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Abstract
In this paper, we developed an open-source package to analyze the overall trend and responses of
both carbon use efficiency (CUE) and corn yield to climate factors for the contiguous United
States. Our algorithm enables automatic retrieval of remote sensing data through the Google Earth
Engine (GEE) and U.S. Department of Agriculture (USDA) agricultural production data at the
county level through application programming interface (API). Firstly, we integrated satellite
products of net primary productivity and gross primary productivity based on the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor, and climatic variables from the European
Centre for Medium-Range Weather Forecasts. Secondly, we calculated CUE and commonly used
climate metrics. Thirdly, we investigated the spatial heterogeneity of these variables. We applied a
random forest algorithm to identify the key climate drivers of CUE and crop yield, and estimated
the responses of CUE and yield to climate variability using the spatial moving window regression
across the U.S. Our results show that growing degree days (GDD) has the highest predictive power
for both CUE and yield, while extreme degree days (EDD) is the least important explanatory
variable. Moreover, we observed that in most areas of the U.S., yield increases or stays the same
with higher GDD and precipitation. However, CUE decreases with higher GDD in the north and
shows more mixed and fragmented interactions in the south. Notably, there are some exceptions
where yield is negatively correlated with precipitation in the Missouri and Mississippi River Valleys.
As global warming continues, we anticipate a decrease in CUE throughout the vast northern part
of the country, despite the possibility of yield remaining stable or increasing.

1. Introduction

Atmospheric carbon dioxide concentrations
increased from∼320 ppm in 1960th to over 420 ppm
in 2022. (NOAA Global Monitoring Lab. 2022) This
increase reflects only about half of the CO2 emis-
sions from human activities; the other half has been
sequestered in the oceans and on land (Battin et al
2009). According to the World Bank collection of
development indicators, while agricultural land has
declined since 1949, it still accounted for 44% of
the total land in the United States (U.S.) in 2018.
Agriculture contributes to ∼11% of total U.S. emis-
sion in 2020 (USDA 2020), and is an important way

for humans to affect carbon emissions by influen-
cing land use, and developing low carbon intensity
(CI) agronomic practices. What’s more, the U.S. gov-
ernment has been actively advocating sustainable
development in recent years. For example, the Cali-
fornia Air Resources Board’s low carbon fuel standard
program adopted a life cycle analysis (LCA) tech-
nique to calculate the CI of biofuels, issuing credits
to those that have lower CI than baseline gasoline
or diesel. The program thus provides incentives to
adopt low-CI agronomic practices, since LCA records
the affiliated greenhouse gas emissions for both the
production of feedstock and fuel conversion stages.
However, such carbon management practices must

© 2023 The Author(s). Published by IOP Publishing Ltd
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be considered in conjunction with agricultural pro-
ductivity and yield, which is the primary source of
profit for farmers.

The challenge has been that land–atmosphere car-
bon exchanges, as well as crop yields, are spatially
and temporally heterogeneous, affected not only by
agricultural practices but also by climate and other
factors. Previously, studies have been conducted to
quantify the variation in CI in agricultural activities
(West andMarland 2002a, 2002b, NjakouDjomo and
Ceulemans 2012, Liu et al 2020, Sun et al 2020). Liu
et al (2020) conducted a study that presents the con-
trast in CI resulting from different land-management
practices throughout the cradle-to-farm-gate activ-
ities. Most studies employ experimental data or
adopt process-based simulation models, which fail to
include regional and temporal climatic variabilities
across the U.S. While some studies use simulation
models accounting for climate, soil, andmanagement
heterogeneity (Ojeda et al 2022), we need to investig-
ate the regional responses of yield and CUE climatic
variability empirically. In addition, most studies do
not account for carbon fluxes from ecosystem respir-
ation, which is a large part of the carbon budget. We
have a need to characterize the heterogeneity of both
carbon fluxes and yield across the continental scale. In
addition, significant interest exists in how these met-
rics would evolve in the future under the impact of
climate change, since these metrics have a deep effect
on farmers, consumers, and society at large.

There is extensive literature on the variabil-
ity of carbon sequestration and carbon fluxes—i.e.
atmospheric–land carbon exchanges—driven by cli-
mate variability, soil, and other factors (Dragoni
et al 2011, Njakou Djomo and Ceulemans 2012,
Keenan et al 2014, Yu et al 2021). In addition, car-
bon fluxes have been extensively monitored across
the U.S. using remote sensing spaceborne imagery,
such as data acquired by the Moderate Resolution
Imaging Spectroradiometer (MODIS) on board the
two NASA’s satellites (Terra and Aqua). The ability
to retrieve plant phenological properties and pho-
tosynthetic activity based on vegetation indices and
light use efficiency models have allowed the con-
tinuous estimation of carbon fluxes in terms of net
primary production (NPP) and gross primary pro-
duction (GPP) at a continental scale (Xiao et al
2019, Della Nave et al 2022). Several papers have also
investigated the relationships between carbon fluxes
and climate using satellite data (Zhang et al 2009,
Kwon and Larsen 2013, He et al 2018). He et al
(2018) quantified the responses of carbon use effi-
ciency (CUE), defined as the ratio of NPP to GPP,
to climatic factors based onMODIS satellite data and
five different process-based carbon cycle models. The
authors concluded that MODIS CUE tends to decline
more sharply in response to increasing temperature,
especially in warm and dry conditions, compared to

other process-based models, and both the satellite-
based dataset and results from process-based models
remain relatively stable with enhanced precipitation.
However, the study did not consider the potential dif-
ferential effects from crop specific biological traits.

At the same time, the spatiotemporal variabil-
ity of crop yield has been analyzed across the U.S.
as a function of climate and other vectors. Some of
these analyses adopt simulation models that account
for climate, soil, and management heterogeneity and
explain the mechanisms behind the phenomenon,
but are limited by the scope of experimental data.
It is also hard to define the right set of variables to
include in these types of models (Wong and Asseng
2006, Lobell et al 2013, Rosenzweig et al 2014, Teixeira
et al 2021, Ojeda et al 2021, Dokoohaki et al 2022;
etc). For instance, Lobell et al (2013) construct the
APSIM crop model to explain why extreme heat is
more important than precipitation. Others carry out
empirical analysis on aggregated data, but ignore
field-level heterogeneity and do not account for dif-
ferent management, farming practices, soil quality, or
other factors (Schlenker and Roberts 2009, Kawasaki
and Shinsuke 2016, Kukal and Irmak 2018; etc). For
example, Schlenker and Roberts (2009) have docu-
mented yields increase with temperature up to some
specific threshold for each crop, above which the
heat becomes harmful, with regressions of county-
level average yields on functions of weather vari-
ables. Some agricultural economists also focus on
farm profits or farmland value (Mendelsohn et al
1994, Schlenker et al 2006, Deschênes andGreenstone
2012, Ortiz-Bobea 2020). If land markets are operat-
ing properly, prices will reflect the present discoun-
ted value of land rents into the infinite future, which
accounts for the full range of farmer adaptation.
However, this approach may be susceptible to the
omitted variables bias, owing to unmeasured charac-
teristics such as soil quality and the option value to
convert to a new use.

Our continental U.S. (CONUS) scale study
focuses on investigating the co-variability among
carbon fluxes, yield, and climate variability, across
a range of weather, soil, and management condi-
tions. In particular, we aim to quantify the spati-
otemporal variability of the county-level crop yield
and CUE, which is considered as the potential of car-
bon sequestration for cropland (He et al 2018). We
focus on corn in this paper since corn is one of the
most important staple foods and grown widely in the
U.S. Production of corn in the U.S. accounts for 1/3
of world production, with approximately 85.4 mil-
lion acres of land devoted for corn harvesting in
2021. (USDA NASS 2017) We develop a machine-
learning pipeline through the Google Earth Engine
(GEE)—for automatic data retrieval of public remote
sensing products to facilitate this large-scale data
analysis study. We developed a Python package to
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automatically retrieve the geospatial and remote
sensing data layers (including satellite-based NPP
and GPP), extract useful information, form different
measurements, and produce map visualizations of
the variables.

We then applied machine-learning methods to
identify the key drivers for CUE and crop yield,
as well as their responses to temperature and pre-
cipitation changes. Lastly, we analyzed a range of
climate time series datasets including temperature,
precipitation, and their products such as growing
degree days (GDD). Based on the results, we cat-
egorized the counties according to correlations and
explored the distribution of the relationships. The
co-variability patterns among yield, CUE, and cli-
matic factors could bolster our understanding of the
effect of current and future climate change on agricul-
ture and carbon budgets. Literature is lacking studies
that focus on better understanding the relationship
betweenCUE,which is directly related toCI, and crop
yield, which is themain profit-makingmechanism for
farmers, at regional scales. Understanding such co-
variability would fill this gap in literature. Moreover,
by comparing the responses of CUE and yield to cli-
mate variables, we are able to show the areas that
have a divergence in CUE and yield trend and thus
should be focused by policymakers. These areas have
the highest potential to benefit from conservative or
regenerative agricultural practices, which should be
subsidized and incentivized by the government.

2. Spatial data layers

Our county-level yield data are downloaded from the
USDANational Agricultural Statistics Service (USDA
NASS) Quick Stats Database. It spans most U.S.
counties from 1950 to 2020. NASS collects data for
county-level yields through the December Agricul-
tural Survey and the County Agricultural Production
Survey each year, where farm operators report acre-
age, yield, and production for crops such as corn, soy-
bean, and hay via mail, telephone, personal interview,
or electronic reporting. Data accuracy is ensured
through strict guidelines, including double-checking
of questionable results with operators by experienced
NASS statisticians, followed by a review by the NASS
Agricultural Statistics Board to check for consistency,
adherence to publication standards, and accuracy,
before the data are published. Minimum response
requirements of at least 30 producers or 25% of har-
vested acreage in a county are necessary for data pub-
lication, and data fromother counties in the same dis-
trict may be withheld if one county lacks sufficient
responses. The NASS county data are used to sup-
port various Risk Management Agency crop insur-
ance programs and Farm Service Agency (FSA) farm
support programs. (Johanns andGreg 2020) The unit
of corn yield is bushels per acre, where 1 bushel is
0.0254 metric ton for corn in the U.S. In this paper,

we use 19 years of data, from 2001 to 2019, to match
the NPP data described below. We downloaded the
data through Python API.

GEE provides a catalog of satellite imagery and
geospatial datasets that enable planetary-scale inter-
pretation capacities. We utilized two publicly avail-
able datasets, namely ERA5 Daily aggregates (precip-
itation and temperature) and MODIS Gross Primary
Production/Net Primary Production. The GEE API,
alongwith the code editor, was used to download data
by filtering the required regions and time.

The MODIS GPP CONUS products (Robinson
et al 2018) were estimates using MODIS Sur-
face Reflectance for CONUS and the MODIS NPP
CONUS dataset. They are both calculated using the
MOD17 algorithm. Primary Production products
present a measure of the growth of terrestrial vegeta-
tion. The production is then determined by the com-
putation of a daily net photosynthesis value, which
is ultimately combined over an eight-day interval
for a year. The spatial resolution of MODIS data is
250 meters.

The land-use data adopted in this paper were
obtained from the Cropland Data Layer (CDL) of
the USDA NASS. The CDL, referred to as ‘census by
satellite’ by the USDA, aims to accurately geo-locate
major program crops annually in the U.S. The pro-
gram takes Resourcesat-1 AWiFS imagery, agriculture
ground truth from Farm Service Agency and NASS
June Ag Survey, nonagricultural ground truth from
U.S.Geological SurveyNational LandCoverDatabase
(USGS NLCD), and other ancillary data as inputs. It
then categorizes each pixel to over 250 crops and other
land uses. The spatial resolution of USDA CDL data
is 30 meters. (It is publicly available through GEE or
the CropScape ((USDA-NASS) 2020) platform.)

The European Centre for Medium-Range
Weather Forecasts (ECMWF) produces global stat-
istical weather predictions and additional data. Spe-
cifically, it provides the ERA5 Daily Aggregates data-
set (Copernicus Climate Change Service (C3S) 2017),
which is a fifth-generation climate reanalysis dataset
produced by ECMWF along with the Copernicus
Climate Change Service.

ERA5 DAILY presents aggregated values for each
day for the following seven ERA5 climate parameters
gridded at 1 km resolution: 2 m air temperature, 2 m
dew point temperature, total precipitation, mean sea
level pressure, surface pressure, 10m u-component of
wind, and 10m v-component of wind. It also presents
dailyminimumandmaximumair temperature at 2m
that have been calculated based on the hourly 2 m air
temperature data.

3. Methodology

The framework and ML pipeline are shown in
figure 1. The framework integrates the GEE for data
retrieval and processing (the details described below),
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Figure 1. Overview of the developed framework.

and a series of Python-based codes as a workflow
to perform the coupled analysis of climate, carbon
fluxes, and yield.

3.1. Data retrieval: cropmasking and county-level
aggregation
First, we create the annual crop mask layer from
CDL by assigning pixel values to 1 where the pixel
value of the CDL image ‘cropland’ band is equal to
the target crop and 0 otherwise. We then apply this
mask layer to the variable images (e.g. GPP, NPP,
the average temperature in each day, etc) through the
ee.Image.updateMask function, so that the image val-
ues at the target crop pixels are kept, while other pixels
are equal to NaN.

The algorithm then takes a collection of county-
boundary polygons at the CONUS scale as input.
Using these polygons, we apply a mean reducer (the
ee.Image.reduceRegions function), which computes
the average of non-NaN values in each masked image
over the area of each county. This process results in
the collection of county averages of each image for a
selected crop.

Looping this masking and reducer step through
all the image collections, we obtain the county aver-
ages of the variables for a selected crop, and store
them in a feature collection. Finally, we download
the collections as CSV files for easier integration with
Jupyter notebooks.

3.2. Metric computation
Our metric computation focuses on crop yield and
CUE. As a unit-free index, CUE can represent the effi-
ciency of plants to sequester carbon from the atmo-
sphere and is increasingly recognized as an import-
ant parameter shaping ecosystem carbon storage. We
derive pixel-wise annual CUE data with MODIS GPP
andNPP products, and then aggregate to county level
by averaging data only on those grids labeled as corn.

The spatial heterogeneity of the corn CUE is shown
in figure 2(a).

We use several climate metrics to depict local cli-
mate conditions that are important to agricultural
production. GDD is used broadly to estimate the
growth and development of plants. Following Schlen-
ker and Roberts (2009), GDD is defined as follows

GDD=
1

T

T∑
t=1

(Tempt −Tempbase,0) ,

where T is the number of days of the growing sea-
son, Tempt is the average temperature on day t, and
Tempbase is a base temperature that might be differ-
ent for each crop. The basic concept is that develop-
ment will only occur if the temperature exceeds some
minimum development threshold, or base temperat-
ure. This paper uses 8 ◦C as the base temperature for
both corn and soybeans (Schlenker et al 2006, Schlen-
ker and Roberts 2009, Ortiz-Bobea 2020).

Another temperature metric we adopt is extreme
degree days (EDD). EDD is broadly used to represent
stress from extreme weather, since extreme temperat-
ures higher than some thresholds are harmful to plant
growth. Similar to GDD, it is defined as follows:

EDD=
1

T

T∑
t=1

(Tempt −HighTempbase,0) ,

where HighTempbase is the base temperature to
define the extreme temperature, which is differ-
ent for each crop. There are variations in the
optimal temperature for maize growth (Schlenker
andRoberts 2009, Wang et al 2018).We choose 30 ◦C
as base temperature in EDD calculation follow-
ing Ortiz-Bobea’s (2020) approach to assess cli-
mate change’s impact on US agriculture profit using
county-level data.
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Figure 2. Data visualization: average corn (a) CUE, (b) GDD, (c) mean annual precipitation, and (d) EDD in each county
(2001–2019).

Another important prediction factor for agricul-
tural production is water resources.Within our study,
we use the countywide average daily precipitation
for each year. We acknowledge that in the regions
with one crop a year, using GDD, EDD, and pre-
cipitation metrics only during the growing season
would improve the prediction accuracy of yields. We
used annual metrics because in some regions, mul-
tiple growing seasons may occur within a year, mak-
ing the use of annual measurements more appropri-
ate. And for consistency, we used the same metrics
for all the counties. Additionally, our interest in the
carbon budget extends beyond the growing season,
encompassing the entire year, including non-growing
periods. As such, using annual measurements is con-
sidered to provide a more comprehensive under-
standing of the yield and CUE evolution in the con-
text of climate change in our study.

3.3. Random forest (RF) regression
RF is a supervised learning algorithmused in classific-
ation or regression (Breiman 2001). RF is an ensemble
method that first constructs several decision trees and
outputs the average of the response from each tree as
the final prediction.

In this study, recognizing the nonlinear relation-
ship between yield/CUE and climate variables, we
conduct a RF regression of yield and CUE, respect-
ively, on the same set of variables—annual GDD,
EDD, average precipitation, and the year of observa-
tion. We included years as a control variable in our
model due to two reasons. First, there has been an
upward trend in yield since the Green Revolution in
the 1950s (Bobenrieth et al 2021). By including years
as a control variable, we account for this technology
trend in our analysis. Second, we included years to
account for unobserved shocks that could impact the
entire country at the same time, such as unpredicted
events like pandemics. By controlling for the year, we
can reduce the residual variance and increase the pre-
cision of the estimates. We did not include soil prop-
erties in our analysis, since it is highly variable within
each county. We expected that if we have finer-scale
yield data within each county (Falco et al 2021), it
would be powerful to include the soil data into the
random forest regression (Chaney et al 2016). One
advantage of RF regression is that it can fully capture
the nonlinearity of the different relationships. In our
study, we made use of observations from all counties
of CONUS from 2001 to 2019. The RF algorithm was
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implemented using the scikit-learn library for Python
language.

In our analysis, 60% of the data were randomly
selected and used as the training set, with the remain-
ing 40% used as the testing set. With the training set,
we used ten-fold cross-validation to tune two para-
meters, the number of trees and the maximum depth
of each tree. We used the optimal parameters and
the training data to fit a random forest model, which
was then used to predict our metrics over the testing
data. The performance of the model was assessed in
terms of R-squared (R2) and root mean square error
(RMSE).

In order to understand which feature has a higher
impact on the estimated variable, we investigated the
feature importance using the Gini importance index.
Gini index is defined as 1−

∑C
i=1P

2
i , where Pi is the

probability of choosing an item with label i and C is
the number of classes. It measures how often a ran-
domly chosen element of a set would be incorrectly
labeled if it was labeled randomly and independently
according to the distribution of labels in the set. It
reaches itsminimum (zero) when all cases in the node
fall into a single target category. Gini index is typic-
ally used as an impurity measurement in Classifica-
tion and Regression Trees algorithms.

3.4. Spatial moving window regression
We employed the spatial moving window regression
technique to estimate the responses of yield and CUE
to climate variability. The spatial moving window
increases the number of the data size, by considering
one centered county and all counties bordering this
county. We then fit an ordinary least squares (OLS)
regression of yield andCUE, respectively, on the set of
weather variables, including GDD, EDD, and annual
average precipitation, within each window and recor-
ded the resulting model parameters on the centered
county. Counties with less than 4 bordering counties
were excluded from the analysis to keep the size of
the windows consistent. We counted on the spatial
autocorrelation to produce localized results rather
than a single, global regression model. This approach
allowed us to better capture the spatial heterogeneity
of the responses of yield and CUE to climatic factors,
and to identify local patterns and trends thatmight be
missed by a global analysis. With such regressions, we
can detect whether the CUE and yield follow the same
direction or diverge in each county, and therefore
categorize each county based on the sign of correl-
ation among variables. Alternative machine-learning
methods (e.g. RF, gradient boosting, long short-term
memory) for yield prediction, which allow for more
variables than observations, focus more on forecast-
ing precision rather than explanation of the phenom-
ena. The effect of a single feature is intricate and hard
to capture in those models. We adopted a simple OLS
regression to obtain coefficients that are crucial for
explanation. Further, the estimation should give us

consistent estimations, since weather variations are
generally assumed to be exogenous. There is a weak
positive correlation between GDD and precipitation,
with a Pearson r coefficient at 0.226. Partial regres-
sion coefficients are essentially the same as those
frommultivariate regression according to the Frisch–
Waugh theorem (Greene 2003). Therefore, the coef-
ficient from multivariate moving window regression
gives us the effect of GDD and precipitation on yield
or CUE keeping the other factors constant, respect-
ively. The correlation betweenGDDand precipitation
should not affect the estimation of the corresponding
effects on yield and CUE.

4. Results

4.1. Metric visualization
The metrics computed in our analysis are shown in
figures 2(a)–(d). Figure 2(a) shows that the CUE is
higher in the north than in the south as a whole, with
the highest CUE in the north-central part. The CUE
is relatively low on the southeast coast, but is promin-
ently higher on the central west coast. Similar to the
CUE layout but in the opposite direction, the aver-
age GDD gradually grows higher from north to south
as in figure 2(b), with the highest on the southeast
coast. Affected by westerly winds and ocean currents,
the west coast is dominated by oceanic and Mediter-
ranean climates, with mild weather and high GDD.
Figure 2(c) displays that the wetter portions are in
the northwest, which is characterized by the Pacific
Coastal Ranges, the Willamette Valley, and the east-
ern part of the contiguous United States east of the
98th meridian. The drier areas are in the central-west
regions, which include the Desert Southwest, Great
Basin, valleys of northeast Arizona, eastern Utah, and
central Wyoming. As for EDD, figure 2(d) shows that
the extremely high temperature is concentrated in the
Desert Southwest area.

4.2. Most predictive factors of CUE and yield
The RF regression results (figures 3(a-1) and (b-
1)) show that the R-squared of the yield regression
reaches 57.44% with an RMSE at 25.47, while the
R-squared of the CUE regression achieves 55.52%
with an RMSE at 0.03. These figures also show that
the predicted values are more concentrated near the
mean than the actual values. Especially for the low
CUE points, their estimated values are obviously
biased upwards, clustering around 0.5. This finding
might result from low explanatory power below some
threshold, calling for other variables not observed in
our data to elucidate.

The most important factor in deciding both the
yield and CUE based on the Gini importance index
is GDD, according to figures 3(a-2) and (b-2). The
determinants of yield are relatively dispersed, among
which GDD occupies more than 30% of the import-
ance, ranking first. Among the determinants of CUE,
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Figure 3. Predictions of county-wise corn yield (a) and CUE (b) using random forest regressions: (a-1), (b-1) Predicted vs. true
values, (a-2), (b-2) feature importance computed based on the Gini importance index.

Figure 4. Results visualization according to the moving window regressions at the county level. Categories are divided according
to correlations between (a) corn yield, CUE, and growing degree days, and (b) corn yield, CUE and precipitation. Notes: (a) and
(b) show the responses of yield and CUE to GDD (annual average precipitation). We categorized the counties according to
statistically significant coefficients’ signs obtained from the spatial moving window regressions at 0.1 significance level, with a
value of 0 assigned to nonsignificant coefficients. The first sign is the response of yield to GDD (precipitation) and the second is
that of CUE.

GDD has a more obvious advantage, occupying a
dominant position with more than 45% explanatory
power. EDD is the least informative predictor for both
CUE and yield.

4.3. Responses to climate variability
Figures 4(a) and (b) show the responses of yield
and CUE to GDD and annual average precipitation
respectively. We categorized the counties according
to statistically significant coefficients’ signs obtained
from the spatial moving window regressions at 0.1
significance level, with a value of 0 assigned to nonsig-
nificant coefficients.

In figure 4(a), almost the entire north is in areas
of different shades of blue, where there are positive
or no correlations between yield and GDD, but CUE
is negatively correlated with GDD. However, in the
southern part of the CONUS, especially in the south-
east, the correlation between CUE and GDD becomes
positive. Figure 4(b) shows that in the majority of
the CONUS, CUE goes in the same direction as aver-
age precipitation. However, in the Middle and Lower

Mississippi Valley and the Missouri River Valley, the
response of yield to precipitation is negative.

5. Discussion

Our objective is to establish a framework algorithm
and provide an open-source package to analyze the
overall trend and responses of both CUE and corn
yield as a function of various climate factors. Our
algorithm, taking advantage of automatic retrieval
of publicly available data, allows for depiction of
the co-variability among carbon fluxes, yield, and
climate variability at the CONUS scale. Pixel mask-
ing of specific crops allows us to compare the yield
and CUE—downloaded from different informa-
tion sources—in a consistent manner. We use all
data at the county level for consistency and com-
parability, since the yield data is publicly available
at the county level. We recognize that employing
environmental clusters instead of government divi-
sions would reduce heterogeneity in environmental
factors within each spatial unit, potentially improving
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prediction accuracy. We anticipate that finer-scale
yield data within each county would enable more
robust regressions at the environmental cluster
level.

Our RF regression reveals that GDD has the
highest explanatory power for both CUE and yield.
The order of feature importance for prediction of
yield is the same as that for CUE.

Our county-level investigation illustrates that
yield increases with greater GDD in 14.5% counties,
with most counties staying the same, and increases
with greater precipitation in 27.8% of the counties.
The increases in yield are anticipated in the North-
ern part of the country. Higher GDD is related to the
longer growing season, and higher precipitation will
benefit crop growing by facilitating delivery of nutri-
ents throughout the plant, especially in arid and semi-
arid areas. The interactions are more mixed and frag-
mented in the south.

In the red, pink, and purple regions of figure 4(a),
mainly in themid-latitude regions, the yield decreases
with increased GDD. These facts are partially con-
sistent with the nonlinear relationships between yield
and climate factors highlighted in Schlenker and
Roberts (2009) and Roberts et al (2013). The regions
in figure 4(b) where the correlation between yield
and precipitation is negative are generally wet regions,
such as the Middle and Lower Mississippi Valley. In
areas with excessive precipitation and poor soil drain-
age, persisting saturation will cause large damage to
crops. For corn, saturated soils inhibit root growth,
leaf area expansion, and photosynthesis because of
anoxic conditions and cooler soil temperatures. It also
increases the incidence of moisture-loving diseases.
This observation is consistent with, for example,
Falco et al (2021).

The positive correlation between soil respiration
and temperature is well documented (Lloyd and
Taylor 1994, Eliasson et al 2005, Fang et al 2005,
Hartley et al 2007). Additionally Steinweg et al (2008)
suggested that the CUE of soil heterotrophs declines
by approximately 0.009 ◦C-1. Our analysis shows that
CUE and GDD are negatively correlated in the vast
northern areas (figure 4(a)), which is in line with
the literature. However, according to our analysis, the
relationship is reversed in the south. Hence, we con-
jecture that the correlation betweenCUE and temper-
ature is U-shaped, changing from negative to positive
over some threshold temperature (For example, Wet-
terstedt and Ågren 2011, Tucker et al 2013).

We also conjecture that management differences
across regions have a great impact on yield. Yield is
closely related to profit and is thus the main goal of
agricultural production for farmers. Therefore, farm-
ers tend to impose more management interventions
to improve yields regardless of CUE. However, the
lack of open data on irrigation practices (as well as
fertilizer and pesticides application) have limited our

ability to incorporate farm management in our ana-
lysis. For instance, data on irrigated areas are only
available for a few selected survey years on USDA
NASS, and thus the variation is too sparse to be
included in our time-series regressions. Human inter-
vention has the potential to significantly affect car-
bon stock in the soil as well as yields (e.g. Paustian
et al 2019). The absence of these variables may lead to
omitted variable bias in our estimation. So, the correl-
ation between yield andweather is relatively weak and
versatile. After 2017, county-level data on cover crop
and tillage practices is available (every five years) so
that these datasets can be included in the future.With
more information, future field level studies can make
up for this lack of management detail.

Figure 4 implies that, with the progress of global
warming, in the majority of the southern U.S., in the
vast northern part of the country, CUE will go down,
even though yield might stay the same or increase. In
that case, the carbon emission problem will worsen,
even though farmers may benefit from higher profits.
We would recommend policy makers to design sub-
sidies or regulations to incentivize farmers in these
areas to take up conservative agricultural practices
that help agricultural producers improve their envir-
onmental performance with respect to air quality
and greenhouse gas emissions (e.g. nutrient manage-
ment, conservation tillage, cover crops, and etc). It
is important to note that in that case we should be
wary of structural changes due to temperature rise
and the increase in extreme weather. This work lays
the path for several future research topics. In par-
ticular, by combining our results of CUE and yield
responses with different scientific global warming
scenarios predicted by climatologists, we can facilit-
ate the prediction of climate change impacts on CUE
and yield under different counterfactuals. As shown
in sections 4 and 5, temperature plays a significant
role in determining both research objectives. Fur-
ther research featuring field-level data that include
detailed climate and soil monitoring factors, as well
as farm management variables, will be critical for
capturing the causal effects between CUE, yield, cli-
mate, soil, and agricultural practices, so as to facilitate
adaptation to climate change. Additionally, the inclu-
sion of evapotranspiration would allow us to better
understand the channel through which precipitation
affects CUE and yield.

Data availability statement

The codes used to analyze the data are available
in the Python package: py4openag (https://pypi.org/
project/py4openag/).

The data that support the findings of this study
and the codes used to analyze the data are openly
available at the following URL/DOI: https://github.
com/shuoy528/erl-div-clim-resp.git.
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