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ABSTRACT OF THE DISSERTATION

Essays on Macroeconomics and Finance

by

Huifeng Chang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2022

Professor Pierre-Olivier Weill, Chair

This dissertation consists of three chapters on macroeconomics and finance. In Chapter 1, I

study how disruptions in secondary bond market liquidity affect the macroeconomy. I intro-

duce search-based secondary markets for long-term corporate bonds into a dynamic general

equilibrium model. In the model, with borrowing constraints and incomplete insurance, firms

restrict hiring ex-ante when default risk increases. A worsening of bond market liquidity, by

affecting bond prices and thus the borrowing limits for firms, has aggregate negative impact

on firms’ labor choices. A positive default-liquidity spiral further amplifies these effects. In

the quantitative analysis of my model, I show that a liquidity shock calibrated to match the

observed increase in the bid-ask spread could explain about 20% of the employment losses

in the Great Recession. I also provide a structural estimate of the impacts of the Fed’s

corporate bond purchasing program on the real economy during the COVID-19 crisis. By

improving bond market liquidity, the Fed’s interventions avoided a 2 percentage point drop

in employment.

In Chapter 2 (joint with Adrien d’Avenas and Andrea Eisfeldt), we explain why credit

spreads explain firm-level investment better than equity volatility does. While credit spreads
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always predict lower investment, the sensitivity of investment to equity volatility changes sign

in the cross section of firms depending on their distance to default. Higher equity volatility

predicts greater investment for firms far from their default threshold, consistent with a larger

option value of investment at higher levels of volatility. On the other hand, higher equity

volatility predicts lower investment for firms with high credit spreads, consistent with debt

overhang. Opposite effects at the firm level wash out and confound aggregate inference. We

provide clean intuition using a simple model.

In Chapter 3 (joint with Lucyna Gornicka, Federico Grinberg, and Marcello Miccoli), we

study how the introduction of Central Bank Digital Currency (CBDC) might disintermediate

the banking sector. Using a simple portfolio choice model we find that CBDC reduces bank

credit only in special cases and when it does, the effect is quantitatively small. In the

model, households allocate their wealth between an illiquid asset and three liquid assets:

cash, bank deposits and CBDC. An imperfectly competitive banking sector provides deposits

and lending. When all liquid assets are costless to access, the introduction of CBDC does

not lead to bank disintermediation, as banks increase the return on deposits to fight off

the competition from CBDC. However, if the access to deposits and CBDC is costly, the

introduction of the latter may lead to bank disintermediation under specific conditions. The

conditions are that CBDC is much cheaper to access than bank deposits and that the wealth

distribution is very unequal. Under these conditions, poorer households will stop holding

deposits in favor of CBDC, but banks will not aggressively fight the outflow of customers

due to their relatively small wealth. Still, the impact on lending turns out quantitatively

small if banks have access to other forms of funding.
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CHAPTER 1

A Macroeconomic Model with Bond Market Liquidity

1.1 Introduction

Liquidity in U.S. corporate bond market dried up during the financial crisis of 2007-2009.

Two measures of illiquidity for corporate bonds, the bid-ask spread and bond-CDS spread1,

surged dramatically. In mid-March of 2020, the bid-ask spread and bond-CDS spread also

surged, but the surge disappeared almost immediately after the March 23 announcement

of the Fed to purchase corporate bonds directly. How do disruptions in market liquidity of

bonds interact with the macroeconomy? Do policies improving bond market liquidity have

effects on the real economy?

Existing macro models are not suitable for answering these questions. In most dynamic

stochastic general equilibrium (DSGE) models, bond prices depend on credit risk only and

yield spread spikes in recessions are attributed to increases in default rates and credit risk

premia. Meanwhile, a long-standing literature in finance argued that both illiquidity and

credit risk contribute to bond prices, but much of this literature does not precisely investigate

the real effects of bond illiquidity.

This paper incorporates secondary bond markets as search-based over-the-counter (OTC)

markets à la Duffie, Gârleanu, and Pedersen (2005) into a quantitative DSGE model. Firms

1Following Longstaff et al. (2005), the difference between bond yield spreads and credit-default swap rates
(bond-CDS spread) is often used as a measure of illiquidity, see Chen et al. (2017) and Goldberg and Nozawa
(2021) for example. Section 1.2.1 provides detailed discussion on this measure.
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are financed by long-term bonds.2 Investors who buy the bonds in the primary market might

have liquidity needs and want to liquidate their holdings before the bonds mature. They can

sell the bond in secondary markets, which is an OTC market featuring search and bargaining

frictions. Exogenous liquidity needs, combined with the risk of delayed trade, give rise to

the liquidity premium in the yield spread of firms’ bonds. When investors are desperate for

liquidity, the prices of outstanding bonds and new issuance will be negatively affected. This

will impact firms’ borrowing constraints and distort their investment and hiring decisions.

I provide empirical evidence supporting the quantitative importance of the liquidity chan-

nel. I first show that the liquidity premium in corporate bond spreads surged during the

financial crisis of 2007-2009. Comparing the 2001 recession to this period, the default pre-

mium in bond spreads observed a similar increase, but the liquidity premium experienced

little change in the 2001 recession. Then I establish that the liquidity shock in the financial

crisis had large and significant effects on firms’ real activities through refinancing risk. In

particular, I exploit the ex-ante variation in firms’ long-term debt maturity structures at the

end of 2007 to infer the firms’ refinancing needs in 2008 and 2009.3 I find that firms with

large refinancing needs in the current year experienced a drop in employment growth rate

in 2008 that is 5.2-percentage-point larger than otherwise similar firms, and the difference is

significant. Firms with large refinancing needs in the next year experienced a 6.4-percentage-

point larger drop in employment growth rate in 2008 than otherwise similar firms. Moreover,

I perform placebo tests using non-crisis periods and find that such refinancing effects don’t

hold for any placebo periods, including the 2001 recession. In sum, if a firm has refinancing

needs or expect to have refinancing needs in the near future, it will cut back more on real

2Corporate bonds are an important source of financing for US firms. According to Flow of Funds, the
U.S. nonfinancial corporate sector had outstanding corporate bonds of $6.5 trillion at the end of 2020; in
comparison, the outstanding bank loans and equity were $3.8 and $39.7 trillion.

3Almeida et al. (2011) use the same methodology to identify heteorgeneity in financial contracting at the
onset of the 2007 crisis. They assess the effects on investment while I examine the effects on employment and
output. Also, I study the effects of not only the current refinancing needs but also the expected refinancing
needs in the future.
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activities following a liquidity shock.

I build the macro model based on Arellano et al. (2019) (ABK henthforce). This is

a model in which credit frictions matter for macro aggregates through the combination of

borrowing constraints and incomplete insurance. The key idea is that firms borrow to hire

their labor before they learn about their productivity. If productivity turns out to be low

they cannot pay back all maturing liabilities given the borrowing limit. When this happens,

they have to default and lose the firm’s future value. This risk is uninsurable and has real

consequences, which induces firms to restrict hiring ex-ante in order to reduce the risk of

default. Bond market liquidity, by affecting bond prices and thus the borrowing limits for

firms, will affect firms’ labor choices.

The model also has an endogenous amplification mechanism through a positive liquidity-

default spiral similar to that in He and Milbradt (2014) and Chen et al. (2017). The post-

default bonds are assumed less liquid than pre-default bonds. As a firm gets closer to default,

investors will put a larger weight on the default scenario so that the liquidity premium

increases. This lowers bond prices and thus borrowing limits, and pushes firms even closer

to default.

Since the model is highly nonlinear and features default and occasionally binding borrow-

ing constraints, I solve the model using projection-based numerical methods. I then simulate

a liquidity shock calibrated to match the observed increase in bid-ask spread during the fi-

nancial crisis of 2007-2009 and explain about 20% of the employment losses in data.The

endogenous amplification mechanism through the liquidity-default spiral contributes about

one-fourth of the effects. There are also other general equilibrium (GE) effects: wages and

aggregate demand fall after a liquidity shock. Quantitatively, the wage effect dominates the

demand effect and the GE effects dampen the fall in employment by almost 40%. Certain

key parameters are particularly important for the quantitative results. With higher persis-

tence of the liqudity shock, shorter bond maturity (i.e. more frequent refinancing needs),

and larger trading frictions, the model predicts larger responses to the liquidity shock.

3



The contribution of this paper is threefold. First, from a modeling perspective, I develop

a framework to study the interactions between bond market liquidity and the macroecon-

omy, using mostly standard assumptions for OTC bond markets and introducing them into

a macro model. Second, with this framework, I study a new source of aggregate disturbances

that hasn’t been studied precisely in existing macro-financial crisis models, that is, fluctu-

ations in the market liquidity of corporate bonds. I show that disruptions in bond market

liquidity can have quantitatively important impacts on macro aggregates.

Third, this paper also provides a structural estimate of the impacts of Fed’s corporate

bond purchasing program (PMCCF/SMCCF) on the real economy during the COVID-19

crisis. During the recent COVID-19 crisis, the bid-ask spread of corporate bond surged

dramatically, but different from what happened in the financial crisis of 2007-2009, the surge

disappeared almost immediately this time, as can be seen from panel (a) of Figure 1.1.

Panel (b) of Figure 1.1 shows that the drop in the bid-ask spread coincided with the Fed’s

announcement on March 23 to purchase corporate bonds. To quantify the effects of the Fed’s

interventions, I consider a liquidity shock that generates the peak value of bid-ask spread

in mid-March of 2020, it would have generated a 2 percentage point drop in employment

and output, as predicted by the calibrated version of the model. In other words, the Fed’s

interventions in corporate bond market avoided a 2 percentage point drop in employment

and output during the COVID-19 crisis.

Related Literature

This paper relates to three strands of research. First, this paper belongs to the large

literature that studies the effect of financial disturbances in DSGE models (e.g. Bernanke

et al., 1999; Christiano et al., 2014; Gertler and Karadi, 2011). In particular, asset liquidity

and liquidity (financial) shocks have been studied extensively in this line of research (Jermann

and Quadrini, 2012; Kiyotaki and Moore, 2019; Del Negro et al., 2017). Kurlat (2013) and

Bigio (2015) endogeneize the asset liquidity through adverse selection 4 and Cui and Radde

4Eisfeldt (2004) and Guerrieri and Shimer (2014) are also examples on this, but they don’t focus on the
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(2020) endogeneize asset liquidity through costly search. Unlike these studies, I emphasize

the market liquidity of the long-term debts issued by firms, which arise from the liquidity

need of bond investors coupled with the risk of delayed trade due to search frictions. The

model provides clear link between parameters driving illiquidity at a micro level in OTC

model with the macro aggregates. The liquidity shock in my model is calibrated to target

standard measure of bond illiquidity (bid-ask spreads), and the results have implications on

policies that improve bond market liquidity.

In particular, this paper contributes to a growing body of DSGE models with hetero-

geneity, like Khan and Thomas (2013), Gilchrist et al. (2014), Gomes and Schmid (2021),

and ABK, to name a few. The macro model in this paper is built on ABK. While they study

how volatility shocks can lead to quantitatively sizable contractions in labor and output, as

well as an increase in firms’ interest rate spread, my paper is intended to quantify how much

of the decline in labor and output could be explain by fluctuations in market liquidity of

long-term bonds.

Second, this paper is related to the vast literature on OTC market frictions and bond

liquidity premium. The setup for OTC markets in the paper is based on the seminal work

of Duffie et al. (2005) and thus can speak to many research on search-based OTC models.5

Bond markets affect firms’ borrowing constraint and thus a natural idea is to relate the

OTC asset pricing model to corporate financing choices (He and Milbradt, 2014, Chen et al.,

2017, Bruche and Segura, 2017, Bethune et al., 2019, Kozlowski, Forthcoming). Kozlowski

(Forthcoming) shows that trading frictions in the secondary market can affect firms’ maturity

choices and their choices over investment projects with different horizons. In particular, the

endogenous amplification mechanism in my model works through a positive liquidity-default

spiral as in He and Milbradt (2014) and Chen et al. (2017). They study how the interactions

between liquidity and default affect corporate bond pricing and firms’ issuance cost, and

effects of liquidity on production.

5See Weill (2020) for a review of this literature.
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leave it as an open question the general equilibrium implications of bond market liquidity.

My paper provides an answer to this question, showing that liquidity in corporate bond

market has important real macroeconomic impacts. A recent paper by Chaumont (2020)

also embeds search-based secondary markets into a general equilibrium model, but he uses

a model of sovereign default and studies the implications for government bonds.

Finally, this paper is related to a number of recent papers evaluating the Fed’s corporate

bond purchasing program during the Covid-19 crisis. A growing literature emerged after the

Fed’s unprecedented interventions in corporate bond markets during the pandemic (Kargar

et al., 2020; Gilchrist et al., 2020; Haddad et al., 2020, O’Hara and Zhou, 2021). These

studies show that the Fed’s intervention greatly improved market liquidity and significantly

reduced credit spreads. While these are mostly empirical studies focusing on asset prices and

transaction costs, my model provides a structural estimate of its impact on macro aggregates.

The rest of the paper is organized as follows. Section 1.2 presents the empirical evi-

dence. Section 1.3 describes the model, while Section 1.4 calibrates the model and conducts

quantitative analysis. Section 2.5 concludes the paper. Data descriptions, computational

algorithm, and additional results are gathered in the Appendices.

1.2 Empirical Evidence

This section provides empirical evidence to support the mechanisms studied in this paper.

Subsection 1.2.1 shows that illiquidity is a key driver of corporate bond yield spreads, and

played an important role during the financial crisis of 2007-2009. Subsection 1.2.2 provides

suggestive evidence that the liquidity shock had large and significant impacts on firms’ real

decisions through the refinancing risk.
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1.2.1 Liquidity premium in corporate bond spreads

It is well known that both liquidity and credit risk are important determinants of asset

prices. Collin-Dufresn et al. (2001) first documented a large common variation of changes

in the yield spread of corporate bonds over Treasury bonds that cannot be explained by

conventional determinants suggested structural models of credit risk. Huang and Huang

(2012) indicate that levels of the yield spread also cannot be fully explained by these credit

risk determinants. Market liquidity due to search frictions à la Duffie et al. (2005) has been

emphasized to be an explanation for these “puzzles”. Empirical papers like Edwards et al.

(2007) document that the secondary markets for corporate bonds are highly illiquid and the

illiquidity is reflected by a large bid-ask spread. A number of papers show that liquidity is

an important price factor in the US corporate bond market (Chen et al., 2007; Bao et al.,

2011; Friewald and Nagler, 2019; He et al., 2019)6, and its importance is more pronounced

in periods of financial crises (Dick-Nielsen et al., 2012).

Longstaff et al. (2005) first used information from credit-default swaps (CDS) to decom-

pose corporate spreads into a default and a non-default component. They argue that the

CDS spread should mainly reflect the default risk of a bond, and the gap between the CDS

spread and the credit spread represents a non-default component. They show that the non-

default component is time varying and strongly related to measures of illiquidity. Following

Longstaff et al. (2005), the difference between the bond credit spread and the corresponding

CDS spread (bond-CDS spread) is often use as a measure of liquidity premium in credit

spread7, that is, the CDS spread captures a default component in bond spread, while the

bond-CDS spread reflects a liquidity component in bond spread.

I plot time series of credit spreads and CDS spreads in panel (b) of Figure 1.2. The

6Huang et al. (2019) document evidence that liquidity is also an important pricing factor in corporate
bond markets outside the US. They empirically test and support the He and Milbradt (2014) corporate bond
pricing model.

7See for example Chen et al. (2017) and Goldberg and Nozawa (2021).
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construction of the time series are as follows. I use month-end option-adjusted spreads from

ICE database as the credit spreads. I limit the sample to only senior unsecured bonds with

a fixed coupon schedule. Only bonds with maturity between 4 and 6 year and a credit

rating of BBB are kept. The CDS spreads are from Markit dataset. I use month-end 5-

year CDS spreads on the quoted modified restructuring clause, which is the most commonly

traded type. Then I match the credit spread data and the CDS spread data to the merged

CRSP/Compustat dataset using a set of identifiers detailed in Appendix 1.8. For a firm with

multiple observations on credit spread, I keep the one with maturity closest to 5 years. For

a firm with multiple observations on CDS spread, I use the average of these observations.8

The time series are constructed by averaging across all firms in the merged sample at each

date.

As can be seen from Figure 1.2, the bond-CDS spread which represents the liquidity

premium accounts for a significant portion of the credit spread and is time-varying. The

liquidity premium of corporate bonds increased sharply during the financial crisis of 2007-

2009. In particular, if we compare the 07-09 financial crisis with the 2001 recession, increases

in the default premium which is represented by the CDS spread are similar, while the increase

in the liquidity premium is much larger during the financial crisis.

1.2.2 Refinancing risk and firm outcomes

In this section, I provide empirical evidence that refinancing risk has large and significant

effects on firms’ real activities. In particular, I show that in the year of 2008, (i) firms

whose long-term debt was largely maturing in the current year experienced larger drops

in employment and output growth than other firms; (ii) firms whose long-term debt was

expected to be largely maturing in the next year experienced larger drops in employment

and output growth than other firms. Moreover, such refinancing effects don’t hold for other

8More than 90% of the firms in the sample have unique CDS spreads after applying the data filters
previous described.
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periods, including the 2001 recession.

I exploit the ex-ante variation in firms’ long-term debt maturity structures at the end

of 2007, which is plausibly exogenous. I use data from COMPUSTAT’s North America

Fundamentals Annual, exclude financial and public service firms, and apply standard data

filters to remove outliers (see Appendix 1.8). In this dataset, the items dd1 and dd2 represent

the amount of long-term debt maturing during the first and the second year after the report,

respectively . The data item dltt represents the amount of long-term debt that matures in

more than one-year. Therefore, a firm’s total long-term debt can be calculated as dd1+dltt.

I focus on firms that have long-term debt maturing beyond one year (dltt) represents at least

5% of total assets (at), indicating that long-term debt is an important source of financing for

the firm. From the financial report of fiscal year 20079, the firms for which the ratio of dd1

(long-term debt maturing in 2008) to dd1+dltt (total long-term debt) is larger than 20% is

assigned to the treatment group.

The outcome variables are the annual growth rate of firms’ employment (emp) and output

(sale). In Panel A of Table 1.1, we see that the employment growth rate for treated firms is

3.32% in 2007, and dropped to −5.34% in 2008; while the rate for non-treated firms is 2.28%

in 2007 and dropped to −0.64% in 2008, so the drop in employment growth in 2008 is 8.66

percentage points for treated firms, which is larger than that for the non-treated firms by

5.2 percentage points. The difference is significant at the 5% level. Also, the employment

growth rates for treated and non-treat firms in 2007 are not significantly different, which

is a hint that these two groups of firms are not different prior to the shock. In Panel B

of Table 1.1, I provide results for a placebo test using the year prior to the crisis. Just as

before I classify the firms according to their debt maturity profiles at the end of 2006 and

compare their performance in 2007, and find no significant differences between treated and

non-treated firms. In Panel C, I show the results for the 2001 recession, and find that the

9I use firms that have fiscal year-end months in September, October, November, December, January and
Februry, which covers more than 80% of the universe of firms in fiscal year 2007.
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refinancing effects don’t hold in this period as well. In addition to the placebo tests for the

year of 2007 and 2001, I perform a complete set of placebo tests for the years 2002-2006

in Appendix 1.10, and confirm that there is no such refinancing effect in all these placebo

periods.

I perform similar analysis on firms’ output growth and find similar results. I relegate

the details to Appendix 1.10. In Almeida et al. (2011), they use a differences-in-differences

matching estimator, and find similar effects of refinancing needs on firms’ investment rate

during the financial crisis of 2007-2009. So far we have established that if a firm has to

largely refinance its debt in the crisis period, it would experience larger drops in employment,

investment, and output. Next, I will show that during the crisis period, if a firm expect to

have large refinancing needs in the near future, it will also cut back more on employment

and output.

In this experiment, I include only firms that don’t have long-term debt largely maturing

in the current period, that is, the non-treated firms in Table 1.1. Among these firms, the

firms for which the ratio of dd2 (long-term debt maturing in 2009) to dd1+dltt (total long-

term debt) is greater than 20% in the year-end report for 2007 is assigned to the treatment

group. Notice that I didn’t use the ratio of dd1 to dd1+dltt from the financial report of 2008

to measure the refinancing need in 2009. This is to make sure that the measured variation

in maturity is exogenous to the financial crisis.

Panel A of Table 1.2 summarizes the employment growth rates of these treated firms and

non-treated firms in 2007 and 2008. The employment growth rate of treated firms dropped by

9.33 percentage points from 2007 to 2008, while the growth rate of non-treated firms dropped

by 2.97 percentage points. In 2008, if a firm expected itself to have large refinancing needs

next period, its employment growth would decrease by 6.36 percentage points more than

firms that don’t have large refinancing needs in the next period. Similarly, Panel B and

Panel C show results for placebo periods. In Panel C, notice that both groups of firms

experienced significant and large drop in employment growth during the 2001 recession, yet
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there is no significant difference between these two groups of firms. 10

In subsection 1.2.1, I establish that the liquidity premium in corporate bond spreads

surged dramatically during the financial crisis of 2007-2009. In this subsection, I show that

the shock in this crisis period has large and significant effects on firms’ real activities through

firms’ refinancing risk. These facts support the main channel in my model: an aggregate

liquidity shock increases the liquidity premium of firms’ long-term debt, so firms will get

less proceeds from bond issuance when they refinance their debt, and thus they cut their

employment in order to reduce risk.

1.3 Model

To study the interactions between bond market liquidity and the aggregate economy, I

introduce a search-based secondary corporate bond market à la Duffie et al. (2005) into

a dynamic general equilibrium model based on ABK. Specially, I consider a discrete-time

model with an infinite time horizon. The model consists of four main types of agents: final

goods firms, intermediate goods firms, households and bond investors.

The final goods firms are competitive and have a technology that converts intermediate

goods into a final good. There are idiosyncratic shocks to the productivity of intermediate

goods in producing the final good, which affect the demand of final good firms for these

intermediate goods. The intermediate goods firms are monopolistically competitive and use

labor to produce differentiated intermediate goods. They can issue long-term corporate bond

and are allowed to default on their debt and wage payments. These corporate bonds are

bought by bond investors that face idiosyncratic distressed shocks. Once hit by the shock, a

distressed investor need to search for a dealer to trade in a secondary bond market featuring

OTC frictions, otherwise she incurs a periodic holding cost. The holding cost for investors in

the secondary market is stochastically time-varying, which is the only aggregate shock in this

10See Appendix 1.10 for a complete set of placebo tests for the years 2002-2006.
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model. Households can insure themselves against the aggregate shock using state-contingent

assets and there is perfect risk sharing among its members. Households own all firms and

supply labor to intermediate goods firms.

Figure 1.3 summarizes the model timeline. At the beginning of each period, intermediate

goods firms enter the period with labor and debt. Bond investors enter with bond holding,

and distressed investors incur the periodic holding cost. Then, all shocks are realized, and

production take place. Then, intermediate goods firms choose whether to default. If it

defaults, the firm is sold in a competitive market. Bond investors receive the recovered value

and equity holders walk away with zero value. If it doesn’t default, the firm pays its debt

and wage payment as well as dividends. They hire labor and issue bond for next period.

The newly issued bonds are bought by bond investors in the primary market. Households

receive wage and payments on their assets. They consume, invest in stage-contingent assets

for next period, and buy the defaulting firms. Then, the investors receive the distress shock,

and after that the secondary markets for bonds are open.

1.3.1 Intermediate goods firms

As is standard, I assume that each of the intermediate good enters as a separate variety in

a constant elasticity of substitution (CES) final good production function with elasticity γ.

This implies that the demand faced by an intermeidate good firm is

yt =

(
zt
pt

)γ

Yt, (1.1)

where zt is the idiosyncratic shock to this intermediate good in producing the final good Yt,

and pt is the price set by the intermediate good firm. Notice zt here need not be technological;

they can also be interpreted as demand shock. The idiosyncratic shock zt follows a Markov

process with transition function πz (zt|zt−1).

The intermediate goods firm produces intermediate good yt using labor as the only input
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via the technology yt = lαt lmt(i)
ω, where lt is the input of workers and lmt = 1 is the input

of a single manager. The labor share 0 < α < 1. After the productivity shock zt is realized,

the firm chooses the price pt . Given the demand function in equation (1.1), the firm sets

pt = zt (Yt/l
α
t )

1/γ, so the price can be eliminated as a choice variable. Also, from now on I

will refer to intermediate goods firms as firms.

Firms can issue defaultable long-term debt bt. The debt takes the form of a consol bond

that pays coupon c in every period until random expiration. The process governing the firm’s

refinancing need is captured by an i.i.d. random variable ζt.
11 If ζt = 1, the firm receives a

refinancing shock; all its existing debt must be retired and the firm chooses how much new

debt bt+1 to issue. If ζt = 0, the firm cannot change its debt level. I assume that ζt takes the

value 1 with probability λ and 0 with probability 1− λ, so that the expected debt maturity

is 1
λ
.

Firms are also subject to idiosyncratic revenue shocks ϵt that have a distribution F (ϵ)

and are independent across firms and time. Firms enter period t with lt and bt, then all

idiosyncratic shocks {zt, ϵt, ζt} and the aggregate shock st are realized. Production takes

place, firms sell the intermediate goods to final goods firms and receive the revenue. Then

firms choose whether to default, decide lt+1 and bt+1 for next period, and pay dividends. The

dividend payout to equity holders dt is the revenue net of wage and coupon payments plus

gains from debt rollover:

dt = ztY
1
γ

t l
α(γ−1)

γ

t − ϵt − wtlt − wmt − cbt + ζt (qtbt+1 − bt) , (1.2)

where wt is wage for workers, w̄m is wage for managers, and qt is the price of newly issued

bond. The equity payout dt is restricted to be non-negative. Therefore the firm value is

always non-negative, and the equity holder will choose to default if and only if there is no

11In practice, debt has a deterministic maturity. This is a convenient assumption so as to avoid the leverage
“ratchet” effect as discussed in DeMarzo and He (2021) when the firm can continuously adjust leverage and
cannot commit to a policy ex ante. This assumption is also used in Gomes and Schmid (2021).
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feasible choice for them to make non-negative equity payout. Define the maximal borrowing

Mt, which is the largest proceeds the firm could get from new bond issuance:

Mt(St, zt) = max
lt+1,bt+1

q(St, zt, lt+1, bt+1)bt+1, (1.3)

where St = {st,Υt} denote the aggregate state where Υt is the distributions of firms. The

bond price qt = q(St, zt, lt+1, bt+1), which will be described in section 1.3.2.

Then there exist a cutoff value of the revenue shock ϵ̂t such that the firm will default if

and only the revenue shock ϵt exceeds this level. This cutoff satisfies

ϵ̂t = ztY
1
γ

t l
α(γ−1)

γ

t − wtlt − w̄m − cbt + ζt (Mt − bt) (1.4)

It is convenient for the discussion to define the cash-on-hand xt as follows:

xt = ztY
1
γ

t l
α(γ−1)

γ

t − wtlt − w̄m − cbt − ϵt − ζtbt. (1.5)

Then the value function of a firm with state variable {St, zt, xt, bt, ζt} such that xt+ζtMt(St, zt) ≥

0 can be expressed as

V (St, zt, xt, bt, ζt) = max
lt+1,bt+1,dt

dt+βEt

[∫∫ ϵ̂t+1

V (St+1, zt+1, xt+1, bt+1, ζt+1)dF (ϵt+1)dψ(ζt+1)

]
(1.6)

subject to the non-negative equity payout condition

dt = xt + ζtq(St, zt, lt+1, bt+1)bt+1 ≥ 0 (1.7)

The expectation in equation (1.6) is taken over {St+1, zt+1} conditional on current {St, zt}

and β is the discount rate for equity holders. I will discuss this in detail in households’
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problem in Section 1.3.3. The firm’s value is

V (St, zt, xt, bt, ζt) = 0, (1.8)

if xt + ζtMt(St, zt) < 0.

When a firm defaults, its equity holders walks away with zero value. The debt holders

seize the firm and collect the operating income ztY
1
γ

t l
α(γ−1)

γ

t − ϵt − wtlt − wmt. Then they

sell the unlevered firm in a competitive market. This firm will start to hire labor and issue

bond in next period. Its productivity in next period is drawn conditional on its productivity

level when it defaults. Therefore, the price of the defaulting firm in a competitive market

is equal to the expectation value of a firm with state variable z = zt, cash-on-hand x = 0,

outstanding debt b = 0, and refinancing shock ζ = 1 in next period. That is,

vb(St, zt) = βESt+1|StV (St+1, zt, 0, 0, 1) (1.9)

However, 1− κ of this value is lost in the bankruptcy proceedings so that the firm recovery

rate is κ. Therefore, the recovered rate for debt holders ρ is12

ρ(St, zt, lt, bt, ϵt) =
ztY

1
γ

t l
α(γ−1)

γ

t − ϵt − wtlt − w̄m + κvb(St, zt)

bt
. (1.10)

The firm’s problem gives the policy rules l(S, z, x, b, ζ), b(S, z, x, b, ζ) and d(S, z, x, b, ζ),

as well as the recovery rate ρ(S, z, l, b, ϵ).

12Notice that it is possible for ρ to be greater than 1 in the current model setup. To avoid such unrealistic
scenario, I assume that the firm will not default even if xt+ ζtMt(St, zt) < 0 as long as ρ(St, zt, lt, bt, ϵt) > 1,
which requires a small adjustment to the cutoff in equation (1.4). This assumption implies that equity
holders will absorb the loss in such scenario, which can be thought of as a seasoned equity offering. This
assumption is strongly supported by empirical evidence, which indicates that a near-term cash need is the
primary motive for seasoned equity offering (DeAngelo et al., 2010). In the baseline quantitative model, this
almost never occurs, that is, ρ < 1 when ϵ is below the cutoff defined in equation (1.4).
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1.3.2 Bond investors

A large number of risk-neutral international investors with discount rate β̂ invest in corporate

bonds issued by firms. The discount rate of bond investors β̂ is assumed to be larger than

that of equity holders β. This is to justify the use of debt. The existence of financial

frictions in the model makes external finance more costly than internal finance. Absent this

assumption, firms would have built up savings and avoided using debt.13

Following Duffie et al. (2005), each investor can hold at ∈ {0, 1} unit of bond. As assumed

in this literature, there are two types of investors, high and low valuation investors. I assume

an infinite mass of high type investors on the sideline can enter the bond market freely. At

the end of each period, a high type investor receives a distress shock with probability π

and becomes a low type investor. In each period, a low type investor with debt holding

incur a holding cost h (hb if this is a defaulted bond). The individual distress shock is

uninsurable and results type dependent valuations, which creates gain from trade between

high and low type investors in the secondary bond market featuring search frictions. For

simplicity, I assume that low type investors exit the market forever after they get rid of their

debt holdings.

In each period, an investor can meet and trade with a dealer with probability ξ in the

secondary market. When they meet, the terms of trade are set accroding to the generalized

Narsh bargaining solution. The bargaining weight is η for the investor and 1−η for the dealer,

across all dealer-investor pairs. Assume that there is a competitive inter-dealer market.

Dealers cannot hold any inventory and are just pass-through intermediaries.

The holding cost for defaulted bonds is assumed to be larger, that is, hb > h. The liquidity

premium is thus dependent on firms’ fundamentals, which generates a positive feedback loop

between default and liquidity similar to He and Milbradt (2014). As a firm gets closer to

13In the literature, there have been various ways to deal with this issue, such as finite lifetimes and tax
advantages of debt. ABK uses the Jensen effect (Jensen, 1986) to modify the effective discount rate of
entrepreneurs.
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default, investors put a higher weight on the default scenario so that the liquidity premium

of its bond increases, which pushes the firm even closer to default.

I assume that there is a delay in the payout of the recovery value in case of default,

otherwise bankruptcy will be actually providing liquidity for low type investors. In practice

bankruptcy leads to a freezing of firm assets and length court proceedings, and bond holders

often receive payouts after years. This delay in the bankruptcy payout is captured by the

parameter θ, which is the probability that the recovery value will be paid in each period.

On average, an investor will receive the recovery value 1
θ
periods after the default occurs.

Consider the problem of investor with one share of non-defaulting bond. Since firms are

heterogeneous, the valuation of their bonds are also heterogeneous. In each period after the

distress shock realizes, when high and low type investors trade in the secondary market,

their valuation of a bond depends on aggregate state S, and the current productivity level

z and choices for next period {l′, b′} of the issuing firm. Denote the valuation function of a

high type investor by VH = VH(S, z, l
′, b′) and that of a low investor by VL = VL(S, z, l

′, b′),

the value function of a high type investor can be expressed recursively as follows,

VH = β̂Et


λF (ϵ̄′1)(c+ 1)

+(1− λ)F (ϵ̄′0) [c+ (1− π)V ′
H + π (ξq̃′ + (1− ξ)V ′

L)]

+
∫ [∫

ϵ̄′
(1− π)V b

H(ρ, s
′) + π(ξq̃′b + (1− ξ)V b

L(ρ, s
′))dF (ϵ′)

]
dψ(ζ ′)


. (1.11)

The expectation is taken over S ′, z′ conditional on S, z. In the next period, with probability

λ, the bond matures and the investor receives coupon c and principal 1 if the firm doesn’t

default, which is summarized in the term in the first line in equation (1.11). The default

cutoff ϵ̄′ is given by equation (1.4) and depends on ζ ′. For ease of notation, I use ϵ̄′1 and ϵ̄′0

to denote the default cutoff when the firm receives the refinancing shock (the bond matures)

and when it doesn’t (the bond doesn’t mature).

The term in the second line corresponds to the scenario when the bond doesn’t mature
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and doesn’t default. With probability 1 − λ, the bond doesn’t mature. If the firm doesn’t

default, the investor receives coupon c and continue to hold the bond. With probability

1 − π, the investor doesn’t receive the distress shock and its valuation of the bond in next

period is denoted by V ′
H which implicitly takes into consideration the firm’s policy function.

With probability π, the investor receives the distress shock. The investor will be able to

trade in the secondary market and sell it with probability ξ at price q̃, otherwise the investor

will stay in the market as a low type investor and has valuation V ′
L.

The last line in equation (1.11) reflects the value of the bond when the first default.

Depending on whether the firm receives the refinancing shock (ζ ′ = 0, 1), the firm’s default

cutoff ϵ̄′ is different. Depending on the revenue shock ϵ′ the firm receives next period, the

recovered value ρ is given by equation (1.10). V b
H(ρ, s) and V b

L(ρ, s) denote the valuation

of the bond if it defaults next period for a high type investor and a low type investor,

respectively. The valuation of defaulted bonds will be discussed in detail later and the

expressions of V b
H(ρ, s) and V

b
L(ρ, s) are given by equation (1.14) and (1.15). Similar to the

case in which the bond doesn’t default (the second line), with probability 1−π, the investor

doesn’t receive the distress shock and remains as a high type, and with probability π, the

investor receives the distress shock. The investor can sell the defaulted bond at price q̃′b with

probability ξ and stays in the market as a low type otherwise.

The value function of a low type investor VL(S, z, l
′, b′) is given by

VL = β̂Et



−h

+λF (ϵ̄′1)(c+ 1)

+(1− λ)F (ϵ̄′0) [c+ (ξq̃′ + (1− ξ)V ′
L)]

+
∫ [∫

ϵ̄′
ξq̃′b + (1− ξ)V b

L(ρ, s
′)dF (ϵ′)

]
dψ(ζ ′)


. (1.12)

Comparing equation (1.12) to equation (1.11), the low type receives an additional periodic

holding cost h and the payoff structure is very similar otherwise. The investor receives
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coupon c and principal 1 if the bond matures and doesn’t default (the second line). If the

bond doesn’t mature and doesn’t default, the investor receives coupon c, sells the bond at

price q̃ with probability ξ and stays on the market otherwise (the third line). If the bond

defaults, the low type investor can sell the bond at price q̃′b with probability ξ and stays in

the market as a low type with valuation V b
L(ρ, s

′) otherwise.

Since dealers have a frictionless competitive market among themselves, a dealer who buy

from the low type investor can immediately sell this bond to a dealer who trade with a high

type investor at the inter-dealer market price. With free entry of high type, I can assume

that the flow of high type buyers contacting dealers is greater than the flow of low type

sellers contacting dealers, which generate excess demand from the buy side and drives the

inter-dealer price to be equal to the valuation of high type investors. When the low type

investor trade with the dealer, they split the surplus with Nash-bargaining weights η for the

investor and 1− η for the dealer. Therefore, the selling price q̃ is

q̃′ = V ′
L + η(V ′

H − V ′
L) (1.13)

Next consider the problem of investors with one share of defaulted bond. In each period

after the distress shock realizes, the high and low type investors with defaulted bonds can

trade in the secondary market. The valuation of a defaulted bond only depends on the

recovered value ρ and the aggregate bond market liquidity state s. The value function for a

high type investor V b
H(ρ, s) can be written as follows,

V b
H(ρ, s) = β̂Es′|s

{
θρ+ (1− θ)

[
(1− π)V b

H(ρ, s
′) + π

(
ξq̃′b + (1− ξ)V b

L(ρ, s
′)
)]}

. (1.14)

The investor will receive the recovered value ρ with probability θ in next period, and with

probability 1 − θ, the bankruptcy is still processing and the investor continues to hold the

bond. With probability 1−π, the investor doesn’t receive the distress shock and remains the

high type so that its valuation in next period is V b
H(ρ, s

′). With probability π, the investor
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receives the distress shock and becomes a low type. Then she can sell of the defaulted bond

at price q̃′b in the secondary market with probability ξ, and with probability 1− ξ she stays

in the market as a low type investor so that the valuation is V b
H(ρ, s

′). The selling price q̃′b is

given by equation (1.16) and will be discussed later.

The valuation function for a low type investor V b
L(ρ, s) is given by

V b
L(ρ, s) = β̂Es′|s

{
−hb + θρ+ (1− θ)

[
ξq̃′b + (1− ξ)V b

L(ρ, s
′)
]}
. (1.15)

The low type investor will incur a holding cost every period. For defaulted bonds, the holding

cost is hb as introduced above. Similar to equation (1.14), the investor receives the recovered

value ρ with probability θ in each period and continues to hold the bond otherwise. She can

sell off the bond at price q̃′b with probability ξ, or remain a low type with valuation V b
L(ρ, s

′)

with probability 1− ξ.

Similar to equation (1.13), the selling price in the secondary market for defaulted bonds

is given by

q̃′b = V b
L
′ + η(V b

H
′ − V b

L
′). (1.16)

Define the value wedge between high and low type investor for defaulted and non-

defaulting bonds ∆V b = V b
H − V b

L and ∆V = VH − VL. Their expressions are given by

the following equations:

∆V = β̂Et

 h+ (1− λ)(1− π)(1− ξη) [F (ϵ̄′0)∆V
′]

+(1− π)(1− ξη) [1− λF (ϵ̄′1)− (1− λ)F (ϵ̄′0)]∆V
b(s′)

 , (1.17)

and

∆V b(s) = β̂
{
hb + (1− θ)(1− π)(1− ξη)Es′|s[∆V

b(s′)]
}

(1.18)

.

20



Then I can write the bond price function q(S, z, l′, b′) as follows:

q = β̂Et


λF (ϵ̄′1)(c+ 1) + (1− λ)F (ϵ̄′0) (c+ q′)

+
∫ [∫

ϵ̄′
V b
H(ρ, s)− π(1− ξη)∆V b(s′)dF (ϵ′)

]
dψ(ζ ′)

− π(1− ξη)∆V, (1.19)

The bond price function in equation (1.19) denotes the price at which a firm can sell its bond

to a (high type) investor in the primary bond market when the aggregate state is S, the firm

has current productivity level z and it chooses {l′, b′} for next period. Terms in the large

bracket is the valuation of the bond if the investor were not subject to the distress shock

this period. However, the investor will receive the distress shock with probability π this

period after she purchases the bond. Then with probability ξ she could sell the bond in the

secondary market and receives a fraction of η of the trade surplus. Otherwise, the investor

will stay in the market as a low type. As a result, there is an additional term −π(1− ξη)∆V

in the bond pricing function arising from the risk of a distress shock combined with the

search frictions.

In the large bracket in equation (1.19), the first line reflects the cash flow when the bond

doesn’t default. In this case, the investor receives coupon c and principal 1 when the bond

matures. She receives coupon c and continues to hold this bond with price q′ when it doesn’t

mature. The second line in the large bracket corresponds to the scenario where the bond

defaults. Because of the risk of a distress shock and the search frictions, this term is the

valuation of the defaulted bond for a high type investor adjusted by −π(1− ξη)∆V b.

Note that q′ implicitly involves bond investors’ rational expectation of firm’s future

choices:

q′ = q (S ′, z′, b(S ′, z′, x′, b′, ζ ′), l(S ′, z′, x′, b′, ζ ′)) (1.20)
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1.3.3 Households

Households supply workers and managers to intermediate goods firms and own all firms in

the economy. There are a measure µw of workers and a measure µm of managers. I normalize

µw + µm = 1 and assume that the measure of managers µm is larger than the measure of

intermediate goods firms µf , so that there is no shortage of managers. For managers who

are not matched with a firm, they also work one unit and earn w̄m in home production.

There is perfect risk sharing among household members. Households are allowed to invest in

state-contingent arrow security provided by international intermediaries. They discount the

future value with discount factor β. These assumptions is to make the problem of households

as simple as possible.

In each period, the household receive wage (µwwtLt + µmw̄m) and dividends Dt from

firms. They also pay Et to buy the defaulted firms and receive payments on their asset

holding At. Then they choose consumption Ct, labor supply in next period Lt+1 and the

state-contingent assets to invest At+1(st+1). Households have preference over consumption

and leisure. The utility function has the additive separable form U(Ct)−µwG(Lt)−µmG(1),

where µmG(1) is a constant and thus can be dropped in the maximization problem.

In period t−1, the household will choose labor Lt. The state variable is the aggregate state

St−1 and its state-contingent asset holdings for next period At = {At(st)}. The recursive

problem for families is the following:

V f (At, St−1) = max
Lt

{
Est|St−1

{
max

Ct(st),{At+1(st+1)}

[
U(Ct)− µwG(Lt) + βV f (At+1, St)

]}}
(1.21)

subject to their budget constraint for each st

Ct(st)+
∑
st+1

At+1(st+1)Qt,t+1(St+1|St) = µwwt(St−1)Lt+µmw̄m+At(st)+Dt(st, St−1)−Et(st, St−1),

(1.22)
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where St+1 = (Υt+1, st+1) and Υt+1 = H(St), Qt,t+1(St+1|St) is the price on the stage-

contingent bond provided by risk-neutral international financial intermediaries with discount

rate β. Since the economy is small in the world, these prices are given by Qt,t+1(St|St+1) =

βπ(st+1|st), where π(st+1|st) is the transition probabilities on the aggregate shock in the

Markov chain.

Dt(st, St−1) =

∫
d (S, z, x, b, ζ) dΥt(z, x, b, ζ), (1.23)

Et(st, St−1) =

∫ [∫
ϵ̂t

vb (S, z) dF (ϵt)

]
dΥt(z, x, b, ζ), (1.24)

where Υt = H(St−1) and S = (Υt, st).

1.3.4 Equilibrium

In this section, I specify the market clearing conditions in t + 1 and describe the dynamic

competitive equilibrium in this economy.

The clearing of the labor market requires that the amount of labor demanded by firms

equals the amount of labor supplied by the household:

∫
lt+1(St, z, x, b, ζ)dΥt(z, x, b, ζ) = µwLt+1(St). (1.25)

Final goods in t+ 1 satisfy

Y (St) =

[∫
z,x,b,ζ

∫
z′
πz(z

′|z)z′y′
γ−1
γ dz′dΥt(z, x, b, ζ)

] γ
γ−1

, (1.26)

where y′ = [l(St, z, x, b, ζ)]
α.
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The transition function for the measure of firms from t to t+ 1 is given by

Υt+1(x
′, z′, b′, ζ ′) ≡ H(St) =

∫
Λ(x′, z′, b′, ζ ′, x, z, b, ζ|St)dΥt(z, x, b, ζ)

where

Λ(x′, z′, b′, ζ ′, x, z, b, ζ|St) = πz(z
′|z)f(ϵ̃′)ψ(ζ ′)1{b′=b(St,z,x,b,ζ)}, (1.27)

the corresponding ϵ̃′ in equation (1.27) satisfies

ϵ̃′ =
(
z′Y (St)

1
γ l′α(

γ−1
γ

) − w(St)l
′ − w̄m − cb′

)
− ζ ′b′ − x′, (1.28)

and l′ = l(St, z, x, b, ζ).

Notice that wage wt+1 = w(St) and output Yt+1 = Y (St), that is, the wage and output

in t + 1 are determined at the end of period t. This because they are based on the choices

at the end of period t and the distribution of idiosyncratic states at t.

Given the initial measure Υ0 and initial aggregate shock s0, an equilibrium consists of

policy and value functions of intermediate goods firms {d(St, zt, xt, bt, ζt), l(St, zt, xt, bt, ζt),

b(St, zt, xt, bt, ζt), V (St, zt, xt, bt, ζt)}; of households {C(st, St−1), L(St−1), A(st+1|st, St−1)}; the

wage rate w(St−1), and state-contingent prices Qt,t+1(St+1|St); bond price schedules

q(St, zt, lt+1, bt+1); and the evolution of aggregate states Υt governed by the transition func-

tion H(St−1), such that for all t (i) the policy and value funtions of intermediate goods firms

satisfy their optimization problem, (ii) households’ decisions are optimal, (iii) the bond

price schedules are consistent with the investor’s problem, (iv) the labor market clears, and

(v) the evolution of the measure of firms is consistent with the policy functions of firms,

households and shocks.
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1.3.5 Characterization of first-order conditions

In this subsection, I analyze firms’ first order conditions for hiring and financing policies.

Consider the firm’s firm-order conditions for labor l′ when it doesn’t receive the refinancing

shock (ζ = 0),

Es′,z′,ζ′

[
z′
∫ ϵ̂′

(1 + χ′) dF (ϵ′)
]

Es′,z′,ζ′

[∫ ϵ̂′
(1 + χ′) dF (ϵ′)

] Y
1
γα(l′)

α(γ−1)
γ

−1 =
γ

γ − 1

w +
Es′,z′,ζ′

[
V ′∗f(ϵ̂′)

(
−∂ϵ̂′

∂l′

)]
Es′,z′,ζ′

[∫ ϵ̂′
(1 + χ′) dF (ϵ′)

]
 ,

(1.29)

where χ′ is the multiplier associated with the non-negative equity payout constraint.

In a frictionless environment, the first-order condition for the firm’s labor choice would

be

Es′,z′ [z
′]Y

1
γα(l′)

α(γ−1)
γ

−1 =
γ

γ − 1
w, (1.30)

In equations (1.29) and (1.30), the left-hand side is the expected marginal benefit of labor,

and the right-hand side represents the expected marginal cost of labor times a markup γ
γ−1

.

Comparing these two equations, the distortions are mainly driven by three forces. First,

equity holders receive the profits only if the firm doesn’t default, so they put weight only on

states in which the firm doesn’t default. Second, the profits are more valuable to a firm if

the firm faces a binding constraint next period, captured by the shadow price 1 + χ′ > 1.

These two forces make the marginal benefit of labor on the left-hand side of equation (1.29)

different from that of equation (1.30).

Third, an additional unit of labor input will increase the default probability of a firm

by −f(ϵ̂′)∂ϵ̂′
∂l′
. Let V ′∗ denote the firm’s future value evaluated at the default cutoff. Then

V ′∗f(ϵ̂′)
(
−∂ϵ̂′

∂l′

)
is the loss of value because from default incurred by one additional unit of

labor. Such default cost shows up as a wedge on the right-hand side of equation (1.29). Note

that ∂ϵ̂′

∂l′
< 0 in most states, at least for low values of z′, so the wedge is positive and acts
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like a tax on labor.

With these distortions, firms’ labor choice will be dependent on its default risk. Since a

worsening of market liquidity lowers bond prices, thereby limiting the maximal borrowing

M(S, z) and pushes firms closer to default, it will affect firms’ labor choices. Under most

circumstances, the last two channels dominant, so firms cut their labor input in bad times.

The first order condition for the firm’s labor choice when it receives the refinancing shock

(ζ = 1) can be written as follows:

Es′,z′,ζ′

[
z′
∫ ϵ̂′

(1 + χ′) dF (ϵ′)
]

Es′,z′,ζ′

[∫ ϵ̂′
(1 + χ′) dF (ϵ′)

] Y
1
γα(l′)

α(γ−1)
γ

−1 =
γ

γ − 1

w +
Es′,z′,ζ′

[
V ′∗f(ϵ̂′)

(
−∂ϵ̂′

∂l′

)]
+ 1+χ

β

(
− ∂q

∂l′

)
b′

Es′,z′,ζ′

[∫ ϵ̂′
(1 + χ′) dF (ϵ′)

]
 .

(1.31)

Comparing it with equation (1.29), there is an additional source of distortion, captured

by 1+χ
β

(
− ∂q

∂l′

)
b′. The term − ∂q

∂l′
b′ = −∂(qb′)

∂l′
measures the marginal decrease in proceeds from

bond issuance (qb′) incurred by an additional unit of labor, and the shadow price 1 + χ

measures the marginal value of these funds to the firm. The intuition is that when the firm

choose labor and issue bonds at the same time, it will take into account how its labor choice

impact the benefit from bond issuance.

The first order condition for the firm’s financing policy b′ when the firm receives the

refinancing shock is given by

(1 + χ)

(
∂q

∂b′
b′ + q

)
= β(1− λ)Es′,z′

[
F (ϵ̂′0)

(
c− ∂V

∂b′

)]
+ βλEs′,z′ [F (ϵ̂

′
1)E[1 + χ′(x′1)|ϵ′ ≤ ϵ̂′1] (c+ 1)]

+ βEs′,z′ [(1− λ)cV ∗
0
′f(ϵ̂′0) + λ (c+ 1)V ∗

1
′f(ϵ̂′1)]

(1.32)

In equation (1.32), the left-hand side represents the marginal benefit from one unit of
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debt issuance, and the right-hand side represents the expected marginal cost. The term

∂q
∂b′
b′+ q = ∂(qb′)

∂b′
is the marginal increase in proceeds from bond issuance associated with one

unit of bond. Multiplying this term by 1+χ, which is marginal value of one unit of funds to

the firm, the left-hand side is the marginal benefit from an additional unit of bond issuance.

There are three terms on the right-hand side. The firm term captures the marginal cost

if the firm doesn’t default and the bond doesn’t mature in next period (ζ ′ = 0), in which

case the firm has to pay coupon c and the debt continues to next period and lowers the

future value (∂V
∂b′

). The second term represents the marginal cost if the firm doesn’t default

and the bond matures in next period (ζ ′ = 1). In this case, the firm has to repay coupon

and principal c+1, and the marginal value of these funds to the firm is 1+χ′ because of the

possible binding constraint. The third term represents the marginal cost if the firm default

in next period, in which case the firm will lose its future firm value. If the firm doesn’t

receive the refinancing shock tomorrow, it has to pay c for an additional unit of b′, which

increases the default probability by cf(ϵ̄′0), so the marginal cost from losing future value in

case of default is cf(ϵ̄′0)V
∗
0
′. Similarly, it the firm receives the refinancing shock, it has to

pay c+ 1 for an additional unit of b′ and the marginal cost is (c+ 1)f(ϵ̄′1)V
∗
1
′.

Notice that when the firm doesn’t receive the refinancing shock, the cash-on-hand x can

be dropped from the state variables and the policy function can be denoted by l0(S, z, b).

When the firm receives the refinancing shock, current debt level b can be dropped from

the state variables and the policy functions can be expressed as l1(S, z, x) and b1(S, z, x).

Furthermore, the following lemma holds for policy functions l1(S, z, x) and b1(S, z, x). These

properties help simplify the numerical solutions.

Lemma. There exists a cutoff level of cash-on-hand, x̂ such that for x < x̂, the non-

negative equity payout constraint is binding, and for x ≥ x̂, the constraint is slack and firm’s

choices do not vary with x. Denote the policy functions when the non-negative equity payout

constraint is slack as l̂1(S, z) and b̂1(S, z), the cutoff level of cash-on-hand x̂ = −q(S, z, l̂, b̂)b̂.
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1.4 Quantitative Analysis

This section takes the model to the data. I show that disruptions in secondary bond market

could have quantitatively important impacts on macro aggregates and thus policies improving

bond market liquidity have a sizable impact on the macroeconomy.

1.4.1 Parameterization

I assume the utility function has the additively separable form

U(C)− µwG(L) =
C1−σ

1− σ
− χ

L1+υ

1 + υ
, (1.33)

where χ captures both the share of workers and the weight on the disutility of labor. Consider

next the parameterization of the Markov processes over idiosyncratic shocks and aggregate

shocks to holding cost. I assume a discrete process for idiosyncratic productivity shocks that

approximates the auto-regressive process in equation (1.34) using the method in Tauchen

(1986)

log zt = µ+ ρz log zt−1 + σzϵt, (1.34)

where the innovations ϵt ∼ N(0, 1) are independent across firms. We choose µ = −σ2
z/2 (so

as to keep the mean level of z across firms unchanged as σ varies). We assume that holding

cost shock h takes on two values, a high value hB and a low value hG, with the transition

probabilities determined by the probabilities of remaining in the good and bad states, πGG

and πBB. The revenue shock ϵ is assumed to be normal with mean µϵ and standard deviation

σϵ.

1.4.2 Solution method

Since the model is highly nonlinear and features default and occasionally binding borrowing

constraints, I solve the model using projection-based numerical methods. In this subsec-
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tion, I will explain the globally nonlinear algorithm in some detail and relegate the detailed

description to Appendix 1.9.

The model is solved with four nested loops. First, the value wedge for bond investors

in secondary bond market ∆V (S, z, l′, b′) is solved iteratively according to equation (1.17)

in the innermost loop. Second, an outer loop solves the bond price schedule by iterating

on the maximal borrowing M(S, z) and q(S, z, l′, b′) according to equation (1.3) and (1.19).

Third, an outer loop solves the firms’ value function V (S, z, x, b, ζ) and policy functions

{l0(S, z, b), l1(S, z, x), b1(S, z, x)}. The firm’s problem is characterized by equation (1.6) and

the first-order conditions are given by equations (1.29), (1.31) and (1.32). Finally, the outer-

most loop solves the aggregate variables {w(S), Y (S)} using the market clearing conditions

for labor market and final goods market, expressed in equations (1.25) and (1.26), respec-

tively.

I solve the function for a set of knots on state variables and interpolate these functions

using multivariate piece-wise polynomial cubic splines for values off the knot points. In each

inter loop, I use the rules from outer loop, and iterate until converge. So the full model is

solved when the outermost loop converges. In particular, in the outermost loop, for each

iteration, I simulate the economy for T = 1000 periods, project the simulated values of wage

and output along the time series on a set of dummy variables corresponding to aggregate

state S, and use the fitted value as the updated aggregate rules for w(S) and Y (S). This

procedure is repeated until the aggregate rules converge.

Note that the distribution of firms (Υ) is part of the aggregate state S, while in practice

it is impossible to include the entire measure. I follow a version of Krusell and Smith (1998)

to approximate the distribution with lags of aggregate shocks. Therefore, the aggregate

state variable S actually refers to the current and lags of aggregate shocks in the algorithm.

I choose to use S = (s, s−1, s−2, k), where k = 1, ..., 12 indicates how many periods the

aggregate state have been unchanged. Also, I assume there are two realization of state

s ∈ {sG, sB}, therefore, the total number of aggregate state S is 30. Appendix 1.9 describes
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the numerical method in greater detail, presents specific equations and choices for state grids,

and discusses accuracy.

1.4.3 Calibration

The model is calibrated to reproduce the state of firms in US economy before the financial

crisis. I assume s = sG in calibrating the steady state. Later I will calibrate parameters for

s = sB so that the model generates the same increase in bid-ask spread as in the financial

crisis of 2007-2009.

The assigned parameters are

{β̂, ν, σ, α, γ, ρz, σz}, {λ, θ, η}, {πBB, πGG}

The model is calibrated at a quarterly frequency. The discount factor for foreign investors

β̂ is set to be 0.995 so that the annual risk-free rate is 2%. I set ν = 0.5 which implies

a labor elasticity of 2. The elasticity is in the range of elasticities used in macroeconomic

work, as reported by Rogerson and Wallenius (2009). I set σ = 2, a common estimate

in the business cycle literature. For the intermediate goods production, I set parameter α

equal to the labor share of 0.7 and think of there being two other fixed factors, managerial

input and capital, which receive a share of 0.3. For the final goods production function, I

choose the elasticity of substitution parameter γ = 5.76 so as to generate a markup of about

21%, which is estimated by Basu and Fernald (1997). I choose the serial correlation of the

firm-level productivity shock ρz = 0.9. This value is consistent with the estimates of Foster

et al. (2008) for their traditional TFP index, which measures output as the deflated dollar

value using the four-digit industry-level deflator from the NBER Productivity Database.

The parameter on aggregate shocks to volatility σz follows ABK and is set as 0.09.

I set λ = 0.05, which implies the average maturity of corporate bond is 5 years. This

same number is used by Gomes et al. (2016) for long-term corporate debt in their model.
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For the delay in receiving debt payments after bankruptcy, Franks and Torous (1994) report

that the average bankruptcy takes 2.7 years and Weiss (1990) estimates 2.5 years from the

filing the filing of the bankruptcy petition to resolution. For the sample in Bris et al. (2006),

which is more recent and contains smaller firms, the average Chapter 7 proceeding lasts 2

years and the average Chapter 11 proceeding lasts 2.3 years.14 Based on these evidence, I

choose θ = 0.1 so that it takes 2.5 years on average after the bankruptcy for the investors

to receive payments. The Nash-bargaining weights η for the investor is assumed to be 0.5,

which implies that the dealer and the seller split the trade surplus equally.

The transition probability for the aggregate bond market liquidity state s is as follows,

Πs =

 πGG 1− πGG

1− πBB πBB

 . (1.35)

In the transition matrix in equation (1.35), πGG is the probability of continuing in ordinary

liquidity conditions, Pr{s′ = sG|s = sG}, while 1 − πBB is the probability of escape from

crisis conditions, Pr{s′ = sG|s = sB}. Following Khan and Thomas (2013) I choose the

parameters of the matrix using evidence on banking crises from Reinhart and Rogoff (2009).

In the postwar period 1945-2008, the U.S. only has had two banking crises (the 1989 savings

and loan crisis and the 2007 subprime lending crisis), but since the incidence and number of

crises is similar across the extensive set of advanced countries, they instead rely on the data

for advanced economies to infer the transition probabilities. The average number of banking

crises across advanced economies over 1945 - 2008 was 1.4, while the share of years spent in

crisis was 7 percent. Combining these observations, we set πBB = 0.922 and πGG = 0.994 so

that the average duration of a liquidity crisis is 3.2 years, and the economy spends 7 percent

of time in the crisis state.15

14In the example of Lehman Brothers bankruptcy, after much legal uncertainty, payouts to the debt holders
only started trickling out after about 3.5 years.

15The choices of these transition probabilities are different from what is used in Chen et al. (2017), which
corresponds to 10 years of expansions and 2 years of recessions. The choices are also different from ABK,
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The parameters from moment-matching exercise are

{β, wm + µϵ, σϵ, κ, h, hb, ξ, π, c}.

The model is highly nonlinear so all parameters affect all the moments. The nine parameters

are calibrated to target nine moments: (1) an average credit spread of 100 bps, (2) an

aggregate default rate of 1%, (3) an average leverage ratio of 40%, (4) an average bond

recovery rate of 42%, (5) an average bid-ask spread for non-defaulting bonds of 35 bps, (6)

an average bid-ask sprad for defaulted bonds of 140 bps, (7) an average liquidity premium

of 50 bps, (8) an annual turnover rate of 100%, and (9) an average bond price at issuance of

1. Some moments are more sensitive to some parameters, and I will discuss them below.

Credit spread, default rate and leverage Credit spread, default rate and leverage are

mainly determined by {µϵ+wm, σϵ, β}. The targeted credit spread is set as 100 bps, which is

the average credit spread for BBB bonds from 2003 to 2006. I target an annual default rate

of 1%, which is consistent with Moody’s average default rate of 0.26% per quarter (Moody’s

Investor Service 2014), as used by Gomes et al. (2016).16 The leverage ratio is defined as

the ratio of debt to market assets. I compute the average leverage ratio for a sample of

non-financial firms in COMPUSTAT and the average is about 40%.

Bond recovery rate Bond recovery rate is largely driven by firm recovery rate κ. Bond

recovery rate is a widely-used measure defined as the defaulted bond price divided by its

promised face value. I choose to target a bond recovery rate of 42%, which is the average

which assume πGG = 0.94 and πBB = 0.84. Therefore, the liquidity shock in this paper corresponds
financial crises which are more rare and persistent compared with business cycles. Later I will show how the
quantitative effects differ for different values of transition probabilities.

16Kozlowski et al. (2020) and Khan and Thomas (2013) target a 2% annual default rateGourio (2013)
chooses 0.5%.
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issue-weighted bond recovery rate in Moody’s recovery data over 1982-2012.17

Bid-ask spread and liquidity premium The parameters on holding cost {h, hb} and

trading probability ξ are important in matching the liquidity premium and the bid-ask spread

of non-defaulting bonds, and bid-ask spread of defaulted bonds. The liquidity premium in

data is approximated using the bond-CDS spread, and I target a liquidity premium of 50 bps

for the calibration. The bid-ask spread for non-defaulting bonds in TRACE data is about

35 basis points before the crisis. The information on bid-ask spreads of defaulted bonds

is scarce. In Chen et al. (2017), the median bid-ask spread for pre-default bonds in good

and bad times are 50 and 125 bps, respectively; the bid-ask spread for defaulted bonds are

200 and 620 bps in good and bad times, respectively. So I assume the bid-ask spread for

post-default bonds is higher than that for pre-default bonds by a factor of 4 in good times

and by a factor of 5 in bad times, which implies a bid-ask spread for defaulted bonds of 140

bps.

Finally, the probability of distressed shocks π is chosen to target an annual turnover rate

of 100% (i.e. holding time of 1 year) following He and Milbradt (2014) and Bao et al. (2011).

The coupon rate c is normalized so that the bond is issued at par on average.

Table 1.3 summarizes the parameters values used for the numerical solutions. Table 1.4

presents the targeted moments in the model and in the data. In Appendix 1.8.3, I provide

details on the definitions of these moments in the model and in the data.

17ABK assume 100% cost of default and Zeke (2016) argues that if using a more “reasonable” cost of
default the drop in employment won’t be as large. He uses estimates for the cost of default from corporate
finance literature directly and chooses 30% in his baseline model, which generates a relationship between
credit spread and default probability that is in line with data. In my calibration, the cost of default 1− κ is
selected to generate the targeted bond recovery rate. The calibrated cost of default is about 80%, which is
larger than what is used in Zeke (2016).
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1.4.4 Firms’ decision rules

In Figure 1.4, I plot firms’ policy functions l0(S, z, b), l1(S, z, x) and b1(S, z, x) in Panel (a),

(b) and (c), respectively. I consider a firm that receives the median level of productivity

shock z, and plot its choices against b or x. The black line is the policy function when

the aggregate bond market liquidity condition is good (s = sG), while the red line shows

the policy function when the bond market liquidity condition is bad (s = sB). I keep the

aggregate variables {w, Y } at the same level to focus on the direct effects of the liquidity

shock on firm’s choices.

Panel (a) of Figure 1.4 shows how firm’s labor choice changes with its current debt

outstanding when the firm doesn’t receive a refinancing shock. First notice that the firm’s

labor choice is not monotonic in debt level. This is because here are different forces that

distort firm’s labor choices as shown in equation (1.29). When leverage is not too high,

firms tend to cut labor to reduce loss from a possible default when they have higher level of

debt and more default risk. However, when firms have a very high level of debt outstanding

and thus the default probability is very high, risk-shifting could be the dominating force

and firm increase labor to gamble as they are closer to default. Next compare the policy

function when the aggregate bond market liquidity condition is good and bad. The policy

function in bad state is almost an inward shifting of the policy function in good state. The

idea is that the worsening of bond market liquidity lowers bond prices, and pushes the firms

with all levels of leverage closer to default. In sum, a liquidity shock generates little change

in labor choice for firms with low leverage, leads to decreases in labor input for firms with

middle leverage, and leads to increases in labor input for firms with very high leverage. Most

firms belongs to the middle range and thus a liquidity shock leads to a decrease in aggregate

employment.

In Panel (b) and (c) of Figure 1.4 shows how firm’s labor and debt choices change with

its current cash-on-hand when the firm receives a refinancing shock. The characterization
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of the corresponding first-order conditions have been discussed in Section 1.3.5. When there

are abundant cash-on-hand so that non-negative equity payout constraint is not binding,

the firm’s optimal choices of labor and debt are not affected by its cash-on-hand. This can

be seen from the right part of the policy functions in the figure, which is a horizontal line.

When the constraint is binding, the dominating incentive for the firm is to get more proceeds

from bond issuance to cover its shortage of cash. This induces firms to cut the labor in order

to reduce default risk and increase the bond price at issuance. Comparing the red line with

the black line, firms with low cash-on-hand cut their labor input dramatically following a

liquidity shock and firms with very low cash-on-hand defaults following the shock. For firms

with abundant cash-on-hand, their labor input in bad times could be even slightly larger than

that in good times. This is because the firm lowers its financial leverage a lot in response to

the shock and thus might increase its operational leverage a bit.

1.4.5 Impulse responses

I now analyze how the model could explain the dynamics of credit spreads and macro ag-

gregates during the financial crisis of 2007-2009.

General equilibrium dynamics Figure 1.5 reports the model impulse responses of real

and financial variables to a liquidity shock that mimics the liquidity dry-up after the Lehman

collapse in 2008:Q4. The red line shows the model predictions, while the actual path of data

is in black. In this experiment, I first simulate the model for 500 periods, and then assume

the economy stay in good state for 50 periods, switch to bad state in period 0 and stays

there afterwards.

As shown in panel (a) of Figure 1.5, the size of the shock is calibrated to deliver an

immediate jump of bid-ask spread to 160 bps, which is the peak level of the value-weighted

average of bid-ask spreads during the Great Recession. In panel (b)-(d) of Figure 1.5, we

can see that this shock generates an increase in credit spread of 268 bps, including 128 bps
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from the liquidity premium and 140 bps from the default premium. The increase in default

premium is more transitory as the firms are gradually deleveraging. Panel (e)-(f) present

the drop in aggregate labor and output following the shock. Notice that the labor decline is

1.3 percentage point, which is about 19% of the employment losses in the data. The output

drop is about 1.4 percentage point, which is almost one-third of the actual drop in data.

This experiment shows that a disruptions in the market liquidity of long-term bonds could

have sizable effects on the real economy. Note that this is not arguing that such liquidity

shock is the only source of aggregate disturbances, or even the main source of disturbances.

The idea is that this is a new channel that could be quantitatively important, and is ignored

in previous studies.

Partial equilibrium responses In this part, I keep the aggregate variables, wage w

and aggregate demand Y unchanged along the transition, and study the partial-equilibrium

response of the economy to a liquidity shock. The results are represented by the blue dashed

line in Figure 1.5.

In response to a liquidity shock, firms cut their labor so that wage and aggregate out-

put both fall. A lower wage induces firms to hire more, while a lower output means lower

aggregate demand and induces firms to hire less. In Figure 1.5 we can see that the partial

equilibrium impacts on real variables are larger that the general equilibrium results. This

means in the baseline model, quantitatively the wage effects dominates the aggregate de-

mand effects, and these two general equilibrium effects dampen the drop in labor compared

with the partial equilibrium results. If we rely on the partial equilibrium results, we would

overestimate the liquidity effects by about 40%.

Sensitivity to parameters There are several parameters that are important for the quan-

titative predictions of the model: the persistence of the shock πBB, the frequency of refinanc-

ing shock λ, and the trading probability ξ. Table 1.5 summarizes how the model predictions
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would change when each of these parameters changes, everything else unchanged.

The effects of a liquidity shock are larger when it is more persistent. This is intuitive

as the the shock is at heart a result of exogenous liquidity need combined with the risk

of delayed trade. If the liquidity shock is transitory, the holding cost will return to normal

immediately, and the liquidity premium won’t increase a lot. Thus the effects on bond prices,

default risk and firm’s choices on real variables will also be negligible. When λ is larger, the

bonds have shorter maturity, one might expect the liquidity concerns to be less important in

this case. However, a higher λ also implies that the firm will face a refinancing shock more

often, which make fluctuations in bond market more important. When trading probability ξ

is smaller, the results are larger. Again, market liquidity arises from liquidity need coupled

with search frictions. So when the frictions are stronger, as represented by slower trade from

a lower ξ, the responses to an increase in liquidity need are stronger.

1.4.6 COVID-19 crisis

After the Federal Reserve’s unprecedented corporate bond purchasing program during the

recent COVID-19 crisis, there has been many papers study the effects of such interventions.

Kargar et al. (2020) show that it greatly improved market liquidity and Gilchrist et al. (2020)

show that it reduced credit spreads significantly. My model provide a structural estimate of

its impact on real aggregates.

As seen in panel (b) of Figure 1.1, there was sharp increase in bid-ask spreads and

immediate recovery coincided with Fed’s interventions in March 2020. I calibrate a set of

liquidity shock {hG, hB} to match a bid-ask spread of 25 bps in good times, which correspond

to the average level of before the Covid-19 crisis and 180 bps in bad times, which correspond

to the peak value in mid-March. Other parameters, in particular the transition probabilities

of the shock, are kept at the same value as in the baseline model. Then the model predicts a

2% drop in employment and output following such a liquidity shock. In other words, the Fed’s

interventions, by improving market liquidity of bonds, avoided a 2% drop in employment
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and output.

The liquidity shock considered in my model is a demand shock which increases the de-

mand for liquidity by assuming a higher holding cost h in crisis times. I ignore potential

supply shocks by assuming that the trading probability ξ is the same in normal and in crisis

times. This may be a concern because there might be both demand and supply shocks during

the COVID-19 crisis. I argue that the assumption of a demand shock is reasonable because

during this crisis, the price (transaction cost) and quantity (trading volume) of transaction

services increased at the same time, which is suggestive of demand shocks instead of supply

shocks (Kargar et al., 2020). Kargar et al. (2020) also model a demand shock instead of

a supply shock, arguing that this captures the key feature of the COVID-19 crisis in the

corporate bond market, i.e., the surge in selling pressure.

1.5 Conclusion

A long-standing literature in finance has made a convincing argument that a significant

portion of credit spreads can be attributed to bond illiquidity. However, existing general

equilibrium macro models that study the disruptions in credit markets and their correlation

with macroeconomic aggregates largely abstract from the secondary bond market and the

bond illiquidity. Early models attribute movements in credit spreads to variations in default

rates, and more recent work starts to put more emphasis on risk premia.

In this paper, I introduce a fairly standard secondary OTC bond market into a macro

model to fill this gap and link bond illiquidity at a micro level to the macroeconomy. I

attempt to use the simplest model setup — two types of agents, risk neutral investors,

exogenous trading probability — to determine endogenously the mapping between bid-ask

spread and yield spread, so that I can calibrate the model to micro data on secondary market

liquidity.

Using the model, I show that disruptions in secondary bond market liquidity can be a
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quantitatively important source of aggregate disturbances in macro-financial crisis models,

and policies improving bond market liquidity can have sizable real effects.

I think the framework developed in this paper can be used for studying many interesting

questions concerning the interactions between secondary bond markets and the macroecon-

omy. One interesting application is to use the framework to shed light on the regulatory

discussions of the micro-structure of secondary bond market. There have been such discus-

sions in the OTC literature and the model I propose can help link it to the macroeconomy.

Future research may also extend the model by allowing heterogeneous bond maturities across

firms or different selling pressures in the bond market.
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1.6 Appendix: Figures

Figure 1.1: Time series of bid-ask spreads

(a) 2007-2020

(b) COVID-19 Crisis

Notes: This figure depicts the time series of bid-ask spreads. The bid-ask spreads are
computed customer-buy prices minus customer-sell prices in TRACE database. The time
series is constructed as the median across all risky-principal trades at each date. Panel (a)
reports the 10-day moving average of bid-ask spreads from 2007 to 2020. Panel (b) reports
the daily time series from Feburary 2020 to April 2020.
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Figure 1.2: Credit spread vs. CDS spread for BBB bonds: 2002-2020

Notes: This figure depicts the month-end average credit spread and CDS spread for BBB
bonds from 2002 to 2020. The blue solid line represents the credit spread and the red dashed
line represents the CDS spread.
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Figure 1.3: Model timeline

t

(1) firms enter with b, l

(2) investors incur holding cost

(1) shocks s, z, ϵ, ζ realize

(2) production takes place

(1) firms default; or choose b′, l′

(2) investors buy bonds in pri-
mary market

investors receive distress shocks

secondary bond markets open

t+ 1
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Figure 1.4: Firms’ policy functions

(a) Labor choice when ζ = 0 (b) Labor choice when ζ = 1

(c) Bond Issuance when ζ = 1

Notes: This figure depicts the firms’ policy functions. Panel (a) plots the firm’s labor choice
as a function of debt level b when ζ = 0 at median level of productivity. Panel (b) and panel
(c) plot the firm’s labor choice and debt choice as a function of debt level b when ζ = 1
at median level of productivity, respectively. The black line represents the policy function
when the economy is in good state, and the red line represents the policy function when the
economy is in bad state while keeping the aggregate variables {w, Y } unchanged.
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Figure 1.5: Impulse responses to liquidity shock

(a) Bid-ask spread (b) Credit spread

(c) Liquidity premium (d) Default premium

(e) Labor (f) Output
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1.7 Appendix: Tables

Table 1.1: Annual employment growth rates for firms with different current refinancing needs

Panel A: Drop in employment growth in 2008
2007 2008 2008-2007

Treated Firms 3.32 -5.34 -8.66***
(2.10) (2.51) (3.28)

Non-treated Firms 2.82 -0.64 -3.46***
(0.59) (0.51) (0.78)

Difference 0.50 -4.70** -5.20**
(2.03) (1.84) (2.57)

Panel B: Drop in employment growth in 2007
2006 2007 2007-2006

Treated Firms 3.87 3.18 -0.70
(1.87) (1.66) (2.50)

Non-treated Firms 3.38 2.89 -0.48
(0.54) (0.53) (0.76)

Difference 0.50 0.28 -0.21
(1.89) (1.84) (2.44)

Panel C: Drop in employment growth in 2001
2000 2001 2001-2000

Treated Firms -2.46 -5.18 -2.72
(1.81) (2.20) (2.84)

Non-treated Firms 3.33 -3.00 -6.33***
(0.70) (0.63) (0.94)

Difference -5.79*** -2.18 3.60
(2.09) (1.96) (2.66)

Notes: This table presents the annual employment growth rates for firms with current refi-
nancing needs (treated-firms) and firms without (non-treated firms). In each panel, the last
row computes the differences between treated firms and non-treated firms, and the last col-
umn computes the changes between two consecutive years. The standard errors are reported
in the parenthesis. ***, **, and * indicate significance at 1%, 5% and 10% levels from two
tailed t-tests.
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Table 1.2: Annual employment growth rates for firms with different future refinancing needs

Panel A: Drop in employment growth in 2008
2007 2008 2008-2007

Treated Firms 4.07 -5.27 -9.33***
(1.95) (1.78) (2.64)

Non-treated Firms 2.72 -0.25 -2.97***
(0.61) (0.53) (0.81)

Difference 1.35 -5.02*** -6.36**
(2.19) (1.91) (2.76)

Panel B: Drop in employment growth in 2007
2006 2007 2007-2006

Treated Firms 0.35 1.86 1.51
(1.77) (2.16) (2.80)

Non-treated Firms 3.55 2.14 -1.41*
(0.59) (0.56) (0.82)

Difference -3.20* -0.29 2.92
(1.90) (1.85) (2.47)

Panel C: Drop in employment growth in 2001
2000 2001 2001-2000

Treated Firms 2.77 -4.17 -6.95**
(2.12) (1.71) (2.72)

Non-treated Firms 3.43 -2.77 -6.21***
(0.73) (0.68) (1.00)

Difference -0.66 -1.40 -0.74
(1.90) (1.72) (2.38)

Notes: This table presents the annual employment growth rates for firms with future refi-
nancing needs (treated-firms) and firms without (non-treated firms). In each panel, the last
row computes the differences between treated firms and non-treated firms, and the last col-
umn computes the changes between two consecutive years. The standard errors are reported
in the parenthesis. ***, **, and * indicate significance at 1%, 5% and 10% levels from two
tailed t-tests.
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Table 1.3: Parameter Values

Parameters from Moment Matching

Discount rate β = 0.95 Leverage
Revenue shock process µϵ + wm = 0.1, σϵ = 0.1 Credit spread & default rate
Firm recovery rate κ = 0.17 Bond recovery rate
Coupon rate c = 0.0087 Bond price
Liquidity shock prob. π = 0.26 Turnover rate
OTC frictions hG = 0.0042, hGb = 0.006, ξ = 0.8 Liq. prem, & bid-ask spread
Assigend Parameters

Volatility of z σz = 0.09 ABK
Persistence of z ρz = 0.9 Foster et al. (08)
Labor elasticity υ = 2 Rogerson and Wallenius (09)
Labor share α = 0.7 National accounts
Markup γ/(γ − 1) = 1.21 Basu and Fernald (97)

Discount rate investor β̂ = 0.995 Annual risk free rate
Curvature σ = 2 Business cycle literature
Bankruptcy delay θ = 0.1 Bankruptcy delay
Maturity 1/λ = 20 Maturity
Bargaining power investor η = 0.5 Bargaining power
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Table 1.4: Moment-Matching Exercises

Moments
Model Data

Leverage 0.38 0.4
Credit spread (bps) 100 100
Liquidity premium (bps) 51 50
Default rate 1% 1%
Bond recovery rate 0.41 0.42
Bid-ask spread (bps) 34 35
Bid-ask spread of defaulted bonds (bps) 145 140
Turnover rate 100% 100%
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Table 1.5: Parameter Sensitivity

∆bas ∆liq prem ∆def prem ∆labor

πBB = 0.922: avg duration of crisis = 3.2 yrs

0.875 +130 +64 +44 -0.7%
0.922 +142 +130 + 133 -1.6%
0.95 +153 +239 +247 -2.1%
λ = 0.05: avg maturity of debt = 5 yrs

0.025 +136 +60 +28 -0.4%
0.05 +142 +130 +133 -1.6%
0.083 +145 +201 +245 -2.6%
ξ = 0.8: trading prob in one period = 80%

0.5 +187 +282 +203 -2.1%
0.8 +142 +130 +133 -1.6%
0.95 +127 +89 +99 -0.9%

49



1.8 Appendix: Data

1.8.1 Link ICE bond data and Markit CDS data

Bond spreads data from ICE database and CDS spreads data from Markit database are

first matched to merged CRSP/Compustat data at firm-month level and then linked to

each other. When matched with merged CRSP/Compustat, I use TICKER, TSYMBOL

and 6-digit CUSIP as candidate identifiers sequentially and then append all the matched

observations.

1.8.2 Data filters for Compustat data

Following Almeida et al. (2011), starting from COMPUSTAT’s North America Fundamen-

tals Annual, I first disregard observations from financial institutions (SICs 6000-6999) and

public service firms (SICs greater than 8000), as well as ADRs. I drop firms with missing or

negative values for total assets (at), capital expenditures (capx ), property, plant and equip-

ment (ppent), cash holdings (che), or sales (sale). I also drop firms for which cash holdings,

capital expenditures or property, plant and equipment are larger than total assets. I then

discard observations for which the value of total assets is less than 10 million, and those dis-

playing asset growth exceeding 100%. I also require firms’ sales to be positive, and winsorize

employment (emp) at 0.5%. I remove observations for which the employment growth rate or

sales growth rate is greater than 100%. I delete firms with total long-term debt (dd1+dltt)

greater than assets and firms for which debt maturing in more than one year (dltt) is lower

than the sum of debt maturing in two, three, four and five years (dd2+dd3+dd4+dd5 ). Fi-

nally, I focus on firms that have long-term debt maturing beyond one period that represents

at least 5% of assets.
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1.8.3 Definitions of variables in data and model

Credit Spread In data, the credit spread in calculated as the average option-adjusted

spread for bonds with BBB credit ratings. The targeted value for calibration is set as the

average from 2003 to 2006 .In the model, the credit spread is given by

cs = (1 +
λ+ c

q
− λ)4 −

(
1

β̂

)4

(1.36)

Then I compute the average of the credit spread for all the firms.

Liquidity premium In data, the liquidity premium in calculated as the average option-

adjusted spread minus the average CDS spread for bonds with BBB credit ratings. The

targeted value for calibration is set as the average from 2003 to 2006. In the model, to

calculate the liquidity premium, I first compute the bond prices when there is no liquidity

risk, that is, ∆V = 0 and ∆V b = 0 in the bond price function given by equation (1.19).

Denote the bond price function for the perfect liquid bond as ql, the liquidity premium is

given by

liq = (1 +
λ+ c

q
− λ)4 − (1 +

λ+ c

ql
− λ)4 (1.37)

Then I compute the average of the liquidity premium for all the firms.

Bid-ask spread In data, the bid-ask spread is computed as customer-buy prices and

customer-sell prices in TRACE database. The target value for calibration is the average of

the median across all risky-principal trades in 2007:Q1-Q3.18 In the model, the percentage

bid-ask spread is computed as follows,

bas =
(1− η)∆V

VH − (1− η)∆V/2
(1.38)

18I thank Shuo Liu for sharing the data with me.
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Leverage In data, the leverage is computed as the ratio of debt (dlttq + dlcq) to equity

(cshoq×prccf ). The target value for calibration is the median across all firms in the sample.

Correspondingly, the defintion of leverage in the model is defined as b/V .

Default rate The target default rate is set as 1% as in the literature. In the model, the

default rate is computed as the ratio of the measure of defaulting firms to the total measure

of firms. In Section 1.9, I discussed how I deal with the movement in distribution and the

measure of defaulting firms is summarized by a vector F .

Bond recovery rate The targeted bond recovery rate is set as 42% from Moody’s data.

In the model, it is computed as the value of bond at default for high-type investor (V b
H)

divided by the face value 1.

Turnover rate The targeted annual turnover rate is set as 100% from literature. let m

denote the measure right before the secondary market opens, the movement of the measure

follows:

π

(
δ0(1− λ) (m(H1) + ξm(L1)) +

∫
b(S, z, x, b, ζ)dΥ

)
+ δ0(1− λ)(1− ξ)m(L1) = m(L1),

where δ0 is average probability that a bond doesn’t default given by

δ0 =

∫
b′
[
Ez′|zF (z

′Y
1
γ (l′)α(

γ−1
γ

) − wl′ − wm − cb′)
]
dΥ,∫

b′dΥ

l′ = l(S, z, x, b, ζ), b′ = b(S, z, x, b, ζ).

In equilibrium

m(H1) +m(L1) =

∫
b(S, z, x, b, ζ)dΥ

So I can solve m(L1) and compute turnover rate as ξm(L1)∫
b(S,z,x,b,ζ)dΥ
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Employment The employment data is the HP-filtered log of total hours worked for the

period from 1985 to 2012 from the FRED database. The employment in the model is the

aggregate labor supply L.

Output The output data is the HP-filtered log of real GDP for the period from 1985 to

2012 from the FRED database. The output in the model is the aggregate output Y .
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1.9 Appendix: Computational Algorithm

This appendix describes the algorithm used to compute the model.

The model is solved with four nested loops. First, the value wedge for bond investors

in secondary bond market ∆V (S, z, l′, b′) is solved in the innermost loop. Second, an outer

loop solves the bond price schedule by iterating on the maximal borrowing M(S, z) and

q(S, z, l′, b′). Third, an outer loop solves the firms’ value function V (S, z, x, b, ζ) and pol-

icy functions l0(S, z, b), l1(S, z, x), and b1(S, z, x). Finally, the outermost loop solves the

aggregate variables w(S) and Y (S).

1.9.1 Solve ∆V b(s) and V b
H(ρ, s)

Before turning to numerical methods, note that the value wedge for defaulted bonds ∆V b(s)

and the valuation of defaulted bonds for H-type investors V b
H(ρ, s) can be derived analytically

since s follows a two-state Markov chain with s = G,B.

The law of motion for the value wedge ∆V b(s) is given by

∆V b(s) = β̂
{
hb + (1− θ)(1− π)(1− ξη)Es′|s[∆V

b(s′)]
}

(1.39)

Write hb = [hGb , h
B
b ]

⊤, ∆V b = [∆V b(G),∆V b(B)]⊤. Then from equation (1.39), the solution

for ∆V b is given by

∆V b =
β̂

A1

hb +
β̂(1− θ)(1− π)(1− ξη)

A1

 −πBB 1− πGG

1− πBB −πGG

hb, (1.40)

where

A1 =
(
1− β̂(1− θ)(1− π)(1− ξη)πGG

)(
1− β̂(1− θ)(1− π)(1− ξη)πBB

)
− β̂2(1− θ)2(1− π)2(1− ξη)2(1− πGG)(1− πBB).
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Similarly, write V b
H(ρ) = [V b

H(ρ,G), V
b
H(ρ,B)]⊤, V b

H(ρ) will have the following analyti-

cally expression:

V b
H(ρ) =

β̂θ (1− A2)

A3

ρ− β̂(1− θ)π(1− ξη)

A3

πGG − A2 1− πGG

1− πBB πBB − A2

∆V b, (1.41)

where

A2 = β̂(1− θ)(πGG + πBB − 1),

A3 =
(
1− β̂(1− θ)πGG

)(
1− β̂(1− θ)πBB

)
− β̂2(1− θ)2(1− πGG)(1− πBB).

1.9.2 Solve ∆V (S, z, l′, b′)

The value wedge ∆V (S, z, l′, b′) for bond investors is solved in the innermost loop.

Starting with an initial guess for ∆V 0(S, z, l′, b′), update ∆V 1(S, z, l′, b′) according to

∆V 1(S, z, l′, b′) =β̂h+ β̂(1− λ)(1− π)(1− ξη)ES′,z′|S,z
[
F (ϵ̄′0)∆V

0(S ′, z′, l0(S
′, z′, b′), b′)

]
+ β̂(1− π)(1− ξη) [1− λF (ϵ̄′1)− (1− λ)F (ϵ̄′0)]Es′|S∆V

b(s′)

This is repeated until convergence. In this equation, ∆V b(s) is already given by equation

(1.40). Default cutoffs ϵ̄′0 and ϵ̄′1 are given by

ϵ̄′0 = z′Y (S)
1
γ (l′)

α(γ−1)
γ − w(S)l′ − wm − cb′,

ϵ̄′1 = z′Y (S)
1
γ (l′)

α(γ−1)
γ − w(S)l′ − wm − cb′ − b′ +M(S ′, z′).

When iterating over ∆V (S, z, l′, b′) in the innermost loop, the functions from outer loops

w(S), Y (S), l0(S, z, b), and M(S, z) are taken as given.
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1.9.3 Solve q(S, z, l′, b′) and M(S, z)

Next, an outer loop solves q(S, z, l′, b′) and M(S, z) iteratively. In this loop, I start with an

initial guess for q0(S, z, l′, b′), and repeat steps 1-2 until convergence.

Step 1: given q(S, z, l′, b′), solve {l̄, b̄} according to

∂q

∂l′
(S, z, l̄, b̄) = 0,

∂q

∂b′
(S, z, l̄, b̄)b̄+ q(S, z, l̄, b̄) = 0.

Update M(S, z) = q(S, z, l̄, b̄)b̄.

Step 2: Given M(S, z), update q(S, z, l′, b′) according to

q = β̂E

 λF (ϵ̄′1)(c+ 1) + (1− λ)F (ϵ̄′0) (c+ q′(S ′, z′, l′0(S
′, z′, b′), b′))− π(1− ξη)∆V

+λ
∫
ϵ̄′1
V b
H(ρ, s)dF (ϵ

′) + (1− λ)
∫
ϵ̄′0
V b
H(ρ, s)dF (ϵ

′)

 .

In this equation, note that V b
H(ρ, s) is already expressed analytically as a function of ρ in

equation (1.41). The recovered value ρ is given by. Within each step of iteration, I solve

the converged ∆V (S, z, l′, b′) using an inner loop as described in subsection 1.9.2. Again,

functions from outer loops w(S), Y (S) and l0(S, z, b) are taken as given.

1.9.4 Solve firm’s problem

Next, an outer loop solves the firms’ value function V (S, z, x, b, ζ) and policy functions

l0(S, z, b), l1(S, z, x), and b1(S, z, x). For simplicity, define a value function W (S, z, l′, b′) as

the expectation of future value if the firm choose l′, b′.

W (S, z, l′, b′) = ES′,z′|S,z

[∫∫ ϵ̄′

V (S ′, z′, x′, b′, ζ ′)dF (ϵ′)dψ(ζ ′)

]
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Then the firm’s problem can be written as

V (S, z, x, b, ζ) = max
l′,b′

x+ ζq(S, z, l′, b′)b′ + βW (S, z, l′, b′)

subject to

x+ ζq(S, z, l′, b′)b′ ≥ 0

In this loop, I will start with an initial guess for W (S, z, l′, b′) and repeat step 1-2 until

converge.

Step 1: Given W (S, z, l′, b′), solve l0(S, z, b) according to

∂W (S, z, l′, b)

∂l′
= 0,

As discussed in the main text, there exists a cutoff level of cash-on-hand, x̂ such that for

x < x̂, the non-negative equity payout constraint is binding, and for x ≥ x̂, the constraint is

slack and firm’s choices do not vary with x, denoted by l̂1(S, z) and b̂1(S, z).

Solve {l̂1(S, z), b̂1(S, z)} according to

∂q(S, z, l′, b′)

∂l′
b′ + β

∂W (S, z, l′, b′)

∂l′
= 0

∂q(S, z, l′, b′)

∂b′
b′ + q(S, z, l′, b′) + β

∂W (s, z, l′, b′)

∂b′
= 0

Then the cutoff level of cash-on-hand for the constraint to be binding is x̂ = −q(S, z, l̂, b̂)b̂.

For −M(S, z) < x < x̂, solve {l1(S, z, x), b1(S, z, x)} according to

∂q(S,z,l′,b′)
∂l′

b′

∂q(S,z,l′,b′)
∂b′

b′ + q(S, z, l′, b′)
=

∂W (S,z,l′,b′)
∂l′

∂W (S,z,l′,b′)
∂b′

x+ q(S, z, l′, b′)b′ = 0
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Step 2: Given policy functions l0(S, z, b), l1(S, z, x), and b1(S, z, x), update W (S, z, l′, b′)

according to

W (S, z, l′, b′) = ES′,z′|S,z


(1− λ)

∫ ϵ̄′0 [x′0 + βW (S ′, z′, l0(S
′, z′, b′), b′)] dF (ϵ′)

+λ
∫ ϵ̄′1

 x′1 + q(S ′, z′, l1(S
′, z′, x′1), b1(S

′, z′, x′1))b1(S
′, z′, x′1)

+βW (S ′, z′, l1(S
′, z′, x′), b1(S

′, z′, x′))

 dF (ϵ′)


Within each step of iteration, I solve the converged q(S, z, l′, b′) and M(S, z) using an

inner loop as described in subsection 1.9.3. Again, functions from outer loops w(S), Y (S)

are taken as given.

1.9.5 Solve w(S), Y (S)

Finally, the outermost loop solves the aggregate variables {w(S), Y (S)}. Starting with an

initial guess of {w0(S), Y 0(S)}, in each iteration of this loop, I take as given the current

aggregate rules, and solve the firm’s optimization problem using an inner loop as described

in subsection 1.9.4.

Then starting from an initial distribution of firms Υ0(z, x, b, ζ), I simulate the economy

for T = 1000 periods using the solved policy functions. In each period, I use equations (1.42)

and (1.43) to compute the wage and output.

C̄σ

(∫
l′(S, z, b, x, ζ)dΥ

)ν

= W (S) (1.42)

Y (S) =

[∫ (∑
z′

πz(z
′|z)z′l(S, z, x, b, ζ)

α(γ−1)
γ

)
dΥ

] γ
γ−1

(1.43)

The distribution of firms over state {z, x, b, ζ} when they are making choices for next

period, Υ(S), is summarized by three arrays U0, U1 and F , which correspond to firms with

ζ = 0 and ζ = 1, and defaulted firms, respectively. Matrix U0 is two-dimension in which
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the first dimension correspond to productivity level z and the second dimension correspond

to debt level b. Matrix U1 is also two-dimension in which the first dimension correspond to

productivity level z and the second dimension correspond to debt level x. Array F is one-

dimension, corresponding to productivity level z. The distribution function Υ(S) is updated

in each period as follows.

From U0 For each grid (zk, bj) in U0, I can compute its choice for next period l′ =

l0(S, zk, bj) and b′ = bj. Suppose the mass on this grid is g0. I will first allocate it to

each (zk′ , bj), k
′ = 1, ..., Nz in next period distribution matrix U ′

0 according to

g0(1− λ)πzk′ |zkF (ϵ̄
′
0).

Then I will allocate it to each (zk′ , xi′), k
′ = 1, ..., Nz, i

′ = 1, ..., Nx in next period distribution

matrix U ′
1. At each level of zk′ , I compute the an array of {ϵ̃i′} corresponding to {xi′}

according to

ϵ̃i = zk′Y
1
γ (l′)α(

γ−1
γ

) − wl′ − wm − cb′ − b′ − xi′ .

Then I assign to each (zk′ , xi′) the mass given by

g0λπz(zk′ |zk)×

(∫ ϵ̃i′

ϵ̃i′+1

ϵ′ − ϵ̃i′+1

ϵ̃i′ − ϵ̃i′+1

dF (ϵ′) +

∫ ϵ̃i′−1

ϵ̃i′

ϵ̃i′−1 − ϵ′

ϵ̃i′−1 − ϵ̃i′
dF (ϵ′)

)
.

Finally, I assign mass to each grid zk′ in the distribution of defaulted firms in next period

F ′ given by

g0πz (zk′|zk) (1− (1− λ)F (ϵ̄′0)− λF (ϵ̄′1)) .

From U1 Similarly, for each grid (zk, xi) in U1, I can compute its choice for next period

l′ = l1(S, zk, xi) and b′ = b1(S, zk, xi). Suppose the mass on this grid is g1. I will first

allocate it to each (zk′ , bj′), k
′ = 1, ..., Nz, j

′ = 1, ..., Nb in next period distribution matrix U ′
0
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according to

g1(1− λ)πzk′ |zkF (ϵ̄
′
0)×max

(
1−

∣∣∣∣b′ − bj′

∆b

∣∣∣∣ , 0) .
Then I assign to each (zk′ , xi′) the mass given by

g1λπz(zk′ |zk)×

(∫ ϵ̃i′

ϵ̃i′+1

ϵ′ − ϵ̃i′+1

ϵ̃i′ − ϵ̃i′+1

dF (ϵ′) +

∫ ϵ̃i′−1

ϵ̃i′

ϵ̃i′−1 − ϵ′

ϵ̃i′−1 − ϵ̃i′
dF (ϵ′)

)

. Finally I assign a mass to each grid zk′ in the distribution of defaulted firms in next period

F ′ given by

g1πz (zk′|zk) (1− (1− λ)F (ϵ̄′0)− λF (ϵ̄′1)) .

From F For each grid zk in the distribution of defaulted firms, these are the defaulted

firms in this period. They will be bought by households and enter as new entrants in next

period. These new entrants have zero debt in place and abundant cash. Therefore, the mass

on this grid, denoted by gf will be assigned to the grid (zk′ , xNx) a mass of gfπz (zk′|zk).

In this loop, I obtain a time series of {w(S), Y (S)} and S in each period. I project

{w(S), Y (S)} onto a set of dummy variables corresponding to the state S, and update

the aggregate rules using the fitted values. This procedure is repeated until the aggregate

variables {w(S), Y (S)} converged.

1.9.6 State grids and function interpolation

In the iterations described above, I iterate on a set of arrays. The policy functions for firms

with ζ = 0 are computed on grids (zk, bj), the policy functions for firms with ζ = 1 are

computed on grids (zk, xi), and the value functions W (S, z, l′, b′) and bond price function

q(S, z, l′, b′) are computed on grids (zk, ln, bj), where k = 1, ..., Nz, j = 1, ..., Nb, i = 1, ..., Nx

and n = 1, ..., Nl. I choose Nz = 7, Nb = 30, Nx = 30, and Nl = 15.
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The policy function l0(S, z, b) is defined continuously on b, the policy functions {l1(S, z, x),

b1(S, z, x)} are defined continuously on x, and the value functions W (S, z, l′, b′) and bond

price function q(S, z, l′, b′) are defined continuously onf {l′, b′}. They are interpolated be-

tween grids using cubic splines.

The aggregate state S is approximated with lags of aggregate shocks {s, s−1, s−2, k}

following a version of Krusell and Smith (1998), where k = 1, ..., k̄ denotes how many periods

the aggregate state hasn’t changed. I choose k̄ = 12, so that the total number of points for

aggregate state S is NS = (23 − 2) + 2× 12 = 30.
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1.10 Appendix: Additional Results

This section provides additional results from the empirical experiments. Table 1.6 and Table

1.7 perform analysis similar to that in Table 1.1 and Table 1.2, respectively. In Table 1.1 and

Table 1.2, I show how current refinancing needs and future refinancing needs impact firms’

employment growth, while in Table 1.6 and Table 1.7, I show how current refinancing needs

and future refinancing needs impact firms’ output growth. In Table 1.8 and 1.9, I present the

results from placebo tests for the years 2002-2006. In Table 1.1 and Table 1.2, I present the

results from tests for the years 2001, 2007 and 2008. Combined with the results summarized

in Table 1.8 and 1.9, we can see that in contrast to the strong refinancing effects in 2008,

there is no such effects in all placebo period from 2001 to 2007.
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Table 1.6: Annual sales growth rates for firms with different current refinancing needs

Panel A: Drop in sales growth in 2008
2007 2008 2008-2007

Treated Firms 4.70 -1.90 -6.60*
(2.07) (2.65) (3.37)

Non-treated Firms 7.12 7.05 -0.06
(0.59) (0.64) (0.87)

Difference -2.42 -8.96*** -6.54***
(2.04) (2.25) (2.43)

Panel B: Drop in sales growth in 2007
2006 2007 2007-2006

Treated Firms 8.08 4.86 -3.22
(2.18) (2.86) (3.60)

Non-treated Firms 9.11 6.32 -2.80***
(0.65) (0.58) (0.87)

Difference -1.03 -1.46 -0.42
(2.27) (2.13) (2.83)

Panel C: Drop in sales growth in 2001
2000 2001 2001-2000

Treated Firms 8.43 -2.83 -11.26***
(2.22) (1.89) (2.91)

Non-treated Firms 13.14 2.80 -10.34***
(0.78) (0.68) (1.04)

Difference -4.72** -5.63*** -0.91
(2.36) (2.05) (2.87)

Notes: This table presents the annual sales growth rates for firms with current refinancing
needs (treated-firms) and firms without (non-treated firms). In each panel, the last row
computes the differences between treated firms and non-treated firms, and the last column
computes the changes between two consecutive years. The standard errors are reported in
the parenthesis. ***, **, and * indicate significance at 1%, 5% and 10% levels from two
tailed t-tests.
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Table 1.7: Annual sales growth rates for firms with different future refinancing needs

Panel A: Drop in sales growth in 2008
2007 2008 2008-2007

Treated Firms 10.38 1.30 -9.08***
(2.21) (2.45) (3.30)

Non-treated Firms 6.84 7.54 0.70
(0.61) (0.66) (0.90)

Difference 3.53 -6.24*** -9.77***
(2.21) (2.38) (2.59)

Panel B: Drop in sales growth in 2007
2006 2007 2007-2006

Treated Firms 5.78 4.80 -0.98
(2.54) (1.90) (3.17)

Non-treated Firms 9.47 6.48 -2.99***
(0.66) (0.61) (0.90)

Difference -3.69* -1.68 2.01
(2.18) (1.97) (2.65)

Panel C: Drop in sales growth in 2001
2000 2001 2001-2000

Treated Firms 11.72 1.47 -10.25***
(2.16) (1.87) (2.86)

Non-treated Firms 13.42 3.06 -10.36***
(0.84) (0.73) (1.11)

Difference -1.70 -1.59 0.11
(2.13) (1.85) (2.62)

Notes: This table presents the annual sales growth rates for firms with future refinancing
needs (treated-firms) and firms without (non-treated firms). In each panel, the last row
computes the differences between treated firms and non-treated firms, and the last column
computes the changes between two consecutive years. The standard errors are reported in
the parenthesis. ***, **, and * indicate significance at 1%, 5% and 10% levels from two
tailed t-tests.
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Table 1.8: Annual employment growth rates for firms with different current refinancing needs

2005 2006 2006-2005

Treated Firms 3.87 3.18 -0.70
(1.87) (1.66) (2.50)

Non-treated Firms 3.38 2.89 -0.48
(0.54) (0.53) (0.76)

Difference 0.50 0.28 -0.21
(1.89) (1.84) (2.44)

2004 2005 2005-2004

Treated Firms 1.37 0.71 -0.67
(1.16) (1.73) (2.08)

Non-treated Firms 2.44 3.07 0.63
(0.55) (0.53) (0.76)

Difference -1.07 -2.36 -1.29
(1.65) (1.65) (2.12)

2003 2004 2004-2003

Treated Firms -0.82 2.58 3.41
(1.42) (1.54) (2.11)

Non-treated Firms 0.10 2.44 2.34***
(0.47) (0.51) (0.70)

Difference -0.92 0.15 1.07
(1.50) (1.63) (2.11)

2002 2003 2003-2002

Treated Firms -3.32 -0.32 3.00*
(1.30) (1.06) (1.68)

Non-treated Firms -0.77 -0.14 0.63
(0.54) (0.49) (0.73)

Difference -2.54 -0.17 2.36
(1.61) (1.45) (2.01)

2001 2002 2002-2001

Treated Firms -4.52 -2.62 1.90
(1.67) (1.62) (2.33)

Non-treated Firms -2.24 -2.13 0.12
(0.62) (0.57) (0.84)

Difference -2.27 -0.49 1.78
(1.78) (1.63) (2.23)

Notes: This table presents the annual employment growth rates for firms with current refi-
nancing needs (treated-firms) and firms without (non-treated firms). In each panel, the last
row computes the differences between treated firms and non-treated firms, and the last col-
umn computes the changes between two consecutive years. The standard errors are reported
in the parenthesis. ***, **, and * indicate significance at 1%, 5% and 10% levels from two
tailed t-tests. 65



Table 1.9: Annual employment growth rates for firms with different future refinancing needs

2005 2006 2006-2005

Treated Firms 2.72 4.46 1.73
(1.24) (1.51) (1.95)

Non-treated Firms 3.44 2.73 -0.71
(0.58) (0.56) (0.81)

Difference -0.72 1.73 2.45
(1.86) (1.82) (2.40)

2004 2005 2005-2004

Treated Firms 3.36 4.17 0.82
(1.51) (1.40) (2.06)

Non-treated Firms 2.32 2.92 0.60
(0.59) (0.57) (0.82)

Difference 1.04 1.25 0.21
(1.70) (1.64) (2.15)

2003 2004 2004-2003

Treated Firms -0.17 3.72 3.89**
(1.11) (1.56) (1.92)

Non-treated Firms 0.14 2.22 2.08***
(0.52) (0.54) (0.75)

Difference -0.31 1.50 1.81
(1.34) (1.46) (1.89)

2002 2003 2003-2002

Treated Firms -1.46 0.60 2.06
(1.63) (1.14) (1.99)

Non-treated Firms -0.64 -0.28 0.36
(0.57) (0.55) (0.79)

Difference -0.81 0.88 1.69
(1.49) (1.35) (1.86)

2001 2002 2002-2001

Treated Firms -5.27 -1.92 3.34
(1.49) (1.51) (2.12)

Non-treated Firms -1.62 -2.17 -0.55
(0.68) (0.61) (0.92)

Difference -3.64** 0.24 3.89*
(1.66) (1.50) (2.05)

Notes: This table presents the annual employment growth rates for firms with future refi-
nancing needs (treated-firms) and firms without (non-treated firms). In each panel, the last
row computes the differences between treated firms and non-treated firms, and the last col-
umn computes the changes between two consecutive years. The standard errors are reported
in the parenthesis. ***, **, and * indicate significance at 1%, 5% and 10% levels from two
tailed t-tests. 66



CHAPTER 2

Bonds vs. Equities: Information for Investment

with Adrien d’Avenas and Andrea L. Eisfeldt

2.1 Introduction

Why do credit spreads predict economic activity better than equity market measures? We

argue that this is because of the precise non-linear transformation of leverage and asset

volatility that credit spreads represent. Both credit spreads and equity market measures

are driven by leverage and asset volatility. In particular, equity volatility is levered asset

volatility. However, while higher credit spreads predict lower investment for all firms, equity

volatility is an ambiguous signal for investment. This is due to the position of equity relative

to debt in firms’ capital structure. For healthy firms, higher equity volatility signals greater

option value and better investment opportunities. But for more distressed firms greater

equity volatility exacerbates the debt overhang problem because not all of the marginal

returns to investment accrue to equity holders.

Our study speaks to two important literatures linking investment decisions to asset prices,

namely the literatures on the predictive power of credit spreads and on the role of uncer-

tainty in determining investment. Economists and practicioners alike have long argued that

there is a tight connection between bond markets and the macroeconomy. Friedman and

Kuttner (1992) show that the spread between commercial paper and Treasury bills fore-

casts recessions. Gilchrist and Zakraǰsek (2012) use firm-level data to construct a credit

spread measure with substantial predictive power for consumption, inventories, and out-
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put. Philippon (2009) constructs a credit-spread measure of Tobin’s q and shows that it

outperforms traditional q in predicting firm-level investment.1 At the same time, a large

and growing literature emphasizes the link between equity volatility and investment. Bloom

(2009) shows that shocks to uncertainty measured using implied equity volatility forecast

lower investment.2

We show why credit spreads perform better than equity volatility in predictive regressions

for firm-level investment. In doing so, we explain the finding in Gilchrist, Sim, and Zakraǰsek

(2014) that controlling for credit spreads substantially reduces the predictive power of equity

volatility for investment.3 We also clarify the distinct information in different measures of

firm-level volatility that have been used extensively in the literature on uncertainty and

investment. We show that asset volatility is an unambiguously positive signal for investment.

However, our results are not a challenge to the wait-and-see mechanism of Bloom (2009) or

Alfaro, Bloom, and Lin (2018). Those papers study the effect of a change in volatility. In

the data, it appears that firms’ sensitivity to the level of asset volatility is positive, while

shocks to volatility have a temporary negative effect. It is crucial to distinguish between

equity and asset volatility, and between levels and changes in studies of the relation between

volatility and investment.

The link between equity and debt in structural models of credit risk can be used to

understand the difference between debt and equity market signals for investment. We build

on the the seminal work of Merton (1974) and Leland (1994). In these models bond spreads

and equity volatility are tightly related and it may be surprising that credit spreads and

1See also the important contributions by Friedman and Kuttner (1998), Stock and Watson (1989),
Bernanke (1990), Gertler and Lown (1999), and Gilchrist, Yankov, and Zakraǰsek (2009), Giesecke, Longstaff,
Schaefer, and Strebulaev (2014), Krishnamurthy and Muir (2017).

2See Panousi and Papanikolaou (2012) for related evidence that the negative relation between idiosyncratic
equity volatility and investment is stronger when managerial ownership is higher.

3Gilchrist, Sim, and Zakraǰsek (2014) emphasize the role of financial frictions in exacerbating negative
effects from uncertainty on investment. See also Christiano, Motto, and Rostagno (2014) and Arellano, Bai,
and Kehoe (2019).
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equity volatility have different predictions. Indeed, Atkeson, Eisfeldt, and Weill (2017) show

theoretically that under very minimal assumptions the inverse of equity volatility is bounded

above by distance to insolvency and below by distance to default. Empirically that paper

shows that the (the inverse of) equity volatility and credit spreads have a tight log-linear

relationship.4 We emphasize that even if credit spreads and equity volatility contain similar

information about firms’ financial soundness, as long as debt and equity holders are not

united option values and debt overhang problems drive a wedge between debt and equity

market signals for investment.

The model and empirical motivation in Philippon (2009) also recognizes the structural

relationship between debt and equity claims in predicting investment. That paper emphasizes

the relationship between Tobin’s q and credit spreads whereas our focus is on equity volatility

and credit spreads. The model in Philippon (2009) cannot be used to understand our findings

that the sensitivity of investment to equity volatility changes sign in the cross section because

in that model leverage does not affect firm value or investment (the Modigliani and Miller

(1958) theorem holds). On the other hand, our model can be used to explain why credit

spreads negatively predict investment (and, the inverse of credit spreads positively predicts

investment).5

Our model embraces the fact that bonds capture downside risk better while equity prices

are more affected by growth options. We study the relationship between equity volatility

and credit spreads—the two most widely-used measures of risk based on equity and bond

markets data—and provide robust empirical evidence and a model of investment with debt

overhang that support the fact that it is precisely this difference that explains why bond

market data appears to have better forecasting power for real outcomes than equity market

4See also Campbell and Taksler (2003) which shows that idiosyncratic equity volatility explains as much
of the cross-sectional variation in bond yields as credit spreads do.

5See Proposition 2 in Philippon (2009) expressing q as approximately equal to ψ
δ(1+r)

1+rt
1+yt

where r is the

risk free rate, y is the coprorate bond yield, ψ is leverage and δ is the risk-neutral default rate. Figure I
presents numerical results for the full model.
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data. We also empirically rule out the notion that bond markets predict investment better

because they have more “smart money”.

We establish four main empirical facts. First, as documented by Gilchrist, Sim, and

Zakraǰsek (2014), credit spreads drive out equity volatility in an empirical model of the

sensitivity of firm-level investment to equity volatility and credit spreads. But, this result

is due to systematic heterogeneity in the elasticity of investment to equity volatility in the

cross section of firms. The elasticity of investment to equity volatility is positive for firms

far enough away from default, and negative otherwise. These different signs in the cross

section drive the pooled effect of equity volatility to be less significant than credit spreads.

By contrast, the elasticity of investment to credit spreads is always negative. Our model

is consistent with the interpretation in Gilchrist, Sim, and Zakraǰsek (2014) that financial

frictions are important for understanding the equity and bond market information. Our

model and empirical evidence support the idea that the fact that the interests of debt and

equity holders are not aligned is the key friction driving our results.

Second, we show that reason credit spreads predict investment better than equity volatil-

ity is not due to bond markets having more “smart money.” To do this, we repeat the above

analysis using credit spreads constructed using equity market data, leverage ratios and his-

torical default rates as inputs into a structural model.6 The results using these fair-value

spreads based on equity-market data are virtually identical to those using bond-market

spreads.

Third, both equity volatility and credit spreads are in large part driven by asset volatility

and leverage, as predicted by structural models of credit risk.7 However, credit spreads have

higher loadings on leverage, while equity volatility loads more on asset volatility. This is

6See Arora, Bohn, and Zhu (2005) and Nazeran and Dwyer (2015).

7Collin-Dufresn, Goldstein, and Martin (2001) show that changes in credit spreads also have a common
component that appears unrelated to structural determinants, however we show the majority of variation in
credit spread levels, and about one third of credit spread changes, can be explained by asset volatility and
financial leverage.
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intuitive given the priority of debt versus equity in firms’ capital structures and, together

with our fourth fact, is helpful for understanding why equity volatility might positively

impact investment decisions.

Fourth, the sensitivity of investment to asset volatility is positive for all firms. At least

two interpretations of that novel result are possible. First, as in our model, asset volatility

can boost the option value of equity, alleviate the debt overhang effect, and incentivize

equity holders to invest more (an causal channel). Alternatively, the uncertainty from future

investment could feed back into the volatility of current asset values (an endogeneity channel).

We show using a Granger causality test, using subsamples of R&D-intensive firms, and using

instrumental variables, that the first explanation is more likely.8

We build a simple model of investment to study the option value of asset volatility and the

debt overhang channel of credit spreads. Because of the debt overhang effect, equity holders

choose a suboptimal level of investment. An increase in asset volatility has the potential to

boost the option value for equity holders as, in the presence of debt with limited liability, they

face limited downside but unlimited upside. We show that, controlling for credit spreads,

an increase in asset volatility always has a positive effect on investment. In contrast, equity

volatility is an ambiguous signal for investment, as an increase in equity volatility can reflect

an increase in leverage or an increase in asset volatility, which have opposite impacts on equity

holders’ incentives to invest. Interestingly, we show that controlling for asset volatility and

leverage instead of asset volatility and credit spreads also leads to asset volatility being an

ambiguous signal for investment, a prediction of the model that we confirm in the data.

To document the importance of our findings for understanding the role of uncertainty

and credit spreads on aggregate activity, we plot the time series and cross section of the

estimated firms’ elasticity of investment with respect to equity volatility in Figure 2.4. Firms

with lower credit spreads which are further away from default display a positive elasticity of

8We follow the IV strategy in Alfaro, Bloom, and Lin (2018).
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investment, while firms with higher credit spreads display a negative elasticity. Aggregate

effects are driven by the movement of the entire cross section of firms away from and closer

to their respective default boundaries. Thus, a positive shock to equity volatility has a

particularly dire impact on investment when the entire cross section of firms is closer to

default. In contrast, Figure 2.5 shows that the elasticity of investment to credit spreads

is negative for all firm-quarters. We also confirm that our micro-results aggregate with

a recursive vector autoregression model of the aggregate time series of investment, asset

volatility, and credit spreads. As expected, the aggregate investment response to a positive

shock to asset volatility is positive while the response to a positive shock to credit spreads

is negative.

The remainder of the paper is organized as follows. Section 2.2 presents our firm-level

empirical results. In Section 2.3, we show that our results hold at the aggregate level. Section

2.4 presents our model to build economic intuition. Section 2.5 concludes.

2.2 Firm-level Panel Regressions

In this section, we establish our four main stylized facts. First, we show that credit spreads

drive out equity volatility in a horse-race to predict firm-level investment rates. Second, we

show that this result is not due to information in bond markets, but is instead due to the

non-linear transformation of asset volatility and leverage that credit spreads represent. To

do this, we use credit spreads constructed from equity market data and a structural model.

Third, we show that credit spreads load more on leverage while equity volatility loads more

on asset volatility. Finally, we show that the sensitivity of investment to asset volatility is

positive for all firms.

We use S&P’s Compustat quarterly database from 1984 to 2018. To compute equity

volatility, we use daily returns from the Center for Research in Security Prices (CRSP)

database or implied volatility from Option Metrics (1996-2018). Bond prices come from
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the Lehman/Warga (1984-2005) and ICE databases (1997-2018). Appendix 2.8 contains

detailed definitions for each variable we study. Our main sample contains 1,273 unique firms

and 42,580 firm-quarter observations. Table 2.1 provides summary statistics.

To establish our four key stylized facts, we start by presenting a set of firm-level panel

regressions of investment rates on measures of volatility and credit spread:

log[I/K]i,t = β1 logX
σ
i,t−1 + β2 logX

cs
i,t−1 + γXi,t−1 + ηi + λt + ϵi,t, (2.1)

where log[I/K]i,t is the log of investment rate of firm i in period t, Xσ
i,t−1 denotes measures of

volatility (such as idiosyncratic equity volatility σe
i,t−1 or idiosyncratic asset volatility σi,t−1),

and Xcs
i,t−1 denotes measures of credit risk (such as credit spread csi,t, fair value spreads

ĉsi,t−1, or market leverage [MA/ME]i,t−1), all lagged by one quarter. We control for firm

and time fixed effects by including ηi and λt. Following Alfaro, Bloom, and Lin (2018), our

control variables Xi,t−1 include the lag of firm i’s return on equity, log tangibility, log sale

ratio, log income ratio, and log Tobin’s q.9

Equity Volatility and Credit Spread We first replicate the results in Gilchrist, Sim,

and Zakraǰsek (2014) that the adverse effect of idiosyncratic equity volatility on investment

is dampened when controlling for credit spreads. Table 2.2 presents the estimation results

of equation (2.1) using equity volatility and credit spread as control variables.

As shown in Columns 1-3 of Table 2.2, the coefficient on idiosyncratic equity volatility and

credit spread are statistically significant and economically important on their own (Columns

1-2). However, when both measures are included in the regression, the coefficient on equity

volatility is substantially reduced both in terms of magnitude and statistical significance

while the coefficient on credit spread is unaffected (Column 3).

9Controlling for return on assets instead of return on equity when using asset volatility measures does
not change any of our results.
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To see why bond spreads can drive out equity volatility, we sort firms into tercile groups

based on credit spread each quarter and run the same regression for these subsamples

(Columns 4-6).10 We find that the coefficient on equity volatility changes sign in the cross

section: it is significantly positive among firms with low credit spread and significantly neg-

ative among firms with high credit spread. Column 7 shows results from the regression with

an interaction term and confirms our findings from Columns 4-6. The last column shows that

the result in Column 7 is robust to adding control variables. A simple back-of-the-envelope

calculation using estimations in Column 7 suggests that the sign flip happens at a credit

spread level of 181 basis points.

In Table 2.3, we replace credit spreads with fair value spreads. The results are quali-

tatively identical to Table 2.2. The coefficient on equity volatility goes from significantly

positive to significantly negative as firm’s credit spread goes up, while the coefficient on

the fair value spread remains significantly negative across the subgroups. As the fair value

spreads are constructed with only equity market information and does not contain bond mar-

ket information, the results from Table 2.3 cannot be driven by differences in the investor

base or information about financial frictions only reflected in credit spreads.

Asset Volatility and Credit Spread Equity volatility can be decomposed into asset

volatility and market leverage. Here we construct asset volatility by first unlevering equity

returns with market leverage and then computing the idiosyncratic volatility of these un-

levered returns. Later we will show that our results are robust to using other measures. In

Table 2.4, we run the same regression but we replace idiosyncratic equity volatility σe
i,t with

idiosyncratic asset volatility σi,t. The coefficient on asset volatility is always positive and

statistically significant in the full sample and in all subgroups.

In our model, equity holders make investment decisions given uncertainty about future

10This method of splitting uses quarter-specific cutoffs. Using fixed cutoffs to sort all firm-quarter obser-
vations leads to similar results.
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returns. In Table 2.5, we replicate the same exercise but with implied asset volatility from eq-

uity options. The results are economically stronger11 than the results with volatility derived

from past equity return observations, lending support to the idea that it is the expectation

of future asset volatility that drives changes in investment, not past uncertainty.12

Given the decomposition of equity volatility, a natural question is whether the coefficient

on asset volatility is also positive when market leverage is used as an additional explanatory

variables for investment. As shown in Table 2.6, the coefficient on asset volatility changes

sign in the cross-section when the level of credit spread is not controlled for. In the model

section, we rationalize this finding by showing that, together, leverage and asset volatility

are not unambiguous signals of debt overhang and option value.

Loadings Asset volatility and leverage are also important drivers for bond spreads. To

understand why there is no such sign flip for credit spreads, we consider the loadings of

credit spreads and equity volatility on asset volatility and leverage and estimate the following

equation:

log yi,t = β1 log σ̃i,t + β2 log[MA/ME]i,t + ηi + λt + ϵi,t,

where yi,t is either the equity volatility (σe
i,t) or the credit spread (csi,t), and [MA/ME]i,t is

market leverage.13 We estimate the equation both in levels and in first differences.

Table 2.7 summarizes the results. Columns 1-2 show how the levels of equity volatility

and credit spread load on levels of asset volatility and leverage, and columns 3-4 show how

the changes load on corresponding changes. Both specifications imply that changes in bond

spreads are mainly driven by leverage, while changes in equity volatility are driven by both

11The coefficient is twice as large and statistically more significant when we restrict the regression in Table
2.4 to firms with observable implied asset volatility. See Table 2.22.

12Lettau and Ludvigson (2002) emphasize the information about future investment returns contained in
asset prices.

13We use asset volatility derived from Merton’s model σ̃i,t instead of σi,t such that the decomposition in
levels is not mechanical.
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asset volatility and leverage. Since shocks to asset volatility and leverage impact investment

differently, bond spreads and equity volatility contain different information for investment.

In Appendix 2.10, instead of using the firm’s asset volatility and market leverage directly,

we use the industry-level regressors, constructed as a simple average of all firms in the same

industry excluding the firm itself. This exercise shows similar patterns that equity volatility

loads more on asset volatility while credit spread loads more on leverage.

Thus, an increase in equity volatility could either signal an increase in asset volatility

(positive for investment) or in leverage (negative for investment). Whether one force domi-

nates the other changes in the cross-section. As seen in Table 2.4, the asset volatility effect

weakens as firms’ credit spreads increase, while the leverage effect strengthens.14 Thus, the

sensitivity of investment to equity volatility becomes negative when the leverage effect dom-

inates for firms with higher credit spreads. Although credit spreads are also a combination

of asset volatility and leverage, the loading of credit spreads on asset volatility is not large

enough to ever drive a positive relation between credit spreads and investment.

In light of this decomposition, we consider another reduced-form measure of asset volatil-

ity: the residual of a panel regression of the log of idiosyncratic equity volatility on the log of

market leverage with time and firm fixed effects, denoted σ̊i,t. Thus, this measure captures

the changes in equity volatility that are orthogonal to changes in leverage. Table 2.8 confirms

again that once we control for changes in leverage, an increase in volatility is associated with

an increase in future investments.

Our third alternative measure of asset volatility is given by the asset volatility derived

from Merton’s model. Table 2.9 confirms again that our results are robust to using different

measures of asset volatility.15

14The statistical significance of not only the credit spreads coefficient in Table 2.4 but also the leverage
coefficient in Table 2.6 strengthens when credit spreads are higher.

15All of our regression results hold with asset volatility derived from Merton’s model.
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Tobin’s q The q theory of investment predicts a strong relation between firms’ market

values and investment. While earlier work has shown that a simple regression of investment

on Tobin’s q performs quite poorly.16 Philippon (2009) proposes a new aggregate measure

of Tobin’s q derived from bond credit spreads and shows that it dramatically outperforms

the equity market based measure of Tobin’s q. In Table 2.10, we compare the performance

of Tobin’s q to predict investment with the performance of credit spread and asset volatility.

At the firm level, Tobin’s q is a strong predictor of investment rates and is not subsumed by

credit spreads. As more than 80% of our observations come from after 1995, our results are

aligned with Andrei et al. (2019) that show that the relation between aggregate investment

and Tobin’s q has become remarkably tight after 1995.

Zero-Leverage Firms An important restriction of our analysis so far is that we focus

on the subset of firms with observable credit spreads. In Columns 1, 2, 4, and 5 of Table

2.11, we show that our results are still valid for firms without observable credit spreads: the

elasticity of investment with respect to equity volatility switches sign in the cross-section

when controlling for their distance-to-default. In Columns 3 and 6 of Table 2.11, we see

that for zero-leverage firms (for which equity volatility and asset volatility are equivalent),

the impact of equity/asset volatility is either negative or insignificant, consistent with our

results being driven by the presence of debt overhang.

2.2.1 Endogeneity

We hypothesize that the positive correlation between investment and asset volatility is most

likely driven by two mechanisms: (i) due to higher investments, the value of the assets of the

firm become more uncertain and (ii) an increase in business risk makes the value of assets in

place more volatile and incentivizes firms to invest more. In this section, we document four

16For examples, see Fazzari, Hubbard, and Petersen (1988), Kaplan and Zingales (1997), Gilchrist and
Himmelberg (1995), Erickson and Whited (2000), Gomes (2001), Cooper and Ejarque (2003), Moyen (2004),
Abel and Eberly (2011), and Peters and Taylor (2017) among others.
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tests that lend support for the later mechanism dominating the former.

Lags and Investment Intensity If asset volatility increases because of uncertainty driven

by more investment in place, we would expect that (i) an increase in investment to Granger-

cause an increase in asset volatility and (ii) that the correlation is more pronounced for

firms with higher levels of research and development or investment. Table 2.12 shows that

the coefficients on asset volatility are statistically and economically larger to explain the

variation in investment with lags rather than leads. This pattern is even stronger when

using Merton’s asset volatility measure or implied asset volatility (see Table 2.24 and Table

2.25). Table 2.13 shows that our results are weaker for firms with higher levels of research

and development or investment. Thus both exercises suggest that this potential mechanism

is not driving our results.

Instrumental Variables We follow closely the instrumentation strategy of Alfaro, Bloom,

and Lin (2018) to address endogeneity in estimating the impact of equity and asset volatility

on investment. First, we estimate sensitivities to energy, currencies, treasuries, and policy at

the industry level as the factor loadings of a regression of a firm’s daily stock return on the

price growth of energy, 7 currencies, return on treasury bonds, and changes in daily policy

uncertainty from Baker, Bloom, and Davis (2016). That is, for firm i in industry j, the

sensitivity βc
j is estimated as follows:

ri,t = αj +
∑
c

βc
j · rct + εi,t,

where ri,t is the daily risk-adjusted return on firm i, rct is the change in the price of commodity

c, and αj is industry j’s intercept.

The risk-adjusted returns ri,t are the residuals from running firm-level time-series regres-

sions of daily CRSP stock returns on the classical Carhart (1997) four-factor asset pricing

model. When constructing instruments for equity volatility, we use equity risk-adjusted re-
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turns, while we use delevered equity risk-adjusted returns when constructing instruments for

asset volatility. We estimate the betas for the risk-adjusted returns and the sensitivity βc
j

yearly and using the same 10-year window.

Next, for these 10 aggregate market price shocks (oil, 7 currencies, treasuries, and pol-

icy) we multiply the absolute value of their time-varying sensitivities |βc
j | by their implied

volatilities σc
t . This provides 10 instruments for lagged firm-level uncertainty, as follows:

zci,t−1 = |βc
j | · σc

t−1.

We refer the reader to Alfaro, Bloom, and Lin (2018) for further details on the construction

of the instrumental variables. The key differences with their regressions is that we estimate

the impact of the level of volatility on the level of investment and not the impact of shocks

to volatility. Thus, we construct instruments for the level of volatility rather than volatility

shocks.

Importantly, our results—a higher level of asset volatility is associated with a higher level

of investment—are compatible with the results of Alfaro, Bloom, and Lin (2018)—a positive

shock to uncertainty is associated with a lower level of investment. Indeed, while firms

might postpone their investment following a large temporary uncertainty shocks, they can

still invest more when the level of uncertainty is persistently higher. We illustrate that point

in Table 2.14 by adding the shock to implied asset volatility ∆ log σ̂i,t−1 = log σ̂i,t−1−log σ̂i,t−2

as an additional control variable similar to the uncertainty shock of Alfaro, Bloom, and Lin

(2018).17

In Table 2.15, we show the results of our instrumental variable regression. Our main

results hold: asset volatility has an unconditional positive impact on investment. Note

however that the low Kleibergen-Paap F-statistic indicates that the excluded instruments

17When using asset volatility instead of implied asset volatility, the shock to asset volatility is not significant
anymore as shown in Table 2.26.
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are correlated with the endogenous regressors, but only weakly.

Covenant Tightness As we are attributing the main force driving our results to debt

overhang, we expect this coefficient to be stronger when debt holders have tighter control

over cash flows resulting from investment. To test this hypothesis, we split the sample into

two groups according to its covenant tightness following the measurements of Kermani and

Ma (2020). The observations with the overall measure of distance between actual financial

ratios and covenant thresholds below median are placed in the “Tight Covenant” group, and

the remaining are assigned to the “Slack Covenant” group. We estimate equation (2.1) with

the interaction term using the two subsamples. The results are summarized in Table 2.16.

For the subsample with tight covenant, all the coefficients are larger in absolute value, and

are statistically more significant. This exercise provides empirical support for our model

with debt overhang as a key distorting force.

2.2.2 Excess bond premium

Our discussion emphasizes that credit spreads are in large part driven by asset volatility

and leverage, while a long-standing literature points out that a nontrivial fraction of credit

spreads cannot be explained by credit risk. In particular, Gilchrist and Zakraǰsek (2012)

decompose the aggregate credit spread into two components: a component that captures the

movements in default risk based on fundamentals (the predicted component) and a residual

component (the excess bond premium). They show that, in the aggregate, the excess bond

premium has substantial predictive content for future economic activity and outperform the

predicted component of credit spreads.

To speak to this literature, we construct the excess bond premium following the method-

ology of Gilchrist and Zakraǰsek (2012). First, we estimate the following panel regression:

log csi,m[k] = γ ′Xi,m[k] + ϵi,m[k],
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where the log of credit spread on bond k issued by firm i in month m is regressed on a

vector of bond-specific characteristics Xi,m[k] for bond k issued by firm i.18 We then build

a firm-level quarterly excess bond premium as the quarterly average of the residuals for all

bonds issued by the firm during that quarter: log(ebpi,q) =
1
3

∑q3
m=q1

1
Nk

i,m

∑Nk
i,m

k=1 ϵi,m[k], where

qn is the nth month of quarter q and Nk
i,m is the number of bonds of firm i in month m.

As shown in Table 2.17, the firm-level excess bond premium is in itself a strong predictor

of investment. This is consistent with the notion that an increase in the firm-level excess

bond premium reflects an increase in the cost of capital of the firm and, as a result, a

contraction in future investments. Interestingly, the impact of asset volatility is marginally

stronger when controlling for the firm-level excess bond premium.

2.3 Aggregates

Time Series To understand the implications of our findings for time series, we plot the

elasticity of investment rate with respect to equity volatility, asset volatility, and credit spread

across time and across firms using the estimates from the regressions with interaction terms.

In Figure 2.4, we compute the overall coefficient on equity volatility at each credit spread

level using estimates on equity volatility (log σe
i,t) and the interaction term (log σe

i,t× log si,t)

reported in the last column of Table 2.2. We repeat the procedure for credit spreads in

Figure 2.5. Figure 2.4 shows that the cross section of elasticities of investment with respect

to equity volatility varies a lot over time. In particular, this coefficient is negative for the

whole cross-section of firms during the Great Recession, while it is mainly positive in the

late 1980s. By contrast, in Figure 2.5, the elasticity of investment to credit spreads remains

18The bond characteristics Xi,m[k] include the firm’s distance-to-default, bond’s amount outstanding,
duration, coupon rate, and an indicator variable for callable bonds. It also includes the interactions of
callability with these bond characteristics, firm’s distance-to-default, the level, slope, and curvature of the
Treasury yield curve, as well as the realized monthly volatility of the daily ten-year Treasury yield, reflecting
the value of the call option embedded in callable bonds. The industry fixed effects and credit rating fixed
effects are included as well.
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negative, both in the cross-section and over time.

VAR Analysis Using an identified vector autoregression (VAR) framework, we confirm

that our micro-level result—asset volatility has positive impact on investment—still holds

at the macro-level. We aggregate the variables in our sample and estimate a simple VAR

consisting of the three endogeneous variables: the log of idiosyncratic asset volatility (log σt),

the log of credit spread (log st), and the log of investment rate (log[I/K]t).
19 We employ a

standard recursive ordering technique and consider two identification schemes, one in which

credit spread has an immediate impact on asset volatility and the other where asset volatility

has immediate impact on credit spread.

Figure 2.6 reports the impulse responses of investment rate to credit spread and asset

volatility using the two specifications. Credit spread has a negative impact on investment

while asset volatility has a positive impact. As shown in panel (a) and (c) of Figure 2.6, the

positive impact of asset volatility on investment is economically and statistically larger in

the first specification, highlighting the importance of controlling for credit spread for asset

volatility to be a strong positive signal for investment in the aggregate.

2.4 Investment Decisions with Debt Overhang

In this section, we develop a simple but general credit risk model to analyze the investment

choices of a firm with outstanding debt already in place. Two forces drive the investment

decision: debt overhang and the option value of equity. We demonstrate that credit spreads

and asset volatility are jointly unambiguous signals of these two forces. However, the signals

provided by leverage and equity volatility are ambiguous and can change in the cross-section.

All proofs are relegated to Appendix 2.9. For ease of notation, we sometimes write fx(x) ≡

19We use the value-weighted average of σi,t, si,t and [I/K]i,t to generate the corresponding aggregate time
series. We seasonally adjust the investment rate time series by subtracting a seasonal average computed over
the previous five years. All variables are detrended using the HP filter with weight 1600.
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∂f(x)
∂x

.

Consider a firm has funded itself partly with debt. In the first period, shareholders

choose how much capital to invest in the firm subject to convex costs. In the second period,

a random productivity shock is realized, and, after observing the payoff of their investment,

shareholders decide whether to file for bankruptcy or not. For our basic argument, we make

the following assumptions regarding the firm and its investments.

Assumption 1 (Investments). The firm has the option to invest in capital with a final value

of iz, which is a function of investment i and a random productivity shock z realized in the

second period. The convex function ϕ(i)K captures the total cost of investment.

Assumption 2 (Firm Liabilities). The firm is funded by equity, together with a debt claim

with total face value B that is due in the second period when the asset returns are realized.

In the second period, shareholders decide whether to default. Upon bankruptcy, the entirety

of the firm’s value is lost. Furthermore, shareholders cannot liquidate the firm (i ≥ 0).

We show that our results are robust to a relaxation of Assumption 2 featuring complete

or partial recovery of the firms’ assets upon bankruptcy in Appendix 2.9.

Assumption 3 (Pricing). All securities are traded in perfect Walrasian markets. We nor-

malize the risk-free interest rate to zero and set prices of securities equal to their expected

payoff with respect to a risk-neutral distribution F (z;σ) of firm’s asset productivity z with

full support on [0,∞).

Given our assumptions about payouts and pricing, it follows that the value of equity e

and debt d are given by:

e(b, σ) = max
i,z

∫ ∞

z

(iz − b)dF (z;σ)− ϕ(i),

d(b, σ) = (1− F (z(b, σ);σ))b.
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The first order conditions for investment i and the default threshold z imply that, at an

optimum, i and z satisfy:

∫ ∞

z

zdF (z;σ) = ϕi(i), (2.2)

iz = b. (2.3)

The credit spread of the firm is defined as cs(z, σ) ≡ F (z;σ)/(1−F (z;σ)).20 We define book

leverage as b.21 To streamline our analysis, we also make assumptions on the distribution of

productivity shocks, F (z;σ), which are satisfied with the Black–Scholes–Merton model used

in the calculation of the Greek risk measures and most risk distributions usually considered

in finance.

Assumption 4 (Vega). The distribution of the productivity shock F (z;σ) is such that vega

is always positive:

ν(z, σ) =
∂

∂σ
E [(z − z)+] > 0

for z > 0. Furthermore, the standard deviation σ of z is a finite moment of the distribution

F (z;σ) and we normalize the size of the productivity shock with E[z] = 1.

The model has two free parameters, leverage b and asset volatility σ. The model has two

endogenous decision variables, investment i and the default threshold z. We use this simple

model to study the behavior of investment following changes in the key observable variables

from our empirical section: asset volatility σ, leverage b, credit spreads cs, equity volatility

σe, and Tobin’s q. Without measurement error, in our model it is sufficient to observe only

20The credit spread is the difference between the yield of the corporate bond y and the risk-free rate. As
the risk-free rate is assumed to be 0 in this simple model, and the yield is given by y = b/D(K,B, σ) − 1,
we get cs = F/(1− F ).

21We already normalized the size of the firm by assuming that there is not capital in place in the first time
period and that E[z] = 1.
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two non-perfectly correlated functions of the parameters and endogenous variables to identify

these parameters.

Proposition 1 (Credit Spread and Asset Volatility). Holding asset volatility constant, the

partial derivative of investment with respect to credit spread is given by:

∂i

∂cs
= −z(1− F (z;σ))2

ϕii(i)
≤ 0. (2.4)

Holding credit spread constant, the partial derivative of investment with respect to asset

volatility is given by:

∂i

∂σ
=
ν(z, σ)

ϕii(i)
≥ 0. (2.5)

In Proposition 1, we provide the elasticities of investment when observing asset volatility

and credit spread. Given Assumptions 1-4, the sign of these partial derivatives match our

empirical results. When the credit spread increase, the debt overhang problem intensifies

and there are less incentives for equity holders to invest. As asset volatility increase, the

option value of equity dilutes the debt overhang problem and incites equity holders to invest

more. When there is no debt (b = 0) and therefore no credit risk (z = 0), these partial

derivatives are equal to 0 and the firm does not underinvest anymore.

In terms of the magnitude of the negative impact of credit spreads on investment, the

nominator of equation (2.4), z × (1 − F (z;σ))2, represents the marginal product lost in

default z times a term that arises due to the nonlinearity of credit spreads with respect to

the default probability. If cs was approximated with F instead of F/(1 − F ), that term

would disappear. In the denominator, we note the role of the convexity of the adjustment

cost function. If the cost of adjusting the stock of capital is more convex in investment, the

impact is attenuated as firms do not have to adjust the stock of capital that much to reduce

the marginal cost of investment.
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By contrast, investment reacts positively to an increase in volatility as the payout to

shareholders is non-linear with limited downside and unlimited upside, that is, vega ν(z, σ)

is positive.

Thus, in this simple model with fairly general and standard assumptions, the signs of

the effects of credit spreads and asset volatility on investment are unambiguous. Changes in

credit spreads cs signal changes in the debt-overhang burden and changes in asset volatility

σ signal changes in the option value of equity. In Figure 2.1, we illustrate the optimal

investment function with a log-normal distribution of risk.

We now compare the straightforward roles of credit spreads and asset volatility in deter-

mining investment with the more intricate relation between leverage and asset volatility in

investment decisions. This analysis exemplifies why credit spreads and asset volatility are

clean empirical measures of the effects of financial soundness and option value on investment

decisions.

Proposition 2 (Leverage and Asset Volatility). Holding asset volatility constant, the partial

derivative of investment with respect to leverage is given by:

∂i

∂b
= − zf(z;σ)

φ(i, z, σ)
≤ 0, (2.6)

where

φ(i, z, σ) ≡ ϕii(i)i− z2f(z;σ) > 0.

Holding leverage constant, the partial derivative of investment with respect to volatility is

given by:

∂i

∂σ
=

i

φ(i, z, σ)

(
ν(z, σ)− zFσ(z;σ)

)
. (2.7)

Proposition 2 shows that if, instead of controlling for credit spreads cs, we observe leverage

86



b, the elasticities of investment become more intricate. In equation (2.6), the numerator still

represents the marginal product lost to default. In the denominator, the term φ captures the

feedback loop between investment and default decisions. Following a decrease in investment,

shareholders default more often as output and incentives to pay back the debt decrease.

That additional force was not present in Proposition 1, since changing credit spreads cs(z;σ)

controls for the default decision z directly. Holding leverage constant instead controls for

b = iz) (see the first order condition for z in equation (2.3)), which is a function of both i

and z. This term φ is always positive due to the second-order conditions for a maximum,

and the sign of the effect of leverage on investment holding asset volatility constant is always

negative.

Turning to the effect of asset volatility on investment holding leverage constant, the

sign now becomes ambiguous. Intuitively, there are two effects to increasing asset volatility

holding leverage constant. The first is that the option value of investment increases. The

second is that the debt overhang problem also increases. To hold leverage b = iz constant

as asset volatility increases, the default threshold z must change and the distance to default

could shrink faster than the increase in the option value. The term ν(z, σ) − zFσ(z;σ)

captures this horse race between option value and what is lost in default as asset volatility

increases. If the option value effect is strong, this term will be positive. If the increase in

asset volatility moves a large probability mass into the default region (zFσ(z;σ) > 0), this

term can be negative. In other words, when the marginal increase in investment returns lost

to default zFσ(z;σ) dominates the marginal increase in the option value ν(z, σ), shareholders

reduce investment following an increase in volatility.

Which effect dominates is highly dependent on the shape of the distribution F (z;σ). In

Figure 2.2, we plot the optimal investment decision as a function of asset volatility σ when

holding leverage b constant assuming a log-normal distributions for z. The monotonic rela-

tion between leverage and investment holding asset volatility constant is clear. However, the

relation between investment and asset volatility holding leverage constant is non-monotonic.
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When leverage is high, the option-value effect dominates while the debt overhang effect

dominates when leverage is low.

Next, we consider the changes in investment when observing credit spreads and equity

volatility, and illustrate the intuition our model suggests for the empirical finding that the

sign of the elasticity of investment with respect to equity volatility changes sign in the cross

section of more and less distressed firms. First, we define equity volatility as

σe(z, σ) ≡ σ

E [(z − z)+]
.

Thus, equity is simply levered asset volatility,22 where the denominator represents the impact

of leverage on equity volatility. If the debt burden from leverage b increases, then the default

threshold z increases as well and equity’s expected payoff per unit of capital E [(z − z)+]

decreases. Conversely, if the firm is funded entirely by equity (b = 0), then z is equal

to zero—the lower bound of the support. In that case, equity volatility is equal to asset

volatility (σe(z, σ) = σ) since E[z] = 1.

Proposition 3 (Credit Spread and Equity Volatility). Holding equity volatility constant,

the partial derivative of investment with respect to credit spreads is given by:

∂i

∂cs
= −z(1− F (z;σ))2

ϕii(i)
ξcs(z, σ), (2.8)

22Given our model, equity volatility could include the impact of investment and the truncation of equity
volatility above the default threshold and be given by√

Var [i(z − z)+ − ϕ(i)]

E [i(z − z)+ − ϕ(i)]
.

In this case, our key insight—equity volatility is an ambiguous signal for investment—still holds but the
elasticities become undecipherable.
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where

ξcs(z, σ) ≡
∫∞
z
z/zdFσ(z;σ)σ

e
z(z, σ) + f(z;σ)σe

σ(z, σ)

f(z;σ)σe
σ(z, σ)− Fσ(z;σ)σe

z(z, σ)
.

Holding credit spread constant, the partial derivative of investment with respect to equity

volatility is given by:

∂i

∂σe
=
ν(z, σ)

ϕii(i)
ξσe(z, σ), (2.9)

where

ξσe(z, σ) ≡ f(z;σ)

f(z;σ)σe
σ(z, σ)− Fσ(z;σ)σe

z(z, σ)
.

We defines the wedges ξcs and ξσe to make the distinction between Propositions 3 and

1 clear. It is easiest to start with the relation between investment and equity volatility

holding credit spread constant. To understand the additional complication when using equity

volatility as a signal of uncertainty, it is useful to look at the partial derivative of equity

volatility with respect to asset volatility σ and the default threshold z:

σe
σ(z, σ) =

1

E [(z − z)+]
− σν(z, σ)

E [(z − z)+]2
and σe

z(z, σ) =
σ (1− F (z;σ))

E [(z − z)+]2
≥ 0.

As shown in these equations, when the option value impact of asset volatility ν(z, σ) is large,

equity volatility decreases following a positive shock to asset volatility. Indeed, the increase

in the payoff to equity holders (denominator of σe) gets larger than the relative increase

in asset volatility (numerator of σe). Add to that effect that to keep the credit spread cs

constant, the default threshold z needs to decrease, and it is not surprising anymore that

following a positive asset volatility shock, equity volatility might decrease. Corollary 1 makes

that argument explicit.
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Corollary 1 (Equity Volatility and Asset Volatility). If the total derivative of the default

threshold with respect to asset volatility is such that:

dz

dσ
<
σν(z, σ)− E [(z − z)+]

σ(1− F (z;σ))
,

then the total derivative of equity volatility with respect to asset volatility is negative:

dσe(z, σ)

dσ
< 0.

These additional forces are captured by the wedges ξcs and ξσe such that the signs of the

elasticities of Proposition 3 are highly dependent on the shape of the risk distribution F and

the level of leverage and volatility of the firm, contrarily to the robust signs of the elasticities

of Proposition 1.

Lemma 1 (Existence of Credit Spread and Equity Volatility Pair). Given (cs, σe) ∈ [0, 1]×

R+, there does not always exist a solution (z, σ) ∈ R+ × R+ to the following system of two

equations:

cs =
F (z;σ)

1− F (z;σ)
, σe =

σ

E [(z − z)+]
.

Furthermore, the solution might not be unique.

Following Lemma 1, these non-monotonicities also complicate the mapping of investment

decisions in the (cs, σe)-space. Thus, in Figure 2.3, instead of directly plotting investment

as a function of cs and σe, we show the sign of the wedges in the (cs, σ)-space for two

distributions: a log-normal distribution and a log-normal mixture distribution. In the case

of the log-normal distribution, the wedges are either both positive (white area), such that

the signs of the elasticities are identical to Proposition 1, or both negative (light gray area),

such that the signs of the elasticities are opposite to Proposition 1.
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The mixture distribution is a mixture of two log-normal distributions (see caption of

Figure 2.3) and therefore bimodal. This risk distribution could correspond to a technology

where the productivity shock is drawn from either a bad (low mean) or a good (high mean)

distribution. In this case, an increase in uncertainty could have a large effect on the option

value without substantially impacting default risk. Thus, a third area (dark grey) appears,

where the elasticities with respect to credit spread and equity volatility are both negative. In

the example of Figure 2.3, fixing asset volatility to 0.3, the elasticity with respect to equity

volatility is positive for low credit spread level (cs ≤ 0.15) and negative for high level of

leverage (0.30 ≤ cs ≤ 0.8) while the elasticity with respect to credit spread is negative in

both of these interval. Thus, in that example, we observe the same change of sign for equity

volatility in the cross-section as in our empirical setting.

Finally, we can study the model’s prediction for the relationship between Tobin’s q and

investment. As in Philippon (2009), we define Tobin’s q by the market value of the firm

scaled by it’s end-of-period assets:

q =

∫ ∞

z

zdF (z;σ) = ϕi(i).

As it is the case in most models of investment, Tobin’s q equates to the marginal cost of

investment, ϕi(i), as implied by the first order condition for investment in equation (2.2).

Thus, observing q directly pins down the investment level i and credit spread and asset

volatility have no additional predictive information for investment.23 Of course, in the pres-

ence of measurement error, other signals for investment incentives not perfectly correlated

with q can have additional predictive content, as in our empirical analysis.

23This result also holds if debt holders can retrieve a fraction α of the capital after bankruptcy. Indeed,
in that case Tobin’s q becomes

q =

∫ ∞

z

zdF (z;σ) + α

∫ z

0

zdF (z;σ) = (1− α)ϕi(i) + α

since
∫∞
0
zdF (z;σ) = 1.
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In Appendix 2.11, we show that our results hold in a setting with leverage dynamics with

endogenous debt issuance. We extend the framework of DeMarzo and He (2020) to include

an investment function and show that Proposition 1 still holds.

2.5 Conclusion

A large literature has focused on measuring the impact of uncertainty on real economic

activity. In this paper, we show that equity volatility—a measure often used to proxy for

uncertainty both at the firm and the aggregate level—is an ambiguous signal for investment

decisions and might not be a good proxy for uncertainty. Intuitively, if a positive uncertainty

shock causes a large increase in the option value of equity, equity volatility might go down.

Furthermore, we find that uncertainty can have a positive impact on real economic activity

by alleviating the debt overhang problem. Overall, our model and evidence provide support

for the idea that the close connection between bond markets and the macroeconomy is due

to the unique non-linear transformation of asset volatility and leverage that credit spreads

represent.
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2.6 Appendix: Figures

Figure 2.1: Optimal investment as a function of credit spread and asset volatility
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Notes: The left picture shows the level of investment i as a function of credit spreads cs for
different levels of asset volatility σ, while the right figure shows the level of investment i as
a function of asset volatility σ for different levels of credit spreads cs. The adjustment cost
function is given by: ϕ(i) = iγ with γ = 2.

Figure 2.2: Optimal investment as a function of leverage and asset volatility

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Notes: The left picture shows the level of investment i as a function of leverage b for different
levels of asset volatility σ, while the right figure shows the level of investment i as a function
of asset volatility σ for different levels of leverage b. The adjustment cost function is given
by: ϕ(i) = iγ with γ = 2.
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Figure 2.3: Sign of wedges for log-normal and log-normal mixture distributions

Notes: These pictures shows the sign of the wedges of Proposition 3 in the (cs,σ)-space for
the log-normal distribution (left) and a log-normal mixture distribution (right). The mixture
distribution is a mixture of two log-normal distributions drawn with 50% probability with
parameters (µ1, σ̂) and (µ2, σ̂) such that the unconditional mean of z is 1 and the standard
deviation of z is σ. We set σ̂ = 0.2 in this example.
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Figure 2.4: Elasticity of investment with respect to equity volatility
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Notes: This figure presents the elasticity of investment with respect to equity volatility
across time and across firms using the estimates from the regressions with interaction
terms. In each quarter we generate five cutoffs in the cross-section of log credit spread:
{p10, p30, p50, p70, p90}. Using the estimates in column 7 of Table 2.2 on log[I/K]i,t =
β1 log σ

e
i,t + β2 log csi,t + γ log σe

i,t × log csi,t + ηi + λt + ϵi,t, the elasticity at each cutoff point
is computed as β1 + γpn, n = 10, 30, 50, 70, 90.
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Figure 2.5: Elasticity of investment with respect to credit spread

1985 1990 1995 2000 2005 2010 2015
-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

Notes: This figure presents the elasticity of investment with respect to credit spread
across time and across firms using the estimates from the regressions with interaction
terms. In each quarter we generate five cutoffs in the cross-section of log equity volatil-
ity: {p10, p30, p50, p70, p90}. Using the estimates in column 7 of Table 2.2 on log[I/K]i,t =
β1 log σ

e
i,t + β2 log csi,t + γ log σe

i,t × log csi,t + ηi + λt + ϵi,t, the elasticity at each cutoff point
is computed as β2 + γpn, n = 10, 30, 50, 70, 90.
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Figure 2.6: Impulse responses of investment to shocks to asset volatility and credit spread
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(b) Credit spread
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(c) Asset volatility
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(d) Credit spread

Notes: This figure plots the impulse responses of investment to an orthogonalized 1 standard
deviation shock to asset volatility and credit spread. The VAR is estimated using four lags
of each endogenous variable. Subfigures (a) and (b) correspond to the recursive ordering:
(cs, σ, I/K). Subfigures (c) and (d) correspond to the recursive ordering: (σ, cs, I/K). The
shaded bands represent the 95% confidence interval.
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2.7 Appendix: Tables

Table 2.1: Summary statistics

count mean sd min max
idiosyncratic equity volatility σe 42747 0.28 0.16 0.07 2.12
implied equity volatility σ̂e 18228 0.34 0.15 0.12 1.58
idiosyncratic asset volatility σ 42263 0.14 0.07 0.01 0.82
Merton’s idiosyncratic asset volatility σ̃ 38628 0.19 0.10 0.05 1.72
implied asset volatility σ̂ 18137 0.19 0.07 0.03 0.72
residual asset volatility σ̊ 42222 0.00 0.37 -1.39 1.72
market leverage [MA/ME] 42222 2.36 2.28 1.06 173.37
credit spreads cs 42747 300.75 245.91 8.73 1912.25
fair value spreads ĉs 30873 151.99 249.22 9.15 1822.99
distance-to-default DD 36875 5.98 3.29 -2.01 23.29
return on equity 42282 0.15 0.51 -0.98 16.73
tangibility ratio 34042 0.71 0.42 0.01 3.98
sales ratio 42141 1.47 2.91 0.02 52.73
income ratio 39968 0.20 0.32 -3.27 7.89
Tobin’s q 32304 2.44 3.73 -2.52 62.52
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Table 2.2: Relationship between investment, equity volatility, and credit spread

log[I/K]i,t = β1 log σe
i,t−1 + β2 log csi,t−1 + β3 log σe

i,t−1 × log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6) (7) (8)
all all all low cs mid cs high cs all all

log σe
i,t−1 -0.150*** -0.057*** 0.048** -0.031 -0.107*** 0.712*** 0.537***

(-8.30) (-3.67) (2.55) (-1.38) (-3.90) (8.48) (6.11)
log csi,t−1 -0.269*** -0.253*** -0.119*** -0.231*** -0.445*** -0.435*** -0.294***

(-13.37) (-13.07) (-3.24) (-5.22) (-10.31) (-16.37) (-10.30)
log σe

i,t−1 × log csi,t−1 -0.137*** -0.100***

(-9.13) (-6.20)
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 42694 42694 42694 13659 13613 12987 42694 28475
R-squared 0.114 0.137 0.138 0.164 0.142 0.129 0.145 0.220

Notes: This table documents the relationship between investment, equity volatility, and
credit spread at the firm-quarter level from 1983 to 2018. Columns 4-6 use subsamples
sorted by terciles every quarter on credit spread. Control variables include quarterly return
on equity, log of tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all
lagged by one quarter). Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels. Standard errors are clustered at the
firm level.

Table 2.3: Relationship between investment, equity volatility, and fair value spread

log[I/K]i,t = β1 log σe
i,t−1 + β2 log ĉsi,t−1 + β3 log σe

i,t−1 × log ĉsi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6) (7) (8)
all all all low ĉs mid ĉs high ĉs all all

log σe
i,t−1 -0.139*** 0.006 0.060*** 0.013 -0.050* 0.272*** 0.231***

(-6.91) (0.37) (3.34) (0.56) (-1.86) (6.34) (5.14)
log ĉsi,t−1 -0.150*** -0.151*** -0.088*** -0.097*** -0.195*** -0.228*** -0.150***

(-13.59) (-14.06) (-3.29) (-3.99) (-10.17) (-14.44) (-8.17)
log σe

i,t−1 × log ĉsi,t−1 -0.061*** -0.052***

(-6.42) (-4.92)
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 30729 30729 30729 9835 9850 9605 30729 20570
R-squared 0.120 0.157 0.157 0.180 0.152 0.151 0.161 0.222

Notes: This table documents the relationship between investment, equity volatility, and
fair value spread at the firm-quarter level from 1983 to 2018. Columns 4-6 use subsamples
sorted by terciles every quarter on credit spread. Control variables include quarterly return
on equity, log of tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all
lagged by one quarter). Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels. Standard errors are clustered at the
firm level.
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Table 2.4: Relationship between investment, asset volatility, and credit spread

log[I/K]i,t = β1 log σi,t−1 + β2 log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σi,t−1 0.221*** 0.193*** 0.153*** 0.160*** 0.196*** 0.161***
(13.91) (12.30) (8.37) (7.33) (7.61) (10.35)

log csi,t−1 -0.269*** -0.248*** -0.107*** -0.226*** -0.436*** -0.153***
(-13.35) (-12.42) (-2.88) (-5.08) (-10.15) (-7.65)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 42299 42299 42299 13488 13496 12910 28278
R-squared 0.126 0.137 0.152 0.174 0.151 0.140 0.226

Notes: This table documents the relationship between investment, asset volatility, and credit
spread at the firm-quarter level from 1983 to 2018. Columns 4-6 use subsamples sorted by
terciles every quarter on credit spread. Control variables include quarterly return on assets,
log of tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all lagged
by one quarter). Coefficients are reported with t-statistics in parentheses. ***, **, and *
indicate significance at 1%, 5% and 10% levels. Standard errors are clustered at the firm
level.

Table 2.5: Relationship between investment, implied asset volatility, and credit spread

log[I/K]i,t = β1 log σ̂i,t−1 + β2 log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σ̂i,t−1 0.283*** 0.258*** 0.233*** 0.248*** 0.220*** 0.198***
(8.62) (7.96) (5.58) (4.28) (3.88) (5.60)

log csi,t−1 -0.329*** -0.316*** -0.139*** -0.286*** -0.663*** -0.193***
(-9.86) (-9.41) (-2.66) (-4.25) (-8.04) (-6.05)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 18388 18388 18388 7388 6060 4127 12825
R-squared 0.132 0.154 0.168 0.179 0.156 0.180 0.247

Notes: This table documents the relationship between investment, implied asset volatility,
and credit spreads at the firm-quarter level from 1983 to 2018. Columns 4-6 use subsamples
sorted by terciles every quarter on credit spread. Control variables include quarterly return
on assets, log of tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all
lagged by one quarter). Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels. Standard errors are clustered at the
firm level.
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Table 2.6: Relationship between investment, asset volatility, market leverage, and credit
spread

log[I/K]i,t = β1 log σi,t−1 + β2 log[MA/ME]i,t−1 + +β3 log csi,t−1 + β4 log σi,t−1 × log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6) (7) (8)
all all all low cs mid cs high cs all all

log σi,t−1 0.221*** 0.020 0.068*** 0.015 0.013 0.471*** 0.303***
(13.91) (1.22) (3.74) (0.67) (0.48) (4.74) (3.19)

log[MA/ME]i,t−1 -0.476*** -0.464*** -0.405*** -0.490*** -0.440*** -0.406*** -0.368***
(-18.75) (-17.04) (-6.70) (-11.00) (-12.17) (-15.07) (-10.46)

log csi,t−1 -0.287*** -0.169***
(-6.94) (-3.84)

log σi,t−1 × log csi,t−1 -0.080*** -0.045***
(-4.45) (-2.58)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 42299 41832 41832 13266 13432 12751 41832 28019
R-squared 0.126 0.171 0.171 0.187 0.176 0.155 0.177 0.240

Notes: This table documents the relationship between investment, asset volatility, market
leverage, and credit spreads at the firm-quarter level from 1983 to 2018. Columns 4-6 use
subsamples sorted by terciles on credit spread. Control variables include quarterly return
on assets, log of tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all
lagged by one quarter). Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels. Standard errors are clustered at the
firm level.

Table 2.7: Loadings of equity volatility and credit spread on asset volatility and market
leverage

log yi,t = β1 log σ̃i,t + β2 log[MA/ME]i,t + ηi + λt + ϵi,t

Panel A: Levels log σe
i,t log csi,t Panel B: Changes ∆ log σe

i,t ∆log csi,t

log σ̃i,t 0.777*** 0.137*** ∆ log σ̃i,t 0.748*** 0.016***
(71.53) (12.32) (69.78) (4.83)

log[MA/ME]i,t 0.424*** 0.574*** ∆ log[MA/ME]i,t 0.213*** 0.231***
(32.81) (26.11) (13.76) (22.13)

Firm FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓

Observations 38225 38225 Observations 37462 37462
R-squared 0.837 0.580 R-squared 0.739 0.338

Notes: This table presents the loadings of equity volatility and credit spread on asset volatil-
ity and market leverage at the firm-quarter level from 1983 to 2018. We report results for
estimations in levels in Panel A and results for estimations in first differences in Panel B.
Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate significance
at 1%, 5% and 10% levels. Standard errors are clustered at the firm level.
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Table 2.8: Relationship between investment, residual asset volatility, and credit spread

log[I/K]i,t = β1 log σ̊i,t−1 + β2 log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σ̊i,t−1 -0.002 0.057*** 0.093*** 0.054** 0.031 0.058***
(-0.09) (3.59) (4.81) (2.38) (1.12) (3.61)

log csi,t−1 -0.267*** -0.276*** -0.120*** -0.242*** -0.492*** -0.166***
(-13.36) (-14.00) (-3.25) (-5.45) (-11.31) (-8.09)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 42227 42227 42227 13437 13549 12828 28216
R-squared 0.106 0.137 0.137 0.166 0.144 0.125 0.217

Notes: This table documents the relationship between investment, residual asset volatility,
and credit spreads at the firm-quarter level from 1983 to 2018. Residual asset volatility σ̊i,t
is the residual of a panel regression of the log of idiosyncratic equity volatility on the log of
market leverage with time and firm fixed effects: log σi,t = β log[MA/ME]i,t+ηi+λt+log σ̊i,t.
Columns 4-6 use subsamples sorted by terciles every quarter on credit spread. Control
variables include quarterly return on assets, log of tangibility ratio, log of sales ratio, log
of income ratio, log of Tobin’s q (all lagged by one quarter). Coefficients are reported with
t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels.
Standard errors are clustered at the firm level.
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Table 2.9: Relationship between investment, asset volatility derived from Merton’s model,
and credit spread

log[I/K]i,t = β1 log σ̃i,t−1 + β2 log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σ̃i,t−1 0.060*** 0.086*** 0.098*** 0.080*** 0.104*** 0.073***
(3.80) (5.77) (5.13) (3.89) (4.06) (4.75)

log csi,t−1 -0.258*** -0.265*** -0.094** -0.263*** -0.487*** -0.155***
(-12.61) (-12.95) (-2.54) (-5.74) (-10.50) (-7.16)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 38968 38968 38968 12741 12422 11791 26116
R-squared 0.111 0.138 0.140 0.173 0.144 0.131 0.219

Notes: This table documents the relationship between investment, asset volatility derived
from Merton’s model, and credit spread at the firm-quarter level from 1983 to 2018. Columns
4-6 use subsamples sorted by terciles every quarter on credit spread. Control variables
include quarterly return on assets, log of tangibility ratio, log of sales ratio, log of income
ratio, log of Tobin’s q (all lagged by one quarter). Coefficients are reported with t-statistics
in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels. Standard
errors are clustered at the firm level.
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Table 2.11: Relationship between investment, equity volatility, and asset volatility for firms
without observable credit spreads

log[I/K]i,t = β1 log σe
i,t−1 + β2DDi,t−1 + β3 log σe

i,t−1 ×DDi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6)
no bonds no bonds zero lev. no bonds no bonds zero lev.

log σe
i,t−1 -0.084*** -0.147*** -0.111*** -0.005

(-3.78) (-6.63) (-5.80) (-0.17)
log σe

i,t−1 ×DDi,t−1 0.041*** 0.038***

(3.95) (10.84)
log σi,t−1 0.109** 0.153***

(2.36) (8.15)
DDi,t−1 0.125*** 0.060*** 0.081*** 0.043***

(8.37) (4.76) (10.48) (10.86)
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓

Observations 189470 167236 47638 81596 73956 15980
R-squared 0.067 0.061 0.054 0.156 0.157 0.168

Notes: This table documents the relationship between investment, equity volatility, and
asset volatility at the firm-quarter level from 1983 to 2018 for firms without observable
credit spreads. Columns 1, 2, 4, and 5 use the subsample of firms without observable
credit spreads but positive leverage. Columns 4 and 6 use the subsample of firms with zero
leverage: the Compustat variables dlcq and dlttq are both equal to 0. Control variables
include quarterly return on equity for regressions with equity volatility and return on assets
for the regression with asset volatility, log of tangibility ratio, log of sales ratio, log of income
ratio, log of Tobin’s q (all lagged by one quarter). Coefficients are reported with t-statistics
in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels. Standard
errors are clustered at the firm level.
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Table 2.12: Relationship between investment, asset volatility, and credit spread for different
lags and leads

log[I/K]i,t =
∑4

1 βτ log σi,t−τ
(
log σi,t+τ

)
+ β5 log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4)
log[I/K]i,t log[I/K]i,t log[I/K]i,t log[I/K]i,t

log csi,t−1 -0.232*** -0.250*** -0.154*** -0.158***
(-11.52) (-11.96) (-7.70) (-7.42)

log σi,t−4 0.086*** 0.069***
(7.94) (5.62)

log σi,t−3 0.050*** 0.033***
(5.39) (3.13)

log σi,t−2 0.060*** 0.043***
(6.52) (3.95)

log σi,t−1 0.104*** 0.091***
(9.57) (7.56)

log σi,t+1 0.091*** 0.055***
(8.41) (4.45)

log σi,t+2 0.045*** 0.032***
(4.97) (2.88)

log σi,t+3 0.029*** 0.021*
(3.02) (1.81)

log σi,t+4 0.004 0.000
(0.46) (0.02)

Firm FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓

Observations 41077 38047 27905 25536
R-squared 0.160 0.148 0.230 0.225

Notes: This table documents the relationship between investment, asset volatility, and credit
spread at the firm-quarter level from 1983 to 2018 for different lags and leads. Control
variables include quarterly return on assets, log of tangibility ratio, log of sales ratio, log
of income ratio, log of Tobin’s q (all lagged by one quarter). Coefficients are reported with
t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels.
Standard errors are clustered at the firm level.
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Table 2.13: Relationship between investment, equity volatility, and credit spread for different
levels of research and development and investment ratios

log[I/K]i,t = β1 log σe
i,t−1 + β2 log csi,t−1 + β3 log σe

i,t−1 × log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6) (7) (8)
low R&D high R&D low R&D high R&D low inv. high inv. low inv. high inv.

log σe
i,t−1 0.927*** 0.671*** 0.504*** 0.368 0.574*** 0.460*** 0.467*** 0.326***

(4.83) (3.14) (2.68) (1.55) (4.69) (4.51) (3.42) (2.66)
log csi,t−1 -0.506*** -0.439*** -0.304*** -0.200*** -0.376*** -0.215*** -0.302*** -0.089**

(-7.62) (-6.89) (-4.36) (-2.70) (-9.79) (-6.51) (-7.12) (-2.37)
log σe

i,t−1 × log csi,t−1 -0.169*** -0.136*** -0.089*** -0.068 -0.113*** -0.084*** -0.094*** -0.054**

(-4.87) (-3.41) (-2.60) (-1.53) (-5.17) (-4.40) (-3.80) (-2.37)
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓

Observations 6291 6235 4489 4824 13392 13218 9198 8421
R-squared 0.181 0.194 0.249 0.256 0.189 0.106 0.247 0.174

Notes: This table documents the relationship between investment, equity volatility, and
credit spread at the firm-quarter level from 1983 to 2018 for different levels of research and
development and investment ratios. The low (high) R&D category corresponds to firms
sorted below (above) the quarterly median of R&D. The low (high) investment category
corresponds to firms sorted every quarter in the first (third) tercile of the investment ratio
[I/K]i,t. Control variables include quarterly return on assets, log of tangibility ratio, log of
sales ratio, log of income ratio, log of Tobin’s q (all lagged by one quarter). Coefficients are
reported with t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and
10% levels. Standard errors are clustered at the firm level.
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Table 2.14: Relationship between investment, level of implied asset volatility, shock to im-
plied asset volatility, and credit spread

log[I/K]i,t = β1 log σ̂i,t−1 + β2∆log σ̂i,t−1 + β3 log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5)
log[I/K]i,t log[I/K]i,t log[I/K]i,t log[I/K]i,t log[I/K]i,t

log σ̂i,t−1 0.328*** 0.296*** 0.258*** 0.217***
(8.76) (8.02) (7.96) (5.61)

∆ log σ̂i,t−1 -0.191*** -0.160*** -0.018 -0.110***
(-6.58) (-5.71) (-0.87) (-3.91)

log csi,t−1 -0.311*** -0.316*** -0.327*** -0.190***
(-9.25) (-9.41) (-9.88) (-6.03)

Firm FE ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 18056 18056 18388 18056 12629
R-squared 0.135 0.169 0.168 0.153 0.251

Notes: This table documents the relationship between investment, level of implied asset
volatility, shock to implied asset volatility, and credit spread at the firm-quarter level from
1983 to 2018. Control variables include quarterly return on assets, log of tangibility ratio,
log of sales ratio, log of income ratio, log of Tobin’s q (all lagged by one quarter). Coefficients
are reported with t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5%
and 10% levels. Standard errors are clustered at the firm level.
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Table 2.15: 2SLS regressions for equity and asset volatility

log[I/K]i,t = β1 log σi,t−1 + β2 log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4)
log[I/K]i,t log[I/K]i,t log[I/K]i,t log[I/K]i,t

log σ̃e
i,t−1 -1.382*** -0.647

(-3.61) (-1.37)
log σ̃i,t−1 0.593*** 0.735***

(3.51) (2.67)
log csi,t−1 0.184 -0.255*** 0.022 -0.128***

(1.53) (-5.02) (0.18) (-2.95)
First Moments ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓

Observations 5097 4590 3936 4133
Kleibergen-Paap F 3.369 9.143 2.372 10.837
Sargan-Hansen p-val 0.882 0.316 0.764 0.266

Notes: This table documents the 2SLS regressions for equity and asset volatility at the
firm-year level from 1990 to 2018 following Alfaro, Bloom, and Lin (2018). Realized annual
volatility measures are instrumented with industry-level (3SIC) non-directional exposure to
10 aggregate sources of uncertainty shocks: the lagged exposure to annual changes in ex-
pected volatility of energy, currencies, and 10-year treasuries (as proxied by at-the-money
forward-looking implied volatilities of oil, 7 widely traded currencies, and TYVIX) and eco-
nomic policy uncertainty from Baker, Bloom, and Davis (2016). Annual realized equity
volatility σ̃e is the 12-month standard deviation of daily stock returns from CRSP. Annual
realized asset volatility σ̃ is the 12-month standard deviation of daily stock returns from
CRSP unlevered using the daily market-to-book ratio of equity. Control variables include
yearly return on equity for regressions with equity volatility and return on assets for regres-
sions with asset volatility, log of tangibility ratio, log of sales ratio, log of income ratio, log of
Tobin’s q (all lagged by one year). Coefficients are reported with t-statistics in parentheses.
***, **, and * indicate significance at 1%, 5% and 10% levels. Standard errors are clustered
at the 3-digit SIC industry.
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Table 2.16: Relationship between equity volatility, credit spread, and investment for firms
with different covenant tightness

log[I/K]i,t = β1 log σe
i,t−1 + β2 log csi,t−1 + β3 log σe

i,t−1 × log csi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4)
slack tight slack tight

log σe
i,t−1 0.303** 0.480***

(2.07) (2.93)
log σi,t−1 0.079*** 0.119***

(3.83) (4.57)
log csi,t−1 -0.190*** -0.395*** -0.111*** -0.300***

(-4.06) (-7.16) (-3.50) (-7.13)
log σe

i,t−1 × log csi,t−1 -0.055** -0.083***

(-2.01) (-3.01)
Firm FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓

Observations 8834 7597 8801 7507
R-squared 0.237 0.217 0.238 0.222

Notes: This table documents the relationship between equity volatility, credit spread, and
investment at the firm-year level from 1983 to 2018 for firms with different covenant tightness.
The tight (slack) covenant sample includes firms with the covenant distance to threshold
below (above) median. Each observation is a firm-year. Coefficients are reported with t-
statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels.
Standard errors are clustered at the firm level.
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Table 2.17: Relationship between asset volatility, the predictable component of credit spread,
the excess bond premium, and investment

log[I/K]i,t = β1 log σi,t−1 + β2[log csi,t−1 − log ebpi,t−1] + β3 log ebpi,t−1 + γXi,t−1 + ηi + λt + ϵi,t

(1) (2) (3) (4) (5) (6)
log[I/K]i,t log[I/K]i,t log[I/K]i,t log[I/K]i,t log[I/K]i,t log[I/K]i,t

log σi,t−1 0.109*** 0.099***
(6.30) (5.45)

log csi,t−1 − log ebpi,t−1 -0.265*** -0.294*** -0.188*** -0.221***
(-8.74) (-9.02) (-6.11) (-6.48)

log ebpi,t−1 -0.196*** -0.228*** -0.202*** -0.075*** -0.107*** -0.090***
(-8.91) (-10.02) (-8.48) (-3.40) (-4.63) (-3.75)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓

Observations 37163 36656 33639 24992 24673 22773
R-squared 0.117 0.135 0.140 0.209 0.218 0.224

Notes: This table documents the relationship between asset volatility, the predictable com-
ponent of credit spread, the excess bond premium, and investment at the firm-quarter level
from 1983 to 2018. Following Gilchrist and Zakraǰsek (2012), the excess bond premium
ebpi,t is the quarterly average of the residual ϵi,t of a panel regression for credit spreads:
log csi,t = γ′Xi,t + ϵi,t. The vector of bond-specific characteristics Xi,t include the firm’s
distance-to-default, bond’s amount outstanding, duration, coupon rate, industry fixed ef-
fects, credit rating fixed effects, an indicator variable for callable bonds, the interactions of
callability with these bond characteristics as well as the level, slope, and curvature of the
Treasury yield curve, and the realized monthly volatility of the daily ten-year Treasury yield.
Control variables for the regression of investment include quarterly return on assets, log of
tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all lagged by one
quarter). Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate
significance at 1%, 5% and 10% levels. Standard errors are clustered at the firm level.
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2.8 Appendix: Data and Definitions

This section discusses the data sources used for the empirical analysis and the construction

of variables.

Data Collection We use S&P’s Compustat quarterly database from 1984:Q1 to 2018:Q4.

We exclude firms in the financial sector (SIC code 6000 to 6999) and utility sector (SIC code

4900 to 4949), firms not in the panel for at least 3 years, and observations with missing

investment rate, equity volatility and with negative sales. We use daily returns from the

Center for Research in Security Prices (CRSP) database. Implied volatilities are from Op-

tionMetrics data starting in 1996. Bond prices come from the Lehman/Warga (1984-2005)

and ICE databases (1997-2018). This selection criterion yields 1,273 unique firms with 42,580

firm-quarter observations. To ensure that our results are not driven by extreme values, we

trim every regression variables at the 1 and 99 percentiles. We provide summary statistics

in Table 2.1 and describe how we construct our key variables below.

Investment and Equity Volatility We define investment rate as capital expenditures

in quarter t scaled by net property, plant, and equipment in quarter t − 1. Idiosyncratic

equity volatility is constructed in two steps. For each firm-fiscal quarter, we extract daily

idiosyncratic equity returns using the Carhart (1997) four-factor model. Then for each

regression we calculate the standard deviation of residuals over one quarter, and obtain

quarterly firm-specific idiosyncratic equity volatility. We only keep observations for quarters

with more than 30 trading days. In addition to this realized equity volatility measure, we

also use an implied equity volatility measure with at-the-money 30-day forward put options

implied equity volatility from OptionMetrics.

Credit Spreads We follow Gilchrist and Zakraǰsek (2012) to compute bond-level credit

spreads. First, we construct a theoretical risk-free bond that replicates exactly the promised
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cash flows. The price of this risk-free bond is calculated by discounting the promised cash

flows using continuously-compounded zero-coupon Treasury yields from Gürkaynak, Sack,

and Wright (2007). The credit spread of an individual bond is the difference between the

yield of the actual bond and the yield of the corresponding risk-free bond. We then define

the credit spread of a firm as the average of the quarter-end credit spreads of all bonds issued

by that firm.

Market Leverage Market leverage is defined as the ratio of market value of assets to

market value of equity. The market value of assets is built as the book value of assets

plus the market value of equity minus the book value of equity. Following Davies, Fama,

and French (2000), the book value of equity is defined as the book value of stockholders’

equity, plus balance sheet deferred taxes and investment tax credit, minus the book value of

preferred stock. Depending on availability, we use the redemption, liquidation, or par value

(in that order) for the book value of preferred stock. If this procedure generates missing

values, we measure stockholders’ equity as the book value of common equity plus the par

value of preferred stock, or the book value of assets minus total liabilities.

Return on assets, Tangibility, Sales, Income, and Tobin’s q Return on assets is

operating income before depreciation divided by total assets. Tangibility is property, plant

and equipment divided by total asset. The sales and income ratios are given by sales and

operating income before depreciation divided by lagged property, plant and equipment. Fol-

lowing Erickson and Whited (2012), we construct the numerator of Tobin’s q as book debt

plus market value of equity minus book assets while the denominator is capital stock.

Asset Volatility and Distance to Default For our main measure of idiosyncratic asset

volatility, we first unlever equity returns with market leverage to obtain asset returns, then

we obtain idiosyncratic asset returns using the classic Carhart (1997) four-factor model and

construct idiosyncratic asset volatility as the standard deviation of the idiosyncratic asset
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returns. We also construct a measure of firm-level idiosyncratic asset volatility based on

Merton’s (1974) model. Asset value V and (total) asset volatility σV can be obtained from

a two-equation system as follows:

E = V N(d1)− e−rTBN(d2)

σE =

(
V

E

)
N(d1)σV

where

d1 =
ln(V/B) + (r + 0.5σ2

V )T

σV
√
T

, d2 = d1 − σV
√
T .

The inputs for the two-equation system are: (i) the market value of equity E, measured by

the stock price multiplied by the number of shares outstanding; (ii) the equity volatility σE,

measured by the annualized realized volatility of daily stock returns in each month; (iii) the

face value of debt B, measured as the sum of the firm’s current liabilities and one-half of

its long-term liabilities; (iv) the debt maturity (forecasting horizon) T = 1; (v) the risk-free

rate r, measured by the annualized monthly return on 90-day Treasury bills.

Instead of solving this two-equation system directly, we implement the iterative procedure

proposed by Bharath and Shumway (2008).24 We linearly interpolate the quarterly value

of debt to a daily frequency and estimate asset value at a daily frequency. To construct

idiosyncratic asset volatility, we use the daily asset values to generate times series of daily

asset returns. With time series of daily asset returns, we calculate the idiosyncratic asset

volatility using the same methodology used for idiosyncratic equity volatility. In addition to

this realized asset volatility measure, we also use an implied asset volatility measure. Implied

asset volatility is constructed as delevered implied equity volatility, that is, implied equity

volatility times market value of equity divided by market value of assets.

24Gilchrist and Zakraǰsek (2012) also adopt this iterative procedure.
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Also, after we obtain the asset value V and total asset volatility σV , the distance to

default (DD) can be easily computed according to the following equation.

DD =
ln(V/B) + (µ− 0.5σ2

V )T

σV
√
T

.

Fair Value Spreads We use proprietary data set from Moody’s on its Public Firm Ex-

pected Default Frequency (EDF) Metric, which is an equity-based measure of firm’s prob-

ability of default. The core model used to generate the EDF metric belongs to the class of

option-pricing based, structural credit risk models pioneered by Black and Scholes (1973)

and Merton (1974). The Vasicek-Kealhofer (VK) model summarizes information on asset

volatility, market value of assets, and the default point into one metric, the distance to de-

fault (DD), and then maps the DD to obtain the EDF metric. The DD-to-EDF mapping

step utilizes the empirical distribution of DD and frequency of realized defaults. Nazeran

and Dwyer (2015) provide a detailed description of their methodology. Most importantly for

our purpose, the EDF credit risk measure relies only on equity market inputs and does not

contain bond market information.

Using the EDF credit risk measure, we construct a cumulative EDF (CEDF) over T years

by assuming a flat term structure, that is, CEDFT = 1 − (1 − EDF )T . Then, we convert

our physical measure of default probabilities (CEDF) to risk-neutral default probabilities

(CQDF) using the following equation:

CQDFT = N
[
N−1 (CEDFT ) + λρ

√
T
]
,

where N is the cumulative distribution function for the standard normal distribution, λ

is the market Sharpe ratio and ρ is the correlation between the underlying asset returns

and market returns. Given this risk-neutral default probability measure, the spread of a
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zero-coupon bond with duration T can be computed as:

ĉs = − 1

T
log(1− CQDFT · LGD),

where LGD stands for the risk-neutral expected loss given default. We follow Moody’s

convention and set T = 5, LGD = 60%, λ = 0.546, and ρ =
√
0.3 to build our “fair value

spread” measure ŝ. We successfully match 39, 925 fair value spreads with our firm-quarter

observations.

Covenant Tightness To measure the strength of creditor control rights, which is useful

for providing empirical support for the debt overhang channel in our model, we use a covenant

tightness measure based on a firm’s outstanding loans. Data on covenant specifications and

thresholds for loans is from DealScan. There are 18 types of covenants in the data. We first

compute the distance between the actual financial ratio and the covenant threshold for each

type of covenant, normalized by the firm-specific standard deviation of the actual financial

ratios. We then use the minimum of the normalized distances to measure the overall covenant

tightness for the firm in each quarter. See Kermani and Ma (2020) for more details on the

covenant tightness measure.25

25We thank Yueran Ma and Amir Kermani for sharing their data with us.
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2.9 Appendix: Proofs

Shareholders maximize their expected cash flow and device when to default. Thus, the value

of equity is given by:

e = max
i,z

{
E
[
(iz − b)1{z ≥ z}

]
− ϕ(i)

}
.

The first-order conditions for investment i and the default boundary z are given by

∫ ∞

z

zdF (z;σ)− ϕi(i) = 0,

−f(z;σ)(iz − b) = 0.

The second-order conditions for investment i and the default boundary z are given by

−ϕii(i) < 0,

−f(z;σ)i < 0,

ϕii(i)f(z;σ)i+ f(z;σ)2z2 > 0. (2.10)

Thus, ϕii(i)i+ f(z;σ)z2 > 0.

In the following sections, we derive the partial derivatives of equity with respect to (i)

credit spreads and asset volatility, (ii) leverage and asset volatility, (iii) credit spreads and

equity volatility, (iv) Tobin’s q and asset volatility, and (v) Tobin’s q and credit spreads to

rationalize our empirical results.

Assume we observe θ and we want to derive the partial derivatives of x with respect to

θ. Since x is the solution to a system of nonlinear equations D(x,θ), we need to use the
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multivariate implicit function theorem:

∂x(θ)

∂θk
= −

[
∂Di(x(θ),θ)

∂xj

]−1 [
∂D(x(θ),θ)

∂θk

]
.

Proof of Proposition 1

If we observe cs and σ, we get

D(x,θ) =

 ∫∞
z
zdF (z;σ)− ϕi(i)

F (z;σ)/(1− F (z;σ))− cs

 , x =

 i

z

 , θ =
[
cs σ

]
.

We can derive the Jacobian matrix of D(x,θ) as

[
∂Di(x(θ),θ)

∂xj

]
=

 −ϕii(i) −zf(z;σ)

0 f(z;σ)/(1− F (z;σ))2


and the partial derivatives as

[
∂D(x(θ),θ)

∂cs

]
=

 0

−1

 , [
∂D(x(θ),θ)

∂σ

]
=

 ∫∞
z
zdFσ(z;σ)

Fσ(z;σ)/(1− F (z;σ))2

 .
To derive the comparative statics of interest, we only need few elements of

[
∂Di(x(θ),θ)

∂xj

]−1

.

Thus, we get

∂i

∂cs
=

[
∂Di(x(θ),θ)

∂xj

]−1

12

= −z(1− F (z;σ))2

ϕii(i)
< 0
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and

∂i

∂σ
= −

[
∂Di(x(θ),θ)

∂xj

]−1

11

∫ ∞

z

zdFσ(z;σ)−
[
∂Di(x(θ),θ)

∂xj

]−1

12

Fσ(z;σ)

(1− F (z;σ))2

=

∫∞
z
zdFσ(z;σ)

ϕii(i)
+
z(1− F (z;σ))2

ϕii(i)

Fσ(z;σ)

(1− F (z;σ))2

=
ν(z, σ)

ϕii(i)
> 0.

The sign of both these partial derivatives comes directly from Assumptions ?? and 4.

Proof of Proposition 2

If we observe b and σ, we get

∂x(θ)

∂θk
= −

[
∂Di(x(θ),θ)

∂xj

]−1 [
∂D(x(θ),θ)

∂θk

]
,

where

D(x,θ) =

 ∫∞
z
zdF (z;σ)− ϕi(i)

iz − b

 , x =

 i

z

 , θ =
[
b σ

]
.

We can derive the Jacobian matrix of D(x,θ) as:

[
∂Di(x(θ),θ)

∂xj

]
=

 −ϕii(i) −zf(z;σ)

z i


and the partial derivatives as:

[
∂D(x(θ),θ)

∂b

]
=

 0

−1

 , [
∂D(x(θ),θ)

∂σ

]
=

 ∫∞
z
zdFσ(z;σ)dz

0

 .
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To derive the comparative statics of interest, we only need few elements of
[
∂Di(x(θ),θ)

∂xj

]−1

.

Thus, we can directly derive:

∂i

∂b
=

[
∂Di(x(θ),θ)

∂xj

]−1

12

= − zf(z;σ)

ϕii(i)i− z2f(z;σ)
< 0,

∂i

∂σ
= −

[
∂Di(x(θ),θ)

∂xj

]−1

11

∫ ∞

z

zdFσ(z;σ)dz

=
i
∫∞
z
zdFσ(z;σ)dz

ϕii(i)i− z2f(z;σ)

=
i(ν(z, σ)− zFσ(z;σ))

ϕii(i)i− z2f(z;σ)
.

Proof of Proposition 2

If we observe cs and σe, we get

∂x(θ)

∂θk
= −

[
∂Di(x(θ),θ)

∂xj

]−1 [
∂D(x(θ),θ)

∂θk

]
,

where

D(x,θ) =


∫∞
z
zdF (z;σ)− ϕi(i)

F (z;σ)/(1− F (z;σ))− cs

σ
E[(z−z)+]

− σe

 , x =


i

z

σ

 , θ =
[
cs σe

]
.

We can derive the Jacobian matrix of D(x,θ) as

[
∂Di(x(θ),θ)

∂xj

]
=


−ϕii(i) −zf(z;σ)

∫∞
z
zdFσ(z;σ)

0 f(z;σ)/(1− F (z;σ))2 Fσ(z;σ)/(1− F (z;σ))2

0 σe
z σe

σ
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where

σe
z = −

σµz(z, σ)

µ(z, σ)2
=
σ (1− F (z;σ))

µ(z, σ)2
,

σe
σ =

µ(z, σ)− σν(z, σ)

µ(z, σ)2

µ(z, σ) = E [(z − z)+] ,

and the partial derivatives as

[
∂D(x(θ),θ)

∂cs

]
=


0

−1

0

 ,
[
∂D(x(θ),θ)

∂σe

]
=


0

0

−1

 .

To derive the comparative statics of interest, we only need two elements of
[
∂Di(x(θ),θ)

∂xj

]−1

.

Thus, we can directly derive:

∂i

∂cs
=

[
∂Di(x(θ),θ)

∂xj

]−1

12

=
(1− F (z;σ))2

ϕii(i)

∫∞
z
zdFσ(z;σ)σ

e
z(z, σ) + zf(z;σ)σe

σ(z, σ)

Fσ(z;σ)σe
z(z, σ)− f(z;σ)σe

σ(z, σ)
,

= −z(1− F (z;σ))2

ϕii(i)

∫∞
z
z/zdFσ(z;σ)σ

e
z(z, σ) + f(z;σ)σe

σ(z, σ)

f(z;σ)σe
σ(z, σ)− Fσ(z;σ)σe

z(z, σ)

and

∂i

∂σe
=

[
∂Di(x(θ),θ)

∂xj

]−1

13

= − 1

ϕii(i)

∫∞
z
zdFσ(z;σ)f(z;σ) + zf(z;σ)Fσ(z;σ)

Fσ(z;σ)σe
z(z, σ)− f(z;σ)σe

σ(z, σ)

=
ν(z, σ)

ϕii(i)

f(z;σ)

f(z;σ)σe
σ(z, σ)− Fσ(z;σ)σe

z(z, σ)
.

Positive Liquidation Value Given that the price of debt with positive liquidation value

α is given by

D = (1− F (z;σ))B + iα

∫ z

0

zKdF (z;σ),
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we define the credit spreads with positive liquidation value as

c̃s =
F (z;σ)− α/bi

∫ z

0
zdF (z;σ)

1− F (z;σ) + α/bi
∫ z

0
zdF (z;σ)

.

where 1− α represents bankruptcy costs. For readability, we define

F̃ (i, z, σ) = F (z;σ)− α/bi

∫ z

0

zdF (z;σ).

Thus, we can write:

D(x,θ) =

 ∫∞
z
zdF (z;σ)− ϕi(i)

F̃ (i,z,σ)

1−F̃ (i,z,σ)
− cs

 , x =

 i

z

 , θ =
[
cs σ

]
.

We can derive the Jacobian matrix of D(x,θ) as

[
∂Di(x(θ),θ)

∂xj

]
=

 −ϕii(i) −zf(z;σ)

−α/b
∫ z

0
zdF (z;σ)/(1− F̃ (i, z, σ))2 f(z;σ)(1− α)/(1− F̃ (i, z, σ))2


and the partial derivatives as

[
∂D(x(θ),θ)

∂cs

]
=

 0

−1

 ,
[
∂D(x(θ),θ)

∂σ

]
=

 ∫∞
z
zdFσ(z;σ)

F̃σ(i, z, σ)/(1− F̃ (i, z, σ))2

 .
To derive the comparative statics of interest, we only need few elements of

[
∂Di(x(θ),θ)

∂xj

]−1

.

Thus, we get

∂i

∂cs
=

[
∂Di(x(θ),θ)

∂xj

]−1

12

= − z(1− F̃ (i, z, σ))2

α/i
∫ z

0
zdF (z;σ) + ϕii(i)(1− α)

≤ 0
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and

∂i

∂σ
= −

[
∂Di(x(θ),θ)

∂xj

]−1

11

∫ ∞

z

zdFσ(z;σ)−
[
∂Di(x(θ),θ)

∂xj

]−1

12

F̃σ(i, z, σ)

(1− F̃ (i, z, σ))2

=
(1− α)

∫∞
z
zdFσ(z;σ)

α/i
∫ z

0
zdF (z;σ) + ϕii(i)(1− α)

+
z(1− F̃ (i, z, σ))2

α/i
∫ z

0
zdF (z;σ) + ϕii(i)(1− α)

F̃σ(i, z, σ)

(1− F̃ (i, z, σ))2

=
(1− α)

∫∞
z
zdFσ(z;σ) + zF̃σ(i, z, σ)

α/i
∫ z

0
zdF (z;σ) + ϕii(i)(1− α)

=
(1− α)

∫∞
z
zdFσ(z;σ) + zFσ(z;σ)− α

∫ z

0
zdFσ(z;σ)

α/i
∫ z

0
zdF (z;σ) + ϕii(i)(1− α)

=
ν(z, σ)

α/i
∫ z

0
zdF (z;σ) + ϕii(i)(1− α)

≥ 0.
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2.10 Appendix: Robustness Checks

In this appendix, we provide several robustness checks for the results discussed above, and

show that they yield similar results. in Table 2.18, we replicate Table 2.2 using total equity

volatility instead of idiosyncratic equity volatility. In Tables 2.19, 2.20, and 2.21, we repli-

cate Tables 2.2, 2.3, and 2.6 with implied volatility measures instead of realized volatility

measures. In Table 2.22, we show the results of Table 2.4 by restricting the regressions to the

set of firms with an observable implied asset volatility. In Table 2.23, we examine the load-

ings of firm’s credit spreads and equity volatility on the average asset volatility and leverage

of all firms in the same industry excluding itself, instead of the firm’s asset volatility and

market leverage. In Table 2.24 and Table 2.25, we replicate Table 2.12 with Merton’s asset

volatility and implied asset volatility. In Table 2.26, we replicate Table 2.14 with a shock to

asset volatility instead of implied asset volatility.

Table 2.18: Relationship between investment, total equity volatility, and credit spread

(1) (2) (3) (4) (5) (6) (7) (8)
all all all low cs mid cs high cs all all

log σeT
i,t−1 -0.159*** -0.056*** 0.085*** -0.040 -0.110*** 0.748*** 0.545***

(-7.78) (-3.16) (3.96) (-1.43) (-3.63) (9.24) (6.46)
log csi,t−1 -0.269*** -0.254*** -0.122*** -0.229*** -0.447*** -0.412*** -0.272***

(-13.37) (-13.07) (-3.32) (-5.19) (-10.32) (-17.23) (-10.46)

log σeT
i,t−1 × log csi,t−1 -0.144*** -0.100***

(-9.80) (-6.45)
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 42567 42694 42567 13592 13588 12963 42567 28386
R-squared 0.113 0.137 0.137 0.165 0.142 0.128 0.145 0.220

Notes: This table documents the relationship between investment, total equity volatility,
and credit spread at the firm-quarter level from 1983 to 2018. Columns 4-6 use subsamples
sorted by terciles every quarter on credit spread. Control variables include quarterly return
on equity, log of tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all
lagged by one quarter). Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels. Standard errors are clustered at the
firm level.
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Table 2.19: Relationship between investment, implied equity volatility, and credit spread

(1) (2) (3) (4) (5) (6) (7) (8)
all all all low cs mid cs high cs all all

log σ̂e
i,t−1 -0.360*** -0.176*** 0.064 -0.110* -0.317*** 1.091*** 0.998***

(-7.98) (-4.09) (1.16) (-1.68) (-4.16) (6.73) (5.98)
log csi,t−1 -0.269*** -0.272*** -0.159*** -0.256*** -0.514*** -0.508*** -0.371***

(-13.37) (-8.22) (-3.10) (-3.81) (-7.01) (-13.09) (-8.64)
log σ̂e

i,t−1 × log csi,t−1 -0.222*** -0.194***

(-7.88) (-6.53)
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 18481 42694 18481 7362 6107 4211 18481 12842
R-squared 0.136 0.137 0.157 0.166 0.148 0.171 0.169 0.250

Notes: This table documents the relationship between investment, implied equity volatility,
and credit spread at the firm-quarter level from 1983 to 2018. Columns 4-6 use subsamples
sorted by terciles every quarter on credit spread. Control variables include quarterly return
on equity, log of tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all
lagged by one quarter). Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels. Standard errors are clustered at the
firm level.

Table 2.20: Relationship between investment, implied equity volatility, and fair value spread

(1) (2) (3) (4) (5) (6) (7) (8)
all all all low ĉs mid ĉs high ĉs all all

log σ̂e
i,t−1 -0.344*** -0.052 0.120** 0.029 -0.247*** 0.292*** 0.248***

(-6.80) (-1.19) (2.26) (0.44) (-3.35) (3.73) (3.03)
log ĉsi,t−1 -0.150*** -0.172*** -0.143*** -0.120*** -0.165*** -0.249*** -0.164***

(-13.59) (-11.52) (-4.64) (-3.92) (-5.99) (-11.36) (-6.35)
log σ̂e

i,t−1 × log ĉsi,t−1 -0.080*** -0.070***

(-4.97) (-3.79)
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 15965 30729 15965 5842 5438 4054 15965 11025
R-squared 0.141 0.157 0.179 0.169 0.154 0.194 0.184 0.243

Notes: This table documents the relationship between investment, implied equity volatility,
and fair value spread at the firm-quarter level from 1983 to 2018. Columns 4-6 use subsamples
sorted by terciles every quarter on credit spread. Control variables include quarterly return
on equity, log of tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all
lagged by one quarter). Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels. Standard errors are clustered at the
firm level.
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Table 2.21: Relationship between investment, implied asset volatility, market leverage, and
credit spread

(1) (2) (3) (4) (5) (6) (7) (8)
all all all low cs mid cs high cs all all

log σ̂i,t−1 0.283*** -0.123*** 0.027 -0.049 -0.269*** 0.888*** 0.723***
(8.62) (-3.00) (0.51) (-0.73) (-3.55) (4.74) (3.97)

log[MA/ME]i,t−1 -0.606*** -0.682*** -0.455*** -0.631*** -0.739*** -0.622*** -0.586***
(-14.62) (-12.98) (-4.84) (-7.88) (-9.34) (-11.52) (-8.37)

log csi,t−1 -0.424*** -0.313***
(-6.51) (-4.70)

log σ̂i,t−1 × log csi,t−1 -0.176*** -0.138***
(-5.27) (-4.22)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 18388 18234 18234 7267 6043 4120 18234 12734
R-squared 0.132 0.189 0.192 0.186 0.176 0.211 0.202 0.268

Notes: This table documents the relationship between investment, implied asset volatility,
market leverage, and credit spread at the firm-quarter level from 1983 to 2018. Columns
4-6 use subsamples sorted by terciles on credit spread. Control variables include return on
assets, log of tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all
lagged by one quarter). Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels. Standard errors are clustered at the
firm level.

Table 2.22: Relationship between investment, asset volatility, and credit spread

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σi,t−1 0.145*** 0.136*** 0.105*** 0.120*** 0.114*** 0.098***
(7.04) (6.93) (4.52) (3.70) (2.97) (4.96)

log csi,t−1 -0.327*** -0.323*** -0.143*** -0.282*** -0.700*** -0.187***
(-9.81) (-9.68) (-2.72) (-4.12) (-8.59) (-5.89)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓

Observations 18333 18333 18333 7381 6035 4105 12796
R-squared 0.123 0.154 0.161 0.172 0.151 0.174 0.245

Notes: This table documents the relationship between investment, asset volatility, and credit
spread at the firm-quarter level from 1983 to 2018. We restrict the sample of firms to firms
with observable implied asset volatility. Columns 4-6 use subsamples sorted by terciles
every quarter on credit spread. Control variables include quarterly return on assets, log of
tangibility ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all lagged by one
quarter). Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate
significance at 1%, 5% and 10% levels. Standard errors are clustered at the firm level.
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Table 2.23: Loadings of credit spread on the industry average of asset volatility and market
leverage

log yi,t = β1 log σ̃i,t + β2 log[MA/ME]i,t + ηi + λt + ϵi,t

Panel A: Levels log σe
i,t log csi,t Panel B: Changes ∆ log σe

i,t ∆log csi,t

1
Nk−1

∑
j ̸=i log σ̃j,t 0.182*** 0.032 ∆ 1

Nk−1

∑
j ̸=i log σ̃j,t 0.050*** -0.011

(8.23) (1.00) (4.02) (-1.08)
1

Nk−1

∑
j ̸=i log[MA/ME]j,t 0.256*** 0.495** ∆ 1

Nk−1

∑
j ̸=i log[MA/ME]j,t 0.305*** 0.341***

(4.91) (6.01) (7.09) (9.89)
Firm FE ✓ ✓ Firm FE ✓ ✓
Time FE ✓ ✓ Time FE ✓ ✓

Observations 37901 37901 Observations 37149 37149
R-squared 0.362 0.441 R-squared 0.160 0.326

Notes: This table presents the loadings of credit spread on the industry average of asset
volatility and market leverage at the firm-quarter level from 1983 to 2018. For a firm i in
industry k at time t, we compute the industry average of log asset volatility excluding itself as

1
Nk−1

∑
j ̸=i log σ̃j,t and the industry average of market leverage as 1

Nk−1

∑
j ̸=i log[MA/ME]j,t.

We report results for estimations in levels in Panel A and results for estimations in first
differences in Panel B. Coefficients are reported with t-statistics in parentheses. ***, **, and
* indicate significance at 1%, 5% and 10% levels and standard errors are clustered at the
firm level.
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Table 2.24: Relationship between investment, asset volatility derived from Merton’s model,
and credit spread

(1) (2) (3) (4)
log[I/K]i,t log[I/K]i,t log[I/K]i,t log[I/K]i,t

log csi,t−1 -0.267*** -0.259*** -0.159*** -0.154***
(-12.92) (-12.28) (-7.33) (-6.78)

log σi,t−4 0.018* 0.019
(1.66) (1.59)

log σi,t−3 0.011 0.022**
(1.27) (2.02)

log σi,t−2 0.009** 0.006
(2.01) (0.48)

log σi,t−1 0.083*** 0.064***
(5.90) (5.08)

log σi,t+1 0.017 0.009
(1.63) (1.42)

log σi,t+2 0.011** 0.008**
(2.20) (2.04)

log σi,t+3 0.007* 0.009
(1.80) (1.39)

log σi,t+4 0.002 0.004
(0.68) (0.94)

Firm FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓

Observations 36863 33888 25073 22689
R-squared 0.143 0.143 0.220 0.225

Notes: This table documents the relationship between investment, asset volatility derived
from Merton’s model, and credit spread at the firm-quarter level from 1983 to 2018 for
different lags and leads. Control variables include quarterly return on assets, log of tangibility
ratio, log of sales ratio, log of income ratio, log of Tobin’s q (all lagged by one quarter).
Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate significance
at 1%, 5% and 10% levels. Standard errors are clustered at the firm level.
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Table 2.25: Relationship between investment, implied asset volatility, and credit spread for
different lags and leads

(1) (2) (3) (4)
log[I/K]i,t log[I/K]i,t log[I/K]i,t log[I/K]i,t

log csi,t−1 -0.311*** -0.319*** -0.194*** -0.184***
(-9.16) (-9.47) (-6.08) (-5.51)

log σi,t−4 0.109*** 0.079***
(4.29) (2.69)

log σi,t−3 0.059** 0.031
(2.46) (0.97)

log σi,t−2 0.062** 0.044
(2.47) (1.52)

log σi,t−1 0.117*** 0.086***
(4.26) (2.63)

log σi,t+1 0.185*** 0.111***
(6.17) (3.32)

log σi,t+2 -0.021 -0.018
(-0.87) (-0.62)

log σi,t+3 0.052** 0.063**
(2.13) (2.03)

log σi,t+4 -0.024 -0.061**
(-0.91) (-1.97)

Firm FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓

Observations 17354 16290 12258 11305
R-squared 0.173 0.170 0.251 0.248

Notes: This table documents the relationship between investment, implied asset volatility,
and credit spread at the firm-quarter level from 1983 to 2018 for different lags and leads.
Control variables include quarterly return on assets, log of tangibility ratio, log of sales ratio,
log of income ratio, log of Tobin’s q (all lagged by one quarter). Coefficients are reported
with t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and 10%
levels. Standard errors are clustered at the firm level.
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Table 2.26: Relationship between investment, level of asset volatility, shock to asset volatility,
and credit spread

(1) (2) (3)
log[I/K]i,t log[I/K]i,t log[I/K]i,t

log σi,t−1 0.281*** 0.247*** 0.193***
(13.52) (12.12) (9.07)

∆ log σi,t−1 -0.130*** -0.111*** -0.079***
(-10.58) (-9.34) (-6.09)

log csi,t−1 -0.238*** -0.153***
(-11.88) (-7.66)

Firm FE ✓ ✓ ✓
Time FE ✓ ✓ ✓
Controls ✓

Observations 41928 41928 28157
R-squared 0.131 0.155 0.227

Notes: This table documents the relationship between investment, level of asset volatility,
shock to asset volatility, and credit spread at the firm-quarter level from 1983 to 2018.
Control variables include quarterly return on assets, log of tangibility ratio, log of sales
ratio, log of income ratio, log of Tobin’s q (all lagged by one quarter). Coefficients are
reported with t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and
10% levels. Standard errors are clustered at the firm level.
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2.11 Appendix: Endogenous Leverage Dynamics

In this appendix, we extend the framework of DeMarzo and He (2020) to include an invest-

ment function. We solve numerically the Markov perfect equilibrium and confirm that our

results hold in Figure 2.7. We refer to DeMarzo and He (2020) for the proofs of the existence

and uniqueness of the Markov perfect equilibrium.

We assume that agents are risk neutral with an exogenous discount rate of r > 0. The

firm’s assets-in-place generate operating cash flow at the rate of Yt, which evolves according

to a geometric Brownian motion:

dYt/Yt = µtdt+ σdZt

where Zt is a standard Brownian motion. A firm has at its disposal an investment technology

with adjustment costs, such that ιtYt spent allows the firm to grow its capital stock by

µ(ιt)Ytdt, where µ(·) is increasing and concave. Denote by B the aggregate face value of

outstanding debt that pays a constant coupon rate of c > 0. The firm pays corporate taxes

equal to π(Yt− cFt). We assume that debt takes the form of exponentially maturing coupon

bonds with a constant amortization rate ξ. Equity holders control the outstanding debt

Bt through an endogenous issuance/repurchase policy dΓt but cannot commit on a policy.

Thus, the evolution of the outstanding face value of debt follows

dBt = dΓt − ξBtdt.

In the unique Markov equilibrium, given the debt price p(Y,B), the firm’s issuance policy
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dΓt = Gtdt and default time τ maximize the market value of equity:

E(Y,B) = max
τ,ιt,Gt

Et

[ ∫ τ

t

e−r(s−t)
[
(1− ιs)Ys − π(Ys − cBs)− (c+ ξ)Bs

+Gsps
]
ds

∣∣∣∣Yt = Y,Bt = B

]
.

Similarly, the equilibrium market price of debt must satisfy

p(Y,B) = Et

[∫ τ

t

e−(r+ξ)(c+ ξ)ds

∣∣∣∣Yt = Y,Bt = B

]
.

The Hamilton-Jacobi-Bellman (HJB) equation for equity holders is

rE(Y,B) = max
ι,G

[
(1− ι)Y − π(Y − cB)− (c+ ξ)Bs (2.11)

+Gp(Y,B) + (G− ξB)EB(Y, F ) + µ(ι)Y EY (Y,B) +
1

2
σ2Y 2EY Y (Y,B)

]
.

Thus, in equilibrium it must be that

p(Y,B) = −EB(Y,B).

The first-order condition for the investment rate is given by

1 = µι(ι)EY (Y,B).
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In the following, we define {ι(Y,B), G(Y,B)} as

{ι(Y,B), G(Y,B)} = argmax
ι,G

[
(1− ι)Y − π(Y − cB)− (c+ ξ)Bs

+Gp(Y,B) + (G− ξB)EB(Y, F ) + µ(ι)Y EY (Y,B)

+
1

2
σ2Y 2EY Y (Y,B)

]
.

In this setting with scale-invariance, the relevant measure of leverage is given by

yt ≡ Yt/Bt,

and the equity value function E(Y,B) and debt price p(Y,B) satisfy

E(Y,B) = E (Y/B, 1) ≡ e(y)B and p(Y,B) = p(Y/B, 1) ≡ p(y).

We also define the following:

ι(Y,B) ≡ ι(y) and G(Y,B) ≡ g(y)B.

Thus, we can rewrite (2.11) as follows

(r + ξ)e(y) = max
ι

[
(1− ι)y − π(y − c)− (c+ ξ) + (µ(ι) + ξ)ye′(y) +

1

2
σ2y2e′′(y)

]
. (2.12)

The optimal default boundary is such that

e′(yb) = 0.
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The higher bound is such that

e′(y) = ϕy − ρ,

which corresponds to the value of equity without a default option. We can solve for ϕ and

ρ with

(r + ξ)(ϕy − ρ) = max
ι

[
(1− ι)y − π(y − c)− (c+ ξ) + (µ(ι) + ξ)ϕy

]
.

Thus,

ρ =
(1− τ)c+ ξ

r + ξ
,

ϕ =
1− ι⋆ − π

r − µ(ι⋆)
,

1 = µ′(ι⋆)ϕ.

The HJB for p(Y,B) is given by

rp(Y,B) = c+ ξ(1− p(Y,B)) + (G− ξB)pB(Y,B) + µ(Y,B)Y pY (Y,B) +
1

2
σ2Y 2pY Y (Y,B).

where we define µ(Y,B) ≡ µ(ι(Y,B)) ≡ µ(y).

Thus, we can write the HJB for p(y) as

rp(y) = c+ ξ(1− p(y))− (g(y)− ξ)p′(y)y + µ(y)yp′(y) +
1

2
σ2y2p′′(y). (2.13)

where g(y) = G(Y,B)/B. We need g(y) to be such that p(y) = e′(y)y − e(y). From (2.12),
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we get

(r + ξ)e′(y)y = (1− ι(y))y − πy − ι′(y)y2 + (µ(y) + ξ)y2e′′(y) + (µ(y) + ξ)ye′(y) + µ′(y)y2e′(y)

+
1

2
σ2y3e′′′(y)) + σ2y2e′′(y).

Thus,

(r + ξ)(e′(y)y − e(y)) = (1− π)c+ ξ − ι′(y)y2 + (µ(y) + ξ)ye′′(y) + µ′(y)y2e′(y)

+
1

2
σ2y2e′′′(y) +

1

2
σ2y2e′′(y).

Thus, g(y) is such that

c+ ξ − (g(y)− ξ)p′(y)y + µ(y)yp′(y) +
1

2
σ2y2p′′(y)

= (1− π)c+ ξ − ι′(y)y2 + (µ(y) + ξ)y2e′′(y) + µ′(y)y2e′(y)

+
1

2
σ2y3e′′′(y)) +

1

2
σ2y2e′′(y).

With further algebra, we get

−gp′(y)y = −πc− ι′(y)y2 + µ′(y)y2e′(y).

Since µ′(ι)e′(y) = 1 and µ′(y) = µ′(ι)ι′(y), we get

g(y) =
πc

p′(y)y
.

Plugging the solution for g(y) in (2.13) yields

(r + ξ)p(y) = (1− π)c+ ξ + (µ(y) + ξ)yp′(y) +
1

2
σ2y2p′′(y).
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We solve numerically for the solution using ODE45 in Matlab. We use the following

pseudo-algorithm.

1. Start with yL = 0 and yH = H, where H is a sufficiently large number.

2. Given yb = 1/2(yL + yH), e(yb) = 0, and e′(yb) = 0, we solve for e(y) on [yb, yB] where

YB is a large number.

3. Check if |e(YB)−(ϕyB−ρ)| ≤ ε, where ε > 0 is a small number. If e(YB)−(ϕyB−ρ) > ε,

set yL = yb and repeat 2-3. If e(yB) − (ϕyB − ρ) < −ε, set yH = yb and repeat 2-3.

Otherwise move to 4.

4. Start with ppL = 0 and ppH = H, where H is a sufficiently large number.

5. Given ppb = 1/2(ppL + ppH), p(yb) = 0, p′(yb) = ppb we solve for p(y) on [yb, yB].

6. Check if |p(yB)−ρ| ≤ ε If p(YB)−ρ > ε, set pH = pb and repeat 2-3. If p(yB)−ρ < −ε,

set ppL = ppb and repeat 4-5. Otherwise move to 7.

7. Check if |p′(yb)− e′′(yb)yb| ≤ ε. If not, increase the precision of the ODE45 solver and

restart from 1.
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Figure 2.7: Optimal investment in dynamic setting
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Notes: This figure presents optimal investment in dynamic setting with µ(ι) = log(1+κι)
κ

,
κ = 100, r = 0.05, ξ = 1/8, c = 0.05, π = 0.3.
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CHAPTER 3

Central Bank Digital Currency and Bank

Disintermediation in a Portfolio Choice Model

with Lucyna Gornicka, Federico Grinberg, and Marcello Miccoli

3.1 Introduction

Recent years have seen a surge in the use of new kinds of privately issued digital money.1

In response, more and more central banks have initiated work on exploring the issuance

of their own digital money, denominated central bank digital currency (CBDC).2 While

different central banks pursue different objectives with CBDC, it is often hoped that its

introduction can provide a more efficient, secure, and modern central bank money available

to everyone, and that it can also increase resilience, availability, efficiency and contestability

of retail payments, as well as broaden financial inclusion.

However, one of policymakers’ key concerns is whether the introduction of CBDC could

lead to bank disintermediation (Bindseil, 2020; Mancini-Griffoli et al., 2018) as a result of

CBDC potentially crowding out commercial bank deposits. Deposits are a cheap and stable

source of funding for banks, so if CBDC becomes successful in substituting bank deposits

as a payment instrument, this could have a negative impact on banks’ overall funding, and

1For example, payment systems provided by mobile network operators, new payment system providers,
and stablecoins. See Adrian and Mancini-Griffoli (2019) for a detailed discussion. [IMPROVE THIS FN]

2For example, China, Canada, Sweden, The Bahamas, and European Union. See Soderberg et al. (2022)
for a discussion on these central banks’ policy objectives for considering a CBDC.
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thus, their ability to lend.

In this paper we present a standard portfolio choice model with banks, in the spirit

of Monti (1972); Klein (1971) and Drechsler et al. (2017), to analyze whether CBDC can

actually generate bank disintermediation and, if so, how big this effect may be. In the

model, households choose how to allocate their wealth between an illiquid asset and three

imperfectly substitutable liquid assets: cash, bank deposits and CBDC. Households’ utility

depends on their final wealth and on services provided by the liquid assets. Deposits are

offered by banks who then can invest funds in bonds that pay a fixed return or lend to firms.

Banks have market power in deposits, which allows them to charge a positive spread between

the return on bonds and the deposit rate.

We measure the impact of CBDC on bank intermediation by comparing the size of

the bank deposit base and the size of bank lending before and after the introduction of

CBDC. In the model, CBDC is simply a new, imperfect substitute for the other two liquid

assets: deposits and cash. In the baseline case, when it is costless to hold the liquid assets,

households would like to use all three of them, as households derive utility from variety.

We show analytically that in this case the introduction of CBDC does not lead to bank

disintermediation. The reason is that CBDC reduces banks’ market power, to which banks

optimally respond by increasing the rate of return on deposits. Thus, households choose to

hold even more of bank deposits and the aggregate deposit base increases. We call this effect

the intensive margin of CBDC introduction, and it is always positive. At the same time, due

to the lost market power the net effect of CBDC introduction on bank profits is negative.3

But in reality there can be many barriers to access financial assets. While getting cash

3In a related model of Andolfatto (2021) the introduction of CBDC also has a non-negative impact on
aggregate bank deposits. Similarly to our setup, this happens because competition from CBDC makes banks
offer higher rates of return on deposits. However, in Andolfatto (2021) agents cannot hold positive amounts
of cash, CBDC and deposits at the same time, but strategically choose only one means of payment. As a
result, also the extensive margin (see below) has always positive impact on the size of bank deposit base,
which is not the case in our model. Allowing deposits, cash and CBDC to be imperfect substitutes allows
us to study the consequences of CBDC introduction for a more general set of household preferences.
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usually has no costs for retail users4, gaining access to deposits can be cumbersome (for

example, in many countries banks require customers to provide a proof of residence and

employment in order to open an account) and costly (for example, some banks charge fixed

fees for setting up an account or for executing transfers). In the extended model, when the

fixed cost of holding bank deposits is much higher than the cost of holding CBDC, and when

we allow households to differ in their initial wealth, the introduction of CBDC can generate

bank disintermediation. This happens when the high cost of access to bank deposits leads

poorer households to abandon deposits and to use CBDC and cash only. We call this the

extensive margin of CBDC introduction. If big enough, the extensive margin can more than

offset the intensive margin. However, when we parametrize and solve the enriched model

numerically, we find that aggregate bank deposits fall following CBDC introduction only

under a special condition: when the wealth distribution is fairly unequal. In this case banks

do not aggressively increase deposit rates to prevent the outflow of customers due to the

relatively small wealth held by the poor households. This leads to an aggregate decrease in

bank deposits.

Regarding the impact that CBDC may have on lending, we find it to be quantitatively

small under the conditions that make aggregate deposits fall. The access to other forms

of funding, such as wholesale or central bank financing, allows banks to compensate the

decline in deposits without having to reduce lending too much. On the one hand, when

these alternative funding sources are relatively cheap, it is easy for banks to substitute away

from deposits.5 On the other hand, when alternative forms of funding are expensive, banks

fight for deposits more aggressively, further increasing deposit rates, and thus reducing their

4Although this is most certainly the case for retail users and small amounts of cash, storage costs can
be non-negligible when they involve larger amounts. Cash also pays a lower real return compared to bank
deposits (as long as interest rates on deposit are positive). which we also consider in the model.

5The model ignores the effect that the changes in the funding structure may have on regulatory ratios
or, more generally, on financial stability.
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loss of deposits.6

Overall, our results show the importance of taking into account the market structure

and banks’ strategic responses when assessing the impact of CBDC on the banking system.

Policymakers aiming to examine resiliency of bank lending to the introduction of potentially

very attractive means of payment should take into account the mechanisms that we unveil.

Our findings point also to the need for quality data on households’ preferences over means

of payment to estimate the demand for liquid assets.

Related Literature This paper contributes to a growing literature on CBDC. In line with

majority of past work, we consider CBDC to be means of payment that i) can pay interest, ii)

is directly accessible to a broad public, and iii) is not held on an account with a commercial

bank.

Our main focus is on the effects that CBDC introduction can have on the deposit base of

commercial banks and on bank lending. Other papers that have also considered this question

include Andolfatto (2021), Chiu et al. (2019) and Agur et al. (2022). In Andolfatto (2021),

banking sector is also monopolistic, but CBDC is a perfect substitute for currency and bank

deposits. Thus, agents choose to hold only one means of payment and banks always match

the rate paid on deposits with the return on CBDC. Additionally, costs of accessing bank

deposits and CBDC are the same. As a result, while there is an extensive margin of CBDC

introduction similar to our setting, it has always a positive impact on bank deposits. In

comparison, we model deposits, cash and CBDC as imperfect substitutes, which allows us

to study implications of CBDC introduction for a broader set of household preferences.

Chiu et al. (2019) consider a model where cash and deposits serve different transactions,

and where CBDC is a perfect substitute for bank deposits only. The implications of CBDC

introduction depend on whether it earns an interest rate and whether banks have market

6An important caveat is that our model is static, so the compression of bank profits and capital erosion
does not affect lending. This is clearly a channel that can have an impact on lending in a dynamic setting.
See, for instance, (Van den Heuvel et al., 2002).
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power in the deposit market. When banking sector is imperfectly competitive, CBDC in-

troduction expands bank deposit base and lending if its interest rate lies in an intermediate

range and it causes disintermediation only if the interest rate is set too high relative to the

rate that can be offered on bank deposits without making banks non-profitable.

In contrast to these two papers, we model CBDC as an imperfect substitute for both

cash and bank deposits in a simple portfolio choice model. Although the way CBDC can

increase bank deposit base in our model is also by reducing the market power of banks,

it is important to note that both in Chiu et al. (2019) and in Andolfatto (2021) CBDC

generates these effects although it has a zero market share: just by serving as an outside

option to depositors and setting the interest rate on deposits. While in our model the impact

of CBDC on bank deposits and lending works through an intensive and an extensive margin

as in Andolfatto (2021), we show that the two margins might actually work in the opposite

directions under special circumstances: when cost of setting a CBDC account is low relative

to bank deposits and when wealth distribution among households is fairly unequal.

Agur et al. (2022) consider a setup where households choose the means of payments de-

pending on their preferences over the level of anonymity and security of transactions. While

cash offers most anonymity, bank deposits provide most security. Similarly to our model,

variety in payment instruments increases welfare, but this is because of the heterogeneity in

household preferences. Contrary to our setup, Agur et al. (2022) do not consider the role

of the market power: banks are modeled as price-takers in both deposit and loan markets.

The implications of CBDC introduction crucially depend on how close it resembles cash or

deposits: a cash-like CBDC can reduce the demand for cash beyond the point where network

effects cause the disappearance of cash, while a deposit-like CBDC can cause an increase in

deposit and loan rates, and a contraction in bank lending to firms. The optimal design of

CBDC involves a trade-off between loss of utility from variety when CBDC crowds out cash

and loss of bank intermediation in the presence of severe lending frictions.

Other related papers on macroeconomic implications of CBDC, include Barrdear and
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Kumhof (2016), Keister and Sanches (2019), Brunnermeier and Niepelt (2019), Williamson

(2019), Piazzesi and Schneider (2020), Garratt et al. (2021), Wang and Hu (2022). In

particular, Keister and Sanches (2019) show that by choosing a proper interest on CBDC,

policymakers can ensure that CBDC introduction never decreases welfare. Barrdear and

Kumhof (2016) introduce CBDC in a DSGE model with competitive but regulated banking

sector. They find that CBDC always spurs economic activity, lowers the policy and deposit

rates and increases bank lending. Garratt et al. (2021) consider a model with banks that

have heterogenous market shares, and analyze how an interest-bearing CBDC can affect

concentration in the banking system. In sum, the impact crucially depends on the design of

CBDC. Finally, Wang and Hu (2022) study the link between CBDC and financial develop-

ment. They argue that in less financially developed economies, retail CBDCs can be useful

for promoting financial inclusion, while in countries with high levels of financial development,

CBDC can enhance financial stability by substituting out more risky non-bank e-money.

Our paper also belongs to the vast literature studying implications of imperfect compe-

tition in banking system (e.g. Drechsler et al., 2017, Repullo et al., 2020). In particular, we

build on at model developed Drechsler et al. (2017) to study the deposit channel of monetary

policy. The model contains two features that make it suitable for our purposes: i) imperfect

substitution between liquid assets as a means of payment, and ii) imperfectly competitive

banking system . Finally, our work builds on models that distinguish between the extensive

and intensive margins of adjustment as in Hopenhayn (1992) and Melitz (2003).

The rest of the paper is organized as follows. Section 3.2 introduces the baseline model

with homogeneous households and no fixed costs for holding bank deposits and CBDC.

Section 3.3 discusses the enriched model with heterogeneous households and fixed costs of

holding deposits and CBDC. Section 3.4 adds lending and wholesale funding for banks to

the model. Section 3.5 concludes.
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3.2 Baseline Model

This section introduces the baseline model with homogeneous households and provides the

analytical solution. We show that when households are homongenous in wealth, the intro-

duction of CBDC will always lead to an increase in total bank deposits in the model.

3.2.1 Setup

We consider a portfolio choice model with an imperfectly competitive banking sector. There

are three types of agents in the model: households, banks, and a central bank.

Households Households are homogenous and have initial wealth of W0, which they allo-

cate among four types of assets: (i) notes (cash), denoted by N , earns no return; (ii) CBDC,

denoted by C, earns return rC ≥ 0; (iii) deposits, denoted by D, earn rD; and (iv) bonds,

earn a non-negative rate f . The bonds are risk-free, and f is the risk-free rate set by the

central bank. Bonds are also “illiquid” as they are not useful as means of payment. Cash,

CBDC, and deposits can instead be used for payments, creating liquidity services value in

households’ utility function.

Households’ utility is a function of final wealth W and liquidity services L:

U(W0) = max
(
W

ρ−1
ρ + λL

ρ−1
ρ

) ρ
ρ−1

, (3.1)

where wealth and liquidity are complements, with the elasticity of substitution ρ < 1. Liq-

uidity services arising from holding cash, CBDC and deposits are defined as:

L(N,C,D) = (N
ϵ−1
ϵ + δCC

ϵ−1
ϵ + δDD

ϵ−1
ϵ )

ϵ
ϵ−1 . (3.2)

The three liquid assets are imperfect substitutes for households, hence the elasticity of sub-

stitution is greater than one, ϵ > 1. δC and δD represent the relative usefulness of CBDC
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and deposits as means of payments compared to cash.

Households face the following budget constraint:

W = W0(1 + f)−Nf − C(f − rC)−D(f − rD), (3.3)

rearranged to highlight the opportunity costs of holding the liquid assets with respect to

bonds. As cash earns no return, households face an opportunity cost of f , the return on

bonds, when holding cash. The opportunity costs of holding CBDC and deposits are lower

than for cash, as they guarantee positive returns rC and rD, respectively.

Banks Deposits are a composite good produced by a set of J banks, indexed by j ∈

{1, 2..., J}:

D =

(
1

J

J∑
j=1

D
η−1
η

j

) η
η−1

, (3.4)

where η > 1 is the elasticity of substitution between deposits of different banks. It is greater

than one, reflecting imperfect substitutability between bank deposits.

To focus on the effect that CBDC has on the deposit market, for now we assume that

banks are fully funded by deposits and can only invest in bonds. These assumptions are

relaxed in Section 3.4. As deposits are imperfect substitutes, banks have market power and

set the return on deposits rD,j with the objective of maximizing their profits, (f − rD,j)Dj,

subject to deposits demand. The return on aggregate deposits is defined by the weighted

average of each bank’s rate of return, i.e. rD = 1
J

∑J
j=1

Dj

D
rD,j.

Central bank The central bank chooses the risk-free rate f , i.e. remuneration on bonds,

and the interest rate on CBDC, rC . It also supplies bonds and CBDC with an infinite

elasticity.
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3.2.2 Equilibrium

The behaviour of households is characterized by four first-order conditions. First, households

choose between liquid assets and bonds according to:

L

W
= λρs−ρ

L , (3.5)

where sL ≡ (f 1−ϵ+δϵD(s
∗)1−ϵ+δϵC(f−rC)1−ϵ)

1
1−ϵ is the foregone interest of holding liquid

assets. A higher forgone interest decreases the share of wealth kept in liquid assets.7

Second, households choose between liquid assets according to the two first-order condi-

tions

C

N
= δC

ϵ

(
f − rC
f

)−ϵ

, (3.6)

C

D
=

(
δC
δD

)ϵ(
f − rC
f − rD

)−ϵ

. (3.7)

It follows that households will want to hold more CBDC if it is more useful as means of

payments relative to other liquid assets, and if it earns a higher return.

Third, households choose between deposits of different banks according to:

Dj

D
=

(
f − rD,j

f − rD

)−η

. (3.8)

Thanks to the market power they enjoy, banks can remunerate deposits below the central

bank’s risk-free rate: the spread with respect to the rate f , f − rD,j, is positive. The first-

order condition for banks is given by:

∂Dj

∂(f − rD,j)

(f − rD,j)

Dj

= −1. (3.9)

7Note that we can equivalently rewrite the households’ budget constraint as W =W0(1 + f)− LsL.
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Following Drechsler et al. (2017), we focus on the symmetric equilibrium with Dj = D.

In this case it can be shown that the elasticity of aggregate deposit demand with respect to

the spread (f − rD) is equal to:

− ∂D

∂(f − rD)

(f − rD)

D
= 1− (η − 1)(J − 1) = M. (3.10)

The elasticity of demand with respect to the spread, M, decreases in the level of com-

petition in the deposit market. In turn, the competitiveness of the deposit market increases

with the number banks J , and with higher substitutability of deposits across banks, η.

A closed-form solution to the model can be obtained for the limit case in which λ → 0.

In this case, following proposition 1 in Drechsler et al. (2017), if ϵ > M > ρ, the deposit

remuneration and aggregate deposits are given by:

f − rD
∗ = δ

ϵ
ϵ−1

D

[
M− ρ

ϵ−M

] 1
ϵ−1 [

f 1−ϵ + δϵC(f − rC)
1−ϵ
] 1

1−ϵ > 0, (3.11)

and

D∗ = δ
ϵ(1−ρ)
1−ϵ

D (f − rD
∗)−ρ

[
1 + δ−ϵ

D

(
f − rD

∗

f

)ϵ−1

+

(
δD
δC

)−ϵ(
f − rD

∗

f − rC

)ϵ−1
] ρ−ϵ

ϵ−1

. (3.12)

If M < ρ, then rD
∗ = f . Throughout the analysis we focus on the case when the return

on deposits is strictly less than the policy rate f , hence we impose that ϵ >M > ρ.

For completeness, it is worth noting that just like in Drechsler et al. (2017) the equilibrium

spread s∗ ≡ f − rD
∗ is non-decreasing and the amount of deposits D∗ is non-increasing in

the policy rate f , giving a rise to a ”bank deposit channel”:

∂s∗

∂f
≥ 0 (3.13)

147



∂D∗

∂f
≤ 0. (3.14)

In equilibrium, a higher rate f increases the opportunity cost of using cash or CBDC instead

of deposits to service liquidity needs, allowing banks to increase the rate paid on bank

deposits, but by not as much as f , hence the spread s∗ increases. In response to the higher

opportunity cost of holding deposits, the total supply of deposits by households declines

because it is now more profitable to save through bonds than through deposits.

3.2.3 Impact of CBDC introduction

In this section we analyze the impact of the introduction of CBDC on the equilibrium deposit

return and the amount of deposits. For simplicity, we will present the results in terms of

the deposit spread, i.e. the spread between the policy rate and the bank deposit rate,

s∗ ≡ f − rD
∗.

Equilibrium deposit interest rate and deposit base with and without CBDC.

In the absence of CBDC, proxied by setting δC = 0, the equilibrium deposit spread and

aggregate amount of deposits simplify to:

s̃∗ = δ
ϵ

ϵ−1

D

[
M− ρ

ϵ−M

] 1
ϵ−1

× f, (3.15)

and

D̃∗ = δ
ϵ(1−ρ)
1−ϵ

D (s̃∗)−ρ

[
1 + δ−ϵ

D

(
s̃∗

f

)ϵ−1
] ρ−ϵ

ϵ−1

. (3.16)

Comparing equations (3.11)-(3.12) and (3.15)-(3.16), it is clear that introduction of

CBDC will have an instant impact on the deposit rate of return and on aggregate deposits.

Two opposing effects will come to play. First, as long as CBDC is not a perfect substitute

for deposits and cash (ϵ > 1), its introduction will induce households to diversify their liq-

uidity basket, reducing but not fully eliminating the demand for cash and deposits. At the
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same time, however, it will also force banks to reduce the deposit spread in order to keep

households from substituting deposits with CBDC. This will increase households’ demand

for deposits.

Overall, it can be shown that the deposit spread will always decline following introduction

of CBDC, or equivalently that the return on deposits will increase, and that the aggregate

deposits will always increase in equilibrium.

Lemma 1 The equilibrium spread on deposits always declines when CBDC, with δC > 0,

is introduced, and the equilibrium level of deposits always increases:

s∗ − s̃∗ = ∆s ≤ 0. (3.17)

D∗ − D̃∗ = ∆D ≥ 0. (3.18)

The intuition for the preceding lemma is following. CBDC is a substitute for deposits,

hence banks decrease the deposit spread in order to fight the competition from CBDC. De-

posits in equilibrium increase for a more subtle reason. One can rewrite aggregate deposits in

the limit case of λ→ 0 as: D∗ = δϵD

(
s∗

sl

)−ϵ

s−ρ
l , where sl ≡ (f 1−ϵ + δϵD(s

∗)1−ϵ + δϵC(f − rC)
1−ϵ)

1
1−ϵ

represents the opportunity cost of holding liquid assets. Thus, the ratio
(

s∗

sl

)−ϵ

represents

the substitution forces between the cost of deposits and overall liquidity, while s−ρ
l repre-

sents the demand for liquidity, which is decreasing in the opportunity cost of liquidity. When

CBDC is introduced, the opportunity cost of liquidity, sl, decreases. Directly, because there

is a new liquid asset (love for variety effect), and indirectly because CBDC competition

induces banks to decrease the deposits spread, s∗. But banks adjust the spread so that

households are exactly indifferent between holding one more unit of CBDC and one more

unit of deposits and do not substitute away from deposits (equivalently, s∗

sl(s∗)
= s̃∗

sl(s̃∗)
)8. As

a result of these two effects, the increase in liquid asset demand increases the demand for

8Note that this is not true when λ↛ 0. However the change in the ratio is very small.
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deposits by the households and the aggregate amount of bank deposits in equilibirum.

3.2.3.1 Comparative statics: policy rate, CBDC remuneration, and bank mar-

ket power.

Quantitatively, implications of CBDC introduction for bank deposits and the deposit spread

will depend on the level of the policy rate f , remuneration offered by the CBDC and the

level of market power in the banking sector. In what follows, we explain how these factors

will matter more in detail.

In line with intuition, the decline in the deposit spread ∆s is larger, and the increase in

the aggregate deposits ∆D is larger, the higher the rate on CBDC is:

∂|∆s|
∂rE

> 0, (3.19)

∂∆D

∂rE
> 0. (3.20)

A higher rate of return on CBDC implies that banks will need to compensate households

by paying a higher deposit rate in order to prevent them from switching to CBDC. Thus

a higher rE pushes the deposit spread further down and results in a larger increase in the

amount of liquidity held in bank deposits.

For the policy rate, which is also the rate of return on bonds in which banks invest, we

can show that the decline in the deposit spread ∆s is larger, and the increase in the aggregate

deposits ∆D is smaller, the higher the policy rate is, i.e.:

∂|∆s|
∂f

> 0, (3.21)

∂∆D

∂f
< 0 (3.22)
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The result that a higher policy rate implies a higher decline in the deposit spread follows

from the comparison of equations (3.11) and (3.15). In the absence of CBDC, the deposit

spread s̃∗ is increasing by a fixed proportion, δ
ϵ

ϵ−1

D

[M−ρ
ϵ−M

] 1
ϵ−1 , each time f is raised by one.

This elasticity declines once CBDC is introduced. Intuitively, although a higher policy rate

still allows banks to raise the spread, they are more constrained in the ability to raise it due

to the competition from CBDC.

The result that the increase in the aggregate deposits is highest for low levels of the policy

rate f might seem counter-intuitive, given that the decline in the deposit spread is the largest

when f is high. To understand this result, it is again useful to express aggregate deposits as

a function of the deposit spread and the overall cost of liquidity: D∗ = δϵD

(
s∗

sl

)−ϵ

s−ρ
l and

D̃∗ = δϵD

(
s̃∗

s̃l

)−ϵ

s̃−ρ
l , where s̃l ≡ (f 1−ϵ + δϵD(s̃

∗)1−ϵ)
1

1−ϵ . As discussed before, following the

introduction of CBDC, the deposit spread adjusts so that the ratios s∗

sl
and s̃∗

s̃l
are equal.

Thus, a larger decline in s∗ relative to s̃∗ when f goes up is simply necessary in order to keep

the relative share of deposits in the households’ liquidity basket from falling. It follows that

the difference in the response of D∗ and D̃∗ to changes in f is solely due to differences in

how the overall demand for liquidity, s̃−ρ
l and s−ρ

l , changes with the policy rate when there

is no CBDC and when CBDC is present.

Finally, when we consider different levels of competition in the banking sector, we find

that the decline in the deposit spread ∆s is smaller, and the increase in the aggregate deposits

∆D is larger, the higher the elasticity of substitution among deposits (η) or the number of

banks (J) is. Formally:
∂|∆s|
∂η

< 0,
∂|∆s|
∂J

< 0 (3.23)

∂∆D

∂η
> 0,

∂∆D

∂J
> 0 (3.24)

Higher competition has two implications. First, the deposit rate is higher, as banks

have less market power. Second, the aggregate elasticity of deposits with respect to deposit

rate (the negative of elasticity with respect to the deposit spread) increases as either there
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are more banks the household can substitute to (higher J), or there is higher elasticity of

substitution across deposits. Hence, when CBDC is introduced, banks have less capacity to

increase deposits rates compared to a deposit market with less competition and, even with

a smaller increase in the deposit rate, the higher elasticity of aggregate deposits will imply

a larger increase in deposit holdings by the households.

3.3 Extensive Margin in Liquid Asset Holdings

So far, we have assumed that households do not differ in the amount of initial wealth they

hold. As a result, the only way through which the introduction of CBDC was altering

households’ portfolio allocation decisions was through higher or lower holdings of different

assets by the representative household.

However, many view CBDC as a means to bolster financial inclusion, particularly in

countries where banking penetration is low and where cash no longer offers a viable alterna-

tive. Importantly, if CBDC introduction increased financial inclusion—understood as access

to and use of formal financial services—its effect on bank intermediation through this chan-

nel would be ambiguous. On the one hand, if banks increase the return offered on deposits

in response to competition from CBDC as shown in Section 3.2), some previously unbanked

households could decide to open bank accounts, pushing the total amount of deposits further

up. On the other hand, if setting up a CBDC account is considerably cheaper than opening

a bank account, this could encourage poorer households to switch from deposits to CBDC

entirely. Thus, to enrich our analysis and to capture these potentially important effects, in

this section we introduce two additional features to the model: i) heterogeneity in the initial

household wealth, and ii) fixed costs of holding both CBDC and deposits.

The solution of the model will be now characterized by equilibrium wealth thresholds

under which households will not hold CBDC and/or deposits. Thus, changes in aggregate

deposit holdings will be driven by changes in how much deposits households hold condi-
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tional on having deposits at all (intensive margin) and how many households hold deposits

(extensive margin).

3.3.1 Model setup

We assume that households’ initial wealth W0 has now a Pareto (Type I) distribution with

the shape parameter α. The probability density function is given by f(W0) =
αW0

α

Wα+1
0

, where

W0 is the lowest possible wealth level. For simplicity and without loss of generality we set

W0 = 1.

Households also need to pay a fixed cost (ϕD) to hold deposits and a fixed cost (ϕC) to

hold CBDC. These costs are measured in terms of utility to simplify the model solution.

The introduction of ϕD > 0 and ϕC > 0 allows us to capture pecuniary and non-pecuniary

frictions that households face when accessing payment instruments. In addition, we assume

that the cost of holding deposits is higher than the cost of holding CBDC: (ϕD > ϕC). We

think it is a reasonable assumption because introduction of CBDC—a policy intervention—

would likely be aimed at increasing access to payment instruments and/or increasing financial

inclusion.

Under these two new assumptions, households’ utility can be written as

u(W0) = max
[
(W

ρ−1
ρ + λL

ρ−1
ρ )

ρ
ρ−1 − 1(ϕ)

]
, (3.25)

where

1(ϕ) ≡


ϕC if C > 0 and D = 0

ϕD if D > 0 and C = 0

ϕC + ϕD if C > 0 and D > 0
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3.3.2 Solution characterization

With the fixed costs of setting up a CBDC or a bank deposit account, households may choose

to hold neither CBDC nor deposit (N), only hold CBDC (C), only hold bank deposit (D),

or hold both (B). We show that this choice depends on the individual household’s initial

wealth.

We first show that the indirect utility is linear in initial wealth W0. The indirect

utility u(W0) is defined as the maximized utility with optimal choice of assets allocation

{N,C,D,B}, and is defined for each discrete choice over whether to set up an account for

deposit or CBDC. Let t(sl) ≡ (1+λρs1−ρ
l )

1
ρ−1 , the indirect utility can be expressed as follows:

U(W0) = W0(1 + f)t (1(sl))− 1(ϕ), (3.26)

where

1(sl) ≡



δ
ϵ

1−ϵ

N f if C = 0 and D = 0

(δϵNf
1−ϵ + δϵC(f − rC)

1−ϵ)
1

1−ϵ if C > 0 and D = 0

(δϵNf
1−ϵ + δϵDs

1−ϵ)
1

1−ϵ if D > 0 and C = 0

(δϵNf
1−ϵ + δϵDs

1−ϵ + δϵC(f − rC)
1−ϵ)

1
1−ϵ if C > 0 and D > 0

The benefit of having a deposit or a CBDC account is equal to the lower cost of liquidity

service, reflected in different 1(sl) associated with different choices. The cost is the fixed cost

ϕC , ϕD.

We can compute the indirect utility for each of the four choices and compare them, in

order to find the cutoff wealth values for preferred choice within each pair. Since ϕD > ϕC ,

there are four possible scenarios: (i) households with low initial wealth use only cash, and

households with high initial wealth use cash, CBDC, and deposits; (ii) households with low

initial wealth use only cash, households with medium initial wealth use both cash and CBDC,
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and households with high initial wealth use cash, CBDC, and deposits; (iii) households

with low initial wealth use only cash, households with medium initial wealth use both cash

and deposits, and households with high initial wealth use cash, CBDC, and deposits; (iv)

households with low initial wealth use only cash, households with medium low initial wealth

use both cash and CBDC, households with medium high initial wealth use both cash and

deposits, and households with high initial wealth use cash, CBDC, and deposits. For a given

parametrization, only one scenario exists.

We will focus on the second scenario in the main text, as it is the one that arises under

our preferred parametrization, and relegate the discussion on other scenarios to Appendix

3.7.2. In the Appendix, we show how the realization of different scenarios depends on the

parameter values.

In scenario number 2, households with initial wealth below Ŵ1 = ϕC

(1+f)(t(sCl )−t(sNl ))

would choose to hold cash only, and those with initial wealth above Ŵ1 and below Ŵ2 =

ϕD

(1+f)(t(sBl )−t(sCl ))
would choose to hold both cash and CBDC, while those with initial wealth

above Ŵ2 would hold hold cash, CBDC, and deposits. These expressions show that the

cutoff wealth levels increase with the cost of switching from/to an asset (the numerator) and

fall with the benefit of switching (the denominator).

Aggregate bank deposits are now given by

D = δϵD

(
sBl
s

)ϵ λρ
(
sBl
)−ρ

1 + λρ (sBl )
1−ρ (1 + f)×

∫
Ŵ2

W0dF (W0), (3.27)

which shows that aggregate deposits can change along both an intensive and an extensive

margin.

Similar to Section 3.2, we compare equilibria without CBDC (δC = 0) and when CBDC

is introduced (δC > 0). Different from the basic model presented in Section 3.2, we calibrate

the model and rely on numerical methods to solve it.
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3.3.3 Calibration

The baseline parameter values used for numerical solutions are summarized in Table 3.1.

We set the interest rate on bonds to 3 percent. We choose λ to generate a share of

liquid assets to total household wealth of 5 percent (as observed in Advanced Economies). 9

Given these parameters, we choose ρ and ϵ so that the condition required for the existence

of equilibrium holds (ϵ >M > ρ) 10. The parameter governing the liquidity services of cash

(δN) is normalized to one, so we choose δD and δC to reflect the assumed rank in terms of how

good these assets are in providing liquidity services: CBDC provides more liquidity services

than deposits, and these provide more liquidity services than cash.11 Three parameters

are chosen such that the model generates disintermediation when CBDC is introduced: α is

such that the distribution of initial wealth is relatively unequal and the fixed costs of holding

CBDC and deposits is such that its CBDC is sufficiently less expensive than deposits. In

the subsection below, we discuss how these key parameter choices drive the results and the

mechanisms behind. Finally, the parameters η and J correspond to the monopoly power of

banks.

3.3.4 Results

Figure 3.2 summarizes the change in the intensive margin and the extensive margin following

the introduction of CBDC. The x-axis correspond to households with different initial wealth

levels and the y-axis correspond to the share of wealth. The blue lines plot the share of

wealth that a household will allocate to deposits (D/W ) for an initial level of wealth W0.

9In US, the share of wealth in checking accounts as a fraction of household
net worth (excluding equity in own home) is 2000/41200 ≈ 0.05 in 2019. See
https://www.census.gov/data/tables/2019/demo/wealth/wealth-asset-ownership.html.

10See discussions on this constraint following equation (3.12) in Section 3.2.2.

11See Agur et al. (2022) for a discussion on users’ preferences over anonymity and security when choosing
payment instruments.
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First, consider the dashed line, which represents the allocations before CBDC introduction

(δC = 0). In this case, there is a cutoff value of wealth WA. Households with initial

wealth lower than WA do not have a bank account and thus D/W = 0. Households with

initial wealth higher than WA hold both cash and deposits. All households choose the same

fraction of wealth to be allocated to bonds. The solid blue line represents the allocations

when CBDC is introduced. Now only households with wealth higher than WB choose to

open a bank account. For households with initial wealth lower than WA, they all choose to

set up a CBDC account: the red line showing the share C/W is above zero.

Comparing the solid blue line to the dashed line,WB > WA means that a smaller fraction

of households chooses to open a bank account when CBDC is present. Some of the poor

households which would otherwise hold deposits, now choose to hold CBDC instead. This

corresponds to a decrease in bank deposits via the extensive margin. On the other hand,

D/W is higher for households that choose to hold deposits when CBDC is present (intensive

margin). In other words, those households that still choose to set up a bank account, now

hold more deposits. The reason is that banks raise the interest rate on deposits when they

face the competition from CBDC. The extensive margin and the intensive margin work in

different directions, and the net effect depends on the assumed parameter values.

The red line represents the share of wealth allocated to CBDC, C/W . First, notice that

all households choose to hold CBDC with our baseline choices of parameters. This is because

we assume that CBDC is very easy to access by choosing a low value of ϕC . In this case, the

introduction of CBDC improves financial inclusion since the poorest households (W0 < WA)

who would hold only cash, will now hold CBDC as well. The fraction of wealth allocated to

CBDC is much lower for richer households. This is not surprising as these households have

access to deposits that pay interest and are thus a less costly liquidity instruments.

Figure 3.3 shows the change in aggregate deposits when CBDC is introduced by plotting

Df(W ) on the y-axis, while the x axis again plots households according to their initial wealth

level. The blue area reflects aggregate deposits lost through the extensive margin and the
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red area reflects the increase in aggregate deposits through the intensive margin. With our

baseline choice of parameters, the aggregate deposits fall by 4.5% following the introduction

of CBDC.

As mentioned above, the parameters crucial for the relative strength of the extensive and

intensive margins are the fixed costs of setting up a CBDC or a bank account, distribution

of initial wealth, and the risk-free rate f . In particular, we find that the extensive margin

dominates the intensive margin and the aggregate deposits decline in equilibrium when (i)

access to CBDC is much cheaper than bank deposits ϕC << ϕD. (ii) wealth distribution

is unequal (large α); (iii) relatively low policy rate. Given the baseline calibration of other

parameters including the policy rate (f = 0.3), we perform our quantitative experiments

using different combinations of α and ϕC/ϕD, and summarize the results in Figure 3.4. The

objective is to give a sense of the parameter space that could generate disintermediation

following the introduction of CBDC.

We now discuss the intuition behind this results. The introduction of CBDC increase

the competition faced by banks to attract deposits, and banks will increase the interest rate

on deposits (decrease deposit spread) in response. With higher interest rate, households

increase their deposit holding and aggregate deposit increases. This is what happened in our

basic model when households are homogeneous.

In the enriched model, there is the extensive margin that works in a different direction

because poor households will switch from deposits to CBDC. However, for the impacts on

the extensive margin to be stronger enough to outweigh the impact on the intensive margin,

we need banks to have less than enough incentives to further increase deposits rates to go

after households who chose not to hold deposits accounts.

Easy access to CBDC means that many households with low wealth will choose to set

up a CBDC account instead of a bank deposit account so that the extensive margin is

large enough. At the same time, unequal wealth distribution guarantees that low wealth

households own only a small fraction of wealth so that they are not important enough for
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banks’ profits. Finally, the fall in deposits happens for low policy rate because low policy

rate reduces the return from holding deposits and thus their advantage over CBDC.

Therefore, only under special circumstances detailed above, we will observe that the

introduction of CBDC leads to a reduction in the amount of bank deposits. Introducing

CBDC will lead to an increase in aggregate deposits otherwise. Figure 3.5 is one example.

When we set α = 1.16, which is below our baseline value 1.3 and corresponds to a more equal

wealth distribution, the result changes and the aggregate deposit increases after introducing

CBDC. In the Appendix, we describe the parameter space and show how combinations of

low ϕC/ϕD and high α correspond to results of disintermediation.

Negative return on CBDC Our results still hold when the return on CBDC is negative.

Quantitatively, when the return on CBDC is higher, the effect of introducing is stronger/

Figure 3.6 presents the percentage drop in aggregate deposit when we impose different inter-

est rates on CBDC. As can be seen from the figure, the curve is continuous around rC = 0

and our model works well with negative returns on CBDC. The reason is that we assume

liquidity is a CES composite of cash, CBDC and deposits, so the households still want to

hold some CBDC even if the opportunity costs of holding CBDC is higher than for cash

(rC < 0).

Comparative statics on δ The parameters {δN , δC , δD} govern how good cash, CBDC,

and deposits are in terms of providing liquidity services. We normalize δN = 1 and assume

δC = 1.5 and δD = 1.3 in our baseline calibration. Here we perform comparative statics

with respect to these δ’s. Figure 3.7 shows that the better CBDC is in providing liquidity

(i.e., higher δC), the larger the drop in aggregate deposit following the the introduction of

CBDC. This is intuitive because CBDC is a better substitute for bank deposits and thus

cause stronger bank disintermediation when δC is larger.

Figure 3.8 shows that the percentage drop in the aggregate deposit doesn’t change with
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the the choice of δD. When δD is larger, the introduction of CBDC will cause a smaller

drop in the aggregate deposit as δC will be relatively smaller so that CBDC is less of a

threat to bank deposits. At the same time the initial deposit is smaller when δD is larger

since the households need less deposits to obtain the same level of liquidity service. Thus the

percentage change in the aggregate deposit is the same as the numerator and the denominator

move together.

3.4 Extended Model with Lending

In this section, we introduce lending and wholesale funding to bank’s problem. We solve the

model numerically using the same values for main parameters and carefully picked values

for new lending parameters. We find that our main results still hold qualitatively, that is

the introduction of CBDC leads to a reduction in lending under the special circumstances,

while the drop in lending is quantitatively very small and it is hard to make it large.

3.4.1 Model setup and solution characterization

Everything on the consumer side is unchanged and only the banking problem is now different.

Banks can now fund both with deposits (Di) and wholesale funding (Hi). They lend Li ,

which is “unproductive” and given to firms outside of the economy.

The problem of the bank is:

max
Di,Hi

(
f + l0 −

l1
2
Li

)
Li −

(
f +

h

2
Hi

)
Hi−(f − si)Di (3.28)

s.t. Li = Hi +Di

Quote from Drechsler et al. (2017): “l0, l1, h > 0 are parameters that control the bank’s

lending opportunities and wholesale funding costs. The bank earns a profit from lending (first

term), pays a cost for wholesale funding (second term), and earns profits from its deposit
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franchise (third term). If the bank has more deposits than profitable lending opportunities,

we assume it simply buys securities that pay the competitive rate f. The case l1 > 0 captures

the idea that the bank has a limited pool of profitable lending opportunities. Similarly, h > 0

captures a limited pool of wholesale funding, which makes the cost of wholesale funding

increasing in the amount borrowed.”

The first order conditions for Di, Hi are

[Di] :(f + l0)− l1Li − (f − si) +
∂si
∂Di

Di = 0 (3.29)

[Hi] :(f + l0)− l1Li − f − hHi = 0 (3.30)

From (3.30) one can derive

Hi =
l0

l1 + h
− l1
l1 + h

Di =⇒ Li =
l0

l1 + h
+

h

l1 + h
Di

and so lending co-moves with deposits. Using the previous result in (3.29), after some

algebraic manipulation:

h

l1 + h
(l0 − l1Di) + si

(
1 +

∂si
∂Di

Di

si

)
= 0

which define the individual bank demand of deposits. Quote from Drechsler et al. (2017):

“The first term is the marginal lending profit the bank earns from raising another dollar

of deposits. The second term is the marginal profit on the bank’s deposit franchise from

raising this dollar. In the baseline model (l0 = l1 = 0), the deposit franchise is the bank’s

only source of profits, so the bank increases deposits until this marginal profit is zero. With

profitable lending opportunities the bank goes further and continues raising deposits until

the marginal loss of deposit rents offsets the marginal profit from lending. The bank thus

gives up some of its deposit rents in order to fund a large balance sheet and take advantage

of profitable lending opportunities.”

161



To derive aggregate deposits demand, remember that in a symmetric equilibrium si =

s,Di = D and that ∂Di

∂si

si
Di

= 1
N

∂D
∂s

s
D
− η

(
1− 1

N

)
. Substituting in before and rearranging

gives that equation for aggregate deposits demand:

− ∂D

∂s

s

D
= [1− (N − 1)(η − 1)]−N

(
h

l1+h
(l0 − l1D)

h
l1+h

(l0 − l1D) + s

)
(3.31)

The first term on the right hand side was already in the baseline model, while the second

captures the new setup. Equalizing this to the elasticity from household side gives the

equilibrium equation to solve for s.

3.4.2 Quantitative results

As above, we resort to solving the model numerically. We use the same values for parameters

summarized in Table 3.1 and pick values for new lending parameters. We find that our main

results on deposits are extended qualitatively to lending: the introduction of CBDC leads to

a reduction in lending under the special circumstances and leads to an increase in lending

otherwise. In the cases that lending does contract, its fall is quantitatively small and it is

hard to make it large. In our baseline calibration, we set l0 = 0.001, l1 = 0.001, h = 0.0001,

and find that the introduction of CBDC generates a 1.9% drop in deposits and only a 0.14%

drop in lending. By contrast, the drop in deposits and lending is 4.5% in the enriched model

in Section 3.3.

The intuition for these results are as follows. First consider when l1 = 0, the solution

for H and D are independent. H ≡ l0
h
before and after the introduction of CBDC. Then

when l0 is very small, the solution for s and D are similar to the case without lending. As

l0 increases, the introduction of CBDC is more likely to increase lending because lending is

more profitable, so banks will respond more actively to the introduction of CBDC, which

means the equilibrium interest rate on deposit is higher and thus the aggregate deposit is

higher. One might think that as a larger l0 or a smaller l1 makes lending more profitable so
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that the banks fight harder and the drop in lending is smaller, we could assuming a smaller

l0 or a larger l1 so that the drop in lending is larger. However, there seems to be a limit on

the ratio of l1/l0. Numerical experiments indicate that the ratio needs to be roughly smaller

than 1 and otherwise H < 0. The idea is that the profits on lending is so long such that the

banks choose to invest, rather than, borrow from the wholesale funding channel.

Next, consider the intuition behind parameter h. When h → ∞, there is no wholesale

funding. When h = 0, lending is constant L = l0
l1

regardless of the introduction of CBDC.

The idea is that When h is small, wholesale funding is cheaper. Banks care less about

deposits, so the drop in deposits can be large, but the drop in lending is small. When h

is large, banks care more about deposits, so the drop in deposits is small, and the drop in

lending is also small.

Therefore, it is hard to make the drop in lending large. So the introduction of CBDC

may lead to a drop in bank deposits under some circumstances, but even when this happens,

the drop in bank lending is very small when they have access to wholesale funding. We could

interpret wholesale funding H as a use of a central bank lending facility, then this means

the central bank can help avoid bank disintermediation following the introduction of CBDC

through lending facilities available to commercial banks.

3.5 Conclusion

In this paper, we set up a portfolio choice model as a laboratory to investigate the effects of

the introduction of CBDC on bank deposits and lending. We find that only in special cases

introducing CBDC reduces bank credit and when it does, the effect is small. This is a fairly

standard model and many important features on the banking sector or CBDC design can be

added and discussed in the framework. The parameters can be calibrated more carefully to

match the economy. CBDC can be designed with easy or hard access, and can feature time-

varying remuneration, which will capture what different countries or analysis might have in
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mind. Also, the model can be extended so that banks also lend to firms and fund productive

projects, or a different demand system can be assumed. We leave the explorations of these

questions for future work.
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3.6 Appendix: Figures and Tables

Figure 3.1: Impacts of introducing CBDC as a function of policy rate
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Notes: This figure presents the impact of the introduction of CBDC (red lines) on deposit
spread (left panel) and on deposits (right panel) as a function of the policy rate f .

Figure 3.2: Portfolio adjustment when CBDC is introduced
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Figure 3.3: Aggregate deposits when CBDC is introduced

Figure 3.4: Parameter space for the disintermediation result
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Figure 3.5: Aggregate deposit when CBDC is introduced (low α)

Figure 3.6: Percentage drop in aggregate deposit for different interest rate on CBDC
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Figure 3.7: Percentage drop in aggregate deposit for different δC
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Figure 3.8: Percentage drop in aggregate deposit for different δD
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Table 3.1: Parameter values

Parameter Definition Value

λ Share of liquidity assets 0.001

ρ Complementarity b/w wealth & liquidity 0.2

ϵ Substitutability b/w different liquidity assets 2

η Substitutability b/w deposits at different banks 1.1

J Number of banks 4

δD Share of deposits 1.3

δC Share of CBDC 1.5

f Risk-free rate 0.03

rC Return on CBDC 0

ϕD Fixed cost of accessing deposits 0.15× λρ

ϕC Fixed cost of accessing CBDC 0.001× λρ

W Normalized lowest wealth 1

α Inequality of wealth distribution 1.3
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3.7 Appendix: Derivations

3.7.1 Equilibrium in model with household heterogeneity

The deposit spread s is determined in the equilibrium by the following equation:

M = ϵ

(
δϵNf

1−ϵ + δϵC(f − rC)
1−ϵ

δϵNf
1−ϵ + δϵDs

1−ϵ + δϵC(f − rC)1−ϵ

)
+ ρ

(
δϵDs

1−ϵ

δϵNf
1−ϵ + δϵDs

1−ϵ + δϵC(f − rC)1−ϵ

)
+

(1− ρ)
(
sBl
)1−ρ

λ−ρ + (sBl )
1−ρ

(
δϵDs

1−ϵ

δϵNf
1−ϵ + δϵDs

1−ϵ + δϵC(f − rC)1−ϵ

)
+ (α− 1)

λρ
(
t(sBl )

)2−ρ (
sBl
)1−ρ

t(sBl )− t(sCl )

(
δϵDs

1−ϵ

δϵNf
1−ϵ + δϵDs

1−ϵ + δϵC(f − rC)1−ϵ

)
× IŴ1>W

(3.32)

3.7.2 Extensive margin

As can be seen from Equation (3.26), the indirect utility of a household is a linear function

of the wealth level W0, with different slopes and intercepts given different choices over the

extensive margin, {N,C,D,B}. Notice that the slopes are such that B > C,D > N , and

the intercepts are such that B < D < C < N , so the poorest households always choose N ,

and the richest households always choose B, and the households in the middle might choose

C or D.

Denote the cutoff wealth levels to for a household choose C, D, and B over N as Ŵ11, Ŵ12

and Ŵ13, respectively. If Ŵ13 ≤ Ŵ11 and Ŵ13 ≤ Ŵ12, the scenario would be that poor

households with W ≤ Ŵ13 choose N and other households choose B (Scenario 1). The

expressions for the cutoff wealth levels are given by the following equations:

Ŵ11 =
ϕC

(1 + f) (t(sCl )− t(sNl ))
, Ŵ12 =

ϕD

(1 + f) (t(sDl )− t(sNl ))
, Ŵ13 =

ϕD + ϕC

(1 + f) (t(sBl )− t(sNl ))
,
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Similarly, let Ŵ21 and Ŵ22 denote cutoff wealth levels for a household to choose D and

B over C, respectively:

Ŵ21 =
ϕD − ϕC

(1 + f) (t(sDl )− t(sCl ))
, Ŵ22 =

ϕD

(1 + f) (t(sBl )− t(sCl ))
.

Following similar reasoning, we can show that there are four possible scenarios in the distri-

bution of households over these four choices, summarized as follows.

1. N→ B

Conditions: Ŵ13 ≤ Ŵ11, Ŵ13 ≤ Ŵ12

2. N→ C→ B

Conditions: Ŵ11 < Ŵ13, Ŵ11 < Ŵ12, Ŵ22 ≤ Ŵ21 or t(sDl ) ≤ t(sCl )

3. N→ D→ B

Conditions: Ŵ12 < Ŵ13, Ŵ12 ≤ Ŵ11, t(s
D
l ) > t(sCl )

4. N→ C→ D→ B

Conditions: Ŵ11 < Ŵ13, Ŵ11 < Ŵ12, Ŵ21 < Ŵ22, t(s
D
l ) > t(sCl )
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credit risk: An analysis of the efficacy of the smccf. Technical report, National Bureau of

Economic Research, 2020.

Goldberg, Jonathan and Nozawa, Yoshio. Liquidity supply in the corporate bond market.

The Journal of Finance, 76(2):755–796, 2021.

Gomes, Joao, Jermann, Urban, and Schmid, Lukas. Sticky leverage. American Economic

Review, 106(12):3800–3828, 2016.

Gomes, Joao F. Financing investment. American Economic Review, 91(5):1263–1285, 2001.

177



Gomes, Joao F and Schmid, Lukas. Equilibrium asset pricing with leverage and default. The

Journal of Finance, 76(2):977–1018, 2021.

Gourio, Francois. Credit risk and disaster risk. American Economic Journal: Macroeco-

nomics, 5(3):1–34, 2013.

Guerrieri, Veronica and Shimer, Robert. Dynamic adverse selection: A theory of illiquidity,

fire sales, and flight to quality. American Economic Review, 104(7):1875–1908, 2014.

Gürkaynak, Refet S, Sack, Brian, and Wright, Jonathan H. The us treasury yield curve:

1961 to the present. Journal of monetary Economics, 54(8):2291–2304, 2007.

Haddad, Valentin, Moreira, Alan, and Muir, Tyler. When selling becomes viral: Disruptions

in debt markets in the covid-19 crisis and the fed’s response. Technical report, National

Bureau of Economic Research, 2020.

He, Zhiguo and Milbradt, Konstantin. Endogenous liquidity and defaultable bonds. Econo-

metrica, 82(4):1443–1508, 2014.

He, Zhiguo, Khorrami, Paymon, and Song, Zhaogang. Commonality in credit spread changes:

Dealer inventory and intermediary distress. Technical report, National Bureau of Economic

Research, 2019.

Hopenhayn, Hugo A. Entry, exit, and firm dynamics in long run equilibrium. Econometrica:

Journal of the Econometric Society, pages 1127–1150, 1992.

Huang, Jing-Zhi and Huang, Ming. How much of the corporate-treasury yield spread is due

to credit risk? The Review of Asset Pricing Studies, 2(2):153–202, 2012.

Huang, Jing-Zhi, Nozawa, Yoshio, and Shi, Zhan. The global credit spread puzzle. 2019.

Jensen, Michael C. Agency costs of free cash flow, corporate finance, and takeovers. The

American economic review, 76(2):323–329, 1986.

178



Jermann, Urban and Quadrini, Vincenzo. Macroeconomic effects of financial shocks. Amer-

ican Economic Review, 102(1):238–71, 2012.

Kaplan, Steven N and Zingales, Luigi. Do investment-cash flow sensitivities provide useful

measures of financing constraints? The quarterly journal of economics, 112(1):169–215, 1997.

Kargar, Mahyar, Lester, Benjamin, Lindsay, David, Liu, Shuo, Weill, Pierre-Olivier, and
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