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A B S T R A C T

Performant numerical solving of differential equations is required for large-scale scientific modeling. In this
manuscript we focus on two questions: (1) how can researchers empirically verify theoretical advances and
consistently compare methods in production software settings and (2) how can users (scientific domain experts)
keep up with the state-of-the-art methods to select those which are most appropriate? Here we describe how the
confederated modular API of DifferentialEquations.jl addresses these concerns. We detail the package-free API
which allows numerical methods researchers to readily utilize and benchmark any compatible method directly
in full-scale scientific applications. In addition, we describe how the complexity of the method choices is ab-
stracted via a polyalgorithm. We show how scientific tooling built on top of DifferentialEquations.jl, such as
packages for dynamical systems quantification and quantum optics simulation, both benefit from this structure
and provide themselves as convenient benchmarking tools.

1. Introduction

Differential equations are a ubiquitous modeling tool across the
biological to physical sciences. In most occasions, these equations have
no analytical solution and thus must be solved numerically. However,
each of the many families of integration methods utilize different
structures of the underlying equations to achieve differing problem-
specific efficiencies. Since performant handling of these equations is
required for large-scale scientific modeling, an increasingly pressing
question is two-fold: (1) how can researchers empirically verify theo-
retical advances and consistently compare many different methods in
production-software settings and (2) how can users (scientific domain
experts) keep up with the state-of-the-art methods to select the most
appropriate integrator for their problem?

The DifferentialEquations.jl [18] software has rapidly developed
into one of the most feature rich ecosystems for solving differential
equations, including many unique features like adaptive stochastic
differential equation integrators and arbitrary precision event handling
[15]. In this manuscript we will describe the confederated modular API
of the DifferentialEquations.jl metapackage and show how it has ac-
celerated scientific progress by addressing both the concerns of
methods researchers and users. We will begin by describing how the
modular package-generic API with automatic composability through
multiple dispatch mechanisms allows numerical methods researchers to

readily substitute any compatible method directly into full-scale sci-
entific applications for practical use, and also for testing and bench-
marking. We will discuss how the needs of three distinct groups of
users, methods developers, scientific package developers, and domain
modelers, led to the evolution of this mechanism and the problems it
has solved.

On the other hand, the common API has led to a rapid expansion in
the available algorithm choices and this complexity has led to new
problems for end-users who tend to be less familiar with all of the
nuances of the field. To handle the growing complexity, we show how
the method choices have been abstracted by automatic algorithm spe-
cialization via a type-hierarchy classification of differential equation
structure and an associated polyalgorithm. We show how the software
ecosystem built around this tooling, such as packages for quantum
optics and real-time robotics simulation, both benefit from this struc-
ture and provide themselves as convenient benchmarking tools. We end
by discussing how further automation is being added to the framework
and how this software architecture can be replicated in other scientific
domains.

2. The confederated modular API

The common API is the API across all of the different solver
packages in DifferentialEquations.jl and is diagrammed in Fig. 1.
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DifferenitalEquations.jl’s structure is defined in the base package Dif-
fEqBase.jl. Its main purpose is to hold the function definitions which are
utilized at all levels of the API. The Julia programming language is built
around a multiple dispatch system which allows for specializing func-
tion calls via methods which are dependent on the inputs [2]. The
multiple dispatch mechanism is usually discussed in terms of its ability
to allow for code specialization for high performance [1]. For example,
the function call +(2,5) lowers to a different method than
+(2.0,5.0) which allows a Julia programmer and the compiler to
generate efficient native code that is efficient for each case. The Julia
compiler will utilize known type information at compilation time
(while making use of type inference) to allow for this structure to have
no runtime overhead which leads to performance comparable to stati-
cally-typed languages like C or Fortran.

However, the confederated modular API utilizes the multiple dis-
patch mechanism as a means for allowing input arguments to choose
underlying integration methods. The core function is the solve func-
tion. This is defined as a “stub function” in DiffEqBase.jl, i.e. a function
without a method which thus has no functionality. The documented API
is that solve is called via solve(prob,alg) where prob is some
problem type which describes a differential equation in a chosen family
and alg is the algorithm type. For example, the ODEProblem type has
fields for f, u0, tspan, and p which define the ODE system:

= =u f u p t u t u( , , ), ( ) 0.0

The algorithm type is used simply to dispatch to the solver algo-
rithm to return a solution. An example of user code for solving the
Lorenz ODE system by the 5th order explicit Runge–Kutta method [22]
is shown in Algorithm 1.

The key feature of this design is that any Julia code can extend the
solve function by defining a method dispatch on their algorithm type,

allowing for their code to be used to generate the solution. An example
of defining the Euler method for an ODEProblem is shown in
Algorithm 2.

This design means that the choices of methods available to the user
are not built into the function itself. Rather, every differential equation
solver method is defined through a common extension system, and a
large set of packages defining integrator methods comprises the
JuliaDiffEq organization. However, this extension system does not have
a core central authority as any author in any package can extend the
function like is shown in Algorithm 2. This is why we describe this
system as a confederated modular API (it is colloquially referred to as
the common API). Additionally, the common API has documented op-
tions (abstol, reltol, etc.) and event-handling choices to allow for all
algorithms to act the same on the user’s input and thus abstract the
package-free nature away from the user.

3. Direct benefits of the API design

The confederated modular API has greatly accelerated integrator
methods development in the Julia differential equations community in
a few distinct ways. One major way is that it allows researchers to
develop implementations which are not part of a central repository.
Easy-to-use software helps to facilitate impact of research. Yet, in the
highly competitive academic atmosphere, many individuals simply
cannot justify donating time to larger open-source projects. The con-
federated modular API allows these individuals to build methods in
their own repositories under their own name, but be utilized by end
users just like any other JuliaDiffEq solver. One prominent case of this
is LSODA.jl [23] which wraps a thread-safe C++ re-write of the classic
LSODA algorithm [5,14], but is not encompassed in the JuliaDiffEq
organization since its utilization and maintenance is tracked as part of
the individual’s academic achievements.

Another reason the confederated API has been a success is that it al-
lows for solver methods to be developed in isolation. This means that a
user can develop a useful addition to the available solver methods without
having to understand the organizational policies of a larger open-source
project. For example, DASSL.jl [3] is a re-write of the classic DASSL al-
gorithm [13] into Julia which doesn’t depend on any JuliaDiffEq resources
other than DiffEqBase.jl to define the extension. This has been successful
in recruiting earlier-stage academics, such as undergraduates in the Google
Summer of Code program, to be method contributors since all that is re-
quired is the ability to understand the mathematical method and write
Julia code. In addition, since changing the solver package choice only
requires a change of input type, this allows for package-free methods
development tooling, such as convergence testing and benchmarking, to
be developed and systematically applied across the whole range of dis-
patch choices (detailed in a later section).

Lastly, a recent addition to the JuliaDiffEq organization are the
diffeqr [16] and diffeqpy [17] packages for R and Python respectively
that give multi-language access to the common API. Thus any developer
who implements their differential equation solver method as a dispatch
on the solve common automatically gets access to scientific users in the
Jupyter (Julia, Python, and R) languages. This increases the possible
scientific impact of each individual’s work, allowing for accelerated
scientific discovery as both users and methods developers do not need
to worry about developing cross-language interoperability for their
method to be impactful to the greater scientific community.

However, the confederation of solver packages has not just been
advantageous to methods developers. Downstream scientific modelers
and their domain-specific packages have benefitted since allowing the
user to choose methods then allows for user choices of packages
without any extra support required. An example implementation of a
function which does parameter optimization (via an L2 loss function of
the ODE timeseries against a dataset) which works with any common
interface ordinary differential equation, delay differential equation
(DDE), differential-algebraic equation (DAE), or hybrid differential

Fig. 1. The confederated modular API. The confederated modular API,
known as the common API, is called by the user with the solve command. This
function is defined in DiffEqBase, but problem and algorithm types are used to
dispatch to separate packages. These packages interpret the differential equa-
tion problem type (ODE, SDE, etc.) and solve it using the documented algo-
rithm. Each of these packages return a common solution type with a defined
API. The user then continues their work using this common output. Note that if
not algorithm is given by the user, the algorithm for dispatch is decided auto-
matically.
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equation (including event handling) is shown in Algorithm 3. We want
to stress that this compatibility with a wide array of packages and
differential equation types is not directly coded into our parameter
estimation function. Rather, this functionality comes just by allowing
the user to give the input problem type and the solver algorithm type
and then all package (and sometimes language) interop is handled in
the solve dispatches.

This extensibility by allowing type inputs has been utilized in
downstream domain-modeling packages. For example, for solving the
quantum dynamical equations such as the Schrodinger partial differ-
ential equations (PDEs) in QuantumOptics.jl [11], for systems with
smaller numbers of states one may want to make use of the implicit BDF
method available from the SUNDIALS C++ package [9] and wrapped
via Sundials.jl, while to conserve memory for larger PDEs one may want
to resort to the low-storage Runge-Kutta implementations in Ordinar-
yDiffEq.jl. QuantumOptics.jl allows the user to pass in any common
interface algorithm type, and thus the user can change integrators (and
thus the underlying solver package) by changing this input value,

allowing QuantumOptics.jl to be package-generic without having to
directly support any of the possible choices. In addition, this allows
domain-specific packages to add new methods as required to accelerate
problems in their domain. For example, DynamicalSystems.jl [4] is a
package downstream of DifferentialEquations.jl which utilizes the dis-
crete evolution problems (functional iteration), but added their own
algorithm type and dispatch which can more efficiently handle the
event-free case. By implementing via extension, DynamicalSystems.jl
and its users can still easily switch to any of the available Differ-
entialEquations.jl methods when required. The result is that developers
and users have not had to worry about learning or wrapping many
package APIs since the confederated API is sufficient for calling out to
the many choices in the Julia package ecosystem.

4. Polyalgorithms for automatic algorithm specialization

The confederated formulation of the API has allowed for an explo-
sion in the available solver methods. As of the writing of this

Algorithm 1. Lorenz Equation Example. Example user code solving Lorenz ordinary differential equation using DifferentialEquations.jl. The algorithm choice is
given by the argument Tsit5() which causes solve to dispatch to the solver defined in the OrdinaryDiffEq.jl package.

struct Euler <: DEAlgorithm end

function DiffEqBase.solve(prob::ODEProblem,alg::Euler,args...;

dt = error(‘‘dt required for Euler’’))

tspan = prob.tspan; p = prob.p

n = Int((tspan[2] - tspan[1])/dt) + 1

u = [prob.u0 for i in 1:n]

t = [tspan[1] + i*dt for i in 0:n-1]

for i in 2:n

uprev = u[i-1]

tprev = t[i-1]

u[i] = uprev + dt*prob.f(uprev,p,tprev)

end

build_solution(prob,alg,t,u)

end

Algorithm 2. Dispatch Example. An example code which defines a dispatch for the solve command and utilizes the Euler method to solve the given ODE problem.

function parameter_l2loss(prob,alg,t,data;kwargs...)

cost_function = function (p) # Cost function to return

tmp_prob = remake(prob,p=p) # Same problem, new parameters

# Get solution at t’s

sol = solve(tmp_prob,alg;saveat=t,save_everystep=false,

dense=false,kwargs)

sum(abs2,data - sol) # Get L2 loss

end

end

Algorithm 3. Generic L2Loss Function Generation. This is an example of a package code for parameter optimization. The function parameter_l2loss returns a
function that internally evaluates the ODE with given parameters and calculates the L2 loss against a data set. The returned function can be given to a nonlinear
optimization package to find the optimal parameters. This function is agnostic to the input problem and algorithm choice: prob is the problem to solve
(ODEProblem, DAEProblem, DDEProblem, etc.) and alg can be an algorithm provided by any package which has a dispatch for solve on the given problem type.

C. Rackauckas and Q. Nie Advances in Engineering Software 132 (2019) 1–6

3



manuscript, there exist over 200 methods simply for ODEs, and many
more when including the other forms of differential equations offered
by DifferentialEquations.jl (SDEs, DDEs, DAEs, jump equations like
Gillespie SSA, etc.). Thus while ODE solver APIs like those offered by
previous packages like MATLAB [20], SciPy [10], or R’s deSolve [21]
all have around 10 methods and document method choosing schemes
for users to follow, we have noticed that our ecosystem’s size is far too
large to assume that any user will willingly learn all of the algorithm
differences to make the most effective choice.

For example, for large stiff ODE systems a BDF method is re-
commended since the multistep method require fewer function eva-
luations than methods like ESDIRK. But too large of a system means
that a user’s Jacobian will not fit into memory, and thus if no sparse
Jacobian form is given then the user will need to use a low-storage
Runge–Kutta method (or the implicit methods will error due to running
out of memory). Meanwhile, BDF integrators are not as efficient on
event-heavy codes due to the fact that the order must reset to 1 when a
derivative discontinuity is encountered, which results in a time step
decrease and increased computational cost as shown in Fig. 2. Thus in
this case one may want to use an ESDIRK method. If the user wants to
solve the equation at low tolerances, the benchmarks frequently show
that the high (and adaptive) order fully implicit Runge-Kutta integrator
Radau [8] is the most efficient, while not being as efficient at higher
tolerances (lower accuracy). Thus, while users have successfully been
walked through these explanations in the JuliaDiffEq and Julia pro-
gramming chatrooms, this attention to solver nuances is not something
we have found most users are interested in.

Therefore we have developed polyalgorithms which auto-specialize
on the problem and solver structures to allow for an automatic effective
choice to be made if the user calls the solve function without an algo-
rithm (i.e. solve(prob) or with options like solve(pro-
b,reltol=1e-8)). Polyalgorithms have been applied in other nu-
merical domains such as numerical linear algebra where MATLAB and
Julia’s backslash (\) check properties of the matrix before choosing a
factorization method. However, polyalgorithms like this have been non-
existent in differential equation solver software sans a few automated
stiffness detection algorithms which switch between two fixed choices
during the time course of the integration [14]. Unlike these previous
methods, our algorithm utilizes structural properties of the solver to
choose integration methods, and we also utilize the user options and

allow for hints.
The algorithm starts by dispatching to a choice tree based on the

input problem type, i.e. whether the problem is an ODE, SDE, DAE,
DDE, etc. The dispatch is not only dependent on the type of differential
equation but also its structure. DifferentialEquations.jl for example al-
lows users to define ODEs in forms such as partitioned ODEs for second
order differential equations and dynamical equations resulting from
Hamiltonian equations, split ODEs ( = +u f u p t f u p t( , , ) ( , , )1 2 ), and
semilinear ODEs ( = +u Au f u p t( , , )). These special forms have an
equivalent form as a first order ODE, but this special structure can be
exploited by integrators to give more accurate results, such as sym-
plectic or Runge-Kutta Nystrom integrators for partitioned ODEs, im-
plict-explicit (IMEX) integrators for split ODEs, and exponential in-
tegrators for semilinear ODEs. When applicable, the polyalgorithm will
pick an appropriate algorithm from these sub-classes specific to the
problem’s structure, or if no structure applies it will fall back to the first
order ODE integrator methods.

When choosing a method from a class, features of the problem and
solution are then used to make the final choice. As an example, the
current first order ODE choice tree is shown in Fig. 3 and makes use of
the size of the differential equation system, the user-chosen tolerance,
algorithm hints about stiffness (along with automatic stiffness detection
when not hint is given), and the presence of events. These choices are
heuristics derived from the extensive benchmarks to give a choice
which is likely to be efficient without having to rely on users having
extensive knowledge of the solver details. We have found that most of
the codes from package users utilize the automatic algorithm choices,
whereas code from package developers and methods researchers (who
generally take the time to benchmark methods on their specific pro-
blems) make use of direct algorithm choices. This shows that the al-
gorithm has been successful in achieving its goal of abstracting away
the numerical nature of differential equation problem solving while not
impeding the flexibility required for developers.

5. Pervasive benchmarks for empirically-driven development

Given the wide range and available packages which are directly
available via the common API, we developed a set of integrator analysis
tools in DiffEqDevTools.jl. These tools can directly compute error esti-
mates by using lower tolerance solutions (and in the case of stochastic

Fig. 2. BDF integrator time stepping with events. Shown is the solution of the bouncing ball hybrid ODE system =v g, =x v where g is the gravitational
constant 9.8 and the sign of v flips whenever =x 0. In the case of the BDF integrator (SUNDIALS 3.1), events cause a reset of the order of the integrator to 1, causing
39 time steps to be taken (shown in orange). Meanwhile, the Rodas5 integrator (OrdinaryDiffEq.jl) solves the equation in 5 time steps, jumping from event to event
and utilizing an interpolation to fill in the intermediate region.
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problems, utilize the same Brownian process to measure strong/weak
error), allowing the use of realistic nonlinear models to be used for
benchmarking. A set of benchmarks is shared by the JuliaDiffEq orga-
nization at the JuliaDiffEq/DiffEqBenchmarks.jl repository. An example
work-precision diagram from the stiff ODE benchmark problem OREGO
is shown in Fig. 4.

We have found that these benchmarks have been useful in guiding
the development of the field. Since a large number of methods and
packages can be pulled from (including classic C++ packages like
SUNDIALS [9] and Fortran codes like Hairer’s dop853 [6,7]), these
benchmarks are able to effectively isolate differences between different
implementations of the same method and performance enhancements
which are due the integration method itself. While these benchmarks
have been useful to the JuliaDiffEq developers for identifying perfor-
mance issues and regressions, these benchmarks have also had a large

effect on our development goals. Observations around the efficiencies
of Rosenbrock and ESDIRK methods for small stiff ODEs and the im-
portance of coefficient optimization in high order explicit ODE Runge-
Kutta integrators spawned the motivation to optimize stochastic dif-
ferential equation integrators of a similar form [19]. Results of bench-
marks on LSODA’s efficiency vs that of pure BDF methods was the
impetus for a Google Summer of Code project on developing the au-
tomatic stiffness detection and switching in OrdinaryDiffEq.jl. By
having open benchmarks, newcomers to Julia have been able to directly
see how the native Julia implementations fare against those of the more
developed statically compiled languages (C++ and Fortran), which
has spurred other Google Summer of Code students to focus on areas
where JuliaDiffEq was previously lacking such as adaptive multistep
integrators. Additionally, these benchmarks have been helpful in al-
lowing researchers to assess the necessity of switching their current

Fig. 3. First order ODE polyalgorithm. Depicted is the decision tree for the DifferentialEquation.jl polyalgorithm for choosing the integrator method based on the
user’s input tolerances and properties of the underlying ODE. Note that “Autoswitch” denotes an algorithm with stiffness detection that allows for automated
switching between a method optimized for stiff equations and a method optimized for non-stiff equations.

Fig. 4. Example work-precision diagram. This is a
work-precision diagram of various common interface
packages solving the OREGO system of 3 stiff ODEs
[7]. Each algorithm is documented as Pack-
age.algorithm, for example Sundials.CVO-
DE_BDF refers to the use of CVODE (with BDF coeffi-
cients) from the SUNDIALS C++ package [9]. The
error is the absolute average time series error

x t x t n^ ( ) ( ) /i
n

i i calculated against a reference so-
lution solved with absolute and relative tolerances at
10 14. The timings are derived from the benchmark
computer which is a dual Xeon E5-2697A, but as an
interactive notebook users and developers can re-run
these benchmarks on their own hardware to generate
comparable figures.
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tooling by seeing timings on real applications. For example, these
benchmarks routinely show that integrators within the same class (for
example, stiff ODEs looking at BDF vs (E)SDIRK vs Rosenbrock) gen-
erally do not differ in work-precision timing by more than an order of
magnitude with the largest differences being between families of
methods rather than within. Additionally, we see large differences in
performance depending on the language which is used, for example
MATLAB ODE’s and R’s deSolve suite taking routinely 100x longer,
while the SciPy integrators with Numba-accelerated derivative func-
tions taking routinely 10x longer than the optimized Julia and C++
codes. We hope this verification and quantification of the Julia per-
formance claims in real-world scenarios can better help other re-
searchers choose the right path for their project and team.

From these benchmarks there are many interesting properties about
the families of differential equation solver methods and their perfor-
mance on different types of problems which can be elaborated. Our
team wishes to summarize these results in a publication in the near
future.

6. Discussion and conclusion

The confederated modular API of the DifferentialEquations.jl
package has had a large impact on the ability for possible methods
developers to contribute to the ecosystem. This in turn has led to the
availability of hundreds of methods from this interface which are di-
rectly available to users of downstream packages and users of the
Python and R wrappers. This catalogue has been and is continuously
being benchmarked on real-world problems in order to guide future
JuliaDiffEq development projects and build an empirically-based
polyalgorithm for automatic method selection.

We see the possibility for these architectures to be employed in
other scientific disciplines for similar effects. While machine learning
packages like SciKitLearn [12] allow for calling a large set of methods
on the same dataset, a confederated version built around dispatch could
have similar effects on the machine learning community as we have
seen in JuliaDiffEq.
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