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ABSTRACT OF THE DISSERTATION

Statistical Analysis of RNA-Seq Alternative
Splicing Data and Gas Chromatography-Mass
Spectrometry Data

by

Yi Yi
Doctor of Philosophy in Statistics
University of California, Los Angeles, 2016

Professor Yingnian Wu, Chair

With the blossom of bio-chemical technologies in recent years, large and diverse
data from every branch of biology has been generated. These data contain in-
sightful truth of science and always present challenges to modeling, computation
and interpretation. In this work, I present statistical models for two types of
bioinformatic data: RNA-Seq alternative splicing and GCMS metabolomics. R

packages grMATS and gemsDecon are available for download.

The next-generation sequencing produces rich RNA-Sequencing data, where we
observe alternative splicing events. Replicate multivariate analysis of transcript
splicing (rMATS) has shown advantages over other existing methods for detection
of differential alternative splicing from replicate RNA-Seq data. However, the
current framework of rMATS only deals with two-isoform splicing events, which
limits its usage. In this paper, we present a generalized TMATS framework to
deal with multiple isoform splicing events and the model could also be extended
to compare differential splicing between multiple groups. We provide a general-
ized likelihood ratio test where the null hypothesis allows user-defined threshold

of splicing change for isoforms. We show that our test statistic follow a mixture
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of chi-square distributions where the coefficients depend on values of the true pa-
rameters and a least favorable test statistic is computed when true parameters
are unknown. We show efficacy of our model in both 27+3 simulations and a real
dataset. Due to the huge demand for methods on multiple isoform RNA-Seq data,

our model will be useful in RNA-Seq research projects.

As a collection of metabolic end-products, metabolome reflects the overall ac-
tivity of the metabolic network and has been playing an important role in modern
bio-chemical researches. Monitoring metabolites and relating their changes to the
influence of other factors is a major scientific interest. The technology of Gas
Chromatograpy-Mass Spectrometry (GCMS) produces from biological samples
a metabolomic data type where each metabolite is broken into different masses
(their relative proportions form a mass spectrum s) and co-elute within a reten-
tion time range where the spectrum is unchanged. This unique signature data
structure enables individual metabolite identification and allows library construc-
tion for the whole metabolome. However, GCMS is unable to clearly separate
different metabolite elutions, which poses a challenging problem of deconvolution
and library matching. In addition, studies of metabolome usually involve mul-
tiple biological samples in order to understand which metabolites are related to
diseases. Building the multiple correspondence across all samples further compli-
cates the task. We propose an automatic rank-based non-negative matrix factor-
ization model to streamline the spectral deconvolution, multiple corrspondence,
metabolite selection and library matching. We apply the program on 27 sim-
ulation datasets as well as 2 real contrived datasets. All results show superior

strength of our model over existing software.
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CHAPTER 0

Background

We live in an era when biological technologies are growing at a rocketing speed
(Figure 0.1). Ever since the 70s, this industry has been through countless booms
and busts, yet not showing any sign of stopping. The technology hardware and

analytical software are constantly innovating over themselves.

BIOTECH — GLOBAL SALES IN MN USD

200'000
180'000
160'000 143987
140'000 129'066

120'000
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181692
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Figure 0.1: Biotech global sales trends and future. Source: Internet.

A simplified version of biology could be divided into four levels and categories
(Figure 0.2), my work of RNA-Seq alternative splicing and GCMS deconvolution
happen to fall into two of these four categories. As broad as the category names
themselves are, this dissertation only covers a tiny fraction of all possible topics

regarding RNA (Figure 0.3) and metabolites (Figure 0.4).



Genomics — 25,000 Genes

j Transcriptomics — 100,000 Transcripts

Protein ?% féj %/ Proteomics — 1,000,000 Proteins
A

mch::)mllcal;i A “&Qr ng Metabolomics — 2,800 Compounds
abolites )

Figure 0.2: Four levels of biological world. Source: Internet.
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CHAPTER 1

grMATS: Statistical Modeling and Testing for
Detection of Differential Alternative Splicing in

Multiple Isoforms Using RNA-Seq Data

1.1 Introduction

The RNA sequencing (RNA-Seq) technology has been widely used for its powerful
quantitative profiling of alternative splicing. As the cost of sequencing decreases,
more and more replicate RNA-Seq data becomes available. Our interest here is to

decide whether the isoform probability differ between groups (usually case

—{1r}
and control). A simple way of doing it is to pool all replicate data to fit one
multinomial distribution. However, there are two issues unaddressed. First, since
biological replicate comes from different patients, it is not wise to assume one sin-
gle multinomial model with fixed parameters. Pooling loses individual information
and those replicates with small total read counts would be under-represented in
the estimation. Secondly, each replicate is likely to have its own baseline isoform
proportions 9’s perturbed on its group level ¢ 0y
Based on a random-effect binomial model, rMATS | | detects differential
alternative splicing using RNA-Seq data of genes with two isoforms, and outper-
forms other existing methods with no such random effects. However, many genes

have more than two isoforms (Figure 1.1), a more general model is in great de-

mand.



Exons

Exons Isoform 1

Reading

Isoform 1

Isoform 2
Reading

Reading

Isoform 2 Isoform 2

.
[
I

Reading Reading

(a) 2 isoforms (b) 3 isoforms

Figure 1.1: Alternative Splicing

The model we propose in this paper is a generalization of rMATS in terms of
three aspects. First of all, we extend the 2-isoform 2-group model to any number
of isoforms and groups. The random-effect model assumes in the first layer where
multinomial logit transformation mlogit(z;,) ~ N (mlogit (i If), 0?) and in the sec-
ond layer where read counts Ry y|¢(r,; ~ MN(R, ;). Secondly, the hypoth-
esis testing framework is flexible to incorporate composite hypotheses of isoform
probabilities between groups or within groups, i.e. @gl, o yg% If| < AYVf, g1, 92
Thirdly, besides the detection of significant genes, we identify which particular iso-
forms are significantly different between groups by comparing for each individual

~

isoform probability 1/11 , their unrestricted estimates between groups ¢g ; and
—Iy —9:1y

)

testing with marginal hypotheses.

The accurate estimation of composite likelihood-ratio test distribution is essen-
tial for RNA-Seq data with multiple isoforms and groups. LRT statistic with
equality constraints asymptotically follow y? with degree of freedom as number of
constraints. However, when the constraints become inequalities, the conventional

LRT statistic distribution no longer holds. [Sha8] discusses LRT with various



types of cone constraints on the parameter space. | | describes how the LRT
with true parameter lying on constraint boundaries could be approximated by
LRT with only cone constraints. | | defines and shows how the space around
boundary point could be approximated by a cone. In our model, we combine these
results and give the exact asymptotic composite LRT statistic distribution, which
is a mixture of x? with highest degree of freedom as the number of non-trivial

inequality constraints.

We perform 2743 simulations differing in terms of number of replicates, number
of total read counts and logit variance levels. The model performances increase

as the number of replicates increases and as logit variance decreases.

The model is also tested on the real dataset Hypoxia consisting of 10804 multiple-
isoform genes from 3 replicates in control group under 20% oxygen and 3 in case
group under 2% oxygen oxygen. With FDR cutoff 30% and isoform proportion
difference Ay = 1%, grMATS identifies 671 genes with signifiant APA site shifts.

Many of these genes are previously identified to be related to Hypoxia conditions.

1.2 Model

The RNA-Seq data consists of read counts from unpaired replicates of multiple
groups, where each replicate has its own multiple-isoform read counts. Their total

counts are usually different and assumed constant.

Notations:
n: gene index. 1 <n < N. g¢: group index, 1 < ¢ < G, G > 2. k: replicate
index, 1 < k < K, the total number of replicates in group g. Iy: isoform index,

1 < f < F,, total number of isoforms for gene n. {}: The full set of values



spanning all possible indices inside it. e.g, {/;} means {, ..., Ir}.

1.2.1 Hierarchical Model

In order to identify the multiple isoform proportion differences and address the
random replicate effect at the same time, we propose a two-level hierarchical model
with first layer as random replicate isoform proportions 7,3 and second layer as

the multinomial distribution based on the replicate isoform proportions.

For simplicity, we omit gene index n here. For k-th replicate of g-th group,
F

f-th isoform, let Ry k.1, denote the read counts, R, = > Ry .1, is the total
f=1

read counts of all isoforms in the gene n, considered as a non-random constant,

By = mlogit(g(ﬂf) is group-level logit value, p, 7, = mlogit(vyr, 1) as the cor-

responding random replicate logit value centered around the group-level logits.
L Yg k1

Dgk,1y > Ly a1y

l{1;3. More details see appendix Logit Transformation.

is the isoform probability v, 7, adjusted by isoform length

Ry iipy|Voniryy = Borgipligr iy ~ MN( By [Pgrns - Porirl)  (11)
We assume the replicate multinomial logit follows normal distribution,
powty ~ Ny o), 1< f<F—1 (1.2)

If F' = 2, this model reduces to rMATS.

1.2.2 Likelihood Function

Omitting the gene index n and group index g. Combining the prior likelihood in

(1.2) and conditional likelihood in (1.1) we have the joint likelihood, with which



we compute the marginal likelihood of replicate k

P(Rky{lf};Hk,{lf}’giv{lf}>
N / P(Ru g1, | Vrg1,1) P(Wr 1) i 1,1 = / Pl an P ik )it

— [ expltingni 1 Vi (13)

where the logarithm of the joint density is

. 2
hp g1y Eyq1py Tk 1))

R ' F—-1
= log(—F—=—)+ > _ Ry, log(l;,€"™'r) + Ry, log(l;,)
[T B f' =
F— F—1 _ 2
1 1 (hkty — 1)
p, 2 f
— R, log Z Mt l)  + (Z —3 log(2m) — §log(g]f) — T
=1 f=1 !
(1.4)

In order to compute (1.3) without the integration, we use Laplace approximation.

Theorem 1 | |:

Suppose € RF7! /i maximizes h(u), then when R is big enough,

[, esthm)du~ (VBRI - @ expb@), (1)
RF-1
where h® (1) is the second-order derivative of h(u). Details see Laplace Ap-

proximation.

Apply Theorem 1,

P(Regsyy: iy, @) = (V20 = G 1) 77 exp(bin 1) (16)

where fi, (1,3 = argmax h(pu, {I5}s M{[ }’—{If}>
K A1py

We assume independence of read counts between genes, groups and replicates.



With the gene index n and gene index g, the full likelihood function for n-th gene

is,

2 _ . 2
L(En,g{l‘f}’ gn7g7{lf}) - P<Rn7{g7k’lf}’ Hn,g’{ff}’ gnvgv{lf})

G Ky
. 2
= H H P(Rn7g7k7{lf}7 thq’{lf}?gn,g,{[f})
g=1k=1
G Ky
~ H H {(\/ 27T)F71| - h(2) </:Ln7g’k’{lf};Hn1g7{fj'}’givg,{lf})|70'5
g=1k=1
eXp(h(ﬂn,g,k,{If};En’gv{lf}7g7217g,{[f}))} (17)

Optimization on Bt should be applied to the smallest unit if pos-

2
If}’gnv{gvlf}
sible for computational simplicity. In our case, we should optimize objective

likelihood per gene&group (n, g, {k},{I;}) for unrestricted optimization, and per

gene (n,{g},{k},{Is}) for constrained optimization.

1.2.3 Composite Likelihood Ratio Test

Our interest is to test differences of between all groups {g} for one gene

—{Ir}
n. A typical problem of interest is to see if there is any isoform that satisfies

inequality [t vy T ¥, If] > At instead of ¢ L1, # (N I To solve this problem, we

use composite likelihood-ratio test.

We note the feasible space for g% g1} 3 Y, where they take positive values, ¢ (015}

as ¥, and Hg sy @S M. Then

Hy: ¢
Problem: O ols}
H1 .

2
€ Uy(& g1y € M) And o,y € by 1)

c 2
ﬂ{ng} € U§ And Olorsy € )y

2 _ 2 _ . 2
Z(E{ng}?Q {g,If}) - log L(/‘_L{ng}?g {g,If}) - log P(R{g,k,lf}vﬂ{g’lf}yg {g,If})
(1.9)



LRT test statistic for gene n:

_ 2 . 2
b= Q(Sup {l(ﬂ{g,ff}’g 011}) igayy €Miaig ) € Z}
2 . 2
— sup {l(ﬁ{g,zf}’g {o1}) Prgay © Mo, 0%y 1,y € 2}) (1.10)

Usually we let
_ pGx(F-1) _ pGx(F-1) _ : _ .
X =R7 , M=R , ¥ {ﬁ{g,lf} : E{g,lf} e M}, ¥, {%{g,lf} :
F
V1 S g1, 92 S G7V1 S f S F7 |£gl71f_y
1}, MO = {H{ng} . y{ng} - \1[0}

g2,1¢

| <A, andV1<g< G,fZ Vg1, =
=1

Let 6 denote a parameter vector of dimension m = G(2F — 2),

0=lu oty B o Ben Bon B,

2 2 2 2 2 2 T
(X RNONT AT RN AT FPE R el FPECUeN AR 7QG,1F,1] (1.11)

with the constrained space as S = M x ¥ and its complement as S¢ = M x X.

H() :0e S
Problem: D=2

H1:«9€SC

sup [(0) — Supl(9)>
feSuse 9es

(1.12)
Constrained Parameter Space
The constraints on ¢’s are usually written as a series of pairs of isoform probability

difference inequalities for each isoform /; in given group ¢g; and g, smaller than

some threshold Ay )

— < =
Cgrt, = Lo, | SAY
Hgl,jf EQQ’[f
_ e o e .
Sonanty (0) = SE Lol Rl ey Ay <0 113
eﬁgQ’If eﬁgl,lf ( . )
Sg2,91,1f (9) = - —AY <0

Sl Sl =
This constrained parameter space for 1 is illustrated in Figure 1.2 and the corre-

sponding logit u space is illustrated in Figure 1.3. Obviously, a boundary point



Constrained Space of y's
G=2 F=2 Ay=0.1

0.8

0.6

2,1

04

02

00
|

Figure 1.2: G = 2, ' = 2. Constrained space for isoform probabilities. Same

isoform different groups.

regarding isoform Iy inequalities can only locate in one of the constraints above.

We do have non-negativity constraints on o2 However, asymptotically the 0

gylf :
is never to be touched and the MLE estimates of gj [, are not affected by non-
negativity constraints. Thus we do not need to include them in the constraints

above. It is also possible to have other constraints on o but it is usually not

2
9,12

of interest. The constrained space in (1.12) can be written as
S={0":5g,4.1,(0) <0, 1 < f<F 1< 91,90 <G, (1.14)
Let = denotes the constraints where true parameter 6, is located on the boundary
E={g1,9) Ir) : Sig1.ga1;(00) =0, 1 < f<F—1,1<g1 <gp <G} (1.15)

[g1, g2] represents one the inequality boundary, either gi, g2 or go,91. p = ||,
m = |0y| = G(2F —2) and because of the irrelevance of the order of elements in =,
we let {1,--- ,p} denote their indices. The boundary space of 6y is {0y : s;(0y) =
0,1 <i<p}. Write

Q = [51(60), .-, 51, (60)]" (1.16)

10



Constrained Space of Logit u's
G=2 F=2 Ay=0.1

Figure 1.3: G = 2, F = 2. Constrained space for logit values. Same isoform

different groups.

a matrix of p x m, where s(6y),1 < i < p is the gradient of s;(0) at 6.

“Nominal” Replicates
Case 1. If K; = --- = Kg, then “nominal” replicates 1,--- , K are 1.i.d as
P(Rygy k(1,3 0), the likelihood function is,

K
L= 1] P(Rign11:9) (1.17)

k=1
Case 2. The orders of replicates do not matter since all of them are independent
with each other.

If K=K Ky =cK, -, Kg=cyK, c1, -+, cq are integers,

keg

K [ a
c=1I(II 1II P®Ruayo (1.18)
k=1

=1 \g9=1j=(k—1)cy+1
Case 3. Other forms of replicate number does not affect the parameter estimation
of 6, but will require additional approximation in derivation of the asymptotic

distribution of likelihood ratio test statistic.

11



We derive the exact asymptotically distribution of LRT statistic D in (1.12) based
on asymptotic theories of maximum likelihood estimation, likelihood-ratio test and
cone approximation. The following theorem is stated using Case 1 which is most

common in our data. Similar results hold for Case 2.

Theorem 2 (Distribution of Composite Likelihood-ratio Test Statis-
tic):
Fisher information for P(Ryg k. (1,};0), m x m matrix,

82
Iiy = —FE [— log P(Rygy k.{1;3;0)

062
9 9 .,
=L (% log P(Rygy (1} 9))(% log P(Rygy k,{1;3;0)) (1.19)

with S, constrained space of 0y of size m as in (1.14), = of size p, boundaries
of constraints that 6, triggers as in (1.15), @ of dimension p x m, gradients of
constraints at 6y as in (1.16). We show asymptotically that the likelihood ratio
test statistic D in (1.12)

1=0

wp—i(p, QL7'QT) = wi(p, (QZ'QT)™)  0<i<p
0 p+1<i1<m
(1.21)

where w; =

Let Y ~ N(0,V), V = QZ'Q7, then the probability of Y falls in R, is
_ Py _ —1
wi(p, V) = w;(p, V.RL) = Y p(Vir" )p(Vosa), (1.22)
|or|=j

Index « is a subset of {1,...,p}, o is its complement. They denote the indices
of random variables in Y. |a| denotes the size of a. For example, if a = {1, 2},
Y, means (Y;,Y5)7. Y, ~ N(0,V,). V, means the covariance matrix of Y.
Va.or means the conditional variance matrix of Y,|Y, = 0. P(V,) = P(Y, >

0), P(Via) = P(Ya > 0|Y, = 0).

12



Constrained Space of Logit u's
G=2 F=2 Ay=0.1

True 8,
® Unrestricted MLE 6
T T T T
-4 2 0 2 4

Figure 1.4: True value on the boundary and within the boundary.

Proof: see Proof of Theorem 2.

Choice of Boundary Points - Least Favorable Test Statistic

However, in real data applications, we do not know if the true parameter is on
the boundary (if it is inside the constrained space, and when sample size is big
enough, the actual LRT test statistic is almost always 0, see Figure 1.4). A con-
servative choice is by assuming the true value on the boundary, instead of inside
the constrained space. As shown in (1.20), the number of non-trivial boundary
constraints determines the maximum number of degree of freedom in y? distribu-
tion. We assume true 6y to be on boundary where most constraints are triggered,

and each constraint is either one of the two in (1.13).

Bz = {00 © 5[g1,001,7(00) = 0,([g1,92], f) € E} where size of = is maximum
(1.23)
On this boundary, the constrained MLE is most restricted, and the distribution of

D is most left skewed and in general larger than the actual distribution (assuming

13



QZ7'QT in (1.22) behave normally under different degree of freedoms). This way
we keep the actual type I error small. We call the test statistic assuming true

value on this boundary - the least favorable test statistic.

Usually G = 2, || = F — 1, while in more general cases, the maximum num-
ber of possible non-redundant constraint intersections is (g)(F — 1). Besides,
G(F — 1) is the total number of logit parameters, when G is big ((?) > @), it is
not possible to have boundaries with (g)(F — 1) non-redundant constraints, we
only need to choose G(F — 1) of them. For the least favorable test statistic, @
(1.16) is of dimension [mln((g) ,G)(F—1)]xG(2F—-2) and @ has to be nonsingular.

With all the assumptions of the least favorable choice, we still need to estimate the
true value on the assumed boundary, one way is to find a point on the boundary
that is closest to our unrestricted MLE estimates.

Orcast = zzr%min (0 — Or125)T (0 — Orire) (1.24)
E max

We let 0 = 010 and calculate the LRT test statistic D in (1.12) and its theo-
retical y? distribution (1.20) using fisher information Z (1.19), y? weights (1.22).

1.2.4 Equal-weight y2 Test Statistic

We show that when the null hypothesis of likelihood ratio test is not linear equal-
ities (e.g, %Lh = %2,11)’ but inequalities like @1,11 — y2,11| < A9, the likelihood
ratio test statistic follows a mixture of x? (df ranging from 0 to p = |Z|), in-
stead of a conventional XIQ,' The objective likelihood function involves parameters
R Qf;,h"" 7Q§,IF_1’ 1 < g < @G, the weights for the ¥? are de-

termined by the location of true parameters. Because we do not know the true

parameters, to use a most conservative, least favorable test statistic, we find a

14



point which triggers most constraints and that is closest to our unrestricted MLE

estimators. The y? weights are calculated for that point. For simplicity, the equal

()

2

weight test statistic )‘(2 =2 qwix?, w; = usually is a good approximation to
the actual test statistic when calculation of the least favorite test statistic is hard.
We show in simulations both the least favorable test statistic and the equal-weight
test statistic show good results of classification and inference. In practice, when

isoform number F > 8), we use equal weight y? and when F < 7, provide the

option of using least favorable y2.

1.2.5 Detection of True Differential Isoforms

Our interest is not only in finding the significant genes, but also which specific
isoforms are significantly differential. To address this, we further look at the
marginal isoform significance within significant genes through hypothesis tests
on individual isoforms Héf : @gl,lf - _92Jf| < Ay Hllf : o.w.. We output

the marginal p-values together with isoforms of large group differences based on

estimated unrestricted 121 AL
.15

1.3 Simulation

1.3.1 Simulation of Asymptotic y> Test Statistic

Here, to support all previous theoretical results, a 4-isoform gene for two groups
is simulated, where v¢’s between two groups are exactly with a difference Ay =
0.1. We simulate this gene N = 1000 times, each time, every replicate has a
total read counts R = 100, 1000, or 10000 and replicate number fixed to be K =
100, 500, or 2000 for both groups.

variances g%g}’{lf} =1, isoform lengths L{If} =1

15



1 2 3 4 5 6 7 8 9
K 100 100 100 500 500 500 2000 2000 2000
R 100 1000 10000 100 1000 10000 100 1000 10000
Table 1.1: Combinations of K, R

(0

_g,[f
g=1 0.08491507 0.3691922 0.2393482 0.3065446

g =2 0.18491507 0.2691922 0.1393482 0.4065446

I I I3 I

Table 1.2: True isoform proportions ¢

These parameters are on the boundary where most non-redundant equality con-

straints [y Yy, | = 0.1 are satisfied. Here we have 4 constraints, with one
—LLf 4L f

3
redundant. So the theoretical distribution of D is Y w;X?.
i=0
All theoretical quantiles are generated by taking 1000 samples from their asymp-

totic theoretical distribution.

For cases where R = 100, unrestricted Emle converge to the true I (aAzmle to
o?) with a slight consistent difference. This difference doesn’t improve much
even with 500 replicates for both groups. This might be due to 1) the fact that
Laplace approximation constant C' not close enough to 1 when read counts is only
100, and C' involves the parameters. 2) The existence of multiple local minima.
This phenomenon disappears as total read counts R increases, where Laplace

Ko, I I I3

g=1 -1.283712 0.1859540 -0.2474439

g =2 -0.787797 -0.4122682 -1.0707179

Table 1.3: True isoform logits

16



1. K =100, R =100 4. K =500, R = 100 7. K = 2000, R = 100

True Value: 1, = -1281 True Value: ., = ~1284

2. K =100, R = 1000 5. K =500, R = 1000 8. K = 2000, R = 1000

True Value: 1,1, = ~1281 True Value: ., = ~1284

3. K =100, R =10000 6. K =500, R =10000 9. K = 2000, R = 10000

Figure 1.5: qqg-plot of unrestricted ( empirical against its theoretical

EMLE)lJl

asymptotic normal distribution.
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1. K =100, R =100 4. K =500, R = 100 7. K = 2000, R = 100

True Value: of, = 1 True Value: of, = 1 True Value: of , =1

2. K =100, R = 1000 5. K =500, R = 1000 8. K = 2000, R = 1000

True Value: o, = 1 True Value: of, =1 True Value: o, =1

3. K=100, R = 10000 6. K =500, R =10000 9. K = 2000, R = 10000
Figure 1.6: qg-plot of unrestricted (Q?V[LE)LH empirical against its theoretical

asymptotic normal distribution.
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True y?
=0.202x7+0.446 7 +0.296\3+0.056 7

— o
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T T T T
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Samples from the theoretical y? distribution
w : 0.202, 0.446, 0.296, 0.056
Equal-weight y?
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_ o
2 . °
3
2 o
T S 4 ) °
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= o 000®
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e
< o
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Figure 1.7: K=500, R=1000. qq-plot of pvalues of LRT statistic: under true y3,

equal-weight v and Y3

approximation is more accurate and the problem tends towards “convex”. The
estimates of parameters have no bias when cluster size R = 1000, because the
Laplace approximation is quite accurate, the constant C' &~ 1 has little to do with
our parameters and prior distributions do not affect much in maximizing h(u).

See Figure 1.5 and 1.6.
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True
=0.20213+0.44617+0.29613+0.056x

(a) Histogram of pvalues of direct samples from true x3

True i Least Favorable y°
=0.202)3+0.446X3+0.2963+0.056 3 ¥* different for every sample
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(b) K=500, R=1000. histogram of pvalues of LRT statistic: under true ¥3, closest \3,
equal-weight v3 and x3

Figure 1.8: Histogram of pvalues

20



In Figure 1.7, the top plot shows the qqg-plot of the 1000 LRT statistic —2log A
against 1000 random samples from the true theoretical ¥? with the weight calcu-
lated through our method, where we used cones to approximate the surface around
the true value. The middle plot shows the qg-plot of the 1000 LRT —2log A

_ (Y

against 1000 random samples from the equal-weight 2, w; = s, 1 <1< F—1

which is a good approximation the theoretical one if the theoretical weights don’t
deviate too much from the equal weights. The bottom plot shows the qg-plot of
the 1000 LRT statistic D against 1000 random samples from y% _,, where degree
of freedom is retrieved simply by counting the number of constraints. This y%_,

distribution is too conservative and deviates a lot away from the true distribution.

Since in real applications, we are not able to know the true parameters. For each
gene, we find on the boundary where most equality constraints are satisfied, the
closest point to the unrestricted MLE estimation. We calculate ¥? assuming true
parameter is at this closest point (least favorable test statistic). If the distribution
of p-values is approximately uniform except for a mass at 1, then this least favor-

able test statistic is a good approximation to the true test statistic. See Figure 1.8.

Scenarios where Accurate X* Weight Estimation is Necessary

In previous simulations, the actual ¥? does not show much superiority over the
simple equal-weight ¥?2, this is due to the off-diagonal elements in covariance ma-
trix V in wj(p,V = RI'R”),j = 0,---,p are not very big compared to the
diagonal. Thus the weight calculation is very similar to equal-weight ¥2. If it is
exactly a diagonal matrix, then the true distribution is equal-weight y?.

Under R = 1000,

0.0333480519  —0.0004903398 0.02465823
V' =1-0.0004903398 0.0435565960 0.03892188
0.0246582305  0.0389218772  0.11243103
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Y

_g7If

g=1 0.1740337 0.7170984 0.1088679
g =2 0.0740337 0.8170984 0.1088679

I P I

Table 1.4: Situation where accurate weight calculation is necessary. 1.

Egaff b Lz
g=1 0.4691137 1.885078
g =2 -0.3856149 2.015624

Table 1.5: Situation where accurate weight calculation is necessary. p.

The actual Y2 = 0.202x2 +0.446x% 4 0.296 2 + 0.056 2, which isn’t much different
from y2 = 0.125x2 + 0.375x3 + 0.375x2 + 0.125x2.

However, in situations where these two distribution differ a lot, the actual weight
estimation becomes necessary. This following gene is one example where closest
Y2 is very different from equal-weight y2. It is easy to see that the off-diagonal
elements of covariance matrix V are comparable to the diagonal. It is worth
mentioning that the conventional X% is spurious, and it is getting much worse
compared to the true distribution as number of isoforms increase. It is not too off

when the data only involves two isoforms.

0.08472387 0.05756867
0.05756867 0.04539917

Let K = 100, R = 1000, g%g},{]f} = 1, li1;y = 1, we generate data for this gene
1000 times. We can clearly see that equal-weight y3 is off the central line in Figure
1.9. We can also see p-value comparisons in Figure 1.10, where least favorable y?

resembles the theoretical p-value distribution the most.

22



True 2
=0.4354)3+0.5053)3+0.05983

a
- o
2 o
g =
ERE o o
= o
e L
= @Oo
q oo oo® O ©
< o
T T T T T T T T
0 2 1 6 8 10 12 14
Samples from the theoretical y? distribution
w : 0.4354, 0.5053, 0.0598
Equal-weight y?
=0.25y340.5x3+0.25x3
=z
2 °
. o
£ o °
- o
g ® oB ©
ERa. o
o sommoo  ©F © ®
< <4
T T T T
0 5 10 15
Samples from the theoretical y? distribution
w: 0.25, 0.50, 0.25
Highest-degree y*
=0xg+0xi+1x3
= e
3 = A
= s
o
coo &
- o 00008
@ooo®0 00 om0 ©
E—
=
T T T T
0 5 10 15

Figure 1.9: K=100, R=1000. qqg-plot of LRT statistic:

X5 and x3

Samples from the theoretical y? distribution
w:0,0,1
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True y*
=0.435413+0.5053\3+0.0598,3

(a) Histogram of pvalues of direct samples from true y3
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b) K=100, R=1000. histogram of pvalues of LRT statistic: under true Y3, closest Y3,
2 2
equal-weight v3 and x3

Figure 1.10: Histogram of pvalues
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1.3.2 Simulation Study of grMATS

We illustrate the performance of grMATS under 30 different scenarios of data of

two groups.

Set-up:

The first 27 simulation datasets differ in terms of number of replicates (K =
5,10, or 20), number of average total read counts (R = 20,80, or 250), and repli-
cate variance (o = 0.07,0.36, or 1.00). The total read counts and replicate vari-
ances are respectively the 1st quartile, median, 3rd quartile of the average replicate
total read counts of MAQC (14267 genes) and its corresponding estimated vari-

alces.

Besides the 27 simulations, we conduct additional 3 simulations of two groups
with replicate K = 5, variance (g% = 0.07,0.36, or 1.00), and the total read counts

are simple random samples from the average replicate total read counts of MAQC.

For each simulation above, 5000 genes are simulated, of which 95% are gener-
ated under null hypothesis (Hy : @n,l,lf — yn’mf] < AP, V1 < f < F) and 5%
are under alternative hypothesis (H; : 3f,1 < f < F, @n,l,lf — ynz,lf‘ > Av).
Isoform proportion difference is chosen as Ay = 10%.

Without any preference of true parameter distributions, we use flat Dirichlet

distribution to uniformly simulate isoform proportions of two groups {¢

o}
%g,h + -+ ﬁg,IF = 1,@97” > 0,vl < f < F}. For each iteration, we in-
dependently sample two groups of isoform proportions, ¥ LU and yz,{lf}’ if

|¢1[ -, | < Ay, Vf, we assign them to one gene under Hy, otherwise we
Zigy T Yo, L
assign them as one gene under H;. Repeat this process until enough number of

genes under Hy and H; are generated.
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For every gene, the true isoform proportions are converted to the logit

—g.{Ir}

scale p = mlogit(¢ ). Independently K sets of replicate logit values
g:{If} gv{lf}

’If,g2),1 S S F -1 Yy =

mlogit " (ig(7,3). A multinomial read counts vector Ry (;,} is sampled from

are sampled 1 < k < K, pgpr, ~ N(Hg

MN (R, gk 1,y) for each replicate k of each group g.

As a comparison, we pooled data from replicates and analyzed the pooled data
using a reduced version of grMATS that used the same likelihood-ratio test with

composite hypotheses Hy, H; as above.

Comparisons:

e ROC & PR. TPR, FPR.

e [ TPR, . TNR. We pull all isoforms together to compute their isoform-level
TPR and TNR. The significant isoforms of significant genes are detected
as positive. The insignificant isoforms of significant genes are detected as

negative. The isoforms of insignificant genes are detected as negative.

Results:
In all 27 simulations, grMATS outperformed the reduced (pooling all replicates)

version.

Here we describe results for 3 simulations with 5 replicates, fixed total read
counts 80, at 5% false positive rate, grMATS produced true positive rates 93.6%
(¢? =0.07), 87.6% (¢ = 0.36), 72.4% (o = 1), while correspondingly the pooled
model only had 86.4%, 68.4%, 50.4%. The true positive rate drop was more ob-
vious as o2 gets bigger. Thus we want to point out that the use of random effect

in the model is crucial especially in studies with large between-replicate variation.
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02 Ng Nkg N.cts I,_TPR I,_TPR I3 TPR I, TPR
® 007 2 (5,5 80 74.0%,134/181 80.1%,141/176 73.7%,123/167 83.0%,142/171
® 036 2 (55) 80 62.9%,117/186 65.0%,106/163 58.1%,100/172 69.0%,120/174
12 (55 80 40.6%,71/175 35.3%.61/173  41.8%,76/182  55.4%,102/184
Table 1.6: Isoform Detection TPR
0> N.g Nkg N.cts I, TNR I,_TNR I3 TNR I,_TNR

@ 007 2 (5,5) 80 98.8%,4762/4819 99.3%4789/4824 99.3%.4799/4833 99.3%,4796/4829
036 2 (5,5) 80 98.3%,4732/4814 98.4%4761/4837 98.3%,4746/4828 99.1%,4784/4826
® 1 2 (5,5 80 98.1%4734/4825 98.3%4743/4827 98.3%,4737/4818 98.9%,4764/4816

©

Table 1.7: Isoform Detection TNR

The I TPR are 77.7%, 63.7%, 43.4% and the . TNR are 99.2%, 98.5%, 98.4%.

Besides the above scores, we show for these 3 simulations, the recovery of each
individual isoform in Table 1.6 for TPR, Table 1.7 for TNR. It is a true negative

if |y ¢n7271f| < Ay, and @n,l,lf — yn’271f| < A, and a true positive if

Ln,1,If oz
%n,l,lf - %n,Q,If > Ay (Or %n,l,lf - %n,l]f < _Ag)’ and yn,l,lf _yn,Z,If > Aﬁ (OI'
yn,l,ff - ynz,ff < _Ay)‘

In addition to the fixed total read counts simulations, we also performed 3 addi-
tional simulations with a similar set-up except that instead of fixed quartiles, the
total read counts were empirically sampled from average total read counts of all
multiple-isoform genes of MAQC. At 5% false positive rate, grMATS produced
true positive rates 94.0% (o2 = 0.07), 84.0% (¢? = 0.36), 66.8% (c® = 1), in
comparison with the pooled model 74.0%, 44.8%, 26.4%. The I_.TPR are 76.4%,
62.7%, 44.7% and I_'TNR are 98.8%, 98.4%, 98.2%. Figure 1.14a, 1.14b for ROC
and PR, Table 1.14 for summary of results.
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Figure 1.11: ROC of 27 simulations.
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Figure 1.12: PR of 27 simulations.
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o7 Ng Nkg Ncts QFPR TPR AUC I_TPR I_TNR @FPRR TPRR AUCR
® 007 2 (5,5 20 501% 87.2% 0968 063.06%,443/696 98.9%,19084/10304 | 5.01%  80.8%  0.945
® 036 2 (55 20 501% 824% 00944 54.6%,394/721 98.6%,19010/19279 | 5.01%  70.4%  0.927
® 1 2 (55 20 501% 624% 0865 39.4%,278/705 08.3%,18974/19295 | 5.01%  48.4%  0.832
® 007 2 (55 80  501% 93.6% 0980 77.7%,540/695 99.2%,19146/19305 | 5.01%  86.4%  0.949
® 036 2 (55 80 501% 87.6% 00960 63.7%443/695 08.5%,19023/19305 | 5.01%  68.4%  0.920
® 1 2 (55 80 501% 724% 0910 43.4%310/714 98.4%,18978/19286 | 5.01%  504%  0.855
© 007 2 (55 250 501% 952% 00991 827%574/694 99.2%,19152/19306 | 5.01%  84.0%  0.945
® 036 2 (55 250 501% 87.6% 0.961 64.8%,448/691 98.5%,19026/19309 | 5.01%  61.2%  0.887
® 1 2 (55 250 501% 756% 0924 47.7%341/715 98.4%,18975/19285 | 5.01%  444% 0815
© 007 2 (10,10) 20 501% 924% 0973 71.0%487/686 99.2%,19156/19314 | 5.01%  86.4%  0.957
© 036 2 (10,100 20 5.01% 832% 0954 64.8%459/708 98.7%,19038/19202 | 5.01%  79.2%  0.939
@ 1 2 (10,100 20 501% 784% 0.940 50.6%,353/698 98.6%,19026/19302 | 5.01%  61.2%  0.909
@ 007 2 (10,100 80 501% 99.2% 0.997 85.4%,607/711 99.4%,19169/19289 | 5.01%  92.0%  0.973
036 2 (10,100 80  501% 93.2% 0.988 74.0%,510/689 98.9%,19091/19311 | 5.01%  81.2%  0.950
© 1 2 (10,100 80 501% 83.6% 00954 55.6%,391/703 98.6%,19020/19297 | 5.01%  624%  0.906
007 2 (10,10) 250 5.01% 96.4% 0.987 86.0%,608/707 99.5%,19198/19203 | 5.01%  82.8%  0.934
© 036 2 (10,10) 250 5.01% 94.0% 0.982 73.4%,520/708 99.1%,19122/19292 | 5.01%  73.6%  0.907
12 (10,10) 250 5.01% 85.6% 0.965 59.3%,409/690 98.6%,19046/19310 | 5.01%  58.4%  0.875
007 2 (20,20) 20  5.01% 97.6% 0.990 83.8%,580/703 99.4%,19186/19207 | 5.01%  924%  0.973
@ 036 2 (20,20 20 501% 92.8% 0971 73.0%,498/682 99.1%,19150/19318 | 5.01%  86.8%  0.946
@ 1 2 (20,2) 20 501% 87.2% 0955 63.1%,434/688 98.8%,19077/19312 | 5.01%  77.6% = 0.924
@ 007 2 (20,20) 80 501% 99.6% 0.999 87.7%,614/700 99.6%,19230/19300 | 5.01%  88.8%  0.956
@ 036 2 (20,200 80 501% 956% 0.986 79.5%,542/682 99.2%,19161/19318 | 5.01%  82.0%  0.940
@ 1 2 (20,2) 80 501% 90.8% 0980 68.2%,471/691 98.8%,19084/19309 | 5.01%  70.4%  0.912
@ 007 2 (20,20) 250 5.01% 98.4% 0.997 87.4%,598/684 99.7%,19262/19316 | 5.01%  82.8%  0.936
036 2 (20,20) 250 5.01% 96.0% 0.991 82.0%584/712 99.3%,19150/19288 | 5.01%  73.6%  0.899
@ 1 2 (20,20) 250 5.01% 90.4% 0.976 67.8%,464/684 98.9%,19104/19316 | 5.01%  64.8%  0.878

TPR

08
L

0.6

Figure 1.13: Results of 27 simulations.

PR

0.0

(a) ROC of 3 simulations with changing to- (b) PR of 3 simulations with changing total

tal read counts.

read counts.

02 Ng Nkg N.cts QFPR TPR AUC I TPR I TNR QFPR.R TPR.R AUCR
©® 007 2 (5,5) changing 5.01% 94.0% 0.985 76.4%,519/679 98.8%,19087/19321 5.01% 74.0% 0.936
@ 036 2 (5,5) changing 5.01% 84.0% 0.956 62.7%,432/689 98.4%,18995/19311 5.01% 44.8% 0.856
® 1 2 (5,5) changing 5.01% 66.8% 0.891 44.7%,298/666 98.2%,18990/19334 5.01% 26.4% 0.732

Figure 1.14: Results of 3 simulates with changing total read counts.
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Figure 1.15: Hypoxia - APA sites

1.4 Real Data Application - Hypoxia

In the 3’ end processing of most protein-coding genes, the 3’ end of the mRNAs is
cleaved and polyadenylated. The addition of the poly(A) tail is required for nu-
clear export, mRNA stability and efficient translation | |. A large proportion
of genes contain multiple polyadenylation sites [ ], indicating that alterna-
tive polyadenylation (APA) is a widely used mechanism for gene regulation. APA
sites can be classified into four categories (Figure 1.15): tandem 3’ UTR (untrans-
lated region) APA, the most frequent APA forms with multiple cleavage sites in 3’
UTRs; alternative terminal exon APA, which involves usage of multiple terminal
exons; and intronic APA. Through these types of events, APA contributes to the
complexity of the gene expression by generating multiple mRNA forms that differ

in cellular localization, stability and translation efficiency.

Widespread APA modulation is often associated with development, cellular dif-
ferentiation and proliferation. A wide variety of APA events were observed in
embryonic development and neuronal development | |. The generation of
iPSC (induced pluripotent stem cells) is often accompanied by global shift of
poly(A) tails | |. Moreover, in the T cell activation, widespread usage of
proximal poly(A) sites was also observed | |. Since pathways of cell dif-

ferentiation and proliferation are often hijacked in cancers, the APA events are
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often observed in cancer cells. It has been reported that compared to normal
cells, cancer cells often expressed a variety of mRNAs with shorter 3° UTR from
APA events | ]. The shorter mRNA forms exhibiting enhanced translational
efficiency and stability, leading to more protein production. The high prevalence

of APA in cancer cells suggests a role of APA in cancer development.

Hypoxia condition is often associated with tumor development | ]. Can-
cer cells usually use a shifted metabolic process from oxidative phosphorylation
to altered glycolysis. The shifted metabolic process plays a central role in the
development of solid tumors since it provides the necessary energy for tumor de-
velopment. A large amount of the mRNA isoform changes have been observed
in the hypoxia process, contributing to the hypoxia pathways or being results
of the metabolic shifts Weigand, 2012 #1813. Here we use the PolyA-seq tech-
nique Derti, 2012 #1819, a stand-specific high-throughput sequencing analysis of
3’ ends of polyadenylated transcripts, to conduct genome-wide analysis of APA
events in hypoxia conditions compared to normal cell lines. A total of 3 replicates
were generated under 2% oxygen chamber to represent the hypoxia condition, as

a comparison to 3 controls under 20% oxygen condition.

Using the grMATS framework, we have identified a variety of APA site shifts
between the hypoxia condition and normal condition. With FDR < 30% and
isoform ratio difference > 1%, grMATS identified 671 genes with significant APA
site shifts. We studied the gene functional enrichment among the 671 genes with
significant APA shifts using DAVID (Supplemental Table Hypoxia). A variety of
cancer related biological processes were enriched in the genes with APA shifts,
such as ‘DNA repair’ (DAVID enrichment P = 2.5e-5), ‘negative regulation of
cell growth’ (DAVID enrichment P = 2.8e-4), ‘cellular response to stress’ (DAVID
enrichment P = 4.9e-4).
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1.5 Summary

We propose a hierarchical model for RNA-seq alternative splicing data with repli-
cates. In the first layer, the model uses gaussian logit values fi, g1, 7,3 to describe
biological replicate effect centered around the group-level isoform proportion log-
ItS fing (1,3- In the second layer, a multinomial distribution R, 4 (1} is assumed
to describe the replicate read counts given Mn,g,k,{lf}(¢n,g,k,{1f})~ We compute
the marginal likelihood of P(R, 4 (1,}) using laplace approximation. Besides the
maximum likelihood estimation, we also provide the accurate asymptotic distri-
bution of composite likelihood ratio test D, which follows a mixture of y? with
various degree of freedoms up to the number of constraints. We provide the least
favorable test statistic in practice when true parameter is unknown. The model
and program have been successfully run in our 27+3 simulation datasets as well

as one real dataset Hypoxia.

Our work provides a R package grMATS.

1.6 Future Work

In this model, we assume that we observe the isoform read counts Ryz,y directly.
However, in many other situations, what we observed are the read patterns from
isoforms and different isoforms share some patterns (Figure 1.16). To address this
ambiguity, we need another layer in the model. Let Fj, denote the read pattern h,
Ve, 1, = P(E = Ep|l = Iy) denote probability of read pattern h from isoform f,
Rp, as the read counts of these patterns. The marginally probability of observing

read pattern h is

ZP E = Ey|I=1;)«P(I Zm 1,1, (1.25)
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Exons

Isoform 1

10101
Read pattern 10100
00101

1 /11

Isoform 3

11101 -
Read pattern 17190

00101

Isoform 3

10111
Read pattern  1p100

00111

Isoform 4

I
NI RN

[
1

11

11111
Read pattern 11100

00111

Figure 1.16: Example of alternative splicing with reading ambiguity. 4 isoforms,
8 possible read patterns Ej: 10101, 10100, 00101, 11101, 11100, 10111, 00111,
11111.
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Conditional probability,
P(Rg,y |3 0) H O (1.26)
Our likelihood function becomes
P(R;0) = /P(le{ff}sH)P(w{ff}s9)d¢{1f}

/quREh w{lf]” )d¢{ff}

:/H(ZVEth@ZJIf)REhP(@/}{]f};9)d¢{]f} (127)
h=1 f

Difficulty might arise while computing this integral using Laplace approximation,

since the convexity of this joint density needs further investigation.

1.7 Proof of Theorems

1.7.1 Logit Transformation

Logit Transformation between % ) and Py

F
The same transformation holds for r.v.s ¥,y and py, 7,3 > Yy, = 1 are proba-
f=1

bilities adding up to 1, with degree of freedom F' — 1.

Multinomial or categorical distributions belong to exponential families, it’s natu-
ral to link the first F' — 1 ¢;.’s with F' — 1 multinomial logit values p ;.’s, while
~Is

ﬁxingEIon. —oo</_LIf<oo, 1< f<F-1

Y
w—jf):ﬁ[f — ﬁ[

log( f 1+ZF 1 “If

{gll’. o ’ylp} — {Hll’. t 7EIF7170} (129)
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Considering the isoform length [, Be the actual observable multinomial probabil-

ities,
;0 1, M
LYy tr €
P, = =F T 1SSsT (1.30)
! Zf:l élfg + Z ll a

0 0 1.31
{£117"'7p1 }H{MIV"’HIFfl’ } ( ’ )

Relationships between yn%{lf} and Hn,g,{lf} (ang’k’{l ) and B ok {If})

Assume [; = 1,1 < f < F, then P, = glf, R,y ~ MN(R,}_){If} = g{lf}), as

simple multinomial probability without replicates.

Multinomial distribution belongs to exponential family, we can write the prob-

ability as

P(Rp, -+ Rt ) = Hw%
Iy " s AUp,
1 F _{If} Hf 1Rff

HwRIf ) o Ray
Hf 1R1f =1 F

Fo1 v, Rl
= exp Z Ry, log( v —5)]+ Rlog(v, ) + 10g(m)

A very natural link function choice is (plug in n, g notation here)

P
log(:=2) 1< f<F,—1
m — Fna.lr, (1.32)

n,g,l
Y 0 f:Fn

0

©

Zn,g, If
e < f<E -1
Fn 1 771 N — —
o= R ’ (1.33)
_n‘vgalf 1 f _ F
1+2Fn 1 7n ey - in
When isoform lengths l¢;  are different, p iy become weighted 1) Yoy 38 in (1.30).
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1.7.2 More on Theorem 1 - Laplace Approximation

[, exvlhdn

= (2m) IRV exp(h()) B (exp(Z %« & (= )" () (u ﬂ))))

= 2m) "YWV exp(h(f)) B (exp(z 1;-))

= (2m) VPV exp(h(i1)) E (exp(S)) (1.34)

where i = argmaxexp(h(p)) = argmax h(u),
1 n

V= (—h®(@)t: dim (F—1)x (F—1) (1.35)
- Qvec(h" D (p))
hE) () = o |u=p (1.36)

vec() means reorganize the matrix into a vector by its columns.
® means Kronecker product, i(é)l(,u —W)lr=@w-nrewpw-pre- - (u—n)7,
t — 1 times.

pnbB o B

A®B=| : . (1.37)

B o pmnB
E(exp(S)) is expectation on a function exp(S) where S = > .°. T; involving only
third or higher derivative of h(u) at . (i.e. ﬁ%, ...). Although third or higher
order derivatives of h(u) do not involve any parameters of prior distribution of p,
the maximizer i involves these parameters, so E(exp(S)) involves all parameters.

However, in the generalized linear model with random effects, as the cluster size

gets bigger (here is the total read counts R), E(exp(S)) ~ 1.

E(exp(S)) ~ 1+ E(Ty) + E(Tg) + %E(Tg)

=14+ O0(R™Y) +O(R™) + O(R™") = 1+ O(R™)
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We see as cluster size (total read counts) gets bigger, the E(exp(S)) ~ 1. The
log of our integral objective can be approximated by sum of linear additive terms

without integrals, which is much easier to handle.

[, expll)die = )" DRV exph ) (1.38)

As in (1.34), C is related to replicate counts R(r,; and isoform lengths [ 1;}> and
also third or higher derivatives of h(fi(s,;), which contains fi{7,; and it relates
to parameters AL gf Iy Thus, C' is related to unknown parameters of interest
H{If}’gflf}’ but when cluster size R is big enough, C is approximately 1. We

consider R is big enough and optimize the likelihood over parameter p oy g% I}

with C' ~ 1.

1.7.3 Proof of Theorem 2
To prove the theorem, we mainly need to work on the constrained and unrestricted

maximum likelihood estimation and cone approximation on the constrained space.

Log-likelihood [(z; )
X =[Xy, -+, X,]" are random observations, X; ~ f(x,0) and 6 are parameters,

0y are true parameters.

I(X,0) = En:z(xk,e)

= (X 80) + (X, 80)7 (6 — 60) + 56— 60)71'(X,60)(6 — o) + o(| 16 — ol

(1.39)
Let A = 11'(X,6,) be a vector where
10l(X,0) 1 <. dlog f( Xy, 0)
_rona o) L dlog [k, 0) 1.4
"o 08, ‘900 n Z 00, =0, (1.40)

k=1
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B = 11"(X,6,) be a matrix where

_ 10%(X,0) 0?log f( Xy, 0)
Bis =13 96,00, ‘9 % nz 960,00, ’990 (141)
., 0log f(X,6)
E(B)= -7 = [E(Taej)} (1.42)
E(A) =0, Var(vnAd) =1 (1.43)

for details on calculation of Z see appendix Fisher Information. Rewrite

1
UX,0) =1(X,00) +nAT (6 —0y) + 5(9 —00)"nB(0—05) + O, (n)[(0—0,)" (6 — 90)]%
(1.44)
Let 6 denote the MLE estimator for 8, vector 82 denote element-wise square of 6.

Suppose ||6 — 6||2 is bounded by a finite number.

Under regularity conditions (P121 | |), the MLE estimator:
0 = arg rneaxl(X, 0) (1.45)
=0—0y=—-B A+ op(%) (1.46)
—~BL I, —B'=T'+0,(1) A= Op(%) (1.47)
0 — 6, —11A+op(%) (1.48)
By | |, if Oy is a limit point of parameter space, then for any estimator in

this space, 6 2 6y, 6 — 6 = Op(\/iﬁ). For any MLE estimate of 6, we let

G—Oy=T "Atn n= op(%) (1.49)
I(X,0)
—n {%Z(X, 00) + AT (6~ 80) + 50— 00)B(6 — o) + O,(1)[(6 — 60)7 (6 - 90)]3}
=n {%z(x, Oo) + ATT ' A+ ATy — %(I‘lA + )T A+ ) + op(n—i)}
—n {%ux o) + ;ATI . ; Ty + Oy (n- 3)} (1.50)
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Let 2 = /nZ7'A

25 NO.IT, o(|ll) = ap(1) (1.51)
Likelihood ratio test statistic
For two constrained space in Null space w and Alternative space 7. Plug (1.50)
in.

D = —2{max[(X;60) — max [(X;0)}

fcw fewuTr

1 1
= 20 {x(= 307 Zn) ~ oo (307 Z0) + Oy~ }
Cw

fcwuTr
o . T _ . T _1
—n{ranelgn In — juin 7 In} + Op(n"2)

= n{ min[Z'A — (6 — 90)]TI[171A — (0 — 6o)]

fcw

~ min [Z7YA — (0 — 0,)]TZ[Z A — (6 — 90)]} +0,(n"?)

— {infe = V(0 — 00" 1z — V0~ 00)
- i [z = VO - 0Tz~ VO - 6] b+ O, (15

If space w is not linear or a cone, we can use a cone approximate the space around

0.
Definition of a cone: C € R™ is a cone if for any x € C implies ax € C, Va > 0.

Let a closed and convex cone C, approximates w at #y. This cone is indepen-

dent of choices of norms, because norms in RP are equivalent. Here we use the

norm ||z|| = VaTZx,
Inf ||(6 = 0o) — Ocl| = o([[€l]), b € Coo inf [[(8 —b) — Oc|| = o(||6 — bol]), 0 € w

According to | | Th2 and | |, the projections of y onto w and C,, 0 and 0,

have the relationship

10 =80 — 8cll = o([[yll) = 116 — boll* = 1161 = olIly]I*)
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= inf(y — (0 —00)"Z(y — (60 — 6y)) = inf (y —0.)"Z(y —6.) +o(||y||*) (1.53)

few 0.€C

Both w or C, are closed, so the notations “inf” can be replaced by “min”,

min(z — v/n(0 — 0)]"Z[z — vV/n(0 — )]

fcw

= {pinlz/ i = 0= 00" 2le v — (0~ o)}
- {ﬁ%ﬁ[z/f — 0TZ(z/v/n — 0] + op<”z”2>}

n

= min [z — vn0 ) I[z — vV/nb] + 0,(]|2]|?)

0c€Cu
{0.:0.€C,} < {V/nb.:0.€C,}
because a cone is a positively homogeneous set 0. € C,, = ab,. € C,, Va > 0

— mi _p1T _
= ercrgcri[z 0. " Z[z — 0.] + 0,(1)

Thus, [ ]

D = { min [z — 0. Z[z — .] — min [z — 0] Z[z — 96]} +0,(1) (1.54)

06 ecw 0(; ECLIJUT

In our case, if w U 7 constitutes the whole parameter space, C,, at 6 is also the
whole parameter space,

min [z — 0,7 Z[z — 0.] =0

ec ecwu-r

D= emigl [z —0.)"Z[z — 0] + 0,(1) (1.55)
Ce w

We can easily see the asymptotical distribution of D, if we rewrite z ~ N(0,Z71)
precisely instead of the asymptotical expression in (1.51),

L . B T .
D %elcxéla[z 0. Iz —46.] (1.56)

Cone Approximation at Boundary Points of Constrained Space

Our constrained logit value space M is not linear (constraints on ¢ 1

however, if the sample size is big enough, the MLE estimate gets very close to the

are linear),

41



- - Actual Space --- Actual Space
—— Cone Space —— Cone Space

Figure 1.17: Illustration of cone approximation

small region around the true value, the constrained space can then be approxi-

mated by a cone at the true value.

Let the constrained space be S = {6 : s(f) < 0}, S can be approximated at its
boundary point 6y (s(6p) = 0) by a cone C, where C = {6, : s'(6p,6.) < 0}. One

can imagine . to be a vector where its origin is at 6.

s(6o + 0c) = 5(60) + 5 (6o, 6c) + o([|6c]]2) (1.57)

t —
directional derivative:  s'(6y,0.) = lim 50 + t0e) = 5(0)
t—0+ t

= 075'(0y) (1.58)

In our problem, for each gene, full parameter space size is G % (2F — 2),

0= (B gy gy o By oo B o By oo By

2 2 2 2 2 2 T
O Tldyr o Tl I 0 TGty TGty ....,QGJFA) (1.59)

Our constraints are usually written as a series of pairs of isoform probability
difference inequalities for each isoform /; in given group g; and g, smaller than

some threshold &,

I B
e 911y e 921y

_ _ <
|¢ _ | < 5 SglaQQJf (9) Z?;ll eﬁgl,1f+1 ij‘;ll 6H92,If+1 € — O
Zag1,1 Lo, I¢! — % Koo I Hgi I
Y . Son.gn.1; (0) = Fig‘zi NPl ‘< — —£<0
s91, Efz_l e 92 f 41 ij:_ll e 91 f+1
(1.60)

Obviously, a boundary point regarding to isoform [y inequalities can only locate

in one of the constraints above, thus in the following we wrote the inequality in

42



short as s{g, g,1,1,(¢), representing either one of the above. We do have constraints

regarding to o2 ; , non-negativity. However, the 0 is never to be touched, so we

=g,1p

do not need to put them in the constraints above.

If Oy is at the boundary of one constraint,

s{gm],[f(eo, 0.) = QCTSEMM(GO) <0 (1.61)

Thus by | ], constrained space S at point fy can be approximated by cone
C={0:: s, . I (00, 6.) < 0} with the differentiability of norm ||z|| = VaTZx at

6y, and this cone is actually a half-space of R¢(2F'=2),

If xy is the intersection of multiple constraints (if 7 > 3 or G > 3), the con-
strained space at point xy can be approximated by intersection of ((2;) (F—1)

half-spaces. If G = 2, [g1, go] notations can be omitted.

S =1{0: 811, (0) SOVI< f<F—1,V1< g1 < go <G} (1.62)

Let
s(0) = max{sjg, go,1;,(0) : 1 < f<F—1,1< g1 < g2 <G} (1.63)

E={(lg1,92), I5) : Sgy,gat1;(00) = 5(6p) = 0,1 < f<F—1,1< g1 < g2 <G}

(1.64)
Under regularity conditions | | (all satisfied in our case),
8/(007 96) - maX{QZﬂS/[gl,gg],f(e())? ([917 92]7 f) S E} (165)
C= {66 (907 ) < 0}
_{9 [9192 (9078) <0,V([91,92Lf) EE}
= 0 811,000, (00, 0c) < 0} (1.66)

([o1 92} e
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For notational simplicity, let p = |Z|, m = G(2F—2) and let Q = [s} (), .., 5, (fo)]",

p X m. We can rewrite cone in R™ as
C={0.:—-Q0b. >0} (1.67)

If p > G(F — 1), we need to keep only G(F — 1) of the inequalities to have a
nonempty cone, because there’re only G(F' — 1) unknown p’s. The choice is not
unique though, depending on where the true parameter 6, locates. Besides, if )
is singular, we need to delete the redundant constraints, e.g. F' =4, G = 2, first
3 constraints [y i T %2, If\ < ¢ would imply the forth, thus @ is singular if all

constraints are kept.

The Distribution of Our Test Statistic given True Parameters Locating
on the Boundary

Let C,, being a cone, C = {y : 27Ty < 0,Vx € C,} is its polar cone under inner
product (z,y) = #7Zy and norm ||z|| = v2TZz. Based on | |, the likeli-
hood ratio test statistic D in (1.55) asymptotically follows a mixture of chi-square
distributions, let z ~ N(0,Z71)

DL emicn [2—0)"T[z—0.] = 2" T2— emic% [2—0.)"Z[z—60.] (Pythagoras’ theorem)
Ce w Ce w
(1.68)

D4 (1Y) Zwlxz, w; = w;(m, 7", CY) (1.69)

e The basic idea is for a random z, éc could touch boundaries of the con-
strained space C2. The more constraints the boundary touches, the shorter
the projection, the longer the distance. E.g., if the constrained space is

= {0. : 6. = 0}, which triggers equality constraints of all dimensions
((0:)1 = (0.)2 = -+ = (0)m = 0), then the projection of z onto this space
C% would always be the shortest 0, and the distance from z to C° would

always be the longest 0m1Cn 2 =0Tz — 0] = 2Tz,
c€
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e The weights w; are determined as long as the covariance matrix Z-! of

Zmx1 ~ N(0,Z7') and the cone C, in space R™ are determined.

e IfCOisRY ={0.:0.>0}, and T =1, then w; = (7)27™,i=0,--- ,m.

In our problem, C, = {0, : —Q0. > 0}, where @ is p x m. Based on | | eq
(5.5),
Wi (mepm (P, QLZ'QT) m—p<i<m
wi(m,27,¢,) = U @TT@T mp (1.70)
0 0<i<m-—p-—1
Together with
wi(m, T, C°) = wy_i(m,T7,C,,) (1.71)

We get

wy—i(p, QZ'Q") = wip, (QT'Q")™)  0<i<p
0 p+1<i<m
(1.72)

As to the actual calculation of the weight, let Y ~ N(0,V), V = QZ'Q7,

= wi(m72_17 Cg) -

wi(p, V) = w;(p, V.RE) = Y p(V (Vo) (1.73)

|or|=5
Index « is a subset of {1,...,p}, o is its complement. They denote the indices
of random variables in Y. |a| denotes the size of a. For example, if a = {1, 2},
Y, means (Yi,Y5)T. Y, ~ N(0,V,). V, means the covariance matrix of Y.
Vaor means the conditional variance matrix of Y,|Y, = 0. P(V,) = P(Y, >

0), P(Vasar) = P(Y, > 0]Y, = 0).

Given V, it is possible to calculate the analytic result for these weights. The
exact formulas for these gaussian probabilities are available in | | Theorem
(3.1), yet complicated to carry out. For simplicity, we use MCMC sampling of nor-

mal distributions to approximate these weights at a very small computational cost.
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1. Cone and its Polar Cone (p=0)

()2

(@:)

3. Cone and its Polar Cone (p = 0.419)

]

()2
(8.}

2. Cone and its Polar Cone (p = 0.245)

4. Cone and its Polar Cone (p = 0.943)

-1

Figure 1.18: Cone and its polar cone

Example 1 (Fig 1.18):

Co=RL={0.:0.>0}, C5={y

0.078 0 0.078 0.014
Vi = . V= :
0 0.042 0.014 0.042
0.078 0.054
0.054 0.042

Example 2 (Fig 1.19):

46
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0.078 0.024
0.024 0.042]



2
P=YTVUY —minlY — 0TV Y -6 ~ 3 w2, VB2
e 2 i=0

(a) x3, projection on self (black) 44.84%;
X3, projection on w1 = 0 (green) 25.08%;
X3, projection on the origin (blue) 5.6%; \7,
Projection on zo = 0 (red) 24.42%

P=YIVY —minly —6)7VHY —0,) ~ 3 w2, ViR )x?
-2 =0

(b) x3, projection on self (black) 24.76%;
x?, projection on x1 = 0 (green) 25%; X2,
projection on the origin (blue) 25%; x?, pro-
jection on xg = 0 (red) 25.24%

Figure 1.19: 10000 points sampled from N (0, V') under Scenario 1 and Scenario 2.

Different colors denote 4 different boundaries in constrained space that solutions

0, could touch: (1) not on boundaries. (2) r — 0. (3) origin. (4) x5 = 0.
X4
Y = ~ N(0,V)
Xo

P=Y"V'Y —min(Y —0,)'V (Y

0.>0

0.078 0.054
Scenario 1: let V =

0.054 0.042

0.44.

Scenario 2: let V =
01
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Y ~ N(0,V), wy ~ 0.056, w; ~ 0.504, wy ~

, obviously wg = 0.25, w; = 0.5, wy = 0.25.



1.7.4 Fisher Information 7

We denote all parameters 6 = (HL{”},EZ’{”}, e ,/_LQ{If},giUf},gS,{lf}, e ,Q?;,{jf})
as in (1.11). The fisher information matrix can be decomposed into 4 parts

Ly ZLyp2
7= — = |. T is of dimension G(2F — 2). Use likelihood formula for

122#2 Ig2g2
a single replicate of one group of one gene in (1.6), and assume the replicate

number is equal among all groups K = K; = --- = K¢, and total read counts
Ry1 = Ryo =+ = Ry ,, Vg among all replicates for each group. We randomly
pair one replicate from all groups together as one replicate. By the independence
assumptions across all replicates, without any loss, we simply pair them by their

original indices. Our target probability function for each nominal replicate is

G
P(Rygi1,330) = [ [ P(Roka,3:0)
g=1

G
= [I(Vam) " = B2 g naryi sy g,y 2000|707 exp(hlitg hgr ity gy @00,y
g=1
(1.75)
. 2
h(ug7k7{1.f}7Hgy{ff}7gg’{lf}) (176)

= log P(Ry k(1,3 Hg.k(1,}; 1

R ' F-1 L eug’k‘lf
= log(#) + Z Ry k.1, log (ZF_l s +
f_

F Hg,k, I
Hf:l Rg,k,lf! =1 =1 llfe H +£1F

ll
R kI log — —F +
9,5, F 2?211 élfelig,k,lf + lIF

2 . 2
97{If}7gg,{1f}) + log f(#g,k,{ff}, gg,{lf},gg,{ff})

F-1 _ )
1 1 (Hger; — 1 ;)
>~ los(2m) — Slog(ag,) - — (1.77)
2 2 f 2Q i
f=1 g,y
All “nominal” replicates 1,--- , K are i.i.d as P(R{g},k,{ff}; 0), the likelihood func-
tion is,
K
L =[] P(Rgyr1,3:0) (1.78)
k=1
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We want fisher information Zy;,
62
Ligy = — {392 log P(Ryg} k1,3 0)
) ) ,
=E <69 log P(Rygy k{1, 6))(86 log P(Ryg} k11,13 0))

The only probability difference between groups is their parameters Hy i1y Q; (1}
We pull all replicates from all groups together to form the nominal replicate,
P(Rygy k,(1;y;0) is actually a direct product of these independent replicate like-
lihood in each group. There is no interaction between parameters of different
groups in the fisher information matrix Z;;,. We only need to calculate fisher
information for each group Z,, then fill them in their respective positions in Zy;.

Ignore group and replicate indices,

0
I:E{<—210gP(R{I IR 7Q%I }))
a(H{If}7g{If}) s !

T
0
G 108 P(Rryi ;1. 0,) } (1.79)
<8<H{If}’g%1f}> Hrb By =53

The random variable R,y here is a multinomial distribution, we use MCMC
sampling to approximate Z in (1.79). When R is small, the Laplace approximated
probabilities could be directly sum over all possible outcomes of Ry}, otherwise,
we sample random logit value gz, ~ N(p gy o) first, then sample the multino-

mial R,y based on the sampled logit values.

. 2
P(R{If}ﬂﬁ{If}Jg{[f})

= C(V2m)"™ ! = W gy gy 000177 exp(hlfugryyi o afryy) - (1.80)

1Og P(‘R{]f}uﬂ{l }7Q%If})

F—1 1
=log C' + ( ) log(27) — Elog(] — i,y g, },U{If})\)—i- (1.81)

Wiy By 0 @gy) (1.82)
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logC =1+ O(R™1) is approximately zero when total counts R is large enough.

01y
1 <(5ﬂ{ff} r0log| — h?] | Olog| - h(z)(ﬂ{zf}ﬂ) N
2 aﬁ{If} Oy Iy =hqp) aﬁ{lf}
o[t Oh( /i
( lu{lf})Th(l)(A 7 ) <'u{1f}) (183)
o {5} o
={Ir} ={Ir}
0 log P(Ry;v; 2
0oty (Biryi b,y <o)
1 ((aﬂ{ff} +9log| — hO) | Dlog| - h@)(ﬂuf})l> .
2 2
2 8g{ff} a/”L{If} Hipy =Ry 8Q{If}
Ofig1;y Oh(figr;y)
(52 RV (fugry) + — 52 (1.84)
ag{ff} ag{ff}

Note that if there is notation conflict, the partial derivative on the left-side uses
the chain rule, on the right hand-side it refers to partial derivative w.r.t. the
position of the variable.

Olog P(Ryrpyity 12{1,y)
00 7 where h®), hoand [ are all re-

Given g2 .. we want

lated to H{[f}7g%lf}'

We need

2

1. h(l)(u{zf}) = —B;i?f}’ h(2)(ﬂ{]f}) = _822{';}

Oy Ohqryy

2- 2
Oir,y’ 9%%rpy
3. dlog|—h(3)|
iy
4 dlog|—h@| dlog |27h(2)| Oh BQh
* ) ) )
01y 9clryy 7 My’ 9%y
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2

L WD () = gt B2 nngy) = g

Wty 1y 0 @) = Yog PRy iy 1 0 ) +108 £ (gyi gy 0iy)

F—-1 1 2
= ——log(2m) — S log|a]| +log P(Ryry gyt 011, —

1 T
§(N{If} /’L{I }) (/’L{If} H{]f})

ai, 0 0
0 gi 0
Where H{If}NN(/“_L{]f}7Q)7 g = .
i 0 0 Q%—Fil_
Rewrite
log P(Ryrpy iy {ry)
0g (I By Oapy
L R'
- Ry, ( log —i—m)+Rlog( JaRE— )+ log(————
Z f f Zf:l Llfel”f +£IF Hf 1 Rl
= y{ryn(y) — 0(uggy) + (i)
Let
Rll log(r) + MII
Ry, log(l—Q) + p,
yup=| |y legy) = o = cip) )
! 1
_RIF—l_ IOg( Z}: ) + ey
l R!
3(ugzyy) = —Rlog(—p1—2= ), Ywupy) = log(—=5=—)
! Sio L et 1, ! 1= B!

o1

(1.85)

(1.86)

)

(1.87)

(1.88)

(1.89)



10l 10l
Ougr,y  On
I lllewl i
F— 3]
Zf:fllfe f"ré[F
1126’”2
F-1 3]
:R Zf= Llfe f+£IF
lIF_leuIF*1

Ob(pgr,y)
3M{If}

_ iy
Ly et (Tl e+,

F—1 ]
_Efil Lffe f+LIF_

I By
lIle 1£126 2

F_1, _FI
Oy llfe fJFLrF)2

HI K]
Llle 1ll2€ 2

— 1253
(Zfoi biye )’
I
U2 (Eppalipe F +ip)

= Rb(pq1,y)

TN F—1 254
(Zf;l L]fe f"r‘LIF)Q

HT Kl
L, e 1] e "F—-1
! p_q

T F— FT
(Zf:f Llfe f +LIF)2

F—1 Br
(Zf;l L]fe f"rLIF)Q

1234
I, e'12] e ‘F—-1
LIy Up_y

F— AT
(Zlel l[fe f+£1F)2

. 2
E(y{ff}‘:u{ff}?H{If}?g{[f})

(1.90)

(1.91)

1238
l eulll e 'F—-1
! Ira

F_1, _FI
p=i e T4l ,)?
Hr Hip_q
ie 2£1F716

F—1 3]
(Zf;l é[fe f+lIF)2

Br wr
b e Fﬁl(Zf;éF—lllfe F+lp)
e (5]
(Zlel L[fe f+£1F)2

(1.92)
Mgy 1,y Sy
F-1 1 .
i log(27m) — 5 log |a| + y{zf}n(ﬂ{ff}) — (5(u{1f}) + ”Y(y{lf})
1 —
- §(H{If} - E{If})TQ Mgy — g{lf}) (1.93)

W (g By alry)

B
Opquy )i 9)
=9y ) — ) — Suia — e gy — 1)
Oy \ tis} s oIy =™ Byppy) & VI T By
= Y{rpy = Bb(npy) = o7 gy — 1y ,y) (1.94)
Ob(pi(1y)
(2) . 2 _ {f} -1
W2 gy 1y g0 Tagy) = R—au{zf} o (1.95)
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Oy Ohqrpy

2. 2
Oir,y’ 99%rpy

The maximizer fi;7,y is the solution of h(l)(/l{lf};ﬂ{lf},gflf}) = 0. Use implicit

differentiation by taking derivatives w.r.t. p 1 and g% 1,y o both sides of this

equation.

0
o A 2 —
m h (“{If}’ﬁ{lf}’g{lf}) =0
=iy}
B Rag(u{ff}) gﬂ{ff} ~ Ulgﬂ{ff} tol=0
F {15} H{rpy =iy H{]f} ﬂ{If}
Ofigrsy _ 82<“{ff}) +o et
aﬁ{jf} S B{1py =Ry
0
@A . 2 —
agz h (M{If}uﬂ{lf}ag{lf}) =0
{Ir}
A _1 Iy -_—
B R(%(N{If}) aﬂ{lf} _ e (M{If} H{If})) -0
— 2 2 o
a:u{lf} ,u{[f}:ﬂ{[f} ag{lf} 8Q{If}

Qil(ﬂ{ff} - ﬁ{jf}) =

1
2

ag
L=Ip_1

) ([1’11 - Eh)

1
2
a7

1
2
a7.

: ([”2 - HIQ)

(ﬂIF—l - H[Fil)

(1.96)

(1.97)

(1.98)

(1.99)

The independence of prior probabilities of .} makes the calculation easy here,

if o is not diagonal, the derivative w.r.t. the variance-covariance terms is not

limited to g% I} but all covariance elements in ¢, which is more complicated to
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write down.

O My -y )
2 2 ey = Hypy) =
8Q{If} {Ir}
R Ea ey 4
Iy | on —I; TTI ) —I; "TIg | onr =1 ;Iﬂb;—l
o ok, A N G -
};,q,IF . é;iIF 1 Ohrp
ZR—— Feo o, TG Ee 0t g e
(Let diag(z) denote a matrix where the diagonal elements is x)
o 1 Ohgryy
=—g 2dzag(u{lf} — H{If}) +o 180-2 s (1.100)
I}
Back to (1.98),
ob ofi ofi
B T S SR L.
Py} B{1py =Ry Z{15) ! Zi1sy
Ofigr,y Ib(pq1,y) CINel -2 o
aUQf = (R— ! +o ) e P diag (i, ) (1.101)
C{1p) MUYy gy =gy
dlog|—h?)|
T Oy
_ T
tr((h®) 122
1on®
dlog| — h?) | ()G
g _ | (1.102)
HUsy gy =g 1
(2)\—1_8h2
()1 )

- S By =gy
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8h(2) _Qllle.’-"ll

= (— *k
F-1 HI
6 f 3
K (o1 Ly e + lr)
nr
1115‘”1 (Cpr1 Lige ftir) *1115“111126“12 —le
—ip ey, e Ly el (Efﬂhfe‘”f Tl “Ipe

. n . n
5“11 lI e Ip_1 e”IQ lI e Ip_1
“Tp_1 “F-1

(1.103)

m
e
—“F—1

i
BIay, HIF—1
F—1

+

~lr 15, U@ TP (S pp i e )
() 1
— k
F-1
(Zf:1 lffemf +17,.)°
LII HIy (Ef¢1 llf e“If +11F) _LII M1y le HIn _£I1 M AIF_lelLIF,1
—lp ey et Lty ez 0
(1.104)
_LIl Py 11;715‘”}?_1 0 LIl Py LIF;le“IF_l
—2l; el ob 1
S — é;u{q}).+ “R)—pr ~My, (1.105)
D=1 b€+ 1y, Oy (D=1 L e +1y,)
o 20 by !
a = —R F—1 nr 6 + (_R> F—1 T 2M]f
Ky Do b€+ Ly, Oy (D=1 Ly e + 1)
(1.106)
(Mry,)p = (M) = =11, e V) # f
(M) g =L, €1 (Y Ly, € +1,,)
ff#f
(Mi,)j5 = llfewflzjemﬂvj # f
1; )i = 0,Ve, 5, other than positions above .
Mf,J 0, Vi, 7, other th iti b 1.107
We have
oh2
5 1<f<F-1 (1.108)
s Vg g =iy
4 dlog|—-h®| dlog|-h3|  apn oh
o O%up 00y 7 Oy 02y
Oh® ([
Bun) _o y<p<ro (1.109)
8,1_Llf
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Fre =0 (1.110)
aH{If}
N 0D (s )
tr((h()(ﬂ{lf})) ! T )
ah(ﬂ{lf}) 1A
T =" (Ayy = By (1.111)
~{Iy
(#{If})]ff =— /=1 ,F—1, 0 for any other entries in the matrix
8Q1f 7 gjf
(1.112)
I N 190 (g
tr((M® (i) ITf
L 0n® (g )
dlog | — (M{If})| tr((hm(ﬂ{lf})) ITQ’C
3g{1 ! )
N 10D (fugg )
tT’((h(Q)(M{If})) 1T1f
- F—1 .
i[(h( )(M{If})) 1]1,1
(WP (figry)) 22
= e (1.113)
e 1[(h( (:u{[f}))il]F—l,F—l
oh(figy) 110 1 9
P P e (24 B <(M{1} oy e gy — ))
80{1} 2|c| 80{1} 2002, . o1 o =y A
(1.114)
R
0.2
1 0 =
F—lal= | ™ (1.115)
fod 8g{] } ..
1
Iy
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={Ir}
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(fry 4&,1)
o,
A 2
(fry 4&,2)
ai,

I
g
=Ip_1

2
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CHAPTER 2

Localized and Simultaneous Non-Negative

Matrix Factorization for Deconvolution of

Multiple GCMS Signals

2.1 Introduction

Gas Chromatography - Mass Spectrometry (GCMS) is a technique to investigate
the metabolome in bio-chemical research. The metabolome is the collection of
metabolites and metabolic end-products in a biological system and it reflects the
overall activity of the metabolic network that led to their formation by the com-
bined net activity of the genome and proteome. Factors that affect transcription,
translation and enzymatic activity will ultimately be reflected in the metabolome.
It consists of a wide range of different classes of chemicals, generally less than 2
kDa in molecular weight, including charged and uncharged species, volatile and in-
volatile molecules, lipids, carbohydrates, amino acids and their derivatives, acids,

bases, etc. Figure 2.1 shows the GCMS machine.

The GCMS data has a three-dimensional (Figure 2.2) image-like structure: axes
of time (chromatographic separation), mass (or more correctly the mass/charge
ratio as mass spectrometers measure the mass/charge ratio of charged molecules)
and signal intensity (amount of the metabolite in the sample). The data could
be represented using a two-dimensional mass-time matrix where entries are in-

tensities. Each metabolite has their own signature in the mass-intensity planes
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Figure 2.1: GC and GC/MS with thermal desorption systems

TN S84 S 8 ikt

(a) Illustration of one single GCMS (b) Ilustration of multiple GCMS data
data sample. sample by merging all their masses.

Figure 2.2: lustration of GCMS data

(Figure 2.3) in terms of the relative intensities in masses. The retention time of
each metabolite is relatively stable but varies across machines and environments.
The metabolite enters the map with increasing intensities and decreasing after
the peak until the elution ends, which forms a chromatogram peak in the time-
intensity planes (Figure 2.4). Metabolites are not 100% separated in GCMS data,

thus their overlapping nature poses a deconvolution task.

Methods and software for this deconvolution and metabolite profiling have been
around along with development of GCMS technology itself. Early in the 70’s,
[BB74] tries to identify spectrum by finding peaks across mass slices. This is a

rough idea of simultaneously utilizing all masses because peaks from the same
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Figure 2.4: Chromatograms at several mass slices
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spectra are assumed to have exactly the same shape. | | assumes two
metabolite spectra don’t totally overlap and uses peak counts at every time scan
to determine a peak area where there is only one clean spectrum (singlet). The
full peak shapes are decided directly from observed data of this singlet spectrum.
Similarly to | I, [ | finds groupings of a peak “centroid”s by incorpo-
rating all masses that contribute to the centroid using a computationally simpler
algorithm to allow practical implementation. | | locates peaks by a back-
folding algorithm which keeps subtracting the two sides of a peak to shorten the
peak width until it is sharp enough. Extending | I, [ | uses signal-to-
noise ratio throughout the analysis process, to extract weak signals which would
be neglected otherwise. It deals with uncertain peaks and those that are not con-
sistent with model and also calculates a library matching factor for every imputed

spectrum. This is an overall extension on every paper above and implemented in

the free software AMDIS.

All the works above take advantage of clean spectrum scans and lack the ability of
deconvolving closely overlapping spectra and of building multiple correspondence

across samples. We need a solid model-based approach to address this task.

Matrix factorization methods such as singular value decomposition (SVD) do not
serve our purpose as all spectra and chromatograms are non-negative. A reason-
able model is non-negative matrix factorization (NMF). However, each sample
alone usually has a matrix of size 1k*4k, with unknown true component number
r over hundreds. It is impossible to achieve meaningful inference on one sample
using direct NMF, not to mention the computational challenge of this task on all

samples (1k*400k) simultaneously.

In addition, Three factors further complicate the modeling task. First, many
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metabolites elute with very close peak times, which makes the deconvolution task
hard. Secondly, for the same metabolite, there exist retention time shifts among
various biological samples and replicates. Thirdly, the random noise is present at

any given data point in this matrix.

One work that is worth noticing and related to ours is | ]. Implemented
in ChromaTof of LECO Corporation, it uses non-negative matrix factorization
on local windows to deconvolve the GCMS data matrix across multiple samples.
However, the window choices are manually determined, rank choice of each win-
dow matrix has not been theoretically justified and there is no merging between
windows. With all advantages considered, it still lacks the automation of window
selection and merging, the ability of automatic detection of all hidden interesting

metabolites and an overall theoretical justification for the model.

This motivates us to build a model based on non-negative matrix factorization

and random matrix theory.

Ever since the work of | | motivated by applications in nuclear physics, there
have been rapid developments in random matrix theory (RMT). Particular inter-
ests are focused on the eigenvalue distribution (spectral distribution) of various
random matrix ensembles. The famous Wigner’s semi-circle law serves as a foun-
dation to these developments. In real cases, semi-circle law applies on Wigner
matrices that are symmetric and whose elements from diagonal or above are i.i.d
random variables with mean 0 and variance 1. It states that the empirical dis-
tribution of eigenvalues of a Wigner matrix follows the semicircle distribution.
Well-understood results also have the joint eigenvalue distribution of gaussian
ensembles. However, these random matrices occur in theoretical physics. One

significant mathematical work was | ] on spectral distribution of large ran-
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dom covariance matrices. A special case from this work was the Marcenko-Pastur
Law which describes the empirical distribution of eigenvalues of %X TX where
covariance matrix 3 = I. A special case of it is the quarter-circle law of empirical
singular value distribution of X. It has been well studied on the distribution of
eigenvalues of %X TX when covariance matrix ¥ # I. | ) |, describe
the phase transition phenomena of eigenvalues that correspond to the large diago-
nal elements in ¥ (spiked population models where finite number of variables have
larger variance). | | provides the central limit theorem for large eigenvalues in
spiked population models. | | discussed the distribution of largest eigenvalue
of %X TX, where X has i.i.d standard gaussian entries, which approximates the

Tracy-Widom distribution [ ].

[ | discusses the asymptotic positions and central limit theorem of r
largest eigenvalues, and | | gives the asymptotic and central limit theorem
on singular values and asymptotic lints on singular vectors of low-rank deformed
rectangular random matrix i@iuw;‘r + X,,, where u;,v; are assumed random.
Under a slight change of asszuzlilptions, the asymptotic limiting results still hold
when u;, v; are assumed deterministic, which is exactly the solution in our model.

Furthermore, although we do not use it in our model, | | addresses the

central limit theorem of singular values under the same assumptions of this article.

Numerous computational methods for non-negative matrix factorization have been
developed, within which the most popular one is alternate regression, | ],
[ ]. However, the uniqueness and correctness of the solution in general
situations is still not theoretically justifiable. [ | suggests the uniqueness is
guaranteed if the data is spread across the positive orthant. | | provides
a few sufficient and necessary conditions for unique NMF, however these condi-

tions are hard to check in practice and are NP-hard | ], [ |. Despite
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its lack of theoretical justification for uniqueness and noise further complicates
this task, NMF has also shown great strength in practice due to the reasonable

non-negativity constraints.

In this article, we propose a rank-based NMF model to streamline the GCMS
metabolomic study. We theoretically justify each step of our model based on
RMT and NMF. Our model able to automatically split and merge local time
windows, estimate rank for each local window, deconvolve overlapping spectra
and build multiple correspondence across samples. We demonstrates the strength
and automation of our model over any existing GCMS deconvolution methods
by showing successful results from our 27 simulations (vary in extent of spectra
overlapping, between-sample chromatogram shifts and random noise) and 2 real

experimental datasets.

The GCMS data we observe is assume to be a matrix plus random noise. The
rank of this matrix is altered by the random noise, which results in full rank for
the matrix. We repeatedly use rank estimation and evaluate the similarity be-
tween singular vectors of random matrices using RMT. The model procedures can
be summarized as 9 major steps (Figure 2.5). 1. A parallel computation based
on pseudo-rank estimation is performed on each sample to determine all the time
points where two or more spectra start overlapping. We call s * ¢; a scan at time
t;. In this process, we call rank= 1 spectrum scans “sea” and rank> 2 spectrum
scans “island”. We perform NMF on “island” scans that present consecutively
in one cluster (no sea scan in between) to get spectra from islands. 2. Cluster
“sea” and “island” spectra across all files. 3. We adaptively determine the window
splitting process by dynamically computing the estimated rank of selected window
and make sure the ranks are small (usually < 6). Each window will incorporate

any spectra clusters learned from step 2 and extend itself for each file. Once win-
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dows are determined, we perform a combinatorial NMF within each window using
individual sample rank and biological group information at this window. 4. A
window merging process merges NMF results from all windows into one by mea-
suring the inner product between spectra within or between windows. 5. A large
sequential NMF is carried out, in each inner loop we only update one spectrum
and chromatogram. 6. Similar nearby spectra are combined into one. 7. We fix
our spectra matrix S, and extend the range of C for each sample until it reaches
zero to get a full shape. 8. We split multiple peaks in C' into different features. 9.
After all features and learned, we deploy the multinomial logistic regression with
a group lasso penalty used to select significant features that differentiate between

groups.

The remainder of this article is organized as follows: 2. Modeling details. 3.
Simulation study. 4. Analysis on real datasets. 5. Summary. 6. Future work.
7. Theorems and discussions related to random matrices and nonnegative matrix
factorization during some of the modeling steps. 8. Lemmas on random matrices

and other existing theorems on uniqueness of nonnegative matrix factorization.

2.2 Modelling

2.2.1 Notation

:n X p, observed GCMS data matrix.
: n X p, random noise matrix.
:n X r, spectrum matrix (dictionary).
:r X p, chromatogram matrix.

:nxp, P=SC=U6,..V, where UBV is a singular value decomposition of

N Y T Q! o=

: p-dimensional vector denoting the retention time of each column of X, X,C.
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gcmsDecon

1. Sea-island Learning on Individual Samples

2. Initial Merging - Recursive

3. Adaptive Local Window Setting and NMF

4. Merge NMF from all Windows

6. Further Merge Related Spectra

7. Chromatogram Shape Check

8. Peak Splitting

9. Feature Selection

Figure 2.5: 9 Steps of gcmsDecon
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Superscript g, k: group ¢ and replicate k, e.g. X% is of dimensions n x po*.

2.2.2 Model
We assume a shared spectrum matrix S and our model is

X9k = pok X9k = GO9k 1 X9k

S>0,09% >0 Vi<g<G,1<k<K,

s.t.
Y(g1, k1) # (g2, k2), rnauthgl’k1 — rninTt‘”’k2 <T 1<s<r

te{t:CM 501 te{t:c92"2 >0}

(2.1)

Since noise X9* is present at any non-zero observation point, and X9* > 0, we

assuime

0 (SC9*), s =0
O(5) Lz = —(SC9)nys) (SC9*)pny >0

g,k tid
Xm,t ~

1—<1>(—(5109"“)m,t)
Note: Empirically, most of truncation would be negligible since the variance o2 is
small compared to SC9*. Thus the distribution X9* resembles joint i.i.d gaussian
N(0,0%).
The log-likelihood:
= Zlog P(X9F. 5 C9k)

g,k

We want to maximize the log-likelihood I and accurately infer S, C9* from obser-

vations X9k,

67



2.2.3 Estimation

The algorithm aims to maximize the likelihood and infer true S, C9* by
G Ky

i 1: minncol j2: mi Xk — SCo*|3 2.2
Obj 1 : minncol(S) Obj Srél{lan};;H SC||% (2.2)

G Ky
~ mi X9k _ 5C9k|2 1 2.
S’I&I;Ik} ; ; | SCP"||% 4+ Asncol(S) (2.3)

We want to maximize the likelihood as well as make accurate statistical inference.
This problem is impossible to solve directly, but every step of our algorithm aims

to take care of both objectives at the same time.

Preprocessing - Matrix forming
We bin every data file into a matrix X9* of size n*pl9*}, each sample has slightly

different retention time 719*} therefore this matrix size would slightly differ.

Rank Estimation
Throughout steps of the program, we always need a rank estimator for a given

random matrix X = P 4+ X, we want to estimate the true rank of P based on

singular values of X. 7 = 3 1(); > -2 -). Based on Theorem 6, " might

Ky
underestimate the true rank ry depending on the choice of K,qnr When > 2 spec-
tra with different magnitudes of intensities overlap, but it also is robust against

violation of assumptions on noise X. Example see Figure 2.6.

Rank Estimation. (Figure 2.6)

function Rank(X, K,qnk)

Calculate singular values of X — :\17 “, Amin(n.p)
min(n,p) 5

return > 1(\; > L)

N Rrank
i=1

end function
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Distribution of singular values of (nonegative sy, ci) X100x150 = Z 7KV 100 * 150.5'“:[ + X
k=1
78 cutoff Kyqny = 6. X truncated. 6° = 0.944
m = 0.8, 72 =0.7, 53 = 0.6, ny = 0.5, 15 = 0.4
0, = 228.8, 05 = 49.6, 03 = 3.8, O, = 31.8, 05 = 16.8. minimum out-of-bulk # = 11.1

P ® 97 singular values <= A1 /Krank
ot cutoff = 3 singular values > Ay /Ay

Frequency

PORDVRID PP A

o - ||||
T T T 1

0 50 100 150 200

Singular values

Figure 2.6: Rank estimation. In this example, true » = 5, estimated 7% = 3.

Step 1. Sea-island Learning on Individual Samples
This step tries to cluster nearby scans if they are similar and represent them using
as few spectra as possible. For each g, k,

minncol(S%*)  And min H)N(gv’f_sgykcg,k”%
S9-k,C9:k

For each file X@* we detect the scan clusters that share the same spectrum.
If consecutive scans belong to one spectrum, they form their own cluster. If two
spectra overlap, every scan of the overlapping parts should theoretically be its own
cluster. We detect whether one scan belongs to previous cluster by computing the

inner product between it and the normalized average of previous normalized scans

to—1 ~

. . = (g.k X .

in this cluster <3PT67X.(§ )>7 Spre = t;tl > I *7H2, t1 is the start of current clus-
t=t; Y

ter, and ty is the current scan. If this inner product is below a threshold cutoff
Ksi, We assign the current scan ¢ to a new cluster. Repeat this process until all
scans have been processed. In the end, if the size of a cluster is 1, we call it a
“island”, otherwise a “sea”. The process can detect majority of rank-1 and over-

lapping scans and misidentify only for scans with small intensities (usually in the
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Sea-island Learning
Show total scan intensity >0 , ks = 0.9

signal 2:

signal 3: —

1.10
1

signal 4:

1.05
1

signal 5: —

signal 6:

Total Intensity:

True Rank: -

— Learning: A AQ M
™

1.00

(s

0.95
1

o true rank 1
A true rank > 2
o estimated sea starting
o estimated sea correlated
A cstimated islands

T T T T T T

2250 2300 2350 2400 2450 2500

Time (s)

Figure 2.7: Sea-island learning. Connected scans are “sea” denoted by blue and
“islands” are denoted by red. Under the dashed line is sea-island learning process.
The blue dot clusters produce S,.,, and red dots clusters produce S;sang. The

correlation cutoff here is chosen to be 0.9.

beginning and end of a peak). Refer to Discussion 8. Results of this step is
to be used later in window selection process, where new joint spectra would be

relearned for all files simultaneously. Example see Figure 2.7.

Step 2. Initial Merging

We learn the correspondence between files by find clusters of their sea-island spec-

tra. S{g»k} T{gvk} {gvk} T{gvk}

sea s Lsea > Oigunds Listang- WWe aim to merge similar close-by spectra as many

as possible, because they are very likely to be the same compound. The time range

of merged spectra are used to help window splitting. Let Ssca_merges Sistand.merge t0

g,k

. . 7k
9% of dimension ncol(Sseq_merge) * LY

sea’

be the merged spectra. Indicator matrix &

whose columns and rows have all 0 except for one 1, indicating which merged
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Sea-island Learning. (Figure 2.7)

Require: Inner product cutoff kg (e.g., 0.95), Krank (e.g., 6), X9F from Matrix
Forming.

Ensure: “Sea” and “island” cluster spectrum matrices Sseq, n X Lgeq, Sisiand,
n X L;siang and their corresponding time range Tieq, 3 X Lseas Tisiands 3 X Lisiand-
forginl:G,kinl: K, do

p «— pP* T « T9k X + X9k initialize scan cluster labels | =
[, 0] <= [1,---,1]. Indices t; < 1, to < 2, total number of clusters
L < 1. Spoor = []s Tpoot = [J-

while t, < p do

to—1 ~
1 L Spre
Sre o 2 R e ol
- t -
5: If (s &>>m~thenl — L, Spre & — 22: Kd e
: pres HX»,t2H2 = TPvgiy to y Opre to—t1+1 far HX.,]'H2’ pre
=t
Spre
Hspprel\z' else Spoor < [Spoots Sprels lty <= L+ 1, L L+ 1, t; < to.
to 1o+ 1
end while

e.g. of labels, see Figure 2.8.

Sk« columns of [Speer]nxz Whose Freq > 1. T%¥ <— range of T by labels.

sea sea

10: Si}fmd + NMF on these cluster of scans with Freq 1 with the help of

(2

. 5 2
nearby sea scans, min || Xoms — [Steft_seas Snmfs Sright_sea) C||7-
Snmf}nxr07[c]r0><(t27t171)

end for

,\

Figure 2.8: Labels of Figure 2.7 example.
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spectrum the individual spectrum of Slgky belongs to.

min nCOl(Ssea,merge) AND min Z ||Sge]2 - sea,mergeggém |%

g,k
Ssea. merge ﬂssea

s.t. V spectrum in Sgeq merge; the time range of its belonging S;{ff}ls within T

Similar objective goes for island spectra Si9k} - This step is run in a recur-

island’
sive way. FEach step we find a cluster and the spectra across files belonging
to this cluster are killed off, then the next cluster is found within the rest of
spectra. Each sample contributes once in one merged spectrum. Each time
we find the biggest cluster from a joint matrix of one spectrum from every file,
=[St i -, 8GR icxcly v =Rank(Y), split Y into r clusters (this number
does not have to be r) using k-means algorithm and pick out the largest cluster.

This process runs until all sea-island spectra are in their own merged clusters.

This result is prepared for later window splitting. Illustration please see Figure

2.9.

Step 3. Adaptive Local Window Setting and NMF
Dynamically split time range into windows (Figure 2.10), each data file in j-th
and Rank(X?*

g7
window is X local, >

local ;>

K}rank) S 67vgu k.
G Ky
V window j, minncol(Sjeq;) AND Sfél{lgr’lk} Z ; HXlocal — Slocal, C’lgcal I
=1

(2.4)

We want to avoid computation on NMF with a big number of components, which
is challenging both theoretically and empirically. We dynamically split retention
time range (e.g. 0 4800 seconds) into multiple windows (e.g. [10, 30), [30, 50),
etc.). We compute the rank of data X0k

locat; Within this window (refer to Theorem

6). If any of them is larger than a threshold (usually 6), we split the windows
until all window matrices have ranks < threshold. This guarantees a low-rank

fixed window scheme for all files. In order to learn full chromatogram shapes, we

72



Initial Mering - Recursive

Tter 1 Iter 2 Iter 3 sub Iter 4 Tter 5 sub Iter 6 Iter 7

LT TR
A I
I
Ul

merged: [ ° [ ] ome ome L] =I.II :’.II

file 2

file 3

file 4

C— C———

® merged spectrum
B merged spectrum from sub data

Current scan

Finished scan
Sub data scan
Untouched scan

Figure 2.9: Initial recursive merging. Red scans Y are currently in computation,
skipping of red scans (2nd to 3rd step) means searching with perturbation. Blue
denotes computed scans and denotes the scans forming a sub-data S{*} in

a recursive function call.
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Initial Merging - Recursive. (Figure 2.9)

{g.k}

Require: [S:%"] o, T TR [slok) ]erton) 7T{g,k} T

Ensure: Ssea,mergeu Tsea,mergey Sisland,mergey 71zlsla,’rzd:rnergea sea_merge,

10:

15:

island island?

gk} é’{gvk}

island_-merge"

Take “sea” as an example. For simplicity, use k in 1 : K instead of (g, k).
function InitialMerge(Sg{fj LT T)
Sucamerge < [y Tecamerge < (|t herge < [|. Initialize i* = 1,1 <k < K.

while 3k, i* < L* do

Sea

Y= [Sly Sk k), ¥ = Rank(Y), group K spectra into r
clusters using k-means algorithm — cluster index vector 6" = [6%, - ,5gh]
> < K.

h=1

l[scurnll2

Pn §h
1 !
\V/1 S h S T, Scurh <— p_h Z Sséa 7:5;_7., SCUTh, < Scurh , TCUT’]’L <
=1 o

1 Ln_sh
o 2 Tséa on-
=1 i
. k
Base: if L}, <1, Vk, return Sp.crgesea < {Scurt1.0 Tmergesea

sea

{TCUT}l i) Ssea merge — {i6h}1ir'

h < argmax py. Ignore this subscript h for scu,pn, Teuwrn, On below.
n < 0° = [N, -+ ,ny| denotes samples not in cluster A,q, with
their scans i". V1 < j < |p|, search for i)’ in its neighborhood +T

of T, such that <SCW,S§§CL ,nj> > Kim. Delete n; from 7 if no scan lo-

|n]
cated. Update Scur < p+|n\(z Ssea 15] + Z Ssea "J) Scur < m; Tcur —

Y

k
P+|77|Tcur + p+|77| Z sea2 271], fcu'r — {Z ke 5 12’ ke n}

Recursmn. {Due to the scan skipping in this search for samples n, we

define a submatrix S’ﬁw = Sfea.,ik;(igq) T’ljea =Tk, (1) Vk=1,--- K.
S'ea =11k & 1.
Slsea,mergm Tlsea,merge % . }
Sme?“ge,sea <— [SmeTge,seaa 9 SCUI’]? Tmerge,sea e
[Tmerge,seaa 7TCUT‘}7 tfea,merge - [ feajnerge? 7€cu7’]'
end while

return ST)’LE?"QC,SEGJ Tmerge,sea
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expand the window by incorporating the range of any sea-island spectrum that

g,k
local; >

falls in this window. We check the ranks of expanded X if any individual
rank is above the threshold, we dynamically truncate its window size until the

rank falls equal or below threshold.

After windows are determined this way, we compute the NMF with the indi-
vidual file ranks. r is set to be the largest file rank. When computing the C step
in NMF, we choose the median of its group file ranks 7, as the number of spec-
tra in S, x,. Doing this would require (T:) combinations, which is the reason we
want r to be small (< 6). The rationale behind this group learning is we assume
samples from one group would have similar spectra. Sometimes a diseases group

of samples would share a metabolite that does not exist in the control group.

Step 4. Merge NMF from all Windows

. 1 % gyk 2
min ncol(S;pine) AND min 5 [ X gk = SjointCloimel |7
Sjoinhcjoi’nt g,k

AND min Z | ’Slocalj - Sjointé-j:oint ’ |%'

Sjointv{joint .
J

gomt is the indicator matrix of dimension ncol(.Sjoin¢)*ncol(Sioea;) Whose columns
have all zero but one 1, indicating which spectrum in )y, this spectrum in Sjoeqr;

belongs to.

The way we split data into different time windows in previous step might truncate
the chromatograms, so that we want to combine NMF results from different win-

S{j} C{j}

dows local’ ~local

to recover the spectrum profile. We compute the inner products
for spectra within its own window and between spectra of consecutive windows.
Based on Discussion 7, if there are spectra from consecutive windows > K,
(e.g. 0.95), we identify them as one spectrum. The same spectrum in different

windows differ slightly due to random noise and inner products between different
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Group B fixed rank = 1 extended rank = 2

T T T
1860 1880 1900 1920 1940

Time (s)

Group A fixed rank = 2 extended rank = 2

A

T T T T T
1860 1880 1900 1920 1940

Time (s)

Group B fixed rank = 1 extended rank = 2

T T T T T
1860 1850 1900 1920 1940

Time (s)

Group A fixed rank = 2 extended rank = 3

A

T T T T T
1860 1880 1900 1920 1940

Time (s)

Figure 2.10: Adaptive local NMF. Solid line denotes fixed windows and dashed
one denotes extended windows. NMF is calculated once in one window simulta-
neous for all samples. The window is extended due to the presence of Sgcq merges
Sistand.merge from previous step within fixed windows (solid lines). The windows

are extended under reasonable limits.
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Adaptive Local NMF. (Figure 2.10)

Require: {5, 7,69} o menge {5, T, €9 Yistana merge, X 10K, T1Hx <6,
T(e.g.10).

Ensure: S50 7}

local’ ~local® wm

Window width set as 2T. For simplicity, assume ° is an integer,

-T T ... TO - T
Twin =
T 3T - T,+T|
2x(5%+1)
for j =1 : ncol(Ty;,) do
T
. k k
tf ok L= argmin T argmax T
oca.
t: Twin1 ]<Ttg7k§Twin2,j t: Twinl,j STéLkSTwinQ,‘j
g,k
Rank(X g,k g,k '%rank)
“Ylocall J local2,j
5: end for

Twin < {repeat, if Vj that Tg’k > r, break j-th window in half and expand

the total number of windows by 1. Recalculate r]glk, r]g-;k. until V7, r?’k <r}

for j =1 : ncol(Ty,) do
vy?k Xlgo’cal
Rank(X?"

local ;>

> k
<, scans in X9% whose T9* € [Tyin1j, Twinaj). 75"

Krank). Find i’s whose range of Tinerge_sea ;N [Twin1,; =T, Twinz; +
T) # (). The corresponding £%:% merge; POINES to extra times in T9*% that should

be included in X%*

local, Dynamically shrink this expansion if new 7’3‘{ ks,

: k .
Tlocal; — MAXTY <o, rf’ocalj — me%an 79", g = 1: G. Perform localized

g,k
NMEF,
1 Xt — Stocat, Chpen, |17
local ; local local; 11 F
[Stocat ;]nx clokr
ocalsln Tlocal ’ localj g7
10: Alternate Regression: Randomize initial Sicar;

7



15:

20:

repeat

C-step: Update CY Ak , for each group g simultaneously by comparing

local j

all (”g"c‘”j ) possible combinations of columns of Siscarj, 7 X Tiocat;-

local j

for all g do
Let 49 be a combinatorial choice rlgomlj out of 1 to 7ypearj, de-

compute 69, CZH min  ST|XEE -

noting nonzero rows in C’l local, Iocal
J

ocalj?

g:k 2
[Slocalj]-,ég [Clocalj]&’,- I
: ; g:k g
if 3k in group g whose ;" > Tlocal then

. . g’k . g .
Recalculate Olocal Pick additional 77} Tlocar; SPECtTa in

the rest columns of Sjear;, 79 = {i : i ¢ 59,1 < i < Tigea;}-  There

g
Tlocalj =T ; . . k k
are (57 i) all possible choices. Let ¢9F = [¢", -, ggjk . | de-
Tj _Tlocalj ] 77‘local{j }
indi Y 9. 9k
note the chosen indices out of 1 to rygeq; Tlocalj- Compute C local «

HliIl | ’Xlocal [Slocalj] ,(3
C CQ,

localj

X 2
g,ﬁgg [Clocal]](ég,ﬁgmk),. | |F
end if
end for. End of C-step
S-step: Compute Slocal — mm > ||[Xlocal T —C

localJ g,k

ocalJ]TSIOC&l’jr| |%’

until Error small enough

end for
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Window Merging

window window window
1870s~1890s 1890s~1910s 1910s~1930s

learned
spectra

T
T
T

T

[ w TT
T
‘ \[ TT
T

Figure 2.11: Merge local windows. The label numbers are results of spectrum
inner products within and between windows. E.g., spectra with label 349 across
the three windows are all learned differently but similar, they actually represent

one spectrum with chromatogram across all three windows.

spectra are generally much lower. In our experience, we have not encountered
a lot of false identifications. Doing this not only improves accuracy of spectrum

learning, but also identifies the true spectrum chromatograms. See Figure 2.11.
Step 5. Global NMF

: Y gk ()2 TR IS _ to.k} _ Aok}
) mlcn{g " E || X g,k —Sagtobat Ciope [~ With initial values Sgiopar = Sjoints Cyiopar = Cloint
global,

global g,k

Once we combine all windows in to two large S, C' matrices, with the original large
data matrix X of all files. We only need to minimize || X — SC||% in a sequential

way starting with S, C' we got from window merging. Sequential way means in
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Merge NMF windows. (Figure 2.11)
Require: Sioca, , olokr o XAek g (e.g. 0.95)

local;»

Ensure: Sjint, joint

for j =1 to ncol(Ty,) do
Indices of similar spectra within window j. By, <« {(i,k)
([Sioca j]_d, [Stocatj). k) = Keor). Indices of similar spectra between window j

and its next j + 1. Bnea:tj — {(27 k) : <[Slocalj].,ia [Slocalj—f—l] k:> Z /{cor}

3]

end for

Labeling: Any pair of spectra appears either in By Gy OF Bheatgjy are as-
signed the same label. If multiple pairs of spectra overlap, assign one label
number for all of them. Every unique label represents a cluster (chain) of

similar spectra learnt from all windows. — label; = [l N/ for

j17 o jncoz(slocalj)]

Stocal;» § = 1mcol(Twin). L. = max label;|i].
i.j

5: Let chain; < {(w}, m!)}, 1 <14 < L, stores the window number and spectrum
number for i-th chain. pro falligf — [Clocalfu’f ]m; ., the chromatogram score of
k) D ’

file g, k using p-th spectrum in chain;. Reorganize pro fallf[{kp} so that they

can be written in one matrix.

1 1o
C C ..
ok — |t T £ trum for this chain,
profall;" = | ~ ' . To compute one spectrum for this chain;,
| Cp,1 Cp2

we need to subtract other chains from the data.
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10:

15:

20:

Initialize Sjoint <= 0, n X L, ook 0, L. x plok},

joint

& & & gk
% W win wind®, wing®, wing®, -+ win?,].
indow Choice:. 9k = 5 wing”, wing™, -+ wind;L]. Vg, k

for ¢ in 1:p~"”f do

9.k 2
wznt <_ argmin ||X SZOCGZ [Olocal ] 7t| |F
J
end for
k
To ensure continuity of window choosing, if 3¢, wind”* < wind” 1, let winy™ +
g,k
wing’y.

fori=1,---,L.do
for all g, k do
grk gvk 3 gvk 3 3 3

For every scan t € [tspart] s tend; | in profall{™, its best window choice
7 wmf’k and all the window numbers in chain;, wip}.

if j € w},,, then its spectrum numbers s < {m,, : p that w;, = j}. Lets
s¢ denote the rest spectra in this window. Compute the residual Efk i
g,k
X’ii - Slocalj.’scc

local, Only need to keep these in [tsiartis tendils Eg’
(B¢

k. g,k .
’ -tendi7

else, B9 « |.

g
7tstarti

end for

ComPUte '§ta7’geti7 C(t ti — mlIl[ Z ||Eg7 Starget Ctarget ||

Sjoint_J <~ Stargetia for all gu C joint; tg ko gk Ctarget

7 ll’ftrL end;

arge Stargeti}moxla target

end for
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L2 (v-hatfy))

L2 (v-hatfy))

(a) Global NMF error change (b) Further merging error change
Figure 2.12: Global NMF and Further Merging.

each inner loop i we Smicn ||f( —S _;,C_; —S,C; ||+ This step usually take <100

A

outer loops to converge. Example of error changes see Figure 2.12a.

Step 6. Further Merge Related Spectra

: % g,k |12 R TS _ {9k} _ ~{g.k}
min E || Xy k=S rurCho ||z with initial values Spy,r = Sgiobar, Ctr” = ‘Jlobal
Sfurvcfi;‘ g7k

AND minncol(Sy,)
Within S, after the global NMF, there are chances they still resemble each other,
we further merge this kind of spectra into one. The error might increase here
since we are reducing the model complexity. Example of error changes see Figure

2.12b.

Step 7. Chromatogram Shape Check

: % gk )2 R TS _ {9.k} _ {9k}
Cr’glil} g |’X97k_SShGPeCshape|’F with initial values Ssnape = Sturs Copape = Cfur

shape g’k,‘

In the initial sea-island learning, this is a chance that overlapping spectra do not
show as “island” if the intensities from one spectrum is too low. Here, after all
spectra have been learned, we extend C' of corresponding spectra for every file, to
make sure the spectra explain as much data as possible. This step is also impor-

tant to retrieve a full chromatogram peak shape. See Figure 2.13.
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Global NMF. (Figure 2.12a)

. &
Require: Sjoint, j;’mt}
K
Ensure: Syopai, Cg{l’;bgl
Let § = [01,---,0r.], be the order of spectra in Sy, from big to small.
The relative magnitude is measured by maximum in the corresponding row of
{g,k}
joint *

Let Sglobal — Sjointa
repeat{
fOrZ: 17"' 7LC do

. ; 9k _ Q. 9.k — 9. 2
5. . ]mm " > gl S]ozntq(siccjoint(;cv Sglobal Cgiobat| |7
globallmgx1:Cg15bal

g:k
Sglobal”(gi < Sglobal; Cjoint(;. —C

g,k
global

end for
until Error change is small
Delete columns in Sy Whose corresponding rows in C’jl’obal are all zero.

10:
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Further Merge Related Spectra. (Figure 2.12b)

. {g.k}
Require: Sgopar; Cyiopar
{g.k}

ur

9,k g:k
Sfm" — Sglobah C ur Cglobal

Ensure: S¢,,., C

repeat

Calculate (Sfyr, Sfur), pick the pair with highest correlation that is greater
than a cutoff c,, i1, ia,

if there is no (g, k) that the nonzero times of ng‘fril,. and C?;f;i% are within
distance t, find the next highest correlation > ¢,

5: if no pair of spectra satisfy this condition then

the further merging is over, break;

else
] 9,k _ g,k . g,k 12
[SfUT] — min ok § ||Xfur wa“,,—(il,iQ)Ofur_(ith_ SfUTCfurHF
[Sfm']”X1’cfu7' g,k that qualify
end if

o c%F 10RO for these g, k that qualify.
15 fur urle2,

k
ur

Delete [Syur] i, if [C4F]s,.. are all 0.

[Sfur].,il A Sfu?“7 [C]gf

10: until
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Before extending

20000 40000 60000

Intensity Score C'

0

930 940 950 960 970 980

After extending

20000 10000 60000

Intensity Scc

0

930 940 950 960 970 980

Figure 2.13: Shape checking

Step 8. Peak Splitting

Chromatogram with multiple peaks could be due to the chemical reaction that
two similar spectra co-elute closely, which would be hard to detect in any compu-
tational algorithm, or it could be due to same spectra with multiple peaks. Either
way, we want to split these peaks into different features. We used the template-
based aligner (TBA) we developed for LCMS type of data to select template peaks
using all samples. We make sure only peak clusters with sufficient large signals be
selected as template features. See Figure 2.14. Every template feature represents

a variable from all {g, k} samples.

Step 9. Feature Selection

We use multinomial logistic regression with L; group penalties \/ Bf,j + e+ ﬁéj

on the coefficients belonging to one feature (all in or all out).

G Kg J gyk J
. exp(D i=1 Bg,ij )
mlng E —log(—=5 ! )+)\§ B2+ + B2

e ST A TS Vi :
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Shape Check. (Figure 2.13)
Require: Sy, C{Zf}.

. {g.k}
Ensure: Sshape7 Cshape

9,k 9,k
Sshape A SfW” Cshape +—C ur

Sort spectra by the biggest chromatogram response same as before, § is the
order
fori=1,---,L.do

if the two endpoints of non-zero time region of C%* are bigger than

shapes, .

Ceut, We extend the spectrum range, by t, additional time points 7,

5:
; gk _ 9,k _ ko2
vQ? k’ g min ’ |Ir] Sshape.7_5i Cshape,(;im SShape.,(Si Cghape‘ |F
[Cshape} 1x(Inl)
9,k g,k
Ctshape(;i,77 A Cshape
end for
e W?:;;!':;';f::g:'s 121 Template-nas;pinrz;efgtz;;{ ;;gg‘;::};%;zﬁ;?wvemge:nﬂ 5 Template-basesﬂzzrzi?‘;:::ff{%f;i‘éga:z%gg 1n:uvemge:n.ws
w0 w0 o zw w000 2080 210 0 2100 20
Time ) = Time @)
(a)  Pulling intensity (b) Split feature one (c) Split feature two

scores C from all files.

Figure 2.14: Peak Splitting
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Peak Splitting. (Figure 2.14)

. {g.k}
Requlre- Sshapea ngape
G
Ensure: Final feature matrix F', J * > K;, J > ncol(Ssnape)
g=1

F1,
for i in 1 : ncol(Ssnape) do

Let peak function Peak9*(5;) « [Cfﬁlzpe]i,.- 0; represents discrete peak

times. Peak%*(y) = 0 when y & &;
5: repeat
T¢(t) < > max Peak*(y)
o ly—tI<T
feature_time < argmax Ty(t), feature <+ for all gk,

nax Peak?*(y), update peak function Peak9*(y) <« subtract
|y— feature_time|<T

related peaks in Peak?*(y).

F
F +

feature
until Enough features selected or no more template peaks available

10: end for

Feature Selection

Require: Feature F', J X Zngl K,

Ensure: F.puice
Foparse < Keep the results of BJ which has at least one non-zero in the G-
dimensional vector.
F,o <, keep these features whose correlation with at least one of Fjy,, s are
> ¢, from cor(Faparse, F).

Fsparse

F cor

Fchoice —
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2.3 Simulation

2.3.1 Set-up

We conduct 27 simulation studies which differ in terms of 3 levels of overlapping
between metabolite chromatograms, 3 levels of between replicate chromatogram
shifts, and 3 levels of random noise €. Each simulation consists of two groups,
20 replicate samples each group. 5 true metabolites of interest are simulated,
where their intensities significantly differentiate between the two groups. For
each of the 5 true metabolites, we simulate another non-differential metabolite
that elutes close to the true metabolite with a similar magnitude of intensity. 20
additional non-differential metabolites with smaller intensities are generated with
their chromatogram peaks away from the 5 true metabolites but could affect their

corresponding nearby metabolites.

Choices of metabolite spectra. All metabolites are selected and exported from
NIST main EI MS library. 5 true metabolites are selected as Cholesterol-TMS,
Citric-Acid-Tetra-TMS, Dibutylphthalate, Fumaricacidtetradecyltrans-hex-3-enylester,
Glycine-tri-TMS. The 5 metabolites that closely co-elute are picked as those
whose spectra overlap with the true metabolites for at least one major mass
slice. Spectra with bigger inner product with the true spectra are selected at
priority. They are chosen as 912-Octadecadienoicacid(ZZ)-trimethylsilylester, D-
Psicopyranosepentakis(trimethylsilyl)ether(isomer2), Diethyl44’-azoxydibenzoate,
cis-Tcis-11-Hexadecadien-1-ylacetate, and Olean-12-ene-31516212228-hexol. Do-
ing this would allow the overlapping occur within the same mass slices, thus
increases the difficulty of deconvolution. The noise spectra are randomly picked

from the library with no preferences.

Choices of chromatogram shapes. Chromatograms of spectra are selected from

88



previous modeling results on contrived datasets and a real dataset. For the 5
true metabolites and the 5 metabolites that closely co-elute, chromatograms with
clean shapes are selected. The 5 true metabolite chromatogram peaks are scat-
tered evenly across the time span, 480, 1440, 2400, 3360, and 4320 secs. The

chromatograms of noise spectra are randomly selected.

3 levels of overlapping between metabolite chromatograms. Each true metabolite
co-elutes with a nearby metabolite, their chromatogram peak distances determines
the difficulty of the deconvolution task. We choose 1, 5, or 10 secs for this peak
distance. The noise metabolite spectra co-elutes are intended to elute away from
true metabolites, meaning their peaks are beyond the proximity (within 1, 5, or 10
secs) of true metabolite peaks. They might co-elute with the nearby metabolites

though.

3 levels of replicate chromatogram perturbation. There exists time perturbation
among replicate samples even for the same known metabolite. To take this factor
into consideration, we add a random noise to the true peak locations, with the
variance of noise to be 1, 5, and 10. This time shifts apply to all true, near and
noise metabolites. The original chromatogram pictures might be broken by this
replicate time shifts, and the resulting deconvolution task would be much harder

when the noise is high.

3 levels of random matriz noise €. Every data point in the time-mass intensity
matrix we observe has its noise which could be a machine noise or compound inter-
fering noise. We assume the noises follow independent normal distribution. Any
negative data point is set to zero. Essentially, each noise follows a different trun-

cated normal distribution, and majority of them are approximately non-truncated.
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Relative Intensity 0.1

ve Intensity 20.1

True Retention Time: 480s (8 min)
True: Cholesterol, TMS

True Retention Time: 1440s (24 min)
True: Citric acid, tetra-TMS

Figure 2.15: Simulated true and nearby spectra
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True Retention Time: 480s (8 min)
True: Cholesterol, TMS
Near: 912-Octadecadienoicacid(ZZ)-trimethylsiylester

True Retention Time: 1440s (24 min)
True: Citric acid, tetra-TMS
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Figure 2.16: 5 Simulated true and nearby overlapping chromatograms with 5 secs

peak distance.

(a) Time distance 1 sec (b) Time distance 5 secs  (c) Time distance 10 secs

Figure 2.17: 3 levels of overlapping between metabolite chromatograms. Spectrum

1.
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(a) sd_rep 1 second

Figure 2.18: 3 levels of standard deviation in times of replicate chromatograms.

Spectrum 1, dist = 10s.

(b) sd_rep 5 seconds
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Figure 2.19: Boxplot of true f’s. Dataset
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(a) sd-noise 5. Dataset (D file 1.
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(b) sd_noise 15. Dataset (2) file 1.
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(c) sd_noise 30. Dataset (3) file 1.

Figure 2.20: 3 levels of random noises. dist = 10s, sd_rep = 1s. Data is from the

actual simulations.
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2.3.2 Results

dist: the time difference between true spectra and corresponding nearby spectra.
sd_shift: variance of replicate peak time.

sd_noise: sd of random noise.

scr: inner product between true spectrum and learned spectrum.

cvrg: the proportion of samples that contain this learned spectrum.

dist sdrep sd.noise scr_1 scr_2 scr_3 scr_4 scr_b cvrg_1 cvrg-2 cvrg-3 cvrg4 cvrg 5

© 10s 1s 5 1.000/1.000 1.000/0.999 1.000[1.000 1.000[1.000 1.000[1.000 100.0%|100.0% 100.0%|100.0% 100.0%[100.0% 82.5%|100.0%  100.0%|100.0%
@ 10s 1s 15 1.000/1.000  1.000/1.000 1.000/1.000 0.999]0.998 0.999]0.998 100.0%|100.0% 100.0%|100.0% 100.0%[100.0% 100.0%|100.0% 100.0%|100.0%
® 10s 1s 30 1.000/1.000  1.000/1.000 1.000[1.000 0.997]0.995 0.997]0.999 100.0%|100.0% 100.0%]100.0% 100.0%[100.0% 75.0%]100.0%  92.5%[100.0%
@ 10s 5s 5 1.000/1.000  1.000/1.000 1.000[1.000 1.000[0.999 1.000/1.000 97.5%[100.0%  100.0%|100.0% 100.0%[100.0% 75.0%|100.0%  85.0%/100.0%
® 10s 5s 15 1.000/1.000  1.000/1.000 1.000[1.000 0.999]0.999 0.999[1.000 100.0%|100.0% 97.5%]100.0%  100.0%[100.0% 55.0%]100.0%  75.0%[100.0%
® 10s 5s 30 1.000/1.000  1.000/1.000 1.000/1.000 0.997]0.997 0.997]0.999 92.5%100.0%  95.0%|100.0%  72.5%|100.0%  87.5%/100.0%
@ 10s 10s 5 1.000[1.000  1.000/1.000 1.000/1.000 1.000[1.000 1.000|1.000 95.0%[100.0%  97.5%|100.0%  72.5%]100.0%  85.0%[100.0%
® 10s 10s 15 1.000/1.000 1.000/1.000 1.000/1.000 0.999]0.999 0.999]0.998 95.0%100.0%  100.0%[100.0%  65.0%]100.0%  82.5%]100.0%
® 10s 10s 30 1.000[1.000  1.000/1.000 1.000/1.000 0.997]0.998 0.997|0.999 95.0%100.0%  97.5%|100.0%  62.5%]100.0%  75.0%[100.0%
@ 5s 1s 5 1.000/1.000 1.000/1.000 1.000/1.000 0.996]1.000 1.000/1.000 100.0%|100.0% 100.0%|100.0% 100.0%[100.0% 35.0%|100.0%  100.0%|100.0%
@ 5s 1s 15 1.000/1.000  1.000/1.000 1.000[0.998 0.997]0.998 0.999]0.991 100.0%|100.0% 100.0%[100.0% 100.0%[100.0% 15.0%|100.0%  82.5%/100.0%
@ 5s 1s 30 1.000/0.999  1.000/1.000 1.000/1.000 0.995/0.996 0.995/0.992 100.0%|100.0% 100.0%|100.0% 97.5%|100.0%  15.0%]100.0%  90.0%|100.0%
@ Bs 5s 5 1.000/1.000  1.000/1.000 1.000[0.996 1.000[0.996 1.000/1.000 100.0%|100.0% 100.0%|100.0% 100.0%[100.0% 47.5%|100.0%  90.0%/100.0%
@ 5s 5s 15 1.000[0.996  1.000[1.000 1.000[1.000 0.999]0.997 0.999]0.999 95.0%|100.0%  100.0%[100.0% 100.0%|100.0% 60.0%]100.0%  80.0%|100.0%
@® Bs 5s 30 1.000/0.997  1.000/1.000 1.000[1.000 0.997]0.994 0.997]0.996 87.5%[100.0%  97.5%|100.0%  95.0%|100.0%  37.5%|100.0%  60.0%|100.0%
5s 10s 5 1.000/1.000  1.000/1.000 1.000[1.000 1.000[0.999 1.000[1.000 97.5%[100.0%  97.5%]100.0%  100.0%[100.0% 65.0%]100.0%  70.0%|100.0%
@ 5s 10s 15 1.000/1.000  1.000/1.000 1.000[1.000 0.999]0.998 0.999/1.000 97.5%[100.0%  92.5%|100.0%  82.5%|100.0%  75.0%|100.0%  65.0%|100.0%
5s 10s 30 1.000/0.984  1.000/1.000 1.000[1.000 0.997]0.999 0.997]0.999 90.0%[100.0%  97.5%]100.0%  95.0%|100.0%  55.0%|100.0%  72.5%[100.0%
® 1s 1s 5 0.999(0.946  1.000[1.000 1.000[0.993 0.995[0.999 0.999[1.000 100.0%|100.0% 95.0%|100.0%  100.0%[100.0% 50.0%|100.0%  35.0%/100.0%
1s 1s 15 0.999(0.993  0.999[1.000 1.000[0.995 0.994]0.996 0.993]0.998 95.0%|100.0%  92.5%|100.0%  100.0%|100.0% 25.0%[100.0%  7.5%|100.0%
@ 1s 1s 30 0.999]0.989  0.999(1.000 1.000[0.994 0.988[0.999 0.994]0.998 70.0%[100.0%  67.5%|100.0%  90.0%|100.0%  22.5%[100.0%  15.0%]100.0%
@ 1s 5s 5 1.000/1.000  1.000/1.000 1.000[1.000 1.000[1.000 1.000[1.000 95.0%[100.0%  100.0%]100.0% 100.0%[100.0% 35.0%|100.0%  60.0%/100.0%
1s 5s 15 1.000/1.000  1.000/1.000 1.000[1.000 0.999]0.994 0.999]0.999 95.0%[100.0%  97.5%|100.0%  97.5%|100.0%  25.0%|100.0%  57.5%/100.0%

1s 58 30 1.000/0.964 1.000/1.000 1.000/1.000 0.995/0.994 0.997|0.995 97.5%[100.0%  95.0%[100.0%  100.0%[100.0% 30.0%|100.0%
97.5%[100.0%  95.0%[100.0%  72.5%100.0%

® ©
=
7
=
=)
&
S

1.000/0.999  1.000/1.000 1.000/1.000 1.000/1.000 1.000|1.000

1s 10s 15 1.000/1.000  1.000/1.000 1.000/1.000 0.999]0.998 0.999]0.999 92.5%[100.0%  95.0%[100.0%  60.0%|100.0%
@ 1s 10s 30 1.000/1.000 1.000/1.000 1.000/0.997 0.996]|0.999 0.997|0.999 87.5%[100.0%  97.5%[100.0%  92.5%|100.0%  60.0%|100.0%

52.5%/100.0%
75.0%|100.0%
72.5%(100.0%
62.5%100.0%

Table 2.1: Recovery of 5 true spectra. Amdis | gemsDecon.

For all 27 simulations, gcmsDecon is able to identify all 5 true spectra for every

one of the 40 samples. We measure the error percentage as %, 1 <1 <5, and
error percentage histograms of the 4th spectrum from all simulation datasets are

presented. gecmsDecon outperforms Amdis in every single case.
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Take simulation (19 as an example, the chromatogram peak distance between true
spectra and corresponding nearby overlapping spectra is 5 seconds, the replicate
chromatogram has a standard deviation of 5 seconds, and random noise is set to

be 15 for any positive intensity.

Mean Chromatogram Profile Peaks

mean Amdis ﬁ
mean True Target 3

25000
|

N
" mean gcmsDecon 3
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Figure 2.21: Dataset (9. Mean B Amdis, B and Bgcmspecon of all 5 target spectra.
Numbers on top of bars are the average inner products between learned spectra

and true spectra. Dataset No.

2.4 Results on Real Data

We contrive two experimental data sets. In the first dataset, we intentionally add
one compound into one group while the other group is missing this compound. In
the second dataset, we add one compound to four groups with different amounts.
We test the strength of our program by detecting this significantly differentiating

compound and recover all other compounds in these samples.
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Figure 2.22: Dataset (9. 'BAWZ;S*B, Bgc’“DB“"”*B of true target spectrum 4. Numbers
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Figure 2.23: Dataset (5. gcmsDecon learned and true target spectrum 4.

2.4.1 Contrived 1

In this study, 40 samples were prepared with 19 in group A and 21 in group B.

All samples contained 7 compounds in equal amounts (leucine, syringic acid, tar-
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Figure 2.24: Dataset (4) file 1. gcmsDecon learned and true chromatogram 4.

taric acid, 2H5-3- hydroxyglutaric acid, methylnonadecanoic acid, nonadecanoic
acid and myoinositol). In addition, glutamic acid was only added to one group.
The samples were converted to their trimethylsilyl-methyl oxime derivatives and

analyzed by GC/MS. The analysis is expected to pick out glutamic acid as the

Amdis vs gcmsDecon
Histogram of Chromatogram Profile Peak Error Percentages

Amdis
gcmsDecon

Frequency
3

0 | [l B

i ] i i i
-200 -100 0 100 200
Error Percentage %

Figure 2.25: Dataset (9. Histogram of 5“”‘"’6"5_5 , £ gc’“Dﬁ“"”_B of true target spec-

trum 4.
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Figure 2.26: Error percentage Histograms for True Target Spectrum 4. sd_noise:

5 (left), 15 (right), 30 (bottom)

only significant difference between the two groups. In the system used, glutamic

acid elutes at 31.56 minutes (1893.6 seconds).

We learn 394 spectra with 716 features in total, excluding 432 features with group

coverage < 50% and feature AUC < 50. We use multinomial logistic regression

with L; group penalties \/ 512,3‘ +- 4 5?“ on the coefficients (all in or all out).

We are able to select 3 features that differentiate between the two groups.

All three are confirmed to clearly differentiate between groups. One of them
is the intended compound, another one is an unexpected result from the chemical

process, which also manifests the strength of our program. The third one is of
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Relatve Intensiy= 0.05

Vs NIST# 333169
Name: L-Proline, 5-oxo-1-{trimethylsilyl)-, trimethylsilyl ester
inner: 0.97 | score: 91.1

= spec_leames 1

Score  inner:0.970|score:91.1
Name L-Proline, 5-oxo-1-(trimethylsilyl)-, trimethylsilyl ester
Synon-1 Proline, 5-oxo-1-(trimethylsilyl)-, trimethylsilyl ester
Synon2 Pyroglutamic acid, bis(trimethylsilyl)-
Synon 3 Pyroglutamic acid, di(trimethylsilyl)-
- Synon4  Pyroglutamic acid, N,O-bis(trimethylsilyl)deriv.
I I I Synon 5 Trimethylsilyl 5-oxo-1-(trimethylsilyl)-2-pyrrolidinecarboxylate, (2S)-

Synon 6  (2S)-2-Pyrrolidone-5-carboxylic acid, N-trimethylsilyl, trimethylsilyl ester
Synon7 Pyroglutamic acid, (N,0-TMS)
Formula C11H23NO3Si2
MW 273
ExactMass  273.121647
CAS#  30274-77-2
NIST# 333169
DB# 129206

Comments  NIST Mass Spectrometry Data Center
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ass ()

Figure 2.27: Contrived data I - 1st compound
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Figure 2.28: Contrived data I - 1st compound

small intensities, likely due to experiments related to the group assignment.

Derivatization of glutamate and or glutamine leads to the formation of pyrog-
lutamic acid which is one of the peaks eluting at 31.56 minutes. There is another
peak closely co-eluting, and the best library match is for an amidated 5-methoxy
indole acetic acid derivative (N-(3- Hydroxypropyl)-2-(5-methoxy-1-methyl-1H-
indol-2-yl)acetamide). The strength of the match is 0.883 for the inner product.

Regardless of the true identity, the source of this compound is unclear. It could

be an impurity in one of the glutamate standard used to make the mixture.

2.4.2 Contrived 11

In this study, 40 samples were prepared with 10 each group. Syringic acid was

added to all four groups, with amounts A < B < C' < D at retention time 39.7m.

We learn 249 spectra with 496 features in total, excluding 224 features with group

coverage < 50% and feature AUC < 50. We are able to select 21 features that

98



spec_final_228 ft_1_ind_453

Template-based time:1891 area.avy:98640 coverage:0.475
Coverage: A:19/19 B:0/21

spec_final_228_ft_1_ind_453 E
Template-based time:1891 area.avgy:98640 coverage:0.475 S —_— — A
=] Coverage: A:19/19 B:0/21 = | — B
g i
g - g N |
o
Bl S
= 2 4
H 5
a8 5
@ g
z 87
z & 2
2 5
E 2
= =
=
o
S
2
S
e IS 2
T T T T
1870 1880 1900 1910 1920 a -

Time (s)

Figure 2.29: Contrived data I - 1st compound

vs NIST# 15286

inner: 0.96 | score: 124

1
),

Pyr— 1
b Score inner:0.960|score:124
Name  Trimethylsilyl [3-methoxy-4- (trimethylsilyloxy)phenyl]acetate

02 o4 08 08

Ree ensay 03
0
h
=

Synon 8 Trimethylsilyl (3-methoxy-4-|(trimethylsilyl)oxy]phenyl)acetate #
J MW 326

Synond B ic acid, 4-hydroxy-3-methoxy, bis-TMS
Synon 5 Homovanillic acid, bis- TMS
Synon 6 Homovanillic acid, di-TMS
ExactMass
1 CAS#
NIST#

08 05 o4 02

1 Synon1 Benzeneacetic acid, 3-methoxy-d-[(trimethylsilyl)oxy]-, trimethylsilyl ester
Synon 2 Homovanillic acid (tms)
bord l
Synon.7 Phenylacetic acid, 3-methoxy-4-trimethylsilyloxy-, trimethylsilyl ester
Formula C15H26048i2
DB#
Comments

1
L

326.136963

37148-61-1

15286

39440

S. MARKEY UNIV. OF COLO. MED. CTR., DENVER, COLORADO, USA
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Figure 2.30: Contrived data II - 1st compound

differentiate between the four groups.

Among these 21, there is the compound syringic acid at 39.7m that was intended

to be different, as well as homovanillic acid at retention time 37.1m, which is

believed to be related to the group assignment and syringic acid.

2.5 Summary

GCMS deconvolution is a large-scale computational problem with significant bio-

logical interests. It also provides the potential for statistical modeling. Our model

provides accurate results with complete automation.
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Vs NIsT# 291991
Name: .
Inner: 0.964] score: 249
* specames
ER 1
| Score  inner:0.964[score:249
= o Name Trimethylsilyl 3,5-dimethoxy-4-(trimethylsilyloxy)benzoate
[ I Synon.1 Benzoic acid, 3,5-dimethoxy-4-[(trimethylsilyl)oxy]-, trimethylsilyl ester
] L Synon 2  Syringic acid d-tms
. . o 2 i = 4 F L ¥ Synon 3 Syringie acid-di-TMS
il i | _— Synond  Syringic acid, TMS
Formula C15H26055i2
B MW 342
ExactMass 342.131878
N CAS#  10517-29-0
NIST# 291991
| DB# 202500
° Comments NIST Mass Spectrometry Data Center, 1998.
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Figure 2.33: Contrived data II - 2nd compound
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Figure 2.35: Contrived data II - 2nd compound

We repeatedly use rank estimation based on random matrix theory to compute the
non-negative matrix factorization from small scales and eventually assemble them
to build up the entire matrix deconvolution scheme. Besides the pre-processing,
the total algorithm consists of 9 large steps: Sea-island learning, initial merging,
adaptive local NMF,| merging from local windows, global NMF, further merging,
shape checking, peak splitting, and feature selection. We successfully demonstrate
our model on 27 simulations with different settings in terms of 3 levels of chro-
matogram overlapping, 3 levels of replicate chromatogram perturbation, 3 levels
of random matrix noise. The results are compared with the free GCMS deconvo-
lution software AMDIS and our model outperforms it in every way. Besides, our
model provides a complete streamlined version of solution including simultaneous
learning of all samples which is crucial to identify compounds differentiating be-

tween disease groups.
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This work provides a R package gecmsDecon.

2.6 Future Work

1. Scalability for higher resolution data.
Higher resolution data becomes available and the computational capacity
needs to improve. Our current data is of column size 1000, the new machines
are able to generate data with much larger matrix columns. Some algorithm
steps will fail due to the memory ceiling. We have to adjust the program

for higher-resolution data.

2. The lack of library for high-resolution GCMS data.
Current NIST library for GC-MS data is outdated and revolutionizing the

whole library takes time and joint efforts from the whole community.

3. Random matrix behavior under non-negative matrix setting.
Needless to say, theoretical justification of some non-negative matrix proper-
ties itself is already challenging and quite often leaves no analytical conclu-
sions. Random matrix theory is developing at a fast pace, however, non-i.i.d
random matrix is hard to analyze. More theories regarding non-negative
random matrix would definitely benefit our model as well as other potential

applications.

4. Scientific applications.
We want to apply gemsDecon for more biological research and applications.
A great tool is only useful when the right people are using it to perform

exciting tasks.
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2.7 Main Theorems and Discussions

2.7.1 Random Matrix

Many random matrix theories regarding singular vectors (eigenvectors) can not
be directly applied to NMF due to non-negative constraints. However, they help
understand the similar process in non-negative random matrices. The rank de-
tection based on RMT is still legitimate to our problem. Here I summarize a few
related random matrix theories developed to justify and describe algorithm steps

of gemsDecon.

Theorem 1:

For any n x p random matrix )Zn =X, + P, =X, + > v} = X, + UOVT,
k=1

where [X,];; are iid rv.s, BE([X,]i;) = 0, Var([X,)i;) = —t—. UTU =

max(p,n) "

I,VI'V = 1. lim % =c. 0y >0 >--- >0, let ry be the largest subscript such

n—oo

that for 1 < k < 1o <7, 0 > /4. Let A > Ay > .- > )\, denote the singular

values of X,,. x, = ﬁ > 0;,- We have the asymptotic limit

1=r+1
N i \/(1+02)(mix;(20,c’1)+0ﬁ) 1<k< ro
e — =2 g = k (2.5)
P00, e 1+ y/min(c, 1) ro<k<r
1 min(n,p) t b t
min(n.p) =1 > 1< :/O fix, (t)dt " ; p(t; min(e, ™)),
’ i=r+1 ’
(2.6)
where
V2 = (1= VaR) (1 + Va2 - 2)
p(t;d) = — L 1=Vd<t<1+Vd (2.7
1 — min(cél)(Qmin(.l,cfl)—i-Gz) L
L<jk<ro,  [aj,u)f? —— PO mnie ) (2.8)
n,p—>oo,;—>c O j % k
1— min(21,c;1)(r'nin(c,1)+9,%) ] — k
1<,k <ro, ’<2~)j>vk>|2 % 62 (07 +min(1,c~1)) (29)
n,p—00, 2 —c 0 ] 7& k
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Proof: This theorem combines multiple theorems (Theorem 2.8, 2.9, 2.10) in

[ | (n < p). Results for n > p random matrix X,, can be derived from X7

Theorem 2:

For any n x p random matrix )?n =X, +PF =X+ > Gk(n,p)ukvg =X, +

i=1

UO(n,p)VT, where [X,];; are i.id r.v.s, F([X,]i;) = 0, Var([X,]i;)
lim 22 — ¢ Uty = [VIV = 1. lim 2 = c 6, > 0, >

n—oo VPO n—o00

let 79 be the largest subscript such that for 1 < k& < rg < r, /min(n,p){ >

At Let Xl > Xg > e > Xn denote the singular values of )?n

min(n,p)
1
min(n,p)—r ; ;Fl 5 Ai/(y/max(p,n)o) then
')\\/ \/(1+m1n n,p Ck (min(c,c—1)+min(n, p)Ck)
k a.s. ) min(n, p)Ck
max(p, n)o mp—eo.y—e 1+ /min(e, 1)
min(n,p) ~
1 Y
> (<)
mln(n, p) —-Tr P max(p’ n)a‘
t t
— [ w0t —L—— [ ttsminge, )i
0 n,p—>oo,%—>c 0
where

V2= (1= VaR) (1 + Va2 - )

pu(t; d) = — . 1—Vd<t<1+Vd
1 <j,k <,
11— min(c,l)(min(l,cfl)—‘rmin(n,p)g%) _
- 2 a.s. min(n,p)¢Z(min(n,p)¢Z+min(c,1)) J
(g, we) |” —————
n,p—)oo,%—)c 0 ] % k
11— min(l,c’l)(min(c,l)erin(n,p)Cg) _
(5, 00 [F —2 i (n,p)C (min(,p) i (Le- 1)) J
n,p%oo,%%c 0 ,] 7& k

Proof for case n < p:

X,=X,+P, = X+Z€k ukvk—\/_a Z

i=1 =1
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- > 0,

Hxn =

(2.11)

(2.12)

(2.13)

(2.14)



then, when n, p are big enough, % ~\/nG, let Y, = ﬁXm then E([Y,]:;) =
0, VCLT([Yn]i’j) = %,

X, = /po(Y, + Z VGl
i=1

we can apply Theorem 1 on random matrix Y, + > v/nyu,vf . Theorem proved.
i=1
Remark: This is the set-up of real data we encounter. Throughout the paper,

we assume this is the default model set up.

Theorem 3:

For any nxp random matrix )~(n =X, +P, = X,+> Hkukvg = X,+UOVT” where
i=1
p is finite, 71113010% — 00, [Xali; are iid rves, E([X,];;) =0, Var([Xa]:;) = +.

UTU = ILVIV = 1. 0, >0y > -+ >0,. Let \; > XAy > --- > \, denote the

singular values of )N(n, then

. VI+@ 1<k<r

My —— pr = (2.15)
e 1 r+1<k<p(ifp>r)

g 2 B g S 1<k<r  (216)

ks Uk n—00 0]%4—17 Uk Uk n—00 ’ - =T ’

Proof:
Results above could be intuitively derived from Theorem 1 by letting ¢ — 0,

however we do not have the condition that p — co. We derive our results through

determinant computation similar to | ]. Based on | ], non-zero singular
> o |0 . .
values of X are positive eigenvalues of matrix | _ , with the determinant
XT 0
formula

A B
det( ) = det(D)det(A — BD™'C) = det(A) det(D — CA™'B)
C D
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we have

0 X, 0 X, 0 Uevs
det(zlpqp — | _ ) =det(z14p — -
X0 X0 V,0U}r 0
0 X.| |u. oflo e]|ur o
= det(24p — -
XTI 0 0 V,[|le oo v
0 X, 0 ©
= det(2,4p — ) det( )
X o0 O 0
-1
0 6 ur o 0 X.| _, |U. 0
det( - (T — - )
e 0 0 VT X7 0 0 v,
0 X ¢,
— det(21,1, — ) x []67 x det(M,(2)) (2.17)
X 0 i=1
where
-1
ur 0 0 X.| ,|. of o e
Mo(z) = (Lo — ) - (2.13)
0 VT XTI 0 0 V,| |© o
n 0 Xn
Here we assume det(z1,,4,— ) # 0, in fact, det(z1,,4p— )=0
X7 0 X7 0

would correspond to non-zero singular values of noise X,,, which is the eigenval-
ues of XX, ﬁ I,xp. There are p — r eigenvalues 1 (if p > ). Intuitively,
the within-in-bulk singular values based on quarter-circle law, in this finite case,
¢ — 0, it is almost surely identical to 1. The rest singular values come from those

z that satisfy det(M,,(z)) = 0.

with the help of formula

-1
A B (A— BD'C)'  —A'B(D—CA'B)™! 219
C D —(D—CA'B)"'CA™"  (D—-CA'B)"! '
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UT2(221, — X, X1) U,  UTX, (21, — XTX,)"1V, 0 ©

VI(221, — XIX,)'XTU,  VI2(221, — XTX,)7'V, e 0
(2.20)

with XTX,, —> [, and when n is large,
n—oo

I 211
XnX;{ ~ Q g QT7 ZQ]n - Xanj; ~ Q ( ) g QT
On—p zzfn_p
(2.21)
=1, 1 1
(2L, — X, XD = Q |7~ Q" ~ Q= 1,Q" = =1, (2.22)
L] z z
22in—p
use the Lindeberg-Feller Theorem in | ] P27, we have
Ur'x,v, ==+ 0 (2.23)
n—0o0
Combine these results,
s 10 0 ot
det(M,(z)) —— det(|~* - )
nree 0 =4 et 0
1 z Lol 1
1 et I—oo)=T[(-— — — 2.24
Flilgh-e e ) [l - 2

Me= /1462 1<k<r (2.25)

The proof of |(ty, ux)|? is similar to the proof of Theorem 2.9 in | ], thus

skipped here.

Theorem 4:

For any n x p random matrix X, =X, + P, = X, + S Oe(p)upvl = X, +
i=1
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UO(n,p)V", where p is finite, lim 2 — oo, [X,];; are ii.d r.v.s, E([X.]i;) =0,
n—oo

Var([X,)i;) = o2, g&% =G UTU=IVTV =1. (>G> > (. Let

A1 > Ay > -+ > )\, denote the singular values of X,,, then

e P Vi+tpZ 1<k<r

HEAIN - (2.26)
Vo neo 1 r+1<k<p(ifp>r)
~ 9 a.s. pC;% ~ 2 a.s.
——1, 1<k< 2.27
|<uk7uk>| n—00 pclz + 1’ |<Ukavk>| n—00 9 — = r < )

Proof: the proof for this theorem is similar to that of Theorem 2, thus skipped

here.

Lemma 5 (Random Noise SD Estimator 7):
Given conditions in Theorem 2, we have the consistent estimator from | ]

for unknown o

1 Aime
&= 4T 5 (2.28)
max(p, n) Hmed mP—o0

Where fiy,eq is the median of quarter-circle law distribution, i.e. the x such that

S fimteey 1B)dt = 3

Proof: Since the rank of signal r is finite, as n, p grow big, median of all singular
values is asymptotically the median of the within-bulk singular values (r + 1 <
: . . . . 5 P

i < min(n,p)), together with Theorem 2, this median % — lmed- Re-

max(p,n)o

organize the equation we proves the lemma.

Remarks:

1. when p is finite, based on Theorem 4, pimeq = 1.
! r< 8]

LD (L TIp)2 = [2] and p is even (2.29)
V9I+pG 1 <k<r o.w.

P!

3
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L S\med
VT Bmed

2. When the i.i.d assumptions of X,, are violated, 6 =

In the latter two cases, using ¢ = will overestimate the o.

L 5‘m,ed

med

would also be a

bad estimator for variance.

Theorem 6 (Asymptotic Limits of Rank Estimators i and 7! ):
Given conditions in Theorem 2. py,---,p,, are the asymptotic limits of top

singular values over — M agin (2.10).

v/ max(n,p)o

min(n,p) N -
a) The robust rank estimator 77 = S~ 1()\; > m), where K41 18 @ constant.
i=1
k—1 1<;ﬁ—1<nmnk§%,1<k§r0
~rbt P r p1 < K < — P
(L — ’ pro. T = (1 Jmin(ee 1))

_ (14+4/min(c,c=1)) o1
o + (n TO) fpil ,U,(SL’)dSL’ (H_\/m) < Krank

Krank
(2.30)
Proof: By Theorem 2 and (2.10), we have asymptotic locations of p1,- -, py,
and the bulk boundary 1+ \/W . Compare them with K4, it is easy to see
first and second cases. The third case becomes impossible as for a constant K,qn

it will asymptotically be smaller than (1};—1\@ where p; is of magnitude /min(n, p).

min(n,p)
b) The consistent rank estimator 75 = Z 1 ( > 1+ y/min(c, c”
n A/ max (n,p o

where 6 = ——L_—_2med 59 in Lemma 5.
1/ max (n7p) Hmed

Acst

— (2.31)
7p—)C)O

Proof of this part is obvious by directly applying asymptotic limits of singular

values in Theorem 2.

Remarks:

1. The accurate rank estimation helps infer the hidden components. The robust

bt

rank estimator 7™ is likely to underestimate the true rank, but robust in many
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occasions. 7" on the other hand, could either underestimate or overestimate (Fig-
ure 2.36) the true rank when noise assumptions are violated. We use the robust
rank estimator 7% throughout the program and empirically K,qnir = 6 is a good
solution.

2. Although there is a risk of underestimating the rank rq using #7%, this estimator
is robust against violated assumptions. Especially for elements in X, that do not
t

follow i.i.d, e.g. truncated normal. Problem with 7¢°

the &, and this boundary 1 4 y/min(c, c™!) totally depends on the quarter-circle

is to estimate accurately

law, which might not follow if assumptions on X,, are violated.

3. Based on Lemma 5 remarks, when p < n, ¢ will dramatically overestimate
the o. Using 7" under this circumstance could result in underestimation (Figure
2.37) of the true rank r.

4. Although we want r, we can only accurately estimate the true ry, number of
true singular values 6; in P, that are greater than c¢'/* or (¢=)'/4, instead of true
r, number of all nonzero true singular in P,. However in our model, if n, p get big

enough, r will always be equal to rg.

Discussion 7 (Window Merging Improves Spectrum Estimation):

Similar to conditions as in Theorem 2. Assume a random matrix of size n x

Do, )2'7(12) = X7(12) + Pf’ and an extended random matrix of size n x p, X,, =

[5(7(11), xP X,(LS)], P = eV ® The singular value and vector estimation im-

proves from XP to X,,. More specifically, in terms of the biases of singular value

pr in (2.10), singular vector @ and ¥y to the true parameters (i, ug and vy.

1

c= 1/c1+1/ca+1/cs3

< Cy.

As we extend the window from Xq(f) to X,,.
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Distribution of singular values of (nonegative sy, cx) X100x150 = > meV/100 15(]5;;(:[ + X
k=1
7% cutoff K,qnr = 6. X truncated. noise sd %*signal. Gt =777
M =8, 1y =T, 13=0, 11 =05,15=4
6, = 2288, 6, = 496, 03 = 398, 64 = 318, 65 = 168. minimum out-of-bulk § = 11.1

_ S cutoft = 97 singular values <= Ay /frank
o5t cutoff = 3 singular values > Ay /Kpank

Frequency

T T T T 1
0 500 1000 1500 2000

Figure 2.36: Rank estimation. In this example, true r = 5, noise sd is proportional

to the true signal. Estimation 7" = 3, 7¢¢ > 10.

Distribution of singular values of (nonegative sy, cx) Xiooxs = Z NV 100 * 5%(:[ +X
k=1
7 cutoff Kyqnr = 6. X truncated. 65 = 77.5
m = 80, 72 =70, n3 = 60, 14 = 50, 15 = 40
0; = 4106, 0, = 919, 05 = 768, 04 = 491, 05 = 273. minimum out-of-bulk § = 1.06

g #8 cutoff = 2 singular values <= A1 /Krank
sost o

75 cutoff ® 3 singular values > Ay /Krqnk

As A Az A AL

1.0

0.8

Frequency
0.6

0.0

r T T 1
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Figure 2.37: Rank estimation. In this example, p = 5 < n = 100, true r = 5,

estimated 7" = 3, 7ot = 2.
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The error ratio for the singular value limits ¢, ( = L) satisfies,

‘ pk— \/min(n, p)x)/+/min(n, p)
\/mm (n,p2)Ck) /\/mm (n, pa)

(14 min(n, p)Ck)(mln(c ¢~ 1)+min(n, p)Ck -
\/ min(n,p)G} — v/ min(n, p)G mln(n P2)

- <1

\/(1—&-min(n,pg)(£)(min(cz,c2 )+min(n,p2)¢?) \/mck \/ Hlln n p)

n,p—oo V'

min(n,pz)C,c

(2.32)
The error ratio of left singular vectors satisfies,

1 — [(ag, ug)|”
1= (@, u) |
~ min(c, 1)(min(1, ¢') + min(n, p)¢7) min(n, p2)¢; (min(n, p2)¢; + min(cz, 1))
~ min(cy, 1)(min(1, ¢; ') 4 min(n, py)¢Z) min(n, p)¢2(min(n, p)¢2 + min(c, 1))

<1 (2.33)

The error ratio of right singular vectors satisfies,
1 —[(@[(pr+ 1) : (pr+ p2)], vel(pr + 1) = (o1 + p2)])|?
L= @07
min(1, eV (min(e, 1) + min(n, p)CZ) min(n, pa)G2(min(n, po)¢2 + min(1, ;)
™ min(1, ;) (min(e, 1) + min(n, p2)C2) min(n, p) C2(min(n, p)CZ + min(1, 1))
<1 (2.34)

v (2)

The difference between spectrum estimates in small window X, and extended

window X satisfies
1> |y, i)

= min(n,p)fg(min(n,p)gz + min(c, 1))

- min(cy, 1)(min(1, ¢; ') + min(n, py)¢?) B
tain(n, o) CE{omin (. p2)C2 + min(cz, 1)

\/min(c, 1)(min(1, ¢=1) + min(n, p)¢7) \/min(CQ, 1)(min(1, c; ') + min(n, p)¢?)

min(n, p)¢; (min(n, p)¢ + min(c, 1)) || min(n, p)¢; (min(n, p)¢f + min(cs, 1))
(2.35)
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This lower bound could be much tighter, because of the dependence of XT(LQ) and

X,,. However, it is difficult to compute based on correlated random matrices.

Proof: The error formulas are derived using asymptotic limits of singular val-
ues and vectors in Theorem 2. The proof of the inequality is through direct
application of these formulas in three scenarios 1) n < py < p. 2) pp < n < p. 3)

p2 < p < n. Here we only show the first scenario,

(oo — i)/ G RGHD G
(0 = V@)V G+ DE+ R -G

| <1 (2.36)

1 — (g, up)]*  c(nGp + )

= <1 2.37
L= [, w2 ea(ngg +c) (230

L—[(@](pr + 1) : (pr +p2)oelpr + 1) - (0 +p2))I° e+ 0

L= 0 o) P T

1> (i, @) > (2.39)
Lo cdang) o e4n@) o clng) el + ng)
nGi(nGi +c) nGi(nGE +c2) \ nGngi + ) \| nGE(nGg + c2)

(2.40)

Discussion 8 (Model Behavior during Sea-island Process):

During sea-island learning, our model sequentially compute each scan to the pre-
vious to decide whether it represent a new spectrum or not. We show that this
process can recover the true model with false identification only for scans whose

spectrum overlapping with others and its intensity is too small to stand out.

Procedure:

Average of normalized previous scans in the current cluster (same spectrum scans)
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starting at jo (initialized as 1, to be updated during the process),

I
Upre = — X ~.72 (241)
" J—Jo;EHX,iH

A key step of the process computes for a threshold kg (usually € [0.9,1)) if

Upre X
[lprel | HXJH

( ) > (2.42)

then the scan j is assigned to the current cluster, otherwise it starts a new cluster.

Statement:
o(w) w) + Zekw)ul(;u Ukw . (243)
v _ v (2 (W)
X = [X.J’ 7X.,j y " 7X_,j ] (244)

Let £(7) denote the index i of X corresponding to that in window X9, i.e.

X,= X(Z”;)i (0)- Given conditions in Theorem 4 where p is finite (a cluster is

usually of size smaller than column size), we show that

P 1 . . Xi X m
—>+(]_]0+2 = = )
G— o) L RATRA

||upre||

= ;)2 (] — Jot+ (2.45)

(] —Jo
> e ol e (i) o 1 (m) fug ) T

2j0<7;<zm:<j1 L w;) "om (W) >
B 02+Z( N2o e (0)]2y [o? + Z( 2o [ (m)2

<1 (2.46)

The equality approximately holds, when all j, : (j — 1) scans belong to one
spectrum and in comparison i( (w20, 1€(3)]2 and Z( (wm) )2, (m) (¢ (m)]2 are

k=1
much larger than o2.
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Mlustration:
We assume the sample data is composed of two overlapping spectra. Assign all

overlapping scans to X,.

X = [X1, X5, X3 (2.47)

Xi = X1+ 0Wu oM, X = Xo + 020 [0P]T + 0P u v

Xg = X3 + 053)/&2 [/Uég)]T (248)

Scan index: 1727”' yP1,P1 +17p1 +27 » D1 +p27p1 +p2+17 y D1 +p2 +p3

Truth: all scans in X; and X3 are sea scans (rank 1), and all in X, are island
scans.
Estimation: we are able to correctly identify most sea scans in X; and X; and

two ends of X, are likely to be mistaken as “sea”.

We show that (Figure 2.7)

1 If1<j<pi,

Upre X-j
[FeprelI” [|X

e (@) ot eI E)] !
— > (2.50)
IS o (@it or+ (g e

This value would be very close to 1 which shows our algorithm in general

( ) — (2.49)

will not miss identify clean spectrum scans.

2. It j=p+1,
upre X »J
2.51
Tl TR o
18 GV P )]0 €G] (2.52)

PUS Voo + (ol ey of + S el !
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If v{?[£(5)] is still too small, this ratio would still be very close to 1, which
means the beginning of intersection between two spectra is generally hard

to be detected.

CAEpr 1< < pi+po,

re X
(U Jy (2.53)
[[uprel|” || X 1]

1 & cl eI
j_lZ 5 .
= o (el ¢02+2k (P
1 2 (¢l [<>]v§?[5<y>] ) 1

[ltapre |

I o+ T R o + TP PPl

+

(2.54)

as j increases, 1)%2) [£(7)] gets smaller, véQ) [£(7)] gets bigger, both terms of the

summation above will decrease. With enough scans from X @ this inner
product will decrease below a certain threshold, which is what we use to
determine an occurrence of island (a scan where spectra overlap). Before
this happens, a few island scans are misidentified as continuing sea

scans from the previous window.

If the inner product below the threshold, then we denote j as jg, let j = jo+1,

X
Uppe = =22
Pre T 1X ol

Upre X

<||upre|’ ||X]||> (255)
Ly 2 (PPl G) |
F=00 = Jo2 152 (@2, @12y [o2 4+ 52 (P2 @ e )12 |[tprell
o 02 + 2 (PP e 02 + X2 (PP G))
(2.56)

This new inner product is still very likely to be below threshold and forming
a new island because both spectra have relatively large intensities in this

region. Thus it is very likely to observe a few consecutive islands in this
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stage. In the end of this window, it is possible spectrum 2 totally disappears
and spectrum 3 dominates. This is where misidentification most likely

happens.

4. If 3 > p1 + p2 + 1, similar to case 2 and 3, we just briefly mention when
J>pi+p2+1landjo>p + 1.

Upre X

Ttgrel TR0
L Pt P le )]0l e G)]
I=d0 5o+ S (@@ ot + ()P e
R (G20 1€ )]0 € )] 1

+ )
I=0 i Jor+ (@ Rl ot + (g el
(2.57)

This inner product is mostly likely going up as j increases so that we will

eventually assign all remaining clean spectrum 3 scans into one cluster.

Proof of the statement:

S(w) w)+29 uk Uk .7 X:[X(l-) @ ... ’X(;’V)] (2.58)

BV BV

£(i) denotes the index i of X corresponding to that in window X (),

o (w) o (w)
Xy XY n
X% r

\/n[X“”)]TX + 3 G + 1 5 o X

X"/ /n
P \ ] /\/_ (259>

n—00 \/02+é<clgw))zvl(€w)[§(j)]z
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For wy # wq or j # m,

< X_(f;-}l) X-(,%2)
o (w1) 7 | v (w2)
X5V 11X

)
1

\/auzﬂ“’”) “Ie())]2 Jcﬂﬁf( )20 [ (m))?

5]

1 - v
< X(wl)X(’wQ + = Zem (wg)[£< )]L)((il}l)]T,u’(C 2)

n
+ 29““ Xl + 5 3 ) vli?”[éu)]v,i;”’[&(mn[u@”]iﬁué?))
k1 ka2
> GG e o [ m) [
N fke (2.60)

\/a2+z< D)2 [¢(5)]2 \/az+z< )20 [ ()2

The proof of this step uses P27 | | the Lindeberg-Feller Theorem.

Proof of the illustration:
Here in our set-up, 7, = 1, 7y, = 2, 7y, = 1. Apply (2.60) to each case above we

prove the illustration.

2.7.2 Non-negative Matrix Factorization

Theorem 9:

If rank of s nonnegative matrix P is r, P = SiueClrue, where non-negative Sp.e
is of size m x r, non-negative Cl.,. is of size r x p, and P has r — 1 different
non-overlapping (single component with coefficient instead of linear combination

of components) columns (or rows) then

nX’V‘yC’I‘Xp

; min ||P — SC||3 + Z 1C jlo+ Z 1S:.]o
J 1
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would uniquely recover Siue, Chrue-

Proof:

Let r = 2, it is easy to see without noise, SyeCyrue achieves the minimal || P —
SC|3, so does S eQTQCrye, @ is a 2 x 2 orthonormal matrix (rotation matrix
when r = 2). In many cases, optimizing ||P — SC||3 alone would not give a unique
non-negative solution. However,

1. If P has non-overlapping columns. Let Cy = [c], 01.p,], Co.. = [014p0, €3 |-

Po
Among all possible solutions only [Siye| 1 can minimize ) |C ;| = p — po and
j=1

P
[Strue] 2, minimize Y~ |C ;lo = p — po. Thus St would be learned. After

J=p—po+1
this, solution of C' is unique, which is Ciye.

2. If P has non-overlapping rows. Let S1 = [s7,01um0]7, S2 = [014ng, 52]7 -
no n

Similar to above, only Cy.e can minimize Y |S; [o =no and >, |S;. o = no.
=1 i=n—mno+1

Given Cypye, we can solve S = Siye

Remark. We do not use this optimization framework in the program because
it adds complexity to the computation. In the future work, it is possible to add

computationally feasible penalties (L, etc.) to get more sparse NMF results.

2.8 Lemmas and Related Theorems

2.8.1 Random Matrix Lemmas

Lemma 10: For a n x p matrix X,,, where [X,,];; are i.i.d r.v.s, E([X,];;) =

w, Var([X,]i;) = 02, u = [\/Lﬁ)\/%? 7\%]T7 v o= [\/Lﬁ,\/%a,--- ,\%}]T, then, as
n or p — 0o
(u" X0 — \/npu) EN N(0,07) (2.61)
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Proof:
n p n _
Assume p — o0, ' X, v = LY LY X, = L DX, because for 0,(1) in
| \/ﬁ 7;21 \/ﬁ J; 5] \/ﬁ 1:21 \/_ ) p( )
terms of p, /pXi. = N(y/pp,0?) + 0,(1), in terms either both n and p, we have

NG ; VPXi. = N(y/mpp, 02) + o,(1).

Lemma 11 (A Collection of Some Useful Results):
For a n x p matrix X,,, where [X,]; Sy N(0,0%), and a p X r deterministic
matrix V' = [vy, v9, -+ ,v,], n X r deterministic matrix U = [uq, ug, - - - , u,], then

XX, ~o W(0P Lp,n),  Xo XL ~ W(0? Lsn, D) (2.62)

W() is a Wishart distribution.

vivy vlvy -0 ol

vlvy vlvy o ol
VIXTX,V ~ W VTVn), VIV =|7*" 27 Tl (263)

viu vfuy e vl

n P
uf Xvy ~ N(Y i %y o), %), (2.64)
k=1 k=1
marginally,

v XE X0 ~ (viv)o?x2, 1<i<r (2.65)
ul X X u; ~ (uiTui)UQX;Q) 1<i<r (2.66)

This can also be derived through the n-dimension r.v. X,v; ~ N(0, viT v;0?) and

that v XTI X, v; ~ (vv;)0?x2.
Yij = vf X, Xpv;

n—1

|yij| 2
F(%)\/Q"*ﬂ(l — pi;) (@i |[|v;] [+

K ( i ) exp PisYy ) (2.67)

0wl (L = o) o?|[illlo;]1(1 = p3))

1

ot |[vsl Pl | *(1 = pfy)

B

~( )
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where p;; = K n1 is the modified Bessel function of the second kind.

HvleleH’
Pij n/ 1

EY;)=0+2x * —
’ o?|[villllol[(1 = p5) 27 o lval Pl[o;] (1 = p7))

= npyl|villl[v;llo® = no*vi v; (2.68)

2n(1 + 2(0'2 v le 1—p2. )2/0-4 0|12 Ul_ 2(1_,2. )
Var(Yy) = Toellllo; 102/ o il P P43

ot vil[2[]v;112(1-p3;)
=2n (1+pz]) 4“le HU]H2 _2n(1+<|| H|| H) )0—4‘|Ui|‘2”1)j“2
.7

= 2na" (|[vil P[lvs]]* + (v v;)?) (2.69)

If we let U and V' be orthonormal matrices, the formula is simplified to

n—1
Y = o' XT X0, ~ | > K (Wil (2.70)
T ) anlﬂ(O-Z)nJrl 7 g2

—
3

Similarly,

p—1
Zi; = ul X, X ~ 12| K@(@) (2.71)
L(E)y/2r-tm(a?)ptl 2 0

iid o2

Lemma 12: For a n x p matrix X,, where [X,];; ~ N(0,%), and a

p X r deterministic matrix V' = [vy,vq,- -+ ,v,], n X r deterministic matrix U =
[u17u27 o 7ur]7 then
Y =VIXTX,V -2 (VTV)o? (2.72)
n—oo
Proof:

Direct application of Lemma 11, with variance —2 instead of o2. The diagonal
elements of Y, v;‘r X,:f X, v; ~ v len - N v v;02. The off-diagonal elements have
E(Yy) = n%olv; = o] vj0?, Var(Yy) = 2% (||oi| P|lo;|* + (v v;)?) = 0, thus

P T 2
Y;j—>Ui’UjU
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2.8.2 Other Existing Theorems in the Literature on Uniqueness of

NMF

Theorem of [ /:

A non-negative matrix P has a unique NMF solution, if it satisfies the 3 conditions:

e Generative model. The actual data P,

P = Struectruea Strue > 07 Otrue > 0 (273)

e Seperability. Every spectrum has their unique non-zero masses.
p
Vi<m<n, Y 1[Spuemi>0) < 1. (2.74)
j=1

Suppose there are r spectra in Sy, forming G groups with equal size r/G.

Strue = [Siher Sber -+ 54D ] (2.75)

true»

e Complete Factorial Sampling. For each group of spectra, there is only one
spectrum included and each group has to be present, so that there are G'/¢
possible combinations.

Let ¢, be the spectrum index in Sy which belongs to group g. For any

i1,12, " ,iq, there exists 1 < j < p, that Cj, ; > 0,V1 < g < G.

Remark: The theorem is a sufficient condition which is easily violated in our data,

where spectra overlap.

Definition: A simplicial cone generated by vectors {¢1,¢s, -+ ,¢,} is T = {zx :

T

Tr = Z quf)j,Cj Z 0}

j=1
Definition: An extreme ray of a convex cone I' is the ray R, = {cz : = > 0},
where x can not be a combination of two points which don’t belong to the ray.

Definition: Let A* denote the dual to A, A* = {z : 27a > 0,Va € A}.
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Theorem 1 of | /:

NMF on P = SC is unique if and only if A = R is the only simplicial cone with

r extreme rays such that span™(ST) C A C span™(C)*.

Remark: The condition is extremely hard to check in practice, is NP-hard as

Remark 1 in | ] and | | pointed out on NMF rank determination.
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