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ABSTRACT OF THE DISSERTATION 
 

Improved Methods of Simulation and Analysis For Stochastic Processes in Cell Biology 

By 

Brian Kelly Chu 

University of California, Irvine, 2019 

Assistant Professor, Elizabeth L. Read, Chair 

 

Stochasticity (that is, randomness) is an inherent property of many biological systems. For 

example, gene expression is stochastic, resulting in random fluctuations of mRNA and protein 

copy numbers in the cell. In cell differentiation, there is evidence that the phenotype of the cell 

can be driven toward an entirely different type of cell due to noise. Stochastic fluctuations are 

also important in the spatio-temporal dynamics of molecular interactions within the cell, 

affecting processes such as cell activation and signal transduction. To gain a better understanding 

of biological systems, computer simulations of biomolecular processes in the cell are 

increasingly utilized to complement experiments, quantify mechanistic hypotheses, and predict 

the effect of perturbations. Stochastic models, in particular, can be prohibitively expensive to 

simulate and difficult to analyze. In this work, we develop and extend methods of stochastic 

simulation and analysis that are applicable to a variety of cell biological systems. We focus on 

two specific application areas: The first is development of a method to analyze gene regulatory 

network models that have multiple, metastable states. The method enables a simplified, 

quantitative representation of complex phenotype landscapes and transitions. Second is the 

development of improved simulation methods for spatial stochastic systems. This work focuses 



xiv 
 

on rare events in reaction-diffusion systems and found several extensions to currently-employed 

simulation methods which improve simulation efficiency.  
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1. Introduction 

 

1.1 Stochastic biological models 

Stochasticity is prevalent in a host of biochemical systems involving gene expression [1], cellular 

heterogeneity[2], and spatial heterogeneity[3]–[5]. While deterministic modeling can predict the 

static average behavior at the population level, systems that are inherently metastable can 

dynamically switch between states and exhibit multistable distributions. Experimental evidence 

of distributions with multiple peaks is observed in [6]–[8] using various single cell analysis 

techniques which allows for study of populations at the resolution of a single cell.  

In deterministic modeling, a standard analysis method of solving for the attractor states is solving 

for the fixed points in the system. In stochastic modeling, it is more complex due to the 

metastability and heterogeneity of the attractor states. Intrinsic noise drives transitions between 

attractors and the states can be belong partially to more than one attractor state. This complexity 

along with the increased computational power required for stochastic methods makes it a 

challenge to apply in practice and analyze the noisy results, which can impact the statistical 

errors.   

Models can make predictions about the system behavior in a multitude of regimes not covered by 

experiments. They are also useful as probing the unknown mechanisms of the poorly understood 

processes that experimental data cannot explain. For example, a model can serve as a means to 

test a hypothesis; the assumptions of the unknown mechanisms made by the model can be 

verified by comparing the simulation results to experimental results[9]. Models do not have to be 

fully accurate in order to be useful; often simple models can be build our intuition of complex 



2 
 

processes[10].In this thesis, the models that we use to model biological processes are based on 

stochastic methods since noise and random fluctuations are key drivers of their dynamics and 

system state transitions. 

 

1.2 Gene regulatory networks 

A gene regulatory network is a description of the interactions between genes which governs the 

cell’s state or phenotype. Mapping the interactions is a difficult process due to the sheer number 

of genes in the networks and the combinatorial explosion of the possible number of states. A 

variety of networks have been mapped, such as the heart [11], plants[12], and various animals[13].  

A greater understanding of cell fate can be gained by incrementally mapping gene regulatory 

networks from low level to high level. From the thousands of molecular entities at the organism 

level, the key ones can be identified and established their respective roles in the cell fate process. 

The molecular entities can be grouped into ‘sub-circuits’ or ‘modules’ according to the process 

that they are involved. By piecing together how each module effects one other, a mechanistic 

understanding can be learned of how the cell fate process works. 

High-throughput technologies, such as DNA microarrays or the ChIP-on-chip technique, have 

allowed us to acquire massive amounts of genomic data. The current challenge is how to utilize 

this data to make predictions or learn more about the network behavior. Two major 

computational approaches are top-down and bottom-up. The top-down approaches uses data 

inference to reverse engineer a trained model which typically does not provide insight on 

detailed molecular mechanisms, but is useful in gene network reconstruction. The bottom-up 

approach is to build a dynamic model, which does include some molecular detail, such as 
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kinetics of Transcription Factor-DNA interactions, and fits parameters for those processes from 

the data where possible. This thesis uses the latter approach.     

1.3 Modeling of gene regulatory networks 

Gene regulatory networks are complicated due to the vast number of interactions and molecular 

entities at play. Therefore, different modeling approaches are selected based on the system 

size/complexity. The least expensive/simple modeling approach are Boolean models [14]. The 

entities are abstracted into being a highly expressing ON state or a low expressing OFF state. 

This greatly reduces the number of possible states and the computational work required to train 

the model. A more accurate method, continuous models, such as ordinary differential equations 

and stochastic differential equations, can model the dynamic behavior of molecular 

concentrations[15]. Often these types of models assume gene expression levels depend solely on 

the regulatory proteins [16]. Stochastic models, which treat entities as discrete quantities, are able 

to account for the transient switching of gene expression while continuous models cannot. The 

transient switching of gene expression is important for cellular functions such as priming cells to 

develop along differentiation pathways[17], [18] and bistable cytokine expression levels in 

immune cells[19]. The stochastic formalism that we have applied in Chapter 2 is the Chemical 

Master Equation (CME), which describes the time evolution of the probability density vector of 

all possible cell state configurations. It is very accurate and detailed but can only be applied to 

the simplest of systems due to the combinatorial explosion effect when scaling up. In Chapter 2, 

we extend the CME framework by combining with Markov State Models methodology, which is 

a coarse graining method to extract the slow time scale dynamics from the system that was 

modeled by the CME framework.  
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1.4 Receptor-ligand binding at cell-cell interfaces 

Another area in which stochastic models have been utilized to shed light on cellular processes is 

in the spatio-temporal dynamics of biochemical interactions that govern signal transduction and 

cell activation. For example, in T-cells, the binding of a receptor to its ligand produces cellular 

responses, such as proliferation, differentiation, and survival. In order for the binding to occur, 

two cell membranes must be able to form an interface at close contact. Repulsive forces and 

steric interactions between the two membranes prevent the surfaces from forming interfaces. 

Steric interactions can be attributed to large surface molecules which can physically block the 

two surfaces due their long ectodomain length [20], [21], such as CD45, a molecule that play a 

dual role in T-cell activation[22]. One of the steps of the  kinetic segregation model of receptor 

triggering [23], a theory on how close contacts form between T-cell surfaces, suggests that CD45 

molecules must first evacuate the region of binding. Chapter 3 deals with calculating the mean 

first passage times associated with this evacuation event using simplified spatial simulations.  

Repulsive forces can stem from the hydrodynamics of the extracellular fluid between the two 

membranes [24], [25]. When attempting to come into close contact, a “thin layer effect”[26] 

appears, where the repulsion force grows stronger as the two membranes come closer together. 

The aim of chapter 4 is to characterize the mean first passage time associated with reaching 

various displacements of contact separation using simplified stochastic models.  
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1.5 Rare event sampling 

 

1.5.1 Rare events 

Rare events are defined as an event of interest (often, a transition to a target state) which occurs 

very infrequently relative to other intrinsic timescales of the system. They are tied to biological 

processes that may be metastable in nature (gene regulatory networks fall into this category as 

shown in Chapter 2) or transient (certain significant events pertaining to cell-cell interfaces 

described in Chapter 3 and 4). Of gene regulatory networks, embryonic stem cells exhibit 

dynamic heterogeneity through expression levels of its transcription factors prior lineage 

commitment [17], [27], [28]. In order to quantify the transition rates and probabilities of the 

embryonic cell network, a methodology able to identify metastable states and quantify their 

transitions is needed. It also must be computationally efficient due to the presence of rare events 

in these systems. Such a framework for capturing the transitions between metastable states as 

well as the rare states was developed by Tse et. al [29]. The underlying algorithm which allowed 

for efficient sampling is Weighted Ensemble Method [30], which is used extensively in this 

thesis and is described in detail in the next section.  

1.5.2 Weighted Ensemble sampling 

The primary rare event sampling method used for Chapters 3 and 4 is the Weighted Ensemble 

(WE) Method, which partitions the state space into bins and records the flux of probability from 

one initial state to a final state [30]. In biological processes ranging from different scales such as 

molecular [31], atomistic [32], [33], coarse grained models[34], and well-mixed/spatial resolved 

cellular level[35], [36],  WE has been used to calculate the rate constant and gain insight on rare 

transitions of interest with greater computational efficiency compared to brute force simulation. 
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Other examples of  techniques which that can also be used the obtain the rate constant in rare 

event systems include milestoning [37], transition path sampling[38] , forward flux sampling[39].  

These algorithms and WE share the characteristic of dividing the space up in terms of some 

progress coordinate, a degree of freedom which is highly indicative of the current state of the 

system.  

There have been many variants of the Weighted Ensemble Algorithms [35], [40]–[45] which 

have reported greater efficiency compared to the original Huber and Kim algorithm [30]. For 

example, Bhatt and coworkers have used an accelerated steady state attainment procedure [42] 

and Dickson and coworkers have improved the binning procedure using a hierarchy of bins that 

is built adaptively throughout the simulation[43]. The original algorithm does not place strict 

restrictions on number of replicas per bin unlike the version implementation by Donovan and 

coworkers [35]. The reorganization of replicas is solely determined the ideal weight of a replica 

with a bin. Replicas above the splitting threshold and below the merging threshold are candidates 

for modification. WESTPA, a comprehensive package which implements the WE method 

designed for general use for a multitude of simulation packages that use different dynamics such 

as molecular dynamics (GROMACS,NAMD,AMBER) and cell-modeling (BioNetGen, MCell), 

has the options to specify the splitting/merging thresholds in addition to the target replica number 

[46].  

Although it has been used to solve a wide variety of rare event problems, complex systems with 

multiple degrees of freedom pose an issue with weighted ensemble in the control of the number 

of bins the coordinate to choose to define your bins. It may happen that the slow degrees of 

freedom are correlated so it is sufficient to describe the bins with a one-dimensional coordinate 
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[47], [48]. WExplore [43] was designed to handle multiple slow independent degrees of freedom 

and was shown to handle up to 50 degrees of freedom. In the last chapter, an incremental 

approach for high dimensional progress coordinates is suggested and explained.  

 

2. Markov State Models of Gene Regulatory Networks 

 

2.1 Introduction 

Gene regulatory networks (GRNs) often have dynamics characterized by multiple attractor states. 

This multistability is thought to underlie cell fate-decisions. According to this view, each attractor 

state accessible to a gene network corresponds to a particular pattern of gene expression, i.e., a cell 

phenotype. Bistable network motifs with two possible outcomes have been linked to binary cell 

fate-decisions, including the lysis/lysogeny decision of bacteriophage lambda[18], the maturation 

of frog oocytes[49] and a cascade of branch-point decisions in mammalian cell development 

(reviewed in [50]). Multistable networks with three or more attractors have been proposed to 

govern diverse cell fate-decisions in tumorigenesis [51], stem cell differentiation and 

reprogramming [52]–[54], and helper T cell differentiation[55]. More generally, the concept of a 

rugged, high-dimensional epigenetic landscape connecting every possible cell type has emerged 

[56]–[58]. Quantitative models that can link molecular-level knowledge of gene regulation to a 

global understanding of network behavior have the potential to guide rational cell-reprogramming 

strategies. As such, there has been growing interest in the development of theory and 

computational methods to analyze global dynamics of multistable gene regulatory networks. 
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Gene expression is inherently stochastic[18], [59]–[61], and fluctuations in expression levels can 

measurably impact cell phenotypes and behavior. Numerous examples of stochastic phenotype 

transitions have been discovered, which diversify otherwise identical cell-populations. This 

spontaneous state-switching has been found to promote survival of microorganisms or cancer cells 

in fluctuating environments[62]–[64], prime cells to follow alternate developmental fates in higher 

eukaryotes [27], [65], and generate sustained heterogeneity (mosaicism) in a homeostatic 

mammalian cell population[66]. These findings have motivated theoretical studies of stochastic 

state-switching in gene networks, which have shed light on network parameters and topologies 

that promote the stability (or instability) of a given network state[66]. Characterizing the global 

stability of states accessible to a network is akin to quantification of the “potential energy” 

landscape of a network. Particularly, with the advent of stem-cell reprogramming techniques, there 

has been renewed interest in a quantitative reinterpretation of Waddington’s classic epigenetic 

landscape[67], in terms of underlying regulatory mechanisms[57], [68]. 

A number of mathematical frameworks exist for modeling and analysis of stochastic gene 

regulatory network (GRN) dynamics (reviewed in [69], [70]), including probabilistic Boolean 

Networks, Stochastic Differential Equations, and stochastic biochemical reaction networks (i.e., 

Chemical Master Equations). Of these, the Chemical Master Equation (CME) approach is the most 

complete, in that it treats all biomolecules in the system as discrete entities, fully accounts for 

stochasticity due to molecular-level fluctuations, and propagates dynamics according to chemical 

rate laws. The CME is analytically intractable, but trajectories can be simulated by Monte Carlo 

methods such as the Stochastic Simulation Algorithm (SSA)[71]. Alternatively, methods for 

reducing the dimensionality of the CME, enabling numerical approximation of network behavior 

by matrix methods, have been developed[72]–[76]. 
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Analysis of multistability and global dynamics of discrete, stochastic GRN models remains 

challenging. Multistability is generally assessed by plotting multi-peaked steady-state probability 

distributions (obtained either from long stochastic simulations [52], [77], [78] or from approximate 

CME solutions[76], [79], [80]), projected onto one or two user-specified system coordinates. 

However, even small networks generally have more than two dimensions along which dynamics 

may be projected, meaning that inspection of steady-state distributions for a given projection may 

underestimate multistability in a network. For example, the state-space of a GRN may comprise 

different activity-states of promoters and regulatory sites on DNA, the copy-number of mRNA 

transcripts and encoded proteins, and the activity- or multimer-states of multiple regulatory 

molecules or proteins. Furthermore, while steady-state distributions give a global view of system 

behavior, they do not directly yield dynamic information of interest, such as the lifetimes of 

attractor states. 

In this chapter, we present an approach for analyzing multistable dynamics in stochastic GRNs 

based on a spectral clustering method widely applied in Molecular Dynamics[81]–[83]. The output 

of the approach is a Markov State Model (MSM)—a coarse-grained model of system dynamics, 

in which a large number of system states (i.e., “microstates”) is clustered into a small number of 

metastable (that is, relatively long-lived) “macrostates”, together with the conditional probabilities 

for transitioning from one macrostate to another on a given timescale. The MSM approach 

identifies clusters based on separation of timescales, i.e., systems with multistability exhibit 

relatively fast transitions among microstates within attractor basins and relatively slow inter-basin 

transitions. By neglecting fast transitions, the size of the system is vastly reduced. Based on its 

utility for visualization and analysis of Molecular Dynamics, the potential application of the MSM 

framework to diverse dynamical systems, including biochemical networks, has been discussed[84]. 
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Biochemical reaction networks present an unexplored opportunity for the MSM approach. Herein, 

we applied the method to small GRN motifs and analyzed their global dynamics using two 

frameworks: the quasipotential landscape (based on the log-transformed stationary probability 

distribution), and the MSM. The MSM approach distilled network dynamics down to the essential 

stationary and dynamic properties, including the number and identities of stable phenotypes 

encoded by the network, the global probability of the network to adopt a given phenotype, and the 

likelihoods of all possible stochastic phenotype transitions. The method revealed the existence of 

network states and processes not readily apparent from inspection of quasipotential landscapes. 

Our results demonstrate how MSMs can yield insight into regulation of cell phenotype stability 

and reprogramming. Furthermore, our results suggest that, by delivering systematic coarse-

graining of high-dimensional (i.e., many-species) dynamics, MSMs could find more general 

applications in Systems Biology, such as in signal-transduction, evolution, and population 

dynamics. 
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2.2 Methods 

 

2.2.1 Gene regulatory network motifs 

We studied two common GRN motifs that are thought to control cell fate-decisions. The full lists 

of reactions and associated rate parameters for each network are given in the Supplement. Both 

motifs consist of two mutually-inhibiting genes, denoted by A and B. In the Exclusive Toggle 

Switch (ETS) motif, each gene encodes a transcription factor protein; the protein forms 

homodimers, which are capable of binding to the promoter of the competing gene, thereby 

repressing its expression. One DNA-promoter region controls the expression of both genes; when 

a repressor is bound, it excludes the possibility of binding by the repressor encoded by the 

competing gene. Therefore, the promoter can exist in three possible binding 

configurations, 𝑃00, 𝑃10, and 𝑃01, denoting the unbound, a2-bound, or b2-bound states, 

respectively. Production of new protein molecules (including all processes involved in 

transcription, translation, and protein synthesis) occurs at a constant rate, which depends on the 

state of the promoter. When the gene is repressed, the encoded protein is produced at a low rate, 

denoted g0. When the gene is not repressed, protein is produced at a high rate, g1. For example, 

when the promoter state is 𝑃10 the a protein is produced at rate g1, and the b protein is produced at 

g0. When the promoter is unbound, neither gene is repressed, causing both proteins to be produced 

at rate g1. 

In the Mutual Inhibition/Self-Activation (MISA) motif, each homodimeric transcription factor also 

activates its own expression, in addition to repressing the other gene. The A and B genes are 

controlled by separate promoters, and each promoter can be bound by repressor and activator 

simultaneously. Therefore, the A-promoter can exist in four possible states, 𝐴00, 𝐴10, 𝐴01 and 𝐴11, 
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denoting unbound, a2-activator bound, b2-repressor bound, and both transcription factors bound, 

respectively (and similarly for the B-promoter). Proteins are produced at rate g1 only when the 

activator is bound and the repressor is unbound. For example, the 𝐴10 promoter state allows a 

protein to be produced at g1. The other three A promoter states result in a protein being produced 

at rate g0. Similarly, the rate of b protein production depends only on the binding configuration of 

the B-promoter. In both the ETS and MISA networks, protein dimerization is assumed to occur 

simultaneously with binding to DNA. All rate parameters are given in Tables S1-2.   

2.2.2 Chemical Master Equation 

 

The stochastic dynamics are modeled by the discrete, Markovian Chemical Master Equation, 

which gives the time-evolution of the probability to observe the system in a given state over time. 

In vector-matrix form, the CME can be written 

  
𝑑p(x,𝑡)

𝑑𝑡
= Kp(x, 𝑡) 

where p(x, 𝑡) is the probability over the system state-space at time 𝑡, and K is the reaction rate-

matrix. The off-diagonal elements 𝐾𝑖𝑗 give the time-independent rate of transitioning from state xi 

to xj, and the diagonal elements are given by 𝐾𝑖𝑖 = −∑ 𝐾𝑗𝑖𝑗≠𝑖 . We assume a well-mixed system 

of reacting species, and the state of the system is fully specified by x ∈ ℕ𝑆, a state-vector 

containing the positive-integer values of all S molecular species/configurations. We hereon denote 

these state-vectors as “microstates” of the system. In the ETS network, x = [𝑛𝐴, 𝑛𝐵 , 𝑃𝑎𝑏], where 

𝑛𝐴 is the copy-number of a molecules (protein monomers expressed by gene A, and similar for B), 

and 𝑃𝑎𝑏indexes the promoter binding-configuration. In the MISA network, x = [𝑛𝐴, 𝑛𝐵 , 𝐴𝑎𝑏, 𝐵𝑏𝑎], 

which lists the protein copy numbers and promoter configuration-states associated with both genes. 
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The reaction rate matrix K∈ℝ𝑁×𝑁is built from the stochastic reaction propensities (Supplement 

Eq. 1)[85], for some choice of enumeration over the state-space with N reachable microstates. In 

general, if a system of 𝑆 molecular species has a maximum copy number per species of 𝑛max, then 

𝑁 ~𝑛max
𝑆. To enumerate the system state-space, we neglect microstates with protein copy-

numbers larger than a threshold value, which exceeds the maximum steady-state gene expression 

rate, 𝑔1/𝑘 (where 𝑔1is the maximum production rate of protein and 𝑘 is the degradation rate), as 

these states are rarely reached. This truncation of the state-space introduces a small approximation 

error, which we calculate using the Finite State Projection method [86] (Fig. S1).  

2.2.3 Stochastic simulations 

 

Stochastic simulations were performed according to the SSA method [71], implemented by the 

software package StochKit2 [87]. 

2.2.4 Quasipotential landscape 

 

The steady-state probability 𝝅(x) over N microstates is obtained from K as the normalized 

eigenvector corresponding to the zero-eigenvalue, satisfying 𝐊𝝅(x)=0[15]. Quasipotential 

landscapes were obtained from 𝝅(x) using a Boltzmann definition,  𝑈(x) = − ln(𝝅(x))[68]. All 

matrix calculations were performed with MATLAB[88]. 
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2.2.5 Markov State Models: Mathematical background 

 

The last 15 years have seen continual progress in development of theory, algorithms, and software 

implementing the MSM framework. We briefly summarize the theoretical background here; the 

reader is referred to other works (e.g., [89]–[93]) for more details.  

The MSM is a highly coarse-grained projection of system dynamics over N microstates onto a 

reduced space of selected size 𝐶 (generally, 𝐶 ≪ 𝑁). The 𝐶 states in the projected dynamics are 

constructed by clustering together microstates that experience relatively fast transitions among 

them. The 𝐶 clusters, also called “almost invariant aggregates”[94], are hereon denoted 

“macrostates”. 

The MSM approach makes use of Robust Perron Cluster Analysis [95] (PCCA+), a spectral 

clustering algorithm that takes as input a row-stochastic transition matrix, T(𝜏) which gives the 

conditional probability for the system to transition between each pair of microstates within a given 

lagtime 𝜏 . The lagtime determines the time-resolution of the model, as expressed by the transition 

matrix. Off-diagonal elements 𝑇𝑖𝑗 give the probability of the system to transition to microstate j 

within 𝜏, given that it was initialized in 𝑖. Diagonal elements 𝑇𝑖𝑖 give the conditional probability 

to remain in microstate 𝑖 over the τ interval, and thus rows sum to 1. T(𝜏) is directly obtained from 

the reaction rate matrix by  [96]: 

T(𝜏) = exp(𝜏KT), 

(where exp denotes the matrix exponential). The evolution of the probability over discrete intervals 

of τ is given by the Chapman-Kolmogorov equation,  

𝒑𝑇(x, 𝑡 + 𝑘𝜏) = 𝒑𝑇(x, 𝑡)T𝑘(𝜏). 
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For an ergodic system (i.e., any state in the system can be reached from any other state in finite 

time), T(𝜏) will have one largest eigenvalue, the Perron root, 𝜆1 = 1. The stationary probability is 

then given by the normalized left-eigenvector corresponding to the Perron eigenvalue, 

𝝅T(𝐱)T(𝜏) = 𝝅T(𝐱). 

If the system exhibits multistability, then the dynamics can be approximately separated into fast 

and slow processes, with fast transitions occurring between microstates belonging to the same 

metastable macrostate, and slow transitions carrying the system from one macrostate to another. 

Then T(𝜏) is nearly decomposable, and will exhibit an almost block-diagonal structure (for an 

appropriate ordering of microstates) with 𝐶 nearly uncoupled blocks. In this case, the eigenvalue 

spectrum of T(𝜏) shows a cluster of 𝐶 eigenvalues near 𝜆1 = 1, denoting 𝐶 slow processes 

(including the stationary process), and for 𝑖 > 𝐶, 𝜆𝑖 ≪ 𝜆𝐶 , corresponding to rapidly decaying 

processes. The system timescales can be computed from the eigenvalue spectrum according to 

𝑡𝑖 = −𝜏/ln|𝜆𝑖(𝜏)|. 

The PCCA+ algorithm obtains fuzzy membership vectors 𝝌=[𝜒1, 𝜒2, … , 𝜒𝐶] ∈ ℝ
𝑁×𝐶, which 

assigns microstates 𝑖 ∈ {1,… ,𝑁} to macrostates 𝑗 ∈ {1,… , 𝐶} according to grades (i.e., 

probabilities) of membership, 𝜒𝑗(𝑖) ∈ [0,1]. The membership vectors satisfy the linear 

transformation: 

𝝌 =  𝝍𝐁 

Where 𝝍 = [𝜓1, … , 𝜓𝐶] is the 𝑁 ×  𝐶 matrix constructed from the 𝐶 dominant right-eigenvectors 

of T(𝜏), and 𝐁 is a non-singular matrix whose elements are determined by an optimization 

procedure. The original PCCA method [94]  used the sign structure of the eigenvectors to identify 
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almost invariant aggregates, in an optimization procedure with the objective of maximizing 

metastability via the trace of the coarse-grained matrix. A new optimization algorithm was 

introduced in a method known as PCCA+ [95], which improved numerical robustness. The results 

of this chapter were generated using the PCCA+ implementation of MSMBuilder2 [97]. 

2.2.6 Construction of Markov State Models and pathway decomposition 

 

The PCCA+ algorithm generates a fuzzy discretization. We convert fuzzy values into a so-called 

“crisp” partitioning of 𝑁 states into 𝐶 clusters, which entirely partitions the space with no overlap, 

by assigning 𝜒𝑗
𝑐𝑟𝑖𝑠𝑝(𝑖) ∈ {0,1}. That is, 𝜒𝑗

𝑐𝑟𝑖𝑠𝑝(𝑖) = 1 if the jth element of the row vector 𝜒(𝑖) is 

maximal, and 0 otherwise. Transition probabilities are estimated over the 𝐶 coarse-grained sets by 

summing over the fluxes, or equivalently[98]: 

T̃(𝜏) = �̃�−1𝝌𝑇𝑫T(𝜏)𝝌, 

where T̃(𝜏) ∈ ℝ𝐶×𝐶 is the coarse-grained Markov State Model and D is the diagonal matrix 

obtained from the stationary probability vector, 𝑫 = diag(𝜋1, … , 𝜋𝑁). The coarse-grained 

probability �̃�(x) is obtained by �̃�(x) = 𝝌T𝝅(x), and �̃� = diag(�̃�1, … , �̃�𝐶). 

The Markov State Model is visualized using the PyEmma 2 plotting module[89], where the 

magnitude of the transition probabilities and steady state probabilities are represented by the 

thickness of the arrows and size of the circles, respectively.  

Upon construction of the Markov State Model, transition-path theory[99]–[101]  was applied in 

order to compute an ensemble of transition paths connecting two states of interest, along with their 

relative probabilities. This was achieved by applying a pathway decomposition algorithm adapted 

from Noe, et al. in a study of protein folding pathways[101] (details in Supplement). 
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2.3 Results 

 

2.3.1 Eigenvalues and eigenvectors of the stochastic transition matrix reveal slow 

dynamics in gene networks 

 

In order to explore the utility of the MSM approach for analyzing global dynamics of gene 

networks, we studied common motifs that control lineage decisions. The MISA network motif 

(Fig. 2.1A, Supplement, and Methods) has been the subject of previous theoretical studies and is 

thought to appear in a wide variety of binary fate-decisions. [102]–[104]. In the network model, 

the A/B gene pair represents known antagonistic pairs such as Oct4/Cdx2, PU.1/Gata1, and 

GATA3/T-bet, which control lineage decisions in embryonic stem cells, common myeloid 

progenitors, and naïve T-helper cells, respectively [56], [105], [106]. In general, a particular cell 

lineage will be associated with a phenotype in which one of the genes is expressed at a high level, 

and the other is expressed at a low (repressed) level. The MISA network has been reported to have 

up to four attractors[51], [52], corresponding to the A/B gene pair expression combinations Lo/Lo, 

Lo/Hi, Hi/Lo, and Hi/Hi. We computed the probability and quasipotential landscape of the MISA 

network. For a symmetric system with sufficiently balanced rates of activator and repressor 

binding and unbinding from DNA, four peaks (attractor basins) can be distinguished in the steady 

state probability (quasipotential) landscape, plotted as a function of protein a copy number vs. 

protein b copy number (Fig. 2.1A,B).  

The Markov State Model framework has been applied in studies of protein folding, where 

dynamics occurs over rugged energetic landscapes characterized by multiple long-lived states 

(reviewed in [91], [107]). Therefore, we reasoned that the approach could be useful for studying 

global dynamics of multistable GRNs. The method identifies the slowest system processes based 
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on the dominant eigenvalues and eigenvectors of the stochastic transition matrix, T(𝜏), which 

gives the probability of the system to transition from every possible initial state to every possible 

destination state within lagtime 𝜏 (with 𝜏 having units of 𝑘−1and 𝑘 being the rate of protein 

degradation). Inspection of the eigenvalue spectrum of T(𝜏 = 5) for the MISA network in Fig. 

2.1B reveals four eigenvalues near 1 followed by a gap, indicating four system processes that are 

slow on this timescale. Decreasing 𝜏 to 0.5 reveals a step-structure in the eigenvalue spectrum, 

suggesting a hierarchy of system timescales. The timescales are related to the eigenvalues 

according to 𝑡𝑖 = −𝜏/ln|𝜆𝑖(𝜏)|. The Perron eigenvalue 𝜆1 = 1 is associated with the stationary 

(infinite time) process, and the lifetimes 𝑡2 through 𝑡5 are computed to be {95.6, 49.4, 30.8, 2.6} 

(in units of 𝑘−1). Thus, the first gap in the eigenvalue spectrum arises from a more than ten-fold 

separation in timescales between 𝑡4 and 𝑡5. The original PCCA method[94] used the sign structure 

of the eigenvectors to assign cluster memberships. Plotting the left-eigenvectors corresponding to 

the four dominant eigenvalues in the MISA network is instructive: the stationary landscape is 

obtained from the first eigenvector (𝜙1), which is positive over all microstates, while the opposite-

sign regions in 𝜙2, 𝜙3, 𝜙4 reveal the nature of the slow processes (Fig. 1D). An eigenvector with 

regions of opposite sign corresponds to an exchange between those two regions (in both directions, 

since eigenvectors are sign-interchangeable). For example, the slowest process corresponds to 

exchange between the 𝑎 > 𝑏  and 𝑏 > 𝑎 regions of state-space, i.e., switching between B-gene 

dominant and A-gene-dominant expression states. Eigenvectors 𝜙3 and 𝜙4 show that somewhat 

faster timescales are associated with exchange in and out of the Lo/Lo and Hi/Hi basins. 
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Figure 2.1 Eigenvalue and eigenvector analysis of the Mutual Inhibition/Self Activation (MISA) 

network 

(A) Schematic of the MISA network motif. (B) The fifteen largest eigenvalues of the stochastic 

transition matrix T(𝜏), indexed in descending order, for 𝜏 =5 (circles) and 𝜏 = 0.5 (crosses) 

(time units of inverse protein degradation rate, 𝑘−1). Gaps indicate separation between processes 

occurring on different timescales. Network parameter values are listed in Table S1. (C) The 

quasipotential landscape (left) and probability landscape (right) for the MISA motif, projected 

onto the A vs. B protein copy number subspace, showing four visible attractors. Landscapes 

were obtained from 𝜙1, the eigenvector associated with the largest eigenvalue of T(𝜏). (D) Left 

to right: second, third, and fourth eigenvectors (𝜙2, 𝜙3, 𝜙4) of T(𝜏). The sign structure reveals 
the nature of the slowest dynamical processes (see text). 



20 
 

 

2.3.2 The Markov State Model approach identifies multistability in GRNs 

 

2.3.2.1 Reduced models of the MISA network.  

 

The MSM framework utilizes a clustering algorithm known as PCCA+ (see Methods and 

Supplement) to assign every microstate in the system to a macrostate (i.e., a cluster of microstates) 

based on the slow system processes identified by the eigenvectors and eigenvalues of T(𝜏). 

Applying the PCCA+ algorithm to the MISA network for the parameter set of Fig. 2.1 resulted in 

a mapping from 𝑁 = 15,376 (31 × 31 × 4 × 4) microstates onto 𝐶 = 4 macrostates (Fig. 2.2). 

The N microstates were first enumerated by accounting for all possible system configurations with 

0 ≤ 𝑎 ≤ 30 and 0 ≤ 𝑏 ≤ 30. This enumeration assumes a negligible probability for the system to 

ever exceed 30 copies of either protein, which introduces a small approximation error of 1𝐸 − 5 

(details in Fig. S2.1). Because the promoters of each gene can take four possible configurations—

that is, two binding sites (for the repressor and activator) that can be either bound or unbound—a 

total of 16 gene configuration states are possible, giving 𝑁 = 15,376 enumerated microstates. 

Quasipotentials calculated from a long brute force simulation and from 𝜙1 showed agreement (Fig. 

S2.2). For this parameter set, the four macrostates obtained correspond to the visible peaks (basins) 

in the probability (quasipotential) landscape (Fig. 2.2A). The average expression levels of proteins 

in each macrostate indicate the four distinct cell phenotypes (Lo/Lo, Lo/Hi, Hi/Lo, Hi/Hi). The 

representative gene promoter configurations for each macrostate are shown (Fig. 2.2B). However, 

for each macrostate cluster there are other possible gene promoter configurations present with 

lower steady-state probability that are not shown, since every enumerated microstate is assigned 

to a macrostate.  
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Figure 2.2 Four metastable clusters, or network “macrostates”, identified for the MISA network 

by the Markov State Model approach. (Rate parameters same as Fig. 2.1) 
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 (A) Macrostate centers located by their respective 50% probability contours, corresponding to 

visible peaks in the probability landscape. B) Schematics of the most probable gene promoter 

configuration for each metastable cluster. 

 

2.3.2.2 Parameter-dependence of landscapes and MSMs. 

 

 To determine whether the MSM approach can robustly identify gene network macrostates, we 

applied it over a range of network parameters by varying the repressor unbinding rate 𝑓𝑟 (all 

parameters defined in Table S1). Increasing 𝑓𝑟 relative to other network parameters modulates the 

quasipotential landscape by increasing the probability of the Hi/Hi phenotype, in which both genes 

express at a high level simultaneously (Fig 3B). This occurs as a result of weakened repressive 

interactions, since the lifetimes of repressor occupancy on promoters are shortened when 𝑓𝑟 is 

increased. The eigenvalue spectra show a corresponding shift: when 𝑓𝑟 = 1E − 3, four dominant 

eigenvalues are present. When 𝑓𝑟 is increased to 𝑓𝑟 = 1, the largest visible gap in the eigenvalue 

spectrum shifts to occur after the first eigenvalue (𝜆 = 1), indicating loss of multistability on the 

timescale of 𝜏 (here, 𝜏 = 5) (Fig. 2.3A). Correspondingly, for this parameter set, the landscape 

shows only a single visible Hi/Hi basin. 

The PCCA+ algorithm seeks 𝐶 long-lived macrostates, where 𝐶 is user-specified. We constructed 

Markov State Models for the MISA network over varying 𝑓𝑟, specifying four macrostates. The 

MSMs are shown graphically in Fig 3D. The sizes of the circles are proportional to the relative 

steady-state probability of the macrostate, and the thickness of the directed edges are proportional 

to the relative transition probability within 𝜏. In agreement with the landscapes, the MSMs over 

this parameter regime show increasing probability of the Hi/Hi state, as a result of an increasing 

ratio of transition probability “into” versus “out of” the Hi/Hi state. The locations of the clusters 
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in the state-space (according to 50% probability contours) do not change appreciably. The choice 

of lagtime 𝜏 sets the timescale on which metastability is defined in the system. However, in 

practice, the PCCA+ seeks an assignment of 𝐶 clusters regardless of whether 𝐶 metastable states 

exist in the system on the 𝜏 timescale, and the resulting aggregated macrostates are generally 

invariant to 𝜏. Thus, for 𝑓𝑟 = 1, the algorithm locates four macrostates, although the (low-

probability) Hi/Lo, Lo/Lo, and Lo/Hi macrostates are likely to experience transitions away, into 

the Hi/Hi macrostate, within 𝜏. These low-probability states appear in the landscape as shoulders 

on the outskirts of the Hi/Hi basin. Overall, Fig. 2.3 demonstrates that, for this parameter regime, 

the quasipotential landscape and the MSM yield similar information on the global system 

dynamics in terms of the number and locations of attractor states, and their relative probabilities 

as a function of the unbinding rate parameter 𝑓𝑟 . The MSM further provides quantitative 

information on the probabilities (and thus timescales) of transitioning between each pair of 

macrostates. 
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Figure 2.3 Dependence of the MISA network eigenvalues, landscape, and MSM on the repressor 

unbinding parameter 𝑓𝑟 

Top to Bottom: increasing 𝑓𝑟 = {1𝐸 − 3, 1𝐸 − 2, 1𝐸 − 1, 1} in units of protein degradation 

rate, 𝑘−1 (complete parameter list in Table S1). (A) The eigenvalue spectrum of T(𝜏) for 𝜏 =  5, 

and associated timescales. (B) The quasipotential landscape. (C) The Markov State Model with 

four macrostates, visualized by the 50% probability contour for each metastable state. (D) The 

state transition graph. Nodes and edges denote macrostates and transition probabilities, 

respectively. The size of each node is proportional to the steady-state probability, and edge 

thickness is proportional to the probability of transition within τ = 5.  
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2.3.2.3 MSM identifies purely stochastic multistability  

 

Multistability in gene networks is often analyzed within an ordinary differential equation (ODE) 

framework, by graphical analysis of isoclines and phase portraits, or by linear stability analysis 

[51], [55]. ODE models of gene networks treat molecular copy numbers (i.e,. proteins, mRNAs) as 

continuous variables and apply a quasi-steady-state approximation to neglect explicit 

binding/unbinding of proteins to DNA. Previous studies have shown that such ODE models can 

give rise to landscape structures that are qualitatively different from those of their corresponding 

discrete, stochastic networks. For example, multistability in an ODE model of the genetic toggle 

switch requires cooperativity—i.e., multimers of proteins must act as regulators of gene 

expression[108]. However, it was found that monomer repressors are sufficient to give bistability 

in a stochastic biochemical model[109], [110]. We compared the dynamics of the monomer ETS 

network (shown schematically in Fig. 2.4A) as determined by analysis of the ODEs, along with 

the corresponding stochastic quasipotential landscape and the MSM. In a small-number regime, 

the ODEs predict monostability (Fig. 2.4C), while the stochastic landscape shows tristability—

that is, three basins corresponding to the Hi/Lo, Hi/Hi, and Lo/Hi expressing phenotypes (Fig. 

2.4A). This discrepancy has been shown to occur in systems with small number effects, i.e., 

extinction at the boundaries[110]. 

The MSM approach identifies three metastable macrostates for the monomer ETS in this parameter 

regime, as seen in the eigenvalue spectrum, which shows a gap after the third index. The reduced 

Markov State Model constructed for this network thus reduces the system from 𝑁 = 7,803 (51 ×

51 × 3) microstates to 𝐶 = 3 macrostates (Fig. 2.4B), corresponding to the same Hi/Lo, Hi/Hi, 

and Lo/Hi attractor phenotypes seen in the quasipotential landscape. Figure 2.4 demonstrates that 
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the MSM approach can accurately identify purely stochastic multistability in systems where 

continuous models predict only a single stable fixed-point steady state.  

 

Figure 2.4 Comparison of ODE and MSM analysis of the monomer Exclusive Toggle Switch 

(ETS) network 

 (A) Schematic of the ETS network motif. (B) The Markov State Model identifies three 

macrostates corresponding to the Hi/Lo, Hi/Hi, and Lo/Hi phenotypes. Parameter values are 

listed in Table S2.  (C) The nulllclines and vector field of the deterministic ODEs show a single 

fixed point steady-state, with both genes expressing at the maximum rate (Hi/Hi phenotype). 

(B,D,E) The corresponding landscape and MSM show tristability: (D) The quasipotential 

landscape shows three visible attractors corresponding to the Hi/Lo, Hi/Hi, and Lo/Hi 

phenotypes. (E) The 20 dominant eigenvalues reveal timescale separation, including a gap after 

𝜆3.  

 
 

 

2.3.3 Analyzing global gene network dynamics with the Markov State Model  

 

2.3.3.1 MSM provides good approximation to relaxation dynamics from a given initial 

configuration  

 

Figs.  1-4 demonstrate the utility of the MSM approach for analyzing stationary properties of 

networks—that is, for identifying the number and locations of multiple attractors at steady state. 
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Additionally, the MSM can be used to make dynamic predictions about transitions among 

macrostates. Dynamics for either the “full” transition matrix (with all system states enumerated up 

to a maximum protein copy number) or reduced transition matrix (i.e., the MSM) is propagated 

according to the Chapman-Kolmogorov equation (see Methods and Supplement). We sought to 

determine the accuracy of the dynamic predictions obtained from the MSM. Applying the methods 

proposed by Prinz, et al.([90]) (details in Supplement), we compared the dynamics propagated by 

the fully enumerated transition matrix T(𝜏), which is then projected onto the coarse-grained 

macrostates, to the dynamics of the coarse-grained system propagated by T̃(𝜏) (i.e., the MSM). 

We thus computed the error in dynamics of relaxation out of a given initial system configuration. 

The system relaxation from a given initial microstate can also be computed by running a large 

number of brute force SSA simulations. Relaxation dynamics for the full, brute-force, and reduced 

MSM methods, applied to the MISA with 𝑓𝑟 = 1𝐸 − 2, all show good agreement (Fig. 2.5 A,B, 

and C). The error computed between the reduced MSM vs. full dynamics (i.e., T̃(𝜏)  vs T(𝜏)), is 

maximally 7.8𝐸 − 3, varies over short times, and decreases continuously after time 𝑡 = 140. 

Alternatively, the error of the MSM can be quantified by comparing the autocorrelation functions 

of the MSM and brute force simulation[96], [111]. In Figure S2.3, we show that the derived 

autocorrelation functions of the MSM and brute force, and the relaxation constants 𝜏𝑟, which 

describes the amount of time to reach  equilibrium, are close in value (𝜏𝑟  =  1𝐸3, for the MSM, 

and 𝜏𝑟  = 1.1𝐸3 for the brute force). Overall, these results demonstrate that the most accurate 

predictions of the coarse-grained MSM can be obtained on long timescales, but dynamic 

approximations with reasonable accuracy can also be obtained for short timescales.  
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Figure 2.5 MSM approximation error for the MISA motif 

Relaxation of the system from a particular initial configuration (see text), as obtained from (A) 

the full transition matrix, (B) brute force SSA simulation, and (C) the reduced transition matrix 

obtained from the MSM. Color-coding is according to the macrostates, as in Figs. 1-3: blue, 

black, red, green correspond to A/B expression phenotypes Hi/Lo, Hi/Hi, Lo/Hi, and Lo/Lo, 

respectively.  (D) Calculated approximation error as a function of time, comparing the reduced 

MSM to the full CME dynamics. Network parameter values are same as Figs. 2.1, 2.2. 

2.3.3.2 Parameter-dependence of MSM error  

 

The accuracy of the MSM dynamic predictions depends on whether inter-macrostate transitions 

can be treated as memory-less hops. Previous theoretical studies of gene network dynamics found 
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that the height of the barrier separating phenotypic states, and the state-switching time associated 

with overcoming the barrier, depends on the rate parameters governing DNA-binding by the 

protein regulators[52], [53], [110], [112]. We reasoned that a larger timescale separation between 

intra- and inter-basin transitions (corresponding to a larger barrier height separating basins) should 

result in higher accuracy of the MSM approximation. Thus, we hypothesized that the accuracy of 

the MSM dynamic predictions should depend on the DNA-binding and unbinding rate parameters.  

We demonstrated this using the dimeric ETS motif, by computing the error of the MSM 

approximation for a range of repressor unbinding rates 𝑓. We varied the binding kinetics without 

changing the overall relative strength of repression, by varying 𝑓 together with the repressor 

binding rate ℎ, to maintain a constant binding equilibrium (𝑋𝑒𝑞 =
𝑓

ℎ
= 100). By varying 𝑓 and ℎ 

in this way over eight orders of magnitude, we found that the barrier height and timescale of the 

slowest system process (𝑡2) had a non-monotonic dependence on the binding/unbinding 

parameters. Thus, the fastest inter-phenotype switching was observed in the regime with 

intermediate binding kinetics, in agreement with previous work[103]. The system also exhibits a 

shift from three visible basins in the quasipotential landscape in the small 𝑓 regime to two basins 

in the large 𝑓 regime. We performed clustering by selecting 𝐶 = 2 (dashed lines, Fig. 2.6) and 

𝐶 = 3 clusters (solid lines, Fig. 2.6), and computed the total error over all choices of system 

initialization, as well as the error associated with relaxation from a particular system microstate. 

In general, we find that the 3-state MSM approximation is more accurate than the 2-state 

partitioning. The 3-state MSM dynamic predictions are highly accurate when the DNA-

binding/unbinding kinetics is slow. As such, in this regime the Markovian assumption of memory-

less transitions between the three phenotypic states is most accurate. As hypothesized, the accuracy 
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of the MSM approximation is lowest (highest error) when the lifetime 𝑡2 is shortest (intermediate 

regime, 𝑓 = 1), and the error decreases modestly with further increase in 𝑓 (i.e., increase in 𝑡2). 
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Figure 2.6 The MSM approximation accuracy for the ETS motif depends on rate parameters and 

number of macrostates in the reduced model 

(A) Quasipotential landscape for the exclusive dimeric repressor toggle switch, with increasing 

DNA-binding rates (left to right: 𝑓𝑟 = {1𝐸 − 4, 1𝐸 − 2, 1𝐸0, 1𝐸2, 1𝐸4}, all parameter values 
listed in Table 2), demonstrating the dependence of basin number and barrier height on network 

parameters. (B) Global error of the MSM approximation. Left: Global error as a function of time 

(in intervals of 𝜏) for different 𝑓𝑟 and numbers of macrostates. Solid lines: global error of the 3-

state MSM. Dashed lines: global error of the 2-state MSM. Right: Total global error over kτ, 𝑘 =
0 to 500, for a 3-state (solid blue) or 2-state (dashed blue) MSM. Solid orange line: the longest 
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system lifetime t2. (C) Error of the MSM approximation when the system is initialized in a 

particular microstate. Left: Error as a function of time (in intervals of τ) for different 

adiabaticities and different numbers of macrostates. Solid lines: error of the 3-state MSM. 

Dashed lines: error of the 2-state MSM. Right: Total error from a particular microstate over kτ 

where 𝑘 = 0 to 500, for a 3-state (solid blue) or 2-state (dashed blue) MSM. Orange line: the 
longest system lifetime t2. 

 

2.3.2.3 Decomposition of state-transition pathways in gene networks using the MSM 

framework.  

 

Quantitative models of gene network dynamics can shed light on transition paths connecting 

phenotypic states. The MSM approach coupled with transition path theory[113]–[115] enables 

decomposition of all major pathways linking initial and final macrostates of interest. This type of 

pathway decomposition has previously shed light on mechanisms of protein folding[101]. We 

demonstrate this pathway decomposition on the MISA network, by computing the transition paths 

linking the polarized A-dominant (Hi/Lo) and B-dominant (Lo/Hi) phenotypes. Multiple 

alternative pathways linking these phenotypes are possible: for the 4-state coarse-graining, the 

system can alternatively transit through the Hi/Hi or Lo/Lo phenotypes when undergoing a 

stochastic state-transition from one polarized phenotype to the other. Not all possible paths are 

enumerated since only transitions with net positive fluxes are considered (see Equation S18). The 

hierarchy of pathway probabilities for successful transitions depends on the kinetic rate parameters 

(Fig. 2.7A). It could be tempting to intuit pathway intermediates based on visible basins in the 

quasipotential landscape. However, we found that the steady-state probability of an intermediate 

macrostate (i.e., the Hi/Hi or Lo/Lo states) does not accurately predict if it serves as a pathway 

intermediate for successful transitions, because parameter regimes are possible in which successful 

transitions are likely to transition through intermediates with high potential/low probability (Fig. 
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2.7C). This occurs because the relative probability of transiting through one intermediate 

macrostate versus another is based on the balance of probabilities for entering and exiting the 

intermediate: intermediate states that can be easily reached—but not easily exited—as a result of 

stochastic fluctuations can act as “trap” states. Therefore, it is shown that the pathway probability 

cannot be inferred from the steady state probability of the intermediates alone.  

 

 

Figure 2.7  Dependence of stochastic transition paths on the repressor unbinding rate parameter 

𝑓𝑟 in the MISA network (parameter values listed in Table 1) 

(A)Table of all possible transition paths starting from the Hi/Lo (blue) and ending in the Lo/Hi 

(red) macrostate (color coding is same as Figs. 2.1-2.3 and Fig. 2.5). Relative probabilities of 

traversing a given path are shown, along with the stationary probabilities of the system to be 

found in a given macrostate. (B-D) Dominant transition paths superimposed on the 3D 
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quasipotential surfaces for 𝑓𝑟 =  {5𝐸 − 4, 1𝐸 − 3, 5𝐸 − 3}, demonstrating how dominant paths 

can traverse high-potential areas of the landscape. For example, when 𝑓𝑟 = 1𝐸 − 3, (panel C), 

successful transitions most likely go through the Hi/Hi state (3.2% populated at steady state), 

though this requires a large barrier crossing. Pathway percentages are superimposed on the 

landscapes. 

2.3.2.4 MSMs can be constructed with different resolutions of coarse-graining 

 The eigenvalue spectrum of the MISA network shows a step-structure, with nearly constant 

eigenvalue clusters separated by gaps. These multiple spectral gaps suggest a hierarchy of 

dynamical processes on separate timescales. A convenient feature of the MSM framework is that 

it can build coarse-grained models with different levels of resolution by PCCA+, in order to 

explore such hierarchical processes. We applied the MSM framework to a MISA network with 

very slow rates of DNA-binding and unbinding (𝑓𝑟 = 1𝐸 − 4, ℎ𝑟 = 1𝐸 − 6), comparing the 

macrostates obtained from selecting 𝐶 = 4 versus 𝐶 = 16 clusters. For T(𝜏 = 1), a prominent gap 

occurs in the eigenvalue spectrum between 𝜆16 and 𝜆17, corresponding to an almost 30-fold 

separation of timescales between 𝑡16 = 27.8 and 𝑡17 = 0.99(Fig. 2.8A). Applying PCCA+ with 

𝐶 = 16 clusters uncovered a 16-macrostate network with four highly-interconnected subnetworks 

consisting of four states each (Fig. 2.8C). The identities of the sixteen macrostates showed an exact 

correspondence to the sixteen possible A/B promoter binding configurations. This correspondence 

reflects the fact that, in the slow binding/unbinding, so-called non-adiabatic regime[116], the slow 

network dynamics are completely determined by unbinding and binding events that take the system 

from one promoter configuration macrostate to another, while all fluctuations in protein copy 

number occur on much faster timescales.  

Each subnetwork in the MSM constructed with 𝐶 = 16 corresponds to a single macrostate in the 

MSM constructed with 𝐶 = 4. Thus, in the 𝐶 = 4 MSM, four different promoter configurations 
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are lumped together in a single macrostate, and dynamics of transitions among them is neglected. 

Counterintuitively, the locations of the 𝐶 = 4 macrostates do not correspond directly to the four 

basins visible in the quasipotential landscape (Fig. 2.8B,D). Instead, the clusters combine distinct 

phenotypes—e.g., the red macrostate combines the A/B Lo/Lo and Lo/Hi phenotypes, because it 

includes the promoter configurations 𝐴01 𝐵10 and 𝐴11 𝐵10 (corresponding to Lo/Hi expression) 

and 𝐴01 𝐵00 and 𝐴11 𝐵00 (corresponding to Lo/Lo expression) (Fig. 2.8B, Table S2.3 and Fig. 

S2.4). This result demonstrates that the barriers visible in the quasipotential landscape do not 

reflect the slowest timescales in the system. This occurs because of the loss of information inherent 

to visualizing global dynamics via the quasipotential landscape, which often projects dynamics 

onto two system coordinates. In this case, projecting onto the protein a and protein b copy numbers 

loses information about the sixteen promoter configurations, obscuring the fact that barrier-

crossing transitions can occur faster than some within-basin transitions. Plotting a time trajectory 

of brute force SSA simulations for this network supports the findings from the MSM: the dynamics 

shows frequent transitions within subnetworks, and less-frequent transitions between subnetworks, 

indicating the same hierarchy of system dynamics as was revealed by the 4- and 16-state MSMs 

(Fig. 2.8E).  
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Figure 2.8 Hierarchical dynamics revealed by MSM analysis of the MISA network in the slow 

DNA-binding/unbinding parameter regime. All network parameters listed in Table 1. 

(A) Eigenvalue spectrum of T(𝜏), 𝜏 =1, showing 16 dominant eigenvalues. (B) 4-macrostate 
MSM: 70% probability contours superimposed onto the quasipotential surface. In this parameter 

regime, separate attractors in the landscape are kinetically linked in the same subnetwork (see 

text). (C) 16-macrostate MSM showing 4 highly connected subnetworks (colored ovals). Each 

macrostate corresponds to a particular promoter binding-configuration (see numbering scheme in 

Table S2.5). A pair of representative transition paths through the network are highlighted. Red 

path: most probable forward transition path from macrostate 1 to macrostate 11. Blue path: most 

probable reverse path from 11 to 1. (D) State transition graph for the 4-macrostate MSM. (E) 
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Brute force SSA simulation of the MISA network over time. Trajectory is plotted according to 

the 16-macrostate (promoter configuration) indexing as in panel C and Table S5. Colored panels 

reflect the four subnetworks/𝐶 = 4 macrostates. Orange inset: zoomed in trajectory segment, 
showing a switching event between the red and green subnetworks. 

2.3.2.5 Transition path decomposition reveals nonequilibrium dynamics  

Mapping the most probable paths forward and backward between macrostate “1” (promoter 

configuration: 𝐴01𝐵00) and macrostate “11” (promoter configuration: 𝐴00𝐵01) revealed that a 

number of alternative transition paths are accessible to the network, and the paths typically transit 

between three and five intermediate macrostates. The decomposition shows three paths with 

significant (i.e., >15%) probability and 12 distinct paths with >1% probability (for both forward 

and backward transitions, Tables S3-4). The pathway decomposition also reveals a great deal of 

irreversibility in the forward and reverse transition paths, which is a hallmark of nonequilibrium 

dynamical systems[117]. For example, the most probable forward and reverse paths both transit 

three intermediates, but have only one intermediate (macrostate 5) in common (Fig. 2.8C and Table 

S2.4-5). Thus, the complete process of transitioning away from macrostate 1, through macrostate 

11, and returning to 1 maps a dynamic cycle.  

 

 

2.4 Discussion 

 

Our application of the MSM method to representative GRN motifs yielded dynamic insights with 

potential biological significance. Decomposition of transition pathways revealed that stochastic 

state-transitions between phenotypic states can occur via multiple alternative routes. Preference of 
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the network to transition with higher likelihood through one particular pathway depended on the 

stability of intermediate macrostates, in a manner not directly intuitive from the steady-state 

probability landscape. The existence of “spurious attractors”, or metastable intermediates that act 

as trap states to hinder stem cell reprogramming, has been discussed previously[58] as a general 

explanation for the existence of partially reprogrammed cells. By analogy, MSMs constructed in 

protein folding studies predict an ensemble of folding pathways, as well as the existence of 

misfolded trap states that reduce folding speed[101]. Our results suggest that multiple partially 

reprogrammed cell types could be accessible from a single initial cell state. Successful phenotype-

transitions can occur predominantly through high-potential (unstable)—and thus difficult to 

observe experimentally—intermediate cell types. In future applications to specific gene GRNs, the 

MSM approach could predict a complex map of cell-reprogramming pathways, and thus 

potentially suggest combinations of targets towards improved safety and efficiency of 

reprogramming protocols. 

Our study revealed that the two-gene MISA network can exhibit complex dynamic phenomena, 

involving a large number of metastable macrostates (up to 16), cycles and hierarchical dynamics, 

which can be conveniently visualized using the MSM. The quasipotential landscape has been used 

recently as a means of visualizing global dynamics and assessing locations and relative stabilities 

of phenotypic states of interest, in a manner that is quantitative (deriving strictly from underlying 

gene regulatory interactions), rather than qualitative or metaphorical (as was the case for the 

original Waddington epigenetic landscape)[67]. However, our study highlights the potential 

difficulty of interpreting global network dynamics based solely on the steady-state landscape, 

which is often projected onto one or two degrees of freedom. We found that phenotypically 

identical cell states—that is, network states marked by identical patterns of protein expression, 
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inhabiting the same position in the projected landscape—can be separated by kinetic barriers, 

experiencing slow inter-conversion due to slow timescales for update to the epigenetic state (or 

promoter binding occupancy). Conversely, phenotypically distinct states marked by different 

levels of protein expression can be kinetically linked, experiencing relatively rapid inter-

conversion. This type of stochastic inter-conversion is thought to occur in embryonic stem cells—

for example, fluctuations in expression of the Nanog gene have been proposed to play a role in 

maintaining pluripotency[28], [118]. The hierarchical dynamics revealed by our study supports the 

idea that the phenotype of a cell could be more appropriately defined by dynamic patterns of 

regulator or marker expression levels[28], rather than on single-timepoint levels alone. This was 

seen in the 16-state MSM for the MISA network, where a given expression pattern (e.g., the Lo/Lo 

attractor) comprised multiple macrostates from separate dynamic subnetworks. 

Complex, high-dimensional dynamical systems call for systematic methods of coarse-graining (or 

dimensionality reduction), for analysis of mechanisms and extraction of information that can be 

compared with experimental results. In the field of Molecular Dynamics, the complexity of, e.g., 

macromolecular conformational changes—involving thousands of atomic degrees of freedom and 

multiple dynamic intermediates—has driven the development of automated methods for prediction 

and analysis of essential system dynamics from simulations[119], [120]. In that field, coarse-

graining has been achieved based on a variety of so-called geometric (structural) or, alternatively, 

kinetic clustering methods[95], [121]. Noe, et al.[121], discussed that geometric (or structure-based) 

coarse-graining methods can fail to produce an accurate description of system dynamics when 

structurally similar molecular conformations are separated by large energy barriers or, conversely, 

when dissimilar structures are connected by fast transitions, as they found in a study of polypeptide 

folding dynamics. In such cases, kinetic (i.e., separation-of-timescale-based) coarse-graining 
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methods such as the MSM approach are more appropriate. Our application of the MSMs to GRNs 

demonstrates how similar complex dynamic phenomena can manifest at the “network”-scale.   

The challenge of solving the CME due to the curse-of-dimensionality is well known. The MSM 

approach is related to other projection-based model reduction methods that aim to reduce the 

computational burden of solving the CME directly by projecting the rate (or transition) matrix onto 

a smaller subspace or aggregated state-space with fewer degrees of freedom. Such approaches 

include the Finite State Projection algorithm[86], and methods based on Krylov subspaces[74], 

[122], [123], sparse-gridding[124], and separation-of-timescales[75], [125], [126]. The MSM is 

distinct from other timescale-based approaches in that, rather than partitioning the system into 

categories of slow versus fast reactions[125] or species[75], or basing categories on physical 

intuition[126], it systematically groups microstates in such a way that maximizes metastability of 

aggregated states[107]. The practical benefit of this approach is its capacity to describe a system 

compactly in terms of long-lived, perhaps experimentally observable, states. Another important 

distinction between the MSM approach and other CME model reduction methods is that its 

primary end-goal is not to solve the CME per se. Rather, the emphasis in studies employing MSMs 

has generally been on gaining mechanistic, physical, or experimentally-relevant insights to 

complex system dynamics[127]–[129]. As such, the approach does not optimally balance the 

tradeoff between computational expense versus quantitative accuracy of the solution, as other 

methods have done explicitly[130]. Instead, the method can be considered to balance the tradeoff 

between accuracy and “human-interpretability”, where decreasing the number of macrostates 

preserved in the MSM coarse-graining tends to favor the latter over the former.  
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A potential drawback of the workflow presented in this paper is that it requires an enumeration of 

the system state-space in order to construct the biochemical rate matrix K. Networks of increased 

complexity or molecular copy numbers will lead to prohibitively large matrix sizes. Here, we 

restricted our study to model systems with a relatively small number of reachable microstates (i.e., 

~104 microstates permitted tractable computations on desktop computers with MATLAB[88]). 

However, an advantage of the MSM approach is its use of the stochastic transition matrix T(𝜏) 

(rather than K), which can be estimated from simulations by sampling transition counts between 

designated regions of state-space in trajectories of length 𝜏. Systems of increased 

complexity/dimensionality are generally more accessible to simulations, because the size of the 

state-space is automatically restricted to those states visited within finite-length simulations. In our 

group (Tse, et al.), we find that the MSM approach interfaces well with SSA simulations of 

biochemical network dynamics, combined with enhanced sampling techniques [41],[40], [131]. We 

anticipate that, as in the Molecular Dynamics field, the MSM framework in applications to 

biochemical networks will prove useful as a tool for post-processing simulation data. Furthermore, 

we anticipate that the approach could potentially interface with other numerical approximation 

techniques that have been developed in recent years for reduction of the CME.  

A potential challenge for the application of the PCCA+-based spectral clustering method to 

biochemical networks is that, as open systems, biochemical networks generally do not obey 

detailed balance. This means that the stochastic transition matrices do not have the property of 

irreversibility, which was originally taken to be a requirement for application of the PCCA 

algorithm[95]. However, later work by Roblitz et al.[93] , found that the PCCA+ method also 

delivers an optimal clustering for irreversible systems. In this study, we found that the PCCA+ 

method could determine appropriate clusters in GRNs, and could furthermore uncover 
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nonequilibrium cycles, as seen in the irreversibility (distinct forward and backward) of transition 

paths in the 16-state system. Newer methods of MSM building, which are specifically designed to 

treat nonequilibrium dynamical systems, have appeared recently[132]. It may prove fruitful to 

explore these alternative methods in order to identify the most appropriate, general MSM 

framework for application to various biochemical networks. 

 

2.5 Conclusions 

 

In this work, we present a method for analyzing multistability and global state-switching dynamics 

in gene networks modeled by stochastic chemical kinetics, using the MSM framework. We found 

that the approach is able to: (1) identify the number and identities of long-lived phenotypic-states, 

or network “macrostates”, (2) predict the steady-state probabilities of all macrostates along with 

probabilities of transitioning to other macrostates on a given timescale, and (3) decompose global 

dynamics into a set of dominant transition pathways and their associated relative probabilities, 

linking two system states of interest. Because the method is based on the discrete-space, stochastic 

transition matrix, it correctly identified stochastic multistability where a continuum model failed 

to find multiple steady states. The quantitative accuracy of the dynamics propagated by the coarse-

grained MSM was highest in a parameter regime with slow DNA-binding and unbinding kinetics, 

indicating that in GRNs the assumption of memory-less hopping among a small number of 

macrostates is most valid in this regime. By projecting dynamics encompassing a large state-space 

onto a tractable number of macrostates, the MSMs revealed complex dynamic phenomena in 

GRNs, including hierarchical dynamics, nonequilibrium cycles, and alternative possible routes for 

phenotypic state-transitions. The ability to unravel these processes using the MSM framework can 
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shed light on regulatory mechanisms that govern cell phenotype stability, and inform experimental 

reprogramming strategies. The MSM provides an intuitive representation of complex biological 

dynamics operating over multiple timescales, which in turn can provide the key to decoding 

biological mechanisms. Overall, our results demonstrate that the MSM framework—which has 

been generally applied thus far in the context of molecular dynamics via atomistic simulations—

can be a useful tool for visualization and analysis of complex, multistable dynamics in gene 

networks, and in biochemical reaction networks more generally. 
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2.6 Supplementary Information 

 

2.6.1 MISA network reactions 

 

2.6.1.1 Protein synthesis and degradation reactions 

 

𝐴01
𝑔0
→ 𝐴01 + 𝑎 

𝐴00
𝑔0
→ 𝐴00 + 𝑎 

𝐴10
𝑔1
→ 𝐴10 + 𝑎 

𝐴11
𝑔0
→ 𝐴11 + 𝑎 

𝐵01
𝑔0
→ 𝐵01 + 𝑏 

𝐵00
𝑔0
→ 𝐵00 + 𝑏 

𝐵10
𝑔1
→ 𝐵10 + 𝑏 

𝐵11
𝑔0
→ 𝐵11 + 𝑏 

𝑎
𝑘
→∅ 

𝑏
𝑘
→∅ 

2.6.1.2 Gene repression 

𝐴00 + 2𝑏
ℎ𝑟
→𝐴01 

𝐴01
𝑓𝑟
→𝐴00 + 2𝑏 

𝐴10 + 2𝑏
ℎ𝑟
→𝐴11 

𝐴11
𝑓𝑟
→𝐴10 + 2𝑏 

𝐵00 + 2𝑎
ℎ𝑟
→𝐵01 

𝐵01
𝑓𝑟
→ 𝐵00 + 2𝑎 

𝐵10 + 2𝑎
ℎ𝑟
→𝐵11 



45 
 

𝐵11
𝑓𝑟
→ 𝐵10 + 2𝑎 

 

2.6.1.3 Gene activation 

 

𝐴00 + 2𝑎
ℎ𝑎
→ 𝐴10 

𝐴10
𝑓𝑎
→𝐴00 + 2𝑎 

𝐴01 + 2𝑎
ℎ𝑎
→ 𝐴11 

𝐴11
𝑓𝑎
→𝐴01 + 2𝑎 

𝐵00 + 2𝑏
ℎ𝑎
→ 𝐵10 

𝐵10
𝑓𝑎
→𝐵00 + 2𝑏 

𝐵01 + 2𝑏
ℎ𝑎
→ 𝐵11 

𝐵11
𝑓𝑎
→𝐵01 + 2𝑏 

 

2.6.2 Toggle switch network reactions 

 

2.6.2.1 Protein synthesis 

𝑃00
𝑔1
→𝑃00 + 𝑎 

𝑃00
𝑔1
→𝑃00 + 𝑏 

𝑃01
𝑔0
→𝑃01 + 𝑎 

𝑃01
𝑔1
→𝑃01 + 𝑏 

𝑃10
𝑔1
→𝑃10 + 𝑎 

𝑃10
𝑔0
→𝑃10 + 𝑏 

2.6.2.2 Protein degradation 

𝑎
𝑘
→∅ 

𝑏
𝑘
→∅ 
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2.6.2.3 Gene binding 

𝑃00 + 2𝑎
ℎ
→𝑃10 

𝑃10
𝑓
→𝑃00 + 2𝑎 

𝑃00 + 2𝑏
ℎ
→𝑃01 

𝑃01
𝑓
→𝑃00 + 2𝑏 

 

2.6.3 List of parameters 
 

Table 1 MISA network parameters I 

Figure 𝑘 𝑔0 𝑔1 ℎ𝑎 ℎ𝑟 𝑓𝑎 𝑓𝑟 𝜏 
1 1 4 16 1e-1 1e-4 1 1e-2 5 

2 1 4 16 1e-1 1e-4 1 1e-2 5 

3 1 4 16 1e-1 1e-4 1 1e-3,1e-2,1e-1,1 5 

5 1 4 16 1e-1 1e-4 1 1e-2 5 

7 1 4 16 1e-1 1e-4 1 5e-4,1e-3,5e-3,1e-2,1.5e-

2 

5 

8 1 4 16 1e-3 1e-6 1e-2 1e-4 1 

 

The parameters are as follows- 𝑘: protein degradation rate,  

𝑔0: basal/repressed expression rate, 𝑔1: activated expression rate, ℎ𝑎: activator binding rate, ℎ𝑟: 

repressor binding rate, 𝑓𝑎:activator unbinding rate, 𝑓𝑟: repressor unbinding rate. 

 

Table 2 MISA network parameters II 

Figure 𝑘 𝑔0 𝑔1 ℎ 𝑓 𝜏 
4 1 0 30 1e-6 1e-4 1 

6 1 0 40 1e-6,1e-4,1e0,1e2 1e-4,1e-2,1e0,1e2,1e4 1 

 

The parameters are as follows- 𝑘: protein degradation rate, 𝑔0: basal/repressed expression rate, 

𝑔1: activated expression rate, ℎ: protein binding rate, 𝑓: protein unbinding rate. 
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2.6.4 Theoretical background 

 

2.6.4.1 Connection between the Master Equation and the Transition Matrix 

 

Herein, we summarize the main previously derived, theoretical results and refer the reader to 

cited references for further detail. The discrete, Markovian Chemical Master Equation (CME) 

describes the time-evolution of the probability distributions over the state-space for a well-mixed 

system of 𝑆 reacting species with 𝑀 possible reactions. The state of the system is given by the 

molecular popular vector 𝑥𝜖𝑁𝑆. Let 𝑝(𝑥, 𝑡) be the probability that the system is found in the 

state 𝑥 at time t, and let 𝑎𝜇(𝑥)𝑑𝑡 and 𝜈𝜇 bet the propensity function and stoichiometric transition 

vector, respectively, of the possible reactions 𝜇 = (1,2,… ,𝑀). Then the CME is given by 

𝜕𝑝(𝑥, 𝑡|𝑥0,𝑡0)

𝜕𝑡
=∑[𝑎𝜇(𝑥 − 𝜈𝜇)𝑝(𝑥 − 𝜈𝜇,

𝑀

𝜇

𝑡|𝑥0, 𝑡0) − 𝑎𝜇(𝑥, 𝑡|𝑥0, 𝑡0)] 
 

(2.1) 

 

In vector-matrix form,  

 

 

𝑑𝑝(𝑿, 𝑡)

𝑑𝑡
= 𝑲𝑝(𝑿, 𝑡) 

(2.2)                                            
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where the off-diagonal element 𝐾𝑖𝑗, gives the time-independent rate of transitioning from state 𝑥𝑖 

to 𝑥𝑗, and 𝐾𝑖𝑖 = − ∑ 𝐾𝑗𝑖𝑗≠𝑖  (i.e., columns sum to 0). Given the probability at time t, 𝑝(𝑿, 𝑡), the 

probability density at a later time (so-called lag time) τ may be computed by: 

𝑝(𝑿, 𝑥 + 𝜏) = exp(𝑲𝜏) 𝑝(𝑿, 𝑡) (2.3) 

where exp (𝐾𝜏) is the matrix-exponential of 𝐾𝜏. Many biochemical reaction networks are 

modeled as open systems, such that the molecular state space is technically infinite. That is, a 

given molecule in the system may occur with any positive integer value for its copy number, 

though practically only a finite number of states are reachable in finite time. We assume here that 

the CME is approximated over a finite subspace e.g., via the Finite State Projection Algorithm 

[86]. The linear system may be recast using the row-stochastic transition matrix [90] 

𝑻(𝜏) = exp (𝑲𝑇𝜏) (2.4) 

 

where the off-diagonal elements 𝑇𝑖𝑗(𝜏) give the probability that, given the system is in state 𝑖 

(corresponding to molecular population vector 𝑥𝑖), it will then be found in state 𝑗 after lag time 𝜏. 

Probability is preserved, and thus rows sum to 1. The relationship between the state reaction 

matrix 𝑲 and the stochastic transition matrix 𝑻 leads to the relationship for the implied 

timescales: 

𝑡𝑖 = 
−𝜏

𝑙𝑛𝜆𝑖(𝜏)
 

 

 

 

(2.5) 
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The dynamics is propagated according to the Chapman-Kolmogorov equation, which 

gives the probability at discrete times 𝑡 + 𝑘𝜏, with 𝑘 = {1,2,3, … } by  

 

 

 

𝑝𝑇(𝑋, 𝑘𝜏 + 𝑡) =  𝑝𝑇(𝑋, 𝑡)[𝑇(𝜏)]𝑘 

 

(2.6) 

 

2.6.4.2 Building Markov State Models with PCCA+ 

 

The goal of the clustering approach is to derive a new coarse-grained stochastic transition matrix 

with drastically reduced dimensionality relative to the original matrix 𝑻, and which preserves as 

accurately as possible the slow system dynamics. Consider a reactive system in which 𝑻 is 

defined over a total number of reachable states N (i.e., if a system of 𝑆 molecular species has a 

maximum copy number per species of n, then 𝑁~𝑛𝑆). Then the Perron eigenvalue 𝜆1 = 1 

corresponds to the left-eigenvector 𝜋 according to  

𝜋𝑇𝑇 = 𝜋𝑇 

 

(2.7) 

that is, 𝜋𝑇 = (𝜋1, … , 𝜋𝑁) gives the stationary probability over 𝑁 states. If the reactive system has 

the property of metastability, then the dynamics can be approximately decomposed into fast and 

slow processes, with fast transitions occurring within metastable states, and slow transitions 

carrying the system between metastable states. For sufficient separation of fast and slow 

timescales, Markovian hopping between metastable states is a good model of global dynamics, 
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and the full dynamics may be projected onto this slow subspace. In this case, for a sufficient 

ordering of the 𝑁 states, 𝑻 has a dominant block-diagonal structure with some number 𝐶 of 

weakly coupled blocks. In such systems, a cluster of 𝐶 eigenvalues can be found near the Perron 

root, with 𝜆1 ≥ 𝜆𝑖 ≥ 𝜆𝐶 corresponding to the slow processes in the system, and all fast processes 

corresponding to rapidly decaying processes with eigenvalues 𝜆𝑖 < 𝜆𝐶. The PCCA+ algorithm 

determines membership vectors 𝜒 which assign states 𝑖 ∈ {1,… ,𝑁} to clusters of states 𝑗 ∈

{1, … , 𝐶} (with 𝐶 < 𝑁) where grades of membership are given by 𝜒𝑗(𝑖) ∈ [0,1]. (The original 

PCCA algorithm was based on strict “crisp” assignments 𝜒𝑗(𝑖) ∈ {0,1}, but the algorithm was 

not robust numerically). The membership vectors satisfy the linear transformation 

 𝜒 = 𝜓𝐵 

 

(2.8) 

Where 𝜓 = [𝜓1, … , 𝜓𝐶] is the 𝑁 × 𝐶 matrix constructed from 𝐶 dominant right-eigenvectors, 

and 𝑩 is a non-singular matrix whose elements are determined by an unconstrained optimization 

procedure. The membership vectors determine a projection of the full 𝑁 × 𝑁 transition matrix 𝑻 

onto a reduced (coarse) subspace, and we denote this reduced 𝐶 × 𝐶 transition matrix �̃�. As 

discussed previously, the optimization procedure can be based on maximizing the metastability, 

taken to be measured by 𝑡𝑟𝑎𝑐𝑒(�̃�). The coarse grained stationary probability is given by the 

projection  

�̃�𝑇 = 𝜋𝑇𝜒  

 

(2.9) 
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And the transition probabilities in the reduced space are given by  

𝑻𝒊�̃�(𝜏) =
 〈𝜒𝑖, 𝑻(𝜏)𝜒𝑖〉𝜋

�̃�𝑖
 

(2.10) 

 

(for the probability to remain in state 𝑖 within time 𝜏) and  

𝑻𝒊�̃�(𝜏) =
 〈𝜒𝑖, 𝑻(𝜏)𝜒𝑗〉𝜋

�̃�𝑖
 

(2.11) 

 

(for the probabilities to jump from state 𝑖 to state 𝑗 in 𝜏, where 〈𝑢. 𝑣〉𝜋 is the 𝜋-weighted inner 

product of 𝑢 and 𝑣). Therefore we may write 

�̃�(𝜏) =  �̃�〈𝜒𝑖,𝑻(𝜏)𝜒𝑗〉𝜋 

 

(2.12) 

where �̃� = 𝑑𝑖𝑎𝑔(𝜋1, … , 𝜋𝐶), or equivalently,  

�̃�(𝜏) = (𝜒𝑇𝐷𝜒)−1𝜒𝑇𝐷𝑻(𝜏)𝜒 

 

(2.13) 

where 𝐷 = 𝑑𝑖𝑎𝑔(𝜋1, … , 𝜋𝑁). 

One may compare, on the coarse sub-space, the true system dynamics given by 𝑻 with the 

dynamics given by the reduced Markov State Model, �̃�. Given an initial probability vector 

𝑝(𝑥, 𝑡0), the true dynamics would propagate the system according to 𝑝𝑇(𝑥, 𝑘𝜏 + 𝑡0) =

 𝑝𝑇(𝑥, 𝑡0)𝑇(𝜏)
𝑘 . By projection,  

�̃�𝑡𝑟𝑢𝑒
𝑇 (𝑥, 𝑘𝜏 + 𝑡0) = [𝑝

𝑇(𝑥, 𝑡0)[𝑻(𝜏)]
𝑘𝜒 (2.14) 
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and 

�̃�𝑀𝑆𝑀
𝑇 (𝑥, 𝑘𝜏 + 𝑡0) = [𝑝

𝑇(𝑥, 𝑡0)[�̌�(𝜏)]
𝑘𝜒 (2.15) 

 

The error after 𝑘 timesteps is thus given by: 𝜖(𝑘) =  ‖𝑝𝑇(𝑥, 𝑡0)([𝑇(𝜏)]
𝑘𝜒 −  𝜒[�̃�(𝜏)]𝑘)‖

2
. As 

discussed previously in [90] the maximum error associated with the projection of 𝑻 onto �̃� in the 

reduced space (independent of initial state) is given by: 

𝜖(𝑘) =  ‖[𝑇(𝜏)]𝑘𝜒 −  𝜒[�̃�(𝜏)]𝑘‖
2
 

 

(2.16) 

2.6.4.3 Transition Path Theory 
 

Transition path theory [101] is used in this study to extract information about the kinetics and 

mechanism of a transition between a starting set of states A and ending set of states B. First, we 

calculate the flux between states during the transition between A and B according to (2.17). We 

obtain a net flux from (2.18) that extracts only the flux that contributes to the transition. Finally 

in (2.19), flux of each pathway can be used to compute the probability of traversing the pathway. 

Equation (2.20) and (2.21) show how to reduce the full transition matrix to a reduced 

representation if it is desirable to perform the pathway probability calculation on the metastable 

states of the system. 

To compute the probabilities of the transition paths, from a starting state A to an ending state B, 

one must calculate the effective flux 𝑓𝑖𝑗 for all pairs of states. The transition probability relevant 

to the A to B state transition 𝑇𝑖𝑗, and backward commitor 𝑞𝑗
+. The forwards and backwards 
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commitors are probabilities of transitioning to B or returning to A respectively. Finally, the flux 

is obtained by weighting it by its starting state stationary probability. 

 

𝑓𝑖𝑗 − 𝜋𝑖𝑞𝑖
−𝑇𝑖𝑗𝑞𝑗

+ 

 

 

(2.17) 

 

To get the net flow from A to B, only positive fluxes are considered by taking differences of the 

fluxes between pairs of states.  

𝑓𝑖𝑗
+ = max {0, 𝑓𝑖𝑗 − 𝑓𝑗𝑖} 

 

(2.18) 

 

After extracting out the pathways by removing their fluxes sequentially from the system, the 

probability of each pathway is calculated by taking the ratio of the flux of the individual path to 

the total flux of all paths. 

𝑝𝑖 =
𝑓𝑖
∑ 𝑓𝑗𝑗

 

 

(2.19) 

The total stationary probability �̃�𝑖of a cluster of states is simply the sum of its individual states 

𝜋𝑖 in the cluster. 

�̃�𝑖 =∑𝜋𝑖
𝑖∈𝐼

 
(2.20) 
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The transition probabilities between clusters 𝑇𝐼�̃� is found by summing transition probabilities 

between states 𝑇𝐼𝐽 weighted by their stationary probabilities of the states 𝜋𝑖 and normalized by 

the stationary probabilities of the clusters 𝜋𝐼.  

�̃�𝐼𝐽 = 
1

𝜋𝐼
∑𝜋𝑖∑𝑇𝑖𝑗

𝑗𝜖𝐽𝑖𝜖𝐼

 
(2.21) 

 

2.6.5 Pseudocode 

Step 1. Define propensity function and stoichiometric transition vectors for all possible reactions 

in network model (see Section 2.6.4.1, equation (2.1)). 

Step 2. Enumerate a reaction matrix in terms of the propensity functions stoichiometric transition 

vectors (see Section 2.6.4.1, equation (2.2)). 

Step 3. Take the matrix exponential of the reaction matrix to obtain a transition matrix (see 

Section 2.6.4.1, equation (2.4)). 

Step 4. Calculate the left/right eigenvectors and eigenvalues (see Section 2.6.4.2).  

Step 5. Use PCCA+ algorithm, to solve for macrostate to microstate mapping using the transition 

matrix, eigenvalues, and eigenvectors (see Section 2.6.4.2). 

Step 6. Coarse-grain the transition matrix using the PCCA+ mapping into a Markov State Model 

of the core states (see Section 4.2, equation (2.13)). 

Step 7. Analysis of global dynamics of network model in terms of core states defined by Markov 

State Model 
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 Apply pathway decomposition to obtain a probability distribution of possible paths in 

terms of core states (see Section 2.6.4.3).  

 Propagate the dynamics of the core states by simulating the Markov State Model (see 

Section 4.3, equation (15)). 
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2.6.6 Supporting figures 

 

 

Figure 2.9 Dependence of the Self Regulating Single Gene Network eigenvalues, probability 

distributions,and state transition graphs on the binding parameter f 

The model is defined as in [133], with parameters 𝑔1 = 50, 𝑔0= 10, 𝑋𝑒𝑞 = 25, ℎ = 𝑓 = 𝑋𝑒𝑞, 𝑘 =

1. Top to Bottom: increasing 𝑓 = {0.01, 0.1, 1, 10} in units of protein degradation rate, 𝑘𝐴. The 

eigenvalue spectrum of 𝑇(𝜏) for 𝜏 = 1, and associated timescales (B) The steady-state 

probability distribution, calculated from the CME truncated to 𝑛 < 100, where 𝑛 is the copy-
number of the expressed gene. (C) The state transition graph produced by applying the Markov 
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State Model framework. A timescale thresholdof t = 2 was used to determine the number of 

metastable macrostates to retain in the MSM (in time-units of 𝑘−1, the inverse protein 

degradation rate). For 𝑓 = 0.01 and 𝑓 = 0.1, the eigenvalue spectrum reveals a slow system 

timescales 𝑡1 = 33.17 and 𝑡2 = 3.05, respectively, thus two macrostates are retained in the 

MSM (edge labels give the transition probabilities within 𝜏 = 1). These macrostates correspond 

directly to the gene off and gene on states (a and b, respectively). For 𝑓 =  1 and 𝑓 =  10, the 

eigenvalue spectrum shows some structure, but all implied timescales are shorter than 𝑡 =  2, 

thus one macrostate is retained in the MSM. 

 

f(k) 𝑘𝑎𝑏(𝑘)(𝑓𝑟𝑜𝑚 𝑀𝑆𝑀) 𝑘𝑏𝑎(𝑘)(𝑓𝑟𝑜𝑚 𝑀𝑆𝑀) 𝑡2(𝑘) 𝑇𝑠(𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑢𝑛𝑖𝑡𝑠 𝑘) 

0.01 0.0101 0.0198 33.17 33.34 

0.1 0.1058 0.1982 3.05 3.3.4 

 

Table 3 Estimated rate constants from the two-state MSMs for the self-regulating single-gene 

 Longest system timescale implied by the eigenvalue spectrum of T, and 𝑇𝑠, the switching 
time.  
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Figure 2.10 MISA network, Parameter Set 1. The truncation error as a function of the size of the 

subspace projection after 1000 time steps (approximately the relaxation time) 

The x and o markers denote two randomly initialized state vectors. The two curves virtually 

overlap, showing that system has lost memory of its initial starting point. The chosen subspace 

for all parameter sets are cut off at N = 30 proteins, while the maximum gene expression rate 
𝑔1

𝑘
 

is 16. 
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Figure 2.11 MISA network, Parameter Set 1, detailed microstate to macrostate mapping (see 

Fig.2). (Left) 

The entirety of the enumerated state-space (all N=15,376 (31×31×4×4) microstates) is shown, 

and each microstate is colored according to its macrostate assignment, as determined by the 

PCCA+ crisp partitioning. Each of the sixteen panels corresponds to a particular DNA promoter 

binding configuration 𝐴00, etc., as defined in MISA reactions, and Fig. 2.2B. For this parameter 

set, the promoter configuration determined the macrostate assignment exactly. (Right) The color-

scale for each microstate is proportional to steady-state probability, such that low-probability-

density regions appear white. Each of the promoter configurations shows a distinct pattern of 

protein expression. Grouping the high-density microstates within a macrostate and projecting 

onto the protein subspace gives rise to the ellipsoids shown in Fig. 2.2A. The probability density 

contributed by each gene state to each macrostate is shown in Table 4. 
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Table 4 MISA network, Parameter set 1, Contribution of each promoter configuration to total 

probability density of each macrostate 

 Each macrostate contains four promoter configurations.The probability contribution of each 

configuration to the macrostate (composition) is shown. That is, within each macrostate the 

probabilities sum to 100%. While more than one configuration contributes significantly to the 

probability density within a macrostate, the configurations contributing the most probability to 

the macrostate are termed 'representative' and shown schematically in Figure 2.2B. 

 

 

Figure 2.12 MISA network, Parameter Set 1. Brute Force SSA simulation (left) vs Chemical 

Master Equation (right) potential landscape comparison 
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Figure 2.13 MISA network, Parameter Set 1. Autocorrelation function for the polarized state 

calculated from a simulation trajectory 

Using Gilespie Brute Force, Reduced Transition Rate Matrix, and Full Transition Rate Matrix. 

Relaxation constants, 𝜏𝑟, are calculated from fitting the curve to single decaying exponential. 
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Figure 2.14 ETS network, Parameter Set 1 

 (A) Transition matrix in terms of number of proteins B (𝑁𝑏) - number of proteins A (𝑁𝑎), where 

probability is showed by the darkness intensity (B) The first twenty eigenvalues in descending 

order (C) Schematic of exclusive toggle switch (D) The one-dimensional quasipotential in terms 

of 𝑁𝑏 - 𝑁𝑎 (E) The first eigenvector in terms of in terms of 𝑁𝑏 - 𝑁𝑎 (F) The second eigenvector 

in terms of in terms of 𝑁𝑏 - 𝑁𝑎  (G) The third eigenvectorin terms of in terms of 𝑁𝑏 - 𝑁𝑎 
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Figure 2.15 MISA network, Parameter Set 8. 16-macrostate MSM: 50% probability contours 

superimposed onto the dominant eigenvalues 

The index of each macrostate is labeled above each plot. 
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Table 5 MISA network, Parameter Set 8. Gene composition for every state 

16 state MSM (top) and 4 state MSM (bottom), the color corresponds to its respective substate. 

Compositions associated with each gene configuration is defined as the percentage of the total 

stationary probability attributed to that state. 
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2.6.7 List of Pathways of 16 State MSM 

 

Table 6 Paths from State 1 to 11 

State Path Probability 

1,5,6,10,11 24 

1,3,6,10,11 21 

1,0,7,4,8,9,11 18.5 

1,5,11 3.3 

1,0,7,9,11 2.8 

1,15,11 2.2 

1,0,7,4,8,10,11 1.9 

1,0,14,9,11 1.8 

1,3,13,10,11 1.9 

1,0,2,13,8,9,11 1.9 

 

Table 7 Paths from State 11 to 1 

State Path Probability 

11,5,7,0,1 23.2 

11,9,7,0,1 21.7 

11,10,6,4,3,2,1 20.6 

11,9,8,4,2,0,1 8.3 

11,10,8,4,2,3,1 7.8 

11,5,1 3.1 

11,10,6,3,1 2.7 

11,15,1 2.2 

11,10,13,3,1 1.8 

11,9,14,0,1 1.7 

11,10,8,4,2,0,1 1.5 

11,9,8,12,2,0,1 1.1 
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3.  Simulation of Rare Events in the Diffusion of Molecules on Crowded Cell Surfaces 

 

3.1 Introduction 

 

The surface of a cell is crowded, with a high density of cell surface proteins. Some cellular 

processes require this crowding to be overcome. For example, large surface molecules such as 

CD45 are known to locally impede the T cell receptor (TCR) from engaging its target on the 

opposing cell (Figure 3.1). It has been estimated that a region of radius 100 nm laterally between 

cell surfaces must be cleared[20] of large surface molecules. Large surface molecules (LSM) may 

inhibit T-cell receptor binding through steric interactions by occupying an important region of 

interest[23] (Figure 3.1). The steric hindrance of LSM in TCR triggering has been studied in 

mathematical models [20], [134]–[136] and observed in experiments [21], [137].  Thus, we are 

interested in the kinetics of this event: how long it takes for the large-surface molecules to 

evacuate, the mean first passage time, (MFPT) and mechanism, and the intermediate steps 

required to fully evacuate.  

 

Figure 3.1 Schematic of evacuation event in biological and simulation settings 
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(A) A Target cell’s surface (green) is in proximity of a T cell’s surface. In the first snapshot, the 

region of interest is occupied with large surface molecules, such as CD45. In the second 

snapshot, large surface molecules diffuse away from the region of interest, which we call 

evacuation.  After evacuation has occurred, the receptor-antigen binding event is able to occur.  

(B) The process of evacuation is modeled by a 2D box with point particles, representing the large 

surface molecules. It is considered evacuated when the all point particles leave the region of 

interest, which has a radius of 𝐿0. [138] 

 

A number of simulation approaches and tools have been developed towards studying the 

reaction-diffusion of molecules on cell surfaces [139]–[142]. The approaches can be 

characterized as either based on the reaction diffusion master equation [143] or the 

Smoluchowski framework[144]. The differences in the two frameworks works lies in the 

accuracy and computational cost. While the Smoluchowski framework is highly accurate due to 

explicit modeling of the exact particle positions, it also very computationally costly. The 

opposite can be said of reaction diffusion master equation approaches, it is less accurate than the 

Smoluchowski framework since particle positions are modeled according to discretized 

compartments in the spatial domain, but it is also less computationally costly. Since the position 

of particles is of high importance to our problem of interest, we adopt the Smoluchowski 

framework to model the reaction-diffusion of molecules on the cell surface. 

Particle-based reaction -diffusion processes can be expensive to simulate. Enhanced sampling 

techniques can speed computation when the process of interest involves a broad range of 

timescales. Specialized rare event sampling algorithms can be used to extract kinetic information 

of events in an efficient manner in a wide range of characteristic length scales and system detail. 

For the evacuation problem, the level of system detail is at the spatially resolved cell-scale. An 

algorithm that has been applied at this level of system detail is Weighted Ensemble Sampling in 

a previous study by Donovan et. al [145]. The results of the paper provided estimates of MFPT 
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for several spatially resolved cell state systems using WESTPA [46], a Weighted Ensemble 

software package, and Mcell, a 3D spatially resolved cell scale model simulation package. The 

choice of Weighted Ensemble Sampling is motivated by the minimal assumptions required. For 

example, another rare event sampling algorithm called Milestoning [37] and Markov State 

Models have the requirement of memory loss [146], [147]. Rare event sampling algorithms with 

high generality, such as Weighted Ensemble Sampling and Forward Flux Sampling[39], [148], 

[149], have the tradeoff of relatively high computational costs in comparison to algorithms with 

low generality. Overall, adapting algorithms to the specific characteristics of the spatially 

resolved cell-scale domain has been relatively unexplored and potential challenges remain.  

 We use the 2D evacuation problem as a model system for expanding the applicability of the 

Weighted Ensemble algorithm to particle-based reaction diffusion simulations. It is considered a 

rare event due to MFPT of evacuation is much longer than the diffusion time scale 
𝐿2

𝐷
, where 𝐿 is 

the side length of the box and 𝐷 is the diffusion coefficient.  The main goal of this study is to 

characterize the trend of the MFPT with respect to the particle density. However, scaling to high 

densities became increasingly difficult due to the rising duration of the typical transition event. 

Choosing parameters that gave sufficient sampling became absolutely necessary to obtain the 

exact MFPT estimates and not have overestimation of the MFPT due to insufficient sampling. 

Our results showed that some strategies of increased sampling were more efficient than others in 

the convergence of the MFPT. Also, the results were compared to an asymptotic approximation 

of the 2D evacuation problem and the causes of the differences between were analyzed [138].  
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3.2 Methods 

 

3.2.1 2D evacuation Brownian Diffusion 

 

The evacuation problem was modeled as a 2D box with particles diffusing freely and evacuation 

is characterized as the state when all particles leave the circular region (ROI). The units are 

defined in terms of characteristic time, t∗ and characteristic length x∗. The physical time units, 𝑥 

and 𝑡, can be recovered by multiplying the dimensionless quantities, 𝑋 and 𝑇, by the 

characteristic units (equations 3.1 and 3.2).  The characteristic units used in the simulations are  

0.1 𝑠 for t∗ and x* is 100 𝑛𝑚, which correspond to the physiological conditions found in TCR 

triggering at a diffusion coefficient of 0.1 μm2/s [150], [151]. A typical biological density is 

around 955 
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝜇𝑚2
, which corresponds to 30 particles in the region of interest.  The parameters 

are set as follows: the Region of Interest radius, L0 , is 1 𝑥∗, box side length, L is 3 𝑥∗and the 

diffusion coefficient, D is 1 𝑥∗2/𝑡∗. The Brownian Dynamics 2D box code was written in 

MATLAB, however it is also possible simulate the dynamics in Smoldyn, an open-source, 

particle-based spatial stochastic simulator [142].  

 𝑥 = 𝑋𝑥∗ 

 

                                  (3.1) 

 𝑡 = 𝑇𝑡∗                                 (3.2) 
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The study of the mean first passage time of evacuation of particles from a region of interest 

(ROI) is a computational challenge as the number of particles in the box grows. With our current 

system parameters, when the particle density, 〈𝜌〉 becomes greater than 2.55, the brute force 

cannot sample the evacuated state, within 106 simulation time steps  of  𝑑𝑡 = 10−5𝑡∗ . This can 

be understood by comparing the sampled brute force distribution and the corresponding binomial 

distribution at two different values of 〈𝜌〉 (Figure 3.2). For  〈𝜌〉 = = 1.44 
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑥∗2
, the evacuated 

state is sampled as well as most of the other states in the brute force distribution. However, for 

〈𝜌〉 =  = 11.11
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑥∗2
 only states near the peak of the distribution are sampled. This can be 

understood from a coin toss analogy which can also be modeled as a binomial distribution: the 

evacuated state which has 100 particles outside of the ROI would be analogous to landing heads 

with a biased coin 100 times.  
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Figure 3.2 Sampling the evacuation event becomes increasingly difficulty at higher particle 

densities 

The stationary equilibrium distributions of particle densities of 1.44 and 11.11 are compared as a 

function of the molecules in region of interest. The theoretical stationary equilibrium distribution 

of molecules in region of interest is modeled by a binomial and plotted in red. The blue 

corresponds to probabilities derived from brute force sampling corresponding to 1 𝑡∗ simulation 
time. 
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3.2.2 Weighted Ensemble Rare Event Sampling 

 

3.2.2.1 Background 

 

The Weighted Ensemble (WE) method of rare event sampling was introduced to enable efficient 

simulation of protein-association reactions [30]. A key aspect of the WE algorithm is that 

computational power is directed toward low-probability regions of state space, which would 

typically be undersampled in a traditional simulation (Figure 3.3). This is achieved by running a 

large number of short simulation trajectories, initialized throughout the state-space, and 

redistributing trajectories from more probable regions to less probable regions. Information from 

these trajectories is combined to compute key observables (e.g. the steady state distribution or 

the MFPT for transitions between regions of interest) in a manner that is consistent with the true 

system dynamics. The WE code was written in MATLAB, but it also possible to use an available 

open source software that implements WE as a wrapper for any stochastic dynamics, WESTPA 

[46]. 

 

Figure 3.3 Schematic of Weighted Ensemble sampling 

The weighted ensemble algorithm is described by a schematic of how the algorithm derives the 

𝑀𝐹𝑃𝑇(𝐴 → 𝐵). The region 𝐴 represents a subset of the state space that represents the initial 
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state, while 𝐵 represents the subset of the state space corresponding to the target state. 

Trajectories with higher weight reside in the region 𝐴, while the low weighted trajectories 

populate the states near region 𝐵.  The short time dynamics of these trajectories is used to 

quantify the flux, the rate at which probability crosses over to region 𝐵. 

 

The algorithm is described as follows: the state of the system is characterized by a single or 

multidimensional order parameter that either uses the system degrees of freedom directly or can 

be derived from the degrees of freedom. Choice of the order parameter is crucial to the 

convergence of the algorithm because even sampling is enforced along this order parameter. An 

optimal choice of order parameter will approximately match a system progress coordinate to 

reach the target of interest. However, a bad choice of order parameter will make convergence of 

the algorithm slower since time will be wasted in irrelevant parts of the configuration space. The 

state space is divided into bins defined by the order parameter that span the transitions of 

interest. Initially, the algorithm starts out with one “replica” assigned a weight of 1, which is one 

of the many simulation trajectories with weights proportional to their probability that will 

eventually populate the bins. Each bin is required to have a target number of replicas, 𝑀𝑡𝑎𝑟𝑔, 

occupying it after each iteration of the algorithm. The replicas are propagated forward in time by 

a constant time step, 𝜏𝑤𝑒. The replicas are then either combined if the weight of the particle in a 

bin, 𝑤𝑖, is too low or duplicated if too large in order to keep the weight of the replicas inside the 

bin close to the average weight of the replicas inside the bin, 
𝑀𝑡𝑎𝑟𝑔

∑ 𝑤𝑖𝑖
. Even if a bin contains low 

probability weights, the resampling procedure will ensure that there are sufficient replicas within 

the bin and also that the weights of the replicas portray the probability within that bin.  

3.2.2.2 Simulation Parameters 
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The WE parameters for the evacuation problem require careful selection due to the unique 

qualities of the target of interest, the evacuated state. First off, we chose the order parameter to 

be 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒, the number of molecules in the region of interest. When a simulation 

trajectory has 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 = 0, it is considered in the evacuated state; otherwise it is not 

evacuated. There is no concept of being in a transition region. Our initial strategy was to assign 

one bin (containing 𝑀𝑡𝑎𝑟𝑔 replicas) to each discrete value of the order parameter, 

𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒. However, we found that this strategy dedicates unnecessarily large 

computational time to sampling high 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 states, which are far from the target state 

and thus provide no benefit for sampling the evacuation event. We then chose an approach 

wherein the high 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 states are lumped together into one or two bins (Figure 3.4).   

We found that weight must be transferred with the smallest possible time interval, 𝑑𝑡,  as 

opposed to waiting until the end of  𝜏𝑤𝑒, which is too long for the problem currently at hand (see 

section 3.3.1 for more details). 

 

Figure 3.4 Binning schemes used in simulations.   

Binning is fine-grained near the target (evacuated) state, and coarse-grained far from the target 

state. The transition from fine-grained to coarse-grained occurs at the maximum (mode) of the 
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expected (binomial) equilibrium distribution. For 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 < 𝑚𝑎𝑥, each discrete value 

of 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 is assigned one bin. For 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 > 𝑚𝑎𝑥, all states are lumped into 

either (A) two, or (B) one bin(s). 

 

3.2.2.3 WE MFPT Calculation 

 

The following Hill relation [48] (equation 3.3) is used to compute the MFPT from initial state 𝐴 

to target state 𝐵 (adapted from [145]): 

 

 
𝑀𝐹𝑃𝑇(𝐴 → 𝐵) =  

1

𝐹𝑙𝑢𝑥(𝐴 → 𝐵)
 

 

(3.3) 

 

All trajectories originating from bins designated as initial state 𝐴 that have entered the bins 

designated as target state 𝐵 are summed during that duration of 𝜏𝑤𝑒. The sum of weights divided 

by 𝜏𝑤𝑒 gives the probability flow per unit time, 𝐹𝑙𝑢𝑥(𝐴 → 𝐵). The validity of the expression 

hinges on achieving steady state conditions of the weights within bins, among other things. 

3.2.2.4 Estimation of Computational Efficiency 

 

Computational efficiency can be defined in various ways, but it often is used as a measure of the 

relative speedup of the method compared to brute force. In this manuscript, we describe 

computational efficiency, 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑔𝑎𝑖𝑛, as the ratio of the time steps (measured in units of 

𝑡∗) of the estimated MFPT and the WE total simulation time steps to estimate the MFPT from 

state A to B.  

 
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑔𝑎𝑖𝑛 =  

𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠(𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙)

𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝𝑠 (𝑊𝐸)
 

(3.4) 
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In order to compute 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 (𝑊𝐸), we use: 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 (𝑊𝐸) = 𝑊𝐸𝑖𝑡𝑒𝑟 × 𝑁𝑏𝑖𝑛𝑠 ×

𝑀𝑡𝑎𝑟𝑔 × 𝜏𝑤𝑒. For events that are too rare to sample by conventional simulation, we use the WE-

sampled estimate of the MFPT as a lower bound for 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 (𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙). This is 

justified in that obtaining a single “successful” evacuated trajectory with conventional simulation 

requires, on average, a simulation of length MFPT. Thus, Eqn. 3.4 provides a lower-bound 

estimate of the true efficiency gain. 

3.3 Results 

 

3.3.1 Stop condition is necessary to obtain correct results 
 

Checking for immediate arrival of trajectories to the target state is necessary in order to obtain 

correct estimates of the MFPT and is especially important when target states are located at the 

tail of a long distribution. In Figure 3.5, it is shown that there is a significant dependence on 𝜏𝑤𝑒 

without including a “stop condition”, which is to check for the target state after 𝑑𝑡, the 

simulation time step. A “stop condition” only interrupts the dynamics if a trajectory has crossed 

into the target state by including its weight in the flux estimate and restarting the trajectory 

randomly according to the current bin distribution, otherwise a trajectory will be simulated for 

the full 𝜏𝑤𝑒. When the “stop condition” is included, the 𝜏𝑤𝑒 dependence vanishes and is 

unchanging over the range of 𝜏𝑤𝑒 used. Our target state in the tail of the distribution is short-

lived. The 𝜏𝑤𝑒 time step is too long to capture an accurate flux estimation to the target state 

because several crossings may have happened at the resolution of 𝑑𝑡 that were missed at the 

resolution of 𝜏𝑤𝑒. The longer 𝜏𝑤𝑒 is, the more the MFPT is overestimated when no “stop 

condition” is applied as shown in Figure 3.5. 
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Figure 3.5 A stop condition is required to correctly capture the MFPT 

The behavior of the MFPT is plotted as a function of 𝜏𝑤𝑒 with (blue) and without (red) the stop 
condition. Twenty simulations were averaged to produce the data points and the error bars 

(standard deviation). The following parameters were used: ⟨𝜌⟩ = 1.44,  𝑊𝐸𝑖𝑡𝑒𝑟 = 10000, 
𝑀𝑡𝑎𝑟𝑔 = 500 and 𝐿 = 3𝐿0. The binning scheme in Figure 3.4a is applied.  

 

3.3.2 Weighted Ensemble enables simulation of rare evacuation events at high particle 

densities  

 

 The challenge of simulating high particle densities is overcome with WE sampling. 20 

simulations were run with WE parameters which gave sufficient sampling such that the standard 

error is kept minimal. At low particle densities, since the computational cost is still manageable 
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(within 24 hours, but still takes longer than WE), the brute force estimates are compared with the 

WE estimates and are shown to agree in Figure 3.6a. The trend shows that the MFPT scales 

subexponentially with particle density. Based on the obtained values at the highest density which 

is roughly equivalent to the physiological density, passive diffusion cannot alone drive 

evacuation. The efficiency gain, (Eqn. 3.4), is plotted for each value of the particle density. The 

Weighted Ensemble computational time (as measured in units of the model timestep, 𝑡∗)  scales 

with the number of replicas which increases at a linear rate with increasing particle density, 

while the MFPT itself scales subexponentially. Thus, the efficiency gain (Eqn. 3.4) grows at 

nearly the same rate as the MFPT. 

 

Figure 3.6 Mean First Passage Times of particle density computed by Weighted Ensemble and 

the associated efficiency gains 

Twenty simulations were averaged to produce the data points and the error bars (standard 

deviation). (A) The MFPT as a function of particle density ⟨𝜌⟩. (B) The efficiency gain as a 

function of particle density ⟨𝜌⟩.  The following parameters were used: 𝜏𝑤𝑒 = 10
−4 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 

𝑊𝐸𝑖𝑡𝑒𝑟 = 10000, 𝑀𝑡𝑎𝑟𝑔 = 100,  and 𝐿 = 6𝐿0.  The binning scheme in Figure 3.4b is applied. 
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3.3.3 The MFPT to escape depends strongly on dynamics time step and also the size of the 

box 

 

The dependence of the MFPT on the dynamics time step and size of the box indicates that the 

WE estimate may approach the asymptotic approximation in the limit of infinitely large size and 

small time step. In our WE estimation of MFPT vs N, the values are constantly exceeding the 

asymptotic result of [138]. We verified from brute force simulations that we are correctly 

simulating Brownian Dynamics by matching the WE simulations and brute force simulations at 

various 𝑑𝑡 and 𝐿 in Figure 3.7a. There are two factors we have identified that contribute to the 

difference: the larger predicted MFPT resulting from the finite time step, 𝑑𝑡, and the assumption 

of infinite wall length, 𝐿, made from the asymptotic approximation shown in Figure 3.7a. For 

〈𝜌〉 = 2.55 
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑥∗2
, the MFPT is compared between WE and the asymptotic result for a range 

of 𝑑𝑡 and 𝐿. For 𝑑𝑡, the MFPT drops dramatically at 𝑑𝑡 = 10−3 𝑡∗and for smaller dt, the 

subsequent decreases are small. For 𝐿 = 3𝐿0, the 𝑑𝑡 is varied from  10−2 𝑡∗ to 10−7 𝑡∗, and for    

𝐿 = 6𝐿0 the 𝑑𝑡 is varied from 10−2 𝑡∗ to 10−6 𝑡∗. The value of the MFPT is decreased even 

further within 50% of the asymptotic MFPT prediction at  𝐿 = 6𝐿0 , though it is still not quite 

matching the asymptotic approximation which might be due to the finite time step and finite box 

length.  

The dependence of the wall length for increasing particle density is shown alongside the 

asymptotic approximation. When the wall length is at  𝐿 = 3𝐿0, the MFPT grows much faster 

than the asymptotic approximation. At  𝐿 = 6𝐿0, the MFPT also grows faster than the asymptotic 

approximation but at a slower rate than 𝐿 = 3𝐿0.  
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Figure 3.7 MFPT is dependent on box size (i.e., the size of the simulated area, where 𝐿 =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑥) and Brownian dynamics time step. 

Ten to twenty simulations were averaged to produce the data points and the error bars (standard 

deviation for WE and 95% confidence intervals for brute force). (A) The MFPT plotted as 

function of 𝑑𝑡, the finite step of the dynamics at particle density of 2.55 at a side length of 𝐿 =

3𝐿0 and 𝐿 = 6𝐿0. (B) The MFPT for the WE at 𝐿 = 3𝐿0 and 𝐿 = 6𝐿0 and the asymptotic 

approximation as function of particle density ⟨𝜌⟩. The following parameters were used : 𝜏𝑤𝑒 =

10−3𝑡∗, 𝑊𝐸𝑖𝑡𝑒𝑟 = 10000 and 𝑀𝑡𝑎𝑟𝑔 = 100.  The binning scheme in Figure 3.4b is applied.  
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3.3.4 The effect of not reintroducing replicas on MFPT and flux  
 

Weighted Ensemble can be carried out in two distinct methods: in the original method, replicas 

are removed from the system immediately upon reaching the target state and then reintroduced 

back into the intial state. We call this reintroduction method (and in our implementation, 

“immediate” removal implies checking for evacuation every 𝑑𝑡, see 3.3.1). In a second type of 

WE method, replicas are allowed to freely propagate in an out of the target state. In this 

approach, it is critical to track flux only from replicas that are first transitioning from region A to 

region B (the target state), i.e., only those replicas that enter B after most recently being in A. The 

importance of tracking only these one-way fluxes has been discussed previously [48].In order to 

differentiate replicas that are entering versus exiting the target region, replicas must be labeled or 

“color-coded” [44]. First, regions of state-space were designated either A (source), B (target) or I 

(any state not in A or B), and all replicas were designated as having been most recently in either 

A or B. We will term this method “non-reintroduction”. In the previous sections, we did not 

explicitly define an intermediate (I) region; all particles were considered to be in the source state 

(A) until they evacuated, at which point they were removed from the system and reintroduced 

again into A. We found that, when implementing the non-reintroduction method, the size of the I 

region (which we also call the “gap”) has an effect on the MFPT estimate. When the size of the 

gap region is zero (Figure 3.8c), the MFPT is constantly below the reintroduction method (Figure 

3.8a). However, when the size of the gap region is set to four (Figure 3.8d), the MFPT matches 

closely with the reintroduction method (Figure 3.8a). The non-introduction does hold a potential 

advantage in that it produces much more stable fluxes at higher densities (which can result in 

smaller error bars as seen at ⟨𝜌⟩ = 8 in Figure 3.8a). At ⟨𝜌⟩ = 7, the fluxes of each variant is 
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plotted as a function of iteration in Figure 3.8b. The two non-reintroduction variants exhibit 

much more non-zero fluxes as a result of not reintroducing randomly back into the distribution.  

 

Figure 3.8 Effect of reintroduction versus non-reintroduction on flux and MFPT. 

Five to twenty simulations were averaged to produce the data points and the error bars (standard 

deviation).  (A) The MFPT as function of particle density ⟨𝜌⟩  using reintroduction, non-

reintroduction with a gap region of size 0 and 4. (B). At ⟨𝜌⟩ = 7, the flux is plotted as a function 
of the iteration using reintroduction, non-reintroduction with a gap region of  size 0 and 4. (C) 

The visual representation of a gap region of size 0 (no gap) with bins colored by their state. (D) 

The visual representation of a gap region of size 4 with bins colored by their state.  The 

following parameters were used: 𝜏𝑤𝑒 = 10
−3𝑡∗, 𝑊𝐸𝑖𝑡𝑒𝑟 = 10000, 𝑀𝑡𝑎𝑟𝑔 = 100  and 𝐿 =

6𝐿0. The binning scheme in Figure 3.4b is applied.  
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3.3.5  Optimizing simulation parameters for sufficient sampling becomes more 

challenging with increasing particle density 
 

 Increasing the particle density not only increases the rarity of the evacuated state, but also 

increases the difficulty of obtaining accurate estimates of the MFPT with limited sampling. The 

cumulative average flux vs iteration profile for different particle densities are displayed in Figure 

3.10a with all other parameters held constant. During the window of simulation,  〈𝜌〉 = 1.44  

flux quickly converges to steady state while 〈𝜌〉 = 11.11 is still increasing. We propose using 

the cumulative average flux profile as a metric for adequate sampling. There are three WE 

simulation parameters that can be linked to the amount of sampling, 𝜏𝑤𝑒,  𝑀𝑡𝑎𝑟𝑔, and  𝑊𝐸𝑖𝑡𝑒𝑟.  

We study the effect of varying these simulation parameters in Figures 3.9 and 3.10.  

First, 𝜏𝑤𝑒  is varied from 0.001 to 0.01 and plotted against MFPT in Fig. 3.9a. These simulations 

use the same total simulation time, thus shorter 𝜏𝑤𝑒 corresponds to a larger number of simulation 

iterations. Unlike the smaller density of 〈𝜌〉 = 1.44 which exhibited independence from 𝜏𝑤𝑒 in 

Figure 3.5 , the MFPT here (density of 11.11) increases approximately one order of magnitude 

over this range. In Figure 3.9b, we plot the fraction of iterations during which the first bin 

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑖𝑛𝑠𝑖𝑑𝑒 = 1) was occupied with at least one replica. We focus on this first bin because 

of its proximity to the target state; most evacuation events occur from this bin (data not shown). 

We found that 𝜏𝑤𝑒 = 0.001 𝑡
∗ was small enough for replicas to occupy the first bin nearly every 

iteration (the time-fraction of occupancy for this first bin adjacent to the target state was  

0.9981 ± 0.0038). For 𝜏𝑤𝑒 = 0.01 𝑡
∗, the time-fraction of occupancy of this bin was 0.1897 ±

0.0278 , which is approximately a five-fold decrease compared to 𝜏𝑤𝑒 = 0.001 𝑡
∗(Figure 3.9b). 
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The values for 𝑀𝑡𝑎𝑟𝑔 and  𝑊𝐸𝑖𝑡𝑒𝑟 were chosen from an initial guess that would make the 

simulations computationally feasible. 

The second WE simulation parameter related to the amount of sampling is, 𝑀𝑡𝑎𝑟𝑔, the target 

number of  replicas per  bin.  It is shown in Figure 3.10b, that for a particle density of,  〈𝜌〉 = 7  , 

the MFPT decreases in response to a larger 𝑀𝑡𝑎𝑟𝑔 (trend also shown in Figure 3.11 for 〈𝜌〉 =

11.11) . Importantly, these simulations share the same number of iterations and the same 𝜏𝑤𝑒. 

Thus, the simulations with more replicas per bin correspond to larger total simulation time.   

 We also test the third parameter, 𝑊𝐸𝑖𝑡𝑒𝑟, the total number of iterations that the algorithm 

executes (for equivalent 𝑀𝑡𝑎𝑟𝑔 and 𝜏𝑤𝑒) . At lower particle densities, the MFPT estimate is 

shown to have little sensitivity to 𝑊𝐸𝑖𝑡𝑒𝑟, in Figure 3.10c. At 〈𝜌〉 = 11.11, the MFPT is 

overestimated when 𝑊𝐸𝑖𝑡𝑒𝑟 is low. But with enough iterations, multiple independent simulations 

seem to be in agreement. 
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Figure 3.9 Dependence of MFPT estimate and edge-bin occupancy on 𝜏𝑤𝑒 at a high particle 

density of 〈ρ〉=11.11. 

(A) The MFPT is plotted against  𝜏𝑤𝑒 for the same total simulation time. (B) The time-fraction of 

occupancy of the first bin adjacent to the target state is plotted against 𝜏𝑤𝑒. (Occupancy is 

defined as fraction of simulation iterations in which the bin with 𝑁𝑢𝑚𝑏𝑒𝑟 𝑖𝑛𝑠𝑖𝑑𝑒 = 1 had at 

least one replica). The following parameters were used: 𝑊𝐸𝑖𝑡𝑒𝑟 = 
10 𝑡∗

𝜏𝑤𝑒
, 𝑀𝑡𝑎𝑟𝑔 = 100.  and 𝐿 =

3𝐿0. The binning scheme in Figure 3.4a is applied. 
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Figure 3.10 Simulation progress and dependence of MFPT estimates on simulation parameters. 

(A) The cumulative average probability flux into the evacuated state is plotted against iterations. 

(B) The MFPT is plotted against replica number per bin. Twenty simulations were averaged to 

produce the data points and the error bars (standard error of the mean). (C) The MFPT is plotted 

against particle density for a range of iteration numbers at  𝑀𝑡𝑎𝑟𝑔 = 500. Twenty simulations 

were averaged to produce the data points and the error bars (standard error of the mean).The 

following parameters were used when not specified in the plot or elsewhere: 𝜏𝑤𝑒 = 10
−3𝑡∗, 

𝑊𝐸𝑖𝑡𝑒𝑟 = 10000 and 𝑀𝑡𝑎𝑟𝑔 = 100.  and 𝐿 = 3𝐿0. The binning scheme in Figure 3.4a is applied.  
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3.3.6 The effect of fluctuations/missing values of the flux on the MFPT estimate 
 

In this section, we are interested in the effect of fluctuations/missing values of the flux on the 

rate of convergence in WE simulations and it is explored with alternative progress coordinates 

and resampling procedures. A single order parameter was used in all previously shown figures 

using the collective variable 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒. However, there were sampling issues with scaling 

to higher particle densities, such as in Figure 3.10a. In Figure 3.11a, two additional progress 

coordinates are plotted for MFPT vs Replica Number per Bin. The first new progress coordinate 

uses two dimensions, 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒, the number of particles in the region of interest, and 

𝑅𝑎𝑣𝑔,  the average distance from the center of all particles. The second new progress coordinate 

uses two dimensions, 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒, the number of particles in the region of interest, and 

𝑅𝑚𝑎𝑥,  the distance of the furthest particle within the region of interest. The intent of adding 

these additional variables to the progress coordinate is to capture any missing relevant processes 

that may facilitate flux to the target of interest. The physical intuition behind including distance 

as a variable is that a particle must be close to the edge of region of interest before leaving it.   

To compare the performance of the three order parameters, the amount of sampling is increased 

by the same amount for each and plotted against the MFPT. For the  𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 order 

parameter, the number of replicas per bin are increased and for the two dimensional order 

parameters, more bins are added along the new coordinate. 

As seen in panel Figure 3.11a, the MFPT for the 2D coordinates converge at roughly the same 

rate or slower than the 1D coordinate when increasing the sampling. Based on these results, an 

additional order parameter based on distance does not seem to improve the estimate of flux when 

compared to the 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 by itself. The choice of the bin edges for the second distance-
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based coordinate was based on the probability distributions from previous simulation data. Even 

with this previous knowledge, the 2D coordinate is more or less at the same efficiency of the 1D 

coordinate. The noise (fluctuations) of each simulation plotted as the standard deviation divided 

by the mean of the flux was plotted against the amount of sampling as well in Figure 3.11b for 

all three progress three coordinates. The noise of the 1D coordinate decreased the fastest with 

respect to more sampling. However, all three progress coordinates converged to the same MFPT 

values at high sampling.  

The second method of testing the role of fluctuations in the MFPT convergence is changing the 

resampling procedure. The resampling procedure by Darve and Izaguirre [152] differs from the 

original formulation  by Huber and Kim in that it keeps the number of replicas in each bin at 

exactly 𝑀𝑡𝑎𝑟𝑔 and the replica weight identical within a bin. It was noted by the authors that the 

statistical error is minimized in this way. In the panel Figure 3.11c, we plot the MFPT vs the 

replica number per bin and the convergence trend is mostly the same between the original and 

new resampling procedure. The noise is also plotted for each resampling procedure as a function 

of sampling amount. It does seem that for most sampling amounts except the initial value, the 

noise is smaller for the new resampling procedure. It appears that the noise in the fluxes does not 

seem to correlate with the convergence of the MFPT estimates with respect to sampling. 

The noise shown in Figure 3.11b indicates that the 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 order parameter has the least 

fluctuations between the three order parameters. However, this is misleading. If we plot the 

fluxes as a function of iteration at the Replica Number Per Bin of 500 in Figure 3.11e, we can 

visually see that the  𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 order parameter has significantly more zeroes (missing 

values) than (𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒, 𝑅max ). These zeroes correspond to iterations in which no replicas 
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entered the target (evacuated) state, and thus no flux was recorded.  For the 𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒  

order parameter, at high particle densities, we believe that the high number of zeroes in the 

fluxes is attributed to the 𝜏𝑊𝐸 being shorter than the time it takes for replicas to reach the target 

state.  From section 3.3.5, it was shown that it is necessary to keep 𝜏𝑊𝐸 this short in order to 

occupy the tail of the distribution.   A possible explanation for the (𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒, 𝑅max ) order 

parameter having fewer zeroes is that more bins are closer to the target state, thus more replicas 

are able to transition to the target state within 𝜏𝑊𝐸.  Although the flux profile looks sparse for the 

𝑁𝑢𝑚𝑏𝑒𝑟 𝐼𝑛𝑠𝑖𝑑𝑒 order parameter, the MFPT estimates are in good agreement for all three order 

parameters as shown in Figure 3.11a at the Replica Number Per Bin of 500. Therefore, zeroes in 

the fluxes appear to be tolerable at high levels of sampling.  
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Figure 3.11 The current binning/resampling strategy is compared to alternative ones and 

performs more efficiently 

Twenty simulations were averaged to produce the data points and the error bars (standard 

deviation). At higher densities, more sampling is required to reach convergence of the MFPT. 

The effectiveness of alternative order parameters and resampling procedures are tested.  (A) The 

number of bins in the second dimension is increased to match the same amount of sampling at 

each value of replica number per bin when testing the hybrid order parameters 

(Number Inside, 𝑅𝑎𝑣𝑔) and (Number Inside, 𝑅𝑚𝑎𝑥).  (B) A measure of the noise (std/mean) is 

plotted for each order parameter. (C) The MFPT is plotted against the amount of sampling for 

the default (HK) and alternate (DI) resampling procedure (D) A measure of the noise (std/mean) 
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is plotted for each resampling procedure. (E) At the highest amount of sampling of 500 replicas 

per bin, the flux as a function of iteration is plotted for the three different order parameters.  The 

following parameters was used: 𝜏𝑤𝑒 = 10
−3𝑡∗ and 𝑊𝐸𝑖𝑡𝑒𝑟 = 10000 and 𝐿 = 3𝐿0. The binning 

scheme in Figure 3.4a is applied. 

3.4 Discussion 

 

The following work has characterized the MFPT behavior of the evacuation system with respect 

to various system parameters, Weighted Ensemble parameters, and a previous approximation. 

The algorithm reached a speed up of 104 over conventional simulation for biologically relevant 

densities. Various challenges were uncovered for designing the algorithm to be robust for highly 

rare events. Adaptations were required to accurately estimate the flow of probability of states at 

the long tail of the distribution. 

 When scaling the system such that event becomes rarer, large bursts of flux which occur 

infrequently can cause simulations to overestimate the MFPT if proper testing for convergence is 

not performed. The bursts were drastically reduced when not reintroducing particles, allowing 

them to freely propagate in the full state space, but the mean estimates were significantly 

underestimated. However, we found that adding a gap between the target and initial state fixed 

the underestimation issue. We speculate that the cause of the overestimation is from the short-

lived quality of the target state.  When the gap is not present, it is likely that frequent recrossings 

at the boundary of the source and target state causes the flux to be overestimated.    WE 

parameters, such as 𝜏𝑤𝑒,  𝑀𝑡𝑎𝑟𝑔, and 𝑊𝐸𝑖𝑡𝑒𝑟  when tuned to increase the sampling amount, aided 

in the convergence of the MFPT towards the true mean. Much of the dependence we see of 

MFPT estimates on simulation parameters for high particle densities in Figures 3.9, 3.10, and 

3.11 may be ultimately due to inadequate sampling (lack of convergence). A potential solution 
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for slow convergence is the reweighting procedure introduced by Bhatt et al. [42], which was not 

applied here, but could be included in future extensions of this work.  

We demonstrated that zeroes in the fluxes (missing values) will not necessarily result in poor 

estimation as long as sufficient checks for convergence with respect to the WE simulation 

parameters are performed. Zeroes in the fluxes can be caused by different reasons and we suspect 

that the effect of zeroes on the estimation of MFPT will depend on the reason for the zeroes 

occuring. If the zeroes appear due to sparse bin occupation out at the tail of the distribution, it is 

likely to cause overestimation of MFPT as seen in Figure 3.9. When the bin occupation is nearly 

full at every iteration, the zeroes in the fluxes are still present in the simulation as shown in 

Figure 3.11e. In this case, the effect of the zeroes in the fluxes is probed by comparing the fluxes 

and MFPT of alternative order parameters. The order parameter (Number Inside, 𝑅𝑚𝑎𝑥) 

contains an equal amount of sampling as the original order parameter (Number Inside ), except 

that more bins are added in the 𝑅𝑚𝑎𝑥 dimension instead of increasing the replica count per bin. 

By increasing the number of bins, instead of replicas per bin, the number of zeroes in the flux  

significantly decrease for (Number Inside, 𝑅𝑚𝑎𝑥)   because the extra bins in the 𝑅𝑚𝑎𝑥 

dimension make the replicas “closer” to the target state.  In the equally sampled simulations, 

where (Number Inside ), contained many zero fluxes while (Number Inside, 𝑅𝑚𝑎𝑥)did not, 

both MFPT estimates for each order parameter were in good agreement (Figure 3.11a), 

regardless.   

Our simulations agree with brute force at low particle density and seem to overestimate with 

respect to the asymptotic approximation. We show that the WE estimates may eventually agree 

with the asymptotic approximation by showing trends in the wall length and time step 
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approaching the asymptotic approximation. After analyzing convergence and comparing to other 

approximations, the efficiency gains of WE was shown to grow at nearly the same rate as the 

MFPT with particle density, thereby demonstrating the effectiveness of the algorithm.  

The importance of a “stop condition”, where replicas are observed at a much finer interval than 

𝜏𝑤𝑒 and stopped if they reach the target state, is demonstrated when performing WE simulations 

for the evacuation network. Usually, after every 𝜏𝑤𝑒, replicas are checked whether they have 

reached the target state. This may work in cases where the target state is long-lived, but for 

calculating target states out in the tail of the distribution, it results in overestimation of the 

MFPT. The impact of the stop condition was shown by varying the interval of observation of 

replicas, 𝑑𝑡. The concept of a stop condition can be related back to other rare event algorithms 

such as Forward Flux Sampling [39] and Milestoning [37], which include a short observation 

time interval to check for whether trajectories reached the next state, in their respective versions 

of bins.   

Our analysis of the effect of 1D and 2D order parameters has demonstrated that they converge 

roughly the same rate. A possible extension of the current work is to automate the binning 

procedure to see if the convergence can be improved over using a naïve selection of bin edges. 

Using an algorithm, such as the WE string method [41], may allow collective variables to be used 

more efficiently since it is designed to take a high dimensional space and project to a 1D 

representation. Though in order to use this method, adjustments would have to be made in the 

calculation of the flux since it relies on a finite time step and the lack of a transition region may 

be problematic.  
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Speaking of alternative algorithms, Forward Flux Sampling [39] may overcome some of the 

limitations of Weighted Ensemble encountered when scaling up. The core of Forward Flux 

Sampling is to estimate conditional probabilities along interfaces from the initial to final state. 

The major problem that was encountered with WE is the increasingly infrequent bursts of 

probability while scaling the particle density. As the particle density is increased, the distance 

from the evacuated state to the peak of the distribution also increases, which increases the 

likeliness of probability getting trapped in the probability dense regions. For Forward Flux 

Sampling, instead of relying on the flux to reach the target state which could take a long time to 

occur, correct estimation of the MFPT would instead depend on correct estimate on the adjacent 

bin transition probabilities. The Forward Flux Sampling algorithm on its own would need to be 

modified appropriately  for this problem since there is no transition region which is where the 

bins are usually place along and the amount of sampling in each bin would have to be sufficient 

just like WE.  

This work will be used as a base platform to simulate more complex reaction diffusion systems 

since passive diffusion alone is too slow for T-cell receptor ligand contact. Simulators, such as 

Smoldyn [142], can perform particle diffusion, but also add in realistic biological features, such 

as membrane geometries, molecule-membrane interactions, and reactions of individual 

molecules. Since the core of Weighted Ensemble is decoupled from its dynamics, it will be 

straightforward to swap in different simulators and models.  
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4. Rare Event Sampling of the Ornstein-Uhlenbeck Process 
 

4.1 Introduction 

 

The study of two or more cells coming into contact with each other to form an interface is a 

process of interest. For example, the surfaces of T cells require close contact to interact with their 

ligands and receptors. The formation of these contacts is affected by multiple interactions such as 

the presence of  large surface molecules  [20], [21], [137], [153] and the forces of the surrounding 

fluid [24], [25], [154], [155].  In this section, we are primarily interested in the role of the forces of 

the surrounding fluid in the formation of these contacts. In a regime dominated by thermal 

undulations[156], a repulsive interaction that exists between two membranes, close contact 

becomes a rare event which requires simulation methods, such as Weighted Ensemble Sampling 

[30], in order to study its behavior.  

To better describe the system, the model geometry is explained in detail and visualized in a 

schematic. One way of modeling the problem may be to employ rigid spheres of radius 𝑟𝑐𝑒𝑙𝑙 

undergoing a force 𝐹 in the direction of contact with a cell to cell to distance, 𝑧, as shown in Fig. 

4.1 a. It is less realistic but it does exhibit the thin layer effect [24], [26], [157], an effect which  

incurs a much slower time scale as 𝑧 decreases.  A more realistic scenario is described in panel 

Fig. 4.1 b. where two membranes are modeled instead. The two membranes of radius  𝑟𝑐𝑒𝑙𝑙 

contain a smaller region of 𝑟𝑓𝑟𝑒𝑒 where active forces 𝐹  may act upon a smaller radius 𝑎. The two 

membranes are held at max by a far-field separation of ∆𝑧∞ by nonspecific adhesion molecules. 

The current membrane separation distance is denoted by ∆𝑧0. 
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Using computational fluid dynamics, Liu et. al, [158] has simulated two cell surfaces under the 

effect of thermal undulations as visualized in Fig 4.1 b. Two time scales were discovered from 

the fit of the autocorrelation function which is consistent with the thin layer effect. The target 

state of the required interaction separation displacement was not reached within the simulation 

time. This meant that reaching target state was likely a rare event and will require a rare event 

algorithm in order to accurately measure the mean first passage time. Since the complex fluid 

dynamic simulations are too expensive to access those times, the problem is cast into a much 

more computationally feasible stochastic model called an Ornstein-Ulhenbeck (OU)  process, a 

stochastic process that has a Gaussian stationary density with a constant mean and variance. In 

this chapter, we will explore the behavior of the mean first passage time as a function of the 

separation displacement of a single membrane or two membranes from its mean position. As a 

control, a single membrane was simulated using the simplification of a one-dimensional OU 

process. While, the two membrane interface case was modeled as a two-dimensional OU 

process. The single membrane case was validated with a theoretical solution, but to our 

knowledge no theoretical solution is available for the interface. Problems were encountered in 

the interface case when scaling to higher distances due to the slower time scale dominating. Two 

different approaches are applied tested to improve the estimation of the mean first passage times 

in at the long tail of the distribution in the interface case.  
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Figure 4.1 Schematic of Close Contact Event in Simulation Setting 

(A) Two cells depicted as spheres pushed together by a force 𝐹. (B) Assuming the radius of the 
cell is much larger than the cell-cell separation distance, the cells are modeled by a top and 

bottom membrane with a  force  𝐹 applied near the ligand and receptor. [158] 
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4.2 Methods 

 

4.2.1 Ornstein-Ulhenbeck Model 
 

Data acquired from computational fluid dynamics simulations was used to derive the 

autocorrelation function and stationary distribution. The mean membrane separation, was 

measured to be, 〈𝑧0〉 = 70 𝑛𝑚. The current membrane separation is denoted as ∆𝑧0
∗.  The 

contact displacement, 𝑍∗ = 〈𝑧0〉 − ∆𝑧0
∗   , can be approximated by a 1D Ornstein-Ulenbeck 

process for the single membrane case: 

𝑑𝑍 =  −
1

𝜏
𝑍𝑑𝑡 +

𝜎

√𝜏
𝑑𝑊      (3.1) 

The parameters 𝜎, the standard deviation, and 𝜏, the timescale, were estimated from the 

simulation data. 𝑊 is a wiener process.  

The interface case is approximated by a 2D Ornstein-Ulenbeck process: 

𝑑𝑋 =  −
1

𝜏𝑠𝑙𝑜𝑤
𝑋𝑑𝑡 +

𝜎

√𝜏𝑠𝑙𝑜𝑤
𝑑𝑊1    (3.2) 

𝑑𝑌 =  −
1

𝜏𝑓𝑎𝑠𝑡
𝑌𝑑𝑡 +

𝜎

√𝜏𝑓𝑎𝑠𝑡
𝑑𝑊1    (3.3) 

𝑍∗ =  𝑐𝑋 + √1 − 𝑐2𝑌      (3.4) 

 

where 𝑐, is a parameter which determines the fraction attributed to the slow (𝜏𝑠𝑙𝑜𝑤) and fast 

(𝜏𝑓𝑎𝑠𝑡) processes. A trajectory and histogram of the composite process is plotted in Figure 4.2. 
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The trajectory fluctuates around the mean of zero and a Gaussian distribution is fit to the 

simulation data.  

 

Figure 4.2 Brute force simulation of interface using 2D OU model 

(A) The simulation trajectory of z, the OU process variable as function of time in seconds (s). 

(B) The histogram of the simulation trajectory in blue and the Gaussian fit as a red outline. 

 

4.2.2 Weighted Ensemble Parameter Design 
 

The Weighted Ensemble (WE) algorithm is applied to solve for the mean first passage times to 

reach a target  𝑍∗. A previous detailed explanation of WE can be found in chapter 2. Choice of 

parameters are impactful when applying WE to a new problem. Some of the reasoning and 

decision making when deciding WE parameters is described in this section. An arbitrary, but 

reasonable choice, of 𝑀𝑡𝑎𝑟𝑔, was initially chosen (32 for the 1D case and 200 for the 2D case). 
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The bin edges for replicas were chosen such that sampling is focused in the direction of the 

target state. The OU process is a stochastic process that fluctuates around zero, but the target 

state we are interested is in the positive direction. Hence, all negative values of 𝑍∗, were assigned 

to one bin. For the positive values, initially every integer value of  𝑍∗ was assigned to its own 

bin. However, we found that the flux contained too many zeros since they were not enough bins, 

so we ended up using every 0.1 𝑍∗ as the bin edges. Since the target state is out in the tail of the 

distribution, the 𝜏𝑤𝑒 (1 × 10
−8), was set to be sufficiently small such that the bins at the edges 

were fully occupied at each iteration. Also, a stop condition to check for the target state at a 

smaller interval,𝑑𝑡 (see Chapter 2) was applied to obtain a more accurate flux due to the transient 

nature of the target state.  

4.3 Results 

 

4.3.1 The mean first passage time to first contact grows much slower in the interface case 

compared to the single membrane 
 

A 1D OU process was used to model the displacement of the single membrane and the 2D OU 

process modeled the interface case of two membranes. The progress coordinate was represented 

by 𝑍∗, the target contact displacement, which measures how close the two membranes are 

coming into contact (the larger the value, the closer the membranes are). The MFPT of the 1D 

OU process is validated by a theoretical approximation developed in [159]. In Figure 4.3, it is 

shown that the interface scales much faster than the single membrane case; the time to reach  

𝑍∗ = 20 𝑛𝑚 for the interface case is approximately 500-fold faster than the single membrane 

case. The critical displacement for binding is around 𝑍∗ = 57 𝑛𝑚 and based on the super 
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exponential growth, the MFPT to reach that displacement would not be realistic biologically (on 

the order of seconds). Therefore, other interactions, such as active forces and membrane 

permeability, are needed to be modeled to accurately model the close contact event. 

 

Figure 4.3 1D and 2D prediction of Mean First Passage Times as function of Contact 

Displacements 

Twenty simulations were averaged to produce the data points and the error bars (standard 

deviation). The mean first passage time ( in seconds) is plotted as a function of the contact 

displacement for two different cases: the 1D single membrane case is plotted in blue along with 

the theoretical approximation by Thomas et. al and the 2D interface case is plotted in red. The 

following parameters were used for the 1D case 𝑀𝑡𝑎𝑟𝑔 = 32, 𝜏𝑊𝐸 = 1 × 10
−8, and ⟨𝑊𝐸𝑖𝑡𝑒𝑟⟩ =

10,000. A bin edge was assigned at every 0.1 𝑍∗ above. The following WE parameters were 

used for the 2D case 𝑀𝑡𝑎𝑟𝑔 = 200, 𝜏𝑊𝐸 = 1 × 10
−8, and ⟨𝑊𝐸𝑖𝑡𝑒𝑟⟩ = 100,000. A bin edge was 

assigned at every 0.3 𝑍∗ up to 15 and 0.1 𝑍∗ above. The 2D OU model parameters were: 𝜏𝑓𝑎𝑠𝑡 =

8.18 × 10−5, 𝜏𝑠𝑙𝑜𝑤 = 5.22 × 10−7, σfast = σslow = 4.27 nm. The 1D OU model parameters 

were: 𝜏 = 1.05 × 10−6 and 𝜎 = 3.1385 𝑛𝑚 

 

4.3.2 Scaling to higher contact displacement when estimating the mean first passage times 

becomes challenging in the interface case 

 

4.3.2.1 The composite process of two processes is more difficult to sample than the single 

pure processes 
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If we wish to actually measure the MFPT at higher contact displacements, it becomes a 

computational issue due to the presence of two processes with different timescales. This is 

exemplified by Figure 4.4 a and 4.4 b where sampling is much better at 𝑍∗ = 9 𝑛𝑚 when 

compared to the 𝑍∗ = 45 𝑛𝑚 case. The large spread at intermediate values of 𝑐 for  𝑍∗ = 45 𝑛𝑚  

can be attributed to the larger fluctuations of the raw flux at higher 𝑍∗ seen in panel Figure 4.4 c 

and 4.4 d. It is worthy to note that the pure processes can be sampled adequately as shown by 

their agreement with the theoretical approximations at 𝑐 = 0 and 𝑐 = 1 since only the pure 

process is present in each.  

 

Figure 4.4 Scaling to higher contact displacements is difficult in the 2D case 

Ten simulations were averaged to produce the data points and the error bars (standard deviation). 

(A) The mean first passage time ( in seconds) is plotted as a function of the contact displacement 

for the interface case to reach target state 𝑍∗ = 9. The Thomas approximation is plotted as 
validation when there is only one process present. (B) The mean first passage time ( in seconds) 

is plotted as a function of the contact displacement for the interface case to reach target state 

𝑍∗ = 45 and 𝑐 = 0.75. The Thomas approximation is plotted as validation when there is only 
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one process present. (C) The flux, the probability entering the target state per unit time, is plotted 

as a function of the simulation iteration at 𝑍∗ = 9. (D) The flux, the probability entering the 

target state per unit time, is plotted as a function of the simulation iteration at 𝑍∗ = 45  and 𝑐 =
0.75. The following parameters were used 𝑀𝑡𝑎𝑟𝑔 = 200,  𝜏𝑊𝐸 = 1 × 10

−8 , and⟨𝑊𝐸𝑖𝑡𝑒𝑟⟩ =

100,000. A bin edge was assigned at every 0.3 𝑍∗ up to 15 and 0.1 𝑍∗ above. The 2D OU model 

parameters were: 𝜏𝑓𝑎𝑠𝑡 = 8.18 × 10−5, 𝜏𝑠𝑙𝑜𝑤 = 5.22 × 10−7, σfast = σslow = 4.27 nm. 

 

4.3.2.2 The 1D order parameter does not adequately sample the target of interest in the 

presence of two processes 
 

When using a 1D order parameter for two processes, it is simple and directly corresponds to the 

observable of interest, however any important events occurring in the individual processes may 

not be sufficiently sampled. For example, both processes are capable of being in the negative 𝑍∗ 

states while the other is positive which hinders the progress towards reaching the target positive 

𝑍∗ state. This explains the larger fluctuations in the flux as 𝑍∗ is increased further due to the time 

one or both components spend in the negative 𝑍∗ states instead of progressing towards the target 

state. The sampling especially worsens as the slow component dominates at higher values of 𝑐. 

This makes sense because the slow component will more spend more lengths of time in the 

negative displacement values and making it difficult for the two processes to “coordinate” (both 

be positive) to reach the target state. 

  

4.3.3 Using a 2D order parameter which separates the two independent processes results 

in improved estimation of the mean first passage times 
 

Instead of directly using 𝑍∗ as the 1D order parameter, the two components are used as a 2D 

order parameter. The 1D order and 2D order parameter were used to estimate the MFPT at 𝑍∗ =

25 𝑛𝑚 using the same simulation and model parameters excluding the replica count per bin and 
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the spacing between bin centers, which was decreased and increased, respectively, in the 2D case 

due to the exponential cost of expanding to two dimensions in Figure 3.5. The average replica 

count and average number of iterations was roughly 15,000 replicas and 70,000 iterations for the 

1D case and 10,000 replicas and 40,000 iterations for the 2D case. Even with less sampling than 

the 1D case, the 2D case is able to produce relatively stable fluxes and MFPT with a lesser 

spread in the data at larger values of 𝑐. An important factor to the increased stability of the 2D 

order parameter was likely due to the increased emphasis on the positive 𝑍∗values in the 

placement of the bin centers in both dimensions which is not present in the 1D case. In the 1D 

case, each component was allowed to freely sample the positive and negative values of 𝑍∗. 

However, with the 2D parameter, only one bin center was allocated to the negative value of 𝑍∗ 

and the rest were assigned to the positive values. 

 

Figure 4.5 2D order parameter improves estimation by separating the independent processes 

Ten simulations were averaged to produce the data points and the error bars (standard deviation). 

(A) Using a WE 1D order parameter, The mean first passage time ( in seconds) is plotted as a 
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function of the contact displacement for the interface case to reach target state 𝑍∗ = 25. The 
Thomas approximation is plotted as validation when there is only one process present. (B) Using 

a WE 2D order parameter, The mean first passage time (in seconds) is plotted as a function of 

the contact displacement for the interface case to reach target state 𝑍∗ = 25. (C) Using a WE 1D 

order parameter, the flux, the probability entering the target state per unit time, is plotted as a 

function of the simulation iteration at 𝑍∗ = 9. (D) Using a WE 2D order parameter,  the flux, the 
probability entering the target state per unit time, is plotted as a function of the simulation 

iteration at 𝑍∗ = 45  and 𝑐 = 0.75. The following parameters were used for the 1D order 

parameter 𝑀𝑡𝑎𝑟𝑔 = 200, 𝜏𝑊𝐸 = 1 × 10
−8, and ⟨𝑊𝐸𝑖𝑡𝑒𝑟⟩ = 70,000. A bin edge was assigned at 

every 0.3 𝑍∗ up to 15 and 0.1 𝑍∗ above. The following parameters were used for the 2D order 

parameter 𝑀𝑡𝑎𝑟𝑔 = 32, 𝜏𝑊𝐸 = 1 × 10
−8, and ⟨𝑊𝐸𝑖𝑡𝑒𝑟⟩ = 40,000. A bin edge was assigned at 

every 1 𝑍∗. The 2D OU model parameters were: 𝜏𝑓𝑎𝑠𝑡 = 8.18 × 10−5, 𝜏𝑠𝑙𝑜𝑤 = 5.22 × 10−7, 

σfast = σslow = 4.27 nm. 

 

4.4 Discussion 

 

The current study has applied WE to discern the behavior of mean first passage time as a 

function of the separation between two membranes with the condition of only thermal 

undulations. Based on the growth trend, the mean first passage time exceeds the biological 

expected timescale for critical binding in T-cell membranes. The single membrane case was used 

as validation for the method since a theoretical approximation existed for the 1D OU process 

[159]. WE was able to match the theoretical values even at large displacements where the event 

was extremely rare. A challenge arose when WE was applied to the interface case at large 

displacements. The more the slow process dominated, the more unstable flux became and there 

would be several large outliers, despite having more sampling than in the single membrane case. 

The issue was shown to be amended by including a 2D order parameter, one for each component 

of the 2D OU process. The fluxes and MFPTs were considerably more stable and narrowly 

distributed. It is likely due to the increased consistency of crossings due to explicit binning of 
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both variables and also the emphasis on the positive values of 𝑍∗ which contribute more to the 

flux. 

This case study is a prime example of where automation of the binning of collective variables 

would be beneficial to obtain more accurate estimations of the MFPT. Just by increasing from 

one dimension to two dimensions made it much harder to obtain accurate estimates since the flux 

became much more unstable. Strategies for higher dimensional binning have been suggested 

previously. For example, Zhang et. al [160] suggested a successive binning strategy in higher 

dimensions, where an initial binning is decided in one dimension and more bins in the second 

coordinate is added based on the configurations in the first coordinate. One can propose a 

strategy where influential transition paths are maximized when designing the order parameter. It 

is difficult to discern the optimal order since there can be multiple degrees of freedom which are 

relevant. If there are multiple important degrees of freedom, a possible strategy may to be 

systematically build the order parameter by starting out with only degree of freedom as the order 

parameter. When a crossing of significant probability flux occurs, one could then backtrack to 

subdivide along the other important degrees of freedom. To prevent adding too many bins, a 

probability cutoff could be used to determine if the weight of the trajectory was high enough to 

consider subdividing based on the current flux. To test the effectiveness, a simple diagnostic can 

be based on the stability of the flux after adding more bins in the new dimensions. Of course, this 

strategy would still require knowledge of the relevant progress coordinates to the transition to 

work effectively in improving the quality of the flux.  
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5. Adpative Binning for High Dimensional Order Parameter in Weighted Sampling 

 

5.1 Introduction 

 

In the context of transition path sampling [38], the order parameter is a collective set of variables 

which can distinguish the initial and final states of a metastable system. It is an approximation of 

the reaction coordinate which is the true variable that represents the mechanism driving the 

transition between the final and initial state. The quality of approximation of the order parameter 

can be evaluated based on its committor function, which is the probability for a state to make to 

the final state before the initial state. First, the separatix, the saddle point where the free energy is 

highest is identified. According to transition path theory, this is where the committor function 

should be at 0.5 since the transition state lies at the separatix. For a landscape with two 

metastable states, an order parameter that adequately represents the reaction coordinate will 

possess a narrowly peaked probability distribution for the committor function at the separatix 

centered on 0.5. The choice of order parameter is a challenge as complex systems can have an 

immense degrees of freedom where the mechanism is not fully understood. Another issue with 

the order parameter is when the number of collective variables grow, the number of possible bins 

grows exponentially. Hence a method is needed to keep the number of bins at a computationally 

manageable size while also preserving adequate sampling of the transitions.  

A method that has been developed previously called the string method [161] can project a high 

dimensional space into a smaller one that connects the initial and final states and thus keeps the 

number of bins manageable. It has been tested on primarily metastable systems, but it is 



108 
 

unknown whether it is viable for systems where the final state is transient. In this chapter, an 

algorithm based on forward transitions is suggested to control the number of bins as the 

dimensions grow with increasing collective variables.  

5.2 An Algorithm Sketch 

 

A strategy to reduce the number of bins while adequately sampling the transitions is to 

incrementally define new progress coordinates as simulation data is gathered on the forward 

transitions. A forward transition is defined when a trajectory is closer to the target state than it 

was previously. By gathering statistics on these trajectories, we are able to sample on the 

important areas of the state space.  

The first step in defining the bins is to decide on the initial progress coordinate. This step is no 

different from the original weighted ensemble algorithm. The bin edges should be placed in the 

transition region and the choice of coordinate should easily distinguish between the initial and 

final state.  

To define subsequent bin edges for additional coordinates, we can make use of simulation data of 

the forward transitions. At each iteration of the algorithm, the trajectories are stored if it travels 

along a forward path. After gathering enough statistics within each bin such that the running 

mean of the new coordinate is steady, new edges on the next coordinate can be defined around 

the mean value of the coordinate in each bin. The spacing of these bins can be kept similar to the 

first coordinate. The advantage defining coordinates in a sequential manner is that it is more than 

efficient than using a grid based bins since that will lead to exponential growth when scaling to 

more variables.  
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A simple diagnostic to judge the effectiveness of the algorithm is to track the flux with the initial 

coordinate and observe the steadiness of the flux. If flux is unsteady, additional bins can be 

added based on the already gathered simulation data. With the new coordinate, if the new bins 

were effective then the flux should be steadier around its mean value. Note that this approach is 

mainly focused on deciding the edges of the bins, it is still up to the user to know or decide what 

the actual coordinates should be.  
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