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Summary. Dependent phenomena, such as relational, spatial and temporal phenomena, tend
to be characterized by local dependence in the sense that units which are close in a well-defined
sense are dependent. In contrast with spatial and temporal phenomena, though, relational phe-
nomena tend to lack a natural neighbourhood structure in the sense that it is unknown which
units are close and thus dependent. Owing to the challenge of characterizing local dependence
and constructing random graph models with local dependence, many conventional exponen-
tial family random graph models induce strong dependence and are not amenable to statistical
inference. We take first steps to characterize local dependence in random graph models,
inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time
series, and we show that local dependence endows random graph models with desirable prop-
erties which make them amenable to statistical inference. We show that random graph models
with local dependence satisfy a natural domain consistency condition which every model should
satisfy, but conventional exponential family random graph models do not satisfy. In addition, we
establish a central limit theorem for random graph models with local dependence, which sug-
gests that random graph models with local dependence are amenable to statistical inference.
We discuss how random graph models with local dependence can be constructed by exploiting
either observed or unobserved neighbourhood structure. In the absence of observed neighbour-
hood structure, we take a Bayesian view and express the uncertainty about the neighbourhood
structure by specifying a prior on a set of suitable neighbourhood structures. We present simu-
lation results and applications to two real world networks with ‘ground truth’.

Keywords: Exponential families; Local dependence; M-dependence; Model degeneracy;
Social networks; Weak dependence

1. Introduction

Network data arise in many fields, including biology, the health sciences, economics, political
science, sociology, machine learning and engineering. In these fields there are many applica-
tions with important societal implications, such as protein—protein interactions, the spread of
infectious diseases, contagion in financial markets, insurgencies, terrorist networks, criminal
networks, social networks, the Internet and power grids (e.g. Kolaczyk (2009)).

We consider a single observation of a network (e.g. a social network) with n nodes and
N =n(n—1) directed or N =n(n — 1)/2 undirected edge variables. The statistical analysis of
a single observation of a network is more challenging than the statistical analysis of multiple
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independent networks, because such data are both dependent and high dimensional and give
rise to unique conceptual, computational and statistical challenges.

We are concerned with problems of specification in the sense of Fisher (1922), page 313, i.e.
with the problem of identifying families of distributions which are capable of modelling a wide
range of dependences of substantive interest and are amenable to statistical inference. In the
past decade, exponential random graph models (ERGMs) have attracted much attention (e.g.
Frank and Strauss (1986), Wasserman and Pattison (1996) and Lusher ez al. (2013)). Despite
attractive finite sample properties (e.g. Barndorff-Nielsen (1978)), ERGMs have turned out to
be problematic models of real world networks (e.g. Snijders (2002), Handcock (2003), Hunter
et al. (2008) and Chatterjee and Diaconis et al. (2013)).

One of the most striking observations is that some of the most interesting ERGMs do not place
much probability mass on graphs which resemble real world networks (e.g. Handcock (2003)
and Hunter ef al. (2008)). Let Y € Y be a random graph on a finite set of nodes, corresponding
to edge variables Y; ; between pairs of nodes (i, j). To simplify the discussion, suppose that the
edge variables Y; ; are binary, i.e. ¥; j € {0,1}. A convenient representation of a distribution P
with support Y is as an exponential family of the form

PO(YZY):CXP{<9’S(Y)>_1/1(9)}a yeva (1)

where (6, s(y)) denotes the inner product of a d-vector of natural parameters 8 and a d-vector
of sufficient statistics s(y), and () is a log-normalizing constant. The d-vector of sufficient
statistics may include statistics of interest, such as the number of transitive triples of nodes (e.g.,
in friendship networks, ‘a friend of my friend is my friend’). Such statistics induce dependence
between edge variables and are of great interest in the fast growing field of network science (e.g.
Wasserman and Faust (1994), Kolaczyk (2009) and Lusher et al. (2013)). If S=s(Y) denotes
the vector of sufficient statistics and S denotes the convex hull of {s(y) :y € Y}, then the induced
distribution of S is given by

Qo(SeS)=Pp{YeSI(S)}= S Po(Y=y), )
yes—I(S)

where S~1(S) denotes the subset of Y mapping into S C S. If the sufficient statistics include
counts of the number of transitive triples and other subgraph configurations, then the induced
distribution of S tends to place much probability mass on extreme graphs which do not resemble
real world networks. There is both theoretical and empirical evidence which suggests that many
families of distributions with such count statistics place much mass on the relative boundary
rather than in the relative interior of S (e.g. Snijders (2002), Handcock (2003) and Hunter et al.
(2008)). Worse, theoretical results indicate that the behaviour of conventional ERGMs does not
improve as the number of nodes n increases, but deteriorates (Strauss, 1986; Jonasson, 1999;
Schweinberger, 2011; Butts, 2011). The best-known examples are Markov random graph models
(Frank and Strauss, 1986), though other interesting models are problematic as well. The flawed
nature of conventional ERGMs is demonstrated by Fig. 1. It relates to an ERGM of the form
(1) with the number of edges and triangles as sufficient statistics with n =100 nodes and N =
4950 undirected edge variables. Fig. 1 shows the prior predictive distributions of the sufficient
statistics from the model, which is described in detail in Section 5.1. It demonstrates that the
prior predictive distribution places most of its mass on graphs which are extreme in terms of
the number of edges and triangles.

In this paper, we address the root of the problem by characterizing and constructing well-
behaved random graph models which are amenable to statistical inference. The point of
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Fig. 1.  Prior predictions of the number of (a) edges and (b) triangles under the global triangle model with
N = 4950 variables: note the extreme polarization

departure is the observation that many statistics of interest, S, are sums of random variables,
e.g. counts of the number of edges and transitive triples. The distribution of (normed) sums
of independent or weakly dependent random variables tends to be Gaussian by virtue of
some version of the central limit theorem (e.g. Billingsley (1995)). If the expected value of
S is in the relative interior of S, then the model should place significant mass around the
expected value of S by virtue of the approximate Gaussian distribution of S. Therefore, for
all expected values of S in the relative interior of S, the model should place much mass on
the relative interior of S. The difficulty is that, in the absence of spatial, temporal and other
structure, it is not evident which edge variables should be dependent. Therefore, the specifica-
tion of random graph models with weak dependence is challenging and conventional ERGMs
induce either no dependence and are simplistic (e.g. Bernoulli random graph models) or strong
dependence and are near degenerate (e.g. Markov random graph models; Frank and Strauss
(1986)).

We take first steps to characterize local dependence in random graph models in Section 2.
We demonstrate that local dependence endows random graph models with desirable properties
which make them amenable to statistical inference. One property is a natural domain con-
sistency condition that any probability model should satisfy, but many parameterizations of
ERGMs do not satisfy (Shalizi and Rinaldo, 2013). A second and more important property
is asymptotic Gaussian behaviour of statistics, which suggests that random graph models with
local dependence place much probability mass around the expected value of statistics of interest.
We discuss the construction of random graph models with local dependence in Section 3 and
Bayesian inference given complete as well as incomplete data in Section 4. If suitable neigh-
bourhood structure is observed, at least two approaches to statistical inference are possible,
depending on whether the observed neighbourhood structure is regarded as fixed or random.
If no suitable neighbourhood structure is observed, we take a Bayesian view and express the
uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neigh-
bourhood structures, using hierarchical parametric and non-parametric priors and auxiliary
variable Markov chain Monte Carlo methods. We present simulation results and applications
to two real world networks with ground truth in Section 5.
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The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

1.1. Other related work

Snijders et al. (2006) and Hunter and Handcock (2006) considered non-linear constraints on the
parameter space of ERGMs. Such curved ERGMs have been applied with some success (Hunter
et al., 2008) but do not admit simple representations of dependences and the interpretation of
parameters is challenging, as noted by Snijders ez al. (2006), page 149. An alternative is latent
variable models, which we discuss in Section 2.1. Selected special cases and other related work
are discussed in Section 3.4.

2. Dependence

We discuss in Section 2.1 two broad approaches to modelling dependence, one based on latent
variable models and the other based on ERGMs, and we argue that ERGMs are attractive
when dependence is of substantive interest. We discuss in Section 2.2 the challenges that are
encountered in modelling dependence of substantive interest by ERGMs. In Section 2.3, we
introduce a notion of local dependence and in Section 2.4 we show that that local dependence
endows models with desirable properties which make them amenable to statistical inference.

2.1. Dependence of substantive interest
Most relational phenomena are dependent phenomena, and dependence is often of substantive
interest. Examples can be found in the social sciences (e.g. Wasserman and Faust (1994) and
Lusher et al. (2013)), economics (e.g. Jackson (2008)), the health sciences (e.g. Welch et al.
(2011)) and physics (Newman et al., 2002). As an example, if (i, j, k) is a triple of nodes and the
edge variables Y; ;, Y «, Yix € {0, 1} are binary and undirected, then the triple is called transitive
if ¥; ;Y; 1Y x =1, i.e. there are edges between i and j as well as j and k and i and k. Other
examples were discussed by Wasserman and Faust (1994) and Lusher ez al. (2013).

When modelling transitivity and other dependences, it is not attractive to assume conditional
independence of edge variables, e.g.

ind . . .
Yl-,j|pi,j12f Bernoulli(p; ;), i<j, 3)

where p; ; denotes the probability of a binary undirected edge between nodes i and j, which
may depend on observed and unobserved latent variables. Examples of models of the form (3)
are stochastic block models (e.g. Nowicki and Snijders (2001)) and mixed membership models
(e.g. Airoldi et al. (2008)), random-effects and mixed effects models (e.g. van Duijn et al. (2004)
and Hoff (2005)) and latent space models (Hoff et al., 2002; Schweinberger and Snijders, 2003;
Handcock ez al., 2007; Krivitsky et al., 2009). Although models of the form (3) can capture
transitive closure by introducing latent structure, such models induce dependence indirectly
through latent variables rather than directly. In situations where dependence is of substantive
interest, scientists tend to prefer models which allow us to specify dependences directly. Examples
are the spatial covariance and variogram functions in spatial random-field models (Cressie,
1993), interaction functions in spatial point processes (Moller and Waagepetersen, 2004) and
covariance terms in time series (Granger and Morris, 1976). An additional, well-known example
is the Ising model in physics (e.g. Georgii (2011)). The Ising model allows the explicit specification
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of the nature of interactions between particles. Physicists would hesitate to exchange the Ising
model for a latent variable model which assumed that particles are independent conditionally
on observed structure (e.g. observed locations on a lattice) or unobserved latent structure.

In the realm of networks, Frank and Strauss (1986) and Wasserman and Pattison (1996)
introduced exponential family models which resemble the Ising model in physics and lattice
models in spatial statistics and which allow the modelling of a wide range of dependences of
substantive interest, including transitive closure. Such models have attracted much attention in
the social sciences and health sciences and elsewhere, as Lusher et al. (2013) testifies.

2.2. Modelling dependence: challenges

Despite the fact that ERGMs are the natural relatives of well-established models in physics,
spatial statistics, machine learning and artificial intelligence, ERGMs lack something that most
other areas have: neighbourhood structure. The lack of neighbourhood structure makes mod-
elling dependence challenging.

In spatial statistics (e.g. Cressie (1993) and Stein (1999)) and time series (e.g. Granger and
Morris (1976)) and the related work on mixing conditions in probability theory (Billingsley
(1995), pages 363-370, and Dedecker et al. (2007)), it is assumed that dependence decreases
as the distance between random variables in the spatial or temporal domain increases. Thus,
events may be dependent as long as the distance between the locations of the events is small,
whereas distant events are almost dependent. In the realm of networks, though, it is not evident
what distance between subgraphs means and how the dependence between subgraphs should
decrease. A possible approach is to assume uniform weak dependence in the sense that all edges
and subgraphs in large graphs are almost independent. Such dependence assumptions are not
appealing, however, because network science would expect strong local dependence between
some of the edges and subgraphs.

In fact, even when spatial or temporal structure is available, there is often more local structure
than would be expected on the basis of the location of nodes in space and time: for example,
some subsets of nodes may be close in geographical space, but the members of the subset may be
distant in ‘network space’, whereas other subsets of nodes may be distant in geographical space,
but close in network space, where network space is understood as other structure that is not
captured by geographical space; for example, researchers in the same building, on the same floor
and in the same department may not collaborate, but may engage in transitive collaborations
with other researchers who are distant in geographical space.

A well-known example of the challenge of modelling dependence is Markov random graph
models (Frank and Strauss, 1986). Suppose that the random graph Y is undirected and binary.
Motivated by the nearest neighbour definition in physics (Georgii, 2011) and spatial statistics
(Besag, 1974), Frank and Strauss (1986) called two dyads {i, j} and {k,!} neighbours if {i, j}
and {k, !} share a node and assumed that, if {i, j} and {k, [} are not neighbours, then ¥; ; and Yy,
are independent conditionally on the rest of random graph Y. Markov random graph models
can be represented in exponential family form (1) with the number of edges s1(y) =Xi<; yi,j,
the number of k-stars si(y) = %; X, <..<j, ¥i.j;---¥ij and the number of triangles s,(y) =
Yi<j<k Yi,jyjkyik as sufficient statistics. Markov random graph models and generalizations to
ERGMs (Wasserman and Pattison, 1996) allow scientists to model transitive closure and other
dependences along with covariate-related similarity, which scientists have long considered to
be of great interest (e.g. Wasserman and Faust (1994) and Lusher ez al. (2013)). Despite the
underlying nearest neighbour assumption and its scientific appeal, however, Markov random
graph models are problematic models of real world networks. A simple observation by Strauss
(1986) that demonstrates the fundamental flaws of Markov random graph models is that, for
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any given pair of nodes {i, j}, the number of neighbours is 2(n — 2) and thus increases with the
number of nodes n. The large and growing neighbourhoods indicate that Markov random graph
models induce increasingly stronger dependence as n increases and are problematic when n is
large. This has been confirmed by a growing body of theoretical and empirical results (Strauss,
1986; Jonasson, 1999; Snijders, 2002; Handcock, 2003; Hunter et al., 2008; Rinaldo et al., 2009;
Schweinberger, 2011; Butts, 2011; Shalizi and Rinaldo, 2013; Chatterjee and Diaconis, 2013).

2.3. Characterizing local dependence

We take first steps to characterize local dependence, drawing inspiration from two sources:
network science and probability theory. On the one hand, network science (e.g. Homans (1950),
Wasserman and Faust (1994) and Pattison and Robins (2002)) suggests that interactions in
networks are local. On the other hand, weak dependence conditions in probability theory, such
as mixing conditions (e.g. Billingsley (1995) and Dedecker et al. (2007)), suggest that dependence
should be local to ensure weak dependence and thus desirable behaviour, such as central limit
theorems. The study of probability measures on infinite domains in physics (e.g. Georgii (2011)),
spatial statistics (e.g. Cressie (1993), section 7.3.1, and Stein (1999), chapter 3) machine learning
and artificial intelligence (e.g. Singla and Domingos (2007) and Xiang and Neville (2011)) as
well as the notion of M-dependence in time series (e.g. Billingsley (1995), pages 363-370) suggest
that each random variable should depend on a finite subset of other random variables. In other
words, a natural starting point is to assume that each edge variable depends on a finite subset of
other edge variables. We adapt the idea of finite neighbourhoods and M-dependence to random
graphs as follows.

Definition 1 (local dependence). Let Y be a random graph with domain D=A x N and
sample space Y, where N is a finite set of nodes. The dependence that is induced by a probability
measure P on Y is called local if there is a partition of the set of nodes A into K > 2 non-
empty finite subsets Ay, ..., Ak, called neighbourhoods, such that the within- and between-
neighbourhood subgraphs Y ; with domains A x A; and sample spaces Yy ; satisty, for all
YCYand Vi S Y,

K k=1
Pxk(YeV) =[] Prax(Yek €Vi) II Pra(Yes € Vi, Yik €Vik)s “4)
k=1 =1

where within-neighbourhood probability measures Py ; induce dependence within subgraphs
Yy r, whereas between-neighbourhood probability measures [ ; induce independence between
subgraphs, i.e., for all Vi ; S Y1, Vik S Yik,j, VB,i,j € YB,i,j and VB ;i S YB,j,i,

PoiYei €V, Yie el = Il P,i,j(YBi,j€YVB,i,j>YB,j,i €VB,j.i)s <k, (5)

icAg,jeA;

where Yp; ; denote between-neighbourhood edge variables corresponding to nodes i and j
who are not members of the same neighbourhood.

Thus, local dependence breaks down the dependence of the random graph Y into dependence
within subgraphs Yj ;. The construction of random graph models with local dependence is
discussed in Section 3.

The first and foremost advantage of local dependence is that it makes no assumptions about
the form and strength of dependence within subgraphs. Scientists are free to incorporate depen-
dences of interest, such as transitive closure within subgraphs. In contrast, conventional ERGMs
(e.g. Frank and Strauss (1986)) induce unbounded neighbourhoods and global dependence, as
discussed in Section 2.2.
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A second advantage is that local dependence endows models with desirable properties, which
we discuss in Section 2.4.

2.4. Properties of local dependence

We show that random graphs with local dependence have two natural properties. The first
property is a domain consistency property that any probability model should have. The second
property is asymptotic Gaussian behaviour of statistics of interest. The two properties help to
address both problems of specification and distribution in the sense of Fisher (1922), page 313,
by allowing us to model a wide range of dependences within subgraphs and facilitating the
derivation of the distributions of estimators and goodness-of-fit statistics.

Since we are considering a single observation of a graph, we follow a domain increas-
ing approach to asymptotics that resembles the domain increasing approach in spatial statis-
tics (e.g. Cressie (1993), section 7.3.1, and Stein (1999), chapter 3). Suppose that the domain
of the random graph increases as follows. Let Aj, A,,... be a sequence of non-empty fi-
nite sets of nodes and Y;,Y>,... be a sequence of random graphs with increasing domain
NI x N1, N2 x Na, ..., where the set of nodes Nx =UK_| Ay is the union of the sets of nodes
Ai,..., Ag.

The first property is a domain consistency property that should be satisfied by any probab-
ility model (e.g. Billingsley (1995), section 36), but which many parameterizations of ERGMs
do not satisfy (Shalizi and Rinaldo, 2013).

Theorem 1. Let Aj, Aj,... be a sequence of non-empty, finite sets of nodes and Y1, Y>,...
be a sequence of random graphs with increasing domain N7 x A7, N> x Na, ..., where N =
U,le Ay Let Ygi1\k be the random graph Yk excluding Yk, i.e. Yg1\ g corresponds to
the within-neighbourhood subgraph Yg.1 x+1 and the between-neighbourhood subgraphs
Yik+1and Ygyi 1, k=1,..., K;andlet Y g1\ g be the sample space of Y 41\ k. If a sequence
of random graphs Yy, Y», ... satisfies local dependence, then it is domain consistent in the sense
that, for all K >0 and Vg C Yk,

Px(Yk € Vk)=Pk11(Yk € VK, Yki1\k € YE11\K)- (6)

In other words, the probability measure Px of random graph Yg with domain Nx x N
can be recovered from the probability measure Pg,; of random graph Yg; with domain
Nk41 x Ng41 by marginalizing with respect to Yg.1\k. It is worth noting that the domain
consistency condition that is considered here is weaker than the domain consistency condition
that was considered by Shalizi and Rinaldo (2013) and is motivated by the way that the domain
of local random graphs increases.

In addition to domain consistency, it is desirable that random graphs with increasing domain
satisfy sparsity. A random graph can be called sparse if the expected degrees E(X; Y; ;) of nodes
i are bounded, suggesting that E(Y; ;) — 0 as the number of nodes increases. The importance
of sparsity has been recognized by social scientists, computer scientists, mathematicians (e.g.
Jonasson (1999) and Lovasz (2012), page viii and page 4) and statisticians (e.g. Krivitsky et al.
(2011) and Vu et al. (2013)). Sparsity embodies the notion that, in the real world, resources are
bounded—animals and humans face real world constraints such as limited time and therefore
cannot maintain arbitrarily many relationships. If random graphs with local dependence do
not satisfy sparsity, then the expected degrees of nodes would be dominated by edges to nodes
in other neighbourhoods, which would be in conflict with the notion of local interaction in
network science. We therefore focus on graphs where within-neighbourhood subgraphs may be
dense, but between-neighbourhood subgraphs are sparse.
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Definition 2 (sparsity). Let Aj, Ay, ... be a sequence of non-empty, finite sets of nodes and
Y{,Y,,... be a sequence of random graphs with increasing domain Nj x N1, N> x N>, ...,
where Ng = U,le Ak. A sequence of random graphs Y1, Y»,... satisfying local dependence is
called 6 sparse if there exist constants A >0 and 6 > 0 such that

E(|Yp.i j17) < An’, p=12. (7)

The second, and more important, property is the fact that the asymptotic distribution of
statistics of interest is Gaussian, which helps to address problems of estimation and goodness of
fit. In practice, most statistics of interest are sums of subgraph configurations. Let S C X ?:1 Nk
be a subset of the d-dimensional Cartesian product of Ny with itself and Sk : Sk — R be a real-
valued function with domain Sk, e.g. the number of edges or transitive triples. Such sums of
subgraph configurations can be written as

Sk= Y Sk.is ®)
ieSk
where S ; =1II7_, Y; 4, », are interactions of ¢ distinct edge variables Y; 4, 5, , which resemble the
interactions in undirected graphical models and related models in physics (e.g. the Ising model)
and spatial statistics (e.g. random fields). If, for example, edge variables are binary and Sx C N>,
then Skx,; =Y45Yp,cYa,c 1s an indicator of whether the triple of nodes (a, b, c) is transitive. The
sum Sk can be decomposed into within- and between-neighbourhood sums Wg and Bg:

Sk =Wk + Bk, )

where Wg = E,le Wk i is the total within-neighbourhood sum, composed of the within-
neighbourhood sums Wk ; = Xics, 1w,k,iSk,i in neighbourhoods k, and Bx =Y;cs, 18,iSk,i
is the total between-neighbourhood sum. The indicator function 1w ; is 1 if subgraph con-
figuration i involves nodes in neighbourhood & and neighbourhood k only and is 0 otherwise,
whereas 1p; is 1 if Sk ; involves nodes of more than one neighbourhood and is 0 otherwise.

It turns out that sequences of local and sparse random graphs with increasing domain are
well behaved in the sense of satisfying a central limit theorem for weakly dependent random
variables.

Theorem 2. Let Ay, Ay, ... be a sequence of non-empty, finite sets of nodes and Y1, Y>,...
be a sequence of random graphs with increasing domain N} x N1, N> x Na,..., where
Nk = U,le Ay.. Consider sums of the form Sk =X;cs, Sk,i, where Sg C XfZIJ\/K and Sk ;=
II{_, Y; a,.5,- Suppose that the edge variables Y, j satisfy uniform boundedness in the sense
that there is a constant C > 0 such that, for all K >0, ae N and be Nk, P(|Y,p|<C)=1.
Without loss of generality, assume that, for all K >0 and i € Sk, E(Sk_;) =0. If the sequence
of random graphs Y, Y>,...islocal 6 > d-sparse and V(Wg) — oo as K — oo, then

Kh_r)noo 12{22(}( P{|Wk.k|>e/V(Wg)}=0 (10)

and
Sk
V'V (Sk)

where V(Wg) and V(Sk) denote the variance of Wg and Sk respectively.

4 N0, 1 as K — oo, (11)

We discuss implications, starting with the most important: theorem 2 respects the desiderata
that random graphs be local and sparse and imposes no constraints on the form and shape of
within-neighbourhood probability distributions, granting scientists complete freedom to spec-
ify arbitrary dependences of interest within neighbourhoods, such as transitive closure. At the
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same time, local and sparse random graphs tend to be well behaved in the sense that neigh-
bourhoods cannot dominate the whole graph by equation (10) and the distribution of statistics,
e.g. the number of transitive triples, tends to be Gaussian by expression (11) provided that the
number of neighbourhoods K is large. As a result, random graph models with local depen-
dence can be expected to place much probability mass around the expected values of statistics.
If a graph is observed and the method of estimation (e.g. the method of maximum likelihood
in exponential families) matches the expected and observed values of selected statistics, then
the goodness of fit of the model with respect to the selected statistics can be expected to be
acceptable.

Some additional remarks are in order. The uniform boundedness condition covers the most
common cases, including the case of binary edge variables ¥; ; € {0, 1}. Multivariate extensions
of the central limit theorem may be obtained by the Cramér—Wold theorem (e.g. Billingsley
(1995), page 383). If suitable parameterizations of random graph models with local depen-
dence are chosen, then the §-method can be used to establish asymptotic normality of maxi-
mum likelihood estimators and test statistics along the lines of, for example, DasGupta (2008),
section 16.3.

3. Model construction and parameterizations

To construct random graph models with local dependence, a suitable neighbourhood structure
is needed. In practice, suitable neighbourhood structure may or may not be observed.

Let Z=(Z,,...,Z,) be membership indicators, where Z,; is the vector of membership indi-
cators Z;; of node i, where Z;; =1 if node i is a member of neighbourhood A4; and Z;; =0
otherwise. Since most network data are discrete, we consider throughout discrete network data
and probability densities with respect to counting measure. We assume that the conditional
probability mass function (PMF) of a random graph Y given a neighbourhood structure Z=z
can be written as

K k-1
PY=ylZ=2)=]] PYix=YixlZ=2) [] P(Yri=Yk1, Yok =Ykl L=12), (12)
k=1 =1

where between-neighbourhood PMFs can be factorized into dyad-bound PMFs:

PYki=Yei, Yok =YiklZ=2)= [ P(Bi ;=8> V8. ji=VB.jilZ=12), (13)
i€ Ay, jeA;

whereas the within-neighbourhood PMFs are not assumed to be factorizable.

In practice, the question is the source of the neighbourhood structure Z. If suitable neighbour-
hood structure were observed, then it should be used. We discuss model construction and two
approaches to statistical inference given observed neighbourhood structure in Section 3.1. An
important practical problem is that in most applications no suitable neighbourhood structure
is observed. We discuss model construction and statistical inference in the absence of observed
neighbourhood structure in Section 3.2. Parameterizations are discussed in Section 3.3 and
selected special cases in Section 3.4.

3.1.  Model construction with observed neighbourhoods
Consider the situation where a suitable neighbourhood structure is observed. It is worth noting
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that the theoretical results of Section 2.4 suggest that, to be suitable, none of the neighbourhoods
should dominate the whole graph.

We consider two approaches to statistical inference given observed neighbourhood struc-
ture Z =z,ps and assume that the conditional PMF (12) of random graph Y given observed
neighbourhood structure Z =z}, is parameterized by 6.

The first approach regards the observed neighbourhood structure z,s as fixed and bases
statistical inference on the likelihood function

L(0)=Po(Y=y|Z=120p5). (14)

The second approach considers the observed neighbourhood z,,g as the outcome of a random
variable Z with a PMF P (Z =z,,5) parameterized by 7 and bases statistical inference on the
likelihood function

L0, m)=Po(Y =Y|Z=12obs) Pr(Z=125ps). (15)

If the two parameter vectors 6 and 7 are variation independent in the sense that the parameter
space (g, is a product space of the form Qg =g x {1, Where Qg is the parameter space of
6 and 2 is the parameter space of 7, then the likelihood function is given by

L0, 7) =Po(Y =Y|Z=120ps) Pr(Z=12obs) = L(0) L(7), 16)

where L(0) is given by equation (14) and L(7r) is given by L(w) = P (Z =1zyps). Thus, if the
parameters @ and 7 are variation independent, then the likelihood function factorizes and
statistical inference for 8 can be based on L(0). In other words, the two approaches are equiv-
alent as long as the parameters @ and 7 are variation independent. In general, the random-
neighbourhood approach may be more suitable than the fixed neighbourhood approach when
it is believed that the neighbourhoods are generated by a stochastic mechanism and that mech-
anism is itself of interest. The likelihood function L(#) can be maximized by the maximum
likelihood methods of Hunter and Handcock (2006) by using z,s as a covariate and Bayesian
inference can be conducted by using the Bayesian methods of Koskinen ez al. (2010) and Caimo
and Friel (2011).

There are multiple data structures which could be exploited to construct random graph mod-
els with local dependence. Strauss and ITkeda (1990) suggested constructing neighbourhoods
by exploiting the categories of categorical covariates; for example the two categories of the
categorical covariate gender could be used to form two neighbourhoods, corresponding to
females and males. However, many categorical covariates are collected by surveys and have a
small number of categories. The theoretical results in Section 2.4 suggest that the number of
neighbourhoods should be large and none of the neighbourhoods should dominate the graph,
making categorical covariates with a small number of categories problematic when the number
of nodes is large. A second approach exploits multilevel structure. In the health sciences and
social sciences, many network data have a multilevel structure in the sense that subgraphs are
nested in graphs; for example, researchers are located in departments, departments are nested
in buildings, and buildings belong to a campus. Such multilevel structure could be exploited to
form the neighbourhood structure. A third approach exploits spatial structure provided that
it is available, though spatial structure may not capture the whole dependence, as discussed in
Section 2.2.

3.2. Model construction without observed neighbourhoods
It is common that no suitable neighbourhood structure is observed. In such cases, we follow a
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Bayesian approach and express the uncertainty about the neighbourhood structure by a prior
on a set of suitable neighbourhood structures. We consider both hierarchical parametric and
non-parametric priors.

In principle, statistical inference could be based on the likelihood function

L@O,m) =) Pe(Y=ylZ=2)Pr(Z=2), a7
zeZ
where Z is the sample space of Z. The difficulty is that Z is either a finite but large set with
exp{n log(K)} elements—provided that the number of neighbourhoods K is fixed and known—
or a countably infinite set, and in general the sum cannot be computed by complete enumeration.
To facilitate statistical inference, we augment the observed data Y by the unobserved data Z
and exploit hierarchical parametric and non-parametric priors.
To be specific, assume that

11D . . .
Z;|71, ..., 7k ~ multinomial(1;7y,...,7g), i=1,...,n, (18)

is the distribution of membership vectors Zj,...,Z,. We note that one could incorporate pre-
dictors of memberships by using multinomial logit or probit link functions along the lines of
Tallberg (2005).

A parametric approach could be based on Dirichlet priors:

m1,..., Tk ~ Dirichlet(wy, ..., wg). (19)

A potential problem with Dirichlet priors is that the number of neighbourhoods K must either
be known or selected by model selection methods, which is not straightforward. An alterna-
tive is to express the uncertainty about K by specifying a prior for K (e.g. Richardson and
Green (1997)), which leads to complicated Markov chain Monte Carlo algorithms. We follow
a non-parametric approach based on stick breaking priors (Ishwaran and James, 2001), which
sidesteps these difficulties. It allows the number of non-empty neighbourhoods a posteriori to
be large, while encouraging it a priori to be small. Suppose that there is an infinite number
of neighbourhoods and that nodes belong to neighbourhood k=1,2,... with probability my,
k=1,2,..., where

T =V, (20)
=1
me=Vi [1 (I-Vp, k=2,3,..., 2D
=1
where
Vila P beta(1, o), k=1,2,.... 22)

Here >0 is a parameter and ¥7° | m =1 with probability 1 (Ishwaran and James, 2001).

3.3. Parameterizations
Exponential parameterizations of the conditional PMF (12) are convenient, though other
parameterizations may be used as well.

The dyad-bound between-neighbourhood PMFs can be written as

Po(YB,i,; = YB.i,j» YB,j,i =¥B, )il L=12) =exp{(0B,sB,i,j(¥B.i,j» ¥B,j.i)) —¥B,i,j(OB)},  (23)

wheresg ; ;j(VB,i,j» VB, j,i) is a vector of between-neighbourhood sufficient statistics, @ is a vector
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of between-neighbourhood natural parameters and v ; (@) is the between-neighbourhood
log-normalizing constant,

¥B,i,j(0B) =log > > exp{(OB,sB.i (VB j» VB, - (24)

Yp,i, ;€ YBij ¥p, i€ YB.ji

The between-neighbourhood sufficient statistics sg;, (B, ;, j, 5B, ;i) may be functions of edges
yB,i.j and yp ;; and covariates. In the interest of model parsimony, we assume that the between-
neighbourhood parameter vector 8p is constant across dyads.

The within-neighbourhood PMFs can be written as

Po(Yix =YixlZ=12) =exp{{(Ow i, swx (¥i.k)) — Yw.x(Ow i)}, (25)

where sw x (¥, &) is a vector of within-neighbourhood sufficient statistics, fw  is a vector of
within-neighbourhood natural parameters and ¢w, (6w x) is the within-neighbourhood log-
normalizing constant,

Ywi@wi)=log| > exp{(Ow.iswi(¥i) - (26)
Vi €Ykx
The within-neighbourhood sufficient statistics sw x (yx,x) may include interactions, such as the
number of triangles within neighbourhood k, which induce dependence within neighbourhoods.
In addition, covariates can be used.
The exponential parameterization of the between- and within-neighbourhood PMFs implies
that the conditional PMF of Y given Z can be written as

Po(Y=y|Z=2)=exp{(n(6,2),s(y)) —1(6,2)}, 27

where the vector of parameters 1n(0,z) is a linear function of the vectors of between- and
within-neighbourhood parameters, the vector of sufficient statistics s(y) is a linear function
of between- and within-neighbourhood vectors of sufficient statistics and the log-normalizing
constant (8, z) is given by

K k—
P(0,2) = Z Z YmB,i,j(0B) + Z w i (Ow, k). (28)
k=1 I=1 .Ak jE.Al
The between- and within-neighbourhood parameter vectors 8 and 6y ; index exponential
families and therefore conjugate priors exist, though direct sampling from the resulting full
conditional distributions is infeasible. In the absence of computational advantages, multivariate
Gaussian priors are convenient alternatives:

Oplps, T ~MVN(up, 351), 09)
111D —
Ow klpw, Ty ~ MVN(py, B3, k=1,2,...,

where pup and pw are mean parameter vectors and Zgl and E\},l are precision matrices of
suitable order.

To acknowledge the uncertainty about the hyperparameters a, pw and EW , we assign con-
jugate gamma, multivariate Gaussian and Wishart hyperpriors to a, pw and EW respectively.

3.4. Special cases and related models
Special cases of interest are the block models of Wang and Wong (1987), the stochastic block
models of Nowicki and Snijders (2001) and the mixed membership models of Airoldi ez al.
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(2008). These models assume that edge variables are independent conditionally on an observed
or unobserved partition of the set of nodes into subsets, which are called blocks and correspond
to neighbourhoods. These models satisfy local dependence but do not allow scientists to specify
directly the nature of interactions of interest, as discussed in Section 2.1.

The models of Strauss and Ikeda (1990) were discussed in Section 3.1. The usefulness of the
models is limited, because neighbourhood structure may either not be observed, in which case
the models cannot be used, or neighbourhood structure is observed but is unsuitable in the sense
that the observed number of neighbourhoods is small and the number of nodes is large.

Last, the model of Koskinen (2009) does not restrict dependence to blocks and therefore does
not satisfy local dependence.

4. Bayesian inference

We focus on Bayesian inference without observed neighbourhood structure, which is the most
common and most challenging case. A Bayesian approach must overcome multiple obstacles.
The most serious obstacle is the fact that with positive probability one or more neighbourhoods &
contains ny 3> 5 nodes and thus one or more within-neighbourhood log-normalizing constants,
which are log-sums of exp{("z" )log(2)} terms (see equation (26)), is intractable. To facilitate
posterior computations, we approximate the prior and augment the posterior.

We describe the approximation of the prior in Section 4.1, discuss the augmentation of the
posterior and sampling from the augmented posterior in Section 4.2, with additional details in
the on-line supplements A and B, and address the non-identifiability of within-neighbourhood
parameter vectors and membership indicators in supplement C.

4.1. Prior truncation
The stick breaking prior of Section 3.2 can be approximated by a truncated stick breaking prior
along the lines of Ishwaran and James (2001), which facilitates posterior computations.

We choose a maximum number of neighbourhoods, which is denoted by Ky,x. Some general
advice concerning the choice of Kyax was given by Ishwaran and James (2001). We are here more
concerned with the goodness of fit of the model than the approximation of the stick breaking
prior and choose Knax in accordance. In practice, we choose Kpax by either

(a) trying out multiple values of Kpy,x and comparing the goodness of fit of the model,
(b) exploiting on-the-ground knowledge or
(c) setting Kmax =n.

Strategy (a) is motivated by the fact that model estimation is time consuming and the computing
time increases with Kpax; thus there is an incentive to choose Kmax as small as possible. We
demonstrate strategies (a) and (b) in Section 5.3.

Given Kpmax, the membership probabilities = (71, ..., 7k,,,,) are constructed by truncated
stick breaking (Ishwaran and James, 2001):
m =V, (30)
k—1
7Tk=Vk H (l_Vj)a k=2w~-»Kmax» (31)
j=l1
where
Vil " beta(l, a), k=1,..., Kmax — 1, )

VKIHH.X = 1’
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where a > 0 is a parameter and Vg, =1 ensures that ij{"‘ 7 = 1. The truncated stick breaking
construction of 7 implies that 7 is generalized Dirichlet distributed, which is conjugate to
multinomial sampling (Ishwaran and James, 2001).

4.2. Posterior augmentation
Under the truncated prior that was described in Section 4.1, the posterior is of the form

pla, oy, Byl . 08, 0w, 21y) o p(av, pry, By 0,08, Ow) Pr(Z=2)Po(Y =y|Z=1), (33)

where the truncated prior is of the form

Kmax

plo, pw, By 7,08, 0w) = p(a) p(pw) p(Ey) p(rla) p@p) [ pOwilpw. Sy, (34
k=1

where Ow = (0w 1, - . ., Ow k,..,) denotes the within-neighbourhood parameter vectors.

Owing to the fact that the conditional PMF of Y is not, in general, tractable, the poste-
rior is doubly intractable, implying that standard Markov chain Monte Carlo methods (e.g.
Metropolis—Hastings algorithms) cannot be used to sample from the posterior. Auxiliary vari-
able Markov chain Monte Carlo methods for sampling from doubly intractable posteriors arising
in complete-data problems were introduced by Magller ez al. (2006) and extended by Murray
et al. (2006) and Liang (2010); they have been adapted to networks by Koskinen ez al. (2010),
Caimo and Friel (2011) and Wang and Atchade (2014). We extend them from the complete-data
problems that were considered there to the incomplete-data problem that is considered here.

To facilitate posterior computations, we augment «, fw, E;vl, 7w, 0B, Ow, Z and Y by
auxiliary variables 65,, Z* and Y*. The auxiliary variable Y* can be interpreted as an aux-
iliary random graph, Z* can be interpreted as an auxiliary neighbourhood structure and 63,
can be interpreted as auxiliary within-neighbourhood parameter vectors. We assume that the
joint distribution of «, pw, E\Tvl, m, 0, 0w, Z,Y, 65, Z* and Y* is of the form

plas pw, Sy, 0, 0w, 2.y, 03, 2%,y = p(a, pw, By 7, 0, Ow) Pr(Z=2)Po(Y=y|Z =1)
x q(0yy, 2" |7, 08, 0w,2,y)Pg: (Y* =y*|Z* =27),
(35)
where q(H{k,V, z*|m, 0, 0w,z.,y) is a suitable auxiliary distribution, the conditional distributions
Y and Y* belong to the same exponential family of distributions and 8* = (6, 65;). The aug-
mented posterior is of the form

pla, pw, By, 7, 08, 0w, 2, 6%, 2%, y*|y) o p(e, pw, By, 7, 08, Ow, 2, ¥, 0%, 2%, ¥%).  (36)

Integrating out the auxiliary variables 65,, Z* and Y* results in the posterior of a, pw, 2\},1,
7, 0, Ow and Z. Whereas sampling from the posterior (33) is infeasible, sampling from the
augmented posterior (36) and integrating out the auxiliary variables 63,, Z* and Y* turns out
to be feasible. We discuss Markov chain Monte Carlo steps and improved Markov chain Monte
Carlo sampling through variational methods in the on-line supplement.

5. Assessment of local and global models of transitive closure

We compare random graph models with local and global dependence by comparing

(a) prior predictions of graphs to assess whether models can produce data that resemble real
world networks (Section 5.1),
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(b) sampling distributions of Bayesian point and interval estimators (Section 5.2) and
(c) posterior predictions of graphs to assess whether models make sense in the light of ob-
served data (Section 5.3).

We consider undirected, binary edge variables, i.e. Y; ; € {0,1} and ¥; ; = ¥;; with probab-
ility 1, and random graph models capturing transitive closure, because it is one of the most
fundamental and problematic forms of dependence. A well-known random graph capturing
transitive closure is the triangle model, which is an ERGM of the form (1) with the number of
edges y;, ; and triangles y; ;y; »yi,» as sufficient statistics (Jonasson, 1999; Handcock et al., 2008).
Its natural relative is the random graph model of the form (23) and (25), where the between-
neighbourhood sufficient statistics are the edges y; ; between nodes i and j in neighbourhoods
k and [, and the within-neighbourhood sufficient statistics are the number of edges y; ; and
triangles y; ;jv;xyi,» within neighbourhoods k. We refer to the two models as the global and
local triangle model. The name global triangle model is motivated by the fact that the model is a
special case of a Markov random graph model with unbounded neighbourhoods—as explained
in Section 2.2—and therefore does not satisfy local dependence.

5.1. Comparison of local and global models of transitive closure
In this subsection, we assess whether models are realistic by considering the prior predictive
distributions of the statistics. As discussed in Section 1, the global triangle model places much
probability mass on the relative boundary of the convex hull of {s(y):y € Y}. As networks
with extreme values on network statistics may be considered odd, one approach to assessing the
realism of a model is to consider the distribution of the statistics that it produces.

The prior predictive distribution under the global triangle model can be written as

P(Y=y)=/ p(@) Po(Y =Yy)do, 37

where p(60) denotes the prior. On the basis of experience, values of 1 outside (—5, 0) and values of
0> outside (0, 5) index near-degenerate distributions. Therefore, we choose independent, uniform
priors given by 8] ~ uniform(—5, 0) and 6, ~ uniform(0, 5).

The prior predictive distribution under the local triangle model can be written as

p(Yzy):/._. > pla, pw, By, 7, 08, Ow)
e Z
X Pr(Z=1)Pe(Y =y|Z=12)dadpw d=y, drdfp dby, (38)

where p(a, pw, E\},l , T, 08, Ow) denotes the prior. We assign independent Gaussian priors with
means —1 and 1 and standard deviations 0.25 and 0.25 to within-neighbourhood parameters
Ow k.1 and By x 2 respectively. The marginal priors of fw x,1 and 6w i » ensure that most of the
prior probability mass of fy 1 is concentrated on (—2, 0) and most of the prior probability mass
of w k.2 is concentrated on (0, 2), which cover the most reasonable value of Oy ;1 and Ow k2
respectively. To respect the sparse nature of graphs, we assume that the between-neighbourhood
parameter 6p is governed by a Gaussian prior with mean g and standard deviation 1, where
the Gaussian prior is centred at pup =3/(n — 1), the value of g under which the expected
number of edges of nodes between neighbourhoods is at most 3. The prior of 7 is given by the
Dirichlet(10, ..., 10) prior.

We generated 1000 model predictions from the local triangle model with K = 150 neighbour-
hoods, n =1000 nodes, and N =499500 edge variables and 1000 realizations from the global
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Fig. 2. Prior predictions of the number of (a) edges and (b) triangles under the local triangle model with
parametric prior and K = 150 neighbourhoods and N = 499500 edge variables: most prior predictive mass is
concentrated around the means of the prior predictions (|)

triangle model with n = 100 nodes and N =4950 edge variables; the difference in the size of the
graphs is because the flawed nature of the global triangle model makes it infeasible to sample
much larger graphs than N =4950. Monte Carlo samples of size 1000 were generated from the
prior and, for every one of the draws from the prior, a prediction was generated by a Markov
chain of length 10 million for the local triangle model and 100000 for the global triangle model,
accepting the final draw of the Markov chain as a draw from the prior predictive distribution;
the sample size is proportional to the size of the graphs.

Fig. 1 shows prior predictions of the number of edges and triangles under the global triangle
model. The bulk of the prior predictive mass is placed on extreme graphs with few edges and
triangles and graphs with almost all possible edges and triangles. We note that the behaviour of
the global triangle model tends to deteriorate as the size of the graph increases, as discussed in
Section 1. In contrast, Fig. 2 demonstrates that random graph models with local dependence
place much prior predictive mass around the mean and all of its mass on graphs which resemble
real world networks, i.e. graphs where the average number of edges of nodes ranges from 4 to
6 and where the number of triangles is a small multiple of the number of edges. It is worth
repeating that the number of edge variables is 499500, which demonstrates that random graph
models with local dependence are well behaved when the number of edge variables is large, in
sharp contrast with conventional ERGMs.

In short, the model predictions confirm what the theoretical results of Section 2.4 suggested:
in contrast with conventional ERGMs, random graph models with local dependence are capable
of generating graphs which resemble real world networks and can thus be recommended a priori
as models of real world networks.

5.2. Sampling distributions of Bayesian point and interval estimators

We shed light on the frequentist properties of estimators by simulation. We focus on random
graph models with local dependence, because flawed models of the form (1) generate many
graphs which fall onto the relative boundary of the convex hull of {s(y):y e Y} and make
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statistical inference problematic (e.g. Barndorff-Nielsen (1978), page 151, Handcock (2003),
Rinaldo et al. (2009), Koskinen et al. (2010) and Bhamidi ez al. (2011)).

Here, we focus on the frequentist properties of posterior point estimators and interval es-
timators of the local triangle model with K =7 neighbourhoods, n =50 nodes and N = 1225
edge variables. We generated 1000 graphs from the local triangle model by using the same prior
as used in Section 5.1. To infer from the simulated graphs to the data-generating values of the
parameters, we used two priors: a parametric Dirichlet(a,...,a) prior for = with K=7 with
a gamma(l,0.1) hyperprior for «, and a non-parametric truncated stick breaking prior with
Kmax =7 witha gamma(l,0.1) hyperprior for a.. In both cases, the marginal priors of 6w 1, w2
and 0 are independently N(0, 100). We construct 1000 Markov chains with 100000 iterations,
discarding the first 20000 iterations as burn-in and recording every 10th post-burn-in iterations.

In practice, within-neighbourhood parameters are of primary interest, because it is the within-
neighbourhood models which capture the dependences of interest. Here, we focus on the within-
neighbourhood means pw 1 and pw 2. The sampling distributions of posterior point estimators
for uw,1 and pw > under parametric and non-parametric priors are shown in Figs 3 and 4.
Despite the small number of neighbourhoods K =7, the data-generating parameter of the Gaus-
sian mean pw of the K =7 within-neighbourhood parameters Gy 1, ..., 6w, 7 can be recovered
in the sense that the posterior median clusters around the data-generating parameter value. The
distributions are somewhat asymmetric, which is not surprising considering the small number
of K =7 neighbourhoods. Table 1 shows that interval estimators, e.g. 95% posterior credibility
intervals, have acceptable coverage properties, considering the small number of K =7 neigh-
bourhoods.

The results also suggest that the non-parametric approach seems to outperform the parametric
approach, at least in terms of coverage for pw 1. In addition, we found in the applications in
Section 5.3 that the hierarchical non-parametric prior is not overly sensitive to the choice of the
hyperparameters of the priors, whereas the hierarchical parametric prior sometimes is sensitive
to the choice of hyperparameters, and more so when the specified number of neighbourhoods
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Fig. 3. Sampling distributions of posterior medians of within-neighborhood means (a) pyy 1 and (b) o
under the local triangle model with parametric prior and K = 7 neighbourhoods and N = 1225 ‘edge variables
(|, data-generating values): despite the small number of K =7 neighbourhoods, the data-generating values
of the Gaussian mean pyy of the K =7 within-neighbourhood parameters 6y 1,. . ., 6y 7 can be recovered
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Fig.4. Sampling distributions of posterior medians of within-neighbourhood means (a) puy 1 and (b) iy o un-
der the local triangle model with non-parametric prior and Kmax = 7 neighbourhoods and N = 1225 edge vari-
ables (|, data-generating values): despite the small number of neighbourhoods Kmax =7, the data-generating
values of the Gaussian mean pyy of the Kmax =7 within-neighbourhood parameters 6y 4,..., 6y 7 can be
recovered

Table 1. Frequentist properties of posterior medians and 95% posterior
credibility intervals of within-neighbourhood means pyy 1 and py ot

Prior Parameter 0.025- 0.50- 0.975- Coverage
quantile  quantile  quantile (%)
Parametric pw =—1 —5.75 —1.48 0.48 86
Parametric pwor=1 0.69 1.26 2.27 98
Non-parametric  pw =—1 —4.19 —1.25 0.26 95
Non-parametric  pwp =1 0.26 0.86 1.68 >99

fTDespite the small number of Kmax =7 neighbourhoods, the data-generating
values of the Gaussian mean gy of the Kpax =7 within-neighbourhood param-
eters Oy 1, ..., Owz can be recovered.

exceeds the true number of neighbourhoods. Thus, the non-parametric approach seems to have
advantages over the parametric approach.

5.3. Application to a terrorist network and a social network

A natural approach to comparing ERGMs and random graph models with local dependence
is based on their predictions about observable quantities. Hunter et al. (2008) argued that, in
practice, it is imperative to generate model predictions to assess the goodness of fit of network
models.

In this section, we compare ERGMs and random graph models with local dependence in
terms of posterior predictions in two real world networks with ground truth: the terrorist net-
work behind the Bali bombing in 2002 as well as social relationships among novices within a
novitiate.
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Fig. 5. Terrorist network behind the Bali bombing in 2002 with N = 136 edge variables: the shaded pie
charts represent posterior membership probabilities; the clustering is a by-product of model estimation and
is of secondary interest, but it is comforting that it is consistent with ground truth

The posterior predictive distribution under the global triangle model given data y can be
written as

POV =§Y=y)= / p(Oly) Po(Y =3)d6, (39)

where p(6|y) denotes the posterior. The posterior predictive distribution under the local triangle
model can be written as

P<Y=y|Y=y>=/.../ S plas . Sy, . 05, Ow. 2ly)
€2

x Po(Y =§|Z=12)dadpw dy/ dwdfp dw, (40)

where p(a, pw, 2\7\,1 , 7,08, 0w, z]y) denotes the posterior. Independent priors 6; ~ N(0, 25) are
used in the case of the ERGM and independent priors a ~ gamma(l,1), puw,; ~ N(0,1) and
U\TVZJ ~gamma(l0, 10) in the case of the random graph model with local dependence. 120000
draws from the posterior predictive distribution of the ERGM were generated by the Markov
chain Monte Carlo algorithm of Caimo and Friel (2011), with a burn-in of 20000 and saving
every 10th post-burn-in draw, and 1200000 draws from the posterior predictive distribution of
the random graph model with local dependence were generated by the Markov chain Monte
Carlo algorithm of Section 4, with a burn-in of 200000 and saving every 100th post-burn-in
draw.

5.3.1.  Terrorist network behind Bali bombing in 2002

The structure of terrorist networks is of interest with a view to understanding how terrorists
communicate, to identify cells (i.e. subsets of terrorists), to isolate cells and to dismantle them.
We consider here the network of terrorists behind the Bali, Indonesia, bombing in 2002, killing
202 (Koschade, 2006). The 17 terrorists who carried out the bombing were members of the
south-east Asian al-Qaeda affiliate Jemaah Islamiyah. The terrorist network can be represented
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Fig. 6. Terrorist network: root-mean-square deviation of the number of triangles plotted against Kmax =
2,3,4,5 neighbourhoods: (a) the global triangle model with Kmax = 1 is far inferior to the local triangle model
with K =2, 3, 4,5 neighbourhoods; (b) the stochastic block model (—1—) is likewise far inferior to the local
triangle model (—2—)

by a graph with n =17 nodes and N =136 edge variables, where ¥; ; =1 if terrorists i and j were
in contact before the bombing and ¥; ;=0 otherwise. The terrorist network is shown in Fig. 5.

We start by determining the maximum number of neighbourhoods Kpax to truncate the
prior. Using strategy (a) described in Section 4.1, we compare the local triangle model with
Kmax =2, 3,4, 5 neighbourhoods in terms of predictive power. Predictive power is taken to be
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the root-mean-square deviation of the predicted number of triangles. According to Fig. 6(a), the
local triangle model with Kpax =2 neighbourhoods is far superior to the global triangle model,
which corresponds to Kpax = 1 neighbourhood. The local triangle model with K3 =3 in turn
is superior to the local triangle model with Kyax =2, but increasing K from 3 to 5 does not
increase the predictive power much. Fig. 6(b) compares the local triangle model with stochastic
block models. The stochastic block model that is used here is a special case of the local triangle
model where the within-neighbourhood sufficient statistics are reduced to the number of edges,
which induces conditional independence of edges within neighbourhoods. Stochastic block
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Fig. 7. Terrorist network: posterior predictions of the number of (a) edges and (b) triangles under the
global triangle model (|, observed numbers): although the number of edge variables N = 136 is not large, the
polarization is evident
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Fig. 8. Terrorist network: posterior predictions of the number of (a) edges and (b) triangles under the local
triangle model (|, observed numbers): the posterior predictive distributions are unimodal and short tailed, in
contrast with Fig. 7
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models are special cases of random graph models with local dependence and not appealing
when dependence is of substantive interest, because they assume conditional independence
within neighbourhoods, as discussed in Sections 2.1 and 3.4. Fig. 6(b) demonstrates that the

stochastic block model has much lower predictive power than the local triangle model.

We compare the global and local triangle model with up to Kna.x =5 neighbourhoods in
terms of the posterior predictive distribution of the number of edges and triangles, shown in
Figs 7 and 8. Under the global triangle model, the posterior predictive distribution is bimodal.
In contrast, the posterior predictive distribution under the local triangle model is unimodal
and places most mass on graphs which are close to the observed graph in terms of the number
of edges and triangles. The fact that the global triangle model places so much mass on dense

Table 2. Terrorist network: posterior of parameters «, puy 4

and puyy 2
Parameter 0.05- 0.50- 0.95- Odds of
quantile  quantile  quantile  parameter
being
positive
@ 0.36 1.32 3.43 00
w1 —1.03 0.45 2.00 222
HW2 —0.27 0.91 2.22 8.74
Winf

Fig. 9.

comforting that it is consistent with ground truth

Albert

Sampson network with N = 306 edge variables: the shaded pie charts represent posterior mem-
bership probabilities; the clustering is a by-product of model estimation and is of secondary interest, but it is
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graphs with almost all edges and triangles indicates that the global triangle model fits much worse
than the random graph model with local dependence, no matter which goodness-of-fit statistics
are chosen, because the topology of graphs which are local in nature—such as the observed
graph—stands in sharp contrast with the topology of dense graphs in terms of connectivity,
centrality, transitivity and other interesting features of graphs (e.g. Kolaczyk (2009)). We note
that, although other statistics may be used to compare the two models in terms of goodness of
fit, the choice of goodness-of-fit statistics here presents compelling evidence.

The posterior of «, piw,1 and pw 2 is shown in Table 2. The mean parameters w1 and pw, 2
governing the within-neighbourhood parameters tend to be both positive—and more so the
mean parameter pw > governing the within-neighbourhood triangle parameters—which is not
surprising in the light of the large number of edges and triangles within neighbourhoods.
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Fig. 10. Sampson network: posterior predictions of the number of (a) edges, (b) mutual edges and (c)
transitive triples under the global triangle model (|, observed numbers); with N =306 edge variables, the
polarization is more pronounced than in Fig. 7 with N = 136 edge variables
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Last, although the primary purpose of introducing neighbourhoods is the desire to address
the model degeneracy and striking lack of fit of ERGMs, predictions of the memberships to
neighbourhoods may be of interest as well, e.g. to identify cells. The pie charts in Fig. 5 represent
the posterior membership probabilities that were reported by the stochastic relabelling algorithm
that is described in the on-line supplement C. The five white-coloured terrorists turn out to be
the five members of the so-called support group, which was to supposed to support the so-
called main group consisting of all other terrorists. The members of the main group tend to
be black coloured, with the exception of Amrozi and Mubarok who are more bright coloured
than black coloured. Indeed, although Amrozi and Mubarok belonged to the main group, both
resided elsewhere and were almost isolated from the rest of the main group (Koschade, 2006).
Most interesting is the membership of Feri. He was a member of the main group and was the

1500
J

1500
J

1000
1000
1

500
|
500
|

r T T T T T 1 r T T 1
0 50 100 150 200 250 300 0 50 100 150

() (b)

1500
]

1000
1

500
1

T T T T T 1
1000 2000 3000 4000 5000

(©)

Fig. 11. Sampson network: posterior predictions of the number of (a) edges, (b) mutual edges and (c)
transitive triples under the local triangle model (|, observed numbers); the posterior predictive distributions
are unimodal and short tailed, in contrast with Fig. 10
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suicide bomber who initiated the attack. Feri arrived 2 days before the attack, whereas all other
members of the main group had arrived days or weeks earlier and in fact started to leave the night
that Feri arrived (Koschade, 2006). As a result, Feri had limited opportunities to communicate
with others. In particular, Feri was the one and only member of the main group who did not
communicate with the three commanders Muklas (the Jemaah Islamiyah head of operations in
Singapore and Malaysia), Samudra (the field commander) and Idris (the logistics commander)
(Koschade, 2006). Therefore, the network position of Feri is unique and the uncertainty about
his membership is reflected in the posterior membership probability distribution.

In conclusion, random graph models with local dependence capture simple and interesting
features of the terrorist network and, under the parameterization that is considered here, pos-
terior membership predictions are consistent with on-the-ground knowledge of the terrorist
network.

5.3.2.  Social relationships within a novitiate

Sampson (1968) studied social relationships between a group of novices who were preparing
to enter a monastic order. The network is a classic data set in social network analysis (White
etal., 1976; Handcock et al., 2007) and corresponds to N =306 relationships between the n =18
novices measured at three time points spread out over a 12-month period. We consider here the
following directed edge variables Y; ;: if novice i liked novice j at any of the three time points,
then Y; ; =1; otherwise ¥; ; =0. The network is plotted in Fig. 9.

A natural extension of the triangle model to directed graphs is given by a model of the form (1)
with the number of edges y;, ;, mutual edges y; ;y;; and transitive triples y; ;v; »yi » as sufficient
statistics. Its local relative is given by the random graph model (23) and (25) with the number
of edges y; ; and mutual edges y; ;y;; between nodes i and j in neighbourhoods & and / as
between-neighbourhood sufficient statistics, and the number of edges y;, ;, mutual edges y;, jy;.;

. _ —

® -

~ —

o - ]
I T T T 1
1 2 3 4 5

Fig. 12. Sampson network: posterior of the number of non-empty neighbourhoods under the local triangle
model; the posterior is consistent with ground truth and confirms that the global triangle model (assuming
that all nodes are in one neighbourhood) makes no sense in the light of the observed data
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and transitive triples y; ;y;ni,» Within neighbourhoods k as with-neighbourhood sufficient
statistics. Since experts argue that the novices are divided into three or four groups (White ez al.,
1976; Handcock et al., 2007), we follow strategy (b) that was described in Section 4.1 and set
Kmax =5, which can be considered to be an upper bound on the number of neighbourhoods.

Figs 10 and 11 show posterior predictions of the number of edges, mutual edges and transitive
triples. The contrast between the global and local triangle model in terms of goodness of fit is
at least as striking as in the case of the terrorist network in Section 5.3.1.

The problematic nature of the global triangle model is underlined by the posterior of the
number of non-empty neighbourhoods of the random graph model with local dependence.
Fig. 12 shows that the posterior places negligible mass on partitions of the set of nodes where
all nodes are assigned to one neighbourhood, which corresponds to the global triangle model.
In addition, the posterior mode is 3, which is in line with expert knowledge (White ez al., 1976;
Handcock et al., 2007).

The neighbourhoods correspond, once again, to physical groups: the posterior membership
probabilities that are shown in Fig. 9 agree with the three-group division of novices into ‘Loyals’,
‘Turks’ and ‘Outcasts’ that have been advocated by most experts (White et al., 1976; Handcock
et al., 2007).

6. Discussion

We have demonstrated that the notion of local dependence, as introduced here, endows models
with desirable properties and makes them amenable to statistical inference. Models with local
dependence can be considered to be models of the ‘next generation of social network models’
(Snijders (2007), page 324), i.e. models which combine latent structure models (e.g. Nowicki
and Snijders (2001) and Hoff ez al. (2002)) and exponental family random graph models (e.g.
Frank and Strauss (1986)) in a way that takes advantage of the strengths of ERGMs—i.e. the
power of ERGMs to model dependences—while reducing the weaknesses of ERGMs—i.e. the
fact that Markov dependence along the lines of Frank and Strauss (1986) is more global than
local in nature and are not amenable to statistical inference; note that a partition of the set of
nodes can be considered to constitute a latent discrete space.

We believe that random graph models with local dependence constitute a promising and
versatile approach to modelling real world networks. Models with small neighbourhoods have
been used in physics, machine learning, artificial intelligence and spatial statistics with success,
and so have models with M-dependence in time series. We believe that the notion of local
dependence that is introduced here is a natural relative of the notions of local dependence in
spatial statistics and time series, and as a result can be expected to be useful in applications.

The desirable properties of local dependence suggest that researchers should make every
effort to identify and collect information on suitable neighbourhood structures. If suitable neigh-
bourhood structures are not observed, then the auxiliary variable Bayesian methods that are
developed here can be used.

We have implemented statistical inference for random graph models with local dependence in
the free and open source R package hergm, which is publicly available on the Comprehensive
R Archive Network.
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Appendix A: Proofs

A.1. Proof of theorem 1
By local dependence, for all K >0 and Yk C Yk,

K k=1
U:°1<+1 (Yk € Yk, YK-H\K € Y1<+1\1<) = { H Pk‘k(Yk,k € Vix) H U:Dk,l(Yk‘l €V, Yik€ yl,k)}
k=1 =1
K
X {PK+I,K+1(YK+1‘K+I € Y1<+1,1<+1) H PK+1J(YI¢,[ € Yk,l; Y, € Y1,k)}
=1

K k=1
= Hl Pex(Yex € Vii) Hl Pei(Yii € Ve Yk €Vik)
e o

=Py (Y € Vy). @D

A.2. Proof of theorem 2

By uniform boundedness, E(|Sk ;|?) < CP, p=
loss of generality, which implies that E(Wg ;) =
Sk can be written as

1,2. Therefore, we can assume that E(Sk ;) =0 without
0, E(Wg) =0, E(Bx) =0 and E(Sx) =0. The variance of

Vs =3 > CxiSk )< 2 2 1C(Ski, Sk )l

€Sk jeSk ieSk jeSk
K

=3 > > LwiidCCki Sk I+ > > 1.4 1C(Sk.i, Sk, )l (42)
k=1 ieSk jeSk ieSk jeSk

where C(Sk;, Sk, ;) denotes the covariance of Sk ; and Sk ; and 1w ; ; indicates that both S ; and Sk ;
are functions of edge variables in neighbourhood k and neighbourhood & only, whereas 1 ; ; indicates
that either Sk ; or Sk ; or both are functions of between-neighbourhood edge variables. The within-
neighbourhood covariances are non-zero but are bounded by uniform boundedness:

1w ki ) ICCSk.is Sk ) < Mw ki i/ V (Sk, )/ V (Sk, ) < 1W,k,f,jC2q- (43)

Some of the between-neighbourhood covariances may be non-zero as well, because some of the statistics
Sk, and Sk ; may share edge variables and may therefore be dependent. But 1g ; ; =1 implies that either
Sk,i or Sk ; or both are functions of at least one between-neighbourhood edge variable. Without loss of
generality, assume that Y; ,, », is one of the between-neighbourhood edge variables, and note that both
Sk,i and S ; may be functions of Y; ,, ,, . The between-neighbourhood covariances can be written as

lB,[,_/l(]:(SK,[, Sk, )l=1g;

q
[E<I—[1 Yi,ak,hk Yjﬁakybk) ‘ . (44)
k=

The product II!_, ¥; 4, 5, ¥j a5, Can be written as Y.y b, Y-iiar.by» Where p=1,2 because Sk ; and Sk ; are
functions of ¢ distinct edge variables, and Y_; 4, 5, is the product of 2g — p edge variables distinct from
Y .5, - By the independence of the between-neighbourhood edge variable Y; ,, 5, and uniform bounded-

ness,

1g,,;

q
E (H Y Yj,ak,bk) ' =1 B, ) B =iy,
k=1

<l HE(|Y,-Z,l,bl DE(Y 0.5 D <1p; ; E(Y!

i,a1,by

NCHr. (45)

By sparsity, E(|Y;4,.5,1") < An7%,6 >d;, p=1,2. Thus, by expressions (44) and (45) and sparsity, all
covariances vanish in the limit, with the exception of within-neighbourhood covariances. As a result,
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K K
’;im \/(SK):l;im Z Z Z IW,k,i._jC(SK,hSK,_/):Klim Z \/(WK,k)’ (46)
— 00 —00

X k=1 ieSk jeSk
K
Jim V(W)= lim 37 V(Wi (47)
—00 — 00 k=1

Jlim V(Bx)=0. (48)

Since the subsets of nodes A, contain at most M < oo nodes and thus subsets Sx , C X‘_, A, contain at
most M¢ < oo elements, the within-neighbourhood variances V(W ;) are bounded:

VWeo=> > lwiijCCxinSk. )< > > lwiiIC(Sk.is Sk )|
ieSk jeSk €Sk jeSk

<Y 3w CU< M. (49)

ieSg jeSk

By uniform boundedness and expressions (47) and (49), the within-neighbourhood sums Wy, satisfy
Lyaponouv’s and thus Lindeberg’s condition:

lim LS [E(|WKJ<|4)< lim i M CHE(|Wi i)
Koo (7 [V(WRP K= (o [V(Wi)P?

K
M*C* lim > V(Wk ) M*C% lim V(W)
. — 00 k=1 K—o0

~ lim V(Wi lim V(Wy) :Klim V(W) lim \/(WK):O' (50)

By result (50), the within-neighbourhood sums W, satisfy the uniform asymptotic negligibility con-
dition (10) (e.g. Resnick (1999), page 315). By expressions (49) and (50) and the Lindeberg—Feller central
limit theorem (e.g. Billingsley (1995), page 359, theorem 27.2) applied to the double sequence of random
variables Wy =Wg 1 +...+Wg x, K=1,2,...,

14

K d
— N(0,1) as K — oo. (51)
V'V (W)
By Chebyshev’s inequality and result (48), for all £ >0,
1
lim P(1Bx|>e) < lim — V(Bg) =0, (52)
K—oo K—x g
implying
BK—p>0 as K — oo. (53)

By definition, Sx = W 1 +...+ Wk k + Bg; thus result (11) follows from expressions (51) and (53) and
Slutsky’s theorem.
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