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ABSTRACT	

	

Discovery	of	quantitative	trait	loci	that	mediate	the	effects	of	prenatal	stress	on	

cocaine	and	sensorimotor	behaviors:	Implications	for	gene	by	environment	

interactions	that	contribute	to	psychiatric	disorders	

	

by	

	

Jared	R.	Bagley	

	

	 Gene	by	environment	interactions	may	be	important	etiological	factors	

that	confer	risk	of	numerous	psychiatric	disorders.	Psychiatric	disorders	are	

found	to	be	heritable,	indicating	genetic	variants	contribute	to	risk	and	

resilience.	In	addition	to	genetics,	early	life	stress	confers	significant	risk.	

Prenatal	stress	(PNS)	is	associated	with	numerous	disorders	and	alterations	to	

affect	and	cognition	that	suggest	profound	and	enduring	consequences.	

Preclinical	studies	causally	indicate	the	deleterious	effects	of	PNS	on	models	of	

psychiatric	disorders,	including	effects	on	prepulse	inhibition	(PPI)	and	cocaine	

reward	and	locomotion.	The	intersection	of	genetics	and	PNS	has	been	explored	

and	PNS	was	found	to	interact	with	genetic	background.	PNS	differentially	alters	

PPI	and	cocaine	reward	and	locomotion	in	the	C57/6J	(B6)	and	DBA/2J	(D2)	

inbred	mouse	strains.	These	strains	may	serve	as	progenitors	for	populations	
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that	can	be	utilized	in	forward	genetic	studies	for	discovery	of	quantitative	trait	

loci	(QTLs)	that	will	facilitate	discovery	of	PNS	interacting	variants.	The	

following	will	present	studies	that	utilized	the	BXD	recombinant	inbred	mouse	

panel,	derived	from	the	B6	and	D2	strains,	to	discover	QTLs	that	interact	with	

PNS	to	alter	sensorimotor	and	cocaine-induced	behaviors.	A	QTL	by	PNS	

interaction	was	discovered	for	PPI	and	acute	cocaine	locomotion.	The	BXD	panel	

is	a	genetic	reference	population	that	allows	for	extensive	accumulation	and	

sharing	of	data	across	studies.	Following	discovery	of	these	QTLs,	publicly	

available	BXD	mRNA	expression	data	was	utilized	to	prioritize	positional	

candidate	genes.	These	efforts	prioritized	several	positional	candidate	genes.	In	

addition	to	offspring	phenotypes,	the	maternal	stress	corticosterone	response	

and	effects	of	stress	on	dam-pup	contact	were	assessed,	as	heritable	maternal	

stress	responses	may	contribute	to	strain	differences	in	offspring	phenotype,	

with	implications	for	the	interpretation	of	QTLs.	Strain	differences	in	the	

maternal	corticosterone	response	and	the	maternal	behavior	response	to	stress	

associated	with	strain	differences	in	PNS	effects	on	male	offspring	cocaine	

phenotypes,	suggesting	a	potential	role	for	genetic	variants	that	moderate	the	

maternal	stress	response.	The	results	obtained	are	a	preliminary	step	in	

identifying	genes	that	interact	with	PNS	to	confer	risk	of	psychiatric	disease.	
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Chapter	1	

Introduction
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Psychiatric	disorders	exact	devastating	consequences	on	afflicted	

individuals	and	profound	costs	on	society	as	a	whole.	Those	who	suffer	with	a	

psychiatric	condition	may	be	burdened	with	impaired	daily	functioning	and	a	

reduced	lifespan	(Murray	et	al.,	2013;	Walker,	McGee,	&	Druss,	2015).	The	

financial	costs	of	these	impairments	were	estimated	at	$2.5	trillion	in	2010,	with	

a	projected	cost	of	$6	trillion	in	the	year	2030	(Bloom	et	al.,	2012).	Psychiatric	

disorders	are	common,	with	1	in	5	diagnosed	in	a	given	year	(Center	for	

Behavioral	Health	Statistics	and	Quality,	2016).	Because	of	the	prevalence	and	

often	severe	impact	of	psychiatric	conditions,	discovery	of	better	treatments	

should	be	a	top	priority.	However,	better	treatment	may	only	be	discovered	with	

a	sophisticated	and	comprehensive	understanding	of	psychiatric	disorder	

etiology.	Despite	progress	in	psychiatric	disorder	research,	collectively,	

psychiatric	diseases	remain	poorly	understood	both	in	terms	of	cause	and	

optimal	management.		

Discovery	of	etiological	factors	will	likely	lead	to	improved	prevention	

and	treatment.	Knowledge	of	etiological	factors	will	allow	for	productive	lines	of	

neurobiological	research	that	better	elucidate	the	neuropathology	of	psychiatric	

disorders.	An	improved	physiological	understanding	will	provide	opportunities	

for	development	of	pharmacotherapeutics	as	well	as	non-drug	therapies.	Many	

psychiatric	disorders	are	likely	the	result	of	a	complex	myriad	of	risk	factors;	
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interactions	between	environmental	and	genetic	factors	occurring	at	proximal	

and	distal	times	to	the	expression	of	psychiatric	symptoms.	Although	a	

significant	challenge,	identifying	and	untangling	these	factors	will	improve	the	

treatment	of	those	who	suffer	from	mental	illness.	The	following	will	briefly	

review	the	genetics	of	psychiatric	conditions,	including	current	approaches	in	

human	and	preclinical	populations	and	potential	genetic	interactions	with	

environmental	factors.	Particular	attention	will	be	given	to	gene	by	early	life	

stress	interactions	and	effects	on	cocaine	related	behaviors	and	pre-pulse	

inhibition,	for	relevance	to	the	experiments	presented	in	this	dissertation.	

Despite	the	poor	understanding	of	psychiatric	disorder	etiology,	

substantial	evidence	points	to	genetic	variants	as	an	important	contributing	

factor.	Twin	studies	indicate	that	there	is	an	effect	of	genetic	variation	on	risk	for	

developing	most	psychiatric	disorders,	with	heritability	ranging	from	moderate	

(0.33	for	major	depression)	to	high	(0.80	for	schizophrenia)	(Kendler,	2001).	

Although	heritability	indicates	that	genetic	variants	are	important	etiological	

factors	of	psychiatric	disease,	these	studies	do	not	identify	relevant	genes,	thus,	

additional	approaches	are	required	to	elucidate	the	precise	molecular	entities	

driving	disease	development.		

The	discovery	of	psychiatric	risk-	or	resilience-alleles	is	a	promising	

avenue	to	enhance	understanding	of	the	etiology	of	psychiatric	disease	and	can	

lead	to	new	directions	in	neurobiological	research.	Genotyping	is	a	non-invasive	
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procedure	that	has	rapidly	declined	in	cost	due	to	technological	advancements.	

These	properties	allow	for	the	direct	study	of	genetics	in	human	psychiatric	

populations.	Initial	efforts	involved	linkage	analysis	and	candidate-gene	

approaches.	Linkage	analysis	is	only	suitable	for	large	effect	alleles	and	the	

candidate-gene	approach	requires	biased	selection	of	targets,	which	may	greatly	

limit	discovery	of	all	relevant	genes.	In	contrast,	genome	wide	association	

studies	(GWAS)	are	unbiased,	genome-wide	scans	for	genetic	polymorphisms	

that	associate	with	the	phenotype	under	investigation.	GWAS	holds	great	

promise	for	identifying	risk	and	resilience	alleles	involved	in	psychiatric	

disorders.	However,	this	approach	is	challenging.	Psychiatric	disorders	involve	

complex	traits	under	the	influence	of	many	alleles	(Goldman,	Oroszi,	&	Ducci,	

2005).	Furthermore,	individual	alleles	often	have	very	low	effect	size.	Detection	

of	a	weak	allele	signal	requires	tremendous	statistical	power.	Psychiatric	GWAS	

may	require	many	thousands	of	subjects	for	adequate	power;	initial	failures	of	

GWAS	are	largely	thought	to	be	due	to	low	power.	Despite	these	challenges,	

recent	progress	demonstrates	the	utility	and	applications	of	this	approach.	For	

example,	81	replicable	alleles	for	schizophrenia	have	been	identified	by	GWAS.	

(Schizophrenia	Psychiatric	Genome-Wide	Association	Study	(GWAS)	

Consortium,	2011).	The	variants	identified	in	schizophrenia	GWAS	can	be	used	

to	assign	individuals	a	polygenic	risk	score.	In	addition	to	validating	the	GWAS	

findings,	risk	scores	can	be	used	to	investigate	the	effects	of	these	variants	on	a	

variety	of	phenotypes.	A	study	of	adolescents	found	that	the	polygenic	risk	score	
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was	predictive	of	anxiety	and	negative	schizophrenia	symptoms	(H.	C.	Jones	et	

al.,	2016).	This	approach	highlights	the	feasibility	of	utilizing	GWAS	results,	even	

prior	to	a	deep	biological	understanding	of	the	alleles,	to	predict	disease	risk.	

Perhaps	individuals	with	high	genetic	risk	can	be	targeted	for	early	intervention	

and	treatment	prior	to	development	of	clinical	schizophrenia.	GWAS	of	other	

psychiatric	disorders	have	demonstrable	success,	including	drug	abuse.	GWAS	

conducted	for	smoking	behavior	detected	alleles	of	the	nicotinic	acetylcholine	

receptor	subunit	alpha	3	(CHRNA3)	and	5	(CHRNA5)	that	associates	with	

smoking	behavior	(Tobacco	and	Genetics	Consortium,	2010).	The	

neurobiological	effects	of	these	alleles	are	currently	under	investigation	(Ware,	

van	den	Bree,	&	Munafò,	2012).	Furthermore,	discovery	of	these	alleles	lead	to	

interesting	clinical	findings,	including	an	interaction	of	the	CRHNA5	allele	with	

nicotine	cessation	treatment.	Those	with	the	high	risk	genotype	show	greatest	

response	to	nicotine	replace	therapy,	those	with	the	intermediate	risk	genotype	

show	a	blunted	response	while	those	with	the	low	risk	genotype	show	no	

response	to	the	therapy	and	the	pattern	is	reversed	in	placebo	treatment,	with	

the	low	risk	genotype	demonstrating	greatest	abstinence	(Bergen	et	al.,	2013).	

Gene-treatment	interactions	may	be	of	great	value	in	the	treatment	of	individual	

patients,	in	which	therapies	can	be	tailored	to	maximize	efficacy	and	minimize	

adverse	effects.	These	examples	demonstrate	the	success	of	human	GWAS	to	

date,	and	indicate	the	promise	of	continued	efforts.	
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Despite	the	potential	for	human	subjects	GWAS,	there	are	limitations	that	

hamper	success.	In	relation	to	the	aforementioned	requirement	for	very	large	

sample	sizes,	a	significant	consideration	is	the	feasibility	of	sub-domain	and	

quantitative	phenotyping	(M.	Hall	&	Smoller,	2010).	A	psychiatric	disorder	may	

represent	a	collection	of	partially	or	fully	independent	traits,	with	substantial	

heterogeneity	within	a	diagnosed	population.	However,	human	GWAS	often	

utilize	a	case	control	design,	in	which	a	binary	classification	compares	diagnosed	

subjects	to	control	populations.	This	approach	may	reduce	power	by	collapsing	

important	variation	(Van	der	Sluis,	Posthuma,	Nivard,	Verhage,	&	Dolan,	2013).	

Greater	success	may	come	by	characterizing	quantitative	traits	associated	with	a	

disorder	(Flint,	Timpson,	&	Munafò,	2014).	However,	due	to	the	large	sample	

sizes	required	for	GWAS,	“deep”	phenotyping	of	subjects	is	typically	not	feasible.	

In	contrast,	preclinical	studies	involving	laboratory	animals	have	good	feasibility	

for	characterizing	quantitative	traits.	Additionally,	traits	are	characterized	under	

highly	controlled	conditions.	Limiting	environmental	variability	and	

measurement	error	reduces	“noise”	that	may	obscure	allele	effects.	

Furthermore,	measurement	of	some	phenotypes	may	be	limited	in	human	

subjects	due	to	ethical	considerations	(Schughart,	Libert,	&	Kas,	2013).	Similarly,	

genetic	manipulations	allow	for	causal	inferences	and	exploration	of	biological	

effects	that	are	not	possible	in	human	subjects	due	to	ethical	limitations	

(Schughart	et	al.,	2013).	These	advantages	indicate	that	preclinical	genetic	and	

genomic	studies	have	excellent	potential	for	generating	unique	contributions	to	
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psychiatric	genetics	knowledge	by	enhancing	our	ability	to	elucidate	detailed	

causation	of	behavioral	variability.	Greatest	progress	will	be	made	if	clinical	and	

preclinical	approaches	are	conducted	in	a	complementary	manner.		

	

Cocaine	Genetics	in	Pre-Clinical	Models	

Cocaine	abuse	is	considered	a	neuropsychiatric	condition	in	which	the	

neurobiological	response	to	cocaine	leads	to	dysregulated	and	deleterious	use	

(Volkow,	Fowler,	&	Wang,	2003).	Although	many	use	drugs	of	abuse,	such	as	

cocaine,	only	a	small	minority	go	on	to	develop	drug	use	disorders	and	it	

remains	unclear	why	specific	individuals	are	resistant	or	vulnerable	to	addiction	

(Johnston,	O’Malley,	Bachman,	&	Schulenberg,	2005;	Merikangas	&	McClair,	

2012).	Cocaine	abuse	demonstrates	a	high	heritability	of	0.7	(Goldman	et	al.,	

2005).	Identification	of	the	genetic	variants	that	mediate	differences	in	human	

cocaine	responsiveness	is	critical	for	a	comprehensive	understanding	of	

substance	abuse	genetics.	However,	this	pursuit	looks	to	be	a	significant	

challenge.	Non-Mendelian	patterns	of	substance	abuse	inheritance	indicate	a	

polygenic	influence	(Goldman	et	al.,	2005).	Additionally,	GWAS	studies	suggest	

the	involvement	of	hundreds	or	thousands	of	alleles	in	substance	abuse	across	

drug	class	(F.	S.	Hall,	Drgonova,	Jain,	&	Uhl,	2013).	To	date,	forward	genetic	

research	of	substance	abuse	in	human	subjects	has	largely	focused	on	alcohol	

and	nicotine,	with	only	one	completed	cocaine	GWAS	(Gelernter	et	al.,	2014).	As	
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such,	our	understanding	of	the	genetics	of	cocaine	addiction	based	on	studies	of	

human	subjects	is	vastly	incomplete,	however,	preclinical	animal	research	has	

complimented	cocaine	genetics	research	with	both	reverse	and	forward	genetic	

studies.		

A	large	portion	of	research	targeted	at	elucidating	the	genetics	of	cocaine	

responsiveness	has	focused	on	reverse	genetics	techniques.	The	advent	of	

sophisticated	techniques	for	genetic	manipulation	allow	for	the	targeted	

manipulation	of	gene	expression	and	function.	Similar	to	human	candidate-gene	

studies,	selection	of	genetics	targets	is	often	founded	on	prior	knowledge	of	drug	

pharmacodynamics	and	relevant	neurobiology.	Consequently,	much	research	

has	focused	on	monoamine	systems.	The	mechanism	of	action	for	cocaine	

involves	reuptake	inhibition	of	dopamine,	serotonin	and	norepinephrine	by	

interference	with	monoamine	transporters	(Benowitz,	1993).	Increases	in	

dopamine	neurotransmission	are	thought	to	largely	mediate	the	rewarding	

properties	of	cocaine	(Wise,	1996).	Dopamine	transporter	(DAT)	knockout	mice	

display	largely	eliminated	cocaine	locomotor	responses	and	attenuated	cocaine	

CPP	and	self-administration	however	these	mice	were	still	capable	of	

experiencing	cocaine	reward	and	reinforcement	(Sora	et	al.,	2001).	A	double	

knockout	of	DAT	and	serotonin	transporter	(SERT)	eliminated	cocaine	CPP,	

suggesting	the	involvement	of	SERT	in	cocaine	reward	and	highlighting	the	likely	

genetic	complexity	of	cocaine	reward,	which	may	often	include	gene-gene	
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interactions.	This	notion	is	further	supported	by	the	differential	effect	of	DAT	

knockout	on	different	strains	of	mice	(Morice,	Denis,	Giros,	&	Nosten-Bertrand,	

2004).	While	this	is	not	a	comprehensive	review	of	reverse	genetic	approaches	

to	cocaine	abuse	research,	these	studies	highlight	the	benefits	and	limitations	of	

this	approach.	Reverse	genetic	techniques	provide	a	powerful	method	of	

experimentation	that	allows	for	causal	genetic	inference.	However,	the	need	for	

gene	selection	bias	may	greatly	limit	the	identification	of	all	cocaine-relevant	

genes.	Tandem	use	of	forward	genetic	techniques	has	the	potential	to	greatly	

expand	the	number	of	candidate	genes	that	can	be	further	investigated	by	

reverse	genetics	techniques.	

Inbred	strains	provide	a	method	of	establishing	the	heritability	of	traits	

and	can	serve	as	a	foundation	for	forward	genetic	studies.	Repeated	inbreeding	

leads	to	complete	homozygosity,	such	that	all	members	of	a	particular	strain	are	

genetically	identical	to	all	other	members	(Beck	et	al.,	2000).	Phenotypic	

differences	between	inbred	strains	can	be	attributed	to	the	genetic	variation	that	

exists	between	the	strains.	The	influence	of	genetic	variation	on	cocaine-induced	

behaviors	has	been	assessed	by	comparison	of	inbred	strains.	With	respect	to	

cocaine,	much	of	the	work	has	focused	on	the	C57BL/6	(B6)	and	DBA/2	(D2)	

inbred	strains.	D2	mice	demonstrate	greater	locomotor	response	upon	initial	

cocaine	dosing	and	greater	locomotion	sensitization	to	repeated	cocaine	

administration	(Cunningham,	Dickinson,	Grahame,	Okorn,	&	McMullin,	1999;	I.	E.	
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M.	de	Jong,	Steenbergen,	&	de	Kloet,	2008;	Inge	E.	M.	de	Jong,	Oitzl,	&	de	Kloet,	

2007;	Tolliver	&	Carney,	1994,	1995).	However,	there	is	discordance	of	

locomotor	responses	with	cocaine	reward	and	reinforcement.	B6	mice	

demonstrate	greater	cocaine	reward	as	measured	by	conditioned	place	

preference	(CPP)	(Cunningham	et	al.,	1999;	C.	Orsini,	Bonito-Oliva,	Conversi,	&	

Cabib,	2005;	Cristina	Orsini,	Bonito-Oliva,	Conversi,	&	Cabib,	2008;	Seale	&	

Carney,	1991).	B6	mice	also	demonstrate	higher	rates	of	cocaine	self-

administration	(Kuzmin	&	Johansson,	2000;	Veen,	Piazza,	&	Deroche-Gamonet,	

2007).	These	data	suggest	that	these	strains	differ	in	their	response	to	cocaine	

with	the	B6	strain	exhibiting	relatively	high	responsiveness	on	measures	of	

addiction-like	behavior.	These	strain	differences	confirm	that	cocaine	

responsiveness	is	mediated	by	genetic	variation	and	also	indicate	that	the	B6	

and	D2	strains	may	serve	as	valuable	tools	for	identifying	alleles	that	have	

relevance	for	cocaine	addiction.		

Although	comparisons	of	a	small	number	of	inbred	strains	can	indicate	

the	heritability	of	a	trait,	the	vast	number	of	polymorphisms	between	strains	will	

often	preclude	genome	wide	searches	for	associated	alleles.	However,	

populations	can	be	derived	from	inbred	strains	by	crossbreeding	and	then	

utilized	for	genome	wide	scans.	These	populations	have	been	utilized	to	search	

for	alleles	that	affect	cocaine	phenotypes.	Much	of	this	research	has	examined	

measures	of	cocaine	induced	locomotion	(Boyle	&	Gill,	2001,	2009;	Gill	&	Boyle,	
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2003;	Miner	&	Marley,	1995b;	Phillips,	Huson,	&	McKinnon,	1998;	Tolliver,	

Belknap,	Woods,	&	Carney,	1994;	Vendruscolo	et	al.,	2009).	More	recent	studies	

have	focused	on	reward	and	reinforcement,	with	characterization	of	both	

cocaine-induced	CPP	and	cocaine	self-administration	(Dickson	et	al.,	2015;	Philip	

et	al.,	2010a).	The	details	of	this	research	and	the	implications	for	the	present	

experiments	will	be	discussed	further	in	Chapter	3.	

	

Pre	Pulse	Inhibition	Genetics	in	Preclinical	Studies	

	 Prepulse	inhibition	(PPI)	is	the	attenuation	of	a	startle	response	when	

preceded	by	a	lower	intensity	stimulus	(Swerdlow,	Braff,	&	Geyer,	2000).	PPI	is	

observed	across	sensory	systems,	however	acoustic	PPI	is	frequently	utilized	for	

investigation.	Both	the	startle	response	and	PPI	are	highly	conserved	

phenomena	(Swerdlow,	Braff,	&	Geyer,	1999).	PPI	procedures	are	also	

amendable	to	studies	of	human	subjects,	as	such	PPI	is	thought	to	be	a	

behavioral	phenotype	with	good	potential	for	translational	research.	

Furthermore,	PPI	deficits	are	observed	in	a	number	of	psychiatric	and	

neurological	disorders	including	schizophrenia,	bipolar	disorder,	autism,	

Huntington’s	disease	and	Tourette’s	syndrome	(Kohl,	Heekeren,	Klosterkötter,	&	

Kuhn,	2013).	Deficits	observed	in	psychiatric	disorders	and	the	translational	

potential	indicate	PPI	to	be	a	behavioral	phenotype	with	rich	potential	for	
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discovery	of	genes	in	animal	models	that	confer	risk	or	resilience	to	psychiatric	

disease.	

	 As	with	cocaine	abuse	related	phenotypes,	PPI	has	been	investigated	by	

reverse	genetic	techniques.	Hypothesis	driven	selection	of	genes	are	targeted	for	

manipulation	(Powell,	Weber,	&	Geyer,	2012).	Abnormal	dopamine	and	

glutamate	function	are	theorized	to	contribute	to	symptoms	of	schizophrenia.	

DAT	KO	mice	display	deficits	in	PPI	suggesting	a	hyper-dopaminergic	state	can	

interfere	with	PPI	(Ralph,	Paulus,	Fumagalli,	Caron,	&	Geyer,	2001).	Reduced	

expression	of	the	NMDA	receptor	NR1	subunit	causes	PPI	deficits;	evidence	in	

line	with	pharmacological	research	that	suggests	NMDA	antagonists	produce	

schizophrenic	like	symptoms	and	agonists	may	alleviate	symptoms	(Duncan	et	

al.,	2004).	In	addition	to	glutamate	and	dopamine	systems,	overexpression	of	

corticotrophin	releasing	factor	(CRF)	in	a	transgenic	mouse	line	causes	deficits	

in	PPI,	implicating	stress	related	genes	as	potential	contributors	to	PPI	deficits.	

This	may	be	of	particular	relevance,	given	the	involvement	of	stress	in	many	

psychiatric	disorders	(Agnew-Blais	&	Danese,	2016;	Holtzman	et	al.,	2013;	

Kendler,	Karkowski,	&	Prescott,	1999;	Koob	et	al.,	2014).	In	addition	to	

supporting	dopamine/glutamate	theories	of	schizophrenia	and	stress-

psychiatric	disorder	connections,	these	lines	of	evidence	generally	suggest	that	

PPI	is	a	phenotype	susceptible	to	alterations	in	gene	expression	and	function.		
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	 Reverse	genetic	techniques	may	be	of	great	utility	in	causally	validating	

candidate	genes	that	are	discovered	by	genome	wide	scans	or	candidate-gene	

approaches	in	human	subjects.	This	is	particularly	true	of	PPI,	due	to	the	

feasibility	of	characterizing	human	subjects	and	comparing	to	animal	models.	

Candidate-gene	approaches	have	identified	variants	of	the	neuroregulin	1	

(NRG1)	and	the	disrupted	in	schizophrenia	1	(DISC1)	genes	as	associating	

schizophrenia	and	with	PPI	deficits	in	human	subjects	(Mackie,	Millar,	&	

Porteous,	2007;	Roussos,	Giakoumaki,	Adamaki,	&	Bitsios,	2011).	NRG1	mutants	

in	mouse	have	demonstrated	PPI	deficits,	as	well	as	the	knock	out	of	the	NRG1	

receptor	ERBB2	(Barros	et	al.,	2009;	Chen	et	al.,	2008;	Wen	et	al.,	2010).	Both	

knockout	of	DISC1	and	the	DISC1L100P	mutations	demonstrate	PPI	deficits	

(Hikida	et	al.,	2007;	Lipina	et	al.,	2010).	These	results	reveal	the	utility	in	tandem	

human	subjects	and	animal	model	approaches	for	genetic	discovery.	In	addition	

to	validating	candidate	genes,	animal	models	may	have	utility	for	use	in	forward	

genetic	screens	of	PPI.	

	 Common	inbred	mouse	strains	demonstrate	large	between-strain	

differences	in	acoustic	startle	and	PPI.	These	differences	reveal	heritability	of	

PPI	in	mouse	populations	and	indicate	their	utility	for	forward	genetic	

approaches.	Populations	derived	from	crossbreeding	some	of	these	strains	have	

been	employed	for	QTL	mapping	of	PPI	(Fernández-Teruel	et	al.,	2002;	Joober,	

Zarate,	Rouleau,	Skamene,	&	Boksa,	2002;	Leussis	et	al.,	2009;	Loos	et	al.,	2012;	
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Palmer	et	al.,	2003;	Petryshen	et	al.,	2005;	Philip	et	al.,	2010b;	Samocha,	Lim,	

Cheng,	Sokoloff,	&	Palmer,	2010;	Sittig,	Carbonetto,	Engel,	Krauss,	&	Palmer,	

2016;	Vendruscolo,	Terenina-Rigaldie,	et	al.,	2006;	Watanabe	et	al.,	2007;	Webb,	

McClay,	Vargas-Irwin,	York,	&	van	den	Oord,	2009).	The	details	of	this	research	

and	implications	for	the	present	experiments	will	be	discussed	further	in	

Chapter	2.		

	 Animal	models	have	proven	invaluable	in	genetics	research.	The	

literature	discussed	here	demonstrates	the	utility	of	these	models	for	

investigation	of	cocaine	related	phenotypes	and	PPI.	Reverse	genetics	has	

implicated	and	supported	candidate	genes.	Furthermore,	forward	genetics	is	

employed	in	both	human	and	animal	populations	for	the	discovery	of	novel	

candidate	genes.	However,	despite	these	efforts,	many	of	the	relevant	genes	are	

thought	to	remain	undiscovered	(Crow,	2011).	Therefore,	it	is	pertinent	to	

consider	experimental	approaches	that	further	increase	the	probability	of	gene	

discovery.	These	efforts	may	include	consideration	of	environmental	factors.	

Likely	important	for	the	etiology	of	all	psychiatric	disorders,	environmental	

factors	may	interact	with	genetic	variants	to	contribute	to	psychiatric	disease.	It	

is	this	interaction	that	may	be	exploited	to	discover	new	genes.	
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Early	Life	Stress	as	an	Environmental	Factor	

Genetic	variation	does	not	account	for	all	psychiatric	disorder	

vulnerability,	indicating	environmental	factors	must	also	be	identified	and	

assessed	(Goldman	et	al.,	2005).	Exposure	to	early	life	stressors,	in	both	the	

prenatal	and	postnatal	period,	appear	to	contribute	to	psychiatric	disease.	

Studies	of	human	populations	indicate	that	early	life	postnatal	stressors	

associate	with	development	of	depression,	schizophrenia,	substance	abuse	and	

eating	disorders	(Carr,	Martins,	Stingel,	Lemgruber,	&	Juruena,	2013)	(Dube	et	

al.,	2003;	Enoch,	2011).	Early	life	stress	is	often	measured	in	the	postnatal	

period	(i.e.	early	childhood),	however	exposure	to	prenatal	stress	may	also	have	

a	role	in	psychiatric	disorder	etiology.	Fetal	development	may	pose	a	

particularly	vulnerable	phase,	in	which	tissues,	including	the	central	nervous	

system,	are	under	profound	and	rapid	development	and	thus	sensitive	to	

developmental	insults.	Exposure	of	the	mother	to	stressors	during	pregnancy	

impacts	fetal	development,	with	enduring	changes	that	appear	to	insidiously	

manifest	as	elevated	vulnerability	to	a	variety	of	psychiatric	disorders.	Prenatal	

stress	has	been	associated	with	schizophrenia,	autism,	mood	disorders	and	

cognitive	impairments	(DiPietro,	Novak,	Costigan,	Atella,	&	Reusing,	2006;	

Huizink,	Robles	de	Medina,	Mulder,	Visser,	&	Buitelaar,	2003;	Khashan	et	al.,	

2008;	Kinney,	Miller,	Crowley,	Huang,	&	Gerber,	2008;	Laplante	et	al.,	2004;	

Laplante,	Brunet,	Schmitz,	Ciampi,	&	King,	2008;	O’Connor,	Heron,	Golding,	
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Beveridge,	&	Glover,	2002;	O’Connor,	Heron,	Golding,	Glover,	&	ALSPAC	Study	

Team,	2003).	The	associations	of	prenatal	and	postnatal	stress	exposure	with	a	

variety	of	psychiatric	disorders	indicate	early	life	stress	as	environmental	factor	

of	potential	significance	for	understanding	the	etiology	of	psychiatric	disease.	

Accordingly,	early	life	stress	is	the	focus	of	preclinical	research	to	confirm	

causality	and	elucidate	the	biological	mechanisms.		

	Early	life	stress	can	be	modeled	in	pre-clinical	animal	studies.	Stress	

exposure	in	both	the	prenatal	and	postnatal	period	are	investigated,	however	

the	following	will	focus	on	the	prenatal	period	and	its	relevance	to	the	present	

experiments.	Stress	is	typically	applied	in	the	third	trimester	of	mouse	or	rat	

gestation,	which	is	estimated	to	be	the	neurodevelopmental	equivalent	of	the	

first/second	trimester	of	human	pregnancy.	However,	such	comparisons	may	be	

problematic	when	considering	differences	in	scale	and	complexity	of	

development	between	species.	For	example,	rodent	neurogenesis	is	thought	to	

be	largely	complete	in	the	prenatal	period,	however	substantial	human	

neurogenesis	may	continue	to	2.5	years	of	age	(Semple,	Blomgren,	Gimlin,	

Ferriero,	&	Noble-Haeusslein,	2013).	Consequently,	sensitive	periods	of	

development	may	differ	between	species,	depending	on	the	phenotype	under	

study.	Despite	these	caveats,	early	life	stress	in	preclinical	studies	has	enduring	

effects	that	often	resemble	the	associated	effects	of	early	life	stress	in	human	

subjects.	
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A	variety	of	stressors	have	been	utilized	to	elicit	a	stress	response	in	

pregnant	animals,	with	repeated	restraint	of	the	dam	as	a	common	stressor	

employed	in	this	model	(Maccari	&	Morley-Fletcher,	2007).	Restraint	is	

confirmed	as	a	stressor	by	the	reliable	activation	of	the	hypothalamic	pituitary	

adrenal	(HPA)	axis	and	subsequent	increase	in	circulating	glucocorticoids.	PNS	

affects	multiple	behaviors	in	rodents	that	represent	several	domains	of	emotion	

and	cognition	including:	anxiety,	depression,	social	interaction,	spatial	memory	

and	response	to	drugs	of	abuse	(Weinstock,	2017).		

PNS	effects	on	affective	behaviors	are	widely	reported,	with	increases	in	

anxiety	and	depressive-like	behaviors.	PNS	decreased	open	arm	time	and	entries	

in	the	elevated	plus	maze	and	decreased	center	time	exploration	in	the	open	

field	test	(G.	A.	Bennett,	Palliser,	Shaw,	Walker,	&	Hirst,	2015;	Bogoch,	Biala,	

Linial,	&	Weinstock,	2007;	Boulle	et	al.,	2016;	Fride	&	Weinstock,	1988;	Gur	et	

al.,	2016;	Laloux	et	al.,	2012;	Miyagawa,	Tsuji,	Fujimori,	Saito,	&	Takeda,	2011;	

Patin,	Lordi,	Vincent,	&	Caston,	2005;	Said,	Lakehayli,	Battas,	Hakkou,	&	Tazi,	

2015;	Vallée	et	al.,	1997;	Zhang	et	al.,	2016;	Zuena	et	al.,	2008).	Males	may	be	

more	sensitive	to	PNS	effects	on	anxiety,	although	effects	are	reported	for	

females	(Said,	Lakehayli,	Battas,	et	al.,	2015;	Zuena	et	al.,	2008).	Increases	in	

anxiety	can	be	reversed	by	citalopram	treatment,	indicating	predictive	validity	

as	a	model	for	anxiety	(Zohar,	Dosoretz-Abittan,	Shoham,	&	Weinstock,	2015).	

PNS	also	increases	depressive-like	behavior,	as	measured	by	increased	
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immobility	in	the	forced	swim	test	(Basta-Kaim	et	al.,	2014;	Rayen,	van	den	

Hove,	Prickaerts,	Steinbusch,	&	Pawluski,	2011;	Sickmann,	Arentzen,	Dyrby,	

Plath,	&	Kristensen,	2015;	Sierksma	et	al.,	2013;	Ślusarczyk	et	al.,	2015;	Sowa	et	

al.,	2015;	Weinstock,	2007;	Zhang	et	al.,	2016).	Both	sexes	appear	to	be	affected,	

however	females	may	be	more	sensitive	(Sickmann	et	al.,	2015;	Sierksma	et	al.,	

2013;	Weinstock,	2007).	PNS-induced	decreases	in	sucrose	preference	are	also	

reported,	indicating	PNS	may	cause	anhedonia	(Ślusarczyk	et	al.,	2015).	

PNS	causes	deficits	in	learning	and	memory.	Most	widely	reported	are	

deficits	in	acquisition	of	platform	location	in	the	Morris	water	maze	(Hosseini-

Sharifabad	&	Hadinedoushan,	2007;	H.	Li	et	al.,	2008;	Lui	et	al.,	2011;	Modir,	

Elahdadi	Salmani,	Goudarzi,	Lashkarboluki,	&	Abrari,	2014;	Nazeri	et	al.,	2015;	

Ratajczak	et	al.,	2015;	H.	Sun	et	al.,	2017;	Suzuki	et	al.,	2016;	Yang,	Han,	Cao,	Li,	&	

Xu,	2006;	Zhao	et	al.,	2013).	Deficits	of	memory	retention	as	assessed	on	the	final	

probe	trial	are	reported	in	some	but	not	most	studies,	indicating	that	acquisition	

may	be	most	affected	(Benoit,	Rakic,	&	Frick,	2015;	Modir	et	al.,	2014;	H.	Sun	et	

al.,	2017).	Other	behavioral	tests	also	indicate	learning	or	memory	deficits	

including	increased	error	rate	in	radial	arm	maze,	lowered	retention	of	novel	

versus	familiar	arms	in	the	y-maze	(6	hours	after	exposure)	and	deficits	in	

passive	avoidance	learning.	Interestingly,	three	studies	report	PNS-induced	

improvement	in	learning	or	memory	in	cue-mediated	Morris	water	maze,	Barnes	

maze	probe	trial	performance	and	female-specific	improvement	of	spatial	Morris	
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water	maze	(Benoit	et	al.,	2015;	Negrón-Oyarzo,	Neira,	Espinosa,	Fuentealba,	&	

Aboitiz,	2015;	Zuena	et	al.,	2008).	However,	a	large	majority	of	reports	indicate	

PNS	causes	deficits	in	learning	or	memory.	Sensitivity	to	these	effects	may	differ	

between	sexes.	Females	may	be	more	sensitive	to	PNS	effects	on	Morris	water	

maze,	however	male	effects	are	widely	reported	indicating	PNS	effects	on	

learning	and	memory	are	not	sex-specific.	(H.	Li	et	al.,	2008;	H.	Sun	et	al.,	2017;	

Zuena	et	al.,	2008).		

	

PNS	and	Cocaine	

	PNS	may	increase	vulnerability	to	substance	use	disorders,	including	

cocaine	abuse.	PNS	has	been	shown	to	alter	cocaine	behaviors	in	adult	offspring.	

Adult	male	PNS	rats	demonstrate	an	enhanced	locomotor	response	to	cocaine	

administration	and	both	male	and	female	PNS	rats	demonstrate	enhanced	

locomotor	sensitization	to	repeated	cocaine	dosing	(Kippin,	Szumlinski,	

Kapasova,	Rezner,	&	See,	2008;	Thomas,	Hu,	Lee,	Bhatnagar,	&	Becker,	2009)	

PNS	male	rats	are	also	reported	to	have	higher	cocaine	intake	during	self-

administration	and	to	be	resistant	to	self-administration	extinction	training	

(Kippin	et	al.,	2008;	Thomas	et	al.,	2009).	In	addition	to	cocaine,	PNS	alters	

responsiveness	to	other	drugs	of	abuse.	PNS	augments	CPP	of	morphine,	

nicotine	and	benzodiazepines	and	increases	self-administration	of	amphetamine	

and	ethanol,	indicating	PNS	may	increase	vulnerability	to	substance	abuse	
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across	drug	class	(Campbell,	Szumlinski,	&	Kippin,	2009;	Deminière	et	al.,	1992;	

Lakehayli,	Said,	Battas,	Hakkou,	&	Tazi,	2015;	Said,	Lakehayli,	El	Khachibi,	et	al.,	

2015;	Yang,	Li,	et	al.,	2006).	It	is	worth	noting	that	no	human	studies	have	yet	

associated	PNS	with	drug	abuse	liability;	all	measures	of	early	life	stress	that	

associate	with	drug	abuse	vulnerability	occurred	in	the	post-natal	period.	

However,	these	preclinical	data	suggest	that	PNS	may	confer	risk	for	drug	abuse	

and	warrant	further	study	of	both	behavioral	effects	and	physiological	

mechanisms.		

	

PNS	and	PPI	

PNS	has	effects	on	PPI	that	extend	into	the	adult	period.	The	majority	of	

studies	report	a	deficit	of	PPI	in	PNS	exposed	offspring	(Fumagalli,	Bedogni,	

Perez,	Racagni,	&	Riva,	2004;	Koenig	et	al.,	2005;	Matrisciano	et	al.,	2013;	

Matrisciano,	Tueting,	Maccari,	Nicoletti,	&	Guidotti,	2012;	Zubedat	et	al.,	2015).	

However	one	study	reports	an	increase	(Lehmann,	Stöhr,	&	Feldon,	2000)	and	

another	did	not	find	an	effect	(Burton,	Lovic,	&	Fleming,	2006).	PPI	deficits	are	

associated	with	psychiatric	disease,	including	some	disorders	associated	with	

PNS	exposure	in	humans	(schizophrenia	and	autism)	(Kohl	et	al.,	2013;	

O’Donnell,	O’Connor,	&	Glover,	2009).	Interestingly,	impairment	of	PPI	

development	in	human	infants	has	also	been	associated	with	maternal	social	

stress	in	the	prenatal	period	(Huggenberger,	Suter,	Blumenthal,	&	Schachinger,	
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2013).	Congruence	of	PNS	effects	between	human	and	animal	subjects	suggests	

that	preclinical	studies	have	good	potential	to	yield	translational	results.		

Effects	of	PNS	on	cocaine	responsiveness	and	PPI,	in	addition	to	effects	on	

other	behaviors	and	congruence	with	early	life	stress	effects	observed	in	clinical	

studies,	suggest	that	PNS	is	an	important	etiological	factor	that	should	be	further	

studied	to	understand	the	behavioral	and	physiologically	pathology	of	

psychiatric	disorders.	Furthermore,	PNS	may	represent	an	environmental	factor	

that	interacts	with	genotype	to	determine	developmental	outcomes.	This	

interaction	may	be	utilized	to	discover	genes	that	modify	risk	for	psychiatric	

disease	by	conferring	sensitivity	or	resilience	to	the	effects	of	PNS.	

	

Genotype	X	PNS	Interactions	

The	phenotype	of	an	organism	is	the	product	of	genetic	and	

environmental	factors.	However,	genetic	and	environmental	factors	can	interact,	

such	that	genetic	variation	mediates	the	effects	of	environment	on	phenotype.	

Consideration	of	gene	x	environment	(GXE)	interactions	may	benefit	research	in	

psychiatric	disorder	genetics.	Psychiatric	GWAS	data	indicate	that	alleles	tend	to	

have	very	small	effect	sizes	(Goldman	et	al.,	2005;	F.	S.	Hall	et	al.,	2013;	Q.-R.	Liu	

et	al.,	2006).	This	has	pragmatic	consequences,	in	that	detection	of	some	alleles	

may	be	difficult	due	to	a	weak	signal.	However,	by	stratifying	samples	into	
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environmental	factors,	the	effect	size	of	relevant	alleles	may	increase	and	

become	detectable	(Murcray,	Lewinger,	&	Gauderman,	2009).	Furthermore,	

detection	of	genetic	loci	that	interact	with	an	environmental	factor	can	be	

followed	with	biological	studies	of	gene	effects	that	incorporate	prior	knowledge	

of	environmental	factor	effects.	This	may	guide	hypothesis	formation	and	benefit	

the	often	difficult	task	of	determining	the	biological	relevance	of	genes,	once	

detected	by	genome	wide	scans.	

	 Gene	by	environment	interactions	have	been	identified	in	the	

investigation	of	psychiatric	disorders.	Environmental	factors	include	likely	early	

life	stressors	(childhood	maltreatment	and	trauma)	and	prenatal	exposure	to	

smoking	and	alcohol	use.	In	addition	to	independent,	main	effects	of	these	early	

life	exposures,	genotype	at	a	number	of	genes	interacts	with	these	factors	to	

modify	risk.	Alleles	of	the	serotonin	transporter	linked	polymorphic	region	(5-

HTTPLPR)	are	found	to	interact	with	early	life	maltreatment	and	early	life	stress	

to	increase	risk	of	alcohol	abuse	and	depression	(Vergne	&	Nemeroff,	2006).	5-

HTTPLPR	alleles	are	the	most	extensively	investigated	genotypes	in	GXE	studies	

and	are	found	to	interact	with	adult	exposure	to	stress,	in	addition	to	early	life	

exposure	(Caspi,	Hariri,	Holmes,	Uher,	&	Moffitt,	2010).	Other	genes	are	found	to	

interact	with	early	life	stress	and	maltreatment	including:	neurotransmitter-

metabolizing	enzyme	monoamine	oxidase	A	(MAOA)	(increase	risk	of	conduct	

disorder),	dopamine	active	transporter	(DAT1)	(increased	risk	of	ADHD)	and	
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corticotrophin-releasing	hormone	1	(CRHR1)	(increased	risk	of	mood	and	

anxiety	disorders)	(Nugent,	Tyrka,	Carpenter,	&	Price,	2011;	Wermter	et	al.,	

2010).	Collectively,	this	research	demonstrates	the	relevance	of	gene	by	early	

life	environment	interactions	for	conferring	risk	of	psychiatric	disorders.	

However,	these	studies	represent	biased	selection	of	genes	for	investigation.	As	

with	research	of	allele	main	effects,	the	search	for	the	genes	involved	in	GXE	

interactions	may	benefit	greatly	from	unbiased,	genome	wide	scans.	Emerging	

methodology	suggests	this	may	be	a	promising	approach	in	human	subjects,	

however	there	are	significant	challenges	including	valid	methods	of	exposure	

assessment	(Winham	&	Biernacka,	2013).	Preclinical	animal	studies	allow	for	

highly	controlled	exposure	and	may	be	of	benefit	when	used	in	tandem	with	

human	genetics	studies.	

	

Preclinical	Gene	X	PNS	Interactions	

Pre-clinical	animal	models	are	particularly	useful	in	GXE	interaction	

research.	Controlled	exposure	to	environmental	factors	reduces	the	confounds	

and	measurement	error	that	may	often	occur	in	human	subjects	research,	

allowing	for	a	high	probability	of	allele	detection	and	experimental	validation	

(Carhuatanta,	Shea,	Herman,	&	Jankord,	2014;	Izídio	et	al.,	2011;	Reifsnyder,	

Churchill,	&	Leiter,	2000;	Tarricone,	Hingtgen,	Belknap,	Mitchell,	&	Jr,	1995;	

Vieira	et	al.,	2000).		
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	 PNS	has	been	investigated	for	interaction	with	genotype	by	reverse	

genetic	techniques.	A	candidate-gene	approach	provides	evidence	for	serotonin	

transporter	(5-Htt)	interaction	with	PNS,	with	effects	that	are	congruent	with	

human	subjects	studies.	5-Htt	knockout	mice,	exposed	to	PNS,	display	increased	

depressive-	like	behavior,	reduced	social	interaction	and	differential	

hippocampal	gene	expression	that	may	be	mediated,	in	part,	by	differential	DNA	

methylation	(Jakob	et	al.,	2014;	K.	L.	Jones,	Smith,	Edwards,	Givens,	&	

Beversdorf,	2010;	Schraut	et	al.,	2014;	D.	Van	den	Hove	et	al.,	2011).	SNAP-25	is	

a	SNARE-associated	protein	implicated	in	neurotransmitter	release	(Tafoya,	

Shuttleworth,	Yanagawa,	Obata,	&	Wilson,	2008).	The	SNAP-25	gene	has	been	

implicated	in	schizophrenia	and	ADHD	by	GWAS	and	candidate-gene	approaches	

(Lewis	et	al.,	2003;	Y.-S.	Liu	et	al.,	2016).	Furthermore,	altered	SNAP-25	

expression	levels	are	found	in	schizophrenic	patients	(Thompson,	Sower,	&	

Perrone-Bizzozero,	1998).	A	SNAP-25	by	PNS	interaction	was	assessed	by	

utilizing	a	mouse	mutant	for	SNAP-25.	This	variant	leads	to	impaired	

neurotransmitter	release.	PNS	increased	PPI	deficits	and	impaired	social	

interaction	in	SNAP-25	mutants,	effects	not	observed	in	wild-type	controls	

(Oliver	&	Davies,	2009).	These	results	suggest	that	genes	identified	in	human	

studies	do	interact	with	PNS	to	alter	relevant	phenotypes	and	generally	support	

the	relevance	of	gene	by	PNS	interactions	for	psychiatric	disorder	etiology.	
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In	addition	to	targeted	genetic	manipulation,	inbred	strains	can	also	be	

utilized	to	identify	GXE	interactions.	Comparison	of	two	or	more	strains	allows	

for	assessment	of	strain	by	environment	interactions	that	indicate	one	or	more	

GXE	interactions.	Comparison	of	the	Fischer	344	and	Lewis	inbred	rat	strains	

indicates	PNS	interacts	with	strain	to	impair	avoidance	conditioning,	increase	

locomotor	activity,	reduce	force	swim	immobility	and	lower	pain	thresholds	

(Stöhr	et	al.,	1998).	Comparison	of	the	B6	and	D2	inbred	mouse	strains	provides	

evidence	for	strain-dependent	increase	in	inter-male	aggression	(Kinsley	&	

Svare,	1987).		

	This	approach	has	been	utilized	by	our	laboratory	to	assess	potential	

strain	by	PNS	interactions	that	affect	cocaine-related	behaviors	and	acoustic	

startle/PPI.	The	B6	and	D2	strains	were	subjected	to	PNS	by	a	restraint	stress	

protocol	in	the	3rd	week	of	gestation.	Adult	offspring	were	then	assessed	for	

acute	and	sensitized	cocaine	locomotion	and	for	cocaine-induced	CPP,	for	3	

doses	of	cocaine	(3,	10	and	30	mg/kg)	(Kippin,	Campbell,	Ploense,	Knight,	&	

Bagley,	2015).	PNS	increased	the	magnitude	of	cocaine-induced	CPP	in	both	

male	and	female	B6	mice	across	all	doses.	However	it	did	not	affect	CPP	in	the	D2	

strain.	Furthermore,	PNS	increased	cocaine	locomotion	in	B6	males,	but	had	no	

effect	on	D2	mice.	PNS	also	differentially	affected	locomotion	after	saline	

injection.	B6	PNS	subjects	demonstrate	greater	locomotion	while	D2	PNS	

subjects	demonstrate	reduced	locomotion.	In	addition	to	cocaine	behaviors,	PNS	
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also	interacts	with	strain	to	alter	acoustic	startle	response	(ASR)	and	PPI.	PNS	

increases	ASR	in	male	D2	mice	but	decreases	ASR	in	male	B6	mice	and	impairs	

PPI	in	D2	mice	but	not	B6	mice	(Kippin	et.	al.,	unpublished	data).	

	 Taken	together,	the	evidence	collected	in	our	laboratory	indicates	that	

PNS	interacts	with	genetic	background	to	determine	the	influence	of	PNS	on	

cocaine	behaviors	and	PPI.	This	suggests	the	existence	of	alleles	that	mediate	

vulnerability	to	the	developmental	effects	of	PNS.	However,	there	does	not	

appear	to	be	a	general	genetic	vulnerability	to	PNS,	as	the	effects	differ	

depending	on	the	genotype.	PNS	affects	cocaine	CPP	and	locomotion	in	B6	but	

not	D2	mice.	The	effects	of	PNS	on	saline-locomotion	are	opposite	between	B6	

and	D2	strains.	Finally,	PNS	impairs	PPI	in	D2	but	not	B6	mice.	These	differential	

effects	across	traits	suggest	that	genetic	vulnerability	to	PNS	is	mediated	by	

alleles	with	unique,	trait-specific	roles.	Therefore,	multiple	alleles	should	be	

involved	in	PNS	vulnerability,	with	some	or	all	of	these	alleles	demonstrating	

trait	specificity.	

Strain	by	PNS	interactions	indicate	that	the	B6	and	D2	inbred	strains	are	

suitable	as	progenitors	for	populations	that	can	be	utilized	in	forward	genetic	

screens.	The	BXD	recombinant	inbred	strains	are	derived	from	the	B6	and	D2	

strains	and	can	be	utilized	for	genome	wide	scans	for	genotype-phenotype	

associations.	Characterization	of	PNS	effects	on	a	sample	of	BXD	strains	will	
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facilitate	the	discovery	of	the	alleles	that	interact	with	PNS	to	alter	cocaine	

responsiveness	and	PPI.	

	

Utilizing	the	BXD	Panel	to	Identify	the	Genes	in	Gene	by	PNS	Interactions	

A	powerful	preclinical	method	for	associating	genetic	loci	with	

phenotypic	variation	is	the	use	of	specialized	animal	populations	for	quantitative	

trait	locus	(QTL)	mapping	(Gora-Maslak	et	al.,	1991;	Plomin,	McClearn,	Gora-

Maslak,	&	Neiderhiser,	1991).	This	method	is	a	preliminary	step	in	identifying	

alleles	that	mediate	variation	in	phenotype.	Characterization	of	a	trait	in	a	

genetically	heterogeneous	population	often	yields	a	continuous	distribution	of	

trait	values.	A	trait	with	a	continuous	distribution	is	known	as	a	quantitative	

trait,	and	is	thought	to	be	under	polygenic	influence.	Phenotypic	variation	

between	subjects	can	then	be	associated	with	the	known	genetic	variation	

between	subjects.	This	approach	can	simultaneously	reveal	multiple	genetic	loci,	

known	as	quantitate	trait	loci	(QTLs)	(Flint,	2003;	Johnson,	DeFries,	&	Markel,	

1992;	Plomin	et	al.,	1991).	QTLs	are	defined	intervals	on	the	genome	that	

associate	with	trait	variation	and	therefore	likely	contain	the	alleles	that	

influence	the	trait	in	question.	QTL	mapping	is	an	unbiased,	genome-wide	search	

for	associated	alleles	that	can	be	employed	for	any	trait	that	demonstrates	

heritability	in	a	subject	population.	Heritability	can	be	assumed	when	the	trait	in	
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question	differs	between	the	progenitor	strains.	However,	differences	in	the	

parental	strain	phenotype	are	not	necessary	(Plomin	et	al.,	1991).		

A	variety	of	animal	populations	can	be	utilized	for	QTL	mapping.	They	can	

be	broadly	categorized	as	either	populations	of	genetically	unique	individuals	or	

panels	of	inbred	strains.	Individually	unique	populations	are	often	derived	by	

crossbreeding	two	or	more	inbred	strains	to	produce	a	genetically	homogenous	

F1	population	that	are	heterozygous	for	progenitor	alleles.	Crossbreeding	the	F1	

animals	produces	a	genetically	heterogeneous	F2	generation	due	to	

recombination.	These	animals	can	then	be	phenotyped	and	genotyped	and	the	

association	between	phenotype	and	genotype	is	assessed	to	produce	a	QTL	map.	

Advantages	of	this	method	include	a	relatively	rapid	breeding	scheme	to	

produce	the	F2	generation.	However,	each	animal	is	genetically	unique,	and	

therefore	genome-types	are	not	reproducible.	This	limits	the	phenotype	group	

for	each	genome-type	to	a	sample	of	1	and	may	allow	for	environmental	noise	to	

skew	genome-type	values.	Irreproducibility	also	precludes	assessment	of	genetic	

correlations	between	genome-types.	Additionally,	only	one	generation	of	

recombination	produces	low	recombination	fractions,	which	causes	large	

haplotype	blocks	and	limits	QTL	resolution.	This,	however,	can	be	ameliorated	

by	advanced	intercross	lines	(AIL)	in	which	successive	outbreeding	occurs	for	

more	than	one	generation	and	decreases	haplotype	length	and	consequently	

increases	QTL	resolution.		
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Panels	of	inbred	strains	can	be	utilized	for	QTL	mapping,	and	often	

include	recombinant	inbred	(RI)	strains.	RI	strains	are	derived	by	cross-

breeding	two	or	more	progenitor	inbred	strains	(F0),	followed	by	breeding	the	

completely	heterozygous	F1	population.	Due	to	genetic	recombination,	the	F2	

generation	is	a	genetically	heterogeneous	population	of	animals	that	each	

possess	unique	combinations	of	progenitor	strain	alleles.	Successive	

generational	inbreeding	of	these	mice	can	then	fix	these	unique	combinations,	

leading	to	a	panel	of	RI	strains.	Each	RI	strain	is	genotyped	for	polymorphisms	

between	the	progenitor	strains	across	the	entire	genome.	Strains	from	the	RI	

panel	can	then	be	phenotyped	for	a	given	trait.	RI	strains	are	infinitely	

reproducible	and	allow	for	phenotyping	multiple	individuals	per	strain,	which	

may	increase	the	accuracy	of	the	strain	phenotype	values.	Each	strain	only	

requires	genotyping	once,	allowing	for	reduced	cost	and	effort	in	subsequent	

studies.	Furthermore,	strain	means	can	be	subject	to	genetic	correlations	

between	phenotypes,	both	within	a	study	of	multiple	phenotypes	and	between	

studies.	Genetic	correlations	indicate	shared	genetic	polymorphisms	between	

traits.	Genetically	correlated	traits	can	be	subject	to	factor	analysis	which	may	

allow	for	quantification	of	a	latent	constructs	that	are	less	subject	to	

environmental	variance	and	improve	QTL	mapping	power.	Despite	the	

advantages,	RI	strains	are	time	consuming	and	costly	to	produce.	Often,	poor	

breeding	performance	limits	the	number	of	strains	that	can	be	produced	and	

utilized.	Low	strain	numbers	limit	the	power	to	detect	QTLs.	Furthermore,	large	
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haplotype	blocks	can	limit	QTL	resolution,	although	this	can	be	ameliorated	with	

AIL	breeding	schemes,	at	the	expense	of	further	time	and	cost.		

	 Differential	effects	of	PNS	in	B6	and	D2	strains	indicate	that	

polymorphisms	between	these	strains	must	interact	with	PNS.	These	data	

suggest	the	B6	and	D2	strains	can	serve	as	progenitors	for	populations	that	can	

be	utilized	for	mapping	gene	by	PNS	interactions.	The	BXD	RI	panel	is	derived	

from	the	B6	and	D2	strains	and	currently	consists	of	120	commercially	available	

and	genotyped	strains	(Peirce,	Lu,	Gu,	Silver,	&	Williams,	2004;	Taylor	et	al.,	

1999).	The	BXD	panel	was	initially	produced	by	B.A.	Taylor.	The	panel	was	

expanded	by	Pierce	et.	al.	in	2004	to	89	strains	and	again	in	2016	to	120	strains.	

The	second	and	third	BXD	panel	expansions	were	produced	by	advanced	

intercross	breeding	to	create	BXD	strains	with	increased	recombination	and	

therefore	improved	QTL	mapping	resolution	(Peirce	et	al.,	2004).	The	online	

resource	www.genenetwork.org	contains	BXD	genotypes	and	software	for	rapid	

BXD	QTL	mapping.	This	resource	also	contains	BXD	phenotypes	uploaded	by	

researchers	that	can	be	rapidly	compared	and	assessed	for	genetic	correlations	

and	common	QTLs.	These	phenotypes	include	strain	mRNA	expression	levels	for	

many	tissues	that	can	be	utilized	for	systems	genetics	analysis	and	prioritization	

of	positional	candidate	genes	in	behavioral	or	physiological	QTLs	(Bubier	&	

Chesler,	2012).		
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The	BXD	RI	strain	panel	will	be	employed	to	identify	genetic	factors	that	

interact	with	early	environmental	stress	to	modulate	adult	behavior.	Multiple	

strains	from	the	BXD	RI	panel,	under	both	PNS	and	control	conditions,	will	be	

phenotyped	for	sensorimotor	behavior	and	cocaine	responsiveness,	followed	by	

discovery	of	QTLs	that	interact	with	PNS	and	main	effect	QTLs.	PNS	interacting	

QTLs	are	loci	that	harbor	genetic	polymorphisms	that	confer	sensitivity	or	

resilience	to	PNS.	Furthermore,	PNS	interacting	QTLs	will	be	compared	between	

phenotypes	in	order	to	identify	any	overlapping	QTLs	that	suggest	a	common	

variant	mediates	the	affects	of	PNS	across	phenotypes.	Similarly,	the	effects	of	

PNS	will	be	subject	to	genetic	correlation	analysis	in	order	to	determine	if	the	

affects	of	PNS	across	phenotypes	may	be	mediated	by	common	alleles.	

Significant	QTLs	will	be	investigated	by	bioinformatics	analysis	and	prior	

knowledge	of	gene	function	in	order	to	prioritize	candidate	genes.	Lastly,	the	

maternal	glucocorticoid	response	to	restraint	stress	as	well	as	the	effects	of	

restraint	stress	on	dam-pup	interaction	in	the	postnatal	period	will	be	assessed.	

The	maternal	stress	response	(both	immediate	endocrine	and	latent	behavioral)	

may	be	a	heritable	trait.	Heritable	differences	in	the	maternal	stress	response	

may	produce	differential	changes	in	adult	behavior	of	prenatally-stressed	

offspring	across	BXD	strains.	Associations	between	strain	variability	of	the	

maternal	stress	response	and	PNS	effects	on	offspring	phenotype	will	be	

determined	in	order	to	assess	strain	variance	of	the	maternal	stress	response	as	

a	mediator	of	PNS	effects.	
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The	use	of	the	BXD	panel	to	identify	QTL	by	PNS	interactions	is	a	critical	

step	in	identifying	genetic	polymorphisms	that	interact	with	PNS	to	influence	

cocaine	responsiveness	and	sensorimotor	gating.	Discovery	of	these	

polymorphisms	may	allow	for	an	enhanced	understanding	of	psychiatric	

genetics	and	serve	to	advance	neurobiological	research	of	psychiatric	disorders.		
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Chapter	2	

Discovery	of	QTL	by	PNS	interactions	for	sensorimotor	behaviors	
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Prepulse	inhibition	(PPI)	is	a	measurement	of	sensory	gating	that	is	

thought	to	be	an	endophenotype	related	to	multiple	psychiatric	and	neurological	

disorders.	PPI	deficits	are	observed	in	schizophrenia,	bipolar	disorder,	autism,	

Huntington’s	disease	and	Tourette’s	syndrome	(Kohl	et	al.,	2013).	PPI	is	highly	

conserved	across	mammalian	species	and	widely	studied	in	laboratory	animal	

models	with	the	intent	of	elucidating	the	neurobiology	of	these	PPI-associated	

psychiatric	and	neurological	disorders.	

	 PPI-associated	disorders	are	heritable	(Geschwind,	2011;	Kendler,	2001;	

Nopoulos,	2016;	N.	R.	Zilhão	et	al.,	2017;	Nuno	R.	Zilhão	et	al.,	2015).	However,	

with	the	exception	of	Huntington’s	disease,	the	genetic	etiology	of	PPI-associated	

disorders	is	poorly	understood.	Identification	of	the	genetic	variants	that	

mediate	risk	and	resilience	for	these	disorders	will	greatly	improve	

understanding	and	treatment	of	psychiatric	disease.	PPI	is	a	heritable	trait	in	

mouse	and	rat	populations,	indicating	genetic	variants	influence	the	PPI	

phenotype	in	these	populations.	Identification	of	these	variants	may	implicate	

genes	that	have	relevance	for	PPI-associated	disorders.	Heritability	in	laboratory	

animal	populations	suggests	that	they	are	suitable	for	genome-wide	QTL	

mapping	studies.	This	approach	has	been	taken	using	multiple	strategies	

including	inbred	strain	panels,	recombinant	inbred	strains,	chromosome	

substitution	strains,	F2	crosses	and	backcrosses	(Brigman,	Mathur,	Lu,	Williams,	

&	Holmes,	2009;	Fernández-Teruel	et	al.,	2002;	Joober	et	al.,	2002;	Leussis	et	al.,	
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2009;	Dahai	Liu	et	al.,	2003;	Loos	et	al.,	2012;	McCaughran,	Bell,	&	Hitzemann,	

1999;	Palmer	et	al.,	2003;	Petryshen	et	al.,	2005;	Philip	et	al.,	2010b;	Samocha	et	

al.,	2010;	Sittig	et	al.,	2016;	Vendruscolo,	Terenina-Rigaldie,	et	al.,	2006;	Webb	et	

al.,	2009).	These	efforts	have	identified	multiple	loci	on	the	mouse	and	rat	

genome	that	associate	with	PPI	variance.	In	some	cases,	QTL	discovery	has	been	

followed	by	prioritization	of	positional	candidate	genes	by	prior	information	on	

gene	function	and	bioinformatics,	including	mRNA	expression	data.	In	one	case,	

a	candidate	gene	(fabp7)	is	strongly	supported	by	further	experimental	evidence	

(Watanabe	et	al.,	2007),	however,	most	candidate	genes	nominated	by	PPI	QTL	

studies	await	experimental	validation.	

	 QTLs	for	PPI,	discovered	to	date,	have	not	accounted	for	all	genetic	

variance,	suggesting	that	PPI	associated	QTLs	remain	to	be	discovered	(Brigman	

et	al.,	2009;	Loos	et	al.,	2012).	This	is	may	be	largely	due	to	inadequate	power.	

However,	in	addition	to	increased	power,	the	discovery	of	PPI	associated	genes	

may	benefit	by	incorporating	environmental	factors	that	allow	for	identification	

of	GXE	interactions.	Prenatal	stress	(PNS)	is	associated	with	some	psychiatric	

diseases,	including	schizophrenia	and	autism	(Khashan	et	al.,	2008;	Kinney	et	al.,	

2008).	In	addition	to	genetic	variants,	PNS	and	early	life	postnatal	stress	

exposure	are	thought	to	be	substantial	etiological	factors	for	psychiatric	disease	

(Carr	et	al.,	2013).	Furthermore,	the	consequences	of	PNS	exposure	may	be	

moderated	by	genetic	variants,	in	GXE	interactions	that	ultimately	cause	the	
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development	of	a	psychiatric	disorder	(Wermter	et	al.,	2010).	Therefore,	

utilization	of	mapping	strategies	that	target	the	identification	of	PNS	interacting	

variants	may	lead	to	new	discoveries	of	psychiatric-implicated	genes.	This	

strategy	may	be	particularly	successful	in	preclinical	models	due	to	highly	

controlled	environmental	exposure	and	reliable	characterization	of	

endophenotypes,	such	as	PPI.	Discovery	of	genetic	variants	that	interact	with	

PNS	to	modify	the	PPI	phenotype	may	have	special	relevance	for	psychiatric	

disorders	and	improve	understanding	of	early	life	GXE	interactions.		

	 We	have	identified	gene	by	PNS	interactions	by	characterizing	the	effects	

of	PNS	on	B6	and	D2	mouse	strains.	Strain	by	PNS	interactions	were	observed	

for	the	acoustic	startle	response	(ASR)	and	PPI.	These	interactions	indicate	that	

genetic	variance	between	these	strains	mediates	variance	in	these	sensorimotor	

phenotypes.	In	order	to	identify	these	genetic	variants,	we	utilized	BXD	

recombinant	inbred	strains.	BXD	strains	are	derived	by	crossbreeding	B6	and	D2	

mice	to	produce	inbred	strains	with	unique	combinations	of	B6	and	D2	alleles.	

These	strains	can	be	used	for	QTL	mapping.	The	effects	of	PNS	on	ASR	and	PPI	

were	characterized	in	multiple	BXD	strains.	We	predicted	heritable	effects	of	

PNS	on	ASR	and	PPI.	Between	strain	variance	in	the	effects	of	PNS	on	ASR	and	

PPI	was	utilized	to	map	for	QTLs	that	interact	with	PNS	to	alter	ASR	and	PPI.	

These	efforts	will	serve	as	a	preliminary	step	in	identifying	genes	that	interact	
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with	PNS	to	modify	sensorimotor	behaviors	and	have	relevance	for	PPI-

associated	psychiatric	disorders.	

	

Methods	

	

Subjects		

BXD	strains	(n=21)	(The	Jackson	Laboratory,	Bar	Harbor,	MI)	were	

housed	in	a	temperature-	and	humidity-controlled	vivarium	on	a	12-h	light–dark	

cycle.	All	mice	were	maintained	on	ad	libitum	mouse	chow	and	water	access.	All	

procedures	were	approved	by	the	University	of	California	at	Santa	Barbara	

Institutional	Animal	Care	and	Use	Committee	and	conducted	in	accordance	with	

the	National	Institute	of	Health	(NIH)	Guide	for	Care	and	Use	of	Laboratory	

Animals	(National	Research	Council	(US)	Committee	for	the	Update	of	the	Guide	

for	the	Care	and	Use	of	Laboratory	Animals,	2011).	

	

Breeding	

BXD	strains	were	purchased	from	the	Jackson	Laboratory	to	establish	a	

breeding	colony	in	UCSB	facilities.	The	offspring	of	this	colony	were	used	for	

timed	breeding.	Adult	males	and	females,	at	8	to	24	weeks	of	age,	were	paired	

for	four	days.	Pregnancy	was	confirmed	by	weight	gain	and	the	dams	were	



	

	 	 	 38	

assigned	to	PNS	or	control	conditions.	Females	that	failed	to	conceive	were	re-

subjected	to	the	breeding	procedures	in	future	cohorts.	Male	breeders	were	used	

for	multiple	cohorts.	Impregnated	females	were	only	used	to	generate	a	single	

litter	of	offspring	which	were	used	in	behavioral	experiments.		

In	order	to	limit	litter	effects,	a	minimum	of	4	litters	was	represented	in	

each	condition/sex	for	all	behavioral	tests	and	no	more	than	3	males	or	females	

from	a	litter	were	included	in	analysis.	The	within	strain/condition/sex	sample	

size	ranged	from	7	to	25.	

	

Restraint	Stress	

PNS	began	two	weeks	post	initial	breeding	setup.	This	corresponded	to	

embryonic	day	(E)	11	through	14.	PNS	was	induced	by	a	repeated	restraint	

stress	protocol.	The	dams	were	taken	from	the	vivarium	into	the	laboratory	and	

were	restrained	in	50	mL	conical	tubes	for	1	hour	periods,	three	times	a	day.	

Each	one	hour	stress	session	was	separated	by	one	hour	of	home	cage	access.	

PNS	continued	daily	until	parturition.	Control	dams	were	left	undisturbed	in	

their	home-cage	and	were	not	removed	from	the	vivarium	during	pregnancy.		

	 After	parturition,	PNS	and	control	litters	were	left	undisturbed	with	the	

dams.	Litters	were	weaned	at	approximately	3	weeks	of	age	and	the	sexes	were	

housed	separately.	The	weanlings	were	left	undisturbed	until	behavioral	testing.	
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Acoustic	Startle	and	Pre-Pulse	Inhibition	

At	8	weeks	of	age,	PNS	and	control	offspring	were	tested	for	ASR	and	PPI.	

Subjects	were	confined	to	platforms	equipped	with	accelerometers	to	sense	

movement.	The	platforms	reside	within	sound-attenuated	chambers	equipped	

with	speakers	(San	Diego	Instruments,	San	Diego,	CA,	USA).	The	procedure	

consists	of	6	different	trials	types	presented	in	pseudo-random	order,	with	a	

variable	inter-trial	interval	between	10	and	20	seconds	(average	15	seconds).	

Trial	types	include:	no	pulse	(st0),	startle	pulse	(110	dB/40	milliseconds;	st110),	

low	prepulse	stimulus	given	alone	(74	dB/20	milliseconds,	st74),	high	prepulse	

stimulus	given	alone	(90	dB/20	milliseconds;	st90),	st74	or	st90	given	

100	milliseconds	before	the	onset	of	the	st	110	startle	pulse	(pp74	and	pp90,	

respectively).	St110,	st0,	pp74	and	pp90	trials	were	applied	10	times,	st74	and	

st90	trials	were	applied	five	times.	Data	was	averaged	across	all	trials.	Startle	

response	was	measured	as	the	response	amplitude	after	st110.	PPI	was	

calculated	as	(100-100*(pp74/st110))	(referred	to	as	PPI74)	and	(100-

100*(pp90/st110))	(referred	to	as	PPI90).	

	

Data	Analysis	

Data	for	ASR,	PPI74	and	PPI90,	st0	(basal	activity),	st74	and	st90	

(reactivity	to	prepulse-only	trials)	were	assessed	by	three	way	ANOVA	with	
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strain,	condition	and	sex	as	factors.	Individual	mice	that	were	more	than	two	

standard	deviations	from	the	group	mean	(calculated	within	condition	and	sex)	

were	excluded.	Significant	main	effects	or	interactions	involving	sex	were	

followed	by	main	effects	(using	the	grand	mean	error)	2	way	ANOVA	tests.	

Heritability	was	calculated	by	taking	the	r	squared	term	from	a	one	way	ANOVA	

with	strain	as	a	factor	within	condition	and	sex.	This	statistic	determines	the	

proportion	of	variance	accounted	for	by	strain	and	is	a	measure	of	broad	sense	

heritability.	Two	standard	deviation	outliers	were	not	excluded	for	heritability	

estimates.		

	 ASR	and	PPI	BXD	strain	data	from	independent	studies	are	

available	on	genenetwork.org.	Because	the	BXD	panel	is	a	genetic	reference	

population,	it	is	important	to	assess	reliability	of	trait	measurement	between	

studies	and	laboratories.	Pearson’s	correlations	were	determined	between	ASR	

and	PPI	control	strain	means	of	the	present	study	and	all	available	ASR	and	PPI	

data	on	genenetwork.org.	Significant,	positive	correlations	indicate	good	inter-

study	reliability.	

	

QTL	Analysis	

Strain	data	for	ASR,	PPI74	and	PPI90	were	subjected	to	interval	mapping	

for	QTL	discovery.	Data	were	uploaded	to	genenetwork.org.	This	program	



	

	 	 	 41	

contains	genotype	data	for	all	BXD	strains	and	uses	interval	mapping	by	Haley-

Knott	regression	to	generate	likelihood	ratio	statistics	(LRS)	across	the	entire	

genome	(Haley	&	Knott,	1992).	Significance	thresholds	for	LRS	are	generated	by	

randomly	permuting	the	strain	IDs	and	means	1000	times	and	then	mapping	

each	of	those	permutations	(Churchill	&	Doerge,	1994).	The	peak	LRS	that	occurs	

in	5%	of	these	permutations	is	used	as	the	significance	threshold,	this	

corresponds	to	a	genome	wide	p-value	of	0.05.	Any	locus	with	an	LRS	that	

exceeds	this	threshold	was	deemed	as	a	significant	QTL.	A	suggestive	threshold,	

which	corresponds	to	a	genome-wide	p-value	of	0.63,	was	also	determined.	Any	

locus	with	an	LRS	that	exceeds	this	threshold	was	determined	a	suggestive	QTL.	

Previous	research	indicates	that	this	threshold	determines	QTLs	that	are	worth	

cautious	consideration,	but	many	false	positives	will	also	be	generated.	Outlier	

strain	means	are	determined	by	Tukey’s	interquartile	range	with	a	1.5	constant.	

Where	outliers	were	identified,	the	values	were	winsorized	and	remapped	

(Shete	et	al.,	2004)	

	 QTL	confidence	intervals	were	determined	by	2-LOD	(1	LOD=4.61	LRS)	

drop-off	intervals	from	the	peak	LRS,	which	is	estimated	to	provide	greater	than	

95%	coverage	(Dupuis	&	Siegmund,	1999;	Manichaikul,	Dupuis,	Sen,	&	Broman,	

2006).	Where	main	effect	QTLs	where	identified,	the	control-only	means	were	

mapped	and	compared	to	the	sum	score	QTL.	The	QTL	with	the	smaller	interval	

was	used	for	identification	of	candidate	genes.		
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PNS	X	QTL	Interactions	 	

QTLs	that	interact	with	PNS	were	determined	by	subtracting	the	control	

mean	from	the	PNS	mean	for	each	strain	(difference	score).	The	strain	difference	

scores	were	subjected	to	interval	mapping	on	genenetwork.	QTLs	produced	by	

mapping	the	difference	score	represent	the	LRS	for	the	interaction	term,	when	

genotype	and	an	environmental	factor	are	included	in	a	linear	model	for	QTL	

mapping	(Lowry	et	al.,	2013).	Conversely,	main	effect	QTLs	were	determined	by	

adding	the	PNS	and	control	strain	means	(sum	score).	Main	effect	QTLs	

represent	the	main	effect	term	for	genotype	(Lowry	et	al.,	2013).	

Where	sex	was	found	to	interact	with	PNS	in	the	ANOVA	results,	separate	

means,	difference	and	sum	scores	were	calculated	and	mapped	for	each	sex.	

	

Prioritization	of	Positional	Candidates	

Significant	QTLs	were	investigated	by	determining	all	genes	within	the	2-

LOD	support	interval.	Candidate	genes	were	prioritized	by	considering	those	

with	cis-eQTL	and	transcript	levels	which	covary	with	the	behavioral	phenotype	

or	transcripts	with	non-synonymous	SNPs	(nsSNPs).	
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cis-eQTL	

	 QTLminer	(genenetwork.org)	was	used	to	determine	all	cis-eQTLs	in	the	

2-LOD	interval	for	the	following	brain	regions;	whole	brain	(UTHSC	Mouse	BXD	

Whole	Brain	RNA	Sequence	(Nov12)	RPKM	),	amygdala	(INIA	Amygdala	Cohort	

Affy	MoGene	1.0	ST	(Mar11)	RMA),	cerebellum	(SJUT	Cerebellum	mRNA	M430	

(Mar05)),	hippocampus	(Hippocampus	Consortium	M430v2	(Jun06)),	

hypothalamus	(INIA	Hypothalamus	Affy	MoGene	1.0	ST	(Nov10)),	midbrain	(VU	

BXD	Midbrain	Agilent	SurePrint	G3	Mouse	GE	(May12)	),	neocortex	(HQF	BXD	

Neocortex	ILM6v1.1	(Dec10v2)	RankInv),	nucleus	accumbens	(VCU	BXD	NA	Sal	

M430	2.0	(Oct07)),	pituitary	(INIA	Pituitary	Affy	MoGene	1.0ST	(Jun12)),	

prefrontal	cortex	(VCU	BXD	Prefrontal	Cortex	Sal	M430	2.0	RMA),	striatum	(HQF	

BXD	Striatum	ILM6.1	(Dec10))	and	ventral	tegmental	area	(VCU	BXD	VTA	Saline	

AffyM430	2.0	(Jun09)).	Transcripts	with	significant	cis-eQTLs	(genome	wide	

p<0.05)	were	then	checked	for	genetic	correlation	with	the	behavioral	

phenotype	by	determining	the	Pearson’s	and	Spearman	rank	order	correlations.	

Bonferroni	significance	levels	were	determined	for	total	number	of	transcripts	

evaluated,	for	a	family-wise	significance	threshold	of	0.05.	Transcripts	with	a	cis-

eQTL	within	the	2-LOD	interval	and	levels	that	correlate	with	the	behavioral	

phenotype	are	considered	top	candidate	genes.	Transcripts	were	also	

considered	in	instances	where	correlations	did	not	reach	Bonferroni-corrected	
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significance,	but	did	reach	uncorrected	significance	(p<0.05)	and	were	present	

in	more	than	one	region	and	expression	assay.		

	

Non-Synonymous	SNP		

	 The	variant	browser	on	genenetwork.org	was	utilized	to	identify	all	genes	

within	the	2-LOD	confidence	interval	with	nsSNPs.	Genes	with	nsSNPs	were	

considered	for	biological	relevance	and	implications	in	psychiatric	disorders	or	

relevant	behavioral	phenotypes.	

	

Results	

Assessment	of	basal	and	pre-pulse	only	reactivity	

	 Strain	differences	in	basal	activity	(st0)	or	startle	reactivity	to	pre-pulse	

only	trials	(pp74	and	pp90)	may	confound	between	strain	differences	in	ASR	and	

PPI.	Therefore,	data	from	these	trials	was	subject	to	analysis.	A	3-way	ANOVA	for	

st0	revealed	a	main	effect	of	strain	[F(20,	1096)=2.35,	p=0.001],	and	a	main	

effect	of	sex	[F(20,	1096)=8.32,	p=0.004].	Within	sex	analysis	revealed	a	main	

effect	of	strain	in	males	[F(20,	1096)=2.22,	p=0.003]	but	no	significant	effects	in	

females.	Due	to	strain	differences	in	basal	activity,	st74,	st90	and	st110	were	

corrected	by	dividing	the	values	by	the	value	for	st0.	
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	 Reactivity	at	74	dB	pre-pulse	only	trials,	corrected	for	basal	activity	

(st74/st0),	was	assessed	by	3-way	ANOVA.	No	significant	effects	were	detected.		

Reactivity	at	90dB	pre-pulse	only	trials,	corrected	for	basal	activity	

(st90/st0),	was	assessed	by	3-way	ANOVA.	A	strain	by	sex	by	PNS	interaction	

[F(20,	1095)=1.65,	p=0.036]	and	a	main	effect	of	strain	[F(20,	1095)=5.76,	

p<0.001]	were	detected;	no	other	interactions	of	main	effects	reached	

significance.	Within	sex	analysis	revealed	a	strain	by	PNS	interaction	[F(20,	

1095)=1.73,	p=0.004]	and	a	main	effect	of	strain	[F(20,	1095)=6.51,	p<0.001]	in	

males	but	no	significant	effects	or	interactions	in	females.		

	

Acoustic	Startle	Response	

	 A	3-way	ANOVA	for	ASR	revealed	a	strain	by	PNS	by	sex	interaction	

[F(20,	1039)=3.2,	p<0.001],	a	strain	by	PNS	interaction	[F(20,	1039)=2.5,	

p<0.001],	a	strain	by	sex	interaction	[F(20,1039)=4.2,p<0.001],	a	main	effect	of	

strain	[F(20,	1039)=20.9,	p<0.001],	and	a	main	effect	of	sex	[F(1,1039)=36.3,	

p<0.001].,		

	 A	2-way	(strain	by	PNS)	within	sex	ANOVA	in	females	revealed	no	

interaction	but	a	main	effect	of	strain	[F(20,	1039)=4.6,	p<0.001].	For	males,	a	

strain	by	PNS	interaction	[F(20,	1039)=5.1,	p<0.001]	and	a	main	effect	of	strain	

[F(20,	1039)=20.8,	p<0.001]	were	found.		
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	 Heritability	estimates	for	control	females	is	0.16	and	for	PNS	females	

0.27.	For	control	males	0.33	and	PNS	males	0.37.	

	 	

PPI74	

	 A	3-way	ANOVA	of	PPI	with	a	74	dB	prepulse	revealed	a	main	effect	of	

strain	[F(20,	1103)=1.7,	p=0.024]	but	no	interactions	or	other	main	effects	

reached	significance.	

	 The	heritability	estimate	for	control	females	is	0.08	and	for	PNS	females	

0.06.	For	control	males	0.06	and	PNS	males	0.1.	

	

PPI90	

	 A	3-way	ANOVA	for	PPI	with	a	90dB	pre-pulse	revealed	main	effect	of	

strain	[F(20,	1055)=25.3,	p<0.001],	a	main	effect	of	sex	[F(1,	1055)=28.2,	

p=0.026]	and	a	strain	by	sex	interaction	[F(20,	1055)=2.6,	p<0.001].		

A	2-way	ANOVA	within	sex	revealed	a	main	effects	of	strain	for	females	

[F(20,	1055)=10.6,	p<0.001]	and	for	males	[F(20,	1055)=18.3,	p<0.001].	

Because	there	are	strain	differences	and	strain	by	PNS	interactions	in	

male	reactivity	to	st90	trials,	an	ANCOVA	was	performed	for	PPI90	with	st90	as	

a	covariate.	Although	st90	reached	significance	as	a	covariate,	significance	did	
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not	change	for	any	factor	relative	to	the	3-way	ANOVA	or	the	within	sex	2-way	

ANOVA	results.	The	relationship	between	st90	reactivity	was	further	assessed	by	

determining	the	correlation	between	st90	strain	means	and	PPI90	strain	means	

within	condition	and	sex.	There	is	a	positive	correlation	between	these	measures	

for	PNS	females	r=0.629,	p=0.002,	PNS	males	r=0.55,	p=0.018	and	control	males	

r=0.66,	p=0.001.	However,	in	males,	this	relationship	is	dependent	on	one	outlier	

strain	(BXD48a).	The	relationship	of	PNS	effects	on	st90	and	PNS	effects	on	

PPI90	was	assessed	by	determining	the	correlation	for	strain	difference	scores	

for	st90	and	PPI90	within	sex.	There	is	a	positive	correlation	in	females	r=0.60,	

p=0.004	and	males	r=0.89,	p<0.001,	that	does	not	appear	to	rely	on	any	one	

outlier	strain.		

The	heritability	estimate	for	control	females	is	0.23	and	for	PNS	females	

0.26.	For	control	males	0.30	and	for	PNS	males	0.34.		

	

Correlations	to	Independent	BXD	Studies	

	 Significant	correlations	for	ASR	were	found	between	the	present	study	

and	Philip	et	al.,	(2010)	(19	overlapping	strains)	and	Loos	et.	al.,	(2012)	(11	

overlapping	strains).	A	significant	correlation	was	found	for	PPI90	in	the	present	

study	and	Philip	et.	al.,	(2010)	(19	overlapping	strains).	Correlations	did	not	

reach	significance	for	PPI	in	Loos	et.	al.,	(2012)	(10	overlapping	strains)	and	

ASR/PPI	in	Brigman	et.	al.,	(2011)	(7	overlapping	strains).	See	table	1.		
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Figure	1.	Effects	of	PNS	on	ASR,	PPI74	and	PPI90	in	BXD	strains.	Strains	ordered	
by	male	control	values.	a)	PNS	interacts	with	strain	in	males	to	affect	ASR.	b)	No	
effect	of	PNS	was	detected	for	PPI74.	c)	No	significant	effect	of	PNS	was	detected	
for	PPI90.	
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Table	1	Correlations	of	ASR/PPI	to	the	same	measures	in	independent	studies	of	
BXD	strains	

Table	2	Suggestive	QTL	for	PPI90	and	ASR	(Startle)	
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QTL	by	PNS	Interactions	

PNS	effects	on	st90	associate	with	PNS	effects	on	PPI90,	suggesting	that	

strain	X	PNS	differences	in	reactivity	to	pre-pulse	only	trails	may	obscure	

discovery	of	QTLs	for	PPI.	Therefore,	adjusted	means	were	calculated	with	st90	

as	a	covariate.	The	difference	scores	were	mapped	for	adjusted	and	unadjusted	

means.	A	suggestive	QTL	on	chromosome	3	(LRS=17.5)	was	detected	for	

unadjusted	means	(Figure	2a).	This	QTL	became	highly	significant	when	

difference	scores	for	adjusted	means	were	mapped	(LRS=21.1)	(Figure	2b).	The	

2-LOD	interval	is	107-108.6	mb.	No	other	significant	QTL	X	PNS	interactions	

were	detected	for	ASR	or	PPI74/90.	For	suggestive	QTLs	see	table	2.	

	

Main	Effect	QTL	

No	significant	main	effect	QTLs	were	detected.	For	suggestive	QTLs	see	table	2.		

	

Prioritization	of	Positional	Candidate	Genes	

Cis-eQTL	

The	confidence	interval	for	the	chr	3	QTL	for	male	PPI90	difference	

scores	contains	48	transcripts.	All	transcripts	within	the	confidence	interval	

were	evaluated	for	cis-eQTL,	and	those	with	cis-eQTL	were	evaluated	for	
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covariation	with	male	PPI90	difference	scores.	Nine	transcripts	had	genome	

wide	significance	cis-eQTL	in	one	more	regions,	one	of	which	covaried	with	male	

PPI90	difference	scores	at	Bonferroni-corrected	threshold.	

The	transcript	AI504432	demonstrates	a	significant	cis-eQTL	in	the	

amygdala	and	covaries	with	male	PPI90	difference	scores	at	Bonferroni	

corrected	(0.05/9)	significance	level	(see	table	3).		

The	transcript	Slc16a4	demonstrates	a	significant	cis-eQTL	in	the	

midbrain	and	a	suggestive	cis-eQTL	in	the	amygdala.	Slc16a4	did	not	meet	

Bonferroni	corrected	significance	for	covariation,	but	did	for	uncorrected	

significance	(see	table	3).		

	

Non-synonymous	SNPs	

	 Of	the	48	transcripts	with	the	2-LOD	interval,	5	contain	nsSNPs	(see	table	

4).		
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Figure	2	a)	QTL	map	for	male	PPI90	difference	scores.	Suggestive	QTL	on	chromosome	3.	b)	
QTL	map	for	male	PPI90	difference	scores	after	PPI90	strain	means	were	adjusted	for	st90	
reactivity.	Significant	QTL	on	chromosome	3	(107	to	108.6	mb)	c)	Significant	QTL	on	
chromosome	3	for	male	PPI90	difference	scores	from	st0	adjusted	means.	Yellow	lines	on	
x-axis	indicate	SNP	density.	Red	line	and	green	numbering	on	right	y-axis	indicates	the	
effect	of	the	B6	allele	on	PPI90	difference	scores	(units	=	percent	inhibition	of	PPI).	Bars	
above	graph	indicate	strain	genotypes	(red=B6,	green=D2)	

c	

a	

b	
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Figure	3.	Male	PPI90	mean	and	SEM,	grouped	by	condition	and	genotype	at	
the	peak	marker	for	the	male	PPI90	chr	3	QTL	by	PNS	interaction	
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Table	3	Transcripts	within	the	chr	3	PPI90	QTL	interval	with	cis-eQTL	and	
covariation	with	male	PPI90	difference	scores.	

Table	4	Genes	within	the	chr	3	PPI90	QTL	interval	that	contain	nsSNPs		
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Discussion	

The	effects	of	PNS	on	ASR	and	PPI	were	assessed	in	21	BXD	recombinant	

inbred	strains.	Effects	of	PNS	were	found	to	interact	with	strain	to	alter	ASR,	

indicating	the	effects	of	PNS	on	ASR	are	heritable	in	the	BXD	panel.	No	main	or	

interaction	effects	for	PNS	were	detected	in	either	PPI	measure,	indicating	that	

the	effects	of	PNS	on	PPI	may	not	be	heritable	or	present	at	all	in	the	BXD	panel.	

However,	a	trend	towards	a	strain	by	PNS	interaction	(p=0.09)	was	observed	in	

males	for	PPI90.	These	results	fit	the	pattern	in	which	males	are	exclusively	

affected	by	PNS,	as	observed	for	ASR	and	multiple	cocaine	related	phenotypes	

(see	Chapter	3).	Therefore,	failure	to	reach	significance	may	represent	a	type	II	

error	due	to	inadequate	power.		

The	direction	of	the	effect	of	PNS	appears	to	be	predominantly	

attenuation	in	ASR	of	males	while	an	approximately	equal	number	of	strains	

appear	attenuated	and	potentiated	for	PPI90	in	males.	The	effects	of	PNS	were	

assessed	on	the	progenitor	strains	and	the	ASR	was	found	to	be	potentiated	in	

B6	females	but	not	males,	and	potentiated	in	D2	males	but	not	females.	Trait	

distributions	in	an	RI	panel	may	not	be	constrained	by	the	progenitor	trait	

values.	Furthermore,	different	alleles	may	affect	a	trait	in	different	directions,	

and	the	direction	of	effect	of	a	particular	allele	can	even	be	reversed	on	different	

genetic	backgrounds,	indicating	dramatic	epistasis	effects	(Stephens,	Sittig,	&	

Palmer,	2015).	Therefore,	it	is	not	surprising	that	the	effects	of	PNS	might	show	
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strain	dependent	effects	in	both	directions.	There	are	likely	to	be	PNS	interacting	

alleles	with	effects	in	both	directions.	However,	because	potentiation	of	startle	

was	observed	in	the	progenitor	strains,	it	is	surprising	that	few	if	any	strains	

were	observed	to	be	potentiated	in	the	BXD	panel.	However,	because	the	present	

study	is	a	relatively	small	sample	of	the	BXD	panel,	lack	of	ASR	potentiation	may	

be	do	to	chance;	i.e.	missed	sampling	of	strains	with	allele	combinations	that	

allow	for	potentiation	of	ASR.		

A	main	effect	of	strain	was	detected	for	ASR	and	PPI74/90	indicating	that	

these	phenotypes	are	heritable	in	the	BXD	panel.	These	results	are	congruent	

with	other	studies,	which	found	heritability	of	ASR	and	PPI	in	the	BXD	panel.	The	

between-study	reliability	of	ASR	and	PPI	appears	to	be	good,	with	significant	

correlations	observed	between	the	present	study	and	other	studies	that	

characterized	BXD	strains	(see	table	1).	Those	that	failed	to	reach	significance	

appear	to	be	trending	towards	positive	correlations.	The	power	to	reach	

significance	is	likely	limited	by	low	numbers	of	over-lapping	strains.	The	

heritability	of	ASR	is	reported	as	0.53	(females)	and	0.57	(males)	(Philip	et	al.,	

2010b)	and	0.41	(sex	collapsed)	(Brigman	et	al.,	2009).	Philip	et.	al.	(2010)	

report	the	heritability	of	PPI	as	0.38	(female)	and	0.36	(male)	and	Brigman	et.	al.,	

(2009)	report	0.32	(sex	collapsed).	These	estimates	are	higher	than	those	

determined	by	the	present	study.	Philip	et	al.,	(2010)	characterized	60	strains	

and	Brigman	et.	al.,	(2009)	characterized	25	strains.	Philip	et.	al.,	(2010)	had	
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substantially	greater	power	to	estimate	heritability	and	may	provide	a	more	

accurate	estimate.	It	also	possible	that	procedural	and	facility	differences	

contribute	to	differences	in	heritability	between	studies.	

Strain	differences	in	sensitivity	to	pulse	intensity	may	act	as	a	confound	

when	characterizing	ASR	and	PPI.	One	likely	contributor	is	age	related	hearing	

loss.	Genetically	mediated	differences	in	hearing	loss	may	render	some	strains	

incapable	of	perceiving	prepulses	or	capable	but	less	sensitive	to	behavioral	

effects.	Both	the	B6	and	D2	progenitor	strains	present	age-related	hearing	loss,	

with	B6	beginning	at	2	to	3	months	of	age	and	D2	at	weaning	(Willott	&	Turner,	

1999).	However,	hearing	loss	and	its	relationship	to	ASR/PPI	has	been	

investigated	in	the	BXD	panel,	and	it	is	found	that	hearing	loss	may	be	a	concern	

for	pure	tone	pulses	but	did	not	affect	white	noise	pulses	(McCaughran	et	al.,	

1999).	As	the	present	study	utilized	white	noise	pulses,	hearing	loss	may	not	be	

concern.	Nevertheless,	other	factors	may	affect	pulse	sensitivity.	Differences	in	

strain	startle	thresholds	were	detected	in	the	BXD	panel	when	using	a	white	

noise	pulse	(Loos	et	al.,	2012).	Similarly,	in	the	present	study,	strain	differences	

were	detected	in	reactivity	to	the	90dB	prepulse-only	trials.	This	effect	was	

specific	to	males	and	indicated	a	main	effect	of	strain	and	a	strain	by	PNS	

interaction.	Genetic	correlations	indicate	strain	means	for	90	dB	prepulse-only	

reactivity	predict	ASR	and	PPI	in	control	and	PNS	males.	However	this	

relationship	is	dependent	on	an	extreme	outlier,	indicating	strain	variance	in	
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reactivity	at	90	dB	prepulses	may	be	largely	independent	of	ASR	or	PPI90.	

Correlations	for	strain	difference	scores	were	also	assessed	in	order	to	

determine	associations	between	the	effects	of	PNS	on	prepulse	reactivity	and	

ASR/PPI90.	The	PNS	effect	on	90	dB	prepulse	reactivity	strongly	associated	with	

the	effects	on	ASR	and	PPI90.	As	PNS	effects	on	ASR	also	associate	with	effects	

on	PPI90,	the	relationship	between	prepulse-only	reactivity	and	PPI90	was	

assessed	with	the	PNS	effect	on	ASR	as	a	controlling	variable.	A	significant	

correlation	remained,	indicating	associations	between	prepulse	reactivity	and	

PPI90	are	not	completely	moderated	by	effects	on	ASR.		

	

QTL	Mapping:	QTL	X	PNS	Interactions	

A	suggestive	sex-specific	QTL	X	PNS	interaction	with	a	relatively	high	LRS	

score	was	detected	on	chromosome	3	for	PPI90	in	males	(see	figure	2a).	Because	

reactivity	to	90	dB	prepulse-only	trials	associated	with	strain	main	effects	and	

PNS	by	strain	interactions	in	PPI90,	the	strain	means	for	PPI90	were	adjusted	

with	90	dB	prepulse-only	responses	as	a	covariate.	Difference	scores	were	

determined	from	adjusted	means	and	re-mapped	for	males	and	females	

separately.	The	LRS	score	for	the	male-specific	chromosome	3	QTL	increased	to	

significant	with	the	adjusted	difference	scores	(see	figure	2b).	These	results	

suggest	reactivity	to	the	90	dB	prepulse	may	have	obscured	discovery	of	the	

chromosome	3	QTL	for	PPI90.	However,	with	90	dB	prepulse-only	as	a	covariate,	
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there	is	still	not	a	significant	main	effect	of	PNS	or	strain	by	PNS	interaction	in	

males	or	females	for	PPI90.	If	these	results	are	taken	as	no	heritability	of	PNS	

effects	on	PPI,	the	validity	of	the	QTL	may	be	questionable.		

	

Positional	Candidate	Genes	

Discovery	of	the	PNS	interacting	QTL	on	chromosome	3	was	followed	by	

determining	cis-eQTLs	for	any	transcripts	within	the	2-LOD	interval,	for	all	

available	brain	regions	in	genenetwork.	This	yielded	9	transcripts	with	cis-

eQTLs,	one	of	which	had	strain	transcript	levels	that	met	the	threshold	for	

correlation	with	PPI90	difference	scores	in	males	(see	table	2).	AI504432	maps	a	

cis-eQTL	in	the	amygdala	and	AI504432	expression	levels	positively	correlate	

with	PNS	effects	on	PPI90	in	males.	AI504432	is	a	long	intergenic	noncoding	

RNA	(lincRNA)	with	an	uncharacterized	function.	It	has	expression	in	the	

developing	brain	but	minimal	adult	CNS	expression	(Allen	brain	atlas).	Although	

this	transcript	is	not	implicated	in	any	traits	or	diseases,	generally,	GWAS	

frequently	find	disease-associated	SNPs	within	or	near	lincRNAs	(Cabili	et	al.,	

2011;	Vinod	Kumar	et	al.,	2013).	Additionally,	some	lincRNAs	are	found	to	be	cis-

regulated	by	disease-associated	SNPs	(Vinod	Kumar	et	al.,	2013).	Genetic	

variants	may	act	by	modifying	lincRNA	expression	and	variation	in	lincRNA	

expression	may	have	phenotypic	consequences	by	downstream	effects	on	gene	

expression.	Thus,	variants	that	affect	lincRNA	expression	are	biologically	
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plausible	candidates	for	associations	with	psychiatric	disease,	but	require	

functional	characterization.	

The	transcript	Slc16a4	did	not	meet	the	Bonferroni-corrected	p-value	

threshold	for	association	with	PNS	effects	on	PPI90,	however	this	gene	maps	a	

cis-eQTL	in	both	the	midbrain	and	amygdala,	with	correlations	(uncorrected	

p<0.05)	to	PNS	effects	on	male	PPI90	in	both	regions	(see	table	2).	These	results	

may	be	taken	as	particularly	robust	because	expression	data	for	midbrain	and	

amygdala	were	collected	independently	and	on	different	microarray	platforms.	

Slc16a4	is	a	monocarboxylate	transporter	(MCT)	isoform	with	expression	in	

astrocytes	(Pierre	&	Pellerin,	2005).	MCTs	transport	lactate,	pyruvate	and	

ketones.	Monocarboxyaltes,	such	as	lactate,	can	serve	as	energy	substrates	in	the	

CNS	(Magistretti	&	Pellerin,	1999).	It	is	proposed	the	astrocyte	expression	of	

SLC16a4	allows	for	a	astrocyte-neuron	lactate	shuttling	system,	by	which	

astrocytes	can	provide	lactate	for	neurons	in	periods	of	hypoglycemia	and	

hypoxia	(Pierre	&	Pellerin,	2005).	Metabolic	perturbations	by	PNS	have	been	

reported,	including	elevation	of	lactate	in	the	frontal	cortex	of	PNS	rats	(Detka	et	

al.,	2015),	however	there	are	no	reports	that	directly	support	a	role	for	MCTs	in	

the	response	to	PNS.		

Amino	acid	substitutions	due	to	nsSNPs	may	alter	protein	function	and	

interact	with	PNS	to	influence	behavioral	phenotypes.	Of	the	transcripts	within	

the	2-LOD	interval	for	the	chromosome	3	PPI90	QTL,	5	contain	nsSNPs.	The	
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protein	coding	gene	GSTM1	may	be	considered	particularly	promising	as	

candidate	gene.	This	gene	encodes	for	a	gluthatione	S-transferase	isoform	that	

catalyzes	glutathione	to	substrates	that	participate	in	detoxification	of	

endogenous	and	exogenous	compounds	including	reactive	oxygen	species.	

GSTM1	alleles	have	been	associated	with	risk	for	autism	(Buyske	et	al.,	2006;	

Ming	et	al.,	2010).	It	is	proposed	that	variants	that	impair	GSTM1	function	may	

interact	with	early	life	toxicant	exposure	to	increase	risk	of	autism.	A	knockout	

mouse	for	GSTM1	demonstrates	interactions	with	early	life	sodium	valporate	

exposure,	a	potential	toxicant	with	damaging	effects	to	the	CNS,	with	increases	in	

CNS	apoptosis	and	decreases	in	play	behavior	(Yochum,	Bhattacharya,	Patti,	

Mirochnitchenko,	&	Wagner,	2010).	Glutathione	is	down-regulated	in	the	CNS	

after	PNS	exposure,	which	may	compromise	the	neuroprotective	effects	of	this	

antioxidant	system	(Sahu,	Madhyastha,	&	Rao,	2012).	High	glucocorticoid	

exposure	during	development	may	increase	oxidative	damage	by	disruptions	of	

neurotransmitter	systems	and	consequential	excitotoxicity,	including	oxidative	

damage	(Song	et	al.,	2009).	Thus,	a	compromised	glutathione	system	may	be	a	

mechanism	by	which	PNS	alters	development	by	excessive	oxidative	stress	in	

the	CNS.	These	effects	may	be	further	exacerbated	by	alleles	that	also	

compromise	the	glutathione	system,	including	variants	of	the	GSTM1	gene.	The	

GSTM1	nsSNP	between	the	B6	and	D2	strains	(rs8261761)	leads	to	a	leucine	

(B6)	to	methionine	(D2)	substitution	in	position	128.	This	substitution	is	

predicted	to	compromise	protein	function	of	the	D2	allele	(results	obtained	with	
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the	POlyPhen-2	software,	http://genetics.bwh.harvard.edu/pph2/).	However,	

PNS	appears	to	interact	with	the	B6	allele	at	the	chromosome	3	QTL	to	increase	

PPI,	with	little	effect	on	strains	carrying	the	D2	allele	(see	Figure	3).	Thus,	the	

evidence	does	not	appear	to	support	the	possibility	that	compromised	GSTM1	

function	of	the	D2	allele	exacerbates	PNS	effects	on	PPI.	Nevertheless,	there	is	no	

experimental	evidence	to	characterize	differences	in	function	between	B6	and	

D2	alleles	of	the	GSTM1	protein.	Evaluation	of	PNS	interactions	with	the	GSTM1	

knockout	mouse	may	lend	direct	support	to	GSTM1	by	PNS	interactions	and	

indicate	that	compromised	GSTM1	function	moderates	PNS	effects.	

	 	

Summary	

The	evidence	presented	here	indicates	genetic	variants	in	the	male	BXD	

population	interact	with	PNS	to	alter	ASR.	PNS	by	strain	interaction	for	male	PPI	

did	not	reach	statistical	significance,	but	did	display	a	trend.	Furthermore,	a	QTL	

by	PNS	interaction	was	detected	for	this	measure	in	males,	supporting	that	BXD	

variants	interact	with	PNS	to	alter	PPI.	Analysis	of	transcript	expression	levels	

within	this	QTL	for	cis-eQTL	and	covariance	with	PNS	effects	on	PPI	prioritized	

two	candidate	genes.	Some	genes	within	the	QTL	interval	also	contain	snSNPs,	

indicating	that	the	variant	detected	may	act	by	altering	protein	structure.	Of	

these	genes,	GSTM1	appears	to	be	most	promising,	due	to	its	implication	in	

autism	and	early	life	GXE	interactions.	These	candidate	genes	should	be	



	

	 	 	 63	

investigated	and	validated	experimentally.	A	gene	nominated	by	this	data	can	be	

investigated	in	human	subjects	for	gene	by	early	life	interactions	that	confer	risk	

for	PPI-associated	psychiatric	disorders	and	simultaneously	evaluated	in	

preclinical	models	for	effects	on	other	phenotypes	and	neurobiological	

mechanisms.	Ultimately,	this	approach	may	greatly	improve	our	understanding	

of	psychiatric	genetics	and	neurobiology.	
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Chapter	3	

Discovery	of	QTL	by	PNS	interactions	for	cocaine	reward	and	locomotion	
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Cocaine	abuse	disorder	is	considered	a	neuropsychiatric	condition	

involving	dysregulated	and	deleterious	use	of	cocaine	(Volkow	et	al.,	2003).	

Cocaine	abuse	exacts	devastating	consequences	on	the	afflicted	individual	and	

profound	costs	on	society	as	a	whole.	The	individual	often	experiences	health,	

social,	and	legal	consequences,	with	mortality	as	a	far	too	common	end	point	

(McGinnis	&	Foege,	1999;	Pouletty,	2002).	These	consequences	pose	a	burden	on	

society	in	the	form	of	elevated	health	care	costs,	lost	productivity	and	increased	

crime	rates	(McGinnis	&	Foege,	1999;	Pouletty,	2002).	The	profound	impact	of	

cocaine	abuse,	and	drug	abuse	collectively,	necessitates	a	better	understanding	

of	etiological	factors	that	will	allow	for	improved	treatment	and	preventative	

options.	The	etiology	of	cocaine	is	not	completely	understood,	however	genetics	

appear	to	have	a	major	role.	The	heritability	estimates	for	cocaine	abuse	range	

from	0.42	to	0.79	(Agrawal	et	al.,	2012).	Despite	high	heritability	of	cocaine	

abuse,	to	date,	few	alleles	are	associated	with	this	disorder	in	human	

populations	(Gelernter	et	al.,	2014)	and	it	is	expected	that	many	await	discovery.	

	 Preclinical	models	are	utilized	to	investigate	the	neurobiology	and	

genetics	of	cocaine	abuse	and	have	good	potential	for	revealing	genes	that	

modulate	cocaine-related	behavioral	phenotypes.	Measurements	of	cocaine-

induced	locomotion,	reward	and	reinforcement	demonstrate	heritability	in	rat	

and	mouse	populations.	These	populations	have	been	utilized	for	QTL	mapping	

studies.	The	bulk	of	these	efforts	have	focused	on	locomotion;	multiple	QTLs	
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have	been	associated	with	cocaine	induced	locomotion,	with	confirmation	of	

some	QTLs	by	secondary	mapping	approaches	(Boyle	&	Gill,	2001,	2009;	Gill	&	

Boyle,	2003;	B.	C.	Jones	et	al.,	1999;	V.	Kumar	et	al.,	2013;	Miner	&	Marley,	

1995a,	1995b;	Phillips	et	al.,	1998;	Tolliver	et	al.,	1994;	Vendruscolo	et	al.,	2009).	

More	recently,	reward	and	reinforcement	measures,	including	cocaine	CPP	and	

self-administration,	have	also	been	characterized	in	forward	genetic	approaches	

(Dickson	et	al.,	2015;	Philip	et	al.,	2010a).	Multiple	QTLs	were	discovered	for	

cocaine	self-administration.	Interestingly,	one	of	these	overlaps	with	an	

independently	discovered	cocaine	locomotion	sensitization	QTL,	suggesting	

these	behaviors	are	genetically	related	(V.	Kumar	et	al.,	2013).	Collectively,	this	

research	is	making	progress	in	identifying	cocaine	associated	alleles	and	

revealing	the	genetic	relationships	between	the	various	cocaine	related	

behaviors	under	study.	

	 Environmental	factors	are	also	thought	to	have	a	role	in	the	etiology	of	

cocaine	abuse.	Early	life	stressors,	including	prenatal	stress	(PNS),	are	likely	

important	etiological	factors	for	many	psychiatric	disorders,	including	cocaine	

abuse	(Enoch,	2011).	Preclinical	studies	suggest	that	PNS	may	enhance	cocaine	

addiction	liability.	PNS	increases	cocaine	locomotion	and	alters	self-

administration	parameters	in	rats	(Kippin	et	al.,	2008;	Thomas	et	al.,	2009).	

Effects	on	self-administration	include	augmented	acquisition,	increased	intake,	

resistance	to	extinction	and	augmented	cocaine-primed	reinstatement.	The	
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effects	of	PNS	may	be	moderated	by	genetic	variants,	in	gene	by	environment	

interactions	that	confer	risk	of	cocaine	abuse.	Previous	characterization	of	PNS	

effects	on	the	B6	and	D2	mouse	strains	revealed	that	PNS	interacts	with	

genotype	to	alter	cocaine	locomotion	behaviors	and	cocaine	reward	(Kippin	et	

al.,	2015).	These	data	suggest	that	genetic	variants	interact	with	PNS	to	alter	

cocaine	responsiveness,	including	an	increase	in	cocaine	reward	sensitivity.	

Identification	of	these	variants	will	allow	for	the	discovery	of	genes	that	may	

interact	with	early	life	stress	to	moderate	risk	of	cocaine	addiction.	QTL	mapping	

strategies	that	incorporate	early	life	stress	to	search	for	QTL	by	PNS	interactions	

are	capable	of	genome-wide	scans	for	PNS	interacting	alleles.	These	alleles	may	

otherwise	be	undetectable	in	preclinical	QTL	studies	that	do	not	incorporate	

environmental	factors.	This	approach	holds	promise	for	elucidating	the	early	life	

gene	by	environment	interactions	that	confer	risk	of	cocaine	abuse.	

	 The	BXD	mouse	panel	is	derived	from	B6	and	D2	progenitors.	The	PNS	

interactions	observed	in	the	progenitor	strains	indicate	that	the	BXD	panel	is	

suitable	for	QTL	by	PNS	interaction	mapping	strategies.	We	sought	to	

characterize	the	effects	of	PNS	on	cocaine	acute	locomotion,	locomotion	

sensitization	and	cocaine	CPP	on	multiple	BXD	strains.	Cocaine	CPP	is	a	

relatively	high	throughput	procedure	that	simultaneously	yields	cocaine	reward	

and	locomotor	measures.	Although	cocaine	locomotor	effects	are	well	studied	in	

QTL	mapping	experiments,	reward	and	reinforcement	measures	are	not.	
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Mapping	for	cocaine	CPP	may	reveal	reward	related	genes	that	are	otherwise	

undetectable	by	locomotor	measures.	Strain	variance	in	the	effects	of	PNS	on	

these	measures	was	utilized	to	map	for	QTLs	that	interact	with	PNS	to	alter	

cocaine	responsiveness.	QTL	discovery	was	followed	by	bioinformatics	

approaches	to	prioritize	positional	candidate	genes.	These	efforts	may	serve	as	a	

preliminary	step	in	identifying	genes	that	interact	with	PNS	to	alter	cocaine	

abuse	liability.		

	

Methods		

	

Subjects,	Breeding	and	PNS	

	 Breeding	and	PNS	was	performed	on	BXD	strains	as	described	in	chapter	

2.	The	subjects	involved	in	the	PPI	experiment	(chapter	2)	also	received	

CPP/locomotion	testing	(following	PPI).	

In	order	to	limit	litter	effects,	a	minimum	of	4	litters	were	represented	in	

each	condition/sex	for	all	behavioral	tests	and	no	more	than	3	males	or	females	

from	a	litter	were	included	in	analysis.	The	within	strain/condition/sex	sample	

size	ranged	from	8	to	19.	
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Cocaine	CPP	and	Locomotion	

	 At	9	weeks	of	age,	the	PNS	and	control	offspring	were	subjected	to	a	

cocaine	CPP	protocol.	This	procedure	allows	for	assessment	of	the	rewarding	

efficacy	of	cocaine	as	well	as	exploratory	and	locomotion	measures	that	include:	

acute	and	sensitized	cocaine	locomotion,	locomotion	in	a	novel	environment,	

and	locomotion	after	saline	injection	(Tzschentke,	2007).	The	CPP	procedure	

involves	a	2-compartment	chamber	which	distinct	visual	and	tactile	cues	

between	the	compartments.	Initially,	mice	were	placed	into	the	chamber	with	

access	to	both	sides	and	with	no	injections	(pre-test).	Time	spent	in	each	

compartment	and	locomotion	were	measured	by	video	tracking	with	Any-Maze	

software	(Stoelting,	Wood	Dale,	IL,	USA).	Assignment	of	cocaine-	and	saline-

paired	compartments	was	biased,	with	cocaine	paired	to	the	un-preferred	side.	

Conditioning	consists	of	four	once	a	day	saline	and	cocaine	sessions,	alternating	

between	saline	and	cocaine.	Mice	were	injected	with	saline	(i.p.,	10	mL/kg)	or	

cocaine	(i.p.,	10	mg/kg,	10	mL/kg)	and	immediately	placed	into	the	assigned	

compartment	for	15	minutes.	After	completion	of	conditioning	the	mice	were	

placed,	without	injection,	into	the	chamber	with	access	to	both	compartments	

(post-test).	CPP	was	measured	as	the	shift	in	time	spent	in	the	cocaine-paired	

compartment	from	pre-test	to	post-test.	Horizontal	distance	traveled	was	

measured	to	quantify	locomotion	and	was	tracked	during	pre-test,	post-test	and	

all	conditioning	sessions.	Acute	cocaine	locomotion	was	measured	as	the	
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difference	between	the	first	saline	conditioning	session	and	the	first	cocaine	

conditioning	session.	Cocaine	locomotion	sensitization	was	measured	as	the	

difference	between	the	fourth	and	first	cocaine	conditioning	session.		

	

Data	Analysis	and	QTL	Mapping	

Data	was	assessed	for	strain,	sex	and	PNS	effects	by	3-way	ANOVA,	as	

described	in	chapter	2.	QTL	mapping	was	performed	as	described	in	chapter	2.	

	

Assessment	of	Reliability	Across	Independent	Studies	

	 Control	strain	means	for	acute	locomotion,	sensitization	and	CPP	were	

compared	to	independent	experiments	of	the	same	measures	in	BXD	strains.	

Pearson’s	correlations	were	determined	with	data	available	on	genenetwork.org.		

	

Genetic	Correlations:	PNS	

The	effects	of	PNS	were	assessed	for	genetic	correlation	between	traits.	

The	strain	difference	scores	for	acute	locomotion/sensitization,	CPP,	acoustic	

startle	response	(ASR)	and	pre-pulse	inhibition	with	74	and	90	db	prepulses	

(PPI74/PPI90)	were	assessed	by	Pearson’s	correlation.	Significant	correlations	
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suggest	common	alleles	mediate	the	effects	of	PNS	across	traits	(Hegmann	&	

Possidente,	1981).		

	

Genetic	Correlations:	Cocaine	Behaviors	

Control	data	for	acute	locomotion/sensitization,	CPP	and	cocaine	self-

administration	(days	to	acquisition	and	number	of	infusions,	data	collected	by	

Dickson	et.	al.	2015	and	available	on	genenetwork.org)	were	assessed	by	

Pearson’s	correlation.	Dickson	et.	al.	2015	assessed	cocaine	self-administration	

at	eight	doses.	The	lowest	three	doses	contain	8	strains	in	common	with	the	

present	study,	limiting	statistical	power.	The	top	five	doses	contain	12	strains	in	

common.	The	strain	means	for	the	top	five	doses	correlate	well	to	each	other,	

therefore	one	dose	(1.0	mg/kg/infusion)	was	selected	for	assessment	with	the	

present	study.	Significant	correlations	suggest	common	alleles	mediate	these	

behaviors.		

	

Results		

CPP	

	 CPP	was	assessed	by	3-way	ANOVA.	A	PNS	by	sex	interaction	[F(1,	

989)=4.33,	p=0.038],	a	strain	by	sex	interaction	[F(20,	989)=2.16,	p=0.002],	a	
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main	effect	of	strain	[F(20,	989)=12.88,	p<0.001],	and	a	main	effect	of	PNS	[F(20,	

989)=10.07,	p=0.002]	were	detected.	Within	sex	analysis	revealed	a	main	effect	

of	strain	in	females	F(20,	989)=7.3,	p<0.001.	For	males,	a	main	effect	of	strain	

[F(20,	989)=7.95,	p<0.001]	and	a	main	effect	of	PNS	[F(1,	989)=13.24,	p<0.001]	

were	detected.	See	figure	1a.	

	 The	heritability	of	CPP	for	control	females	is	0.18	and	PNS	females	0.10.	

The	heritability	for	control	males	is	0.19	and	PNS	males	0.16.		

	

Acute	Locomotion	

	 Acute	cocaine	induced	locomotion	was	assessed	by	3-way	ANOVA.	A	

strain	by	PNS	interaction	[F(20,	966)=1.82,p=0.015],	a	strain	by	sex	interaction	

[F(20,	966)=2.74,	p<0.001]	and	a	main	effect	of	strain	[F(20,	966)=27.07,	

p<0.001]	were	detected.	Within	sex	analysis	revealed	a	main	effect	of	strain	

[F(20,	966)=17.3,	p<0.001]	in	females.	For	males,	a	main	effect	of	strain	[F(20,	

966)=12.93,	p<0.001]	was	detected.	See	figure	1b.	

	 The	heritability	of	acute	locomotion	for	control	females	is	0.30	and	PNS	

females	0.35.	The	heritability	for	control	males	is	0.31	and	PNS	males	0.24.	
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Locomotion	Sensitization	

	 Sensitization	of	cocaine	induced	locomotion	was	assessed	by	3-way	

ANOVA.	A	strain	by	sex	interaction	[F(20,	963)=2.92,	p<0.001],	a	PNS	by	sex	

interaction	[F(1,	963)=3.85,	p=0.05],	a	main	effect	of	strain	[F(20,	963)=9.28,	

p<0.001]	and	a	main	effect	of	sex	[F(1,	963)=11.79,	p=0.001]	were	detected.	

Within	sex	analysis	revealed	a	main	effect	of	strain	[F(20,	963)=4.68,	p<0.001]	

for	females.	For	males,	a	main	effect	of	strain	[F(20,	963)=5.94,	p<0.001]	and	a	

main	effect	of	condition	[F(1,	963)=4.9,	p=0.027]	were	detected.	See	figure	1c.	

The	heritability	of	sensitization	for	control	females	is	0.16	and	PNS	

females	0.10.	The	heritability	for	control	males	is	0.15	and	PNS	males	0.14.	

	

Locomotion	Without	Cocaine	

	 Locomotion	in	the	pre-test,	first	saline	conditioning	trial	and	post-test	

were	assessed.	A	3-way	ANOVA	for	pre-test	locomotion	revealed	a	strain	by	PNS	

interaction	[F(20,	993)=2.03,	p=0.005],	a	strain	by	sex	interaction	[F(20,	

971)=2.9,	p<0.001]	a	main	effect	of	strain	[F(20,	993)=43.79,	p<0.001]	and	a	

main	effect	of	sex	[F(1,	993)=26.17,	p<0.001].	Within	sex	analysis	revealed	a	

main	effect	of	strain	for	females	[F(20,	993)=26.59,	p<0.001].	For	males,	a	strain	

by	PNS	interaction	[F(20,	993)=2.21,	p=0.002]	and	a	main	effect	of	strain	[F(20,	

993)=21.56,	p<0.001]	were	found.	
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	 A	3-way	ANOVA	for	locomotion	in	the	first	saline	conditioning	session	

revealed	a	strain	by	PNS	by	sex	interaction	[F(20,	971)=1.82,	p=0.015],	a	strain	

by	sex	interaction	[F(1,	971)=2.69,	p<0.001],	a	main	effect	of	strain	[F(20,	

971)=62.98,	p<0.001],	a	main	effect	of	PNS	[F(1,	971)=4.19,	p=0.041]	and	a	main	

effect	of	sex	[F(1,	971)=19.38,	p<0.001].	Within	sex	analysis	revealed	a	main	

effect	of	strain	in	females	[F(20	,971)=37.62,	p<0.001].	For	males,	a	strain	by	

PNS	interaction	[F(20	,971)=2.66,	p<0.001]	and	a	main	effect	of	strain	[F(20,	

971)=28.35,	p<0.001]	were	found.	

	 A	3-way	ANOVA	for	locomotion	in	the	post-test	revealed	a	strain	by	sex	

interaction	[F(20,	983)=2.26,	p=0.001],	a	strain	by	PNS	interaction	[F(20,	983,	

p<0.004],	a	main	effect	of	strain	[F(20,	983)=42.43,	p<0.001]	and	a	main	effect	of	

sex	[F(1,	983)=28.86,	p<0.001].	Within	sex	analysis	revealed	a	strain	by	PNS	

interaction	for	females	[F(20,	983)=1.66,	p=0.035]	and	a	main	effect	of	strain	

[F(20,	983)=26.12,	p<0.001].	For	males,	a	strain	by	PNS	interaction	[F(20	

,983)=1.93,	p=0.008]	and	a	main	effect	of	strain	[F(20,	983)=18.81,	p<0.001]	

were	found.	

	 Associations	between	the	strain	effects	of	PNS	(difference	scores)	on	

locomotion	without	cocaine	and	the	strain	effects	of	PNS	on	acute	cocaine	

locomotion,	cocaine	locomotion	sensitization	and	CPP	were	assessed	by	

Pearson’s	correlation.	PNS	effects	on	female	pre-test	locomotion	associated	with	

the	effects	on	female	CPP	(r=-0.46,	p=0.016).	
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Reliability	Across	Independent	Studies	

A	significant	correlation	was	found	for	acute	locomotion	of	the	present	

study	and	Philip	et.	al.	(2010).	No	significant	correlations	were	found	for	

sensitization	or	CPP.	See	table	1.		
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Figure	1	Effects	of	PNS	on	cocaine	behaviors	in	BXD	strains.	a)	PNS	
affects	male	CPP.	No	effects	of	PNS	were	detected	for	females.	b)	PNS	
interacts	with	strain	to	affect	acute	cocaine	locomotion	in	both	sexes.	
c)	PNS	interacts	with	strain	to	affect	cocaine	locomotion	sensitization	
in	males.	No	effects	were	detected	in	females.	
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Table	1	Pearson’s	correlations	between	acute	cocaine	
locomotion/sensitization/CPP	of	the	present	study	and	the	same	measures	in	
Philip	et.	al.,	2010.	Males	and	females	reported	separately	where	values	
differed	substantially.	Bold	text	p<0.05.	

Table	2	Suggestive	QTLs	for	difference	and	sum	scores		
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QTL	Mapping	

QTL	by	PNS	Interaction	

	 A	QTL	by	PNS	interaction	was	detected	for	acute	locomotion	

(alQTLXPNS)	on	chromosome	X	(LRS=17.9).	The	2-LOD	interval	is	37.7	to	50.95	

mb	(see	figure	2).	One	outlier	strain	was	identified,	however	the	QTL	remained	

significant	after	winsorization.	No	other	significant	QTL	by	PNS	interactions	

were	detected.	For	suggestive	QTLs	see	table	2.	

	

Main	Effect	QTLs	

	 A	sex-specific	main	effect	QTL	was	detected	for	female	CPP	(cppQTL),	on	

chromosome	11	(LRS=17.9)	.	The	2-LOD	interval	is	67.5	to	81.5	mb	(see	figure	

3).	A	sex-specific	main	effect	QTL	was	detected	for	female	locomotor	

sensitization	(sensQTL),	on	chromosome	16	(LRS=19.7).	The	2-LOD	interval	is	

95.8	to	98.319	(see	figure	4).	No	other	significant	main	effect	QTLs	were	

detected.	For	suggestive	QTLs	see	table	2.	
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a	

b	

c	

Figure	2	Acute	Locomotion:	QTL	by	PNS	interaction.	a)	A	significant	QTL	by	PNS	
interaction	on	chromosome	X.	b)	QTL	by	PNS	interaction	on	chromosome	X	(green	
line=additive	effect	of	B2	allele	with	values	on	right	axis,	red	and	green	bars=	B6	
and	D2	haplotypes	respectively,	yellow	lines	on	x-axis=SNP	density).	c)	Effects	of	
genotype	at	the	peak	marker	and	PNS	on	acute	locomotion.	
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a	

b	

c	

Figure	3	CPP:	main	effect	QTL.	a)	A	significant	main	effect	QTL	for	
female	CPP	on	chromosome	11.	b)	Main	effect	QTL	on	chromosome	11	
(red	line=additive	effect	of	B6	allele	with	values	indicated	on	right	y-
axis,	red	and	green	bars=B6	and	D2	haplotypes	respectively,	yellow	
lines	on	x-axis=SNP	density).	c)	Effects	of	genotype	at	the	peak	marker	
and	sex	on	CPP.	
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Figure	4	Sensitization:	main	effect	QTL.	a)	A	significant	main	effect	QTL	
for	female	sensitization	on	chromosome	16.	b)	Main	effect	QTL	on	
chromosome	16	(green	line=additive	effect	of	F2	allele	with	value	
indicated	on	right	y-axis,	red	and	green	bars=	B6	and	D2	haplotypes	
respectively,	yellow	lines	on	x-axis=SNP	density).	c)	Effects	of	genotype	
at	the	peak	marker	and	sex	on	sensitization.	
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Positional	Candidate	Genes	

alQTLXPNS	cis-eQTL	

	 The	2-LOD	interval	for	alQTLXPNS	contains	65	transcripts.	Two	of	these	

transcripts	were	found	to	have	a	cis-eQTL	in	one	or	more	brain	regions.	One	of	

these	cis-eQTL	transcripts	(AIFM2)	has	expression	levels	that	correlate	with	

Bonferroni-corrected	(0.05/2)	significance	levels	in	the	midbrain,	amygdala	and	

hypothalamus.	Significant	correlations	were	also	found	in	the	striatum	and	

neocortex,	however	these	regions	demonstrate	suggestive	cis-eQTL.	See	table	3.		

	

alQTLXPNS	snSNP	

Five	genes	within	the	alQTLXPNS	2-LOD	interval	contain	nsSNPs.	See	

table	4		

	

cppQTL	cis-eQTL	

	 The	2-LOD	interval	for	cppQTL	contains	373	transcripts.	138	of	these	

map	a	cis-eQTL	in	one	or	more	brain	regions.	Of	these	cis-eQTL	transcripts,	10	

demonstrate	Bonferroni-corrected	(0.05/138)	significant	correlations	to	female	

CPP	strain	means.	However,	eight	of	these	transcripts	have	one	or	more	SNPs	in	
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the	probe	target	region	and	were	excluded	from	consideration.	These	SNPs	may	

affect	probe	hybridization	and	produce	false	positive	cis-eQTLs.	See	table	3.	

	

cppQTL	snSNPs	

	 118	genes	within	the	cppQTL	2-LOD	interval	contain	nsSNPs.	See	table	6.	

	

sensQTL	cis-eQTL	

The	2-LOD	interval	for	sensQTL	contains	30	transcripts.	Of	these	

transcripts,	six	map	a	cis-eQTL	in	one	or	more	brain	regions.	Of	these	cis-eQTL	

transcripts,	one	(Ripk2)	demonstrates	a	Bonferroni-corrected	(0.05/5)	

significant	correlation	to	female	sensitization	strain	means	in	the	hippocampus.	

Ripk2	also	correlates	at	uncorrected	significance	in	the	ventral	tegmental	area	

and	neocortex.	See	table	3.	

	

sensQTL	nsSNPs	

	 Six	genes	within	the	sensQTL	2-LOD	interval	contain	nsSNPs.	See	table	5.	
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Table	3	Transcripts	within	2-LOD	QTL	intervals	with	cis-eQTL	and	strain	expression	
levels	that	correlate	to	the	behavioral	phenotype	strain	difference	or	sum	scores.	
Bold	text	=	significant	at	Bonferroni-corrected	threshold.	

Table	4	nsSNPs	in	genes	within	
the	chr	X	acute	locomotion	QTL	by	
PNS	interaction	interval.	

Table	5	nsSNPs	in	genes	within	the	
chr.	16	sensitization	main	effect	QTL	
interval.	
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Table	6	nsSNPs	in	genes	within	the	chr	11	CPP	main	effect	QTL	interval.	
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Genetic	Correlations:	PNS	

	 A	significant	correlation	was	detected	between	female	acute	locomotion	

difference	scores	and	female	CPP	difference	scores,	and	female	PPI90	difference	

scores	and	female	ASR	difference	scores.	No	other	significant	correlations	were	

detected.	See	table	7.	

	

Genetic	Correlations:	Cocaine	Behaviors	

A	significant	correlation	was	detected	between	sensitization	and	CPP,	and	

sensitization	and	cocaine	self-administration	infusions	(data	collected	by	

Dickson	et.	al.	2015).	A	significant	correlation	was	detected	between	CPP	and	

days	to	meet	self-administration	acquisition	(data	collected	by	Dickson	et.	al.	

2015).	See	table	8.	
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Table	7	Genetic	correlations	for	PNS	effects	on	cocaine	and	sensorimotor	behaviors.	
Bold	text	indicates	significance	(p<0.05).		

Table	8	Within	and	across	study	genetic	correlations	for	cocaine	behaviors.	Bold	text	
indicates	significance	(p<0.05).	Lower	left	half	are	Pearson’s	correlations,	upper	
right	are	Spearman’s	rank	order	correlations.	IVSA	measures	were	collected	by	
Philip	et.	al.	(2010).	All	other	measures	come	from	the	present	study.	
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Discussion	

	 The	present	study	assessed	the	effects	of	PNS	on	cocaine	locomotion	and	

reward	in	21	BXD	strains.	PNS	was	found	to	interact	with	strain	to	affect	acute	

cocaine	locomotion	and	locomotion	sensitization.	A	main	effect	of	PNS	was	found	

for	CPP,	however	no	interaction	was	detected.	These	results	may	indicate	that	

the	effects	of	PNS	on	CPP	are	not	heritable	in	the	BXD	panel.	However,	many	

strains	appear	to	be	unaffected	while	others	demonstrate	large	PNS	induced	

changes	in	CPP,	and	the	male	strain	by	PNS	interaction	trends	towards	

significance	(p-value	=	0.09).	The	lack	of	significant	interaction	may	be	due	to	

the	potential	complexity	of	environment	and	polygenetic	interactions	as	well	as	

insufficient	power.	Collectively,	these	results	suggest	the	BXD	panel	is	suitable	

for	discovery	of	QTLs	that	interact	with	PNS	to	alter	cocaine-related	behaviors.		

	 The	direction	of	PNS	effect	on	strain	means	appears	mixed	for	acute	

locomotion.	However,	most	affected	strains	appear	to	be	attenuated	for	

sensitization	and	CPP.	Assessment	of	the	progenitor	strains	indicated	that	PNS	

increased	CPP	in	B6	but	not	D2	mice.	Similarly,	PNS	enhanced	cocaine-induced	

CPP	in	outbred	rats	(Pastor	et	al.,	2016).	Therefore,	it	is	expected	that	some	

alleles	should	interact	with	PNS	to	enhance	rewarding	properties	of	cocaine	in	

some	mice.	As	with	acoustic	startle	(see	chapter	2),	the	relatively	small	sample	of	

BXD	strains	in	the	present	study	may	have	missed	strains	with	allele	

combinations	that	allow	for	strain	by	PNS	interactions	that	increase	CPP.	This	
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may	be	especially	likely	if	genetically	mediated	PNS	enhancement	of	CPP	and	

ASR	is	rare,	possibly	due	to	complex	gene-gene	interactions.	

	 The	effects	of	PNS	on	sensitization,	CPP	and	locomotion	without	cocaine	

in	the	pre-test/first	saline	session	appear	to	be	exclusive	to	males.	Similar	

results	were	found	for	ASR	and	PPI.	Collectively,	these	results	suggest	that	males	

are	more	sensitive	to	the	effects	of	PNS.	Sex	effects	are	commonly	reported	in	

PNS	studies,	with	sensitivity	of	the	sexes	varying	depending	on	the	phenotype	

under	investigation.	With	respect	to	cocaine,	PNS	has	been	reported	to	augment	

locomotor	sensitization	in	females	but	not	males	and	to	increase	acquisition	and	

overall	cocaine	self-administration	intake	in	males	but	not	females	(Thomas	et	

al.,	2009).	PNS	also	has	sex-specific	effects	on	hedonic	sensitivity	to	natural	

rewards.	PNS	increased	milk-chocolate	CPP	in	males,	but	attenuated	the	same	

measure	in	females	(Reynaert	et	al.,	2015).	Characterization	of	the	B6	and	D2	

mouse	strains	revealed	sex	effects	and	sex	by	strain	interactions.	PNS	

augmented	acute	cocaine	locomotion	in	B6	males	but	not	females,	or	either	sex	

of	the	D2	strain.	PNS	augmented	acoustic	startle	in	D2	males,	and	decreased	

startle	in	B6	males,	but	females	of	either	strain	were	unaffected.	And	PNS	

decreased	PPI	with	a	90	db	prepulse	(PPI90)	of	D2	females	but	not	males.	

Considering	sex-effects	in	the	progenitor	strains,	it	is	not	surprising	that	sex	

effects	are	observed	in	the	BXD	strains.	Furthermore,	where	sex-effects	occurred	

in	the	progenitor	strains,	males	were	more	likely	to	be	affected	than	females,	
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with	the	exception	of	PPI90.	This	generally	fits	the	pattern	observed	in	BXD	

strains,	however	CPP	was	only	affected	in	BXD	males,	whereas	both	sexes	of	the	

B6	strain	were	affected.	Although	the	biological	mediators	of	these	sex	effects	

are	unknown,	it	may	be	that	a	general	sensitivity	to	PNS	in	males	allows	PNS	

interacting	alleles	to	exert	greater	influence	relative	to	females.	This	possibility	

may	explain	the	absence	of	BXD	female	effects	in	CPP,	despite	PNS	effects	on	B6	

female	CPP.	The	B6	strain	may	also	be	an	extreme	responder,	considering	

potentiation	of	CPP	by	PNS	was	not	observed	in	the	BXD	strains	

	 All	cocaine-related	behaviors	demonstrate	heritability	in	the	present	

study.	These	results	are	congruent	with	previous	studies,	including	multiple	

studies	that	characterized	BXD	strains	(B.	C.	Jones	et	al.,	1999;	Philip	et	al.,	

2010a;	Phillips	et	al.,	1998;	Tolliver	et	al.,	1994).	However,	three	of	these	studies	

have	four	or	less	common	strains	with	the	present	study,	making	correlational	

analysis	inappropriate.	Philip	et	al.,	(2010)	contains	19	common	strains	with	the	

present	study.	Acute	locomotion	as	measured	by	Philip	et.	al.,	2010	

demonstrates	a	significant	relationship	with	acute	locomotion	of	the	present	

study.	However,	locomotor	sensitization	and	CPP	do	not.	The	procedures	for	

these	measures	were	substantially	different	from	the	present	study.	Although	

Philip	et.	al.,	(2010)	assessed	locomotion	with	the	same	dose	as	the	present	

study,	sensitization	was	measured	on	the	second	consecutive	day	of	cocaine	

administration.	The	present	study	assessed	sensitization	after	4	cocaine	
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administrations	and	9	days	from	the	initial	administration.	Philip	et	al.,	(2010)	

assessed	CPP	with	a	3	mg/kg	dose,	whereas	the	present	study	utilized	a	10	

mg/kg	dose.	Genetic	effects	can	be	largely	dose	dependent	for	locomotion	

measures,	with	heritability	increasing	with	dose	(B.	C.	Jones	et	al.,	1999;	Tolliver	

et	al.,	1994).	This	is	likely	also	true	for	CPP.	These	procedural	and	dose	

differences	may	account	for	the	lack	of	relationship	between	these	measures.	

Philip	et.	al.	(2010)	report	heritability	of	acute	locomotion	(not	corrected	for	

saline	locomotion)	as	0.41/0.33	(females/males),	and	Phillips	et.	al.	(1998)	

report	0.28	(females)	for	saline	corrected	locomotion	at	a	cocaine	dose	of	10	

mg/kg.	The	heritability	of	uncorrected	acute	locomotion	in	the	present	study	

(0.42/0.38,	females/males)	is	similar	to	Philip	et.	al.	(2010)	and	the	saline	

corrected	heritability	(0.30/0.31,	female/male)	is	similar	to	Phillips	et.	al.	

(1998).	For	sensitization,	Philip	et.	al.	(2010)	report	0.12/0.04	(females/males)	

and	Phillips	et.	al.	(1998)	report	0.17	(females).	Heritability	of	sensitization	in	

the	present	study	(0.16/0.15,	females/males)	is	similar	to	Phillips	et.	al.,	(1998)	

but	somewhat	higher	than	Philip	et.	al.,	(2010).	Greater	congruence	with	Phillips	

et.	al.,	(1998)	may	be	due	to	more	procedural	similarities.	CPP	heritability	in	the	

present	study	(0.18/0.19,	females/males)	is	also	somewhat	higher	than	the	

Philip	et.	al.,	(2010)	value	of	0.11/0.11	(females/males),	this	may	be	due	to	

increased	heritability	with	increased	dose.	Collectively,	heritability	estimates	

between	studies	are	quite	similar	despite	several	procedural	differences.	This	

similarity,	in	addition	to	correlations	of	strain	means	between	independent	
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experiments	indicate	the	stability	and	reliability	of	genetic	effects	on	cocaine	

responsiveness	in	the	BXD	strains,	although	dose	and	procedural	differences	

may	have	a	substantial	impact	on	similarity.	

	

QTl	Mapping:	QTL	X	PNS	Interactions	

QTL	mapping	for	strain	difference	scores	revealed	a	QTL	by	PNS	

interaction	for	acute	cocaine	locomotion	(alQTLxPNS)	on	the	X	chromosome.	

The	D2	genotype	at	the	peak	marker	interacts	with	PNS	to	increase	locomotion	

(see	figure	2).	The	2-LOD	interval	spans	13.25	mb	and	contains	65	genes.	

Positional	candidate	genes	were	prioritized	by	evaluation	of	cis-eQTL	and	

nsSNPs.	

	 The	gene	apoptosis	inducing	factor,	mitochondrion	associated	1	(aifm1)	

is	located	within	the	2-LOD	interval	and	was	found	to	have	cis-regulated	

transcripts	in	multiple	brain	regions,	with	expression	levels	that	correlate	with	

acute	locomotion	strain	difference	scores.	The	aifm1	gene	encodes	for	a	

apoptosis	inducing	factor	(aif)	isoform	that	locates	in	the	mitochondria	and	

participates	in	metabolic	reactions.	Upon	cellular	injury,	it	translocates	to	the	

nucleus	to	initiate	apoptosis	(Sevrioukova,	2011).	Several	lines	of	evidence	

suggest	that	deficiencies	of	aif	may	have	protective	effects	against	neuronal	

insults.	Down-regulation	of	aif	increases	neural	progenitor	survival	after	
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hypoxia/ischemia	(Y.	Sun,	Zhang,	Wang,	Blomgren,	&	Zhu,	2012).	Similarly,	

sequestration	of	aif	in	the	mitochondria	has	a	neuro-protective	effect	against	

hypoxia/ischemia	in	neonatal	mice	(Matsumori	et	al.,	2005).	NMDA-mediated	

neuronal	excitotoxicity	causes	aif	translocation	from	mitochondria	to	nucleus	

(Wang	et	al.,	2004).	Inhibition	of	aif	by	short-hairpin	RNA	(siRNA)	protects	

hippocampal	neurons	against	glutamate	toxicity	(Öxler,	Dolga,	&	Culmsee,	2012),	

suggesting	a	causal	role	for	aif	in	excitotoxic	cell	death.	Although	there	is	no	

previous	evidence	to	directly	associate	aif	with	PNS,	increases	in	apoptosis	may	

have	a	role	in	PNS	programming	of	development	(Feng	et	al.,	2011;	Fujioka	et	al.,	

1999;	Huang	et	al.,	2016;	Jia,	Sun,	Su,	Dang,	&	Chen,	2016;	Kim	et	al.,	2015;	Kurek	

et	al.,	2016;	Liaudat	et	al.,	2015;	Qulu,	Daniels,	&	Mabandla,	2015;	Tobe	et	al.,	

2005).	There	is	a	positive	association	between	genetically	mediated	brain	aifm1	

levels	and	PNS	effects	on	acute	locomotion,	as	indicated	by	comparison	of	data	

from	the	present	study	to	mRNA	expression	data	on	genenetwork.org.	One	

plausible	explanation	is	that	increased	aif	levels	sensitize	mice	to	apoptotic	

consequences	of	PNS.	The	harlequin	mutation	is	an	insertion	in	the	aifm1	gene	

that	leads	to	an	80%	reduction	in	expression	of	aifm1	(Klein	et	al.,	2002)	and	

may	be	a	good	model	for	validating	the	role	of	aifm1	in	PNS.	This	mouse	displays	

reduced	susceptibility	to	neuronal	excitotoxicity	and	reduced	neuronal	

apoptosis.	Our	data	suggests	that	the	harlequin	mouse	would	be	less	susceptible	

to	PNS-induced	increases	of	cocaine	locomotion.	However,	the	role	of	aifm1	is	

complicated,	as	the	harlequin	mutation	is	also	associated	with	central	nervous	
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system	and	behavioral	phenotypes,	including	motor	abnormalities	(Bénit,	

Goncalves,	Dassa,	Brière,	&	Rustin,	2008).	These	effects	may	be	due	to	a	loss	of	

aif	mitochondrial	function	and	resulting	oxidative	stress	(Klein	et	al.,	2002).	

Despite	the	complexity	of	aif	function,	its	role	in	mediating	apoptosis	after	brain	

insult,	including	early	life	insults,	makes	it	a	promising	candidate	gene.	

	

Main	Effect	QTL	

	 A	main	effect	QTL	for	female	CPP	scores	was	discovered	on	chromosome	

11.	This	may	be	the	first	QTL	discovered	for	cocaine	CPP.	Previous	cocaine	QTL	

mapping	has	largely	focused	on	locomotor	effects.	CPP	is	thought	to	measure	the	

rewarding	properties	of	cocaine	(Tzschentke,	2007)	and	as	such,	QTLs	

discovered	may	implicate	genes	that	moderate	cocaine	reward	and	have	

particular	relevance	to	cocaine	addiction.	The	present	study	utilized	a	biased	

design.	This	procedure	may	be	a	more	sensitive	measure	of	cocaine	CPP	as	

compared	to	unbiased	designs	(Nomikos	&	Spyraki,	1988),	however	the	biased	

design	allows	for	habituation	to	the	un-preferred	side	to	contribute	to	the	CPP	

score.	If	strain	differences	in	habituation	occur,	QTLs	discovered	may	reflect	the	

genetic	substrates	of	habituation.	Alternatively,	variance	in	habituation	may	

obscure	discovery	of	reward-related	QTLs.	The	progenitor	strains	displayed	no	

habituation	in	saline-only	conditioning	(unpublished	data)	however	these	data	

do	not	preclude	the	possibility	that	strain	differences	occur	in	the	BXD	panel.	
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BXD	strain	differences	in	habituation	may	be	corrected	by	inclusion	of	saline-

only	groups,	however	this	greatly	adds	to	the	sample	size	requirements	and	may	

be	unfeasible	for	a	QTL	study.	Alternatively,	experimental	follow	up	of	any	

candidate	genes	discovered	can	include	measurements	of	habituation	that	may	

allow	for	discrimination	between	habituation	and	reward	effects.	

The	2-LOD	interval	for	the	CPP	QTL	is	large	and	encompasses	372	genes.	

Furthermore,	many	of	the	microarray	probes	used	to	asses	transcript	expression	

levels	in	this	interval	appear	to	have	target	regions	with	SNPs	between	B6	and	

D2	mice.	Two	transcripts	were	found	to	have	cis-eQTL	(without	SNPs	in	probe	

target	region)	and	correlate	with	female	CPP	scores.	

Pitpna	is	involved	in	transport	of	phospholipids	and	phospholipase	C	

signaling	(Tilley	et	al.,	2004).	Pitpna	null	mutants	have	extensive	phenotypes,	

including	CNS	and	behavioral	abnormalities	(Alb	et	al.,	2003).	However,	pitpna	

has	not	been	directly	implicated	in	drug	abuse	phenotypes.		

Sat2	is	a	rate	limiting	enzyme	that	converts	spermidime	to	spermine	

(Pegg,	Seely,	Pösö,	della	Ragione,	&	Zagon,	1982).	Spermine	may	interact	with	

the	cocaine	binding	site	on	the	dopamine	transporter	to	inhibit	cocaine	binding	

and	spermine	levels	are	increased	in	the	cerebellum	after	cocaine	exposure	

(Ritz,	Mantione,	&	London,	1994;	Shimosato,	Watanabe,	Marley,	&	Saito,	1995).	

Although	a	role	for	spermidime	metabolism	is	well	established	for	sat1	

(homologous	protein	to	sat2),	sat2	may	not	be	involved,	as	spermidime	is	a	poor	
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substrate	for	sat2	(Coleman,	Stanley,	Jones,	&	Pegg,	2004;	Ying	et	al.,	2003).	

Furthermore,	sat2	shows	minimal	developmental	or	adult	brain	protein	

expression;	lack	of	brain	expression	may	indicate	sat2	is	not	likely	to	affect	

cocaine	reward.	

Sensitization	to	cocaine-induced	locomotion	in	females	was	associated	

with	a	main	effect	QTL	in	which	the	2-LOD	interval	contains	30	genes.	One	

transcript,	receptor-interacting	serine-threonine	kinase	4	(ripk4),	from	this	

interval	demonstrates	a	cis-eQTL	and	significant	correlation	with	female	

sensitization	strain	means.	This	transcript	also	has	cis-eQTL	and	correlations	

significant	at	uncorrected	levels	in	the	ventral	tegmental	area	and	neocortex.	

Ripk4	has	been	implicated	in	keratinocyte	differentiation	(Holland	et	al.,	2002),	

but	there	is	no	evidence	to	implicate	ripk4	in	cocaine	related	behaviors,	or	

behavior/central	nervous	system	phenotypes	generally.	

A	suggestive	QTL	for	female	sensitization	was	discovered	on	chromosome	

11	(LRS=18.5)	with	a	2-LOD	interval	of	95.6	to	98.6	mb.	The	B6	allele	at	this	

locus	associates	with	increased	sensitization.	A	QTL	for	methamphetamine	and	

opioid	locomotion	was	discovered	on	chromosome	11,	with	an	interval	of	84	to	

96	mb	(Bryant	et	al.,	2009;	Bryant,	Kole,	Guido,	Sokoloff,	&	Palmer,	2012)	.	Here,	

the	B6	allele	increases	locomotion	relative	to	the	A/J	allele.	Because	confidence	

intervals	overlap	and	the	B6	allele	has	the	same	direction	of	effect,	the	QTL	

discovered	in	the	present	study	and	that	discovered	by	Byrant	et.	al.,	(2012)	may	
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be	detecting	the	same	variant.	Byrant	et	al.,	(2012)	attempted	to	dissect	the	84	to	

96	mb	interval	by	use	of	congenic	lines.	Three	lines	divided	this	interval	into	

three	intervals	that	covered	unique	portions	of	the	original	interval.	However,	all	

three	lines	failed	to	display	the	effect	on	methamphetamine	locomotion,	despite	

the	robust	and	replicable	QTL	previously	detected.	Byrant	et	al.,	(2012)	

concluded	that	there	may	be	multiple	variants	in	this	interval	that	interact	to	

produce	the	effect.	Because	the	QTL	of	the	present	study	overlaps	with	the	tail	

end	of	the	Bryant	et	al.,	(2012)	interval,	it	is	unlikely	that	all	of	the	B6	epistatic	

variants	are	captured	by	the	present	interval.	However,	many	of	the	BXD	B6	

genotype	strains	at	this	locus,	with	high	cocaine	sensitization	scores,	have	B6	

haplotypes	that	extend	beyond	the	2-LOD	interval,	further	into	the	Byrant	et.	al.	

(2012)	interval.	It	is	also	possible	that	the	other	interacting	variants	are	

isomorphic	between	B6	and	D2	genotypes.	Therefore,	it	is	possible	that	the	QTL	

of	the	present	study	is	representative	of	this	epistatic	effect.	Selection	of	

additional	BXD	lines	with	smaller	B6	haplotypes	at	this	locus	could	lend	support	

to	epistasis.	A	congenic	approach	with	B6	and	A/J	lines	could	also	yield	similar	

results.	Confirmation	would	lend	support	to	common	alleles	mediating	cocaine,	

amphetamine	and	opioid	locomotor	effects.		
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Genetic	Correlations:	PNS	

Common	alleles	may	mediate	the	effects	of	PNS	across	phenotypes.	This	

possibility	was	assessed	by	examining	correlations	between	strain	difference	

scores	for	cocaine	and	sensorimotor	phenotypes.	Few	genetic	correlations	were	

found	for	the	effects	of	PNS	across	these	traits.	Two	correlations	were	found;	

between	PNS	effects	on	female	acute	cocaine	locomotion	and	PNS	effects	on	CPP,	

and	between	PNS	effects	on	female	ASR	and	PNS	effects	on	PPI90.	However,	PNS	

effects	on	female	CPP,	ASR	or	PPI	were	not	detected	by	ANOVA,	suggesting	that	

these	traits	are	not	affected	by	PNS	across	females	within	the	BXD	panel.	

Therefore,	these	correlations	may	be	spurious.	Overall,	this	evidence	does	not	

support	the	existence	of	common	PNS	mediating	alleles	between	the	traits	under	

study.	Similarly,	there	were	no	common	QTLs	discovered	for	QTL	by	PNS	

interactions	between	traits.	

	

Genetic	Correlations:	Cocaine	Behaviors	

	 Cocaine	locomotion,	CPP	and	self	administration	behaviors	are	often	

studied	with	the	intent	of	elucidating	the	neurobiology	of	cocaine	abuse	

disorder.	It	is	important	to	consider	the	relationships	between	these	behaviors,	

including	genetic	relationships,	in	order	to	evaluate	the	implications	of	data	

produced	from	these	varied	phenotypes.	Dickson	et	al.,	2015	has	reported	a	



	

	 	 	 99	

genetic	correlation	of	cocaine	locomotion	sensitization	with	cocaine	self-

administration	infusions.	Furthermore,	a	self-administration	QTL	overlaps	with	

a	cocaine	sensitization	QTL	on	chromosome	11	(Dickson	et	al.,	2015;	V.	Kumar	et	

al.,	2013).	Both	studies	also	hit	on	the	same	candidate	gene	(cyfip2)	by	different	

methods,	and	Kumar	et.	al.	(2013)	experimentally	validated	the	role	of	this	gene	

in	cocaine	locomotion	sensitization.	The	present	study	has	further	supported	the	

relationship	between	sensitization	and	self-administration,	with	locomotor	

sensitization	in	the	present	study	demonstrating	a	robust	correlation	to	the	self-

administration	infusions,	data	collected	by	Dickson	et.	al.	2015.		

Sensitization	also	associates	with	CPP.	However,	CPP	does	not	associate	

with	self-administration	infusions,	suggesting	unique	shared	variance	between	

these	measures	and	sensitization.	CPP	does	associate	with	days	to	acquire	self-

administration.	This	relationship	indicates	that	strains	with	higher	CPP	scores	

require	more	days	to	acquire	self-administration	and	unexpectedly	suggests	

alleles	that	confer	higher	cocaine	reward	sensitivity	may	also	delay	acquisition	

of	self-administration.	Dickson	et	al.	(2015)	report	that	cocaine	CPP	collected	by	

Philip	et	al.,	(2011)	does	not	associate	with	self	administration	acquisition,	

however	this	CPP	was	induced	by	a	3	mg/kg	dose.	Furthermore,	the	Phillip	et	al.	

(2011)	CPP	data	does	not	correlate	to	CPP	(10	mg/kg)	data	from	the	present	

study,	suggesting	different	alleles	may	be	involved	in	mediating	the	effects	of	

disparate	doses	on	CPP.		
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	 The	genetic	relationship	between	sensitization	and	both	self-

administration	and	CPP	suggest	common	alleles	mediate	sensitization	and	

reward/reinforcement.	Furthermore,	common	alleles	suggest	that	the	

neurobiology	involved	in	these	behaviors	is	similar.	Locomotor	sensitization	is	

proposed	to	be	related	to	a	similar	process	by	which	sensitization	to	the	

motivational	valence	of	cocaine	and	cocaine	related	cues	underlies	the	escalation	

of	cocaine	intake	and	ultimately	cocaine	addiction	(Berridge,	2006).	Future	

research	should	seek	to	identify	the	genetic	relationship	between	locomotor	

sensitization	and	other	addiction	related	self-administration	behaviors,	

including	long-access	escalation	and	reinstatement,	as	well	as	reward	related	

cue	motivational	valence	measures	such	as	sign	vs.	goal	tracking.	These	

procedures	are	thought	to	reflect	addiction-relevant	cocaine	behaviors	and	

evidence	indicates	a	potential	relationship	to	locomotor	sensitization	(De	Vries,	

Schoffelmeer,	Binnekade,	Raasø,	&	Vanderschuren,	2002;	Ferrario	et	al.,	2005;	

Flagel,	Watson,	Akil,	&	Robinson,	2008).	A	genetic	association	to	sensitization	

would	further	suggest	that	sensitization	relevant	alleles	also	confer	risk	for	

cocaine	abuse.	Identifying	these	relationships	will	have	particularly	pragmatic	

implications.	Genetic	studies	often	involve	large	scale	phenotyping	of	many	

subjects.	Locomotor	sensitization	is	a	relatively	rapid	and	feasible	test	that	may	

be	used	to	screen	genetic	models	for	more	cumbersome	self-administration	

procedures.	
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Summary	

	 This	experiment	has	confirmed	that	PNS	affects	cocaine	 locomotion	and	

reward	in	the	BXD	panel,	indicating	BXD	strains	are	a	suitable	model	for	locating	

PNS	 interacting	alleles.	A	QTL	by	PNS	 interaction	 for	acute	cocaine	 locomotion	

was	detected	on	the	X	chromosome.	Prioritization	of	positional	candidate	genes	

revealed	 that	 the	 gene	 aifm1	 is	 cis-regulated	 in	 multiple	 brain	 regions	 and	

transcript	 levels	 associate	 with	 variance	 in	 the	 strain	 effects	 of	 PNS	 on	 acute	

locomotion.	This	gene	may	be	particularly	promising,	due	to	 its	 involvement	in	

mediating	apoptosis	after	brain	insults.		

	 Main	effect	QTLs	were	discovered	for	female	CPP	and	sensitization.	There	

are	 no	 previous	 reports	 of	 cocaine	 CPP	 QTLs,	 therefore	 this	 may	 be	 the	 first	

discovered	for	cocaine	CPP.	The	interval	for	this	QTL	is	 large	and	encompasses	

many	 genes.	 Furthermore,	 many	 microarray	 probes	 have	 target	 regions	 with	

B6/D2	SNPs,	indicating	transcript	expression	data	may	not	be	reliable	for	the	D2	

strains,	 limiting	 the	 value	 of	 prioritizing	 candidate	 genes	 by	 expression	 data.	

Future	 work	 should	 seek	 to	 confirm	 this	 QTL	 and	 narrow	 the	 confidence	

interval.	 This	 may	 be	 accomplished	 by	 selecting	 additional	 BXD	 strains	 with	

haplotype	breaks	in	the	interval	or	congenic	methods.		

	 In	 addition	 to	 QTLs,	 genetic	 relationships	 between	 cocaine	 behaviors	

were	 detected.	 These	 data	 suggest	 common	 alleles	 may	 mediate	 locomotor	

sensitization	and	self-administration	and	CPP.	Common	alleles	may	also	mediate	
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acquisition	of	self-administration	and	CPP.	These	relationships	may	be	exploited	

for	screening	procedures.	Additionally,	shared	variance	may	be	utilized	in	future	

studies	 for	principal	 component	 analysis	 that	 can	be	utilized	 for	QTL	mapping	

with	improved	power	(Kwak,	Moore,	Spalding,	&	Broman,	2015).	
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Chapter	4	

Characterization	of	stress	effects	on	dam	corticosterone	and	

dam-pup	contact
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The	developmental	affects	of	PNS	are	mediated	by	the	maternal	stress	

response,	with	physiological	and	behavioral	stress	reactions	of	the	mother	as	

potential	modes	of	transmission	to	the	offspring.	It	is	likely	that	differential	

maternal	stress	sensitivity	moderates	the	impact	of	prenatal	stress	on	offspring	

development.	Genetic	variants	may	be	a	source	of	differences	in	the	maternal	

stress	response,	including	BXD	strain	differences.	In	mapping	for	QTL	by	PNS	

interactions,	genetically	mediated	differences	in	maternal	stress	sensitivity	

should	be	considered.	Differences	in	stress	sensitivity	may	have	developmental	

consequences	that	are	revealed	in	cocaine	and	sensorimotor	phenotypes.	In	this	

case,	the	offspring	data	will	retain	information	of	the	genetic	effects	on	maternal	

stress	responsivity.	QTLs	derived	from	this	data	may	indicate	loci	that	influence	

maternal	stress	response	and	do	not	interact	with	PNS	exposure	to	moderate	

development.	Understanding	the	nature	of	genotype-phenotype	associations	is	

important	for	follow-up	investigations	of	candidate	genes.	Alternately,	strain	

differences	in	maternal	stress	response	may	obscure	discovery	of	QTL	by	PNS	

interactions.	This	may	occur	when	genetic	variants	that	influence	maternal	

stress	response	are	in	linkage	disequilibrium	with	variants	that	interact	with	

PNS	exposure	to	moderate	development.	

Glucocorticoids	are	a	likely	mechanism	of	stress	transmission	from	

mother	to	fetus.	Environmental	stressors	cause	a	response	of	the	HPA	axis	that	

ultimately	results	in	an	increase	of	plasma	glucocorticoid	levels	(Herman	&	
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Cullinan,	1997).	Corticosterone	(CORT)	is	the	primary	glucocorticoid	in	rodents.	

PNS	procedures	are	repeatedly	shown	to	cause	increases	in	maternal	plasma	

CORT	levels	(Barbazanges,	Piazza,	Le	Moal,	&	Maccari,	1996;	Montano,	Wang,	

Even,	&	vom	Saal,	1991a;	Mueller	&	Bale,	2007;	Takahashi,	1998;	Zagron	&	

Weinstock,	2006).	Although	the	placenta	may	act	as	a	metabolic	barrier	to	

glucocorticoids,	fetal	CORT	levels	rise	after	maternal	stress	exposure	(Montano	

et	al.,	1991a;	Takahashi,	1998).	It	is	this	in-utero	exposure	to	elevated	

glucocorticoids	that	may	explain	the	PNS	phenotype	in	adult	offspring.	Inhibiting	

the	dam	CORT	response	by	adrenalectomy	attenuates	or	eliminates	many	of	the	

effects	of	PNS	on	the	offspring	(Diaz,	Ogren,	Blum,	&	Fuxe,	1995;	Salomon,	Bejar,	

Schorer-Apelbaum,	&	Weinstock,	2011;	Zagron	&	Weinstock,	2006).	And	

exogenous	administration	of	glucocorticoids	during	pregnancy	produces	similar	

effects	to	PNS,	including	altered	responses	to	psychostimulants,	morphine	and	

ethanol	(Diaz	et	al.,	1995;	Rodrigues	et	al.,	2012;	Salomon	et	al.,	2011).	

Comparison	of	CORT	levels	in	pregnant	B6,	D2	or	BXD	mice	following	stress	have	

not	been	reported;	there	are	reported	differences	in	stress	response	in	un-

pregnant	mice	in	the	progenitor	and	BXD	strains	(Doering,	Shire,	Kessler,	&	

Clayton,	1972;	Freund,	Martin,	Jungschaffer,	Ullman,	&	Collins,	1988;	Roberts,	

Phillips,	Belknap,	Finn,	&	Keith,	1995).	Considering	this	evidence,	the	maternal	

CORT	response	to	stress	may	differ	in	the	BXD	strains,	and	this	difference	may	

account	for	the	strain	differences	in	the	effect	of	PNS	on	cocaine	CPP.	However,	

in-utero	exposure	to	elevated	glucocorticoids	may	not	be	the	only	mechanism	by	
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which	PNS	affects	development.	PNS	procedures	are	also	known	to	alter	the	

maternal	behavior	of	the	stressed	dam,	which	alters	the	postnatal	environment	

of	the	offspring,	and	potentially	contributes	to	the	PNS	phenotype.		

Multiple	lines	of	research	indicate	that	PNS	can	alter	postnatal	maternal	

behavior.	Most	widely	reported	is	a	reduction	in	licking	and	grooming	of	the	

pups	(S.	Baker	et	al.,	2008;	Champagne	&	Meaney,	2006;	Patin	et	al.,	2002;	Power	

&	Moore,	1986;	Smith,	Seckl,	Evans,	Costall,	&	Smythe,	2004).	There	is	also	a	

report	of	reduced	time	nursing	(Smith	et	al.,	2004).	And	an	experiment	

employing	a	pup	retrieval	task	reported	increased	latency	to	retrieve	and	lower	

retrieval	rates	in	PNS	dams	(Patin	et	al.,	2002).	This	research	has	largely	used	

rats	as	subjects;	a	literature	search	yields	two	studies	involving	mice.	PNS	was	

only	found	to	affect	maternal	behavior	when	stressed	pups	are	cross-fostered	to	

a	control	dam	or	control	pups	to	a	stressed	dam,	indicating	a	PNS	by	cross	

fostering	interaction	(Meek,	Burda,	&	Paster,	2000).	Similarly,	PNS	had	no	effect	

on	pup	retrieval	by	the	biological	dam	in	another	study,	but	did	cause	

impairments	in	maternal	aggression	towards	an	intruder	(Pardon,	Gérardin,	

Joubert,	Pérez-Diaz,	&	Cohen-Salmon,	2000).	Although	evidence	for	mice	is	

lacking,	there	is	sufficient	evidence	to	indicate	that	PNS	does	affect	some	

maternal	behaviors	in	the	rat.	Both	mouse	and	rat	pups	are	dependent	on	

maternal	care,	and	the	development	of	pups	can	be	altered	by	variation	in	

maternal	behavior.	Licking	and	grooming	by	rat	dams	negatively	correlates	with	
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HPA	axis	reactivity	in	adult	offspring,	suggesting	the	importance	of	maternal	

contact	for	HPA	axis	regulation	later	in	life	(Francis,	Diorio,	Liu,	&	Meaney,	1999;	

D.	Liu	et	al.,	1997).	Maternal	behavior	may	also	affect	cocaine	responsiveness.	

Manipulations	that	increase	licking/grooming	frequency,	including	temporary	

maternal	separation	and	litter	size	reduction,	cause	decreased	locomotion	

sensitization	and	CPP	in	male	but	not	female	rats	and	decreased	cocaine	self-

administration	(only	males	tested)	(Francis	&	Kuhar,	2008;	Y.-Q.	Li	et	al.,	2008;	

Moffett	et	al.,	2006).	PNS	may	alter	maternal	behavior,	and	variation	in	maternal	

behavior	can	have	long	standing	consequences	for	the	offspring.	Therefore,	it	is	

plausible	that	differential	stress	effects	on	maternal	behavior	in	B6	and	D2	

strains	may	be	a	mechanism	by	which	PNS	differentially	affects	the	phenotype	of	

the	offspring.		

In	order	to	assess	strain	differences	in	the	maternal	CORT	response	and	

maternal	behavior	in	the	B6,	D2	and	BXD	strains,	plasma	CORT	levels	were	

measured	pre	and	post	stress	and	the	frequency	of	dam-pup	contact	was	

assessed	in	the	postnatal	period.	Strain	differences	in	the	CORT	response	to	

stress	and	strain	differences	in	the	effects	of	stress	on	dam-pup	contact	were	

tested	for	association	with	PNS	effects	on	offspring	sensorimotor	(chapter	2)	and	

cocaine	(chapter	3)	phenotypes.		
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Methods		

	

Subjects,	Breeding	and	Prenatal	Stress	

	 BXD	strains	and	the	C57/6J	(B6)	and	DBA/2J	(D2)	progenitor	strains	

were	bred	and	subjected	to	PNS	as	described	in	chapter	2.	

	

Corticosterone	

On	stress	day	1	and	5,	blood	was	collected	by	puncturing	the	

submandibular	vein	with	a	lancet,	once	immediately	before	the	first	restraint	

session	and	once	immediately	after	the	first	session.	Approximately	50	

microliters	was	collected	into	lithium	heparin	coated	tubes	and	then	centrifuged	

for	collection	of	plasma.	Samples	were	stored	at	-80	degrees	until	ready	for	

processing.		

Plasma	CORT	concentration	was	measured	with	the	use	of	the	DetectX®	

CORT	Enzyme	Immunoassay	kit	(ArborAssays	K014-H5,	Ann	Arbor,	MI,	USA).	

Room	temperature	plasma	samples	were	diluted	1:450	in	assay	buffer	and	

processed	according	to	the	provided	protocol.	A	microplate	reader	(Elx800,	

BioTEK,	Highland	Park,	VT,	USA)	was	used	to	measure	optical	density	at	450	nm	

and	plasma	concentration	was	interpolated	from	a	standard	curve.	Stress	day	1	
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and	5	samples	were	assessed	for	the	progenitor	strains,	and	stress	day	1	was	

assessed	for	the	BXD	strains.	All	samples	were	run	in	duplicate	within	a	plate	

and	the	intra-assay	reliability	was	assessed	by	the	coefficient	of	variation	for	the	

duplicates.	Ten	samples	were	assessed	on	two	independent	plates	to	determine	

the	inter-assay	coefficient	of	variation.	Pre-	and	post-stress	samples	for	a	subject	

were	always	run	on	the	same	plate	and	strains	were	balanced	between	plates.	

	

Maternal-Pup	Contact	

	 After	parturition,	dams	and	their	litters	were	observed	from	postnatal	

day	(PND)	1	through	10.	Observations	consisted	of	4	sessions	daily,	at	times	

0930,	1300,	1700	and	2000	(lights	on	at	0700,	lights	off	at	1900).	Night	vision	

goggles	were	used	during	the	2000	session	so	that	the	dark	phase	was	not	

disrupted.	Each	session	consisted	of	one	observation	every	3	minutes	for	a	total	

of	5	observations.	At	each	observation,	dams	were	noted	to	be	in	contact	or	not	

in	contact	with	the	pups.	The	mice	were	observed	in	their	home	cage	and	in	their	

home	rack	position.	Care	was	taken	not	to	move	the	cage	and	to	reduce	any	

noise	made	by	the	observer.	In	total,	dams	received	200	observations.	The	

number	of	in-contact	observations	was	divided	by	total	observations	received	to	

quantify	maternal-pup	contact.		
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	 Inter-observer	reliability	was	assessed	by	performing	simultaneous	

observations	with	pairs	of	raters	blinded	to	the	other	observer’s	observation.	

	

Statistics	and	QTL	Mapping	

	 Data	are	presented	as	mean	±SEM.	Analysis	of	variance	(ANOVA)	was	

used	for	analysis	of	stress	and	strain	effects.	Heritability	was	calculated	as	

described	in	chapter	2.	QTL	mapping	was	performed	as	described	in	chapters	2	

and	3.	The	level	of	significance	was	set	at	p<0.05.		

	

Results	

	 	

Corticosterone	

	 A	mixed	factorial	2-way	ANOVA	for	the	B6	(n=12)	and	D2	(n=9)	strains,	

with	CORT	change	from	baseline	to	post-test	as	a	within	factor	and	strain	as	a	

between	factor,	revealed	a	stress	by	strain	interaction	F(1,	19)=11.3,	p=0.003],	a	

main	effect	of	stress	on	stress	day	1	[F(1,	44)=79.0,	p<0.001],	and	a	main	effect	

of	strain	[F(1,	19)=6.4,	p=0.021].	For	day	5,	a	stress	by	strain	interaction	[F(1,	

19)=6.7,	p=0.018]	and	a	main	effect	of	stress	[F(1,	19)=167.4,	p<0.001]	were	

found.	
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	 Simple	main	effects	tests	for	the	shift	from	baseline	to	post-stress	was	

assessed	within	strain	for	stress	day	1	and	5.	Both	B6	and	D2	strains	increase	

CORT	from	baseline	on	day	1,	[F(1,	19)=44.8,	p<0.001]	and	[F(1,	19)=29.5,	

p<0.001]	respectively,	and	on	day	5,	[F(1,	19)=109.2,	p<0.001]	and	[F(1,	

19)=44.8,	p<0.001]	respectively.	The	magnitude	of	the	CORT	change	was	greater	

in	D2	mice	on	day	1	[F(1,	19)=11.3,	p=0.003]	and	day	5	[F(1,	19)=6.7,	p=0.017].		

	 Habituation	to	stress	in	the	B6	and	D2	strains	was	assessed	by	a	mixed	2-

way	ANOVA,	with	the	magnitude	of	CORT	change	on	day	1	and	5	as	within	

subjects	factors	and	strain	as	a	between	factor.	A	main	effect	of	strain	was	[F(1,	

19)=13.1,	p=0.002]	was	found	(D2	greater),	but	no	effect	of	stress	day	or	strain	

by	stress	day	interaction	were	found,	indicating	no	habituation	or	sensitization	

to	restraint	stress	from	day	1	to	5.	

The	stability	of	the	baseline	CORT	levels	in	B6	and	D2	mice	were	assessed	

by	mixed	2-way	ANOVA,	with	baseline	on	day	1	and	5	as	within	factor	and	strain	

as	a	between	factor.	A	stress	day	by	strain	interaction	[F(1,	19)=15.6,	p=0.001],	a	

main	effect	of	stress	day	[F(1,	19)=87.5,	p<0.001]	and	a	main	effect	of	strain	

[F(1,	19)=16.4,	p=0.001]	were	found.	Simple	main	effects	for	stress	day,	within	

strain,	revealed	that	both	B6	and	D2	strains	increase	baseline	CORT	levels	from	

day	1	to	5	[F(1,	19)=106.1,	P<0.001]	and	[F(1,	19)=12.4,	p=0.002]	respectively.	

The	magnitude	of	this	shift	was	greater	in	B6	mice	[F(1,	19)=15.5,	p=0.001].	See	

table	1	for	baseline	and	post-stress	strain	values	on	day	1	and	5.	
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Table	1	Plasma	corticosterone	levels	(ng/mL)	of	the	B6	and	D2	
strains	at	baseline	and	post-stress	on	stress	day	1	and	5.	
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Figure	1	Effects	of	restraint	stress	on	maternal	corticosterone	and	dam-pup	contact.	
a)	A	significant	strain	effect	for	the	CORT	response	to	restraint	stress.	b)	A	strain	by	
stress	interaction	on	maternal-pup	contact.	
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The	BXD	strains	were	assessed	by	mixed	2-way	ANOVA,	with	the	baseline	

and	post-stress	CORT	levels	as	a	within	factor	and	strain	as	a	between	factor.	A	

stress	by	strain	interaction	[F(20,	109)=3.9,	p<0.001],	a	main	effect	of	stress	

[F(1,	109)=254.6,	p<0.001]	and	a	main	effect	of	strain	[F(1,	109)=3.0,	p<0.001]		

were	found.	See	figure	1a.	

A	1-way	ANOVA	for	the	magnitude	of	the	CORT	change	from	baseline	to	

post-stress	revealed	a	strain	effect	[F(20,	109)=9,	p<0.001],	indicating	

heritability	of	the	CORT	stress	response.	The	heritability	estimate	is	0.42.	

The	average	intra-assay	coefficient	of	variation	was	6.1%	and	the	average	

inter-assay	coefficient	of	variation	was	15.1%.	

	

Maternal	Behavior	 	

A	2-way	ANOVA	for	dam-pup	contact	in	the	progenitor	strains	revealed	a	

main	effect	of	strain	F(1,	24)	=	4.5,	p<0.044,	with	D2	mice	observed	to	have	more	

contact	with	pups	(see	figure	1b).	No	significant	main	effect	of	PNS	or	significant	

interactions	were	found.	

A	2–way	ANOVA	for	BXD	strains	revealed	a	strain	by	PNS	interaction	

[F(20,	240)=1.7,	p=0.03]	and	a	main	effect	of	strain	[F(20,	240)=5.0,	p<0.001]	

(see	figure	1b).	The	heritability	for	control	condition	is	0.2	and	for	PNS	is	0.27.	
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The	intra-class	correlation	for	assessment	of	reliability	was	ICC(1,	2)	=	

0.98,	0.92	and	1.0	for	the	930,	1300	and	1700	observation	session,	respectively.	

These	results	indicate	high	inter-observer	reliability.	

	

Main	Effect	QTL	and	QTL	by	PNS	Interactions	for	the	Maternal	Stress	Response	

	 No	significant	QTLs	were	discovered	for	the	CORT	response	or	dam-pup	

contact.	A	suggestive	QTL	was	discovered	for	CORT	response	on	chr	13	

(LRS=12.8,	peak	marker	rs13482018,	location	112.636265	mb)	and	on	chr	19	

(LRS=13.2,	peak	marker	rs30505802,	location	27.531578	mb).	A	suggestive	

main	effect	QTL	for	maternal-pup	contact	was	discovered	on	chr	6	(LRS=12.3,	

peak	marker	rs30611941,	location	126.790724	mb)	and	on	chr	13	(LRS=15.8,	

peak	marker	rs3664096,	location	75.764157	mb).	

	

Associations	of	Maternal	Stress	Response	to	Offspring	Phenotype	

The	strain	CORT	response	scores	(difference	from	baseline	to	post-stress)	

were	assessed	for	correlations	to	strain	difference	scores	for	acute	

locomotion/sensitization,	CPP,	ASR,	and	PPI90.	For	males,	a	significant,	positive	

correlation	was	detected	for	acute	locomotion	(r=0.49,	p=0.025)	(see	figure	2a)	

and	CPP	(r=0.45,	p=0.043)	(see	figure	2b)	difference	scores.	No	other	significant	

correlations	were	detected.	 	
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The	strain	difference	scores	for	maternal-pup	contact	were	assessed	for	

correlations	to	strain	difference	scores	for	acute	locomotion/sensitization,	CPP,	

ASR,	PPI90.	A	significant,	positive	correlation	was	found	between	maternal-pup	

contact	and	CPP	difference	scores	in	males	(r=0.60,	p=0.004)	(see	figure	2c).	No	

other	correlations	were	detected.	

	

Re-mapping	QTLs	with	Adjusted	Means	

The	estimated	marginal	means	(EMMs)	for	acute	locomotion	and	CPP	in	

PNS	subjects	were	calculated	with	maternal	CORT	response	as	a	covariate.	

EMMs	were	also	calculated	for	CPP	with	the	dam-pup	contact	scores	as	a	

covariate	for	both	control	and	PNS	subjects.	The	difference	scores	for	these	

means	were	determined	and	then	subjected	to	QTL	mapping.	A	significant	QTL	

on	chromosome	X	(LRS=16.6,	peak	marker=rs13483729,	location	38.899709)	

was	detected	for	acute	cocaine	locomotion	with	CORT	adjusted	means	in	the	

same	location	as	the	QTL	detected	for	unadjusted	means	(see	chapter	3).	No	

other	significant	QTLs	were	detected.		

	 In	order	to	assess	differences	in	CORT	and	maternal	contact	exposure	

between	the	two	genotype	groups	at	the	acute	locomotion	QTL,	a	t-test	was	

performed	between	the	two	genotype	groups	for	strain	maternal	CORT	response	

and	dam-pup	contact	strain	differences	scores	(CORT	mean	±	SEM,	B6	allele=	
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1244.5	±	191.4,	D2	allele=	1623.6	±	423.7;	maternal-pup	contact	mean	±	SEM,	B6	

allele=	-1.8	±	1.4,	D2	allele=	1.6	±	2.4).	No	significant	effects	were	detected	for	

CORT	[t(19)=0.9,	p=0.688]	or	maternal-pup	contact	[t(19)=1.2,	p=0.999].	
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Figure	2	Associations	between	maternal	stress	response	and	PNS	
effects	on	offspring	cocaine	phenotypes.	a)	Significant	correlation	
between	maternal	CORT	response	and	male	acute	locomotion	
difference	scores.	b)	Significant	correlation	between	maternal	CORT	
response	and	male	CPP	difference	scores.	c)	Significant	correlation	
between	maternal-pup	contact	difference	scores	and	male	CPP.	
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Discussion	

The	present	experiment	indicates	that	restraint	stress	interacts	with	

strain	to	alter	maternal-pup	contact	in	the	postnatal	period.	Furthermore,	the	

CORT	response	to	restrain	stress	was	found	to	be	a	heritable	trait,	with	strain	

differences	in	the	magnitude	of	the	CORT	response.	These	data	collectively	

reveal	BXD	strain	differences	in	the	dam	response	to	restraint	stress	that	may	

have	consequences	for	prenatal	and	postnatal	development	of	the	offspring.	The	

strain	effects	of	restraint	stress	on	dam-pup	contact	associate	with	the	strain	

effects	of	PNS	on	offspring	CPP.	Additionally,	the	strain	maternal	CORT	response	

associates	with	the	strain	effects	of	PNS	on	acute	locomotion	and	CPP.	These	

data	suggest	that	strain	variability	in	the	maternal	stress	response	may	have	an	

effect	on	the	offspring	cocaine	phenotypes.	

In	determining	QTL	by	PNS	interactions,	strain	variance	of	the	maternal	

stress	response	may	act	as	a	confound.	Ideally,	when	searching	for	a	genotype	by	

environment	interaction,	exposure	of	the	treatment	groups	to	the	environmental	

factor	is	constant.	In	the	present	study,	offspring	exposure	to	maternal	stress	

response—both	in	terms	of	CORT	and	maternal	contact--varied	in	a	strain	

dependent	manner	and	that	variable	exposure	associates	with	enduring	

consequences	for	behavior.	In	mapping	for	a	QTL	by	PNS	interaction,	variable	

exposure	to	PNS-induced	CORT	elevations	or	variable	alterations	in	maternal	

behavior	may	obscure	the	discovery	of	QTLs	for	responsiveness	to	these	factors	
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as	well	as	how	PNS-programmed	alterations	impact	brain	function.	For	example,	

a	strain	may	possess	a	variant	that	interacts	with	PNS	to	moderate	the	

developmental	consequences.	However,	that	same	strain	may	also	harbor	alleles	

that	suppress	the	maternal	stress	response.	Suppressed	exposure	to	PNS	may	

obscure	the	QTL	by	PNS	interaction.	However,	if	these	alleles	are	not	in	linkage	

disequilibrium,	the	average	exposure	of	the	two	genotype	groups	at	the	PNS	

interacting	QTL	should	not	differ.	The	greatest	confounds	may	occur	when	

maternal	stress	response	mediating	alleles	are	in	linkage	disequilibrium	with	

PNS	interacting	alleles.	Variable	stress	exposure	may	also	produce	QTL	by	PNS	

interactions	that	are	actually	representative	of	alleles	that	moderate	the	

maternal	stress	response	because	influential	variance	in	the	maternal	stress	

response	may	be	represented	in	the	offspring	difference	scores.	These	variants	

indicate	important	gene	by	stressor	interactions	that	mediate	adult	stress	

responsivity.	However,	in	determining	the	detailed	biological	effects	of	candidate	

genes,	it	will	be	important	to	discriminate	between	QTLs	that	moderate	a	

developmental	effect	of	stress	exposure	and	those	that	moderate	the	adult	stress	

response.	This	knowledge	will	guide	prioritization	of	candidate	genes	and	

hypothesis	formation.	In	order	to	account	for	these	possibilities,	the	strain	

offspring	means	were	adjusted	with	the	maternal	stress	response	as	a	covariate	

and	re-mapped.	These	efforts	resulted	in	no	new	QTL	discoveries,	therefore	we	

do	not	have	evidence	to	support	that	strain	variance	in	the	maternal	stress	

obscured	discovery	of	QTLs.	Importantly,	the	QTL	by	PNS	interaction	for	acute	
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locomotion	remained,	indicating	that	variance	in	the	maternal	stress	response	

was	not	likley	the	source	of	this	QTL.	This	is	further	supported	by	the	lack	of	

difference	in	mean	CORT	and	contact	exposure	between	the	two	genotype	

groups	at	the	QTL	by	PNS	interaction	for	acute	locomotion.	However,	one	

potential	caveat	is	the	unbalanced	sizes	of	the	genotype	groups	(5	in	D2	group,	

16	in	B6	group).	Unbalanced	groups	may	reduce	power	to	detect	differences.	

The	D2	group	CORT	mean	is	33%	higher	than	the	B6	group	mean,	and	the	D2	

group	has	higher	acute	locomotion	difference	scores;	this	association	is	in	line	

with	the	positive	correlation	between	maternal	CORT	response	and	acute	

locomotion	difference	scores.	Characterization	of	additional	BXD	strains,	with	

biased	selection	by	genotype	at	this	QTL	to	balance	the	size	of	groups,	would	

further	clarify	this	issue.		

Associations	between	maternal	CORT	response	and	cocaine	

locomotion/CPP	suggest	that	the	effects	of	stress	induced	CORT	on	these	

phenotypes	may	be	plasma	concentration	dependent.	Some	effects	of	PNS	are	

dependent	on	stress	induced	surges	in	CORT	levels.	Most	studies	utilize	a	single	

dose	in	an	effort	to	simulate	endogenous	surges	in	stress-	induced	CORT.	These	

data	are	sufficient	to	implicate	glucocorticoids	in	fetal	programming	and	PNS	

effects,	but	do	not	examine	the	implications	for	varying	stress-induced	CORT	

levels.	One	study	did	examine	the	effects	of	PNS	in	a	knock-out	(KO)	strain	of	

mice	known	to	be	more	sensitive	to	stressors	than	the	wild	type	(WT)	strain.	



	

	 	 	 122	

Both	the	KO	and	WT	strains	demonstrate	increases	in	CORT	due	to	stress,	

however	the	KO	has	a	greater	CORT	response	The	offspring	of	the	PNS	KO	mice	

had	lower	bodyweights	relative	to	PNS	WT	mice,	and	this	effect	persisted	into	

adulthood	(Mueller	&	Bale,	2006).	This	evidence	indicates	maternal	stress	

sensitivity	may	have	an	enduring	impact	on	the	phenotype	of	PNS	offspring.	A	

dose-response	relationship	with	the	synthetic	glucocorticoid	dexamethasone	

was	detected	for	hippocampal	degeneration	in	primates,	with	greater	

degeneration	occurring	with	greater	dose	(LaBorde,	Hansen,	Young,	Sheehan,	&	

Holson,	1992).	Similarly,	reduction	in	fetal	growth	by	dexamethasone	

administration	to	rats	was	found	to	be	dose-dependent	(LaBorde	et	al.,	1992).	

These	studies	indicate	that	the	dose-response	of	deleterious	glucocorticoid	

effects	can	be	graded,	with	a	threshold	dose	for	harmful	effects,	and	increasing	

severity	with	increasing	dose.	A	similar	dose-response	relationship	of	CORT	may	

cause	differential	consequences	for	fetal	development	and	indicate	the	

importance	of	the	maternal	stress	CORT	response	variability.	More	extensive	

dose-response	assessment	of	prenatal	CORT	exposure	for	effects	on	cocaine	

responsiveness	may	clarify	this	potential	relationship.	

The	effect	of	PNS	on	dam-pup	contact	was	found	to	associate	with	the	

effect	of	PNS	on	CPP.	These	results	suggest	that	genetically	mediated	changes	in	

maternal	behavior	may	be	a	mechanism	by	which	PNS	differentially	alters	

cocaine	responsiveness	in	BXD	strains.	Variation	in	maternal	behavior	are	
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known	to	be	a	determinant	of	physiological	and	behavioral	outcomes	in	the	

offspring,	with	associations	to	HPA	axis	function	being	most	commonly	

presented	(Champagne,	2011).	The	effects	of	maternal	care	may	also	be	

implicated	in	cocaine	responsiveness,	as	licking/grooming	negatively	associated	

with	cocaine	self-administration	(Francis	&	Kuhar,	2008).	Furthermore,	

reductions	in	litter	size,	a	manipulation	that	increases	licking/grooming,	

decrease	cocaine	locomotion	sensitization	and	CPP	in	males	but	not	females	(Y.-

Q.	Li	et	al.,	2008).	The	opposite	pattern	was	found	in	the	present	study;	reduced	

dam-pup	contact	was	associated	with	decreased	CPP.	However,	we	did	not	

measure	licking/grooming	and	cannot	assess	its	relationship	to	PNS	and	cocaine	

CPP.	Dam-pup	contact	and	licking/grooming	are	not	necessarily	associated;	in	

one	instance	a	prenatal	manipulation	increased	licking/grooming	with	no	

change	in	total	contact	and	natural	variations	in	rat	licking/grooming	do	not	

associate	with	total	contact	(Menard	&	Hakvoort,	2007;	Palanza,	Howdeshell,	

Parmigiani,	&	vom	Saal,	2002).		

Although	maternal	behavior	is	an	important	driver	of	pup	development,	

pup	physiology	and	behavior	are	known	to	be	determinants	of	maternal	

behavior.	This	is	demonstrated	by	a	study	in	which	BXD	pups	were	cross-

fostered	to	B6	dams.	Alterations	in	the	B6	dam	maternal	behaviors	are	

dependent	on	the	strain	of	the	pups	(Ashbrook,	Gini,	&	Hager,	2015a).	PNS-

induced	changes	in	rat	pups	also	alter	maternal	behavior.	Stressed	pups	under	
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care	of	unstressed	dams	elicit	less	licking/grooming,	contact	time	and	retrieval	

rates	relative	to	controls	(Moore	&	Power,	1986;	Pérez-Laso	et	al.,	2013;	Power	

&	Moore,	1986).	This	effect	may	be	specific	to	male	pups	and	mediated	by	

changes	in	urine	composition,	as	urine	of	stressed	male	pups	elicited	less	

investigation	by	dams	relative	to	controls	(Power	&	Moore,	1986).	Considering	

that	PNS	induced	changes	in	pup	physiology	and	behavior	may	alter	maternal	

behavior,	such	changes	in	BXD	strains	may	fully	or	partially	explain	the	

association	between	PNS	alterations	in	maternal	behavior	and	PNS	changes	in	

CPP	in	the	present	study.	PNS	exposed	BXD	pups	may	demonstrate	strain	

dependent	neonatal	changes	that	alter	maternal	behavior.	These	changes	may	be	

associated	with	PNS	induced	changes	to	cocaine	responsiveness.	Therefore,	a	

causal	role	for	altered	maternal	behavior	is	especially	ambiguous	and	requires	

further	investigation.	These	relationships	may	be	explored	by	cross-fostering	

designs	and	subsequent	characterization	of	cocaine	responsiveness	in	the	adult	

offspring.		

The	results	of	the	present	experiment	indicate	a	strain	effect	on	maternal	

behavior	in	the	progenitor	strains.	D2	mice	were	found	to	have	more	contact	

with	their	pups	than	B6	mice.	A	similar	strain	effect	was	also	identified	by	a	

study	in	which	B6	and	D2	maternal	behavior	were	compared.	D2	mice	were	

found	to	score	higher	on	multiple	measures	of	maternal	behavior	including	

nursing,	nest	building	and	contact	rest	(Shoji	&	Kato,	2006).	These	similarities	
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may	indicate	congruence	of	the	dam-pup	interaction	traits	measured	across	this	

study	and	the	present	study.	No	effects	of	PNS	were	found	on	progenitor	dam-

pup	contact,	despite	strain	by	PNS	interactions	in	the	BXD	strains.	Although	

differences	between	the	progenitor	strains	indicate	heritability	in	the	BXD	panel,	

in	some	cases	genetic	effects	are	only	present	in	the	BXD	strains,	due	to	unique	

allele	combinations	in	BXD	strains	that	allow	for	the	emergence	of	strain	

differences.	

Both	B6	and	D2	dams	demonstrated	an	increase	in	CORT	levels	after	

restraint	stress,	indicating	that	the	restraint	procedure	is	an	effective	stressor	in	

both	strains.	The	magnitude	of	the	CORT	response	differed	between	strains,	as	

observed	in	the	BXD	strains,	and	the	progenitor	strains	did	not	display	

habituation	to	restraint	stress.	However,	the	baseline	CORT	levels	increased	

from	day	1	to	day	5	in	both	strains.	This	may	be	explained	by	HPA	activity	

associated	with	pregnancy.	Pregnancy	causes	changes	in	CORT	levels	that	

fluctuate	predictably	throughout	pregnancy,	with	a	sharp	increase	shortly	before	

parturition,	which	may	explain	higher	baseline	levels	on	day	5	(Barlow,	

Morrison,	&	Sullivan,	1974;	Montano,	Wang,	Even,	&	vom	Saal,	1991b).	The	

magnitude	of	this	shift	was	greater	in	the	B6	mouse,	indicating	heritability	of	this	

trait,	however	implications	for	baseline	shifts	were	not	evaluated	in	the	BXD	

strains.		
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No	main	effect	or	QTL	by	PNS	interactions	were	discovered	for	maternal	

behavior	and	no	QTLs	were	discovered	for	the	CORT	stress	response,	despite	

both	measures	demonstrating	heritability	as	well	as	significant	interaction	with	

strain.	QTL	discovery	for	maternal	behavior	in	a	previous	study	produced	QTLs	

for	variants	that	associate	with	the	pup	influence	on	maternal	behavior	

(Ashbrook,	Gini,	&	Hager,	2015b).	This	experiment	more	extensively	

characterized	parameters	of	maternal	behavior.	A	QTL	was	discovered	for	nest	

building,	and	another	QTL	was	discovered	for	the	sum	of	nest	building,	suckling	

and	nursing.	Inclusion	and	distinction	of	different	maternal	behaviors	may	have	

improved	QTL	detection	in	the	present	study.	QTLs	have	also	been	discovered	

for	the	CORT	stress	response	in	rat	and	mouse	populations	(Finlay	et	al.,	2010;	

Gonik	et	al.,	2012;	Llamas	et	al.,	2005;	Marissal-Arvy,	Heliès,	Tridon,	Moisan,	&	

Mormède,	2014;	Potenza	et	al.,	2004;	Redina,	Smolenskaya,	Maslova,	&	Markel,	

2010;	Solberg	et	al.,	2006;	Vendruscolo,	Vendruscolo,	et	al.,	2006).	The	present	

study	may	have	missed	QTLs	due	to	inadequate	power.	Characterization	of	

additional	BXD	strains	may	improve	QTL	detection	for	both	CORT	and	maternal	

behavior.	Genes	that	mediate	the	CORT	and	maternal	behavior	response	to	

stressors	may	have	significant	relevance,	considering	these	genetic	variants	may	

moderate	the	effects	of	PNS	on	the	offspring.	
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Summary	

Strain	variance	in	the	maternal	CORT	response	to	stress	and	stress-

induced	changes	to	maternal-pup	contact	associate	with	PNS-induced	changes	in	

offspring	cocaine	phenotypes,	suggesting	genetically	mediated	variance	in	the	

maternal	stress	response	may	account	for	effects	of	PNS	on	the	offspring.	

However,	when	strain	means	were	adjusted	for	the	maternal	stress	response	the	

PNS	interacting	QTL	for	cocaine	locomotion	remained,	suggesting	that	shared	

variance	between	maternal	stress	response	and	PNS	effects	on	cocaine	

locomotion	is	not	the	source	of	this	QTL.	Furthermore,	no	QTL	was	discovered	

for	the	maternal	CORT	response	at	this	locus	and	CORT/dam-pup	contact	

exposure	did	not	differ	between	the	genotype	groups	at	this	locus.	These	data	

suggest	that	the	QTL	discovered	represents	a	QTL	by	PNS	interaction	for	one	or	

more	variants	that	moderate	the	developmental	impact	of	PNS	on	the	offspring.	

No	new	QTLs	were	discovered	with	adjusted	means,	suggesting	variance	in	the	

maternal	stress	response	did	not	obscure	discovery	of	PNS	interacting	QTLs.		

The	CORT	response	and	changes	in	maternal	behavior	are	likely	modes	of	

stress	transmission	from	dam	to	fetal	and	neonatal	pups,	however,	other	factors	

may	be	influential.	Therefore,	it	is	difficult	to	exclude	all	sources	of	maternal	

stress	variance.	Follow	up	validation	for	genes	nominated	by	QTL	by	PNS	

interactions	should	consider	the	possibility	that	the	gene	influences	adult	stress	

responsivity	and	does	not	interact	with	PNS	to	moderate	offspring	development.	
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For	postnatal	factors,	cross	fostering	designs	can	account	for	maternal	stress	

responsiveness.	Prenatal	factors	are	more	difficult	although	possible	to	control	

for	by	in	vitro	fertilization	and	embryo	transfer	to	dams	with	uniform	genetic	

backgrounds.	If	this	is	unfeasible,	the	effects	of	the	candidate	gene	on	prenatal	

maternal	stress	responsiveness	should	still	be	assessed,	prioritized	by	factors	

most	likely	to	mediate	effects	of	PNS	on	the	offspring.	
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Chapter	5	

Concluding	Remarks	
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The	preceding	experiments	characterized	the	effects	of	prenatal	stress	

(PNS)	on	sensorimotor	and	cocaine	phenotypes	in	21	strains	of	the	BXD	

recombinant	inbred	panel.	These	behaviors	were	selected	as	models	of	

psychiatric	disorders,	including	the	multiple	PPI-associated	psychiatric	

conditions	and	cocaine	abuse	(Kohl	et	al.,	2013).	These	disorders	are	heritable	

traits	that	are	also	affected	by	early	life	stress	exposure	(Enoch,	2012;	Goldman	

et	al.,	2005;	Kendler,	2001;	Khashan	et	al.,	2008;	Kinney	et	al.,	2008).	Early	life	

stress	and	genetics	may	intersect,	in	gene	by	environment	interactions	that	

render	exposed	individuals	particularly	vulnerable	to	psychiatric	illness.	

Identifying	and	characterizing	genes	that	interact	with	early	life	stress	to	confer	

risk	of	psychiatric	illness	will	greatly	improve	understanding	of	the	etiology	and	

stimulate	new	avenues	of	neurobiological	research.	

The	BXD	recombinant	inbred	panel	was	selected	for	discovery	of	QTL	by	

prenatal	stress	(PNS)	interactions	due	to	interactions	previously	observed	in	the	

progenitor	strains	(Kippin	et	al.,	2015).	In	the	BXD	panel,	PNS	was	found	to	affect	

male	acoustic	startle,	prepulse	inhibition	(PPI),	sensitization	to	cocaine	induced	

locomotion	and	cocaine	conditioned	place	preference	(CPP).	Sex	effects	were	not	

detected	in	the	effects	of	PNS	on	acute	cocaine	induced	locomotion,	indicating	

PNS	may	affect	both	sexes.	Collectively,	these	results	indicate	that	the	BXD	panel	

harbors	genetic	variants	that	mediate	the	effects	of	PNS,	in	gene	by	environment	

(GXE)	interactions.	Main	PNS	effects,	but	not	significant	strain	by	PNS	
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interactions,	were	detected	for	PPI	and	CPP.	Here,	the	evidence	for	GXE	

interactions	is	lacking,	although	a	trend	toward	a	strain	interaction	was	

observed	in	males.	Collectively,	the	BXD	panel	does	appear	suitable	for	discovery	

of	genes	that	interact	with	PNS	to	alter	these	psychiatric	disorder	relevant	traits.	

The	primary	goal	of	the	experiments	presented	was	to	utilize	the	BXD	

panel	to	discover	quantitative	trait	loci	(QTLs)	that	interact	with	PNS	to	alter	

sensorimotor	and	cocaine	phenotypes.	This	approach	is	an	unbiased,	genome-

wide	scan	to	associate	genetic	variants	in	the	BXD	panel	with	PNS	interactions.	

Detection	of	PNS	interacting	QTLs	serves	as	a	preliminary	step	in	identifying	

genes	that	interact	with	PNS	to	alter	these	phenotypes.	A	QTL	by	PNS	interaction	

for	male	PPI	was	detected	on	chromosome	3	and	for	acute	cocaine	locomotion	in	

both	sexes	on	chromosome	X.	The	intervals	defined	by	these	QTLs	may	contain	

one	or	more	genetic	variants	that	cause	gene	by	PNS	interactions.	Additionally,	

main	effect	QTLs	were	detected	for	cocaine	sensitization	on	chromosome	16	and	

for	CPP	on	chromosome	11.	Main	effect	QTLs	suggest	one	or	more	variants	in	

these	QTL	intervals	alter	cocaine	responsiveness,	irrespective	of	PNS	exposure.	

The	discovery	of	QTLs	in	laboratory	animal	populations	is	appealing	for	

multiple	reasons.	First,	as	with	human	GWAS,	these	techniques	allow	for	

unbiased	and	genome	wide	associations.	Therefore,	detection	of	relevant	genes	

does	not	depend	on	selection	of	genetic	targets	based	on	prior	knowledge,	which	

is	often	lacking,	especially	with	respect	to	psychiatric	disorders.	Second,	the	
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rigorous	control	possible	in	lab	experiments	has	potential	to	limit	environmental	

effects	on	a	phenotype	and	maximize	the	signal	to	noise	ratio	of	any	associated	

alleles.	This	may	be	contrasted	to	human	genetic	studies,	in	which	substantial	

heterogeneity	of	environmental	factors	can	be	expected.	The	benefits	of	

controlled	environments	may	be	particularly	relevant	to	GXE	approaches,	as	

detection	of	an	interaction	may	be	obscured	by	variable	environmental	

exposure.	In	addition	to	rigorous	control,	experiments	with	lab	animals	expand	

available	traits	for	characterization	relative	to	human	studies,	which	may	be	of	

great	importance	in	optimizing	detection	of	QTLs	and	in	the	follow	up	of	

candidate	genes	identified	by	QTL	studies,	which	require	causal	experimental	

approaches	and	benefit	from	invasive	physiological	techniques.	

	

From	QTL	to	Gene	 	

Despite	the	benefits	of	forward	genetic	screens,	there	are	substantial	

challenges.	Most	significant	is	the	low	resolution	of	many	QTLs.	The	interval	on	

the	genome	that	can	be	defined	by	QTL	is	limited	by	the	average	length	of	

haplotypes	in	the	population	under	study.	Many	populations	utilized	to	date,	

including	BXD	strains,	often	produce	QTL	confidence	intervals	that	contain	

dozens	or	hundreds	of	genes	(Milner	&	Buck,	2010;	Zeng,	Xu,	Memg,	Wamg,	&	

Hu,	2006).	A	large	collection	of	positional	candidate	genes	can	be	difficult	to	

investigate	for	identification	of	the	quantitative	trait	gene.	This	is	demonstrated	
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by	a	preponderance	of	QTLs	but	a	lack	of	validated	quantitative	trait	genes	in	the	

literature	(Milner	&	Buck,	2010;	Zeng	et	al.,	2006).	The	confidence	intervals	for	

QTL	by	PNS	interactions	identified	in	the	present	studies	contain	48	and	65	

genes	for	PPI	and	acute	locomotion	respectively.	All	of	these	genes	are	

considered	positional	candidates.	Experimentally	characterizing	each	of	these	

genes	would	be	a	daunting	task.	Therefore,	following	detection	of	a	QTL,	

methods	of	prioritizing	positional	candidate	genes	were	utilized.	

Many	SNPs	associated	with	complex	traits	are	located	in	non-coding	

regions	(Nicolae	et	al.,	2010).	Therefore,	it	is	expected	that	trait-associated	

variants	often	act	by	modifying	gene	expression.	Ultimately	these	alleles	lead	to	

varying	levels	of	protein	expression	that	has	consequences	for	the	phenotype.	

Allele	influence	on	gene	expression	can	be	exploited	to	prioritize	QTL-nominated	

candidate	genes.	Heritable	variation	of	mRNA	levels	is	often	observed	in	

genetically	diverse	populations.	This	genetic	mediation	of	mRNA	expression	can	

be	utilized	to	map	for	cis-regulated	expression	QTLs	(cis-eQTLs)	(Kadarmideen,	

von	Rohr,	&	Janss,	2006).	Cis-regulation	indicates	that	expression	is	modulated	

by	a	variant	located	in	or	near	the	parent	gene	of	the	mRNA.		

The	QTL	confidence	intervals	for	the	QTL	by	PNS	interactions	and	main	

effect	QTLs	discovered	were	scanned	for	cis-eQTLs.	As	mRNA	expression	can	

vary	significantly	between	tissue,	regions	of	interest	must	be	selected.	Data	sets	

that	characterized	mRNA	expression	in	various	brain	regions	were	selected	
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because	psychiatric	pathophysiology	is	likely	to	involve	the	central	nervous	

system.	In	some	studies	of	neurobiologically	relevant	traits,	a	select	few	brain	

regions	are	assessed;	selected	based	on	likely	relevance	to	the	trait.	In	the	

present	studies,	relevant	brain	regions	included	those	that	are	likely	to	interact	

and	moderate	the	stress	response	(hippocampus,	amygdala,	hypothalamus,	

pituitary	and	prefrontal	cortex	(PFC)),	those	associated	with	PPI	(brain	stem,	

midbrain,	striatum	and	PFC)	and	those	associated	with	cocaine	abuse	(midbrain,	

striatum,	amygdala,	hippocampus	and	PFC).	Due	to	this	expansive	list,	the	liberal	

approach	of	assessing	all	available	regions	was	utilized.	These	efforts	identified	

multiple	cis-regulated	transcripts,	in	one	or	more	brain	regions,	for	each	of	the	

QTLs.	Following	these	efforts,	the	BXD	strain	transcript	expression	levels	were	

assessed	for	correlation	to	the	behavioral	phenotype.	A	genetic	correlation	is	

predicted	if	cis-regulation	of	gene	expression	affects	the	phenotype	

(Kadarmideen	et	al.,	2006).	These	efforts	reduced	the	list	to	one	or	a	few	genes	

in	each	of	the	QTLs.	The	gene	apoptosis	inducing	factor	1	(aifm1)	was	prioritized	

for	the	acute	locomotion	QTL	by	PNS	interaction,	and	may	be	promising	due	to	

mediation	of	apoptosis	after	brain	insult,	including	early	life	insults.	Other	genes	

prioritized	have	varying	levels	of	biological	characterization	that	attest	to	

functions	that	may	implicate	them	in	the	effects	of	PNS,	or	sensorimotor	and	

cocaine	phenotypes.	However,	because	QTL	mapping	is	an	unbiased	approach,	it	

is	expected	the	genes	may	be	discovered	that	have	no	previously	known	role	in	

the	phenotype	and	little	functional	characterization.	Exploiting	mRNA	
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expression	to	prioritize	candidate	genes	is	largely	an	unbiased	approach	that	can	

aide	in	validation	of	quantitative	trait	genes	but	will	likely	yield	candidates	that	

require	extensive	characterization.	

Despite	the	benefits	of	mRNA	expression	analysis	for	prioritizing	

candidate	genes,	several	limitations	in	the	present	study	should	be	considered.	

Assessment	of	cis-eQTL	involves	QTL	mapping	for	tens	of	thousands	of	probes	

per	mRNA	expression	data	set,	each	with	a	genome	wide	significance	threshold	

of	0.05.	This	presents	a	multiple	testing	problem	that	was	uncorrected.	It	is	likely	

that	many	false	positives-eQTLs	are	discovered	by	this	approach.	However,	by	

testing	multiple	brain	regions,	often	collected	by	independent	studies	and	on	

different	microarray	platforms,	cis-eQTLs	for	a	given	gene	can	be	identified	more	

than	once,	across	regions	and	platforms.	In	these	cases,	the	likelihood	of	a	false	

discovery	is	reduced.	The	gene	aifm1	demonstrates	cis-eQTL	and	correlation	to	

the	effects	of	PNS	on	acute	locomotion	in	five	regions.	This	is	an	example	of	

multiple,	independent	results	that	may	enhance	confidence.	Other	genes	that	

were	prioritized	only	demonstrated	cis-eQTL	and	correlation	in	one	region	and	

may	be	viewed	more	cautiously.	Despite	the	likelihood	of	false	cis-eQTLs,	

uncorrected	testing	avoids	the	large	reduction	in	power	that	comes	when	

correcting	for	a	large	number	of	tests.	Considering	that	this	method	of	

prioritizing	candidate	genes	should	be	viewed	as	exploratory,	and	that	
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uncorrected	testing	generally	yields	a	small	number	of	prioritized	candidate	

genes	that	can	then	be	validated,	uncorrected	testing	is	a	beneficial	approach.	

Associations	between	cis-eQTL	transcript	levels	and	the	behavioral	

phenotype	can	only	be	assessed	by	the	number	of	strains	in	common	between	

the	data	sets.	In	the	present	studies,	the	average	number	of	strains	in	common	

with	mRNA	expression	data	sets	was	12,	and	could	not	exceed	21.	These	sample	

sizes	are	estimated	to	generally	provide	modest	statistical	power	for	genetic	

correlations	(Crabbe,	Phillips,	Kosobud,	&	Belknap,	1990).	Therefore,	the	

phenotype	to	transcript	expression	correlations	assessed	may	have	been	

underpowered	and	true	associations	could	have	been	missed.		

A	potentially	useful	approach	for	future	research	may	be	to	characterize	

the	effects	of	PNS	on	gene	expression	in	BXD	strains.	PNS	has	been	shown	to	

affect	gene	expression	profiles	(Kinnunen,	Koenig,	&	Bilbe,	2003;	Strata	et	al.,	

2015;	D.	L.	A.	Van	den	Hove	et	al.,	2013).	The	effects	of	adult	stress	in	the	BXD	

panel	or	progenitor	strains	are	demonstrated	to	have	heritable	influences	on	

gene	expression	in	various	brain	regions	(J.	A.	Baker	et	al.,	2017;	Kerns	et	al.,	

2005;	van	der	Vaart	et	al.,	2017;	Wolen	et	al.,	2012;	Ziebarth	et	al.,	2010)	

Assuming	the	effect	of	PNS	on	mRNA	expression	is	heritable	in	at	least	a	subset	

of	affected	genes,	inter-strain	variance	in	the	effects	of	PNS	on	gene	expression	

may	be	exploited	to	prioritize	candidate	genes.	This	may	be	accomplished	by	

searching	for	cis-regulating	variants	for	the	mRNA	expression	difference	scores	
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and	for	correlation	to	the	behavioral	difference	scores.	In	comparison	to	

assessing	cis-regulation	of	basal	expression	levels,	as	performed	in	the	present	

study,	assessing	cis-regulation	of	PNS	induced	expression	may	reveal	relevant	

genes	that	are	not	detectable	under	PNS	naive	conditions.	Strain	variance	in	PNS	

induced	gene	expression	across	all	transcripts	may	also	be	assessed	for	

correlation	to	PNS	effects	on	behavior.	Similar	to	QTL	analysis,	this	may	reveal	

candidate	genes	that	mediate	the	effects	of	PNS.	Furthermore,	multiple	

associated	genes	can	be	checked	for	covariance	and	utilized	as	seeds	to	reveal	

gene	networks	involved	in	the	response	to	PNS	(J.	A.	Baker	et	al.,	2017;	Dai	et	al.,	

2009).	Associated	gene	networks	may	provide	insight	into	the	neurobiological	

effects	of	PNS	and	a	rich	number	of	gene	targets	to	assess	experimentally.	

Non-synonymous	polymorphisms	lead	to	amino	acid	substitutions	that	

may	have	consequences	for	protein	function.	All	genes	within	the	QTL	

confidence	intervals	were	assessed	for	non-synonymous	SNPs	(nsSNPs).	The	

number	of	genes	that	can	be	eliminated	by	assessment	of	non-synonymous	

polymorphisms	varied	between	QTLs,	likely	due	to	genomic	variations	in	SNP	

density.	For	example,	92%	of	genes	for	the	acute	locomotion	QTL	by	PNS	

interaction	were	eliminated	and	only	68%	were	eliminated	for	the	CPP	QTL.	This	

approach	may	exclude	genes	that	cannot	be	affected	by	amino	acid	substitutions,	

but	does	not	eliminate	those	genes	in	which	expression	is	regulated	by	a	

polymorphism	in	regulatory,	intron	or	intergenic	regions.	By	assessing	
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association	with	cis-regulated	transcripts	and	identifying	nsSNPs,	two	sets	of	

prioritized	candidate	genes	are	produced	that	represent	each	scenario.	However,	

considering	that	many	complex	trait	related	SNPs	likely	regulate	gene	

expression	(Nicolae	et	al.,	2010),	it	may	be	prudent	to	give	priority	to	those	

nominated	by	association	with	cis-regulated	transcripts.	

	

Missing	QTLs	

The	number	of	strains	is	the	most	influential	determinant	of	statistical	

power	when	QTL	mapping	with	inbred	strains	(Belknap,	Mitchell,	O’Toole,	

Helms,	&	Crabbe,	1996).	The	present	study	characterized	21	strains,	which	

provides	80	percent	power	for	a	QTL	with	an	effect	size	of	66%.	However,	the	

genetic	determinants	of	a	complex	traits	are	likely	numerous;	each	with	an	effect	

size	of	less	than	10%	(B.	Bennett	&	Carosone-Link,	2006).	Therefore,	it	is	likely	

that	many	QTL	by	PNS	interactions	remain	undiscovered.	Large	samples	sizes	

are	particularly	challenging	in	QTL	by	environment	interaction	studies,	due	to	

multiple	conditions	required	within	strain.	The	present	study	characterized	both	

sexes,	further	increasing	the	burden.	Additionally,	PNS	requires	timed	breeding	

and	many	BXD	strains	demonstrated	very	poor	breeding	under	these	conditions.	

Considering	these	challenges,	future	forward	genetics	studies	involving	PNS	may	

benefit	from	some	alterations	in	design.	One	consideration	is	the	number	of	mice	

characterized	per	strain.	The	present	study	attempted	to	account	for	litter	
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effects	and	included	an	average	of	six	litters	per	condition	per	strain.	This	

resulted	in	a	relatively	high	number	of	mice	produced	for	characterization	per	

strain	(approximately	12	per	sex/condition,	per	strain).	Although	within	strain	

numbers	affect	power,	benefits	generally	diminish	markedly	as	n	increases	

(Belknap,	1998;	Crusio,	2004).	Considering	the	present	study	involves	

manipulation	of	the	dams,	accounting	for	litter	effects	may	be	prudent.	However,	

reductions	in	litters/mice	produced	per	strain	could	increase	the	feasibility	of	

characterizing	large	numbers	of	strains.	Any	reductions	in	accuracy	of	the	strain	

mean	are	buffered	by	large	strain	numbers.	QTL	mapping	procedures	involve	

testing	the	effect	of	genotype	and	not	strain.	In	a	bi-allelic	population,	such	as	the	

BXD	panel,	all	strains	are	grouped	into	one	of	two	genotypes	at	a	locus.	

Therefore,	each	strain	mean	is	akin	to	an	individual	value	that	is	grouped	to	

calculate	a	genotype	mean,	and	consequently	it	is	the	number	of	strains	that	has	

most	influence	on	power.		

	

QTL	by	Stress	Interactions	in	the	Literature	

To	our	knowledge,	this	is	the	first	attempt	at	QTL	mapping	for	early	life	

stress	by	gene	interactions.	Three	studies	have	mapped	for	adult	stress	by	gene	

interactions.	QTLs	have	been	discovered	for	the	effects	of	stress	on	ethanol-

induced	locomotion	(Cook	et	al.,	2015),	fear	conditioning	(Carhuatanta	et	al.,	

2014)	and	spatial	learning	(Shea	et	al.,	2015).	There	are	no	overlapping	stress-
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associated	QTLs	between	these	studies	and	the	present	study.	However,	it	may	

be	assumed	that	the	genetic	mediators	of	early	life	stress	exposure	are	distinct	

from	those	that	mediate	the	response	to	adult	stress	exposure.	Furthermore,	

tests	for	genetic	correlation	of	the	PNS	effects	across	traits	in	the	present	study	

found	only	two	associations.	These	results	do	not	support	the	possibility	that	

common	variants	mediate	the	effects	of	PNS	across	cocaine	and	sensorimotor	

phenotypes.	Similar	heterogeneity	may	exist	for	genetic	variants	that	mediate	

effects	of	adult	stress	across	phenotypes;	there	are	no	adult	stress-related	QTLs	

that	converge	between	these	studies.	Despite	lack	of	convergence,	future	

research	involving	stress	by	QTL	mapping	should	assess	genetic	correlations	for	

the	effects	of	stress	across	traits.	Where	strain	variance	is	shared	across	traits,	

principal	component	analysis	may	be	utilized.	This	is	thought	to	increase	

mapping	power	by	extracting	informative	variance	from	genetically	related	

phenotypes	and	reducing	the	various	and	unique	sources	of	environmental	and	

measurement	variance	associated	with	individual	phenotypes,	thus	increasing	

the	genetic	signal	to	noise	ratio	(Dickson	et	al.,	2015).	This	may	be	prudent	for	

QTL	by	stress	interaction	studies.	Carhuatanta	et.	al.,	(2015)	and	Shea	et.	al.	

(2015)	selected	matched	littermates	and	assigned	one	to	control	and	one	to	

stress.	They	calculated	the	difference	scores	for	each	of	these	pairs	and	were	

able	to	determine	a	stress	effect	mean	and	variance	for	each	strain.	These	data	

allowed	for	heritability	calculations,	and	it	was	found	that	stress	effect	

heritability	was	low	(0.09	to	0.12).	Although	heritability	for	PNS	effects	cannot	
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be	calculated	by	this	method	for	the	present	study,	comparisons	of	trait	

heritability	between	control	and	PNS	groups	reveal	some	interesting	patterns.	

For	cocaine-related	measures,	heritability	tends	to	be	lower	in	the	PNS	group	

relative	to	the	control	groups.	This	may	suggest	that	the	PNS	procedure	

introduces	increased	environmental	variance	that	could	interfere	with	QTL	by	

PNS	mapping.	The	opposite	pattern	is	observed	for	sensorimotor	behaviors	and	

maternal	dam-pup	contact;	the	PNS	groups	tend	to	have	higher	heritability	

relative	the	control	groups.	This	suggests	that	the	relative	magnitude	of	the	gene	

by	environment	interactions	effects	are	high	for	these	traits.	However,	if	the	

heritability	of	PNS	effects	on	adult	phenotypes	is	relatively	low,	QTL	mapping	

efforts	may	require	high	powered	studies.	In	addition	to	adding	strains,	principal	

component	analysis	may	greatly	benefit	these	efforts.	However,	principal	

component	analysis	is	limited	by	the	occurrence	of	genetic	correlations.	It	may	

be	that	there	are	many	unique	variants	that	mediate	stress	by	gene	interactions	

across	traits.	The	probability	of	shared	variants	should	increase	between	related	

behavioral	tests	that	may	measure	the	same	construct	(Philip	et	al.,	2010a).	For	

example,	Morris	water	maze	and	radial	arm	maze	are	different	tests	that	both	

may	measure	spatial	memory.	Future	studies	of	QTL	by	PNS	interactions	should	

include	batteries	of	related	phenotyping	tests	that	may	allow	for	principal	

component	analysis.	
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PNS	Neurobiology	

Neurobiological	changes	have	been	attributed	to	PNS	and	are	likely	

mediators	of	the	observed	behavioral	effects.	In	outbred	rats,	alterations	of	

dopamine	function	under	basal	conditions	and	in	response	to	drugs	of	abuse	are	

described	and	may	account	for	changes	in	the	effects	of	drugs	of	abuse,	including	

cocaine.	PNS	increases	basal	dopamine	concentration	and	stimulated	dopamine	

release	by	cocaine	and	amphetamine	in	the	shell	of	nucleus	accumbens	(NAc)	

(Kippin	et	al.,	2008;	Silvagni,	Barros,	Mura,	Antonelli,	&	Carboni,	2008).	

Increased	dopamine	levels	may	be	the	result	of	increased	release	by	hyper-

excitable	ventral	tegmental	area	(VTA)	dopamine	neurons	(Oosterhof,	El	

Mansari,	Merali,	&	Blier,	2016;	Silvagni	et	al.,	2008).	PNS	also	reduces	dopamine	

transporter	(DAT)	expression,	suggesting	increased	basal	and	cocaine-induced	

synaptic	dopamine	levels	could	be	due	to	reduced	reuptake	(Son	et	al.,	2007).	

DAT	density	in	the	striatum	is	found	to	be	a	heritable	trait	in	the	BXD	panel	

(Janowsky	et	al.,	2001).	DAT	density	is	genetically	correlated	with	acute	cocaine	

locomotion,	with	increasing	locomotion	at	lower	DAT	density,	as	would	be	

expected	(Janowsky	et	al.,	2001).	However,	DAT	density	was	not	found	to	be	

genetically	correlated	with	locomotor	sensitization	or	CPP.	The	effects	of	PNS	on	

DAT	expression	may	be	mediated	by	genetic	variants	in	the	BXD	panel,	with	

consequences	for	cocaine	locomotion.	An	interesting	approach	may	be	to	

characterize	the	effects	of	PNS	on	these	likely	physiological	mediators	in	BXD	
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strains.	Physiological	traits	may	have	greater	heritability	relative	to	behavioral	

traits,	making	them	more	amenable	to	QTL	discovery.	Therefore,	genetically	

mediated	PNS	alterations	to	dopamine	related	physiology	may	improve	

discovery	of	QTLs	that	interact	with	PNS	to	moderate	cocaine	related	behaviors.		

Increases	in	striatal	dopamine	activity	is	a	likely	explanation	for	the	PNS	

induced	increases	of	cocaine	locomotion	and	reward.	However,	BXD	strains	

affected	by	PNS	in	the	present	study	displayed	a	striking	reduction	in	cocaine	

CPP	that	was	specific	to	males.	There	is	one	report	of	PNS	reduction	in	milk	

chocolate	induced	CPP;	females	displayed	reduced	CPP	and	males	displayed	

enhanced	CPP	(Reynaert	et	al.,	2015).	In	contrast,	PNS	enhancement	of	CPP	is	

reported	for	nicotine,	cocaine,	diazepam	and	morphine	(Kippin	et	al.,	2015;	

Lakehayli	et	al.,	2015;	Said,	Lakehayli,	El	Khachibi,	et	al.,	2015;	Yang,	Li,	et	al.,	

2006).	PNS	augments	cocaine	CPP	in	B6	but	not	D2	mice,	indicating	variants	in	

the	BXD	panel	should	interact	with	PNS	to	increase	cocaine	CPP	(Kippin	et	al.,	

2015).	However,	the	progenitor	strain	results	do	not	preclude	the	possibility	

that	alleles	with	the	opposite	effect	are	also	present.	There	is	no	direct	evidence	

to	indicate	the	mechanism	by	which	PNS	reduces	cocaine	CPP.	One	possibility	is	

a	PNS	induced	anhedonic	state,	as	suggested	by	reduced	natural	reward	CPP	in	

female	mice	(Reynaert	et	al.,	2015).	Reduced	cocaine	reward	sensitivity	may	also	

be	explained	by	PNS	alterations	to	the	dopamine	receptor	D2.	PNS	was	found	to	

increase	D2	expression	in	the	NAc	(Berger,	Barros,	Sarchi,	Tarazi,	&	Antonelli,	
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2002;	Henry	et	al.,	1995);	D2	NAc	receptors	may	attenuate	cocaine	reward	

(Calipari	et	al.,	2016).	D2	transcript	expression	and	protein	density	in	the	NAc	

are	found	to	be	heritable	traits	in	the	BXD	panel	and	transcript	expression	is	

genetically	correlated	with	ethanol	place	preference	(Hitzemann	et	al.,	2003;	B.	

C.	Jones	et	al.,	1999).	However,	this	is	a	positive	relationship,	suggesting	

increased	D2	expression	does	not	attenuate	ethanol	reward.	One	caveat	is	a	lack	

of	correlation	between	D2	transcript	levels	and	protein	concentration,	although	

both	are	heritable,	the	latter	may	be	more	indicative	of	functional	outcomes.	

Strain	comparisons	may	reveal	genetically	mediated	PNS	affects	on	D2	

expression	that	associate	with	moderation	of	cocaine	reward.	Such	data	would	

indicate	D2	expression	to	be	a	physiological	mediator	of	PNS	effects	on	cocaine	

responsiveness	and	a	valuable	phenotype	for	QTL	by	PNS	mapping.		

Alternately,	PNS	induced	deficits	to	spatial	learning	may	explain	

decreased	CPP.	PNS	is	known	to	impair	spatial	learning	(Modir	et	al.,	2014).	

These	deficits	are	likely	due	to	PNS	effects	on	hippocampus	development	

(Weinstock,	2011).	CPP	may	rely,	at	least	partially,	on	spatial	learning	

(Cunningham,	Patel,	&	Milner,	2006).	PNS	induced	deficits	to	spatial	learning	

may	prevent	the	acquisition	of	CPP.	These	possibilities	can	be	assessed	by	

testing	of	extreme	responders.	The	strain	with	the	largest	reduction	in	CPP	could	

be	compared	to	a	non-responder,	in	tests	of	spatial	learning	and	reward	

sensitivity	to	natural	stimuli	and	cocaine.	Reductions	in	spatial	learning	or	
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reward	sensitivity	in	the	responder	strain	would	suggest	a	genetic	relationship.	

Generally,	careful	scrutiny	of	complex	behavioral	traits	may	be	required	to	

clarify	the	role	of	any	QTLs	discovered.	A	behavior	such	as	CPP	is	likely	under	

the	influence	of	multiple,	dissociable	heritable	constructs	that	present	a	complex	

genetic	landscape.	This	complexity	can	also	be	assessed	in	the	follow	up	

investigation	of	candidate	genes.	When	characterizing	a	candidate	gene,	it	may	

beneficial	to	perform	extensive	phenotyping	in	order	to	discern	the	true	role.	

Neurobiological	effects	of	PNS	are	described	that	may	account	for	effects	

on	PPI.	The	neural	circuitry	mediating	PPI	involves	brain	stem	and	midbrain	

structures	that	can	operate	without	input	of	forebrain	structures	(Koch	&	

Schnitzler,	1997;	Swerdlow,	Geyer,	&	Braff,	2001).	However,	PPI	can	be	

modulated	by	cortical	and	subcortical	forebrain	regions.	A	hyper-dopaminergic	

state	in	the	NAc	reduces	PPI	(Powell	et	al.,	2003).	This	may	be	mediated	by	D2	

receptors	in	the	medium	spiny	neurons	of	the	NAc	(Weber	et	al.,	2010).	As	PNS	

causes	a	hyper-dopaminergic	state	and	increased	D2	expression	in	the	NAc,	

these	effects	my	account	for	PNS	induced	deficits	of	PPI	(Kippin	et	al.,	2008;	

Silvagni	et	al.,	2008).	As	previously	discussed,	BXD	strains	exhibit	heritability	of	

NAc	D2	receptor	density.	Assuming	that	genetic	regulators	of	D2	expression	may	

interact	with	PNS,	characterization	of	PNS	effects	on	D2	expression	may	yield	

QTLs	with	implications	for	PNS	effects	on	PPI.		



	

	 	 	 146	

PNS	also	has	effects	on	neurotransmitter	systems	in	the	prefrontal	cortex	

(PFC)	that	may	have	implications	for	PPI.	PNS	causes	a	reduction	in	PFC	

dopamine	and	methylphenidate	recovers	PPI	deficits,	raising	the	possibility	that	

deficits	in	PFC	dopamine	signaling	may	also	contribute	to	PPI	deficits	(Zubedat	

et	al.,	2015).	PNS	induced	changes	to	PFC	glutamate	physiology	have	also	been	

described,	with	reductions	in	metabotropic	glutamate	2	(mGlu2)	and	mGlu3	in	

the	PFC	(Matrisciano	et	al.,	2012).	A	mGlu2/3	agonist	recovers	PNS	induced	

deficits	to	PPI,	suggesting	a	functional	role	for	loss	of	mGlu2/3	expression	

(Matrisciano	et	al.,	2012).	GABA	physiology	in	the	PFC	has	also	been	implicated,	

here	it	is	proposed	that	up-regulation	of	DNA	methyltransferase	causes	DNA	

methylation	patterns	that	suppress	expression	of	GABA-related	proteins	and	

ultimately	suppresses	the	function	of	GABAergic	cells	in	the	PFC	(Matrisciano	et	

al.,	2013).	DNA	methylation	is	a	good	candidate	for	the	enduring	effects	of	early	

life	stress	due	to	the	stability	of	methyl-DNA	bonds.	For	example,	low	levels	of	

maternal	care	induce	methylation	changes	to	glucocorticoid	receptor	gene	that	

have	been	associated	with	dysregulated	HPA	activity	in	adult	life	(Maccari,	

Krugers,	Morley-Fletcher,	Szyf,	&	Brunton,	2014).	Furthermore,	QTLs	for	

developmental	methylation	patterns	map	to	many	loci	associated	with	risk	of	

schizophrenia,	suggesting	heritable	early	life	methylation	patterns	may	

contribute	to	this	PPI-associated	psychiatric	condition	(Hannon	et	al.,	2016;	

Hoffmann,	Ziller,	&	Spengler,	2016).	Therefore,	it	may	be	beneficial	to	assess	PNS	

induced	methylation	patterns	across	BXD	strains.	Genome-wide	or	targeted	
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genes	could	be	assessed	for	methylation	in	brain	regions	of	interest,	such	as	the	

PFC.	These	data	could	be	used	to	map	QTLs	for	variants	that	moderate	PNS	

phenotypes	by	mediating	PNS	induced	methylation.		

	

Sex	Effects	

The	present	study	revealed	sex	to	be	an	important	determinant	of	PNS	

effects	in	the	BXD	panel.	Males	appear	to	be	more	sensitive	to	PNS,	with	

significant	effects	of	PNS	only	detected	in	males	for	acoustic	startle,	PPI,	cocaine	

locomotor	sensitization	and	cocaine	CPP.	The	only	measure	in	which	PNS	was	

found	not	to	interact	with	sex	is	acute	cocaine	locomotion.	As	discussed	in	

chapter	3,	where	sex	effects	were	found	in	the	progenitor	strains,	males	were	

also	more	likely	to	be	affected,	although	the	pattern	of	sex	effects	differed	

somewhat	between	progenitor	and	BXD	strains.	Sex	effects	are	also	reported	in	

other	studies	of	PNS	effects	and	prenatal	synthetic	glucocorticoid	exposure	for	

cocaine	and	sensorimotor	phenotypes.	Males	are	more	sensitive	to	effects	of	PNS	

on	cocaine	self-administration	and	to	effects	of	prenatal	dexamethasone	

exposure	on	PPI	(Hauser,	Feldon,	&	Pryce,	2006;	Thomas	et	al.,	2009).	

Associations	between	maternal	CORT	stress	levels	and	the	effects	of	PNS	on	BXD	

strains	in	the	present	study	were	exclusive	to	males,	suggesting	that	males	may	

be	more	sensitive	to	the	fetal	programming	effects	of	CORT	on	cocaine	

responsiveness.	Similarly,	PNS	effects	on	maternal	behavior	associated	with	PNS	



	

	 	 	 148	

effects	on	male	but	not	female	CPP.	This	effect	may	be	explained	by	differential	

effects	of	PNS	on	maternal	interactions	with	male	and	female	pups,	as	PNS	

induced	reductions	in	licking/grooming	were	found	to	be	exclusive	to	males	

(Power	&	Moore,	1986).		

Although	the	source	of	sex	differences	in	the	effects	of	PNS	is	not	entirely	

clear,	interruptions	of	sex	hormones	is	a	likely	contributor.	PNS	interferes	with	

sex	differentiation	processes	to	produce	partial	demasculinization	and	

feminization	of	male	behavior,	particularly	sexual	behavior.	This	effect	is	likely	

due	to	PNS	suppression	of	fetal	androgen	activity,	which	prevents	

masculinization	of	the	male	brain	and	may	lead	to	decreased	circulating	

testosterone	levels	in	adulthood	(Ward	et	al.,	2003).	The	effects	of	androgen	

disruption	may	extend	beyond	sexual	behaviors.	Postnatal	testosterone	

treatment	to	PNS	exposed	male	guinea	pigs	reverses	PPI	deficits	(Kapoor	&	

Matthews,	2011).	PNS	reductions	to	open	field	locomotion	were	also	reversed	by	

testosterone	treatment.	Interestingly,	testosterone	replacement	was	performed	

in	early	adulthood	(post-natal	day	75),	suggesting	that	disruption	to	activational	

effects	of	testosterone	mediate	the	PNS	disruptions	of	PPI	and	locomotion.	There	

is	no	direct	evidence	to	indicate	a	similar	effects	in	male	mice	of	BXD	strains;	a	

study	to	examine	adult	plasma	testosterone	levels	in	an	extreme	responder	

strain	compared	to	a	non-responder	could	indicate	differences	in	PNS	induced	

disruptions	to	testosterone	levels.	If	adult	testosterone	disruption	is	found	to	be	



	

	 	 	 149	

a	likely	mediator	of	male	sensitivity	to	PNS	in	the	BXD	strains,	the	genetic	

implications	need	to	be	considered.	One	possibility	to	explaining	strain	

differences	in	male	sensitivity	to	PNS	could	be	variants	that	interact	with	PNS	to	

mediate	the	effects	on	male	fetal	androgen	disruption	or	variants	that	mediate	

the	effects	of	suppressed	androgen	exposure	on	adult	testosterone.	Both	

scenarios	could	lead	to	heritable	PNS	effects	on	adult	testosterone	levels.	

However,	the	effects	of	PNS	across	cocaine	and	sensorimotor	phenotypes	did	not	

display	genetic	correlations,	indicating	that	it	is	unlikely	that	a	common	

disruption	to	adult	testosterone	production	would	explain	the	behavioral	effects	

observed	across	phenotypes.	Another	possibility	is	that	independent,	trait-

specific	variants	interact	with	suppressed	adult	testosterone	levels.	This	

possibility	would	be	amenable	to	experimentation,	as	adult	testosterone	is	

amenable	to	manipulation.	Although	investigating	a	possible	role	for	androgens	

in	the	gene	by	PNS	interactions	observed	in	BXD	strain	may	be	a	significant	

challenge,	exploring	this	mechanism	may	be	important	for	elucidating	male-

specific	gene	by	PNS	interactions.	

	

Conclusion	

	 The	preceding	experiments	revealed	QTL	by	PNS	interactions	for	cocaine	

locomotion	and	PPI.	Gene	by	environment	interactions	may	be	critical	

determinants	of	risk	for	psychiatric	disorders,	yet	few	genes	have	been	
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identified	and	consequently	there	is	a	limited	understanding	of	these	

interactions.	The	research	presented	here	is	a	critical	step	in	identifying	genes	

that	interact	with	early	life	stress	exposure	to	produce	enduring	effects	on	

offspring	behavior.	Although	genetic	variants	that	interact	with	stress	are	likely	

complex	and	numerous,	the	unbiased	approach	taken	here	has	the	potential	to	

identify	any	variants	involved.	Continued	efforts	with	similar	approaches	will	

eventually	lead	to	an	extensive	understanding	of	gene	function	in	health	and	

disease.	This	knowledge	will	greatly	contribute	to	a	comprehensive	

understanding	of	psychiatric	disorder	etiology	and	allow	for	improved	

treatment	and	preventative	options.	
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