, such that u′(xn) < a < b < u′(yn).

Fix any p ∈ [a, b], then u(x) − px is decreasing (increasing) around xn(yn). So,

u(x) attains local minimum (maximum) at z−n ∈ (xn, yn)(z+
n ∈ (yn, xn+1)), then

H(p, z+
n ) ≤ µ ≤ H(p, z−n ), by continuity of H(p, x), there exists zn ∈ [z−n , z

+
n ] with

H(p, zn) = µ. By the fact that lim
n→∞

zn = x0, we have H(p, x0) = µ. This is true for

any p ∈ [a, b] and this contradicts the fact that H(p, x, ω) is constrained.

Case 2: k1 = k2 + 1, without loss of generality, let k1 = 2, k2 = 1.
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If m1(x0) < µ, by the similar argument used in Case 1, we get a contradiction.

If m1(x0) > µ, there exists some δ > 0, s.t. m1(·)|(x0−δ,x0) > µ, let xn ∈ (x0 − δ, x0),

then µ = H(u′(xn), xn) ≥ H(p1, xn) > µ, which is a contradiction.

If m1(x0) = µ, since m1(x) has no cluster point, there exists some δ > 0 such

that µ /∈ {m1(x)|x ∈ (x0 − δ, x0)}. By the above discussion, m1(·)|(x0−δ,x0) < µ. Let

Φ(x) := u(x)−p1x, then Φ′(xn) < 0 and Φ′(yn) > 0, so there exists some zn ∈ (xn, yn)

where Φ(x) attains local minimum. So m1(zn) = H(p1, zn) ≥ µ, since zn ∈ (x0−δ, x0)

when n� 1, we get the contradiction.

Thus, the Claim is proved.

STEP 2. Denote: A := {x ∈ R|lx 6= rx}. By the above arguments, we see that A has

no cluster point. Then there exists a sequence {bi}i∈Z such that bi < bi+1, A ⊂ {bi}i∈Z
and lim

i→±∞
bi = ±∞. We will have rbi = lbi+1

. Thus u′(x) = ψrbi ,x(µ), x ∈ (bi, bi+1).

1.7.3 Homotopy between solutions

Let H(p, x, ω) be constrained with index (0, L). For simplicity of notation, we omit

the dependence of ω. Let f ∈ L∞(R) and let u be a viscosity solution to u′(x) = f(x)

which is also a viscosity solution toH(u′, x) = f(x), x ∈ R

u′ ≥ 0

By Lemma 1.7.2, let a1 < a2 < a3 and f(x)|(ai,ai+1) = ψki,x(µ), ki ∈ {1, 2, · · · , 2L +

1}, i = 1, 2. Denote k = min{k1, k2} and define

f̃(x) :=

f(x) x ∈ (a1, a3)c

ψk,x(µ) x ∈ (a1, a3)

Lemma 1.7.3. Assume µ /∈ {mi(x),Mj(x)|1 ≤ i, j ≤ L, x ∈ (a1, a3)}. Then any

solution of u′ = f̃ is also a viscosity solution of

H(u′(x), x) = µ, x ∈ R
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Proof. Since the proof is similar to that of A.3 in [7], we omit it.

Let I = (a, b), and f1, f2 ∈ L∞(I), f1 ≥ f2. Let u1, u2 be solutions of the following

equations respectively: u
′
1 = f1, x ∈ I

u1(a) = 0u
′
2 = f2, x ∈ I

u2(a) = 0

Assume both u1, u2 are viscosity solutions of the equation

H(u′, x, ω) = µ, x ∈ I(1.9)

Then u2(x) ≤ u1(x) ≤ u2(x)− u2(b) + u1(b). Fix any c ∈ [u2(b), u1(b)] and define

uc,∗(x) := max{u2(x), u1(x)− u1(b) + c}

uc,∗(x) := min{u1(x), u2(x)− u2(b) + c}

Define the set

W :=
{
w ∈ W 1,∞(I)|H(w′, x, ω) ≤ µ and uc,∗(x) ≤ w(x) ≤ uc,∗(x)

}
And the function wc(x) := sup

w∈W
w(x). Denote

FI(f1, f2, c)(x) :=

w
′
c(x) if wc is differentiable at x

0 otherwise

Then uc,∗(x) (uc,∗(x)) is a viscosity sub (super) solution to equation (1.9). By Perron’s

method, wc(x) is a viscosity solution of the equationH(w′c(x), x) = µ, x ∈ (a, b)

wc(a) = 0, wc(b) = c
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Lemma 1.7.4. Fix a < b, 0 < ε < b−a
2

, let f1, f2 ∈ L∞(a− ε, b+ ε) such that

f1(x) ≥ f2(x), x ∈ (a− ε, b+ ε) and f1(x) = f2(x), x ∈ (a− ε, a)
⋃

(b, b+ ε)

Suppose any solution of (i=1,2)u
′
i(x) = fi(x) x ∈ (a− ε, b+ ε)

ui(a) = 0

is a viscosity (sub-)solution of the equation: H(u′, x) = µ. Fix c ∈ [u2(b), u1(b)], then

any solution of the equation

v′(x) =

f1(x) = f2(x) x ∈ (a− ε, a)
⋃

(b, b+ ε)

FI(f1, f2, c)(x) x ∈ I = (a, b)

is a viscosity (sub-)solution of the equationH(u′(x), x) = µ x ∈ (a− ε, b+ ε)

u(a) = 0, u(b) = c

Proof. See the proof of Lemma A.4 in [7].

1.8 Homogenization of Hamiltonian with Large Os-

cillation

In this section, the Hamiltonian is assumed to satisfy (A1)-(A3), be constrained (see

Definition 1.3.1) with index (0, L) and have large oscillation (see Definition 1.6.1).

1.8.1 Admissible decomposition and admissible functions

Recall (1.3), (1.4) and denote

m := ess inf
(x,ω)

m(x, ω), M := ess sup
(x,ω)

M(x, ω), P = (m,M)
⋂

[0,∞)
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Definition 1.8.1. Fix any µ ∈ P and ω ∈ Ω, a collection of disjoint finite intervals

{Ii}i∈Z is called a (µ, ω) admissible decomposition of R if the following (1), (2) and

(3) hold.

(1) Ii = (ai, ai+1),
⋃
i∈Z

[ai, ai+1] = R.

(2) µ ∈ {mj(ai, ω),Mj(ai, ω)|1 ≤ j ≤ L}, for any i ∈ Z.

(3) µ /∈ {mj(x, ω),Mj(x, ω)|1 ≤ j ≤ L, x ∈ (ai, ai+1)}, for any i ∈ Z.

Remark 9. Since H(p, x, ω) is constrained and has large oscillation, such {Ii}i∈Z
exists and is unique. By (A1), for any y ∈ R, {Ii − y}i∈Z is the (µ, τyω) admissible

decomposition of R.

Definition 1.8.2. For fixed ω ∈ Ω and µ ∈ P, let {Ii}i∈Z be a (µ, ω) admissible

decomposition of R, then f : R → R is a (µ, ω) admissible function if the following

(1), (2) and (3) hold.

(1) 0 ≤ f(x) ≤ max{p ≥ 0|H(p, x, ω) ≤M}.

(2) For each i ∈ Z, f(x)|Ii = ψji,x(µ), for some ji ∈ {1, 2, · · · , 2L+ 1}.

(3) Any solution of u′ = f(x) is a viscosity solution of the equation

(1.10)

H(u′(x), x, ω) = µ, x ∈ R

u′ ≥ 0

Definition 1.8.3. For µ ≥ 0 and ω ∈ Ω, define

Aµ(ω) :=


{All (µ, ω) admissible functions } µ ∈ P

ψ2L+1,x(µ) µ ≤ m (if m ≥ 0)

ψ1,x(µ) µ ≥M

Lemma 1.8.1. Aµ(ω) 6= ∅.

Proof. Fix ω ∈ Ω, by Lemma 1.7.1, there exists a viscosity solution u(x) of the

equation (1.10). By Lemma 1.7.2, there exists a strictly increasing sequence {bi}i∈Z
such that

lim
i→±∞

bi = ±∞; u ∈ C1((bi, bi+1)), i ∈ Z; u′(x)|(bi,bi+1) = ψki,x(µ), ki ∈ {1, 2, · · · , 2L+ 1}
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Let µ ∈ P and {Ij}j∈Z be the (µ, ω) admissible decomposition of R. By refinement,

we may assume that for i ∈ Z, (bi, bi+1) ⊂ Ili , for some li ∈ Z.

For each j ∈ Z, denote: s(j) = min{ki|(bi, bi+1) ⊂ Ij}. And define f(x, ω) :=

ψs(j),x(µ), x ∈ Ij = (aj, aj+1). By Lemma 1.7.3, any solution to u′ = f is a viscosity

solution of the equation (1.10). Thus f ∈ Aµ(ω).

If µ /∈ P , it is clear that Aµ(ω) 6= ∅.

Definition 1.8.4. For each ω ∈ Ω and µ ≥ 0, denote

fµ(x, ω) := sup{f(x)|f ∈ Aµ(ω)}

f
µ
(x, ω) := inf{f(x)|f ∈ Aµ(ω)}

Lemma 1.8.2. (1) For any µ ≥ 0 and ω ∈ Ω, fµ(x, ω), f
µ
(x, ω) ∈ Aµ(ω).

(2) fµ(x, ω) ≥ f
µ
(x, ω) and both of them are stationary.

Proof. (1) Fix any µ ≥ 0 and ω ∈ Ω. For any point x0 ∈ R, since H(p, x, ω) is

constrained with index (0, L), there are fr ∈ Aµ(ω), δr > 0 and kr ∈ {1, 2, · · · , 2L+1},

such that

fµ(x, ω)|(x0,x0+δr) = fr(x)|(x0,x0+δr) = ψkr,x(µ)

Similarly, there are fl ∈ Aµ(ω), δl > 0 and kr ∈ {1, 2, · · · , 2L+ 1}, such that

fµ(x, ω)|(x0−δl,x0) = fr(x)|(x0−δl,x0) = ψkl,x(µ)

(i) If kl = kr = k. Then ψk,x(µ) is continuous on (x0−δl, x0+δr). SinceH(ψk,x(µ), x, ω) =

µ, any solution of u′ = ψk,x(µ) is the solution of the equation:

H(u′, x, ω) = µ, x ∈ (x0 − δl, x0 + δr)

(ii) If kl < kr. It suffices to check any solution to u′ = fµ is a viscosity sub-solution

at x0, which follows from the fact that

[f(x+
0 ), f(x−0 )] = [fr(x

+
0 ), fl(x

−
0 )] ⊂ [fl(x

+
0 ), fl(x

−
0 )]

(iii) If kl > kr. It suffices to check any solution to u′ = fµ is a viscosity super-solution

at x0, which follows from the fact that

[f(x−0 ), f(x+
0 )] = [fl(x

−
0 ), fr(x

+
0 )] ⊂ [fr(x

−
0 ), fr(x

+
0 )]
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So fµ(x, ω) ∈ Aµ(ω). Similarly, f
µ
(x, ω) ∈ Aµ(ω).

(2) It follows immediately from definition that fµ(·, ω) ≥ f
µ
(·, ω). By Remark 9, for

any y ∈ R, we have

f(x, τyω) = sup{f(x)|f(x) ∈ Aµ(τyω)} = sup{f(x)|f(x− y) ∈ Aµ(ω)} = f(x+ y, ω)

Similarly, f(x, τyω) = f(x+ y, ω) for any y ∈ R.

1.8.2 Intermediate level set of the effective Hamiltonian

Lemma 1.8.3. Let H(p, x, ω) satisfy (A1)-(A3), assume it is constrained with index

(0, L) and it has large oscillation (see Definition 1.6.1). If µ > M , then for a.e.

ω ∈ Ω, the following is true: for any f(x) ∈ Aµ(ω), there exists a sequence of

intervals {Jk}k∈Z such that

Jk = (ck, ck+1),
⋃
k∈Z

[ck, ck+1] = R

lim
k→±∞

ck = ±∞, f |J2k = ψ1,(x,ω)(µ)

Proof. According to Lemma 1.2.1, for a.e. ω ∈ Ω, M = ess inf
x∈R

M(x, ω). Denote

δ := µ−M and ε := δ
2
. By the Ergodic Theorem,

lim
L→±∞

1

L

∫ L

0

1{z,M(z,ω)<M+ε}(x)dx = E [M(0, ·) < M + ε] > 0, a.e. ω ∈ Ω

So, almost surely, there exists a sequence xi = xi(ω), such that lim
i→±∞

xi = ±∞ and

M(xi, ω) < M + ε. Continuity of M(x, ω) in x implies the following: for each i, there

exists δi > 0, such that M(x, ω) < M + ε, x ∈ (xi − δi, xi + δi).

Next, denote c2k := xk − δk, c2k+1 := xk + δk and Jk := (ck, ck+1). Immediately, we

have f(x)|J2k = ψ1,(x,ω)(µ), which follows from the fact that:

H(f(x), x, ω) = µ > M + ε > M(x, ω)|J2k , a.e. ω ∈ Ω

Lemma 1.8.4. Let H(p, x, ω) satisfy (A1)-(A3), assume it is constrained with index

(0, L) and it has large oscillation (see Definition 1.6.1). If 0 ≤ µ < m, then for a.e.
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ω ∈ Ω, the following is true: for any f(x) ∈ Aµ(ω), then there exists a sequence of

intervals {Jk}k∈Z such that

Jk = (ck, ck+1),
⋃
k∈Z

[ck, ck+1] = R

lim
k→±∞

ck = ±∞, f |J2k = ψ2L+1,x(µ)

Proof. Similar arguments as in the proof of Lemma 1.8.3.

Lemma 1.8.5. Let H(p, x, ω) satisfy (A1)-(A3), assume it is constrained with index

(0, L) and it has large oscillation (see Definition 1.6.1). Fix any µ ≥ 0 and p ∈

[
∫

Ω
f
µ
(0, ω)dω,

∫
Ω
fµ(0, ω)dω], there exists a stationary function f(x, ω) : R×Ω→ R

such that

(1) p =
∫

Ω
f(0, ω)dω.

(2) For a.e. ω ∈ Ω, any solution to u′ = f(x, ω) is a solution of the equation:

H(u′, x, ω) = µ.

Proof. Fix ω ∈ Ω. Suppose u′(x, ω) = f
µ
(x, ω) and u′(x, ω) = fµ(x, ω), Lemma 1.8.2

implies H(u′, x, ω) = µ, H(u′, x, ω) = µ.

According to Lemma 1.8.3 and Lemma 1.8.4, there exists a sequence of intervals

{Ik}k∈Z, where Ik = (ak, ak+1), such that lim
k→±∞

ak = ±∞ and

f
µ
(x, ω) = fµ(x, ω), x ∈ I2k and f

µ
(x, ω) ≤ fµ(x, ω), x ∈ I2k+1

Denote

di =

∫ ai+1

ai

f
µ
(s, ω)ds and di =

∫ ai+1

ai

fµ(s, ω)ds

For each t ∈ [0, 1], accordingly define ft : R× Ω→ R as

ft(x, ω) :=

fµ(x, ω) = fµ(x, ω) x ∈ I2i

FI2i+1
(fµ, fµ, tdi + (1− t)di) x ∈ I2i+1

Therefore ft(x, ω) is stationary and∫ ai

a0

ft(x, ω)dx =

∫ ai

a0

tfµ(x, ω) + (1− t)f
µ
(x, ω)dx
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By (A2), f
µ

and fµ are bounded. Then there exists some constant C > 0, such that

1

|ai − a0|

∣∣∣∣∫ ai

a0

ft(x, ω)dx−
∫ ai

a0

fs(x, ω)dx

∣∣∣∣
= |t− s|

∣∣∣∣∫ ai

a0

(
fµ(s, ω)− f

µ
(s, ω)

)
ds

∣∣∣∣
≤ C |t− s|

Hence

lim
L→∞

1

L

∣∣∣∣∫ L

0

ft(x, ω)dx−
∫ L

0

fs(x, ω)dx

∣∣∣∣ ≤ C |t− s|

Apply the Ergodic Theorem, we have for a.e. ω ∈ Ω that

lim
L→∞

1

L

∫ L

0

ft(x, ω)dx = E [ft(0, ω)] and lim
L→∞

1

L

∫ L

0

fs(x, ω)dx = E [fs(0, ω)]

Thus |E [ft(0, ω)]− E [fs(0, ω)]| ≤ C |t− s|, which means E [ft(0, ω)] is a continuous

function of t. As a consequence of this observation,⋃
t∈[0,1]

E [ft(0, ω)] =

[∫
Ω

f
µ
(0, ω)dω,

∫
Ω

fµ(0, ω)dω

]

Finally, if we fix any p ∈ [
∫

Ω
f
µ
(0, ω)dω,

∫
Ω
fµ(0, ω)dω], there must be some t0 =

t0(p) ∈ [0, 1], such that E[ft0(0, ω)] = p. Just let u be the solution of u′ = ft0(x, ω),

Lemma 1.7.4 states that u is also a solution of H(u′, x, ω) = µ.

Lemma 1.8.6. Let H(p, x, ω) satisfy (A1)-(A3), assume it is constrained with index

(0, L) and it has large oscillation (see Definition 1.6.1). Fix ω ∈ Ω, if µm → µ and

fm(x) ∈ Aµm(ω), then the following (1), (2) and (3) hold.

(1) If µ ∈ P, then lim sup
m→∞

fm(x) ∈ Aµ(ω) and lim inf
m→∞

fm(x) ∈ Aµ(ω).

(2) If m ≥ 0 and µ ≤ m, then except a countable set,

lim sup
m→∞

fm(x) = lim inf
m→∞

fm(x) = ψ2L+1,(x,ω)(µ)

(3) If µ ≥M , then except a countable set,

lim sup
m→∞

fm(x) = lim inf
m→∞

fm(x) = ψ1,(x,ω)(µ)
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Proof. Prove f(x) = lim sup
m→∞

fm(x) ∈ Aµ(ω) only since the proof for lim inf is similar.

(1) Let {Ii}i∈Z be the (µ, ω) admissible decomposition of R. Fix k ∈ Z and 0 < ε� 1,

then, there exists some N = N(ε) ∈ N, such that if m > N ,

µm /∈ {mi(x, ω),Mj(x, ω)|1 ≤ i, j ≤ L, x ∈ (ak + ε, ak+1 − ε) ∪ (ak+1 + ε, ak+2 − ε)}

So, there are l, l̃, q, q̃ ∈ {1, 2, · · · , 2L+ 1}, {fln}n≥1 and {fqn}n≥1, such that

fln(x) =

ψl,(x,ω)(µ) x ∈ (ak + 1
n
, ak+1 − 1

n
)

ψl̃,(x,ω)(µ) x ∈ (ak+1 + 1
n
, ak+2 − 1

n
)

fqn(x) =

ψq̃,(x,ω)(µ) x ∈ (ak + 1
n
, ak+1 − 1

n
)

ψq,(x,ω)(µ) x ∈ (ak+1 + 1
n
, ak+2 − 1

n
)

Moreover,

f(x)|Ik = ψl,(x,ω)(µ) and f(x)|Ik+1
= ψq,(x,ω)(µ)

To prove (1), we only need to show that the solution of u′ = f is a viscosity solution

of (1.10) at ak+1. Define ul ∈ W 1,∞(ak, ak+2) and uq ∈ W 1,∞(ak, ak+2) respectively

be solutions of

u′l(x) =

ψl,(x,ω)(µ) x ∈ Ik

ψl̃,(x,ω)(µ) x ∈ Ik+1

and

u′q(x) =

ψq̃,(x,ω)(µ) x ∈ Ik

ψq,(x,ω)(µ) x ∈ Ik+1

By stability of viscosity solutions, both of ul and uq are also viscosity solutions to

H(v′(x), x, ω) = µ, x ∈ (ak, ak+2)

It is easy to see that the jump of f at ak+1 is contained in the jump of u′l or the jump

of u′q at ak+1, therefore the solution of u′ = f is a viscosity solution of (1.10).

(2) Denote A = {x ∈ R|µ = mi(x) for some 1 ≤ i ≤ L}. Since each of mi(x, ω) has
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no cluster point, A is countable. Since m ≥ 0 and µ ≤ m, if x /∈ A, then we must

have

lim sup
m→∞

fm(x) = lim inf
m→∞

fm(x) = ψ2L+1,(x,ω)(µ)

(3) Denote B = {x ∈ R|µ = Mj(x) for some 1 ≤ j ≤ L}. Since each Mj(x, ω) has no

cluster point, B is countable. Since µ ≥M , if x /∈ B, then we must have

lim sup
m→∞

fm(x) = lim inf
m→∞

fm(x) = ψ1,(x,ω)(µ)

Definition 1.8.5. For each µ ≥ 0, denote Iµ =
[∫

Ω
f
µ
(0, ω)dω,

∫
Ω
fµ(0, ω)dω

]
.

Remark 10. Recalling Lemma 1.8.5, if µ 6= ν, then Iµ
⋂
Iν = ∅.

Lemma 1.8.7. If lim
m→∞

µm = µ, then∫
Ω

fµ(0, ω)dω ≥ lim sup
m→∞

∫
Ω

fµm(0, ω)dω∫
Ω

f
µ
(0, ω)dω ≤ lim inf

m→∞

∫
Ω

f
µm

(0, ω)dω

Moreover,
⋃
µ≥0

Iµ = [q0,∞) with q0 =
∫

Ω
f

0
(0, ω)dω.

Proof. See the proof of Lemma 3.8 in [7].

Remark 11. So far, we have established that for those p ∈ [q0,∞), the cell problem

is always solvable (hence the Hamiltonian is regularly homogenizable for those p).

1.8.3 Extreme level set of effective Hamiltonian

In this subsection, we will study the minimum piece of H(p), which turns out to be

0. Denote

zl(x, ω) := min
{
p ≤ 0 : H(q, x, ω) ≤ 0 on [p, 0]

}
Lemma 1.8.8. Let H(p, x, ω) satisfy (A1)-(A3), assume it is constrained with index

(0, L) and it has large oscillation (see Definition 1.6.1). For any p between E[zl(0, ω)]

and E[f
0
(0, ω)], there exists a stationary function f(x, ω) such that p = E[f(0, ω)]

and any solution to u′ = f is a viscosity sub-solution of H(u′, x, ω) = 0, x ∈ R.

49



Proof. Since H(p, x, ω) is constrained with index (0, L), m = ess sup
(x,ω)∈R×Ω

m(x, ω) > 0.

By similar arguments in the proof of Lemma 1.8.3, then: for a.e. ω ∈ Ω, there exists

{bi}i∈Z such that

lim
i→±∞

bi = ±∞, m(x, ω)|(b2i,b2i+1) ∈
[

3m
4
,m
]
, m(x, ω)|(b2i+1,b2i+2) ≤

3

4
m

Fix any such ω and for each i ∈ Z, we denote

ri =

∫ bi+1

bi

zl(x, ω)dx and ri =

∫ bi+1

bi

f
0
(x, ω)dx

Fix t ∈ (0, 1), the following part of proof is devoted to define a stationary function

ft(x, ω).

STEP 1: Modification on (b2i, b2i+1). First denote

fl,t(x, ω) =


(1− t)f

0
(x, ω) + tzl(x, ω) x ∈

⋃
i∈Z

(b2i, b2i+1)

zl(x, ω) x ∈
⋃
i∈Z

[b2i+1, b2i+2]

fr,t(x, ω) =


(1− t)f

0
(x, ω) + tzl(x, ω) x ∈

⋃
i∈Z

(b2i, b2i+1)

f
0
(x, ω) x ∈

⋃
i∈Z

[b2i+1, b2i+2]

Suppose u is a solution of the equation u′ = fl,t or the equation u′ = fr,t, then in

viscosity sense, we have H(u′(x, ω), x, ω) ≤ 0, x ∈ R (This is because H(p, x, ω) is

convex in p on (zl(x, ω), f
0
(x, ω)) for any x ∈ (b2i, b2i+1)).

STEP 2: Modification on [b2i+1, b2i+2]. Define

ft :=

FI2i+1
(f

0
, zl(x, ω), (1− t)ri + tri) x ∈ [b2i+1, b2i+2]

fl,t(x, ω) = fr,t(x, ω) x ∈ (b2i, b2i+1)

By Lemma 1.7.4, if u′ = ft, then in viscosity sense, we have H(u′(x, ω), x, ω) ≤ 0,

x ∈ R. By similar arguments as in the proof of Lemma 1.8.5, there exists some

constant C > 0, such that

1

|bi − b0|

∣∣∣∣∫ bi

b0

ft(x, ω)dx−
∫ bi

b0

fs(x, ω)dx

∣∣∣∣ ≤ C|t− s|
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lim
L→+∞

1

L

∣∣∣∣∫ L

0

ft(x, ω)dx−
∫ L

0

fs(x, ω)dx

∣∣∣∣ ≤ C|t− s|

Recall the Ergodic theorem, the above means

|E [ft(0, ω)]− E[fs(0, ω)]| ≤ C|t− s|

Hence E[ft(0, ω)] is a continuous function with respect to t.

Since E [f0(0, ω)] = E[f
0
(0, ω)] and E[f1(0, ω)] = E[zl(0, ω)], we conclude that⋃

t∈[0,1]

E[ft(0, ω)] =
[
E[zl(0, ω)],E[f

0
(0, ω)]

]
So for any p ∈

[
E[zl(0, ω)],E[f

0
(0, ω)]

]
, there exists t = t(p), such that p = E[ft(0, ω)],

therefore, any solution of u′ = ft(x, ω) is a viscosity sub-solution of H(v′, x, ω) = 0,

x ∈ R.

Corollary 1.8.1. Let H(p, x, ω) satisfy (A1)-(A3), assume it is constrained with

index (0, L) and it has large oscillation (see Definition 1.6.1). Fix any p between

E[zl(0, ω)] and E[f
0
(0, ω)], for any λ > 0, assume vλ(x, p, ω) be the viscosity solution

of the equation

λvλ +H(p+ v′λ, x, ω) = 0, x ∈ R

Then for a.e. ω ∈ Ω, we have

lim sup
λ→0

−λvλ(0, p, ω) ≤ 0

Proof. From Lemma 1.8.8, we see that for any p ∈
[
E[zl(0, ω)],E[f

0
(0, ω)]

]
, there

exists a Lipschitz continuous function w(x, p, ω), which is the solution of the equation
H(p+ w′, x, ω) ≤ 0

E[w′(x, ω)] = 0

w′(x, ω) is stationary

Without loss of generality, assume that w(0, p, ω) = 0, apply the Ergodic theorem,

we have for a.e. ω ∈ Ω that w(x, p, ω) is sub-linear, which follows from the following

observations:

lim
L→∞

w(L, p, ω)

L
= lim

L→∞

1

L

∫ L

0

w′(s, p, ω)ds = E[w′(0, p, ω)] = 0
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lim
L→∞

w(−L, p, ω)

L
= lim

L→∞

1

L

∫ −L
0

w′(s, p, ω)ds = E[w′(0, p, ω)] = 0

These imply that, for each fixed R > 0, we have

lim
λ→0

max

{
λw

(
R

λ
, p, ω

)
, λw

(
−R
λ
, p, ω

)}
= 0

As a result of above statement, we also have

lim
λ→0

max
x∈[−Rλ ,

R
λ ]
{|λw (x, p, ω) |, |λw (x, p, ω) |} = 0

Denote A(λ,R) := max
x∈[−Rλ ,

R
λ ]
{|λw (x, p, ω) |, |λw (x, p, ω) |}, then for any δ > 0, there

exists some λ0 = λ0(R, δ) > 0, when λ < λ0, A(λ,R) < δ. Note that on
[
−R

λ
, R
λ

]
, we

have

λw +H(p+ w′, x, ω) ≤ λw ≤ δ = λ

(
vλ +

δ

λ

)
+H(p+ v′λ, x, ω)

Recall Lemma 1.2.3, which gives

λw(0, p, ω)− (λvλ(0, p, ω) + δ) ≤ C(p)

R
for some constant C(p) > 0

Choose R > C(p)
δ

, then −λvλ(0, p, ω) < 2δ. The above argument is true for arbitrary

δ > 0.

Therefore, for a.e. ω ∈ Ω,

lim sup
λ→0

−λvλ(0, p, ω) ≤ 0

Lemma 1.8.9. Let H(p, x, ω) satisfy (A1)-(A3), assume it is constrained with index

(0, L) and it has large oscillation (see Definition 1.6.1). Then for a.e. ω ∈ Ω, we

have that

lim inf
λ→0

−λvλ(x, p, ω) ≥ 0 for any x ∈ R

where p ∈ R and where vλ(·, p, ω) ∈ W 1,∞(R) is the unique viscosity solution of the

equation:

λvλ +H(p+ v′λ, x, ω) = 0, x ∈ R
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Proof. By assumption, ess inf
(x,ω)∈R×Ω

H(0, x, ω) < 0, for each (x, ω) ∈ R× Ω. Denote

V (x, ω) := min{H(0, x, ω),m(x, ω)}

Then V (x, ω) ≤ 0 and it is a bounded continuous stationary function. Then

H+(p, x, ω) := H(p, x, ω)− V (x, ω) ≥ 0

For a.e. ω ∈ Ω and any δ > 0, there are (by similar arguments as in the proof of

Lemma 1.8.3):

Ii = (ai, ai+1), lim
i→±∞

ai = ±∞ and − δ ≤ V (x, ω) ≤ 0, x ∈ (a2i, a2i+1)

Then

lim inf
λ→0, x∈(a2i,a2i+1)

−λvλ(x, ω) ≥ −δ

On the other hand, for each ω ∈ Ω, there exists a sequence λn → 0 and a constant

C ∈ R, such that

−λnvλn(x, ω)→ C locally uniformly in R

Then, C ≥ −δ. Because δ > 0 can be arbitrarily close to 0, C ≥ 0. Thus

lim inf
λ→0

−λvλ(x, ω) ≥ 0.

Remark 12. Corollary 1.8.1 and Lemma 1.8.9 demonstrate that for any p between

E[zl(0, ω)] and E[f
0
(0, ω)]], H(p, x, ω) is regularly homogenizable (see Definition 1.2.1)

and H(p) = 0.

Definition 1.8.6. If H(p, x, ω) is constrained with index (0, L), denote by Ψ(x,ω)(·)

the inverse function of H(·, x, ω)|(−∞,0).

Lemma 1.8.10. For p ∈ (−∞,E[zl(0, ω)]), H(p, x, ω) is regularly homogenizable.

Proof. For each µ ≥ 0, denote pµ = E[Ψ(0,ω)(µ)], let v(x, ω) be the solution of the

equation

v′(x, ω) = Ψ(x,ω)(µ)− pµ
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Then v is a sub-linear (by the Ergodic theorem) solution of H(p+v′, x, ω) = µ, x ∈ R.

The lemma follows from the fact that

(−∞,E[zl(0, ω)]) =
⋃
µ>0

{pµ}

Remark 13. From the construction of the effective Hamiltonian H(p), in the case

of large oscillation, H(p) is coercive, continuous and level-set convex.

Proof. of Theorem 2.3.1 It follows from Remark 4, Remark 5, Remark 6, Remark 8,

Remark 11, Remark 12 and Lemma 1.8.10.

1.9 Future problem: Random homogenization of

nonconvex Hamilton-Jacobi equations in high

dimensional cases

It is natural to ask if we can extend the argument in 1D to general high dimension. As

the counter-example [38] indicates, the random homogenization of general nonconvex

Hamilton-Jacobi equations may not be true in high dimensional case. However, we

can still ask if the homogenization still can be proved for some particular type of

Hamilton-Jacobi equations.

The simplest such Hamiltonian (except the case in [6]) is the above (d = 2) one

with H(p, x, ω) = H(p) +AV (x, ω), where H(p) is a rotation of the curve β(s), s ≥ 0

and A ≥ 0. In this example, the function H(p) has local oscillation 1, we fix some

V (x) : R2 → R, which is [0, 1]2-periodic (a special case of stationary ergodic), the

picture on the right-hand side are effective Hamiltonians corresponding to different

scale A, the simulation result is from Yu-Yu Liu (National Cheng Kung University,

Taiwan). As we know in one dimensional case, when A ≥ 1, the effective Hamiltonian

H(p) becomes level-set convex. However, from the above simulations, we see that ev-

ern when A = 1 (the red curve), H(p) still shows some nonconvexity. This indicates
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that the 2D case is more complicated than that of 1D. In fact, the homotopy argu-

ment in the proof of large oscillation case cannot extend easily to general dimension

situation.
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Chapter 2

Applications to the study of

G-equations

This chapter is based mainly on the author’s previous work on the front propaga-

tion by analyzing G-equaton model. The author thanks the American Mathematical

Society for the publication, the final publication is available at Proceedings of The

American Mathematical Society via http://dx.doi.org/10.1090/proc/12930

2.1 Introduction

2.1.1 G-equations and strain effect

The G-equation is a well known model in the study of turbulent combustion. It is

the level set formulation of interface motion laws in the thin interface regime. In

the simplest model of the G-equation, the normal velocity of the interface equals a

positive constant sL (which is called the laminar speed) plus the normal projection of

the fluid velocity V (x), which gives the inviscid G-equation (in the general dimensional

situation, we use x as spatial variable and t as time variable):

(2.1)

Gt + V (x) ·DG+ sL|DG| = 0 (x, t) ∈ Rd × (0,∞)

G(x, 0) = G0(x) x ∈ Rd
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In reality, inter-facial fluctuations appear in front propagation. So, there is a

family of G-equations with different oscillation scales.

(2.2)

G
ε
t + V (x

ε
) ·DGε + sL|DGε| = 0 (x, t) ∈ Rd × (0,∞)

Gε(x, 0) = G0(x) x ∈ Rd

When V (x) is Zd-periodic and nearly compressible, Xin-Yu [35] and Cardaliaguet-

Nolen-Souganidis [11] independently proved that Gε(x, t)→ G(x, t) locally uniformly

and G solves the homogenized Hamilton-Jacobi equation:

(2.3)

Gt +H(DG) = 0 (x, t) ∈ Rd × (0,∞)

G(x, 0) = G0(x) x ∈ Rd

The effective Hamiltonian H is called the turbulent flame speed or the turbulent

burning velocity in combustion literature. For the stationary ergodic divergence-free

flow V (x, ω) which is the gradient of a stream function that satisfies some integrabil-

ity condition, Nolen-Novikov [29] first proved homogenization for the 2-dimensional

case. Then for the general dimensional case, if V (x, ω) is divergence-free and has

appropriately small mean, Cardaliaguet-Souganidis [13] proved the homogenization.

Since the flow will stretch or compress the front flame surface, the reaction over the

flame front will be affected. Thus the laminar speed sL depends on the flame stretch

and therefore can not be constant. To model the strain effect in the G-equation,

people extend sL to sL + c~n ·DV · ~n, where ~n represents the normal direction. Here

the Markstein length c is proportional to the flame thickness. Hence the induced

strain G-equation is [30][28][12]

Gt + V (x, ω) ·DG+ sL|DG|+ c
DG

|DG|
· S ·DG = 0 S := DV+(DV )>

2
(2.4)

Some interesting questions are:

(1) Can this strain G-equation be homogenized?

(2) If yes, how does the strain term affect the turbulent flame speed H(p)?

Remark 14. The strain G-equation (2.4) is highly non-coercive and non-convex,

which increase the difficulty of homogenization.
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When V is a 2-d periodic Cellular Flow, Xin-Yu [36] showed that due to the

existence of a strain term, when the flow intensity (magnitude of V ) is large enough,

the effective Hamiltonian becomes zero. This means that under the effect of strain,

the flame is quenched when the flow is too strong.

In this short article, we investigate those questions for 2-d random Shear Flows

V (x, ω) in the stationary ergodic setting.

2.1.2 2-d random Shear Flows

For the 2-d problem, we denote the space variable by (x, y) ∈ R2. Without loss of

generality, we assume sL = 1. We study the problem under a random Shear Flow

V = (v(y, ω), 0) and assume v(y, ω) is stationary ergodic (See section 2 for precise

definitions).

Let p = (m,n), the cell problem, if it exists, becomes:√
(m+Gx)2 + (n+Gy)2+v(y, ω)·(m+Gx)+c

(m+Gx)(n+Gy)v
′√

(m+Gx)2 + (n+Gy)2
= H(m,n, c)

This can be reduced to a 1-d problem:

(2.5)
√
m2 + (n+Gy)2 + v(y, ω) ·m+ c

m(n+Gy)v
′√

m2 + (n+Gy)2
= H(m,n, c)

So, it suffices to study the following 1-d Hamiltonian. Since the case m = 0 is

trivial, let’s fix m 6= 0, and we will denote H(m,n, c) by H(n, c). As a function of p,

the following Hamiltonian is not convex but it is level-set convex.

(2.6) H(p, x, ω, c) =
√
m2 + p2 + v(x, ω) ·m+ c

mpv′(x, ω)√
m2 + p2

In fact,

(2.7)
∂H(p, x, ω, c)

∂p
=
p3 +m2p+ cv′m3

(m2 + p2)
3
2

For fixed x, ω, c, ∂H
∂p

= 0 has a unique real root and lim
p→−∞

∂H
∂p

= −1, lim
p→+∞

∂H
∂p

= 1.

Thus the Hamiltonian is level-set convex(see (A2) in section 2). Actually, by the

above facts, H is strictly level-set convex. This means that for each fixed x, ω, c, for

any µ ∈ R, {p : H(p, x, ω, c) = µ} has no interior point.
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2.1.3 Random homogenization of Hamilton-Jacobi equations

with level-set convex Hamiltonians

Armstrong-Souganidis [4] proved random homogenization of the Hamilton-Jacobi

equations with level-set convex Hamiltonians. In addition to level-set convexity they

require more assumptions. Their proofs depend on the existence of a family of auxil-

iary functions Λλ ∈ C(R×R) that are nondecreasing in both of the arguments and

satisfying

(2.8) For all µ 6= ν, Λλ(µ, ν) < max{µ, ν}

(2.9) H(λp+ (1− λ)q, y, ω) ≤ Λλ(H(p, y, ω), H(q, y, ω))

where p, q, y ∈ Rd, ω ∈ Ω, for each 0 < λ1 ≤ λ2 ≤ 1
2
, Λλ1 ≥ Λλ2 . However, the

existence of Λλ is not straightforward.

So, it is not obvious if the Hamiltonian (2.6) satisfies (2.8), (2.9). However, based

on a very simple modification of the method in [4], we will show in section 2.2 that

(2.8), (2.9) are not necessary and random homogenization holds for any level-set

convex Hamiltonian with general dimension. Actually, to prove the homogeniza-

tion of 1-d Hamiltonian in section 2.3, we do not need the result of section 2.2. In

fact, random homogenization of 1-d coercive Hamiltonian has been established by

Armstrong-Tran-Yu [7] in separable case and extended by the author [18] to general

coercive case. The following is our main result which will be proved in section 2.3.

Throughout this paper, all solutions of PDEs are interpreted in the viscosity sense

[15].

Theorem 2.1.1. For the 2-dimensional case in the the stationary ergodic setting

with a shear flow V = (v(y, ω), 0) such that v(·, ω) ∈ C∞(R) and v(x, ω), v′(x, ω) ∈

L∞(R× Ω). Then

1. The G-equation with strain term (2.4) can be homogenized.

2. For any unit vector p = (m,n) ∈ R2 and c > 0,

H(p) = H(m,n) ≥ H(p, c) = H(m,n, c) ≥ |m|+ sup
(y,ω)∈R×Ω

mv(y, ω)
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3. If H(p) > |m| + sup
(y,ω)∈R×Ω

mv(y, ω) and E[v] = 0, then H(p) = H(p, c) if and

only if mv ≡ 0.

Remark 15. Statement (2) means that the strain term reduces the turbulent flame

speed. Since v′ changes sign, this is not obvious at all. This result is consistent

with concensus in combustion literature that the strain rate plays an important role in

slowing down or even quenching flame propagation [32]. This fact has been observed

by Xin-Yu [37] in the periodic setting.

2.2 A remark on homogenization of level-set con-

vex Hamiltonians

In this section, we claim that random Hamilton-Jacobi equations with Hamiltonians

that are merely level-set convex can be homogenized. Here (x, t) ∈ Rd × R is the

space-time variable.

2.2.1 Assumptions

Consider the Hamilton-Jacobi equationut +H(Du, x, ω) = 0 (x, t) ∈ Rd × (0,∞)

u(x, 0) = u0(x) x ∈ Rd

For H, we assume:

(A1) Stationary Ergodicity: There exists a probability space (Ω,F ,P) and a group

{τy}y∈Rd of F -measurable, measure-preserving transformations τy : Ω → Ω, i.e. for

any x, y ∈ Rd:

τx+y = τx ◦ τy and P[τy(A)] = P[A]

Ergodicity:

A ∈ F , τz(A) = A for every z ∈ Rd ⇒ P[A] ∈ {0, 1}

Stationary:

H(p, y, τzω) = H(p, y + z, ω)
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(A2) Level-Set Convexity: For every (y, ω) ∈ Rd × Ω and p, q ∈ Rd.

H

(
p+ q

2
, y, ω

)
≤ max{H(p, y, ω), H(q, y, ω)}

(A3) Coercivity:

lim
|p|→∞

ess inf
(y,ω)∈Rd×Ω

H(p, y, ω) = +∞

(A4) Boundedness and Uniform Continuity:

{H(·, ·, ω) : ω ∈ Ω} is bounded and equicontinuous on BR ×Rd for any R > 0.

2.2.2 Comparison Principle for Metric Problem

We adopt the same notations as in [4]; by stationary ergodicity, these are independent

of random variable ω. So, we suppress the random variable.

Notation 2.2.1.

L := {Real-valued global Lipschitz functions in Rd}

H∗ := inf
w∈L

ess sup
y∈Rd

H(Dw, y)

S :=

{
w ∈ L : lim

|y|→∞

w(y)

|y|
= 0

}

Ĥ(p) := inf
w∈S

ess sup
y∈Rd

H(p+Dw, y)

For fixed x ∈ Rd and µ ≥ H∗, we consider the metric problem

(2.10)

H(p+Dv, y) = µ y ∈ Rd�{x}

v(x) = 0

The idea in [4] to determine H(p) is to homogenize each level set of H. The

main tool is a comparison principle (Proposition 3.1 of [4]) of the metric problem,

and the proof of the comparison principle depends on the additional assumptions

(2.8) and (2.9). For general level-set convex Hamiltonians, we cannot prove the same

comparison principle.
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Since homogenization is closed under uniform limits, the following question arises:

can we add a small perturbation to the level-set convex Hamiltonian such that the

perturbed Hamiltonian satisfy (2.8) and (2.9), and then take the limit? This may

work for a carefully constructed perturbation, but it does not work if we simply

perturb H(p, x, ω) by Hε(p, x, ω) := ε|p|2 +H(p, x, ω) as the following simple example

shows.

Example 2.2.1. Consider d = 1 and H(p, x, ω) = H(p) defined by

H(p) :=



−p p ∈ (−∞, 0]

0 p ∈ (0, 1]

−p+ 1 p ∈ (1, 2]

p− 3 p ∈ (2,+∞)

Hε(p) := ε|p|2 +H(p)

Then for 0 < ε � 1, Hε(0) = 0, Hε(1) = ε > 0, Hε(2) = 4ε − 1 < 0 violates

the level-set convexity. So the perturbation may destroy the structure of level-set

convexity.

Fortunately, we observe that by the method introduced in [4], wherever we need

the comparison principle we actually only need the following weak version comparison

principle. To prove the weak version comparison principle, level-set convexity is

sufficient.

Lemma 2.2.1 (Weak Comparison Principle). Assume Ĥ(p) < µ < ν < +∞ and u,

−v ∈ USC(Rd) solve the following equation.

(2.11) H(p+Du, y) ≤ µ < ν ≤ H(p+Dv, y) in Rd�K, K ⊂ Rd compact

with

(2.12) lim inf
|y|→∞

v(y)

|y|
≥ 0

Then

(2.13) sup
Rd

(u− v) = max
K

(u− v)
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Remark 16. Without loss of generality, we only consider the case p = 0.

(A4) and µ < ν ⇒ by adding a function with arbitrary small gradient to v, we

can assume without of loss of generality that:

(2.14) A := lim inf
|y|→∞

v(y)

|y|
> 0

(A3) ⇒ u is Lipschitz ⇒ ∃ a := lim sup
|y|→∞

u(y)
|y| <∞

Claim 1. A ≥ a.

Proof of the Claim. It suffices to prove I := {0 ≤ λ ≤ 1 : A ≥ λa} = [0, 1]. If

a ≤ 0, there is nothing to prove. Assume a > 0 and let s := sup I. Since I is closed,

I = [0, s]. It suffices to show that for any λ ∈ I ∩ [0, 1), ∃ 0 < δ � 1 such that

λ+ δ ∈ I.

By the assumption Ĥ(0) < µ, we can choose w ∈ S, such that

H(Dw, y) < µ

Fix R, ε > 0, let 0 < δ < min{ ε
2a
, 1− λ}, and define

φR(y) :=
√
R2 + |y|2 −R

Define

ũ := (λ+ δ)u+ (1− λ− δ)w and ṽ := v + εφR

Then by level-set convexity,

H(Dũ, y) = H((λ+ δ)Du+ (1− λ− δ)Dw, y)

≤ max{H(Du, y), H(Dw, y)}

≤ µ

By (A4), if we choose ε� 1, we have

µ < H(Dṽ, y)
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lim inf
|y|→∞

ṽ − ũ
|y|

= lim inf
|y|→∞

(v + εφR)−
[
(λ+ δ)u+ (1− λ− δ)w

]
|y|

= lim inf
|y|→∞

[
v − λu
|y|

+ ε
φR
|y|
− δ u
|y|
− (1− λ− δ)w

|y|

]
≥ 0 + ε− δ · a− 0

≥ ε− ε

2a
· a

=
ε

2

So, ũ−ṽ attains its maximum in a bounded domain. And by the comparison principle

in bounded domain.

ũ− ṽ ≤ max
K

(ũ− ṽ)

Let R→∞

ũ− v ≤ max
K

(ũ− v)

Which leads to

(2.15) (λ+ δ)u+ (1− λ− δ)w − v ≤ max
K

(
(λ+ δ)u+ (1− λ− δ)w − v

)
So,

lim inf
|y|→∞

v − (λ+ δ)u

|y|
= lim inf

|y|→∞

v − [(λ+ δ)u+ (1− λ− δ)w]

|y|

= lim inf
|y|→∞

v − ũ
|y|

≥ lim inf
|y|→∞

−min
K

(v − ũ)

|y|
= 0

So, I = [0, 1], i.e. A ≥ a.

Proof of Lemma 2.3. Since I = [0, 1], by argument similar to the one above, for any

λ ∈ [0, 1)

(2.16) λu+ (1− λ)w − v ≤ max
K

(
λu+ (1− λ)w − v

)
Letting λ→ 1, we get the lemma.
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Remark 17. The following statements give the homogenization of general level-set

convex Hamiltonians under (A1)-(A4).

(I) In [4], the assumptions (2.8), (2.9) are only used to derive the comparison prin-

ciple (Proposition 3.1 of [4]).

(II) The above proof of the weak comparison principle does not require (2.8), (2.9).

(III) The weak comparison principle is sufficient to obtain the homogenization. Ac-

tually, in [4], the comparison principle is used mainly in two places. One is the

construction of a maximal solution of the metric problem, the other is the proof of

homogenization where the comparison principle is used to control the convergence in

the Ergodic problem. Wherever we need the comparison principle, the above weak

version comparison principle is sufficient.

2.3 The effect of strain term

We will study the following more general Hamiltonians with (B1)-(B4).

(2.17) H(p, x, ω, c) =
√
m2 + p2 + cs(x, ω) · p√

m2 + p2
+ k(x, ω)

(B1) Fix ω ∈ Ω, k(x, ω), s(x, ω) ∈ C∞(R) and k(x, ω), s(x, ω) ∈ L∞(R× Ω).

(B2) Fix ω ∈ Ω, if k(x, ω) achieves its local maximum value, then s(x, ω) = 0.

(B3) The event {ω ∈ Ω : k(x, ω) or s(x, ω) is constant} is not of probability 1.

(B4) k(x, ω) and s(x, ω) are stationary. For any x ∈ R, E[s(x, ω)] = 0.

Remark 18. (1) The strain G-equation is a special case with k = mv and s = mv′.

(2) We keep the existence of {τz}z∈R, which is ergodic. By this fact and (B1)-

(B4), without loss of generality, we can assume there are k < k, s < 0 < s, such

that for all ω ∈ Ω,

inf
x∈R

k(x, ω) = k, sup
x∈R

k(x, ω) = k, inf
x∈R

s(x, ω) = s, sup
x∈R

s(x, ω) = s
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(3) Since H(·, x, ω, c) is level-set convex and min
p∈R

H(p, x, ω, c) ≤ |m| + k, there

exist p−(x, ω, c) ≤ p+(x, ω, c) and p−, p+ that are continuous functions of x with

{p : H(p, x, ω, c) > |m|+ k} = (−∞, p−(x, ω, c)) ∪ (p+(x, ω, c),∞)

(4) By the homogenization result in [4], the following is true: for a.e. ω ∈ Ω and

any δ > 0, if uδ is the unique viscosity solution of

δuδ +H
(
p+ (uδ)′, x, ω, c

)
= 0, x ∈ R

then we have

(2.18) lim
δ→0
−δuδ(0, ω) = H(p, c).

Without loss of generality, we can assume this statement is true for every ω ∈ Ω.

(5) It is easy to see H∗ = min
p∈R

H(p, c) = |m|+k. By level-set convexity of H(p, c),

there exist p−(c) ≤ p+(c) with{
p : H(p, c) > |m|+ k

}
= (−∞, p−(c)) ∪ (p+(c),∞)

(6) We will show (from Lemma 2.3.1 to Lemma 2.3.3) that if H(p, c) > H∗, for

fixed ω, c, the following cell problem has a sub-linear solution γ(x, ω, c).

(2.19) H(p+ γ′, x, ω, c) = H(p, c), x ∈ R

(7) Cell problems (2.19) do not have solutions (see [25]) in general. Here in the 1-

dimensional level-set convex setting, the above remark (6) says for those H(p, c) > H∗,

cell problems do have solutions. More generally, in the 1-dimensional coercive situa-

tion, if H(p) is not a local extreme value, the solution of the cell problem at p ∈ R
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always exists (see [7]). As for those H(p, c) = H∗, the identity (2.18) can be obtained

by using comparison principle (see [7]).

(8) From Lemma 2.3.1 to Lemma 2.3.3, we always fix c. In Theorem 2.3.1, we

fix p = (m,n) and study how H(p, c) depends on c.

Lemma 2.3.1. Fix c ∈ [0,∞). For any µ ∈ (H∗,∞), there exists a unique P+(µ, c),

such that for each ω, the equationH(P+(µ, c) + γ′(x, ω, c), x, ω, c) = µ, x ∈ R

P+(µ, c) + γ′(x, ω, c) > p+(x, ω, c)

admits a viscosity solution γ(x, ω, c) and for a.e. ω ∈ Ω, γ(x, ω, c) is sub-linear.

Proof. For each µ > H∗, consider the equation

H(u′(x, ω, c), x, ω, c) = µ, x ∈ R

By the fact that min
p∈R

H(p, x, ω, c) ≤ H∗ andH(p, x, ω, c) is strictly level-set convex.

There are exactly two solutions of u′(x, ω, c), one is less than p−(x, ω, c), the other

is greater than p+(x, ω, c). We choose the latter one, by stationary of H, u′(x, ω, c)

is stationary. By smoothness of H(·, ·, ω, c) and µ > H∗, u
′(x, ω, c) is smooth with

respect to x, so by continuity, we always have that u′(x, ω, c) > p+(x, ω, c).

Since H(p, x, ω, c) is coercive with respect to p, uniformly with respect to x ∈ R,

u′(x, ω, c) is bounded. We can define

P+(µ, c) := E [u′(x, ω, c)]

Due to the stationary of u′, the expectation is independent of x and is uniquely

defined for each c ≥ 0 and µ > H∗.

Then we define the function

γ(x, ω, c) := u(x, ω, c)− P+(µ, c) · x

Then E[γ′(x, ω, c)] = 0 and by sub-additive Ergodic Theorem, for a.e. ω ∈ Ω,

lim
|x|→∞

γ(x, ω, c)− γ(0, ω, c)

|x|
= lim
|x|→∞

1

|x|

∫ x

0

γ′(s, ω, c)ds = E[γ′(0, ω, c)] = 0

Hence for a.e. ω ∈ Ω, γ(x, ω, c) is sub-linear and this is the desired solution.
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By the same argument, we have:

Lemma 2.3.2. Fix c ∈ [0,∞). For any µ ∈ (H∗,∞), there exists a unique P−(µ, c),

such that for each ω, the equationH(P−(µ, c) + γ′(x, ω, c), x, ω, c) = µ, x ∈ R

P−(µ, c) + γ′(x, ω, c) < p−(x, ω, c)

admits a viscosity solution γ(x, ω, c) and for a.e. ω ∈ Ω, γ(x, ω, c) is sub-linear.

Proposition 2.3.1. Fix c ∈ [0,+∞). The function P+(µ, c) : (H∗,+∞) −→ R has

the following properties:

1. P+(µ, c) is strictly increasing.

2. P+(µ, c) is continuous.

3. lim
µ→+∞

P+(µ, c) = +∞.

Proof. (1) SinceH(p, x, ω, c), as a function of p, is strictly increasing on (p+(x, ω, c),+∞),

and it’s uniformly continuous. So

H∗ < µ1 < µ2 <∞ =⇒ P+(µ1, c) < P+(µ2, c)

(2) Suppose µn, µ ∈ (H∗,+∞) and µn → µ as n→∞. Accordingly, we can solve

u′n and u′ by Lemma 2.3.1.

H(u′n(x, ω, c), x, ω, c) = µn, x ∈ R

H(u′(x, ω, c), x, ω, c) = µ, x ∈ R

For each fixed (x, ω, c) ∈ R × Ω × R+, by the fact that H(·, x, ω, c) is smooth

and strictly increasing on (p+(x, ω, c),+∞), we have lim
n→∞

u′n(x, ω, c) = u′(x, ω, c), by

bounded convergence theorem, lim
n→∞

E[u′n(x, ω, c)] = E[u′(x, ω, c)].

Thus, lim
n→∞

P+(µn, c) = P+(µ, c).

(3) If P+(µ, c) is bounded, since k(x, ω), s(x, ω) are uniformly bounded and then

H(P+(µ, c), x, ω, c) is uniformly bounded. Let E[γ′(x, ω)] = 0 and γ(x, ω) solves

H(P+(µ, c) + γ′, x, ω, c) = µ, x ∈ R
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Since γ(x, ω) is sub-linear and smooth. For any ε > 0, there is some interval

(a(µ), b(µ)) on which |γ′| < ε (Otherwise, by continuity, γ will be at least linear

growth at infinity). So H(P+(µ, c) + γ′, x, ω, c) is uniformly bounded on (a(µ), b(µ)),

this gives a contradiction when µ→ +∞.

Similarly, we can prove:

Proposition 2.3.2. Fix c ∈ [0,+∞). The function P−(µ, c) : (H∗,+∞) −→ R has

the following properties:

1. P−(µ, c) is strictly decreasing.

2. P−(µ, c) is continuous.

3. lim
µ→+∞

P−(µ, c) = −∞.

Definition 2.3.1. By the above propositions of P+(µ, c) and P−(µ, c), we denote their

inverse functions by µ+(p, c) and µ−(p, c).

µ+(p, c) :

(
inf
µ
P+(µ, c),+∞

)
−→ (H∗,+∞)

µ−(p, c) :

(
−∞, sup

µ
P−(µ, c)

)
−→ (H∗,+∞)

And then we can define the continuous level-set convex function µ(p, c).

µ(p, c) :=



µ−(p, c) if p ∈
(
−∞, sup

µ
P−(µ, c)

)
H∗ if p ∈

[
sup
µ
P−(µ, c), inf

µ
P+(µ, c)

]
µ+(p, c) if p ∈

(
inf
µ
P+(µ, c),+∞

)
Lemma 2.3.3. µ(p, c) = H(p, c)

Proof. By the existence of cell problem,

µ(p, c) = H(p, c), ∀p ∈
(
−∞, sup

µ
P−(µ, c)

)⋃(
inf
µ
P+(µ, c),+∞

)
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By level-set convexity of H(p, c) and H(p, c) ≥ H∗, we have

H(p, c) = H∗, ∀p ∈
[
sup
µ
P−(µ, c), inf

µ
P+(µ, c)

]
So µ(p, c) = H(p, c).

The next theorem is aimed to study the dependence of H(n, c) on c. As mentioned

under (2.5), H(n, c) is equal to H(m,n, c) in the original 2-d problem. We will fix

a unit vector (m,n) ∈ R2 and denote h(c) := H(n, c) = H(m,n, c) in the following

theorem.

Theorem 2.3.1. Under (B1)-(B4), fix a unit vector (m,n) ∈ R2 with mn 6= 0.

1. h(c) ∈ C0,1(R+) and ‖s‖ := ‖s(x, ω)‖L∞(R×Ω) is the Lipschitz constant.

2. h′(c) ≤ 0 for a.e. c ∈ (0,∞). If h(c) > H∗, h
′(c) < 0.

3. There exists c > 0, when c > c, h(c) = H∗.

Proof. (1) Fix c1, c2 ∈ (0,∞), then H∗ ≤ h(c1), h(c2) <∞. For each 0 < δ � 1, let

uδ, vδ be the unique solutions of the following two equations respectively.

(2.20) δuδ +
√
m2 + (n+ (uδ)′)2 +

c1(n+ (uδ)′)s(x, ω)√
m2 + (n+ (uδ)′)2

+ k(x, ω) = 0, x ∈ R

(2.21) δvδ +
√
m2 + (n+ (vδ)′)2 +

c2(n+ (vδ)′)s(x, ω)√
m2 + (n+ (vδ)′)2

+ k(x, ω) = 0, x ∈ R

By Remark 18.

lim
δ→0
|δuδ(0, ω) + h(c1)| = lim

δ→0
|δvδ(0, ω) + h(c2)| = 0

Since w(x, ω) := v + 1
δ
‖s‖|c2 − c1| is a super solution of (2.20). By comparison

principle, δuδ ≤ δvδ + ‖s‖|c2 − c1|, similarly, δvδ ≤ δuδ + ‖s‖|c2 − c1|, thus

|δuδ(0, ω)− δvδ(0, ω)| ≤ ‖s‖|c2 − c1|

Let δ → 0, we get

|h(c2)− h(c1)| ≤ ‖s‖|c2 − c1|
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(2) Fix c0 > 0. Without of loss of generality, we assume n > 0. Lipschitz function

is differentiable a.e., so if h(c0) = H∗ and h(c0) is differentiable at c0, then h′(c0) = 0.

Now assume h(c0) > H∗ and denote f(t) :=
√
m2 + t2.

We will focus on the cell problem H(n+ u′, x, ω, c) = h(c).

By continuity, there is some ε > 0, such that for c ∈ Iε = (c0 − ε, c0 + ε) ∩ R+,

h(c) −H∗ has a positive lower bound. Since u(x, ω, c) is smooth, n + u′(x, ω, c) > 0

has a positive lower bound.

To show h′(c0) < 0, we first show:

Claim 1: For c ∈ Iε
(

here t = n+ u′ in f(t)
)

.

(2.22) f ′ + cs(x, ω)f ′′ =
(n+ u′)3 +m2(n+ u′) + cs(x, ω)m2

(m2 + (n+ u′)2)
3
2

> 0

To prove Claim 1, it suffices to show (n+ u′) + cs(x, ω) > 0.

By the fact that H∗ = |m|+ k and√
m2 + (n+ u′)2 +

c(n+ u′)s(x, ω)√
m2 + (n+ u′)2

+ k(x, ω) = h(c) > H∗

We have √
m2 + (n+ u′)2 − |m|+ c(n+ u′)s(x, ω)√

m2 + (n+ u′)2
> 0

This is equivalent to

(n+ u′)2√
m2 + (n+ u′)2 + |m|

+
c(n+ u′)s(x, ω)√
m2 + (n+ u′)2

> 0

So

(n+ u′)2 + c(n+ u′)s(x)√
m2 + (n+ u′)2

=
(n+ u′)2√

m2 + (n+ u′)2
+

c(n+ u′)s(x, ω)√
m2 + (n+ u′)2

> 0

Which means

(n+ u′)(n+ u′ + cs(x, ω)) > 0

The fact that n+ u′ > 0 implies n+ u′ + cs(x, ω) > 0. Thus Claim 1 is proved.

Immediately, we have:

(2.23) E

[
1

f ′ + cs(x, ω)f ′′

]
> 0

71



The fact that

f ′ + cs(x, ω)f ′′ =
(n+ u′)3 +m2(n+ u′) + cs(x, ω)m2

(m2 + (n+ u′)2)
3
2

>
(n+ u′)3

(m2 + (n+ u′)2)
3
2

implies f ′ + cs(x, ω)f ′′ has a positive lower bound. And the fact that

f ′(n+ u′) =
n+ u′√

m2 +
(
n+ u′

)2

implies f ′(n+ u′) has a positive lower bound.

If we denote

a(x, ω, c) :=
cf ′′

f ′
=

m2c

(n+ u′)(m2 + (n+ u′)2)
> 0

Then by dividing f ′ in (2.22).

1 + a(x, ω, c)s(x, ω) > 0 has a positive lower bound

Now, the cell problem can be rewritten as (2.24). Since F (t) := f(t) + csf ′(t) + k

is smooth and increasing with respect to t = n + u′(x, ω, c) and h(c) ∈ C0,1(R+),

u′ = F−1(h(c))− n is differentiable a.e. with respect to c.

(2.24) f(n+ u′(x, ω, c)) + cs(x, ω)f ′(n+ u′(x, ω, c)) + k(x, ω) = h(c)

Differentiate it w.r.t. c gives:
(

here ∂
∂c

(u′) := ∂
∂c

( ∂
∂x
u(x, ω, c))

)
(2.25) h′(c) · 1

f ′ + cs(x, ω)f ′′
=

s(x, ω)

1 + a(x, ω, c)s(x, ω)
+

∂

∂c
(u′)

The above positive lower bounds as well as the boundedness of h′ and s(x, ω)

implies that ∂
∂c

(u′) is bounded uniformly for (c, x, ω) ∈ Iε ×R × Ω. This will allow

us to apply bounded convergence theorem in (2.27).

Taking expectation in (2.25) gives:

h′(c0) · E
[

1

f ′ + c0s(x, ω)f ′′

]
= E

[
s(x, ω)

1 + a(x, ω, c0)s(x, ω)

]
+ E

[
∂

∂c
(u′)(x, ω, c0)

]
Choose Iε 3 ck → c0, by bounded convergence theorem and the fact E[u′] = 0.

E

[
∂

∂c
(u′)(x, ω, c0)

]
= E

[
lim

Iε3ck→c0

u′(x, ω, ck)− u′(x, ω, c0)

ck − c0

]
(2.26)

= lim
Iε3ck→c0

E

[
u′(x, ω, ck)− u′(x, ω, c0)

ck − c0

]
(2.27)

= 0(2.28)
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Recall that a(x, ω, c0) > 0, 1 + a(x, ω, c0)s(x, ω) > 0 and s(x, ω) is not a constant

function, we have

E

[
s(x, ω)

1 + a(x, ω, c0)s(x, ω)

]
= E

[
s(x, ω)

1 + a(x, ω, c0)s(x, ω)
χ{ω:s(x,ω)>0}

]
+ E

[
s(x, ω)

1 + a(x, ω, c0)s(x, ω)
χ{ω:s(x,ω)≤0}

]
< E

[
s(x, ω)χ{ω:s(x,ω)>0}

]
+ E

[
s(x, ω)χ{ω:s(x,ω)≤0}

]
= E[s(x, ω)]

= 0

Combine these with (2.23), we can conclude:

h′(c0) < 0

(3) Without loss of generality, let n > 0 and τ := |s| = −s > 0.

For each ω ∈ Ω, there are countable disjoint intervals {(li(ω), ri(ω)) : ri−1 ≤ li, i ∈

Z} such that

A(ω) :=
{
x : s(x, ω) < −τ

2

}
=
⋃
i∈Z

(li(ω), ri(ω))

Denote

B(ω) := R�A(ω) =
⋃
i∈Z

[ri(ω), li+1(ω)]

Since s(x, ω) < − τ
2

on A(ω), by the stationary of χA(ω)(x) and χB(ω)(x) we have for

a.e. ω ∈ Ω:

α := lim
L→+∞

1

2L

∫ L

−L
χA(ω)(x)dx = P

[
ω ∈ Ω : s(0, ω) < −τ

2

]
By (B4) and Remark 18, α ∈ (0, 1). Now we can construct a smooth stationary

function ψ(x, ω) with ψ(x, ω) = 0 on B(ω) and

1

ri − li

∫ ri

li

ψ(x, ω)dx =
n

α
and 0 ≤ ψ(x, ω) ≤ 2n

α

Then we will have

lim
L→+∞

1

2L

∫ L

−L
ψ(x, ω)dx = lim

L→+∞

1

L

∫ L

0

ψ(x, ω)dx = lim
L→+∞

1

L

∫ 0

−L
ψ(x, ω)dx = n
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Let φ′(x, ω) := ψ(x, ω)− n, then

lim
|x|→∞

φ(x, ω)− φ(0, ω)

|x|
= lim
|x|→∞

1

|x|

∫ x

0

φ′(s, ω)ds = 0

Which means that for a.e. ω ∈ Ω, φ(x, ω) is sub-linear.

The derivative of g(t) :=
√
m2 + t2 + cts(x,ω)√

m2+t2
with respect to t is t3+m2t+m2cs(x,ω)

(m2+t2)
3
2

,

Let c := 2
τm2

[
(2n
α

)3 +m2(2n
α

)
]
> 0. For all x ∈ A(ω), if c > c, then g′(t) < 0 for

t ∈ [0, 2n
α

]. By the construction of φ,

0 ≤ n+ φ′(x, ω) = ψ(x, ω) ≤ 2n

α

And recall that supp(n+ φ′(x, ω)) ⊂ A(ω), then

max
x∈R

{√
m2 + (n+ φ′)2 +

c(n+ φ′)s√
m2 + (n+ φ′)2

+ k

}
≤ max

x∈R
{|m|+ k(x, ω)}

= |m|+ max
x∈R

k(x, ω)

= H∗

If h(c) > H∗, by Lemma 2.3.3, the cell problem has solution u(x, ω) which is

sub-linear for a.e. ω ∈ Ω. By above construction, φ is also sub-linear for a.e. ω ∈

Ω. Fix such ω that both of φ(x, ω) and u(x, ω) are sub-linear. So for any δ > 0,

u(x, ω)− φ(x, ω) + δ
√
x2 + 1 can achieve minimum at some point xδ, so

h(c) ≤ H

(
n+ φ′(xδ, ω)− δ xδ√

x2
δ + 1

, xδ, ω

)

δ → 0 =⇒ h(c) ≤ max
x∈R

H(n+ φ′(x, ω), x, ω) = H∗, this is a contradiction.

Thus h(c) = H∗ when c > c.

Proof of theorem 2.1.1. (1) comes from section 2.

(2) If mn 6= 0, by Theorem 2.3.1 with k(x, ω) = mv(x, ω), s(x, ω) = mv′(x, ω).

If m = 0, H(p) = H(p, c) = |n| = 1 > 0 = |m|+ sup
(x,ω)∈R×Ω

mv(x, ω).
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If n = 0, H(p) = H(p, c) = |m|+ sup
(x,ω)∈R×Ω

mv(x, ω).

(3) If mv ≡ 0, then H(p) ≡ H(p, c).

Suppose H(m,n) = H(m,n, c) > H∗.

If mn 6= 0 we must have v is constant, otherwise by Theorem 2.3.1, H(m,n, c) >

H(m,n) which gives a contradiction. By E[v] = 0, we must have mv = 0.

If m = 0 then mv ≡ 0.

If n = 0, this is impossible since H(m,n) = H(m,n, c) ≡ H∗.

Thus mv ≡ 0.

2.4 Future problem

Same question can be asked regarding the strain effect with more generak imcom-

pressible flow. For example, we can study the problem with t-dependent shear flow.

More challengely, we can investigate the question under cellular flow (see figure ??)

with unsteady or random center.
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