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Abstract of the Dissertation

Statistical Analysis of RNA-Seq Alternative

Splicing Data and Gas Chromatography-Mass

Spectrometry Data

by

Yi Yi

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2016

Professor Yingnian Wu, Chair

With the blossom of bio-chemical technologies in recent years, large and diverse

data from every branch of biology has been generated. These data contain in-

sightful truth of science and always present challenges to modeling, computation

and interpretation. In this work, I present statistical models for two types of

bioinformatic data: RNA-Seq alternative splicing and GCMS metabolomics. R

packages grMATS and gcmsDecon are available for download.

The next-generation sequencing produces rich RNA-Sequencing data, where we

observe alternative splicing events. Replicate multivariate analysis of transcript

splicing (rMATS) has shown advantages over other existing methods for detection

of differential alternative splicing from replicate RNA-Seq data. However, the

current framework of rMATS only deals with two-isoform splicing events, which

limits its usage. In this paper, we present a generalized rMATS framework to

deal with multiple isoform splicing events and the model could also be extended

to compare differential splicing between multiple groups. We provide a general-

ized likelihood ratio test where the null hypothesis allows user-defined threshold

of splicing change for isoforms. We show that our test statistic follow a mixture
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of chi-square distributions where the coefficients depend on values of the true pa-

rameters and a least favorable test statistic is computed when true parameters

are unknown. We show efficacy of our model in both 27+3 simulations and a real

dataset. Due to the huge demand for methods on multiple isoform RNA-Seq data,

our model will be useful in RNA-Seq research projects.

As a collection of metabolic end-products, metabolome reflects the overall ac-

tivity of the metabolic network and has been playing an important role in modern

bio-chemical researches. Monitoring metabolites and relating their changes to the

influence of other factors is a major scientific interest. The technology of Gas

Chromatograpy-Mass Spectrometry (GCMS) produces from biological samples

a metabolomic data type where each metabolite is broken into different masses

(their relative proportions form a mass spectrum s) and co-elute within a reten-

tion time range where the spectrum is unchanged. This unique signature data

structure enables individual metabolite identification and allows library construc-

tion for the whole metabolome. However, GCMS is unable to clearly separate

different metabolite elutions, which poses a challenging problem of deconvolution

and library matching. In addition, studies of metabolome usually involve mul-

tiple biological samples in order to understand which metabolites are related to

diseases. Building the multiple correspondence across all samples further compli-

cates the task. We propose an automatic rank-based non-negative matrix factor-

ization model to streamline the spectral deconvolution, multiple corrspondence,

metabolite selection and library matching. We apply the program on 27 sim-

ulation datasets as well as 2 real contrived datasets. All results show superior

strength of our model over existing software.
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CHAPTER 0

Background

We live in an era when biological technologies are growing at a rocketing speed

(Figure 0.1). Ever since the 70s, this industry has been through countless booms

and busts, yet not showing any sign of stopping. The technology hardware and

analytical software are constantly innovating over themselves.

Figure 0.1: Biotech global sales trends and future. Source: Internet.

A simplified version of biology could be divided into four levels and categories

(Figure 0.2), my work of RNA-Seq alternative splicing and GCMS deconvolution

happen to fall into two of these four categories. As broad as the category names

themselves are, this dissertation only covers a tiny fraction of all possible topics

regarding RNA (Figure 0.3) and metabolites (Figure 0.4).
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Figure 0.2: Four levels of biological world. Source: Internet.

⇓

Figure 0.3: RNA topics. Source: Internet.

Figure 0.4: Metabolomics topics. Source: Internet.
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CHAPTER 1

grMATS: Statistical Modeling and Testing for

Detection of Differential Alternative Splicing in

Multiple Isoforms Using RNA-Seq Data

1.1 Introduction

The RNA sequencing (RNA-Seq) technology has been widely used for its powerful

quantitative profiling of alternative splicing. As the cost of sequencing decreases,

more and more replicate RNA-Seq data becomes available. Our interest here is to

decide whether the isoform probability ψ{If}
differ between groups (usually case

and control). A simple way of doing it is to pool all replicate data to fit one

multinomial distribution. However, there are two issues unaddressed. First, since

biological replicate comes from different patients, it is not wise to assume one sin-

gle multinomial model with fixed parameters. Pooling loses individual information

and those replicates with small total read counts would be under-represented in

the estimation. Secondly, each replicate is likely to have its own baseline isoform

proportions ψ’s perturbed on its group level ψ{If}
.

Based on a random-effect binomial model, rMATS [SPL+14] detects differential

alternative splicing using RNA-Seq data of genes with two isoforms, and outper-

forms other existing methods with no such random effects. However, many genes

have more than two isoforms (Figure 1.1), a more general model is in great de-

mand.
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(a) 2 isoforms (b) 3 isoforms

Figure 1.1: Alternative Splicing

The model we propose in this paper is a generalization of rMATS in terms of

three aspects. First of all, we extend the 2-isoform 2-group model to any number

of isoforms and groups. The random-effect model assumes in the first layer where

multinomial logit transformation mlogit(ψIf ) ∼ N(mlogit(ψ
If

), σ2) and in the sec-

ond layer where read counts R{If}|ψ{If} ∼ MN(R,ψ{If}). Secondly, the hypoth-

esis testing framework is flexible to incorporate composite hypotheses of isoform

probabilities between groups or within groups, i.e. |ψ
g1,If
−ψ

g2,If
| ≤ ∆ψ,∀f, g1, g2.

Thirdly, besides the detection of significant genes, we identify which particular iso-

forms are significantly different between groups by comparing for each individual

isoform probability ψ
If

, their unrestricted estimates between groups ψ̂
g,If

and

testing with marginal hypotheses.

The accurate estimation of composite likelihood-ratio test distribution is essen-

tial for RNA-Seq data with multiple isoforms and groups. LRT statistic with

equality constraints asymptotically follow χ2 with degree of freedom as number of

constraints. However, when the constraints become inequalities, the conventional

LRT statistic distribution no longer holds. [Sha88] discusses LRT with various
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types of cone constraints on the parameter space. [Che54] describes how the LRT

with true parameter lying on constraint boundaries could be approximated by

LRT with only cone constraints. [Sha87] defines and shows how the space around

boundary point could be approximated by a cone. In our model, we combine these

results and give the exact asymptotic composite LRT statistic distribution, which

is a mixture of χ2 with highest degree of freedom as the number of non-trivial

inequality constraints.

We perform 27+3 simulations differing in terms of number of replicates, number

of total read counts and logit variance levels. The model performances increase

as the number of replicates increases and as logit variance decreases.

The model is also tested on the real dataset Hypoxia consisting of 10804 multiple-

isoform genes from 3 replicates in control group under 20% oxygen and 3 in case

group under 2% oxygen oxygen. With FDR cutoff 30% and isoform proportion

difference ∆ψ = 1%, grMATS identifies 671 genes with signifiant APA site shifts.

Many of these genes are previously identified to be related to Hypoxia conditions.

1.2 Model

The RNA-Seq data consists of read counts from unpaired replicates of multiple

groups, where each replicate has its own multiple-isoform read counts. Their total

counts are usually different and assumed constant.

Notations:

n: gene index. 1 ≤ n ≤ N . g: group index, 1 ≤ g ≤ G, G ≥ 2. k: replicate

index, 1 ≤ k ≤ Kg, the total number of replicates in group g. If : isoform index,

1 ≤ f ≤ Fn, total number of isoforms for gene n. {}: The full set of values

5



spanning all possible indices inside it. e.g, {If} means {I1, ..., IF}.

1.2.1 Hierarchical Model

In order to identify the multiple isoform proportion differences and address the

random replicate effect at the same time, we propose a two-level hierarchical model

with first layer as random replicate isoform proportions ψ{If} and second layer as

the multinomial distribution based on the replicate isoform proportions.

For simplicity, we omit gene index n here. For k-th replicate of g-th group,

f -th isoform, let Rg,k,If denote the read counts, Rg,k =
F∑
f=1

Rg,k,If is the total

read counts of all isoforms in the gene n, considered as a non-random constant,

µ
g,If

= mlogit(ψ
g,If

) is group-level logit value, µg,k,If = mlogit(ψg,k,If ) as the cor-

responding random replicate logit value centered around the group-level logits.

pg,k,If =
lIf

ψg,k,If∑F
f=1 lIf

ψg,If
is the isoform probability ψg,k,If adjusted by isoform length

l{If}. More details see appendix Logit Transformation .

Rg,k,{If}|ψg,k,{If} ⇐⇒ Rg,k,{If}|µg,k,{If} ∼MN(Rg,k, [pg,k,I1 , ..., pg,k,IF ]) (1.1)

We assume the replicate multinomial logit follows normal distribution,

µg,k,If ∼ N(µ
g,If

, σ2
,If

), 1 ≤ f ≤ F − 1 (1.2)

If F = 2, this model reduces to rMATS.

1.2.2 Likelihood Function

Omitting the gene index n and group index g. Combining the prior likelihood in

(1.2) and conditional likelihood in (1.1) we have the joint likelihood, with which
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we compute the marginal likelihood of replicate k

P (Rk,{If};µk,{If}
, σ2

k,{If})

=

∫
P (Rk,{If}|ψk,{If})P (ψk,{If})dψk,{If} =

∫
P (Rk,{If}|µk,{If})P (µk,{If})dµk,{If}

=

∫
exp(h(µk,{If};µ{If}

, σ2
{If}))dµk,{If} (1.3)

where the logarithm of the joint density is

h(µk,{If};µk,{If}
, σ2

k,{If})

= log(
Rk!∏F

f=1Rk,If !
) +

F−1∑

f=1

Rk,If log(lIf e
µk,If ) +Rk,IF log(lIF )

−Rk log(
F−1∑

f=1

lIf e
µk,If + lIF ) +

(
F−1∑

f=1

−1

2
log(2π)− 1

2
log(σ2

If
)−

(µk,If − µIf )
2

2σ2
If

)

(1.4)

In order to compute (1.3) without the integration, we use Laplace approximation.

Theorem 1 [RYY00]:

Suppose µ ∈ RF−1, µ̂ maximizes h(µ), then when R is big enough,

∫

RF−1

exp(h(µ))dµ ≈ (
√

2π)(F−1)| − h(2)(µ̂)|−0.5 exp(h(µ̂)), (1.5)

where h(2)(µ) is the second-order derivative of h(µ). Details see Laplace Ap-

proximation .

Apply Theorem 1 ,

P (Rk,{If};µ{If}
, σ2
{If}) ≈ (

√
2π)F−1| − h(2)(µ̂k,{If})|−0.5 exp(h(µ̂k,{If})) (1.6)

where µ̂k,{If} = argmax
µk,{If }

h(µk,{If};µ{If}
, σ2
{If}).

We assume independence of read counts between genes, groups and replicates.
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With the gene index n and gene index g, the full likelihood function for n-th gene

is,

L(µ
n,g,{If}

, σ2
n,g,{If}) = P (Rn,{g,k,If};µn,g,{If}

, σ2
n,g,{If})

=
G∏

g=1

Kg∏

k=1

P (Rn,g,k,{If};µn,g,{If}
, σ2

n,g,{If})

≈
G∏

g=1

Kg∏

k=1

{
(
√

2π)F−1| − h(2)(µ̂n,g,k,{If};µn,g,{If}
, σ2

n,g,{If})|
−0.5

exp(h(µ̂n,g,k,{If};µn,g,{If}
, σ2

n,g,{If}))

}
(1.7)

Optimization on µ
n,{g,If}

, σ2
n,{g,If} should be applied to the smallest unit if pos-

sible for computational simplicity. In our case, we should optimize objective

likelihood per gene&group (n, g, {k}, {If}) for unrestricted optimization, and per

gene (n, {g}, {k}, {If}) for constrained optimization.

1.2.3 Composite Likelihood Ratio Test

Our interest is to test differences of ψ{If}
between all groups {g} for one gene

n. A typical problem of interest is to see if there is any isoform that satisfies

inequality |ψ
1,If
− ψ

2,If
| > ∆ψ instead of ψ

1,If
6= ψ

2,If
. To solve this problem, we

use composite likelihood-ratio test.

We note the feasible space for σ2
{g,If} as Σ, where they take positive values, ψ{g,If}

as Ψ, and µ{g,If}
as M. Then

Problem:





H0 : ψ{g,If}
∈ Ψ0(⇔ µ{g,If}

∈M0) And σ2
{g,If} ∈ Σ

H1 : ψ{g,If}
∈ ΨC

0 And σ2
{g,If} ∈ Σ

(1.8)

l(µ{g,If}
, σ2

{g,If}) = log L(µ{g,If}
, σ2

{g,If}) = log P (R{g,k,If};µ{g,If}
, σ2

{g,If})

(1.9)
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LRT test statistic for gene n:

D = 2

(
sup

{
l(µ{g,If}

, σ2
{g,If}) : µ{g,If}

∈M, σ2
{g,If} ∈ Σ

}

− sup
{
l(µ{g,If}

, σ2
{g,If}) : µ{g,If}

∈M0, σ
2
{g,If} ∈ Σ

})
(1.10)

Usually we let

Σ = R
G∗(F−1)
+ , M = RG∗(F−1), Ψ = {ψ{g,If} : µ{g,If}

∈ M}, Ψ0 = {ψ{g,If} :

∀1 ≤ g1, g2 ≤ G,∀1 ≤ f ≤ F, |ψ
g1,If
−ψ

g2,If
| ≤ ∆ψ, and ∀1 ≤ g ≤ G,

F∑
f=1

ψg,If =

1}, M0 = {µ{g,If} : ψ{g,If}
∈ Ψ0}

Let θ denote a parameter vector of dimension m = G(2F − 2),

θ = [µ
1,I1
, µ

1,I2
, · · · , µ

1,IF−1
, · · · , µ

G,I1
, µ

G,I2
, · · · , µ

G,IF−1
,

σ2
1,I1
, σ2

1,I2
, · · · , σ2

1,IF−1
, · · · , σ2

G,I1
, σ2

G,I2
, · · · , σ2

G,IF−1
]T (1.11)

with the constrained space as S = M0 × Σ and its complement as Sc = Mc
0 × Σ.

Problem:





H0 : θ ∈ S
H1 : θ ∈ Sc

D = 2

(
sup

θ∈S∪Sc
l(θ)− sup

θ∈S
l(θ)

)
(1.12)

Constrained Parameter Space

The constraints on ψ’s are usually written as a series of pairs of isoform probability

difference inequalities for each isoform If in given group g1 and g2 smaller than

some threshold ∆ψ.

|ψ
g1,If
− ψ

g2,If
| ≤ ∆ψ ⇐⇒





sg1,g2,If (θ) = e
µ
g1,If∑F−1

f=1 e
µ
g1,If +1

− e
µ
g2,If∑F−1

f=1 e
µ
g2,If +1

−∆ψ ≤ 0

sg2,g1,If (θ) = e
µ
g2,If∑F−1

f=1 e
µ
g2,If +1

− e
µ
g1,If∑F−1

f=1 e
µ
g1,If +1

−∆ψ ≤ 0
(1.13)

This constrained parameter space for ψ is illustrated in Figure 1.2 and the corre-

sponding logit µ space is illustrated in Figure 1.3. Obviously, a boundary point
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Figure 1.2: G = 2, F = 2. Constrained space for isoform probabilities. Same

isoform different groups.

regarding isoform If inequalities can only locate in one of the constraints above.

We do have non-negativity constraints on σ2
g,If

. However, asymptotically the 0

is never to be touched and the MLE estimates of σ2
g,If

are not affected by non-

negativity constraints. Thus we do not need to include them in the constraints

above. It is also possible to have other constraints on σ2
g,If

, but it is usually not

of interest. The constrained space in (1.12) can be written as

S = {θ : sg1,g2,If (θ) ≤ 0, 1 ≤ f ≤ F, 1 ≤ g1, g2 ≤ G}, (1.14)

Let Ξ denotes the constraints where true parameter θ0 is located on the boundary

Ξ = {([g1, g2], If ) : s[g1,g2],If (θ0) = 0, 1 ≤ f ≤ F − 1, 1 ≤ g1 < g2 ≤ G} (1.15)

[g1, g2] represents one the inequality boundary, either g1, g2 or g2, g1. p = |Ξ|,
m = |θ0| = G(2F −2) and because of the irrelevance of the order of elements in Ξ,

we let {1, · · · , p} denote their indices. The boundary space of θ0 is {θ0 : si(θ0) =

0, 1 ≤ i ≤ p}. Write

Q = [s′1(θ0), ..., s′p(θ0)]T (1.16)

10



Figure 1.3: G = 2, F = 2. Constrained space for logit values. Same isoform

different groups.

a matrix of p×m, where s′i(θ0), 1 ≤ i ≤ p is the gradient of si(θ) at θ0.

“Nominal” Replicates

Case 1. If K1 = · · · = KG, then “nominal” replicates 1, · · · , K are i.i.d as

P (R{g},k,{If}; θ), the likelihood function is,

L =
K∏

k=1

P (R{g},k,{If}; θ) (1.17)

Case 2. The orders of replicates do not matter since all of them are independent

with each other.

If K1 = c1K,K2 = c2K, · · · , KG = cgK, c1, · · · , cG are integers,

L =
K∏

k=1




G∏

g=1

kcg∏

j=(k−1)cg+1

P (Rg,j,{If}; θ)


 (1.18)

Case 3. Other forms of replicate number does not affect the parameter estimation

of θ, but will require additional approximation in derivation of the asymptotic

distribution of likelihood ratio test statistic.
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We derive the exact asymptotically distribution of LRT statistic D in (1.12) based

on asymptotic theories of maximum likelihood estimation, likelihood-ratio test and

cone approximation. The following theorem is stated using Case 1 which is most

common in our data. Similar results hold for Case 2.

Theorem 2 (Distribution of Composite Likelihood-ratio Test Statis-

tic):

Fisher information for P (R{g},k,{If}; θ), m×m matrix,

I{g} = −E
[
∂2

∂θ2
logP (R{g},k,{If}; θ)

]

= E

[
(
∂

∂θ
logP (R{g},k,{If}; θ))(

∂

∂θ
logP (R{g},k,{If}; θ))

T

]
(1.19)

with S, constrained space of θ0 of size m as in (1.14), Ξ of size p, boundaries

of constraints that θ0 triggers as in (1.15), Q of dimension p × m, gradients of

constraints at θ0 as in (1.16). We show asymptotically that the likelihood ratio

test statistic D in (1.12)

D
L−→

m∑

i=0

wiχ
2
i (1.20)

where wi =





wp−i(p,QI−1QT ) = wi(p, (QI−1QT )−1) 0 ≤ i ≤ p

0 p+ 1 ≤ i ≤ m

(1.21)

Let Y ∼ N(0, V ), V = QI−1QT , then the probability of Y falls in Rp
+ is

wj(p, V ) = wj(p, V,Rp
+) =

∑

|α|=j

p(V −1
α′ )p(Vα;α′), (1.22)

Index α is a subset of {1, ..., p}, α′ is its complement. They denote the indices

of random variables in Y . |α| denotes the size of α. For example, if α = {1, 2},
Yα means (Y1, Y2)T . Yα ∼ N(0, Vα). Vα means the covariance matrix of Yα.

Vα;α′ means the conditional variance matrix of Yα|Yα′ = 0. P (Vα) = P (Yα ≥
0), P (Vα;α′) = P (Yα ≥ 0|Yα′ = 0).

12



Figure 1.4: True value on the boundary and within the boundary.

Proof: see Proof of Theorem 2 .

Choice of Boundary Points - Least Favorable Test Statistic

However, in real data applications, we do not know if the true parameter is on

the boundary (if it is inside the constrained space, and when sample size is big

enough, the actual LRT test statistic is almost always 0, see Figure 1.4). A con-

servative choice is by assuming the true value on the boundary, instead of inside

the constrained space. As shown in (1.20), the number of non-trivial boundary

constraints determines the maximum number of degree of freedom in χ̄2 distribu-

tion. We assume true θ0 to be on boundary where most constraints are triggered,

and each constraint is either one of the two in (1.13).

Bmax = {θ0 : s[g1,g2],f (θ0) = 0, ([g1, g2], f) ∈ Ξ} where size of Ξ is maximum

(1.23)

On this boundary, the constrained MLE is most restricted, and the distribution of

D is most left skewed and in general larger than the actual distribution (assuming
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QI−1QT in (1.22) behave normally under different degree of freedoms). This way

we keep the actual type I error small. We call the test statistic assuming true

value on this boundary - the least favorable test statistic.

Usually G = 2, |Ξ| = F − 1, while in more general cases, the maximum num-

ber of possible non-redundant constraint intersections is
(
G
2

)
(F − 1). Besides,

G(F − 1) is the total number of logit parameters, when G is big (
(
G
2

)
> G), it is

not possible to have boundaries with
(
G
2

)
(F − 1) non-redundant constraints, we

only need to choose G(F − 1) of them. For the least favorable test statistic, Q

(1.16) is of dimension [min(
(
G
2

)
, G)(F−1)]×G(2F−2) andQ has to be nonsingular.

With all the assumptions of the least favorable choice, we still need to estimate the

true value on the assumed boundary, one way is to find a point on the boundary

that is closest to our unrestricted MLE estimates.

θ̂Least = argmin
θ∈Bmax

(θ − θ̂MLE)T (θ − θ̂MLE) (1.24)

We let θ0 = θ̂Least and calculate the LRT test statistic D in (1.12) and its theo-

retical χ̄2 distribution (1.20) using fisher information I (1.19), χ̄2 weights (1.22).

1.2.4 Equal-weight χ̄2 Test Statistic

We show that when the null hypothesis of likelihood ratio test is not linear equal-

ities (e.g, ψ
1,I1

= ψ
2,I1

), but inequalities like |ψ
1,I1
− ψ

2,I1
| ≤ ∆ψ, the likelihood

ratio test statistic follows a mixture of χ2 (df ranging from 0 to p = |Ξ|), in-

stead of a conventional χ2
p. The objective likelihood function involves parameters

µ
g,I1
, · · · , µ

g,IF−1
, σ2

g,I1
, · · · , σ2

g,IF−1
, 1 ≤ g ≤ G, the weights for the χ̄2 are de-

termined by the location of true parameters. Because we do not know the true

parameters, to use a most conservative, least favorable test statistic, we find a
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point which triggers most constraints and that is closest to our unrestricted MLE

estimators. The χ̄2 weights are calculated for that point. For simplicity, the equal

weight test statistic χ̄2
p =

∑p
i=0 wiχ

2
i , wi =

(pi)
2p

, usually is a good approximation to

the actual test statistic when calculation of the least favorite test statistic is hard.

We show in simulations both the least favorable test statistic and the equal-weight

test statistic show good results of classification and inference. In practice, when

isoform number F ≥ 8), we use equal weight χ̄2 and when F ≤ 7, provide the

option of using least favorable χ̄2.

1.2.5 Detection of True Differential Isoforms

Our interest is not only in finding the significant genes, but also which specific

isoforms are significantly differential. To address this, we further look at the

marginal isoform significance within significant genes through hypothesis tests

on individual isoforms H
If
0 : |ψ

g1,If
− ψ

g2,If
| ≤ ∆ψ. H

If
1 : o.w.. We output

the marginal p-values together with isoforms of large group differences based on

estimated unrestricted ψ̂{g,If}
.

1.3 Simulation

1.3.1 Simulation of Asymptotic χ̄2 Test Statistic

Here, to support all previous theoretical results, a 4-isoform gene for two groups

is simulated, where ψ’s between two groups are exactly with a difference ∆ψ =

0.1. We simulate this gene N = 1000 times, each time, every replicate has a

total read counts R = 100, 1000, or 10000 and replicate number fixed to be K =

100, 500, or 2000 for both groups.

variances σ2
{g},{If} = 1, isoform lengths l{If} = 1
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1 2 3 4 5 6 7 8 9

K 100 100 100 500 500 500 2000 2000 2000

R 100 1000 10000 100 1000 10000 100 1000 10000

Table 1.1: Combinations of K,R

ψ
g,If

I1 I2 I3 I4

g = 1 0.08491507 0.3691922 0.2393482 0.3065446

g = 2 0.18491507 0.2691922 0.1393482 0.4065446

Table 1.2: True isoform proportions ψ

These parameters are on the boundary where most non-redundant equality con-

straints |ψ
1,If
− ψ

2,If
| = 0.1 are satisfied. Here we have 4 constraints, with one

redundant. So the theoretical distribution of D is
3∑
i=0

wiχ̄
2
i .

All theoretical quantiles are generated by taking 1000 samples from their asymp-

totic theoretical distribution.

For cases where R = 100, unrestricted µ̂
mle

converge to the true µ (σ̂2
mle to

σ2) with a slight consistent difference. This difference doesn’t improve much

even with 500 replicates for both groups. This might be due to 1) the fact that

Laplace approximation constant C not close enough to 1 when read counts is only

100, and C involves the parameters. 2) The existence of multiple local minima.

This phenomenon disappears as total read counts R increases, where Laplace

µ
g,If

I1 I2 I3

g = 1 -1.283712 0.1859540 -0.2474439

g = 2 -0.787797 -0.4122682 -1.0707179

Table 1.3: True isoform logits µ
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Figure 1.6: qq-plot of unrestricted (σ̂2
MLE)1,I1 empirical against its theoretical
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Figure 1.7: K=500, R=1000. qq-plot of pvalues of LRT statistic: under true χ̄2
3,

equal-weight χ̄2
3 and χ2

3

approximation is more accurate and the problem tends towards “convex”. The

estimates of parameters have no bias when cluster size R = 1000, because the

Laplace approximation is quite accurate, the constant C ≈ 1 has little to do with

our parameters and prior distributions do not affect much in maximizing h(µ).

See Figure 1.5 and 1.6.
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In Figure 1.7, the top plot shows the qq-plot of the 1000 LRT statistic −2 log Λ

against 1000 random samples from the true theoretical χ̄2 with the weight calcu-

lated through our method, where we used cones to approximate the surface around

the true value. The middle plot shows the qq-plot of the 1000 LRT −2 log Λ

against 1000 random samples from the equal-weight χ̄2, wi =
(F−1

i )
2F−1 , 1 ≤ i ≤ F −1

which is a good approximation the theoretical one if the theoretical weights don’t

deviate too much from the equal weights. The bottom plot shows the qq-plot of

the 1000 LRT statistic D against 1000 random samples from χ2
F−1, where degree

of freedom is retrieved simply by counting the number of constraints. This χ2
F−1

distribution is too conservative and deviates a lot away from the true distribution.

Since in real applications, we are not able to know the true parameters. For each

gene, we find on the boundary where most equality constraints are satisfied, the

closest point to the unrestricted MLE estimation. We calculate χ̄2 assuming true

parameter is at this closest point (least favorable test statistic). If the distribution

of p-values is approximately uniform except for a mass at 1, then this least favor-

able test statistic is a good approximation to the true test statistic. See Figure 1.8.

Scenarios where Accurate χ̄2 Weight Estimation is Necessary

In previous simulations, the actual χ̄2 does not show much superiority over the

simple equal-weight χ̄2, this is due to the off-diagonal elements in covariance ma-

trix V in wj(p, V = RI−1RT ), j = 0, · · · , p are not very big compared to the

diagonal. Thus the weight calculation is very similar to equal-weight χ̄2. If it is

exactly a diagonal matrix, then the true distribution is equal-weight χ̄2.

Under R = 1000,

V =




0.0333480519 −0.0004903398 0.02465823

−0.0004903398 0.0435565960 0.03892188

0.0246582305 0.0389218772 0.11243103
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ψ
g,If

I1 I2 I3

g = 1 0.1740337 0.7170984 0.1088679

g = 2 0.0740337 0.8170984 0.1088679

Table 1.4: Situation where accurate weight calculation is necessary. ψ.

µ
g,If

I1 I2

g = 1 0.4691137 1.885078

g = 2 -0.3856149 2.015624

Table 1.5: Situation where accurate weight calculation is necessary. µ.

The actual χ̄2
3 = 0.202χ2

0 +0.446χ2
1 +0.296χ2

2 +0.056χ2
3, which isn’t much different

from χ̄2
3 = 0.125χ2

0 + 0.375χ2
1 + 0.375χ2

2 + 0.125χ2
3.

However, in situations where these two distribution differ a lot, the actual weight

estimation becomes necessary. This following gene is one example where closest

χ̄2 is very different from equal-weight χ̄2. It is easy to see that the off-diagonal

elements of covariance matrix V are comparable to the diagonal. It is worth

mentioning that the conventional χ2
3 is spurious, and it is getting much worse

compared to the true distribution as number of isoforms increase. It is not too off

when the data only involves two isoforms.

V =


0.08472387 0.05756867

0.05756867 0.04539917




Let K = 100, R = 1000, σ2
{g},{If} = 1, l{If} = 1, we generate data for this gene

1000 times. We can clearly see that equal-weight χ̄2
2 is off the central line in Figure

1.9. We can also see p-value comparisons in Figure 1.10, where least favorable χ̄2

resembles the theoretical p-value distribution the most.
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1.3.2 Simulation Study of grMATS

We illustrate the performance of grMATS under 30 different scenarios of data of

two groups.

Set-up:

The first 27 simulation datasets differ in terms of number of replicates (K =

5, 10, or 20), number of average total read counts (R = 20, 80, or 250), and repli-

cate variance (σ2 = 0.07, 0.36, or 1.00). The total read counts and replicate vari-

ances are respectively the 1st quartile, median, 3rd quartile of the average replicate

total read counts of MAQC (14267 genes) and its corresponding estimated vari-

ances.

Besides the 27 simulations, we conduct additional 3 simulations of two groups

with replicate K = 5, variance (σ2 = 0.07, 0.36, or 1.00), and the total read counts

are simple random samples from the average replicate total read counts of MAQC.

For each simulation above, 5000 genes are simulated, of which 95% are gener-

ated under null hypothesis (H0 : |ψ
n,1,If

− ψ
n,2,If
| ≤ ∆ψ,∀1 ≤ f ≤ F ) and 5%

are under alternative hypothesis (H1 : ∃f, 1 ≤ f ≤ F, |ψ
n,1,If

− ψ
n,2,If
| > ∆ψ).

Isoform proportion difference is chosen as ∆ψ = 10%.

Without any preference of true parameter distributions, we use flat Dirichlet

distribution to uniformly simulate isoform proportions of two groups {ψ
g,{If}

:

ψ
g,I1

+ · · · + ψ
g,IF

= 1, ψ
g,If
≥ 0,∀1 ≤ f ≤ F}. For each iteration, we in-

dependently sample two groups of isoform proportions, ψ
1,{If}

and ψ
2,{If}

, if

|ψ
1,If
− ψ

2,If
| ≤ ∆ψ,∀f , we assign them to one gene under H0, otherwise we

assign them as one gene under H1. Repeat this process until enough number of

genes under H0 and H1 are generated.
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For every gene, the true isoform proportions ψ
g,{If}

are converted to the logit

scale µ
g,{If}

= mlogit(ψ
g,{If}

). Independently K sets of replicate logit values

are sampled 1 ≤ k ≤ K, µg,k,If ∼ N(µ
g,If

, σ2), 1 ≤ f ≤ F − 1. ψg,k,{If} =

mlogit−1(µg,k,{If}). A multinomial read counts vector Rg,k,{If} is sampled from

MN(R,ψg,k,{If}) for each replicate k of each group g.

As a comparison, we pooled data from replicates and analyzed the pooled data

using a reduced version of grMATS that used the same likelihood-ratio test with

composite hypotheses H0, H1 as above.

Comparisons:

• ROC & PR. TPR, FPR.

• I TPR, I TNR. We pull all isoforms together to compute their isoform-level

TPR and TNR. The significant isoforms of significant genes are detected

as positive. The insignificant isoforms of significant genes are detected as

negative. The isoforms of insignificant genes are detected as negative.

Results:

In all 27 simulations, grMATS outperformed the reduced (pooling all replicates)

version.

Here we describe results for 3 simulations with 5 replicates, fixed total read

counts 80, at 5% false positive rate, grMATS produced true positive rates 93.6%

(σ2 = 0.07), 87.6% (σ2 = 0.36), 72.4% (σ2 = 1), while correspondingly the pooled

model only had 86.4%, 68.4%, 50.4%. The true positive rate drop was more ob-

vious as σ2 gets bigger. Thus we want to point out that the use of random effect

in the model is crucial especially in studies with large between-replicate variation.
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σ2 N.g N.k.g N.cts I1 TPR I2 TPR I3 TPR I4 TPR

4© 0.07 2 (5, 5) 80 74.0%,134/181 80.1%,141/176 73.7%,123/167 83.0%,142/171

5© 0.36 2 (5, 5) 80 62.9%,117/186 65.0%,106/163 58.1%,100/172 69.0%,120/174

6© 1 2 (5, 5) 80 40.6%,71/175 35.3%,61/173 41.8%,76/182 55.4%,102/184

Table 1.6: Isoform Detection TPR

σ2 N.g N.k.g N.cts I1 TNR I2 TNR I3 TNR I4 TNR

4© 0.07 2 (5, 5) 80 98.8%,4762/4819 99.3%,4789/4824 99.3%,4799/4833 99.3%,4796/4829

5© 0.36 2 (5, 5) 80 98.3%,4732/4814 98.4%,4761/4837 98.3%,4746/4828 99.1%,4784/4826

6© 1 2 (5, 5) 80 98.1%,4734/4825 98.3%,4743/4827 98.3%,4737/4818 98.9%,4764/4816

Table 1.7: Isoform Detection TNR

The I TPR are 77.7%, 63.7%, 43.4% and the I TNR are 99.2%, 98.5%, 98.4%.

Besides the above scores, we show for these 3 simulations, the recovery of each

individual isoform in Table 1.6 for TPR, Table 1.7 for TNR. It is a true negative

if |ψ
n,1,If

− ψ
n,2,If
| ≤ ∆ψ, and |ψ̂

n,1,If
− ψ̂

n,2,If
| ≤ ∆ψ, and a true positive if

ψ
n,1,If

− ψ
n,2,If

> ∆ψ (or ψ
n,1,If

− ψ
n,2,If

< −∆ψ), and ψ̂
n,1,If

− ψ̂
n,2,If

> ∆ψ (or

ψ̂
n,1,If

− ψ̂
n,2,If

< −∆ψ).

In addition to the fixed total read counts simulations, we also performed 3 addi-

tional simulations with a similar set-up except that instead of fixed quartiles, the

total read counts were empirically sampled from average total read counts of all

multiple-isoform genes of MAQC. At 5% false positive rate, grMATS produced

true positive rates 94.0% (σ2 = 0.07), 84.0% (σ2 = 0.36), 66.8% (σ2 = 1), in

comparison with the pooled model 74.0%, 44.8%, 26.4%. The I TPR are 76.4%,

62.7%, 44.7% and I TNR are 98.8%, 98.4%, 98.2%. Figure 1.14a, 1.14b for ROC

and PR, Table 1.14 for summary of results.
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Figure 1.11: ROC of 27 simulations.
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1

Figure 1.12: PR of 27 simulations.
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�2 N.g N.k.g N.cts @FPR TPR AUC I TPR I TNR @FPR R TPR R AUC R
1� 0.07 2 (5, 5) 20 5.01% 87.2% 0.968 63.6%,443/696 98.9%,19084/19304 5.01% 80.8% 0.945
2� 0.36 2 (5, 5) 20 5.01% 82.4% 0.944 54.6%,394/721 98.6%,19010/19279 5.01% 70.4% 0.927
3� 1 2 (5, 5) 20 5.01% 62.4% 0.865 39.4%,278/705 98.3%,18974/19295 5.01% 48.4% 0.832
4� 0.07 2 (5, 5) 80 5.01% 93.6% 0.980 77.7%,540/695 99.2%,19146/19305 5.01% 86.4% 0.949
5� 0.36 2 (5, 5) 80 5.01% 87.6% 0.960 63.7%,443/695 98.5%,19023/19305 5.01% 68.4% 0.920
6� 1 2 (5, 5) 80 5.01% 72.4% 0.910 43.4%,310/714 98.4%,18978/19286 5.01% 50.4% 0.855
7� 0.07 2 (5, 5) 250 5.01% 95.2% 0.991 82.7%,574/694 99.2%,19152/19306 5.01% 84.0% 0.945
8� 0.36 2 (5, 5) 250 5.01% 87.6% 0.961 64.8%,448/691 98.5%,19026/19309 5.01% 61.2% 0.887
9� 1 2 (5, 5) 250 5.01% 75.6% 0.924 47.7%,341/715 98.4%,18975/19285 5.01% 44.4% 0.815
10� 0.07 2 (10, 10) 20 5.01% 92.4% 0.973 71.0%,487/686 99.2%,19156/19314 5.01% 86.4% 0.957
11� 0.36 2 (10, 10) 20 5.01% 83.2% 0.954 64.8%,459/708 98.7%,19038/19292 5.01% 79.2% 0.939
12� 1 2 (10, 10) 20 5.01% 78.4% 0.940 50.6%,353/698 98.6%,19026/19302 5.01% 61.2% 0.909
13� 0.07 2 (10, 10) 80 5.01% 99.2% 0.997 85.4%,607/711 99.4%,19169/19289 5.01% 92.0% 0.973
14� 0.36 2 (10, 10) 80 5.01% 93.2% 0.988 74.0%,510/689 98.9%,19091/19311 5.01% 81.2% 0.950
15� 1 2 (10, 10) 80 5.01% 83.6% 0.954 55.6%,391/703 98.6%,19020/19297 5.01% 62.4% 0.906
16� 0.07 2 (10, 10) 250 5.01% 96.4% 0.987 86.0%,608/707 99.5%,19198/19293 5.01% 82.8% 0.934
17� 0.36 2 (10, 10) 250 5.01% 94.0% 0.982 73.4%,520/708 99.1%,19122/19292 5.01% 73.6% 0.907
18� 1 2 (10, 10) 250 5.01% 85.6% 0.965 59.3%,409/690 98.6%,19046/19310 5.01% 58.4% 0.875
19� 0.07 2 (20, 20) 20 5.01% 97.6% 0.990 83.8%,589/703 99.4%,19186/19297 5.01% 92.4% 0.973
20� 0.36 2 (20, 20) 20 5.01% 92.8% 0.971 73.0%,498/682 99.1%,19150/19318 5.01% 86.8% 0.946
21� 1 2 (20, 20) 20 5.01% 87.2% 0.955 63.1%,434/688 98.8%,19077/19312 5.01% 77.6% 0.924
22� 0.07 2 (20, 20) 80 5.01% 99.6% 0.999 87.7%,614/700 99.6%,19230/19300 5.01% 88.8% 0.956
23� 0.36 2 (20, 20) 80 5.01% 95.6% 0.986 79.5%,542/682 99.2%,19161/19318 5.01% 82.0% 0.940
24� 1 2 (20, 20) 80 5.01% 90.8% 0.980 68.2%,471/691 98.8%,19084/19309 5.01% 70.4% 0.912
25� 0.07 2 (20, 20) 250 5.01% 98.4% 0.997 87.4%,598/684 99.7%,19262/19316 5.01% 82.8% 0.936
26� 0.36 2 (20, 20) 250 5.01% 96.0% 0.991 82.0%,584/712 99.3%,19150/19288 5.01% 73.6% 0.899
27� 1 2 (20, 20) 250 5.01% 90.4% 0.976 67.8%,464/684 98.9%,19104/19316 5.01% 64.8% 0.878

1

Figure 1.13: Results of 27 simulations.
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(a) ROC of 3 simulations with changing to-

tal read counts.
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(b) PR of 3 simulations with changing total

read counts.

�2 N.g N.k.g N.cts @FPR TPR AUC I TPR I TNR @FPR R TPR R AUC R
1� 0.07 2 (5, 5) changing 5.01% 94.0% 0.985 76.4%,519/679 98.8%,19087/19321 5.01% 74.0% 0.936
2� 0.36 2 (5, 5) changing 5.01% 84.0% 0.956 62.7%,432/689 98.4%,18995/19311 5.01% 44.8% 0.856
3� 1 2 (5, 5) changing 5.01% 66.8% 0.891 44.7%,298/666 98.2%,18990/19334 5.01% 26.4% 0.732

1

Figure 1.14: Results of 3 simulates with changing total read counts.
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Figure 1.15: Hypoxia - APA sites

1.4 Real Data Application - Hypoxia

In the 3’ end processing of most protein-coding genes, the 3’ end of the mRNAs is

cleaved and polyadenylated. The addition of the poly(A) tail is required for nu-

clear export, mRNA stability and efficient translation [Sac90]. A large proportion

of genes contain multiple polyadenylation sites [Shi12], indicating that alterna-

tive polyadenylation (APA) is a widely used mechanism for gene regulation. APA

sites can be classified into four categories (Figure 1.15): tandem 3’ UTR (untrans-

lated region) APA, the most frequent APA forms with multiple cleavage sites in 3’

UTRs; alternative terminal exon APA, which involves usage of multiple terminal

exons; and intronic APA. Through these types of events, APA contributes to the

complexity of the gene expression by generating multiple mRNA forms that differ

in cellular localization, stability and translation efficiency.

Widespread APA modulation is often associated with development, cellular dif-

ferentiation and proliferation. A wide variety of APA events were observed in

embryonic development and neuronal development [JLP+09]. The generation of

iPSC (induced pluripotent stem cells) is often accompanied by global shift of

poly(A) tails [JT09]. Moreover, in the T cell activation, widespread usage of

proximal poly(A) sites was also observed [SNS+08]. Since pathways of cell dif-

ferentiation and proliferation are often hijacked in cancers, the APA events are
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often observed in cancer cells. It has been reported that compared to normal

cells, cancer cells often expressed a variety of mRNAs with shorter 3’ UTR from

APA events [MB09]. The shorter mRNA forms exhibiting enhanced translational

efficiency and stability, leading to more protein production. The high prevalence

of APA in cancer cells suggests a role of APA in cancer development.

Hypoxia condition is often associated with tumor development [WH11]. Can-

cer cells usually use a shifted metabolic process from oxidative phosphorylation

to altered glycolysis. The shifted metabolic process plays a central role in the

development of solid tumors since it provides the necessary energy for tumor de-

velopment. A large amount of the mRNA isoform changes have been observed

in the hypoxia process, contributing to the hypoxia pathways or being results

of the metabolic shifts Weigand, 2012 #1813. Here we use the PolyA-seq tech-

nique Derti, 2012 #1819, a stand-specific high-throughput sequencing analysis of

3’ ends of polyadenylated transcripts, to conduct genome-wide analysis of APA

events in hypoxia conditions compared to normal cell lines. A total of 3 replicates

were generated under 2% oxygen chamber to represent the hypoxia condition, as

a comparison to 3 controls under 20% oxygen condition.

Using the grMATS framework, we have identified a variety of APA site shifts

between the hypoxia condition and normal condition. With FDR ≤ 30% and

isoform ratio difference > 1%, grMATS identified 671 genes with significant APA

site shifts. We studied the gene functional enrichment among the 671 genes with

significant APA shifts using DAVID (Supplemental Table Hypoxia). A variety of

cancer related biological processes were enriched in the genes with APA shifts,

such as ‘DNA repair’ (DAVID enrichment P = 2.5e-5), ‘negative regulation of

cell growth’ (DAVID enrichment P = 2.8e-4), ‘cellular response to stress’ (DAVID

enrichment P = 4.9e-4).
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1.5 Summary

We propose a hierarchical model for RNA-seq alternative splicing data with repli-

cates. In the first layer, the model uses gaussian logit values µn,g,k,{If} to describe

biological replicate effect centered around the group-level isoform proportion log-

its µn,g,{If}. In the second layer, a multinomial distribution Rn,g,k,{If} is assumed

to describe the replicate read counts given µn,g,k,{If}(ψn,g,k,{If}). We compute

the marginal likelihood of P (Rn,g,k,{If}) using laplace approximation. Besides the

maximum likelihood estimation, we also provide the accurate asymptotic distri-

bution of composite likelihood ratio test D, which follows a mixture of χ2 with

various degree of freedoms up to the number of constraints. We provide the least

favorable test statistic in practice when true parameter is unknown. The model

and program have been successfully run in our 27+3 simulation datasets as well

as one real dataset Hypoxia.

Our work provides a R package grMATS.

1.6 Future Work

In this model, we assume that we observe the isoform read counts R{If} directly.

However, in many other situations, what we observed are the read patterns from

isoforms and different isoforms share some patterns (Figure 1.16). To address this

ambiguity, we need another layer in the model. Let Eh denote the read pattern h,

γEh,If = P (E = Eh|I = If ) denote probability of read pattern h from isoform f ,

REh as the read counts of these patterns. The marginally probability of observing

read pattern h is

φEh =
∑

f

P (E = Eh|I = If ) ∗ P (I = If ) =
∑

f

γEh,IfψIf (1.25)
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Figure 1.16: Example of alternative splicing with reading ambiguity. 4 isoforms,

8 possible read patterns Eh: 10101, 10100, 00101, 11101, 11100, 10111, 00111,

11111.
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Conditional probability,

P (R{Eh}|ψ{If}; θ) =
H∏

h=1

φ
REh
Eh

(1.26)

Our likelihood function becomes

P (R; θ) =

∫
P (R|ψ{If}; θ)P (ψ{If}; θ)dψ{If}

=

∫ H∏

h=1

φ
REh
Eh

P (ψ{If}; θ)dψ{If}

=

∫ H∏

h=1

(
∑

f

γEh,IfψIf )
REhP (ψ{If}; θ)dψ{If} (1.27)

Difficulty might arise while computing this integral using Laplace approximation,

since the convexity of this joint density needs further investigation.

1.7 Proof of Theorems

1.7.1 Logit Transformation

Logit Transformation between ψ{If}
and p

k,{If}

The same transformation holds for r.v.s ψ{If} and pk,{If}.
F∑
f=1

ψIf = 1 are proba-

bilities adding up to 1, with degree of freedom F − 1.

Multinomial or categorical distributions belong to exponential families, it’s natu-

ral to link the first F − 1 ψIf ’s with F − 1 multinomial logit values µ
If

’s, while

fixing µ
IF

= 0. −∞ < µ
If
<∞, 1 ≤ f ≤ F − 1.

log(
ψ
If

ψ
IF

) = µ
If
⇐⇒ ψ

If
=

e
µ
If

1 +
∑F−1

f=1 e
µ
If

1 ≤ f ≤ F (1.28)

{ψ
I1
, · · · , ψ

IF
} ←→ {µ

I1
, · · · , µ

IF−1
, 0} (1.29)
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Considering the isoform length l{If}, the actual observable multinomial probabil-

ities,

p
If

=
lIfψIf∑F
f=1 lIfψIf

=
lIf e

µ
If

lIF +
∑F−1

f=1 lIf e
µ
If

, 1 ≤ f ≤ F (1.30)

{p
I1
, · · · , p

IF
}
l{If }←→ {µ

I1
, · · · , µ

IF−1
, 0} (1.31)

Relationships between ψ
n,g,{If}

and µ
n,g,{If}

(p
n,g,k,{If}

and µ
n,g,k,{If}

)

Assume lIf = 1, 1 ≤ f ≤ F , then p
If

= ψ
If

, R{If} ∼ MN(R, p{If}
= ψ{If}

), as

simple multinomial probability without replicates.

Multinomial distribution belongs to exponential family, we can write the prob-

ability as

P (RI1 , · · · , RIF ;ψ{If}
) =

R!∏F
f=1RIf !

F∏

f=1

ψ
RIf
f

=
R!∏F

f=1RIf !
(
F−1∏

f=1

ψ
RIf
f )(ψ

IF
)R−

∑F−1
f=1 RIf

= exp

(
[
F−1∑

f=1

RIf log(
ψ
If

ψ
IF

)] +R log(ψ
IF

) + log(
R!∏F

f=1RIf !
)

)

A very natural link function choice is (plug in n, g notation here)

µ
n,g,If

=





log(
ψ
n,g,If

ψ
n,g,IFn

) 1 ≤ f ≤ Fn − 1

0 f = Fn

(1.32)

m

ψ
n,g,If

=





e
µ
n,g,If

1+
∑Fn−1
f=1 e

µ
n,g,If

1 ≤ f ≤ Fn − 1

1

1+
∑Fn−1
f=1 e

µ
n,g,If

f = Fn
(1.33)

When isoform lengths l{If} are different, p{If}
become weighted ψ{If}

as in (1.30).
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1.7.2 More on Theorem 1 - Laplace Approximation

∫

RF−1

exp(h(µ))dµ

= (2π)(F−1)/2|V |1/2 exp(h(µ̂))E

(
exp(

∞∑

i=3

1

i!
((
i−1
⊗ (µ− µ̂)T )h(i)(µ̂)(µ− µ̂)))

)

= (2π)(F−1)/2|V |1/2 exp(h(µ̂))E

(
exp(

∞∑

i=3

Ti)

)

= (2π)(F−1)/2|V |1/2 exp(h(µ̂))E (exp(S)) (1.34)

where µ̂ = arg max
µ

exp(h(µ)) = arg max
µ

h(µ),

V = (−h(2)(µ̂))−1 : dim (F − 1)× (F − 1) (1.35)

h(k)(µ̂) =
∂vec(h(k−1)(µ))

∂µT
|µ=µ̂ (1.36)

vec() means reorganize the matrix into a vector by its columns.

⊗ means Kronecker product,
i−1
⊗ (µ − µ̂)T = (µ − µ̂)T ⊗ (µ − µ̂)T ⊗ · · · (µ − µ̂)T ,

i− 1 times.

A⊗B =




µ11B · · · µ1nB
...

. . .
...

µm1B · · · µmnB


 (1.37)

E(exp(S)) is expectation on a function exp(S) where S =
∑∞

i=3 Ti involving only

third or higher derivative of h(µ) at µ̂. (i.e. ∂3h(µ)
∂µi∂µj∂µk

, ...). Although third or higher

order derivatives of h(µ) do not involve any parameters of prior distribution of µ,

the maximizer µ̂ involves these parameters, so E(exp(S)) involves all parameters.

However, in the generalized linear model with random effects, as the cluster size

gets bigger (here is the total read counts R), E(exp(S)) ≈ 1.

E(exp(S)) ≈ 1 + E(T4) + E(T6) +
1

2
E(T 2

3 )

= 1 +O(R−1) +O(R−2) +O(R−1) = 1 +O(R−1)
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We see as cluster size (total read counts) gets bigger, the E(exp(S)) ≈ 1. The

log of our integral objective can be approximated by sum of linear additive terms

without integrals, which is much easier to handle.

∫

RF−1

exp(h(µ))dµ ≈ (2π)(F−1)/2|V |1/2 exp(h(µ̂)) (1.38)

As in (1.34), C is related to replicate counts R{If} and isoform lengths l{If}, and

also third or higher derivatives of h(µ̂{If}), which contains µ̂{If} and it relates

to parameters µ{If}
, σ2
{If}. Thus, C is related to unknown parameters of interest

µ{If}
, σ2
{If}, but when cluster size R is big enough, C is approximately 1. We

consider R is big enough and optimize the likelihood over parameter µ{If}
, σ2
{If},

with C ≈ 1.

1.7.3 Proof of Theorem 2

To prove the theorem, we mainly need to work on the constrained and unrestricted

maximum likelihood estimation and cone approximation on the constrained space.

Log-likelihood l(x; θ)

X = [X1, · · · , Xn]T are random observations, Xi ∼ f(x, θ) and θ are parameters,

θ0 are true parameters.

l(X, θ) =
n∑

k=1

l(Xk, θ)

= l(X, θ0) + l′(X, θ0)T (θ − θ0) +
1

2
(θ − θ0)T l′′(X, θ0)(θ − θ0) + o(||θ − θ0||22)

(1.39)

Let A = 1
n
l′(X, θ0) be a vector where

Ai =
1

n

∂l(X, θ)

∂θi

∣∣∣
θ=θ0

=
1

n

n∑

k=1

∂ log f(Xk, θ)

∂θi

∣∣∣
θ=θ0

(1.40)
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B = 1
n
l′′(X, θ0) be a matrix where

Bi,j =
1

n

∂2l(X, θ)

∂θi∂θj

∣∣∣
θ=θ0

=
1

n

n∑

k=1

∂2 log f(Xk, θ)

∂θi∂θj

∣∣∣
θ=θ0

(1.41)

E(B) = −I =
[
E(
∂2 log f(X, θ)

∂θi∂θj
)
]

(1.42)

E(A) = 0, V ar(
√
nA) = I (1.43)

for details on calculation of I see appendix Fisher Information . Rewrite

l(X, θ) = l(X, θ0)+nAT (θ−θ0)+
1

2
(θ−θ0)TnB(θ−θ0)+Op(n)[(θ−θ0)T (θ−θ0)]

3
2

(1.44)

Let θ̂ denote the MLE estimator for θ, vector θ2 denote element-wise square of θ.

Suppose ||θ − θ0||2 is bounded by a finite number.

Under regularity conditions (P121 [Fer96]), the MLE estimator:

θ̂ = arg max
θ
l(X, θ) (1.45)

⇒ θ̂ − θ0 = −B−1A+ op(
1√
n

) (1.46)

−B P−→ I, −B−1 = I−1 + op(1) A = Op(
1√
n

) (1.47)

θ̂ − θ0 = I−1A+ op(
1√
n

) (1.48)

By [Che54], if θ0 is a limit point of parameter space, then for any estimator in

this space, θ̂
p→ θ0, θ̂ − θ0 = Op(

1√
n
). For any MLE estimate of θ, we let

θ̂ − θ0 = I−1A+ η, η = Op(
1√
n

) (1.49)

l(X, θ)

= n

{
1

n
l(X, θ0) + AT (θ − θ0) +

1

2
(θ − θ0)TB(θ − θ0) +Op(1)[(θ − θ0)T (θ − θ0)]

3
2

}

= n

{
1

n
l(X, θ0) + ATI−1A+ ATη − 1

2
(I−1A+ η)TI(I−1A+ η) +Op(n

− 3
2 )

}

= n

{
1

n
l(X, θ0) +

1

2
ATI−1A− 1

2
ηTIη +Op(n

− 3
2 )

}
(1.50)
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Let z =
√
nI−1A

z
L−→ N(0, I−1), op(||z||2) = op(1) (1.51)

Likelihood ratio test statistic

For two constrained space in Null space ω and Alternative space τ . Plug (1.50)

in.

D = −2{max
θ∈ω

l(X; θ)− max
θ∈ω∪τ

l(X; θ)}

= −2n

{
max
θ∈ω

(−1

2
ηTIη)− max

θ∈ω∪τ
(−1

2
ηTIη) +Op(n

− 3
2 )

}

= n

{
min
θ∈ω

ηTIη − min
θ∈ω∪τ

ηTIη
}

+Op(n
− 1

2 )

= n

{
min
θ∈ω

[I−1A− (θ − θ0)]TI[I−1A− (θ − θ0)]

− min
θ∈ω∪τ

[I−1A− (θ − θ0)]TI[I−1A− (θ − θ0)]

}
+Op(n

− 1
2 )

=

{
min
θ∈ω

[z −√n(θ − θ0)]TI[z −√n(θ − θ0)]

− min
θ∈ω∪τ

[z −√n(θ − θ0)]TI[z −√n(θ − θ0)]

}
+Op(n

− 1
2 ) (1.52)

If space ω is not linear or a cone, we can use a cone approximate the space around

θ0.

Definition of a cone: C ∈ Rm is a cone if for any x ∈ C implies ax ∈ C, ∀a > 0.

Let a closed and convex cone Cω approximates ω at θ0. This cone is indepen-

dent of choices of norms, because norms in Rp are equivalent. Here we use the

norm ||x|| =
√
xTIx,

inf
θ∈ω
||(θ − θ0)− θc|| = o(||θc||), θc ∈ Cω inf

θc∈Cω
||(θ − θ0)− θc|| = o(||θ − θ0||), θ ∈ ω

According to [Sha87] Th2 and [Che54], the projections of y onto ω and Cω, θ̂ and θ̂c

have the relationship

||θ̂ − θ0 − θ̂c|| = o(||y||)⇒ ||θ̂ − θ0||2 − ||θ̂c||2 = o(||y||2)
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⇒ inf
θ∈ω

(y − (θ − θ0))TI(y − (θ − θ0)) = inf
θc∈Cω

(y − θc)TI(y − θc) + o(||y||2) (1.53)

Both ω or Cω are closed, so the notations “inf” can be replaced by “min”,

min
θ∈ω

[z −√n(θ − θ0)]TI[z −√n(θ − θ0)]

= n

{
min
θ∈ω

[z/
√
n− (θ − θ0)]TI[z/

√
n− (θ − θ0)]

}

= n

{
min
θc∈Cω

[z/
√
n− θc]TI[z/

√
n− θc] + op(

||z||2
n

)

}

= min
θc∈Cω

[z −√nθc]TI[z −√nθc] + op(||z||2)

{θc : θc ∈ Cω} ⇐⇒ {√nθc : θc ∈ Cω}

because a cone is a positively homogeneous set θc ∈ Cω ⇒ aθc ∈ Cω, ∀a > 0

= min
θc∈Cω

[z − θc]TI[z − θc] + op(1)

Thus, [Che54]

D =

{
min
θc∈Cω

[z − θc]TI[z − θc]− min
θc∈Cω∪τ

[z − θc]TI[z − θc]
}

+ op(1) (1.54)

In our case, if ω ∪ τ constitutes the whole parameter space, Cω∪τ at θ0 is also the

whole parameter space,

min
θc∈Cω∪τ

[z − θc]TI[z − θc] = 0

D = min
θc∈Cω

[z − θc]TI[z − θc] + op(1) (1.55)

We can easily see the asymptotical distribution of D, if we rewrite z ∼ N(0, I−1)

precisely instead of the asymptotical expression in (1.51),

D
L−→ min

θc∈Cω
[z − θc]TI[z − θc] (1.56)

Cone Approximation at Boundary Points of Constrained Space

Our constrained logit value space M0 is not linear (constraints on ψ{If}
are linear),

however, if the sample size is big enough, the MLE estimate gets very close to the
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Figure 1.17: Illustration of cone approximation

small region around the true value, the constrained space can then be approxi-

mated by a cone at the true value.

Let the constrained space be S = {θ : s(θ) ≤ 0}, S can be approximated at its

boundary point θ0 (s(θ0) = 0) by a cone C, where C = {θc : s′(θ0, θc) ≤ 0}. One

can imagine θc to be a vector where its origin is at θ0.

s(θ0 + θc) = s(θ0) + s′(θ0, θc) + o(||θc||2) (1.57)

directional derivative: s′(θ0, θc) = lim
t→0+

s(θ0 + tθc)− s(θ0)

t
= θTc s

′(θ0) (1.58)

In our problem, for each gene, full parameter space size is G ∗ (2F − 2),

θ = (µ
1,I1
, µ

1,I2
, ...., µ

1,IF−1
, ..., µ

G,I1
, µ

G,I2
, ...., µ

G,IF−1
,

σ2
1,I1
, σ2

1,I2
, ...., σ2

1,IF−1
, ..., σ2

G,I1
, σ2

G,I2
, ...., σ2

G,IF−1
)T (1.59)

Our constraints are usually written as a series of pairs of isoform probability

difference inequalities for each isoform If in given group g1 and g2 smaller than

some threshold ξ,

|ψ
g1,If
− ψ

g2,If
| ≤ ξ ⇐⇒





sg1,g2,If (θ) = e
µ
g1,If∑F−1

f=1 e
µ
g1,If +1

− e
µ
g2,If∑F−1

f=1 e
µ
g2,If +1

− ξ ≤ 0

sg2,g1,If (θ) = e
µ
g2,If∑F−1

f=1 e
µ
g2,If +1

− e
µ
g1,If∑F−1

f=1 e
µ
g1,If +1

− ξ ≤ 0

(1.60)

Obviously, a boundary point regarding to isoform If inequalities can only locate

in one of the constraints above, thus in the following we wrote the inequality in
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short as s[g1,g2],If (θ), representing either one of the above. We do have constraints

regarding to σ2
g,If

, non-negativity. However, the 0 is never to be touched, so we

do not need to put them in the constraints above.

If θ0 is at the boundary of one constraint,

s′[g1,g2],If
(θ0, θc) = θTc s

′
[g1,g2],If

(θ0) ≤ 0 (1.61)

Thus by [Sha87], constrained space S at point θ0 can be approximated by cone

C = {θc : s′[g1,g2],If
(θ0, θc) ≤ 0} with the differentiability of norm ||x|| =

√
xTIx at

θ0, and this cone is actually a half-space of RG(2F−2).

If x0 is the intersection of multiple constraints (if F ≥ 3 or G ≥ 3), the con-

strained space at point x0 can be approximated by intersection of
(
G
2

)
(F − 1)

half-spaces. If G = 2, [g1, g2] notations can be omitted.

S = {θ : s[g1,g2],If (θ) ≤ 0,∀1 ≤ f ≤ F − 1,∀1 ≤ g1 < g2 ≤ G} (1.62)

Let

s(θ) = max{s[g1,g2],If (θ) : 1 ≤ f ≤ F − 1, 1 ≤ g1 < g2 ≤ G} (1.63)

Ξ = {([g1, g2], If ) : s[g1,g2],If (θ0) = s(θ0) = 0, 1 ≤ f ≤ F − 1, 1 ≤ g1 < g2 ≤ G}
(1.64)

Under regularity conditions [Sha87] (all satisfied in our case),

s′(θ0, θc) = max{θTc s′[g1,g2],f (θ0), ([g1, g2], f) ∈ Ξ} (1.65)

C = {θc : s′(θ0, θc) ≤ 0}

= {θc : s′([g1,g2],f)(θ0, θc) ≤ 0,∀ ([g1, g2], f) ∈ Ξ}

= ∩
([g1,g2],f)∈Ξ

{θc : s′[g1,g2],f (θ0, θc) ≤ 0} (1.66)
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For notational simplicity, let p = |Ξ|, m = G(2F−2) and letQ = [s′1(θ0), ..., s′p(θ0)]T ,

p×m. We can rewrite cone in Rm as

C = {θc : −Qθc ≥ 0} (1.67)

If p > G(F − 1), we need to keep only G(F − 1) of the inequalities to have a

nonempty cone, because there’re only G(F − 1) unknown µ’s. The choice is not

unique though, depending on where the true parameter θ0 locates. Besides, if Q

is singular, we need to delete the redundant constraints, e.g. F = 4, G = 2, first

3 constraints |ψ
1,If
− ψ

2,If
| ≤ ξ would imply the forth, thus Q is singular if all

constraints are kept.

The Distribution of Our Test Statistic given True Parameters Locating

on the Boundary

Let Cω being a cone, C0
ω = {y : xTIy ≤ 0,∀x ∈ Cω} is its polar cone under inner

product (x, y) = xTIy and norm ||x|| =
√
xTIx. Based on [Sha88], the likeli-

hood ratio test statistic D in (1.55) asymptotically follows a mixture of chi-square

distributions, let z ∼ N(0, I−1)

D
L−→ min

θc∈Cω
[z−θc]TI[z−θc] = zTIz−min

θc∈C0ω
[z−θc]TI[z−θc] (Pythagoras’ theorem)

(1.68)

D
L−→ χ̄2

m(I−1, C0
ω) =

m∑

i=0

wiχ
2
i , wi = wi(m, I−1, C0

ω) (1.69)

• The basic idea is for a random z, θ̂c could touch boundaries of the con-

strained space C0
ω. The more constraints the boundary touches, the shorter

the projection, the longer the distance. E.g., if the constrained space is

C0
ω = {θc : θc = 0}, which triggers equality constraints of all dimensions

((θc)1 = (θc)2 = · · · = (θc)m = 0), then the projection of z onto this space

C0
ω would always be the shortest 0, and the distance from z to C0

ω would

always be the longest min
θc∈C0ω

[z − θc]TI[z − θc] = zTIz.

44



• The weights wi are determined as long as the covariance matrix I−1 of

zm×1 ∼ N(0, I−1) and the cone Cω in space Rm are determined.

• If C0
ω is Rm

+ = {θc : θc ≥ 0}, and I−1 = I, then wi =
(
m
i

)
2−m, i = 0, · · · ,m.

In our problem, Cω = {θc : −Qθc ≥ 0}, where Q is p ×m. Based on [Sha88] eq

(5.5),

wi(m, I−1, Cω) =





wi−(m−p)(p,QI−1QT ) m− p ≤ i ≤ m

0 0 ≤ i ≤ m− p− 1
(1.70)

Together with

wi(m, I−1, C0
ω) = wm−i(m, I−1, Cω) (1.71)

We get

⇒ wi(m, I−1, C0
ω) =





wp−i(p,QI−1QT ) = wi(p, (QI−1QT )−1) 0 ≤ i ≤ p

0 p+ 1 ≤ i ≤ m

(1.72)

As to the actual calculation of the weight, let Y ∼ N(0, V ), V = QI−1QT ,

wj(p, V ) = wj(p, V,Rp
+) =

∑

|α|=j

p(V −1
α′ )p(Vα;α′) (1.73)

Index α is a subset of {1, ..., p}, α′ is its complement. They denote the indices

of random variables in Y . |α| denotes the size of α. For example, if α = {1, 2},
Yα means (Y1, Y2)T . Yα ∼ N(0, Vα). Vα means the covariance matrix of Yα.

Vα;α′ means the conditional variance matrix of Yα|Yα′ = 0. P (Vα) = P (Yα ≥
0), P (Vα;α′) = P (Yα ≥ 0|Yα′ = 0).

Given V , it is possible to calculate the analytic result for these weights. The

exact formulas for these gaussian probabilities are available in [Kud63] Theorem

(3.1), yet complicated to carry out. For simplicity, we use MCMC sampling of nor-

mal distributions to approximate these weights at a very small computational cost.
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Figure 1.18: Cone and its polar cone

Example 1 (Fig 1.18):

Cω = R2
+ = {θc : θc ≥ 0}, C0

ω = {y : xTV −1y ≤ 0,∀x ∈ Cω}

V1 =


0.078 0

0 0.042


. V2 =


0.078 0.014

0.014 0.042


. V3 =


0.078 0.024

0.024 0.042


. V4 =


0.078 0.054

0.054 0.042




Example 2 (Fig 1.19):
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(a) χ2
2, projection on self (black) 44.84%;

χ2
1, projection on x1 = 0 (green) 25.08%;

χ2
0, projection on the origin (blue) 5.6%; χ2

1,

Projection on x2 = 0 (red) 24.42%

(b) χ2
2, projection on self (black) 24.76%;

χ2
1, projection on x1 = 0 (green) 25%; χ2

0,

projection on the origin (blue) 25%; χ2
1, pro-

jection on x2 = 0 (red) 25.24%

Figure 1.19: 10000 points sampled from N(0, V ) under Scenario 1 and Scenario 2.

Different colors denote 4 different boundaries in constrained space that solutions

θ̂c could touch: (1) not on boundaries. (2) x1 = 0. (3) origin. (4) x2 = 0.

Y =


X1

X2


 ∼ N(0, V )

P = Y TV −1Y −min
θc≥0

(Y − θc)TV −1(Y − θc) ∼
2∑

i=0

wi(2, V, R
2
+)χ2

i (1.74)

Scenario 1: let V =


0.078 0.054

0.054 0.042


, Y ∼ N(0, V ), w0 ≈ 0.056, w1 ≈ 0.504, w2 ≈

0.44.

Scenario 2: let V =


1 0

0 1


, obviously w0 = 0.25, w1 = 0.5, w2 = 0.25.
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1.7.4 Fisher Information I

We denote all parameters θ = (µ
1,{If}

, µ
2,{If}

, · · · , µ
G,{If}

, σ2
1,{If}, σ

2
2,{If}, · · · , σ

2
G,{If})

as in (1.11). The fisher information matrix can be decomposed into 4 parts

I =


 Iµµ Iµσ2

Iσ2µ2 Iσ2σ2


. I is of dimension G(2F − 2). Use likelihood formula for

a single replicate of one group of one gene in (1.6), and assume the replicate

number is equal among all groups K = K1 = · · · = KG, and total read counts

Rg,1 = Rg,2 = · · · = Rg,Kg ,∀g among all replicates for each group. We randomly

pair one replicate from all groups together as one replicate. By the independence

assumptions across all replicates, without any loss, we simply pair them by their

original indices. Our target probability function for each nominal replicate is

P (R{g},k,{If}; θ) =
G∏

g=1

P (Rg,k,{If}; θ)

=
G∏

g=1

(
√

2π)F−1| − h(2)(µ̂g,k,{If};µg,{If}
, σ2

g,{If})|
−0.5 exp(h(µ̂g,k,{If};µg,{If}

, σ2
g,{If}))

(1.75)

h(µg,k,{If};µg,{If}
, σ2

g,{If}) (1.76)

= logP (Rg,k,{If}|µg,k,{If};µg,{If}, σ
2
g,{If}) + log f(µg,k,{If};µg,{If}

, σ2
g,{If})

= log(
Rg,k!∏F

f=1 Rg,k,If !
) +

F−1∑

f=1

Rg,k,If log

(
lIf e

µg,k,If

∑F−1
f=1 lIf e

µg,k,If + lIF

)
+

Rg,k,IF log

(
lIF∑F−1

f=1 lIf e
µg,k,If + lIF

)
+

(
F−1∑

f=1

−1

2
log(2π)− 1

2
log(σ2

g,If
)−

(µg,k,If − µg,If )
2

2σ2
g,If

)
(1.77)

All “nominal” replicates 1, · · · , K are i.i.d as P (R{g},k,{If}; θ), the likelihood func-

tion is,

L =
K∏

k=1

P (R{g},k,{If}; θ) (1.78)
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We want fisher information I{g},

I{g} = −E
[
∂2

∂θ2
logP (R{g},k,{If}; θ)

]

= E

[
(
∂

∂θ
logP (R{g},k,{If}; θ))(

∂

∂θ
logP (R{g},k,{If}; θ))

T

]

The only probability difference between groups is their parameters µ
g,{If}

, σ2
g,{If}.

We pull all replicates from all groups together to form the nominal replicate,

P (R{g},k,{If}; θ) is actually a direct product of these independent replicate like-

lihood in each group. There is no interaction between parameters of different

groups in the fisher information matrix I{g}. We only need to calculate fisher

information for each group Ig, then fill them in their respective positions in I{g}.
Ignore group and replicate indices,

I = E

[(
∂

∂(µ{If}
, σ2
{If})

logP (R{If};µ{If}
, σ2
{If})

)

(
∂

∂(µ{If}
, σ2
{If})

logP (R{If};µ{If}
, σ2
{If})

)T ]
(1.79)

The random variable R{If} here is a multinomial distribution, we use MCMC

sampling to approximate I in (1.79). When R is small, the Laplace approximated

probabilities could be directly sum over all possible outcomes of R{If}, otherwise,

we sample random logit value µ{If} ∼ N(µ{If}
, σ) first, then sample the multino-

mial R{If} based on the sampled logit values.

P (R{If};µ{If}
, σ2
{If})

= C(
√

2π)F−1| − h(2)(µ̂{If};µ{If}
, σ2
{If})|

−0.5 exp(h(µ̂{If};µ{If}
, σ2
{If})) (1.80)

logP (R{If};µ{If}
, σ2
{If})

= logC + (
F − 1

2
) log(2π)− 1

2
log(| − h(2)(µ̂{If};µ{If}

, σ2
{If})|)+ (1.81)

h(µ̂{If};µ{If}
, σ2
{If}) (1.82)
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logC = 1 +O(R−1) is approximately zero when total counts R is large enough.

∂

∂µ{If}
logP (R{If};µ{If}

, σ2
{If})

= −1

2

(
(
∂µ̂{If}

∂µ{If}
)T
∂ log | − h(2)|

∂µ{If}

∣∣∣∣
µ{If }=µ̂{If }

+
∂ log | − h(2)(µ̂{If})|

∂µ{If}

)
+

(
∂µ̂{If}

∂µ{If}
)Th(1)(µ̂{If}) +

∂h(µ̂{If})

∂µ{If}
(1.83)

∂

∂σ2
{If}

logP (R{If};µ{If}
, σ2
{If})

= −1

2

(
(
∂µ̂{If}

∂σ2
{If}

)T
∂ log | − h(2)|

∂µ{If}

∣∣∣∣
µ{If }=µ̂{If }

+
∂ log | − h(2)(µ̂{If})|

∂σ2
{If}

)
+

(
∂µ̂{If}

∂σ2
{If}

)Th(1)(µ̂{If}) +
∂h(µ̂{If})

∂σ2
{If}

(1.84)

Note that if there is notation conflict, the partial derivative on the left-side uses

the chain rule, on the right hand-side it refers to partial derivative w.r.t. the

position of the variable.

Given µ{If}
, σ2
{If}, we want

∂ logP (R{If };µ{If }
,σ2
{If }

)

∂(µ{If }
,σ2
{If }

)
, where h(2), h and µ̂ are all re-

lated to µ{If}
, σ2
{If}.

We need

1. h(1)(µ{If}) = ∂h
∂µ{If }

, h(2)(µ{If}) = ∂2h
∂2µ{If }

2.
∂µ̂{If }

∂µ{If }
,
∂µ̂{If }

∂σ2
{If }

3. ∂ log |−h(2)|
∂µ{If }

4. ∂ log |−h(2)|
∂µ{If }

, ∂ log |−h(2)|
∂σ2
{If }

, ∂h
∂µ{If }

, ∂h
∂σ2
{If }
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1. h(1)(µ{If}) = ∂h
∂µ{If }

, h(2)(µ{If}) = ∂2h
∂2µ{If }

h(µ{If};µ{If}
, σ2
{If}) = logP (R{If}|µ{If};µ{If}, σ

2
{If}) + log f(µ{If};µ{If}

, σ2
{If})

=
F − 1

2
log(2π)− 1

2
log |σ|+ logP (R{If}|µ{If};µ{If}, σ

2
{If})−

1

2
(µ{If} − µ{If})

Tσ−1(µ{If} − µ{If}) (1.85)

where µ{If} ∼ N(µ{If}
, σ), σ =




σ2
I1

0 · · · 0

0 σ2
I2
· · · 0

...
...

. . .
...

0 0 · · · σ2
IF−1




(1.86)

Rewrite

logP (R{If}|µ{If};µ{If}, σ
2
{If})

=
F−1∑

f=1

RIf (log
lIf
lIF

+ µIf ) +R log(
lIF∑F−1

f=1 lIf e
µIf + lIF

) + log(
R!∏F−1

f=1 Rf !
)

= yT{If}η(µ{If})− δ(µ{If}) + γ(y{If}) (1.87)

Let

y{If} =




RI1

RI2

...

RIF−1



, η(µ{If}) =




log(
lI1
lIF

) + µI1

log(
lI2
lIF

) + µI2
...

log(
lIF−1

lIF
) + µIF−1




= c{If} + µ{If} (1.88)

δ(µ{If}) = −R log(
lIF∑F−1

f=1 lIf e
µIf + lIF

), γ(y{If}) = log(
R!∏F−1

f=1 Rf !
) (1.89)
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∂δ

∂µ{If}
=
∂δ

∂η
= E(y{If}|µ{If};µ{If}, σ

2
{If})

= R




lI1
e
µI1∑F−1

f=1 lIf
e
µIf +lIF

lI2
e
µI2∑F−1

f=1 lIf
e
µIf +lIF

...

lIF−1
e
µIF−1∑F−1

f=1 lIf
e
µIf +lIF




= Rb(µ{If}) (1.90)

∂b(µ{If})

∂µ{If}
= (1.91)




lI1
e
µI1 (

∑
f 6=1 lIf

e
µIf +lIF

)

(
∑F−1
f=1 lIf

e
µIf +lIF

)2
− lI1

e
µI1 lI2

e
µI2

(
∑F−1
f=1 lIf

e
µIf +lIF

)2
· · · − lI1

e
µI1 lIF−1

e
µIF−1

(
∑F−1
f=1 lIf

e
µIf +lIF

)2

− lI1
e
µI1 lI2

e
µI2

(
∑F−1
f=1 lIf

e
µIf +lIF

)2

lI2
e
µI2 (

∑
f 6=2 lIf

e
µIf +lIF

)

(
∑F−1
f=1 lIf

e
µIf +lIF

)2
· · · − lI2

e
µI2 lIF−1

e
µIF−1

(
∑F−1
f=1 lIf

e
µIf +lIF

)2

...
...

. . .
...

− lI1
e
µI1 lIF−1

e
µIF−1

(
∑F−1
f=1 lIf

e
µIf +lIF

)2
− lI2

e
µI2 lIF−1

e
µIF−1

(
∑F−1
f=1 lIf

e
µIf +lIF

)2
· · · lIF−1

e
µIF−1 (

∑
f 6=F−1 lIf

e
µIf +lIF

)

(
∑F−1
f=1 lIf

e
µIf +lIF

)2




(1.92)

h(µ{If};µ{If}
, σ2
{If})

= −F − 1

2
log(2π)− 1

2
log |σ|+ yT{If}η(µ{If})− δ(µ{If}) + γ(y{If})

− 1

2
(µ{If} − µ{If})

Tσ−1(µ{If} − µ{If}) (1.93)

h(1)(µ{If};µ{If}
, σ2
{If})

=
∂

∂µ{If}
h(µ{If}; θ)

=
∂

∂µ{If}

(
yT{If}η(µ{If})− δ(µ{If}))−

1

2
(µ{If} − µ{If})

Tσ−1(µ{If} − µ{If})
)

= yT{If} −Rb(µ{If})− σ
−1(µ{If} − µ{If}) (1.94)

h(2)(µ{If};µ{If}
, σ2
{If}) = −R∂b(µ{If})

∂µ{If}
− σ−1 (1.95)
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2.
∂µ̂{If }

∂µ{If }
,
∂µ̂{If }

∂σ2
{If }

The maximizer µ̂{If} is the solution of h(1)(µ̂{If};µ{If}
, σ2
{If}) = 0. Use implicit

differentiation by taking derivatives w.r.t. µ{If}
and σ2

{If} on both sides of this

equation.

∂

∂µ{If}
h(1)(µ̂{If};µ{If}

, σ2
{If}) = 0

−R∂b(µ{If})
∂µ{If}

∣∣∣∣
µ{If }=µ̂{If }

∂µ̂{If}

∂µ{If}
− σ−1

∂µ̂{If}

∂µ{If}
+ σ−1 = 0 (1.96)

∂µ̂{If}

∂µ{If}
= (R

∂b(µ{If})

∂µ{If}

∣∣∣∣
µ{If }=µ̂{If }

+ σ−1)−1σ−1 (1.97)

∂

∂σ2
{If}

h(1)(µ̂{If};µ{If}
, σ2
{If}) = 0

−R∂b(µ{If})
∂µ{If}

∣∣∣∣
µ{If }=µ̂{If }

∂µ̂{If}

∂σ2
{If}
−
∂(σ−1(µ̂{If} − µ{If}))

∂σ2
{If}

= 0 (1.98)

σ−1(µ̂{If} − µ{If}) =




1
σ2
I1

(µ̂I1 − µI1)
1
σ2
I2

(µ̂I2 − µI2)
...

1
σ2
IF−1

(µ̂IF−1
− µ

IF−1
)




(1.99)

The independence of prior probabilities of µ{If} makes the calculation easy here,

if σ is not diagonal, the derivative w.r.t. the variance-covariance terms is not

limited to σ2
{If}, but all covariance elements in σ, which is more complicated to
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write down.

∂

∂σ2
{If}

σ−1(µ̂{If} − µ{If}) =




− 1
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∂µ̂IF−1

∂σ2
I1

1
σ2
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∂µ̂IF−1

∂σ2
I2

· · · − 1
σ4
IF−1

(µ̂IF−1
− µ

IF−1
) + 1

σ2
IF−1

∂µ̂IF−1

∂σ2
IF−1




(Let diag(x) denote a matrix where the diagonal elements is x)

= −σ−2diag(µ̂{If} − µ{If}) + σ−1
∂µ̂{If}

∂σ2
{If}

(1.100)

Back to (1.98),

−R∂b(µ{If})
∂µ{If}

∣∣∣∣
µ{If }=µ̂{If }

∂µ̂{If}

∂σ2
{If}

+ σ−2diag(µ̂{If} − µ{If})− σ
−1
∂µ̂{If}

∂σ2
{If}

= 0

∂µ̂{If}

∂σ2
{If}

= (R
∂b(µ{If})

∂µ{If}

∣∣∣∣
µ{If }=µ̂{If }

+ σ−1)−1σ−2diag(µ̂{If} − µ{If}) (1.101)

3. ∂ log |−h(2)|
∂µ{If }

∂ log | − h(2)|
∂µ{If}

∣∣∣∣
µ{If }=µ̂{If }

=




tr((h(2))−1 ∂h(2)

∂µI1
)

tr((h(2))−1 ∂h(2)

∂µI2
)

...

tr((h(2))−1 ∂h(2)

∂µIF−1

)



µ{If }=µ̂{If }

(1.102)
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 (1.104)

= (−R)
−2lI1e

µI1

∑F−1
f=1 lIf e

µIf + lIF

∂b(µ{If})

∂µ{If}
+ (−R)

1

(
∑F−1

f=1 lIf e
µIf + lIF )2

MI1 (1.105)

∂h(2)

∂µIf
= (−R)

−2lIf e
µIf

∑F−1
f=1 lIf e

µIf + lIF

∂b(µ{If})

∂µ{If}
+ (−R)

1

(
∑F−1

f=1 lIf e
µIf + lIF )2

MIf

(1.106)

(MIf )f,j = (MIf )j,f = −lIf e
µIf lIje

µIj ,∀j 6= f

(MIf )f,f = lIf e
µIf (

∑

ff 6=f

lIff e
µIff + lIF )

(MIf )j,j = lIf e
µIf lIje

µIj ,∀j 6= f

(MIf )i,j = 0,∀i, j, other than positions above (1.107)

We have

∂h(2)

∂µIf

∣∣∣∣
µ{If }=µ̂{If }

, 1 ≤ f ≤ F − 1 (1.108)

4. ∂ log |−h(2)|
∂µ{If }

, ∂ log |−h(2)|
∂σ2
{If }

, ∂h
∂µ{If }

, ∂h
∂σ2
{If }

∂h(2)(µ̂{If})

∂µ
If

= 0, 1 ≤ f ≤ F − 1 (1.109)
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∂ log | − h(2)(µ̂{If})|
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= 0 (1.110)

∂h(µ̂{If})

∂µ{If}
= σ−1(µ̂{If} − µ{If}) (1.111)

[
∂h(2)(µ̂{If})

∂σ2
If

]f,f =
1

σ4
If

, f = 1, · · · , F − 1, 0 for any other entries in the matrix

(1.112)
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(1.113)

∂h(µ̂{If})
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CHAPTER 2

Localized and Simultaneous Non-Negative

Matrix Factorization for Deconvolution of

Multiple GCMS Signals

2.1 Introduction

Gas Chromatography - Mass Spectrometry (GCMS) is a technique to investigate

the metabolome in bio-chemical research. The metabolome is the collection of

metabolites and metabolic end-products in a biological system and it reflects the

overall activity of the metabolic network that led to their formation by the com-

bined net activity of the genome and proteome. Factors that affect transcription,

translation and enzymatic activity will ultimately be reflected in the metabolome.

It consists of a wide range of different classes of chemicals, generally less than 2

kDa in molecular weight, including charged and uncharged species, volatile and in-

volatile molecules, lipids, carbohydrates, amino acids and their derivatives, acids,

bases, etc. Figure 2.1 shows the GCMS machine.

The GCMS data has a three-dimensional (Figure 2.2) image-like structure: axes

of time (chromatographic separation), mass (or more correctly the mass/charge

ratio as mass spectrometers measure the mass/charge ratio of charged molecules)

and signal intensity (amount of the metabolite in the sample). The data could

be represented using a two-dimensional mass-time matrix where entries are in-

tensities. Each metabolite has their own signature in the mass-intensity planes
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Figure 2.1: GC and GC/MS with thermal desorption systems

(a) Illustration of one single GCMS

data sample.

(b) Illustration of multiple GCMS data

sample by merging all their masses.

Figure 2.2: Illustration of GCMS data

(Figure 2.3) in terms of the relative intensities in masses. The retention time of

each metabolite is relatively stable but varies across machines and environments.

The metabolite enters the map with increasing intensities and decreasing after

the peak until the elution ends, which forms a chromatogram peak in the time-

intensity planes (Figure 2.4). Metabolites are not 100% separated in GCMS data,

thus their overlapping nature poses a deconvolution task.

Methods and software for this deconvolution and metabolite profiling have been

around along with development of GCMS technology itself. Early in the 70’s,

[BB74] tries to identify spectrum by finding peaks across mass slices. This is a

rough idea of simultaneously utilizing all masses because peaks from the same
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Figure 2.3: Spectrum scans at several retention times
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Figure 2.4: Chromatograms at several mass slices

60



spectra are assumed to have exactly the same shape. [DSRD76] assumes two

metabolite spectra don’t totally overlap and uses peak counts at every time scan

to determine a peak area where there is only one clean spectrum (singlet). The

full peak shapes are decided directly from observed data of this singlet spectrum.

Similarly to [DSRD76], [Col92] finds groupings of a peak “centroid”s by incorpo-

rating all masses that contribute to the centroid using a computationally simpler

algorithm to allow practical implementation. [PDV97] locates peaks by a back-

folding algorithm which keeps subtracting the two sides of a peak to shorten the

peak width until it is sharp enough. Extending [DSRD76], [Ste99] uses signal-to-

noise ratio throughout the analysis process, to extract weak signals which would

be neglected otherwise. It deals with uncertain peaks and those that are not con-

sistent with model and also calculates a library matching factor for every imputed

spectrum. This is an overall extension on every paper above and implemented in

the free software AMDIS.

All the works above take advantage of clean spectrum scans and lack the ability of

deconvolving closely overlapping spectra and of building multiple correspondence

across samples. We need a solid model-based approach to address this task.

Matrix factorization methods such as singular value decomposition (SVD) do not

serve our purpose as all spectra and chromatograms are non-negative. A reason-

able model is non-negative matrix factorization (NMF). However, each sample

alone usually has a matrix of size 1k*4k, with unknown true component number

r over hundreds. It is impossible to achieve meaningful inference on one sample

using direct NMF, not to mention the computational challenge of this task on all

samples (1k*400k) simultaneously.

In addition, Three factors further complicate the modeling task. First, many
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metabolites elute with very close peak times, which makes the deconvolution task

hard. Secondly, for the same metabolite, there exist retention time shifts among

various biological samples and replicates. Thirdly, the random noise is present at

any given data point in this matrix.

One work that is worth noticing and related to ours is [JGN+04]. Implemented

in ChromaTof of LECO Corporation, it uses non-negative matrix factorization

on local windows to deconvolve the GCMS data matrix across multiple samples.

However, the window choices are manually determined, rank choice of each win-

dow matrix has not been theoretically justified and there is no merging between

windows. With all advantages considered, it still lacks the automation of window

selection and merging, the ability of automatic detection of all hidden interesting

metabolites and an overall theoretical justification for the model.

This motivates us to build a model based on non-negative matrix factorization

and random matrix theory.

Ever since the work of [Wig55] motivated by applications in nuclear physics, there

have been rapid developments in random matrix theory (RMT). Particular inter-

ests are focused on the eigenvalue distribution (spectral distribution) of various

random matrix ensembles. The famous Wigner’s semi-circle law serves as a foun-

dation to these developments. In real cases, semi-circle law applies on Wigner

matrices that are symmetric and whose elements from diagonal or above are i.i.d

random variables with mean 0 and variance 1. It states that the empirical dis-

tribution of eigenvalues of a Wigner matrix follows the semicircle distribution.

Well-understood results also have the joint eigenvalue distribution of gaussian

ensembles. However, these random matrices occur in theoretical physics. One

significant mathematical work was [MP67] on spectral distribution of large ran-
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dom covariance matrices. A special case from this work was the Marcenko-Pastur

Law which describes the empirical distribution of eigenvalues of 1
n
XTX where

covariance matrix Σ = I. A special case of it is the quarter-circle law of empirical

singular value distribution of X. It has been well studied on the distribution of

eigenvalues of 1
n
XTX when covariance matrix Σ 6= I. [BBAP05, BS06], describe

the phase transition phenomena of eigenvalues that correspond to the large diago-

nal elements in Σ (spiked population models where finite number of variables have

larger variance). [BY08] provides the central limit theorem for large eigenvalues in

spiked population models. [Joh01] discussed the distribution of largest eigenvalue

of 1
n
XTX, where X has i.i.d standard gaussian entries, which approximates the

Tracy-Widom distribution [TW94].

[BGGM11] discusses the asymptotic positions and central limit theorem of r

largest eigenvalues, and [BGN12] gives the asymptotic and central limit theorem

on singular values and asymptotic lints on singular vectors of low-rank deformed

rectangular random matrix
r∑
i=1

θiuiv
T
i + Xn, where ui, vi are assumed random.

Under a slight change of assumptions, the asymptotic limiting results still hold

when ui, vi are assumed deterministic, which is exactly the solution in our model.

Furthermore, although we do not use it in our model, [CCHM12] addresses the

central limit theorem of singular values under the same assumptions of this article.

Numerous computational methods for non-negative matrix factorization have been

developed, within which the most popular one is alternate regression, [LS00],

[CZPA09]. However, the uniqueness and correctness of the solution in general

situations is still not theoretically justifiable. [DS03] suggests the uniqueness is

guaranteed if the data is spread across the positive orthant. [LCP+08] provides

a few sufficient and necessary conditions for unique NMF, however these condi-

tions are hard to check in practice and are NP-hard [HSS14], [Vav09]. Despite
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its lack of theoretical justification for uniqueness and noise further complicates

this task, NMF has also shown great strength in practice due to the reasonable

non-negativity constraints.

In this article, we propose a rank-based NMF model to streamline the GCMS

metabolomic study. We theoretically justify each step of our model based on

RMT and NMF. Our model able to automatically split and merge local time

windows, estimate rank for each local window, deconvolve overlapping spectra

and build multiple correspondence across samples. We demonstrates the strength

and automation of our model over any existing GCMS deconvolution methods

by showing successful results from our 27 simulations (vary in extent of spectra

overlapping, between-sample chromatogram shifts and random noise) and 2 real

experimental datasets.

The GCMS data we observe is assume to be a matrix plus random noise. The

rank of this matrix is altered by the random noise, which results in full rank for

the matrix. We repeatedly use rank estimation and evaluate the similarity be-

tween singular vectors of random matrices using RMT. The model procedures can

be summarized as 9 major steps (Figure 2.5). 1. A parallel computation based

on pseudo-rank estimation is performed on each sample to determine all the time

points where two or more spectra start overlapping. We call s ∗ cj a scan at time

tj. In this process, we call rank= 1 spectrum scans “sea” and rank≥ 2 spectrum

scans “island”. We perform NMF on “island” scans that present consecutively

in one cluster (no sea scan in between) to get spectra from islands. 2. Cluster

“sea” and “island” spectra across all files. 3. We adaptively determine the window

splitting process by dynamically computing the estimated rank of selected window

and make sure the ranks are small (usually ≤ 6). Each window will incorporate

any spectra clusters learned from step 2 and extend itself for each file. Once win-
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dows are determined, we perform a combinatorial NMF within each window using

individual sample rank and biological group information at this window. 4. A

window merging process merges NMF results from all windows into one by mea-

suring the inner product between spectra within or between windows. 5. A large

sequential NMF is carried out, in each inner loop we only update one spectrum

and chromatogram. 6. Similar nearby spectra are combined into one. 7. We fix

our spectra matrix S, and extend the range of C for each sample until it reaches

zero to get a full shape. 8. We split multiple peaks in C into different features. 9.

After all features and learned, we deploy the multinomial logistic regression with

a group lasso penalty used to select significant features that differentiate between

groups.

The remainder of this article is organized as follows: 2. Modeling details. 3.

Simulation study. 4. Analysis on real datasets. 5. Summary. 6. Future work.

7. Theorems and discussions related to random matrices and nonnegative matrix

factorization during some of the modeling steps. 8. Lemmas on random matrices

and other existing theorems on uniqueness of nonnegative matrix factorization.

2.2 Modelling

2.2.1 Notation

X̃ : n× p, observed GCMS data matrix.

X : n× p, random noise matrix.

S : n× r, spectrum matrix (dictionary).

C : r × p, chromatogram matrix.

P : n × p, P = SC = UΘr×rV , where UΘV is a singular value decomposition of

P .

T : p-dimensional vector denoting the retention time of each column of X̃, X, C.
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gcmsDecon

1. Sea-island Learning on Individual Samples

2. Initial Merging - Recursive

3. Adaptive Local Window Setting and NMF

4. Merge NMF from all Windows

5. Global NMF

6. Further Merge Related Spectra

7. Chromatogram Shape Check

8. Peak Splitting

9. Feature Selection

Figure 2.5: 9 Steps of gcmsDecon
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Superscript g, k: group g and replicate k, e.g. X̃g,k is of dimensions n× pg,k.

2.2.2 Model

We assume a shared spectrum matrix S and our model is

X̃g,k = P g,k +Xg,k = SCg,k +Xg,k

s.t.





S ≥ 0, Cg,k ≥ 0 ∀1 ≤ g ≤ G, 1 ≤ k ≤ Kg

∀(g1, k1) 6= (g2, k2),

∣∣∣∣∣∣
maxT g1,k1t

t∈{t:Cg1,k1s,t >0}
− minT g2,k2t

t∈{t:Cg2,k2s,t >0}

∣∣∣∣∣∣
≤ T 1 ≤ s ≤ r

(2.1)

Since noise Xg,k is present at any non-zero observation point, and X̃g,k ≥ 0, we

assume

Xg,k
m,t

iid∼





0 (SCg,k)m,t = 0

1
1−Φ(−(SCg,k)m,t)

φ( x
σ2 )1(x ≥ −(SCg,k)m,t) (SCg,k)m,t > 0

Note: Empirically, most of truncation would be negligible since the variance σ2 is

small compared to SCg,k. Thus the distribution X̃g,k resembles joint i.i.d gaussian

N(0, σ2).

The log-likelihood:

l =
∑

g,k

logP (X̃g,k;S,Cg,k)

We want to maximize the log-likelihood l and accurately infer S,Cg,k from obser-

vations X̃g,k.
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2.2.3 Estimation

The algorithm aims to maximize the likelihood and infer true S,Cg,k by

Obj 1 : min ncol(S) Obj 2 : min
S,C{g,k}

G∑

g=1

Kg∑

k=1

||X̃g,k − SCg,k||2F (2.2)

≈ min
S,C{g,k}

G∑

g=1

Kg∑

k=1

||X̃g,k − SCg,k||2F + λSncol(S) (2.3)

We want to maximize the likelihood as well as make accurate statistical inference.

This problem is impossible to solve directly, but every step of our algorithm aims

to take care of both objectives at the same time.

Preprocessing - Matrix forming

We bin every data file into a matrix X̃g,k of size n∗p{g,k}, each sample has slightly

different retention time T {g,k}, therefore this matrix size would slightly differ.

Rank Estimation

Throughout steps of the program, we always need a rank estimator for a given

random matrix X̃ = P + X, we want to estimate the true rank of P based on

singular values of X̃. r̂rbt =
n∑
i=1

1(λ̃i >
λ̃1

κrank
). Based on Theorem 6 , r̂rbt might

underestimate the true rank r0 depending on the choice of κrank when ≥ 2 spec-

tra with different magnitudes of intensities overlap, but it also is robust against

violation of assumptions on noise X. Example see Figure 2.6.

Rank Estimation. (Figure 2.6)

function Rank(X̃, κrank)

Calculate singular values of X̃ → λ̃1, · · · , λ̃min(n,p)

return
min(n,p)∑
i=1

1(λ̃i >
λ̃1

κrank
)

end function
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Distribution of singular values of (nonegative sk, ck) X̃100×150 =
5∑

k=1

ηk
√

100 ∗ 150skc
T
k +X

r̂rbt cutoff κrank = 6. X truncated. σ̂cst = 0.944
η1 = 0.8, η2 = 0.7, η3 = 0.6, η4 = 0.5, η5 = 0.4

θ1 = 228.8, θ2 = 49.6, θ3 = 39.8, θ4 = 31.8, θ5 = 16.8. minimum out-of-bulk θ = 11.1

Singular values
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3 singular values > λ̃1/κrank
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19.28

r̂rbt cutoff
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Figure 2.6: Rank estimation. In this example, true r = 5, estimated r̂rbt = 3.

Step 1. Sea-island Learning on Individual Samples

This step tries to cluster nearby scans if they are similar and represent them using

as few spectra as possible. For each g, k,

min ncol(Sg,k) And min
Sg,k,Cg,k

||X̃g,k − Sg,kCg,k||2F

For each file X̃(g,k), we detect the scan clusters that share the same spectrum.

If consecutive scans belong to one spectrum, they form their own cluster. If two

spectra overlap, every scan of the overlapping parts should theoretically be its own

cluster. We detect whether one scan belongs to previous cluster by computing the

inner product between it and the normalized average of previous normalized scans

in this cluster 〈spre, X̃(g,k)
.,j 〉, spre = 1

t2−t1

t2−1∑
t=t1

X̃.,j
||X̃.,j ||2

, t1 is the start of current clus-

ter, and t2 is the current scan. If this inner product is below a threshold cutoff

κsi, we assign the current scan t2 to a new cluster. Repeat this process until all

scans have been processed. In the end, if the size of a cluster is 1, we call it a

“island”, otherwise a “sea”. The process can detect majority of rank-1 and over-

lapping scans and misidentify only for scans with small intensities (usually in the
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Figure 2.7: Sea-island learning. Connected scans are “sea” denoted by blue and

“islands” are denoted by red. Under the dashed line is sea-island learning process.

The blue dot clusters produce Ssea, and red dots clusters produce Sisland. The

correlation cutoff here is chosen to be 0.9.

beginning and end of a peak). Refer to Discussion 8 . Results of this step is

to be used later in window selection process, where new joint spectra would be

relearned for all files simultaneously. Example see Figure 2.7.

Step 2. Initial Merging

We learn the correspondence between files by find clusters of their sea-island spec-

tra. S
{g,k}
sea , T

{g,k}
sea , S

{g,k}
island, T

{g,k}
island. We aim to merge similar close-by spectra as many

as possible, because they are very likely to be the same compound. The time range

of merged spectra are used to help window splitting. Let Ssea merge, Sisland merge to

be the merged spectra. Indicator matrix ξg,ksea of dimension ncol(Ssea merge) ∗ Lg,ksea,
whose columns and rows have all 0 except for one 1, indicating which merged
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Sea-island Learning. (Figure 2.7)

Require: Inner product cutoff κsi (e.g., 0.95), κrank (e.g., 6), X̃g,k from Matrix

Forming.

Ensure: “Sea” and “island” cluster spectrum matrices Ssea, n × Lsea, Sisland,

n×Lisland and their corresponding time range Tsea, 3×Lsea, Tisland, 3×Lisland.
for g in 1 : G, k in 1 : Kg do

p ← pg,k, T ← T g,k, X̃ ← X̃g,k, initialize scan cluster labels l =

[l1, · · · , lp] ← [1, · · · , 1]. Indices t1 ← 1, t2 ← 2, total number of clusters

L← 1. Spool = [], Tpool = [].

while t2 ≤ p do

spre ← 1
t2−t1

t2−1∑
j=t1

X̃.,j
||X̃.,j ||2

, spre ← spre
||spre||2

5: If 〈spre, X̃.,t2
||X̃.,t2 ||2

〉 ≥ κsi, then lt2 ← L, spre ← 1
t2−t1+1

t2∑
j=t1

X̃.,j
||X̃.,j ||2

, spre ←
spre
||spre||2 . else Spool ← [Spool, spre], lt2 ← L+ 1, L← L+ 1, t1 ← t2.

t2 ← t2 + 1

end while

e.g. of labels, see Figure 2.8.

Sg,ksea ← columns of [Spool]n×L whose Freq > 1. T g,ksea ← range of T by labels.

10: Sg,kisland ← NMF on these cluster of scans with Freq 1 with the help of

nearby sea scans, min
[Snmf ]n×r0 ,[C]r0×(t2−t1−1)

||X̃nmf − [sleft sea, Snmf , sright sea]C||2F .
end for
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0

42
0

46
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L
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s
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Figure 2.8: Labels of Figure 2.7 example.

71



spectrum the individual spectrum of S
{g,k}
sea belongs to.

min ncol(Ssea merge) AND min
Ssea merge,δ

g,k
sea

∑

g,k

||Sg,ksea − Ssea mergeξg,ksea||2F

s.t. ∀ spectrum in Ssea merge, the time range of its belonging S{g,k}sea is within T

Similar objective goes for island spectra S
{g,k}
island. This step is run in a recur-

sive way. Each step we find a cluster and the spectra across files belonging

to this cluster are killed off, then the next cluster is found within the rest of

spectra. Each sample contributes once in one merged spectrum. Each time

we find the biggest cluster from a joint matrix of one spectrum from every file,

Y = [S1,1
sea.,i1,1 , · · · , SG,KGsea .,iG,KG ], r = Rank(Y ), split Y into r clusters (this number

does not have to be r) using k-means algorithm and pick out the largest cluster.

This process runs until all sea-island spectra are in their own merged clusters.

This result is prepared for later window splitting. Illustration please see Figure

2.9.

Step 3. Adaptive Local Window Setting and NMF

Dynamically split time range into windows (Figure 2.10), each data file in j-th

window is X̃g,k
localj

, and Rank(X̃g,k
localj

, κrank) ≤ 6,∀g, k.

∀ window j, min ncol(Slocalj) AND min
S,C{g,k}

G∑

g=1

Kg∑

k=1

||X̃g,k
localj

− SlocaljCg,k
localj
||2F

(2.4)

We want to avoid computation on NMF with a big number of components, which

is challenging both theoretically and empirically. We dynamically split retention

time range (e.g. 0 4800 seconds) into multiple windows (e.g. [10, 30), [30, 50),

etc.). We compute the rank of data Xg,k
localj

within this window (refer to Theorem

6 ). If any of them is larger than a threshold (usually 6), we split the windows

until all window matrices have ranks ≤ threshold. This guarantees a low-rank

fixed window scheme for all files. In order to learn full chromatogram shapes, we
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Initial Mering - Recursive
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Figure 2.9: Initial recursive merging. Red scans Y are currently in computation,

skipping of red scans (2nd to 3rd step) means searching with perturbation. Blue

denotes computed scans and green denotes the scans forming a sub-data S ′{k} in

a recursive function call.
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Initial Merging - Recursive. (Figure 2.9)

Require: [S
{g,k}
sea ]

n×L{g,k}sea
, T
{g,k}
sea , [S

{g,k}
island]n×L{g,k}island,

, T
{g,k}
island, T

Ensure: Ssea merge, Tsea merge, Sisland merge, Tisland merge, ξ
{g,k}
sea merge, ξ

{g,k}
island merge.

Take “sea” as an example. For simplicity, use k in 1 : K instead of (g, k).

function InitialMerge(S
{k}
sea , T

{k}
sea , T)

Ssea merge ← [], Tsea merge ← [], t
{g,k}
sea merge ← []. Initialize ik = 1, 1 ≤ k ≤ K.

while ∃k, ik ≤ Lksea do

5: Y = [S1
sea.,i1 , · · · , SKsea.,iK ], r = Rank(Y ), group K spectra into r

clusters using k-means algorithm → cluster index vector δh = [δh1 , · · · , δhph ],
r∑

h=1

ph ≤ K.

∀1 ≤ h ≤ r, scurh ← 1
ph

ph∑
j=1

S
δhj
sea

.,i
δh
j
, scurh ← scurh

||scurh||2
, Tcurh ←

1
ph

ph∑
j=1

T
δhj
sea

i
δh
j
.

Base: if Lksea ≤ 1, ∀k, return Smerge sea ← {scur}1:r, Tmerge sea ←
{Tcur}1:r, ξ

k
sea merge ← {iδh}1:r.

h← argmax ph. Ignore this subscript h for scurh, Tcurh, δh below.

η ← δc = [η1, · · · , η|η|] denotes samples not in cluster hmax with

their scans iη. ∀1 ≤ j ≤ |η|, search for i
ηj
2 in its neighborhood ±T

of Tcur such that 〈scur, Sηjsea.,iηj2 〉 ≥ κim. Delete ηj from η if no scan lo-

cated. Update scur ← 1
p+|η|(

p∑
j=1

s
δj
sea.,iδj +

|η|∑
j=1

S
ηj
sea.,i

ηj
2

), scur ← scur
||scur|| , Tcur ←

p
p+|η|Tcur + 1

p+|η|

|η|∑
j=1

T
ηj
sea2,i

ηj
2

, ξcur ← {ik, k ∈ δ; ik2, k ∈ η}.

10: Recursion:
{

Due to the scan skipping in this search for samples η, we

define a submatrix S ′ksea = Sksea.,ik:(ik2−1), T
′k
sea = T ksea.,ik:(ik2−1), ∀k = 1, · · · , K.

S ′ksea = [] if k 6∈ η.

S ′sea merge, T
′
sea merge ← InitialMerge(S ′{k}sea , T

′{k}
sea).

}

Smerge sea ← [Smerge sea, S
′
merge sea, Scur], Tmerge sea ←

[Tmerge sea, T
′
merge sea, Tcur], t

k
sea merge ← [ξksea merge, ξ

′k
sea merge, ξcur].

end while

return Smerge sea, Tmerge sea

15: end function 74



expand the window by incorporating the range of any sea-island spectrum that

falls in this window. We check the ranks of expanded Xg,k
localj

, if any individual

rank is above the threshold, we dynamically truncate its window size until the

rank falls equal or below threshold.

After windows are determined this way, we compute the NMF with the indi-

vidual file ranks. r is set to be the largest file rank. When computing the C step

in NMF, we choose the median of its group file ranks rg as the number of spec-

tra in Sn×r. Doing this would require
(
r
rg

)
combinations, which is the reason we

want r to be small (≤ 6). The rationale behind this group learning is we assume

samples from one group would have similar spectra. Sometimes a diseases group

of samples would share a metabolite that does not exist in the control group.

Step 4. Merge NMF from all Windows

min ncol(Sjoint) AND min
Sjoint,C

{g,k}
joint

∑

g,k

||X̃g,k − SjointCg,k
joint||2F

AND min
Sjoint,ξjoint

∑

j

||Slocalj − Sjointξjjoint||2F

ξjjoint is the indicator matrix of dimension ncol(Sjoint)*ncol(Slocalj) whose columns

have all zero but one 1, indicating which spectrum in Sjoint this spectrum in Slocalj

belongs to.

The way we split data into different time windows in previous step might truncate

the chromatograms, so that we want to combine NMF results from different win-

dows S
{j}
local, C

{j}
local to recover the spectrum profile. We compute the inner products

for spectra within its own window and between spectra of consecutive windows.

Based on Discussion 7 , if there are spectra from consecutive windows ≥ κmw

(e.g. 0.95), we identify them as one spectrum. The same spectrum in different

windows differ slightly due to random noise and inner products between different
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Figure 2.10: Adaptive local NMF. Solid line denotes fixed windows and dashed

one denotes extended windows. NMF is calculated once in one window simulta-

neous for all samples. The window is extended due to the presence of Ssea merge,

Sisland merge from previous step within fixed windows (solid lines). The windows

are extended under reasonable limits.
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Adaptive Local NMF. (Figure 2.10)

Require: {S, T, ξ{g,k}}sea merge, {S, T, ξ{g,k}}island merge, X̃{g,k}, T {g,k}, r ≤ 6,

T(e.g.10).

Ensure: S
{j}
local, C

{j}
local, Twin

Window width set as 2T. For simplicity, assume T0
2T

is an integer,

Twin =


−T T · · · T0 −T

T 3T · · · T0 + T




2×(
T0
2T

+1)

for j = 1 : ncol(Twin) do

tg,klocal.,j =

[
argmin

t: Twin1,j≤T
g,k
t ≤Twin2,j

T g,kt argmax
t: Twin1,j≤T

g,k
t ≤Twin2,j

T g,kt

]T

rg,kj = Rank(X̃g,k

.,tg,klocal1,j :t
g,k
local2,j

, κrank)

5: end for

Twin ←
{
repeat, if ∀j that rg,kj > r, break j-th window in half and expand

the total number of windows by 1. Recalculate rg,kj1 , rg,kj2 . until ∀j, rg,kj ≤ r
}

for j = 1 : ncol(Twin) do

∀g, k, Xg,k
localj

←, scans in X̃g,k whose T g,k ∈ [Twin1,j, Twin2,j). rg,kj ←
Rank(Xg,k

localj
, κrank). Find i’s whose range of Tmerge sea,i∩[Twin1,j−T, Twin2,j+

T) 6= ∅. The corresponding ξg,ksea mergei points to extra times in T g,k that should

be included in Xg,k
localj

. Dynamically shrink this expansion if new rg,kj > r.

rlocalj ← max
g,k

rg,kj ≤ r, rglocalj ← median
k

rg,kj , g = 1 : G. Perform localized

NMF,

min
[Slocalj ]n×rlocalj

,C
{g,k}
localj

∑

g,k

||X̃g,k
localj

− SlocaljCg,k
localj
||2F

10: Alternate Regression: Randomize initial Slocalj ,
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repeat

C-step: Update C
g,{k}
local j, for each group g simultaneously by comparing

all
(rlocalj
rglocalj

)
possible combinations of columns of Slocalj, n× rlocalj.

for all g do

Let δg be a combinatorial choice rglocalj out of 1 to rlocalj, de-

noting nonzero rows in Cg,k
localj, compute δ̂g, Ĉ

g,{k}
localj

← min
δg ,C

g,{k}
local j

∑
k

||X̃g,k
localj

−

[Slocalj].,δg [C
g,k
localj]δg ,.||2F

15: if ∃k in group g whose rg,kj > rglocalj then

Recalculate Ĉg,k
localj

. Pick additional rg,kj − rglocalj spectra in

the rest columns of Slocalj, η̂
g = {i : i /∈ δ̂g, 1 ≤ i ≤ rlocalj}. There

are
(rlocalj−rglocalj
rg,kj −r

g
localj

)
all possible choices. Let ζg,k = [ζg,k1 , · · · , ζg,k

rg,kj −r
g
localj

] de-

note the chosen indices out of 1 to rlocalj − rglocalj. Compute ζ̂g,, Ĉ
g,{k}
localj

←
min

ζg,k,Cg,klocalj

||X̃g,k
localj

− [Slocalj].,(δ̂g ,η̂g
ζg,k

)[C
g,k
localj](δ̂g ,η̂g

ζg,k
),.||2F

end if

end for. End of C-step

S-step: Compute ŜTlocalj ← min
Slocal

T
j

∑
g,k

||[X̃g,k
localj

]T − [Cg,k
localj]

TSlocal
T
j ||2F .

20: until Error small enough

end for
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Window Merging

.... ....

learned
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365 371 349 357 349
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Figure 2.11: Merge local windows. The label numbers are results of spectrum

inner products within and between windows. E.g., spectra with label 349 across

the three windows are all learned differently but similar, they actually represent

one spectrum with chromatogram across all three windows.

spectra are generally much lower. In our experience, we have not encountered

a lot of false identifications. Doing this not only improves accuracy of spectrum

learning, but also identifies the true spectrum chromatograms. See Figure 2.11.

Step 5. Global NMF

min
Sglobal,C

{g,k}
global

∑

g,k

||X̃g,k−SglobalCg,k
global||2F with initial values Sglobal = Sjoint, C

{g,k}
global = C

{g,k}
joint

Once we combine all windows in to two large S, C matrices, with the original large

data matrix X̃ of all files. We only need to minimize ||X̃ − SC||2F in a sequential

way starting with S, C we got from window merging. Sequential way means in
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Merge NMF windows. (Figure 2.11)

Require: Slocalj , C
{g,k}
localj

, Twin, X̃{g,k}, κcor (e.g. 0.95)

Ensure: Sjoint, C
{g,k}
joint

for j = 1 to ncol(Twin) do

Indices of similar spectra within window j. Bself j ← {(i, k) :

〈[Slocalj].,i, [Slocalj].,k〉 ≥ κcor). Indices of similar spectra between window j

and its next j + 1. Bnextj ← {(i, k) : 〈[Slocalj].,i, [Slocalj+1].,k〉 ≥ κcor}
end for

Labeling: Any pair of spectra appears either in Bself {j} or Bnext{j} are as-

signed the same label. If multiple pairs of spectra overlap, assign one label

number for all of them. Every unique label represents a cluster (chain) of

similar spectra learnt from all windows. → labelj = [lj1, · · · , ljncol(Slocalj)] for

Slocalj , j = 1:ncol(Twin). Lc = max
i,j

labelj[i].

5: Let chaini ← {(wip,mi
p)}, 1 ≤ i ≤ Lc stores the window number and spectrum

number for i-th chain. profallg,ki,p ← [Clocal
g,k
wip

]mip,., the chromatogram score of

file g, k using p-th spectrum in chaini. Reorganize profallg,ki,{p} so that they

can be written in one matrix.

profallg,ki =




t1 t2 · · · · · ·
c1,1 c1,2 · · · · · ·

...
...

. . . . . .

cp,1 cp,2 · · · · · ·




. To compute one spectrum for this chaini,

we need to subtract other chains from the data.
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Initialize Sjoint ← 0, n× Lc, C{g,k}joint ← 0, Lc × p{g,k}.
Window Choice:. wing,k = [wing,k1 , wing,k2 , wing,k3 , · · · , wing,k

pg,k
]. ∀g, k

for t in 1:pg,k do

10: wing,kt ← argmin
j
||X̃g,k

.,t − Slocalj [Cg,k
localj

].,t||2F
end for

To ensure continuity of window choosing, if ∃t, wing,kt < wing,kt−1, let wing,kt ←
wing,kt−1.

for i = 1, · · · , Lc do

for all g, k do

15: For every scan t ∈ [tstart
g,k
i , tend

g,k
i ] in profallg,ki , its best window choice

j ← wing,kt and all the window numbers in chaini, w
i
{p}.

if j ∈ wi{p}, then its spectrum numbers s← {mi
p : p that wip = j}. Lets

sc denote the rest spectra in this window. Compute the residual Eg,k
i .,t ←

X̃g,k
.,t − Slocalj .,scC

g,k
localj sc,.

. Only need to keep these in [tstarti, tendi], E
g,k
i ←

[Eg,k
i ],tstartg,ki :tend

g,k
i

.

else, Eg,k
i ← [].

end for

Compute ŝtargeti , Ĉ
g,k
targeti ← min[stargeti]m0×1,C

g,k
targeti

∑
g,k

||Eg,k
i −stargetiC

g,k
targeti

||

20: Sjoint.,i ← ŝtargeti , for all g, k, Cg,k
jointi,tg,kstarti

:tg,kendi
← Ĉg,k

targeti .

end for
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(a) Global NMF error change (b) Further merging error change

Figure 2.12: Global NMF and Further Merging.

each inner loop i we min
S.,iCi,.

||X̃−S.,−iC−i,.−S.,iCi,.||2F . This step usually take ≤100

outer loops to converge. Example of error changes see Figure 2.12a.

Step 6. Further Merge Related Spectra

min
Sfur,C

{g,k}
fur

∑

g,k

||X̃g,k−SfurCg,k
fur||2F with initial values Sfur = Sglobal, C

{g,k}
fur = C

{g,k}
global

AND min ncol(Sfur)

Within S, after the global NMF, there are chances they still resemble each other,

we further merge this kind of spectra into one. The error might increase here

since we are reducing the model complexity. Example of error changes see Figure

2.12b.

Step 7. Chromatogram Shape Check

min
C
{g,k}
shape

∑

g,k

||X̃g,k−SshapeCg,k
shape||2F with initial values Sshape = Sfur, C

{g,k}
shape = C

{g,k}
fur

In the initial sea-island learning, this is a chance that overlapping spectra do not

show as “island” if the intensities from one spectrum is too low. Here, after all

spectra have been learned, we extend C of corresponding spectra for every file, to

make sure the spectra explain as much data as possible. This step is also impor-

tant to retrieve a full chromatogram peak shape. See Figure 2.13.
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Global NMF. (Figure 2.12a)

Require: Sjoint, C
{g,k}
joint

Ensure: Sglobal, C
{g,k}
global

Let δ = [δ1, · · · , δLc ], be the order of spectra in Sjoint from big to small.

The relative magnitude is measured by maximum in the corresponding row of

C
{g,k}
joint .

Let Sglobal ← Sjoint,

repeat{
for i = 1, · · · , Lc do

5: min
[sglobal]m0×1,c

g,k
global

∑
g,k ||Ig,k − Sjoint.,δciC

g,k
jointδc,.

− sglobalcg,kglobal||2F .

Sglobal.,δi ← sglobal, C
g,k
jointδ,.

← cg,kglobal

end for

until Error change is small

Delete columns in Sglobal whose corresponding rows in Cg,k
global are all zero.

10:
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Further Merge Related Spectra. (Figure 2.12b)

Require: Sglobal, C
{g,k}
global

Ensure: Sfur, C
{g,k}
fur

Sfur ← Sglobal, C
g,k
fur ← Cg,k

global

repeat

Calculate 〈Sfur, Sfur〉, pick the pair with highest correlation that is greater

than a cutoff cα, i1, i2,

if there is no (g, k) that the nonzero times of Cg,k
furi1,.

and Cg,k
furi2,.

are within

distance t, find the next highest correlation > cα

5: if no pair of spectra satisfy this condition then

the further merging is over, break;

else

[sfur]← min
[sfur]n×1,c

g,k
fur

∑

g,k that qualify

||X̃g,k
fur − Sfur.,−(i1,i2)C

g,k
fur−(i1,i2),.

− sfurcg,kfur||2F

end if

[Sfur].,i1 ← sfur, [Cg,k
fur]i1,. ← cg,kfur, [C

g,k
fur]i2,. ← 0 for these g, k that qualify.

Delete [Sfur],i2 if [Cg,k
fur]i2,. are all 0.

10: until
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Figure 2.13: Shape checking

Step 8. Peak Splitting

Chromatogram with multiple peaks could be due to the chemical reaction that

two similar spectra co-elute closely, which would be hard to detect in any compu-

tational algorithm, or it could be due to same spectra with multiple peaks. Either

way, we want to split these peaks into different features. We used the template-

based aligner (TBA) we developed for LCMS type of data to select template peaks

using all samples. We make sure only peak clusters with sufficient large signals be

selected as template features. See Figure 2.14. Every template feature represents

a variable from all {g, k} samples.

Step 9. Feature Selection

We use multinomial logistic regression with L1 group penalties
√
β2

1,j + · · ·+ β2
G,j

on the coefficients belonging to one feature (all in or all out).

min
G∑

g=1

Kg∑

k=1

− log(
exp(

∑J
j=1 βg,jF

g,k
j )

∑G
g=1 exp(

∑J
j=1 βg,jF

g,k
j )

) + λ

J∑

j=1

√
β2

1,j + · · ·+ β2
G,j
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Shape Check. (Figure 2.13)

Require: Sfur, C
{g,k}
fur .

Ensure: Sshape, C
{g,k}
shape

Sshape ← Sfur, C
g,k
shape ← Cg,k

fur

Sort spectra by the biggest chromatogram response same as before, δ is the

order

for i = 1, · · · , Lc do

if the two endpoints of non-zero time region of Cg,k
shapeδi,.

are bigger than

ccut, we extend the spectrum range, by t, additional time points η,

5:

∀g, k, min
[cg,kshape]1×(|η|)

||Ig,k.η − Sshape.,−δiC
g,k
shape−δi,η

− Sshape.,δic
g,k
shape||2F

Cg,k
shapeδi,η

← cg,kshape

end for

(a) Pulling intensity

scores C from all files.

⇒
(b) Split feature one (c) Split feature two

Figure 2.14: Peak Splitting
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Peak Splitting. (Figure 2.14)

Require: Sshape, C
{g,k}
shape

Ensure: Final feature matrix F , J ∗
G∑
g=1

Kg, J ≥ ncol(Sshape)

F ← [],

for i in 1 : ncol(Sshape) do

Let peak function Peakg,k(δt) ← [Cg,k
shape]i,.. δt represents discrete peak

times. Peakg,k(y) = 0 when y 6∈ δt
5: repeat

Tf (t)←
∑
g,k

max
|y−t|≤T

Peakg,k(y)

feature time ← argmaxTf (t), feature ← for all g, k,

max
|y−feature time|≤T

Peakg,k(y), update peak function Peakg,k(y) ← subtract

related peaks in Peakg,k(y).

F ←


 F

feature




until Enough features selected or no more template peaks available

10: end for

Feature Selection

Require: Feature F , J ×∑G
g=1 Kg

Ensure: Fchoice

Fsparse ← Keep the results of β̂.,j which has at least one non-zero in the G-

dimensional vector.

Fcor ←, keep these features whose correlation with at least one of Fsparse are

≥ cα from cor(Fsparse, F ).

Fchoice ←


Fsparse
Fcor
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2.3 Simulation

2.3.1 Set-up

We conduct 27 simulation studies which differ in terms of 3 levels of overlapping

between metabolite chromatograms, 3 levels of between replicate chromatogram

shifts, and 3 levels of random noise ε. Each simulation consists of two groups,

20 replicate samples each group. 5 true metabolites of interest are simulated,

where their intensities significantly differentiate between the two groups. For

each of the 5 true metabolites, we simulate another non-differential metabolite

that elutes close to the true metabolite with a similar magnitude of intensity. 20

additional non-differential metabolites with smaller intensities are generated with

their chromatogram peaks away from the 5 true metabolites but could affect their

corresponding nearby metabolites.

Choices of metabolite spectra. All metabolites are selected and exported from

NIST main EI MS library. 5 true metabolites are selected as Cholesterol-TMS,

Citric-Acid-Tetra-TMS, Dibutylphthalate, Fumaricacidtetradecyltrans-hex-3-enylester,

Glycine-tri-TMS. The 5 metabolites that closely co-elute are picked as those

whose spectra overlap with the true metabolites for at least one major mass

slice. Spectra with bigger inner product with the true spectra are selected at

priority. They are chosen as 912-Octadecadienoicacid(ZZ)-trimethylsilylester, D-

Psicopyranosepentakis(trimethylsilyl)ether(isomer2), Diethyl44’-azoxydibenzoate,

cis-7cis-11-Hexadecadien-1-ylacetate, and Olean-12-ene-31516212228-hexol. Do-

ing this would allow the overlapping occur within the same mass slices, thus

increases the difficulty of deconvolution. The noise spectra are randomly picked

from the library with no preferences.

Choices of chromatogram shapes. Chromatograms of spectra are selected from
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previous modeling results on contrived datasets and a real dataset. For the 5

true metabolites and the 5 metabolites that closely co-elute, chromatograms with

clean shapes are selected. The 5 true metabolite chromatogram peaks are scat-

tered evenly across the time span, 480, 1440, 2400, 3360, and 4320 secs. The

chromatograms of noise spectra are randomly selected.

3 levels of overlapping between metabolite chromatograms. Each true metabolite

co-elutes with a nearby metabolite, their chromatogram peak distances determines

the difficulty of the deconvolution task. We choose 1, 5, or 10 secs for this peak

distance. The noise metabolite spectra co-elutes are intended to elute away from

true metabolites, meaning their peaks are beyond the proximity (within 1, 5, or 10

secs) of true metabolite peaks. They might co-elute with the nearby metabolites

though.

3 levels of replicate chromatogram perturbation. There exists time perturbation

among replicate samples even for the same known metabolite. To take this factor

into consideration, we add a random noise to the true peak locations, with the

variance of noise to be 1, 5, and 10. This time shifts apply to all true, near and

noise metabolites. The original chromatogram pictures might be broken by this

replicate time shifts, and the resulting deconvolution task would be much harder

when the noise is high.

3 levels of random matrix noise ε. Every data point in the time-mass intensity

matrix we observe has its noise which could be a machine noise or compound inter-

fering noise. We assume the noises follow independent normal distribution. Any

negative data point is set to zero. Essentially, each noise follows a different trun-

cated normal distribution, and majority of them are approximately non-truncated.
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Figure 2.15: Simulated true and nearby spectra
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Figure 2.16: 5 Simulated true and nearby overlapping chromatograms with 5 secs

peak distance.
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Figure 2.17: 3 levels of overlapping between metabolite chromatograms. Spectrum

1.
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Figure 2.18: 3 levels of standard deviation in times of replicate chromatograms.

Spectrum 1, dist = 10s.
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Figure 2.19: Boxplot of true β’s. Dataset 14©
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Figure 2.20: 3 levels of random noises. dist = 10s, sd rep = 1s. Data is from the

actual simulations.
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2.3.2 Results

dist: the time difference between true spectra and corresponding nearby spectra.

sd shift: variance of replicate peak time.

sd noise: sd of random noise.

scr: inner product between true spectrum and learned spectrum.

cvrg: the proportion of samples that contain this learned spectrum.

dist sd rep sd noise scr 1 scr 2 scr 3 scr 4 scr 5 cvrg 1 cvrg 2 cvrg 3 cvrg 4 cvrg 5

1© 10s 1s 5 1.000|1.000 1.000|0.999 1.000|1.000 1.000|1.000 1.000|1.000 100.0%|100.0% 100.0%|100.0% 100.0%|100.0% 82.5%|100.0% 100.0%|100.0%

2© 10s 1s 15 1.000|1.000 1.000|1.000 1.000|1.000 0.999|0.998 0.999|0.998 100.0%|100.0% 100.0%|100.0% 100.0%|100.0% 100.0%|100.0% 100.0%|100.0%

3© 10s 1s 30 1.000|1.000 1.000|1.000 1.000|1.000 0.997|0.995 0.997|0.999 100.0%|100.0% 100.0%|100.0% 100.0%|100.0% 75.0%|100.0% 92.5%|100.0%

4© 10s 5s 5 1.000|1.000 1.000|1.000 1.000|1.000 1.000|0.999 1.000|1.000 97.5%|100.0% 100.0%|100.0% 100.0%|100.0% 75.0%|100.0% 85.0%|100.0%

5© 10s 5s 15 1.000|1.000 1.000|1.000 1.000|1.000 0.999|0.999 0.999|1.000 100.0%|100.0% 97.5%|100.0% 100.0%|100.0% 55.0%|100.0% 75.0%|100.0%

6© 10s 5s 30 1.000|1.000 1.000|1.000 1.000|1.000 0.997|0.997 0.997|0.999 97.5%|100.0% 92.5%|100.0% 95.0%|100.0% 72.5%|100.0% 87.5%|100.0%

7© 10s 10s 5 1.000|1.000 1.000|1.000 1.000|1.000 1.000|1.000 1.000|1.000 97.5%|100.0% 95.0%|100.0% 97.5%|100.0% 72.5%|100.0% 85.0%|100.0%

8© 10s 10s 15 1.000|1.000 1.000|1.000 1.000|1.000 0.999|0.999 0.999|0.998 95.0%|100.0% 95.0%|100.0% 100.0%|100.0% 65.0%|100.0% 82.5%|100.0%

9© 10s 10s 30 1.000|1.000 1.000|1.000 1.000|1.000 0.997|0.998 0.997|0.999 87.5%|100.0% 95.0%|100.0% 97.5%|100.0% 62.5%|100.0% 75.0%|100.0%

10© 5s 1s 5 1.000|1.000 1.000|1.000 1.000|1.000 0.996|1.000 1.000|1.000 100.0%|100.0% 100.0%|100.0% 100.0%|100.0% 35.0%|100.0% 100.0%|100.0%

11© 5s 1s 15 1.000|1.000 1.000|1.000 1.000|0.998 0.997|0.998 0.999|0.991 100.0%|100.0% 100.0%|100.0% 100.0%|100.0% 15.0%|100.0% 82.5%|100.0%

12© 5s 1s 30 1.000|0.999 1.000|1.000 1.000|1.000 0.995|0.996 0.995|0.992 100.0%|100.0% 100.0%|100.0% 97.5%|100.0% 15.0%|100.0% 90.0%|100.0%

13© 5s 5s 5 1.000|1.000 1.000|1.000 1.000|0.996 1.000|0.996 1.000|1.000 100.0%|100.0% 100.0%|100.0% 100.0%|100.0% 47.5%|100.0% 90.0%|100.0%

14© 5s 5s 15 1.000|0.996 1.000|1.000 1.000|1.000 0.999|0.997 0.999|0.999 95.0%|100.0% 100.0%|100.0% 100.0%|100.0% 60.0%|100.0% 80.0%|100.0%

15© 5s 5s 30 1.000|0.997 1.000|1.000 1.000|1.000 0.997|0.994 0.997|0.996 87.5%|100.0% 97.5%|100.0% 95.0%|100.0% 37.5%|100.0% 60.0%|100.0%

16© 5s 10s 5 1.000|1.000 1.000|1.000 1.000|1.000 1.000|0.999 1.000|1.000 97.5%|100.0% 97.5%|100.0% 100.0%|100.0% 65.0%|100.0% 70.0%|100.0%

17© 5s 10s 15 1.000|1.000 1.000|1.000 1.000|1.000 0.999|0.998 0.999|1.000 97.5%|100.0% 92.5%|100.0% 82.5%|100.0% 75.0%|100.0% 65.0%|100.0%

18© 5s 10s 30 1.000|0.984 1.000|1.000 1.000|1.000 0.997|0.999 0.997|0.999 90.0%|100.0% 97.5%|100.0% 95.0%|100.0% 55.0%|100.0% 72.5%|100.0%

19© 1s 1s 5 0.999|0.946 1.000|1.000 1.000|0.993 0.995|0.999 0.999|1.000 100.0%|100.0% 95.0%|100.0% 100.0%|100.0% 50.0%|100.0% 35.0%|100.0%

20© 1s 1s 15 0.999|0.993 0.999|1.000 1.000|0.995 0.994|0.996 0.993|0.998 95.0%|100.0% 92.5%|100.0% 100.0%|100.0% 25.0%|100.0% 7.5%|100.0%

21© 1s 1s 30 0.999|0.989 0.999|1.000 1.000|0.994 0.988|0.999 0.994|0.998 70.0%|100.0% 67.5%|100.0% 90.0%|100.0% 22.5%|100.0% 15.0%|100.0%

22© 1s 5s 5 1.000|1.000 1.000|1.000 1.000|1.000 1.000|1.000 1.000|1.000 95.0%|100.0% 100.0%|100.0% 100.0%|100.0% 35.0%|100.0% 60.0%|100.0%

23© 1s 5s 15 1.000|1.000 1.000|1.000 1.000|1.000 0.999|0.994 0.999|0.999 95.0%|100.0% 97.5%|100.0% 97.5%|100.0% 25.0%|100.0% 57.5%|100.0%

24© 1s 5s 30 1.000|0.964 1.000|1.000 1.000|1.000 0.995|0.994 0.997|0.995 97.5%|100.0% 95.0%|100.0% 100.0%|100.0% 30.0%|100.0% 52.5%|100.0%

25© 1s 10s 5 1.000|0.999 1.000|1.000 1.000|1.000 1.000|1.000 1.000|1.000 92.5%|100.0% 97.5%|100.0% 95.0%|100.0% 72.5%|100.0% 75.0%|100.0%

26© 1s 10s 15 1.000|1.000 1.000|1.000 1.000|1.000 0.999|0.998 0.999|0.999 92.5%|100.0% 92.5%|100.0% 95.0%|100.0% 60.0%|100.0% 72.5%|100.0%

27© 1s 10s 30 1.000|1.000 1.000|1.000 1.000|0.997 0.996|0.999 0.997|0.999 87.5%|100.0% 97.5%|100.0% 92.5%|100.0% 60.0%|100.0% 62.5%|100.0%

Table 2.1: Recovery of 5 true spectra. Amdis | gcmsDecon.

For all 27 simulations, gcmsDecon is able to identify all 5 true spectra for every

one of the 40 samples. We measure the error percentage as β̂i−βi
βi

, 1 ≤ i ≤ 5, and

error percentage histograms of the 4th spectrum from all simulation datasets are

presented. gcmsDecon outperforms Amdis in every single case.
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Take simulation 14© as an example, the chromatogram peak distance between true

spectra and corresponding nearby overlapping spectra is 5 seconds, the replicate

chromatogram has a standard deviation of 5 seconds, and random noise is set to

be 15 for any positive intensity.
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Figure 2.21: Dataset 14©. Mean β̂Amdis, β and β̂gcmsDecon of all 5 target spectra.

Numbers on top of bars are the average inner products between learned spectra

and true spectra. Dataset No.

2.4 Results on Real Data

We contrive two experimental data sets. In the first dataset, we intentionally add

one compound into one group while the other group is missing this compound. In

the second dataset, we add one compound to four groups with different amounts.

We test the strength of our program by detecting this significantly differentiating

compound and recover all other compounds in these samples.
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Figure 2.23: Dataset 14©. gcmsDecon learned and true target spectrum 4.

2.4.1 Contrived I

In this study, 40 samples were prepared with 19 in group A and 21 in group B.

All samples contained 7 compounds in equal amounts (leucine, syringic acid, tar-
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Figure 2.24: Dataset 14© file 1. gcmsDecon learned and true chromatogram 4.

taric acid, 2H5-3- hydroxyglutaric acid, methylnonadecanoic acid, nonadecanoic

acid and myoinositol). In addition, glutamic acid was only added to one group.

The samples were converted to their trimethylsilyl-methyl oxime derivatives and

analyzed by GC/MS. The analysis is expected to pick out glutamic acid as the
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Figure 2.25: Dataset 14©. Histogram of β̂Amdis−β
β

,
β̂gcmsDecon−β

β
of true target spec-

trum 4.
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Figure 2.26: Error percentage Histograms for True Target Spectrum 4. sd noise:

5 (left), 15 (right), 30 (bottom)

only significant difference between the two groups. In the system used, glutamic

acid elutes at 31.56 minutes (1893.6 seconds).

We learn 394 spectra with 716 features in total, excluding 432 features with group

coverage < 50% and feature AUC < 50. We use multinomial logistic regression

with L1 group penalties
√
β2

1,j + · · ·+ β2
G,j on the coefficients (all in or all out).

We are able to select 3 features that differentiate between the two groups.

All three are confirmed to clearly differentiate between groups. One of them

is the intended compound, another one is an unexpected result from the chemical

process, which also manifests the strength of our program. The third one is of
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Figure 2.27: Contrived data I - 1st compound

Figure 2.28: Contrived data I - 1st compound

small intensities, likely due to experiments related to the group assignment.

Derivatization of glutamate and or glutamine leads to the formation of pyrog-

lutamic acid which is one of the peaks eluting at 31.56 minutes. There is another

peak closely co-eluting, and the best library match is for an amidated 5-methoxy

indole acetic acid derivative (N-(3- Hydroxypropyl)-2-(5-methoxy-1-methyl-1H-

indol-2-yl)acetamide). The strength of the match is 0.883 for the inner product.

Regardless of the true identity, the source of this compound is unclear. It could

be an impurity in one of the glutamate standard used to make the mixture.

2.4.2 Contrived II

In this study, 40 samples were prepared with 10 each group. Syringic acid was

added to all four groups, with amounts A < B < C < D at retention time 39.7m.

We learn 249 spectra with 496 features in total, excluding 224 features with group

coverage < 50% and feature AUC < 50. We are able to select 21 features that
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Figure 2.29: Contrived data I - 1st compound

Figure 2.30: Contrived data II - 1st compound

differentiate between the four groups.

Among these 21, there is the compound syringic acid at 39.7m that was intended

to be different, as well as homovanillic acid at retention time 37.1m, which is

believed to be related to the group assignment and syringic acid.

2.5 Summary

GCMS deconvolution is a large-scale computational problem with significant bio-

logical interests. It also provides the potential for statistical modeling. Our model

provides accurate results with complete automation.
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Figure 2.31: Contrived data II - 1st compound

Figure 2.32: Contrived data II - 1st compound

Figure 2.33: Contrived data II - 2nd compound
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Figure 2.34: Contrived data II - 2nd compound

Figure 2.35: Contrived data II - 2nd compound

We repeatedly use rank estimation based on random matrix theory to compute the

non-negative matrix factorization from small scales and eventually assemble them

to build up the entire matrix deconvolution scheme. Besides the pre-processing,

the total algorithm consists of 9 large steps: Sea-island learning, initial merging,

adaptive local NMF, merging from local windows, global NMF, further merging,

shape checking, peak splitting, and feature selection. We successfully demonstrate

our model on 27 simulations with different settings in terms of 3 levels of chro-

matogram overlapping, 3 levels of replicate chromatogram perturbation, 3 levels

of random matrix noise. The results are compared with the free GCMS deconvo-

lution software AMDIS and our model outperforms it in every way. Besides, our

model provides a complete streamlined version of solution including simultaneous

learning of all samples which is crucial to identify compounds differentiating be-

tween disease groups.
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This work provides a R package gcmsDecon.

2.6 Future Work

1. Scalability for higher resolution data.

Higher resolution data becomes available and the computational capacity

needs to improve. Our current data is of column size 1000, the new machines

are able to generate data with much larger matrix columns. Some algorithm

steps will fail due to the memory ceiling. We have to adjust the program

for higher-resolution data.

2. The lack of library for high-resolution GCMS data.

Current NIST library for GC-MS data is outdated and revolutionizing the

whole library takes time and joint efforts from the whole community.

3. Random matrix behavior under non-negative matrix setting.

Needless to say, theoretical justification of some non-negative matrix proper-

ties itself is already challenging and quite often leaves no analytical conclu-

sions. Random matrix theory is developing at a fast pace, however, non-i.i.d

random matrix is hard to analyze. More theories regarding non-negative

random matrix would definitely benefit our model as well as other potential

applications.

4. Scientific applications.

We want to apply gcmsDecon for more biological research and applications.

A great tool is only useful when the right people are using it to perform

exciting tasks.
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2.7 Main Theorems and Discussions

2.7.1 Random Matrix

Many random matrix theories regarding singular vectors (eigenvectors) can not

be directly applied to NMF due to non-negative constraints. However, they help

understand the similar process in non-negative random matrices. The rank de-

tection based on RMT is still legitimate to our problem. Here I summarize a few

related random matrix theories developed to justify and describe algorithm steps

of gcmsDecon.

Theorem 1:

For any n× p random matrix X̃n = Xn + Pn = Xn +
r∑

k=1

θkukv
T
k = Xn + UΘV T ,

where [Xn]i,j are i.i.d r.v.s, E([Xn]i,j) = 0, V ar([Xn]i,j) = 1
max(p,n)

. UTU =

I, V TV = I. lim
n→∞

n
p

= c. θ1 > θ2 > · · · > θr, let r0 be the largest subscript such

that for 1 ≤ k ≤ r0 ≤ r, θk ≥ c1/4. Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n denote the singular

values of X̃n. µXn = 1
n−r

n∑
i=r+1

δλ̃i . We have the asymptotic limit

λ̃k
a.s.−−−−−−−→

n,p→∞,n
p
→c

ρk =





√
(1+θ2k)(min(c,c−1)+θ2k)

θ2k
1 ≤ k ≤ r0

1 +
√

min(c, c−1) r0 < k ≤ r
(2.5)

1

min(n, p)− r

min(n,p)∑

i=r+1

1(λ̃i ≤ t) =

∫ t

0

µXn(t)dt
P−−−−→

n,p→∞

∫ t

0

µ(t; min(c, c−1))dt,

(2.6)

where

µ(t; d) =

√
(t2 − (1−

√
d)2)((1 +

√
d)2 − t2)

πdt
, 1−

√
d ≤ t ≤ 1 +

√
d (2.7)

1 ≤ j, k ≤ r0, |〈ũj, uk〉|2 a.s.−−−−−−−→
n,p→∞,n

p
→c





1− min(c,1)(min(1,c−1)+θ2k)

θ2k(θ2k+min(c,1))
j = k

0 j 6= k
(2.8)

1 ≤ j, k ≤ r0, |〈ṽj, vk〉|2 a.s.−−−−−−−→
n,p→∞,n

p
→c





1− min(1,c−1)(min(c,1)+θ2k)

θ2k(θ2k+min(1,c−1))
j = k

0 j 6= k
(2.9)
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Proof: This theorem combines multiple theorems (Theorem 2.8, 2.9, 2.10 ) in

[BGN12] (n ≤ p). Results for n > p random matrix X̃n can be derived from X̃T
n .

Theorem 2:

For any n × p random matrix X̃n = Xn + Pn = Xn +
r∑
i=1

θk(n, p)ukv
T
k = Xn +

UΘ(n, p)V T , where [Xn]i,j are i.i.d r.v.s, E([Xn]i,j) = 0, V ar([Xn]i,j) = σ2,

lim
n→∞

θi(n,p)√
npσ

= ζi. UTU = I, V TV = I. lim
n→∞

n
p

= c. θ1 > θ2 > · · · > θr,

let r0 be the largest subscript such that for 1 ≤ k ≤ r0 ≤ r,
√

min(n, p)ζk ≥
c1/4. Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n denote the singular values of X̃n. µXn =

1
min(n,p)−r

min(n,p)∑
i=r+1

δ
λ̃i/(
√

max(p,n)σ)
, then

λ̃k√
max(p, n)σ

a.s.−−−−−−−→
n,p→∞,n

p
→c

ρk =




∞ ≈

√
(1+min(n,p)ζ2k)(min(c,c−1)+min(n,p)ζ2k)

min(n,p)ζ2k
1 ≤ k ≤ r0

1 +
√

min(c, c−1) r0 < k ≤ r

(2.10)

1

min(n, p)− r

min(n,p)∑

i=r+1

1(
λ̃i√

max(p, n)σ
≤ t)

=

∫ t

0

µXn(t)dt
P−−−−−−−→

n,p→∞,n
p
→c

∫ t

0

µ(t; min(c, c−1))dt, (2.11)

where

µ(t; d) =

√
(t2 − (1−

√
d)2)((1 +

√
d)2 − t2)

πdt
, 1−

√
d ≤ t ≤ 1 +

√
d (2.12)

1 ≤ j, k ≤ r0,

|〈ũj, uk〉|2 a.s.−−−−−−−→
n,p→∞,n

p
→c





1 ≈ 1− min(c,1)(min(1,c−1)+min(n,p)ζ2k)

min(n,p)ζ2k(min(n,p)ζ2k+min(c,1))
j = k

0 j 6= k
(2.13)

|〈ṽj, vk〉|2 a.s.−−−−−−−→
n,p→∞,n

p
→c





1 ≈ 1− min(1,c−1)(min(c,1)+min(n,p)ζ2k)

min(n,p)ζ2k(min(n,p)ζ2k+min(1,c−1))
j = k

0 j 6= k
(2.14)

Proof for case n ≤ p:

X̃n = Xn + Pn = Xn +
r∑

i=1

θk(p)ukv
T
k =
√
pσ(

1√
pσ
Xn +

r∑

i=1

θi(n, p)√
pσ

ukv
T
k )
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then, when n, p are big enough, θi(n,p)√
pσ
≈ √nζi, let Yn = 1√

pσ
Xn, then E([Yn]i,j) =

0, V ar([Yn]i,j) = 1
p
,

X̃n ≈
√
pσ(Yn +

r∑

i=1

√
nζkukv

T
k )

we can apply Theorem 1 on random matrix Yn+
r∑
i=1

√
nζkukv

T
k . Theorem proved.

Remark: This is the set-up of real data we encounter. Throughout the paper,

we assume this is the default model set up.

Theorem 3:

For any n×p random matrix X̃n = Xn+Pn = Xn+
r∑
i=1

θkukv
T
k = Xn+UΘV T , where

p is finite, lim
n→∞

n
p
→ ∞, [Xn]i,j are i.i.d r.v.s, E([Xn]i,j) = 0, V ar([Xn]i,j) = 1

n
.

UTU = I, V TV = I. θ1 > θ2 > · · · > θr. Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n denote the

singular values of X̃n, then

λ̃k
P−−−→

n→∞
ρk =





√
1 + θ2

k 1 ≤ k ≤ r

1 r + 1 ≤ k ≤ p ( if p > r)
(2.15)

|〈ũk, uk〉|2 a.s.−−−→
n→∞

θ2
k

θ2
k + 1

, |〈ṽk, vk〉|2 a.s.−−−→
n→∞

1, 1 ≤ k ≤ r (2.16)

Proof:

Results above could be intuitively derived from Theorem 1 by letting c → 0,

however we do not have the condition that p→∞. We derive our results through

determinant computation similar to [BGN12]. Based on [HJ85], non-zero singular

values of X̃ are positive eigenvalues of matrix


 0 X̃

X̃T 0


, with the determinant

formula

det(


A B

C D


) = det(D) det(A−BD−1C) = det(A) det(D − CA−1B)
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we have

det(zIn+p −


 0 X̃n

X̃T
n 0


) = det(zIn+p −


 0 Xn

XT
n 0


−


 0 UnΘV T

p

VpΘU
T
n 0


)

= det(zIn+p −


 0 Xn

XT
n 0


−


Un 0

0 Vp




0 Θ

Θ 0




U

T
n 0

0 V T
p


)

= det(zIn+p −


 0 Xn

XT
n 0


) det(


0 Θ

Θ 0


)

det(


0 Θ

Θ 0



−1

−


U

T
n 0

0 V T
p


 (zIn+p −


 0 Xn

XT
n 0


)−1


Un 0

0 Vp


)

= det(zIn+p −


 0 Xn

XT
n 0


)×

r∏

i=1

θ2
i × det(Mn(z)) (2.17)

where

Mn(z) =


U

T
n 0

0 V T
p


 (zIn+p −


 0 Xn

XT
n 0


)−1


Un 0

0 Vp


−


0 Θ

Θ 0



−1

(2.18)

Here we assume det(zIn+p−


 0 Xn

XT
n 0


) 6= 0, in fact, det(zIn+p−


 0 Xn

XT
n 0


) = 0

would correspond to non-zero singular values of noise Xn, which is the eigenval-

ues of XT
nXn

a.s−−−→
n→∞

Ip×p. There are p − r eigenvalues 1 (if p > r). Intuitively,

the within-in-bulk singular values based on quarter-circle law, in this finite case,

c→ 0, it is almost surely identical to 1. The rest singular values come from those

z that satisfy det(Mn(z)) = 0.

with the help of formula


A B

C D



−1

=


 (A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1


 (2.19)
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Mn(z)

=


 UT

n z(z2In −XnX
T
n )−1Un UT

nXn(z2Ip −XT
nXn)−1Vp

V T
p (z2Ip −XT

nXn)−1XT
n Un V T

p z(z2Ip −XT
nXn)−1Vp


−


0 Θ

Θ 0



−1

(2.20)

with XT
nXn

a.s−−−→
n→∞

Ip, and when n is large,

XnX
T
n ≈ Q


Ip

0n−p


QT , z2In −XnX

T
n ≈ Q


(z2 − 1)Ip

z2In−p


QT

(2.21)

(z2In −XnX
T
n )−1 ≈ Q




1
z2−1

Ip

1
z2
In−p


QT ≈ Q

1

z2
InQ

T =
1

z2
In (2.22)

use the Lindeberg-Feller Theorem in [Fer96] P27, we have

UT
nXnVp

a.s.−−−→
n→∞

0 (2.23)

Combine these results,

det(Mn(z))
a.s.−−−→
n→∞

det(




1
z

0

0 z
z2−1


−


 0 Θ−1

Θ−1 0


)

=
1

zr
det(

z

z2 − 1
Ip −Θ−1zΘ−1) =

r∏

k=1

(
1

z2 − 1
− 1

θ2
k

) (2.24)

λk =
√

1 + θ2
k, 1 ≤ k ≤ r (2.25)

The proof of |〈ũk, uk〉|2 is similar to the proof of Theorem 2.9 in [BGN12], thus

skipped here.

Theorem 4:

For any n × p random matrix X̃n = Xn + Pn = Xn +
r∑
i=1

θk(p)ukv
T
k = Xn +
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UΘ(n, p)V T , where p is finite, lim
n→∞

n
p
→ ∞, [Xn]i,j are i.i.d r.v.s, E([Xn]i,j) = 0,

V ar([Xn]i,j) = σ2, lim
n→∞

θi(n,p)√
npσ

= ζi. U
TU = I, V TV = I. ζ1 > ζ2 > · · · > ζr. Let

λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n denote the singular values of X̃n, then

λ̃k√
nσ

P−−−→
n→∞

ρk =





√
1 + pζ2

k 1 ≤ k ≤ r

1 r + 1 ≤ k ≤ p ( if p > r)
(2.26)

|〈ũk, uk〉|2 a.s.−−−→
n→∞

pζ2
k

pζ2
k + 1

, |〈ṽk, vk〉|2 a.s.−−−→
n→∞

1, 1 ≤ k ≤ r (2.27)

Proof: the proof for this theorem is similar to that of Theorem 2 , thus skipped

here.

Lemma 5 (Random Noise SD Estimator σ̂):

Given conditions in Theorem 2 , we have the consistent estimator from [DS03]

for unknown σ

σ̂ =
1√

max(p, n)

λ̃med
µmed

P−−−−→
n,p→∞

σ. (2.28)

Where µmed is the median of quarter-circle law distribution, i.e. the x such that
∫ x

1−
√

min(c,c−1)
µ(t)dt = 1

2
.

Proof: Since the rank of signal r is finite, as n, p grow big, median of all singular

values is asymptotically the median of the within-bulk singular values (r + 1 ≤
i ≤ min(n, p)), together with Theorem 2 , this median λ̃med√

max(p,n)σ

P−→ µmed. Re-

organize the equation we proves the lemma.

Remarks:

1. when p is finite, based on Theorem 4 , µmed = 1.

λ̃med√
nσ

P−→





1 r < dp
2
e

(1 +
√

1 + pζ2
k)/2 r = dp

2
e and p is even

√
1 + pζ2

k , 1 ≤ k ≤ r o.w.

(2.29)
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In the latter two cases, using σ̂ = 1√
n
λ̃med
µmed

will overestimate the σ.

2. When the i.i.d assumptions of Xn are violated, σ̂ = 1√
n
λ̃med
µmed

would also be a

bad estimator for variance.

Theorem 6 (Asymptotic Limits of Rank Estimators r̂rbt and r̂cst ):

Given conditions in Theorem 2 . ρ1, · · · , ρr0 are the asymptotic limits of top

singular values over λ̃k√
max(n,p)σ

as in (2.10).

a) The robust rank estimator r̂rbtn =
min(n,p)∑
i=1

1(λ̃i >
λ̃1

κrank
), where κrank is a constant.

r̂rbtn
P−−−−→

n,p→∞





k − 1 1 < ρ1
ρk−1

< κrank ≤ ρ1
ρk
, 1 < k ≤ r0

r0
ρ1
ρr0

< κrank ≤ ρ1

(1+
√

min(c,c−1))

r0 + (n− r0)
∫ (1+
√

min(c,c−1))
ρ1

κrank

µ(x)dx ρ1

(1+
√

min(c,c−1))
< κrank

(2.30)

Proof: By Theorem 2 and (2.10), we have asymptotic locations of ρ1, · · · , ρr0
and the bulk boundary 1+

√
min(c, c−1). Compare them with κrank it is easy to see

first and second cases. The third case becomes impossible as for a constant κrank

it will asymptotically be smaller than ρ1
(1+
√
c)

where ρ1 is of magnitude
√

min(n, p).

b) The consistent rank estimator r̂cstn =
min(n,p)∑
i=1

1

(
λ̃i√

max (n,p)σ̂
> 1 +

√
min(c, c−1)

)
,

where σ̂ = 1√
max (n,p)

λ̃med
µmed

as in Lemma 5 .

r̂cstn
P−−−−→

n,p→∞
r0 (2.31)

Proof of this part is obvious by directly applying asymptotic limits of singular

values in Theorem 2 .

Remarks:

1. The accurate rank estimation helps infer the hidden components. The robust

rank estimator r̂rbt is likely to underestimate the true rank, but robust in many
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occasions. r̂cst on the other hand, could either underestimate or overestimate (Fig-

ure 2.36) the true rank when noise assumptions are violated. We use the robust

rank estimator r̂rbt throughout the program and empirically κrank = 6 is a good

solution.

2. Although there is a risk of underestimating the rank r0 using r̂rbtn , this estimator

is robust against violated assumptions. Especially for elements in Xn that do not

follow i.i.d, e.g. truncated normal. Problem with r̂cstn is to estimate accurately

the σ̂, and this boundary 1 +
√

min(c, c−1) totally depends on the quarter-circle

law, which might not follow if assumptions on Xn are violated.

3. Based on Lemma 5 remarks, when p � n, σ̂ will dramatically overestimate

the σ. Using r̂cstn under this circumstance could result in underestimation (Figure

2.37) of the true rank r0.

4. Although we want r, we can only accurately estimate the true r0, number of

true singular values θi in Pn that are greater than c1/4 or (c−1)1/4, instead of true

r, number of all nonzero true singular in Pn. However in our model, if n, p get big

enough, r will always be equal to r0.

Discussion 7 (Window Merging Improves Spectrum Estimation):

Similar to conditions as in Theorem 2 . Assume a random matrix of size n ×
p2, X̃

(2)
n = X

(2)
n + P

(2)
n and an extended random matrix of size n × p, X̃n =

[X̃
(1)
n , X̃

(2)
n , X̃

(3)
n ], P

(i)
n = UΘ(i)V (i). The singular value and vector estimation im-

proves from X̃
(2)
n to X̃n. More specifically, in terms of the biases of singular value

ρk in (2.10), singular vector ũk and ṽk to the true parameters ζk, uk and vk.

c = 1
1/c1+1/c2+1/c3

< c2.

As we extend the window from X̃
(2)
n to X̃n.
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Distribution of singular values of (nonegative sk, ck) X̃100×150 =
5∑

k=1

ηk
√

100 ∗ 150skc
T
k +X

r̂rbt cutoff κrank = 6. X truncated. noise sd 1
2∗signal. σ̂cst = 7.77

η1 = 8, η2 = 7, η3 = 6, η4 = 5, η5 = 4
θ1 = 2288, θ2 = 496, θ3 = 398, θ4 = 318, θ5 = 168. minimum out-of-bulk θ = 11.1

Singular values
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97 singular values <= λ̃1/κrank
3 singular values > λ̃1/κrank

λ̃1λ̃2λ̃3λ̃4λ̃5

158.6

r̂rbt cutoff
r̂cst cutoff

Figure 2.36: Rank estimation. In this example, true r = 5, noise sd is proportional

to the true signal. Estimation r̂rbt = 3, r̂cst > 10.

Distribution of singular values of (nonegative sk, ck) X̃100×5 =
5∑

k=1

ηk
√

100 ∗ 5skc
T
k +X

r̂rbt cutoff κrank = 6. X truncated. σ̂cst = 77.5
η1 = 80, η2 = 70, η3 = 60, η4 = 50, η5 = 40

θ1 = 4106, θ2 = 919, θ3 = 768, θ4 = 491, θ5 = 273. minimum out-of-bulk θ = 1.06

Singular values
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q
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3 singular values > λ̃1/κrank

λ̃1λ̃2λ̃3λ̃4λ̃5
813.3

r̂rbt cutoff
r̂cst cutoff

Figure 2.37: Rank estimation. In this example, p = 5 � n = 100, true r = 5,

estimated r̂rbt = 3, r̂cst = 2.
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The error ratio for the singular value limits ζk ( = lim
n,p→∞

θk√
npσ

) satisfies,

| (ρk −
√

min(n, p)ζk)/
√

min(n, p)

(ρ
(2)
k −

√
min(n, p2)ζk)/

√
min(n, p2)

|

=

∣∣∣∣∣∣∣∣

√
(1+min(n,p)ζ2k)(min(c,c−1)+min(n,p)ζ2k)

min(n,p)ζ2k
−
√

min(n, p)ζk
√

(1+min(n,p2)ζ2k)(min(c2,c
−1
2 )+min(n,p2)ζ2k)

min(n,p2)ζ2k
−
√

min(n, p2)ζk

∣∣∣∣∣∣∣∣

√
min(n, p2)√
min(n, p)

< 1

(2.32)

The error ratio of left singular vectors satisfies,

1− |〈ũk, uk〉|2

1− |〈ũ(2)
k , uk〉|2

=
min(c, 1)(min(1, c−1) + min(n, p)ζ2

k) min(n, p2)ζ2
k(min(n, p2)ζ2

k + min(c2, 1))

min(c2, 1)(min(1, c−1
2 ) + min(n, p2)ζ2

k) min(n, p)ζ2
k(min(n, p)ζ2

k + min(c, 1))

< 1 (2.33)

The error ratio of right singular vectors satisfies,

1− |〈ṽk[(p1 + 1) : (p1 + p2)], vk[(p1 + 1) : (p1 + p2)]〉|2

1− |〈ṽ(2)
k , v

(2)
k 〉|2

≈ min(1, c−1)(min(c, 1) + min(n, p)ζ2
k) min(n, p2)ζ2

k(min(n, p2)ζ2
k + min(1, c−1

2 ))

min(1, c−1
2 )(min(c2, 1) + min(n, p2)ζ2

k) min(n, p)ζ2
k(min(n, p)ζ2

k + min(1, c−1))

< 1 (2.34)

The difference between spectrum estimates in small window X̃
(2)
n and extended

window X̃ satisfies

1 ≥ |〈ũk, ũ(2)
k 〉|

≥
√

1− min(c, 1)(min(1, c−1) + min(n, p)ζ2
k)

min(n, p)ζ2
k(min(n, p)ζ2

k + min(c, 1))
√

1− min(c2, 1)(min(1, c−1
2 ) + min(n, p2)ζ2

k)

min(n, p2)ζ2
k(min(n, p2)ζ2

k + min(c2, 1))
−

√
min(c, 1)(min(1, c−1) + min(n, p)ζ2

k)

min(n, p)ζ2
k(min(n, p)ζ2

k + min(c, 1))

√
min(c2, 1)(min(1, c−1

2 ) + min(n, p)ζ2
k)

min(n, p)ζ2
k(min(n, p)ζ2

k + min(c2, 1))

(2.35)
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This lower bound could be much tighter, because of the dependence of X̃
(2)
n and

X̃n. However, it is difficult to compute based on correlated random matrices.

Proof: The error formulas are derived using asymptotic limits of singular val-

ues and vectors in Theorem 2 . The proof of the inequality is through direct

application of these formulas in three scenarios 1) n ≤ p2 < p. 2) p2 < n < p. 3)

p2 < p ≤ n. Here we only show the first scenario,

| (ρk −
√
nζk)/

√
n

(ρ
(2)
k −

√
nζk)/

√
n
| =

√
( 1
n

+ ζ2
k)(1

p
+ ζ2

k)− ζ2
k

√
( 1
n

+ ζ2
k)( 1

p2
+ ζ2

k)− ζ2
k

< 1 (2.36)

1− |〈ũk, uk〉|2

1− |〈ũ(2)
k , uk〉|2

=
c(nζ2

k + c2)

c2(nζ2
k + c)

< 1 (2.37)

1− |〈ṽk[(p1 + 1) : (p1 + p2)], vk[(p1 + 1) : (p1 + p2)]〉|2

1− |〈ṽ(2)
k , v

(2)
k 〉|2

≈ c+ nζ2
k

c2 + nζ2
k

< 1 (2.38)

1 ≥ |〈ũk, ũ(2)
k 〉| ≥ (2.39)

√
1− c(1 + nζ2

k)

nζ2
k(nζ2

k + c)

√
1− c2(1 + nζ2

k)

nζ2
k(nζ2

k + c2)
−
√

c(1 + nζ2
k)

nζ2
k(nζ2

k + c)

√
c2(1 + nζ2

k)

nζ2
k(nζ2

k + c2)

(2.40)

Discussion 8 (Model Behavior during Sea-island Process):

During sea-island learning, our model sequentially compute each scan to the pre-

vious to decide whether it represent a new spectrum or not. We show that this

process can recover the true model with false identification only for scans whose

spectrum overlapping with others and its intensity is too small to stand out.

Procedure:

Average of normalized previous scans in the current cluster (same spectrum scans)
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starting at j0 (initialized as 1, to be updated during the process),

upre =
1

j − j0

j−1∑

i=j0

X̃.,i

||X̃.,i||
(2.41)

A key step of the process computes for a threshold κsi (usually ∈ [0.9, 1)) if

〈 upre||upre||
,
X̃.,j

||X̃.,j||
〉 ≥ κsi (2.42)

then the scan j is assigned to the current cluster, otherwise it starts a new cluster.

Statement:

X̃
(w)
.,j = X

(w)
.,j +

rw∑

k=1

θ
(w)
k u

(w)
k v

(w)
k [j] (2.43)

X̃ = [X̃
(1)
.,j , X̃

(2)
.,j , · · · , X̃(W )

.,j ] (2.44)

Let ξ(i) denote the index i of X̃ corresponding to that in window X̃(wi), i.e.

X̃.,i = X̃
(wi)
.,ξwi (i). Given conditions in Theorem 4 where p is finite (a cluster is

usually of size smaller than column size), we show that

||upre|| P−→
1

(j − j0)2
(j − j0 + 2

∑

j0≤i<m≤j−1

X̃.,i

||X̃.,i||
X̃.,m

||X̃.,m||
)

=
1

(j − j0)2

(
j − j0+ (2.45)

2
∑

j0≤i<m≤j−1

∑
k1,k2

ζ
(wi)
k1

ζ
(wm)
k2

v
(wi)
k1

[ξ(i)]v
(wm)
k2

[ξ(m)][u
(wi)
ki

]Tu
(wm)
km

√
σ2 +

rwi∑
k=1

(ζ
(wi)
k )2v

(wi)
k [ξ(i)]2

√
σ2 +

rwm∑
k=1

(ζ
(wm)
k )2v

(wm)
k [ξ(m)]2

)

≤ 1 (2.46)

The equality approximately holds, when all j0 : (j − 1) scans belong to one

spectrum and in comparison
rwi∑
k=1

(ζ
(wi)
k )2v

(wi)
k [ξ(i)]2 and

rwm∑
k=1

(ζ
(wm)
k )2v

(wm)
k [ξ(m)]2 are

much larger than σ2.

114



Illustration:

We assume the sample data is composed of two overlapping spectra. Assign all

overlapping scans to X̃2.

X̃ = [X̃1, X̃2, X̃3] (2.47)

X̃1 = X1 + θ
(1)
1 u1[v

(1)
1 ]T , X̃2 = X2 + θ

(2)
1 u1[v

(2)
1 ]T + θ

(2)
2 u2[v

(2)
2 ]T ,

X̃3 = X3 + θ
(3)
2 u2[v

(3)
2 ]T (2.48)

Scan index: 1, 2, · · · , p1, p1 + 1, p1 + 2, · · · , p1 + p2, p1 + p2 + 1, · · · , p1 + p2 + p3

Truth: all scans in X̃1 and X̃3 are sea scans (rank 1), and all in X̃2 are island

scans.

Estimation: we are able to correctly identify most sea scans in X̃1 and X̃3 and

two ends of X̃2 are likely to be mistaken as “sea”.

We show that (Figure 2.7)

1. If 1 < j ≤ p1,

〈 upre||upre||
,
X̃.,j

||X̃.,j||
〉 → (2.49)

1

j − 1

j−1∑

i=1

(ζ
(1)
1 )2v

(1)
1 [ξ(i)]v

(1)
1 [ξ(j)]√

σ2 + (ζ
(1)
1 )2v

(1)
1 [ξ(i)]2

√
σ2 + (ζ

(1)
1 )2v

(1)
1 [ξ(j)]2

1

||upre||
(2.50)

This value would be very close to 1 which shows our algorithm in general

will not miss identify clean spectrum scans.

2. If j = p1 + 1,

〈 upre||upre||
,
X̃.,j

||X̃.,j||
〉 → (2.51)

1

p1

p1∑

i=1

ζ
(1)
1 ζ

(2)
1 v

(2)
1 [ξ(i)]v

(2)
1 [ξ(j)]√

σ2 + (ζ
(1)
1 )2v

(1)
1 [ξ(i)]2

√
σ2 +

∑2
k=1(ζ

(2)
k )2v

(2)
k [ξ(j)]2

1

||upre||
(2.52)
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If v
(2)
2 [ξ(j)] is still too small, this ratio would still be very close to 1, which

means the beginning of intersection between two spectra is generally hard

to be detected.

3. If p1 + 1 < j ≤ p1 + p2,

〈 upre||upre||
,
X̃.,j

||X̃.,j||
〉 → (2.53)

(
1

j − 1

p1∑

i=1

ζ
(1)
1 ζ

(2)
1 v

(1)
1 [ξ(i)]v

(2)
1 [ξ(j)]√

σ2 + (ζ
(1)
1 )2v

(1)
1 [ξ(i)]2

√
σ2 +

∑2
k=1(ζ

(2)
k )2v

(2)
k [ξ(j)]2

+

1

j − 1

j−1∑

i=p1+1

∑2
k=1(ζ

(2)
k )2v

(2)
k [ξ(i)]v

(2)
k [ξ(j)]√

σ2 +
∑2

k=1(ζ
(2)
k )2v

(2)
k [ξ(i)]2

√
σ2 +

∑2
k=1(ζ

(2)
k )2v

(2)
k [ξ(j)]2

)
1

||upre||

(2.54)

as j increases, v
(2)
1 [ξ(j)] gets smaller, v

(2)
2 [ξ(j)] gets bigger, both terms of the

summation above will decrease. With enough scans from X(2), this inner

product will decrease below a certain threshold, which is what we use to

determine an occurrence of island (a scan where spectra overlap). Before

this happens, a few island scans are misidentified as continuing sea

scans from the previous window.

If the inner product below the threshold, then we denote j as j0, let j = j0+1,

upre =
X̃.,j0
||X̃.,j0 ||

,

〈 upre||upre||
,
X̃.,j

||X̃.,j||
〉 (2.55)

→ 1

j − j0

j−1∑

i=j0

∑2
k=1(ζ

(2)
k )2v

(2)
k [ξ(i)]v

(2)
k [ξ(j)]√

σ2 +
∑2

k=1(ζ
(2)
k )2v

(2)
k [ξ(i)]2

√
σ2 +

∑2
k=1(ζ

(2)
k )2v

(2)
k [ξ(j)]2

1

||upre||

(2.56)

This new inner product is still very likely to be below threshold and forming

a new island because both spectra have relatively large intensities in this

region. Thus it is very likely to observe a few consecutive islands in this
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stage. In the end of this window, it is possible spectrum 2 totally disappears

and spectrum 3 dominates. This is where misidentification most likely

happens.

4. If j ≥ p1 + p2 + 1, similar to case 2 and 3, we just briefly mention when

j > p1 + p2 + 1 and j0 ≥ p1 + 1.

〈 upre||upre||
,
X̃.,j

||X̃.,j||
〉 →

(
1

j − j0

p1+p2∑

i=j0

ζ
(2)
2 ζ

(3)
2 v

(2)
2 [ξ(i)]v

(3)
2 [ξ(j)]√

σ2 +
∑r2

k=1(ζ
(2)
k )2v

(2)
k [ξ(i)]2

√
σ2 + (ζ

(3)
2 )2v

(3)
2 [ξ(i)]2

+
1

j − j0

j−1∑

i=p1+p2+1

(ζ
(3)
2 )2v

(3)
2 [ξ(i)]v

(3)
2 [ξ(j)]√

σ2 + (ζ
(3)
2 )2v

(3)
2 [ξ(i)]2

√
σ2 + (ζ

(3)
2 )2v

(3)
2 [ξ(j)]2

)
1

||upre||

(2.57)

This inner product is mostly likely going up as j increases so that we will

eventually assign all remaining clean spectrum 3 scans into one cluster.

Proof of the statement:

X̃
(w)
.,j = X

(w)
.,j +

rw∑

k=1

θ
(w)
k u

(w)
k v

(w)
k [j], X̃ = [X̃

(1)
.,j , X̃

(2)
.,j , · · · , X̃(W )

.,j ] (2.58)

ξ(i) denotes the index i of X̃ corresponding to that in window X̃(wi),

X̃
(w)
.,j

||X̃(w)
.,j ||

=
X̃

(w)
.,j /
√
n√

1
n
[X

(w)
.,j ]TX

(w)
.,j +

r∑
k=1

(θ
(w)
k )2

n
v

(w)
k [ξ(j)]2 + 1

n

r∑
k=1

θ
(w)
k v

(w)
k [ξ(j)][X

(w)
.,j ]Tuk

P−−−→
n→∞

X̃
(w)
.,j /
√
n√

σ2 +
r∑

k=1

(ζ
(w)
k )2v

(w)
k [ξ(j)]2

(2.59)
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For w1 6= w2 or j 6= m,

〈
X̃

(w1)
.,j

||X̃(w1)
.,j ||

,
X̃

(w2)
.,m

||X̃(w2)
.,m ||

〉

=
1√

σ2 +
rw1∑
k=1

(ζ
(w1)
k )2v

(w1)
k [ξ(j)]2

√
σ2 +

rw2∑
k=1

(ζ
(w2)
k )2v

(w2)
k [ξ(m)]2

(
1

n
X

(w1)
.,j X(w2)

.,m +
1

n

rw2∑

i=1

θ
(w2)
k v

(w2)
k [ξ(m)][X(w1)]T.,ju

(w2)
k

+
1

n

rw1∑

i=1

θ
(w1)
k v

(w1)
k [ξ(j)][X(w2)]T.,mu

(w1)
k +

1

n

∑

k1,k2

θ
(w1)
k1

θ
(w2)
k2

v
(w1)
k1

[ξ(j)]v
(w2)
k2

[ξ(m)][u(w1)]Tk1u
(w2)
k2

)

→

∑
k1,k2

ζ
(w1)
k1

ζ
(w2)
k2

v
(w1)
k1

[ξ(j)]v
(w2)
k2

[ξ(m)][u(w1)]Tk1u
(w2)
k2

√
σ2 +

rw1∑
k=1

(ζ
(w1)
k )2v

(w1)
k [ξ(j)]2

√
σ2 +

rw2∑
k=1

(ζ
(w2)
k )2v

(w2)
k [ξ(m)]2

(2.60)

The proof of this step uses P27 [Fer96] the Lindeberg-Feller Theorem.

Proof of the illustration:

Here in our set-up, rw1 = 1, rw2 = 2, rw3 = 1. Apply (2.60) to each case above we

prove the illustration.

2.7.2 Non-negative Matrix Factorization

Theorem 9:

If rank of s nonnegative matrix P is r, P = StrueCtrue, where non-negative Strue

is of size n × r, non-negative Ctrue is of size r × p, and P has r − 1 different

non-overlapping (single component with coefficient instead of linear combination

of components) columns (or rows) then

min
Sn×r,Cr×p

||P − SC||22 +
∑

j

|C.,j|0 +
∑

i

|Si,.|0
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would uniquely recover Strue, Ctrue.

Proof:

Let r = 2, it is easy to see without noise, StrueCtrue achieves the minimal ||P −
SC||22, so does StrueQ

TQCtrue, Q is a 2 ∗ 2 orthonormal matrix (rotation matrix

when r = 2). In many cases, optimizing ||P −SC||22 alone would not give a unique

non-negative solution. However,

1. If P has non-overlapping columns. Let C1,. = [cT1 , 01∗p0 ], C2,. = [01∗p0 , c
T
2 ].

Among all possible solutions only [Strue].,1 can minimize
p0∑
j=1

|C.,j|0 = p − p0 and

[Strue].,2, minimize
p∑

j=p−p0+1

|C.,j|0 = p − p0. Thus Strue would be learned. After

this, solution of C is unique, which is Ctrue.

2. If P has non-overlapping rows. Let S,1 = [sT1 , 01∗n0 ]
T , S,2 = [01∗n0 , s

T
2 ]T .

Similar to above, only Ctrue can minimize
n0∑
i=1

|Si,.|0 = n0 and
n∑

i=n−n0+1

|Si,.|0 = n0.

Given Ctrue, we can solve S = Strue

Remark. We do not use this optimization framework in the program because

it adds complexity to the computation. In the future work, it is possible to add

computationally feasible penalties (L1, etc.) to get more sparse NMF results.

2.8 Lemmas and Related Theorems

2.8.1 Random Matrix Lemmas

Lemma 10: For a n × p matrix Xn, where [Xn]i,j are i.i.d r.v.s, E([Xn]i,j) =

µ, V ar([Xn]i,j) = σ2, u = [ 1√
n
, 1√

n
, · · · , 1√

n
]T , v = [ 1√

p
, 1√

p
, · · · , 1√

p
]T , then, as

n or p→∞

(uTXnv −
√
npµ)

L−→
∞

N(0, σ2) (2.61)
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Proof:

Assume p → ∞, uTXnv = 1√
n

n∑
i=1

1√
p

p∑
j=1

Xi,j = 1√
n

n∑
i=1

√
pX̄i,., because for op(1) in

terms of p,
√
pX̄i,. = N(

√
pµ, σ2) + op(1), in terms either both n and p, we have

1√
n

n∑
i=1

√
pX̄i,. = N(

√
npµ, σ2) + op(1).

Lemma 11 (A Collection of Some Useful Results):

For a n × p matrix Xn, where [Xn]{i,j}
i.i.d∼ N(0, σ2), and a p × r deterministic

matrix V = [v1, v2, · · · , vr], n× r deterministic matrix U = [u1, u2, · · · , ur], then

XT
nXn ∼ W(σ2Ip×p, n), XnX

T
n ∼ W(σ2In×n, p) (2.62)

W() is a Wishart distribution.

V TXT
nXnV ∼ W(σ2V TV, n), V TV =




vT1 v1 vT1 v2 · · · vT1 vr

vT2 v1 vT2 v2 · · · vT2 vr
...

...
. . .

...

vTr v1 vTr v2 · · · vTr vr



, (2.63)

uTi Xnvj ∼ N((
n∑

k=1

uki ∗
p∑

k=1

vkj)µ, σ
2), (2.64)

marginally,

vTi X
T
nXnvi ∼ (vTi vi)σ

2χ2
n, 1 ≤ i ≤ r (2.65)

uTi XnX
T
n ui ∼ (uTi ui)σ

2χ2
p 1 ≤ i ≤ r (2.66)

This can also be derived through the n-dimension r.v. Xnvi ∼ N(0, vTi viσ
2) and

that vTi X
T
nXnvi ∼ (vTi vi)σ

2χ2
n.

Yij = vTi X
T
nXnvj

∼ (
1

σ4||vi||2||vj||2(1− ρ2
ij)

)
n
2

|yij|
n−1
2

Γ(n
2
)
√

2n−1π(1− ρ2
ij)(σ

2||vi||||vj||)n+1

Kn−1
2

(
|yij|

σ2||vi||||vj||(1− ρ2
ij)

) exp(
ρijy

σ2||vi||||vj||(1− ρ2
ij)

). (2.67)
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where ρij =
vTi vj
||vi||||vj || , Kn−1

2
is the modified Bessel function of the second kind.

E(Yij) = 0 + 2 ∗ ρij
σ2||vi||||vj||(1− ρ2

ij)
∗ n

2
/

1

σ4||vi||2||vj||2(1− ρ2
ij)

= nρij||vi||||vj||σ2 = nσ2vTi vj (2.68)

V ar(Yij) =
2n(1 + 2(

ρij
σ2||vi||||vj ||(1−ρ2ij)

)2/ 1
σ4||vi||2||vj ||2(1−ρ2ij)

)

1
σ4||vi||2||vj ||2(1−ρ2ij)

= 2n(1 + ρ2
ij)σ

4||vi||2||vj||2 = 2n(1 + (
vTi vj
||vi||||vj||

)2)σ4||vi||2||vj||2

= 2nσ4(||vi||2||vj||2 + (vTi vj)
2) (2.69)

If we let U and V be orthonormal matrices, the formula is simplified to

Yij = vTi X
T
nXnvj ∼

|yij|
n−1
2

Γ(n
2
)
√

2n−1π(σ2)n+1
Kn−1

2
(
|yij|
σ2

) (2.70)

Similarly,

Zij = uTi XnX
T
n uj ∼

|zij|
p−1
2

Γ(p
2
)
√

2p−1π(σ2)p+1
K p−1

2
(
|zij|
σ2

) (2.71)

Lemma 12: For a n × p matrix Xn, where [Xn]{i,j}
i.i.d∼ N(0, σ

2

n
), and a

p × r deterministic matrix V = [v1, v2, · · · , vr], n × r deterministic matrix U =

[u1, u2, · · · , ur], then

Y = V TXT
nXnV

P−−−→
n→∞

(V TV )σ2 (2.72)

Proof:

Direct application of Lemma 11 , with variance σ2

n
instead of σ2. The diagonal

elements of Y , vTi X
T
nXnvi ∼ vTi viχ

2
n
σ2

n
→ vTi viσ

2. The off-diagonal elements have

E(Yij) = nσ
2

n
vTi vj = vTi vjσ

2, V ar(Yij) = 2nσ
4

n2 (||vi||2||vj||2 + (vTi vj)
2)

n−→
∞

0, thus

Yij
P−→ vTi vjσ

2
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2.8.2 Other Existing Theorems in the Literature on Uniqueness of

NMF

Theorem of [DS03]:

A non-negative matrix P has a unique NMF solution, if it satisfies the 3 conditions:

• Generative model. The actual data P ,

P = StrueCtrue, Strue ≥ 0, Ctrue ≥ 0 (2.73)

• Seperability. Every spectrum has their unique non-zero masses.

∀1 ≤ m ≤ n,

p∑

j=1

1([Strue]m,j > 0) ≤ 1. (2.74)

Suppose there are r spectra in Strue, forming G groups with equal size r/G.

Strue = [S
(1)
true, S

(2)
true, · · · , S(G)

true] (2.75)

• Complete Factorial Sampling. For each group of spectra, there is only one

spectrum included and each group has to be present, so that there are Gr/G

possible combinations.

Let ig be the spectrum index in Strue which belongs to group g. For any

i1, i2, · · · , iG, there exists 1 ≤ j ≤ p, that Cig ,j > 0,∀1 ≤ g ≤ G.

Remark: The theorem is a sufficient condition which is easily violated in our data,

where spectra overlap.

Definition: A simplicial cone generated by vectors {φ1, φ2, · · · , φr} is Γ = {x :

x =
r∑
j=1

cjφj, cj ≥ 0}.
Definition: An extreme ray of a convex cone Γ is the ray Rx = {cx : x ≥ 0},
where x can not be a combination of two points which don’t belong to the ray.

Definition: Let A∗ denote the dual to A, A∗ = {x : xTa ≥ 0,∀a ∈ A}.
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Theorem 1 of [LCP+08]:

NMF on P = SC is unique if and only if A = R+
r is the only simplicial cone with

r extreme rays such that span+(ST ) ⊂ A ⊂ span+(C)∗.

Remark: The condition is extremely hard to check in practice, is NP-hard as

Remark 1 in [HSS14] and [Vav09] pointed out on NMF rank determination.
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