UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title

Characteristics of the Emergent Disease Batrachochytrium dendrobatidis in the Rana
muscosa and Rana sierrae Species Complex

Permalink
https://escholarship.org/uc/item/Ow45b27\
Author

Tunstall, Tate Scott

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0w45b27v
https://escholarship.org
http://www.cdlib.org/

Characteristics of the Emergent Disease Batrachochytrium dendrobatidis in
the Rana muscosa and Rana sierrae Species Complex

by
Tate Scott Tunstall
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Integrative Biology
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Cheryl Briggs, Chair
Professor Craig Moritz, Co-chair
Professor Montgomery Slatkin
Professor Wayne Getz

Fall 2012



Characteristics of the Emergent Disease Batrachochytrium dendrobatidis in
the Rana muscosa and Rana sierrae Species Complex

Copyright 2012
by
Tate Scott Tunstall



Abstract

Characteristics of the Emergent Disease Batrachochytrium dendrobatidis in the Rana
muscosa and Rana sierrae Species Complex

by
Tate Scott Tunstall
Doctor of Philosophy in Integrative Biology
University of California, Berkeley
Professor Cheryl Briggs, Chair

Professor Craig Moritz, Co-chair

The fungal pathogen Batrachochytrium dendrobatidis, or Bd, has been a major driver of
amphibian extinctions world wide. This dissertation investigates the effects of Bd on the
mountain yellow legged frogs, Rana muscosa and Rana sierrae. These two species occur in
the Sierra Nevada in California, and have under gone dramatic declines in part due to the
invasion of Bd. Even before the invasion of Bd, populations of Rana muscosa/sierrae have
faced habitat loss and fragmentation from introduced predators and habitat fragmentation.
The fist chapter of this dissertation investigates how genetic diversity effects Ry, the threshold
for invasion of a pathogen. I model the case where a naive population faces multiple disease,
as well as a single population faced with invasion of a single disease. I also model the effect
of overdominance and genetic diversity on Ry. In my second chapter, I use both models
and simulations to investigate how genetic diversity effects the final size of an epidemic, and
whether or not populations with higher genetic diversity maintain that diversity after an
epidemic. In my third chapter, I use microsatellite markers to measure genetic diversity
in serveral populations of Rana muscosa and Rana sierrae, and test whether or not these
populations have experienced historic bottlenecks. In my final chapter, I present data on a
series of experiments on how variation in the external source of Bd, or zoospore pool, affects
the growth rate of Bd on its amphibian host, as well as host mortality.
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Chapter 1

The effect of genetic heterogeneity on

Ry

1.1 Introduction

When a disease invades a naive population, there can be considerable variation in individual
susceptibility, tolerance, and transmission. There may be some level of natural resistance in
the population, with some individuals being completely or partially resistant to infection.
“Superspreaders” are infected individuals who are responsible for a disproportionately large
amount of the transmission [Lloyd-Smith et al., 2006], such individuals appear to have played
a significant role in the recent SARS outbreak [Shen et al., 2004]. Much of this variation is
doubtless due to factors such as heterogeneity in contact networks, behavior, and environ-
ment. Models have shown, for example, that disease can spread more rapidly when there
is heterogeneity in contact between individuals [Diekmann et al., 1990, Lloyd-Smith et al.,
2006]. This paper will instead focus on how genetic heterogeneity may contribute to the
severity of disease outbreaks. Specifically, we focus on how heterogeneity tied to genetic
variation affects both Ry, a metric used in many epidemiological modles describing the av-
erage number of secondary infections caused by a single infected individual in a completely
susceptible population. Many epidemiological models describe their results in terms of Ry:
when Ry < 1 a disease is unlikely to become an epidemic, whereas when Ry > 1 an epidemic
is probable.

Recently, there have been several studies examining how genetic heterogeneity contributes
to an epidemic [Springbett et al., 2003, Doeschl-Wilson et al., 2011], and recent advances
in sequencing techniques have shed light on how individual genes affect disease parameters
[Lohmueller et al., 2003, Hirschhorn and Daly, 2005, Daetwyler et al., 2008]. There is still
much to be learned about how variation at the genetic level translates to heterogeneity at
the population level, and thus previous attempts to model genetic heterogeneity have taken
a variety of approaches. Springbett et al. [2003] modeled heterogeneity in susceptibility, and
found that genetic heterogeneity has no impact on the expected value of Ry. Doeschl-Wilson



CHAPTER 1. THE EFFECT OF GENETIC HETEROGENEITY ON Ry 2

et al. [2011] compared heterogeneous populations with the same average susceptibility and
found that disease risk and severity were higher in populations containing larger proportions
of susceptible individuals. Lively [2010] modeled a population exposed to multiple pathogens,
each with a specific resistance genotype, and found that the average R, is inversely related
to the number of host genotypes in the population.

Overdominance, where heterozygote genotypes have higher fitness than homozygotes, has
been suggested as a mechanism that maintains genetic diversity in the major histocompata-
bility complex , (or MHC), genes that are an important component of the immune system
[Wegner et al., 2004, Slade and McCallum, 1992]. Overdominance is believed to be important
in resistance to malaria [Modiano et al 2001] and hepatitis C [Hraber et al., 2007]. Although
it is difficult to distinguish frequency dependent selection from overdominance [Takahata
and Nei, 1990], genetic polymorphism resulting from overdominance should be stable, while
polymorphism from frequency dependent selection will be dynamic [Slade and McCallum,
1992]. The overdominance hypothesis for maintenance of MHC diversity states that individ-
uals with more MHC alleles (heterozygotes) should have higher fitness, as they are capable
of fighting off a greater number of diseases [Kamath and Getz, 2011].

Here we investigate the impact of heterogeneity in susceptibility due to genetic variation
on Ry. Specifically, we will investigate the possibly countervailing effects of an increase in
population size along with a corresponding increase in genetic diversity. In diseases with
density dependent transmission, increasing population size in a fixed area (i.e. population
density) will increase Ry through the increased number of contacts between individuals.
Genetic diversity will also increase with population size, both in terms of the number of
unique alleles in the population and the number of individuals heterozygous at a given lo-
cus. Increasing population size, and diversity of alleles in the population, will increase the
probability that a resistant genotype is present in a population. While having more resis-
tant genotypes in a population will most certainly reduce the probability and severity of
an epidemic, this is not an advantage of heterogeneity per se, as homogeneous populations
consisting solely of resistant genotypes will be have a lower R, than heterogeneous popula-
tions with a few resistance alleles. The purpose of this study is to determine how genetic
heterogeneity itself affects a population, specifically how an increase in heterogeneity due to
an increase in population size affects the basic reproductive number R.

1.2 Methods

Disease Model

The model used in this study was a modification of the basic STR (Susceptible, Infected,
Recovered/Removed) compartmental model frequently used to describe infectious disease
dynamics [Anderson and May, 1991]:
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S = —pSI
d — BSI—~I
G =1

The above model describes an epidemic of a directly transmitted disease through a popu-
lation in which S, I and R are the numbers of susceptible, infected and resistant individuals,
respectively. The model assumes that the total population size N = S + I + R, where 3
is the transmission rate between infected and susceptibles, and v is rate of recovery into
the resistant /removed class. The model describes only short term dynamics, and does not
include births or deaths. The basic reproductive ratio Ry, using the above model, is SN/~
. In our model we assume that the susceptibile class can be divided into k£ subgroups, each
labeled S;. We break down the transmission process § into infectivity ¢, susceptibility o,
and contact rate ¢, and consider that each of these parameters could potentially vary by
genotype:

ds; __
ol == 0idciSil
J
% = ZUz‘ijCijSi]j — il
J
dR _
il Z%‘fi

We define susceptibility as the probability of becoming infected given an infectious contact
with an infected individual, and infectivity as the probability that a contact is potentially
infectious, given a contact with a susceptible. Full contact between groups was assumed
with random mixing of all individuals, and we assume separable mixing, ie the absence of
correlation between infectivity and susceptibility between individuals (as opposed to within
individuals) [Diekmann et al., 1990]. In other words, transmission between a susceptible
individual of type ¢ with properties a; and an infected individual of type j with properties
b; is equal to a;b;. In a population with separable mixing, Ry is just the average R, over all
subpopulations > 5;N;/~;. In the model below, we will consider both density dependent and
frequency dependent transmission. For the purposes of this paper, we will define resistance
to a disease as a change in any of the parameters that affect transmission, such as a decrease
in susceptibility ¢ or an increase in the recovery rate ~, for example.

Genetic Model

A population facing a novel pathogen will likely have little natural resistance. If a pathogen
is truly novel, then any variation in resistance to the pathogen will likely be neutral: in a
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naive population there is no selection for or against resistance, assuming the cost of resistance
is low. We assume mutations between alleles are specified by a k-allele model, where the
mutation rate between alleles is specified by a parameter p, and an allele ¢ mutates into each
of the k — 1 other allelic states with equal probability. This results in a k-allele Wright-Fisher
model [Ewens, 2004]. We assume that the parameters are determined by a single locus, and
any covariance in parameters is due to effects at the single locus. We assumed that when a
population is free of disease, any variation in the population is maintained through neutral
evolution, and that at mutation drift equilibrium, the homozygosity, or the fraction of the
population that are homozygotes, F', of a population is given by [Ewens, 2004]:

k—1+0
kE—14Fk0

where 6, the population mutation rate, is equal to 4Ny, where N is the total population
size and p is the mutation rate. We assume populations have not been previously exposed to
our pathogen, and there has been no selection for resistance. In other words, the expected
frequency of an allele ¢ conferring some degree of resistance is independent of the amount of
resistance conferred.

1.3 Results

Resistance to Multiple diseases

In this section, we will consider how diversity affects Ry in a naive populaiton facing multiple
diseases. When considering resistance to multiple diseases, we assume that an individual
with one copy of an allele 7 has the same transmission properties as an individual with
two copies, ie an additional copy of an allele confers no additional resistance. Each allele
confers resistance to only a single disease, also denoted by ¢ out of z possible diseases.
We assume that the contact rate ¢ does not vary (¢; = ¢ for all i), and that the allele
can affect the susceptibility o;, infectivity ¢;, and duration of infection 1/v; of members
of the susceptibility class S;, where parameters marked with hat notation (7) represent the
baseline (discase parameters unaffected by genotype) susceptibility (6;), infectivity (¢;), and
duration of infection (1/4;), of a disease i. In other words, S; refers to the number of
susceptible individuals with no resistance exposed to disease i, and S; refers to susceptibles
with the resistance allele ©. For simplicity, in this section we assume all diseases have density
dependent transmission, where the transmission rate is equal to 8S1.
First, we calculate Ry;, which is Ry for a disease i:
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Ry; = Szgifgbi 4 Siaicgbi
Yi Vi
_ (N _ SZ)UiAcgbi SiUiC@
Vi Vi
= ROZ SzAz

where }%OZ-, is Ry in a completely susceptible population exposed to disease i, and A; is
the difference in transmission multiplied by the duration of infection between an individual
with genotype ¢ and individual without resistance exposed to disease i:

Uic¢i _ &iC(bi

A= :
Vi Yi

A; will be negative when an allele confers a high level or resistance. Now, if we assume
z possible diseases and k possible resistance alleles, we calculate the mean value of Ry over
all diseases (Ep{Ry}), where each disease is given equal weight:

z

Ep{Ro} = éZ(éOz — Sil\;)

=1

k
L1
= Ep{Ro} — ;ZSiAZ- (1.1)
=1

where D{RAO} is the average value of R in a population with no resistance alleles exposed
to disease. S;, the susceptible population with allele i, can be broken down into homozygous
and heterozygous individuals, therefore we have:

k k

S S = LS (N DA,
=1 =1
N k
= (foit fei)Ai (1.2)

i=1

Where f,; and f.; are the proportions of homozygous and heterozygous individuals with
at least one i allele, respectively. Given our assumption of no selection on disease alleles, and
that allele mutates into any other state with equal probability, the frequencies of f,; and
fe.i do not depend on the allele ¢ or A;. For each allele 7, there is one homozygous genotype
and k — 1 heterozygous genotypes, with each homozygote and heterozygote genotype having
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the same expected frequency, respectively. Combining equations (1.1) and (1.2), and then
taking the expectation over all possible populations and allele frequencies, Ep ({Ro}:

k

ED,f{RO} = ED{RO} - _(.]?o + (k - 1)fe) Z Az

z -
=1

=

=

= ED{RO} - ;(fo + (k - 1)fe)kA
where Ep ({Ro} is Ry averaged over all diseases and all allele frequencies. k f, is equal to
F', the homozygosity of the population, because there are k possible homozygous genotypes,
each with the same expected frequency under our model. Similarly, (k? — k) f. is equal to
2H, where H is the heterozygosity of the population, because there are (k* — k)/2 possible
heterozygous genotypes. Given that H is 1 — F', we have:

Ep{Ro} = Ep{fo} ~ ~A (2~ F) (13)

As the population size N increases, the homozygosity F' decreases. As F goes to zero,
equation (1.3) becomes:

Ep {Ro} = Ep{Ro} — @ (1.4)

where z is the number of possible diseases. Increasing N will always increase Ry and
the increase in transmission due to increase in population density will swamp any reduction
due to increase in heterozygosity. When the heterozygotes are resistant to multiple diseases,
and homozygotes only resitant to only one disease, with no additional benefit from a second
allele, the increase in Ry will be nonlinear as F' goes to zero. The more diseases an organism
can face, the less effective this reduction will be, providing no benefit as z goes to infinity.

Comparing the above results to a haploid population, where the heterozygote frequency
is zero, and f, is equal to 1/k, equation (1.4) reduces to:

Ep f{Ro} = Ep{Ro} — N7A (1.5)

In the above equation, Ep ({Ry} is equal to the expected value of Ry in a completely
susceptible population with no genetic resistance, reduced by the average reduction in sus-
ceptibility due to genotype, and increases linearly with N.
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One disease with overdominance
Susceptibility Varies with Genotype

In this section, we will examine a population of size N where there is variability in one or
more parameters that affect transmission of a single pathogen. In a slight change in no-
tation, susceptibility classes are now S;, with baseline susceptibility o, infectivity ¢, and
recovery /removal rate . Now suppose that a resistant individual’s genotype reduces sus-
ceptibility by a factor o;;, so that an individual with genotype ij(where the subscipts refer
to an individual with alleles ¢ and j at a locus) has susceptibility o — ¢;;. If we assume
transmission is density dependent, such that the transmission rate is equal to ST, then Ry
in the population is given by summing over all possible genotypes:

Ry = %b (Sii(o = o11) + Sia(0 — 012) - - - + Sij(0 — 04)) (16)

In a diploid population where there are k possible alleles, the total number of possible
. 2 . ey ey

genotypes is equal to % The size of each susceptibility class can be represented by the

frequency of the genotype f;; times the populations size:

Ry = # (furlo —on) + fr2(o —012) -+ + fie(o — owr))

Re-arranging:

N chg (fiu+ fizo o+ far) — # (fuow + frzo12 -+ + frnoun) (1.7)

The second half of equation (1.7) can be separated into heterozygous and homozygous
genotypes:

Ry

Nco ]

- (fuiom + fa2092 -+ + frwowe) + (fr2012 + f13013 -+ + frjors) (1.8)

We assume neutral evolution, and that all mutations from one allelic state to another
are equally likely, thus if we take the expectation with respect to genotype frequencies,
all homozygous and heterozygous genotypes should have the same frequency, f, and f,
respectively. In this case (1.8) becomes:

k
N§¢ foZUn' + erZUz'j
i=1

i#]

_ Neo _ K-k _
- v f0k00+ fe < 2 ) Oe (19)
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Where o, and g, are the mean susceptibility for homozygotes and heterozygotes respec-
tively:

k
_ 1
O, = EZQZz—FTIZ
=1
=Z+rT

OTEZZZZL‘Z‘—FI]‘
i#J
=27

where x; is the contribution of allele ¢ to the reduction in susceptibility, and r is a constant
ranging from 0 to 1, representing the reduction in benefit, or redundancy, that a homozygote
gets from its identical second allele.

In equation (1.9), kf, and (’&T’k) fe are equal to the total homozygosity(F') and heterozy-
gosity respectively, as each homozygous and heterozygous genotype has the same expected
frequency respectively . We define Es{ Ry} as the expected value of Ry taken over all possible
allele frequencies in populations at mutation drift equilibrium:

E{Ry} = Nego _ de) (F(z+rz)+ (1 - F)2z)
_ Nevr Nk op _ pai—r
-— . (22 — Fz(1—r))
— # (0 —2z+ Fz(l—r)) (1.10)

If » = 1, then there is no advantage to increased heterozygosity. Biologically, this could
be thought of as the second allele being redundant, perhaps producing addtional enzymes
that provide no added benefit. If r < 1, then the advantage of heterozygosity goes to o — 27
as F' (homozygosity) goes to zero. Even when r = 0, ie homozygotes get no advantage from
a second allele, the benefit of increased heterozygosity is more than offset by the increase
in transmission resulting from an increase in population density. Furthermore, in order to
benfit from heterozygosity in our model, z must be greater than zero. In otherwords, the
average effect of an allele must be positive.

We can examine the change in Ef{Ry} with respect to a change in population size N:

NP (o — 9% + 3(1 —r)(F + N;i—f[))

av Er{Ro} =

Where
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aF _ 4p(k? 4+ 1)

dN (k—1+4uNk)?

We can see in Figure 1, that when » = 1, then the change in Ry is constant as population
size increases. When F < 1, Ry increases slightly more slowly, as heterozygosity in the
population increases with population size, eventually leveling out when total heterozygosity
is equal to one. The rate of increase in heterozygosity will depend on the mutation rate pu
and the total number of alleles k, but the decrease in Ry due to heterozygosity will always
be less than the increase due to population size.

Both Susceptibility and Infectivity Vary

If both susceptibility and infectivity vary, then equation (1.6) becomes

Ry = s (511(0' —on)(¢ — éu) + Si2(0 — 012)(¢ — ¢12) -+ + Sij(0 — Uz'j)<¢ - ¢ij))

where ¢;; it is the effect that genotype 75 has on infectivity. We proceed as we did above,
where ¢, and ¢, are the mean susceptibility for homozygotes and heterozygotes respectively.
r, and r4 represent the reduction in benefit that a homozygote gets from its identical second
allele for susceptibility and infectivity, respectively.

1 &
¢OZEZ%+7‘¢?/¢
i=1

=y+ry
&ezzzyi‘i‘yj
i#j

Here, y; is the contribution of allele 7 to the reduction in infectivity, and r is a constant
ranging from 0 to 1. Above we assume that both susceptibility and infectivity are controlled
by a single locus, and thus the index ¢ refers to a single allele that affects both susceptibility
and infectivity. We then get:
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k
RO:NCU¢_M fOZo'ii—f—erZO'ij
v v i=1 i

k
—¥ foz¢ii+fezz¢ij
i=1

i#]
Nc i
+ - Jo Z iiii + fe Z Z Tij i
i=1 i#]

Which, after taking the expectation over all populations at equilibrium, becomes

Neap # (22 — Fz(1 —r,))

(20 — Fy(1 —ry))

E{Ry} =
Nco

+ Ne (F(Cov(os, do) + TY(L + 15 + 1 + T4T)))

+ (1 = F)(Covl0n 60) + 479)

y
The two covariance terms in the above equations can be reduced to

Cov(0,, Po) = E(00¢0) — E(00)E(¢0)
=(14r,+1y+1,7p) (E(:py) — E(m)E(y))
= (1+71,+1y+1515)Cov(x,y)
Cov(oe, ¢e) = E(0cde) — E(0e) E(¢e)
=4 (E(zy) — E(x)E(y))
= 4Cov(z,y)
We define p = 1471, 414 +17,74 and end up with the follwing expression for the expected

Ry over all populations:

Ef{Ry} = Ncy‘”s _ Njﬁ (22 — F2(1 — p,))

Nea (o5 — Fy(1 = o)

+ % (Cov(x, y) + E(x)E(y))(4 — F(4— :0))
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As was the case when only susceptibility varied,Ry increases with population size, but
at a slight reduction in rate if r,,74,0rp < 1. Ry increases as the covariance of x and y
increases, and this effect increases as heterozygosity increases.

1.4 Frequency Dependent Transmission

In all of the above calculation we have assumed density dependent transmission, where
transmission is equal to S, such that transmission increases with an increase in popula-
tion density. However, if we instead assume frequency dependent transmission, where the
transmission rate is equal to %, and there is no increase in transmission with increasing
density., so that Ry is now equal to 8. Here we assume that N is dynamic[Getz and Picker-
ing, 1983] Under frequency dependence, the benefit of a increase in heterozygosity will not
be offset by an increase in transmission rate due to increased density. If we examine the
case where susceptibility varies we get an expression similar to equation (1.10), but without

a factor of N:

Ef{Ro} = %ﬁ (0’ — 2T + F[i‘(l — T))

As N increases, F' goes from near one to zero, and Ry changes by a factor of Z(1—7). Now,
we assume that z has a maximum value of /2, so that no genotype can reduce susceptibility
below zero. If we imagine the scenario where there are two alleles, with effects x; and x5
both equal to /2, then the above expression reduces to:

Ef{Ry} = C%" (F%(l - r)) (1.11)

From equation (1.11), we see that in this rather extreme scenario, Ef{Ry} goes to zero
as I goes to zero.
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Figure 1.1: A: Expected value of Ep ;{R} vs population size in populations exposed to
multiple diseases, with a diploid population (blue, A = 1), and haploid (black). o = 1,
b=1,7v=1,¢=0.1, u=0.01, k=50, z =50
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Figure 1.2: A: Expected value of Ef{ Ry} vs population size in with density dependent trans-
mission, and heterogeneity in susceptiblilty (o) where the second allele in a homozygote is
completlely redundant(blue, r = 0) or effective (black, = 1). B: Derivative of E¢{ Ry} with
respect to change in population size. 0 =1, ¢ = 0.1, v = 0.1, ¢ = 0.01, z = 0.25, p = 0.1,
k=50
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Figure 1.3: A: Ef{Ry} vs population size with frequency dependent transmission, and het-
erogeneity in susceptiblilty (o) where the second allele in a homozygote is completlely re-
dundant(blue, r = 0). B: Derivative of E;{Ry} with respect to change in population size.
c=1,¢0=01,v=0.1,¢=10,z=0.25, 4 =0.1, k=50
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1.5 Discussion

In ths paper, we hav examined how the genetic heterogeneity of a population affects the
expected value of Ry. we specifically ask the question of whether increasing host population
size has a beneficial effect via the increase in genetic diversity, and wheter any benefits are
offset through the potentital increase in transmission rate.

Multiple Diseases

With density dependent transmission (equation (1.3)), Ep s{Ro} will always increase with
increasing population size. When incorporating resistance to multiple diseases in heterozy-
gotes, Ep f{ Ry} increases slightly more slowly as population size increases (Figure 1). Under
our model, heterozygous individuals benefit from two alleles, and can be resistant to two
pathogens simultaneously, therefore the more heterozygous individuals in a population, the
greater the overall level of resistance.

In our model we are assuming that homozygous individuals gain no additional resistance
from the duplicate allele. If homozygous individuals benefit from both alleles, then there in
no reduction in Ep f{Ro} due to heterogeneity. Similarly, haploid populations do not benefit
from increased heterogeneity in our model (equation (1.5)).

One Disease With Overdominance

As was the case with multiple diseases we find that any reduction to E;{Ry} that results
from an increase in genetic diversity is likely to be small (Figure 2), outside a narrow range
of conditions. In the case of density dependent transmission, any reduction in Ef{Ry} due
to an increase in diversity is more than offset by the corresponding increase in population
size (Figure 2). In the case of frequency dependent transmission (Figure 3), where Ey{Ry}
remains constant with increases in population size, there is a modest reduction in E{Ry}
due to an increase in population size and a corresponding increase in diversity. As was the
case with multiple diseases, once a population is sufficiently large, any further increases in
population size no longer leads to any decrease in Ef{Ry} due to heterogeneity. Furthermore,
as the benefit of the duplicate allele in a homozygote (r) increases, the reduction in E¢{ Ry}
due to heterogeneity decreases, going to zero as r goes to 1.

While our study shows that the reduction of Et{ Ry} due to heterozygosity are modest at
best, it does not address any of the other potential benefits of an increase in population size.
On the whole, large populations may be better off than small populations, as larger popu-
lations will be more likely to have resistant individuals that survive an outbreak of a lethal
disease. Large populations will also be less susceptible to extinction due to environmental
stochasticity, and allee effects at low population sizes.

In our study, we examine only the effect of heterogeneity on E¢{ Ry}, and not on the prob-
ability of emergence. While probability of emergence is an increasing function of E¢{ Ry}, the
relationship is nonlinear [Yates et al., 2006]. While we found that an increase in heterogene-
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ity has a negligible effect on Ef{Ry}, it may have a much greater effect on the probability
of emergence. Yates et al. [2006] found that heterogeneity in susceptibility did not affect
disease emergence, while heterogeneity in infectivity reduces the probability of emergence,
which is consistent with the results of Lloyd-Smith et al. [2006].

Parameters

susceptibility

infectivity

infectious period

contact rate

mean change in susceptibility due to an allele
effectiveness of duplicate allele

homozygosity

number of possible allelic states

mutation rate

AN

T oMY RO 29 Q9

Table 1.1: Parameters used in paper
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Chapter 2

The effect of genetic heterogeneity on
the final size of an epidemic

Introduction

When a disease invades a naive population, there is often variation in individual suscepti-
bility, tolerance, and transmission. There may be some level of natural resistance in the
population, while some individuals might spread disease more rapidly. “Superspreaders” are
infected individuals who are responsible for a disproportionately large amount of the trans-
mission [Lloyd-Smith et al., 2006], and such individuals appear to have played a significant
role in the recent SARS outbreak [Shen et al., 2004]. Much of this variation is doubtless
due to non-genetic factors, such as heterogeneity in contact networks, behavior, and en-
vironment. Models have shown, for example, that disease can spread more rapidly when
there is heterogeneity in contact between individuals [Diekmann et al., 1990, Lloyd-Smith
et al., 2006]. This paper will instead focus on how genetic heterogeneity may contribute to
the severity of disease outbreaks. Specifically, we focus on how heterogeneity tied to genetic
variation affects the final size of an epidemic, as well as how diversity does or does not persist
through an outbreak.

Recently, there have been several studies examining how genetic heterogeneity contributes
to an epidemic [Springbett et al., 2003, Doeschl-Wilson et al., 2011], and recent advances
in sequencing techniques have shed light on how individual genes affect disease parameters
[Lohmueller et al., 2003, Hirschhorn and Daly, 2005, Daetwyler et al., 2008]. There is still
much to be learned about how variation at the genetic level translates to heterogeneity at
the population level, and thus previous attempts to model genetic heterogeneity have taken
a variety of approaches. Springbett et al. [2003] modeled heterogeneity in susceptibility, and
found that genetic heterogeneity has no impact on the expected value of Ry. Doeschl-Wilson
et al. [2011] compared heterogeneous populations with the same average susceptibility and
found that disease risk and severity were higher in populations containing larger propor-
tions of susceptible individuals. Lively [2010] modeled a population exposed to multiple
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pathogens, each with a specific resistance genotype, and found that the average R, is in-
versely related to the number of host genotypes in the population. Theoretical work by Ball
[1985] demonstrated that when only susceptibility varies, increased heterogeneity decreases
the final size of an epidemic.

Here, we attempt to model how host heterogeneity in susceptibility due to genetic vari-
ation affects the final size of an outbreak, as well as how that variation persists through the
outbreak. We began with a theoretical approach on how variability in susceptibility affects
the final size of an epidemic. Previous studies have used ad hoc distributions to generate
variability in susceptibility. We attempted to use a more realistic model by conducting simu-
lations based on Wright-Fisher evolution to investigate how genetic diversity changes before
and after a disease outbreak.

Theory

The final size of an epidemic in a homogeneous population, ie a population with a single
susceptibility class, can be expressed as [Diekmann and Heesterbeek, 2000]:

" Si(—oz; —fo (Si(—% - 1)

Where S(o0) and S(—o0) are the final and starting population of susceptibles, respec-
tively, and Ry is the basic reproductive ratio of the population. If instead of a homogeneous
population, there are different susceptibility classes, then S(¢,z) describes the number of
susceptible individuals of class x at time ¢. Following Diekmann and Heesterbeek [2000], we
assume that the change in the number of susceptibles during an outbreak can be described
as

08 d
o1 (00) = = (Da(@)S(t,2)
Where the function w(t), measures the cumulative amount of infectious materials to

which individuals have been exposed at time ¢, and a(x) is the susceptibility of an individual
of type x. Then the final size of an epidemic in a heterogeneous population is:

S(o0, ) = S(—o00, z)eal®w(®)

5(00,8) _ -a@u(o) (2.1)
S(—00,x)

We can see from equation (2.1) that the fraction of any susceptibility class after an
outbreak declines exponentially, with susceptibility (¢ ) times the constant w(co) in the
exponent. Again following Diekmann and Heesterbeek [2000], we can assume that the change
in susceptibles can be described by
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and the final size of an epidemic can also be described by the following:

et [ ([ o ar) {S(00.m) = S(-o0.)} (22)

Where A(T,z,n) is the force of infection acting on individuals of type = by infected
individuals of type n that were infected 7 units ago. Furthermore, we assume

A(r,z,m) = a(x)b(n, ) (2.3)

Again, this represents separable mixing, where the force of infection acting on a suscepti-
ble individual of type x by infected individuals of type n factorizes into a product consisting
of one factor representing the characteristics of the infected individual (ie susceptibility) and
another factor representing the characteristics of of the infected individual (ie infectivity)
and the time lapsed since infection. While there may be correlation of disease parameters
within an individual, there is no correlation between individuals.

Specifically for our final size calculations, we assume that the contact rate ¢ = 1 and
drop it for simplicity. a(x) and b(n, 7) are defined as

a(x) = o,
b(777 T) = ¢n6_%T

By combining equations (2.1), (2.2) and (2.3) (check), we get

/ / n,7)S(—00, 1) (1 - 6’“”“’“’”) dn dr

We take the limit ¢ — oo and get

= /Q/OOO b(n, 7)dr S(—o0,n) (1 — e_“(")w(oo)) dn (2.4)

Which is a nonlinear scalar equation for the unknown w(oo). It can be shown that for
Ry > 1, equation (2.4) has a non-trivial solution. In our case, S(—o0,7) is just S;(—o0), the
number of susceptibles of class i. Plugging this in, along with the expressions for a(z) and

b(T,n), we get
= // pe T dr S;(—o0) <1 - e*””w("o)) dn
aJo

Integrating with respect to 7 we get
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o0) = %/QSi(—oo) (1 — e"’"w("o)> dn

We assume susceptibles form discrete classes, each with susceptible o; for 7...k. The
above integral becomes the sum over all possible susceptibility classes:

0 (o0
x? § (1 — ol >> (2.5)
? - —in(oo)
> ( gz (2.6)
_N ¢ oy Jemriu(e)

- §:: (2.7)

more generally, when several parameters vary by genotype:

Z 9252 ( _ efaiw(oo)> dn

i=1 Vi

— ﬁ . ¢l —in(OO)
; Vi SZ( Zz; i

— ¢1 fo'iw(oo)
R ( ) ZZI: Vi

If only susceptibility varies, then the RHS of equation (2.7) reduces to moment generating
function of o, M,(t), with t = —w(c0) :

wlo) = — — — (—00 e—criw(oo) .

o= ’Y;Sl( ) (2.8)
. N¢ i SZ(—OO) P———

EERE ; N (2.9)

- # (R ) (2.10)

=22 (11—, (u(ec) )

M, (—w(o0)) =1 — w(oo)my + i — + (2.12)
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Where my, ms,...m; are the ith moment of the distribution determining the frequency
susceptibles. Increasing my (E(0?)) will decrease the solution to equation (2.9) when other
moments are held constant.

Simulations

Genetic Model

We conducted simulations to determine the effect of genetic diversity on both the final size
of an epidemic and the amount post epidemic standing diversity. To simulate pre-epidemic
diversity, we simulated evolution for 10,000 generations. We assume mutations between
alleles are specified by a k-allele model, where the mutation rate between alleles is specified
by a parameter u, and an allele ¢ mutates into each of the £ — 1 other allelic states with
equal probability. This results in a k-allele Wright-Fisher model [Ewens, 2004]. We assume
that the parameters are determined by a single locus, and any covariance in parameters is
due to effects at the single locus. We assumed that when a population is free of disease,
any variation in the population is maintained through neutral evolution. Though our model
assumes a haploid population, it is easily extended to a diploid population.

In order to simulate a range of genetic diversity for a given population size, we also used a
coalescent model to simulate ten fold reduction in population size, followed by an immediate
return to the starting population size. Specifically, if our starting population is of size N,
we used a coalscent model to draw a sample of size N/10 and used these gene frequencies
as the starting population for two generations of Wright Fisher evolution of a population of
size N.

Disease Model

Using gene frequencies obtained as above, we then simulated an epidemic using a modifi-
cation of the basic STR (Susceptible, Infected, Recovered/Removed) compartmental model
frequently used to describe infectious disease dynamics [Anderson and May, 1991]:

45 = —BSI
4 — BSI—~I
S =1

The above model describes an epidemic of a directly transmitted disease through a popu-
lation in which S, I and R are the numbers of susceptible, infected and resistant individuals,
respectively. The model assumes that the total population size N = S 4+ I + R, where 3
is the transmission rate between infected and susceptibles, and v is rate of recovery into
the resistant /removed class. The model describes only short term dynamics, and does not
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include births or deaths. The basic reproductive ratio Ry, using the above model, is SN/~
. In our model we assume that the susceptible class can be divided into k& subgroups, each
labeled S;. We break down the transmission process 3 into infectivity ¢, susceptibility o,
and contact rate ¢, and consider that each of these parameters could potentially vary by
genotype:

ds; __
o= 0ibieySi;
J
% = ZUz‘ijCijSi]j —%il;
J
dR _
il Z%‘fi

We define susceptibility as the probability of becoming infected given an infectious contact
with an infected individual, and infectivity as the probability that a contact is potentially
infectious, given a contact with a susceptible. Full contact between groups was assumed
with random mixing of all individuals, and we assume separable mixing, ie the absence of
correlation between infectivity and susceptibility between individuals (as opposed to within
individuals) [Diekmann et al., 1990]. In other words, transmission between a susceptible
individual of type ¢ with properties a, and an infected individual of type j with properties b,
is equal to a;b;. In a population with separable mixing, Ry is just the average Iy over all sub-
populations Y 5;N;/v;. In the model below, we will consider both density dependent and
frequency dependent transmission. For the purposes of this paper, we will define resistance
to a disease as a change in any of the parameters that affect transmission, such as a decrease
in susceptibility o or an increase in the recovery rate =, for example.

In our model, susceptibility ¢ takes on k values, each corresponding to an allele in the
genetic model, and ranges in value from near 0 to 1. Each realization of our simulations
result in a sample of n out of k alleles, and therefore a system of 3n differential equations
describing the disease dynamics. These equations were solved using the deSolve package in
the program R [R Core Team, 2012].

We ran a total of 10,000 simulations, with 5,000 each of bottlenecked and non-bottlenecked
populations. Disease parameters were set so that the expected value of Ry was approximately
5. See Table 1 for all parameters used in the simulations and their values.

Diversity Metrics

We measured genetic diversity using three different metrics. We used allelic richness, or
number different types in the population, the Simpson index, and the Shannon index. The
Simpson index is given by:
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>
=1

Where n is the number of alleles in the sample, and p; is the frequency of the ith allele.
The Simpson index ranges from 1/n when all allele frequencies are identical, to 1 when
there is a single dominant allele. In a diploid population, the Simpson index is equal to the
expected homozygosity.

The Shannon index is given by:

- Z pilog pi
=1

with n and p; as described above. The Shannon index is equal to logn when all allele
frequencies are equal, and near zero when there is one dominant allele. Both the Simpson
and Shannon indices indicate the evenness of the representation of alleles in the population.

For reach realization of the simulations, we recorded the values of the three diversity
indices in the initial population for both the pre- and post-epidemic population. For each
index, we calculated the change in diversity as:

initial value — final value

final value

We also recorded the final size of the epidemic, Ry, and the mean and variance of the
susceptibility for both the pre- and post-epidemic populations. Results were fit using the
package in R [R Core Team, 2012] and graphs of the simulation results were constructed
using the R package [Wickham, 2009]

Simulation Results

In our simulations diversity tended not to persist through an outbreak (Fig 3). Populations
with low allelic diversity pre-epidemic had similar post-epidemic allelic diversity and evenness
compared to populations with high pre-epidemic allelic diversity. Populations with high and
low pre-epidemic evenness had similar changes in post-epidemic allelic diversity. Evenness
was reduced in post-epidemic populations. This is most apparent in the change in the
Simpson index, while the response in the other indices was essential flat. Not surprisingly,
there was more variability in the change in pre to post-epidemic diversity when the pre-
epidemic population had higher diversity and evenness. This is likely because a populations
with low diversity are bounded in the potential decrease in diversity.
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Figure 4 depicts the final size of the epidemic as a function of both the Simpson and
Shannon index. Both plots exhibit some curvature, with lower evenness associated with
both large and small epidemics. As expected, low evenness and a high mean susceptibility
are associated with large epidemics, and low evenness and a low mean susceptibility are
associated with smaller epidemics.

Fig 5 shows the final size of an epidemic plotted against the variance of susceptibility in
the pre-epidemic population. As predicted from (2.9), the final size of the epidemic decreases
as the variance in susceptibility in the pre-epidemic population increases. Though the effect
is rather modest, when the is split based on the median susceptibility, the effect increases
(Fig 6).

0.8 1.0

S(oo, X)/S(—oo, X)
0.6
|

0.4

0.2

0.0
|

w(e)

Figure 2.1: Final size of an epidemic in susceptible population x (equation (2.1)) plotted
against w(oo)
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g(w)

—— Constant
---- Beta(5,5)

Beta(1,1)

- Unif(0,1)

N --- Beta(0.1,0.1)
S 1:1

Figure 2.2: Equation (2.9) (here noted as g(w)) plotted as a function of w, with ¢ having
the same mean but different levels of variance. The solution to the scalar equation in (2.9)
is represented by the intersection with the 1 : 1 line. As variance increases, the solution to
(2.9) becomes smaller. ¢ =0.01,y =1, c=1, N = 1000

Parameters Value

o | susceptibility (0.001,1) in K —
1 equally spaced
intervals

¢ | infectivity 0.01

~ | infectious period 1

/4 | mutation rate 0.001

K | number of alleles 50

N | population size 1000

B | size of population bottleneck | 0.1

Table 2.1: Parameters and their values in the simulations
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Figure 2.4: Final size of the epidemic, plotted against both Simpson and Shannon indices for the pre-epidemic
population, where color indicates mean susceptibility ¢ of a pre epidemic population. Red lines indicate a quadratic

fit to the data with the axes flipped
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Discussion

Effect of Diversity on the Final Size of an Epidemic

We can see from equation (2.1) that the fraction of any susceptibility class after an outbreak
declines exponentially (Figure 4), where the value of w(oo) is given by the nonlinear scalar
equation in (2.9). We can see from equation (2.9) that w(oco) has an upper bound of N -
E(¢/7). The larger the value of w(c0), the steeper the decline in susceptibles. As shown in
equation (2.12), when only susceptibility varies, the value of w(o0) is determined largely by
the moment generating function for o , with w(co) increasing as E(o?) increases (Figure 5).
This is consistent with Ball [1985], who found that when only susceptibility varies, increased
heterogeneity leads to smaller outbreaks. Our results imply that higher moments will also
have an effect on the final size, given by (2.12).

Since, in our model, the number of survivors declines exponentially, small changes in
susceptibility lead to large changes in survivorship after an outbreak. We also find that the
frequency of any genotypes other than those corresponding to the most resistant individuals
are likely to be severely reduced following an outbreak with high mortality. While genetic
diversity may persist though the outbreak, the frequency spectrum will be shifted toward
resistant genotypes. This was verified by our simulation study, as both evenness and diversity
declined post outbreak. This is to be expected, as our scenario represented a strong selective
event. Our simulations also suggest that the final size of an epidemic is a bifurcating function
of the evenness of a population, with populations with low mean susceptibility and low
evenness undergoing small or no epidemics, and populations with high mean susceptibility
and low evenness experiencing larger epidemics. This is to be expected, as resistance is
maximized when there is a single resistant allele in the population, and minimized when
there is a single, highly susceptible genotype. However, for populations with similar mean
susceptibilities, more diverse populations will have smaller epidemics.

There are several ways our approach could be extended. In our simulations, we as-
sumed all populations were haploid. A diploid model could incorporate phenomena such as
overdominance, where heterozygotes have lower susceptibility on average than homozygotes.
This could allow genetic diversity to have a greater effect on the final size of an epidemic.
A diploid model could also incorporate change in expected homozygosity after an epidemic.
Our model for susceptibility is almost certainly overly simplistic. Resistance to a disease is
likely the result of the interactions of many different genes. We focused on simplicity in our
study, but a more complex mutation model incorporating multiple genes could yield more
realistic results.

In our simulations we only tested the effect of variance in susceptibility on the final size
of an epidemic. (2.12) indicates that higher moments will have an effect on the final size
as well. While we only addressed heterogeneity in susceptibility in this study, it would be
possible to extend our modeling and simulation framework to variation in other parameters
such as infectivity, recovery time, and contact rate. However, because of the form of equation
(2.9), we could not use the moment generating function approach used in (2.12). A different
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theoretical or simulation based approach would have to be used to address variation in other
parameters.

Both our theoretical model and simulations show that while more heterogeneous pop-
ulations have smaller epidemics on average, the evenness of the diversity of a populations
declines markedly. While there may be small change in allelic diversity post-epidemic, as
some alleles remain in the population at low frequencies, epidemics result in large shifts in
the frequency spectrum towards less susceptible alleles.
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Chapter 3

Genetic diversity in the Rana
muscosa/Rana sierrae species
complex

Introduction

California’s mountain yellow-legged frog (a species complex consisting of Rana muscosa in
the southern part of its range and Rana sierrae in the north), has declined dramatically in
the last 50 years, with declines of over 90% across its range [Vredenburg et al., 2007]. The
decline of R. muscosa in southern California has been even more severe, with extinction
at >99% of historical sites [Backlin et al., 2004]. These highly aquatic species historically
occurred in both lake and stream habitat in the high elevations (>2000 meters) of the Sierra
Nevada Mountains in California [Grinnell and Storer, 1924]. The introduction of non-native
trout has vastly reduced and fragmented populations throughout their range [Vredenburg
et al., 2007], and the introduction of the fungal pathogen Batrachochytrium dendrobatidis
(hereafter referred to as Bd) has all but driven the remaining populations to extinction
[Briggs et al., 2005].

Bd has caused declines in amphibian populations throughout the globe. Bd is highly
pathogenic in many species, with low levels of initial infection leading to high levels of
mortality [Skerratt et al., 2007], while other species appear to tolerate Bd infection with little
to no side effects [Weldon et al., 2004, Schloegel et al., 2010} and may serve as reservoirs for
other species. While most R. muscosa/sierrae populations exposed to Bd appear to either go
extinct or undergo dramatic declines [Vredenburg et al., 2010], there do appear to be a small
number of R. muscosa and R. sierrae populations that are persisting with Bd [Briggs et al.,
2010]. These 'persistent’ populations have tested positive for Bd for as long as they have
been surveyed, is some cases going back 10 years or more. These populations are often much
smaller and less dense than disease-free populations. The earliest record of Bd infection in
California may be in a R. muscosa misidentified as a R. boylii, indicating that Bd may have
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been present in some populations since the 1960s [Vredenburg et al., 2010].

Several studies have suggested that reduced genetic diversity or genetic erosion’ can lead
to reduced fitness and make resistance to pathogens more demographically costly [Luquet
et al., 2012, 2011]. In this study, we use microsatellite genetic data to determine if R. mus-
cosa/sierrae have reduced levels of genetic diversity. Furthermore, we examine populations
that have been persisting with Bd, to determine if they have signatures of genetic bottlenecks
that may have been the result of recent disease induced mortality similar to that observed
in outbreak populations.

Materials and Methods

Field Sampling
Rana muscosa Populations

Unites States Geological Survey personnel collected tissue samples of Rana muscosa during
surveys in southern California in 2003-2009 from nine unique locations: South Fork Big
Rock Creek, Little Rock Creek, Bear Gulch, Vincent Gulch, Devils Canyon, East Fork City
Creek, Fuller-Mill Creek, Dark Canyon, Tahquitz Creek, and one captive population of
individuals originally collected in Dark Canyon. Additionally, we obtained samples from the
nearest extant population in the southern Sierra Nevada, Milestone Basin, in Sequoia Kings
National Park, in 2004. Samples in Milestone Basin were collected during a large Bd die-off
described in [Vredenburg et al., 2010]. Other populations in the southern Sierra Nevada
are considered extinct [Vredenburg et al., 2007]. Tissue consisted of toe clips of adult and
sub-adult (post-metamorphic) frogs, and tail clips of tadpoles, which we preserved in 95%
ethanol until extraction. Sample size ranged from 14 in the Vincent Gulch population to 91
in the East Fork City Creek population, for a total of 614 individuals across all populations
(Table 1), representing the majority of animals alive and present in southern California for
the last decade. All sampled locations are shown in Figure 1.

We also included data from Bingham [2007], which were collected from three large, pre-
decline populations in 60 Lake Basin, located in Sequoia Kings National Park, using the
same loci with consistent scoring.

Rana sierrae Populations

We obtained samples from Conness Pond in Yosemite National Park in 2003 and Ebbetts
Pass in El Dorado National Forrest in 2004. Together with Unites States Geological Survey
personnel, we also collected tissue samples of Rana sierrae in 2003-2005 in El Dorado Na-
tional Forrest from four locations: Aloha Pond, Hell Hole, Waca Pond, and Pyramid Lake.
Sample size ranged from 5 individuals in the Aloha population to 48 in the Conness Pond
population.
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Real Time PCR

Before tissue was collected, each animal swabbed to quantify the amount of Bd present on
the individual by rubbing a sterile, cotton swab over the ventral surfaces and digits [Hyatt
et al., 2007, Vredenburg et al., 2010]. Swabs were extracted and analyzed on a ABI StepOne
Plus real time per machine following the protocols of Boyle et al. [2004]. All Southern
California populations were swabbed, as well as those at Ebbetts Pass and the Tahoe Basin
populations. The Conness Pond population was Bd positive, as it has persisted with Bd
since at least 2001 (R. Knapp unpublished).

Genetic data collection

Genomic DNA was extracted using PrepMan Ultra’™ reagent (Applied Biosystems), with
the following modifications to the manufacturer’s protocol: tissue was combined with 45
11 of PrepMan and 40 mg of silica beads, shaken on a beadbeater for 90s, digested and
centrifuged for 30 s. We amplified each individual at nine microsatellite loci by polymerase
chain reaction (PCR) using primers designed by Genetic Information Services (GIS). PCR
products were run on a 3730 capillary sequencer with the GeneScan Liz 500 size standard
(Applied Biosystems). Primer sequences are shown in Figure 4.

Population Genetic Analysis

Population structure within a sampling unit can lead to false signatures of population bot-
tlenecks [Chikhi et al., November 2010], therefore population structure in the microsatel-
lite data was assessed using a Bayesian clustering algorithm implemented in the program
STRUCTURE v2.3.4, with population source used as prior information (Hubisz et al., 2009;
Pritchard et al., 2000). We used the admixture model with correlated allele frequencies to
account for any migrants in the dataset, following recommendations of Francois and Durand
(2010). STRUCTURE was run for the adult frog dataset by setting the cluster (’k’) value
incrementally from 1 to the maximum number of sampled units (lakes) with 10 independent
runs at each k value. A burn-in period of 100,000 steps was followed by MCMC sampling
for 1 million steps. Results from this analysis were used to determine sampling units for the
bottleneck analysis.

Variability at each microsatellite locus was tested for deviation from Hardy-Weinberg
equilibrium (HWE) using chi-square and Fisher’s Exact tests. This was conducted within
each population for all available samples and for a subset of the data including only adult
frogs. Due to the large number of tests, the level of statistical significance (o = 0.05) was
adjusted by Dunn-Sidak correction (1 —(1—a))'/™. The mean number of alleles (allelic rich-
ness), observed and expected heterozygosity, and fixation index (Fjs) were averaged across
loci for each population. Statistical significance was assessed by permuting the data 10000
times. All statistical tests were conducted within R and ARLEQUIN v3.5.1.2 (Excoffier and
Lischer 2010).
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To test for genetic bottlenecks in each population, we calculated the sign-test [Cornuet
and Luikart, 1996] and M-ratio statistic [Garza and Williamson, 2001]. The sign-test exam-
ines whether there is an excess in expected heterozygosity across loci, which occurs when
the effective population size is sharply reduced during a population bottleneck. This was
calculated in the program BOTTLENECK (Piry et al. 1999) assuming the two-phase model
(T.P.M.) with variance set to 30 and probability set to 70%, and significance assessed over
10 000 replicates. The M-ratio statistic examines the ratio of the number of alleles and the
allele range, with the expectation that the number of alleles declines faster than the allele
range in a bottlenecked population. The M-ratio was calculated in ARLEQUIN and tested
for significance by comparison to simulated data. Using R, we simulated genetic diversity in
a population with constant size at a microsatellite locus evolving under two-phase mutation
model, with a mean size of multistep mutation set to 3.5 and the proportion of single steps set
at 0.89 (as suggested by Garza and Williamson 2001, based on their survey of the literature).
From each simulated dataset, a sample was drawn corresponding to the number individuals
in the population sample, from a total of 10 000 datasets. Critical values (o = 0.05) of the
M-ratio, below which an M-ratio value would be likely to indicate a bottleneck, were deter-
mined for two levels of ancestral theta, § = 1 and 10. For comparison across populations,
we report critical values for a sample of 20 individuals. This represents the lower end of
our sampling numbers, and is therefore a conservative threshold for most of the populations
used in the analysis.

Results
Real Time PCR

Of the Rana musocsa populations tested, only the Tahoe Basin came up positive for Bd,
and was positive over all 3 years sampled (Table 1), with a prevalence of 0.87 at Hell Hole,
0.62 at Pyramid Lake, and 0.29 at Waca Pond.

Genetic Variation

Several populations exhibit statistically significant deviations from HWE after Dunn-Sidak
correction, although the number of significant tests is higher using the chi-square method
versus Fisher’s Exact method. When only adult frogs are considered, the number of signifi-
cant tests declines, irrespective of the statistical method. There is no clear trend of deviation
from HWE at specific loci across all populations, which would otherwise suggest the pres-
ence of null alleles. Similarly, there is no clear predominance of HWE deviations in specific
populations across all microsatellite loci, which suggests age stratification or admixture are
not major factors. As a result, all downstream analyses included all available data.

The analysis of microsatellite variation within R. sierrae using STRUCTURE identified
Conness Pond, Ebbett’s Pass, and the Tahoe Basin as distinct populations, with a plateau
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in the log likelihood of the data at k=3. There was not significant support for structure
within the Tahoe Basin (Fig 2), and therefore this was treated as one population. For
the Milestone and Southern California Rana muscosa populations STRUCTURE shows a
distinct plateau in the log likelihood of the data at nine clusters. The eight clusters that are
strongly supported represent every distinct sampling site, with the exception that Vincent
Gulch and Bear Gulch are represented as one cluster, and the sample from Tahquitz Creek
and the captive population are not distinguished from the resident Dark Canyon population.
There support for structure within Milestone Basin was weak, and it was treated as a single
population for the rest of the analysis.

Comparison of microsatellite genetic variability averaged across loci (Table 1) show the
number of alleles and observed heterozygosity are similar across populations. Differences
in the observed and expected heterozygosity, as measured in the fixation index, show that
most populations do not have a significant deficit of heterozygous individuals. However, East
Fork City Creek, Little Rock Creek, and Ebbetts Pass do have deficits that differ significantly
from zero, although outside of the Ebbetts Pass population, the level of inbreeding is not
high. Several populations, including Vincent Gulch, Bear Gulch, Fuller-Mill Creek and
the captive population have a larger observed versus expected heterozygosity, resulting in
negative fixation indices, but these are not significantly different from zero.

Simulated critical M-values varied by sample size, so we used used the lowest vales for
each choice of § (6 = 1 and # = 10). This corresponds to a somewhat conservative critical
vale due to the small populations samples in some of the populations. Using a M-crit of 0.41
and 0.42 for (f = 1) and (6 = 10) respectively, there are signatures of population bottlenecks
across southern California R. muscosa populations (Table 2). Based on the sign-test, only
the Dark Canyon population shows a significant (p = .0005) bottleneck effect. Using the
M-ratio statistic, however, all Southern California populations have values below critical
thresholds of a sample drawn from a moderate (6 = 1) to large (# = 10) population. Only
the Milestone Basin population, sampled during a disease outbreak, showed no sign of a
bottleneck, although the M-value of 0.534 was close to the critical simulated value.

None of the populations from 60 Lake Basin or any of the R. sierrae populations had
M-values indicating population bottlenecks.

Discussion

Genetic diversity, as measured by mean number of alleles per locus and expected heterozy-
gosity, is quite low compared to related frogs in the genus Rana [Monsen and Blouin, 2004,
Zhan et al., 2009, Zhao et al., 2009]. Similarly low levels of microsatellite variation are ev-
ident in other threatened or endangered ranids, including the Columbia spotted frog, Rana
luteiventris [Funk et al., 2005], the Italian agile frog, R. latastei [Ficetola et al., 2007], and
the northern leopard frog, R. pipiens [Wilson et al., 2008]. Despite the reduced levels of
genetic variability, levels of inbreeding, as measured by Fj, are currently low in most pop-
ulations of R. muscosa/sierrae, with the highest values found in the East Fork City Creek,
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Little Rock Creek, South Fork Big Rock Creek and Milestone Basin populations (F' ranges
from 0.1 to 0.26). Although populations of southern California R. muscosa are not inbred,
there is evidence that genetic diversity has recently declined.

Population bottleneck tests demonstrate that several populations have had a significant
reduction in allelic diversity relative to the range of alleles. The M-ratio tests show significant
population size reduction in all of the southern populations, while the sign-test only shows a
significant result in the Dark Canyon population. It is well known that there is less statistical
power to detect a bottleneck with the sign-test [Williamson-Natesan, 2005], which is based
on measuring an excess of observed heterozygosity relative to the expected heterozygosity
(calculated from the observed number of alleles). The negative fixation indices in several
additional populations (Table 1) show a trend towards an excess of observed heterozygosity,
but unless a strong bottleneck is very recent and/or ongoing, heterozygosity is expected to
rapidly return to equilibrium values.

Although we were not able to sample enough persistent populations to determine if there
were differences in diversity between populations persisting with Bd and those not yet ex-
posed, neither of the two persistent populations sampled (Conness and Tahoe Basin) showed
any indication of population bottlenecks. This suggests that, at least in these populations,
the initial invasion of Bd was not accompanied by large die-offs. More persistent populations
should be sampled to see if this pattern holds, however, our work indicates that invasion of
Bd does not always result in a severe population crash. The populations that did show
bottleneck signature were all in Southern California, which is consistent with this area ex-
periencing the steepest declines in population, largely due to habitat loss and fragmentation
[Backlin et al., 2004]. These populations all tested negative for Bd at the time of our study;
it remains to be seen if the lack of genetic diversity will result in more severe outbreaks when
Bd finally reaches these populations.
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Figure 3.1: Map of localities used in this study. Sites A-C correspond to R. sierrae popula-

tions. Sites 1-9 correspond to R. muscosa
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Figure 3.2: STRUCTURE analysis of microsatellite variation of adult frogs in the Conness,
Ebbett’s Pass, and Tahoe Basin populations, with corresponding plot of individual posterior
probabilities for cluster membership shown at k = 3
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Figure 3.3: STRUCTURE analysis of microsatellite variation of adult frogs in the Milestone
and Southern California populations (plot of the posterior likelihood of the data with in-
creasing number of clusters (k), ten replicates at each k, showing a distinct plateau at k
= 9), with corresponding plot of individual posterior probabilities for cluster membership

shownat k =9

Site Name N | AR H, H, F
Rana sierrae Conness 48 | 7.200 | 0.532 | 0.607 | 0.124
- Ebbett’s Pass 24 | 4.800 | 0.432 | 0.622 | 0.317¢
- Tahoe Basin 26 | 5.333 | 0.620 | 0.746 | 0.161
Rana muscosa 60 Lake Basin 1 25 | 4.625 | 0.543 | 0.554 | 0.020
- 60 Lake Basin 2 74 | 6.000 | 0.593 | 0.605 | 0.012
- 60 Lake Basin 3 25 | 3.625 | 0.447 | 0.451 | -0.037
- Milestone Basin 56 | 4.667 | 0.358 | 0.400 | 0.109
- Devil’s Canyon 23 | 3.889 | 0.512 | 0.480 | -0.052
- Little Rock Creek 40 | 4.111 | 0.434 | 0.521 | 0.178'
- South Fork Big Creek | 9 | 2.889 | 0.446 | 0.454 | 0.023
- Vincent Gulch 12 | 3.333 | 0.511 | 0.426 | -0.218
- Bear Gulch 40 | 2.556 | 0.514 | 0.431 | -0.170
- East Fork City Creek | 18 | 4.778 | 0.253 | 0.301 | 0.210"
- Fuller-Mill Creek 29 | 4.111 | 0.651 | 0.577 | -0.115
- Dark Canyon 56 | 4.667 | 0.358 | 0.400 | 0.109

Table 3.1: N

sample size; AR mean number of alleles; H, observed heterozygosity; H.,

expected heterozygosity; Fjs. 1 indicates significance at the 0.05 level based on 10000 per-
mutations in ARLEQUIN
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Sign test SDt%n%z?lzed Wilcoxin | M-ratio SDt:\f;:zii Bd Status
Conness 0.521 0.478 0.651 0.621 0.252 +
Ebbett’s Pass 0.553 0.356 0.477 0.673 0.200 —
Tahoe Basin 0.459 0.489 0.236 0.691 0.250 +
60 Lake Basinl 0.389 0.389 0.517 0.579 0.295 —
60 Lake Basin2 0.624 0.751 0.921 0.596 0.220 —
60 Lake Basin3 0.551 0.453 0.631 0.617 0.331 —
Milestone Basin 0.533 0.252 0.50 0.534 0.317 +
Milestone 1 - - - 0.496 0.291 -
Milestone 2 - - - 0.500 0.277 —
Milestone 3 - - - 0.459 0.292 —
Devil’s Canyon 0.583 0.469 0.787 0.200 0.081 —
Little Rock Creek 0.558 0.486 0.820 0.208 0.064 —
South Fork Big Creek | 0.440 0.057 0.455 0.219 0.084 —
Vincent Gulch 0.125 0.052 0.996 0.275 0.064 —
Bear Gulch 0.624 0.442 0.545 0.218 0.094 —
East Fork City Creek | 0.389 0.044 0.150 0.174 0.112 —
Fuller-Mill Creek 0.549 0.184 0.5 0.196 0.066 —
Dark Canyon 0.005 0.059 0.010 0.179 0.037 —

Table 3.2: Bottleneck tests and Bd status in Rana muscosa and Rana sierrae. Based on
simulations, M-ratio values less than 0.42 (# = 1) or 0.43 (f = 10) are significant and
indicate a bottleneck. For Sign test, Standardized differences test, and Wilcoxin sign-rank
test, significant differences are shown in bold. The Milestone population was also analyzed
as 3 distinct populations (each corresponding to a lake) for comparison.
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Name Primer Sequence (5' to 3') Microsatellite Motif Length
All F AACTGATACTTTTGGGTGTCTG (CA)6 148
All R CGATTACCTGTCTTGGTGTC
Al04 F | CAACGGGGACATTCTAAAG (CA)p, 253
A104 R | CCCCTAGTCTGCAAATAAAAA
D11 _F GCGATACACACCCCTGAG (AGAT)(ATAT)(AGAT); 196
DIl R GAAGCGACTGGATTTTCTTG
D14 F TCCATGTCCATTTTGTGTTTG (TAGA)s 175
D14 R GGTTACAACTGGGAGGTGTTG
D114 F | CCTGGTGCCATTATTTTTTTAG (TAGA),; 236
D114 R | TTATCCCGGAGGAGTACAGTC
D119 F | ATGCAGTTTACAGTTTCACACG (TAGA),, 133
D119 R | ATCCCCACACACGCTCTA
D125 F | GGTGCTGCATCACTATAATTTC (TAGA) 3 270
D125 R | ATGTGGACATTGGCTTTATTC
D131 F | CCTTTGGAGGACGATACAGG (TAGA) 3 284
D131 R | GCAGACAGTAGCACAGCACAC
D208 F | AGTCCTTCTCCACTTTTTTCTC (TAGA), 240
D208 R | CAGCCTGTTCTGGGTTATT
D129 F | CCAAAGACAGAGGCACTTAG (TAGA) 4 (TGGA)TAGA) 205
D129 R | TGCTCAGGACCTGTAGGTAG

Figure 3.4: Microsatellite primers used in analysis
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Chapter 4

Water flow and growth rate of the
fungal pathogen Batrachochytrium
dendrobatidis

Introduction

The fungal pathogen, Batrachochytrium dendrobatidis (Bd), the cause of the amphibian
skin disease chytridiomycosis, has devastated amphibian populations world wide [Wake and
Vredenburg, 2008, Skerratt et al., 2007, Berger et al., 1998]. Thought to be an emerging
infectious disease [Skerratt et al., 2007], Bd has been observed to cause mortality in numerous
frog species [Wake and Vredenburg, 2008], as well as several salamander species [Cheng et al.,
2011], possibly driving several species to extinction.

In many species, Bd is highly pathogenic, with low levels of initial infection leading to
high levels of mortality [Skerratt et al., 2007]|, while other species appear to tolerate Bd
infection with little to no side effects [Weldon et al., 2004, Schloegel et al., 2010] and may
serve as reservoirs for other species. California’s mountain yellow-legged frog (a species
complex consisting of Rana muscosa and Rana sierrae), has been particularly hard hit by
the Bd epidemic, with declines of over 90% across its range [Vredenburg et al., 2007]. These
highly aquatic species historically occurred in both lake and stream habitat in the high
elevations (2000 meters) of the Sierra Nevada Mountains in California [Grinnell and Storer,
1924]. The introduction of non-native trout has vastly reduced and fragmented populations
throughout their range [Vredenburg et al., 2007, and the introduction of Bd has all but
driven the remaining populations to extinction [Briggs et al., 2005]. The earliest record of
Bd infection may be in a R. muscosa misidentified as a R. boylii [Vredenburg et al., 2010].

The mechanism by which Bd kills its host remains somewhat of a mystery, but both lab
experiments and field observations suggest that Bd infection impairs normal skin function
[Voyles et al., 2007, 2012]. Voyles et al. [2007] found that electrolyte across the skin was
impaired in infected individuals in the lab, while Voyles et al. [2012] found that infected
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animals in the field had electrolyte levels associated with impaired skin function. The Bd
life cycle occurs primarily in the skin of the amphibian, as Bd is believed to feed primarily
on keratin or keratinized tissue [Pessier et al., 1999]. The life cycle consists of a flagellated
zoospore which encysts upon the skin of the frog, forming a zoosporangia. Zoospores develop
within the zoosporangia and are then released into the environment though a zoospore
tube. Individual frogs may be continuously reinfected from zoospores in the environment:
Rachowicz and Vredenburg [2004] found that tadpoles actually loose there infection during
metamorphosis, and are reinfected as juvenile frogs, and modeling by Briggs et al. [2005]
suggests that reinfection from an external zoospore pool may play an important role in
driving Bd epidemics.

We conducted two studies investigating how the manipulation of the external zoospore
pool via changes in flow rate affects both the growth rate of Bd on the host as well as
host mortality. Our goal was to determine whether increased flow rate was associated with
a decrease in growth rate of Bd on its host due to reduced reinfection, and whether this
reduced reinfection rate led to lower mortality. In our first study, we simulated flow by
changing animals more often than a control group. To investigate the effects of flow further,
our second experiment simulated continuous flow.

Materials and Methods

Flow Experiment I
Source Population of Experimental Animals

Several clutches of Rana muscosa were collected from 60 Lake Basin in Kings Canyon Na-
tional Park. All animals were collected as egg masses, and reared through metamorphosis
at facilities at UC Berkeley.

Inoculation with B.d.

20 animals were inoculated with Bd strain LJR 119 once a day for 5 days. Animals were
divided equally and housed in two 20 liter tanks during the inoculation. Inoculation was
performed by flooding one Petri dish with 10 ml of water, allowing the water to stand for
10 min, and then pouring the water into the tank with the animals. The holding tank water
was changed once during the inoculation period, and the animals were also fed once during
this period.

Experimental Procedures

After the initial inoculation, animals were divided into two treatment groups of 10 each,
one experimental and one control. Each animal was housed individually in a 4 liter mouse
box (Unicage) with 200 ml of water. Water was calibrated to room temperature (15 degrees
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C) by leaving a bucket in the room with the animals. Water in the experimental tanks, or
“Flow” group, was changed twice per day, once in the morning and once at night, including
the weekends. Animals were rinsed with fresh water before being placed in a new tank,
changing gloves between each animal. Control animals were picked up and placed back in
their cages each time the experimental tanks were changed. Control animals were changed
once a week. All animals were fed once per week in the morning, after the flow animals had
changed. Animals were fed five crickets each. All animals were swabbed once per week for
the duration of the experiment, right before changing the tanks (see real time pcr below).
The experiment was run for 15 weeks.

Flow Experiment II
Source Population of Experimental Animals

Because of the limited availability of experimental animals, animals that had been previously
exposed to Bd were used for the second experiment. 20 R. sierrrae collected as egg masses
from Ebbetts Pass (Eldorado National Forrest) and Connness Pond (Yosemite National
Park). While all animals had been previously exposed to Bd, all were confirmed to be Bd
negative with real time pcr before the beginning of the experiment.

Inoculation with Bd

20 animals were inoculated with B.d. strain (CJB 6) once a day for 5 days, following
procedures similar to flow experiment I. All animals were divided equally and housed in two
5 gallon tanks during the inoculation. Inoculation was performed by flooding one Petri dish
with 10 ml of water, allowing the water to stand for 10 min, and then pouring the water into
the tank with the animals. The holding tank water was changed once during the inoculation
period, and the animals were also fed once during this period.

Experimental Procedures

After the initial inoculation, animals were randomly divided into two groups of 10, one
flow-though group and one recycle group. In both groups, animals were housed in 4 liter
containers (Unicage) with approximately 500 ml of water, with small holes in the bottom
for drainage. In the flow-through group, fresh water was continuously pumped into the top
of the cage at approximately 2.5 liters per day. In the recycle group, water was pumped
into the top of the cage, also at a rate of averaging 2.5 liters per day, and then collected in
a container beneath the animal. Flow rates varied by individual, but rates between the two
groups were similar. Flow rate for each cage was measured weekly. The collected water was
then pumped back into the animal’s container. The total volume of water used in the recycle
group was 1.5 liters, 500 ml in the animal housing and a 1 liter reservoir. All animals were
swabbed once per week, and 50ml of water was collected from the cage for filtration in order
to test for zoospores in the water. During this time all tanks were cleaned a rinsed with
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fresh water and the water was changed in the recycle group. The experiment was run for 10
weeks. Starting at week 2 until the end of the experiment, the flow rate of each pump was
measured each week by collecting the outflow in a 60 mL flask for 5 minutes and measuring
the volume of water.

Real Time PCR

Each week, every animal was swabbed to quantify the amount of Bd present on the individual
by rubbing a sterile, cotton swab over the ventral surfaces and digits [Hyatt et al., 2007,
Vredenburg et al., 2010]. Swabs were extracted and analyzed on a ABI StepOne Plus real
time per machine following the protocols of Boyle et al. [2004]. In both experiments, all
animals that did not show significant levels of infection (< 1 zoospore equivalent) after the
first week were excluded from subsequent analysis.

Walter filtration

Each week, 50ml of water was collected from each tank and passed through a 5 micron filter
using a 60 ml syringe. The filters were then dried, and then zoospore DNA was extracted
using the Prepman extraction kit (Applied Biosystems), following procedures described in
[Reeder et al., 2012].

Statistical Analysis

All data was analyzed in R, version 2.14.1 [R Core Team, 2012]. Kaplan-Meier estimators
were used to analyze survival data using the survival library [Therneau, 2012]. The R
package implements the G-rho family of Harrington and Fleming [1982], which in this case
is equivalent to a log-rank test.

PCR data for both swab and filtration data was analyzed with mixed effects models
using the library nlme [Pinheiro et al., 2012], using a first order auto-regressive model. Week
and treatment were treated as fixed effects, with week nested within treatment. Individual
was treated as a random effect with varying intercept. Since the flow rate varied across
all of the cages, we also determined if there was any effect of flow on zoospore growth on
the animals or zoospores found in the water. To determine whether weekly fluctuations in
weekly fluctuations in flow might affect zoospore growth on the frogs in water, we looked at
the one week change in flow rate compared to the change in zoospores both on the frog and
in the water.

We also preformed a segmented regression using the library segmented [Muggeo, 2003,
2008] to determine if there were any breakpoints in the growth rate of Bd on the frogs,
possibly due host immune response. The breakpoint model was compared with a quadratic
model, and the relative goodness of fit of each model was assesed using the Akaike Informa-
tion Criterion (AIC), where a decreases of > 2 indicated a better fit to the data.
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Results

Flow 1

Three animals in each group never showed infection levels above 0.1 zoospores, theoretically
the lower bound for detection, and were removed from the analysis. Survival analysis showed
significant difference in survival between the flow group and the control group (Fig 1, p <
0.00001). All seven animals in the control group had died by week eight, while two of seven
animals from the flow group survived for the entirety of the experiment.

Animals in the control group also showed significantly higher Bd growth rates than
animals in the control group (Fig 2). Though flow itself was not a significant factor in the
model, the interaction of flow and time was highly significant (p < 0.00001). The results of
the model are reported in Table 1.

Visual inspection of the residuals for the mixed effects model suggested an abrupt change
in slope at week 3 of the experiment. Segmented regression analysis suggested a breakpoint
at 2.5 + 1 week (Fig 3) for the flow group, while there was no breakpoint apparent in the
control group. The segmented model was significantly better fit than a simple regression
model, but was not distinguishable from the model with a quadratic term.

Flow 11

Animals in the flow group had slightly higher survival than those in the recycle group,
although the difference was not significant (Fig 3). Eighty percent of the flow group survived
to the end of the experiment, as compared to fifty of the recycle group.

There was no detectable difference in zoospore growth rates between the two experimen-
tal groups in either the real time pcr data or the pcr based on water filtration. Animals
with higher Bd loads had higher filtration values (likely because they were shedding more
zoospores), although there was no difference between groups.

The average flow rate in the cages was 2.5 = 0.9 liters per day, with a minium of .14 and
a maximum of 8.1 L. per day. There was no significant effect on change of flow from week to
week on either zoospores measured on the skin or in the water, though there as a negative
but statistically insignificant relationship between increase in flow filtered zoospores.

Overall, mortality was higher in Flow I when compared to Flow II. By week 10 in Flow
I, 100% of the control group and 50% of the flow group had died, as compared to 50% of the
recycle group and 20% of the flow group in the second experiment.
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Figure 4.1: Kaplan-Meier survival plots for the Flow I (a) and Flow II (b) experiment2. p <
0.00001 for Flow I, p = 0.2 for Flow II. In both figures, the dotted line represents the flow
through group. In figure a, the solid line represents the control group. In figure b, the solid
line represent the group with water recycled.
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Figure 4.2: Zoospore load (log) overtime in for each individual in Flow I. Red lines are
the control group, blue the control group. Solid and dash lines represent model fits for the

control and flow group respectively

Value se p-value

Intercept 1.3467587 | 0.9867918 | 0.1743
Week 1.6303872 | 0.2166024 | 0.00001

Flow Treatment | 0.9757719 | 1.2781617 | 0.4551
Treatment:Week | -1.4225823 | 0.2296019 | 0.00001

Table 4.1: Results from mixed effects model for Flow I: effect size, standard error, and

p-values
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Figure 4.3: Top: residual plot of the mixed effects model, indicating a break point around
week 3. Bottom: Zoospore load (log(x+0.1)) over time in for the flow group in Flow I, with
estimated breakpoint at 2.5 + 1 weeks
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Discussion

We found that manipulation of the flow rate in naive frogs exposed to Bd significantly
reduced the growth rate of Bd as well as the time to mortality of the frogs(Flow I, Fig
2). However, there was no significant effect when the flow rate was manipulated in frogs
previously exposed to Bd (Flow II, Fig 2). One possible explanation is that completely
removing the water in the first experiment, while representing a lower daily turnover in total
water flow, actually completely purged the zoospores from the container, while the flow rate
in experiment 2 was insufficient to reduce the zoospore pool. Bd zoospores are flagellated,
and actively swim in the aquatic environment [Piotrowski et al., 2004], so it is possible that
certain flow rates may not affect zoospore density, especially at the low rates simulated in
Flow exp II. This is supported by the fact that in Flow II we found no effect of flow rate
on zoospore density in the cage water. It is possible that the flow rates simulated in this
experiment were insufficient to reduce the external zoospore density.

It is certainly possible that the previous exposure of the animals in Flow Exp II resulted
in lower Bd growth rate overall, and thus lower mortality. Although we were unable to
distinguish between the breakpoint model and the quadratic model, we found a decline in
growth rate after 2.5 weeks (Fig 3) in Flow I. This could be consistent with an immune
response after the initial exposure to Bd. Animals in Flow II had a lower motality overall
than animals in Flow I, even within the control groups, which should have had similar
exposure to Bd. Since all animals in Flow II had previously been exposed, it is possible that
aquired immunity led to a reduction in mortality in Flow II.

The results of these experiments suggest that flow rate can reduce the growth rate of Bd
on its amphibian host in certain circumstances. Because of naive animals were unavailable
for our second experiment, we were unable to determinte how continous flow rate affects
growth rate of Bd. However our results indicate that flows greater than those simulated in
this experiment would be necessary to reduce growth rate of Bd on its host.
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