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Abstract

Human memory does not simply function like an information
storage disk; instead, it flexibly reorganizes information. This
flexibility can sometimes produce false memories of items re-
lated to those actually encountered–a possible byproduct of an
adaptive memory system that enables generalization across re-
lated items or experiences. In the Deese/Roediger-McDermott
(DRM) task, participants often falsely remember seeing words
that are semantically related to presented words. Here, we
pro- pose and test a model of lexical (false) memory that pre-
dicts these errors, made possible by integrating (i) theories
of memory that posit encoding of verbatim and gist-level in-
formation with (ii) a computational framework adapted from
the perceptual false memory literature, and (iii) semantic re-
latedness measures from word embeddings analysis of large-
scale text corpora. This Lexical Target Confusability Compe-
tition (Lexical TCC) model successfully predicts human par-
ticipants’ false recognition in the DRM task, with implications
for understanding how and when the mind produces false se-
mantic memories.
Keywords: lexical false memory; Deese/Roediger-
McDermott Task; signal detection; computational modeling;
word embeddings

Introduction
People sometimes recall items or events they never actually
encountered – that is, they form false memories. The for-
mation of false memories has been observed across multi-
ple forms of memory, including episodic memory (Loftus &
Palmer, 1974), visual working memory (Schurgin, Wixted, &
Brady, 2020), and semantic memory (Jou & Flores, 2013).
One explanation for why people form false semantic memo-
ries is that the mind encodes not only verbatim information
about encountered items but also their semantic gist (Diana,
Reder, Arndt, & Park, 2006; Zeng, Tompary, Schapiro,
& Thompson-Schill, 2021). For example, in the classic
Deese/Roediger-McDermott (DRM) paradigm (Deese, 1959;
Roediger & McDermott, 1995; Brainerd, Gomes, & Moran,
2014), participants encounter sets of words (e.g., “doze”,
“pillow”, “snore”, “awake”. . . ) and sometimes falsely re-
member encountering semantically-related lure words (e.g.,
“sleep”) that were never presented.

False memory effects are of scientific interest not only be-
cause of their implications in settings ranging from the class-
room to the courtroom but also because they may be the
byproduct of – and, accordingly, help us understand – an
adaptive cognitive system that enables the mind to general-
ize knowledge across related, but not identical, experiences

(Schacter, 1999). Evidence further suggests that this system
may be disrupted in certain neurodevelopmental disorders, in-
cluding autism, such that some individuals are less prone to
false memory errors (Beversdorf et al., 2000, 1998). At the
same time, although semantic false memory effects are well
documented, it has been challenging to distinguish empiri-
cally among different theoretical accounts of the mechanisms
that produce them.

Here, we propose a new computational model of lexical
false memory that integrates existing models of perceptual
false memory with measures of word relationships generated
by deep-learning language models trained on large-scale text
corpora. Because this model is an adaptation of the Tar-
get Confusability Competition (TCC) model developed in the
perceptual false memory literature, we call it a Lexical Tar-
get Confusability Competition (Lexical TCC) model. First,
we motivate and describe the Lexical TCC model in detail.
Next, we show that this model successfully reproduces well-
documented false memory effects in human performance on
the RDM paradigm. Lastly, we validate the model against
new DRM data from human participants and show that the
model successfully predicts individual differences in false
memory. The code associated with this paper is accessible
on the open science framework (https://osf.io/5jubw/).

Model Framework
While false memory for lure words surely arises due to some
properties of the words in the corresponding lists, existing
frameworks differ in their proposals for what the key prop-
erties are, including the similarity among words, the associ-
ation strength among words, and the meaning of the list as
a whole (Brainerd, Chang, & Bialer, 2020; Cann, McRae, &
Katz, 2011). One account of ‘semantic gist’ that regards it
as a special instance of conceptual generalization (Destefano,
Brady, & Vul, 2021), in which people generalize beyond the
specific words they encountered to words that are seman-
tically related (including the lure words). Modeling lexi-
cal false memory as conceptual generalization has the theo-
retic advantage of uniting it with other phenomena under the
Bayesian framework of cognition (Tenenbaum & Griffiths,
2001), which has already been applied successfully to model
various aspects of semantic memory (Griffiths, Steyvers, &
Tenenbaum, 2007; Steyvers & Griffiths, 2008) and memory
biases (Wilson, Arora, Zhang, & Griffiths, 2021).
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Conceptual Motivation

Our lexical TCC model borrows insights directly from the
original Target Confusability Competition (TCC) model de-
veloped to capture the phenomenon that false recognition of
a given color increases with the perceptual similarity of that
color to what people actually saw (Schurgin et al., 2020). For
example, if you saw a shade of green, then you are more likely
to falsely remember seeing another shade of green than see-
ing red. The TCC model accounts for this pattern by positing
that, during the encoding of a target color, memory activation
spreads to nearby colors in perceptual space and thus causes
a boost in familiarity with other colors as well. The intensity
of such a boost is proportional to the similarity with the target
color as quantified by the color wheel and degrades exponen-
tially as similarity decreases, in line with the universal law of
generalization (Shepard, 1987). Such memory activation is
further corrupted by noise, according to signal detection the-
ory, be- fore guiding people’s decision as to which color is
one they saw before.

The classic lexical false memory effects identified in the
DRM task display some similar features. People are more
likely to falsely remember words that have a similar meaning
as the words they actually saw than to remember less related
words. However, with few exceptions (Johns, Jones, & Me-
whort, 2012), past approaches have typically relied on some
combination of researcher intuition and participant ratings to
test ideas about the role of semantic relatedness in these ef-
fects. Thanks to recent developments in natural language pro-
cessing, it is now possible to use word embeddings as a tool
to quantify the semantic similarity between words, much like
the color wheel. Word embedding represents each English
word using a vector in a high-dimensional space, making it
possible to quantify relationships between words. Here, we
used the google-300 un-normalized Word2vec embeddings,
which were trained using word co-occurrence data from a
massive Google news corpus and which mapped each word
onto a vector in a 300-dimensional vector space (Mikolov,
Chen, Corrado, & Dean, 2013). The similarity between two
words can thus be quantified as the Euclidean distance be-
tween their vector embeddings. Formally, let x⃗1 and x⃗2 repre-
sent the vector embedding of two words, their semantic dis-
tance is defined as d = ∥⃗x1 − x⃗2∥2. The smaller the d, the
greater the similarity between two words.

It is worth noting that there is a crucial difference between
the DRM task and the color memory task for which the orig-
inal TCC model was designed. In the color memory task,
participants see only one color and then have to choose what
they recognize as the color they just saw among several color
options in an alternative forced choice paradigm. In the DRM
task, people typically view (or hear) a series of words to
remember, presented individually and temporally organized
into lists. Later, they view another series of words presented
individually and report if the word was or was not presented
earlier. Therefore, while in the color memory task, only one
item triggers the relevant memory activation, in the DRM

task, multiple words together trigger it. The other key dif-
ference is between the alternative forced choice paradigm in
the perceptual task and the binary decision in the DRM task.

Details of the lexical TCC model
To model joint memory activation from many items, we con-
ceptualize memory activation as a scalar field in the seman-
tic embedding space. It is analogous to an electric field in
physics whether each word is like an electric charge. An elec-
tric charge incurs an electric field in the 3-dimensional space
surrounding the charge. Similarly, the encoding of each word
produces a memory activation field in the 300-dimensional
embedding space centered at the vector embedding for the
word. If more than one electric charges are present in the
space, their electric fields simply add up to one another. Simi-
larly, when many words are encoded in the memory, the mem-
ory activation fields incurred by encoding each word also add
up in the embedding space.

Formally, if the participant is asked to remember n ∈ N
words in a DRM task where the vector presentation for each
word is denoted as x⃗1...⃗xn ∈R300, then the memory activation
at each point in the semantic space x⃗ is given by the function
f : R300 → R

f (⃗x) =
n

∑
i=1

fi(⃗x)

where fi represents the memory activation field incurred by
encoding the ith word. Following the visual TCC model, we
define fi as an exponential function

fi(⃗x) = exp(−∥⃗x− x⃗i∥2
2σ

−1)

where σ−1 is a free parameter that captures the extent to
which the memory activation caused by each word is gener-
alized, which is assumed to be the same for all words. The
smaller the σ−1, the greater the generalization; the greater
the σ−1, the more locally precise is each memory activation.
Therefore σ−1 is called the precision parameter.

It is worth noting that fi is not an exponential function of
the Euclidean distance ∥⃗x− x⃗i∥2, but rather of the square of
the distance ∥⃗x− x⃗i∥2

2. This design is motivated by the spar-
sity of the word embedding space, where very few pairs of
words are adjacent to each other in the embedding space.
Consequently, if the memory activation decays according to
an exponential function of the Euclidean distance, all other
words are far away enough that they would get minimal mem-
ory activations, leaving little possibility for systematic lexi-
cal false memory. Squaring the Euclidean distance can make
the intensity of memory activation fall slower in the semantic
vicinity of the encoded words, and fall faster at a reasonable
distance.

Returning to the example where the participants were
asked to remember 4 words:‘bed’, ‘yawn’, ‘rest’, and ‘doze’,
figure 1b illustrates the memory activation field generated by
the 4 words with a relatively high σ−1. The canvas repre-
sents the semantic space and the location of the words repre-
sents their vector representation in the semantic space. This is
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only a 2-dimensional illustration whereas the actual semantic
space is 300-dimensional. The brightness of color at each
point represents the intensity of memory activation at that
point. With high σ−1, we see that memory activation is the
highest near the 4 studied words. Even though the lure word
‘sleep’ is not one of the studied words, due to its semantic
similarity, it still received some boost in memory activation.
However, with sufficiently low σ−1, the memory activation
incurred by the 4 studied words can generalize far enough
that once accumulated, cause the lure word ‘sleep‘ to have
the highest memory activation, even higher than the actual
studied words (figure 1a). This scenario corresponds to the
situation where participants are more likely to falsely recog-
nize the lure words than the actual studied words.

The second phase of the model is to translate the mem-
ory activation of a word into the probability of recognizing it.
Following signal detection theory, we assume the activation
is corrupted by Gaussian noise with standard deviation ε (fig-
ure 1c). Let x⃗ be the vector representation of the word that
the participant is asked to recall, then the likelihood of them
remembering it is given by

p(remember) = 1−Φ(
τ− f (⃗x)

ε
)

where Φ denotes the cumulative density function of the stan-
dard normal distribution and τ is a free parameter that cap-
tures parameter memory activation threshold. The larger the
τ, the greater memory activation is required to remember a
word. For numeric stability, we standardize the memory acti-
vations within each subject before converting it to the proba-
bility of remembering.

In sum, the lexical TCC model has three free parameters
that can be fit to each participant: the precision parameter
σ−1 which controls the spread of memory activation in the
semantic space, the threshold parameter τ that controls the
overall tendency of recalling, and the noise parameter ε that
controls the extent to which the difference in memory ac-
tivation translates to the difference in the likelihood of re-
call. The lexical TCC model can be thought of as an instance
of the global matching models (Osth & Dennis, 2020). Its
mathematical formality is particularly similar to the general-
ized context model (Nosofsky, 1991). Despite the similarity
in mathematical formality, however, the generalized context
model was not proposed to model lexical memory but rather
perceptual memory of stimuli with simple features.

Assessing the Model Validity
Empirical data
We analyzed data from the DRM portion of an experiment for
which we recruited 120 participants on the Prolific platform
using their standard sample option. Participants between 18
and 60 years old who resided in the US were eligible to par-
ticipate. Participants received a median payment of $15.64.
Data from 107 people remained after exclusion based on at-
tention checks. The experimental protocol was approved by
the local IRB.

(a) Low precision (b) High precision

(c) Noise corruption

Figure 1: (a) Illustrates the memory activation field with a
low precision parameter, causing the lure word to have higher
familiarity than the studied words. (b) Illustrates the mem-
ory activation field with a relatively high precision parame-
ter, causing the lure word to have lower familiarity than the
studied words, but higher familiarity than irrelevant words.
(c) Illustrates the conversion from memory activation to the
likelihood of remembering. The mean of the Gaussian dis-
tribution, represented by the black dotted line, is the mem-
ory activation of the target word. The purple line represents
the memory threshold. The blue region above the memory
threshold represents the probability of recognizing the word.

There are two phases to our DRM task: the learning phase
and the testing phase. In the learning phase, participants were
presented with words one after another and asked to pay at-
tention to them. We chose the words from the bank of 24 lists
of words used by the original DRM task (Roediger & Mc-
Dermott, 1995). Each list includes 20 words and has a corre-
sponding lure word that is not in the list but is semantically
related to words in the list. For each participant, we randomly
chose 12 lists from those 24 lists and then randomly chose 10
words from each chosen list to use in the learning phase. The
10 words from a given list were always presented consecu-
tively; the order of the words within each list was random-
ized. Each word was displayed in the center of the screen for
1 second before the next word automatically appeared. Af-
ter viewing all 10 words, participants were asked to type in
a word that came to their mind while viewing the last set of
words. (This question was included to test hypotheses unre-
lated to the present report and is not discussed further; anal-
yses indicate that the inclusion of this question had no effect
on performance in the test phase.) After typing a word, the
participant could proceed to view the next 10 words from an-
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other list until all 12 lists were presented. The order in which
the 10 words were presented and the order of the selected 12
lists was all randomized.

In the testing phase, participants were presented with 72
words, one after another, at the center of the screen and asked
to indicate whether each word was an “old” word (that they
saw during the learning phase) or a “new” word (that they
did not see during the learning phase) within a response win-
dow of 4 seconds. They were instructed to press the key ‘1’
on the keyboard for old words and to press the key ‘2’ for
new words. To remind participants of these two candidate re-
sponses, we displayed the text ‘1 old’ at the lower left side and
‘2 new‘ at the lower right side of the presented word. Partici-
pants have had up to 4 seconds to respond to each word. Af-
ter each response, the text corresponding to chosen response
turned purple for 0.5 seconds. The next word appeared fol-
lowing an inter-trial interval of 1 second, during which the
screen displayed a white fixation cross at the center of the
screen. Among the 72 words, 36 words were randomly se-
lected from the studied words that participants actually saw
during the learning phase, 12 words were lure words corre-
sponding to the 12 word lists presented to participants during
the learning phase, 12 words were unrelated lure words cor-
responding to the 12 un-shown word lists, and 12 words were
randomly selected from within the 12 unshown word lists.

Model Simulation
First, we confirmed that the lure word of a given list was asso-
ciated with a smaller Euclidean distance to the words within
that list than to words from the remaining 23 lists in word
embeddings space (figure 2c). Using a Mann-Whitney test,
we confirmed that this comparison was significant for all lists
(ps < 0.05). This ensured that our similarity metric based
on Word2vec reproduces the property of semantic relatedness
that the original DRM word lists were designed to possess.

We then simulated the model by pre-setting the parame-
ters to see if it produces the false memory effect (figure 2a).
We first simulated using σ−1 = 0.28, τ =−0.25, and ε = 0.5,
and discovered that the model did produce the false mem-
ory effect, where the likelihood of falsely remembering the
lure words was higher than the likelihood of falsely remem-
bering other unrelated words. By decreasing the precision
parameter to σ−1 = 0.23 while holding the other two param-
eters the same, we see that the simulated data show an even
higher likelihood of falsely remembering the lure words than
correctly remembering the studied words. There were no par-
ticular reasons behind the selection of these specific param-
eter values for simulation except they can enable the model
to produce the corresponding behavioral patterns. These sim-
ulation results aim to confirm that our model framework is
flexible enough to predict various degrees of the DRM false
memory effect, given the appropriate parameter values.

Fitting and Validation
We used hierarchical Bayesian methods to fit model param-
eters to participants’ responses in our DRM task, which has

(a) Model simulation (b) Posterior predictive check

(c) Semantic distance

Figure 2: (a) Model simulation using pre-set parameter val-
ues: each data point represents one participant’s average
probability of remembering a particular type of trigger words.
The red color represents the simulated data with a lower pre-
cision parameter, and the blue color represents the simulated
data from the model with a higher precision parameter. (b)
Model simulation using fitted posteriors of parameters com-
pared to the participants’ data: The red color represents hu-
man performance on the DRM task, and the blue color repre-
sents the simulated data from the model using the parameter
estimates fitted to the human data. (c) Euclidean distances be-
tween lure words and other words: x-axis represents the lure
words of all 24 word lists used in the DRM. Each data point
represents the Euclidean distance (according to Word2vec)
between the lure word and a word either in the lure word’s
corresponding list (color-coded as blue) or in a word list that
corresponds to another lure word (color-coded as red)

many advantages over the traditional maximum likelihood fit-
ting (Lee, 2011). The population-level priors for all model
parameters were chosen as the following:

σ−1 ∼ Inverse-Gamma(α = 3,β = 1)

τ ∼ Normal(α =−0.25,σ = 0.5)

ϵ∼ Inverse-Gamma(α = 1,β = 1)

We performed fitting using the python PyMC4 package
(Salvatier, Wiecki, & Fonnesbeck, 2016) via the no-U-Turn
sampler, which is the state-of-the-art Markov-chain Monte
Carlo sampling method to estimate parameter posteriors. For
each model, we ran 4 chains of 800 tuning samples (which
were discarded) and 1000 kept samples used to estimate the
posterior distributions. Therefore in total 4000 samples were
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(a) Precision parameter σ−1 (b) Threshold parameter τ

(c) Model comparison

Figure 3: (a) The correlation between the fitted precision pa-
rameter σ−1 and d′: Each dot represents a participant, the
black line is the regression line, and the shade represents the
standard error. (b) The correlation between the fitted thresh-
old parameter τ and participants’ overall probability of re-
membering a trigger word regardless of the word’s type: Each
dot represents a participant, the black line is the regression
line, and the shade represents the standard error. (c) Model
comparison plot generated by the compare function of the
arviz package: The hollow circles represent the average log
WAIC of a model. The darker lines represent the standard
errors of the log WAIC. The triangles represent the average
difference in log WAIC between each model and the best-
fitting model (in this case the full model). The lighter lines
represent the standard errors of the difference in log WAIC.

used to represent each parameter’s posterior distribution. For
diagnostic checks, we required R̂ ≤ 1.01, BFMI ≥ 0.2 for all
chains, a sufficiently large effective sample size (ESS ≥ 400)
for all parameters, and that no divergences were observed.

Through model posterior predictive checks, we simulated
the model response of the DRM task. We notice that the
model successfully reproduces the qualitative pattern of the
data, but quantitatively underestimates the false recall of lure
words and overestimates the false recall of non-lure words
figure 2b). Because the model is capable of simulating a large
DRM effect given appropriate parameter values, this lack of
quantitative validation is unlikely to be a feature of the model
itself; instead, it may reflect possible sub-optimality of the
fitting procedure in recovering the best parameters.

However, the fitted model parameters, obtained by com-
puting the mean of the parameter posterior distributions, sig-
nificantly correlate with the respective key behavioral met-

rics (figure 3a, 3b). The precision parameter σ−1 has a sig-
nificant negative correlation with d′ (spearman ρ = −0.347,
p< 0.001). d′ is a widely used measure that quantifies the de-
gree to which the false recognition of the lure words exceeds
the true recognition of the studied words (Brady, Robinson,
Williams, & Wixted, 2022). Formally, d′ is defined as the
difference between the z score of the false recognition rate
of the lure words and the z score of the true recognition
rate of the studied words. The threshold parameter τ is also
strongly correlated with the participant’s overall rate of recog-
nition, regardless of the type of word (spearman ρ =−0.850,
p < 0.001).

Lastly, we show that all 3 parameters are important for the
model performance by comparing the full lexical TCC model
with 3 alternative models. One alternative model fixes the
precision parameter σ−1 to be 1, another alternative model
fixes the threshold parameter τ to be -0.5, and the third model
fixes the noise parameter ε to be 1. All other model fitting pro-
cedures are the same. We compared these 4 models using the
Widely Applicable Information Criterion (WAIC; Watanabe,
2013). The full model outcompeted all the alternative mod-
els, suggesting that all three parameters are essential for the
model (figure 3c).

Discussion
In this paper, we introduced a new model of lexical false
memory: the Lexical Target Confusion Competition (Lexical
TCC) model. This model conceptualizes lexical memory en-
coding as a concept generalization process where the general-
ization of each memory signal decreases exponentially along
a semantic similarity scale, which is formalized as the Eu-
clidean distance in word embeddings vector space. Through
simulation, we showed that the model is flexible enough to
produce various intensities of the DRM false memory effect
simply by varying the parameter that controls the degree of
generalization around studied words. We also fit this model
to an actual data set of human performance on the DRM task
and saw that the fitted model parameter estimates correlate
significantly with behavioral indicators of false memory.

One theoretic implication of the lexical TCC model is that
the DRM false memory effect may be understood as the nat-
ural consequence of concept generalization, which is one of
the most fundamental and domain-general principles of hu-
man cognition, implicated in visual processing, numeric cog-
nition, learning, and memory. The lexical TCC model is also
capable of generating predictions about the likelihood of lex-
ical false memory on any set of words, without having to pre-
classify words into lure words and non-lure words. According
to this model, there are no fundamental differences between
the lure words and the non-lure words. The lure words were
more likely to be falsely recalled because they are semanti-
cally closer to the actually remembered words. This property
of the model allows us to generate predictions about the inten-
sity of the false memory effect of any words that have a vector
representation according to the word2vec model. This can aid
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the development of new word stimuli for the DRM task be-
yond the originally used ones. The lexical TCC model also
implies that to explain false memory effects in the DRM task,
it is not strictly necessary to posit verbatim and gist memory
as two separate memory processes whose outputs are com-
bined during memory retrieval. In theory, both verbatim and
gist memory can be unified under a single construct capturing
the degree of generalization around a stimulus (in this case, a
word).

Several limitations of the lexical TCC model are worth not-
ing. First, the posterior predictive check of the model did
not reach an ideal level of quantitative accuracy (figure 2b).
This might be an indication that the word2vec embedding
is an imperfect metric word similarity. It is worth explor-
ing how much improvement might be gained using different
types of word embeddings, such as Glove, BERT, and BEA-
GLE, or word free-association data (De Deyne, Navarro, Per-
fors, Brysbaert, & Storms, 2019). Second, the model has been
tested so far only on predictions about the original, standard
version of the DRM task. Various modifications of the task
have been devised, such as changing the response options in
the memory phase to allow participants to express that the
presented word is a new word but with a similar meaning to
words the participant saw before (Brainerd & Reyna, 2018).
More work is needed to examine to what extent the frame-
work of the lexical TCC model can be extended to model per-
formance on these modified DRM tasks. Third, the Lexical
TCC model right now is static, that is, it does not capture the
dynamic feature of memory, including memory decay over
time, instead treating all words as having been encoded at the
same time. Accordingly, the Lexical TCC model is not yet
capable of modeling many of the time- or list-length related
effects known to characterize performance on the DRM task
(Osth & Dennis, 2020). Future iterations of the model could
address this by building in a mechanism for memory activa-
tion to decrease gradually as a function of time.
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