
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Boundary Constraints in Force-Directed Graph Layout

Permalink
https://escholarship.org/uc/item/0vd969mx

Author
Zhang, Yani

Publication Date
2014

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0vd969mx
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

BOUNDARY CONSTRAINTS IN FORCE-DIRECTED GRAPH

LAYOUT

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

YANI ZHANG

June 2014

The Thesis of YANI ZHANG
is approved:

————————————————–
Professor Alex Pang, Chair

————————————————–
Professor Suresh Kumar Lodha

————————————————–
Professor Roberto Manduchi

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Yani Zhang

2014

Table of Contents

List of Figures v

List of Tables v

Abstract vi

Acknowledgments vii

1 Introduction 1

2 Related Work 2

2.1 Interactivity . 2

2.2 Constraints in Graph Drawing Methods 3

3 Force-directed Graph Layout 4

3.1 Definitions . 4

3.1.1 Graph . 4

3.1.2 Boundary . 5

3.2 Common Forces . 6

3.3 Graph Drawing Problem . 7

4 Layout with Boundary Constraints 7

4.1 Definition of Active Area . 8

4.1.1 Active Area of A Set of Boundaries 8

4.1.2 Active Areas of A Boundary Edges 9

4.2 Different Types of Active Area . 13

4.2.1 Single Boundary and Single Active Area 13

4.2.2 Single Boundary and Multiple Active Area 15

4.2.3 Multiple Boundaries and Single Active Area 16

4.2.4 Multiple Boundaries and Multiple Active Area 16

iii

4.3 Boundary Forces . 17

4.4 Modified Force Components . 21

4.4.1 Spring Force . 21

4.4.2 Repulsive Force . 22

4.4.3 Boundary Force . 22

4.5 Graph Drawing Algorithm . 23

5 Implementation 23

5.1 Tools . 23

5.2 Synthetic Graphs . 25

6 Results and Analysis 26

6.1 Experimental Results for Different Boundary Force Functions 26

6.2 Experimental Results for Different Scales of Graphs 27

6.3 Visual Results for Arbitrary Topology of Boundaries 31

7 Conclusion and Future Work 35

References 35

iv

List of Figures

1 Definition of active area of boundaries. 10

2 Definition of active area of boundary edges. 11

3 Convex and concave boundary vertices. 12

4 Boundary edges and their active area. 14

5 Single boundary and multiple active area. 15

6 Multiple boundaries and single active area. 16

7 Multiple boundaries and multiple active area. 17

8 Inside boundary forces on graph vertices. 19

9 Outside boundary forces on graph vertices. 20

10 The total boundary force for graph vertices. 21

11 Initial layout of a random graph. 26

12 Final layout of the graph after 150 iterations. 27

13 Different boundary force functions. 28

14 Layout of datasets with have same ratio of vertices to edges. 30

15 Layout of graphs with increasing number of edges. 30

16 Graph layout with different boundary constraints. 32

17 Different layouts with multiple boundaries. 33

18 Layouts from a facebook user dataset. 33

19 Layout changes from ”sun” shape to ”moon” shape. 34

20 Simulation of a funnel. 34

List of Tables

1 Running time of datasets that have same ratio of vertices and edges 29

v

Abstract

Boundary Constraints in Force-Directed Graph Layout

by

Yani Zhang

This paper focuses on graph layouts with constraints using force-directed simula-

tions. Existing graph drawings with constraints include placement of a particular

vertex or a group of vertices at a specified location, constraining placement of ver-

tices and edges to specified rows and/or columns. We propose an alternative way of

specifying constraints by allowing the user to interactively draw a boundary wherein

the graph layout will be constrained. Such boundary constraints may be saved and

applied to other graphs as well. In addition, the boundary may be of different topol-

ogy such as a donut shape, or figure-eight shape, etc. We model these boundaries

as a set of additional forces that contribute to the forces acting on graph vertices.

Because our proposed approach is force-directed, it can take advantage of optimiza-

tions of other force-directed graph layout algorithms. Furthermore, one can utilize

the knowledge of the size of the graph to be visualized and the size of the interior

of the boundary region to scale the forces appropriately to achieve a uniform distri-

bution of vertices. We tested this idea on several data sets and different boundary

constraints.

vi

Acknowledgments

I wish to extend my deepest gratitude to my advisor Professor Alex Pang for his

encouragement, guidance and patience during the course of this project. I would like

to thank Professor Suresh Kumar Lodha and Professor Roberto Manduchi for their

feedback, advice, and time that have gone into this thesis. Finally, I am indebted

to many people who helped me in finishing this thesis. I profited immensely from

comments and reviews from my advisor and colleagues, and constant encouragement

from my family.

vii

1 Introduction

Graph drawing has been an area of active research interest in the information vi-

sualization community as abstract graph models are widely used in various areas

ranging from social networks, security, scientific applications, and others. Among

those techniques [1–5], force-directed approach [6–18] is the most well-known method

for drawing undirected graphs due to their flexibility of adding constraints, ease of

implementation and relatively resultant layouts compared to other approaches [19].

Specifically, a graph is viewed as a neat drawing of the particles can be generated

with by minimizing an energy function [4].

Based on this force-directed idea, many practical graph drawing systems have been

developed [19–21]. One of them is a popular JavaScript library D3.js [22]. It simu-

lates force-directed graphs using a repulsive charge force to separate vertices apart

from each other and a pseudo-gravity force to hold the entire graph together in the

visible area but without constraining the size and shape of the graph. In certain

situations, one would like the layout to meet some specific requirements or common

aesthetics such as symmetry, minimum edge crossings, etc. While at the same time,

to obtain the desired graph with a minimum amount of time. With these goals in

mind, various kinds of constraints were taken into account in the graph layout prob-

lems [23–26]. Widely used graph drawing constraints include placing a given vertex

in the center or on the outer boundary of the drawing, placing a group of vertices

as a cluster, or aligning vertices horizontally or vertically [24]. Thus, drawing a

graph using force-directed methods can be formalized as a complex multi-objective

optimization problem.

In this paper, we propose an alternative approach to specify constraints by allow-

ing the users to interactively draw a boundary wherein the graph layout will be

constrained. With these boundary constraints, the layout of the graph will be up-

dated such that it can be fitted into the user-defined boundaries. We model these

1

boundaries as a set of additional environmental forces that contribute to the forces

acting on the vertices in the graph. Since our approach is based on force-directed

simulation, it can take advantage of the existing optimization results from other

force-directed graph layout algorithms.

The remainder of this paper is organized as follows. We discuss related work with

aspects of interactivity and constraints in graph drawing methods in section 2. Sec-

tion 3 provides a basic background on force-directed methods and the definition of

our graph drawing problem. In section 4 we give a formal definition of boundary

constraints and present our new force-directed model with boundary constraints.

Implementation work is discribed in section 5 and boundary constrained layout of

graphs and analysis of results are presented in section 6. We provide conclusions

and identify some avenues for future work in section 7.

2 Related Work

2.1 Interactivity

Existing constraint-based systems have been implemented to achieve the goal of

interactively manipulating graph layout, but none of them include outside environ-

ment force as additional constraints to the graph drawings. For example, the GLIDE

(Graph Layout Interactive Diagram Editor) system [27] is a graph editor for drawing

medium-sized graphs that organizes the interaction within a vocabulary of special-

ized constraints for graph drawing. CGV (Coordinated Graph Visualization) [28] is

another graph visualization system that incorporates several interactive views to ad-

dress different aspects of graph visualization. These graph drawing systems indeed

focus on interaction but did not support interactively defining boundary constraints

for graph layouts.

Alternatively, there are constraints-driven layout algorithms for network diagrams [29]

(also known as node-link diagrams and circle-and-arrow diagrams), which propose

2

a variety of layout techniques to exhibit the Visual Organization Features (VOFs).

VOFs are arrangements of related vertices in the diagram including horizontal and

vertical alignment, axial and radial symmetries, etc. However, these VOFs do not in-

clude constraining the graph within an area where the desired shape can be achieved.

Such boundary constraints can be useful in many applications such as automatic

graph layout, network graph analysis and visual design.

2.2 Constraints in Graph Drawing Methods

Traditional methods that incorporate boundary constraints controlled the size of

the graph layout by assuming that the boundary of the pre-specified drawing region

acted as a wall [11]. Regions were rectangular in shape and were represented

as inequality constraints wherein graph vertices must lie. No forces were used in

their formulation. In order to allow users to interactively define different kinds of

constraints, a constrained graph layout model [23] which is an extension of the force-

directed model was built. Similar to force-directed methods, these techniques find a

layout minimizing a goal function subject to placement constraints on the vertices

instead of force constraints.

Other forms of constrained graph layout models have also been proposed. A formal-

ism for the declarative specification of graph drawing with Prolog and an associated

constraint-solving mechanism have been developed by Kamada [30]. Using this for-

malism, one can express several simple geometric constraints among the vertices,

such as horizontal or vertical alignment, and circular arrangements. Dengler [29]

provided a notation for describing the desired perceptual organization of a layout

of a graph by means of a collection of layout patterns based on positions. These

include clustering, zoning, sequential placement, T- shape, and hub shape. This

method incrementally improves an initial randomly-generated drawing and is the

most widely used approach at present.

A comprehensive approach to constrained graph drawing is presented by He and

3

Marriot [23]. They provide a general model that supports: i). the specification of

arbitrary arithmetic linear equality and inequality constraints on the coordinates

of the vertices; ii). suggests coordinates for the vertices, each with an associated

weight, which denotes the strength of the suggestion. They show how to extend

the force-directed approach by Kamada [14] to support such placement constraints

which is fast and produces good results in practice.

The above mentioned force-directed methods are all supported by the position con-

straints of vertices or fixed-subgraph constraints in the graph, but our approach is

based on adding an additional force to constrain the whole graph. The benefit of

our approach is that we can reduce the complexity of general the constrained force-

directed graph models in each iteration, our boundary constraints produce forces

that are processed and converge at the same rate as currently modelled forces. On

the other hand, with the other methods mentioned above, m ore work has to be done

after each iteration to take into account position constraints. Thus, our approach

achieves better interactivity with user because the graph would take boundary con-

straints into consideration while converging to the final layout.

3 Force-directed Graph Layout

In this section, we first provide formal definitions of concepts that will be used later

to define the graph drawing problem at hand, as well as some necessary background

in force-directed methods.

3.1 Definitions

3.1.1 Graph

In force-directed methods, a graph G is defined as a pair (VG, EG) where VG is a

set of vertices and EG is a set of edges EG ⊂ VG × VG. A drawing of such graph G

on the plane is defined as a mapping D from VG to R
2, where R is the set of real

4

numbers. Then for mapping D, each vertex v ∈ VG is placed at point D(v) on the

plane, and each edge (u, v) ∈ EG for u, v ∈ VG is displayed as a straight-line segment

connecting D(u) and D(v). In our graph drawings, we use a dot on the plane to

represent a vertex and a straight line connecting two vertices to represent an edge.

3.1.2 Boundary

Similarly, a boundary Bp of the graph is defined also as a pair (VBp, EBp). Suppose

boundary Bp has n vertices (which we will refer as boundary vertices to distin-

guish them from graph vertices) and m edges (which we will refer as boundary

edges to distinguish them from graph edges), then VBp is defined as a sequence of

boundary vertices VBp = {vp(1), vp(2), · · · , vp(n)} and EBp is defined as a set of

boundary edges that connects adjacent vertices and forms a connected path. That

is, EBp = {ep(1), ep(2), · · · , ep(n)} where ep(i) = vp(i)vp(i+ 1) (i = 1, 2, · · · ,m− 1)

and for special case i = m, ep(m) = vp(m)vp(1). Note that while we use the graph

notation to represent a boundary, it is a special case where n = m, and it forms

a closed loop. The coordinates of the boundary vertices in the mapping D are de-

fined interactively by users, so the boundary can be deformed into arbitrary shapes

and may even self-intersect. Multiple boundaries in the same graph are allowed

to support boundaries of different topologies. In these cases, the boundaries are

represented by a set composed of B1, B2, · · · , Bq to specify q distinct boundaries.

While there is flexibility in terms of how boundaries are represented and the different

types of topology that one can construct, one must nevertheless be careful about

the semantics of these boundaries in terms of using them as boundary constraints

for graph placement. Also, while an individual boundary may self-intersect, we do

not allow a boundary to intersect with another boundary.

5

3.2 Common Forces

Now we introduce some common forces in classical force-directed methods. The

graph drawing algorithm of Tutte [31] is the earliest force-directed method in liter-

ature. The model they proposed partitions the set of vertices into two sets, a set

of fixed vertices and a set of free vertices. By nailing down the fixed vertices as a

strictly convex polygon and then placing each free vertex at the barycenter of its

immediate neighbor during each iteration, the model is able to yield a nice drawing.

Subsequently, Eades [7] proposed a simple spring embedder algorithm which most

models today, including our proposed model is built upon.

In that model, every pair of vertices is connected by a spring. For adjacent vertices

(vertices that connect each other with an edge), the intensity fs of the attractive

spring force exerted on the two vertices depends on the current distance between

them according to the following formula:

fs(uv) =

(

c1 · log
(|uv|

c2

))

uv

|uv| (1)

where c1 represents scaling constant for spring force, c2 is the given spring natural

length, and uv denotes the vector from vertex u to vertex v.

For non-adjacent vertices (vertices that are not connected each other by an edge),

the spring has infinite natural length, thus always has a repelling force. The intensity

fr of the repulsive force exerted on the two vertices depends on the distance between

them:

fr(uv) = −
(

c3
|uv|2

)

uv

|uv| (2)

where c3 is the scaling constant for repulsive forces.

In general, various modifications on force-directed approaches fall into two cate-

6

gories. One has to do with altering the repulsive force and the spring force models,

while the other attempts to manipulate the local minima problem resulting from

the equilibrium between repulsive forces and the spring forces. This paper is based

on the first approach, where we add an additional force representing the boundary

constraints into the graph layout optimization process.

3.3 Graph Drawing Problem

The graph drawing problem considered in our paper is addressed as follows. Suppose

we begin with a randomly positioned drawing of a graph G = (VG, EG) and a set

of boundaries {B1, B2, · · · , Bq} to specify q distinct boundaries. The graph drawing

algorithm is responsible for finding an assignment to variables representing the vertex

coordinates that satisfies the boundary constraints and gives a good layout of the

graph using a force-directed approach. More precisely, the layout algorithm should

solve the optimization problem and satisfy the following criteria:

• Minimum of energy consumption

• Every vertex of the graph is within the defined boundaries

• The final layout of the graph preserves the properties of force-directed methods.

4 Layout with Boundary Constraints

In this section, we first give a formal definition of boundary constraints and the

forces they induce on the graph elements. Then we discuss our layout algorithm in

depth including how the attractive and repulsive forces are modified to account for

boundaries, and how the boundary forces are calculated. Finally, we present the

algorithm for handling boundary constraints.

7

4.1 Definition of Active Area

Boundary constraints are enforced via boundary forces on graph elements. In order

to determine how these boundary forces affect graph elements, we must determine

the set of boundary edges that can influence an individual graph element, or con-

versely, the set of graph elements affected by a boundary force. For this purpose, we

define the active area of a set of boundaries, and the active area of each boundary

edge.

4.1.1 Active Area of A Set of Boundaries

A boundary specifies a partitioning of the space wherein a graph is to be drawn.

For closed boundaries, we need to distinguish between the inside and outside of the

boundary. By convention, we will assume that boundary vertices are ordered in a

counter-clockwise manner so that the inside is to the left of an boundary edge (see

Fig. 1(a)). Furthermore, each boundary Bp encloses an area. For simplicity, we will

use the notation Bp to represent both the boundary and its enclosed area. Each

boundary has its own active area Ap which is encompassed by Bp. For the case

where there is only one boundary, as illustrated in Fig. 1(a), the active area is Ap

(p = 1). In general, if we have more than one boundary and there are containments

between those boundaries, then we define the active area A as the biggest connected

area where the graph layout can take place. For example, let us assume B1 is the

outer boundary, with smaller boundaries scattered within B1 as shown in Fig. 1(b).

Thus, the active area in that figure is A = B1 − (B2 + B3). In general, assuming

that boundaries do not intersect each other, that is, we assume that there is only a

single connected area whose outer perimeter is specified by B1, that B2 · · ·Bq do not

intersect each other, and do not contain another boundary within each one. Then

the active area of these boundaries can be expressed as A = B1−(B2+B3+ · · ·+Bq.

Violating these assumptions would mean that there are several disjoint areas, rather

than a single contiguous area, where a single graph must be laid out. Any vertex

8

falling inside the active area A will have boundary forces acting upon it.

4.1.2 Active Areas of A Boundary Edges

In general, a boundary edge will exert an inward force perpendicular to the boundary

edge on graph elements in order to keep them inside the boundary. Not all boundary

edges will affect graph vertices at all times. A graph vertex vG(j) is influenced by

a boundary edge only when it is within the active area of that edge. Given That

means, if a graph vertex vG(j) is within the active area of boundary edge ep(i)

in boundary Bp, then we assign a boundary force fBp(i) to those vertices with a

direction perpendicular to the boundary edge ep(i) and pointing towards the interior

of the boundary. Take Fig. 2 as an example. Assume boundary edge vp(1)vp(2) has

the active area indicated by dotted lines, so for all vertices in graph that are within

that area, a boundary force fBp(1) is assigned with direction that is perpendicular

to boundary edge vp(1)vp(2) and pointing to the interior of the boundary in order to

push the graph inside. To define active area of boundary edges and assign boundary

force for each vertex within the active area, we need to consider three different cases.

In general, a boundary edge will exert an inward force perpendicular to the boundary

edge on graph elements in order to keep them inside the boundary. Not all boundary

edges will affect graph vertices at all times. A graph vertex vG(j) is influenced by

a boundary edge only when it is within the active area of that edge. Given a

boundary edge ep(i) belonging to boundary Bp, the active area of ep(i) is the half

space bounded by a vector from boundary vertex vp(i)(which we call left vector),

the segment ep(i), and another vector from boundary vertex vp(i+1) (which we call

right vector) as indicated in Fig. 2. There are four graph vertices within the active

area of ep(i), then we assign a boundary force fBp(vG(j), ep(i)) (see Section 4.3)

to each one of them with a direction perpendicular to ep(i) and pointing towards

the interior of the boundary. For full consideration of how to define left and right

vectors, we need to look at the types of boundary vertices that make up a boundary

9

(a) One boundary case.

(b) Multiple boundaries case.

Figure 1: Definition of active area of boundaries.

10

edge. That is, whether the boundary vertex is concave or convex.

Figure 2: Definition of active area of boundary edges.

Consider Fig. 3, boundary edge ep(i) is drawn as a solid vector from boundary vertex

vp(i) to vp(i+1). It is bounded on the left by boundary edge ep(i−1) and on the right

by boundary edge ep(i + 1). A boundary vertex, e.g. vp(i), is a convex boundary

vertex if the interior angle of the boundary edges that share that vertex i.e. angle

from ep(i−1) to ep(i), is less than or equal to 180 degrees. Otherwise it is a concave

boundary vertex, e.g. vp(i+ 1).

The active area of a boundary edge depends on the type of boundary vertices that

make up an edge. As we process the boundary edges in a counter-clockwise manner,

there are four cases to handle:

Case 1: Both vp(i) and vp(i+ 1) are convex (see Fig. 4(a)):

If both boundary vertices of boundary edge ep(i) are convex, then the active area of

boundary edge ep(i) is bounded by left vector −ep(i − 1), boundary edge ep(i) and

right vector ep(i + 1). A force perpendicular to boundary edge ep(i) is applied to

graph elements that are on the half space inside of boundary edge ep(i), and also

inside of boundary edge ep(i−1) and boundary edge ep(i+1). Otherwise, boundary

11

Figure 3: Convex and concave boundary vertices.

edge ep(i) does not contribute a force to the graph element. In this way, we do

not have to divide the active area into different regions while maintaining a uniform

distribution of the boundary forces. We tested this method and show our results in

section 6.

Case 2: vp(i) is convex and vp(i+ 1) is concave (see Fig. 4(b)):

For this case, we define the active area of boundary edge ep(i) to be bounded by left

vector −ep(i− 1), boundary edge ep(i) and a vector from vp(i + 1) to v2p(i+ 1) as

the right vector. v1p(i+ 1) is perpendicular to ep(i) and v2p(i+1) is perpendicular

to ep(i+1). For graph elements falling in the area bounded by left vector −ep(i−1),

boundary edge ep(i) and vector vp(i+ 1)v1p(i+ 1), we apply a force perpendicular

to boundary edge ep(i). For graph elements falling in the triangular gap bounded by

vector vp(i+ 1), v1p(i+ 1), and right vector vp(i+ 1), v2p(i+ 1), we apply a force

in the direction from vp(i+ 1) to the graph element.

Case 3: vp(i) is concave and vp(i+ 1) is convex (see Fig. 4(c)):

If vp(i) is a left concave boundary vertex of boundary edge ep(i), then it is also

12

the right concave boundary vertex of boundary edge ep(i − 1) which is handled by

case 2 above. For case 3, we define the active area of boundary edge ep(i) to be

bounded by a vector from vp(i) to v2p(i) as the left vector, boundary edge ep(i),

and boundary edge ep(i + 1) as the right vector. Graph elements in Ai are applied

a force perpendicular to boundary edge ep(i). For graph elements in the triangular

gap bounded by vector vp(i)v1p(i), and left vector vp(i), v2p(i), we apply a force in

the direction from vp(i) to the graph element.

Case 4: Both vp(i) and vp(i+ 1) are concave (see Fig. 4(d)):

For this case, we define the active area of boundary edge ep(i) to be bounded by a

vector from vp(i) to v2p(i) as left vector, boundary edge ep(i), and a vector from

vp(i+1) to v2p(i+1) as right vector. Just as in cases 2 and 3, a left concave boundary

vertex will be bounded by a vector that is perpendicular to the edge. Likewise, a

right concave boundary vertex will be bounded by a vector that is perpendicular to

the next boundary edge.

4.2 Different Types of Active Area

Here, we consider the number of active areas resulting from either a single or multiple

boundaries, and whether their shape or arrangement result in a single or multiple

active areas where graph elements will be constrained. There are four possible

configurations which we discuss below.

4.2.1 Single Boundary and Single Active Area

See in Fig. 1(a), This is the simplest case, where the boundary constraint is specified

by a single boundary and where the edges in this boundary do not self-intersect.

Graph elements will have forces applies to them if they are in the active area of each

of the boundary edges of the boundary according to the rules set in Section 4.1.2.

These forces are summed up to obtain the net boundary constraint forces acting on a

13

(a) Boundary vertex vp(i) is convex,
boundary vertex vp(i+1) is also convex.

(b) Boundary vertex vp(i) is convex,
boundary vertex vp(i+ 1) is concave.

(c) Boundary vertex vp(i) is concave,
boundary vertex vp(i+ 1) is convex.

(d) Boundary vertex vp(i) is concave,
boundary vertex vp(i+1) is also concave.

Figure 4: Boundary edges and their active area.

14

graph element. The resulting boundary constraint force is then factored in together

with other force-directed components i.e. spring and gravitation forces, to effect a

change in the position of the graph element.

4.2.2 Single Boundary and Multiple Active Area

See in Fig. 5, this scenario happens when boundary edges intersect each other. As

an example, boundary edge ep(i − 1) and boundary edge ep(i + 1) intersect each

other at vp. This results in two separate active areas A1 and A2, which we treat as

two single active areas. In this case, the resulting layout of a graph will be highly

dependent on the initial configuration or position of the graph elements. If the graph

to be laid out is a single connected graph, i.e. all the nodes are connected together,

then the final lay out of the graph will be constrained to be in either A1 or A2. If the

graph to be laid out contains multiple disjoint components i.e. the graph is actually

a forest, then different parts of the forest will end up in A1 or A2 depending on their

initial positions prior to activating the boundary constraint forces.

Figure 5: Single boundary and multiple active area.

15

4.2.3 Multiple Boundaries and Single Active Area

As in Fig. 6,recall that boundary vertices are specified in a counter-clockwise order

so that a sense of what is inside or outside the boundary can be established. In

the example in Fig. 6, boundary B2 is fully inside boundary B1. The active area

A = B1 − B2, is a single connected active area. Each of the boundary edges will

exert a boundary constraint force in the direction described in section 4.1.2, consist

with the inside versus outside of a boundary edge. A graph to be laid out, whether

it is a single connected graph or a forest, will be constrained to fully reside within

the active area A.

Figure 6: Multiple boundaries and single active area.

4.2.4 Multiple Boundaries and Multiple Active Area

Multiple active areas can arise from certain arrangements of multiple boundaries.

For example, if boundaries are nested with alternating inside-outside orientations

as in Fig. 7, then one can obtain multiple disjoint active areas. For such cases, the

same behaviour as the described in section 4.2.2 can be expected. That is, the final

layout is sensitive to the initial layout of the graph. Also, if the graph is a single

16

connected graph, it will end up in one of the active areas; and if it is a forest, then

different parts will go to different active areas.

Aside from this scenario, there are other ways to obtain multiple active areas using

multiple boundaries. For example, one of the enclosed boundaries may be a self-

intersecting boundary, or tows of the enclosed boundaries intersect each other. We

do not consider these cases in this paper.

Figure 7: Multiple boundaries and multiple active area.

4.3 Boundary Forces

Now we know when to apply boundary force on each graph vertex that is when it

falls into active area of each boundary edge. Here we discuss how to find out if the

graph vertex is within active area and how to calculate the boundary forces acted

on it.

Before we assign boundary force to each graph vertex we have to know if the graph

vertex is within the boundary. This test can be carried out using a point in polygon

test such as the one described by Franklin [32]. This is an efficient O(m) test that

depends on the number of edges defining a boundary, and can handle self-intersecting

polygons properly.

17

If the graph vertex vG(j) is within the boundary Bp, then we start testing if it

is within each active area of boundary edges. According to the type of boundary

vertices as convex or concave, we give different formulas to calculate boundary forces.

Assume we have n boundary vertices and m graph vertices. Take Fig. 8 as an

example, we have a convex boundary vertex vp(i), and a concave boundary vertex

vp(i+ 1). First we consider boundary edge ep(i) and its active area Ai bounded by

its left vector −ep(i− 1), boundary edge ep(i) and vector v1p(i + 1). We construct

two new vectors vec1(i) = vG(j) − vp(i) and vec2(i) = vG(j) − vp(i + 1), if both of

them fall within active area Ai, i.e. vec1(i) is always between left vector of active

area Ai and boundary edge ep(i), and vec2(j) is always between right vector of

active area Ai and vector vp(i+ 1)vp(i), then the graph vertex vG(j) is considered

within the active area Ai. So in Fig. 8, vG(1) is considered within active area Ai, but

vG(2) is not. Once we know the graph vertex vG(j) is within active area Ai, assume

that the distance from vG(j) to boundary edge ep(i) is de(i), and a vector vpv(i) is

perpendicular to boundary edge ep(i) and pointing the interior of boundaries, so we

have:

de(i) =
vec1(i) · vpv(i)
|vpv(i)|

(3)

Then the boundary force fBp acted on this graph vertex vG(j) from boundary edge

ep(i) is:

fBp(vG(j), ep(i)) = c5 ·
1

de(i)
· vpv(i)

|vpv(i)|

i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

(4)

where c5 is scaling constant parameter.

Now we consider the active area bounded by vector v1p(i+1) and vector v2p(i+1)

in Fig. 8. If the graph vertex vG(j) falls in this active area, we replace de(i) with

18

Figure 8: Inside boundary forces on graph vertices.

distance from the graph vertex vG(j) to the nearest boundary vertex vp(i + 1), as

in:

de(i) = |vp(i+ 1)vG(j)| (5)

And plug it into Equation (4) as their boundary forces. For boundary edge ep(i+1),

we use the same method to calculate its boundary force as with boundary edge ep(i).

For the graph vertices that are not within the boundary, we assign a force towards

interior of the boundary and pull them inside. The mechanism to assign outside

boundary forces within each boundary edges active area is exactly the same as

discussed in previous section. It can be considered the same with multiple boundary

cases where the interior boundaries have outside active areas. The only difference

is that here the direction of boundary forces is from the graph vertex and pointing

towards interior of boundary but in interior boundaries, the direction is the opposite.

Thus for each boundary edge, we have an inside active area and an outside active

area as illustrated in Fig. 9. For convex boundary vertex vp(i − 1), boundary edge

19

ep(i − 1) has an outside active area Ai−1 and for concave boundary vertex vp(i),

boundary edge ep(i) has two active area taken into consideration, that is active area

Ai and the gap between Ai−1 and Ai.

Figure 9: Outside boundary forces on graph vertices.

Note that graph vertices that are further away will have stronger boundary force

acting on them, so the outside boundary force fBp is defined as:

fBp(vG(j), ep(i)) = c5 · de(i) ·
vpv(i)

|vpv(i)|

i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

(6)

where c5 is scaling constant parameter. By iterating through all the boundary

edges, the total boundary forces for vertex vG(j) from q boundary edges will be

∑q
p=1

fBp(vG(j)). By iterating through all the boundary edges in each bound-

ary Bp, the total boundary forces for vertex vG(j) from q boundary edges will be

∑q
p=1

∑n
i=1

fBp(vG(j), ep(i)), as shown in Fig. 10, the total boundary force for ver-

tices vG(j)(j = 1, 2, 3) will be the total force of
∑

3

i=1
fBp(vG(j), ep(i))(p = 1).

20

Figure 10: The total boundary force for graph vertices.

4.4 Modified Force Components

Here we modified conventional spring force and repulsive force in order to combine

with our boundary force. We utilize the knowledge of the size of the graph to be

visualized and the size of the interior of the region to scale the forces appropriately

to achieve a uniform distribution of graph vertices.

4.4.1 Spring Force

Given a graphG, each vertex is placed in some initial random layout with coordinates

Pi(x, y). Once released, the spring forces act to move the system to a minimal energy

state. We use the logarithmic strength springs, and the force exerted by a spring is:

fs(vG(i), vG(j)) =

(

c1 ·
α

β
· log

(

|vG(i)vG(j)|
c2

))

vG(i)vG(j)

|vG(i)vG(j)|

i, j = 1, 2, · · · , n
(7)

where c1 is scaling constant for spring force, c2 is the given spring natural length.

α is for the size of the graph, depends on the number of the vertices in the graph.

21

β is the total area of the active area. Together α/β represents density of the graph

drawing. This modification of Equation (1) allows the attractive force to scale with

the layout density.

4.4.2 Repulsive Force

Equation (2) is modified in a similar manner to take into account graph density:

fr(vG(i), vG(j)) = c3 ·
β

α
· 1

|vG(i)vG(j)|
vG(i)vG(j)

|vG(i)vG(j)|

i, j = 1, 2, · · · , n
(8)

where c3 is scaling constant for the repulsive force as before. This time the force is

inversely related to the density α/β.

4.4.3 Boundary Force

Equation (4) and (6) of boundary force is also modified in a similar manner to take

into account graph density. For graph vertices that are within the boundary:

fBp(vG(j), ep(i)) = c5 ·
α

β
· 1

de(i)
· vpv(i)

|vpv(i)|
(9)

And for graph vertices that are outside the boundary:

fBp(vG(j), ep(i)) = c5 ·
α

β
· de(i) · vpv(i)

|vpv(i)|

i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

(10)

where c5 is scaling constant for the boundary force and α/β is the spatial density of

graph drawings as before.

22

4.5 Graph Drawing Algorithm

Our drawing algorithm is outlined in Algorithm I.It includes three main parts: 1).

compute the spring force of each edge and compute the repulsive forces due to each

pair of neighboring edges incident to the vertex; 2). compute boundary forces for

each vertex, then 3). add the three different kinds of forces together. In the end,

make a step towards the direction where the total force is pointing for each vertex,

and draw the updated graph according to certain set of parameters.

In Algorithm I, parameter c4 are used to control the step of movement of every vertex.

Recall that parameters c1 and c2 in Equation (7) (logarithmic spring force formula)

are used to control the force magnitudes and natural lengths of springs, respectively;

parameter c3 in Equation (8) (the magnitude of repulsive force between each two

vertices) is used to control the scale of the repulsive force magnitude; parameter c5 in

Equation (9) and (10) (the magnitude of boundary force) is used to control the scale

of the boundary force magnitude. Note that the algorithm can reach convergence if

parameters c1 − c5 and ǫ are set appropriately.

5 Implementation

5.1 Tools

Based on the formulas and algorithm detailed in the previous sections, we develop

a prototype using Matlab and its graphic library. Tests were ran on an Intel Core

i53.00 GHz PC with memory of size 8.00 GB running Windows 7. Processing 2.0

was used to realize the interactive part with users. In this section, we will detail

the implementation of our algorithm, and show some promising experimental results

with Matlab.

The analysis on the convergence and the adjustments of parameters in force-directed

methods has been discussed intensively in previous works (e.g., see [8, 13]). On

theoretical aspect, Eades and Lin [33] have shown that the general framework of

23

Algorithm 1: Boundary Constraints (Adding boundary constraints in force-
directed graph layout of graph)

Input : A randomly drawing of G = (VG, EG) and user-defined boundary
set B = {Bp}

Output: A nice graph drawing within the boundaries
begin

assign initial coordinates of vertices in VG;
while the maximum iteration number is achieved do

converged ←− false;
oldPos ←− newPos;
initialize springForce[|VG|] as zeros matrix;
initialize repelForce[|VG|] as zeros matrix;
initialize boundForce[|VG|] as zeros matrix;
for each vertex vG(i) in VG do

springForce[i] ←− springForce[i] + fs (calculate and update its
springForce[i]);
repellForce[i] ←− repelForce[i] + fr (calculate and update its
repelForce[i]);
if the vertex vG(i) is within the active area of each boundary edge
then

for each boundary vector vp(i)vp(i+ 1) do
calculate its boundary force fb to this vertex and update
boundForce[i];

end

end

end

totalForce[vi] ←− springForce[i] + repelForce[i] + boundForce[i];
calculate the step for each vertex and its new position in next
iteration;

end

if ||newPosnoldPosn|| > ǫ then
converged ←− 0

end

end

24

force-directed methods can lead to a stable drawing in which many symmetries are

displayed. Similarly, our force-directed approach also can be shown to be stable,

under appropriate setting of parameters.

In Algorithm I, it should be noted that the setting of parameters c1c5 not only

influence the run times but also the convergence rate of our approach and the quality

of the final drawing. In the following, we briefly explain how to set those parameters

in Algorithm I to achieve convergence. Recall that c1 is the scaling constant for

spring force,c2 is the given spring natural length, c3 is the scaling constant for the

repelling force, c4 is used to control the step size of movement of every vertex, and

c5 is the scaling constant for the boundary force. Parameters c1, c2, c3, and c4

are similar to the parameters used in conventional force-directed methods. Their

settings should be coordinated so as to achieve a stable configuration layout of the

graph. Parameter c4 controls the magnitude of movement i.e. the range in which

vertices can move. If c4 is set smaller, then the range of movement of vertices is also

smaller.

5.2 Synthetic Graphs

For testing purposes, we created a synthetic graph generation program. Input to

this program is the number of graph vertices and edges. The vertices are assigned

an initial random position, while pairs of vertices are connected randomly using

uniform sampling of the vertices with replacement.

In Fig. 11, we show the initial random layout of a graph which has 13 graph vertices

and 5 boundary vertices. Coordinates of the graph vertices are randomly generated

while the boundary is pre-defined. Red vertices are connected to form the boundary.

Blue vertices scattered randomly have black arrows representing the total force and

direction acting on them after each iteration. After 150 iterations, we can see the

graph is indeed totally within the predefined boundary in Fig. 12.

25

−4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

x position

y
po

si
tio

n

Boundary constraints in force−directed graph layout

Figure 11: Initial layout of a random graph.

6 Results and Analysis

In this section, we apply our boundary constraints on several graph datasets using the

graph generation method discussed in previous section and also other graph datasets

available online. First we plug in different boundary force functions to show how

the graph layout changes with different boundary constraints. , then we discuss the

complexity of this algorithm by running it on different scales of graph data, and

in the last part, we show some visual results of arbitrarily shaped boundaries and

animation sequence of altering the boundary during the graph layout process.

6.1 Experimental Results for Different Boundary Force Functions

We know the boundary forces are applied to each graph vertex according to which

active area of the boundary edge it falls into, and it also depends on the distance

from the graph vertex and to the boundary edge. Here, we demonstrate how flexible

this arrangement is by changing the boundary force functions to affect the layout

of a graph. Equation (7) specifies an inverse distance (d) relationship of boundary

force on a graph vertex. Fig. 13 illustrates how the positions of the graph vertices

26

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

x position

y
po

si
tio

n

Boundary constraints in force−directed graph layout

Figure 12: Final layout of the graph after 150 iterations.

are affected by changing the boundary force functions without changing the bound-

ary constraints. Note that graph edges are not drawn in these illustrations and

convergence times vary as well. In this example, we are using the same graph with

2000 vertices and 4000 edges under same set of parameters, and the same shape of

boundary of a regular pentagon for this experiment.

In Fig. 13(a), we are using inverse of d, by changing it to inverse of the logarithm

of d, the vertices are pushed further away from the middle part of the boundary

edges resulting in curved silhouettes as shown in Fig. 13(b). Since boundary force

of inverse of d2 is dropping much faster than inverse of d, we see graph vertices are

closer to the boundary as indicated Fig. 13(c). And since the boundary force of

inverse of
√
d is dropping slower than inverse of d we see the graph is further pushed

further away from the boundary in Fig. 13(d).

6.2 Experimental Results for Different Scales of Graphs

Similar to conventional force-directed methods as discussed in section 2, the com-

plexity of this algorithm depends on number of vertices and edges in the graph [8].

Because the number of boundary vertices are much less than the number of vertices

27

(a) Boundary force function of 1/d (b) Boundary force function of 1/ log d

(c) Boundary force function of 1/d2 (d) Boundary force function of 1/
√

d

Figure 13: Different boundary force functions.

28

in the graph, the running time of our algorithm remains on the same level. We

ran some experiments to obtain some actual running times. We first set the same

ratio of vertices and edges in the graph, then increase the number of vertices and

number of edges proportionately. Then we set the number of vertices as constant

and increase the number of edges. We list the running times in Table 1 and show the

resultant layouts in Fig. 14. Note that we are using the same topology of boundary

as a regular pentagon and inverse distance to the boundary edge as the boundary

force function for these experiments. We also hide the edges of each graph in order

to have a more clear view of the distribution of vertices. The more complicated

topology of boundaries and graphs with edges showing will be discussed in the next

section.

Table 1: Running time of datasets that have same ratio of vertices and edges
Number of vertices n Number of edges m Aver. Running time t (seconds)

100 200 0.87

500 1000 3.56

2000 4000 6.33

10000 20000 53.91

We can see that the graph vertices are distributed evenly within each boundary.

With increasing density of vertices, the graph can reveal the shape of the boundary

more clearly. Then we fix the number of vertices in the graph to be constant, but

increase the number of edges for each graph, the results are showing in Fig. 15. Note

that we are using a graph dataset that has 2000 vertices and 6000 edges and 10000

edges respectively, and we increased the scale factor for spring (c1) from previous

experiments so a more clear view of the distribution of edges and properties of

force-directed methods can be seen. Edges are drawn transparently.

The results show that with fixed number of vertices, but increasing number of edges

in the graph does not affect the time dramatically as increasing number of vertices in

the graph. The complexity of the algorithm depends more on the number of vertices

29

(a) Number of vertices n = 100 (b) Number of vertices n = 500

(c) Number of vertices n = 2000 (d) Number of vertices n = 10000

Figure 14: Layout of datasets with have same ratio of vertices to edges.

(a) Number of edges m = 6000 (b) Number of edges m = 10000

Figure 15: Layout of graphs with increasing number of edges.

30

as indicated in previous sections.

6.3 Visual Results for Arbitrary Topology of Boundaries

In this section, we defined several typical convex and concave shape of boundaries

and tried our datasets on them. The visual results are listed in Fig. 16.

And we also defined multiple boundaries with layouts shown in Fig. 17. Fig. 17(a)

with one interior boundary and Fig. 17(b) with two interior boundaries.

Animation of both changing boundaries and graph layout process are also an integral

part of the visual feedback for the users. Allowing users to adjust and manipulate

boundary vertices where the graph is to be constrained can be very helpful. Here,

we took several screen shots of the graph layout process with changing boundary

shape. First we used a facebook dataset of 1589 vertices and 2732 edges and changed

the layout from an initial square boundary constraint to a triangular boundary

constraint (see Fig. 18). In Fig. 19, have a graph inside a circle. As the user

move some boundary vertices to make it look like a shape of moon, the layout

changes accordingly. Another example illustrated in Fig. 20 simulates graph vertices

spreading out to fill a funnel shape. At first, all the vertices in graph are at the top,

as the algorithm runs, they expand and spread out over this funnel.

31

(a) Letter ”I” (b) Leaf

(c) Rain drop (d) Star

(e) Heart (f) Intersected

Figure 16: Graph layout with different boundary constraints.

32

(a) Donut (b) Number 8

Figure 17: Different layouts with multiple boundaries.

(a) Initial layout (b) After animation

Figure 18: Layouts from a facebook user dataset.

33

(a) Initial as ”sun” (b) Changed to ”moon”

Figure 19: Layout changes from ”sun” shape to ”moon” shape.

(a) Initial layout (b) During process

(c) During process (d) Final layout

Figure 20: Simulation of a funnel.

34

7 Conclusion and Future Work

This thesis presented a novel way for manipulating and specifying graph layout

with the use of boundary constraints. This is incorporated with a force-directed

simulation and does not significantly increase the cost of graph layout. The bound-

ary constraints are quite general and can support arbitrary shapes including self-

intersections and boundaries with different topologies.

The current work focuses on constraining graph vertices to lie within specified bound-

aries. No consideration is made for constraining graph edges to lie within boundaries

as well. Future work is to constrain graph edges within boundaries as well. This

will necessitate consideration of forces on graph edges, particularly around concave

boundary vertices, self-intersecting boundaries and boundary topologies of holes.

References

[1] Battista, Di Giuseppe, Eades Peter, Tamassia Roberto, and G. Tollis Ioannis.

Algorithms for drawing graphs: an annotated bibliography. Computational

Geometry 4, (5):235–282, 1994.

[2] Herman, Ivan, Guy Melanon, and Marshall M. Scott. Graph visualization

and navigation in information visualization: A survey. visualization and com-

puter graphics. Visualization and Computer Graphics, IEEE Transactions on,

6(1):24–43, 2000.

[3] Daz, Josep, Jordi Petit, and Serna Maria. A survey of graph layout problems.

ACM Computing Surveys (CSUR), 34(3):313–356, 2002.

[4] Kobourov and Stephen G. Spring embedders and force directed graph drawing

algorithms. arXiv preprint arXiv:1201.3011, 2012.

[5] Battista, Di Giuseppe, Eades Peter, Tamassia Roberto, and G. Tollis Ioannis.

35

Graph drawing: algorithms for the visualization of graphs. Prentice Hall PTR,

1998.

[6] Franois Bertault. A force-directed algorithm that preserves edge crossing prop-

erties. Graph Drawing. Springer Berlin Heidelberg, 1999.

[7] Peter Eades. A heuristics for graph drawing. Congressus numerantium,

(42):146–160, 1984.

[8] Ron Davidson and David Harel. Drawing graphs nicely using simulated anneal-

ing. ACM Transactions on Graphics (TOG), 15(4):301–331, 1996.

[9] Chun-Cheng Lin, Yi-Yi Lee, and Hsu-Chun Yen. Mental map preserving graph

drawing using simulated annealing. Information Sciences, 181(19):4253–4272,

2011.

[10] Arne Frick, Andreas Ludwig, and Heiko Mehldau. A fast adaptive layout al-

gorithm for undirected graphs (extended abstract and system demonstration.

Graph Drawing Springer Berlin Heidelberg, 1995.

[11] Fruchterman, Thomas MJ, and Edward M Reingold. Graph drawing by force-

directed placement. Software: Practice and experience, 21(11):1129–1164, 1991.

[12] Stefan Hachul and Michael Jnger. Drawing large graphs with a potential-field-

based multilevel algorithm. Graph Drawing. Springer Berlin Heidelberg, 2005.

[13] Koren David and Harel Yehuda. A fast multi-scale method for drawing large

graphs. Journal of graph algorithms and applications, 6(3), 2002.

[14] Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undi-

rected graphs. Information processing letters, 31(1):7–15, 1989.

[15] Kozo Sugiyama and Kazuo Misue. Graph drawing by the magnetic spring

model. Journal of Visual Languages and Computing, 6(3):217–237, 1995.

36

[16] Chris Walshaw. A multilevel algorithm for force-directed graph drawing. Graph

Drawing. Springer Berlin Heidelberg, 2001.

[17] Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathematica

Journal, 10(1):37–71, 2005.

[18] K. Sugiyama and K. Misue. A simple and unified method for drawing graphs:

Magnetic-spring algorithm. Proceedings of Graph Drawing, GD 94, 894:364–

375, 1995.

[19] Aaron Quigley and Peter Eades. Fade: Graph drawing, clustering, and visual

abstraction. In Graph Drawing, pages 197–210, 2001.

[20] Jiggle Daniel Tunkelang. Java interactive general graph layout environ-

ment. Sixth International Symposium on Graph Drawing (McGill University,

Canada), August 1998.

[21] Mao Huang. On-line animated visualization of huge graphs. Ph.D. thesis The

University of Newcastle, Australia, 1999.

[22] Michael. Bostock. D3. js-data-driven documents. (2012):2013.

[23] Weiqing He and Kim Marriott. Constrained graph layout. Graph Drawing.

Springer Berlin Heidelberg, 1997.

[24] Roberto Tamassia. Constraints in graph drawing algorithms. Constraints,

3(1):87–120, 1998.

[25] Thomas Kamps, Joerg Kleinz, and John Read. Constraint-based spring-model

algorithm for graph layout. Graph drawing. Springer Berlin/Heidelberg, 1996.

[26] Tim Dwyer, Kim Marriott, and Michael Wybrow. Topology preserving con-

strained graph layout. Graph Drawing. Springer Berlin/Heidelberg, 2009.

37

[27] Kathy Ryall, Joe Marks, and Stuart Shieber. An interactive constraint-based

system for drawing graphs. In Proceedings of the 10th annual ACM symposium

on User interface software and technology, pages 97–104, 1997.

[28] Christian Tominski, James Abello, and Heidrun Schumann. Cgvan interactive

graph visualization system. Computers and Graphics, 33(6):660–678, 2009.

[29] Edmund Dengler, Mark Friedell, and Joe Marks. Constraint-driven diagram

layout. In Visual Languages, 1993., Proceedings 1993 IEEE Symposium on,

pages 330–335, 1993.

[30] Tomihisa. Kamada. Visualizing abstract objects and relations. World Scientific

Publishing Company, 1989.

[31] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical

Society, pages 743–768, 1963.

[32] W. Randolph Franklin. Pnpoly - point inclusion in polygon test.

[33] P. Eades and X. Lin. Spring algorithms and symmetry. Theoretical Computer

Science, 2:379405, 2000.

38

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Related Work
	Interactivity
	Constraints in Graph Drawing Methods

	Force-directed Graph Layout
	Definitions
	Graph
	Boundary

	Common Forces
	Graph Drawing Problem

	Layout with Boundary Constraints
	Definition of Active Area
	Active Area of A Set of Boundaries
	Active Areas of A Boundary Edges

	Different Types of Active Area
	Single Boundary and Single Active Area
	Single Boundary and Multiple Active Area
	Multiple Boundaries and Single Active Area
	Multiple Boundaries and Multiple Active Area

	Boundary Forces
	Modified Force Components
	Spring Force
	Repulsive Force
	Boundary Force

	Graph Drawing Algorithm

	Implementation
	Tools
	Synthetic Graphs

	Results and Analysis
	Experimental Results for Different Boundary Force Functions
	Experimental Results for Different Scales of Graphs
	Visual Results for Arbitrary Topology of Boundaries

	Conclusion and Future Work
	References

