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ABSTRACT  

 Acute respiratory distress syndrome (ARDS) is a severe form of acute hypoxemic 

respiratory failure affecting 10% of patients admitted to the intensive care unit (ICU) globally. 

In-hospital mortality of 29.7%-42.9% has been reported across the spectrum of mild-severe 

ARDS, and one third of patients with initially mild ARDS will progress to moderate or severe 

ARDS. Over the last 20 years, multiple studies have reported improved outcomes for ARDS 

patients using ARDS-targeted therapies. However, ARDS remains persistently under-recognized 

and challenging to diagnose. Only one third of ICU providers correctly identify ARDS on the 

first day when diagnostic criteria are met, and less than two thirds ever recognize the diagnosis in 

the ICU. This under recognition of ARDS may prevent some patients from receiving lifesaving 

therapies necessary for treating the disease. Attempts to automate ARDS diagnosis using rule-

based algorithms have seen limited success, and require subjective analysis of infrequently 

sampled patient data, like chest radiographs, which limit diagnosis automation, timeliness, and 

study reproducibility.   

 To improve the current state of the art of ARDS detection technology, we intend to utilize 

objective and readily available ventilator waveform data (VWD) to improve the recognition of 

ARDS and develop next generation clinical decision support systems (CDSS) that can function 

as a pervasive monitoring system for mechanical ventilation management. For this task, we make 

use of a novel dataset consisting of only VWD from patients receiving mechanical ventilation. 

We analyze this data using both classical and deep machine learning models and show results 

that suggest that ARDS can be detected in absence of a chest scan or medical history. This 

finding highlights that VWD shows promise for use as a future digital biomarker of ARDS 

pathophysiology. 
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 This dissertation is broadly aimed at showing the research challenges we solved and 

software that we built to create our ML-based ARDS detection models. Our work encompasses 

multiple sub-studies including: 1) designing software for annotating large amounts of VWD for 

our ML datasets, 2) developing and training machine learning models to extract important 

metadata (such as ventilation mode) from VWD, 3) performing a comprehensive clinical 

validation for existing, but clinically unvalidated respiratory compliance estimation algorithms, 

4) training an ML model for early recognition of ARDS using only VWD, 5) improving our 

initial ML model for ARDS recognition by applying deep learning, and 6) discussing how to 

integrate all our work into a comprehensive monitoring system for patient ventilation.  

 While our work is specifically focused on ARDS detection, this dissertation broadly 

highlights the utility of applying modern machine learning tools to underutilized high-frequency 

physiologic waveform data as a surrogate for manually charted EHR data types in disease 

detection and early health warning. These warnings and alerts can then be continuously 

monitored and returned to clinicians at the point of care in the form of actionable advice and 

disease prognostication. Such improvements will enable pervasive clinical decision support 

systems that promise to reduce the cognitive burden on care providers, improve quality of care, 

reduce patient suffering, and reduce overall hospital mortality from deadly conditions such as 

ARDS.  
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Chapter 1: Introduction 

1.1  The ICU and ARDS 
 The intensive care unit (ICU) is one of the most heavily monitored environments in 

healthcare. In the ICU, patients are continuously monitored by multiple life support machines, 

and other surveillance devices that are meant to measure important vital signals and alert 

physicians before or during a major health emergency. However, despite use of sophisticated 

equipment, many health emergencies can go undetected until a patient experiences a severe 

health consequence such as a cardiac arrest.(1–4) The reasons for this are complex, but often can 

be reduced to a distinct lack of advanced analytics, and clinical decision support systems (CDSS) 

that can ingest the large amounts of data gathered, and then accurately alert physicians to a 

patient’s deteriorating health state.(1,5) The construction of such CDSS that can intelligently 

monitor patients is acknowledged to be a tremendous opportunity as part of the overall 

digitalization of healthcare.(6) In theory, CDSS could ensure higher care standards, lower 

hospitalization costs, automate laborious aspects of healthcare, improve patient mortality, and 

even perform automated diagnosis and prognostication of complex diseases.(7–10)  

 One such affliction that may necessitate automated improved diagnostic and screening 

systems is the acute respiratory distress syndrome (ARDS).(11) ARDS is a respiratory syndrome 

that occurs because of an acute, diffuse lung injury and is characterized by acute hypoxemia, 

reduced lung compliance, and increased work of breathing in patients.(12) The causes for ARDS 

are varied, but most commonly ARDS results from an acute lung injury such as bacterial or viral 

infection that results in pneumonia or sepsis. Other causes are gastric aspiration, shock, trauma, 
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and blood transfusion, among others.(13) As a result of injury, air sacs in the lung responsible for 

transporting oxygen to the bloodstream, called alveoli, become filled with fluid (edema). 

Edematous alveoli are no longer capable of transporting oxygen to the blood stream. If this 

process occurs for sufficient alveoli, then a patient will be unable to naturally fulfill the oxygen 

demands for their body, which will eventually cause hypoxemic respiratory failure. Hypoxemic 

respiratory failure is a critical medical condition, and when severe, necessitates immediate 

hospitalization in the ICU. 

 
Figure 1.1: ARDS disease process. The image on the left shows a normal alveolus that is 
functioning correctly and free of fluid (edema). The right shows an alveolus that has been injured 
due to some physiologic insult, possibly due to pneumonia from bacterial or viral infection or 
sepsis. As a result of damage, the alveolus becomes edematous. Edema prevents proper function 
of the alveolus and transport of oxygen to the bloodstream. ARDS manifests when many alveoli 
have been injured in this manner, and thus severely degrade function of the lungs. The body 
attempts to fight the damage through activating the immune system, as seen by macrophage, and 
neutrophil activity, but recovery often takes time. In some cases, cellular damage cannot be 
completely repaired, and patients experience fibrotic lung damage from ARDS. (Wikimedia 
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Commons, “File:The-normal-alveolus-Left-Hand-Side-and-the-injured-alveolus-in-the-
acute.jpg,” Posted: 2012/08/01, Accessed: 2021/10/10) 
  

 
Figure 1.2: Visualization of what occurs to a patient’s lungs in ARDS via chest X-Ray. A) 
displays a chest x-ray from a normal patient. B) displays a chest X-Ray from a patient with 
ARDS. Note how areas normally transparent in the x-ray now display diffuse white regions in 
both right and left lungs. These are termed “bilateral opacities,” and are a primary diagnostic 
signature of ARDS. 
 ICU physicians are very familiar with ARDS, and prior to the COVID-19 pandemic, 

approximately 10% of all ICU admissions were caused by ARDS.(12–15) ARDS leads to the 

death of over 100,000 Americans each year, with disease mortality rates ranging from 29.7%-

42.9% depending upon syndrome severity.(13,16–20) Despite its lethality and prevalence, ARDS 

was found to be a difficult syndrome to diagnose because of the wide variety of ways it can be 

represented in patients.(12,13,16) So, to improve diagnostic criteria, scientists accepted a 

consensus standard for ARDS, the Berlin definition, which defines clinical criteria a patient must 

meet for ARDS diagnosis, and also sets a severity scale ranging from mild to severe forms of 

ARDS.(21) The Berlin definition states ARDS can be diagnosed if there is evidence of “bilateral 

opacities” (Figure 1.2B) on a patient chest X-ray (CXR) or computed tomography (CT) scan. 

Additionally, patient PaO2/FiO2 (P/F) ratios must be ≤ 300 mm Hg, respiratory failure must not 

be able to be fully explained by potential cardiac failure, and the timing of respiratory failure 
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must be within 1 week of new or worsening respiratory symptoms. ARDS is then sub-classified 

by severity using the P/F ratio. Patients with P/F ≤ 100 mm Hg are classified as severe ARDS,  

100 < P/F	 ≤ 200 mm Hg is moderate ARDS, and 200 < P/F ≤ 300 mm Hg is determined as 

mild ARDS. 

Despite intensive research into the etiology, diagnosis, and treatment of ARDS, multiple 

studies have shown that bedside providers continue to under-recognize the syndrome. In the 

largest multi-national prospective cohort study to date, recognition of ARDS occurred in only 

34% of patients on the first day when Berlin diagnostic criteria were present, and ever in only 

60% of patients.(13) Under-diagnosis also ranges by levels of severity, and only 51% of patients 

with mild ARDS and 79% of patients with severe ARDS were correctly diagnosed during their 

hospitalization.(12) Reasons for delayed or failed diagnosis are not completely understood, but 

under-recognition is not likely the result of confused clinical findings since 88% of patients 

already met Berlin criteria on day one of hypoxemic respiratory failure in LUNG SAFE, and in 

76% of patients at the time of intubation in the LOTUS-FRUIT study.(13,22)  

It is suspected that under-diagnosis is a major cause of the high rates of death with 

ARDS. Indeed, under-diagnosis has also been associated with suboptimal care delivery, and 

studies have demonstrated repeatedly that clinicians, operating unassisted by decision support, 

consistently fail to apply evidence-based therapies.(13,20,22–24) These therapies are often 

critical for improving an ARDS patient’s chance of survival. In a large study, it was found that 

patients with ARDS who received restricted tidal volumes of air from ventilators had a 

dramatically higher survival rate than those that received standard ventilation procedures.(25) In 

another study it was found that using paralytic agents in eliminating patient respiratory effort 

improved chances of survival.(26) Future clinical care may even include using biomarkers to 
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more accurately perform phenotyping of ARDS patients so that patients receive more 

personalized care protocols.(27) However, all of these treatment and diagnostic protocols would 

not be considered for use in patients without ARDS. Furthermore, the longer that ARDS persists, 

the more cellular death that may occur in the lungs. In some patients, this cellular death can lead 

to long term injury and scarring, and can permanently reduce functional air capacity of lungs, 

thereby reducing quality of life for these patients, while placing them at greater risk for 

subsequent hospitalization.(16,17) These concerns highlight that prompt and accurate diagnosis 

is essential for patients with ARDS. To hasten the time to diagnosis, scientists have proposed 

automated algorithms for diagnosing ARDS. 

 Early automated ARDS diagnostic systems used rule-based processing of keywords from 

CXR reports and numeric P/F values extracted from the electronic health record (EHR) (28,29), 

whereas recent studies have used more modern tools such as natural language processing and 

machine learning (ML) algorithms (30–32). While these studies have demonstrated that proof-of-

concept automated systems can improve the accuracy and timeliness of ARDS diagnosis, these 

approaches are dependent on availability of laboratory and radiographic data, local radiologist 

practices, and information technology that may not be present in all healthcare settings. Most 

importantly however, these systems may suffer from lack of generalizability outside their 

originating institutions, and when ARDS sniffers were tested in new patient populations, 

algorithm specificity declined substantially.(33–35) It was found generalizability of sniffer 

systems is limited because sniffers rely on text of radiologists’ reports of chest radiograph 

findings, and institutional or radiologist-specific practice patterns may vary between healthcare 

centers.(33,36) Furthermore, infrequent sampling of chest radiographs and P/F measurements, 

and delays in their interpretation may also limit automation and timeliness of diagnosis.(30,31) 
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Recent research has attempted use of more advanced analytic algorithms and improved data 

types, but still, the fundamental problems of differing practice patterns, limited automation, and 

timeliness of diagnosis still remain unsolved. (30,37–44) 

1.2 Avenues of Improvement for ARDS Screening.  
 To improve generalizability and data timeliness/availability of ARDS screening we 

hypothesized that we could find alternative sources of physiologic information for future ARDS 

CDSS from mechanical ventilators. Mechanical ventilators are sophisticated life support devices 

that support oxygenation, ventilation, and the work of breathing for patients with respiratory 

failure by providing supplemental oxygen, pressure and air flow.(45,46) This air flow and 

pressure data can be broadly defined as ventilator waveform data (VWD) (Figure 1.3). VWD is 

displayed visually and is used by bedside clinicians to diagnose and manage patients in real time. 

VWD is an appealing source of information for ARDS surveillance because it contains unbiased 

physiologic data (Figure 1.3) that is available from the start of MV, and has been hypothesized to 

contain information that is indicative of onset and progression of ARDS.(47). VWD is also a 

data source that can be utilized in any medical setting because all patients undergoing respiratory 

failure receive MV.(48) These advantages may mean that VWD is capable of being used either 

as a standalone ARDS detection data source, or as an element of a more complex detection 

model. 
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Figure 1.3: Flow (blue) and pressure (red) waveforms captured from the ventilator of a patient 
with severe ARDS.  

 Until now there has been no prior research exploring VWD as a mechanism for ARDS 

detection. So, this dissertation aims to address research challenges posed by this problem. A 

major issue is that VWD is a heterogeneous data source whose morphology and other 

characteristics depends heavily on patient physiology and bedside ventilation settings. This data 

heterogeneity causes difficulty to even expert respiratory care providers when asked to 

distinguish different types of ventilator waveforms.(49) So, it is critical that ARDS classification 

models can compensate for varying levels of noise and breathing heterogeneity in VWD. To 

compensate for this problem, we use machine learning (ML) to build models that can learn 

complex classification rules based on patterns in the relationships between predictor variables 

(referred to as features) and outcomes. ML offers advantages over traditional statistical methods 

including the ability to detect nonlinear relationships, the ability to detect relationships between 

features in high-dimensionality models, and even the ability to create unique features from 

patterns in the sample data.(5,50) ML also has been previously applied to VWD to automate the 
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assessment of patient-ventilator asynchrony so there is literature supporting use of ML in VWD 

applications.(45,51–56)  

 We discuss the proposed work of building an ML-based ARDS classifier as follows: First 

we need to create high-fidelity annotated datasets of breath information for our ML classifiers. 

Our work in Chapter 2.2 shows how to build software necessary for annotating large quantities 

of VWD in a rapid, reproducible, and reliable manner. Chapters 2.3 and 2.4 then discuss how we 

build models for better characterizing VWD using these datasets. Characterizing VWD is 

important because we desire our ARDS detection models to have high accuracy. So, the more 

information we can gather from it, the more information our models will have to utilize when 

performing disease detection. In Chapter 3 we discuss the further work in characterizing VWD 

by performing reproduction and clinical validation of 15 different algorithms used to extract 

important lung-physiologic information from VWD for purposes of improving ARDS detection. 

Next, Chapter 4 describes the research challenges to build a classifier for detecting ARDS using 

VWD. Then, in Chapter 5 we describe how we can improve our ARDS classifier using deep 

learning. In Chapters 6.1 and 6.2 we show how we integrated our ARDS detection models into a 

real-time system for remote patient monitoring and adaptive feedback for clinical providers.  

Finally, in Chapter 6.3 we discuss future work that can be undertaken following our research 

advances. 

1.3 Improving the Characterization of Ventilator Waveform 
Data 
 Utilizing VWD in algorithmic classifiers in the ICU has the potential to detect ARDS, 

and other pathologic phenomena.(25,47,52,57–62) To develop and validate high performance 

ML classifiers, clinicians have historically been required to manually annotate large volumes of 
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VWD by visually analyzing the shape and magnitude of air flow and pressure data.(52,55,57–59) 

However, this process is time-consuming, subjective, and has been marked by low inter-rater 

agreement due to visual classification criteria based on “expert opinion”, as well as data 

management challenges resulting from the high volume of data and the laborious manual 

annotation process. (49,52,55,57,58) Previous groups have developed waveform annotation 

software that can handle large volume data and output categorization results, but these efforts 

lack the specific functionality necessary for overcoming problems inherent with annotating 

VWD.(63–74) These challenges are: 1) consistent annotation workflows do not exist for VWD 

annotation, which has led to the creation of datasets that are potentially non-reproducible across 

medical centers,(49) and 2) large, high-quality, multi-reviewer adjudicated datasets of VWD are 

highly time-consuming to generate for expert clinicians.(55)  

With these challenges in mind, in Chapter 2.2 we explore and address gaps in the field of 

VWD annotation by developing the Annotation PipeLine (APL) (Figure 1.4). APL supports 

expert annotation of ventilator data and builds on concepts from existing platforms for 

annotating data other than VWD.(75) Utilizing APL, we have been able to annotate and provide 

dual clinician validation for over 315,000 ventilator recorded breaths across two different 

datasets. These data comprise some of the largest recorded breath-level, multi-clinician 

adjudicated datasets for use in developing algorithms to improve the delivery of 

MV.(54,55,57,58,76) APL’s fundamental design features allow for consistent and efficient 

annotation of VWD and may be broadly applied in future research to improve efficiency, 

reproducibility, and fidelity of medical waveform annotation and classifier development. 
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Figure 1.4: Shows the flow of data within APL as it is processed by our software architecture. 
Raw VWD is uploaded to APL and then processed for graphical rendering, using ventMAP 
metadata processing to extract clinical metadata from each breath. Results from processing are 
stored on the filesystem. Next, we visualize both VWD, and perform breath-level annotation by 
utilizing Dygraphs with our own custom annotation overlay. All annotations are stored in Redis 
and can be output by the user into CSV format.  

Using APL, we can perform per-breath annotations for a variety of phenomena including 

patient ventilator asynchrony (PVA). PVA is a pathologic phenomenon that occurs because of a 

mismatch between a patient’s desired ventilation needs and a mechanical ventilator’s configured 

settings.(77) This mismatch will manifest clinically by increasing the amount of work a patient 
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must perform to breathe. Over long periods of time PVA can result in ventilator-induced lung 

injury (VILI), which is a frustrating phenomenon that can cause additional lung damage, increased 

length of ICU stays, and even death.(11,26,52,57,78) Clinicians can detect PVAs during bedside 

examination, but PVA detection can be delayed due to lack of 24/7 access to appropriately trained 

clinicians, provider inattention, or heavy clinical workloads. PVA detection can be performed with 

electronic algorithms, but most PVA detection algorithms rely only on expert rules that may not 

generalize to broader patient populations seen in the ICU. To improve upon existing automated 

algorithms for detecting PVA, we used a dataset of 9,719 breaths derived from APL to train an 

ensemble ML model to detect 2 pathological forms of PVA. We discuss this work in Chapter 2.3 

and highlight modeling challenges encountered. This work serves a twofold purpose: 1) it shows 

how we can leverage APL to create high performance ML models, and 2) it also shows how we 

can create secondary ML systems to improve our characterization of VWD for later ARDS 

detection applications. 

 Another key piece of information that MV CDSS lack is the choice of ventilation mode 

(VM) that determines the pattern of flow and pressure delivery with each breath (Figure 1.5B-D). 

This information is generally unavailable to CDSS due to the lack of interoperability and 

information exchange between CDSS and the ventilator or electronic health record.(76) CDSS 

knowledge of VM is important because VM can be important for care optimization, (79–82) and 

can affect how featurization can be performed for ARDS algorithmic classifiers.(83) For 

example, if we know that our VM is in volume control, then we can utilize algorithms that are 

optimized for estimating physiologic features from volume control VWD. Such optimizations 

may help improve accuracy of ARDS classifiers. Another example would be that CDSS could 

provide alerts to clinicians if patients continually violate safe volumes of air to inhale. This 
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would be especially important in cases where patients have ARDS and need limited tidal 

volumes.(25,84) In this case, the CDSS might recommend that patients be placed on a VM that 

limits tidal volumes such as volume-control. 

 

Figure 1.5: Shows visualizations of ventilator waveform data (VWD) across different ventilation 
modes. Air flow measurements are represented in blue, and pressure in red. A.) How to extract 
information from VWD. Positive End Expiratory Pressure (PEEP) is noted as the minimum 
pressure supplied by a ventilator, and peak inspiratory pressure (PIP) is the maximum pressure 
supplied during inhalation. Inspiratory time (I-time) is the amount of time a patient breathes in. 
Total amount of air breathed in is represented in green, and air exhaled is shown in teal. B.) An 
example of volume control (VC), a mode where a patient receives a fixed volume of air for each 
breath. It can be recognized by a triangular inspiratory flow. C.) Shows an example of pressure 
control (PC). In PC, pressure is fixed during inhalation. D.) An example of continuous positive 
airway pressure (CPAP). Here minimal pressure support is given, and all breaths are initiated by 
the patient. 
 If MV CDSS lacks knowledge of VM from more traditional methods, it may still be able 

to access it by utilizing information derived from streams of flow and pressure readings that 
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comprise VWD. To date, at least one previous effort developed a rule-based VM classifier using 

analysis of VWD, but its use of a closed dataset, its limited temporal resolution, and the accuracy 

of the model represent potential limitations both for research and decision support.(76,79) 

Having highly granular temporal resolution of results is important for VM. Previous efforts 

performed per-hour VM classification, however, in practice providers may change VM 

frequently based on changes in clinical state or patient tolerance of VM. These changes may 

cause VM periods to last for as low as minutes of time.  To improve upon previous work, we 

note that machine learning (ML) has proven capable of accounting for the highly variable nature 

of physiologic data such as VWD on temporally granular time scales.(55,56) So, we created a 

ML model that could identify different VMs on a per-breath basis, with a freely accessible 

dataset, using only VWD as input.  

 So, in Chapter 2.4, we detail multiple important considerations for modeling an ML 

classifier that can classify ventilator mode. First, we discuss how we created one of the largest 

datasets of per-breath labeled information, the extraction of features from VWD, and the 

performance of our resulting ML model that can determine 5 of the most widely used ventilation 

modes in the USA.(83) Second, we discuss experiments of how our model performs in the 

presence of missing training data. Finally, we discuss experimentation we conducted for 

reducing the size of our training dataset by nearly 65% while maintaining generalizability of our 

classifier to our testing set. To allow reproducibility of our work, our code and dataset are 
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publicly accessible and published on GitHub1. Thus, we hope that our work will serve as a 

catalyst for continuing to improve the capabilities and efficiency of MV CDSS. 

1.4 Evaluating Algorithms for Estimating Respiratory 
Compliance 
 To train machine learning models for ARDS detection we necessitate a system for 

extracting respiratory compliance (𝐶!") from VWD. 𝐶!" measures the ease at which the lung and 

associated thoracic structures are able to stretch when filling with air(85), and is hypothesized to 

be indicative of ARDS(47,86) because the lungs of ARDS patients are typically very stiff and 

have low 𝐶!" measurements compared to non-ARDS patients (47,87). Despite physiologic 

rationale for its use, the monitoring of 𝐶!" is not reliably performed in the ICU because it 

involves time consuming procedures(88–91), or use of clinically invasive devices that may 

adversely affect care(92). These barriers mean that 𝐶!" can go unrecorded and thus unused when 

making important care decisions for a patient, which in turn may affect patient care 

outcomes(47,93–95). 

 To offer solution to this problem, a non-invasive and continuous measurement of 

respiratory mechanics has been proposed by modeling the lung as a single compartment 

governed by the equation of motion(45,88). This approach makes simplifying assumptions about 

the behavior of the lung that has allowed researchers to measure 𝐶!" on mechanically ventilated 

patients using a number of different computer algorithms(45,47,89,96–105). Many of these 

 

1 https://github.com/hahnicity/ventmode 



 15 

algorithms have been validated in idealized circumstances, however, few of them have been 

thoroughly tested in scenarios typically seen in the clinical environment(92,96,106).  

 The clinical environment poses challenges to 𝐶!" estimator algorithms because there are 

various types of breathing and ways that a breath can be delivered to a patient that cause 

estimation error. One scenario in which algorithms may provide inaccurate or inconsistent 

estimates is in cases of severe PVA (Figure 1.6B). PVA occurs when patient breathing is 

mismatched with ventilator settings(77), which can result in breathing patterns that 𝐶!" 

estimators are not designed to handle. Another scenario that 𝐶!" estimators may struggle to adapt 

to is different ventilation modes (VMs)(89). VM determines the way a patient receives a breath 

from the ventilator. One mode, named volume control (VC) specifies that patients receive a fixed 

amount of air per breath. Other modes such as pressure control (PC) and pressure regulated 

volume control (PRVC) are designed so that patients receive a fixed amount of pressure during a 

breath and can breathe a more flexible amount of air per breath. A number of algorithms have 

been developed specifically for VC(102,103), while others have been tested and validated under 

PC or other VMs(89,96,106). However, it is unclear if these algorithms are cross-compatible 

with other VMs because the research community lacks widely available data sources from a 

variety of patients, and because of the difficulty in collecting ventilation data during clinical 

trials. This lack of validation also makes it unclear to clinicians and researchers which algorithm 

can be used in varying circumstances and may hinder the implementation of model-based 

approaches in clinical practice. 

 To address this situation, in Chapter 3 we explore the performance of a comprehensive 

number of algorithms for estimating 𝐶!" in a retrospective cohort of subjects under varying 

clinical scenarios. First, we explore general algorithmic performance across all patients, and then 
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we focus on performance under scenarios of differing VM and types of patient-ventilator 

synchrony (PVA). In doing so, we highlight several insights. First, we highlight which 

algorithms are best for calculating 𝐶!" under varying scenarios of patient state such as varying 

VMs and PVAs. Second, we discuss a windowing approach that will help improve using 

algorithmic results in clinical practice. Third, we show a surprising result that algorithms 

designed for VC perform equally well when applied to patient breath data collected from 

mechanical ventilators operating under pressure modes, and vice versa. These contributions and 

our open dataset will help improve the understanding of advantages and limitations of the model-

based approach and may help guide clinicians and researchers in using 𝐶!" estimators in their 

own practice and studies. 

 

Figure 1.6: We provide 2 samples of data from different patients. In A. the patient is breathing 
synchronously with the ventilator and there is little variation in 𝐶!" estimates. In B. the 𝐶!" 
estimate is highly variable due to patient ventilator asynchrony or transient waveform anomalies. 

�� ��
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1.5 ARDS Detection Using Machine Learning 

In Chapter 4 we explore our primary research question of developing a system that can 

utilize widely used, and unbiased VWD to develop early-warning models that can alert clinicians 

for onset of ARDS.  This research builds upon the work in Chapter 2 and Chapter 3 by extracting 

important features for use in ARDS ML classification models.(11,25,26,107,108) Using a 

preliminary cohort of 100 patients, we utilize our extracted features to build ML models that can 

differentiate between VWD from ARDS patients and patients who were hospitalized for other 

reasons. Our findings show that VWD shows promise for early warning of ARDS at 6, 12, and 24-

hour intervals after a patient first meets Berlin criterion. This promising proof of concept may 

allow wider clinical studies for utilizing VWD in the ICU and improve diagnostic rates for ARDS. 

 Although our work in Chapter 4 is a promising proof of concept, it may be limited by our 

initial choice of using classical ML algorithms like random forests (RF) with expert-informed 

waveform featurization.(110) Expert-informed feature engineering is common in traditional 

machine learning and may aid in understanding model behavior but the use of human-

interpretable features may bias models in unanticipated ways and may potentially constrain 

performance.(50,110)  

 To solve these limitations, researchers have applied deep learning (DL) approaches to 

automatically learn high-level features from the input data.(111) This approach has been used 

widely in image processing and in other time series analytics work.(112–117) So, we 

hypothesized that DL models would improve upon traditional ML models in discriminating 

between patients with ARDS and non-ARDS indications for MV. In Chapter 5 we investigate 

this hypothesis and develop DL models capable of screening for ARDS using only VWD. We 
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analyzed performance of two commonly used DL networks used for this task, convolutional 

neural networks (CNN) and long short-term memory (LSTM) networks and compared DL 

performance to that of a previously published traditional ML models. Finally, we investigated 

the mechanisms by which our best-performing DL model was able to learn features from raw 

VWD that contributed to the differential performance observed between DL and traditional ML 

models. Our work makes contributions of 1) Showing that DL can improve the overall 

performance of ML classifiers for task of ARDS detection and shows specific improvements that 

allow DL to surpass our work in Chapter 4. 2) Exploring the performance of our DL models with 

varying dataset sizes. This experimentation casts doubt on the traditional assumption that deep 

learning using physiologic data necessitates very large medical datasets to achieve performance 

gains over traditional machine learning. 3) We highlight potentially novel techniques for better 

understanding how DL classifiers improve upon traditional ML models using high-frequency 

VWD.  
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Chapter 2: Tooling For Improving 
Ventilator Clinical Decision Support 
Systems 

2.1 Overview 
High-performance model development requires well characterized datasets annotated for 

salient events by expert clinicians through a process of multi-reviewer adjudication.(54) 

Accurately and reproducibly annotating data requires substantial investment of effort from time-

limited, expert reviewers, which to date has limited the size and generalizability of validated 

datasets.(55,118–120) We attempt to ameliorate this issue by creating APL, a software platform 

for the fast, reproducible, and large-scale annotation of VWD. 

 Using APL, we can annotate datasets of ventilator data, and then train ML models to scan 

for potentially harmful ventilation anomalies called patient ventilator asynchrony (PVA). We 

create an ML system for PVA detection because there are currently no intelligent/automated 

systems integrated into mechanical ventilators capable of detecting PVAs and generating alerts to 

clinicians. Current systems consist of simple threshold-based alarms that are prone to frequent 

false positive alerts, which cause clinicians to ignore them. The only reliable way to detect PVA 

is via bedside examination of patients, but this is can only occur during scheduled clinician visits, 

and even then, studies have shown that even trained clinicians often fail to consistently recognize 

PVA.(121) To improve the speed and accuracy of PVA detection, we aimed to create a system that 

could compute upon VWD and automatically classify a breath as normal or PVA (Figure 2.3).  
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 Identification of PVA is not the only method of improving care for ventilated patients. 

CDSS also promises to reduce chances of delivering improper MV by automating aspects of 

ventilator configuration. However, a key detriment to these systems is that they often lack access 

to the configured ventilator mode and therefore lack information that may improve the efficiency 

of these CDSS.(76) In Chapter 2.4 we discuss our work towards creating a machine learning 

system that scan detect ventilator mode through analysis of only VWD. Our work highlights 

potential improvements in ventilation CDSS and highlights further tooling that we can utilize to 

improve ARDS detection CDSS. 

2.2 Fast and Reproducible Ventilator Waveform Annotation 
2.2.1 Methods 

APL is a free, publicly accessible, web-based annotation platform developed since 2015 

to support studies at University of California Davis (UCD) utilizing VWD collected from 

mechanically ventilated patients.(122) All VWD were collected under an approved IRB protocol 

and do not contain protected health information. Data were collected from Puritan Bennet Model 

840TM (PB-840) ventilators (Covidien, Dublin, Republic of Ireland) and stored in multiple 

sequential files up to two hours in length. APL uses an open-source stack including: ventMAP 

software for extraction of waveform metadata, the Python Flask web framework, the JavaScript 

library Dygraphs for graphing of VWD, Redis for storage, and Docker for APL 

deployment.(54,123) APL’s source code and install instructions are available on GitHub for 

modification or use of APL. 

APL was built to support objective classification of VWD by displaying clinically 

relevant quantitative metadata to help improve the consistency of the annotation workflow. After 
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data collection, VWD is uploaded to APL in CSV format, is preprocessed for graphical display, 

and automatically split into individual breaths. Each breath is processed to generate clinically 

relevant metadata pertinent to the classification of VWD using ventMAP (Figure 1.4).(54,56) 

Examples of metadata generated include the inspiratory tidal volume (the volume delivered by 

the ventilator with each breath) and the expiratory time (the duration of each exhalation). All 

derived metadata were determined to be clinically relevant by four critical care clinicians (JYA, 

BTK, ICP, JN). Metadata are cached in a CSV file and then retrieved by Flask to generate a 

breath-level drop-up table that displays breath-specific metadata and annotation options. Display 

of metadata in a drop-up table mimics the user interface of a mechanical ventilator and was 

designed to facilitate use of APL by expert reviewers (Figure 2.1). 

APL also incorporates functionality to support online reconciliation of discordant 

annotations to improve consistency and reproducibility of the annotation process. This 

functionality is possible because APL is an online web platform and can store all user 

annotations centrally in the Redis database. Stored annotations can then be retrieved later by the 

Python Flask web framework to compare classification decisions by different reviewers. 

Differing classifications are displayed by Dygraphs as a red label that contains the cause for 

classification disagreement. Dygraphs displays a green checkbox above a breath if no 

disagreement for a breath is found. 

The annotation view (AV) functionality provides the ability to select subsets of available 

metadata and breath classifications to display when reviewers are performing annotation. AVs 

are aimed at reducing information overload for the user and simplifying the annotation process 

by targeting it to specific project requirements. All AVs are stored in Redis, and new AVs can be 
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created by a user by selecting the specific metadata and breath classification desired. 

 

Figure 2.1: We designed APL to be familiar to clinicians, rendering information analogous to the 
user interface screen of a mechanical ventilator. Left, an image of the graphical user interface of 
a mechanical ventilator. Right, APL pressure (red) and flow (blue) waveforms with customizable 
breath-level metadata and point-click annotation. Breath interpretation at the bedside relies on 
both waveform and metadata analysis. APL presents both waveform morphology and breath-
level metadata for identification of threshold-defined events. 

To streamline the end-to-end annotation workflow, we designed a unified system of 

annotation and visual display termed ‘on-screen annotation’ that allows for simultaneous display 

of waveform morphology, metadata, and annotation choices for every breath (Figure 2.1). On-

screen annotation is accomplished by coding customized instructions in JavaScript that render 

drop-up tables containing metadata, annotation choices, and server callback logic. We then 

ensure that Dygraphs runs our overlay software after rendering of VWD. Using this overlay 

interface, we incorporated additional functionality to improve the speed of how annotations are 

performed, such as the option to perform single or multi-breath classifications. 
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2.2.2  Results 

Before starting the annotation process, users typically visit the Settings page to choose an 

AV (Figure 2.2). While users may choose a pre-defined AV, project leaders can create an AV, 

requiring that all other reviewers utilize that view to enforce consistency of annotations and 

outputs for a dataset. When an AV is created, leaders choose from a variety of annotation options 

and metadata available for display (Figure 2.2). When finished, the view can be named and saved 

to be used by other project members. In our initial work, we utilized AVs to create two different 

gold-standard datasets for PVA and ventilator mode (VM) classification. 

Once a view is selected, uploaded VWD files can be graphically displayed for annotation. 

If reviewers only wish to annotate portions of a file, they can zoom in and out of specific breath 

regions using Dygraphs to focus on regions of interest. When a specific breath is annotated, the 

user can click on its breath number, and a drop-up window will appear. Drop-up windows 

display both quantitative metadata and annotation options allowed by the current AV (Figure 

2.2). Users can annotate a breath by selecting the checkbox corresponding to the specific 

annotation desired. A user can also annotate multiple consecutive breaths using multi-breath 

functionality where the user annotates the first and the final breaths in a series, and all 

intermediate annotations will be automatically completed.  

After multiple users annotate the same file, reconciliation of discordant annotations can 

occur. Reconciliation functionality displays VWD using an interface like annotation but 

highlights disagreements in red and agreements with green checkboxes. Reviewers can evaluate 

each disagreement simultaneously and collaborate to resolve them. Once finished, users can 

output a CSV file containing all gold standard breath-level annotations. 
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Using APL, three critical care clinicians from UCD (BTK, JN, and JYA) annotated 

breaths for 18 different classifications from 254 VWD patient files and generated two datasets 

totaling 318,676 multi-clinician adjudicated breaths. To our knowledge, this collection represents 

one of the largest reported datasets of breath-level, multi-clinician adjudicated VWD (Table 2.1) 

Dataset Number of 
Annotated 
Breaths 

Number of 
Breath 
Classifications  

Pohlman 2008 (124)  391 2 
Blanch 2012 (125)  1,024 2 
Gholami 2018 (126) (using ExpertLabeler) 1,377 3 
Sottile 2018 (55)  2,500 4 
Colombo 2011 (49)  3,731 4 
Adams 2017 (54) (using APL) 9,719 8 
Thille 2006 (77) 35,580-58,110 3 
Beitler 2016 (53)  143,199 1 
Rehm (Ventilator Mode) 2019 (127) (using APL) 308,957 10 

Table 2.1: Existing multi-clinician adjudicated datasets of VWD. Number of classes corresponds 
with the number of annotation decisions available to the clinician as they performed annotation, 
including normal breaths. Exact counts for number of breaths annotated by Thille were not 
mentioned in the literature, so a range was extrapolated from the number of patients enrolled in 
their study and the respiratory rate of patients. 



 25 

 

Figure 2.2: We display a typical workflow for a user when using APL, and screenshots from 
APL that display typical uses and functionality. On the left, annotation workflow discusses the 
individual steps a user would take to annotate a file. On the right three images are shown: the 
first showing how a user would create a new annotation view, the second displays how the 
annotation process occurs on ventilator waveform data. The third shows how reconciliation 
occurs with discordant classifications highlighted in red, displaying exactly which classifications 
are mismatched. Agreements are displayed as a checkbox. 
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2.2.3 Discussion 

Creating datasets of large, multi-clinician annotated VWD for MV research is limited by 

a lack of accessible, efficient, and reproducible multi-reviewer annotation methods. We 

developed the APL to remedy these issues for VWD annotation and perform structured output of 

results. APL uses breath metadata to create hybrid visual-quantitative classifications of VWD. 

Incorporation of quantitative and qualitative methods into a web-based visual annotation 

interface may reduce reviewer subjectivity in VWD classification and enables efficient 

resolution of reviewer disagreements to generate gold standard data sets to drive classifier 

development. Using these methods, our team has annotated 318,676 dual-adjudicated breaths for 

use in development of VM and PVA detection algorithms, which represents one of the largest 

existing collections of multi-reviewer annotated VWD.(49,54,55,61,124,125) 

Historically, VWD annotation has been performed either by hand, use of electronic 

spreadsheets, and most recently by the web-based ExpertLabeler system.(126) A major 

limitation of these methods is that classifications are performed by visual criteria alone which are 

subject to high inter-rater bias due to reviewer subjectivity and local practice pattern.(49) APL 

addresses this limitation with the development of methods to support the simultaneous use of 

waveform morphology and metadata derived from VWD in classification decisions. To our 

knowledge, no MV-specific annotation package exists can compute breath level metadata, 

display it on-screen, and allow multi-reviewer annotation and adjudication of events. 

Technologically, APL builds on previous work related to annotation platform 

development and features novel contributions of its own. Our work to display VWD builds on 



 27 

previous platforms that provide annotation of generic physiologic data such as AcqKnowledge, 

ChronoViz, and BEDA, which have exemplified how to perform annotation on temporally 

archived waveform data.(67,128–131) APL’s combined morphologic and metadata display 

functionality also builds upon several previous studies that have derived higher-level metadata 

from raw input streams for purposes of display and annotation.(72,132–134) For example, Jing et 

al developed the ability to annotate multiple electroencephalogram (EEG) waveforms 

simultaneously.(135) Similarly, APL extends existing work developed in natural language 

processing applications for inter-rater reconciliation to a new domain of streaming physiologic 

waveform annotation.(75) Finally, APL contributes novel functionality including the use of 

drop-up windows with combined metadata and annotation capabilities, and the addition of 

annotation views that enable different metadata and annotation capabilities to be enforced across 

teams and customized to specific research needs.  

Our work is limited by use of data and clinicians from a single center, and APL is 

presently limited to processing VWD from a single ventilator. Future work will generalize APL’s 

data processing capabilities to other ventilators and medical devices by exploring the use of 

emerging waveform encoding standards.(136) In addition, APL has only been used by four 

clinicians to date and further modifications may be required to meet the needs of other 

researchers. Changes to APL may also enable additional investigation into the reproducibility of 

waveform classification, and may facilitate the development of consensus guidelines for 

annotating VWD.(49,137,138) To promote further research, we have freely released our code on 

GitHub so that the wider research community may modify our work. 
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2.3 PVA Detection 
2.3.1 Methods 

 From our repository of collected data, we extracted VWD from 35 patients who received 

ventilation at the University of California Davis Medical Center (UCDMC). For each patient, we 

selected a period of approximately 300 breaths where PVA was highly prevalent. Two ICU 

physicians independently annotated 9,719 individual breaths to achieve a ground truth labeled data 

set. Classification was performed via a combination of clinically guided heuristic rules and visual 

inspection, and each breath was labeled as one of 4 categories: normal, artifact, double trigger 

asynchrony (DTA), or breath stacking asynchrony (BSA). We targeted DTA and BSA because 

they are two of the most common forms of PVA and are thought to contribute to ventilator induced 

lung injury. Artifact breaths like suction and cough were identified and included in the dataset 

because they share characteristics with common forms of PVA that can result in false-positive 

PVA classification. All artifact and normal breaths were then included together and labeled as non-

PVA. Any disagreements in breath classification were reconciled between the reviewing 

clinicians, and a consensus label was chosen. Using this process, we created one of the largest 

dual-adjudicated datasets devoted to PVA detection reported to date. In total our dataset contains 

1,928 BSA breaths, 752 DTA breaths, and 7,039 non-PVA breaths.  

 To automatically distinguish different types of breathing, PVA detection algorithms must 

have the ability to extract quantitative features from breaths instead of relying on visually 

subjective breath characteristics. So, we used the ventMAP software suite to extract clinically 

relevant features from VWD.(54) In total, we derived 16 different features from each breath 

(Figure 2.3). After features were extracted from VWD, we evaluated multiple supervised ML 
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models to perform PVA classification. PVA classification was done on a per-breath basis where 

each breath is trained and classified based on a corresponding class label of non-PVA, BSA, or 

DTA. When training our models, we encountered a class imbalance issue because the number of 

PVA breaths were disproportionate to the number of non-PVA breaths in our dataset. Imbalanced 

training sets can be an obstacle to training accurate classifiers, resulting in decreased model 

performance when classifying DTA (56) in our case. We explored multiple methods to correct for 

class imbalance including random under sampling (RUS) and the synthetic minority over-sampling 

technique (SMOTE). We found that SMOTE offered the best balance of recall and specificity 

while RUS offered better recall than SMOTE at the cost of decreased specificity. In our 

experiments, we found that our models performed best when we used SMOTE to create a 1:1:1 

ratio of non-PVA, DTA, and BSA observations for our training set. This ratio created the same 

number of DTA and BSA observations while keeping non-PVA observations static.  

 

Figure 2.3: A. displays a normal breath and how information can be extracted from breaths in 
general. We define volume inhaled (TVi) as the amount of air breathed in on a breath. Tidal 
volume exhaled (TVe) is the amount of air exhaled. Positive end expiratory pressure (PEEP) is 
the minimum pressure setting for a ventilator. B. shows a series of breaths that occur due to a 
suctioning procedure. C. shows a breath stacking event, where a patient breathes in significantly 
more air than they exhale. D. shows a double trigger, which is two breaths that occur in rapid 
succession. 
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2.3.2 Results 

In our prior work,(56) we evaluated 10 ML algorithms: SVM, extreme learning, naïve bayes, 

multi-layer perceptron (MLP), and six tree-based approaches, namely decision trees, extra trees 

classifier, random forest, Adaboost, extremely random trees classifier (ERTC), and gradient 

boosted classifier (GBC). The performance of these algorithms was evaluated through k-fold 

validation, where we left one patient’s data out for testing, and used the rest for training. This 

yielded 35 training and testing folds, corresponding with the number of patients in our dataset. The 

performance metrics of interest are accuracy, recall, and specificity. Precision was not reported 

because its measurement would be biased because we focused on specifically selected regions of 

breath data with high PVA occurrence. Our explorations showed that extremely random trees 

classifier (ERTC), gradient boosted classifier (GBC), and multi-layer perceptron (MLP), achieve 

the best performance, but each with its own trade-offs.(56) ERTC achieved better accuracy for 

DTA class, while GBC and MLP performed better for BSA. An ensemble classifier consisting of 

ERTC, GBC, and MLP outperformed all other classifiers in terms of recall (sensitivity) and 

specificity, and the results are summarized in Table 2.2. The high accuracy of our ensemble 

classifier was the result of numerous optimizations and DTA performance was especially assisted 

using SMOTE. These results suggest that ML-based PVA detection algorithms have potential to 

be translated into clinical practice where they may improve the quality of care for patients 

receiving mechanical ventilation. 
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Algorithm Class Accuracy Sensitivity Specificity 

Ensemble Non-PVA 0.971 0.9673 0.9806 
 DTA 0.9742 0.9601 0.9754 
 BSA 0.9793 0.9445 0.9879 
ERTC Non-PVA 0.7245 0.6744 0.856 
 DTA 0.8693 0.9934 0.8589 
 BSA 0.7683 0.5835 0.814 
GBC Non-PVA 0.9707 0.9692 0.9746 
 DTA 0.9745 0.9335 0.9779 
 BSA 0.9779 0.9445 0.9861 
MLP Non-PVA 0.954 0.9439 0.9806 
 DTA 0.9576 0.9628 0.9572 
 BSA 0.9678 0.9155 0.9807 

Table 2.2: Descriptive statistics for all classifiers run on the multiclass classification problem 
using SMOTE. ERTC: Extremely Randomized Trees classifier. GBC: Gradient Boosting 
classifier. MLP; Multi-layer Perceptron. DTA; Double-Trigger Asynchrony. BSA; Breath 
Stacking Asynchrony 

2.3.3 Discussion 

In this chapter, we created an ensemble machine learning model for classifying two 

common, clinically relevant PVA subtypes, BSA and DTA, thought to be detrimental to patient 

health. We showed that addressing several issues common to ML model development in other 

fields resulted in excellent sensitivity and specificity for the classification of PVA in 

mechanically ventilated patients. In addition to mechanical ventilation, these challenges are 

broadly relevant to the creation of ML models in other areas of medicine. We addressed the class 

imbalance problem that resulted from PVA breaths being outnumbered by non-PVA breaths by 

using SMOTE to equilibrate the number of DTA, BSA, and non-PVA breaths.  
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Use of SMOTE and ensemble methods may be particularly helpful for clinicians in the 

future. Our study highlights that mechanical waveform data is highly imbalanced, with patients 

taking in range of 20,000-40,000 breaths over a given day, where most waveform data is 

indicative of normal, synchronous breathing. When PVA does occur, it can be used as the basis 

for a classification model, but episodes of PVA can be brief, and relatively infrequent. SMOTE 

helps to address class imbalance resulting from data paucity by creating synthetic samples of a 

minority class, and while it is not the only method to deal with class imbalance, it is well 

represented in the literature and has proven itself valuable in areas that also deal with data 

imbalances such as security and networking research. Ensemble models can be useful as well for 

data that are noisy or have highly complex decision boundaries, and ensemble-based models 

have been shown to create more accurate classifiers by combining many weaker classifiers. In 

our use case, our ensemble model yields sensitivity and specificity improvements for DTA 

classification compared to the MLP classifier, while maintaining equivalent performance for 

BSA classification compared to a single GBC classifier. 

 There are several limitations that must be noted with this work. First, this is a single 

center study, and differing types of patient care in other centers may affect how our model 

performs. Similarly, our selection of ML algorithms was not exhaustive and use of different 

algorithms may have similarly affected model performance. Due to time constraints imposed by 

manual waveform annotation, our classifier uses a relatively small amount of ventilator data 

(7.63 hours total) based on highly selective ROI’s where PVA is far more prevalent than it would 

be normally. Even though we present promising results, further studies will be necessary to claim 

generalizability of a ML anomaly detection model. Future work will need to examine additional 

methods for improving the accuracy of detection around strict classification boundaries, for 
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example where strict cutoffs in a feature value (e.g., E-time) are necessary for the correct 

classification of related classes such as DTA and BSA.  

2.4 Ventilator Mode Detection 
2.4.1  Methods 

 In this chapter, we used a dataset of VWD collected from 103 subjects (IRB# 647002) 

within intensive care environments of the University of California Davis Medical Center 

(UCDMC) consisting of MV flow and pressure measurements sampled at 50 Hz.(54,122) VM 

was not recorded during VWD data collection. We then randomly selected 2-4 hour epochs of 

VWD from the 103 subjects. All VWD was stored in data files of 2 hours in length, and 

approximately 2000 breaths were stored per data file. Each breath in these epochs was then 

annotated by three expert clinicians (JYA, BTK, JN) for the presence of one of five VMs: 

volume control (VC), pressure control (PC), pressure support (PS), continuous positive airway 

pressure (CPAP), and proportional assist ventilation (PAV) (Table 2.3). Many patients had 2-4 

hour periods selected where ventilator mode was switched multiple times, other modes such as 

pressure regulated volume control (PRVC), volume support, and airway pressure release 

ventilation (APRV) were found, and annotated within these epochs, but were excluded in our 

final analysis because of their rarity of use at UCDMC. 

 Because VWD is so heterogeneous it can be difficult for even expert clinicians to make 

consistent classification of breathing patterns.(49) Thus, in performing classification of VM we 

ensured that each breath was dual clinician adjudicated, meaning that two clinicians would 

independently annotate a single breath, and if the classifications disagreed, they would be 

resolved through communication between the two.(54) To further account for breathing 
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heterogeneity, we included regions containing pathologic patient-ventilator interactions such as 

patient-ventilator asynchrony (PVA) and routine clinical events such as suctioning and 

cough.(54) We also include regions of data that include significant signal noise caused by 

moisture/blood/mucus in the ventilation tube.  

 With this dataset, we utilized 55 patients and 140,928 breaths for our training cohort, and 

48 patients and 165,988 breaths for our testing cohort.  There was no patient overlap between 

testing and training cohorts. The testing set was chosen to be approximately as large as the 

training set because initial modeling yielded strong results, and we wished to utilize a large 

testing set as further validation for our approach. Using both Scikit-learn and PyTorch ML 

libraries,(139,140) we then evaluated the use of multiple ML algorithms including: support 

vector machine (SVM),(141) multi-layer perceptron (MLP), long-short term memory recurrent 

neural network (LSTM RNN),(142) logistic regression, and a random forest (RF) classifier.(143) 

All models performed classification on a per-breath basis, the highest possible level of 

granularity possible in VM classification. Based on model investigation, we settled on using an 

RF with a parameterization of 30 classifier trees for our final model (see online supplemental2). 

 

 

 

 

 

 

2 https://github.com/hahnicity/ventmode/blob/master/supplemental 
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 Volume 
Control 

Pressure 
Control 

Pressure 
Support 

CPAP PAV 

Patients 23 37 55 28 22 
Total Breaths 61,662 78,635 92,360 14,795 36,303 
PVA Breaths 7,714 4,570 6,924 2,373 7,669 
Suction Breaths 750 136 681 350 373 
Cough Breaths 229 117 178 56 96 

Table 2.3: Descriptive statistics for our dataset for each ventilator mode analyzed. We also 
analyzed number of patient ventilator asynchrony (PVA), suction, and cough breaths found. 
While these breaths do not represent normal breathing, they are typical in clinical practice. CPAP 
- Continuous Positive Airway Pressure, PAV – Proportional Assist Ventilation 

Feature  Description 
Inspiratory Flow 
Slope Variance (per 
breath) 

This feature measures the variance of successive, 0.08-second-long 
slope measurements of the inspiratory flow curve of a single breath. 
This feature was effective for classifying volume control. 

Variance of Pressure 
(per breath) 

This feature takes the variance of all pressure measurements for a 
single breath. This feature was helpful for classifying CPAP which 
typically utilizes low pressures relative to PEEP on inspiration. 

Variance of Per-
Breath Inspiratory 
Flow Slope 

The inspiratory flow slope variance was found on a per breath basis, 
and this feature takes the variance of the inspiratory flow slope 
variance across a 10-breath window. 

Flow-Based I-time 
Variance (10 breath 
window) 

The amount of time that a patient inhales for a single breath is called 
the I-time. This feature calculated the variance of 10 successive 
breaths. 

Pressure-Based I-
time Variance (10 
breath window) 

We defined pressure-based I-time as the amount of time (seconds) 
that pressure is elevated by [0.4 * (PIP - PEEP)] above PEEP. This 
was an important variable to measure in pressure control and pressure 
support, where flow-based I-time can be shorter than the ventilator’s 
set I-time, which may occur in delayed cycling asynchrony. The 
variance of this statistic was taken over a 10-breath window. 

N Plateau Pressures 
(20 breath window) 

A plateau pressure is taken on a ventilator when inspiratory flow is 
set to 0 for a certain amount of time, during which a ventilator can 
read the residual pressure in the respiratory system. PAV will 
repetitively take plateau pressures to adjust ventilation to a patient’s 
needs. 
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Table 2.4: The set of proposed features for our model. Features were segmented into per-breath 
and multi-breath time frames. I-time - inspiratory time. PEEP - Positive end expiratory pressure. 
PIP - peak inspiratory pressure. CPAP - Continuous Positive Airway Pressure. PAV - 
Proportional Assist Ventilation. 
 Our feature set is composed of 7 items of expert-guided information derived from raw 

VWD and is described in Table 2.4. Our features are derived from both per breath and multi-

breath analytic time frames. Per-breath time frames occur over a single breath, while multi-

breath time frames are composed of windows of short, medium, and long periods of breathing. 

The short window is 10 breaths long, the medium window is 20 breaths, and the long window is 

100 breaths. Tuning of features and hyperparameters was guided by performing 10 K-fold 

validation of our training data. After tuning model hyperparameters during the validation phase, 

we evaluated our model on our testing set. No additional changes to our feature set, or model 

hyperparameters was performed after model development was completed in the training set. 

Model performance is primarily reported through F1-score because it is more representative of 

class-imbalanced classifier performance than accuracy is. F1-score is calculated as the harmonic 

mean of precision (PPV) and recall (sensitivity): 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

A limitation to using RF to classify ventilator mode is the RF classifier assumes that all breaths 

are independent of each other. However, ventilator mode is a continuous setting that does not 

vary over time, unless it is manually changed by the provider. Therefore, one breath’s mode is 

often predictive of the next breath’s mode. This modeling incongruity causes the RF classifier to 

sometimes perform an incorrect VM classification even in periods where the classifier correctly 

Pressure-Based I-
time Variance (100 
breath window) 

In this feature, the pressure-based I-time statistic is also calculated for 
a 100-breath window. This feature was necessary to provide capacity 
for differentiating between pressure control and pressure support in 
synchronously breathing patients. 
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predicts the correct VM for majority of breaths. To smooth these incorrect predictions, we 

implement an algorithm we term “look-ahead smoothing” which operates as a second pass 

heuristic on all per breath RF breath predictions. More specifically, once the RF is finished, look-

ahead smoothing examines each breath VM classification sequentially, and if it determines a 

breath’s classification is not in accordance with the previous 𝑛 breaths then it will look ahead at 

the next 𝑛 breaths in sequence. The breath will then be re-classified in accordance with the 

majority 𝑥 percent of the subsequent 𝑛 breaths. Both 𝑛 and 𝑥 are configurable parameters that we 

set at 𝑛 = 30 and 𝑥 = 60, parameters which were found via sensitivity analysis. In real-time 

classification, assuming an average respiratory rate of 20 breaths per minute, this technique 

results in a latency of at most 1.5 minutes between a given breath and the availability of its final 

classification.  

 Finally, we implemented an experiment to test how well our classifier would generalize 

to a larger dataset if random breaths in our training dataset were missing due to some technical 

error. So, we conduct an experiment where we ablate (i.e., remove) data observations at random 

from our training dataset in equal proportion for VC, PC, PS, CPAP, and PAV. We do not perform 

any ablation on the testing set. We then report results of this experiment by recording F1-score 

for each class with respect to the percentage of the dataset that simulated as missing. 

2.4.2 Results 

Using a RF model with the feature set defined in Table 2.4, we initially performed 10-fold cross 

validation with our training set to test performance of our VM classifier. We found that during 

cross validation our model consistently performed within 98-99% for F1-score, recall, and 

specificity for all VMs. We then evaluated our model on the withheld test set and only received 
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slightly worse performance from our model, with CPAP suffering the largest drop in 

performance, and VC/PAV suffering no drop in performance (Table 2.5).  

Mode F1-Score Accuracy Precision Recall Specificity 
VC 0.999 1.0 0.999 0.999 0.999 
PC 0.986 0.991 0.986 0.987 0.993 
PS 0.985 0.989 0.989 0.981 0.993 
CPAP 0.955 0.997 0.937 0.974 0.998 
PAV 0.994 0.999 0.990 0.998 0.998 

Table 2.5: Performance of our Random Forest model when applied to our withheld testing set. 
 We hypothesized that since the model performed well on both training and testing sets 

that it would also be robust to scenarios in which breath data went missing due to reason of 

sensor or software failure. We report results for this experiment in Figure 2.4. We found the 

model is robust to missing data until approximately 90% of data is removed. After this point PC 

and PS F1-score performance begins to decrease and other classifications begin to fluctuate. 

After 99% of data is removed our classifications lose clinical utility. 

 

Figure 2.4: Here we simulate the scenario where a percentage of training observations is missing 
due to software/hardware error. 
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 Given the results of the random ablation experiment we hypothesized that we may have 

created too large a training set. To reduce the size of our training set in a generalizable, non-

random way, we hypothesized we only needed to keep the first of a certain number of contiguous 

breaths from each VM per data file, and still maintain the performance of our original model. In 

this respect, we could make recommendations to physicians to only annotate the first 𝑚	breaths 

in a series and just leave the rest alone. This could also decrease the amount of time necessary to 

annotate VM on future patients. So, we performed a sensitivity analysis to determine the optimal 

number of contiguous observations to keep per ventilator mode. Our analysis (Figure 2.5) 

showed that it was most optimal to only use the first 450 VC observations, the first 1,000 PC and 

PS observations, and the first 70 CPAP, and 300 PAV observations in a file. Our investigation 

also revealed that PC and PS do worse when only utilizing short periods of contiguous 

observations. Using this methodology, we ablated the overall number of training observations by 

64.73% from 140,928 to 49,702 observations, while still maintaining generalizability of our 

training set to our withheld test set, and slightly improved CPAP performance (Table 2.6). 
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Figure 2.5: Results from our sensitivity analysis for choosing the first N contiguous breaths for a 
given mode in a data file. 

 

Mode Training Observations F1-Score 
VC 6,079 (-83.70%) 0.999 (+0) 
PC 14,775 (-50.39%) 0.988 (+0.002) 
PS 21,453 (-33.25%) 0.988 (+0.003) 
CPAP 1,330 (-86.75%) 0.975 (+0.02) 
PAV 4,173 (-77.63%) 0.994 (+0.001) 

Table 2.6: Results of our ablation experiment where we only keep the first 450 VC observations, 
the first 1,000 PC and PS observations, and the first 70 CPAP, and 300 PAV observations in a 
data file. We note the final number of training observations that we kept, and report how much of 
a reduction that contrasted with the original training set. Performance improvements over results 
listed in Table 2.5 are bracketed alongside final performance metrics. E.g., a performance 
increase of 2.0% is denoted as (+.02). 
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2.4.3 Discussion 

 In this chapter, we highlighted how we created a dataset of 308,957 breaths annotated for 

VM on a per-breath basis and how we developed a highly accurate, ML-based VM classification 

model that only utilizes raw VWD to perform classifications. Our VM classifier was highly 

performant in detecting five of the most widely used VMs in the USA, even in the presence of 

signal noise, episodes of PVA, and routine clinical events such as cough and suction.(83) Using 

our approach, we were able to achieve methodological and performance improvements in VM 

classification compared to the current state of the art.(76) In this regard, Murias reported 89% 

accuracy at detecting per-hour VM classification,(76) and we report average accuracy of 99.52% 

of per-breath VM classification. Finally, we examined how robust our model is to the presence 

of missing training data, and additional experimental results that suggested how we can decrease 

the size of our dataset while still maintaining generalizability of our classifier. 

 We took multiple measures to ensure we were not overtraining our classifier. First, we 

utilized a relatively large and diverse sampling of patients to create both our testing and training 

sets. This created one of the largest available datasets of per-breath labeled VWD. 2-4 hour 

epochs were chosen at random from each of these patients. Our testing set included almost as 

many patients as our training set and was composed of more breaths than our training set. There 

was no overlap of patients between training and testing sets. Finally, all model features and 

hyperparameters were evaluated on the training set using K-fold validation and were frozen after 

initial evaluation of our testing set. 

 Our ablation experiments deserve additional consideration. The results of random 

ablation experiment highlight multiple things: 1) RF is extremely performant with our 
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featurization approach and is also able to perform VM classification with small amounts of data. 

2) Our ablation results also illustrate that it may not be necessary to create very large training 

datasets of information to create performant ML classifiers for VM. 3) Our size reduction 

experiment surprisingly showed that the first 70 breaths seem to be most representative of CPAP 

breathing patterns. We hypothesize this can be explained by the fact that some patients tire 

quickly when on CPAP, and thus their breathing can become more irregular. In this case, later 

breaths in CPAP sequences may more closely resemble asynchronous breathing from other 

ventilator modes instead of CPAP. 

 This work had limitations where it was confined to a single academic medical center and 

single ventilator type. Classifier performance may change when introduced to a multi-center or 

multi-ventilator dataset. There are also additional ventilator modes such as PRVC that we were 

unable to add to our model due to their paucity of use at UCDMC. We welcome additional 

collaboration and inclusion of multi-center data and have publicly released our code and dataset. 
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Chapter 3: Clinical Validation of 
Algorithms for Estimating Static 
Compliance 

3.1  MATERIAL AND METHODS 
  

 This is a retrospective study that was conducted as part of an institutional review board 

(IRB)-approved research effort collecting ventilator waveform data (VWD) from mechanically 

ventilated adults at UC Davis Medical Center (UCDMC). Enrolled subjects were considered for 

analysis if a clinically valid inspiratory pause maneuver(88) was performed. All subjects were 

ventilated in the following assist control VMs: VC, PC, or PRVC. Subjects had RASS scores 

ranging from -1 to -5. Subjects were excluded from analysis if they were under 18 years of age, 

were pregnant or a prisoner, or if all plateau pressure checks were determined invalid. 

 We used a previously published methodology to collect VWD(122). VWD consists of 

raw pressure (cm H2O) and airflow (L/min) observations sampled at 50 Hz. Our dataset is split 

into two parts: first we collected VWD using a mechanical lung (QuickLungTM) over the course 

of 8 different experiments, and 8,787 breaths. We used this data to validate all reproduced 

algorithm code. Next, we collected a dataset of 39,660 breaths from 18 subjects hospitalized at 

UCDMC between 2015 and 2020. Ground-truth 𝐶!" was found for each breath through analysis 

of end-inspiratory pause maneuvers that were performed during routine course of care(47,144). 

All inspiratory pause maneuvers were validated by three clinicians (JN, CG, MB) by either 

performing the procedure at bedside, or through retrospective review of VWD. VMs and RASS 
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scores were collected via review of both electronic medical record (EMR) and collected 

VWD(145). All VWD was processed through rule-based algorithms to determine presence of the 

following subtypes of PVA: double trigger asynchrony, breath stacking asynchrony, flow 

asynchrony (FA), and delayed cycling asynchrony (DCA)(54). Flow asynchrony is further 

graded by severity in terms of the level of inspiratory pressure deflection into mild, moderate, 

and severe grades of asynchrony. 

 We replicated 15 different computer algorithms used for non-invasively estimating 𝐶!" 

using the single-chamber model of the lung(146,147). The single-chamber model is expressed 

by: 

𝑃#$(𝑡) = 𝑅#$𝑄(𝑡) +
𝑉(𝑡)
𝐶!"

+ 𝑃%, 

where 𝑃#$(𝑡) is the airway pressure at a given time t, 𝑅#$ is the patient’s airway resistance, 𝑄(𝑡) 

is airflow at time t, 𝑉(𝑡) is the volume of air in the lung at time t, 𝐶!" is the respiratory 

compliance, and 𝑃% is the positive end expiratory pressure (PEEP). Although analytic methods 

exist(96,98), this equation is usually solved by using least squares regression to calculate for 𝐶!" 

and 𝑅#$ terms using measured 𝑄(𝑡) and 𝑉(𝑡) data from either the inspiratory or expiratory 

limbs of a breath(45,89,104). This method can non-invasively measure lung physiology and can 

accurately estimate 𝐶!" when patients are exerting no muscular effort in breathing.  

 The single chamber model, however, fails to account for muscular effort during 

spontaneous breathing. Furthermore, the performance of 𝐶!" estimators during spontaneous 

breathing has received scant validation(92). So, in this chapter, we analyze a comprehensive list 

of 𝐶!" estimation methods including: Al-Rawas method (98,148), flow-targeted inspiratory least 

squares(89), Howe’s least-squares(104), IIPR(102), IIMIPR(149), IIPREDATOR(92), 
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Kannangara’s method(89), Major’s method(105), MIPR(149), polynomial method(150), 

PREDATOR(103), pressure-targeted expiratory least-squares(47), pressure-targeted inspiratory 

least squares(146,147), constrained optimization(97), and Vicario’s non-invasive estimation of 

alveolar pressure(96). Many of these methods are mode-restricted where they are designed to 

operate in either VC or PC/PRVC modes (Table 3.1). So, in our VM experiments, we only 

evaluated algorithms that were designed to work for a specific mode. For instance, in VC mode 

experiments, we only evaluated VC-specific algorithms, and mode-agnostic methods. Other 

algorithms, such as Howe’s least squares(104) should theoretically work in any VM, but are 

unvalidated in VC.  

VC Algorithms PC/PRVC Algorithms Mode-Agnostic 
Algorithms 

Mode-Agnostic 
Algorithms but 
Unvalidated in VC 

IIPR(102) Flow-targeted 
inspiratory least 
squares(89) (Figure 
3.1C) 

Al-Rawas 
method(98,148) 

Howe’s least-
squares(104) 

IIMIPR(149) Kannangara’s 
method(89) (Appendix 
Figure B.8) 

Pressure-targeted 
expiratory least-
squares(47,104) 
(Figure 3.1B) 

Vicario’s non-
invasive estimation 
of alveolar 
pressure(96)  

IIPREDATOR(92)  Constrained 
optimization(92,97)  

 

Major’s method(105)    
MIPR(149)    
Polynomial 
method(150)  

   

PREDATOR(103)    
Pressure-targeted 
inspiratory least 
squares(47) (Figure 
3.1A) 

   

Table 3.1: Enumerates list of mode-specific, and mode-agnostic algorithms we analyze in this 
work. 
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Figure 3.1: Shows different least squares regression methods and what kinds of data they use 
from different parts of the breath. Also shows which formulation of the single-chamber model is 
used in calculation. 

 We define respiratory compliance 𝐶!"&  as the measured compliance of breath 𝑘, 1≥ 𝑘 ≥ 𝑁 

given 𝑁 breaths in any given patient sample. We measure 𝐶!"&  by performing an inspiratory pause 

maneuver to find plateau pressure, and then we derive 𝐶!"&  from the plateau pressure (𝑃'(#)& ) (88) 

using the equation:  

𝐶!"& =
𝑉&

𝑃'(#)& − 𝑃%
 

where 𝑉& is the inhaled volume of air for breath 𝑘. We make the assumption that 𝐶!" does not 

change significantly in a short period of time (92), so we assume that all breaths within 30 

minutes of the time of finding 𝑃'(#)&  have equivalent 𝐶!"& . If more than one plateau pressure was 

measured within 30 minutes of a breath, then breath 𝐶!"&  was averaged across the multiple 

observations. 

 After our gold-standard compliance 𝐶!"&  for each breath is found, we can compute the 

absolute difference (𝐴𝐷&), and standard difference (𝐷&), between 𝐶!"&  and the estimated 

compliance 𝐶K!"&  for each breath from a chosen algorithm.(92,104,105)	
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𝐴𝐷& = |𝐶!"& − 𝐶K!"& 	| 

We can then find various statistics, such as median, mean, and median absolute deviation (MAD) 

(92,104), for all 𝐴𝐷&, 1≥ 𝑘 ≥ 𝑁 for any given patient. This allows us to determine performance 

of any algorithm for a given patient. Per-breath AD can be highly variable however, due to 

periods of PVA and transient abnormality, and may not always be clinically usable by clinicians. 

To ameliorate this issue, we propose to measure algorithmic performance by using windowing 

for a given window size 𝑠, and then smooth 𝐶K!"&  using the median of 𝐶K!"&  and 𝑠 − 1 prior samples. 

We define this metric as windowed difference (WD): 

𝑊𝐷& = |𝐶!"& − 	𝑚𝑒𝑑𝑖𝑎𝑛(O𝐶K!"&*", … , 𝐶K!"& Q)| 

WD can be calculated using a series of overlapping (i.e. – rolling), or non-overlapping (i.e. – 

sequential) windows. For this chapter, we use overlapping windows with 𝑠 = 100.  

 We use the metrics defined above to examine how the algorithms perform across all 

patients in our dataset. For this we compute the median AD for each patient in our dataset, per 

algorithm. Then we compute the mean of each patient median across all patients to generate a 

mean AD across all patients. Mean MAD is computed in a similar way. The MAD of estimated 

compliance is found per patient, and then the mean MAD is computed across all patients per 

algorithm. These two computations are motivated by our desire to have an algorithm that on 

average estimates patient 𝐶!" as accurately as possible, while ensuring that 𝐶!" estimates are 

consistent. 

 There are also algorithm statistics that are best reported on a per-breath basis. For per-

breath performance we collect all standard differences 𝐷& between estimated and true 𝐶!" across 

all patients and then plot results using a box and whiskers plot. This allows us to examine 
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algorithm performance in specific circumstances, such as during asynchronous breathing, when 

utilizing per-patient results not representative of patient-level clinical realities. 

3.2 RESULTS 
 

 First, we compute the mean MAD of the best performing algorithms for VC mode and 

PC/PRVC modes (Figure 3.2, Figure 3.3) on a per-patient basis. We then perform a similar 

analysis across all VMs using only mode-agnostic algorithms (Appendix Figure B.2). Our results 

show that most mode-agnostic algorithms underperform mode-specific algorithms. The best 

mode agnostic algorithm is Vicario’s non-invasive estimation of alveolar pressure. However, this 

algorithm is also highly variable and has the largest mean MAD compared to other algorithms. 

 

Figure 3.2: Displays which algorithm performs best on a per-patient basis for all volume control 
(VC) breaths. X-axis is found by computing the mean, median absolute difference between gold 
standard compliance and algorithm estimated compliance on a per-patient basis. Y-axis shows 
the mean median absolute deviation of all compliance estimates per patient. Note that VC 
specific algorithms and mode-agnostic algorithms are included in this analysis. 
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Figure 3.3: Displays which algorithm performs best on a per-patient basis for all pressure control 
(PC) and pressure regulated volume control (PRVC) breaths. Note that PC/PRVC specific 
algorithms and mode-agnostic algorithms are included in this analysis. 

 We also measure algorithmic performance under different PVA scenarios across VMs 

using per-breath analysis. Here we use boxplots to describe the distribution, median, and IQR of 

standard differences between estimated and true 𝐶!". We do not use absolute difference for 

boxplots because standard difference allows us to better see distribution of errors around 0. 

Figure 3.4 shows the performance of VC-capable algorithms during asynchronous breathing 

excluding mild FA. We exclude mild FA because we found almost all algorithms are not 

negatively affected by it, and the preponderance of mild-FA in our dataset dampens the effect of 

other PVA types on our results (Appendix Figure B.3 and Appendix Figure B.4). Our results in 

Figure 3.4 further highlight our findings from Figure 3.2 that VC VWD is best analyzed by VC 

specific algorithms, and that mode generic algorithms, with exception of Al-Rawas method, are 

less performant on VC breathing. Al-Rawas itself has a mechanism for filtering breathing that 

does not have an ideal exhalation curve, which be part of the reason why Al-Rawas performs 

well with asynchronous breathing in VC. 
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 In Figure 3.5, we investigate the effect of moderate to severe FA on VC performance. 

This investigation is based on the hypothesis that VC algorithms work best in this scenario 

because they can correct for inherent nature of FA. We find that this hypothesis is partially 

correct, and that methods used to correct for FA, like IIPREDATOR, perform well in FA. Our 

analysis also finds that algorithms using expiratory data, instead of inspiratory data, like Howe’s 

expiratory least squares are best at estimating 𝐶!" during moderate-severe FA. This may be 

because the expiratory limb is less affected than the inspiratory limb during FA.  

 

Figure 3.4: Comparison of algorithm performance between non-asynchronous and asynchronous 
breathing (without mild flow asynchrony) in volume control (VC) mode.  
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Figure 3.5: Comparison of algorithm performance between non-asynchronous and 
moderate/severe flow asynchrony (FA) breathing in volume control mode. We cut off results of 
Vicario’s non-invasive estimation of alveolar pressure because the IQR would disrupt 
visualization of results.  
 
 In Figure 3.6 we show investigation of the prior methodology comparing normal and 

asynchronous breathing but applied to PC/PRVC only. We see that almost all algorithms are 

relatively unaffected by PVA. However, like VC, this is because milder effects from DCA mutes 

the effects of more severe asynchronies (Appendix Figure B.5). When we remove DCA we find 

all algorithms perform significantly worse at estimating 𝐶!" than during normal breathing (Figure 

3.7). We also find the Kannangara method tends to yield median differences closest to 0 of all 

algorithms surveyed. This is not surprising because the Kannangara had the best per-patient 

results for PC/PRVC breaths (Figure 3.3) and it was designed to correct for PVA. 
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Figure 3.6: Boxplot comparison of algorithm performance between normal and asynchronous 
breathing in pressure modes (pressure control / pressure-regulated volume control). 

 

Figure 3.7: Boxplot comparison of algorithm performance between normal and asynchronous 
breathing without delayed cycling asynchrony (DCA) in pressure modes. 

 We note that prior results (Figure 3.4-Figure 3.7) show per-breath IQR increases 

significantly during PVA. This finding has motivated development of algorithms that are 

resistant to PVA(89,102,103,150), and has motivated our hypothesis that windowed difference 

would function to improve algorithm resistance to PVA and other transient anomalies in 

breathing. To investigate, we first analyze results of windowing on a per-patient basis. We found 

that for all algorithms, windowing did not yield any significant change in AD (Figure 3.8A), 

however, windowing does improve per-patient algorithm MAD for a majority of surveyed 
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algorithms (Figure 3.8B). We also investigate effect of windowing on asynchronous breathing. 

Like previously, we only analyze asynchronous breaths, and then compare the estimated 𝐶!" of 

our algorithms without windowing and with rolling median windowing (Figure 3.9). Our 

findings show that windowing can reduce impact of asynchronous breathing by utilizing prior 

synchronous breaths to smooth estimated 𝐶!". Combined with results of (Figure 3.8), we see 

windowing is most effectively used on a per-breath basis during asynchronous breathing. This 

may mean that windowing is best used during real-time estimation of 𝐶!" in clinical practice. 

 

Figure 3.8: A. Shows the effect of windowing on absolute difference (AD) between estimated 
and true compliance. We were unable to find an algorithm that was statistically improved using 
windowed difference. B. Shows effect of windowing on median absolute deviation. Note: 95% 
CI is shown in bar plot whiskers 
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Figure 3.9: Shows the effect of no windowing (yellow) and rolling median windowing (orange) 
when examined at breath level. 

 We also hypothesized there may be certain characteristics of mode-specific algorithms 

(Table 3.1) that translate to modes outside those they were developed in. So, we investigate the 

utility of analyzing VM-specific algorithms in modes they were not tested for. In our first 

investigation, we compute the windowed, per-patient results for all PC/PRVC breaths with VC 

mode-specific algorithms and compare them to baseline results derived our 2 PC/PRVC-specific 

methods (Table 3.1, Figure 3.10). Our findings show us that the polynomial method, MIPR, and 

IIMIPR outperform both PC/PRVC-specific algorithms in per-patient median AD, and the flow-

targeted inspiratory least squares method dramatically underperforms pressure-targeted least 

squares. Our results imply that even though VC algorithms are clearly tailored for specific 

aspects of VC, that they possess some generic analytic properties that translate to PC/PRVC. 

Furthermore, the fact that flow-targeted inspiratory least squares dramatically underperforms 

pressure-targeted least squares is surprising, given that flow-targeted inspiratory least squares 

was mathematically formulated for PC/PRVC(89). This shows that rearranging the single-
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chamber model to account for a specific VM can yield worse results than using the standard 

formulation.  

 

Figure 3.10: Shows the per-patient, windowed results of the VC specific algorithms applied to 
PC/PRVC. For comparison, we provide baseline calculations with PC/PRVC-specific 
algorithms.  

 We perform similar analysis on VC breaths. We analyze all VC breaths with our 2 

PC/PRVC specific methods and provide baseline comparison using VC-specific algorithms. 

Unlike previously, none of the PC/PRVC specific methods outperform the best VC methods, but 

Kannangara’s method can achieve relatively close performance to the best-performing VC 

algorithms. This experiment gives further evidence that there is generic utility to Kannangara’s 

method even though its correction of flow will not function in VC-related asynchronies. 
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Figure 3.11: We find windowed, per-patient results for PC/PRVC algorithms when applied to 
VC. For comparison, we provide baseline calculations with VC-specific algorithms. 

3.3 DISCUSSION 
 In this chapter, we have described our efforts to benchmark a comprehensive list of 

existing algorithms used to estimate 𝐶!" using the single-chamber model of a human lung. Our 

work showcases that the Polynomial method (150) works best in our patient population across all 

surveyed VMs (Figure 3.2, Figure 3.10). We also show that utilizing a median windowing 

strategy can improve overall consistency of algorithm results and will function best when 

clinicians desire real time calculations for 𝐶!". Finally, we showed that all algorithms surveyed 

maintained good performance when applied to VMs outside those they were derived for. This 

result stands in contrast to existing assumptions that 1) mode-specific algorithms will only work 

in the VM they were developed for; and 2) the single chamber model needs to be rearranged to 

accommodate varying VMs (89). In addition to these findings, we have generated the largest 

available database of open ventilation data that can be used for benchmarking single-chamber 

algorithms. We hope that this contribution will speed up the development of future 𝐶!" 

estimators. 

 Our study provides the most comprehensive validation of available single-chamber 

algorithms along varying clinical scenarios, with the largest dataset of patients and breaths to 

date. Our study design differs from prior validation efforts by Redmond et al. where the authors 

analyze 6 algorithms with a dataset of 4 patients, where each patient receives sedation during 

monitoring(92). Estimated 𝐶!" is then measured for 30 breaths before sedation, and 30 breaths 

after sedation, for a total of 240 breaths (92). Our dataset was gathered over long periods of 

regular care during which time providers performed routine monitoring of 𝐶!" for a total of 
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39,660 breaths (Appendix Table B.1). These differences in dataset size, study design, and the 

greater percentage of synchronous breathing in our dataset may explain some difference in 

results between ours and Redmond’s study. For instance, when measuring 𝐶!", Redmond found 

that IIPREDATOR performed best when correcting for VC PVA. We note that IIPREDATOR 

was among the best performing algorithms in our study as well (Figure 3.5). However Redmond 

et al. did not evaluate expiratory pressure methods(47,104) in their work. Our findings show 

using expiratory pressure methods(47,104) function better than inspiratory pressure-targeted 

methods like IIPREDATOR when estimating 𝐶!" during moderate-severe FA. We also provide 

more granular discrimination into different types of PVA than Redmond(92). Our work shows 

that all algorithms perform surprisingly well in periods of mild PVA such as during mild FA and 

DCA (Appendix Figure B.4, Appendix Figure B.5). It is only during more severe types of PVA 

that algorithms return variable 𝐶!" estimates. Redmond et al. did not perform this level of 

discrimination and treated all breaths in the period after sedation wore off as asynchronous(92). 

Given the results of Redmond et al. and this study (Figure 3.5), it is possible that all subjects in 

Redmond et al. experienced moderate-severe FA after their sedation wore off(92). 

 Our results using VC algorithms in PC/PRVC, and vice-versa, requires elaboration. 

Algorithms that correct for PVA in VC like IIPR, MIPR, and the polynomial method will not 

function to correct PVA in PC/PRVC(102,150), nor can Kannangara’s method correct PVA in 

VC(89). Our findings, however, show there exist generic computational methods in these 

algorithms that allow them to perform well under VMs different than what they were designed 

for. For instance, Kannangara’s implementation of their algorithm only utilizes a small portion of 

inspiratory data between two of the inspiratory “shoulders” to calculate 𝐶!"(Appendix Figure 

B.8)(89). Empirical evidence shows this implementation is significantly more effective than 
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using the entire inspiratory portion of the breath that is done in flow-targeted inspiratory least 

squares(89). Likewise, the way the polynomial method is calculating 𝐶!" may be yielding overall 

benefits that are mode-generic as well, however it is beyond the scope of this work to investigate 

the specific mechanism at play(150). Furthermore, by comparing between results of pressure-

targeted inspiratory least squares, and flow-targeted inspiratory least squares we find that 

rearranging the single-chamber model by VM does not yield improved 𝐶!" estimates (Figure 

3.10). First, it is unclear if there is actual mathematic rationale for the rearrangement because 

VM does not change how lungs operate, and by proxy the single-chamber model, VM just 

changes how the ventilator delivers a breath. Second, rearranging the single-chamber model 

doesn’t allow isolation of 𝑅#$ and 𝐶!" components in the single-chamber model(89,104). This 

may contribute to the larger estimation errors seen in the flow-targeted inspiratory least squares 

method. 

 Although we have been able to provide further levels of clinical validation for the single-

chamber model in different clinical scenarios our study also has limitations. First, our work is an 

observational, single-center study that did not include any study-specific alterations in patient 

care. For a vast majority of patients, we were also unable to capture valid plateau pressures 

above RASS of -3 when patients were truly spontaneously breathing. So, our results should only 

be viewed as applicable for patients with RASS≤ −3. We also experienced large confidence 

intervals in our estimation of windowing effects due to having a relatively small patient cohort of 

18 subjects. Furthermore we are unable to make any claims about which 𝐶!" estimation 

algorithms work best under varying pathophysiologic states(47,95). Future work can add new 

open-source patient data to our published dataset so that the community can further improve 
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confidence intervals for algorithm results and understand performance of these algorithms under 

varying lung pathophysiology at different clinical centers.  
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Chapter 4: ARDS Detection with 
Classical Machine Learning Models 

We hypothesized that a ML model, using only physiologic information extracted from 

raw VWD, would be able to discriminate between patients with and without ARDS at early time 

points in MV without the need for CXR, ABG, or other electronic health record (EHR)-derived 

data. In this chapter, we explore this hypothesis along with several other surrounding 

experimental questions. 

4.1 Methods 
All patient data were obtained as part of a prospective, Institutional Review Board approved 

study collecting raw VWD from mechanically ventilated adults admitted to the medical ICU at 

UC Davis Medical Center. Three clinicians (JYA, ICP, BTK) performed retrospective chart 

review to identify the cause of respiratory failure in subjects from the VWD study cohort 

enrolled between 2015–2019.  Subjects were split into two cohorts: 1) patients with confirmed 

moderate or severe ARDS diagnosis using Berlin consensus criteria within 7-days of 

intubation(151); and 2) patients with no suspicion of ARDS during their course of MV to avoid 

phenotypic ambiguity. Patients with chronic obstructive pulmonary disease and/or asthma were 

excluded from the ARDS patient cohort. Causes of ARDS and indications for mechanical 

ventilation in the non-ARDS cohort are shown in Table 4.1. Both cohorts required at least 1h of 

VWD collected in the first 24h after ARDS criteria were first met, or after the start of MV 

(Appendix Table C.1 and Appendix Figure C.1). All cases meeting study inclusion criteria were 

reviewed by two clinicians and disagreements were settled by consensus. No sample size 
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calculation was conducted for this study however, sample size was guided by the range of cohort 

sizes in previous studies of VWD analysis (51–54) and to achieve a balanced dataset for ML 

model development as standard ML algorithms are biased towards the majority class, resulting in 

a higher mis-classification rate for the minority class.(152) 

 ARDS 
(n=50) 

Non-ARDS 
(n=50) 

Age (median, IQR) 57 (38-65) 58 (49-67) 
Female (%) 13 (26) 23 (46) 
BMI (median, IQR) 26.4 (22.3-33.8) 25.9 (22.1-28.7) 
Obstructive lung disease (n, %)   
   COPD 0 (0) 12 (24) 
   Asthma 0 (0) 5 (10) 
Reason for ICU admission (n, %)   
   Acute hypoxemic respiratory failure 24 (48) - 
   COPD/asthma exacerbation - 17 (34) 
   Sepsis 11 (22) - 
   Metabolic encephalopathy/drug overdose 2 (4) 15 (30) 
   Airway edema/anaphylaxis - 5 (10) 
   Stroke - 4 (8) 
   Cardiac arrest 9 (18) 3 (6) 
   Heart Failure - 2 (4) 
   Upper gastrointestinal bleeding - 2 (4) 
   Trauma/Surgery 3 (6) 2 (4) 

   Pancreatitis 1 (2) - 

SOFA score (median, IQR) 13 (10-16) 7.5 (5-10) 
Days from intubation to Berlin criteria (median, 
IQR) 0.1 (0.0-0.2) NA 

Median PaO2/FiO2 first 24h (median, IQR) 176 (134-210) 318 (267-423) 
Worst PaO2/FiO2 24h (median, IQR) 108 (66-137) 278 (147-385) 
ARDS insult type (n, %)   
   Pneumonia 18 (36) - 
   Aspiration 14 (28) - 
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   Non-Pulmonary Sepsis 10 (20) - 
   Trauma 2 (4) - 
   Diffuse Alveolar Hemorrhage  2 (4) - 
   Pancreatitis  1 (2) - 
   Other  3 (6) - 
Hospital Length of Stay (median, IQR) 13.3 (6.6-25.4) 7.0 (4.2-13-4) 
Hospital Mortality (n, %) 24 (48%) 10 (20%) 
Ventilator- free days in 28 days (median, IQR) 6.6 (0-23.0) 25.3 (10.6-26.9) 

Table 4.1: Clinical characteristics of study subjects. 

Feature Name Units Description 

I-time seconds Total inspiratory time 
E-time seconds Total expiratory time 

I:E ratio N/A Ratio of I-time divided by E-time 
Respiratory rate breaths/min Instantaneous respiratory rate, defined as: 

60/(I-time+E-time) 
PEF to 0 NA An expiratory time constant surrogate we defined by 

taking the slope of the expiratory flow from peak 
expiratory flow to where flow reaches close to 0. 

PEF+0.16 to 0 NA An expiratory time constant surrogate we defined by 
taking the slope of the expiratory flow from 0.16 
seconds after peak expiratory flow to where flow 
reaches close to 0. 

Mean expiratory flow  ml/min The mean flow observation from the point in time 
peak expiratory flow (PEF) occurred to the point 
where the breath terminated and a new one began 

Dynamic compliance 
(C&'() 

N/A This measure is derived via:   C!"# =
$%&

'(')'**'
	 

where TVi is the inspiratory tidal volume. PIP is peak 
inspiratory pressure, and PEEP is positive end 
expiratory pressure. 

Tidal volume ratio N/A Ratio of inspiratory tidal volume divided by 
expiratory tidal volume. 

Table 4.2: Features calculated for each breath in the analysis. Extraction code is publicly 
accessible at GitHub. 
 We used our ventMAP software platform(54) to extract nine physiological features from 

raw VWD, representing pressure and flow, sampled at 50 Hz, obtained from Puritan-BennettTM 

model 840 ventilators.(122) Features were extracted and aimed to capture relevant respiratory 
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pathophysiology while avoiding features that might strongly correlate with ARDS management 

such as tidal volume (TV) or positive end expiratory pressure (PEEP) (Table 4.2).  Observations 

for each subject were derived by taking the median value of each feature across windows of 100 

consecutive VWD breaths (approximately 5 minutes), with the 100-breath window size based on 

empirical sensitivity analysis. We processed all available VWD in the 24h after Berlin criteria 

were first met and 24 hours after the start of MV for patients with and without ARDS, 

respectively (Figure 4.2A), but not all patients had 24 hours of data based on variable start times 

of data acquisition. Each observation feature vector was tagged with a subject identifier and 

clinical class label of ARDS versus non-ARDS. Observations were excluded if a feature in the 

observation window met any of following: 1) not a number or an infinite value; 2) more than 

50% of expected breaths in a window were missing; or 3) window start time was prior to charted 

MV start and end times in the EHR. 

 

Figure 4.1: General methodology for hyperparameter selection. This methodology follows the k-
fold cross validation technique, where we derive our hyperparameters based on a training set, 
and then split the training set into multiple k-folds itself. Hyperparameters are then chosen based 
on the optimal parameters in this new hyperparameter split. 
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Split-Type Model N Trees Max Tree Depth Split Criterion 
K-Fold Train 24  33 2 Gini 
Holdout Train 24  5 6 Information Gain 
Bootstrap Train 24  33 2 Gini 

Table 4.3: Hyperparameters used for our Random Forest algorithm in accordance with our 
hyperparameter search methodology outlined above. We used the same hyperparameters for our 
bootstrap experiments as we did in k-fold experiments because the random nature of 
bootstrapping would have led to an un-fixed series of hyperparameters that changed each time 
we attempted to evaluate model hyperparameters. Other than the hyperparameters mentioned 
here, all other arguments were based on Scikit-learn Random Forest default arguments.  
 We evaluated 7-algorithms using the Python scikit-learn software library (Table 

4.7).(139) Despite comparable performance across algorithms, we chose the random forest (RF) 

algorithm for further model development and testing based on its resistance to overfitting and 

tolerance to outliers.(143) Given our small sample size, we evaluated model performance using 

k-fold cross validation (k=5), a 70/30 holdout split, and bootstrapping. For the 5-fold cross 

validation, 80 subjects were used for training in each of the five k-folds, and 20 were used for 

validation, with no overlapping data between the training and validation sets in each fold (Figure 

4.1). For the 70/30 holdout split, we randomly selected 70 subjects for model training, and 

withheld 30 for final model validation. For bootstrapping, 100 bootstrapping runs were 

performed. In each run, 80 patients were randomly selected with replacement for training and the 

remaining patients were used for testing, with performance averaged over 100 bootstraps.  We 

performed feature selection for each model using chi2 and Gini selection methods. Model 

hyperparameters were selected using a Python grid search (Table 4.3).(139) Because feature 

importance was comparable across both methods, we used sequential feature selection to 

maximize the area under the receiver operating curve (AUC) with chi2 for all models (Table 4.4-

Table 4.6, Figure 4.3). 
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Feature Average P-value Average Rank 
Mean flow from peak expiratory 
flow (PEF) 

1.82e-45 1.0 

Respiratory rate 2.25e-33 2.0 
PEF to 0 9.88e-28 3.0 
PEF+0.16 to 0 3.22e-22 4.0 
I-time 2.21e-5 5.0 
E-time 3.15e-4 6.0 
I:E ratio 8.69e-3 7.0 
Dynamic compliance (C+,-) 0.382 8.0 
Tidal volume ratio 0.626 9.0 

Table 4.4: Chi2-based feature importance based on train 24/test 24-hour (24/24) model dataset. 
Ranks are based on the average of all k-folds. Each feature achieved a whole number for a rank 
because there was no variation in feature ranking from fold to fold. 
 

Feature Average 
Score 

Average 
Rank 

Mean flow from peak expiratory 
flow (PEF) 

0.355 1.0 

Respiratory rate 0.2556 2.0 
PEF to 0 0.1846 3.0 
PEF+0.16 to 0 0.1038 4.0 
I-time 0.0508 5.0 
E-time 0.0298 6.0 
I:E ratio 0.0127 7.0 
Dynamic compliance (C+,-) 0.0061 8.0 
Tidal volume ratio 0.0016 9.0 

 
Table 4.5: Feature importance using Gini importance values based on train 24/test 24-hour 
(24/24) model dataset. All scores were rounded to 4 significant digits. Ranks are based on the 
average of all k-folds. Each feature achieved a whole number for a rank because there was no 
variation in feature ranking from fold to fold. Note that feature rankings here were the same as 
they were in the chi2 feature rankings. 
 

Split-Type Model Features Used 
K-Fold Train 24 / Test 24 Hours 8 
K-Fold  Train 24 / Test 6 Hours 3 
Holdout Train 24 / Test 24 Hours 5 
Bootstrap Train 24 / Test 24 Hours 7 

Table 4.6: Number of features selected for each model using the Random Forest algorithm. 
Feature selection was based on the AUC and accuracy selection method detailed in Figure 4.3. 
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Figure 4.2: Visual overview of data processing and classifier model development. A. Ventilator 
waveform data (VWD) from each subject are divided into consecutive 100-breath observation 

windows. Physiologic features are calculated for each breath in a window, and median values are 
used to represent the entire window. Each window is labeled as ARDS or non-ARDS and tagged 
with a subject identifier. B. Feature vectors for each labeled window are fed to a supervised 
machine learning algorithm for training and evaluation. C. Classified windows are aggregated at 
the patient level and threshold-based, patient-level predictions can be made based on the 
percentage of ARDS and non-ARDS windows within any given period (e.g., 24 hours).  

 ARDS screening ML models were developed using a two-step process. First, we trained 

the model to classify all individual 100-breath windows from the training set as either ARDS or 

non-ARDS (Figure 4.2B). We then determined patient-level model performance by attributing 

all breath window predictions from the validation sets to each subject and assigning the subject 

class as ARDS or non-ARDS using a specific threshold for the percentage of individual windows 

classified as ARDS in any given time bin (Figure 4.2C). We examined ML model performance 

to screen for early ARDS using either 24h or 6h of VWD. We trained the 24/24 model using the 

 Figure 4.3: Example of how the number of features was selected for each model. The figure 
shows the change in AUC and patient-level prediction accuracy of the train 24/test 24-hour 
(24/24) model as a function of the number of features included in the model after chi2 feature 
selection. If two sets of features had similar maximal AUC, then the tie was broken by selecting 
the set with the highest accuracy. AUC, area under the curve. 
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first 24h of available VWD in the training set, and then tested using the first 24h of available 

VWD from the validation set (24/24 model; n = 100). Our second model, the 24/6 model, was 

trained using the first 24h of available data, but was validated using data available in the first 6h 

after Berlin criteria were first met or after the start of MV for ARDS and non-ARDS subjects, 

respectively (24/6 model: n = 70).  

 Model performance was assessed using AUC, sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV). Performance was compared using a simple 

majority voting threshold (e.g., more than 50% of 100-breath windows were classified as ARDS 

in each period), and across a range of voting threshold deciles between 0-100%.  

4.2 Results 
A total of 100 adult mechanically ventilated patients were included in the study, including 50 

with ARDS and 50 without evidence of ARDS during MV. Table 4.1 provides demographic, 

clinical, and physiologic characteristics of subjects. We analyzed a median of 21.2 hours of 

VWD per subject from ARDS patients and 13.3 hours of VWD from non-ARDS patients, 

representing 19,777 100-breath window observations. The dataset contained a total of 2,020,556 

breaths, with 1,331,285 breaths from patients with ARDS and 689,271 from patients without 

ARDS. 
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Figure 4.4: A. Receiver operating curve (ROC) curves for individual k-folds in the train 24/test 
24 hour 5-fold cross validation model. Mean area under the ROC across all k-folds is shown in 
blue (95% confidence interval displayed in figure legend). B. Sensitivity and specificity of 
ARDS detection change as the voting threshold required to classify ARDS in the first 24 hours 
increases. 
 Performance of our primary ML model discriminating between ARDS and non-ARDS 

cases using the first 24h of VWD (24/24 model) are shown in Figure 4.4A and Table 4.8. For our 

main analyses, we used a simple majority voting scheme to determine patient-level predictions. 

Thus, if 51% or more observations from a patient were classified as ARDS, the patient was 

classified as ARDS. Using this voting threshold, the 24/24 VWD model was able to discriminate 

between ARDS and non-ARDS subjects with a mean AUC across all five k-folds of 0.88 (95% 

CI 0.816-0.944).  Discriminative performance was similar in the 70/30 holdout and 

bootstrapping experiments (Table 4.10). Figure 4.4B and Table 4.9 show how model sensitivity 

and specificity varied by changing the threshold used to classify ARDS across the range of 

prediction thresholds from 0 to 100% prediction votes, and at specific threshold deciles from 10-

100%, respectively. 
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Algorithm Sensitivity Specificity PPV NPV AUC 

Random 
Forest 

0.90±0.059 0.71±0.089 0.77±0.082 0.90±0.059 0.88±0.064 

Neural 
Network 

0.95±0.043 0.73±0.087 0.80±0.078 0.95±0.043 0.90±0.059 

Adaboost 0.92±0.053 0.74±0.086 0.80±0.078 0.92±0.053 0.90±0.059 

Logistic 
Regression 

0.96±0.038 0.74±0.086 0.81±0.077 0.96±0.038 0.90±0.059 

Naïve 
Bayes 

0.82±0.075 0.80±0.078 0.82±0.075 0.85±0.070 0.89±0.061 

SVM 0.98±0.027 0.68±0.091 0.77±0.082 0.98±0.270 0.89±0.061 

Table 4.7: Performance of different machine learning algorithms for ARDS classification. All 
numbers are rounded to 2 significant digits and reported along with 95% confidence intervals. 
PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve. 

Model Train/Test 
Split (n) 

K-Fold 
Number 

Sensitivity Specificity PPV NPV AUC 

Train 24 / 
Test 24 

80/20 1 1.0 0.73 0.79 1.0 0.98 

- - 2 1.0 0.79 0.83 1.0 0.92 

- - 3 0.70 0.70 0.69 0.70 0.78 

- - 4 0.80 0.91 0.90 0.82 0.94 

- - 5 1.0 0.44 0.64 1.0 0.79 

- NA Mean of 5 
k-folds 

0.90 ± 
0.059 

0.71 ± 
0.089 

0.77 ± 
0.082 

0.90 ± 
0.059 

0.88 ± 
0.064 

Train 24 / 
Test 6 

80/14 Mean of 5 
k-folds 

0.90 ±  
0.07 

0.75 ± 
0.101 

0.83 ± 
0.088 

0.83 ± 
0.088 

0.89 ± 
0.073 

Table 4.8. Model performance statistics for both train 24/test 24-hour and train 24/test 6-hour 
models. Mean (with 95% confidence intervals) performance across all 5 k-folds is shown for 
both models, and results of individual k-folds are displayed for the train 24/test 24-hour model to 
illustrate the spectrum of performance variability. Note that only 70 subjects had VWD available 
in the 1st 6 hours resulting in a smaller sample size for the test cohort in the train 24/test 6-hour 
model. PPV, positive predictive value; NPV, negative predictive value; AUC, area under the 
curve. 
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% ARDS 
votes in 1st 
24 hours 

Sensitivity Specificity PPV NPV 

10  0.99±0.02 0.4±0.096 0.63±0.095 0.99±0.02 

20 0.97±0.033 0.51±0.098 0.68±0.091 0.96±0.038 

30 0.96±0.038 0.58±0.097 0.71±0.089 0.96±0.038 

40 0.92±0.053 0.63±0.095 0.74±0.086 0.92±0.053 

50 0.9±0.059 0.71±0.089 0.77±0.082 0.91±0.056 

60 0.87±0.066 0.77±0.082 0.81±0.077 0.87±0.066 

70 0.81±0.077 081±0.077 0.83±0.074 0.83±0.074 

80 0.75±0.085 0.85±0.07 0.85±0.07 0.79±0.08 

90 0.68±0.091 0.87±0.066 0.86±0.068 0.74±0.086 

100 0.57±0.097 0.91±0.056 0.86±0.068 0.69±0.091 

Table 4.9: Performance characteristics of the train 24/test 24-hour model for detection of ARDS 
across deciles of voting thresholds, illustrating the tunable nature of our two-step ARDS 
classification methodology. PPV, positive predictive value; NPV, negative predictive value. 

Split-Type Sensitivity Specificity PPV NPV AUC 

K-Fold 0.90±0.059 0.71±0.089 0.77±0.082 0.90±0.059 0.88±0.064 
Holdout 0.90±0.107 0.75±0.155 0.79±0.146 0.89±0.112 0.94±0.085 
Bootstrap 0.91±0.056 0.74±0.086 0.78±0.081 0.90±0.059 0.88±0.064 

Table 4.10: Comparative performance of k-fold, 70/30 holdout, and bootstrapping methods for 
our train 24/test 24-hour (24/24) model with the Random Forest algorithm. Results are displayed 
along with 95% confidence intervals. Note that confidence intervals for the 70/30 holdout split 
are wider than for k-fold and bootstrapping methods because only 30 subjects were used in the 
testing set, whereas bootstrapping and k-fold methods used all 100 subjects. PPV, positive 
predictive value; NPV, negative predictive value; AUC, area under the curve.  
 Our second ML model explored the ability of an ML algorithm trained on the first 24h of 

VWD to differentiate between ARDS and non-ARDS in a validation set using only the first 6h of 

VWD after meeting Berlin criteria or starting MV for the ARDS and the non-ARDS cohorts, 

respectively (24/6 model). Discriminative performance in this 24/6 model was comparable to the 
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24/24 model with AUCs of 0.89 (95% CI 0.817-0.963) and 0.88 (95% CI 0.816-0.944), 

respectively, using 5-fold cross validation (Table 4.11). 

Model Train/Test 
Split (n) 

K-Fold 
Number 

Sensitivity Specificity PPV NPV AUC 

Train 24 
/ Test 6 

80/14 1 1.0 0.59 0.74 1.0 0.89 

- - 2 0.96 0.85 0.88 0.95 0.97 

- - 3 0.71 0.67 0.74 0.65 0.7 

- - 4 0.82 1.0 1.0 0.83 0.99 

- - 5 1.0 0.66 0.77 1.0 0.88 

- NA Mean of 5 
k-folds 

0.90 ± 0.07 0.75 ± 
0.101 

0.83 ± 
0.088 

0.89 ± 
0.073 

0.89 ± 
0.073 

Table 4.11: Performance statistics for the train 24/test 6-hour (24/6) model. Mean (with 95% 
confidence intervals) performance across all 5 k-folds is shown, and results of individual k-folds 
are displayed to illustrate the spectrum of performance variability. Note that only 70 subjects had 
VWD available in the 1st 6 hours resulting in a smaller sample size for the test cohort in the train 
24/test 6-hour (24/6) model. PPV, positive predictive value; NPV, negative predictive value; 
AUC, area under the curve. 

4.3 Discussion 
We developed an automated ARDS screening algorithm that can detect potential cases of 

moderate-severe ARDS early during MV without need for CXR, ABG, or other EHR-derived 

data. Using ML techniques and physiologic features derived from raw VWD, our model 

demonstrated robust discriminative performance for detecting ARDS in the first 24h after 

meeting Berlin criteria that was reproducible across a variety of experimental conditions. We 

further showed that our ARDS detection model could identify potential ARDS cases as early as 

6h after Berlin criteria were first documented, and that our model architecture enabled 

adjustment of model performance according to desired levels of sensitivity and specificity. 

To address limitations of prior studies into automated ARDS detection methods, our 

methods differed from previous research in several notable ways. Our use of ML with VWD-
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derived features may overcome some limitations of previous feature extraction methods by 

capturing the physiologic signatures present in waveforms instead of relying on EHR or imaging 

data alone. Because VWD are generated from the start of MV, our methods enable continuous 

patient monitoring and may allow for more timely identification of potential ARDS cases, 

independent of ordering or documentation, which was suggested by our finding that ARDS could 

be detected as early as 6 hours after Berlin criteria were first met. As access to physiologic 

waveform data becomes more common, our exclusive use of VWD may also extend automated 

ARDS screening to resource-constrained care environments such as community and rural 

hospitals lacking well-developed EHRs, and in developing nations, battlefields, and disaster 

relief zones where tests required to fulfill Berlin criteria may be in short supply or 

unavailable.(48) Use of ventilator waveform analysis may thus improve both the timeliness and 

the ability to apply automated ARDS screening in diverse settings, which are particularly 

important since delayed or missed diagnosis is thought to be a major contributor to suboptimal 

implementation of evidence-based therapies for ARDS.(13,20,23,153) 

In addition to extending previous research into developing automated ARDS screening 

systems, our work further demonstrates the potential value of ML in the analysis of large 

volumes of untapped streaming physiologic waveform data generated from patient monitoring 

devices in the ICU. The use of patient-derived physiologic data has gained increasing attention in 

recent years as the availability of both high-volume, high-sampling rate data types, and advanced 

computing power have become more commonplace. In this regard, automated processing of 

VWD has been demonstrated by multiple investigators in the study of patient-ventilator 

asynchrony (52–54) and several groups have shown the potential to computationally extract 

physiologic features from VWD including data derived from animal models of ARDS pertaining 
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to airway resistance and respiratory system compliance.(45,47,108) Sottile et al. (55) and Rehm 

et al. (56) have further investigated the ability to use ML to detect common types of patient-

ventilator asynchrony without the need to explicitly code rule-based, expert systems, illustrating 

the ability of ML algorithms to learn relevant knowledge from the physiologic information 

embedded in raw VWD.  

Our work also fits into a broader context of recent research using ML and sensor-derived 

physiologic data to develop so called digital biomarkers to screen for and monitor diseases, 

improve disease phenotyping, and predict clinical trajectories.(154) Recent studies in critical 

care have demonstrated the potential of digital biomarker signatures include the use of 

convolutional deep neural networks to process ECG waveforms to screen for hyperkalemia (155) 

and detect arrhythmias,(156) and the use of continuous electroencephalography waveforms and 

deep learning to predict neurologic outcome after cardiac arrest.(157) Within this framework, our 

results suggest the potential of ML and VWD to generate digital biomarker signatures of ARDS, 

either alone or in combination with conventional biomarkers,(158) to aid clinicians in early 

detection, monitoring ARDS progression, and prognostication of patient outcomes.  

This study has several limitations that should be addressed in future studies. First, our 

study was limited to a single academic medical center, which could affect model generalizability 

despite our exclusive use of quantitative physiologic data.(33) Second, our limited sample size 

may have resulted in model overfitting. We attempted to address this issue by using the RF 

algorithm, which may be inherently more resistant to overfitting,(143) and several different 

frameworks for model validation. While most prior studies using VWD have been similarly 

limited in size,(52–55) research on larger cohorts will be necessary to understand the full 

limitations of waveform-based ARDS screening. Similarly, our subject selection was 
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intentionally biased to ensure phenotypic separation between ARDS and non-ARDS subjects to 

test the hypothesis that VWD and ML could be used to discriminate between clear phenotypes. 

Our cohort was comprised mostly of moderate-severe persistent ARDS that was present on 

intubation, and it is unclear how our model would perform in late-onset ARDS, mild ARDS 

patients, rapid resolvers,(159) those with an uncertain diagnosis when Berlin criteria are first 

met, or in those with pre-existing chronic lung disease.(36,43,160) Third, we focused on 

clinician-driven feature extraction and one ML algorithm. It is possible that the use of other input 

features, including non-waveform EHR-derived features, or algorithms capable of end-to-end 

model development and automated featurization such as deep learning (161) may have improved 

performance.  Fourth, while VWD are ubiquitous at the bedside, widespread access to these data 

for research purposes remains a challenge at present. Finally, studies aimed at developing ARDS 

classifiers, including ours, are limited by the inherent imprecision of the Berlin criteria.(36,162) 

Recognizing this fundamental limitation, our study focused on developing a tunable screening 

algorithm rather than one aimed at diagnosis. Development of ARDS classifiers that generalize 

well and are trusted by clinicians will require additional study with larger, more heterogenous 

populations, may require improved methods of class assignment such as advanced imaging and 

physiologic or digital biomarkers,(24,31,158,163) and will ultimately require external validation 

followed by thoughtful integration into decision support workflows to realize intended benefits 

to patients.  
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Chapter 5: Deep Learning Based 
ARDS Detection 

5.1 Methods 
 

 All data for this study were collected as part of an IRB-approved, observational study in 

the ICUs at UC Davis Health, an academic tertiary care medical center in Northern California. 

All patients or surrogates provided informed consent for data collection. Three clinicians 

performed dual-adjudicated, retrospective chart review to identify the cause of respiratory failure 

in subjects enrolled between 2015–2020. Subjects were split into two cohorts: 1) 50 patients with 

confirmed moderate or severe ARDS diagnosed using Berlin consensus criteria within 7-days of 

intubation,(164) and 2) 50 patients with no evidence of ARDS during their course of MV 

(referred to here as non-ARDS).(110) Our cohort was split into clear phenotypes as a proof of 

concept study to test the feasibility of using VWD and ML to detect ARDS. Patients were 

excluded from the cohort if: 1) they were transferred to ICU from an outside facility; 2) had a 

chronic tracheostomy prior to admission; 3) had a persistent bronchopleural fistula; 4) diffuse 

chronic fibrotic lung disease; or 5) Berlin criteria were met for < 24 hours. Included patients had 

at least 1hr of VWD within either the first 24 hours of ventilation if they were non-ARDS, or 1 

hour of VWD in the 24 hours after first meeting Berlin diagnostic criteria for ARDS. For specific 

cohort descriptive statistics see Table 4.1. 
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Figure 5.1: A. Ventilator data is extracted as a continuous series of raw flow data from the 
mechanical ventilator sampled at 50 Hz. B. Breath instances that were extracted from the above 
windows are fed into a 1-D convolutional neural network (CNN) to make an ARDS or non-
ARDS classification on the instance. C. For interpretability, lowpass filtering was performed on 
the waveforms and then a CNN or random forest (RF) model was trained using the filtered data. 
CNN and RF model results were compared to determine how waveform data was utilized by the 
CNN. 



 78 

 VWD representing air flow sampled at 50 Hz over time was extracted from the Puritan 

Bennet-840 mechanical ventilator using an established data collection architecture.(122) Our 

VWD sample contained 2,020,556 breaths, including 1,331,285 breaths from patients with 

ARDS and 689,271 breaths from patients without ARDS. For generation of model inputs, flow 

time series data were split into successive breath “instances”, which we define as a sequence of 

flow samples that are 224 observations in length (Figure 5.1A). Breath instances were formatted 

so that each instance begins at the start of inhalation. We then arranged the data as a series of 20 

breath instances, which we refer to as a “breath window”, for our ARDS classification 

experiments (Figure 5.1A). All breath windows were labeled according to their subject’s 

corresponding pathophysiology (ARDS or non-ARDS). 

Once we processed our data, we trained a one-dimensional (1-D), 18-layer, DenseNet 

CNN model to perform binary classification on which breath windows were classified as ARDS 

or non-ARDS.(165) Since there are > 1 breath windows per-patient, we can aggregate breath-

window classifications to the patient by finding the majority classification of all breath windows 

for a patient. Thus, if > 50% of breath windows for a patient are classified as ARDS, then the 

patient was predicted as ARDS. Our primary reporting metric is model AUC based on the 

fraction of correct patient-level predictions made for ARDS. We also report patient-level 

accuracy, sensitivity, and specificity.  

We evaluated our model performance by first using the 5-fold K-fold splitting technique 

using data from 80 patients out of the 100-patient cohort, evenly split between ARDS and non-

ARDS patients. Each fold is split evenly in terms of the ratio of non-ARDS patients to ARDS 

patients to avoid class imbalance at the patient level. We also evaluate a 70:30 holdout split, 

random K-fold splits, and bootstrapping with replacement at 80:20 split (see online supplement).  
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Because the number of ARDS breath instances outnumbers non-ARDS by a 2:1 ratio, we correct 

this imbalance by performing random oversampling of non-ARDS breath instances.(166–168) 

Because of data noise, we used standard stochastic gradient descent instead of adaptive learning 

rate algorithms like ADAM.(169) We performed a grid search for optimal hyperparameters. 

Learning rate was found to be best at 0.001. To determine a consistent approximation of our 

model’s performance we performed 10 trials of experiments for 10 epochs and then averaged the 

results to determine a final estimate of performance.(111)  

We used multiple approaches for model interpretation. To understand the relative 

contributions of different components of the frequency domain to model performance, we 

transformed our VWD using the fast Fourier transform (FFT) from the SciPy library.(170) Since 

data was sampled at 50 Hz, FFT decomposes the signal into the frequency bandwidth between -

25 and 25 Hz. FFT-transformed data were otherwise utilized in our model identically to 

unprocessed VWD in that breath instances were transformed into the frequency domain and then 

inputted into the model and classified. For model interpretability, we utilized Grad-Cam(171) to 

highlight a saliency map for VWD. We chose Grad-Cam in our application because it passed  

tests (i.e. data and model randomization tests) necessary for consideration as a model explanation 

method.(172) Grad-Cam was then used to visualize specific frequencies the model appeared to 

be using in classification.  

Finally, we performed signal filtering experiments using FFT and threshold filtering to 

investigate the contributions of specific frequency components of the VWD signal on model 

performance. For these experiments we set a lowpass filter at a bandpass between 0.5-20Hz. 

VWD is then decomposed with FFT, and selected frequency ranges are removed. VWD is then 

reconstructed into the time-domain using an inverse FFT. Our model is then retrained on lowpass 
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filtered data and standard model performance metrics are then reported. All code was developed 

using Python’s scientific computing software suite and PyTorch.(139,173) All code is available 

(https://github.com/hahnicity/deepards) and anonymized datasets are available upon request.  

Fold N/length of 
sequence 

2048 1024 512 224 128 

Fold 1 0.8 0.8473 0.8210 0.8210 0.8315 
Fold 2 0.8052 0.8157 0.8 0.8157 0.7578 
Fold 3 0.8157 0.8052 0.7947 0.7894 0.8421 
Fold 4 0.8789 0.8789 0.8526 0.9315 0.9210 
Fold 5 0.7777 0.7666 0.7722 0.8222 0.8 
Mean Accuracy 0.82 0.82 0.81 0.84 0.83 

Table 5.1: Accuracy of model based on 5-fold cross validation. 
 

Fold N/length of 
sequence 

2048 1024 512 224 128 

Fold 1 0.8844 0.9522 0.9411 0.9522 0.9044 
Fold 2 0.9011 0.9277 0.9211 0.9377 0.8855 
Fold 3 0.8411 0.8566 0.8889 0.8805 0.9244 
Fold 4 0.9722 0.9577 0.94 0.9877 0.9266 
Fold 5 0.8156 0.79 0.8175 0.865 0.8937 
Mean AUC 0.88 0.90 0.90 0.92 0.91 

Table 5.2: AUC of model based on 5-fold cross validation 

5.2 Results 
 We utilized 1-D flow time-series data to train our DL model. Because our deep neural 

network architecture requires a fixed number of input samples, we first explored the optimal 

input sequence length. Based on experimentation (Table 5.1, Table 5.2), we found that breath 

instances of 224 inputs were optimal for input into our network. We then compared the 

performance of several DL architectures (CNN, LSTM, or hybrid CNN+LSTM) and found 

optimal performance with the CNN model (Table 5.3). We also found model performance 

improves when we ensure that each breath instance begins at the start of inhalation. We report 



 81 

results for our final model in Table 5.4 across all 5 K-folds. Results from K-folds cross-

validation were similar to results from experiments using a random 70:30 split of the dataset 

where 70% of patients’ data were used for model development and 30% of patients were 

reserved for holdout testing, and to experiments using bootstrapping to split the dataset (Table 

5.5) 

Network AUC Accuracy Sensitivity Specificity 
CNN only 0.93 0.84 0.83 0.84 
LSTM only 0.90 0.81 0.81 0.81 
CNN+LSTM 0.92 0.79 0.95 0.62 

Table 5.3: Performance of CNN, LSTM, or combined CNN+LSTM networks for classification 
of the acute respiratory distress syndrome (ARDS) using ventilatory waveform data as the sole 
input. AUC, area under the receiver operating characteristic curve; CNN, convolutional neural 
network; LSTM, long short-term memory network. 
 

K-Fold 
Number 

AUC Accuracy Sensitivity Specificity PPV NPV 

1 0.99±0.01 0.85±0.056 1.0±0.0 0.7±0.113 0.78±0.07 1.0±0.0 

2 0.88±0.025 0.79±0.069 0.65±0.15 0.92±0.037 0.9±0.06 0.74±0.094 

3 0.94±0.018 0.85±0.037 0.9±0.075 0.8±0.113 0.83±0.068 0.9±0.067 

4 0.98±0.005 0.89±0.019 0.85±0.05 0.92±0.037 0.92±0.042 0.86±0.037 

5 0.97±0.013 0.85±0.031 1.0±0.0 0.7±0.075 0.77±0.045 1.0±0.0 

Mean of 5 
k-folds 

0.95±0.019 0.84±0.026 0.88±0.068 0.81±0.06 0.84±0.038 0.9±0.05 

Table 5.4: Displays results from individual K-Folds for our convolutional neural network 
classifier. 95% CI are shown after the mean result of each metric from individual trials. AUC - 
area under the curve. PPV - positive predictive value (also known as precision). NPV - negative 
predictive value 

 Once we finalized our deep learning network, we compared the performance of our DL 

model to our previously published traditional ML model (Figure 5.2).(110)  
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Split Type N Trials Accuracy AUC Sensitivity Specificity 
Holdout (110) 10 0.83±0.017 0.91±0.008 0.91±0.02 0.75±0.04 
Random K-fold 50 0.84±0.01 0.93±0.007 0.86±0.014 0.83±0.016 
Bootstrap  150 0.82±0.013 0.91±0.011 0.85±0.02 0.78±0.026 

Table 5.5: Holdout, Random K-fold, Bootstrapping (80/20 split, with replacement) split results 

 

 

Figure 5.2: Comparison of ROC curves for both our initial random forest (RF) model, and our 
1D-CNN model. Shaded parts of the plot are 95% CI interval. 
 
 After finding that our deep learning model outperformed the random forest model, we 

sought to investigate factors explaining the improved performance of deep learning.  We began 

by exploring VWD components in the frequency domain that might be contributing to 

differential model performance by using 1-D FFT transformations of our data and then retraining 

the model with these transformed data (Table 5.6). When our network performed well with this 

experiment, we investigated the frequencies our network was using for classification. To do this, 

we utilized Grad-CAM to create a saliency map that highlights where in the frequency domain 

the network was focusing to make classifications, using all inputs into our neural network, and 
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averaging all Grad-CAM outputs.  The Grad-CAM saliency map shows that the model’s cam 

intensities for ARDS were focused primarily on higher frequencies while non-ARDS 

classification was focused at both high and low-frequency bands.  

 

Figure 5.3: Shows an average Grad-CAM intensity (range 0-1.0) of our CNN that were trained 
only with FFT data. 95% CI is also shown in the slight boundary zone around each line. Non-
ARDS focus is shown in blue, and ARDS in orange. Higher cam intensity values on the y-axis 
means that the network focused on this frequency more heavily for prediction of a specific class. 
 

Dataset  Deep 
NN? 

AUC Accuracy Sensitivity Specificity 

VWD only (Random 
Forest)  

û 0.88 0.80 0.90 0.71 

VWD only (best CNN) ü 0.95 0.84 0.88 0.82 
FFT only ü 0.87 0.76 0.79 0.72 

VWD & FFT  ü 0.89 0.80 0.84 0.75 

Table 5.6: Neural network performance as a function of different input data types. Results from a 
random forest classifier reported in our previous work are noted as a reference. All other rows 
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show results of experiments with different network inputs including VWD alone, FFT 
transformed VWD alone, and combined input of both data types. 
 
 Based on the above observations, we sought to better understand the relative 

contributions of both high and low frequency components of the raw VWD signal to the 

improved performance observed in our DL model (Table 5.7). We thus performed targeted 

frequency ablation experiments by applying FFT to the raw VWD, with progressive lowpass 

filtering cutoff frequencies ranging from 0.5-20 Hz. The ablated VWD were then used for model 

development and K-folds cross validation using methods identical to those with the non-ablated 

raw VWD for both DL and traditional RF model development and cross-validation.(110) These 

frequency ablation experiments revealed a decrease in DL model performance after ablation of 

high frequency waveform components beginning at a 20 Hz lowpass cutoff down to a cutoff of 

0.5 Hz, with performance comparable to our traditional ML approach at the cutoff of 0.5 Hz 

(Table 5.7B).  Our RF model, which uses expert-derived features computed from raw VWD, did 

not see comparable decrements in performance at higher lowpass frequency cutoffs (Table 5.7C), 

which implies traditional ML features are well-represented in low frequency ranges. We were 

unable to ablate frequencies below 0.5Hz because we were unable to extract manual features for 

the traditional ML model because waveform ablation prevented the extraction of manual features 

(Figure 5.5) 
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A. Baselines Network AUC Accuracy Sensitivity Specificity 
 RF(110) 0.88±0.064 0.80±0.078 0.90±0.059 0.71±0.089 
 CNN 0.95±0.019 0.84±0.026 0.88±0.068 0.81±0.06 
      

B. FFT 
Filtering on 
CNN 

Cutoff 
Frequency (Hz) 

AUC Accuracy Sensitivity Specificity 

 20 0.94±0.015 0.83±0.017 0.85±0.038 0.81±0.035 
 15 0.93±0.014 0.83±0.018 0.89±0.034 0.76±0.042 
 10 0.92±0.021 0.81±0.026 0.84±0.039 0.77±0.046 
 8 0.90±0.02 0.80±0.023 0.85±0.04 0.74±0.045 
 6 0.91±0.021 0.81±0.026 0.85±0.037 0.78±0.042 
 4 0.91±0.018 0.83±0.025 0.83±0.037 0.82±0.042 
 2 0.91±0.016 0.82±0.025 0.81±0.037 0.83±0.04 
 1 0.90±0.021 0.82±0.029 0.78±0.051 0.85±0.035 
 0.5 0.89±0.015 0.81±0.18 0.77±0.03 0.86±0.031 
      
C. FFT 
Filtering on 
RF 

Cutoff 
Frequency (Hz) 

AUC Accuracy Sensitivity Specificity 

 20 0.88±0.063 0.83±0.074 0.86±0.068 0.79±0.08 
 15 0.88±0.063 0.81±0.077 0.79±0.08 0.84±0.072 
 10 0.88±0.063 0.80±0.079 0.87±0.066 0.73±0.087 
 8 0.88±0.064 0.81±0.078 0.89±0.061 0.72±0.088 
 6 0.87±0.065 0.81±0.078 0.88±0.063 0.73±0.087 
 4 0.89±0.062 0.83±0.073 0.91±0.057 0.76±0.084 
 2 0.87±0.065 0.81±0.076 0.87±0.065 0.75±0.085 
 1 0.86±0.068 0.82±0.076 0.89±0.06 0.74±0.086 
 0.5 0.88±0.065 0.84±0.072 0.87±0.067 0.81±0.078 
Table 5.7: A. shows the baseline performances of the traditional machine learning based random 
forest (RF) model, and the convolutional neural network (CNN) model. B. shows results of our 
network trained with only VWD after a lowpass FFT filter is applied. C. - Results of the 
traditional ML model after FFT lowpass filtering is applied. Note that AUC maintains similar 
performance through all ablations and matches performance of the FFT filtered model on CNN 
at very low frequencies. 
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Figure 5.4: Examples of lowpass fast Fourier transform (FFT) filter applied to 3 different breaths 
at different passband thresholds ranging from 20Hz to 2Hz. 

 

 
 
Figure 5.5: Examples lowpass fast Fourier transform (FFT) filter applied to 3 different breaths at 
different passband thresholds ranging from 2Hz to 0.25Hz. 
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5.3 Discussion 
 In this chapter, we detail our work developing deep learning (DL) models for detecting 

ARDS using raw VWD as the only data source. We found that a 1-D deep CNN improved 

discrimination between ARDS and non-ARDS subjects compared to a random forest classical 

ML model, without need for labor-intensive and potentially biased expert-informed feature 

engineering. Furthermore, using a mix of descriptive and experimental methods to explain what 

our DL model was learning, we were surprised to find that relatively high-frequency regions of 

the 1-D VWD time series contained the implicit information that our DL model had learned to 

improve performance over our classical ML model.  

Our work expands on previous research related to the development of algorithm-based 

screening for ARDS. Nearly every study to date has focused on processing data derived from the 

EHR including laboratory data, flowsheet data such as vital signs, text documents including, and 

radiographic images.(30) While early efforts used rule-based systems,(28,29,44,60,174) more 

recent studies have employed classical machine learning methods.(34,42,43) Many of these 

approaches have demonstrated good-excellent ability to discriminate between patients with and 

without ARDS at their originating centers, but several aspects of design potentially limit 

widespread applicability. In particular, reliance on infrequently sampled, non-continuous model 

inputs derived from clinical diagnostic testing may limit the timeliness of ARDS screening 

and/or model generalizability(33) as a function of clinician or institutional ordering and 

documentation practices. To address these potential limitations, recent work by our group used 

physiologic features extracted from VWD as inputs into a classical ML model to screen for 

ARDS.(110) Our results showed discrimination comparable to prior screening systems, even in 

the first six hours after Berlin diagnostic criteria for ARDS were first evident, without the need 
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for additional model inputs from the EHR or other clinical systems. Despite the potential 

advantages of using VWD as the sole model input, our previous methods were limited by the 

need for expert-informed featurization of the raw VWD, which may have introduced biases into 

the model that compromised performance. Results of our current study suggest that deep learning 

may overcome limitations of our prior approach by learning from implicit information present in 

raw data whose value may not have been recognized by clinicians in the process of manual 

feature engineering.(50,110) While we are unaware of other studies directly comparing the 

performance of traditional ML and DL models operating on physiologic waveform data, multiple 

studies have demonstrated the potential utility of either classical ML or DL for classification and 

prediction using high sampling rate physiologic data.(155,157,175) Experimental comparisons of 

alternative ML approaches will be critical to developing a comparative effectiveness framework 

to guide future research while balancing competing considerations in terms of computational 

requirements and model development time, availability of technical and subject matter expertise, 

interpretability, regulatory complexity, and ease of deployment and maintenance.  

One of the disadvantages of DL compared to some commonly used classical ML 

algorithms is a lack of interpretability, which can limit hypothesis-driven experimentation and 

compromise trust in model outputs.(50,176,177) Many works that have performed 

interpretability evaluations have utilized saliency methods.(178–181) This body of prior work 

motivated us to adopt Grad-CAM for our interpretability experiments. We also explored a 

number of different methods of ablating different parts of our VWD, or by searching for specific 

parts of the input that were salient, such as asynchronous breathing.(77) However, all these 

preliminary experiments failed to substantially impair the network’s ability to learn. The failure 

of these analyses led to our investigation of using a lowpass FFT filter to remove high-frequency 
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components from VWD. Based on the results of these experiments, we saw that we were able to 

heavily filter VWD and still have it perform well in the task of ARDS detection. This suggests 

that there are key features that exist in the low-frequency representation of the waveform that are 

discriminative of ARDS. 

To validate this question, we then performed learning on the lowpass filtered waveforms 

using featurization methods originally developed for traditional ML algorithms. This experiment 

builds upon prior work examining the importance of signal frequencies for predictive 

performance of machine learning models. In particular, there have been prior studies examining: 

the importance of spectroscopic wave spectrum for traditional machine learning;(182) the use of 

Grad-CAM to highlight important frequencies in sound recordings for bearing fault;(178) and 

Fourier transforms to improve interpretability of DNA models and atrial fibrillation 

detection.(183,184) We build upon this work by ablating model inputs over the frequency 

spectrum and then retrain our models with filtered data to obtain better understanding of how the 

models would perform. To the best of our knowledge however, no other surveyed studies have 

taken additional steps to retrain their models using filtered waveforms. We found that after 

retraining our traditional ML model on filtered waveforms model performance did not change. 

This shows us that the expert features that were originally derived exist on the low-frequency 

spectrum and are available to the DL model to learn. From observation of filtered waveforms 

(Figure 5.4,Figure 5.5), we note that low frequency data is associated with waveform periodicity, 

i.e., the rate at which a patient is breathing.  Given that DL model’s performance is equivalent to 

performance of traditional ML when using heavily filtered waveforms, it is possible that our DL 

model is learning the same expert-derived features that were originally used for detecting ARDS. 

The fact that DL models are superior to traditional ML when higher frequency waveform data is 
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included shows that DL models are likely able to learn discriminative features in higher-

frequency data that would be difficult for experts to manually featurize. This observation fits 

broadly with the perceived benefit of using CNN,(111) and we hope our experiments will cause 

researchers to consider frequency ablation as a tool that may be used to better understand 

features that may or may not be present in PWD. Additional research into ventilator and other 

physiologic signals could also help to highlight useful features that are found in certain 

frequency bands. 

Our study has several limitations. First, our dataset was limited to a single academic 

medical center. Second, our input data was limited to a single physiologic data stream (flow), 

and it is unclear if our findings regarding the importance of high frequency signal components to 

model performance will generalize to other non-ventilator physiologic waveforms. Third, Grad-

CAM provides low fidelity mappings for FFT inputs. This hinders our ability to reason about 

which specific frequencies are being heavily used in our network. SHAP or LIME may be better 

alternatives to Grad-CAM for this purpose, however currently, these tools are only available for 

use with 2-D image data for DL models and not 1-D time series. Our limited sample size and 

more restrictive cohort enrollment parameters may have resulted in model overfitting. We 

attempted to address this issue by using a 5 K-folds approach to model validation where we 

found relative stability of performance across K-folds, and with separate experiments using 

randomized K-folds. However, future research on larger, more diverse, patient cohorts will be 

required to determine the best uses of deep learning and VWD for ARDS screening. Finally, our 

subject selection criteria were chosen to ensure phenotypic separation between ARDS and non-

ARDS subjects to test our hypothesis that VWD and ML could be used to discriminate between 

these clearly delineated phenotypes.(110) It is unclear how the performance of deep learning 
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classifiers will be affected by the use of a more heterogeneous patient cohort, such as patients 

with unclear timing of ARDS onset, mild ARDS, or additional non-ARDS causes of respiratory 

failure. 
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Chapter 6: Conclusion and Future 
Work 

6.1 An End-to-End System for ARDS Detection in Smart 
Hospitals 
Once we developed our ARDS detection model, we desired to integrate it into a data collection 

architecture capable of supporting large, multi-center, clinical studies of patient-ventilator 

interactions, and IoT based multi-sensor, multi-patient monitoring. Our system requirements 

include: 1) continuous and automated data collection from multiple concurrently operating 

mechanical ventilators; 2) unobtrusive, non-disruptive operation so as not to influence patient care; 

3) ability to maintain temporally accurate data and preserve correct data linkage between patient 

and collected ventilator waveform data (VWD); 4) ease of use of the data acquisition hardware by 

non-technical users. 5) database archival storage; and 6) ability to generate alerts to and receive 

feedback from doctors to improve mechanical ventilator management. 

 To accomplish these goals, we used a small, unobtrusive IoT device that acts as an 

information aggregator by collecting data from mechanical ventilators and other sensors or 

medical devices. For our prototype architecture, we chose to use the Raspberry PiTM (RPi) 

microcomputer, a small Linux-based computer that, with customized software, can be attached to 

a ventilator to collect and stream VWD to a server through a wireless access point (Figure 6.1 (1)). 

Once collected, VWD is attributed to a specific patient by having physicians link VWD files to a 

specific patient via mobile application (Figure 6.1 (2)). The linkage process is performed without 

use of private patient information by referencing the patient via an anonymized token. Linkage of 

tokens to protected health information extracted from the electronic health record (EHR) is ensured 
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with use of a secure encrypted file. To ensure temporally accurate linkage of collected VWD to 

EHR data we required the RPi’s to connect to the hospital’s Network Time Protocol (NTP) servers 

before commencing data collection, followed by time stamping of VWD files.  

 

Figure 6.1: 1.) Raspberry Pi microcomputers collect data from the mechanical ventilator. 2.) A 
doctor performs linkage of a patient to a Raspberry Pi. 3.) Ventilator waveform data (VWD) is 
stored in a database with proper patient attribution. 4.) VWD is processed by analytic modules 
aimed at diagnostic aid and detection of abnormalities. 5.) Alerts are sent to clinicians to review 
and take appropriate actions to improve patient care. 

 Our data attribution and time alignment protocol can be extended to collect other types of 

medical device data. In a pilot study, we have extended our RPi-based architecture to acquire 

patient blood oxygenation (SpO2) data from wireless pulse oximeters, allowing synchronous 

acquisition and aggregation of both VWD and SpO2 data. Other device data can be incorporated 

for aggregation as well, provided they can communicate with the RPi over Bluetooth, Wi-Fi, or 

wired cable. 

 Once device data are collected, it is forwarded to a database for storage (Figure 6.1 (3)). 

Analytic algorithms can then be applied to the data for anomaly detection and diagnostic purposes, 

with analytic outputs subsequently accessed retrospectively for research or in near real-time for 
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decision support (Figure 6.1 (4)). Providers can then monitor results of anomaly detection 

diagnostic algorithms, while providing real-time feedback to learning algorithms to improve their 

performance (Figure 6.1 (5)).  As a result of our work, we have been able to collect one of the 

largest collections of breath-level VWD reported to date having collected 467 patients, and 

47,990,952 recorded breaths for use in developing clinically validated analytic algorithms to 

support CDS system development.(185) 

6.2 Mobile Applications for Ventilator Waveform Data 
There are two major limitations of existing mechanical ventilators that present barriers to 

effective patient monitoring and limit the adoption of ventilation focused CDSS. First, the best 

available ventilator alarms use simple, threshold-based rules (e.g. – alarm for any breath with 

volume over ‘x’) that lack flexibility in terms of customization, and sophistication regarding 

analytics. Second, alarm settings cannot be configured remotely, and in most hospitals, alerts 

cannot be viewed using mobile devices. Clinicians must therefore be in a patient’s room to directly 

observe how a patient is breathing, and are forced to abandon monitoring when called away.(186) 

Even when physicians are bedside, limited alarm sophistication and configurability can cause 

frequent false alerts, resulting in overly wide alarm thresholds that can cause long periods of 

asynchronous breathing and deterioration in a patient’s physiologic state to go unnoticed. These 

problems highlight the need for mobile device-based CDSS to improve the monitoring and 

management of patients requiring mechanical ventilation.   
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Figure 6.2: A. Mobile application displaying waveform data of one patient, with breaths labeled 
with detected asynchronies and excessive tidal volumes. The area below the chart contains 
statistics of breaths currently being displayed. Pinch-zoom functionality allows custom selection 
of time frames for waveform display, summary statistics, and event labeling. B. Discrete look 
back time frames over which breath statistics can be calculated. These options are selected via 
left swipe from the screen displaying patient waveform information. C. Example result of breath 
statistics calculated for a 5-minute time frame. Both clinically relevant metadata and PVA 
statistics are shown. 

To address these problems, we have developed an iOS application and associated 

architecture to enable research and development of real-time monitoring and CDSS for VWD. 

Several core application features were designed to address existing deficiencies in ventilation 

monitoring, to enable innovations in decision support algorithm development, and to integrate into 

real-world clinical practice workflows. First, we allow clinicians to remotely view a patient’s 

waveform data in near real time, to provide on-demand snapshots of overall clinical trends in 

ventilation (Figure 6.2A). Second, real time processing of VWD by our computing architecture 

and ventMAP software package enables remote alerting of clinicians to the presence of ventilator 

asynchrony and other forms of off-target ventilation.(54,121) Breaths that are determined to be 
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asynchronous are labeled on the screen, enabling clinicians to get an overview of asynchrony 

trends and their duration. The application also includes the ability to compute breathing statistics 

over variable, clinician-configurable periods of time (Figure 6.2B, C). The application’s flexibility 

in this regard both enables clinicians to validate that prescribed treatment protocols are being 

implemented properly and allows greater sophistication in alarm logic including use of event class, 

severity, frequency, and proportion over configurable periods of time. 

 

Figure 6.3: A. Breaths that were classified ambiguously by the machine learning classifier are 
displayed to clinicians for clarification. B. After selecting a breath, clinicians are presented with 
relevant breath-level statistics to assist with classification, and a configurable list of breath 
classes to select. 

 We utilized AppleTM push notifications to directly alert clinicians to ventilation problems. 

Alert settings are configurable on the mobile application, allowing clinicians to set separate alert 

configuration for each patient. This allows each clinician to receive alerts that are relevant to their 

practice and each patient’s physiology. In addition to more traditional alert parameters such as 
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respiratory rate and tidal volume, we enable alerts for the occurrence of asynchronies such as DTA 

and BSA that are derived from our ML models,(56) and we employ artifact recognition algorithms 

to reduce false positive event detection.(54) All these alerts have provider-configurable boundaries 

and adjustable rolling time windows that can be modified on the device rather than the ventilator 

and turned on and off as a patient’s condition evolves. This ability may prove useful to 

individualize alert logic and to reduce the occurrence of clinically irrelevant and false alarms.  

To address the limited availability of ground truth data sets for ML algorithm development, the 

application was also designed to include a real time breath annotation mechanism. In the case of 

an uncertain prediction probability, the application can query the clinician to classify the 

ambiguous breaths (Figure 6.3). In doing so, the application enables the accumulation of labeled 

data to improve the alert system’s accuracy and usability.  

Finally, we built a prototype of the ML-driven ventilation management and alert system using 

a client-server model with modest cloud computing resources (2 CPUs, 4G memory, Ubuntu 

14.04) on Amazon Web Services. Our goal was to investigate the performance of our system when 

implemented using real-time data processing in a cloud computing framework. We benchmarked 

the server-side processing delays to complete the following three key operations while simulating 

1, 10, and 20 simultaneous patients (20 represents a typical full ICU patent load): 

• Micro-batch processing: Time taken to process and store new incoming data (20-breath 
batch), perform feature extraction, and PVA detection. 

• Data Retrieval: Time taken to retrieve 5 minutes of data (ventilator data, breath meta data, 
and PVAs) from an iPhone application (5 minutes was the default polling interval) 

• Alert Processing: Time taken to digest classification results for all patients and generate 
alerts 

For each task, we repeated the experiments 20 times to ensure statistical validity. We found our 

system was able to perform PVA detection in 1.047 seconds and perform data retrieval and all 
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alert processing in 0.125, and 0.107 seconds on average for 10 patients (Table 6.1). In general, 

data retrieval and alert processing time were negligible (sub-seconds) over different loads. Even 

at full ICU load (20 patients), the average micro-batch processing time was less than 2 seconds 

and less than 4 second 90% of the time. Given that most breaths on a ventilator last 2-3 seconds, 

we conclude that our system is capable of real time data processing.  

N Task Mean (s) Std (s) 90% (s)  Max (s) 

1 Micro-Batch Processing 0.329 0.059 0.329 0.973 

 Data Retrieval 0.098 0.031 0.118 0.122 

 Alert Processing 0.002 0.000 0.002 0.003 

10 Micro-Batch Processing 1.047 0.641 1.789 4.075 

 Data Retrieval 0.125 0.145 0.311 0.559 

 Alert Processing 0.107 0.079 0.209 0.274 

20 Micro-Batch Processing 1.942 1.347 3.457 9.512 

 Data Retrieval 0.272 0.220 0.346 2.045 

 Alert Processing 0.357 0.283 0.681 0.914 

Table 6.1: A summary of the server-side processing delays for three tasks: Micro-Batch 
Processing, Data Retrieval, and Alert Processing under different patient loads. The mean, 
standard deviation, 90th percentile, and maximum delays are reported in seconds, rounding to 3 
decimal places. 

 Nevertheless, our prototype cannot guarantee better than worst case performance (9.512 

seconds for 20 patients) due to the lack of dedicated resources. Variations in the processing delay 

were due to competing background workloads on the same server. This demonstrates the potential 

implications of using cloud platform for real-time data analytics in an intelligent CDSS system. 

Future research is needed to further explore the advantages and disadvantages of dedicated edge 
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computing platforms on premise versus cloud platforms, especially for future application scenarios 

where the data-driven analytics may be part of a closed loop systems controlling fluids and 

medication administration, ventilators, or other medical devices where low computation time 

variance and sub-second latency will be critical. 

6.3 Future Work  
6.3.1 Background 

 Our diagnostic modeling for ARDS could also serve as the foundation for improving 

prognostication of the ARDS disease in patients. Indeed, predictive models for disease can have 

clinical utility: Diseases such as cancer, sepsis, and ARDS all have increased mortality rates as 

disease severity increases.(5,13) There is also reason to believe that ARDS treatment protocols 

may be more effective when used early, especially in patients with moderate-severe disease, and 

some therapies may not work or even cause harm in patients with less severe ARDS.(24,26,187) 

In this regard, there are a variety of options available for the management of patients with 

ARDS. (25,26,188) Attention has thus focused on limiting ARDS progression through early 

recognition and implementation of ARDS specific treatments. (174,189) However, identifying 

which patients may benefit from more aggressive treatments is still an open challenge. 

 To help address this issue, we plan to develop models to predict clinical trajectories 

amongst patients with ARDS. Currently, we do not know of any best modeling architecture to 

use for prognostication, but we hypothesize hidden Markov models (HMMs) and advanced ML 

models such as deep learning will be well suited for the application of time series prognosis with 

VWD and EHR information.(5). As a result, we propose to explore a variety of HMM and DNN 
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architectures and modeling techniques to determine which avenue is best for prognosticating 

ARDS disease state. 

 Ultimately, our models and approach will not just apply to prognosis of ARDS. Our 

techniques will likely be broadly generalizable to prognostication of any disease where 

physicians utilize hospital waveform data to assist their practice. These modeling techniques will 

also satisfy a need for automated prognostication in critical care medicine. With the increasing 

digitization of medicine, we have entered an age when healthcare providers are continually 

presented with diverse types of patient data without the right tools to translate these data into the 

information necessary to create effective diagnoses and treatment plans.(1,4,190) Automating the 

prognostication of complex diseases stands to reduce cognitive burden on providers, prevent 

medical errors, and save patient lives. 

6.3.2 Methods 

 We will definitively identify which patients had ARDS in our cohort of over 500 

patients,(122) will then determine the exact time at which ARDS is capable of being diagnosed. 

Then we will determine the state of ARDS at the time of diagnosis via P/F measurement 

following the Berlin Criteria P/F severity ranges. Next, we will determine whether the patient 

deteriorated, improved, or stayed the same in their ARDS state in the next 24 hours post-ARDS 

onset. To do this, we will utilize oxygen saturation index (OSI) as a surrogate, and more 

available, measure of P/F ratio.(191,192) We will determine the patient as improving if the mean 

OSI for the next 24 hours was higher than the mean OSI for the prior 24 hour interval.  

 Once a ground truth is established, we will use the retrospectively collected VWD first 24 

hours of data for ARDS patients, and VWD collected for the subsequent 24-hour period to 
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evaluate patient respiratory function. We will also utilize EHR derived features identified to be 

predictive of ARDS diagnosis in Chapter 2 and Chapter 4 (static features) and add a temporal 

dimension to them to by utilizing Calvert’s and Kam’s methodology of determining when a 

feature value is increasing, decreasing, or not changing (dynamic features).(193–195) In 

addition, we will also investigate whether magnitude and rate of change in features such as 

respiratory compliance will be predictive of worsening ARDS severity.(196,197) 

 

 
Figure 6.4: A multi-stage hidden Markov model (HMM) typically used to model disease 
progression in patients. Each disease stage corresponds with a model state, and each 𝑞./ is a 
transition probability that the patient will move from one disease stage to the next. The final 
“absorbing stage” can be considered as patient death. 

 Using our dataset and parameterization approach, we will develop an HMM to predict if 

a subject’s ARDS severity class will decrease, increase, or stay static in the next 24 hours. 

HMM’s work by establishing multiple system states that are connected to each other by state 

transition probabilities.(198–202) These links dictate at what probability a system will move 

from one state to another.(203) Using a HMM, we will establish a probabilistic model that 

determines whether a subject will change ARDS severity state in the next 24 hours, and if so to 

which ARDS disease state, while validating the accuracy of model predictions. We can perform 

this disease progression modeling in multiple ways, and it is not clear which methodology would 

be best to use in our current situation. Multi-state disease models are attractive because of their 
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conceptual simplicity (Figure 6.4), but other models such as an unsupervised learning model 

proposed by Wang should also be examined.(198,199) We will also pursue an exploratory 

approach to modeling ARDS progression with deep learning. 

 

Figure 6.5: Approximation of what our neural network will look like. VWD will first be fed into 
a preprocessing step involving either batch normalization (BN), pooling, or a rectified linear unit 
layer. This output will be passed to CNN layers and the process will repeat to derive featurized 
information from VWD. Then featurized information will be passed to our second network 
which integrates the featurized information with EHR derived data. These two data sources will 
then be passed through a series of long short-term memory (LSTM) or gated recurrent unit 
(GRU) gates. Finally, the output of this network will be classified with a single fully connected 
and sigmoid layer. Loss will be calculated at the end of the classification process. 
 Next, we will create a model for predicting change in ARDS severity class using a type 

of ML known as deep learning. Deep learning models use specialized neural networks that are 

used to generate novel features from the available “raw” input feature set, thus precluding the 

necessity of feature extraction via specialized expert knowledge.(111,204–206) For model 

development we will use multiple different deep learning models: LSTM, GRU, and CNN, that 

have shown success in extraction of temporal patterns in EHR, and in the early detection of 

sepsis.(5,194,207) Given that important physiologic information such as respiratory compliance 

is embedded in VWD, we hypothesize that CNN networks will be able to identify pertinent 

features including temporal patterns diagnostic of worsening severity of ARDS after the patient 

has met Berlin criteria (Figure 6.5). As described above, we will use OSI data to group ARDS 
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patients in our cohort according to whether they worsened, remained stable, or improved in 

ARDS severity class in subsequent 24 after ARDS onset. A “raw” feature set of static and 

temporally dynamic features derived from VWD and EHR data will be used for model 

development. Once completed, we will test the hypothesis that our deep learning model will have 

better sensitivity and specificity than the HMM for prognosticating ARDS severity class. 

6.3.3 Discussion 

 We hypothesize that a HMM, using the best features identified in Chapter 2 and Chapter 

4 and additional temporal information, will be able to accurately predict changes in ARDS 

severity. We hypothesize that the addition of deep learning will allow us to computationally 

derive additional predictive information that will result in superior predictive performance of our 

model compared to an HMM.  

 It is possible that neither HMM nor deep learning models will accurately predict changes 

in ARDS severity. Despite this possibility, the promising performance of our ML models in 

distinguishing between patients with and without ARDS strongly suggests that use of 

physiologic features will be useful in predicting changes in clinical trajectories in ARDS 

patients. Our use of static and dynamic features creates a novel temporal framework for 

predicting changes in ARDS, and the use of advanced ML methods that can discover useful 

temporal patterns in a raw dataset to develop novel predictive features may further mitigate risk 

of model failure. Finally, the use of a 24-hour window in which to assess for change in ARDS 

severity during model development may be overly restrictive and compromise model training. It 

possible that a longer time frame (e.g., 72 or 96 hours from ARDS onset) could better separate 

patients into groups with distinct trajectories, leading to better model training and thus prognostic 
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performance, which may require further model development and validation experiments with 

different cutoffs. 

 Beyond our specific use modeling, our proposed work in predicting clinical trajectories in 

ARDS could lead to more appropriate treatment of patients with ARDS, and it could also 

contribute to the science of using new predictive models for other diseases such as chronic 

obstructive pulmonary disease (COPD), sepsis, or cancer.(163,194,208) These types of 

predictive models will become increasingly important as medicine becomes more personalized 

by utilizing high frequency data collection and machine learning analytics to generate highly 

accurate and actionable prognostic information from a wealth of data. 

6.4 Summary 
ARDS is a prevalent and deadly disease that affected approximately 10% of ICU 

admissions pre-COVID, and with mortality rates of 29.7%-42.9%. Despite prevalence and 

severity, ARDS remains widely underrecognized and only 60% of those with ARDS are ever 

recognized as having the syndrome during their hospitalization. It is suspected that the high 

mortality rates of ARDS patients are partially because of under recognition, yet despite years of 

improvements in ARDS clinical definitions, unaided clinicians remain deficient at timely ARDS 

diagnosis. Automated diagnostic solutions have been proposed to ameliorate the problem of 

ARDS diagnosis; however, their performance varies highly based on inter-center radiologist 

practices, availability of necessary EHR data, timeliness of data reporting, and subjectivity of the 

Berlin criteria. 

We propose to improve this situation by utilizing VWD as a primary or surrogate 

mechanism for ARDS detection. VWD is unbiased, pervasive, and ubiquitous for patients with 
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respiratory failure. Our results in Chapter 4 and Chapter 5 show that an automated, ML-based 

ARDS screening algorithm using VWD can detect ARDS with strong discrimination 

performance within the first 24 hours after Berlin criteria. Our model functioned without need 

for a CXR, ABG, or other EHR-derived data, and displays VWD shows promise for use as a 

digital biomarker of ARDS pathophysiology. While our results represent a first proof-of-concept 

that digital biomarkers derived from physiologic monitoring data can be used for early ARDS 

detection, additional research is needed to determine how broadly such methods can be applied, 

how best to incorporate them into traditional Berlin criteria-based diagnostic workflows, and 

how they might complement EHR and biochemical approaches to clinical phenotyping and 

prognosis. 

This dissertation is broadly aimed at showing the research challenges we solved and 

software that we built to create our ML-based ARDS detection model in Chapter 4. ML models 

require large amounts of labeled data to function well. So, we developed APL to solve this issue 

in the use-case of VWD. In Chapter 2.2 we showed how APL represents a new, effective tool to 

improve the consistency and speed of generating multi-reviewer gold standard VWD datasets 

that will help drive the development of novel CDS systems. With the use of APL, we created 2 

datasets comprising over 300,000 annotated breaths for classifying PVA and VM. Our classifiers 

for PVA in Chapter 2.3 and VM in Chapter 2.4 will facilitate development of more advanced 

automated MV CDSS to improve the management of patients experiencing respiratory failure.  

Patients with respiratory failure need extensive physiologic monitoring of vital signals. 

One such signal that can be measured non-invasively is respiratory compliance, which can also 

help warn and monitor for onset and progression of ARDS. In Chapter 3 we provided further 

clinical validation of a set of 15 algorithms used to monitor respiratory compliance based on the 
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single-chamber model of the lung. Our exploration is intended to give scientists and clinicians 

more faith in performance of the single-chamber model under varying clinical scenarios for both 

clinical purposes and so we can improve the featurization of our ARDS detection model explored 

in Chapter 4. 

Besides better feature engineering, performance of ML algorithms can also be improved 

by applying more modern ML techniques such as deep learning. Classical ML algorithms operate 

largely using potentially biased, manually crafted features based on clinical knowledge. Deep 

learning in contrast, promises to potentially remove this bias by extracting features directly from 

raw data such as VWD. So, in Chapter 5 we explored the hypothesis of whether our ARDS ML 

classifier would benefit from a more unbiased feature set. Our work gives evidence that deep 

learning may have advantages to expert-derived featurization in extracting physiologically useful 

information from raw ventilator waveform data. Furthermore, our use of frequency ablation to 

highlight salient waveform information may have potential for future applications of physiologic 

waveform data analysis so that scientists may be able to better understand the performance impact 

of different waveform morphologies during model development. 

Next, we incorporated our improved ARDS detection model into an automated platform 

for collecting, monitoring, and performing diagnosis on physiologic data collected in the ICU. Our 

work in Chapters 6.1 and 6.2 showcases a proof-of-concept system for future improvements in 

healthcare delivery where data will be continuously streamed from the bedside, analyzed in the 

cloud, and returned to clinicians at the point of care in the form of actionable diagnostic and 

predictive alerts. In this regard, we envision a future where CDSS are designed specifically around 

IoT sensors, cloud computing and EHR integration, and mobile device-based access to CDSS 

feedback in a “provider-in-the-loop” implementation framework where inaccurate decisions made 
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by ML algorithms can be corrected by clinicians to continuously refine algorithm performance 

over time. 

The development of effective healthcare models will in turn depend on clinical studies 

testing CDSS effectiveness. Such studies will evaluate potential improvements in care gained from 

rapidly alerting physicians to events such as PVA or diagnoses like ARDS. These trials will be a 

key part of future learning healthcare systems that will design, test, and implement automated 

CDSS, where data will be continuously streamed from the bedside, analyzed in the cloud, and 

returned to clinicians at the point of care in the form of actionable diagnostic and predictive alerts. 

In this regard, we envision a future where CDSS are designed specifically around IoT sensors, 

cloud computing and EHR integration, and mobile device-based access to CDSS feedback in a 

“provider-in-the-loop” implementation framework where inaccurate decisions made by ML 

algorithms can be corrected by clinicians to continuously refine algorithm performance over time.  

 In conclusion, we have developed an end-to-end system for developing and exploring the 

use of VWD in the application of ARDS detection. Our system highlights methodologies to 

explore the use of future data technologies in the ICU for purpose of syndrome detection using 

non-invasive VWD. These methodologies will help create advanced CDSS that will reduce the 

cognitive burden on care providers, improve quality of care, reduce patient suffering, and reduce 

overall hospital mortality from deadly diseases such as ARDS.   
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Appendix A: APL Appendix A: APL  

A.1: Installation 
 

APL was developed with Python2.7. If you do not have a Python2.7 environment, you can set 

one up using anaconda or virtualenv. Running a development server for APL is not difficult, but 

you will need Redis installed on your machine before you attempt to run these instructions: 

conda create -n apl python=2.7 
conda activate apl 
cd source 
pip install -r requirements.txt 
redis-server & 
python development.py 

 

If you want to run APL on Docker then follow these steps: First, you'll need to configure the app 

properly for a production environment. 

touch prod_config.py 

 

Then enter the prod_config.py file with a text editor and add the following information: 

REDIS = { 
 “host”: “apl-redis”, 
 “port”: 6379, 
 “db”: 0, 
} 
SECRET_KEY = “XXX” 

 

`SECRET_KEY` should be changed to whatever you deem appropriate. 
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Running the annotation pipeline will require Docker to be installed on your computer. Docker is 

a flexible piece of software that can quickly deploy complex applications in a reproducible 

manner.  You will need to install Docker and Docker-Compose. Instructions for this can be 

readily found on Google for your operating system. Once Docker and Docker-Compose are 

installed you can execute the following command on the CLI 

docker-compose up 

A.2: Usage 
Using APL is designed to be as simple as possible to untrained users. Sign-In is accomplished by 

entering a username, while sign-up is done by entering a username and an email address. We 

currently have not implemented password protection mechanisms because we haven't found a 

need for it yet, but if multi-center users desire to use the same APL instance, then password 

protection will undoubtedly be necessary. 

 
Appendix Figure A.1: Displays sign in screen for APL 
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Appendix Figure A.2: Displays sign up screen for APL 
 

Normally users can just choose an annotation view. After choosing a view a list of metadata and 

annotation options will be displayed to ensure the correct view has been chosen. 
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Appendix Figure A.3: Annotation views can be chosen based on preset views that are default to 
APL. Users can also create a new annotation view if they desire as well. New annotation views 
will be marked with a username to ensure proper attribution is made. 

 
Appendix Figure A.4: Shows how to create a new annotation view with APL. 
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Upload occurs using files collected from the Puritan Bennet 840 ventilator. The files are then 

analyzed with the ventMAP software and processed into a form that can be rendered by APL. 

 
Appendix Figure A.5: Files can then be chosen via drop-down menu. 

 

 
Appendix Figure A.6: After processing the file will be available to view. 
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Annotating a file can begin after a view and a file are chosen to annotate. 

 
Appendix Figure A.7: Upon choosing a file, users will see breath data. Flow data is marked in 
blue, and pressure is in red. 
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Appendix Figure A.8: Clicking on a breath number shows a drop-up window with annotations 
and metadata 

 Annotation occurs simply by clicking on a breath number and by clicking a checkbox 

associated with a breath annotation. Breaths that are not annotated are assumed to be normal. If 

multiple breaths at once are desired to be annotated then a user simply picks a breath to start 

annotations at, and then selects a breath to end annotations, and all intermediate breaths will be 

automatically annotated. Annotations can be exported to CSV format by clicking a button at the 

bottom left of the annotation screen. There is also option for output of a specific breath range of 

annotations as well. 
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Appendix Figure A.9: Selecting the first breath of a multi-breath annotation 

 

 
Appendix Figure A.10: Selecting the final breath a multi-breath annotation. All breaths in 
between will be marked with the chosen annotation. 
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Appendix Figure A.11: Shows choosing breath numbers to export to CSV format at the bottom 
left corner of the screen. 
 

If another reviewer has annotated the same file you are working on, in the same view then you 

can select the file you want to reconcile and the name of the reviewer you want to reconcile 

against. 

 
Appendix Figure A.12: To begin the reconciliation process choose a file and then two different 
reviewers who annotated the file. 

 

If there are no breaths that need to be reconciled, then all breaths will have a green checkmark 

above them. 
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Appendix Figure A.13: If everyone agreed on all annotations then all breaths will be displayed 
with checkmarks 
 

If breaths need to be reconciled, then breaths will appear with a red label above them, marking 

the differing choices each reviewer made when annotating them. 
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Appendix Figure A.14: If there are annotation disagreements then specific issues will be shown 
for the breath, along with reviewers and the annotation that each reviewer chose. 

 

Importantly, breaths needing reconciliation will have differing annotations be unchecked, 

allowing for tabula rasa of choice. 
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Appendix Figure A.15: Annotation disagreements can be reconciled by choosing a consensus 
annotation and then exporting the file again. 
 

If files need to be deleted from APL to clear disk space, then that is possible via the `Delete` 

Tab. Here users have option of deleting single files, or all files if space needs to be quickly 

found. 

 
Appendix Figure A.16: Breath data can be deleted if necessary to make space for new files. 
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Appendix B: Algorithms for 
Estimating Static Compliance 
Appendix B: Algorithms for 
Estimating Static Compliance 

B.1: Cohort Breath Descriptive Statistics 
 VC 

(n=15) 
PC  

(n=10) 
PRVC 
(n=3) 

Number breaths 24,938 10,111 4,610 
RASS     

-1 22 1,641 0 
-2 0 0 0 
-3 1,908 4,849 0 
-4  7,389 2,717 2,095 
-5 12,061 904 2,515 
N/A 3,558 0 0 

Asynchronous Breaths    
Double Trigger Asynchrony 49 134 2 
Breath Stacking 
Asynchrony 

664 690 41 

Flow Asynchrony (FA)    
Mild 6,729 - - 
Moderate 35 - - 
Severe 34 - - 

Delayed Cycling (DCA) - 1426 55 
Appendix Table B.1: Details per-breath counts under different ventilation modes, Richmond 
agitation and sedation score (RASS), and patient ventilator asynchrony conditions. 

B.2: Flow Asynchrony Algorithm 
 Here we detail in Python-style pseudo-code the algorithm used to perform flow 

asynchrony calculations. Our inputs into the function are the minimum inspiratory pressure for a 

breath, and the set PEEP. Minimum inspiratory pressure is found by taking the minimum 

pressure from the inspiratory limb of a breath, excluding the first 5 pressure observations of 
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inspiration. PEEP is found by mean averaging of the last 5 pressure observations of a breath. 

PEEP calculations for multiple breaths can be mean/median weighted to find a rolling windowed 

PEEP. This method is more resistant to outlier pressure observations at the end of a breath such 

as failed trigger asynchronies and other breathing artifact such as suction or cough. 

def is_breath_flow_async(insp_min_p, peep): 
    """ 
    FA severity is graded from 0-3, with 
    0: no flow async 
    1: mild flow async 
    2: moderate flow async 
    3: severe flow async 
 
    :param insp_min_p: the minimum pressure during inspiration 
    :param peep: the set positive end expiratory pressure (PEEP) 
    """ 
    diff = insp_min_p - peep 
    if diff <= 8: # it's an FA, now find how severe. 
        if peep < insp_min_p: # mild FA 
            fa = 1 
        elif 0 < insp_min_p <= peep: # moderate FA 
            fa = 2 
        elif insp_min_p <= 0: # severe FA 
            fa = 3 
    else: 
        fa = 0 
 

return fa 

B.3: Delayed Cycling Asynchrony Algorithm 
 The delayed cycling asynchrony (DCA) algorithm is designed to tell us if a patient is 

attempting to prematurely terminate (exhale) their breath before a pressure-based ventilation 

mode is set to allow them to exhale. There are two types of DCA that we test for 1) static DCA; 

2) dynamic DCA. Static DCA can be defined as when a patient performs a DCA but does not 

breathe and passively resists any additional air inhalation. Dynamic DCA is defined as when a 

patient actively exhales when the ventilator pressure is still elevated.  
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Appendix Figure B.1: Flow chart for making delayed cycling asynchrony (DCA) classifications. 
Artifact - is the breath an artifact (e.g., cough/suction) or not. Num zero - The number of 
consecutive flow observations close to 0 in the breath. FBit - the flow-defined inspiratory time in 
a breath. Is found by finding the amount of time in a breath that flow is above 0, PBit - the 
pressure-based inspiratory time of a breath. Static Slope - the slope of a period of at least 7 
consecutive flow observations that are near 0. 

 Static DCA can be found by determining if the flow is close to 0 for an extended period. 

If the slope (i.e., static slope) of this period of breathing that is close to 0 is positive, then we 

determine the breath is a static DCA. We find dynamic DCA by analyzing the flow-based 

inspiratory time (FBit) and the pressure-based inspiratory time (PBit). FBit can be found by 

determining the amount of time from breath start until the time that flow crosses below 0 and the 

patient is attempting to exhale. PBit can be defined as the amount of time during a pressure-

mode that pressure is elevated. PBit is more difficult to accurately measure compared to FBit 
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because of additional logic and rules that is necessary to implement it. As a relatively general 

rule, if FBit/PBit < 0.9 then the breath is classified as a delayed cycling asynchrony if the 

following corner cases are not found in the breath: 

1. The breath must not be indicative of an artifact such as a suction, cough, or ventilator 

disconnect 

2. The breath must not be an inspiratory pause. 

3. The breath must not have a static slope of 0 (if static slope is 0 then the ventilator is just 

equilibrating early) 

For additional details see Appendix Figure B.1. Code for FBit and PBit can be found in 

ventMAP. 

B.4: Additional Per-Patient Results 

 
Appendix Figure B.2: Mode-agnostic algorithm performance on a per-patient basis across all 
ventilation modes. 
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B.5: Algorithm Performance During Asynchrony 
 

 

Appendix Figure B.3: Comparison between non-asynchronous and asynchronous breathing in 
volume control mode.  

 

Appendix Figure B.4: Comparison between non-asynchronous and mild flow asynchrony 
breathing in volume control (VC) mode. 
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Appendix Figure B.5: Comparison between normal and delayed cycling asynchrony breathing in 
pressure modes (pressure control / pressure-regulated volume control). 
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B.6: Window Sizes 
 We also investigate the effect of window size on both mean per-patient AD and MAD. 

Our findings show that simply implementing windowing may have effect of decreasing mean 

AD for some algorithms (Appendix Figure B.6A). A more significant result can be seen when 

examining MAD, where larger window sizes tend to decrease overall MAD for many algorithms 

(Appendix Figure B.6B). 

 

Appendix Figure B.6: A. Effect of windowing on absolute difference. Again, we are unable to 
find statistical significance in per-patient AD. B. Effect of algorithm standard deviation with 
different window sizes. Note: Window size of “None” is the recording of a baseline result where 
no windowing was used. 95% confidence is shown in bar plot whiskers 

B.7: Kannangara Explanation 
 From Chapter 3.2, we already have shown that the standard flow-targeted least squares 

significantly underperforms Kannangara’s method. Here, we show why this occurs. The two 

methods both use the same formulation of the single-chamber model (Appendix Figure B.8 B, 

A.

B.
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C). Kannangara’s method does correct for asynchrony, but this cannot account for the complete 

difference in performance between the two methods. We show in Appendix Figure B.7 that when 

we examine per-patient calculations between the two methods, Kannangara’s method has lower 

median absolute difference compared to flow-targeted inspiratory least squares. So, the 

difference in performance between the two algorithms must be derived from differences in which 

both methods compute compliance. Kannangara’s method calculates compliance using a shear 

transform to identify two “shoulders” of the inspiratory section of the breath where breath flow 

begins decelerating.(209) The pressure and flow between the two shoulders are then provided to 

the flow-targeted inspiratory least squares formulation of the single chamber model (Appendix 

Figure B.8 C).  

 

Appendix Figure B.7: Per-patient calculations for PC/PRVC breaths only.  
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Appendix Figure B.8: The difference between flow-targeted inspiratory least squares 
calculations, and Kannangara method calculations. Also shows the formulation of the single-
chamber model that is used. A. Shows baseline breath with flow/pressure observations. B. Shows 
how flow-targeted least squares is calculated. C. Shows how Kannangara’s method is calculated. 

B.8: Modifying Time Constants for Al-Rawas and Vicario’s 
Methods 
 Two of the algorithms that we surveyed: Al-Rawas method, and Vicario’s non-invasive 

estimation of alveolar pressure both utilize a respiratory time constant to calculate an analytic 

solution for a compliance estimate. The time constant is defined by being a product of both 

compliance (𝐶!")	and airway resistance (𝑅#$).(96)  

𝜏 = 𝑅#$𝐶!" 

 We hypothesized that by utilizing different time constants, other than the time constant 

that was originally published for the algorithm, that we could improve the estimation results for 

these algorithms. So we investigate the performance of  7 different time constant calculation 

methods: Al-Rawas,(98) Brunner,(99) Fuzzy Clustering,(101) Ikeda’s,(210) Lourens,(100) 

Vicario’s,(96) Wiriyaporn’s.(211) We use these methods to benchmark performance of Al-

Rawas and Vicario’s method the same way that we did in Chapter 3. 
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Appendix Figure B.9: Overall per-patient results with different time constants (TCs).  

 

Appendix Figure B.10: Different time constant (TC) results in volume control (VC) only.  
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Appendix Figure B.11: Different time constants (TC) in pressure control (PC) / pressure 
regulated volume control (PRVC) only. 
 Our results (Appendix Figure B.9-Appendix Figure B.11) show that we can improve 

performance of both Al-Rawas and Vicario’s method through use of different time constants. 

This result implies it is possible that Al-Rawas and Vicario’s time constant methods are not 

optimal for use in a clinical setting in the Al-Rawas and Vicario methods. We are, however, 

unable to make direct claim about which time constant is objectively superior because our 

experiments did not measure the airway resistance of the patient. Without this, we are unable to 

directly measure the time constant, and thus not able to determine which time constant has the 

lowest error. 
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Appendix C: ARDS Detection Appendix C: ARDS Detection 

C.1: General Study Information 
 

Criteria Type Criterion 

General Inclusion Age ≥ 18 
Mechanically ventilated in the ICU 

General Exclusion Dual clinician agreement on the absence of ARDS 
Transferred to ICU from outside facility 
Chronic tracheostomy prior to admission 
Known or suspected bronchopleural fistula 
Diffuse chronic fibrotic lung disease 
Pregnant women 
Prisoners 

ARDS Patient Cohort Dual clinician diagnosis of ARDS meeting Berlin criteria 
within 7 days of intubation 

 Recorded lowest PaO2/FiO2 ratio £ 200 mm Hg 
Patients with chronic obstructive pulmonary disease and/or 
asthma were excluded from the ARDS patient cohort 

Non-ARDS Patient Cohort No suspicion of ARDS based on dual clinician adjudicated 
chart review 

Appendix Table C.1: Inclusion/exclusion criteria for subject enrollment. 

  ARDS Non-ARDS 
Primary Ventilator Mode (%)   
     Assist Control-Pressure Control 60% 72% 
     Assist Control-Volume Control 26% 4% 
     Pressure-Regulated Volume Control  6% 2% 
     Pressure Support 6% 20% 
     Other 2% 2% 
Mean RASS (range +4 to -5) -3.1 -2.0 
Cisatracurium Use (%) 26% 2% 
Mean Duration of Cisatracurium (hr.) 12.5 14.9 

Appendix Table C.2: Additional clinical characteristics of the study cohort in the first 24 hours 
of mechanical ventilation. Other, may include ventilator modes such as synchronized 
intermittent mandatory ventilation, volume support, and proportional assist ventilation; RASS, 



 158 

Richmond Agitation-Sedation Scale, range from +4 indicating combative to -5 indicating 
unarousable, with 0 indicating alert and calm 

 

 

Appendix Figure C.1: Ventilator waveform data (VWD) quality analysis workflow. We first 
determined if at least 1 hour of VWD was present in the first 24 hours after the start of 
mechanical ventilation (non-ARDS) or after Berlin criteria were first met (ARDS). If so, we then 
ensured that VWD time stamps overlapped with the timing of mechanical ventilation as charted 
in the electronic health record. We excluded VWD that occurred outside of the study window 
(i.e. - 1st 24 hours) to ensure that VWD from non-invasive ventilation used prior to intubation did 
not contaminate the data set.  
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Appendix Figure C.2: Proportion of common patient-ventilator asynchronies detected using 
previously validated software in ventilator waveform data collected in the first 24 hours in 
ARDS and non-ARDS subjects. BSA, breath stacking asynchrony; DTA, double trigger 
asynchrony   

C.2: Machine Learning Features and Algorithms 
 

 Features were extracted and aimed to capture relevant respiratory pathophysiology while 

avoiding features that might strongly correlate with ARDS treatments such as tidal volume (TV) 

or positive end expiratory pressure (PEEP). Features were first extracted for each breath and then 

we calculated the median of each feature for consecutive 100 breath windows. These median 

values were used to construct individual training/testing observations. 

 To prevent erroneous feature values resulting from periodic episodes of poor-quality 

waveform data, breath data were dropped if there was a NaN (e.g., derived features with zero in 

the denominator) on infinite value (e.g., derived value with zero in the numerator) found for any 

of the features. Breath windows were dropped if more than 50% of a 100-breath frame consisted 
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of NaN or infinite values. Across all subjects, we found that 1.5% of breaths and 0.86% of 

windows were dropped.  

 Below we provide additional detail on the methods used to extract the features described 

in Table 4.2 in Python-style pseudocode to render them more human-readable. Not all methods 

are explicitly detailed, only code relevant to feature extraction. All extraction code is publicly 

accessible at GitHub.  

def pef_to_zero(flow, time_offset, pef_index): 
""" 

Find the slope from peak expiratory flow (pef) to approximately zero 
flow.  
To prevent calculation of non-representative slopes resulting from poor 
waveform quality or asynchrony, we calculate zero flow as the flow 
closest to zero +/- 2 liters per minute and closest to breath end. 

    """ 
    # When flow is within range of -2 to 2. 
    extra_offset = time_offset / 0.02 
    flow_threshold = 2 
    for obs in flow[pef_index+extra_offset:]: 
        if abs(obs) < flow_threshold: 
            flow_zero_index = flow.index(obs) 
 

# If expiratory flow never reached between -2 and 2 before breath end, 
then return a NaN 

    if flow_zero_index is None: 
        return NaN 
 
    slope = (flow[flow_zero_index] - flow[pef_index]) / (flow_zero_index - 
pef_index) 
    # If somehow slope was negative then assume waveform quality problem and 
return a NaN, otherwise return the slope 
    if slope < 0: 
        return NaN 
 
    return slope 
 
def feature_extraction(breath): 
    """ 
    flow = extract_flow_data(breath) 
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    pressure = extract_pressure_data(breath) 
    x0_index = find_point_where_inhalation_ends(flow, pressure)  
    i_time = len(flow[:x0_index]) * 0.02 
    e_time = len(flow[x0_index:]) * 0.02 
    i_e_ratio = i_time / e_time 
    resp_rate = 60 / (i_time + e_time) 
    # pef stands for peak expiratory flow 
    pef_index = flow.index(min(flow[x0_index:])) 
    mean_flow_from_pef = mean(flow[pef_index:]) 
    pef_plus_0_to_zero = pef_to_zero(flow, 0, pef_index) 
    pef_plus_16_to_zero = pef_to_zero(flow, 0.16, pef_index) 
 
    # Extracts TVi for breath, but not used as a feature in model 
    tvi = simpsons_method(flow[:x0_index]) 
    # Extracts TVe for breath, but not used as a feature in model 
    tve = simpsons_method(flow[x0_index:]) 
    # Extract pip, but not used as a feature in model 
    pip = max(pressure[:x0_index]) 
    # Extract peep but not used as a feature in model 
    peep = mean(pressure[len(pressure)-5:]) 
 
    # Use TVi, pip and peep to extract dynamic compliance 
    dyn_compliance = tvi / (pip - peep) 
    tidal_volume_ratio = tvi / tve 
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