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ABSTRACT OF THE DISSERTATION

Acquiring latent linguistic structure using computational models

by

Gabriel R. Doyle

Doctor of Philosophy in Linguistics

University of California, San Diego, 2014

Professor Roger Levy, Chair

Language contains a great deal of latent structure, which shapes the produced

linguistic forms but does not directly appear in them. Identifying this latent structure

is both a core goal of linguistic theories and the task confronting a child acquiring

language. This dissertation investigates the acquisition of latent linguistic structure

using computational models over a range of linguistic phenomena. These models share

two central features. First, they rely as much as possible on observed language data to

determine the latent structure. This supports emergentist accounts of acquisition, where a

learner relies primarily on cognitively-general learning methods to extract the structure
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from the data, as opposed to innatist accounts, which rely primarily on substantial innate

foreknowledge of the linguistic structure. Second, the models combine general Bayesian

analysis principles with appropriate representations of the linguistic structure for each

problem to maximize the information they obtain from the language data.

Four models are proposed in this dissertation. Two examine the source of phono-

logical constraints in Optimality Theory, and argues that they can be acquired from

language data with little to no innate phonological structure, contrary to the standard,

innatist position. The third model addresses early word segmentation from speech, and

shows that a Bayesian model for incorporating multiple cues outperforms a single-cue

model on segmentation, as well as providing a possible explanation for human segmen-

tation behavior. The final model moves into applications, and shows that accurately

representing the bursty behavior of the language data improves the fit of a topic model.
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Chapter 1

Introduction

Language contains a great deal of latent, or hidden, structure – structure that

shapes the form of the produced language, but that does not directly appear in that

production. This includes the syntactic structure that informs the order of the words, the

phonological constraints that shape their phonemes, and the phonetic categorization that

drives phonemic recognition. Although these structures are not immediately visible in

the language data, their presence and their form can be inferred through patterns in the

data.

One of the central goals of linguistic theory is to define these latent structures,

whether in the formal/applied perspectives that extract the linguistic information in

an immediately interpretable way to the psycholinguistic/cognitive perspectives that

represent the mental framework and processing of language. Furthermore, acquiring

latent structure is the core of language acquisition, as fluency in a language amounts to

fluency over its latent structure. As such, there is always a need to improve our ability to

identify and represent latent structure, both from a formal and a cognitive perspective.

This dissertation investigates the acquisition of latent linguistic structure using

computational models, across a variety of linguistic structures and covering both appli-

cations and psycholinguistic facets. Chapters 2 and 3 build models for the acquisition

of phonological constraints from data, reducing the amount of phonological structure

1
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that is assumed to be innate. Chapter 4 examines the problem of word segmentation

and proposes a model to incorporate multiple cues (syllable identity and stress) in order

to both improve segmentation performance and fidelity to human behavior. Chapter 5

looks at applications, improving the performance of topic models by more appropriately

modeling burstiness in both linguistic and non-linguistic data.

The models constructed in this work address the problem of unsupervised learning

from positive-only data, the kind of learning problem that confronts a human learner of a

language. While the models address different linguistic learning problems and differ in

their specific results, they share two major goals.

The first is to rely as much as possible on the observed language data in deter-

mining the latent structure, rather than relying primarily on innate foreknowledge of

the latent structure. This is an emergentist or empiricist stance on language acquisition,

where the learner relies on an outline of the linguistic structure, based in cognitively- or

statistically-general methods, and relies primarily on the language data to build the latent

structure. This is in comparison to an innatist or nativist stance, where the learner relies

on innate knowledge, specific to language, to supply most of the linguistic structure, with

the language data used only to identify the particular structure of the language being

learned.

The second goal is to use more appropriate model structures for the learning

problems to improve the models’ ability to extract information from the observed lan-

guage data. Previous approaches to these learning problems have overlooked important

information because it did not fit the generative models used to represent the data. The

models in this dissertation use statistically-general approaches to capture new aspects of

the linguistic information, which result in both significant improvements in the quality

of the learned structure and the ability to learn components of the linguistic structure
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that could not be learned before.1 In addition, these models are designed to work with

multiple possible model structures (e.g., different phonological constraint grammars

in Ch. 2), to open new avenues for testing the practical effects of different theoretical

choices.

In this introduction, I will discuss the motivation for computational models of

language, both for cognitive purposes and for applications. I will go deeper into the

cognitive side and discuss the use of computational models in rational analysis, including

addressing what problems can be tackled by computational models in general, and what

problems are tackled by the specific models in this dissertation. The computational

models here focus on problems of acquisition, and so I will also briefly discuss issues of

language acquisition, especially as it relates to questions of innateness of structure and

data-driven learning.

1.1 Computational Models

This dissertation covers four computational models of language – statistical

models that use Bayesian analysis to infer likely latent structures for some observed

language data. These are also referred to as rational models, as they implement the optimal

behaviors for processing information in the presence of uncertainty (Anderson, 1990).

Rationality, in this context, means behaving in normatively optimal ways. The central

idea of rational analysis is that humans are approximately rational when performing our

core cognitive tasks, although we labor under various restrictions on memory, perception,

and computational time.

Two examples of these core tasks are visual perception and motor control (Chater

& Oaksford, 2008). Visual perception was a seminal area for developing rational models

1Of course, there is still much useful information in the input that the models proposed in this
dissertation do not capture.
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(Marr, 1982), and probabilistic computational models have been successful in predict-

ing behavior in tasks such as shape identification (Freeman, 1994; Blake, Bülthoff, &

Sheinberg, 1993), object and boundary recognition (Tu, Chen, Yuille, & Zhu, 2005), and

motion illusions (Weiss, Simoncelli, & Adelson, 2002). Within motor control, Bayesian

probabilistic models have given insight into movement trajectories (Körding & Wolpert,

2004) and timing (Miyazaki, Nozaki, & Nakajima, 2005).

While it may not be clear that language is a core cognitive task, it too has been

found to fit well with the rational analysis framework. The successes of computational

linguistics and natural language processing have shown that computational models

are able to extract useful structure from language data, especially through the use of

Bayesian probabilistic methods. The ability of news-aggregating websites to group

similar articles and of speech-recognition software to understand its users are two now-

mundane examples of how computational models can identify the structure of language

data. Rational analysis also fits with human behavior; difficulties in online sentence

comprehension, for instance, often appear with low-probability continuations (Hale,

2001; Levy, 2008). Behavior comporting with rational analysis also appears in word

segmentation acquisition (M. Frank, Goldwater, Griffiths, & Tenenbaum, 2010), eye-

movements during reading (Bicknell, 2011), and many other linguistic problems.

However, there are two potential concerns in modeling human behavior as rational.

First, implementing such models often relies on sophisticated and computationally-

intense mathematical analyses to infer the latent structure. Second, humans often behave

seemingly irrationally in their conscious decision-making, especially when probabilities

and uncertainty are involved (Kahneman & Tversky, 2000; Shafir, Smith, & Osherson,

1990).

These concerns do not undermine the computational modeling approach, but

rather suggest that the approach is appropriate for some goals and inappropriate for
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others. Rational analysis of conscious probabilistic reasoning may be inappropriate

although some of the irrational behaviors may result from rational behavior in one

context being applied outside that context (Weiss et al., 2002; Sher & McKenzie, 2008).

But, as noted above, the less conscious and more central processes do reflect rational

behavior, and the language processing problems covered in this dissertation largely fall

within this realm. Computational power also need not be a limiting factor, depending

on the problem. Humans process speech, for example, by performing an approximation

of mathematically-complex Fourier analysis through physical means (Stevens, 1998).

Limitations on computational resources can also be introduced into a model, sometimes

improving the model’s fit to human performance (M. Frank et al., 2010; Phillips & Pearl,

2012).

The issue of identifying what aspects of an information processing problem a

model addresses is often phrased in terms of Marr (1982)’s levels of analysis. Marr

proposed three levels: implementational, algorithmic, and computational. These lev-

els represent increasing abstractness of the analysis. Implementational-level analysis

attempts as much as possible to mimic the exact infrastructure of the brain when trying

to solve a problem. Algorithmic-level analysis abstracts slightly from this, proposing

an algorithm to solve the problem that fits with the brain’s commonly-accepted limi-

tations, but without specifying how the algorithm would be implemented in the brain.

Computational-level analysis abstracts even further, and focuses on how a problem could

be solved mathematically, without committing to an algorithm or an implementation.

Depending on the purpose of the analysis, computational-level analysis may or may not

take into account the brain’s limitations. The first two levels focus on the brain; the last

focuses on the problem.

The models in this dissertation focus on computational-level analysis.2 Computational-

2Rational analysis is usually framed at this level (in fact, Anderson (1990), introducing rational analysis,
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level solutions define upper limits to the solvability of a problem, allowing a researcher to

identify what information is available and extractable given a certain set of assumptions.

These assumptions include the data available to be learned from, the structure that is

assumed ahead of time, and the probabilistic functions that assess the likelihood of

different structures. This “upper limit” comes with a caveat; for many computational

models, analytic solutions are intractable, and many, including those in this dissertation,

are solved through approximate means. In practice, this means that human performance

may surpass model performance. This affects what conclusions are appropriate to draw

from computational models, discussed in Sect. 1.3. To better understand the purpose

of computational models of language, we detour briefly into the problems faced by a

language learner.

1.2 The learning problem

The learning tasks being modeled in this dissertation are all unsupervised learning

problems, using positive-only data. Unsupervised learning means that none of the data

is labeled for the latent structure the model is trying to learn. Positive-only data means

that there are no negative examples (or at least none labeled as negative). These two

traits are also true of the language data that a child receives; most structures are never

explicitly labeled, and if the child encounters an ungrammatical utterance, it is unlikely

to be marked as such.

The unsupervised, positive-only setting is a difficult one for extracting latent

structure to the point that these conditions are core components of the poverty of the

stimulus argument in language acquisition (Chomsky, 1965). The poverty of the stimulus

idea argues that limitations on both the quantity and quality of language data children

referred to this as the rational level). Danks (2008) argues that this definition of the analysis levels are
inadequate, and that a more nuanced division is not only more appropriate, but allows for rational analysis
at a larger range of levels.
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encounter means that language acquisition can only proceed if humans have substantial

innate knowledge of the structure of language. This innate knowledge forms the core of

Universal Grammar.

The poverty of the stimulus is based on three claims:

1. The observed language is noisy, containing some level of accidental or erroneous

productions that are not marked as such.

2. The data size is very small, lacking sufficient data to construct a mature grammar.

3. The data contains few or no labeled negative examples to inform a learner of what

is ungrammatical.

The position that humans must have considerable innate knowledge, specific to

language, in order to acquire language is an innatist or nativist position. The opposing

stance, that little to no innate, language-specific knowledge is necessary, is called an

emergentist or empiricist position. These are, of course, relative positions, as few people

would argue for a maximally innatist or emergentist position. Instead, these arise mostly

in the context of specific problems, arguing that more of the structure should be innate or

learned.

A major component of the studies in this dissertation is arguing for more emer-

gentist positions within language acquisition, by showing that more information can be

extracted from the language data than the poverty of the stimulus idea suggests. The

studies touch on all three facets of the poverty argument, with the first and third facets

being most prominently addressed. The models use real or realistic language data in their

experiments, dealing with the inherent noise and occasional inappropriate productions

that real language data provides. The models also all lack negative examples, and over-

come this by inferring implicit negative evidence. Implicit negative evidence comes from
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the realization (motivated in this work by Bayesian analysis) that a form that appears far

less often than expected under one’s current beliefs about a language’s structure is almost

certainly being avoided (e.g., is ungrammatical).

The models in the following chapters argue that learning with cognitively-general

learning principles, such as Bayesian analysis, can be sufficient to overcome the poverty

of the stimulus. The most direct example of this is in the phonological constraint

acquisition chapters, which argue for a strong emergentist stance, that constraints can be

learned from distributional data instead of relying on innate prespecification or derivation

from articulatory and perceptual difficulty (a relatively weaker emergentist stance). The

multiple-cue word segmentation model also argues for an emergentist view on stress bias

acquisition, as opposed to the innate Metrical Segmentation Strategy. The topic model

does not directly address matters of acquisition.

1.3 Assessing Computational Models

The previous section examined the general problems of language acquisition; this

section expands on this by examining how computational models can be used to gain

insight into acquisition and other problems.

The biggest advantage from computational models is that they allow a researcher

to test hypotheses about what is going in the human mind by manipulating such aspects

as what structure is innate versus learned, or what underlying principles the learner is

bound by in its learning. The answers to such questions are of significant theoretical and

practical import, but there is no way of directly manipulating these within the human

mind. Using models allows the researcher test different structures to determine which are

reasonable fits for the behaviors we see from humans. Model behavior can be assessed in

three ways:
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1. generic performance

2. human performance

3. application performance

In addition, the performance assessments can be based on a single model, to

argue that a certain set of assumptions are sufficient for learning, or on a comparison of

models, to argue that one is a better explanation than others. To illustrate the purpose of

each of these assessments, I will look at existing studies, and show where the models in

this dissertation fall in this spectrum.

Generic Performance The first type of assessment is to look at what I will loosely

call generic performance. Generic performance is simply looking at measures such as

data likelihood to determine whether the computational model is extracting sufficient

information to learn the structure of the linguistic data. This assessment, when performed

on a single computational model, has as its goal determining what information is avail-

able, and whether, under the stated assumptions about the learning methods and model

structure, the model is able to learn what we expect it to learn. This is usually the first

step in assessing a model.

Many Optimality Theory learning algorithms focus on this assessment, including

Recursive Constraint Demotion (Tesar & Smolensky, 2000) and the Gradual Learning

Algorithm (Boersma & Hayes, 2001). The GLA is a model for the acquisition of

constraint weights (but not constraint identities, which I will examine in Ch. 2 and 3)

in Optimality Theory. It uses error-driven learning; each time it makes an erroneous

prediction, it increases the weights on constraints that favor the correct output and

decreases the weights on constraints that favor the erroneous prediction. Boersma and

Hayes focus on showing that such a method can learn appropriate constraint weights
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for a range of phonological phenomena, establishing information sufficiency, as the

basic data and structure provide sufficient information to learn appropriate weights.

They do not compare the learning behavior against empirical human learning behavior,

beyond showing that the final state of the learning model is similar to the presumed adult

phonology. The crucial point to establish is that the problem can be learned, although the

specifics of human learning are left open.

The work in this dissertation on acquiring phonological constraints is an example

of modeling to establish information sufficiency. In Ch. 2, I show that a phonology

for vowel harmony can be learned using very limited phonological information, and

no phonologically-driven structure for constraints. However, the constraints learned by

this method are noisy, and lack the robust and generalizable definitions that humans

presumably use in their phonological analysis. Ch. 3 adds phonological structure for

the constraints and shows how this allows the model to learn less noisy constraints that

are generalizable and resemble the standard kinds of constraints in phonology. Both

of these methods establish information sufficiency, in that they show that the learning

problem can be solved with a specific set of information and assumptions, and largely

match human phonology, but they do not directly attempt to match the human learning

process. This is a major goal in continued work on this learning problem.

Generic performance can also be tested comparatively to determine if the structure

of one model allows for improved information extraction. The word segmentation model

(Ch. 4) provides an example of this, as it compares the accuracy of the segmentations

and extracted lexicons for models that ignore or include stress information in their

segmentation decisions.

Human performance The second assessment of a computational model of cogni-

tion examines its predictions about human behavior. Whereas generic performance
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assessments look at whether structure can be learned in principle, comparing a models

performance to human performance addresses whether it can be learned in practice.

Because this presents a more precise goal than simply maximizing generic performance,

it often requires more fully developed models to attain good performance.

M. Frank et al. (2010) provide an example of this from Bayesian single-cue word

segmentation. They ran three experiments in which participants listened to sentences

from an artificial language, and then were asked which of a pair of possible words was

more likely to be a word in the language. The normative likelihood in these experiments

was based on the frequency of each possible word in the exposure phase. The three

experiments manipulated the length of the sentences, the amount of exposure, and the

size of the lexicon, to determine how these variables affected human segmentation.

With the human performance established, they also ran the segmentation model

on the same data as the humans received, to determine how the variables affected

model segmentation. This model performs Bayesian analysis on chunking cues, as

opposed to other models that used non-Bayesian methods or used bracketing cues instead.

They show that the Bayesian chunking model makes predictions that are much more

tightly correlated with human performance than any of the other models, providing

evidence for both Bayesian probabilistic thinking and the use of chunking cues by human

segmenters. Furthermore, the model’s ability to explain the effect of lexicon size on

human performance is poor without any restrictions of the computational power of the

model, but when memory limitations are added, human and model performance are highly

correlated. This provides evidence for bounded rationality in human word segmentation.

This also shows the importance of having different assessment techniques; a better fit to

human performance requires worse generic performance.

The models in this dissertation do not go into human performance in great depth,

as the phonological constraint acquisition models are still in their early stages. The
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multiple-cue word segmentation model (Ch. 4) does look at human performance to

examine the nature of the stress bias in segmentation. The fit to human performance

is not as tight as M. Frank et al.s, but it does show that the observed change in cue

importance as children age can be a reasonable response to the data children encounter.

It also provides another example where improving the fit to human performance would

almost certainly lower generic performance.

Application performance Because computational models perform rational analysis,

they can also be put to use for natural language processing and other non-cognitive

applications. Assessing performance on applications is similar to the generic performance

assessment, but in terms of the goals of the application rather than the goals of the model

itself.

Rasiwasia et al. (2010) provide a multimedia example, by modeling the relation-

ships between texts and their associated images. A topic model is used to extract the

text information, but its specific performance on this portion of the task is irrelevant.

The application in this work was to provide a cross-modal query system, where text

queries returned related images and image queries returned related texts. Performance for

this model was assessed by the proportion of returned images that were from the same

category as the query text, or vice versa. In such an application, it is possible for a model

that would perform worse on generic or human measures to perform better in the context

of the application.

The compound-multinomial topic model in Ch. 5 provides an example of appli-

cation performance when it is applied to the task of classifying companies based on their

stock price fluctuations (see also Doyle & Elkan, 2009b), with performance assessed

based on the known company categories. The rest of the models lack such non-cognitive

applications at present.
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1.4 Overview of the models

This section provides a brief overview of each of the four models proposed in this

dissertation, how they relate to the concepts discussed above, and what each can tell us

about language and cognition.

In general, the models in this work argue for shifting explanatory power away

from innate structures and onto the data. The models of phonological constraint acquisi-

tion replace the traditional assumption of an innate set of phonological constraints with

ones learned from distributional data (Ch. 2 and 3). The multiple-cue model of word

segmentation (Ch. 4) argues that the observed stress-based segmentation biases can arise

from early-childhood word segmentation, rather than being the driving force behind it.

The compound-multinomial topic model (Ch. 5) shows that such simple information

as the co-occurrence of words can provide substantial information about their semantic

relationships.

The phonological acquisition models use Bayesian inference over possible con-

straint violation sets to identify probable constraints with varying amounts of phono-

logical structure; previous work either treated these constraints as innate or assumed

that they must be learned from phonetically-grounded explanations, rather than the data

itself. The word segmentation model represents more of the phonetic information in the

language data than previous models, and shows that this both improves performance

and explains the acquisition of biases that had previously been proposed as innate. The

compound-multinomial topic model improves the representation of a semantic topic by

introducing a hierarchical topic structure, which improves the model’s ability to explain

the language data, which leads to improvements in a range of applications.
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1.4.1 Chapter 2: Constraint Acquisition without Phonological
Structure

Chapter 2 describes the Indian Buffet Process Optimality Theory (IBPOT) model,

which uses distributional data to find phonological constraints. The main goal of this

model is to show that there is sufficient information in the language data to learn constraint

violations and the relative importance of the constraints, as opposed to the standard OT

assumption that constraints are innate and only their relative importances are learned.

The IBPOT model defines a phonological constraint extensionally – in terms

of the wordforms that violate that constraint. This model does not presuppose any

phonological structure over the constraints, minimizing the amount of innate knowledge

within the model and providing the flexibility to learn any constraint, including possible

language-specific constraints (J. Smith, 2004). Tests on Wolof vowel harmony show that

this model is capable of learning a set of constraints that effectively explain the observed

forms, and have a similar structure to the phonologically standard constraints. However,

the lack of presupposed phonological structure leads to noise in the constraint estimates

and limits the predictive power of the model. These limitations motivate the Rational

Rules OT (RROT) model of the next chapter. Chapter 2, in full, is an exact copy of the

material as it appears in the Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Doyle, Bicknell, & Levy, 2014).

1.4.2 Chapter 3: Constraint Acquisition with Phonological Struc-
ture

Chapter 3 describes the Rational Rules Optimality Theory (RROT) model, which

extends the model structure from the IBPOT model by allowing knowledge of phonolog-

ical structure to influence what constraint violations are more likely than others. This

phonological structure comes from a tree-grammar over possible constraint definitions,
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defined in terms of phonetic features. This is only a small increase in the amount of

innate structure over the IBPOT model, and it is still much less presupposed structure

than the fully innate constraint set that is standardly assumed in OT. It also does not

render the constraint learning problem trivial, as the grammar produces an infinite space

of possible constraint definitions. Tests on the English plural show that the RROT model

is capable of learning a constraint structure that not only predicts the correct forms for

previously-unseen words (which the IBPOT model could not) but also largely agrees

with the standard set of constraints invoked to explain the English plural.

1.4.3 Chapter 4: Multiple-Cue Word Segmentation

Chapter 4 proposes a model for integrating different types of segmentation cues

in early word segmentation. Prevailing models of word segmentation have used only

a single cue, usually syllable or phoneme identity, often framed in terms of transition

probabilities (Saffran, Aslin, & Newport, 1996; Goldwater, Griffiths, & Johnson, 2006).

However, there is extensive evidence that children use multiple different cues when

segmenting words from speech – including stress patterns, phonotactics, and allophonic

variation – and that the importance of these cues changes over time (Johnson & Jusczyk,

2001; Thiessen & Saffran, 2003). This chapter introduces multiple-cue modeling (syl-

lable identity and stress) into an existing Bayesian single-cue segmentation framework

(Goldwater et al., 2006). The multiple-cue framework leads to significant improvements

in the segmentation performance, and shows how exposure to data can cause the relative

importance of different cues to shift. Chapter 4, in full, is an exact copy of the material

as it appears in the Proceedings of the 2013 Human Language Technology Conference of

the North American Chapter of the Association for Computational Linguistics (Doyle &

Levy, 2013).
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1.4.4 Chapter 5: Burstiness in Topic Models

Chapter 5 moves into applied computational modeling, and illustrates how the

effectiveness of a model can depend on the appropriateness of its structure for the task

at hand. This chapter proposes the Dirichlet Compound Multinomial Latent Dirichlet

Allocation (DCMLDA) model, a topic model that accounts for burstiness, the tendency

for words to re-occur within the same document (Church & Gale, 1995). Topic models

are a class of models that use the co-occurrences of words across documents to uncover

semantic relationships between them, motivated by the idea that words that tend to

co-occur are more likely to be related. Accounting for burstiness provides a more

accurate estimate of the co-occurrence between words. Tests in this chapter show that

this improves the model’s performance on both linguistic data and bursty non-linguistic

data. Chapter 5, in full, is an exact copy of the material as it appears in the Proceedings

of the 26th International Conference on Machine Learning (Doyle & Elkan, 2009a).



Chapter 2

Nonparametric learning of phonologi-
cal constraints in Optimality Theory

Abstract We present a method to jointly learn features and weights directly from

distributional data in a log-linear framework. Specifically, we propose a non-parametric

Bayesian model for learning phonological markedness constraints directly from the dis-

tribution of input-output mappings in an Optimality Theory (OT) setting. The model uses

an Indian Buffet Process prior to learn the feature values used in the log-linear method,

and is the first algorithm for learning phonological constraints without presupposing

constraint structure. The model learns a system of constraints that explains observed

data as well as the phonologically-grounded constraints of a standard analysis, with a

violation structure corresponding to the standard constraints. These results suggest an

alternative data-driven source for constraints instead of a fully innate constraint set.

2.1 Introduction

Many aspects of human cognition involve the interaction of constraints that push

a decision-maker toward different options, whether in something so trivial as choosing a

movie or so important as a fight-or-flight response. These constraint-driven decisions can

be modeled with a log-linear system. In these models, a set of constraints is weighted

17
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and their violations are used to determine a probability distribution over outcomes. But

where do these constraints come from?

We consider this question by examining the dominant framework in modern

phonology, Optimality Theory (Prince & Smolensky, 1993, OT), implemented in a

log-linear framework, MaxEnt OT (Goldwater & Johnson, 2003), with output forms’

probabilities based on a weighted sum of constraint violations. OT analyses generally

assume that the constraints are innate and universal, both to obviate the problem of

learning constraints’ identities and to limit the set of possible languages.

We propose a new approach: to learn constraints with limited innate phonological

knowledge by identifying sets of constraint violations that explain the observed distribu-

tional data, instead of selecting constraints from an innate set of constraint definitions.

Because the constraints are identified as sets of violations, this also permits constraints

specific to a given language to be learned. This method, which we call IBPOT, uses

an Indian Buffet Process (IBP) prior to define the space of possible constraint violation

matrices, and uses Bayesian reasoning to identify constraint matrices likely to have gen-

erated the observed data. In identifying constraints solely by their extensional violation

profiles, this method does not directly identify the intensional definitions of the identified

constraints, but to the extent that the resulting violation profiles are phonologically inter-

pretable, we may conclude that the data themselves guide constraint identification. We

test IBPOT on tongue-root vowel harmony in Wolof, a West African language.

The set of constraints learned by the model satisfy two major goals: they explain

the data as well as the standard phonological analysis, and their violation structures

correspond to the standard constraints. This suggests an alternative data-driven genesis

for constraints, rather than the traditional assumption of fully innate constraints.
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2.2 Phonology and Optimality Theory

2.2.1 OT structure

Optimality Theory has been used for constraint-based analysis of many areas of

language, but we focus on its most successful application: phonology. We consider an OT

analysis of the mappings between underlying forms and their phonological manifestations

– i.e., mappings between forms in the mental lexicon and the actual vocalized forms of

the words.1

Stated generally, an OT system takes some input, generates a set of candidate

outputs, determines what constraints each output violates, and then selects a candidate

output with a relatively unobjectionable violation profile. To do this, an OT system

contains four major components: a generator GEN, which generates candidate output

forms for the input; a set of constraints CON, which penalize candidates; a evaluation

method EVAL, which selects an winning candidate; and H, a language-particular weight-

ing of constraints that EVAL uses to determine the winning candidate. Previous OT

work has focused on identifying the appropriate formulation of EVAL and the values and

acquisition of H, while taking GEN and CON as given. Here, we expand the learning task

by proposing an acquisition method for CON.

To learn CON, we propose a data-driven markedness constraint learning system

that avoids both innateness and tractability issues. Unlike previous OT learning methods,

which assume known constraint definitions and only learn the relative strength of these

constraints, the IBPOT learns constraint violation profiles and weights for them simulta-

neously. The constraints are derived from sets of violations that effectively explain the

observed data, rather than being selected from a pre-existing set of possible constraints.

1Although phonology is usually framed in terms of sound, sign languages also have components that
serve equivalent roles in the physical realization of signs (Stokoe, 1960).
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2.2.2 OT as a weighted-constraint method

Although all OT systems share the same core structure, different choices of

EVAL lead to different behaviors. In IBPOT, we use the log-linear EVAL developed

by Goldwater and Johnson (2003) in their MaxEnt OT system. MEOT extends traditional

OT to account for variation (cases in which multiple candidates can be the winner), as

well as gradient/probabilistic productions (Anttila, 1997) and other constraint interactions

(e.g., cumulativity) that traditional OT cannot handle (Keller, 2000). MEOT also is

motivated by the general MaxEnt framework, whereas most other OT formulations are

ad hoc constructions specific to phonology.

In MEOT, each constraint Ci is associated with a weight wi < 0. (Weights are

always negative in OT; a constraint violation can never make a candidate more likely

to win.) For a given input-candidate pair (x,y), fi(y,x) is the number of violations of

constraint Ci by the pair. As a maximum entropy model, the probability of y given x is

proportional to the exponential of the weighted sum of violations, ∑i wi fi(y,x). If Y (x)

is the set of all output candidates for the input x, then the probability of y as the winning

output is:

p(y|x) = exp(∑i wi fi(y,x))
∑z∈Y (x) exp(∑i wi fi(z,x))

(2.1)

This formulation represents a probabilistic extension of the traditional formulation

of OT (Prince & Smolensky, 1993). Traditionally, constraints form a strict hierarchy,

where a single violation of a high-ranked constraint is worse than any number of violations

of lower-ranked constraints. Traditional OT is also deterministic, with the optimal

candidate always selected. In MEOT, the constraint weights define hierarchies of varying

strictness, and some probability is assigned to all candidates. If constraints’ weights are

close together, multiple violations of lower-weighted constraints can reduce a candidate’s

probability below that of a competitor with a single high-weight violation. As the distance
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ete *ɪ Parse(rtr) Harmony Parse(atr) Score ɪte *ɪ Parse(rtr) Harmony Parse(atr) Score
ete 0 ite -32
ɛte -24 ɪte -80
etɛ -24 itɛ -56
ɛtɛ -8 ɪtɛ -72

ɛtɛ *ɪ Parse(rtr) Harmony Parse(atr) Score itɛ *ɪ Parse(rtr) Harmony Parse(atr) Score
ete -32 ite -32
ɛte -48 ɪte -120
etɛ -48 itɛ -16
ɛtɛ 0 ɪtɛ -72

Figure 2.1. Tableaux for the Wolof input forms ete, EtE, Ite, and itE. Black indicates
violation, white no violation. Scores are calculated for a MaxEnt OT system with
constraint weights of -64, -32, -16, and -8, approximating a traditional hierarchical OT
design. Values of grey-striped cells have negligible effects on the distribution (see Sect.
2.4.3).

between weights in MEOT increases, the probability of a suboptimal candidate being

chosen approaches zero; thus the traditional formulation is a limit case of MEOT.

2.2.3 OT in practice

Figure 2.1 shows tableaux, a visualization for OT, applied in Wolof (Archangeli

& Pulleyblank, 1994; Boersma, 1999). We are interested in four Wolof constraints that

combine to induce vowel harmony: *I, PARSE[rtr], HARMONY, and PARSE[atr]. The

meaning of these constraints will be discussed in Sect. 2.4.1; for now, we will only

consider their violation profiles. Each column represents a constraint, with weights

decreasing left-to-right. Each tableau looks at a single input form, noted in the top-left

cell: ete, EtE, Ite, or itE.

Each row is a candidate output form. A black cell indicates that the candidate, or

input-candidate pair, violates the constraint in that column.2 A white cell indicates no

violation. Grey stripes are overlaid on cells whose value will have a negligible impact on

the distribution due to the values of higher-ranked constraint.

Constraints fall into two categories, faithfulness and markedness, which differ

2In general, a constraint can be violated multiple times by a given candidate, but we will be using
binary constraints (violated or not) in this work. See Sect. 2.5.2 for further discussion.
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in what information they use to assign violations. Faithfulness constraints penalize

mismatches between the input and output, while markedness constraints consider only

the output. Faithfulness violations include phoneme additions or deletions between the

input and output; markedness violations include penalizing specific phonemes in the

output form, regardless of whether the phoneme is present in the input.

In MaxEnt OT, each constraint has a weight, and the candidates’ scores are

the sums of the weights of violated constraints. In the ete tableau at top left, output

ete has no violations, and therefore a score of zero. Outputs Ete and etE violate both

HARMONY (weight 16) and PARSE[atr] (weight 8), so their scores are 24. Output EtE

violates PARSE[atr], and has score 8. Thus the log-probability of output EtE is 1/8 that of

ete, and the log-probability of disharmonious Ete and etE are each 1/24 that of ete. As the

ratio between scores increases, the log-probability ratios can become arbitrarily close to

zero, approximating the deterministic situation of traditional OT.

2.2.4 Learning Constraints

Choosing a winning candidate presumes that a set of constraints CON is available,

but where do these constraints come from? The standard assumption within OT is that

CON is innate and universal. But in the absence of direct evidence of innate constraints,

we should prefer a method that can derive the constraints from cognitively-general learn-

ing over one that assumes they are pre-specified. Learning appropriate model features

has been an important idea in the development of constraint-based models (Della Pietra,

Della Pietra, & Lafferty, 1997).

The innateness assumption can induce tractability issues as well. The strictest

formulation of innateness posits that virtually all constraints are shared across all lan-

guages, even when there is no evidence for the constraint in a particular language (Tesar

& Smolensky, 2000). Strict universality is undermined by the extremely large set of
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constraints it must weight, as well as the possible existence of language-particular con-

straints (J. Smith, 2004).

A looser version of universality supposes that constraints are built compositionally

from a set of constraint templates or primitives or phonological features (Hayes, 1999;

J. Smith, 2004; Idsardi, 2006; Riggle, 2009). This version allows language-particular

constraints, but it comes with a computational cost, as the learner must be able to generate

and evaluate possible constraints while learning the language’s phonology. Even with

relatively simple constraint templates, such as the phonological constraint learner of

Hayes and Wilson (Hayes & Wilson, 2008), the number of possible constraints expands

exponentially. Depending on the specific formulation of the constraints, the constraint

identification problem may even be NP-hard (Idsardi, 2006; Heinz, Kobele, & Riggle,

2009). Our approach of casting the learning problem as one of identifying violation

profiles is an attempt to determine the amount that can be learned about the active

constraints in a paradigm without hypothesizing intensional constraint definitions. The

violation profile information used by our model could then be used to narrow the search

space for intensional constraints, either by performing post-hoc analysis of the constraints

identified by our model or by combining intensional constraint search into the learning

process. We discuss each of these possibilities in Section 2.5.2.

Innateness is less of a concern for faithfulness than markedness constraints.

Faithfulness violations are determined by the changes between an input form and a can-

didate, yielding an independent motivation for a universal set of faithfulness constraints

(McCarthy, 2008). Some markedness constraints can also be motivated in a universal

manner (Hayes, 1999), but many markedness constraints lack such grounding.3 As such,

it is unclear where a universal set of markedness constraints would come from.
3McCarthy (2008, §4.8) gives examples of “ad hoc” intersegmental constraints. Even well-known

constraint types, such as generalized alignment, can have disputed structures (Hyde, 2012).
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2.3 The IBPOT Model

2.3.1 Structure

The IBPOT model defines a generative process for mappings between input

and output forms based on three latent variables: the constraint violation matrices F

(faithfulness) and M (markedness), and the weight vector w. The cells of the violation

matrices correspond to the number of violations of a constraint by a given input-output

mapping. Fi jk is the number of violations of faithfulness constraint Fk by input-output

pair type (xi,y j); M jl is the number of violations of markedness constraint M·l by output

candidate y j. Note that M is shared across inputs, as M jl has the same value for all

input-output pairs with output y j. The weight vector w provides weight for both F and

M. Probabilities of output forms are given by a log-linear function:

p(y j|xi) =
exp
(
∑k wkFi jk +∑l wlM jl

)
∑

yz∈Y (xi)
exp(∑k wkFizk +∑l wlMzl)

(2.2)

Note that this is the same structure as Eq. 2.1 but with faithfulness and markedness

constraints listed separately. As discussed in Sect. 2.2.4, we assume that F is known as

part of the output of GEN (Riggle, 2009). The goal of the IBPOT model is to learn the

markedness matrix M and weights w for both the markedness and faithfulness constraints.

As for M, we need a non-parametric prior, as there is no inherent limit to the

number of markedness constraints a language will use. We use the Indian Buffet Process

(Griffiths & Ghahramani, 2005), which defines a proper probability distribution over

binary feature matrices with an unbounded number of columns. The IBP can be thought

of as representing the set of dishes that diners eat at an infinite buffet table. Each

diner (i.e., output form) first draws dishes (i.e., constraint violations) with probability

proportional to the number of previous diners who drew it: p(M jl = 1|{Mzl}z< j) = nl/ j.

After choosing from the previously taken dishes, the diner can try additional dishes that
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no previous diner has had. The number of new dishes that the j-th customer draws

follows a Poisson(α/ j) distribution. The complete specification of the model is then:

M ∼ IBP(α); Y (xi) = Gen(xi)

w∼−Γ(1,1); y|xi ∼ LogLin(M,F,w,Y (xi))

2.3.2 Inference

To perform inference in this model, we adopt a common Markov chain Monte

Carlo estimation procedure for IBPs (Görür, Jäkel, & Rasmussen, 2006; Navarro &

Griffiths, 2007). We alternate approximate Gibbs sampling over the constraint matrix M,

using the IBP prior, with a Metropolis-Hastings method to sample constraint weights w.

We initialize the model with a randomly-drawn markedness violation matrix M

and weight vector w. To learn, we iterate through the output forms y j; for each, we split

M− j· into “represented” constraints (those that are violated by at least one output form

other than y j) and “non-represented” constraints (those violated only by y j). For each

represented constraint M·l , we re-sample the value for the cell M jl . All non-represented

constraints are removed, and we propose new constraints, violated only by y j, to replace

them. After each iteration through M, we use Metropolis-Hastings to update the weight

vector w.

Represented constraint sampling We begin by resampling M jl for all represented

constraints M·l , conditioned on the rest of the violations (M−( jl),F) and the weights

w. This is the sampling counterpart of drawing existing features in the IBP generative

process. By Bayes’ Rule, the posterior probability of a violation is proportional to product

of the likelihood p(Y |M jl = 1,M− jl,F,w) from Eq. 2.2 and the IBP prior probability

p(M jl = 1|M− jl) = n− jl/n, where n− jl is the number of outputs other than y j that violate

constraint M·l .



26

Non-represented constraint sampling After sampling the represented constraints for

y j, we consider the addition of new constraints that are violated only by y j. This is the

sampling counterpart to the Poisson draw for new features in the IBP generative process.

Ideally, this would draw new constraints from the infinite feature matrix; however, this

requires marginalizing the likelihood over possible weights, and we lack an appropriate

conjugate prior for doing so. We approximate the infinite matrix with a truncated

Bernoulli draw over unrepresented constraints (Görür et al., 2006). We consider in each

sample at most K∗ new constraints, with weights based on the auxiliary vector w∗. This

approximation retains the unbounded feature set of the IBP, as repeated sampling can

add more and more constraints without limit.

The auxiliary vector w∗ contains the weights of all the constraints that have been

removed in the previous step. If the number of constraints removed is less than K∗,

w∗ is filled out with draws from the prior distribution over weights. We then consider

adding any subset of these new constraints to M, each of which would be violated only

by y j. Let M∗ represent a (possibly empty) set of constraints paired with a subset of w∗.

The posterior probability of drawing M∗ from the truncated Bernoulli distribution is the

product of the prior probability of M∗
( α

K∗
NY+

α

K∗

)
and the likelihood p(Y |M∗,w∗,M,w,F),

including the new constraints M∗.

Weight sampling After sampling through all candidates, we use Metropolis-Hastings

to estimate new weights for both constraint matrices. Our proposal distribution is

Gamma(wk
2/η ,η/wk), with mean wk and mode wk− η

wk
(for wk > 1). Unlike Gibbs

sampling on the constraints, which occurs only on markedness constraints, weights are

sampled for both markedness and faithfulness features.
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2.4 Experiment

2.4.1 Wolof vowel harmony

We test the model by learning the markedness constraints driving Wolof vowel

harmony (Archangeli & Pulleyblank, 1994). Vowel harmony in general refers to a

phonological phenomenon wherein the vowels of a word share certain features in the

output form even if they do not share them in the input. In the case of Wolof, harmony

encourages forms that have consistent tongue root positions.

The Wolof vowel system has two relevant features, tongue root position and

vowel height. The tongue root can either be advanced (ATR) or retracted (RTR), and the

body of the tongue can be in the high, middle, or low part of the mouth. These features

define six vowels:

high mid low

ATR i e @

RTR I E a

We test IBPOT on the harmony system provided in the Praat program (Boersma, 1999),

previously used as a test case by Goldwater and Johnson (2003) for MEOT learning with

known constraints. This system has four constraints:4

• Markedness:

– *I: do not have I (high RTR vowel)

– HARMONY: do not have RTR and ATR vowels in the same word

• Faithfulness:

– PARSE[rtr]: do not change RTR input to ATR output

4The version in Praat includes a fifth constraint, but its value never affects the choice of output in our
data and is omitted in this analysis.
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– PARSE[atr]: do not change ATR input to RTR output

These constraints define the phonological standard that we will compare IBPOT

to, with a ranking from strongest to weakest of *I >> PARSE[rtr] >> HARMONY >>

PARSE[atr]. Under this ranking, Wolof harmony is achieved by changing a disharmonious

ATR to an RTR, unless this creates an I vowel. We see this in Figure 2.1, where three of

the four winners are harmonic, but with input itE, harmony would require violating one of

the two higher-ranked constraints. As in previous MEOT work, all Wolof candidates are

faithful with respect to vowel height, either because height changes are not considered by

GEN, or because of a high-ranked faithfulness constraint blocking height changes.5

The Wolof constraints provide an interesting testing ground for the model, because

it is a small set of constraints to be learned, but contains the HARMONY constraint, which

can be violated by non-adjacent segments. Non-adjacent constraints are difficult for string-

based approaches because of the exponential number of possible relationships across

non-adjacent segments. However, the Wolof results show that by learning violations

directly, IBPOT does not encounter problems with non-adjacent constraints.

The Wolof data has 36 input forms, each of the form V1tV2, where V1 and V2

are vowels that agree in height. Each input form has four candidate outputs, with one

output always winning. The outputs appear for multiple inputs, as shown in Figure 2.1.

The candidate outputs are the four combinations of tongue-roots for the given vowel

heights; the inputs and candidates are known to the learner. We generate simulated data

by observing 1000 instances of the winning output for each input.6 The model must

learn the markedness constraints *I and HARMONY, as well as the weights for all four
5In the present experiment, we assume that GEN does not generate candidates with unfaithful vowel

heights. If unfaithful vowel heights were allowed by GEN, these unfaithful candidates would incur a
violation approximately as strong as *I, as neither unfaithful-height candidates nor I candidates are attested
in the Wolof data.

6Since data, matrix, and weight likelihoods all shape the learned constraints, there must be enough data
for the model to avoid settling for a simple matrix that poorly explains the data. This represents a similar
training set size to previous work (Goldwater & Johnson, 2003; Boersma & Hayes, 2001).
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constraints.

We make a small modification to the constraints for the test data: all constraints

are limited to binary values. For constraints that can be violated multiple times by an

output (e.g., *I twice by ItI), we use only a single violation. This is necessary in the

current model definition because the IBP produces a prior over binary matrices. We

generate the simulated data using only single violations of each constraint by each output

form. Overcoming the binarity restriction is discussed in Sect. 2.5.2.

2.4.2 Experiment Design

We run the model for 10000 iterations, using deterministic annealing through the

first 2500 iterations. The model is initialized with a random markedness matrix drawn

from the IBP and weights from the exponential prior. We ran versions of the model with

parameter settings between 0.01 and 1 for α , 0.05 and 0.5 for η , and 2 and 5 for K∗. All

these produced quantitatively similar results; we report values for α = 1, η = 0.5, and

K∗ = 5, which provides the least bias toward small constraint sets.

To establish performance for the phonological standard, we use the IBPOT learner

to find constraint weights but do not update M. The resultant learner is essentially MaxEnt

OT with the weights estimated through Metropolis sampling instead of gradient ascent.

This is done so that the IBPOT weights and phonological standard weights are learned

by the same process and can be compared. We use the same parameters for this baseline

as for the IBPOT tests. The results in this section are based on nine runs each of IBPOT

and MEOT; ten MEOT runs were performed but one failed to converge and was removed

from analysis.



30

Table 2.1. Data, markedness matrix, weight vector, and joint log-probabilities for the
IBPOT and the phonological standard constraints. MAP and mean estimates over the
final 1000 iterations for each run. All IBPOT/PS differences are significant (p < .005 for
MAP M; p < .001 for others).

MAP Mean
IBPOT PS IBPOT PS

Data -1.52 -3.94 -5.48 -9.23
M -51.7 -53.3 -54.7 -53.3
w -44.2 -71.1 -50.6 -78.1

Joint -97.4 -128.4 -110.6 -140.6

2.4.3 Results

A successful set of learned constraints will satisfy two criteria: achieving good

data likelihood (no worse than the phonological-standard constraints) and acquiring

constraint violation profiles that are phonologically interpretable. We find that both of

these criteria are met by IBPOT on Wolof.

Likelihood comparison First, we calculate the joint probability of the data and model

given the priors, p(Y,M,w|F,α), which is proportional to the product of three terms: the

data likelihood p(Y |M,F,w), the markedness matrix probability p(M|α), and the weight

probability p(w). We present both the mean and MAP values for these over the final

1000 iterations of each run. Results are shown in Table 2.1.

All eight differences are significant according to t-tests over the nine runs. In all

cases but mean M, the IBPOT method has a better log-probability. The most important

differences are those in the data probabilities, as the matrix and weight probabilities are

reflective primarily of the choice of prior. By both measures, the IBPOT constraints

explain the observed data better than the phonologically standard constraints.

Interestingly, the mean M probability is lower for IBPOT than for the phonological

standard. Though the phonologically standard constraints exist independently of the IBP
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*ɪ Harmony M1 M2 *ɪ Harmony M1 M2 *ɪ Harmony M1 M2
iti eti əti
ɪti ɛti ati
itɪ etɪ ətɪ
ɪtɪ ɛtɪ atɪ
ite ete əte
ɪte ɛte ate
itɛ etɛ ətɛ
ɪtɛ ɛtɛ atɛ
itə etə ətə
ɪtə ɛtə atə
ita eta əta
ɪta ɛta ata

LearnedPhono. Std.

hi
hi

hi
mid

hi
lo

Phono. Std. Learned

mid
lo

mid
mid

mid
hi

Phono. Std. Learned

lo
hi

lo
mid

lo
lo

Figure 2.2. Phonologically standard (*I, HARMONY) and learned (M1,M2) constraint
violation profiles for the output forms. Learned weights for the standard constraints
are -32.8 and -15.3; for M1 and M2, they are -26.5 and -8.4. Black indicates violation,
white no violation. Grey stripes indicate cells whose values have negligible effects on the
probability distribution.

prior, they fit the prior better than the average IBPOT constraints do. This shows that the

IBP’s prior preferences can be overcome in order to have constraints that better explain

the data.

Constraint comparison Our second criterion is the acquisition of meaningful con-

straints, that is, ones whose violation profiles have phonologically-grounded explanations.

IBPOT learns the same number of markedness constraints as the phonological standard

(two); over the final 1000 iterations of the model runs, 99.2% of the iterations had two

markedness constraints, and the rest had three.

Turning to the form of these constraints, Figure 2.2 shows violation profiles from

the last iteration of a representative IBPOT run.7 Because vowel heights must be faithful

between input and output, the Wolof data is divided into nine separate paradigms, each

containing the four candidates (ATR/RTR × ATR/RTR) for the vowel heights in the

input.

The violations on a given output form only affect probabilities within its paradigm.

As a result, learned constraints are consistent within paradigms, but across paradigms,

7Specifically, from the run with the median joint posterior.
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the same constraint may serve different purposes.

For instance, the strongest learned markedness constraint, shown as M1 in Figure

2.2, has the same violations as the top-ranked constraint that actively distinguishes

between candidates in each paradigm. For the five paradigms with at least one high

vowel (the top row and left column), M1 has the same violations as *I, as *I penalizes

some but not all of the candidates. In the other four paradigms, *I penalizes none of

the candidates, and the IBPOT learner has no reason to learn it. Instead, it learns that

M1 has the same violations as HARMONY, which is the highest-weighted constraint that

distinguishes between candidates in these paradigms. Thus in the high-vowel paradigms,

M1 serves as *I, while in the low/mid-vowel paradigms, it serves as HARMONY.

The lower-weighted M2 is defined noisily, as the higher-ranked M1 makes some

values of M2 inconsequential. Consider the top-left paradigm of Figure 2.2, the high-

high input, in which only one candidate does not violate M1 (*I). Because M1 has a

much higher weight than M2, a violation of M2 has a negligible effect on a candidate’s

probability.8 In such cells, the constraint’s value is influenced more by the prior than by

the data. These inconsequential cells are overlaid with grey stripes in Figure 2.2.

The meaning of M2, then, depends only on the consequential cells. In the high-

vowel paradigms, M2 matches HARMONY, and the learned and standard constraints

agree on all consequential violations, despite being essentially at chance on the indistin-

guishable violations (58%). On the non-high paradigms, the meaning of M2 is unclear, as

HARMONY is handled by M1 and *I is unviolated. In all four paradigms, the model learns

that the RTR-RTR candidate violates M2 and the ATR-ATR candidate does not; this

appears to be the model’s attempt to reinforce a pattern in the lowest-ranked faithfulness

constraint (PARSE[atr]), which the ATR-ATR candidate never violates.
8Given the learned weights in Fig. 2.2, if the losing candidate violates M1, its probability changes from

10−12 when the preferred candidate does not violate M2 to 10−8 when it does.
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Thus, while the IBPOT constraints are not identical to the phonologically standard

ones, they reflect a version of the standard constraints that is consistent with the IBPOT

framework.9 In paradigms where each markedness constraint distinguishes candidates,

the learned constraints match the standard constraints. In paradigms where only one

constraint distinguishes candidates, the top learned constraint matches it and the second

learned constraint exhibits a pattern consistent with a low-ranked faithfulness constraint.

2.5 Discussion and Future Work

2.5.1 Relation to phonotactic learning

Our primary finding from IBPOT is that it is possible to identify constraints that

are both effective at explaining the data and representative of theorized phonologically-

grounded constraints, given only input-output mappings and faithfulness violations.

Furthermore, these constraints are successfully acquired without any knowledge of

the phonological structure of the data beyond the faithfulness violation profiles. The

model’s ability to infer constraint violation profiles without theoretical constraint structure

provides an alternative solution to the problems of the traditionally innate and universal

OT constraint set.

As it jointly learns constraints and weights, the IBPOT model calls to mind Hayes

and Wilson’s (Hayes & Wilson, 2008) joint phonotactic learner. Their learner also jointly

learns weights and constraints, but directly selects its constraints from a compositional

grammar of constraint definitions. This limits their learner in practice by the rapid

explosion in the number of constraints as the maximum constraint definition size grows.

By directly learning violation profiles, the IBPOT model avoids this explosion, and the

violation profiles can be automatically parsed to identify the constraint definitions that are

9In fact, it appears this constraint organization is favored by IBPOT as it allows for lower weights,
hence the large difference in w log-probability in Table 2.1.
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consistent with the learned profile. The inference method of the two models is different

as well; the phonotactic learner selects constraints greedily, whereas the sampling on M

in IBPOT asymptotically approaches the posterior.

The two learners also address related but different phonological problems. The

phonotactic learner considers phonotactic problems, in which only output matters. The

constraints learned by Hayes and Wilson’s learner are essentially OT markedness con-

straints, but their learner does not have to account for varied inputs or effects of faithful-

ness constraints.

2.5.2 Extending the learning model

IBPOT, as proposed here, learns constraints based on binary violation profiles,

defined extensionally. A complete model of constraint acquisition should provide in-

tensional definitions that are phonologically grounded and cover potentially non-binary

constraints. We discuss how to extend the model toward these goals.

IBPOT currently learns extensional constraints, defined by which candidates do

or do not violate the constraint. Intensional definitions are needed to extend constraints

to unseen forms. Post hoc violation profile analysis, as in Sect. 2.4.3, provides a first

step toward this goal. Such analysis can be integrated into the learning process using the

Rational Rules model (Goodman, Tenebaum, Feldman, & Griffiths, 2008) to identify

likely constraint definitions compositionally. Alternately, phonological knowledge could

be integrated into a joint constraint learning process in the form of a naturalness bias on

the constraint weights or a phonologically-motivated replacement for the IBP prior.

The results presented here use binary constraints, where each candidate violates

each constraint only once, a result of the IBP’s restriction to binary matrices. Non-binarity

can be handled by using the binary matrix M to indicate whether a candidate violates a

constraint, with a second distribution determining the number of violations. Alternately,
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a binary matrix can directly capture non-binary constraints; R. Frank and Satta (1998)

converted existing non-binary constraints into a binary OT system by representing non-

binary constraints as a set of equally-weighted overlapping constraints, each accounting

for one violation. The non-binary harmony constraint, for instance, becomes a set {*(at

least one disharmony), *(at least two disharmonies), etc.}.

Lastly, the Wolof vowel harmony problem provides a test case with overlaps in the

candidate sets for different inputs. This candidate overlap helps the model find appropriate

constraint structures. Analyzing other phenomena may require the identification of

appropriate abstractions to find this same structural overlap. English regular plurals, for

instance, fall into broad categories depending on the features of the stem-final phoneme.

IBPOT learning in such settings may require learning an appropriate abstraction as well.

2.6 Conclusion

A central assumption of Optimality Theory has been the existence of a fixed

inventory of universal markedness constraints innately available to the learner, an assump-

tion by arguments regarding the computational complexity of constraint identification.

However, our results show for the first time that nonparametric, data-driven learning

can identify sparse constraint inventories that both accurately predict the data and are

phonologically meaningful, providing a serious alternative to the strong nativist view of

the OT constraint inventory.
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Chapter 3

Data-driven acquisition of phonological
constraints with underlying phonologi-
cal structure

Abstract We present a method for learning phonological constraints in an Optimality

Theory (OT) framework. Specifically, we propose a non-parametric Bayesian model

for learning phonological markedness constraints directly from the distribution of input-

output mappings. The model introduces basic phonological structure through an infinite

grammar over phonetic features, which provides a prior over the space of constraints.

The model, tested on English regular plurals, learns a system of constraints that explains

observed forms and extends to new forms as well as the innate constraints of a standard

OT analysis. The constraints learned by the model also reflect the structure of the standard

innate constraints, and the differences between the learned and innate constraints suggest

that learning across phonological patterns is critical to finding appropriate constraints.

This provides an emergentist alternative to the common assumption that phonological

constraints are innately known.

37
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3.1 Introduction

The fact that children can learn the phonology of a particular language is obvious,

but it remains unclear exactly what that learning entails. How much of the phonological

learning task is innate? Are humans innately aware of which constraints or rules are

available, or is acquiring the constraints or rules part of the learning task?

The standard view, especially within Optimality Theory (OT), is that virtually all

of the phonological structure is innate and universal; the differences between languages

arise only from the language-particular ordering of the universal constraints. Phonological

acquisition is then limited to determining the relative importances of the constraints for

the language being learned. This can be called the innatist position. Alternatively,

phonological acquisition could include acquiring the constraints; this is an emergentist

position.

One of the major arguments undergirding the innatist position is that there is no

adequate learning method for acquiring the full range of constraints (Kager, Pater, &

Zonneveld, 2004). Emergentist proposals are able to acquire “phonetically grounded” con-

straints, those that can be induced from articulatory or perceptual experience (Archangeli

& Pulleyblank, 1994; Boersma, 1998; Hayes, 1999; Flack, 2007), but these proposals are

unable to learn “formal” constraints, such as stress alignment constraints, which cannot

be so induced.

This chapter strengthens the emergentist position by proposing and testing a non-

parametric Bayesian model for acquiring phonological constraints without knowledge

of articulation or perception. The model uses distributional data and basic phonological

structure (in this case, a set of phonological features) to acquire its constraints. The model

defines a flexible framework that can be implemented with various proposals for the

underlying phonological structure, including formal structures that existing emergentist
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proposals would not learn.

We test the model on the morphophonology of the English plural. We examine

the model’s performance on three measures: how well its learned structure explains the

observed plural forms, how well it predicts the plural forms of previously-unseen words,

and how well the learned constraint structure corresponds to the standard phonological

constraints. We show that the performance on observed forms, as measured by data

probabilities and joint data/structure likelihood, is on par with that of the standard innate

constraints. Predictive performance on novel forms is also equal to that of the innate

constraints, selecting appropriate plurals for the novel words. Lastly, the structure of

the constraints is similar to the phonological standard constraints, and the deviations

between the innate and learned constraints suggest an important role to be played by

general phonotactic knowledge or cross-paradigm learning.

Overall, we show that the learning model finds appropriate constraints in an

infinite space of possible constraint definitions, and that these constraints have similar

generality to innately-defined constraints. Because this learning method is driven by

the set of observed phonological forms rather than directly coming from articulatory

or perceptual motivations, it provides a stronger alternative to innate constraints than

previous emergentist proposals.

3.2 Phonological Acquisition

3.2.1 Constraint-Based Phonology

Constraint-based phonology, in the form of Optimality Theory (OT; Prince &

Smolensky, 1993), uses a system of violable constraints that are used to choose between

multiple candidate output forms for an input form. Stated generally, an OT analysis

works as follows. Given an underlying form, a set of candidate outputs is generated,
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and each is compared against the set of constraints. The candidate output with the least

objectionable constraint violations (whether violating fewer or less important constraints)

is chosen as the output form.1

We work in the MaxEnt OT (MEOT) framework (Goldwater & Johnson, 2003),

which is a log-linear extension of the traditional OT framework (Prince & Smolensky,

1993). Unlike the traditional framework, where constraints are categorically ranked,

MEOT weights the features.2 Weighted features extend traditional OT, as they can

capture a categorical structure when the weights are far apart (like traditional OT) but can

also account for gradient outcomes and variation when the weights are closer together

(unlike traditional OT). MEOT also has the advantage of connecting conceptually to the

general class of log-linear models, which have well-studied convergence and learning

behavior (Della Pietra et al., 1997; Lafferty, McCallum, & Pereira, 2001; N. Smith &

Eisner, 2005) and have proven effective in a range of language and human cognition

studies (Görür et al., 2006; Poon, Cherry, & Toutanova, 2009). Of particular importance

to this work, Hayes and Wilson (2008) used a log-linear framework in their model of

phonotactic constraint acquisition.

3.2.2 Constraint structures and their acquisition

OT constraints divide into two general types: faithfulness and markedness, de-

pending on whether the constraint considers the underlying input form. Faithfulness

constraints penalize output candidates for deviating from their inputs in specific ways,

such as the deletion of a phoneme or the change of a phonetic feature. Identifying and

assessing violations of faithfulness constraints are straightforward, and Riggle (2009)

1This can also be a gradient evaluation, with less objectionable candidates being more likely, which can
account for variation in the output. (e.g., (Anttila, 1997; Boersma, 1999))

2In its use of weighted features, MEOT is similar to one of OT’s progenitors, Harmonic Grammar
(Legendre, Miyata, & Smolensky, 1990). Harmonic Grammar differs in that it allows for positive or
negative weights. Thus “violations” of an HG constraint could increase a candidate’s acceptability, unlike
in traditional or MaxEnt OT.



41

has shown how they can be represented as part of the output of a finite-state transducer

that generates the output candidates from the input form. As such, we will treat these

constraints as known a priori in our model, although the model must still learn appropriate

weights for them. In principle, faithfulness constraints could be learned similarly to the

markedness constraints, as discussed in Sect. 3.6.3.

The model focuses on learning markedness constraints, which penalize output

candidates independent of the input form. Many are phonetically or psycholinguis-

tically grounded and penalize features that are articulatorily or perceptually difficult,

such as long consonant sequences (Archangeli & Pulleyblank, 1994). It is possible

that some markedness constraints are “formally grounded” constraints, which rely on

formal linguistic elements beyond the phonetically-grounded motivations (Flack, 2007),

although the existence of formally grounded constraints is debated (Kager et al., 2004).

Alignment constraints are one example of a debated formal constraint; McCarthy and

Prince (1993) treat alignment constraints as psycholinguistically motivated via edge

prominence, while Flack (2007) argues that alignment constraints are formally grounded

due to the difficulties in learning the wide range of alignment constraints from limited

data. Even constraints with inarguable perceptual grounding could be formal constraints,

if the constraint structure does not match the phonetic grounding; Parker (2002) and

Flack (2007) argue that the sonority scale merely correlates with perceptual intensity,

and requires some formal grounding to produce appropriate constraints.

The difficulty of learning the constraint set appears not only in models but as a

lack of agreement among phonologists as to what the exact “right” set of markedness

constraints is (McCarthy, 2008). As such, a model for learning markedness constraints

is important not only as an explanation of how human learners do so but as potential

evidence to adjudicate between proposed constraint definitions at a theoretical level.

The traditional OT view has been that constraints are innate and universal (Tesar &
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Smolensky, 2000; Kager et al., 2004). Having innate constraints mean that differences in

languages’ phonologies are due solely to differences in the importance of the constraints

in those languages, which simplifies the learning problem (Heinz et al., 2009). The

universal constraint set also explains observed universals in phonological typology by

arguing that unobserved possibilities are ruled out by the set of constraints or restrictions

on their application (e.g., de Lacy, 2004).

The alternative position is the emergentist stance – that constraints are acquired in

the course of learning. Constraints in this system are “phonetically grounded” (Archangeli

& Pulleyblank, 1994), and arise from the formalization of articulatory or perceptual con-

cerns, such as avoiding phoneme sequences that are difficult to articulate. Hayes (1999)

provides a partial structure for such a system with a constraint-generation mechanism

that relies on thresholds in the level of articulatory difficulty, and showed that most of

these threshold-derived constraints make phonological sense.

There are two major theoretical points on which the stances differ. First, innatist

proposals predict that the range of child phonologies is no larger than the range of

adult phonologies, since they both use the same constraints. Second, existing strictly

emergentist accounts predict that formal constraints must not exist (Kager et al., 2004).

Although these are clear predictions, empirical evidence has been equivocal. Evaluating

the first claim is difficult due to the high variation between child phonologies even of the

same language (Hayes, 1999), although possible evidence of consonant harmony in child

but not adult phonologies argue against it (Pater, 1997; Pater & Werle, 2003). As for the

second prediction, phenomena that suggest a need for formal constraints can often be

explained through clever grounded constraints (Kager et al., 2004).

Multiple learning models (Tesar & Smolensky, 2000; Boersma & Hayes, 2001;

Goldwater & Johnson, 2003) have been successful in learning appropriate language-

specific constraint weights with an innate constraint set, but no emergentist models are
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yet able to learn a full set of markedness constraint definitions in the presence of under-

lying forms and faithfulness constraints. The present work replaces the fully-specified

constraint set with a grammar over the building blocks of the constraints. The learned

constraints are then shaped by distributional data as well as the phonological structure

provided by the constraint grammar. Unlike existing strictly emergentist accounts, this

model’s grammar provides an avenue for the integrating formal linguistic elements nec-

essary for potential formally grounded constraints into data-driven constraint acquisition.

3.2.3 Previous emergentist models

There are multiple frameworks for emergentist constraints, but we will limit the

discussion here to two that provide fully-fleshed computational models for constraint

acquisition. Hayes and Wilson (2008)’s model learns phonotactic constraints, which

assess the goodness of a phoneme sequence as a word in a language. Phonotactic

constraints are essentially markedness constraints, as they depend only on the output

form. Phonotactic knowledge emerges early in human language acquisition, and Hayes

and Wilson note that phonotactic constraints represent a potential starting point for

acquiring markedness constraints.

Hayes and Wilson’s model uses sequences of feature bundles to define constraints,

as does our model. Feature selection in their model follows (Della Pietra et al., 1997),

using greedy selection based on the ratio between the violations of a constraint by the

data to the expected violations given the set of previously selected constraints. This

requires a finite constraint space, imposed by a hard limit on the length of the constraint

definitions. Their model obtains phonotactic constraints that largely agree with the

standard theoretical constraint definitions, and make accurate acceptability predictions

on both attested and novel wordforms across a variety of phonotactic phenomena.

The phonotactic learning problem presents a useful springboard to phonological
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learning. It is a slightly less complex problem than the phonological learning problem, as

there is no underlying form for the outputs, no alternative candidates, and no faithfulness

constraints, although it is hardly an easy problem, as there is no explicit negative data a

learner can use. Phonotactic learning also, as a result of its early appearance in human

acquisition, may provide an initial estimate of the markedness constraints of a language.

Moving to phonological constraint learning, (Doyle et al., 2014) propose a model

that learns markedness constraints in the presence of faithfulness constraints. In this

model, constraint learning focuses on learning a matrix of markedness violations, with

each row being a candidate output and each column a constraint. Bayesian inference is

performed on the matrix, using an Indian Buffet Process prior (Griffiths & Ghahramani,

2005), which provides no phonological knowledge during constraint acquisition.

As a result, their model includes no phonological structure. Lacking phonological

structure has the advantage of allowing any constraint justified by the data to be learned,

including the formal constraints that have proved difficult for previous emergentist

proposals. However, it also limits the model to learning extensional constraint definitions

– the set of observed forms that do and do not violate each constraint. This prevents

the model from making predictions about the winning candidates for novel underlying

forms, and can lead to noisy estimation of low-ranked constraints. They also find that

the model can learn constraints that have inconsistent meanings across different types of

inputs, impeding attempts to use phonological structure to identify abstract constraint

definitions post hoc. The lack of structure also means that the IBPOT model would

not be easily extended to learn faithfulness constraints, as the model could reduce all

the faithfulness and markedness constraints into a single faithfulness constraint that

penalizes all unattested unfaithful input-output pairs, and a single markedness constraint

that penalizes the output forms in unattested faithful input-output pairs.

Our model extends beyond each of these previous models. It learns markedness
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constraints in the presence of faithfulness constraints, unlike the phonotactic learner. It

also learns over an infinite space of constraint definitions. By incorporating a grammar

of constraints, its constraints correspond to real phonological structure, unlike those of

the phonologically-unmotivated IBP. This grammar also means that the constraints are

intensionally defined, and can be used to predict the likely output forms for novel inputs.

3.3 Model design

3.3.1 General structure

The phonological model consists of two constraint matrices, the observed F

(faithfulness) and the unobserved M (markedness), as well as a vector of constraint

weights w. The cells of the violation matrices correspond to the number of violations

of a constraint by a given input-output mapping. Fi jk is the number of violations of

faithfulness constraint Fk by input-output pair type (xi,y j); M jl is the number of violations

of markedness constraint M·l by output candidate y j (independent of the input x). For

each input xi, some subset of the output forms {y j} are generated by GEN as candidates;

this subset will be denoted Y (xi). The weight vector w provides weights for both F and

M, and probabilities of the output candidates are given by a log-linear function:

p(y j|xi) =
exp
(
∑k wkFi jk +∑l wlM jl

)
∑

yz∈Y (xi)
exp(∑k wkFizk +∑l wlMzl)

(3.1)

F is assumed to be known, as part of the process of generating candidates (Riggle,

2009). M is a non-parametric matrix with a known number of rows (candidates) but an

unknown number of columns (constraints). The number of columns is generated by a

Poisson prior with parameter α , and the violations within each column are generated

from a grammar G of constraints, using a Rational Rules model with parameter b, which

will be discussed in detail in the next section. w is a vector of exponentially distributed
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weights with parameter ηG for both constraint types, and is also learned. Within OT,

constraint violations always penalize the violator, so w < 0 for all constraints.

Equation 3.1 defines the probability of a candidate y j being chosen as the output

for a single instance of an underlying form xi, given the current estimates of the constraints

and weights. To get the probability of the observed data as a whole, we take the product

of the probabilities across all observed input-output pairs. Letting ni j be the number of

times that y j is observed as the output form for xi, and ni· be the number of times the

underlying form xi occurs, the probability of the whole dataset Y is:

p(Y |M,F,W ) ∝ ∏
i

exp
(
∑ jk wFkni j fi jk +∑ jl wMlni jm jl

)(
∑yz∈Y (xi) exp(∑k wFk fizk +∑l wMlmzl)

)ni· (3.2)

The probability in Equation 3.2 also indicates how well the learned structure

explains the data Y , and this value will be one metric by which the model’s learning is

assessed in Sect. 3.5.1. The last important probability in this model is the joint probability

of the learned structures (M and w) given the priors and known variables (Y and F):

p(M,w|Y,F,α,b,ηG,G) ∝ p(Y |M,F,w)p(M|b,G)p(w|ηG) (3.3)

This joint probability is proportional to the product of the probabilities of the

data (Eqn. 3.2), weights (exponential prior), and matrix M (defined in the following

secitons). The learning method described below approximates draws from this joint

distribution, meaning that the values of M and w learned by the model will be based on

trade-offs between improved data, matrix, and weight probabilities. This will also be

used as a metric to assess the quality of the learned structure in Sect. 3.5.1. The complete

specification of the model is then:
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M ∼ RR(G,b); Y (xi) = Gen(xi)

w∼−exp(ηG); y|xi ∼ LogLin(M,F,w,Y (xi))

3.3.2 Constraint grammar and violation profiles

Phonological knowledge in this model comes from the constraint grammar. Dif-

ferent constraint grammars may be chosen to test their learnability and typological

consequences; this will be examined in more depth in Sect. 3.6. At present, we use a

simple probabilistic context-free grammar (PCFG) to generate sequences of feature-value

bundles, similar to the phonotactic constraints of Hayes and Wilson (2008). The PCFG

has the benefit of imposing a bias toward simpler constraint definitions (i.e., those span-

ning fewer phonemes and specifying fewer feature-value pairs). The specific grammar

used in the experiment is discussed in Sect. 3.4.

The markedness matrix M is not defined directly by constraint definitions, but by

violation profiles, which are binary vectors whose values are zero for candidates that do

not violate the constraint and one for those that do. The violation profiles are generated

from constraint definitions using the Rational Rules framework (Goodman et al., 2008).

Binary violations are assessed from the constraint definition (the binarization method is

discussed in Sect. 3.4), but candidates can be exceptions (switching the constraint value

from zero to one or vice versa), with the number of exceptions exponentially distributed.

Given a constraint definition d, the probability of it producing a violation profile m is

given by:

p(m|d) ∝ exp(−bQ(m;d)) (3.4)

where Q(m;d) is the number of exceptions in m given d, and b is a model parameter,

with larger b penalizing exceptions more strongly. Usually, phonological constraints
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are assumed to have no exceptions; but there are two related reasons to allow them

within the model. First, allowing exceptions improves learnability; the learner does not

have to jump directly to the right definition for a profile, but can gradually improve its

estimate. Second, exceptions allow the learner to learn a constraint that does not exactly

match anything in the constraint grammar. This presents a potential avenue for learning

language-particular constraints, if they exist (J. Smith, 2004).

We marginalize over possible constraint definitions to estimate the probability of

a violation profile; the estimation method is discussed in Sect. 3.3.4.

3.3.3 Inference on M and w

For the model to find good phonological systems, we perform Markov Chain

Monte Carlo (MCMC) inference over the space of markedness matrices M and weight

vectors w. Five MCMC sampling moves are used to explore this space.

Adding columns to M The model is initialized with randomly-drawn markedness

violation matrix M and weight vector w.3 Potential new columns for M are theoretically

drawn from the infinite set of possible constraint profiles; to make this tractable, we

follow Görür et al. (2006) and perform a truncated Bernoulli draw over at most K∗

new constraints from an auxiliary matrix M∗ with weight vector w∗. The columns of

this auxiliary matrix are drawn in the same way as the initial values for M, by drawing

constraint definitions with exceptions. This approximation retains the unbounded nature

of the possible constraint space, as repeated sampling iterations can add constraints

without limit.

The model chooses what columns M+, if any, to add from M∗ as a multinomial

draw over the joint probabilities p(M+ ∪M,w+ ∪w|Y,F,α,b,ηG,G) for each subset

3M is drawn by a Poisson on the number of constraints, and each profile is a Rational Rules draw from
a constraint definition drawn from the constraint grammar.
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M+ ⊆M∗. Because the null subset is an option, the model can decide to add no new

columns.

Gibbs sampling on M The values of the cells M jl are resampled conditioned on the

rest of the constraint violations (M−( jl),F) and the weights w. The probability that

M jl = z (where z is 0 or 1) is proportional to the product of the conditional probability

p(M jl = z|m− jl) and the likelihood of the data with the new value of M. The conditional

probability is calculated by marginalizing over all possible constraint definitions, as

discussed in Sect. 3.3.4.

Removing columns from M After Gibbs sampling, each column of M is considered

for removal; this is essentially the reverse of the first MCMC sampler, which tried to add

columns. The probability of removing a column from M to yield the smaller matrix M−

is a Bernoulli draw with probability:

p(M−,W−|Y,F,α,b,ηG,G)

p(M−,W−|Y,F,α,b,ηG,G)+ p(M,W |Y,F,α,b,ηG,G)
(3.5)

Before any columns are removed, the auxiliary matrix M∗ is deleted. Any columns

that are removed is placed into M∗, along with their weights, and new columns/weights

are drawn from the constraint grammar to fill the auxiliary to K∗ columns.

Splitting columns within M The final sampling step on M is to consider moving a set

of violations from one column into another, either an existing column or a new column

that has no other violations. This move allows for violations that substantially improve

the data likelihood but are exceptions to the constraint definitions that the rest of the

column’s violations favor to move into a column where they fit better. Without this split

move, the violations would have to first be removed via Gibbs sampling, then re-added,
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again via Gibbs sampling, in the new column. The first Gibbs sampling change may be

very unlikely due to the loss in data likelihood, slowing down convergence.

The proposed split and its acceptance probability are drawn as follows. The

likelihood of a violation MJL being an exception within its profile MJ· is estimated from

the proportion of samples from p(d|MJ·) that mark the violation as exceptional. The

set of violations V to be moved is drawn as a sequence of independent Bernoulli draws

based on each violation’s likelihood of being an exception. More commonly exceptional

violations are more likely to be moved. The exception likelihood is smoothed using

a Beta-binomial distribution with parameter β , by taking the maximum a posteriori

estimate of the likelihood:

p(mJL ∈V ) =
NE +β −1

NE +NN +2β −2
(3.6)

The number of Metropolis samples in which MJL was an exceptional violation is

NE and a non-exceptional violation is NN . The β parameter functions as a pseudocount;

the model estimates the exception likelihood as if it had seen β additional examples

of the violation being exceptional and β additional examples of it being unexceptional,

moderating the probability estimates. Increasing β increases the smoothing, and the

effect of the smoothing decreases as more Metropolis samples are drawn.

Weight sampling Between each of the matrix samplers, we use Metropolis-Hastings

to estimate new weights for both constraint matrices. Our proposal distribution is

Gamma(wk
2/ηM,ηM/wk), with mean wk and mode wk− ηM

wk
(for wk > 1). This adds one

free parameter, ηM, which increases the variance in proposal weights as it increases.
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3.3.4 Inference over the constraint definitions

Many of the inference steps on M require knowledge of the prior over violation

profiles (i.e., columns of M), but this is a sum over the infinite set of constraint definitions.

To estimate this, we use importance sampling over constraint definitions. The underlying

idea is that for most definitions d, at least one of the probabilities p(m|d) and p(d)

is negligible. We use Metropolis sampling to move through the region of constraint

definitions d where both probabilities are relatively high.

For a given profile m, we start by drawing a constraint definition d from the

PCFG, then Metropolis-Hastings sample through the space of constraint definitions, with

three possible move types, of equal probability. The first move is subtree-replacement,

where a node in the tree is re-drawn, along with all its children. This is the Metropolis

move used by Goodman et al. (2008). To improve mixing, we add two more moves:

excision and insertion. Excision chooses a node N and one of its grandchildren G, and

removes the intervening parent node (if and only if the G is a valid child of N according

to the CFG). Insertion performs the opposite task, inserting a node between N and one of

its children. In terms of the constraint definitions, subtree-replacement changes a feature

value, a bundle, or a sequence of bundles; excision removes a feature, bundle or sequence

of bundles; and insertion adds a feature, bundle, or sequence of bundles.

For subtree-replacement, the node being re-drawn is selected uniformly randomly

from all non-terminals in the current tree; this is always possible for at least one node.

That node’s label is retained, but all of its children are removed and re-drawn according

to the PCFG rules. If a subtree replacement is to be made, the probability of moving

from tree T to T ′ by redrawing the subtree SX at node X is:

JR(T ′;T ) =
1

NR
· ∏

r∈S′X

p(r), (3.7)



52

where NR is the number of non-terminal nodes in T , S′X is the new subtree with root X ,

and r ranges over the rules in S′X .

Node selection for excision is slightly more complicated, as it selects a node X

uniformly randomly from the set of nodes that can be excised (nodes with at least one

grandchild Z that is also a valid child of X under the CFG). If no excisable nodes exist

in the tree, the model attempts a different move type (replacement or insertion) instead.

Excision removes a node Y – the child of X and parent of Z – from the tree, as well as

the current sibling of Z (with its subtree).

If an excision is to be made, the probability of choosing to excise between X and

Z in tree T to yield tree T ′ is:

JE(T ′;T ) =
1

NE
· 1

NE;X
, (3.8)

where NE is the number of nodes in T that have at least one excisable grandchild, and

NE;X is the number of excisable grandchildren of X in T .

Insertion is the most complicated move. Node selection for insertion works

similarly to excision; a node is drawn uniformly randomly from the set of insertable

nodes. An insertable node is one that has at least one child that could also be its grandchild.

As with excision, if no insertable nodes exist, a different move type is attempted. Once

an insertable node X is chosen, the model chooses a child node Z uniformly among its

children that could be a grandchild of X . That node becomes a grandchild of X , and

the model draws a new node Y , according to the PCFG, such that Y is a valid child of

X , a valid sibling of A, the remaining child node of X , and a valid parent of Z. Finally,

Z needs a sibling B in its new lower position, and this node (along with its subtree) is

drawn according to the PCFG. Given that an insertion is to be made to the tree T , the



53

probability of that insertion being node Y between X and Z is:4

JI(T ′;T ) =
1
NI
· 1

NI;X
· p(X → AY )

p(X → A∗)
· p(Y → ZB)

p(Y → (Z ∗ | ∗Z))
·∏

r∈SB

p(r), (3.9)

where NI is the number of nodes in T that have at least one insertable child, and NI;X

is the number of insertable children of X in T . The third fraction is the probability of

choosing Y as the new child in T ′, and the fourth fraction is the probability of choosing

B as the new sibling of Z, as well as whether Z is the left- or right-hand child of Y . The

final term is the probability of the subtree SB.

Using the jump probabilities between trees given by the above equations, we can

calculate the acceptance probability of a possible Metropolis move from T to T ′. This is

the product of the ratio of the forward and backward jump probabilities and the ratio of

the trees given the current violation profile m:

p(m|T ′)p(T ′)J(T ;T ′)
p(m|T )p(T )J(T ′;T )

(3.10)

The Metropolis method samples constraint definitions {d(1), · · · ,d(n)} from the

posterior distribution p(d|m). These samples can be used to estimate the probability of

the violation profile m given the constraint grammar G by taking the harmonic mean

of p(m|d(t)) over all samples (Newton & Raftery, 1994).5 This provides a prior for the

columns of the matrix; coupled with the Poisson prior on the number of columns, we

have a prior over matrices with an indefinite number of columns.

4This equation assumes that Z is the right-hand child of X and the left-hand child of Y . If Z is the
left-hand child of X or the right-hand child of Y or both, the probability is calculated similarly, but the
third or fourth fraction changes to reflect the actual structure.

5Because harmonic mean estimation can be noisy and take a large number of iterations to converge
(Neal, 1994), we tested a range of violation profiles and found consistent convergence to the expected
constraint definitions and profile probabilities within a few thousand samples.
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3.4 Experiment

We test this model by learning the constraints that produce the English regular

plural system. This requires the model to identify two markedness constraints, plus

weights for three additional faithfulness constraints.

3.4.1 English regular plural morphophonology

The English regular plural has one underlying form (/z/) with three attested output

realizations: [z], [s], or [@z] (as in hugs, huts, and hushes, respectively). Two markedness

constraints drive this alternation in the standard phonological analysis: AGREE[VOI]

and *[+STR][+STR]. The former penalizes outputs where consecutive consonants do

not agree in voicing, and the latter penalizes outputs where consecutive consonants are

both strident.6 These are coupled with three faithfulness constraints: MAX, DEP, and

IDENT[VOI]. These penalize removing a phoneme, adding a phoneme, or changing the

voicing of a phoneme.

For this experiment, we consider four candidate outputs for each input: the bare

singular form, plus forms with each of the three attested allophones of the regular plural

suffix. The candidates for plural hug (underlying /h2gz/), for instance, are [h2g], [h2gz],

[h2gs], or [h2g@z]. In general, the [@z] candidate wins only when the singular ends in a

strident, the [s] candidate wins only when the singular ends in a voiceless non-strident,

and the [z] candidate wins the rest of the time.

Traditional OT predicts four necessary pairwise rankings in the constraint hier-

archy. First, *[+STR][+STR] and MAX must both outrank DEP, so that consecutive

stridents are resolved by adding a phoneme (@) to separate them, rather than deleting the

suffix. Second, AGREE[VOI] and DEP must both outrank IDENT[VOI], so that voicing

6Voiced English consonants are b,d,g,v,D,Z,dZ,m,n,N,l,r,w; voiceless consonants are p,t,k,f,T,S,tS. English
stridents are s,z,S,Z,tS,dZ.
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disagreements are resolved by changing the voicing of the suffix, rather than adding a

intervening phoneme. (Since rankings are transitive, this implies *[+STR][+STR] and

MAX both outrank IDENT[VOI] as well.)

In terms of constraint weights, the necessary rankings imply large weight differ-

ences between constraints. The estimated MaxEnt OT weights for the constraints are

approximately 15 for *[+STR][+STR] and MAX, 10 for AGREE[VOI] and DEP, and 5 for

IDENT[VOI], showing large gaps corresponding to the critical rankings.

For a training set, the model is exposed to the plural forms of 26 common count

nouns. These nouns were chosen using norming data from Dale and Fenson (1996), with

all of the nouns being reported as understood by at least 89.4% of tested 18-month-old

English learners.7 This suggests these words are common in child-directed speech, and

would likely be used in acquiring the English plural. The model is given 100 examples

of each plural, always using the standard pluralization.

3.4.2 The constraint grammar

Constraint definitions are similar to the phonotactic constraints of Hayes and Wil-

son (2008), and represent sequences of phonological feature bundles. The phonological

features mark different characteristics of phonemes; for instance, the phoneme [s] has

phonological features including [+consonantal, +coronal, +strident, –voiced], while the

similar phoneme [z] has features including [+consonantal, +coronal, +strident, +voiced].

A feature bundle within a constraint definition matches all phonemes with all of the

bundle’s features. Thus [+consonantal, +strident] matches [s] and [z] but [+consonantal,

+voiced] matches only [z]. Phoneme-to-feature mappings are based on Riggle (2012).8

7The words are: baby, ball, balloon, banana, bath, bird, blanket, book, car, chair, daddy, diaper, door,
drink, eye, hug, key, kiss, kitty, mommy, nap, nose, phone, shoe, spoon, toothbrush

8There is one exception to this: voicing is not specified on sonorants, because sonorants do not have
voiceless versions and do not trigger AGREE[VOI] violations. Sect. 3.6 discusses how such decisions about
the core structure of the model can inform our view of linguistic structure.
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Table 3.1. Rules within the phonological context-free grammar. C is the root symbol,
and expands into one or more feature bundles B (a set of feature-value pairs that must be
satisfied by a phoneme). B obligatorily splits into the bundle b and S, which can contain
a Kleene star. b expands into one or more pairs P, each of which contains a value (+/−)
and a phonological feature (one of the 23 phonological features). ε indicates an empty
node.

Non-terminal expansions Terminal expansions
C → BB|BC|B S → ∗|ε
B → bS V → +|−
b → PP|Pb|P F → voice|syllabic|strident| · · ·
P → V F

Lastly, this grammar also allows the generation of a Kleene star, which matches zero or

more occurrences of a feature bundle. None of the English plural constraints require this,

but it is necessary for future work generalizing the grammar to capture long-distance

constraints, such as vowel harmony.

The bundle sequences are generated by a probabilistic context-free grammar with

uniform rule probabilities, shown in Table 3.1, with example constraint trees in Figure

3.1. This defines an infinite space of constraint definitions, with no limit on the number

of features per bundle nor the number of bundles per sequence. Of these, three definitions

correspond to the phonologically standard constraints. The definition for *[+STR][+STR]

is self-evident, but AGREE[VOI] is actually an umbrella for two constraints in the PCFG:

*[-VOI][+VOI] and *[+VOI][-VOI]. As we will see, only the first of these agreement

constraints is necessary to explain the English plural, though the second could be learned

if other paradigms were added (see Sect. 3.6).

Note that the constraints, defined as sequences of feature bundles, are not binary; a

candidate can contain multiple sequences that violate a constraint. However, the Rational

Rules method requires binary constraints. To obtain binary versions of the constraints,

we subtract the number of violations incurred by the singular form from the number of

violations incurred by the candidate. Since all the candidates from a given input share the
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Table 3.2. The 23 phonological features, and their values over English phonemes. Some
phonemes are unspecified for a feature (neither + nor −), and will not match feature
bundles that specify a value for that feature. Phoneme feature values are based on Riggle
2012, with the exception that sonorants, which are obligatorily voiced, are unspecified
for voicing.

Feature + Phonemes − Phonemes
ATR i u e o a @ E A æ I O U 2
anterior d l D n s r T z t S Z tS dZ
back A @ g k O N U o w 2 u a tS dZ e æ i j I E
closed glot-
tis

P æ A @ tS E D I dZ O N S U T 2 Z a b e d g f i h k j
m l o n p s r u t w v z

coronal tS z d S dZ l n s r T t Z D A @ j E I O N U 2 a b e g f i h k æ m o p u w v P
consonantal tS D dZ N S T Z b d g f k m l n

p s r t v z
A @ E I O U 2 a e æ i h j o u w P

continuant A @ j E D I O S U T 2 Z a e f i h
æ l o s r u w v z

b d g k m n p t N P

distributed S Z tS dZ d l D n s r T z t
dorsal A @ tS E I dZ O N U 2 a e g æ i

k j o u w
D S T Z b d f h m l n p s r t v z P

delayed re-
lease

tS dZ æ P A @ E D I O N S U T 2 Z a b e d g f i h k j m l
o n p s r u t w v z

high tS dZ g i k j N I u w U a @ E æ O A o 2 e
labial A @ j E I O U 2 a b e f i æ m o

p u w v
tS D dZ N S T Z d g h k l n s r t z P

lateral l æ P A @ tS E D I dZ O N S U T 2 Z a b e d g f i h k
j m o n p s r u t w v z

low a A æ @ tS E I dZ O N U 2 e g i k j o u w
nasal N m n æ P A @ tS E D I dZ O S U T 2 Z a b e d g f i h k j l

o p s r u t w v z
pharyngeal a @ E A æ i O I u o 2 U e tS D dZ N S T Z b d g f h k j m l n p s r t w v z P
round A @ U O w u j o a 2 b e f i æ m p v I E
spread glot-
tis

h æ P A @ tS E D I dZ O N S U T 2 Z a b e d g f i k j
m l o n p s r u t w v z

sonorant A @ E I O N U 2 a e æ i j m l o
n r u w

tS D dZ S T Z b d g f h k p s t v z P

strident tS Z dZ s S z A @ j E D I O N U T 2 a b e d g f i h k æ m l o n p
r u t w v P

syllabic a @ E A æ i O I u o 2 U e tS D dZ N S T Z b d g f h k j m l n p s r t w v z P
tense i e u o æ a @ tS dZ E A g I k j O N U w 2
voice A @ E D I dZ O N U 2 Z a b e d

g æ i j m l o n r u w v z
tS f h k s p S t P T
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(b) Assamese vowel harmony

Figure 3.1. Example tree-structures within the constraint CFG. Tree (a) defines a voicing
agreement constraint, [-VOICE][+VOICE], that is important for the English plural. Tree
(b) gives an example of a more complex constraint, a vowel harmony constraint from
Assamese (Mahanta 2012), [-ATR][+CONS]*[+ATR], which uses the Kleene star to
ignore any intervening consonants.

singular form as a stem, the same number of violations are subtracted from all of them,

and the candidate probabilities within the log-linear model are unchanged.9

3.4.3 Model parameters

The model has three free parameters with theoretical importance, which we set as

follows. The Poisson parameter α and the weight parameter ηG are set to 1, to encourage

learning smaller matrices and weights. b, the exception parameter in the Rational Rules

distribution, is set to 10, to discourage exceptions.

The sampling methods have their own free parameters, but these lack theoretical

importance. The Metropolis weight parameter ηM is 1 as a default. K∗, the number of

9For a very small number of possible constraint definitions (e.g., *[+continuant]), the [@z] allomorph
incurs multiple violations, but none of these constraints are important to the English plural, nor identified
as likely definitions for violation profiles learned by the model in practice. Alternative implementations for
non-binary constraint representation are discussed in Sect. 3.6.3.



59

auxiliary parameters, is 7, large enough to encourage movement through the space of

M while remaining easily calculable. β , the smoothing parameter for estimating the

exceptionality of violations, is 100. In the future, these will be tested over a wider range,

but changing them should only affect convergence rates.

We run the model for 200 iterations in three trial runs, with deterministic annealing

on the first half of the iterations to encourage mixing. For estimating p(m), 1000 burn-in

samples are taken and discarded, and 250 additional samples (every second sample out

of 500 to reduce autocorrelation) of d are averaged. Each time p(m) is re-calculated

for a given m, half as many additional samples are drawn (e.g., 125, 62, ..., down to a

minimum of 25) and incorporated into the average. This allows continued improvement

of the p(m) estimates for even common violation profiles without overly costly runtimes.

3.5 Results

We test the model’s performance in three areas: the ability of the learned con-

straints and weights to explain observed data, their ability to predict the plural forms of

unobserved words, and the interpretability of the constraints. In all cases, we compare

the learned constraints to the baseline of the standard constraint definitions that an innate

constraint set would provide.

To assess the performance of an innate constraint set, we set M to be the two

standard English markedness constraints, *[+STR][+STR] and *[-VOI][+VOI] (with no

exceptions), and learn weights for them using the same weight learning mechanism as in

the acquisition model. The same mechanism is used so that the learned-constraint weights

and innate-constraint weights (and their consequences) can be directly compared.10 We

use the same parameters to estimate this baseline as in the RROT learning model.

10Conceptually, this is equivalent to learning weights by MaxEnt OT, except that our model uses a
Metropolis sampling rather than gradient ascent to obtain its weight estimates.
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Table 3.3. Data, markedness matrix, weight vector, and joint log-probabilities for the
learned and innate constraints. MAP and mean estimates over the final 100 iterations for
the three model runs. Values closer to zero indicate better model fits.

MAP Mean
Learned Innate Learned Innate

Data -2.94 -5.16 -7.91 -10.6
M -71.0 -41.3 -77.8 -41.8
w -45.9 -56.5 -52.6 -64.7

Joint -129.5 -114.2 -138.4 -117.1

3.5.1 Observed forms

The first goal of the model is to find constraint structures that can explain the

observed plural forms within the log-linear model, establishing that the learning method

is able to identify useful structures. The model satisfies this goal if it assigns high

probability to the observed forms, especially as compared to the innate constraints.

We quantify this by calculating the joint probability of the data and model given

the faithfulness constraints and all model parameters, p(Y,M,w|F), which is proportional

to the product of three terms: the data likelihood p(Y |M,F,w), the markedness matrix

probability p(M|α), and the weight probability p(w).11 We calculate both the mean and

MAP (maximum probability) values of these probabilities over the final 100 iterations of

each of the three model runs, and report the across-run means in Table 3.3.

Overall, the probabilities are comparable for the learned and innate structures.

The data probability in the learned model is especially high. These results indicate that

the model is capable of learning constraints that provide a reasonable structure for the

observed plural forms, and we will look at the exact form of the learned constraints in

Sect. 3.5.3. The lower matrix probabilities of the learned M are reflective of the difficulty

of the search problem, which must sift through an infinite space of constraints.

11Though the innate runs have known constraint definitions, the reported matrix probability is marginal-
ized over possible constraint definitions to make the distributions comparable between the innate and
learned runs.
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None of the differences are significant by t-tests, although the statistical power

is weak with relatively few test runs. Even if some of these differences are statistically

significant with more runs, the crucial result is that learning constraints results in at

worst a small drop in explanatory power. That loss, if it exists, is driven by the decrease

in matrix probability. Such a probability decrease would not be surprising, given the

difficulty of efficiently searching through the space of possible matrices, and the cost of

possible exceptions (which the innate constraints do not have).

3.5.2 Predictive behavior

The second test of the model’s acquisition is how well it predicts plurals for

newly-encountered words. This is a crucial feature for human acquisition; children

quickly learn to generalize morphophonological systems. It also represents an important

modeling step, as the existing IBPOT learner is incapable of making such predictions

due to its strictly-extensional constraint definitions.

We test the model’s prediction abilities by pluralizing common words that the

model has not already seen. The test set is the 25 most frequent countable nouns in the

Corpus of Contemporary American English (COCA; Davies, 2008) that take regular

plurals.12 These range in frequency from 400 to 1700 occurrences per million COCA

words, so they are common for adult speech, but most are uncommon in child-directed

speech. Two take the [@z] allomorph, seven take [s] and the rest are [z]. Five of these

nouns end with phonemes that did not occur word-finally in the observed data.

To assess the predictive power of the learned constraints, we need constraint

definitions, but the learning model marginalizes over definitions. We obtain definitions

by using the p(d|m) Metropolis sampler to generate a distribution over definitions for

each violation profile. For a new candidate y, the probability that y violates a constraint

12These words are: time, year, way, day, thing, world, school, state, family, student, group, country,
problem, hand, part, place, case, week, company, system, program, question, government, number, night
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Table 3.4. Mean and lowest probabilities for the correct plural forms over 25 previously
unobserved words, averaged over three runs. In all runs, the correct plurals had the
highest probabilities of any candidates.

Probabilities Learned Innate
Mean .995 .991

Lowest .986 .974

with profile m is estimated as the proportion of constraints d drawn from the p(d|m)

Metropolis sampler where y is violated. The score of the candidate is then calculated as

the weighted sum of these probabilities – so if y had a probability of 0.2 of violating a

constraint with weight−10, this would contribute−2 to its score. Candidate probabilities

for novel forms are calculated as for the observed forms, aside from this probabilistic

scoring. Violation profiles are taken from the final iteration of each model run.

We assess the predictive quality of the learned structures in three ways. The first

is the proportion of novel inputs where the correct candidate is predicted to be the most

likely winner. For all 25 inputs, every run of the learned and innate models choose the

correct output form.

The second and third assessments are based on the log-probabilities of the correct

output form; we consider the mean probability of the correct candidate for each input,

and lowest predicted probability of any correct candidate. Again, both versions are very

successful at identifying the correct output candidate predictively (Table 3.4), averaging

above 99% of the probability mass being placed on the correct outputs, and never

dropping below 97%.

Overall, we find that the model’s learned constraint structure is extremely accurate

at predicting the plural forms of previously unseen nouns, and at least as accurate as the

innate constraints. Thus the constraint acquisition model not only finds an explanatory

structure for observed forms, but finds an appropriately abstract structure that it can

extend to correctly predict novel plurals. This represents a major extension from the
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extensionally defined constraints of Doyle et al. (2014).

3.5.3 Violation Profiles and Constraint Definitions

Having found that the learned constraints can explain observed data and extend

to novel forms, we now want to know if the constraints themselves are as interpretable

as the innate constraints. To do this, we compare the violation profiles and constraint

definitions that the model learns to the innate constraints.

The first step is to compare the number of learned constraints to the number of

innate constraints to see if the model explains the data as efficiently as the innate proposal.

This is generally the case; two of the model runs have two markedness constraints

consistently over the final 100 iterations. The third model run consistently uses four

markedness constraints over its final 100 iterations. These extra two constraints appear to

be superseding two of the faithfulness constraints (DEP and IDENT[VOI]), whose weights

drop to near zero in this run. This means that all three runs have five active constraints,

just as the innate structure has.

The second step is to compare the violation profiles of the learned and innate

constraints.13 We begin by assessing what proportion of candidates the learned and innate

profiles agree on the presence or absence of a violation. Over the final 100 iterations, the

learned violation profiles agree with their corresponding innate profiles on an average of

98.9% of all candidates.14

The final step is to compare the distributions over constraint definitions, as

13We limit this and the next analysis to the solutions with two markedness constraints. This is done in
part because the four-constraint solution lacks immediate correspondences between the innate and learned
constraints (one of its constraints corresponds to AGREE[VOI], but the rest are conflated with faithfulness).
But it is also done because the four-constraint solution represents a local optimum, and more effective
searching of the space of markedness matrices, such as a parallel-chain method, would move away from
the four-constraint soltuion to the two-constraint solutions.

14To determine which learned profile corresponds to which innate profile, we compare all possible links
and choose the system with the least overall disagreement where each learned profile corresponds to a
different innate profile.
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Table 3.5. The three most probable definitions (based on p(d|m)) for the innate violation
profiles and the last iteration of each run of the learned profiles, based on 10000 Metropo-
lis samples. The first row shows likely definitions for the agreement-like constraint; the
second row shows likely definitions for the double-strident constraint. The top definition
in each row is the most likely.

Innate Learning Run 1 Learning Run 2
[-VOI][+VOI] [-VOI][+VOI] [-VOI,-STR][-SG,-HI]*[-NAS,+VOI]

[-VOI][+VOI,+ANT] [-VOI][+VOI,-CG] [-VOI,-STR][-STR,+RND]*[+VOI]
[-VOI][+VOI,+COT] [-VOI][+VOI,+ANT] [-VOI,-STR][+B,+PHR]*[+COR,+VOI]

[+STR][-SYL] [+STR][-SYL] [+STR][-SYL]
[+STR][+STR] [+STR][-LAB] [+STR][-DOR]
[+STR][-LAB] [+STR][-DOR] [+STR][+ANT]

Key: voi=voicing, str=strident, sg=spread glottis, hi=high, nas=nasal,
ant=anterior,cg=closed glottis, rnd=round, cot=continuant, b=back,
phr=phrasal, cor=coronal, dor=dorsal, lab=labial, *=Kleene star.

estimated by the Metropolis sampler for p(d|m) for the learned and innate profiles. Table

3.5 shows the three most likely constraint definitions for each violation profile, for both

the innate violation profiles and the two two-constraint runs of the acquisition model.

The top row in Table 3.5 corresponds to the AGREE[VOI] constraint, and the bottom

corresponds to *[+STR][+STR].

The innate markedness matrix contains two constraints, which were required to

match the *[-VOI][+VOI] and *[+STR][+STR] constraint violations exactly. However, in

addition to these standard definitions, other definitions can have the same profile, due

to the large number of phonological features. The Metropolis estimation of p(d|m) for

the innate violation profiles reflects this. In the top-left cell of Table 3.5, we see that the

standard *[-VOI][+VOI] definition is the most likely definition for its violation profile,

but that slightly more complicated variants are likely as well. All three of the possible

definitions are consistent with the violation profile of *[-VOI][+VOI], and the grammar

defines a prior favoring less complex constraints, so *[-VOI][+VOI] is the most likely

definition.
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The bottom-left cell of Table 3.5 shows that the standard definition may not

be the most likely. All three definitions in this cell match the violation profile of the

standard *[+STR][+STR] definition on the observed forms, and because they are all

equally likely in the constraint grammar, the model is unable to distinguish between

them. This problem of multiple solutions arises because of the limited set of possible

affixes; a stem ending in a strident violates this constraint with the [z] or [s] affix, but not

the [@z] affix. Because there are only the three affixes, the data does not tell the model

whether it is the non-stridency of [@] or, say, its sonorance or non-coronality that makes it

acceptable.

This uncertainty over definitions is an interesting result, as it encourages simul-

taneous learning of multiple phonological phenomena; the *[+STR][-SYL] definition,

for instance, could be ruled out by observing the faithful manifestation of s-initial onset

clusters in English, as in stop or spin. Cross-phenomenon learning in this case would

ease the constraint-recognition problem rather than making it harder.

The likely constraint definitions for the innate markedness matrix represent an

upper bound on expected constraint recognition in the learning model. Turning to the

constraints learned in the first run of the learning model, we see an essentially identical

set of likely constraint definitions. This reflects the close agreement of the learned and

innate markedness matrices in this first run; over the final 100 iterations of this run, the

two matrices agreed on over 99.5% of their violations. This run considers the standard

definition for the voicing-agreement constraint the most likely, and encounters the same

uncertainty about the exact identity of the consecutive-stridents constraint as the innate

model.

The second run’s likely definitions for the voicing-agreement constraint are

noticeably more complex, although its consecutive-stridents definitions are similar to

the other runs. This constraint’s violation profile is close, but not identical, to the innate
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violation profile; over the final 100 iterations, it matches on 92.3% of the violations.

This difference causes the model to propose a constraint definition using the Kleene

star, which matches any number (including zero) of instances of a feature bundle, which

is important for constraints like vowel harmony that accept any number of interceding

consonants.

In the English plural, the Kleene star seems out of place, but in fact it shows a

clever solution. Consider the most likely definition in the top-right cell. This constraint

definition penalizes stem-final voiceless non-stridents followed by either the [@z] allo-

morph (with [@] matching the [-SG,-HI] bundle and [z] matching [-NAS,+VOI]) of the

[z] suffix (with the Kleene star vacuously satisfied, as [z] fits the [-NAS,+VOI] condition).

Essentially, this constraint functions both as an AGREE[VOI] constraint and a faithfulness

constraint (DEP), by penalizing both voice-disagreeing [z] and unnecessary [@z] forms.

This strange constraint definition is entirely appropriate given the limited data the

model has received, and it is even valid for novel plural forms, as shown by the model’s

highly accurate predictive abilities across all runs. As with the previously-discussed

definitions, bringing in additional examples from English, such as faithful realizations

of non-harmonious kid or peg, would illustrate that this constraint definition is not

appropriate for English and encourage the model to find a more appropriate definition.

Perhaps the most interesting part of this learned constraint is that it is essentially

a consonant harmony constraint, with voicing agreement ignoring interceding vowels.

Consonant harmony is a phenomenon that has motivated emergentist accounts in the past,

as it appears only in child phonologies (Pater, 1997; Pater & Werle, 2003), although its

appearance here is likely an accident of the limited allomorphs of the English plural.

Examining the learned constraint definitions shows that the model does well at

identifying reasonably-defined constraints, subject to the limitations of its data. The

learned constraints are generally quite similar to the innate constraints, both in terms
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of their violation profiles and their likely definitions. However, there are some idiosyn-

crasies in the learned constraint definitions that encourage learning across phonological

phenomena jointly to better identify the true constraint definition.

3.5.4 Experiment Summary

We proposed three ways that the constraint learner could succeed, and we find

evidence for all of them. The model learns a set of constraints and weights that can both

explain observed data and effectively generalize to unobserved forms. In addition, we find

that the constraint definitions it learns correspond reasonably well with the definitions

that come from an innate set of constraints, although additional information is needed to

identify the exact same constraints as the innate set.

3.6 Discussion and Future Directions

3.6.1 Expansion of the emergentist view

One of the core problems for the emergentist view of phonological constraints

has been the difficulty in explaining purely formal constraints (Kager et al., 2004). This

difficulty stems from the presumed sources for emergent constraints, which have generally

been held to be articulatory or perceptual concerns (Bernhardt & Stemberger, 1998;

Boersma, 1998; Hayes, 1999). If purely formal constraints, such as those proposed by

Goad and Rose (2004) in child phonologies, do exist, then the articulatorily/perceptually

motivated emergentist view is insufficient.

While articulatory and perceptual concerns certainly motivate some constraints,

we show that some emergent constraints can be acquired without relying on them.

Instead, the patterns in the observed data can supply sufficient information to acquire

appropriate constraints from a very general constraint grammar. Articulatory/perceptual

concerns could influence (and sharpen) constraint learning in a variety of ways. One is to
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allow the articulatory or perceptual difficulty of a sequence to make it more likely in the

constraint grammar, using a quantification system like Hayes (1999)’s phonetically-driven

phonology.

In addition, this model represents the first emergentist computational model for

acquiring intensionally-defined markedness constraints while influenced by faithfulness

constraints, showing that there is enough information in the language data to support a

general alternative to innate constraints.

3.6.2 The nature of the underlying representation

One of the main purposes of a computational model for human language acquisi-

tion is to investigate the plausibility of different potential underlying structures for human

language representation. The feature-driven context-free grammar works well for the

current task, and has the potential to handle other common constraints, such as harmony

(using the Kleene star). But this is not the only possible grammar, and it is unlikely

that all markedness constraints could be captured by its present form. An advantage of

the current framework is that versions of the model can be implemented with different

constraint grammars to gain information about the types of markedness constraints that

are possible in human language.

For example, the model can be run with sonorants marked for voice (recall that

the implementation discussed in Sect. 3.4 has sonorants unmarked for voice) but this

makes a constraint like AGREE[VOI] (which would be *[-VOI][+VOI,-SON] in this new

grammar) a less a priori likely constraint than a *[-VOI][+VOI] constraint that penalizes

a voiceless consonant followed by a vowel. A test run of the model with this grammar

did learn some constraints like this, unnatural for humans but natural in the constraint

grammar. This suggests that the acquisition model can provide new evidence for deciding

between different phonological structures.
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The flexible constraint grammar could also be used to incorporate constraint

schemas (J. Smith, 2004) into an emergentist system. Schemas were proposed as a way

of creating a compositional structure for the general constraint set; each schema defined a

type of constraint, with variable slots that could be used to define families of constraints,

like Generalized Alignment. If there are formal constraints that are not expressible by

the context-free grammar, schemas could be an appealing balance between emergent

and innate constraints, providing a general structure that may be innate, but learning the

specific constraint identity rather than innately specifying it.

3.6.3 Extending the model

The present work establishes and tests a basic framework for learning phonologi-

cal constraints. It focuses on relaxing the amount of innately-specified structure needed

for learning constraints by replacing a completely-specified innate constraint set with

a more general grammar over phonological features. A few steps remain before this

supplies a fully emergentist account for constraint acquisition – and it is of course possi-

ble that human acquisition is not as emergentist as this theoretically fully-emergentist

approach.

One important remaining step is to incorporate non-binary constraints into the

learning model. Non-binarity introduces two potential difficulties into the learning

problem: first, that the space of possible matrices is substantially different and larger, and

second that there could be more possible matrices that adequately explain the data.

Non-binary constraints can be introduced in multiple ways. The first is to follow

a tradition in some OT learning methods of stacked binary constraints (R. Frank & Satta,

1998). A non-binary constraint C that has at most v violations can be represented as a

series of binary constraints: {*(more than 1 violation of C), *(more than 2 violations

of C), ... , *(more than v−1 violations of C)}. This solution is not perfect: it suggests
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that non-binary constraints could be bounded, so that any number of violations beyond a

certain number is equivalent, and there is no evidence for this in language. Furthermore,

this makes the matrix inference much more complex, as a single constraint definition

could generate multiple columns of violations.

The second and more promising avenue is to allow non-binary violation profiles.

One way of implementing this is to use the existing binary matrix to indicate whether

a candidate violates a constraint at all, and to introduce a second matrix, with positive

integer values, corresponding to the number of violations that are expected.15 This allows

much of the generative model and the inference structure to remain unchanged. All

that must be added is a prior over the positive-integer-valued matrix, which can also be

marginalized over constraint definitions. The probability that a given candidate would

violate a constraint d a certain number of times could be based on a Poisson distribution

whose mean and mode are the number of violations that d predicts.

The model also could be expanded to learn faithfulness constraints, instead of its

current assumption that they arise out of the candidate-generation process GEN. In the

IBPOT model, the lack of phonological structure meant that faithfulness constraints were

unlearnable. A trivial IBPOT solution would be to learn that every losing input-output

pair violates the same high-weight faithfulness constraint, and no markedness constraints

would be needed. By introducing a grammar of faithfulness constraints, our current

Rational Rules OT model would find such a specific constraint unlikely, and appropriate

faithfulness constraints should be learnable. The space of possible faithfulness constraints

may be simpler than that of markedness constraints (McCarthy, 2008), suggesting that

the faithfulness constraints may even be easier to learn than the markedness constraints.

Another, and more daunting question, common to much OT learning work, is

15A similar model structure is used by Griffiths and Ghahramani (2011) to overcome the binary nature
of an Indian Buffet Process for recognizing objects in an image.
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how learners know the underlying forms for the observed outputs. Some work has been

done on these problems in the context of traditional OT. Prince and Smolensky (1993)

propose using OT in reverse, selecting the most optimal underlying form for an output.

Merchant and Tesar (2005) use minimal pairs in the output to identify the range of

different underlying forms. Riggle (2006) uses the principle of maximum entropy to

infer likely underlying forms given their predicted constraint violations. However, all of

these methods require a ranking-based OT framework with known constraints, neither of

which our model assumes is available at the start of learning.

Learning the underlying forms may best be represented as another part of a

joint phonological learning framework. N. Smith (1973) argues that children start by

assuming that the underlying forms are essentially equivalent to the observed adult

output forms. As children acquire the phonology of a language, the underlying forms

differentiate themselves from their outputs where appropriate. This could be incorporated

into a joint learning MCMC framework like the present model by alternating between

using the current estimate of the constraint structure to infer underlying forms and the

current estimate of the underlying forms to infer constraints, potentially implemented in

a Bi-directional OT framework (Dekker & van Rooy, 2000).

3.7 Conclusion

The standard assumption in Optimality Theory has long been that constraints are

fully innate, and while there has been work on alternative sources for constraints, this has

been grounded in articulatory and perceptual considerations, which limit their application.

We presented a model for acquiring emergentist constraints primarily from distributional

data, with help from a basic phonological structure. The constraints acquired by this

model can be used to predict novel plural forms, and closely resemble the constraint

definitions that innatist accounts propose. This shows that the emergentist approach is
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more powerful than previously argued, and that learned constraints need not be directly

phonetically grounded.



Chapter 4

Combining multiple information types
in Bayesian word segmentation

Abstract Humans identify word boundaries in continuous speech by combining multi-

ple cues; existing state-of-the-art models, though, look at a single cue. We extend the

generative model of Goldwater et al (2006) to segment using syllable stress as well as

phonemic form. Our new model treats identification of word boundaries and prevalent

stress patterns in the language as a joint inference task. We show that this model improves

segmentation accuracy over purely segmental input representations, and recovers the

dominant stress pattern of the data. Additionally, our model retains high performance

even without single-word utterances. We also demonstrate a discrepancy in the perfor-

mance of our model and human infants on an artificial-language task in which stress cues

and transition-probability information are pitted against one another. We argue that this

discrepancy indicates a bound on rationality in the mechanisms of human segmentation.

4.1 Introduction

For an adult speaker of a language, word segmentation from fluid speech may

seem so easy that it barely needed to be learned. However, pauses in speech and word

boundaries are not well correlated (Cole & Jakimik, 1980), word boundaries are marked

73
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by a conspiracy of partially-informative cues (Johnson & Jusczyk, 2001), and different

languages mark their boundaries differently (Cutler & Carter, 1987). This makes the

problem of unsupervised word segmentation acquisition, whether by a computational

model or an infant, a daunting task.

Effective segmentation relies on the flexible integration of multiple types of

segmentation cues, among them statistical regularities in phonemes and prosody, coartic-

ulation, and allophonic variation. Infants begin using multiple segmentation cues within

their first year of life (Johnson & Jusczyk, 2001). Despite this, many state-of-the-art

models look at only one type of information: phonemes.

In this study, we expand an existing model to incorporate multiple cues, leading

to an improvement in segmentation performance and opening new ways of investigating

human segmentation acquisition. On the latter point, we show that rational learners

can learn to segment without encountering words in isolation, and that human learners

deviate from rationality in certain segmentation tasks.

4.2 Previous work

The prevailing unsupervised word segmentation systems (e.g., Brent, 1999; Gold-

water et al., 2006; Blanchard & Heinz, 2008) use only phonemic information to segment

speech. However, human segmenters use additional information types, notably stress in-

formation, in their segmentation. We present an overview of these phonemic models here

before discussing the prosodic model expansion. A more complete review is available in

Goldwater (2007).

4.2.1 Goldwater et al (2006)

The Goldwater et al model is related to Brent (1999)’s model, both of which

use strictly phonemic information to segment. The model assumes that the corpus is
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generated by a Dirichlet process over word bigrams.1 We present a basic overview here,

based on Sect. 5.5 of Goldwater, 2007. To generate the word wi given the preceding

word wi−1:

1. Decide if bigram bi = 〈wi−1,wi〉 is novel

2. If bi non-novel, draw bi from bigram lexicon

3. If bi novel, decide whether wi is novel

a. If wi non-novel, draw wi from word lexicon

b. If wi novel, draw wi from word-generating distribution P0.

The Dirichlet process first decides whether to draw a non-novel (“nn”) bigram,

with probability proportional to the number of times the previous word has appeared in

the corpus:

p(〈wi−1,wi〉 nn|wi−1) =
n〈wi−1,·〉

n〈wi−1,·〉+α1
, (4.1)

where n〈x,y〉 is the token count for bigram 〈x,y〉. If the bigram is non-novel, word wi is

drawn in proportion to the number of times it has appeared after wi−1 in the corpus:

p(wi = x|〈wi−1,wi〉 nn) =
n〈wi−1,x〉
n〈wi−1,·〉

(4.2)

If the bigram is novel, this could either be due to wi being a novel word or due to

wi being an existing word that had not appeared with wi−1 before. The probability of wi

being a non-novel word x is

p(wi = x,wi nn|〈wi−1,wi〉 novel) =
b〈·,wi〉

(b〈·,·〉+α0)
, (4.3)

1We will only discuss the bigram model here because it is more appropriate from both a cognitive
perspective (it posits latent hierarchical structure) and engineering perspective (it segments more accurately)
than the unigram model.
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where b〈.,.〉 is the count of word bigram types. Finally, if wi is a new word, its phonemic

form is generated from a distribution P0. In the Goldwater et al model, this distribution

is simply the product of the unigram probabilities of the phonemes, P(σ j), times the

probability of a word boundary, p#, to end the word:

p(wi = σ1 · · ·σM|wi novel) = p#(1− p#)
M−1

∏P(σ j) (4.4)

To segment an observed corpus, the model Gibbs samples over the possible

word boundaries (utterance boundaries are assumed to be word boundaries).2 The

exchangability of draws from a Dirichlet process allows for Gibbs sampling of each

possible boundary given all the others.

4.2.2 A cognitively-plausible variant

Phillips and Pearl (2012) make these Bayesian segmentation models more cog-

nitively plausible in two ways. The first is to move from phonemes to syllables as

the base representational unit from which words are constructed, as infants learn to

categorize syllables before phonemes (Eimas, 1999). The second is to add memory

and processing constraints on the learner. They find that syllable-based segmentation

is better than phoneme-based segmentation in the bigram model (though worse in the

unigram model), and that, counter-intuitively, the constrained learner outperforms the

unconstrained learner. This improvement appears to be driven by better performance in

segmenting more common words. In this work, we adopt the syllabified representation

but retain the unconstrained rational learner assumption.

2The model assumes that utterance boundaries are generated just like other words, and includes an
adjustable parameter p$ to account for their frequency.
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4.2.3 Other multiple-cue models

Some previous models have incorporated multiple cues, specifically the phonemic

and stress information that our model will use. Two prominent examples are Christiansen,

Allen, and Seidenberg (1998)’s connectionist model and Gambell and Yang (2006)’s

algebraic model. The connectionist model places word boundaries where the combination

of phonemic and stress information predict likely utterance boundaries, but does not

include an explicit sense of “word”, and performs only modestly on the segmentation task

(boundary F-scores of .40-.45). The algebraic model also underperforms the Bayesian

model (Phillips & Pearl, 2012) unless it includes the heuristic that there is a word

boundary between any two stressed syllables. Our model presents a more general and

completely unsupervised approach to segmentation with multiple cue-types.

In general, joint inference is becoming more common in language acquisition

problems and has been shown to improve performance over single-feature inference.

Examples include joint inference of a lexicon and phonetic categories (Feldman, Griffiths,

& Morgan, 2009), joint inference of syntactic word order and word reference (Maurits,

Perfors, & Navarro, 2009), and joint inference of word meanings and speaker intentions

in child-directed speech (M. Frank, Goodman, & Tenenbaum, 2009).

4.3 Model design

Our model changes P0 from a single-cue distribution, generating only phonemes,

to a multiple-cue distribution that generates a stress form as well. This can improve

segmentation performance and allows the investigation of rational segmentation behavior

in a multiple-cue world.

In the original model, P0(wi = σ1 · · ·σM) ∝ ∏ j P(σ j), where P(σ j) is the fre-

quency of the phoneme σ j. In the multiple-cue model, we first generate a phonemic form
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wi, then assign a stress pattern si to it.

P0(wi,si) = PW (wi)PS(si|M)

= p#(1− p#)
M−1

∏
M
j P(σ j)PS(si|M) (4.5)

The phonemic form wi has the same product-of-segments probability as the

Goldwater et al model, but σ j are now syllables instead of phonemes. We discuss the

rationale behind this change in the next section.

The phonemic form is generated first, and the stress form is then drawn as a

multinomial over all possible stress patterns with the same number of syllables as wi. The

stress distribution PS is a multinomial distribution over word-length stress templates. PS

can be learned by the model based on a Dirichlet prior, but for simplicity in the present

implementation, we estimate PS as the plus-one-smoothed frequency of the stress patterns

in the current segmentation. There are two stress levels (stressed or unstressed), and 2M

possible stress templates for a word of length M.3

Unlike phonemic forms, stress patterns are drawn as a whole word. This allows

the model to capture a wide range of stress biases, although it prevents the model from

generalizing biases across different word lengths. A potential future change to PS that

would allow for better generalization is discussed in Section 4.6.

4.3.1 On syllabification and stress

We change from segmenting on phonemes to segmenting on syllables in order

to more easily implement stress information, which is a supersegmental feature most

3We do not assume that each word has one and only one stressed syllable, which would reduce the
number of possible stress templates to M, for two reasons. First, in the current corpus, some words have
citation forms with multiple stressed syllables. Second, in actual speech this assumption will not hold (e.g.,
many function words go unstressed).
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appropriately located on syllables. Syllabified data has been used in some previous

models of segmentation, especially those using stress information or syllable-level

transition probabilities (Christiansen et al., 1998; Swingley, 2005; Gambell & Yang,

2006; Phillips & Pearl, 2012).

For studying human word segmentation, Phillips and Pearl argue syllabified

speech may be a more cognitively plausible testing ground. 3-month-old infants appear

to have categorical representations of syllables (Eimas, 1999), three months before word

segmentation appears (Borfeld, Morgan, Golinkoff, & Rathbun, 2005), and seven months

before phoneme categorization (Werker & Tees, 1984). In addition, syllabification is

assumed in much work on human word segmentation, especially in artificial-language

studies (e.g., Thiessen & Saffran, 2003), which calculate statistical cues at the syllable

level.

The assumption that syllable boundaries are known affects the baseline perfor-

mance of the model, as it reduces the number of possible word boundary locations

(since a word boundary is necessarily a syllable boundary). As such performance over

syllabified data cannot be directly compared to performance on non-syllabified data.

It may seem that syllabification is so closely tied to word segmentation that

including the former in a model of the latter leaves little to the model. However, the

determinants of syllable boundaries are not the same as those for word boundaries. The

problem of assigning syllable boundaries is a question of deciding where a boundary

goes between two syllable nuclei, with the assumption that there must be a boundary

there. The problem of assigning word boundaries is a question of deciding whether there

is a boundary between two syllable nuclei, and if so, where it is. Knowing the syllable

boundaries reduces the set of possible word boundaries, but does not directly address the

question of how likely a boundary is. The difference in these tasks is supported by the

three-month gap between syllable and word identification in infants.
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Table 4.1. Corpus stress patterns by types and tokens, showing an initial-stress bias in
all lengths.

Types Tokens
Stress pattern Count Stress pattern Count

S 21402 S 523
SW 2231 SW 208
SS 389 WS 40

WS 284 SWW 24
SWW 182 SS 7
WSW 33 WSW 7
Other 5 Other 2

4.4 Data

We use the Korman (1984) training corpus, as compiled by Christiansen et al.

(1998), in this study. This is a 24493-word corpus of English spoken by adults to infants

aged 6–16 weeks.4 Phonemes, stresses, and syllable boundaries are the same as those used

by Christiansen et al, which were based on citation forms in the MRC Psycholinguistic

Database. All monosyllabic words were coded as stressed. Only utterances for which all

words had citation forms were included.

This corpus is largely monosyllabic (87.3% of all word tokens), and heavily

biased toward initial stress (89.2% of all multisyllable word tokens). No word is longer

than three syllables, and most words have only one stressed syllable. A breakdown of

the corpus by stress pattern is given in Table 4.1. This monosyllabic bias is an inherent

property of English, not idiosyncratic to this corpus. The Bernstein-Ratner child-directed

corpus is also over 80% monosyllabic. We expect that the results of segmentation on

child-directed data will extend to adult speech, as the adult-directed corpus used by

Gambell and Yang (2006) has an average word length of 1.17 syllables.

4Approximately 150 word tokens from the original corpus were omitted in our version of the corpus
due to a disparity between recorded number of syllables and number of stresses.
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4.5 Experiments

We test the model on three problems. First, we show that the addition of stress

information improves segmentation performance compared to a stress-less model. Next,

we apply the model to a question in human segmentation acquisition. Finally, we look at

a task where the rational model deviates from human performance.

4.5.1 Parameter setting

The model has four free parameters: α0 and α1, which affect the likelihood of

new words and bigrams, respectively, and p# and p$, which affect the expected likelihood

of word and utterance boundaries. Following Goldwater, Griffiths, and Johnson (2009),

we set α0 = 20, α1 = 100, p# = 0.8 and p$ = 0.5 in all experiments.5

In all cases, the model performed five independent runs of 20000 iterations of

Gibbs sampling the boundaries for the full corpus. Simulated annealing was performed

during the burn-in period to improve convergence. All performance measures are reported

as the mean of these five runs.

Performance is measured as word, boundary, and lexicon precision, recall, and

F-scores. A word is matched iff both of its true boundaries are marked as boundaries and

no internal boundaries are marked as word boundaries. Boundary counts omit utterance

boundaries, which are assumed to be word boundaries. Lexical counts are based on word

type counts.

4.5.2 Stress improves performance

We begin by showing that including a second cue type improves segmenta-

tion performance. We compare segmentation on a corpus with the attested stress pat-

5Performance was similar for a range of settings between 1 and 100 for α0 and between 10 and 200 for
α1.
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Table 4.2. Precision, recall, and F-score over corpora with and without stress information
available. Stress information especially improves lexical performance.

With stress Without stress
Word Bnd Lex Word Bnd Lex

Prec .76 .99 .75 .76 .99 .72
Rec .61 .70 .87 .60 .69 .84

F .68 .82 .80 .67 .82 .77

terns to that of a corpus without stress. With stress information included in the model,

word/boundary/lexicon F-scores are .68/.82/.80. Without stress, performance drops to

.67/.82/.77.6 Full results are given in Table 4.2.

Stress information primarily improves lexicon performance, along with a small

improvement in token segmentation. Accounting for stress reduces both false positives

and negatives in the lexicon; the fact that the lexical improvement is greater than that for

words or boundaries suggests that much of the improvement rests is on rare words.

These effects are small but significant. For word token performance, we per-

formed a paired t-test on utterance token F-scores between the with- and without-stress

models. This difference was significant (t = 11.28,d f = 8125, p < .001). We performed

a similar utterance-by-utterance test on boundaries; again a small singificant improvement

was found (t = 8.92,d f = 6084, p < .001). To assess lexicon performance, we calculated

for each word type in the gold-standard lexicon the proportion of the five trials in which

that word appeared in the learned lexicon for the two models. We then examined the

words where the proportions differed between the models. 89 true words appeared more

often in the with-stress lexicons; 40 appeared more often in the without-stress lexicons.

(683 appeared equally often in both.) By a sign test, this is significant at p < .001. We

also tested lexicon performance with a binomial test on the two models’ lexicon accuracy;

6Recall that due to the syllabified data, these results are not directly comparable to unsyllabified results
in previous work.
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this result was marginal (p = .06).

The explicit tracking of stress information also improves the model’s acquisition

of the stress bias of the language. Acquisition of the stress bias is potentially useful for

generalization; stress patterns can be used for an initial segmentation if few or none of

the words are familiar. In practice, we see children use their stress biases to segment new

words from English speech (Jusczyk, Houston, & Newsome, 1999) as well as artificial

languages (Thiessen & Saffran, 2003).

We assess the learned stress bias by dividing up the corpus as the model has

segmented it, and count the number of tokens with SW versus WS stress patterns.7 With

stress representation, the learned stress bias is 6.77:1, and without stress representation,

the stress bias is lower, at 6.33:1. Although these are both underestimates of the corpus’s

true stress bias (7.86:1), the stressed model is stronger and a better estimate of the true

value.

The model’s performance can be compared to various baselines, but perhaps the

strongest is one with every syllable boundary being a word boundary. This baseline

represents a shift from boundary precision being at ceiling (as in the model) to boundary

recall being at ceiling. In fact, due to the preponderance of monosyllabic words in

English child-directed speech, this baseline outperforms the model on word and boundary

F-scores (.68 and .82 in the model, .82 and .91 in the baseline). However, the baseline’s

lexicon is much worse than the model’s (F=.80 in the with-stress model, F=.64 in the

baseline), and the baseline fails to learn anything about the language’s stress biases.

In addition, the baseline oversegments, whereas both the model and infant segmenters

undersegment (Peters, 1983). This raises an important question about what the model

should seek to optimize: though the baseline is more accurate by token, no structure is

learned; type performance is more important if we want to learn the underlying structure.

7Note this defines a stress bias for the stressless model as well.
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4.5.3 Are isolated words necessary?

We next use this model to test the necessity of isolated words in rational word

segmentation. It is not immediately obvious how human learners begin to segment

words from fluid speech. Stress biases and other phonological cues are dominant in all

but the earliest of infant word segmentation (Johnson & Jusczyk, 2001). This raises

a chicken-and-egg problem; if the cues infants favor to segment words, such as stress

biases, are dependent on the words of the language, how do they learn enough words to

determine the cues’ biases?

One existing proposal is that human learners develop their stress biases based

on words frequently heard in isolation (Jusczyk et al., 1999). In English, these include

names and common diminutives (e.g., mommy, kitty) that generally have initial stress.

These single-word utterances could offer the segmenter an initial guess of the stress bias,

by supposing that short utterances are single words and recording their stress patterns.

The most common stress patterns in short utterances could then be used as an initial

guess at the stress bias to bootstrap other words and thereby improve the learned stress

bias.

We test the rational learner’s need for such explicit bootstrapping by learning to

segment a corpus with all single-word utterances removed. The corpus is produced by

excising all single-word utterances from the Korman corpus. This results in a 22081-word

corpus, 10% fewer tokens than in the original. However, it does not substantially change

the lexicon; the number of distinct word types only drops from 811 to 806.

We compare performance only on ambiguous boundaries and lexicon, as these

are comparable between the corpora, and find that the model performs almost equally

well. Without single-word utterances, boundary and lexical F-scores are .81 and .80,

compared to .82 and .80 with single-word utterances. This shows that rational learners
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are able to segment even without the possibility of bootstrapping stress patterns from

single-word utterances.

4.5.4 Bounded rationality in human segmentation

Lastly, we use this model to examine rational performance in a multiple-cue seg-

mentation task. We show that humans’ segmentation does not adhere to these predictions,

suggesting a bound on human rationality in word segmentation.

We consider an artificial language study by Thiessen and Saffran (2003). In

this study, infants are exposed to an artificial language consisting of four bisyllabic

word types uttered repeatedly without pauses. Each syllable appears in only one word

type, so within-word transition probabilities are always 1, while across-word transition

probabilities are less than 0.5. Segmentation strategies that hypothesize word boundaries

at low transition probabilities or that seek to minimize the lexicon size will segment out

the four word types as expected.

Segmentation in the experiment is complicated by the presence of stress in the

artificial language. Depending on the condition, the words are either all strong-weak or

all weak-strong. In the first condition, segmenting according to transition probabilities,

lexicon size, or English stress bias favors the same segmentation. In the second condition,

though, segmenting by the English stress bias to yield a lexicon of strong-weak words

requires boundaries in the middle of the words. The segmenter must decide whether

transition probabilities or preferred stress patterns are more important in segmentation.

This situation is illustrated in Table 4.3, with a corpus consisting of two word types, AB

and CD, each with weak-strong stress.

Thiessen and Saffran found that seven-month-old English-learning infants consis-

tently segmented according to the transition probabilities, regardless of stress. However,

nine-month-olds segmented according to the English stress bias, even if this meant going
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Table 4.3. Examples of segmenting an artificial language according to transition proba-
bilities (top) or stress bias (bottom), when the true words have weak-strong stress. Vertical
lines represent word boundaries. The top segmentation produces a smaller lexicon, but
the bottom segmentation produces primarily words with the preferred stress pattern.

Against bias, with TP
AB CD CD AB
WS WS WS WS

With bias, against TP
A BC DC DA B
W SW SW SW S

against the transition probabilities.

Intuitively, this could be rational behavior according to our model. A child’s

increasing age means more exposure to data, potentially leading the child to develop

more confidence in the stress bias. As confidence in the stress bias increases, the cost

of segmenting against it increases as well. A sufficiently strong stress preference could

lead the segmenter to accept a large lexicon, all of whose words have the preferred stress

pattern, over a small lexicon, all of whose words have the dispreferred stress pattern.

To judge by the Korman corpus, English has a stress bias of approximately 7:1

in favor of SW bisyllabic stress over WS.8 If human segmentation behavior follows the

rational model, the model should predict segmentation to favor strong-weak words over

the transition probabilities when the stress bias is approximately this strong.

We test this rationality hypothesis with a smaller version of the Thiessen and

Saffran artificial language, consisting of 48 tokens.9 In one version, all tokens have the

preferred SW pattern, and in the other all tokens have the dispreferred WS pattern. We

then adjust the PS distribution such that PS(SW |M = 2) = b ∗PS(WS|M = 2), where b

is the bias ratio. We run the model otherwise the same as in the previous experiments,

except with 10 runs instead of 5.

8The specific bias varies from corpus to corpus, but this appears to be a representative value.
9The 48 tokens come from four word types, with two types appearing 16 times and the other two

appearing 8 times, mimicking the relative frequencies of Thiessen and Saffran’s languages. Their test
language had 270 tokens.
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Figure 4.1. Percentage of runs segmented with the stress bias, against transition proba-
bilities, as bias varies. At English-level biases, the rational model still overrules the stress
bias when segmenting.

Contrary to this hypothesis, the model’s segmentation with b = 7 was the same

whether the true words were strong-weak or weak-strong. In all ten runs, transition

probabilities dictated the segmentation. To switch to stress-based segmentation, the

bias must be orders of magnitude greater than the English bias. Figure 4.1 shows the

proportions of runs in the weak-strong condition that show segmentation according to

the stress bias, as the bias increases by factors of 10. When b = 10000, three of the ten

runs segmented according to the stress bias; below that, the stress bias did not affect the

rational model’s segmentation.

Why is this? In the Bayesian model, the stress bias of a language affects only

the PS(si|M) term in the P0 distribution, so non-novel words are not penalized for their

stress pattern. The model pays only once to create a word; once the word is generated,

no matter how a priori implausible the word was, it may be cheaply drawn again as a

non-novel word. This effect can be illustrated with a brief calculation.

Consider a corpus built from four bisyllabic word types (AB, CD, EF, GH), each
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appearing N times. If the corpus is segmented against the transition probabilities, the

resulting lexicon will have 16 bisyllabic word types (BA, BC, BE, BG, DA, etc.), each

occurring approximately N
4 times.

The probability of the against-bias corpus (CWS) is proportional to the probability

of generating the four word types, and then drawing them non-novelly from the lexicon.10

(To simplify the calculations, we use the unigram version of the Goldwater et al model.)

p(CWS) ∝ P4
W PS(WS)4(N!)4 1

4N!
(4.6)

The first two terms are the probability of generating the four word types (Eqn.

4.5);11 the second two terms are the Dirichlet process draws from the existing lexicon

N times each (Eqn. 4.2). By comparison, the probability of the with-bias corpus CSW

depends on generating the 16 word types, and drawing each non-novelly N
4 times.

p(CSW ) ∝ P16
W PS(SW )16

(
N
4

!
)16 1

4N!

Given an SW bias b and a uniform distribution over syllables (so PW = 1
64), we

find:

p(CWS)

p(CSW )
= 6412 (b+1)12

b16
(N!)4

(N
4 !)16

(4.7)

This equation shows that the rational model is heavily biased toward the segmen-

tation that fits the transition probabilities. Increasing the stress bias b or decreasing the

number of observed word tokens makes the rational model more likely to segment with

the stress bias (against transition probabilities), but as we see in the experimental results,

10It is also possible to generate this corpus by re-drawing the words novelly, but this is much less likely
than non-novel draws.

11Because all syllables have equal unigram probabilities, the probability of all words’ phonemic forms
are equal, and will be written as PW .
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the stress bias must be very strong to overcome the efficient lexicon that the transition

probability segmentation provides.

Since humans do not show this same inherent bias (or quickly lose it as they

acquire the stress bias), we can ask how humans deviate from rationality. One possibility

is that humans simply do not segment in this Bayesian manner. However, previous work

(M. Frank et al., 2010) has shown that human word segmentation shows similar behavior

to a resource-limited Bayesian model. Equation 4.7 suggests that human segmentation

could deviate from rationality by having an effectively stronger bias than English would

suggest (reducing the first fraction)12 or, as with Phillips and Pearl’s constrained learners,

by having effectively less input than the model assumes (reducing the second fraction).

4.6 Future work

Introducing stress into the Bayesian segmentation model suggests a few additional

expansions. One possibility is to add other cues into the generative model via P0. Any

cue that is based on the word itself can be added in this way, with little change to the

general model structure. Phonotactics can be added using an n-gram distribution for P0

(Blanchard & Heinz, 2008). Coarticulation between adjacent phonemes is also used in

human segmentation (Johnson & Jusczyk, 2001), so the P0 distribution could predict

higher within-word coarticulation. Integrating additional cues used by human segmenters

extends the investigation of the bounds on rationality in human segmentation and in

balancing multiple conflicting cues.

A more complex view of the stress system of a language may also be useful. One

possibility is to place a Dirichlet prior over the stress templates and allow PS to be learned

12A potential source of an inflated bias is infants’ preference for strong-weak patterns. Jusczyk, Cutler,
and Redanz (1993) found English-hearing infants listened longer to strong-weak patterns than weak-strong.
This could lead to overestimation of the stress bias by making possible strong-weak segmentations more
prominent in the segmenter’s mind.
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as a latent variable in the model. Another possibility is to treat the stress templates

more generally; in the present implementation, knowledge of the preferred stress patterns

for word of one length tells the segmenter nothing about preferred stress patterns in

another length. Cross-linguistically common stress rules (e.g., those that place stress a

certain number of syllables from the left or right edge of a word) can be coded into PS to

improve generalization. Each rule dictates a specific stress pattern for each word length.

When a word is generated in the Dirichlet process, the generative model would decide

whether to assign stress according to one of these rules or to assign lexical stress from a

default multinomial distribution. (This “default” distribution would handle idiosyncratic

stress assignments, as one might see with names or morphologically complex words, like

Spanish reflexive verbs.) A sparse prior over these rules, asymmetrically weighted against

the default category, will encourage the model to explain as much of the observed stress

patterns as possible with a few dominant rules, improving the phonological structure that

the segmenter learns.

Improving the realism of the data is also important. The corpora used in much of

segmentation research are idealized representations of the true data, and the dictionary-

based phoneme and stress patterns used in this study are no exception. This ideal

setting may paint a skewed picture of the segmentation problem, by providing a more

consistent and learnable data source than humans actually receive. Elsner, Goldwater, and

Eisenstein (2012)’s model unifying lexical and phonetic acquisition takes a significant

step in showing that a rational segmenter can handle noisy input by recognizing phonetic

variants of a base form. In terms of stress representations, dictionary-based stress has

been standard in previous work (Christiansen et al., 1998; Gambell & Yang, 2006;

Rytting, Brew, & Fosler-Lussier, 2010), but it is important to confirm such results against

a (currently nonexistent) corpus with stresses based on the actual utterances. Effective

use of stress in a less idealized setting may require a more complex representation of
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stress in the model.

4.7 Conclusion

Effective word segmentation combines multiple factors to make predictions about

word boundaries. We extended an existing Bayesian segmentation model to account

for two factors, phonemes and stress, when segmenting. This improves segmentation

performance and opens up new possibilities for comparing rational segmentation and

human segmentation.
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Chapter 5

Accounting for burstiness in topic mod-
els

Abstract Many different topic models have been used successfully for a variety of

applications. However, even state-of-the-art topic models suffer from the important flaw

that they do not capture the tendency of words to appear in bursts; it is a fundamental

property of language that if a word is used once in a document, it is more likely to be used

again. We introduce a topic model that uses Dirichlet compound multinomial (DCM)

distributions to model this burstiness phenomenon. On both text and non-text datasets,

the new model achieves better held-out likelihood than standard latent Dirichlet allocation

(LDA). It is straightforward to incorporate the DCM extension into topic models that are

more complex than LDA.

5.1 Introduction

The effectiveness of a topic model is dependent on the appropriateness of its

generative process for the task at hand. For most common tasks, any computationally

feasible generative model will be a substantial simplification of the true generative process.

Nevertheless, some tractable generative models are more reflective of the true generative

process than others. In this paper, we propose a new generative process for topic models

92
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that significantly improves the statistical fidelity of the process with minimal additional

model complexity. Specifically, we replace the multinomial distributions in standard

latent Dirichlet allocation (LDA) (Blei, Ng, & Jordan, 2003) by Dirichlet compound

multinomial (DCM) distributions (Madsen, Kauchak, & Elkan, 2005; Elkan, 2006). The

result is a better model for text data and for at least some other non-text data.

Our primary concern in the current study is accounting for the phenomenon

of burstiness. Church and Gale (1995) note that real texts systematically exhibit this

phenomenon: a word is more likely to occur again in a document if it has already

appeared in the document. Importantly, the burstiness of a word and its semantic content

are positively correlated; words that are more informative are also more bursty. The

multinomial distribution does not take burstiness into account (Rennie, Shih, Teevan, &

Karger, 2003, Sect. 4.1), so it gives an inaccurate model for the distribution of words in

texts.

The phenomenon of burstiness is not limited to text. In Section 5.4 we present an

example of bursty data in the financial realm. Burstiness also intuitively occurs in other

types of data that have been modeled using topic models, including gene expression and

computer vision data (Airoldi, Fienberg, & Xing, 2007; Fei-Fei & Perona, 2005). If a

gene is transcribed once in a cell, then it is more likely to be transcribed again. And if a

patch with certain properties occurs once in an image, then it is more likely that similar

patches will occur again.

The new DCMLDA model is only slightly more complex than standard LDA. As

a result, the LDA component in complex topic models, such as Pachinko allocation (Li &

McCallum, 2006) and correlated topic models (Blei & Lafferty, 2005), can be replaced

with a DCMLDA component. This should enable those models to account for burstiness

and thereby improve their effectiveness.

Because it uses DCMs to represent topics, the DCMLDA model can capture the
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tendency of the same topic to manifest itself with different words in different documents.

Suppose that there is a natural “sports” topic in a corpus, with the words “rugby” and

“hockey” being equally common overall. Within a document, though, one appearance

of “rugby” makes a second appearance of “rugby” more likely than a first appearance of

“hockey.” The DCM distributions in DCMLDA can represent this fact, while a standard

LDA model cannot. This property allows a single DCMLDA topic to explain related

aspects of documents more effectively than a single LDA topic. Thus, we hypothesize, a

DCMLDA model with a few topics can fit a corpus as well as an LDA model with many

topics. This hypothesis is confirmed by the experimental results below.

5.2 Overview of Models

The DCMLDA model combines the DCM and LDA models, gaining the advan-

tages of each. We review the two component models before discussing DCMLDA.

5.2.1 Latent Dirichlet allocation (LDA)

LDA has been discussed in detail elsewhere (Blei, Ng, & Jordan, 2001; Blei et al.,

2003; Griffiths, Steyvers, Blei, & Tenenbaum, 2004; Heinrich, 2005), so we present only

an overview here. The LDA generative model notionally posits that an author generates a

document in two steps. First, the author determines the probability of each topic in the

document. Each topic is a multinomial distribution over words, so to choose a word the

author first draws a topic and then draws a word based on that topic. The graphical model

for LDA is shown in Figure 5.1(a), with the unobserved variables distributed as follows:

θ ∼ Dirichlet(α) z∼Multinomial(θ)

φ ∼ Dirichlet(β ) w∼Multinomial(φ).

This generative process does not account for burstiness of words. The only way that

burstiness can manifest itself is indirectly, as a consequence of how topics are distributed.
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The fact that a document contains the word “rugby” from a sports topic, for instance,

makes it more likely that the document contains other words from the same sports topic.

Thus, the document is likely to contain a second instance of the word “rugby.” However,

because the sports topic is the same across the corpus, the presence of any sports word

in a document will have a similar effect. That is, an appearance of the word “rugby”

also indirectly makes an appearance of the word “hockey” more likely, which is not a

desirable phenomenon.

The LDA model is bursty in topics, even though it is not in words: the presence

of one word from a given topic in a document makes other words in the document more

likely to be generated by the same topic. However, because the LDA generative process

does not account for word-level burstiness, LDA may in fact be excessively bursty at the

topic level. The reason is that each occurrence of a word is treated as independent extra

evidence for its topic.

An LDA model has two Dirichlet hyperparameters, α and β , which condition

θ and φ respectively. Different values for the hyperparameters cause different inferred

values of φ and θ . In general α and β are vectors that can be learned (Blei et al., 2003;

Fei-Fei & Perona, 2005). However, often they are kept fixed and uniform, meaning that

each vector component is set to the same scalar value.

Learning the hyperparameters can provide information about the corpus: α

indicates how semantically diverse documents are, with lower α indicating increased

diversity, while β indicates how similar the topics are, with higher β indicating more

similarity between topics. Learning non-uniform values for the hyperparameters allows

different words and topics to have different tendencies; some topics can be more general

than others (e.g., function words versus medical jargon), and some words can be likely to

appear in more topics than others (e.g., words with multiple senses).
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Figure 5.1. Alternative graphical models.

Despite not accounting for burstiness, LDA is an effective model that has proven

useful for its ability to model documents as varying mixtures of shared topics. From a

trained LDA model, one can infer the multinomial distributions θ that give the probability

of each topic in each document. These distributions can then be used for many tasks,

including classifying new documents and measuring similarity between documents.

5.2.2 Dirichlet compound multinomial (DCM)

The DCM model (Madsen et al., 2005) captures burstiness, but it has no notion

of topic. DCM uses a bag-of-bags-of-words generative process. In this process, each

document is formed by drawing a document-specific multinomial distribution φ from

a shared Dirichlet distribution, and then drawing words w according to φ . In the DCM

model, each document is composed of words drawn from a single multinomial. This

multinomial can be viewed as a document-specific subtopic, or aspect, of the high-level

topic β . The β vector is the only parameter of DCM, so unlike the hyperparameters in

LDA, it must be non-uniform.

Since topics are drawn from a Dirichlet distribution in LDA also, it is perhaps not

immediately obvious why DCM accounts for the burstiness of words and LDA does not.

The answer lies in the 1:1 mapping between subtopics and documents in the DCM model.

In LDA, the multinomial distribution of words in each topic depends on the whole corpus,

but DCM multinomial distributions are document-specific.
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Turning to the mathematics of the models, a key difference is that multinomial

parameters are constrained to sum to one, unlike Dirichlet parameters. This gives the

DCM model one extra degree of freedom to represent a topic. By working out an

exponential-family approximation of the DCM, Elkan (2006) shows explicitly that this

degree of freedom allows the DCM to discount multiple observations of the same word. In

bursty texts, additional appearances of a word are less surprising than its first appearance.

The smaller the sum of the Dirichlet parameters β , the more the emission of words

is bursty. As the Dirichlet parameters tend to infinity, a DCM distribution approaches

equivalence with a multinomial distribution.

A single DCM model represents one high-level topic that has alternative aspects.

It cannot represent multiple distinct topics. Because of the 1:1 mapping between multino-

mials and documents, in a DCM model each document comes entirely from one subtopic.

All these subtopics are closely related because the sum of the β vector is typically quite

high (a few hundred). Elkan (2006) extended the DCM model to a mixture of DCM

distributions. This model can be trained to represent a set of documents where each

document comes from a different high-level topic, but it cannot represent the scenario

where a single document contains words from more than one high-level topic.

Algorithm 1. DCMLDA Generative Model

for document d ∈ {1, . . . ,D} do
draw topic distribution θd ∼ Dir(α)
for topic k ∈ {1, . . . ,K} do

draw topic-word distribution φkd ∼ Dir(βk)
end for
for word n ∈ {1, . . . ,Nd} do

draw topic zdn ∼ θd
draw word wdn ∼ φzdnd

end for
end for



98

5.2.3 DCMLDA

To combine the advantages of DCM and LDA, we need a model that allows

multiple topics in a single document, while still making the topics document-specific to

account for burstiness. Figure 5.1 contrasts the LDA and DCMLDA graphical models,

while Algorithm 1 is the DCMLDA generative process.

In LDA, for each topic k, one multinomial distribution φk is drawn from Dirichlet(β )

and is used in all documents. In DCMLDA, for each topic k and each document d a fresh

multinomial word distribution φkd is drawn. Each topic k has a different, non-uniform βk

vector. For each document d, φkd is drawn according to Dirichlet(βk), so the instances

of each topic are linked across documents. Having per-document instances of each

topic allows for variations in the probability of each word in the same topic in different

documents, which is the phenomenon of burstiness.

The change from a single set of multinomial topics to multiple sets of multinomial

subtopics shifts the focus of attention in DCMLDA modeling. Let V be the size of the

vocabulary, let K be the number of topics, and let D be the number of documents in the

corpus. In LDA, φ is the focus, a V ×K array of word probabilities given topics. In

DCMLDA, φ is three-dimensional (V ×K×D), measuring word likelihoods for each

topic, for each document. Since in DCMLDA φ depends on the specific document, it is

not a representation of the data that has sharply reduced dimensionality. Instead, with

DCMLDA the focus of attention is β , which is a two-dimensional array of Dirichlet

parameters for words given topics. As mentioned in the previous section, the β values are

not constrained to sum to one. This gives DCMLDA an extra K degrees of freedom that

allow it to capture word-level burstiness within each topic. The β values have a similar

intuitive interpretation to the φ values in LDA. In particular, higher β values mean that a

word is more likely in a given topic. Thus one can still use β values to identify the most
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common words in each topic.

5.3 Methods of Inference

Both the standard LDA model and the DCMLDA model have five unobserved

variables: α , β , φ , θ , and z. These variables can be classified into two groups: the per-

document or per-word parameters φ , θ , and z, and the hyperparameters α and β . Given

a training set of documents, we learn appropriate values for the variables by alternating

between optimizing the topic parameters given the hyperparameters, and optimizing the

hyperparameters given the topic parameters. Neither of these optimizations can be done

analytically, but both yield to known estimation procedures. Specifically, for fixed values

of the α vector and β array, we do collapsed Gibbs sampling to find the distribution

of z given the documents. If desired, φ and θ can be computed straightforwardly from

samples of z. Given a z sample, values of α and β that maximize the likelihood of the

training documents are obtained by Monte Carlo expectation-maximization.

In this and subsequent sections, the notation β·k indicates that β is a two-

dimensional array, with one column for each topic k, so β·k is what was informally

called βk previously. Similarly, the notation α· is used to emphasize that α is a vector.

Gibbs sampling Gibbs sampling for DCMLDA is similar to the method for LDA,

which Heinrich (2005) explains in detail. We present a condensed derivation, highlighting

what is novel for DCMLDA sampling. We start by factoring the complete likelihood of

the model: p(w,z|α·,β··) = p(w|z,β··)p(z|α·). The first probability is an average over all



100

possible φ distributions:

p(w|z,β··) =
∫

φ

p(z|φ)p(φ |β··)dφ

=
∫

φ

p(φ |β··)∏
d

Nd

∏
n=1

φwdnzdnd dφ

=
∫

φ

p(φ |β··) ∏
d,k,t

(φtkd)
ntkd dφ .

Expanding p(φ |β··) as a Dirichlet distribution yields

p(w|z,β··) =
∫

φ

[
∏
d,k

1
B(β·k)

∏
t
(φtkd)

βtk−1

][
∏
d,k,t

(φtkd)
ntkd

]
dφ

= ∏
d,k

∫
φ
∏

t
(φtkd)

βtk−1+ntkd dφ

= ∏
d,k

B(n·kd +β·k)

B(β·k)
. (5.1)

Above, B(·) is the multidimensional Beta function, and ntkd is how many times word t is

assigned topic k in document d. DCMLDA and LDA are structurally identical over the

α-to-z pathway, so p(z|α·) in DCMLDA is the same as for LDA:

p(z|α·) = ∏
d

B(n··d +α·)

B(α·)
. (5.2)

Combining Equations 5.1 and 5.2 yields that the complete likelihood p(w,z|α·,β··) is

∏
d

[
B(n··d +α·)

B(α·)
∏

k

B(n·kd +β·k)

B(β·k)

]
. (5.3)

To perform collapsed Gibbs sampling, we need to calculate p(zi|z−i,w), where

z−i is the set of topic assignments to all words but wi. Letting ntkd be the count of word

t in topic k and document d in the complete corpus {w−i∪wi}, and letting n′tkd be the
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count for the limited corpus w−i, we get the DCMLDA Gibbs sampling equation:

p(zi|z−i,w) =
p(z,w)

p(z−i,w)

=
B(n··di +α·)B(n·zidi +β·zi)

B(n′··di
+α·)B(n′·zidi

+β·zi)

=
(n·zidi +αzi−1)(nwizidi +βwizi−1)

(∑k n·kdi +αk−1)(∑t ntzidi +βtzi−1)
.

Hyperparameter EM Many applications of LDA are successful using default uniform

values for α and β , for example α = 50/K and β = .01, where K is the number of topics,

as suggested by Griffiths and Steyvers (2004). Therefore it is not always necessary to

learn the hyperparameters in LDA. However, it is imperative to learn the hyperparameters

in DCMLDA. The information contained in the φ values with LDA is contained in the β

values with the DCMLDA model.

Ideally, we would compute optimal α and β values by maximizing the likelihood

p(w|α,β ) directly. Unfortunately, even evaluating this likelihood is intractable. What

can be computed is the complete likelihood p(w,z|α,β ). Based on this, we use single-

sample Monte Carlo EM to learn α and β . The single-sample method is recommended by

Celeux, Chaveau, and Diebolt (1996) because it is computationally simple and generally

outperforms multiple-sample Monte Carlo EM. Algorithm 2 summarizes the method as

applied to DCMLDA.

To implement the M-step of the algorithm we need to find α and β that maximize

Algorithm 2. Single-Sample Monte Carlo EM

Start with initial α· and β··
repeat

Run Gibbs sampling to steady-state
Choose a specific topic assignment for each word using Gibbs sampling
Choose α· and β·· to maximize complete likelihood p(w,z|α·,β··)

until convergence of α· and β··
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Equation 5.3, given the current topic assignments. Expanding the Beta functions yields

p(w,z|α,β ) =∏
d

[
(∏k Γ(n·kd +αk))Γ(∑k αk)

(∏k Γ(αk))Γ(∑k n·kd +αk)

]
×∏

d,k

[
(∏t Γ(ntkd +βwk)Γ(∑t βtk)

(∏t Γ(βtk))Γ(∑t ntkd +βtk)

]
.

Now we convert to log-likelihood:

L(α,β ;w,z) =∑
d,k
[logΓ(n·kd +αk)− logΓ(αk)]

+∑
d
[logΓ(∑

k
αk)− logΓ(∑

k
n·kd +αk)]

+ ∑
d,k,t

[logΓ(ntkd +βtk)− logΓ(βtk)]

+∑
d,k
[logΓ(∑

t
βtk)− logΓ(∑

t
ntkd +βtk)].

This is a separable function, since the first term depends only on α and the second only on

β . Furthermore, the second term is a sum over topics, so each β·k can be independently

maximized. This gives a collection of K +1 equations to maximize:

α
′
· = argmax∑

d,k
(logΓ(n·kd +αk)− logΓ(αk))

+∑
d
[logΓ(∑

k
αk)− logΓ(∑

k
n·kd +αk)]

β
′
·k = argmax∑

d,t
(logΓ(ntkd +βtk)− logΓ(βtk))

+∑
d
[logΓ(∑

t
βtk)− logΓ(∑

t
ntkd +βtk)].

Each equation above defines a vector, either α· or β·k. We use limited memory BFGS

(Zhu, Byrd, Lu, & Nocedal, 1997) to perform the maximizations. For one iteration of
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EM with 20 topics on S&P500 data explained below, a careful Matlab implementation

requires about 100 seconds on a 2.4GHz CPU with 6GB memory.

The implementation of DCMLDA allows both the α vector and β array to be non-

uniform. For the DCMLDA model to be useful, β must be non-uniform, since it carries

the information that φ carries in LDA. The vector α could be uniform in DCMLDA,

but learning non-uniform values allows the model to give certain topics higher prior

probability than others.

5.4 Experimental Design

Our experimental goal is to test whether the handling of burstiness in a DCMLDA

model creates a better topic model than standard LDA. We compare DCMLDA models

with LDA models, rather than with more complex topic models, for two reasons. First,

DCMLDA and LDA are of comparable conceptual complexity. Second, and more impor-

tant, they are competing models. DCMLDA is not in competition with more complex

topic models, because these models can be modified to include DCM components.

Given a test set of documents not used for training, we estimate the held-out

likelihood p(w|α,β ) for LDA and DCMLDA models. The latter probability uses a vector

α· and an array β·· learned as described above. The former probability uses α = ᾱ· and

β = ¯̄
β··, the scalar means of the values learned by DCMLDA training. We also compare

these two models to LDA using the values proposed by Griffiths and Steyvers (2004).

We compare LDA and DCMLDA as models for both text and non-text data. The

textual dataset is a collection of papers from the 2002 and 2003 NIPS dataset compiled

by Globerson, Chechik, Pereira, and Tishby (2004) and organized by Elkan (2006). This

dataset comprises 520955 words (6871 unique word types) in 390 documents. The

second is a newly-compiled dataset of stock price fluctuations for the stocks that compose

the S&P 500. This dataset contains 501 days of stock transactions between January 2007
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and September 2008, with each document being a single day of trading. Each word is

a concatenation of a stock symbol and a direction (+ or –), and each day contains one

copy of a word for each (rounded) percentage point change between the opening and

closing price of the stock. This dataset contains 469642 words in 501 documents. Both

datasets are bursty, and approximately equally so, with B = 2.63 for NIPS and B = 2.51

for S&P500, where B is the burstiness measure from Church and Gale (1995), with B = 1

indicating no burstiness and higher values indicating more burstiness.

In analyzing the S&P500 data, the goal is to find groups of companies whose

stock prices tend to move together. For example, a learned topic might hypothetically

include the words IBM+, MSFT+, and AAPL–. This would indicate that IBM and

Microsoft frequently rise together, while Apple tends to fall on the same days. Because

different groups of stocks can move independently, each day can be a combination of a

different set of topics.

5.5 Empirical Likelihood

Comparing the goodness-of-fit of topic models is a notoriously tricky endeavor.

Ideally, we would calculate the incomplete likelihood p(w|α,β ) for each model and

compare those values. However, the incomplete likelihood is intractable for topic models.

The complete likelihood p(w,z|α,β ) is tractable, so previous work (Griffiths & Steyvers,

2004, e.g.) has calculated the harmonic mean of the complete likelihood from the

topic assignments generated during Gibbs sampling. This approach is based on a true

mathematical identity, but Newton and Raftery (1994) have argued that it is unreliable.

Another possibility is to measure classification accuracy, but that entwines the

usefulness of the topics with the separability of the dataset. This is an important con-

sideration because datasets do not always lend themselves to obvious classification

schemes. Also, learned topics can be meaningful even if they are not well correlated with
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pre-assigned class labels.

We follow a third approach suggested by Li and McCallum (2006). This approach

is to approximate the true held-out likelihood with so-called empirical likelihood (EL).

To measure EL, we first train each model to obtain its parameter values α and β . These

parameter values are then fed into the generative model, and a large set of pseudo

documents is produced. Each of these documents has θ and φ distributions. (For

DCMLDA the φ distribution of each document is different, while for LDA they are

identical.) The pseudo documents are then used to train a tractable model. In the

present case, we use a mixture of multinomials. Following Li and McCallum (2008),

each multinomial model is inferred directly from the generated φ and θ distributions;

individual words are not generated in the pseudo documents. The true likelihood of the

test set is then estimated as its likelihood under the tractable model of the pseudo corpus.

We report the arithmetic mean of log likelihoods of documents in the test set.

We investigate the stability of EL as a measure of goodness-of-fit by running

it multiple times for the same DCMLDA model. Specifically, we train three separate

20-topic DCMLDA models on the S&P500 dataset, and run the EL method five times

for each of these models. The mean absolute difference between EL values for the same

model is 0.08%, with maximum 0.20%. Furthermore, the mean absolute difference

between EL values for separately trained DCMLDA models is 0.11%, with maximum

0.29%, showing that likelihood values are stable over DCMLDA models with the same

number of topics. The relationship between empirical likelihood and other measures

of goodness-of-fit measures is unclear, but this stability suggests that EL is a sensible

measure.
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Table 5.1. Sample topics found by a 20-topic DCMLDA model trained on the S&P 500
dataset. The six most likely words for each topic are listed.

“Computer Related” “Real Estate”
Stock Company Stock Company

NVDA+ Nvidia SPG+ Simon Prop.
SNDK+ SanDisk AIV+ Apt. Invest.
BRCM+ Broadcom KIM+ Kimco Realty

JBL+ Jabil Circuit AVB+ AvalonBay
KLAC+ KLA-Tencor DDR+ Developers
NSM+ Nat’l Semicon. EQR+ Equity Resid.

Table 5.2. Sample topics found by a 20-topic LDA model trained on the same S&P 500
dataset. The six most likely words for each topic are listed.

“Computer Related” “Real Estate”
Stock Company Stock Company

NVDA+ Nvidia LEN+ Lennar
SNDK+ SanDisk CTX+ Centex
AMD+ AMD PHM+ Pulte Homes
MU+ Micron DHI+ D. R. Horton

BRCM+ Broadcom KBH+ KB Home
CIEN+ Ciena PLD+ ProLogis
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5.6 Results

An important, but informal, measure of the success of a topic model is the

plausibility of the topics that it proposes. Since DCMLDA creates document-specific

subtopics based on corpus-level topics, it is fair to ask if these corpus-level topics are

as interpretable as LDA topics. Table 5.1 shows two topics from a 20-topic DCMLDA

model trained on the S&P500 dataset. The words shown are the most likely based on

the rank-order of the βtk values over words t for a given topic k, in the same way that φtk

indicates the most likely words for an LDA topic. The topics discovered by DCMLDA

generally follow accepted stock classification systems. The 25 most likely stocks in

the “computer related” topic are all in the Information Technology sector of the Global

Industry Classification Standard (GICS), and 24 of the 25 most likely stocks in the “real

estate” topic are in the Financials sector.

The DCMLDA topics are similar to topics from a 20-topic LDA model trained on

the same data, as shown in Table 5.2. Three of the top six companies in the computer topic

are shared between the models. The LDA topic most similar to the DCMLDA “real estate”

topic is also shown; all six top companies in the DCMLDA topic are among the top 15 of

the LDA topic. Subjectively, the interpretability of the DCMLDA topics is comparable

to the interpretability of the LDA topics. Looking closely suggests that the DCMLDA

topics may be better. For example, all six top stocks for the DCMLDA “computer related”

topic are suppliers to computer manufacturers, while Ciena in the matching LDA topic is

not. In the LDA “real estate” topic the top five stocks are homebuilders but ProLogis is

quite different. In contrast, all six stocks in the DCMLDA topic are corporate landlords.

As discussed in Section 5.5, we use empirical likelihood to compare the goodness-

of-fit of the DCMLDA and LDA models on the NIPS and S&P500 datasets. We perform

five 5-fold cross-validation trials for each number of topics and each dataset. We first
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Figure 5.2. Mean per-document log-likelihood on the S&P500 dataset for DCMLDA
and fitted LDA models. The heuristic model is omitted here because its likelihood is too
low. The maximum standard error is 11.2.

train a DCMLDA model, then create two LDA models. One (“fitted LDA”) uses the

mean values of the DCMLDA hyperparameters. The other (“heuristic LDA”) uses the

uniform hyperparameter values suggested by Griffiths and Steyvers (2004). For both

datasets, DCMLDA is better than fitted LDA, which in turn is better than heuristic LDA.

Figure 5.2 shows performance on the S&P500 dataset. The highest likelihood

comes from DCMLDA with seven topics, where DCMLDA has a major advantage over

the fitted LDA model. This supports the idea that a DCMLDA model with few topics is

comparable to an LDA model with many topics. This may also indicate that the a natural

set of topics for this dataset has cardinality about seven.

Above 100 topics, the likelihood of the fitted LDA model remains approximately

constant, while that of DCMLDA continues dropping, ending up lower than that of LDA.

This is likely a result of data sparsity preventing the estimation of good β values. As there

are only 1000 unique symbols in the dataset, poor behavior with more than 100 topics is

not a major source of concern. The likelihoods for heuristic LDA model are not shown

in Figure 5.2 because they are much lower than those of the other models, especially
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Figure 5.3. Mean per-document log-likelihood on the NIPS dataset for DCMLDA and
LDA models. The maximum standard error is 183.6.

when the number of topics is low. For 100 topics, heuristic LDA has mean log-likelihood

−7383, which approaches that of the other two models, but for three topics, its mean

log-likelihood is −34130.

Figure 5.3 shows performance on the NIPS dataset. For this dataset, the DCMLDA

model does not exhibit the few-topics bump seen in the S&P500 dataset. DCMLDA

outperforms the fitted LDA model at every tested number of topics. For the NIPS dataset,

LDA never surpasses DCMLDA as the number of topics grows, presumably because the

larger number of unique words (6871) in this corpus keeps data sparsity from becoming

a major issue. LDA with the heuristic hyperparameter values is not as bad on the NIPS

dataset as on the S&P500 dataset, almost catching up with the fitted LDA model at 50

topics. This confirms that the suggestions of Griffiths and Steyvers (2004) are reasonable

for textual data. However, the fitted LDA model retains a substantial advantage, especially

when the number of topics is small.
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5.7 Discussion

While the choice of α and β in a topic model is sometimes viewed as a formality,

and heuristic values are used without much consideration, we find that heuristic values

can lead to much worse likelihood than fitted values, especially when the number of

topics is small. Thus learning α and β can be beneficial, and optimized values can be

significantly different from previously suggested heuristic values. In addition, we see

that accounting for burstiness improves held-out likelihood for both text and non-text

data. To be completely confident that the EL improvement is due to modeling burstiness,

DCMLDA should be compared also to a version of LDA with a single optimized non-

uniform β parameter.

Recent years have seen a profusion of topic model variants, such as the cor-

related topic model (Blei & Lafferty, 2005) and the Pachinko allocation model (Li &

McCallum, 2006). These newer models outperform LDA on many tasks, so comparing

the performance of DCMLDA only to that of LDA may seem inappropriate. However,

DCMLDA is not in competition with the more complex topic models, but rather with

LDA. The more complex topic models share an LDA core, in that they use multinomials

to represent topics. These multinomials can be replaced by DCMs to improve, potentially,

the performance of these models. Thus the DCMLDA idea and complex topic models

are complementary.
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Chapter 6

Conclusion

This dissertation has examined the acquisition of latent linguistic structure from

positive-only data using unsupervised computational models. These models span a range

of linguistic problems, from human-like acquisition of phonological constraints or word

segmentation behavior to applied problems in semantic topic modeling. Despite their

range, two major threads connect these models. First, all of the models rely primarily on

the observed language data to determine the latent linguistic structure, and argue for a

more emergentist approach to language acquisition. Second, the models use appropriate

representations of the basic linguistic structure to improve their explanatory power.

Chapter 2 proposed the IBPOT model, a method for learning constraint defi-

nitions within Optimality Theory that is driven almost entirely by distributional data,

minimizing the amount of innate phonological structure used by a learner. The ability of

the IBPOT model to capture basic constraint structure in Wolof vowel harmony shows

that distributional data can be highly informative about phonological constraints, and

suggests that the standardly-assumed fully-innate OT constraint set may not be necessary.

These results are extended and strengthened by Chapter 3, which proposed the Rational

Rules OT model. This model introduces a more appropriate representation of constraint

structures into the constraint learning problem, and as a result is able to capture more

robust constraint definitions, as well as making as accurate of predictions about novel
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forms as the fully-innate constraint set does. These results show that a small amount

of innate structure can be as informative as a larger amount, if the data is sufficiently

informative.

Chapter 4 turned to word segmentation behavior and introduced a model for

incorporating multiple segmentation cues coherently. By capturing the information

from multiple cues, the model was able to outperform existing single-cue models in

segmentation accuracy. In addition, the model showed how multiple cues could trigger

changes in segmentation behavior that could not be explained by single-cue models.

These changes are driven by the data itself, and capturing the aspects of data that drive

this change require appropriate representation and integration of the cues within the

model.

Finally, Chapter 5 moved into applications of computational models beyond

human learning behavior, and showed that better models of the core linguistic structure

can improve application performance as well. The DCMLDA model proposed in this

chapter accounts for burstiness in the observed data, and this more appropriate model

structure results in improved performance on both linguistic and non-linguistic problems.

The high interpretability of the learned topics in this model further supports the richness

of language data for determining latent structure without significant innate knowledge.
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