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Abstract

Nonlinear 3d frame element with multi-axial coupling
under consideration of local effects

by

Véronique Le Corvec

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Filip C. Filippou, Chair

This study concerns the formulation and validation of a 3d frame element that accounts for
the inelastic response under the interaction of axial, flexural, shear and torsional effects. The
proposed finite element addresses the need for a general beam element capable of accurately
simulating the global as well as the local response of slender structural elements.

The new element accounts for the warping of arbitrary cross sections due to shear and
torsion by introducing warping degrees of freedom at each section in order to accommodate
higher order strain kinematics. The warping profile at a section uses the necessary number
of Lagrange interpolation functions for the desired accuracy of local response. The warping
distribution along the element axis is described by either Lagrange polynomials or spline
interpolation functions. The number of interpolation parameters can be adjusted to control
the accuracy of the local and global response.

The 3d beam element formulation is derived from a mixed Hu-Washizu variational po-
tential, with the inclusion of the warping displacements as independent variables. In the
proposed formulation the section response is coupled through the interpolation of the stress
resultants and the warping displacements along the element axis. Because the stress re-
sultants satisfy the element equilibrium exactly with the use of suitable force interpolation
functions, the element is free of shear-locking. Non-uniform warping is accommodated by the
warping displacement distributions, so that the proposed element can represent the stresses
arising from local warping constraints. The element is incorporated in a general purpose
finite element analysis program with the consistent linearization of the governing equations
for warping force equilibrium and for element compatibility resulting in a robust algorithm
for the element state determination.

The element is validated with several examples of linear and nonlinear material response
of steel members. The linear elastic response is validated with analytical results, finite
element models and some available experimental measurements. The inelastic response under
monotonic and cyclic load conditions involves shear link specimens with wide flange and
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box section under high shear. The accuracy and computational efficiency of the proposed
element is demonstrated by comparing the numerical results with available experimental
measurements from eccentrically braced steel frames and with local response results from
solid and shell finite element models.

The study concludes with the investigation of the axial, flexural and torsion interaction
under large displacements. The corotational formulation is derived from a general hypothesis
that establishes the accuracy and scope of application of this method. Several numerical
examples are used for the illustration of key nonlinear geometry aspects of slender elements
under the interaction of axial, flexural and torsional effects.
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Chapter 1

Introduction

1.1 General
In today’s professional practice structural engineers are often called to design and analyze
large scale structures with irregular geometry and advanced materials under severe loading
conditions. Performance based design guidelines require the evaluation of damage limit states
and the determination of the ultimate capacity of structures in zones of moderate or high
seismic risk for a large portfolio of loading scenarios including ensembles of three dimensional
earthquake excitations. These challenging problems require the use of nonlinear analysis with
general or special purpose finite element software. With the increased expectations from the
results of finite element analyses of complex structures under extreme loading conditions the
development of accurate, robust and computationally efficient elements is of great interest.

The type of finite elements that may be suitable for the analysis of structures in profes-
sional engineering practice ranges from one-dimensional beam elements to three-dimensional
solid elements. Beam elements have one privileged direction and can model slender struc-
tures and components, such as bridge columns or moment resisting frame members. They
are widely used in professional engineering practice for the low computational cost and the
ease of post-processing and evaluation of the analysis results. For structural elements with
small span to depth ratio, such as deep beams, shear walls, diaphragms and coupling beams,
two-dimensional plate or shell elements are often used. Finally, solid elements can be em-
ployed for the study of local effects in critical structural members, and for the study of
connections and of special detailing problems.

Among all available finite element models beam elements strike a good balance between
accuracy and computational efficiency for most problems concerned with the global and local
response of structures composed of slender elements. Several finite elements have been pro-
posed to date in this category capable of handling inelastic material response and nonlinear
geometry conditions. There are numerous beam elements that describe the interaction of
axial force and flexure under linear or nonlinear geometry. The kinematic assumptions for
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these elements permits the use of uniaxial material models and simplify considerably the
formulation. There are few beam elements that account for the effect of shear and these are
often limited to two dimensions. The extension to three dimensions necessitates the inclusion
of torsion complicating the formulation considerably. This complexity increases further with
the coupling of internal forces under nonlinear geometry conditions.

To address the need for a general 3d beam element that is suitable for the large scale
simulation of structures undergoing inelastic material response and large displacements under
monotonic and cyclic excitations, this study presents a 3d inelastic beam with nonlinear
geometry under consideration of the multi-axial coupling of axial force, shear, flexure and
torsion. Relevant studies for this topic are reviewed in the following section.

1.2 Literature review
The following review of relevant literature is divided into five parts: first, the review of models
based on classical beam theories is presented followed by extensions of these to include shear
and then torsion under inelastic material behavior. The fourth part reviews models capable
of describing the shear lag effect, and the review concludes with past contributions to the
corotational formulation for the description of nonlinear 3d beam kinematics.

1.2.1 Beam theories

From the mechanical standpoint beam elements are defined as a series of cross-sections which
are orthogonal to an axis. Classical beam theories under linear elastic material behavior
are based on the assumption that plane sections remain plane under deformation. In the
Euler-Bernoulli beam theory, cross-sections also remain orthogonal to the axis, and shear
deformations are neglected. In the Timoshenko beam theory [96], a first order correction
for shear flexibility is included by relaxing the requirement that the cross-section remain
orthogonal to the beam axis. These two theories constitute the basis for the development of
several linear and nonlinear beam finite elements.

Beam finite elements that account for nonlinear material behavior can be subdivided in
two categories: concentrated plasticity models and distributed plasticity models.

In the concentrated plasticity models the inelastic behavior is concentrated at plastic
hinges typically located at the element ends, while the rest of the beam element remains
elastic. The better known models in this category are the two-component model [18] and the
one component model [35], whose formulation is described by Filippou and Fenves [29]. The
plastic hinge response is defined in terms of axial force-axial deformation, moment-rotation
or torque-twist angle relations based on concepts of plasticity theory [72]. Concentrated
plasticity models have limitations in reproducing complex material response under cyclic
loading. Moreover, it is challenging to describe the coupling between axial force, bending
moments, shears, and torque in a 3d inelastic element and to calibrate the plastic hinge
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parameters, which not only depend on the material parameters but also on the element
geometry and the boundary conditions.

In the distributed inelasticity models, the element response is determined by numerical
integration of the nonlinear response at several monitoring sections along the element. The
relation between section and element response is based either on kinematics with the use of
displacement interpolation functions, or on statics with force interpolation functions. The
former approach gives a displacement formulation, while the latter approach results in a
force or mixed formulation. Taylor et al. [92] and Lee [50] present the theoretical framework
of the mixed formulation of a 3d beam element and compare its results with those of the
displacement formulation. Several examples in these studies highlight the advantages of the
mixed formulation.

The section response can either be described by a constitutive relation between section
force resultants and corresponding deformations or obtained by numerical integration of the
nonlinear material response over the cross section. The former approach is based on plasticity
theory for section resultants [45], while the latter approach is known as ’fiber section model’.
In the fiber section model the plane section assumption of classical beam theories is used
to relate the material strains to section deformations. This approach is very efficient and
accurate for the description of the coupling between axial force and biaxial bending moment
[89], [90].

The inclusion of shear and torsion deformations under inelastic material response is more
challenging, requiring refinement of section kinematics. Section models proposed to date are
described in the next two sections. It is noteworthy that the adopted mixed formulation for
the beam element overcomes the shear locking of displacement-based elements [92].

1.2.2 Shear response

Shear plays an important role in the structural element behavior either of short metallic mem-
bers used for energy dissipation in structural applications like eccentrically braced frames,
or of shear critical RC beams, deep beams and shear walls. In the latter case the amount of
longitudinal and transverse reinforcement has a significant effect on the response.

Ceresa et al. [14] and Bairan and Mari [32] offer an extensive review of existing fiber beam
models that account for shear. These reviews focus on reinforced concrete beams where the
challenge lies in the section kinematics for including shear, and in the constitutive relation
of the material as well as the interaction of concrete and reinforcing steel. In the following
these two aspects are reviewed separately for the sake of clarity.

Shear models can be divided in four categories: (a) the shear force-deformation behavior
is described as a uniaxial relation, (b) the effect of shear results from a fiber model with
specified shear strain or stress distribution, (c) the effect of shear results from a fiber model
with the shear strain distribution derived from equilibrium considerations, and (d) layer
theories are used to describe the shear effect.

Typical of the models in the first category is the one proposed by Marini and Spacone

3



[60] for a uniaxial shear force-deformation law in conjunction with a fiber model for the
description of the axial force and bending moment. The coupling between shear on the one
hand and axial force and bending moment on the other is not accounted for and the model
is limited to 2d section response.

Models in the second and third category include the effect of shear in the fiber section
response by the assumption of section kinematics and an appropriate biaxial or triaxial mate-
rial law. The models in the second group are based on the section kinematics of Timoshenko
beam theory. Most models in the group assume that the shear strains or shear stresses are
constant over the section. Examples include the reinforced concrete beam models of Rahal
and Collins [75], Mazars et al. [61], Ceresa et al. [15], Mullapudi and Ayoub [63]. The
distinguishing characteristic is the constitutive relation for concrete. Rahal and Collins [75]
and Ceresa et al. [15] use the modified compression field theory for the purpose and are
limited to monotonic loading. Mullapudi and Ayoub [63] use a biaxial law for the concrete
constitutive model that is suitable for cyclic loading conditions. Finally, Mazars et al. [61]
make use of a 3d damage constitutive law for concrete under cyclic load conditions. In
these models the contribution of the longitudinal and transverse reinforcement is included
by satisfying transverse force equilibrium between steel and concrete based on the method
of Petrangeli et al. [69], [70].

The model of Petrangeli et al. [69], [70] is the first to use a parabolic shear strain
distribution over a rectangular RC cross-section instead of a constant stress. The idea of
using higher order strain or stress profiles was subsequently pursued by several authors. The
shear strain profile was derived for rectangular, I-beam, and box sections from the linear
elasticity solution and then used unaltered for inelastic material response. In this group of
models belong those of Saritas [82], Navarro Gregori [37], and Papachristidis et al. [68].
Saritas [82] proposed a variationally consistent 2d shear beam model for steel and RC beams
with rectangular or I-sections. Navarro Gregori et al. [37] extended the idea to 3d RC beams
with application to rectangular and tubular box sections. Finally, Papachristidis et al. [68]
proposed an enhancement of the shear strain profile to better account for the flow of shear
stress between the web and flanges of steel wide flange and tubular box sections.

The advantage of this group of models is their relative simplicity and consequent compu-
tational efficiency. Their limitation stems from the point-wise violation of longitudinal and
transverse equilibrium and the consequent inability to represent accurately localization and
failure. The third group of shear models attempts to address this limitation by allowing for a
variable shear strain profile that explicitly satisfies longitudinal and transverse equilibrium.

The first model with inter-fiber equilibrium was proposed by Vecchio and Collins [98]
in the form of a dual section analysis, in which the shear strain profile is determined from
the equilibrium of two adjacent sections. Bentz [11] derives the shear stress profile by the
rate of change of flexural stresses, while Navarro Gregori [38] uses a similar idea for the
variable strain profile of his model. The most advanced formulation in this group is due to
Bairan [3] who included warping degrees of freedom as parameters of the transverse shear
strain and of the axial strain distribution and used it for the study of 3d RC beams under
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general monotonic loading. Mohr addressed the computational complexity of the model by
simplifying the formulation for the analysis of 2d RC beams [62].

In the last group of models belong the layer beam models for laminate composite struc-
tures, which are extensively reviewed by Ghugal and Shimpi [34] starting with the seminal
work of Reddy [77] who was the first to propose a higher-order theory for laminated plates
with shear deformation. These models are suitable for the shear analysis of inhomogeneous,
linear elastic beams and plates, but their suitability for inelastic material response is unclear,
and they are, therefore, not pursued further in this study.

1.2.3 Torsional response

The linear elastic torsional response of beams cannot be represented correctly with the plane
section hypothesis of classical beam theories. St Venant introduced warping functions for the
representation of uniform torsion with the warping amplitude proportional to the constant
twist rate [95]. This theory is, however, not able to describe the normal stresses caused
by warping constraints. Higher order beam theories, such as the beam theory of Vlasov
[36], remove the limiting assumption of uniform torsion, but keep the assumption that the
warping amplitude is proportional to the twist rate. Finally, Bencoster [10], [83] developed
a more general torsional theory that includes shear deformations by introducing an extra
degree of freedom per node.

The preceding classical torsion theories are successful in the description of the linear elas-
tic response of beams. Several studies focused on the derivation of suitable warping functions
for use in finite element analysis. Prokic [73] proposed a general method for the derivation
of warping functions of thin-walled sections that was used in several applications [74], [80].
The general beam element by El Fatmi, [23], [24] extends this idea to the shear deformation
profile with application to thin-walled and compact sections under shear and torsion. More
recent models by El Fatmi and Ghazouani [25] [33], Saade et al. [81], and Jang and Kim
[44] describe the complete section warping including the in-plane distortion with additional
degrees of freedom. These beam models, which are limited to linear elastic material response,
account for different warping constraints at the boundaries and can reproduce local effects
as accurately as shell finite element models [24], [44]. The model of Saade is also suitable
for the study of instability problems [80].

The beam elements for inelastic torsional response can be divided into two categories:
simple concentrated plasticity models or distributed plasticity models based on fixed warping
profiles. In the first group of models the inelastic torsional response is either uncoupled from
the flexural response or coupled with it on the basis of resultant plasticity theory, as proposed
by Powell and Chen [72]. In the second group of models belong fiber beam models with fixed
warping profiles for the section kinematics based on linear elastic beam theories. With this
approach variational beam formulations were proposed by Pi and Trahair [71], Gruttman
et al. [39] and Nukala and White [66] for the inelastic response of beams with wide flange
cross-section. For compact sections Mazars et al. [61] proposed a fixed warping profile based
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on St Venant beam theory. Klinkel and Govindjee [47] derived the warping profile for a
beam with anisotropic material response using a solid finite element model.

1.2.4 Shear-lag modeling

Shear lag refers to the non-uniform axial stress distribution in the flanges of a cross section
under shear loading. The problem is of interest for beams with wide flange cross-sections
and, in particular, for bridge box girder sections. The shear-lag effect gives rise to higher
axial stresses than predicted by classical beam theory in portions of the cross-section near the
supports and near load application points. The phenomenon is similar to the additional nor-
mal stresses caused by warping constraints. In the case of shear-lag the stress concentration
is related to the shear deformation profile.

The non-uniform axial stress distribution in the flanges of the cross section can be de-
scribed either with stress amplification factors or with the concept of effective flange width,
as is the case in design recommendations, such as those of the Eurocode [30].

Models for the shear-lag effect are limited to linear elastic response and can be divided
into two categories: (a) finite element models with plate and solid elements, or (b) beam
formulations. Tenchev [94] , Lee Sung et al. [52], and Lertsima et al. [53] used linear finite
element simulations to derive empirical formulas for the shear-lag coefficients.

For the numerical solution of the response of beam elements with shear-lag Reissner used
the principle of minimum potential energy [78] and Song used harmonic stress analysis [88],
while Koo presented a mixed formulation for the problem [48]. These models are based on
the assumption of either a parabolic or a cubic axial stress distribution in the section flange
and introduce additional degrees of freedom for the beam element.

Further improvements of these models aim at the inclusion of prestressing effects [17]
[16], and the interaction between flexure and shear-lag [100]. Finally, the model of Luo et
al. [56], [57], [59] applies to beams of variable depth and accounts for shear deformations.
Noteworthy experimental results on the shear-lag effect of box girder sections are reported
by Luo and his research team [58].

1.2.5 Nonlinear geometric response

Structures subjected to extreme loads, such as high earthquake accelerations, may undergo
large displacements. Consequently, an inelastic beam model needs to account for nonlinear
geometry effects to be suitable for the simulation of structures under extreme load conditions.
The Lagrangian formulation is most commonly used for the inclusion of nonlinear geometry
effects, expressing the deformed element configuration with respect to a reference configura-
tion [101]. Three variants of the formulation are known: the total Lagrangian formulation,
the updated Lagrangian formulation, and the corotational formulation [26].

The total Lagrangian formulation uses as fixed reference configuration the undeformed
structure. The updated Lagrangian formulation uses the last deformed configuration as
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reference configuration for the current time step. Finally, the corotational formulation defines
a new undeformed reference configuration at every time step whose position is based on the
end node coordinates of the deformed element.

The following brief review refers to the corotational formulation, because this approach is
followed for the 3d beam element formulation in this study. According to the historic review
by Felippa and Haugen [26] the term corotational or co-rotated was introduced in the sixties
in the context of field theory and continuum mechanics.

The key idea of the corotational formulation is the definition of a rigid element frame,
that follows the element as it deforms. It allows for the decomposition of the total node
displacements into the rigid body motion of the element reference frame and the deforma-
tional displacements. The element reference frame is defined by the geometric properties
of the element and its privileged directions (chord, normal, etc.), while the deformational
displacements correspond to the local motion relative to the element frame.

Assuming that the deformations in the element frame are small in the context of small
strains permits the element response to be established under the assumption of first order
geometry. The great promise of the method for practical applications is that, although the
total displacements at the structural level are large, the local deformations relative to the
reference frame can be made as small as necessary for the assumption of linear geometry by
mesh subdivision of the structural member. The kinematic assumption of small deforma-
tions is, however, independent of the corotational formulation, since it is used only for the
determination of the element response in the reference frame.

Among the seminal contributions for the development of the corotational approach is the
work of Brogan, Rankin and Nour-Omid, and Crisfield. This work culminates in the concept
of the element independent formulation with the use of projector operators. Crisfield also
proposed a consistent element independent formulation [20] without resorting to projectors.

The formulation of Nour-Omid and Rankin forms the basis of several recent element
formulations due to its compact derivation with the use of projection matrices [5], [7], [8],
[9], [26], [31]. With this approach the corotational framework can be used with a large
library of elements, since the necessary geometric transformations for large displacements
are element-independent. Examples include the two-node beam elements [8], [26], the three
node triangular element [5], [26], and the 4-node membrane element [7].

Research in the nonlinear geometry under large displacements with the corotational for-
mulation seeks to address two issues: the definition of the element frame, and the represen-
tation of large rotations in three dimensions.

The element frame is not unique for a 3d beam and a surface element. For a two node
beam element, the chord joining the two nodes is the direction of axial deformation and axial
force and constitutes the first direction of the reference frame. Two orthonormal directions in
the plane normal to the chord then complete the selection. There are several choices for these
directions. Since the goal of selecting a reference frame is the extraction of the rigid body
modes in a way that keeps the local displacements as small as possible, the reference frame
selection considers the node rotations, as well as the node positions. Methods for averaging
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the two end node rotations were proposed by Nour-Omid and Rankin [76], Crisfield [20], [21]
and Levy and Spillers [54]. The problem becomes more involved for membrane and plate
elements with three or more nodes ([9], [26], [40]).

There exist several ways of treating finite rotations in 3d finite element analysis: the
rotation tensor, the rotation vector, and the method of quaternions. The rotation tensor
belongs to a non-commutative group, which distinguishes it from translations which belong
to a vector space. This fact gives rise to implementation difficulties in terms of the choice
of parametrization and of the method for rotation updating in a iterative nonlinear solution
algorithm. The proposal by Rankin and Nour-Omid [65] that was also followed by Felippa
and Haugen [26] uses the rotation tensor for the parametrization of the global rotation, and
the rotation vector for the rotations in the element frame, thus requiring a multiplicative
rotation update. This drawback was overcome by Battini and Pacoste [8] through a trans-
formation of the update to a rotation vector, leading to an additive update of rotations.
For a more elegant and computationally efficient formulation with additive rotation update
Battini [5] later proposed the use of quaternions and compared the different methods in [6].

In spite of the successful use of the corotational formulation for the solution of several
challenging problems of nonlinear geometry, such as elastic and plastic instability, post-
buckling behavior, and snap-through, a few questions still remain regarding the symmetry
of the stiffness matrix, and the invariance and independence of the element frame.

The corotational formulation breaks down when the nonlinear strains cannot be approx-
imated by large node displacements through mesh refinement. This is the case for beam
elements under large twist rotations requiring the assumption of nonlinear strains in the
element frame [8]. Pi and Trahair [71], [97] and Nukala and White [66] proposed beam
elements for large twist rotations and the associated Wagner effect using a total lagrangian
formulation.

1.3 Objectives and scope
This study deals with the nonlinear material and geometric response of three-dimensional
beam elements under consideration of the multi-axial coupling of axial force, shear, flexure
and torsion. Its main objectives are as follows:

• The development of a general 3d beam element able to describe the multi-axial inelastic
response of structural elements with particular consideration of the effect of 3d shear
and torsion. To accomplish this task the section kinematics use additional degrees of
freedom for the description of warping deformations. The assumptions of the model
are kept general so that it can be used with any type of cross section and material.

• The inclusion of boundary effects and non-uniform warping in the element formulation.
As a consequence, there is coupling of section response along the element with the
warping deformations affecting the axial and shear strains at several sections. The
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element is thus capable of studying the effect of boundary stress concentrations due to
warping constraints.

• The derivation of the enhanced beam element from a consistent potential based on the
Hu-Washizu variational principle, so as to avoid the shear-locking problems common
in displacement-based formulations.

• The element formulation should be such that it can be used in conjunction with simpler
elements in the modeling of structures, thus avoiding excessive computational cost in
regions of the structural model where the effects of shear and torsion are not significant.
To accomplish this objective various alternatives of the enhanced beam element are
explored with different degree of accuracy.

• The assessment of the element benefits by comparison with the results of standard
beam elements that do not account for the interaction of shear and torsion or include
the effect of 2d shear only. Three features of the response of 3d beams are used for the
purpose: the distribution of shear strains and stresses over the cross section, the shear-
lag effect, and the torsional response for linear elastic material. The local response is
also compared with shell and solid finite element models.

• The evaluation of the element for the representation of the shear-lag effect in continuous
box girder bridges.

• The evaluation of the element response for inelastic materials by comparison with
experimental results of shear-link beams. This investigation also tests the robustness
and computational efficiency of the formulation for response simulations of large scale
structures under earthquake excitations.

• The derivation of a general and consistent corotational framework for 3d beams under
multi-axial coupling of axial force, shear, flexure and torsion. The framework renders
the nonlinear geometry effects of the 3d beam response independent of the material
response. The advantages and some limitations of the formulation are illustrated with
3d beam examples from the literature involving the coupling of axial force, moment
and torque.

The thesis is organized in six chapters. Chapter 2 presents the derivation of the new
beam element with warping degrees of freedom. The chapter starts with the review of the
assumptions of the formulation in the context of existing models. It is followed by the
derivation of the element response from a variational potential, and concludes with some
details of the numerical implementation of the element. Chapter 3 evaluates the response
of the proposed beam element by comparison with existing beam, shell and solid finite
element models under linear elastic material response. Chapter 4 presents the use of the
proposed beam element for the simulation of the inelastic steel shear link response, and
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for the simulation of the shear lag effect in a three span box girder bridge under linear
elastic material response. Chapter 5 describes the incorporation of large displacements in
the proposed beam formulation in the context of the corotational framework of nonlinear
geometry. Several examples from the literature are used to showcase the element response
under large displacements. Finally, Chapter 6 summarizes the study and offers conclusions
and directions for further study.
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Chapter 2

Element formulation and implementation

This chapter presents the derivation of a fiber-beam element that accounts for section
warping deformations and their variation along the element and is capable of describing
constrained warping and the shear-lag effect. The frame element describes the elastic and
inelastic response of prismatic 3d beams under the combination of axial force, flexure, shear
and torsion.

The following presentation starts with the main assumptions of the model and the defi-
nition of element and section kinematics followed by the derivation of the mixed variational
formulation. The finite element discretization results in the consistent resisting force vector
and stiffness matrix of the element. This is followed by the description of the different basis
functions for the interpolation of the warping displacements over the section and along the
element. It concludes with the element state determination process and the incorporation of
inelastic material response in the element formulation.

2.1 Overview
The element kinematics are based on the assumption of small displacements, thus permitting
the element formulation to be based on first-order displacements only. Without loss of
generality the element formulation is described in a local reference system that excludes
rigid body modes.

The beam element is described by a series of cross-sections on the assumption that the
section kinematics are described locally. According to the review in chapter 1, there are two
approaches for arriving at the section strain distribution: in the first the axial strain profile is
linear and the shear strain profile is assumed independently based on the section geometry;
in the second approach the axial strain profile is no longer linear with the strain profile
parameters derived from the satisfaction of transverse and longitudinal force equilibrium at
the section. Once the section kinematics are postulated, the section response is obtained
by numerical integration of the local material response with an integration method for the
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section integrals (fiber approach). With this approach the element is able to simulate both
elastic and inelastic material response through the use of appropriate multi-axial material
constitutive laws.

In spite of its simplicity the assumption of a fixed shear strain profile for the beam
section suffers from several shortcomings: its strong dependence on section geometry, the
violation of shear stress flow and local equilibrium, and its dependence on the assumption of
a homogeneous, linear elastic section, free to warp. To overcome these model inconsistencies
a shear correction factor is necessary for matching the the analytical solution of the linear
elastic response. Its role under inelastic material response is, however, unclear.

Models with a variable shear strain profile for the beam section seek to overcome the
shortcomings of the fixed strain profile models at the expense of complexity and calculation
cost. The model in this study draws inspiration from the earlier models of Bairan [3] and
Gregori Navarro [38]. Its distinction with respect to the model of Gregori Navarro is the
use of warping displacements as additional section degrees of freedom for the derivation of
shear strains instead of deriving directly the shear strain profile of the cross section. With
this approach the coupling of the torsional and shear response can be described consistently
and accurately. With respect to the model of Bairan the current model neglects the in-plane
section deformations for a significant increase in computational efficiency without loss of
accuracy for the applications of interest.

The proposed 3d beam element is derived in the framework of force-based elements from
a variational potential, referred to as the Hu-Washizu potential. The warping displacements
are assumed as an independent field in the derivation of the element response, thus leading to
a mixed formulation with the independent interpolation of basic element forces and warping
displacements over the element. This approach overcomes the shear-locking problem of
elements that are based only on interpolation of the displacements.

With the introduction of warping displacements as an independent field it is possible to
describe the shear and torsional response of 3d beams. Moreover, with the interpolation of
the warping displacements over the element length it is possible to describe the local response
of 3d beams caused by warping constraints and shear lag. The additional warping degrees
of freedom for the element can be treated as global degrees of freedom of the structural
model or local degrees of freedom that are condensed out before assembly of the element
resisting force vector and stiffness matrix. The former case is possible only when all elements
of the structural model are of the same type, as is the case in multi-span box girder bridges
with warping constraints affecting the response over the entire length of the structure. The
latter case becomes necessary when the structural model consists of beam elements with
warping displacement degrees of freedom and standard beam elements without such degrees
of freedom, as dictated by requirements of computational efficiency for the study of the local
effect of warping constraints in multi-span box girder bridges. Because of their practical
importance both formulations are pursued in this study, as discussed in the following sections
which present the element formulation and its implementation in a general purpose finite
element analysis program.
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2.2 Element kinematics
The proposed frame element is represented by a collection of cross-sections along its axis
x. The axis is a straight line in the reference configuration delimited by end nodes I and
J, as shown in figure (2.1). The element formulation takes place in a local reference frame,
called the basic system, that results from the removal of the rigid body displacements from
the total displacements. Figure (2.1) shows the boundary conditions of the choice of basic
system in this study: all translations and the rotation about the x-axis are restrained at
node I, while the translations in the y and z-direction are restrained at node J.

x, u

z, w

y, v node I
uuuI ,uuuwI

node J
uuuJ ,uuuwJ

L

Figure 2.1: Kinematic variables of beam element without rigid body modes

The displacements of a standard 3d beam element consist of three translations u, v, and
w in x, y, and z, respectively, and three rotations φ, θy, and θz about axes x, y and z,
respectively. These are functions of position x along the element axis and are collected in
displacement vector uuu(x)

uuu(x) =
[
u(x) v(x) w(x) φ(x) θy(x) θz(x)

]T (2.1)

The 3d beam element in the present study is enhanced with warping displacements uuuw(x, y, z)
which are kept separate from the displacements uuu(x) of the standard 3d beam element.

The element degrees of freedom of a standard 3d beam in the local reference system
are also kept separate from the additional warping degrees of freedom of the enhanced beam
element in this study. The former are denoted with uuuIJ and the latter with uuuwIJ , the subscript
indicating that the displacements at nodes I and J are collected into a single vector.

uuuIJ =

(
uuuI
uuuJ

)
and uuuwIJ =

(
uuuwI
uuuwJ

)
(2.2)

In accordance with equation (2.1) there are six standard degrees of freedom per node. As
discussed in section 2.5, there are nw warping degrees of freedom per section, so that uuuwIJ
has as many as 2nw terms if the warping displacements are unknown at the end nodes of
the element.

The element deformations vvv are the relative translation u in the x-direction at node J,
the rotations θy and θz at node I about the y and z-axis, respectively, the relative rotation
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or angle of twist φ about the x-axis at node J, and the rotations θy and θz at node J about
the y and z-axis, respectively.

vvv =
[
u θzI θzJ φ θyI θyJ

]T (2.3)

The element deformations vvv can be uniquely determined from the displacements uuuIJ in the
local reference system. Under linear geometry, the relation between element deformations vvv
and displacements uuuIJ is given by the compatibility matrix aaag with constant coefficients

vvv = aaaguuuIJ (2.4)

where

aaag =


−1 0 0 0 0 0 1 0 0 0 0 0
0 1/L 0 0 0 1 0 −1/L 0 0 0 0
0 1/L 0 0 0 0 0 −1/L 0 0 0 1
0 0 0 −1 0 0 0 0 0 1 0 0
0 0 −1/L 0 1 0 0 0 1/L 0 0 0
0 0 −1/L 0 0 0 0 0 1/L 0 1 0

 (2.5)

L is the undeformed element length.

2.3 Section kinematics
Under the assumption that the section does not deform in its plane, the displacements
uuum(x, y, z) of a material point m with coordinates (y, z) at a section with distance x from
the origin of the reference frame are decomposed into displacements uuur(x, y, z) describing
the rigid body motion of the section plane and warping displacements uuuw(x, y, z)

uuum(x, y, z) = uuur(x, y, z) + uuuw(x, y, z) (2.6)

This displacement assumption is sufficiently accurate for the description of phenomena that
are of interest in this study such as shear stress distribution under shear and torsion, and
normal stress distribution under warping constraints. The displacements uuur are those of an
Euler-Bernoulli 3d beam element.

After expressing the displacements uuur in terms of the cross-section generalized displace-
ments uuu(x) in equation (2.1) gives the following equation

umx (x, y, z) = u(x)− y θz(x) + z θy(x)+uwx (x, y, z) (2.7a)
umy (x, y, z) = v(x)− z φ(x) +uwy (x, y, z) (2.7b)
umz (x, y, z) = w(x) + y φ(x)︸ ︷︷ ︸

uuur

+uwz (x, y, z) (2.7c)
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with the assumption that the warping displacement components uwx , uwy and uwz are non-zero.
For a unique description of section deformations the warping displacements uuuw must be free
of rigid body modes and the procedure for accomplishing this is described in section 2.5.1.

The strain displacement relations are

εxx =
∂umx
∂x

=
∂u

∂x
− y ∂θz

∂x
+ z

∂θy
∂x

+
∂uwx
∂x

(2.8a)

εyy =
∂umy
∂y

=
∂uwy
∂y

(2.8b)

εzz =
∂umz
∂z

=
∂uwz
∂z

(2.8c)

2εxy =
∂umx
∂y

+
∂umy
∂x

= −θz +
∂uwx
∂y

+
∂v

∂x
− z ∂φ

∂x
+
∂uwy
∂x

(2.8d)

2εxz =
∂umx
∂z

+
∂umz
∂x

= θy +
∂uwx
∂z

+
∂w

∂x
+ y

∂φ

∂x
+
∂uwz
∂x

(2.8e)

Because the section is assumed not to deform in its plane, the strains εyy and εzz are zero

εyy = 0 εzz = 0 (2.9)

requiring, after the removal of rigid body modes from uuuw, that the warping displacement
components uwy and uwz be zero. Consequently, the warping displacements simplify to
uuuw(x, y, z) = [uwx (x, y, z), 0, 0] = [uw(x, y, z), 0, 0]. After introducing these simplifications
in equation (2.8) followed by the separation of the effect of the displacements uuur from the
warping displacements uw the strain-displacement relations become

εεε(x, y, z) =

 εxx
2εxy
2εxz

 = εεεr(uuur) + εεεw(uw) (2.10)

where
εεεr(x, y, z) = aaas(y, z)eee [uuu(x)] (2.11)

with the section compatibility matrix aaas(y, z)

aaas(y, z) =

1 −y 0 0 z 0
0 0 1 −z 0 0
0 0 0 y 0 1

 (2.12)

and the section deformation vector eee(x) with terms consisting of displacement components of
the generalized displacement vector uuu(x) of the beam in equation (2.1) and their derivatives

eee(x) =
[
u′ θ′z (v′ − θz) φ′ θ′y (w′ + θy)

]T (2.13)
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where the symbol ()′ denotes the derivative of the corresponding term with respect to coor-
dinate x. The components of the generalized section deformation vector eee(x) are the axial
strain ε0 at the reference x-axis, the derivative of the twist angle κx, the curvatures about the
z- and y-axis, κz and κy, respectively, and the shear deformations in the y- and z-direction,
γy and γz, respectively.

eee(x) =
[
ε0 κz γy κx κy γz

]T (2.14)

where

ε0 = u′

κz = θ′z
γy = v′ − θz
κx = φ′

κy = θ′y

γz = w′ + θy

With equation (2.8) the warping strains in equation (2.10) can be written in the form

εεεw(x, y, z) =

 εwxx
2εwxy
2εwxz

 =


∂uw(x, y, z)

∂x
∂uw(x, y, z)

∂y
∂uw(x, y, z)

∂z

 (2.15)

As can be seen from equation (2.15), the warping displacements uw contribute to the axial
strain εxx as well as to the shear strains εxy and εxz. The additional strains εεεw due to
the warping displacements play a critical role in the description of the effect of warping
constraints on the additional stresses of a 3d beam section.

2.4 Variational formulation

2.4.1 Governing equations

The governing equations of element response are derived with the Hu-Washizu mixed vari-
ational principle [50] using potential minimization for establishing the weak form of the
element equilibrium and compatibility equations and for deriving the element stiffness ma-
trix.

The independent fields of the Hu-Washizu potential Π are assumed to be the generalized
displacements uuu of the Euler-Bernoulli 3d beam, the warping displacements uw, the section
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deformations eee, and the stresses σσσ. The latter are work-conjugate to the strains εεε in equation
(2.15) so that

σσσ =

σxxσxy
σxz

 (2.16)

The definition of the Hu-Washizu potential Π over the element volume V starts with the
strains εεε and stresses σσσ with the former decomposed into εεεr and εεεw

Π(uuu, uw, εεεr, εεεw,σσσ) =

∫
V

σσσT [εεεr(uuu) + εεε(uw)− (εεεr + εεεw)] dV

+

∫
V

W (εεεr, εεεw) dV + Πext(uuu,uuuIJ ,uuu
w
IJ)

(2.17)

where W is the internal potential energy and Πext is the external potential.
Expressing the strains εεεr in terms of the section deformations eee according to equation

(2.11) modifies the Hu-Washizu potential Π to the form

Π(uuu, uw, eee, εεεw,σσσ) =

∫
V

σσσTaaas [eee(uuu)− eee)] dV +

∫
V

σσσT [εεεw(uw)− εεεw)] dV

+

∫
V

W (eee, εεεw) dV + Πext(uuu,uuuIJ ,uuu
w
IJ)

(2.18)

with the dependence of the potential on the section deformations eee replacing the dependence
on the strains εεεr. The assumption that the strain field εεεw is derived from the warping
displacements uw according to equation (2.15) removes the dependence of the Hu-Washizu
potential Π from εεεw. The second volume integral in equation (2.18) is then identically equal
to zero, and the Hu-Washizu potential Π simplifies to

Π(uuu, uw, eee,σσσ) =

∫
V

σσσTaaas [eee(uuu)− eee)] dV +

∫
V

W (eee, uw)dV + Πext(uuu,uuuIJ ,uuu
w
IJ) (2.19)

The expression in square brackets under the first volume integral indicates that the dis-
placements uuu(x) and the section deformations eee(x) are retained as independent fields of the
Hu-Washizu potential Π, with the consequence that this kinematic relation is satisfied only
in the weak sense.

Noting that aaas is a function of y and z according to equation (2.12), and eee a function of x
according to equation (2.13), the first volume integral in equation (2.19) can be decomposed
into the product of an integral over the cross section area A and of an integral over the
element length L. With the definition of the generalized section resultants sss(x) in the form

sss(x) =

∫
A

aaaTs (y, z)σσσ(x, y, z) dA (2.20)
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the Hu-Washizu potential Π simplifies further to

Π(uuu, uw, eee,σσσ) =

∫ L

0

sssT [eee(uuu)− eee)] dx+

∫
V

W (eee, uw)dV + Πext(uuu,uuuIJ ,uuu
w
IJ) (2.21)

The six components of the section force vector sss(x) in equation (2.20) are the section resul-
tants or internal forces at a distance x from the origin of the reference system. The section
resultants sss(x) consist of the normal force N(x), the bending moments My(x) and Mz(x),
about the y- and z-axis, respectively, the shear forces Vy(x) and Vz(x), in the y- and z-axis,
respectively, and the torsional moment T (x) so that

sss(x) =
[
N(x) Mz(x) Vy(x) T (x) My(x) Vz(x)

]T (2.22)

The external potential Πext in equation (2.21) involves contributions of applied nodal forces
p̄ppIJ , uniform element loading p̄ppu(x), and applied nodal forces p̄ppwIJ associated with warping,
and takes the form

Πext = −uuuTIJp̄ppIJ −
∫ L

0

uuuT p̄ppu(x)dx− uuuwTIJ p̄ppwIJ (2.23)

The applied nodal forces p̄ppIJ and p̄ppwIJ act at the end nodes of the element and are work
conjugate with the ordinary degrees of freedom uuuIJ and the warping degrees of freedom uuuwIJ ,
respectively. If both end sections are free to warp, then the applied warping forces are zero
p̄ppwIJ = 000. Otherwise, warping displacements uuuw are imposed at node I or node J and the
corresponding forces need to be determined. The uniform element loading p̄ppu(x) consists of
four components: the axial load p̄ux in x, the transverse load in directions y and z, p̄uy and
p̄uz , respectively, and the torque p̄uφ.

p̄ppu(x) =
[
p̄ux(x) p̄uy(x) p̄uz (x) p̄uφ(x) 0 0

]T (2.24)

The determination of the element response requires the minimization of the potential Π. It
is accomplished by setting equal to zero the variation of Π with respect to the independent
fields uuu(x), uw(x, y, z), eee(x), and σσσ(x, y, z) using either equation (2.19) or equation (2.21).

• The variation of the potential Π in equation (2.21) with respect to the displacement
field uuu(x) of the standard 3d beam element gives

δuuuΠ =

∫ L

0

δeee(uuu)Tsssdx− δuuuTIJp̄ppIJ −
∫ L

0

δuuuT p̄ppudx (2.25)

With the definition of the section deformations eee(uuu) from equation (2.13) and integra-
tion by parts, the potential variation δuuuΠ in equation (2.25) can be rewritten in the
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form

δuuuΠ = (δuN + δθzMz + δvVy + δφT + δθyMy + δwVz)|L0 − δuuu
T
IJ p̄ppIJ

−
∫ L

0

[δu δθz δv δφ δθy δw]



dN
dx

dMz

dx
+ Vy

dVy
dx
dT
dx

dMy

dx
− Vz

dVz
dx


dx−

∫ L

0

δuuuT p̄ppudx

After reordering the terms in the column vector of the first integral to match the order
of the generalized displacements uuu(x) in equation (2.1) gives

δuuuΠ = [δuN + δθzMz + δvVy + δφT + δθyMy + δwVz]
L
0 − δuuu

T
IJ p̄ppIJ

−
∫ L

0

δuuuT





dN
dx
dVy
dx
dVz
dx
dT
dx

dMz

dx
+ Vy

dMy

dx
− Vz


+ p̄ppu


dx

(2.26)

The distribution of the section forces sss(x) over the element is selected so as to satisfy
exactly the following differential equations which appear inside the parenthesis under
the integral 

dN
dx
dVy
dx
dVz
dx
dT
dx

dMz

dx
+ Vy

dMy

dx
− Vz


+ p̄ppu =


0
0
0
0
0
0

 (2.27)

The general solution of these equations can be written in the form

sss(x) = bbb(x)qqq + sssu(x) (2.28)

where bbb(x) are the internal force interpolation functions for the homogeneous solution

19



of the differential equations

bbb(x) =


1 0 0 0 0 0
0 x/L− 1 x/L 0 0 0
0 −1/L −1/L 0 0 0
0 0 0 1 0 0
0 0 0 0 x/L− 1 x/L
0 0 0 0 1/L 1/L

 (2.29)

sssu(x) are the internal force interpolation functions for the particular solution of the
differential equations

sssu(x) =


L− x 0 0 0 0 0

0 x(x− L)/2 0 0 0 0
0 L/2− x 0 0 0 0
0 0 0 L− x 0 0
0 0 x(L− x)/2 0 0 0
0 0 L/2− x 0 0 0

 p̄pp
u (2.30)

and qqq are the basic element forces which are defined such that the boundary terms
of the homogeneous solution of the differential equilibrium equations in (2.27) can be
written in the form

δuuuTIJ pppIJ = δvvvTaaaTg pppIJ = δvvvTqqq

pppIJ are the nodal forces that are work conjugate with the node displacements uuuIJ ,
and the basic element forces qqq are work-conjugate with the element deformations vvv in
equation (2.3). With reference to the basic element in Figure (2.1) the basic forces are
the axial force NJ at node J, the bending moment Mz about the z-axis at nodes I and
J, MzI MzJ , respectively, the torsional moment T , and the bending moment My about
y-axis at nodes I and J, MyI MyJ , respectively

qqq =
[
N MzI MzJ T MyI MyJ

]T (2.31)

Since the section force resultants sss(x) satisfy the differential equilibrium equations in
(2.27), the integral in equation (2.26) vanishes and the variation δuuuΠ of the Hu-Washizu
potential simplifies to

δuuuΠ = δuuuTIJ(aaaTg qqq − p̄ppuIJ)− δuuuTIJp̄ppIJ (2.32)

where p̄ppuIJ are the equivalent nodal forces under the element loading p̄ppu

p̄ppuIJ =
[
p̄uL p̄uyL/2 −p̄uzL/2 p̄uφL 0 0 0 p̄uyL/2 −p̄uzL/2 0 0 0

]T (2.33)

20



• The variation of the potential Π in the form of equation (2.19) with respect to the
section deformation field eee(x) gives

δeeeΠ =

∫
V

δeeeT
(
−aaaTs σσσ +

∂W

∂εεε

∂εεε

∂eee

)
dV

=

∫ L

0

δeeeT
(∫

A

aaaTs (−σσσ +
∂W

∂εεε
)dA

)
dx (2.34)

With the requirement that δΠeee = 000 for a minimum of Π, the expression under the
integral gives

σσσ =
∂W

∂εεε
(2.35)

which can be generalized to any constitutive relation of the form

σσσ = σ̂σσ(εεε) (2.36)

where σ̂σσ refers to the constitutive equation in the form of a function of total strains
εεε and of internal variables for inelastic material response. The case of classical J2
plasticity will be discussed in section 2.6.3.

• The variation of the potential Π in equation (2.19) with respect to the stress field
σσσ(x, y, z) gives

δσσσΠ =

∫
V

δσσσTaaas [eee(uuu)− eee(x)] dV

=

∫ L

0

[∫
A

(
aaaTs δσσσ

)T
dA

]
[eee(uuu)− eee(x)] dx

=

∫ L

0

δsssT (x) [eee(uuu)− eee(x)] dx

= δqqqT
[
vvv −

∫ L

0

bbbT (x)eee(x)dx

]
(2.37)

where equations (2.20) and (2.28) were used in the transformations to arrive at the
last equation.

• The variation of the potential Π in equation (2.19) with respect to the warping dis-
placement field uw gives

δuwΠ =

∫
V

δεεε(uw)T
∂W

∂εεε
dV − δuuuwTIJ p̄ppwIJ

=

∫
V

(δεεεw)TσσσdV − δuuuwTIJ p̄ppwIJ (2.38)
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with the additional strain εεεw due to warping from equation (2.15) and the use of the
constitutive equation (2.35) in the last step. Setting δuuuwΠ = 0 in equation (2.38)
corresponds to satisfying the stress equilibrium of the continuum div(σσσ) = 0 in the
weak sense form of ∫

V

δuw div(σσσ)dV = 0 (2.39)

Noting that uw = uwx in accordance with the kinematic assumptions of section 2.3, so
that δuwy = δuwz = 0 simplifies the variation of the Hu-Washizu potential in equation
(2.38) to

δuwΠ =

∫
V

(
δεwxxσxx + 2δεwxyσxy + 2δεwxzσxz

)
dV − δuuuwTIJ p̄ppwIJ (2.40)

Further processing of equation (2.40) is not possible without discretization of the strain
variation δεεε, which requires discretization of the warping displacements uw(x, y, z), as
discussed in the following section.

2.4.2 Partial discretization of governing equations

The warping displacement function uw(x, y, z) is assumed to be the product of two indepen-
dent sets of interpolation functions, one set of functions χ(x) for the warping distribution
over the element axis, and another set ψ(y, z) for the warping displacement profile over the
cross-section. The choice of interpolations functions for χ(x) and ψ(y, z) is discussed in
section 2.5.

The interpolation of χ(x) uses a grid with index i in the reference axis direction x, and
the interpolation of ψ(y, z) uses a grid with indices j , k in the reference axis directions y and
z, respectively. The warping displacement values at (xi, yj, zk) serve as independent warping
degrees of freedom.

The warping displacement profile at a section x = xi is described by the expression

uw(xi, y, z) =
∑
j

∑
k

ψjk(y, z)u
w
ijk (2.41)

where uwijk = uw(xi, yj, zk) are the warping displacement values at point (xi, yj, zk). This can
be written in a form that dispenses with the double summation by collecting the warping
displacement values at a section i in vector uuuwi

uuuwi =
[
uw(xi, y1, z1) . . . uw(xi, yj, z1) . . . uw(xi, y1, zk) . . . uw(xi, yj, zk)

]T (2.42)

and the corresponding interpolation functions ψjk(y, z) in a row vector ψψψ(y, z)

ψψψ(y, z) =
[
ψ11(y, z) . . . ψj1(y, z) . . . ψ1k(y, z) . . . ψjk(y, z)

]
(2.43)

With these definitions the warping displacement profile at section x = xi becomes

uw(xi, y, z) = ψψψ(y, z)uuuwi (2.44)
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Equation (2.45) reflects clearly the fact that the interpolation functions ψψψ(y, z) for the warp-
ing profile are the same at each section i, while the warping profile changes from section to
section on account of the different warping displacement values uuuwi . The general form of the
warping displacement function uw(x, y, z) is

uw(x, y, z) =
∑
i

χi(x) [ψψψ(y, z)uuuwi ] (2.45)

The variation of the Hu-Washizu potential Π in equation (2.38) requires the variation of the
strains εεεw due to warping, which after substitution of equation (2.45) in equation (2.15),
gives

δεwxx(x, y, z) =
∑
i

∂χi(x)

∂x
[ψψψ(y, z) δuuuwi ] (2.46a)

2δεwxy(x, y, z) =
∑
i

χi(x)

[
∂ψψψ(y, z)

∂y
δuuuwi

]
(2.46b)

2δεwxz(x, y, z) =
∑
i

χi(x)

[
∂ψψψ(y, z)

∂z
δuuuwi

]
(2.46c)

With the strain variation in the form of equation (2.46) the Hu-Washizu potential variation
δΠ in equation (2.40) converts to the following discrete form

δuwΠ =

∫
V

∑
i

(δ uuuwi )T
(
ψψψT

∂χi
∂x

σxx +
∂ψψψT

∂y
χi σxy +

∂ψψψT

∂z
χi σxz

)
dV − δuuuwTIJ p̄ppwIJ (2.47)

which becomes after the switch of summation and integral sign and after decoupling the
latter into an integral over the element length L and an integral over the section area A

δuwΠ =
∑
i

(δ uuuwi )T
[∫ L

0

∂χi
∂x

∫
A

ψψψT σxx dAdx

+

∫ L

0

χi

∫
A

(
∂ψψψT

∂y
σxy +

∂ψψψT

∂z
σxz

)
dAdx

]
− δuuuwTIJ p̄ppwIJ

(2.48)

With the following definition for the warping forces sssw(x)

ssswx (x) =

∫
A

ψψψT (y, z)σxx(x, y, z) dA (2.49a)

ssswyz(x) =

∫
A

[
∂ψψψT (y, z)

∂y
σxy(x, y, z) +

∂ψψψT (y, z)

∂z
σxz(x, y, z)

]
dA (2.49b)

the discrete form of the Hu-Washizu potential variation in equation (2.48) becomes

δuwΠ =
∑
i

(δ uuuwi )T
[∫ L

0

∂χi(x)

∂x
ssswx (x) dx+

∫ L

0

χi(x)ssswyz(x) dx

]
− δuuuwTIJ p̄ppwIJ (2.50)
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The warping force vectors ssswx and ssswyz have nw terms each. With the following definition for
the warping force vector pppwi at section i

pppwi =

∫ L

0

∂χi(x)

∂x
ssswx (x) dx+

∫ L

0

χi(x)ssswyz(x) dx (2.51)

the discrete form of the Hu-Washizu potential variation in equation (2.50) finally becomes

δuwΠ =
∑
i

(δ uuuwi )Tpppwi − δuuuwTIJ p̄ppwIJ (2.52)

The warping force vector pppwi has nw terms. Each term is the integral of the corresponding
term of the section warping force vectors ssswx and ssswyz according to equation (2.51).

The requirement that δuwΠ = 0 results in the following equation

p̄ppwi = pppwi (2.53)

for all sections with a warping displacement profile, where pppwi is the resisting warping force
in equation (2.51) and p̄ppwi is the applied warping force at section i. In practice, all interior
sections of the beam are free to warp so that p̄ppwi = 000. Section warping forces p̄ppwIJ can only
be imposed at the beam element boundary corresponding to nodes I and J.

The minimization of potential Π requires that δΠ = 000. This leads to the following
combination of equations (2.32), (2.36), (2.37), and (2.52)

p̄ppIJ + p̄ppuIJ = aaaTg qqq (2.54a)

vvv =

∫ L

0

bbbT (x)eee(x) dx (2.54b)

σσσ = σ̂σσ(εεε) (2.54c)

p̄ppwi = pppwi =

∫ L

0

∂χi(x)

∂x
ssswx (x) dx+

∫ L

0

χi(x)ssswyz(x) dx (2.54d)

noting that equation (2.54a) is based on the section forces sss satisfying equation (2.28). The
first three equations with equation (2.28) correspond to the mixed variational formulation of
the regular beam: the equilibrium equations (2.54a) and (2.28), the compatibility equation
(2.54b), and the constitutive law (2.54c). The fifth equation (2.54d) states the equilibrium
of warping section forces ssswx and ssswyz at section i.

2.4.3 Linearization

During the element state determination process, the section deformations eee(x) and warping
displacement parameters uuuwi serve as unknowns of an internal iterative process to satisfy the
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equilibrium equations (2.28) and (2.54d) and the compatibility equation (2.54b) for given
element deformations vvv. On account of the nonlinear nature of the constitutive equation
(2.54c) the governing equations are nonlinear functions of the section deformations eee(x) and
of the warping displacement parameters uuuwi . For the solution of the governing equations
their linearization with respect to the unknowns is, therefore, required. Noting that the
section deformations eee(x) are continuous functions of x, whereas the warping displacement
parameters uuuwi are discrete variables, the linearization is presented in the form of the linear
variation of the governing equation instead of differentiation.

The linear variation of the governing equations in (2.54) and (2.28) gives

δpppIJ = aaaTg δqqq (2.55a)

δvvv =

∫ L

0

bbbT (x)δeee(x) dx (2.55b)

δsss(x) = bbb(x) δqqq (2.55c)

δσσσ =
∂σ̂σσ

∂εεε
δεεε (2.55d)

δpppwi =

∫ L

0

∂χi(x)

∂x
δssswx (x) dx+

∫ L

0

χi(x) δssswyz(x) dx (2.55e)

The derivative of the constitutive law with respect to the total strain εεε defines the material
stiffness kkkm

kkkm =
∂σ̂σσ

∂εεε
(2.56)

With the auxiliary matrices aaawx (y, z) and aaawyz(y, z)

aaawx (y, z) =

ψψψ000
000

 and aaawyz(y, z) =

 000
∂ψψψ
∂y

∂ψψψ
∂z

 (2.57)

where 000 is a row vector with nw terms and ψψψ are the interpolation polynomials for the
warping profile, the warping strain εεεw in equation (2.15) can be written in compact form in
terms of the warping displacement parameters uuuwi

εεεw(x, y, z) =
∑
i

[
∂χi(x)

∂x
aaawx (y, z) + χi(x)aaawyz(y, z)

]
uuuwi (2.58)

The variation of the total strain εεε then becomes

δεεε(x, y, z) = aaas(y, z) δeee(x) +
∑
i

[
∂χi(x)

∂x
aaawx (y, z) + χi(x)aaawyz(y, z)

]
δuuuwi (2.59)
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The warping forces sssw(x) in equation (2.49) can be written in compact form with the aid of
the definitions in equation (2.57)

ssswx (x) =

∫
A

(aaawx )T σσσ(x, y, z) dA (2.60a)

ssswyz(x) =

∫
A

(
aaawyz
)T
σσσ(x, y, z) dA (2.60b)

The variation of the section forces sss, ssswx and ssswyz in equations (2.20) and (2.49) gives

δsss(x) =

∫
A

aaaTs kkkm δεεε(x, y, z) dA

δssswx (x) =

∫
A

(aaawx )T kkkm δεεε(x, y, z) dA

δssswyz(x) =

∫
A

(
aaawyz
)T
kkkm δεεε(x, y, z) dA

where kkkm = kkkm(x, y, z). After substituting the strain variation δεεε from equation (2.59) the
variation of the section forces becomes

δsss(x) =

(∫
A

aaaTs kkkm aaas dA

)
δeee +

∫
A

aaaTs kkkm
∑
i

(
∂χi
∂x

aaawx + χi aaa
w
yz

)
δuuuwi dA

δssswx (x) =

(∫
A

(aaawx )T kkkm aaas dA

)
δeee +

∫
A

(aaawx )T kkkm
∑
i

(
∂χi
∂x

aaawx + χi aaa
w
yz

)
δuuuwi dA

δssswyz(x) =

(∫
A

(
aaawyz
)T
kkkm aaas dA

)
δeee+

∫
A

(
aaawyz
)T
kkkm
∑
i

(
∂χi
∂x

aaawx + χi aaa
w
yz

)
δuuuwi dA

Switching the order of the integral over the section area A and the summation over all
sections i in the second term of the above equations gives∑

i

(
∂χi
∂x

∫
A

aaaTs kkkm aaa
w
x dA+ χi

∫
A

aaaTs kkkm aaa
w
yz dA

)
δuuuwi∑

i

(
∂χi
∂x

∫
A

(aaawx )T kkkm aaa
w
x dA+ χi

∫
A

(aaawx )T kkkm aaa
w
yz dA

)
δuuuwi∑

i

(
∂χi
∂x

∫
A

(
aaawyz
)T
kkkm aaa

w
x dA+ χi

∫
A

(
aaawyz
)T
kkkm aaa

w
yz dA

)
δuuuwi

With the following section stiffness definitions

kkkss(x) =

∫
A

aaaTs kkkm aaas dA
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kkkxsw(x) =

∫
A

aaaTs kkkm aaa
w
x dA

kkkyzsw(x) =

∫
A

aaaTs kkkm aaa
w
yz dA

kkkxws(x) =

∫
A

(aaawx )T kkkm aaas dA = (kkkxsw)T

kkkyzws(x) =

∫
A

(
aaawyz
)T
kkkm aaas dA = (kkkyzsw)T (2.61)

kkkxww(x) =

∫
A

(aaawx )T kkkm aaa
w
x dA

kkkyzww(x) =

∫
A

(
aaawyz
)T
kkkm aaa

w
yz dA

kkkxyww(x) =

∫
A

(aaawx )T kkkm aaa
w
yz dA

kkkyxww(x) =

∫
A

(
aaawyz
)T
kkkm aaa

w
x dA = (kkkxyww)T

the variation of the section forces finally becomes

δsss(x) = kkkss(x) δeee(x) +
∑
i

[
∂χi
∂x

kkkxsw(x) + χi kkk
yz
sw(x)

]
δuuuwi (2.62a)

δssswx (x) = kkkxws(x) δeee(x) +
∑
i

[
∂χi
∂x

kkkxww(x) + χi kkk
xy
ww(x)

]
δuuuwi (2.62b)

δssswyz(x) = kkkyzws(x) δeee(x) +
∑
i

[
∂χi
∂x

kkkyxww(x) + χi kkk
yz
ww(x)

]
δuuuwi (2.62c)

The variation of the warping forces pppwi from equation (2.54d) becomes

δpppwi =

∫ L

0

∂χi
∂x

δssswx (x) dx+

∫ L

0

χi δsss
w
yz(x) dx (2.63)

Finally, substituting the variation of the warping forces ssswx and ssswyz from (2.62) gives

δpppwi =

∫ L

0

∂χi
∂x

{
kkkxws(x) δeee(x) +

∑
n

[
∂χn
∂x

kkkxww(x) + χn kkk
xy
ww(x)

]
δuuuwn

}
dx

+

∫ L

0

χi

{
kkkyzws(x) δeee(x) +

∑
n

[
∂χn
∂x

kkkyxww(x) + χn kkk
yz
ww(x)

]
δuuuwn

}
dx

(2.64)

After switching the order of the integral and the summation over the sections i the final
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expression for the variation of the warping forces pppwi results

δpppwi =

∫ L

0

[
∂χi
∂x

kkkxws(x) + χi kkk
yz
ws(x)

]
δeee(x)dx (2.65)

+
∑
n

∫ L

0

(
∂χi
∂x

∂χn
∂x

kkkxww(x) +
∂χi
∂x

χn kkk
xy
ww(x) + χi

∂χn
∂x

kkkyxww(x) + χiχn kkk
yz
ww(x)

)
dx δuuuwn

In summary, the state determination is based on satisfying the governing equations of the
element response in (2.54). The linearization of these equations results in the following
system of equations after the substitution of intermediate terms

δvvv =

∫ L

0

bbbT (x)δeee(x)dx

δsss(x) = bbb(x) δqqq = kkkss(x) δeee(x) +
∑
n

(
∂χn
∂x

kkkxsw(x) + χn kkk
yz
sw(x)

)
δuuuwn

δpppwi =

∫ L

0

[
∂χi
∂x

kkkxws(x) + χi kkk
yz
ws(x)

]
δeee(x)dx

+
∑
n

∫ L

0

[
∂χi
∂x

∂χn
∂x

kkkxww(x) +
∂χi
∂x

χn kkk
xy
ww(x) + χi

∂χn
∂x

kkkyxww(x) + χiχn kkk
yz
ww(x)

]
dx δuuuwn

δpppIJ = aaaTg δqqq

In the preceding equations the first equation represents the element compatibility, and the
other three the element equilibrium. The last equation among the equilibrium equations is
used to establish the tangent stiffness kkk of the element without rigid body modes

δpppIJ = aaaTg
∂qqq

∂vvv
δvvv = aaaTg kkk aaag δuuuIJ (2.66)

where use was made of the linear variation of the element deformations vvv in equation (2.3).
The element resisting forces pppIJ follow from equation (2.54a).

The problem of the element state determination is, therefore, the determination of the
basic forces qqq and tangent element stiffness kkk for given element deformations vvv and applied
warping forces p̄ppwi . The iterative process is based on the solution of the following linear
equations

δvvv =

∫ L

0

bbbT (x)δeee(x)dx (2.67a)

δsss(x) = bbb(x)kkk δvvv = kkkss(x) δeee(x) +
∑
n

[
∂χn
∂x

kkkxsw(x) + χn kkk
yz
sw(x)

]
δuuuwn (2.67b)
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δpppwi =

∫ L

0

[
∂χi
∂x

kkkxws(x) + χi kkk
yz
ws(x)

]
δeee(x)dx (2.67c)

+
∑
n

∫ L

0

[
∂χi
∂x

∂χn
∂x

kkkxww(x) +
∂χi
∂x

χn kkk
xy
ww(x) + χi

∂χn
∂x

kkkyxww(x) + χiχn kkk
yz
ww(x)

]
dx δuuuwn

with the section deformations eee(x) and the warping displacement parameters uuuwn at each
section n of the beam as unknowns. So far, the section deformations eee(x) and the warping
displacement distribution χ(x) over the element length were treated as continuous fields.
As a consequence, the linear equations (2.67) involve integrals of x. At the same time the
different section stiffness contributions in equation (2.61) involve integrals over the cross
section area A. The complete discretization of these equations, therefore, depends on the
numerical evaluation of these integrals, as discussed in the next section.

2.4.4 Complete discretization of governing equations

The numerical evaluation of the section integrals in equation (2.61) is performed with an
integration rule such as the midpoint integration rule. This type of integration gives rise
to the name fiber section model. Each rectangular part of the cross section is subdivided
into fibers of equal size with the centroid of each fiber serving as integration point and
the fiber area serving as integration weight. It is important to point out that the section
subdivision into fibers is independent of the interpolation grid for the warping profile, which
uses nw interpolation grid points, as mentioned earlier and discussed in more detail in the
next section. With the midpoint integration rule the integrals over the section area convert
into a sum over the number of fibers nf . The resulting expression for the section stiffness
kkkss suffices to illustrate the concept

kkkss =

∫
A

aaaTs kkkm aaas dA ≈
nf∑
n=1

wn
(
aaaTs,n kkkm,n aaas,n

)
(2.68)

where wn is the integration weight and

aaas,n =

1 −yn 0 0 zn 0
0 0 1 −zn 0 0
0 0 0 yn 0 1


Analogous expressions can be obtained for the other section stiffness matrices in equation
(2.61).

For the integration over the element length in equations (2.67a) and (2.67a) the Gauss-
Lobatto integration rule is used, because it places an integration point at the end points of
the integration interval where significant inelastic deformations take place. The number of
integration points over the element length is nip. The warping displacement parameters uuuwn
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for the warping profile are defined at nl of the nip sections with nl ≤ nip. This selection is
made for computational economy for cases for which the warping effects are concentrated
near one or both element ends. The integration point locations and weights of the Gauss-
Lobatto integration rule can be found in standard reference texts on numerical integration
[1].

With the numerical integration over the element length as summation over the index
l = 1 . . . nip with integration weights wl the equations (2.67) become

δvvv =

nip∑
l=1

wl bbb
T
l δeeel (2.69a)

δsssl = bbbl (kkk δvvv) = kkkss,l δeeel +
nl∑
n=1

(
∂χn,l
∂x

kkkxsw,l + χn,l kkk
yz
sw,l

)
δuuuwn (2.69b)

δpppwi =

nip∑
l=1

wl

(
∂χi,l
∂x

kkkxws,l + χi,l kkk
yz
ws,l

)
δeeel (2.69c)

+
nl∑
n=1

nip∑
l=1

wl

(
∂χi,l
∂x

∂χn,l
∂x

kkkxww,l +
∂χi,l
∂x

χn,l kkk
xy
ww,l + χi,l

∂χn,l
∂x

kkkyxww,l + χi,lχn,l kkk
yz
ww,l

)
δuuuwn

where eeel = eee(xl), bbbl = bbb(xl), χi,l = χi(xl), kkksw,l = kkksw(xl) and kkkww,l = kkkww(xl) for superscripts
x, xy, yx and yz. With the introduction of the following stiffness matrices

[kkksw]l n =
∂χn,l
∂x

kkkxsw,l + χn,l kkk
yz
sw,l (2.70)

[
k̄kkww

]
i n

=

nip∑
l=1

wl

(
∂χi,l
∂x

∂χn,l
∂x

kkkxww,l +
∂χi,l
∂x

χn,l kkk
xy
ww,l + χi,l

∂χn,l
∂x

kkkyxww,l + χi,lχn,l kkk
yz
ww,l

)
(2.71)

the governing equations in (2.69) can be written in compact form

δvvv =

nip∑
l=1

wl bbb
T
l δeeel

δsssl = bbbl (kkk δvvv) = kkkss,l δeeel +
nl∑
n=1

[kkksw]l n δuuu
w
n

δpppwi =

nip∑
l=1

wl [kkksw]Tl i δeeel +
nl∑
n=1

[
k̄kkww

]
i n
δuuuwn

where use was made of kkkws = kkkTsw. Solving for δeeel from the second equation

δeeel = [kkkss,l]
−1

(
δsssl −

nl∑
n=1

[kkksw]l n δuuu
w
n

)
(2.73)
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and substituting into the third gives

δpppwi =

nip∑
l=1

wl [kkksw]Tl i [kkkss,l]
−1

(
δsssl −

nl∑
n=1

[kkksw]l n δuuu
w
n

)
+

nl∑
n=1

[
k̄kkww

]
i n
δuuuwn

=

nip∑
l=1

wl [kkksw]Tl i [kkkss,l]
−1 δsssl −

nip∑
l=1

wl [kkksw]Tl i [kkkss,l]
−1

nl∑
n=1

[kkksw]l n δuuu
w
n +

nl∑
n=1

[
k̄kkww

]
i n
δuuuwn

=

nip∑
l=1

wl [kkksw]Tl i [kkkss,l]
−1 bbbl (kkkδvvv) +

nl∑
n=1

([
k̄kkww

]
i n
−

nip∑
l=1

wl [kkksw]Tl i [kkkss,l]
−1 [kkksw]l n

)
δuuuwn

Writing the last equation for all sections i = 1 . . . nl with warping displacement parameters
δuuuwi gives a system of as many linear equations as unknown warping displacement parameters
for nl sections of the beam element. To write this equation system in compact form the
warping forces δpppwi of each section i are stacked below the preceding section to form a single
vector δPPPw and the same is done for the warping displacement parameters δuuuwi to form a
single vector δUUUw. Furthermore, the stiffness matrix KKKww that relates the warping forces
with the warping displacement parameters is the collection of nw × nw submatrices [KKKww]in
which are defined as follows

[KKKww]i n =
[
k̄kkww

]
i n
−

nip∑
l=1

wl [kkksw]Tl i [kkkss,l]
−1 [kkksw]l n (2.74)

so that

KKKww =

 [KKKww]1 1 . . . [KKKww]1nl...
...

...
[KKKww]nl 1 . . . [KKKww]nl nl


KKKww is a square matrix of size nl · nw and is symmetric. Finally, the force influence matrix
BBBwq that relates the basic element forces δqqq to the warping forces δPPPw is the collection of
nw × 6 submatrices [BBBwq]i which are defined as follows

[BBBwq]i =

nip∑
l=1

wl [kkksw]Tl i [kkkss,l]
−1 bbbl (2.75)

so that

BBBwq =

 [BBBwq]1 1
...

[BBBwq]nl 1


Finally, the equilibrium equations at the warping degrees of freedom become

δPPPw = BBBwq δqqq +KKKww δUUU
w with δqqq = kkkδvvv (2.76)
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For the element state determination the element deformations vvv are given and the matrices
kkk, KKKww and BBBwq for the current state can be determined. Thus, given the warping forces
PPPw equation (2.76) can be solved for the warping displacement parameters δUUUw as long as
these are local degrees of freedom of the element. If the displacement parameters uuuwIJ at the
end sections of the element are treated as global degrees of freedom, equation (2.76) needs to
account for the split between local and global warping displacement degrees of freedom. The
derivation of the corresponding expressions for determining the internal warping degrees of
freedom is presented in Appendix A.

The warping forces pppwi are zero at all sections i in the element interior, since these are
free to warp. At the end sections of the beam element we distinguish two cases: (a) the
section warping is free and the corresponding forces are consequently zero, and (b) the
section warping is restrained, so that the corresponding warping displacements are zero.
Either way, the solution of equation (2.76) with δPPPw = 000 gives the values at the free warping
displacement degrees of freedom

δUUUw = − [KKKww]−1BBBwq δqqq (2.77)

Substituting the values for the warping displacement parameters δUUUw from equation (2.77)
into equation (2.73) gives

δeeel = [kkkss,l]
−1 (bbbl +KKKsw,l [KKKww]−1BBBwq

)
δqqq (2.78)

with
KKKsw,l =

[
[kkksw]l 1 . . . [kkksw]l nl

]
(2.79)

Substituting δeeel from equation (2.73) into equation (2.73) gives

δvvv =

nip∑
l=1

wl bbb
T
l [kkkss,l]

−1 (bbbl +KKKsw,l [KKKww]−1BBBwq

)
δqqq = fff δqqq (2.80)

where the element flexibility matrix fff is given by

fff =

nip∑
l=1

wl bbb
T
l [kkkss,l]

−1 (bbbl +KKKsw,l [KKKww]−1BBBwq

)
(2.81)

The element flexibility matrix fff is made up of two contributions fff = fff b + fffw where

fff b =

nip∑
l=1

wl bbb
T
l [kkkss,l]

−1 bbbl (2.82a)

fffw =

nip∑
l=1

wl bbb
T
l [kkkss,l]

−1KKKsw,l [KKKww]−1BBBwq (2.82b)
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The matrix fff b corresponds to the flexibility matrix of the standard beam without warping
displacements and is obviously symmetric. The matrix fffw represents the contribution of the
warping displacements UUUw to the flexibility matrix of the 3d beam and is also symmetric on
account of the symmetry of KKKww and of equations (2.75) and (2.79) which give

nip∑
l=1

wl bbb
T
l [kkkss,l]

−1KKKsw,l =

nip∑
l=1

wl bbb
T
l [kkkss,l]

−1 [ [kkksw]l 1 . . . [kkksw]l nl
]

=
[

[BBBwq]1 . . . [BBBwq]i . . . [BBBwq]nl
]

= BBBT
wq

Thus,
fffw = BBBT

wq [KKKww]−1BBBwq (2.83)

The stiffness matrix kkk of the element without rigid body modes is then equal to the inverse
of the flexibility matrix fff

kkk = fff−1 (2.84)

The element stiffness matrix kkkIJ is then given by equation (2.66)

kkkIJ = aaaTg kkk aaag (2.85)

and the element end forces by the equation

pppIJ = aaaTg qqq (2.86)

The element stiffness matrix kkkIJ and the end forces pppIJ are assembled into the structure
stiffness matrix and force vector with standard procedures of structural analysis. This com-
pletes the derivation of the necessary equations for the element state determination. The
step-by-step iterative process is discussed in the implementation section 2.6.

2.5 Warping displacement interpolation
The proposed beam element assumes that the warping displacement profile over the cross
section is interpolated independently from the warping displacement distribution over the
element length. With this approach the warping displacements uw(x, y, z) can be expressed
as the product of a function in (y, z) with a function in x, as equation (2.45) shows.

The following sections discuss the selection of suitable interpolation functions for the
warping displacement profile ψ(y, z) over the cross section, and for the warping displacement
distribution χ(x) over the element length.
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2.5.1 Warping profile

According to equation (2.45) the warping displacement profile at section i is described by
interpolation functions ψψψ(y, z) with parameters uuuw(xi) serving as independent degrees of
freedom of the beam element. The interpolation functions for the warping displacement
profile are defined over a fixed grid (yj, zk) over the section.

The warping displacement differentials in the description of the warping strain εεεw in
equation (2.15) require that the interpolation functions be continuously differentiable, thus
excluding piece-wise linear polynomials between grid points. For this reason Lagrange poly-
nomials are selected in this study. The grid points of the interpolation functions are dis-
tributed uniformly over the cross section under consideration of its geometry. Figure (2.1)
shows typical interpolation grids for common cross-section geometries where nw is the total
number of interpolation grid points.

An alternative approach to the use of Lagrange polynomials utilizes warping profile inter-
polations functions ψ(y, z) that satisfy the governing equilibrium equations and the boundary
conditions of the linear elastic problem for the particular section geometry. The governing
equilibrium equations of the problem result in a Laplacian, which can be solved with the
membrane analogy for typical cross section geometries. Examples of warping functions for
classical torsion problems can be found in [36]. Recently, Ferrari [27] proposed a numerical
method for establishing the warping functions for any thin-walled section geometry under
linear elastic shear and torsion. Because it is not clear what advantage these interpolation
functions offer over the more general Lagrange polynomials for inelastic material response,
it was decided not to pursue this approach in this study.

The choice of Lagrange polynomials for the warping displacement profile has the following
advantages:

1. It is applicable to any section geometry and material response without modifications.
Specifically, Lagrange polynomials prove suitable for thin-walled as well as for solid
cross sections, in contrast to the warping functions in the literature, which are typically
limited to thin-walled sections.

2. It furnishes a continuous function of y, z, which can be evaluated at any point of the
cross section. This is significant for the numerical evaluation of section area integrals,
for which the integration point location is independent of the warping profile interpo-
lation grid.

3. It furnishes a continuous derivative function of y, z, which can be evaluated at any
point of the cross section, as required for the numerical evaluation of the warping force
integrals in equation (2.49).

On the other hand the choice of Lagrange polynomials requires more interpolation parameters
or warping degrees of freedom nw than the selection of special functions that take advantage
of section geometry and boundary conditions, and is, therefore, more costly. Furthermore,
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nw = 5 nw = 15 nw = 12 nw = 28

(a) (b) (c) (d)

nw = 12 nw = 32 nw = 16

(e) (f) (g)

Table 2.1: Interpolation grid for warping profile with nw degrees of freedom
for typical cross-section geometries

the Lagrange polynomials are not free of rigid body modes, as required by the decomposition
of the beam displacements in equation (2.6), and a special procedure to remove these is
required, as described next.

For the warping displacements uw(x, y, z) to be free of rigid body modes, these need to
be orthogonal to the displacements uuur that describe the rigid body motion of the section
plane. Consequently, the interpolation functions for the warping profile ψψψ(y, z) must belong
to a space of polynomials W such that

W =

ψψψ(y, z)/

∫
A

1
y
z

ψjk(y, z)dA =

0
0
0

 (2.87)
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A projection matrix PPP r is used to enforce the orthogonality of the interpolation functions
ψψψ(y, z) for the warping profile to the displacements uuur that describe the rigid body motion
of the section plane. It is constructed from two matrices RRR and VVV as follows. The matrix RRR
consists of three vectors, one for each rigid body mode of the section plane. The terms of
each vector represent the effect of the corresponding rigid body mode on the points (yj, zk)
of the interpolation grid. Each vector, therefore, has nw terms. Denoting the vector for the
effect of the uniform translation in x with uuur1, of the rotation about the y-axis with uuur2, and
of the rotation about the z-axis with uuur3 leads to the following expression for matrix RRR

RRR =
[
α1uuu

r
1 α2uuu

r
2 α3uuu

r
3

]
(2.88)

with the rigid body modes scaled by constants α1, α2 and α3 to be determined. The rigid
body mode vectors at each section grid point (yj, zk) take the following form

uuur1 =
[
1 . . . 1 . . . 1

]T (2.89a)

uuur2 =
[
y1 . . . yjk . . . ynw

]T (2.89b)

uuur3 =
[
z1 . . . zjk . . . znw

]T (2.89c)

where jk is an index from 1 to nw, the number of interpolation grid points in the section.
The matrix VVV is defined as the product of the rigid body displacements uuur of the section
plane with the interpolation functions ψψψ(y, z) for the warping profile

VVV =

∫
A

1
y
z

ψψψ dA (2.90)

and is, therefore, of size 3× nw. It contains the polynomial coefficients of ψψψ(y, z) that result
in interpolation functions in the space RRR. The constants α1, α2 and α3 are then determined
so that matrices RRR and VVV satisfy the relation

VVVRRR = III3 (2.91)

where III3 is the identity matrix of dimension 3. The projection matrix PPP r is then formed so
as to remove the components of ψψψ(y, z) in the space of RRR by the standard form

PPP r = IIInw −RRRVVV (2.92)

where IIInw is the identity matrix of dimension nw. Under consideration of equation (2.91)
it is easy to show that the projection matrix PPP r satisfies the relation PPP rPPP r = PPP r. The
multiplication of the interpolation functions ψψψ(y, z) for the warping displacement profile by
the matrix PPP r of scalar coefficients strips the interpolation functions of the components in
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the space of RRR so that they satisfy the relation in (2.87). Denoting these polynomials with
ψ̃ψψ it holds that

ψ̃ψψ(y, z) = PPP rψψψ(y, z) (2.93)
The corresponding warping section forces ssswx (x) and ssswyz(x) in equation (2.60) become

s̃sswx (x) = PPP T
r sss

w
x (x) (2.94a)

s̃sswyz(x) = PPP T
r sss

w
yz(x) (2.94b)

With the same consideration the corresponding section stiffness matrices in equation (2.60)
become

k̃kk
x

sw = kkkxswPPP r (2.95a)

k̃kk
yz

sw = kkkyzswPPP r (2.95b)

k̃kk
x

ww = PPP T
r kkk

x
wwPPP r (2.95c)

k̃kk
xy

ww = PPP T
r kkk

xy
wwPPP r (2.95d)

k̃kk
yz

ww = PPP T
r kkk

yx
wwPPP r (2.95e)

The transformation of the section stiffness matrices in equation (2.60) with the projection
matrix PPP r adds the rigid body modes in the section plane uuur1,uuur2 and uuur3 to the null space
of the section stiffness matrices kkkxww kkkxyww and kkkyzww. The presence of singular values in the
section stiffness matrices k̃kk

x

ww k̃kk
xy

ww and k̃kk
yz

ww renders the stiffness matrix KKKww in equation
(2.76) singular and makes the numerical solution for δUUUw impossible. To overcome this
problem a rank three matrix kkkβ is added to the singular section stiffness matrices k̃kk

x

ww k̃kk
xy

ww

and k̃kk
yz

ww. Matrix kkkβ is defined by
kkkβ = βVVV VVV T (2.96)

with VVV from equation (2.90) and β an arbitrary constant that is selected so as to reduce
the condition number of the modified section stiffness matrix. The modified section stiffness
matrices thus become

¯̃
kkkxww = k̃kk

x

ww + kkkβ (2.97a)
¯̃
kkkxyww = k̃kk

xy

ww + kkkβ (2.97b)
¯̃
kkkyzww = k̃kk

yz

ww + kkkβ (2.97c)

where ¯̃
kkk denotes the non-singular section stiffness matrix. The addition of matrix kkkβ to the

section stiffness matrices kkkxww kkkxyww and kkkyzww has no effect on the solution of the system of
equations for the warping displacement parameters in equation (2.76).

Before concluding the discussion on the interpolation functions for the warping profile, it
is worth noting that the beam element formulation in section 2.4 is general and independent
of the choice of the interpolation functions ψψψ for it. The examples of the following chapter
demonstrate the benefits of the choice of Lagrange polynomials for the problems of interest
in this study.

37



2.5.2 Warping distribution

The distribution of the warping displacements over the beam element length is described with
interpolation functions χ(x). The response accuracy for problems of constrained warping is
very sensitive to the selection of these interpolation functions. The linear elastic solution for a
homogeneous, prismatic beam results in an exponential distribution of warping displacements
along the element. Consequently, possible choices for warping distribution functions χ are
exponential functions, Lagrange polynomials, and quadratic spline functions.

Exponential functions are commonly used for linear elastic finite element solutions, be-
cause they correspond to the exact analytical solution of a linear elastic, homogeneous,
prismatic beam [100], [27]. For the more general case of variable cross section with inelastic
material response, the advantage of using these functions disappears. For this reason they
are not pursued further in this study, which instead focuses on Lagrange polynomials and
quadratic spline functions. These functions are smooth and continuously differentiable as
required for the warping strain definition in equation (2.13). The Lagrange polynomials for
the examples of the following two chapters are limited to degree 1 to 4 in order to avoid the
pronounced oscillations for polynomials of higher degree. If a more accurate interpolation
of the warping displacements is desirable, quadratic spline functions should be used. In
such case, the beam element is subdivided into nsg segments with a quadratic interpolation
function χ(x) over each segment. The continuity of the function χ(x) and its derivative dχ

dx
is

enforced at the segment ends. An additional condition is required for a unique interpolation
of the nsg + 1 warping displacement values at the segment ends. The assumption of free
warping dχ

dx
= 0 at one beam end is selected for the purpose, because it is assumed that the

beam extends a sufficient distance beyond the zone of constrained warping for the condition
to be approximately satisfied.

2.6 Numerical implementation

2.6.1 General

The proposed 3d beam element that accounts for the interaction of shear and torsion with
flexure and axial force under inelastic material response is implemented in the Matlab R©-
based general purpose finite element program FEDEASLab [28]. The program has a standard
interface for finite elements and uses standard assembly procedures for the structure stiffness
matrix and resisting force vector. Consequently, any other general purpose finite element
analysis program could have been used for the purpose. The following discussion, therefore,
addresses only the element state determination process.
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2.6.2 Element state determination

The response of the proposed beam element is determined by assembly of the section re-
sponses. The key equation of the proposed mixed formulation is the compatibility equation
(2.54b) to be satisfied by the section deformations eee(x). Accordingly, the element corresponds
to a series spring model of the monitoring sections. Furthermore, the section responses are
coupled through the equilibrium equation (2.54d) for the warping forces that the warping
displacements uuuwi at each section i need to satisfy. This section coupling is not present in
the standard mixed formulation for the 2d beam element [82]. The linearization of the dis-
crete governing equations leads to equations (2.69) with the section deformations eeel and the
warping displacements uuuwi as independent variables. The numerical solution of the governing
equations within the element state determination process gives rise to an iterative or non-
iterative element state determination algorithm [82], [51]. In the former case the nonlinear
governing equations (2.54b) and (2.54d) are satisfied iteratively to within an acceptable con-
vergence tolerance every time the element state determination is invoked. In the latter case,
only the consistent linear solution of the equations (2.69) is determined with the residual of
these equations stored and accounted for in the next element state determination during the
next iteration of the solution algorithm for the global equilibrium equations. The numerical
implementation of the 3d beam element in this study follows the iterative approach.

The state determination process requires the determination of the resisting forces and
stiffness matrix of the element for given end node displacements uuuIJ for each iteration of the
solution algorithm of the global equilibrium equations. If the warping displacements uuuwIJ at
the end sections of the element serve as global degrees of freedom, these values are also given
at the start of the state determination process. If the structural model uses beam elements
with and without warping displacements, then the warping displacements are treated as
local degrees of freedom and their value at the previous load step is stored with the element
history variables. Either way, the derivative of the warping displacements and, consequently,
the normal stresses, are discontinuous at the element ends.

In the following step by step presentation of the state determination process the cases of
warping displacements as global or local degrees of freedom are presented separately.

The locations of the integration scheme in the x-direction are identified with l = 1 . . . nip,
where nip is the selected number of integration points. The warping displacements are in-
cluded in nl of these sections with nl ≤ nip. The number of warping displacement parameters
in each section is nw. Furthermore, the numerical evaluation of the integrals over the section
area A uses the midpoint integration rule with nf integration points or fibers.

1. Case: the warping displacements are local degrees of freedom.

In this case the end node displacement values uuuIJ are given at the start of the state deter-
mination process, which then consists of the following steps:

1. Recover the section deformations eeel for sections l = 1 . . . nip, and the warping displace-
ments uuuwi for sections i = 1 . . . nl from the memory storage of the element.
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2. Use the element compatibility equation in the form

dvvv = aaag uuuIJ −
nip∑
l=1

wl bbb
T
l eeel

where dvvv are the element deformation increments.

3. Use the discrete form of equation (2.59) to determine the total strain εεεn,l at material
point n of section l for n = 1 . . . nf and l = 1 . . . nip.

εεεn,l = aaas(yn, zn)eeel +

nl∑
i=1

[
∂χi,l
∂x

aaawx (yn, zn) + χi,l aaa
w
yz(yn, zn)

]
uuuwi

4. Use the material constitutive law to determine σσσn,l and kkkmn,l.

5. Use the equations (2.61) in the numerical evaluation form of equation (2.68) to deter-
mine the section stiffness matrices. Use equations (2.70), (2.74), (2.75) and (2.79) to
determine KKKsw,l, KKKww and BBBwq.

6. Use equations (2.81) and (5.65) to determine the element stiffness matrix without rigid
body modes kkk and the basic force increments dqqq = kkk dvvv. Update the basic element
forces qqq = qqq + dqqq.

7. Determine pppwi with equation (2.54d) and use equation (2.76) to solve for the warping
displacement increments dUUUw.

8. Use equation (2.73) in the form

deeel = [kkkss,l]
−1

[
(bbbl qqq + sssu − sssl)−

nl∑
n=1

[kkksw]l n duuu
w
n

]
with

sssl =

nf∑
n=1

wn aaa
T
s,nσσσn,l

to determine the section deformation increments deeel.

9. Update the section deformations eeel = eeel + deeel and the warping displacements UUUw =
UUUw + dUUUw and return to step 2 until convergence.

2. Case: the end warping displacements uuuwIJ are global degrees of freedom.

In this case the warping displacements uuuwIJ at the end sections of the beam element are
global degrees of freedom, whereas the warping displacements UUUw at the interior sections
of the beam element are local degrees of freedom. The end node displacement values uuuIJ
and uuuwIJ are given at the start of the state determination process, which then consists of the
following steps:
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1. Recover the section deformations eeel for sections l = 1 . . . nip, and the warping displace-
ments uuuwi for sections i = 2 . . . nl − 1 from the memory storage of the element.

2. Use the element compatibility equation in the form

dvvv = aaag uuuIJ −
nip∑
l=1

wl bbb
T
l eeel

where dvvv are the element deformation increments.

3. Use the discrete form of equation (2.59) to determine the total strain εεεn,l at material
point n of section l for n = 1 . . . nf and l = 1 . . . nip

εεεn,l = aaas(yn, zn)eeel +

nl∑
i=1

[
∂χi,l
∂x

aaawx (yn, zn) + χi,l aaa
w
yz(yn, zn)

]
uuuwi

noting that all warping displacements are used in the calculation of the total strain.

4. Use the material constitutive law to determine σσσn,l and kkkmn,l.

5. Use the equations (2.61) in the numerical evaluation form of equation (2.68) to deter-
mine the section stiffness matrices. Use equations (2.70), (2.74), (2.75) and (2.79) to
determineKKKsw,l,KKKww and BBBwq, without including the contribution of the end sections.

6. Use equations (2.81) and (5.65) to determine the element stiffness matrix without rigid
body modes kkk and the basic force increments dqqq = kkk dvvv, noting again the absence of
the warping displacement contribution of the end sections. Update the basic element
forces qqq = qqq + dqqq.

7. Determine pppwi with equation (2.54d) and use equation (2.76) to solve for the warping
displacement increments dUUUw.

8. Use equation (2.73) in the form

deeel = [kkkss,l]
−1

[
(bbbl qqq + sssu − sssl)−

nl−1∑
n=2

[kkksw]l n duuu
w
n

]
with

sssl =

nf∑
n=1

wn aaa
T
s,nσσσn,l

to determine the section deformation increments deeel.

9. Update the section deformations eeel = eeel + deeel and the warping displacements UUUw =
UUUw + dUUUw and return to step 2 until convergence.

41



For both cases the element state determination converges when the work increment dW

dW =

nip∑
l=1

(
wl deee

T
l dsssl

)
+ (dUUUw)TdPPPw (2.98)

in absolute or relative form becomes smaller than a specified tolerance.
Upon completion of the element state determination process the basic element stiffness

matrix kkk for the first case is available and can be transformed to global coordinates according
to equation (2.85). Similarly, the basic element forces qqq are available and can be transformed
to global coordinates with equation (2.86).

For the second case the basic element forces qqq are also available and can be transformed to
global coordinates with equation (2.86). The warping forces pppwIJ corresponding to the warping
displacements uuuwIJ at the end sections can be determined with equation (2.54d). Because
the final element stiffness matrix without rigid body modes kkk includes the contribution
of the end warping displacements, it differs from the stiffness matrix in step 6 of the state
determination process. It is determined by inverting the flexibility matrix fff in equation (A.9)
of Appendix A. The stiffness matrix kkkIJ of the element with rigid body modes is established
by transforming the basic stiffness kkk to global coordinates with an equation similar to (2.85),
noting that the warping displacements do not require transformation.

2.6.3 Implementation of inelastic material model

The material response in equation (2.35) assumes the existence of a strain energy function
W , as is the case for a hyperelastic material model. More generally, however, the stress
σσσ may be defined in the form of (2.36). In plasticity theory the material stress σσσ can be
expressed as a function of total strain εεε and additional internal variables ξ

σσσ = σ̂σσ(εεε, ξξξ) (2.99)

The following sections illustrate the incorporation of a general inelastic J2 plasticity model
into the state determination algorithm of the proposed beam element. The objective of this
brief discussion is to demonstrate the generality of the approach, permitting any suitable
constitutive model to be incorporated in the beam formulation. The following 3d inelastic
material model is used in the simulation of steel structures in the following chapters.

Multi-axial steel material model

The steel material model is based on J2 plasticity. The equations relative to the yield
function, plastic flow rule and hardening rules are briefly summarized here, with details
available in [85]. The parameters of the model are the yield stress σy, the isotropic hardening
modulus Hi, and the kinematic hardening modulus Hk.
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The symbol σσσt refers to the total stress with six components and the symbol σ̄σσt denotes
the deviatoric part of the stress tensor. The yield function is expressed in terms of the
deviatoric stress σ̄σσt, the back stress σσσb and the linear hardening coefficient α:

f(σ̄σσt,σσσb, α) = ‖σ̄σσt − σσσb‖ −
√

2

3
(σy +Hiα) (2.100)

The plastic flow rule is
ε̇εεp = βsign(σσσt − σσσb) (2.101)

and the hardening rules are

α̇ =

√
2

3
β (2.102a)

σ̇σσb =
2

3
Hkε̇εεp (2.102b)

The Kuhn-Tucker conditions and the consistency condition are expressed in the form

β ≥ 0 (2.103a)
f ≤ 0 (2.103b)

β · f = 0 (2.103c)

β · ḟ = 0 (2.103d)

A return map algorithm for the material state-determination under the above governing
equations is well established [85].

Implementation of 3d material model in beam element formulation

The 3d constitutive material model expresses the six components of the stress tensor in terms
of the total strains and additional internal variables. The incorporation of the 3d material
model in the section state-determination process of a beam model requires the condensation
of the stress components that are zero [46], [68], [82]. The condensation process of the
material stiffness matrix is briefly summarized below for the sake of completeness. The Voigt
notation is used to transform the stress and strain tensors into vectors with six components.
With this convention the linearized stress-strain relation becomes

dσσσ = kkkmdεεε (2.104)

with the material stiffness kkkm a matrix of size 6 × 6. Any suitable stiffness matrix will do,
but the availability of a tangent stiffness matrix improves computational performance and
convergence characteristics significantly. dεεε and dσσσ denotes the strain and stress increment,
respectively.
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Denoting with r the index of the stress components to be retained, and with c the index
of stress components to be condensed out, partitions the linearized stress-strain relation in
the form (

δσσσr
δσσσc

)
=

[
CCCrr CCCrc

CCCcr CCCcc

](
δεεεr
δεεεc

)
(2.105)

For the stress determination at a material point of the beam cross-section transverse equi-
librium requires that σσσc = 000. The value of εεεc is updated during an iterative process until the
equation σσσc = 000 is satisfied. The update requires the following operations

dεεεci = −CCC−1
cc σσσci

εεεci+1
= εεεci + dεεεci

where i is the iteration counter and σσσci corresponds to the value of the function σ̂σσ in equation
(2.99) under εεεi. The condensed material stiffness matrix is then given by

kkkm = CCCrr −CCCrcCCC
−1
cc CCCcr (2.106)

For the problems of interest in this study, the stresses σyy and σzz are, in general, set to
zero and condensed out of the linearized material relation. Furthermore, for sections with
thin flanges and for 2d problems, the transverse stresses (σxy or σxz) can be neglected and
condensed out as well.
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Chapter 3

Evaluation for linear material response

This chapter presents the validation of the proposed 3d frame element under linear elastic
material response by comparing its results for a few simple structural models with those of
reference fiber beam elements and shell finite elements.

After summarizing the key features of the fiber beam and shell finite element models
used in the validation studies, the following examples address three aspects of the element
response: the shear strain and stress profile of a beam section under shear, the shear-lag
effect, and the torsional response.

3.1 Reference models
The section presents a brief overview of reference fiber beam and shell finite element models
used for comparison with the results of the proposed model.

3.1.1 Shear beam model

The first type of model used in the validation studies is the 2d fiber beam element for axial
force, shear and flexure by Saritas [82], which was extended to 3d with the inclusion of
torsion by Navarro Gregori [37].

The basic assumption of these elements concerns the strain distribution at a beam section.
For the 3d case it takes the form

εεε =

1 −y 0 0 z 0
0 0 kyβ(y, z) −z 0 0
0 0 0 y 0 kzα(y, z)

eee = aaaseee (3.1)

where eee is the generalized section deformation vector defined in equation (2.14) and aaas is the
kinematic matrix of the cross section.

The functions β(y, z) and α(y, z) describe the shear strain distribution over the cross-
section for the shear deformation γy and γz, respectively. The coefficients ky and kz are
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shear correction factors to ensure longitudinal equilibrium, as described in [82] and [37].
The section forces sss result from the integration of the stresses σσσ over the area A of the
cross-section

sss =

∫
A

aaaTs σσσdA (3.2)

The postulated shear strain profiles over the cross section depend on its geometry and may
be available in closed form under linear elastic material response for sections free to warp.
The models of Saritas and Navarro Gregori use the shear strain distributions of the linear
elastic solution also for the inelastic element response.

The compatibility matrix aaas in equation (3.1) does not couple the effects of the shear
deformations in the y and z-direction, so that a shear deformation γy gives rise only to
a shear stress σxy. The response of a wide flange beam under a shear deformation γy is,
however, characterized by shear stresses σxy in the web, and shear stresses σxz in the flanges.
The fact that the latter cannot be captured by the assumed section compatibility matrix aaas
in equation (3.1) is a shortcoming of these models for 3d beam analysis.

For the validation studies the mixed formulation of Taylor et al. [92] was used with the
section kinematics of equation (3.1) to extend the 2d element of Saritas [82] to 3d. In the
following validation studies this element is referred to as shear beam element.

3.1.2 Beam model with single warping mode

To improve the modeling of the torsional response for the shear beam model of the preceding
section a section warping mode is inserted in the element kinematics. This approach derives
from St. Venant’s torsion theory, as described by Timoshenko [96], and was used in some
recent 3d beam elements, such as the model by Nukala and White [66].

With an additional torsion degree of freedom ζ at each element end node for the warping
amplitude, the section deformation vector becomes

eee =
[
ε κz γy κx κy γz ζ ′

]T (3.3)

and the strain distribution at a beam section is given by

εεε =

1 −y 0 0 z 0 ω(y, z)
0 0 kyβ(y, z) −z + ∂ω

∂y
0 0 0

0 0 0 y + ∂ω
∂z

0 kzα(y, z) 0

eee = aaaseee (3.4)

where ω(y, z) describes the warping profile. Closed form expressions for the warping profile
under linear elastic material response are available for particular section geometries, such
as a wide flange section [96]. When warping is constrained at the element boundaries, the
warping degree of freedom ζ is set equal to zero.

The corresponding section resultants are given by

sss =

∫
A

aaaTs σσσdA (3.5)
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The section force in sss that corresponds to the warping deformation of the cross section is
the bi-moment.

This beam model is an extension of St. Venant’s torsion theory with the inclusion of
shear deformations under the same assumptions as the shear beam model. It can be thought
of as a special case of the general 3d beam element of chapter 2 with a single warping
degree of freedom nw = 1, noting that the function ω for the warping profile corresponds
to the interpolation function ψ. With one degree of freedom for warping at each end node,
the element can only accommodate a linear distribution of warping along the axis, or the
exponential functions of the exact linear solution for a prismatic beam. In the following
validation studies this element is referred to as SW beam element.

3.1.3 Shell model

Beam models are based on the assumption that the element has one privileged direction
along the element axis, so that the section kinematics can be postulated independently of
the response along the element axis. With this assumption the section response is established
first by integration over the cross section and is then used to derive the element response
by integration over the element axis. While the general 3d beam element of chapter 2 and
the SW beam element account for the out-of-plane deformations of a section, they neglect
the in-plane deformations εyy and εzz. To validate this assumption and its relevance for the
local stress response of 3d beams, plane stress shell finite elements are used for modeling the
web and flanges of the thin-walled section, as shown in figure (3.1) for a wide flange beam.
The shell element used for the purpose is the Mixed Interpolation of Tensorial Component

Figure 3.1: Shell model for wide flange beam

MITC element proposed by Bathe [4], which does not suffer from shear locking. This element
was implemented for linear elastic and inelastic material response in FEDEASLab [28]. Its
results were checked against the four node shell element in the program FEAP [91] with
excellent agreement.
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3.2 Examples
The selected examples compare the response of the simply supported and the cantilever
beam in figure (3.2) with different cross sections shown in figure (3.3) under concentrated
and uniform loading. The examples are divided into three parts in accordance with the
response quantity of interest: the first part addresses the shear strain and stress profile for
cases without warping constraint, the second part addresses the effect of warping constraint
on shear-lag, and finally the last part investigates the torsional response.

(a) Cantilever Beam (b) Simply Supported beam

Figure 3.2: Beam geometry for examples

Figure 3.3: Cross-sections for examples

3.2.1 Shear stress profile

For the study of the shear stress profile the cantilever beam in figure (3.4) is selected. The
cantilever beam is subjected to a concentrated transverse load P at the free end, while the
fixed end is free to warp. The length of the beam is L = 5 units and the tip transverse load
is P = 1 unit. The studies are conducted for a rectangular and a wide flange section.

L

P

x

y

Figure 3.4: Cantilever beam with loading

The Euler-Bernoulli beam theory (EB) and the Timoshenko beam theory (T) give the
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following expressions for the exact value of the tip displacement [19].

UEB = − PL
3

3EIz
, UT = − PL

3

3EIz
− PL

GAky
(3.6)

where E is the Young modulus, A the cross sectional area, Iz the moment of inertia about
the z-axis, and ky the shear correction factor in y.

Rectangular section

The geometry of the rectangular cross-section and the mechanical properties of the material
are shown in figure (3.5). The general 3d beam element model of chapter 2 with cubic La-

t

d

y

z d = 1
t = 0.1

E = 106

ν = 0.3

Figure 3.5: Geometry and mechanical properties for rectangular section

grange polynomials for the warping profile function ψ(y) requires nw = 4 warping degrees
of freedom, as shown in figure (3.6a). The shear correction factor for the Timoshenko beam

(a) nw=4 (b) nw=6

Figure 3.6: Number and location of warping degrees of freedom for rectangular section

model is ky = 5/6. No correction factor is necessary for the general 3d beam element of
chapter 2. The tip transverse displacement for the different models in table (3.1) shows that
the proposed 3d beam model gives the exact tip displacement of the Timoshenko beam the-
ory. The cubic warping displacement results in the exact parabolic shear stress distribution
of the Timoshenko beam theory, as shown in figures (3.7a-3.7b). The same results for tip
displacement and shear stress distribution can be obtained with the shear beam model of
Saritas [82], since it postulates the exact parabolic shear strain distribution.

49



Enh. Element UT Shell Model UEB
Tip Displ (10−3) -5.156 -5.156 -5.136 -5.000

Table 3.1: Tip displacement of cantilever beam with rectangular section
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(a) Warping displacement profile
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(b) Shear stress profile

Figure 3.7: Warping displacement and shear stress distribution for rectangular section

Wide flange section

The geometry of the wide flange cross-section and the mechanical properties of the material
are shown in figure (3.8). The 3d beam element uses Lagrange polynomials ψ(y, z) for the

bf

d

y

z

tw

tf

bf = 1
tf = 0.05
tw = 0.05

d = 1
E = 106

ν = 0.3

Figure 3.8: Geometry and mechanical properties for wide flange section

warping profile with four degrees of freedom in the web nww and five degrees of freedom nwf
in each flange. This results in a total number of twelve warping degrees of freedom nw for
the section, as shown in figure (3.9a). The tip displacement values of the analytical and
the numerical solution are listed in table (3.2). The correction factor used for Timoshenko’s
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(a) nw=12 (b) nw=16

Figure 3.9: Number and location of warping degrees of freedom for wide flange section

beam theory is ky = 0.2956 [19]. The agreement between the proposed beam element, the
shell model and the Timoshenko beam theory is excellent, noting the approximate nature of
the shear correction factor for the latter.

Enh. Element UT Shell Model UEB
Tip Displ (10−3) -1.957 -1.930 -1.924 -1.626

Table 3.2: Tip displacement of cantilever beam with wide flange section

The satisfaction of longitudinal and transverse equilibrium along with the compatibility
relations of the beam element give the warping profile in figure (3.10). To facilitate the
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Figure 3.10: Warping profile of wide flange section with nw = 12 degrees of freedom

assessment of the warping profile, the out-of-plane displacements are displayed separately
for web and flanges in figure (3.11). The differentiation of the warping displacements gives
the shear strain profile, which can then be used with the linear elastic constitutive relation
to give the shear stress profile depicted separately for the web and flanges in figure (3.12).
The proposed model correctly predicts a parabolic shear stress distribution in the web and
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(a) Web
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(b) Bottom flange

Figure 3.11: Warping displacement distribution for wide flange section
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(a) Web

−0.5 0 0.5
−10

−8

−6

−4

−2

0

2

4

6

8

10

z

σ
x
z

 

 

Enh. Element

(b) Bottom Flange

Figure 3.12: Shear stress distribution for wide flange section

a linear distribution in the flange. The advantage of this approach over shear beam models
with fixed shear strain distribution [82], [68] is that the distribution adjusts to the gradual
yielding of the cross section under inelastic material response, as will be illustrated in the
next chapter. The two preceding examples demonstrate the ability of the proposed beam
element to describe the local shear response for any cross section geometry reproducing
exactly the non-uniform shear strain and stress distributions for sections with unconstrained
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warping.

3.2.2 Shear-lag effect

The term shear-lag describes the non-uniform axial stress distribution across the flange of
thin-walled profiles under flexure and shear and is pronounced in bridge box girders with
wide flanges and thin-walled tubular sections of any type. The shear-lag effect is strongly
dependent on the boundary conditions of the problem.

This section investigates the ability of the proposed model to represent the shear-lag
effect for sections of different geometry by comparing its results with available analytical
solutions and with the results of shear beam and shell finite element models. Furthermore,
available experimental measurements from the response of a box girder bridge specimen are
also used for the purpose.

The cross sections used for the study on the effect of warping constraint on the axial
stress distribution are a wide flange section, a box section, and a rectangular section. The
effect of the choice of interpolation functions for the warping profile ψ(y, z) and the warping
displacement distribution χ(x) along the element axis is also discussed.

To quantify the shear-lag effect in the flanges of thin-walled sections the shear-lag coef-
ficient λ is introduced as the ratio of the axial stress σxx(z) under bending about the z-axis
by a model that accounts for section warping to the axial stress σshxx by a model that assumes
that plane sections remain plane

λ(z) =
σxx(z)

σshxx
(3.7)

In equation (3.7) it is assumed that the stress of both cases is evaluated at the same distance y
from the section centroid. The shear-lag coefficient λ is typically evaluated at the intersection
of the flange with the web, where it assumes its largest value λmax > 1, and at the flange tip
where it assumes its smallest value λmin < 1. A shear-lag coefficient value greater than one
corresponds to a positive shear-lag effect, and a value smaller than one to a negative effect.

Rectangular section

The cantilever beam in figure (3.4) is subjected to a concentrated force at the tip, but the
out-of-plane warping is now restrained at the fixed end. The length of the beam is again
L = 5 units and the tip transverse load is P = 1 unit as before. The beam has the same
rectangular cross section in figure (3.5) as the earlier example.

Because the effect of the warping constraint affects only a small portion of the cantilever
beam near the support, the cantilever is subdivided into two elements: the proposed 3d beam
element with warping displacement degrees of freedom extends over the length of 0.15L from
the fixed support, and the shear beam element of Saritas is used for the remaining portion.
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The warping profile ψ(y, z) is represented by Lagrange polynomials with nw = 6 warping
degrees of freedom, as shown in figure (3.6b). The warping displacement distribution χ(x)
over the element length is represented with quadratic spline functions over 5 segments.

The tip displacement under the concentrated force is −5.155.10−3 and is practically the
same as the value in table (3.1) for the earlier example leading to the conclusion that the
warping constraint has insignificant influence on the global behavior of the element.
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(a) Axial Stresses σxx
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(b) Shear stresses σxy

Figure 3.13: Normal and shear stress profile for rectangular section at support of cantilever
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Figure 3.14: Normal stress σwxx due to warping at support of cantilever beam

Figure (3.13) shows the axial stress and shear stress profile of the section at the support
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where warping is constrained. The axial stress profile σxx is non-linear, whereas the shear
stress σxy is constant over the section depth. The results are compared with the infinite
Fourier series solution of the governing differential equations by Hildebrand [41] showing
excellent agreement, except for the small oscillations of the analytical solution that arise
from the incomplete summation of the terms of the infinite Fourier series.

The additional axial stresses σwxx due to the axial strains εwxx caused by warping displace-
ments are determined by

σwxx = Eεwxx = E
∂uw

∂x
(3.8)

These show excellent agreement with the analytical solution by Hildebrand [41] in figure
(3.14).

Wide flange section

The wide flange section for the cantilever beam of figure (3.4) is the same as for the earlier
example. Its geometry and material properties are shown in figure (3.8). The cantilever
beam of length L = 5 units is subjected again to a concentrated force P of 1 unit at the tip,
with the out-of-plane warping restrained at the fixed end.

The effect of the warping constraint affects now a larger portion of the cantilever beam
on account of the thin-walled section. The cantilever is, consequently, subdivided into two
elements: the proposed 3d beam element with warping displacement degrees of freedom
extends over a length of 0.40L from the fixed support, and the shear beam element of
Saritas is used for the remaining portion. In the interest of accuracy the 3d beam element
is subdivided into nsg = 10 segments with quadratic spline interpolation for the warping
distribution χ(x) along the element axis. The warping profile ψ(y, z) is represented with
four warping degrees of freedom nww in the web and either five or seven warping degrees of
freedom nwf in the flange, as shown in figure (3.9).

To assess their accuracy the results of the proposed 3d beam element are compared with
the results of a 3d finite element model with a mesh of 30 by 150 plane stress shell elements
for the web and each flange. This model was analyzed with program FEAP [91].

The axial stress concentrations due to the warping constraint at the support of the
cantilever are depicted in figure (3.15) with the axial stress profile over the depth of the web
for the proposed 3d beam element and for the shell model deviating slightly from the linear
profile of the shear beam model in figure (3.15a). There is excellent agreement between the
axial stress of the proposed 3d beam and that of the shell model for the distribution across
the width of the lower flange in figure (3.15b), which shows that the minimum axial stress
at the tip of the flange is about 80 % of the maximum axial stress value at the intersection
between flange and web.

Figure (3.16) shows the variation of the shear-lag coefficient λ along the cantilever axis
x. The maximum shear-lag coefficient λmax corresponds to the intersection of the flange
with the web, and the minimum shear-leg coefficient λmin to the tip of the flange. The local
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Figure 3.15: Axial stress profile at support of cantilever beam with wide flange section
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Figure 3.16: Shear-lag coefficient along x-axis of cantilever beam with wide flange section

aspect of the warping constraint is evident in the figure, which shows that the axial stress
distribution across the flange width becomes practically uniform at a distance of 0.3L from
the fixed support with restrained warping displacements.

The results in figures (3.15- 3.16) show that the finer representation of the warping profile
with nw = 16 warping degrees of freedom does not increase appreciably the accuracy of the
axial stress distribution across the section and along the element axis relative to the case
with nw = 12 warping degrees of freedom to justify the higher computational cost. These
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results lead to the conclusion that the parabolic warping displacement representation with
three warping degrees of freedom for each half flange for a total of nwf = 5 parameters for
each flange is sufficient and will be used in the studies of the next chapter. More important
for the accuracy of the results is the representation of the warping distribution χ(x) along
the element axis, as will be discussed further in the following example.

Simply supported box girder

The simply supported box girder in figure (3.17) with a span of L = 800 mm and with
the section geometry and material properties in figure (3.18) was selected because of the
availability of experimental measurements on a Perspex glass specimen by Luo et al. [58].
These tests were conducted for a concentrated force P = 0.2722 kN at midspan and for a
uniformly distributed load q = 6 kN/m. Furthermore, the box girder was the subject of
extensive analytical studies by several authors with models ranging from beam [48], [100],
to finite strip [59], to shell finite elements [53], to analytical methods [78]. This wealth of
available information provides an excellent opportunity for the validation of the proposed 3d
beam element.

L

P

x

y

(a) Concentrated Load

L

q

(b) Uniform Load

Figure 3.17: Simply supported box girder of span L under concentrated and uniform load
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Figure 3.18: Geometry and material properties of box girder section

Figure (3.17) shows that a single 3d beam element is used for each half of the structure
on account of the symmetry in geometry and loading. The warping profile at a section is
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represented by Lagrange polynomials with nw = 16 warping degrees of freedom located as
shown in figure (2.1g). For the warping distribution χ(x) along the element axis the use of
Lagrange polynomials and quadratic spline functions is studied.

The mid-span deflection of the simply supported box under the two load cases is reported
in Table (3.3). The mid-span deflection of the girder under the concentrated load P with
the Euler-Bernoulli (EB) and Timoshenko (T) beam theory is

UEB =
PL3

48EI
, UT =

PL3

48EI
+

PL

4GAky
(3.9)

The same displacement under the uniform load q becomes for the two theories

UEB =
5qL4

384EI
, UT =

5qL4

384EI
+

qL2

8GAky
(3.10)

The mid-span deflection value of the Timoshenko beam theory in Table (3.3) is based on an
estimate of the shear correction factor ky equal to 0.1437. This factor was established with
the assumption of a shear stress profile for the box girder section without warping constraint.
The value also appears reasonable when compared with the shear correction factors for an
I- and T-section. The deflection value of the proposed 3d beam element compares very
favorably with the value of the Timoshenko beam theory suggesting that the inclusion of the
shear-lag effect does not have an appreciable effect on the midspan displacement. The beam
model of Zhou [100] uses two shear-lag degrees of freedom at each end node and postulates
a cubic warping displacement profile in the flanges of the section, but does not include
the effect of shear deformations. It is used here as representative of several models that
have been proposed for the shear-lag effect representation, because the studies in [100] show
relatively good agreement among the models and between model results and experimental
measurements of the axial stress distribution for the Perspex glass specimen. The results of
Zhou’s model in Table (3.3) imply that the shear-lag effect increases the midspan deflection
by about 10%, a fact that is not borne out by the proposed element. Instead, the shear
deformations of the thin-walled cross section increase the midspan deflection of the Euler-
Bernoulli beam theory by about 30%, despite a span to depth ratio L/d of 10, as confirmed
by the Timoshenko beam theory.

Midspan deflection (mm) proposed element Zhou model UT (est) UEB
Concentrated load -0.264 -0.210 -0.266 -0.192

Uniform load -2.783 -2.350 -2.767 -2.116

Table 3.3: Midspan deflection of box girder under concentrated and uniform load

Figures (3.19a) and (3.19b) show the distribution of the shear-lag coefficient λ from the
left support to the girder midspan. The maximum shear-lag coefficient λmax arises at the
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Figure 3.19: Shear-lag coefficient of box girder under concentrated and uniform load
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Figure 3.20: Axial stress profile at midspan section of box girder under concentrated load

intersection of the upper flange and web, while the minimum shear-lag coefficient λmin occurs
in the middle of the upper flange.

Figure (3.19a) shows that under a concentrated force P at girder midspan both shear-
lag coefficients λmax and λmin assume their largest and smallest value, respectively, under
the point of load application. The same figure shows that both shear-lag coefficients reduce
quickly away from the girder midspan and become practically equal to one at the quarter span
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point. Between the support and the quarter span point the shear-lag effect can, therefore,
be neglected, and the section at the support can be assumed free to warp. For this reason
the condition dχ/dx = 0 is imposed at the support for the parameter determination of the
quadratic spline interpolation functions for the warping distribution along the element axis,
as discussed in section (2.5.2). Figure (3.19a) shows the shear-lag coefficient distribution
for a model with a fourth order Lagrange polynomial with five interpolation points for the
warping distribution along the element axis, and for models with quadratic spline functions
over nsg = 3 and nsg = 10 segments. The results are also compared with those of Zhou’s
model. The model with Lagrange polynomials for the warping distribution exhibits some
oscillation of the shear-lag coefficients near the support. By contrast, the quadratic spline
functions represent better the smooth decay of the shear-lag effect away from the point
of load application. There is little difference in the results of the models with nsg = 3
and nsg = 10 segments except in the vicinity of the point of load application, where the
larger number of segments overestimates the shear-lag effect. Clearly, the large number of
spline segments and the associated small integration weight for the section with constrained
warping at girder midspan give rise to an overestimation of the axial stress concentration at
midspan. Spline segments of variable length may be a better solution. In any case, all three
choices for the warping distribution along the element axis give results that agree reasonably
well with Zhou’s model, which matches the analytical solution with regard to the warping
displacement distribution along the girder axis. The results lead to the conclusion that the
choice of Lagrange polynomials strikes a good balance between accuracy and computational
efficiency, so that it will be used in the inelastic response studies of the next chapter. This
conclusion is confirmed by the shear-lag coefficient distribution under uniform loading in
figure (3.19b).

Figure (3.20) shows the axial stresses in the upper and lower flanges of the box girder
section for the proposed model with Lagrange polynomials and with quadratic spline func-
tions over ten segments. The results are compared with the shell finite element model from
the study by Zhou [100] and with the experimental measurements from the study by Luo
et al. [58]. The results of the proposed model with Lagrange polynomials show very good
agreement with the experimental results and with the results of the shell finite element
model.

Three-span continuous box girder

The study of the shear-lag effect in the context of a larger and more representative structural
model is based on the three-span box girder bridge in figure (3.21). In this case the results
of the proposed 3d beam element are compared with the recommendations of the Eurocode.
Figure (3.21) shows the geometry of the three-span girder with L = 80 m, while figure
(3.22) shows the geometry of the cross section. The geometry of the girder and the section
dimensions derive from earlier studies on the shear-lag effect in [56] and [99]. The linear
elastic material of the girder has Young modulus E = 32.5 GPa and Poisson ratio ν = 0.16.
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The response of the girder is analyzed for a uniform load q = 1.2 kN/m.

L/2 L/2

x

y

q

Figure 3.21: Three span continuous box girder bridge
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Figure 3.22: Box girder section geometry

The structural model represents only half the structure with a coarse mesh of 4 elements
and a finer mesh of 14 elements. The proposed 3d beam element uses nw = 16 warping
degrees of freedom for the warping profile of the cross-section according to scheme (g) of
table (2.1), and third and fourth order Lagrange polynomials for the warping distribution χ
along the girder axis. The warping degrees of freedom at the element nodes are used as global
degrees of freedom of the model in order to enforce continuity of the warping displacements
between elements. The axial warping stresses are, however, discontinuous, since these are
dependent on the derivative of the warping distribution with respect to x.

Figure (3.23) shows the distribution of the maximum shear-lag coefficient λ over half of
the three span continuous girder. The maximum shear-lag coefficient arises at the intersection
of the upper flange and web. The results of the proposed 3d beam element are compared
with the recommendations of Eurocode 3 prEN 1993-1-5 [30]. The shear-lag coefficient for
these recommendations is established by taking the ratio of the axial stress for the section
with an effective flange width βbf specified in Eurocode 3 to the axial stress of the full section
without shear-lag. The results of the proposed 3d beam element show a similar trend with the
Eurocode specifications. For the interpretation of the results in figure (3.23) it is important
to note that the axial stress for the proposed element is discontinuous between elements.
Moreover, the axial stress of the model that assumes that plane sections remain plane is zero
at the points of zero bending moment, so that the shear-lag coefficient in equation (3.7) tends
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Figure 3.23: Shear-lag coefficient and moment distribution over half of continuous girder

to infinity at these locations. For this reason the moment distribution is depicted directly
below the shear-lag coefficient distribution in figure (3.23). Clearly, the most significant
shear-lag effect takes place over the middle support, where the bending moment value is
large. By contrast, the effect over the outer span is much less significant on account of the
small bending moment values.

3.2.3 Torsional response

For the study of torsional response with and without warping constraints the cantilever beam
in figure (3.24) with a span of L = 5 units is used. A torque T of 1 unit is applied at the free
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end of the beam. The cases of free and constrained warping at the fixed end of the cantilever
are studied. The response of the cantilever under the concentrated torque T is studied for

L

T

x

y

Figure 3.24: Cantilever beam of span L = 5 with concentrated torque T

three sections: a wide flange section, a thin-walled box section, and a rectangular section.
These are representative of the three section categories of interest: open thin-walled section,
closed thin-walled section, and solid cross section, respectively. Details of the section geomtry
are given in figure (3.25). The cantilever beam model consists of one 3d beam element with
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Figure 3.25: Cross section geometries

Lagrange interpolation polynomials for the warping distribution χ(x) with five interpolation
points. For the description of the warping profile of the thin-walled sections two arrangements
of the warping degrees of freedom are considered. For the warping profile S1 the degrees of
freedom are arranged along the centerline of the flanges and web, as shown in figure (2.1)
under case (c) and case (e). The total number of warping degrees of freedom nw is twelve
for both sections. For the warping profile S2, two degrees of freedom are arranged across
the thickness of the flanges and the web in order to better represent their warping about
the centerline. These arrangements are shown in figure (2.1) under case (d) for the wide
flange I-section, and case (f) for the box section with the total number of warping degrees of
freedom nw being 28 for the I-section and 32 for the box section. The warping profile of the
rectangular section is represented with a grid of four degrees of freedom over the depth by
four degrees of freedom across the width for a total number nw of 16 parameters. The results
of the proposed 3d beam element are compared with the results of the shear beam model in
section 3.1.1, with the results of the beam model with a single warping mode in section 3.1.2
using the warping profile of the analytical solution, and with the results of the shell finite
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element model described in section 3.1.3. These analyses are conducted with FEDEASLab
toolbox under Matlab R©-based.

The end twist angle θ of the cantilever beam for these models is reported in table (3.4).
The table also contains the value of the end twist angle for the case of St. Venant torsion
with free warping according to

θ =
TL

GJ
(3.11)

where J is the polar moment of inertia, and for the case of torsion with constrained warping
according to

θw =
TL

GJ
− T

GJ

√
EIw
GJ

tanh

(√
GJ

EIw
L

)
(3.12)

where Iw is the warping constant of the cross section. The results in table (3.4) lead to the

Case theory S1 S2 SW Beam Shear Beam Shell Model

I section
uniform warping 0.1076 0.4590 0.1146 0.1148 0.0006 -

constrained warping 0.0178 0.0218 0.0186 0.0182 - 0.018

Box (10−4)
uniform warping 2.1933 2.4034 2.2840 - 2.1973 -

constrained warping 2.1933 2.3787 2.2423 - - 2.4020

Rect (10−4)
uniform warping 4.548 4.697 - - 2.535 -

constrained warping 4.548 4.554 - - - -

Table 3.4: End twist angle θ for cantilever beam under end torque T

following observations:

1. There are no values for the shear beam model for constrained warping, because this
model does not include warping displacements.

2. There are no values for the beam with a single warping mode for sections with complex
warping profiles, such as the tubular box and the solid rectangle. Such profiles need
to be established first from the linear elastic solution of the problem.

3. There are no values for the shell model for cases with free warping, because of the diffi-
culty to apply a concentrated torque to a shell model without restraining the warping
displacements.
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4. The theoretical solution for the tubular box and the solid rectangular section gives
practically the same result for free and constrained warping, because the warping
constant Iw for these sections is very close to zero.

5. The results of the shear beam model agree very well with the theoretical values only for
the case of the thin-walled box section, where the warping effect is negligible. For the
open thin-walled section, which is very sensitive to warping, the shear beam element
overestimates the stiffness significantly. The result of the shear beam model is also
inaccurate for the solid rectangular section, for which warping is also important.

6. The shell model, the proposed beam element with S1 and S2 discretization of warping
and the SW beam give end twist angle values that are higher than the theoretical
solution, because of the more accurate representation of the added beam flexibility due
to warping.

7. The ability of the shell model to describe accurately the torsional response of thin-
walled beams with warping is limited, because of its inability to capture the warping
about the flange and web centerline, and the difficulty of representing accurately the
transition zone between flange and web. This is evident in the results for the tubular
box section.

8. The proposed beam element with S2 discretization of warping gives end twist angle
values that are consistently smaller than the S1 discretization, because of the added
stiffness from the warping about the flange centerline that the S2 discretization captures
in contrast to the S1 discretization which does not.

9. The beam with a single warping mode gives relatively accurate results for the thin-
walled open section, because the assumed warping profile is the same as the warping
profile of the theoretical solution.

10. The proposed element with warping profile S1 gives results of sufficient accuracy for
many practical problems except for the case of the I-section with uniform warping for
which the value of the end angle of twist is significantly overestimated. It is possible
that the process of improving the condition number of the stiffness matrices in section
2.5.1 was not effective in this simulation.

11. The proposed element with warping profile S2 agrees very well with the theoretical
results for the thin-walled sections.

12. The proposed element agrees very well with the theoretical results for the rectangular
section. The torsion constant J for the theoretical solution of St. Venant torsion
without warping constraint is not based on thin-walled theory, but is derived with the
help of Fourier series according to [84]. The discretization with 16 warping degrees of
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freedom seems to be sufficient for the case with constrained warping, but slightly less
so for the case with free warping, where more warping parameters may be required.
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Figure 3.26: Warping profile at free end of cantilever beam

The warping profiles of the thin-walled wide-flange and tubular box section at the free
end of the cantilever beam are shown in figure (3.26). The figures show the results of the
shell finite element model and of the profiles S1 and S2 for the proposed 3d beam element.
The warping profiles of the shell finite element model and of case S1 refer to the centerline of
the section profile, whereas case S2 is able to represent the warping of the section across the
thickness of the flanges and the web. The agreement of the warping displacements between
the shell model and the proposed 3d beam model is very good for either S1 or S2 warping
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profile. Figure (3.26c) shows the warping profile of the rectangular cross-section with the
proposed 3d beam element with 16 warping degrees of freedom per section.

Figures (3.27)-(3.28) compare the results of the different models for the thin-walled wide
flange section in more detail. Figure (3.27) shows the distribution of the twist angle over the
cantilever beam axis for the case that warping is constrained at the fixed end.
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Figure 3.27: Twist angle distribution for cantilever with I-section under warping constraint

The beam model with a single warping mode and the proposed beam element with
warping profile S2 match the analytical solution and the results of the shell finite element
model very well. The use of Lagrange polynomials with 5 interpolation points for the warping
displacement distribution is sufficient for this problem.

It is worth noting that the twist angle value is available only at the integration points
of the proposed element, with no information about its distribution along the element. The
markers for the SW beam model correspond to the twist angle values at the end nodes
of the four elements used for the cantilever, without invoking the available displacement
interpolation function for a more accurate representation of the twist angle distribution over
each element.

Figure (3.28) shows the local response of the cantilever beam in terms of the axial and
shear stress profile in the lower flange. Figure (3.28a) shows the axial stress profile in the
lower flange at the fixed end of the cantilever under constrained warping. The axial stress
distribution is practically linear over the flange. The agreement between the proposed beam
element with warping profile S2 and the shell model is excellent. The same is true for the
beam model with a single warping mode, because it uses the analytical solution for the
warping displacement profile. The axial stresses are zero at the free end of the cantilever.

Figures (3.28b) and (3.29) show the shear stress profile at the fixed end and at the free end
of the cantilever, respectively, for the case that warping is constrained at the fixed end. The
values correspond to the average transverse stress σxz over the flange thickness. The beam
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Figure 3.28: Stress profile in lower flange of fixed cantilever end under warping constraint
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Figure 3.29: Shear stress profile in lower flange of free cantilever end

model with a single warping mode results in zero average stress, because of the underlying
assumption for the warping profile. The shear beam model gives the same constant shear
stress distribution at both sections on account of the constant shear force. The proposed 3d
beam element gives a constant shear distribution at the fixed end under constrained warping,
and a piece-wise linear distribution at the free end, which agrees very well with the results
of the shell model. The constant shear stress at the fixed end is related to the following
kinematic assumption of the proposed element: the shear stress at the fixed end section
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x = 0 is

εxy = γy +
∂uuuw

∂y

= γy +
∂ψ

∂y

∑
i

χi(x = 0)uuuwi

With the definition for the warping distribution functions that χi(x = 0) = δi0, where δ is
the Dirac delta-function, and with the boundary condition that uuuw0 = 000 at the fixed end, the
above equation leads to εxy = γy.

69



Chapter 4

Evaluation for inelastic material response

This chapter discusses the validation of the proposed 3d beam element under inelastic
material response. To this end the results of the model are compared with experimental
measurements of the response of steel shear links under monotonic and cyclic loading and
with the results of solid and shell finite element models. The shear links have wide flange
I-section and tubular box section. The warping constraint of the thin-walled sections gives
rise to an interaction between high shear and torsion, which is investigated in detail in one
example.

4.1 Shear link with tubular box section
The first correlation study refers to the tubular shear link of Berman and Bruneau [13] that
forms part of a one story eccentrically braced frame specimen. Details of the test setup, of
the instrumentation and of the available experimental measurements can be found in the
report by Berman and Bruneau [12]. The shear link length L and specimen geometry are
shown in figure (4.1). The geometry of the tubular box section of the shear link is given
in figure (4.2a). The specimen was designed so that the shear link is subjected to large
inelastic deformations without experiencing local buckling. To this end two stiffeners are
positioned along the shear link length L of 456 mm, as shown in figure (4.3a). The shear
link was subjected to cycles of gradually increasing inelastic deformation by controlling the
horizontal translation of the one story specimen.

Because the shear deformation γ of the link is available from the measurement of the
relative transverse displacement U of the link ends during the experiment, the simulation
model represents only the link, as shown in figure (4.2b). The boundary conditions of the
3d simulation model in figure (4.2b) are such as to allow for the axial deformation of the
shear link, while ensuring that it deforms in the x− y plane in the figure. Furthermore, all
rotations and the warping displacements are restrained at both ends. The assumption of
constrained warping is justified by the presence of stiffeners in figure (4.3a).
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Figure 4.1: Eccentrically braced frame specimen by Berman and Bruneau [12]
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Figure 4.2: Shear link section dimensions and simulation model

The material properties of the structural steel specimen were established by coupon tests,
as reported in [13]. The steel yield strength in the web and flange are 448 MPa and 393 MPa,
respectively. The elastic modulus E is equal to 200 GPa. These properties are used in the
steel material model for the simulations, which is based on classical J2 plasticity. The model
assumes an isotropic hardening modulus of 0.001E and a kinematic hardening modulus of
0.01E, because these values result in good agreement with the observed cyclic behavior of
the steel coupons.

The correlation studies with the experimental results are based on three element types:
(a) beam models for the shear link, (b) shell finite elements for the web and flange of the
shear link, and (c) solid finite elements for the web and flange of the shear link. Some
features of these models are briefly discussed in the following along with the specification of
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(a) Deformed shear-link (b) Crack in shear-link

Figure 4.3: Shear link with tubular box section at failure from [13]

key model parameters.
The first type of model uses a single beam element for the entire link. Two beam models

are compared with the experimental measurements: the shear beam element by Saritas
extended to 3d, as described in section 3.1, and the proposed 3d beam element with warping
degrees of freedom described in chapter 2. The element response is based on numerical
integration with 5 Gauss-Lobatto integration points over the shear link. The section response
is based on numerical integration with the midpoint rule using 12 integration points for each
web, and four integration points across the flange thickness and 6 integration points across
the flange width for a total of 24 integration points for each flange. The warping profile of
the proposed 3d beam element is represented with nw = 12 warping degrees of freedom in
the arrangement of case (e) in figure (2.1).

The second type of model makes use of plane stress shell finite elements for each web and
flange of the shear link. The 4-node shell finite element is based on the formulation with
Mixed Interpolation of Tensorial Components (MITC) by Bathe and Dvorkin [4] and was
implemented in FEDEASLab [28]. A finite element mesh of 8x20 shell finite elements was
used for each web and flange of the tubular box section of the shear link. The aspect ratio
of the shell elements ranged from 1.4 to 2.9.

The third type of model makes use of solid finite elements for each web and flange of the
shear link. The eight-node solid finite element with mixed formulation of program FEAP
[91] was used for the purpose. To reduce the size of the model only half of the shear link
was represented under consideration of symmetry. The finite element mesh consisted of 20
elements across the width of the flange and web and 30 elements across the length of the
specimen. 2 solid elements were used across the thickness of the flange, and only 1 element
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across the thickness of the web. The largest aspect ratio of the 8-node solid elements was
1.3.

The number of elements and degrees of freedom for the modeling alternatives of the shear
link is summarized in table (4.1). The beam formulations make use of six section deformation
variables. These internal variables play an important role in the iterative element state
determination and are, therefore, listed as free local degrees of freedom in table (4.1). Both
beam elements monitor the section deformations at each integration point resulting in thirty
internal variables. In addition, the proposed 3d beam element includes twelve warping
degrees of freedom at each internal section of the element, so that the total number of local
variables in this case is sixty-six. The warping displacements are constrained to zero at the
end sections of the element to simulate the boundary conditions of the shear link.

Shear beam Proposed beam Shell FE model Solid FE model
for half link

No of elements 1 1 640 3840
Global dofs 12 12 672 43524
Local dofs 30 66 - -

Table 4.1: Number of elements and degrees of freedom for different models of shear link

An important aspect of the shear link model concerns the modeling of the intersection
of the web with the flange. In the beam models the intersection is treated as part of the
web when assigning material properties and making assumptions about shear strain or stress
distribution. In the shell model of the shear link the intersection of the flange and web is
represented by a single line of nodes along the shear link axis. The horizontal shell elements
are assigned the material properties of the flange, and the vertical shell elements are assigned
the material properties of the web. In the solid finite element model, the intersection of the
web and flange is assigned the properties of the web material. It turns out that the modeling
of the web-flange intersection has very little influence on the response of the shell and solid
finite element models. By contrast, the assumptions of material properties and shear strain
or stress distribution are of some significance for the response of beam elements.

None of the models represents the intermediate stiffeners along the shear link. These
ensure that the cross section retains its shape without deforming in its plane, an important
kinematic assumption for the beam models. Furthermore, the stiffeners delay the occurrence
of local buckling, which is not accounted for in any model.

The models were subjected to the displacement history of the specimen with the same
time step increment. Figure (4.4) shows the hysteretic relation between shear force and
resulting shear link deformation γ for the first three loading cycles. The analytical results
refer to the shear beam model, the proposed beam model and the shell finite element model.
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The latter failed to converge under the selected time step increment after two and a half
cycles. The agreement of the analytical results of the proposed beam element and of the
shell finite element model with the experimental measurements is very good. The results
of the shear beam element slightly overestimate the shear link strength. These results are
corroborated in figure (4.5), which shows the force-deformation relation of the shear link
before the first deformation reversal. The response of the proposed beam element agrees
very well with the response of the shell finite element model. The solid finite element model
displays a slightly higher stiffness than these two models before the formation of the yield
mechanism, but agrees very well with the yield strength and post-yield response of these two
models. Finally, the shear beam model agrees well with the solid finite element model before
the formation of the yield mechanism, but overestimates the shear link strength relative to
the other three models by 8-10%. The strength overestimation is due to the assumption that
the shear stress profile of the web extends over the entire depth of the tubular box-section.
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Figure 4.4: Shear force vs. deformation γ of shear link with tubular box section

In order to study the response sensitivity of the shear link to the assumption of the end
warping constraint the analysis with the proposed beam element was repeated for the case
that the end sections are free to warp. For this case the yield strength of the model was 3%
smaller than for the case with restrained warping.

For the study of the stress profiles at different sections of the shear link, four load points
of the shear link response in figure (4.4) are selected. The load points (LP) are labeled A,
B, C and D. The shear deformation at each load point is the same between the models, but
the corresponding shear force varies from model to model, as shown in table (4.2). The load
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Figure 4.5: Shear force vs. deformation γ of shear link before first reversal

points correspond to different stages of the shear link response: load point A corresponds to
the initial elastic response, load point B corresponds to the first inelastic excursion past the
yield strength, point C corresponds to the inelastic excursion after the first load reversal,
and point D corresponds to the elastic unloading after the third inelastic excursion (third
half cycle).

LP γ (10−2) Beam Shear beam Shell FE model Solid FE model

A 0.30 301 338 311 317
B 0.90 558 605 570 574
C -1.12 -577 -632 -590 -
D 4.48 -412 -482 -444 -

Table 4.2: Shear force of models at specific load points (LP) of shear link response

The stress profiles are studied at the end section of the shear link at x = 0, which is
fixed against rotation in the plane of the model with warping displacements restrained. The
stress profiles are also studied at the midspan section of the link at x = L/2. At this section
the normal stresses σxx are zero by symmetry considerations.

Figures 4.6 through 4.9 show the shear stress profile σxy in the web and the shear stress
profile σxz in the lower flange first for the midspan section in (a) and (b), and then for the
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fixed end section in (c) and (d). Finally, the figures show the axial stress profile in the web
and lower flange in (e) and (f). The stress values are determined at the section integration
points and are averaged over the thickness of the web or flange. Figures 4.6 and 4.7 for
load points A and B, respectively, also include the stress profiles for the solid finite element
model, which are not available for load points C and D in figures 4.8 and 4.9, respectively.
For the comparison of the stress profiles it is important to note that the shear force of the
shear beam model is consistently 6-7% higher than the corresponding value for the shell finite
element model, and that the shear force of the proposed 3d beam element is consistently 2-
3% lower than that of the shell model except for load point D where it is 8% lower. It is also
important to note the difference between 3d beam model and shell model in the modeling
of the zone between flange and web, evident in the marker location for the shear and axial
stress profiles in figures 4.6-4.9 (b) and (f). The outermost marker of the profiles for the 3d
beam model at z = ±56.6 corresponds to the outermost of six integration points across the
clear flange width of 152 − 2 × 8 = 136. The outermost marker of the profiles for the shell
FE model corresponds to the outermost of 24 integration points across the flange width of
152− 8 = 144 to the centerline of the web.

The stress profiles in Figures 4.6 through 4.9 permit the following observations:
1. The shear stress and axial stress profiles for load point A in the linear elastic range are

shown in figure (4.6). The shear stress profile at midspan is parabolic over the web and
linear over the flange width in figures (4.6a-4.6b). The assumed shear stress profile of
the shear beam model over the web agrees well with that of the shell model in (4.6a).
The shear beam model, however, does not account for the shear stress profile over the
flange width and the stress σxz is zero in figure (4.6b). This is the limitation of beam
elements with a fixed shear stress profile not accounting for the shear flow between
flange and web. The response of the proposed beam element follows the trend of the
shell model: the parabolic distribution in the web is slightly different from the shell
model distribution in figure (4.6a) due to the transition of the shear stresses across
the web-flange intersection. Noting that the web thickness is half the thickness of
the flange, the nodal force equilibrium in the shell FE model results in a discontinuous
shear stress at the transition from the web to the flange. In the proposed beam element
the change of thickness in the transition from the web to the flange is accounted for in
the evaluation of the section response and the shear stress remains continuous at the
transition from the web to the flange.
At the fixed end of the shear link the shear beam element gives the same shear stress
profile in the web and flange as for the midspan section in figures (4.6c) and (4.6d),
since the shear force is constant. By contrast, the proposed 3d beam element gives
a constant shear stress profile in the web in excellent agreement with the shell finite
element model in figure (4.6c), noting the slightly higher shear force value for the latter
in table (4.2). This profile also agrees well with the solid finite element model except
in the vicinity of the flange, where the solid model shows a sudden reduction in the
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shear stress due to the shear flow transition that is not present in the proposed model
and in the shell finite element model. The shear stresses in the lower flange are zero
in figure (4.6d) for the proposed 3d beam element in good agreement with the results
of the solid FE model, whereas the shell model shows a small shear stress near the tip
of the flange.

The axial stress profile at the fixed end of the shear link is shown in figures (4.6e) and
(4.6f). The stress profile of the shear beam follows the assumption of plane sections
and is linear in the web and constant across the width of the flange. The proposed
3d beam element accounts for the nonlinear stress profile over the depth of the web
and across the flange width due to the warping constraint. The axial stress profile of
the proposed beam element agrees very well with the profiles of the shell and solid FE
models with the maximum and minimum stress values in excellent agreement. The
highest axial stress arises at the intersection of web and flange in figure (4.6f). This
value is on the order of 40% larger than the axial stress of the shear beam element at
the same location.

2. The shear stress and axial stress profiles for load point B in the inelastic range are
shown in figure (4.7). At the midspan section the web reaches the yield strength of
σy/
√

3 = 260 MPa over its entire depth in figure (4.7a). The web shear stress profile of
the proposed 3d beam element agrees well with the shell model and the assumed shear
stress profile of the shear beam. The shear stress profile in the flange is linear in figure
(4.7b) for the proposed 3d beam element and the shell model with good agreement of
extreme values between them.

At the fixed end section, the web shear stress profile in figure (4.7c) differs from that
at the midspan section, because of the presence of axial stresses. The profiles of the
proposed 3d beam element and the shell model show very good agreement. By contrast,
the fixed shear stress profile of the shear beam model disagrees with the other models
in the zone of the web near the flange, where the axial stress is significant. The shear
stresses in the lower flange are zero in figure (4.7d) for the proposed 3d beam element
in good agreement with the results of the solid FE model, whereas the shell model
shows a small shear stress near the tip of the flange.

The axial stress profile in the web and lower flange is shown in figures (4.7e) and (4.7f),
respectively. The profile of the proposed 3d beam element captures very well the highly
nonlinear distribution over the depth of the web matching almost perfectly the profile
of the shell and solid FE model in figure (4.7e). By contrast, the shear beam element
produces a linear axial stress profile, because of its assumption that sections remain
plane after deformation. The axial stress profile of the proposed 3d beam element
over the flange captures relatively well the shear lag effect under inelastic response
and agrees reasonably well with the shape of the distribution of the shell and solid
FE model, but does not match as well the minimum value at mid-distance between
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the webs (z = 0) in figure (4.7f). The axial stress of the shear beam model at the
intersection of the web and flange is not the same in figures (4.7e) and (4.7f), because
the presence of high shear stresses in the web limits the axial stress value at yield. By
contrast, the shear stress is zero in the flange and the axial stress is much higher as a
result. The other three models show a smooth transition of the axial stress value from
the flange to the web in figures (4.7e) and (4.7f).

3. The shear stress and axial stress profiles for load point C in the inelastic range after the
first load reversal are shown in figure (4.8). The shear stress profiles at the midspan
section in figures (4.8a) and (4.8b) look similar to those for load point B except for
the sign of the stresses. The same is true for the shear stress profiles at the fixed end
section in figures (4.8c) and (4.8d).

The axial stress profiles at the fixed end section are shown in figures (4.8e) and (4.8f).
The axial stress profile of the shell model in figure (4.8e) shows that the stress is zero
over most of the depth, but rises rapidly near the flange. The Lagrange polynomials
for the stress profile of the proposed 3d beam element are unable to follow the abrupt
change of the profile and produce an oscillatory distribution, while matching the ex-
treme values of the shell model very well. As is the case in load points A and B, the
linear axial stress distribution of the shear beam model in the web is not affected by
the presence of high shear stresses. The axial stress profile of the shell model in the
flange is shown in figure (4.8f). It shows a marked shear lag effect, which the proposed
3d beam element is not able to capture in this case.

4. The shear stress and axial stress profiles for load point D in the elastic unloading branch
after the third inelastic excursion are shown in figure (4.9). The observations about the
different models are similar to those made for the other load points. The agreement of
the axial stress profiles for the proposed 3d beam element and the shell model is very
satisfactory in figures (4.9e) and (4.9f). The highly nonlinear axial stress distribution
and the pronounced shear lag effect is captured very well by these models. Excellent
agreement between these models can also be observed for the web shear stress profile
in figure (4.9c), particularly when accounting for the difference in total shear in table
(4.2).

In conclusion, the study of the local response of the shear link with tubular box section
under cyclic deformation reversals demonstrates the ability of the proposed 3d beam element
to match well the shear and axial stress profiles of the shell model in the web and flange of
the cross-section, with a computational cost that is at least an order of magnitude lower.
The proposed 3d beam element provides much more accurate information about the local
stress response than the shear beam model with fixed shear stress profile.
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(a) Shear stress in web at midspan
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(b) Shear stress in lower flange at midspan
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(c) Shear stress in web of fixed end
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(d) Shear stress in lower flange of fixed end
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(e) Axial stress in web of fixed end
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(f) Axial stress in lower flange of fixed end

Figure 4.6: Stress profiles of shear link with tubular box section at LP A
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(a) Shear stress in web at midspan
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(b) Shear stress in lower flange at midspan
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(c) Shear stress in web of fixed end
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(d) Shear stress in lower flange of fixed end
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(e) Axial stress in web of fixed end
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(f) Axial stress in lower flange of fixed end

Figure 4.7: Stress profiles of shear link with tubular box section at LP B
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(a) Shear stress in web at midspan
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(b) Shear stress in lower flange at midspan
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(c) Shear stress in web of fixed end
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(d) Shear stress in lower flange of fixed end
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(e) Axial stress in web of fixed end
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(f) Axial stress in lower flange of fixed end

Figure 4.8: Stress profiles of shear link with tubular box section at LP C
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(a) Shear stress in web at midspan
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(b) Shear stress in lower flange at midspan
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(c) Shear stress in web of fixed end
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(d) Shear stress in lower flange of fixed end
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(e) Axial stress in web of fixed end
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(f) Axial stress in lower flange of fixed end

Figure 4.9: Stress profiles of shear link with tubular box section at LP D
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A limitation of the proposed 3d beam element lies in the representation of the shear lag
effect under large inelastic deformation. The axial stress profile is qualitatively correct in
figure (4.7f) but the axial stress variation is underestimated by about 35%. The discrepancy
of the axial stress profile in the lower flange between proposed 3d beam element and shell
model is very pronounced in figure (4.8f). It is encouraging that the discrepancy reduces
upon repetition of the inelastic deformation in figure (4.9f) with good agreement between the
proposed element and the shell model. The cause of the discrepancy of the axial stress profile
in the flanges at particular load points is not well understood and requires further study. In
general, the good agreement in the stress profiles between the proposed element on the one
hand and the shell and solid FE model on the other confirms the validity of the assumptions
of the proposed element regarding section kinematics and plane stress conditions in the web
and flanges.

The experimental study reports that failure of the shear link was observed at the end of
the fifth cycle by bottom flange fracture, as can be seen in figure (4.3b). The authors of the
study attribute the fracture to the plastic strain accumulation and the constraints from the
presence of stiffeners as well as the altering of material behavior by welding. Consequently,
the accurate representation of the local strain and stress concentration by the proposed beam
element is an encouraging sign that it will be able to predict the ultimate deformation and
the failure mode after appropriate enhancement of the material model to account for low
cycle fatigue and for material changes due to welding.

4.2 Shear link with I-section
The second correlation study concerns a shear link with I cross-section. The shear link was
used in the experimental studies for eccentrically braced frames by Hjelmstad and Popov [42]
and was tested under large, inelastic shear deformation reversals. Following the correlation
with the available experimental measurements, the shear link is the subject of an analytical
correlation study under shear and torsion with inelastic material response.
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Figure 4.10: Geometry of I-section for shear link of Hjelmstad and Popov [42]
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The experimental specimen consists of the shear link only with one end fixed and the
other free to displace transversely to the axis, so as to impose the shear deformation, similar
to figure (4.3a). The length of the specimen is L = 28 in. The geometry of the cross section
with its dimensions is given in figure (4.10). The simulation model for the shear link is
identical with the model for the link with tubular box section in figure (4.2b). The rotations
in the plane of the model are constrained at both ends. The twist about the specimen axis
is constrained at one end and is free at the other. Warping is constrained at both ends in
accordance with the statement of the experimental study in [42] that warping of the specimen
was completely restrained at the ends with the flanges welded to thick plates. The authors
of the experimental study state that the warping restraint was not expected to affect the
global response of the shear link.

The structural steel material is described with the J2 plasticity model with generalized
plasticity by Auricchio and Taylor [2] allowing for the smooth transition between the elastic
and the plastic range. The Young modulus E of the material in the web and flange was
set equal to 28300 ksi and 28000 ksi, respectively. The yield strength of the material in
the web was set equal to 39.5 ksi and the ultimate strength to 60.1 ksi. The corresponding
values for the material in the flanges were 35 ksi for the yield strength and 58.5 ksi for the
ultimate strength. The isotropic and kinematic hardening moduli are Hi = 0.0002E and
Hk = 0.004E, respectively. Values for the other parameters of the generalized J2 plasticity
model are given by Saritas in [82], who conducted a correlation study of his shear beam
model with the experimental results.
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(a) Cyclic response
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(b) First cycle

Figure 4.11: Shear force-displacement of shear-link with I-section
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(a) Shear stress in web at midspan
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(b) Shear stress in lower flange at midspan
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(c) Shear stress in web of fixed end
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(d) Shear stress in lower flange of fixed end
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(e) Axial stress in web of fixed end
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(f) Axial stress in lower flange of fixed end

Figure 4.12: Stress profiles of shear link with I-section under displacement of 0.12 in
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The loading regimen of the simulation model under shear matches the loading history of
the specimen, which consisted of several cycles of ever increasing shear deformation. The
experimental results are compared with three analytical models: the 2d shear beam element
by Saritas [82], the proposed 3d beam element, and a shell FE model.

The simulation model consisted of a single shear beam element for the shear link with
5 Gauss-Lobatto integration points along the axis and a fiber section model with 10 layers
for the web and 3 layers for the flange. The simulation model of the proposed 3d beam
also used a single element for the shear link with 3 or 5 Gauss-Lobatto integration points
along the axis, resulting in second or fourth degree polynomials for the warping distribution
functions χ along the shear link axis, respectively. The fiber model of the cross section used
10 integration points over the height of the web, 3 over the flange thickness and 4 across the
flange width for a total of 12 points in the flange and 34 integration points for the section.
The number of warping degrees of freedom for the I-section is nw = 12 in the arrangement
of figure (2.1c). Finally, the shell model used the MITC shell element [4] in FEDEASLab
[28] with a mesh of 8x20 plane stress MITC shell elements for the web and each flange.

Figure (4.11a) compares the complete shear force-displacement history of the specimen
with the results of the shear beam model and those of the proposed 3d beam element. Figure
(4.11b) shows the shear-force displacement response for the first cycle. These figures lead to
the conclusion that the global response of the shear beam model and the proposed 3d beam
element is practically the same. Excellent agreement of these two models with the results of
the shell FE model is observed in figure (4.11b). A separate analysis of the proposed 3d beam
element without any warping constraint at the end sections of the shear link specimen showed
negligible difference with the results of the model with warping constraints, confirming the
assumptions of the experimental study.

Figure (4.12) shows the axial stress and shear stress profiles at different sections of the
shear link under a transverse displacement of U = 0.12 in. According to the response
in figure (4.11b), this transverse displacement corresponds to the early stage of inelastic
deformation of the shear link, slightly past the yield strength. The corresponding shear force
for the proposed 3d beam element model is 118 kips, which is the same as the shear force
of the shell FE model. The corresponding shear force of the shear beam model is 115 kips.
The sections selected for the axial and shear stress profiles are: the end section fixed again
rotation and with constrained warping, the midspan section with rotation and warping free
on account of symmetry, and an intermediate section at 0.175L from the end.

The web shear stress profile at these sections in figures (4.12a), (4.12c) and (4.13a) is
relatively consistent for the three models, with a slight discrepancy of the profile of the shell
FE model at the fixed end section. The agreement is due to the fact that shear yielding
is still local and has not spread over a large portion of the web. In this case the assumed
parabolic shear stress profile of the shear beam model agrees well with the shear stress profile
that satisfies longitudinal force equilibrium in the proposed 3d beam element and in the shell
finite element model.

As for the preceding example, the shear stress profile in the lower flange is zero for the
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(a) Shear stress in web
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(b) Shear stress in lower flange
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(c) Axial stress in web
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(d) Axial stress in lower flange

Figure 4.13: Stress profiles of shear link section at 0.175L under displacement of 0.12 in

shear beam element in in figures (4.13b), (4.12d) and(4.12b), while the profile agrees very
well among the other two models at the sections without warping constraint. At the fixed
end section with warping constraint the proposed 3d beam model gives zero shear stress,
consistent with its assumptions, while the shell FE model shows an almost linear shear stress
profile in figure (4.12d).

The axial stress profile in the web and lower flange at the fixed end section and at
the intermediate section are shown in figures (4.12e-f) and (4.13c-d), respectively. Without
warping constraint the axial stresses at the midspan section are zero and are, therefore, not
shown. Similarly to the preceding example, the warping constraint at the end section gives
rise to a nonlinear axial stress profile in the web and flange, which also affects the section at
0.175L. The proposed 3d beam element captures well this behavior in excellent agreement
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with the results of the shell FE model at the intermediate section, and good agreement
with the latter results at the fixed end section. The proposed 3d beam element captures
well the shear lag effect at both sections. The axial stress profile in the lower flange of the
fixed end section in figure (4.12f) shows that better results are obtained when the number
of interpolation points for the warping displacement distribution along the shear link axis
increases from 3 to 5. The figures confirm again the inability of the shear beam model to
represent the shear lag effect because of its assumption that plane sections remain plane
after deformation.

In conclusion, the local response of the shear link specimen is represented much better
by the proposed 3d beam element than by the shear beam model, even though this fact has
little effect on the global shear force-deformation response of the shear link. The axial and
shear stress profiles of the proposed 3d beam model agree very well with the results of the
shell FE model, which is at least one order of magnitude more computationally expensive.

The shear link is now subjected to a monotonic shear force with an eccentricity of ez = 2 in
relative to the y-axis of the cross section in figure (4.3a), so as to test the ability of the
proposed 3d beam element to represent the coupled response under shear and torsion for
inelastic material behavior. The point of application of the eccentric shear force falls within
the flange. The material properties are the same as for the preceding study of the shear
link under shear. The study compares the results of four models: a shear beam model, a
shear beam model with a single warping mode (SW beam), the proposed 3d beam element,
and a shell FE element model. The warping mode of the shear beam model is based on the
warping displacement profile of the linear elastic solution.

(a) Modeling S1 nw = 12 (b) Modeling S2 nw = 28

Figure 4.14: Schemes for interpolation grid of warping profile for I-section

In the interest of using a finer mesh along the shear link axis for better representation of
the warping effects that are expected to spread farther into the beam from the ends, while
at the same time saving time for the calculations, only half of the shear link is represented
in the analytical model. A single shear beam element is used for the shear link, since further
refinement does not bring any benefit. Four SW beam elements are used in the model
for better representation of the nonlinear twist angle distribution along the shear link axis.
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By contrast, the model with the proposed 3d beam uses a single element, since this can
accommodate the nonlinear warping distribution with higher order interpolation functions
for χ(x). Two schemes for the warping degrees of freedom are explored with this model, as
shown in figure (4.14). The schemes are the same as those in figure (2.1), but are redrawn
in figure (4.14) convenience’s sake. In the first scheme S1, the warping dofs are placed along
the centerline of web and flanges resulting in nw =12 warping degrees of freedom for each
section in figure (4.14a). In the second scheme S2, two warping degrees of freedom are placed
across the thickness of the web and flanges to capture the warping of each component about
its long long axis resulting in nw = 28 warping degrees of freedom for each section, as shown
in figure (4.14b). Five Gauss-Lobatto integration points are used over each element axis.
Finally, the shell model uses the MITC shell element [4] in FEDEASLab [28] with a mesh of
10x38 plane stress MITC elements for the web and each flange.
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(a) Shear force-displacement relation
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(b) Torque-twist angle relation

Figure 4.15: Response of shear link with I-section under eccentric shear force

Figures (4.15a) and (4.15b) show the shear force-displacement relation and the torque-
twist angle relation of the shear link, respectively. The initial stiffness of the shear force-
displacement relation in figure (4.15a) is the same for all models. The inelastic portion of
the shear force-displacement relation shows that the shear beam overestimates the strength
of the shear link, since it is not able to represent the influence of torsion on the inelastic
shear response with the assumption that torsion is uncoupled from shear and remains linear
elastic, as can be seen in figure (4.15b). Consequently, the shear force-displacement relation
of the shear beam model is the same as for the preceding study of the shear link without
torsion. On the other hand, the SW beam model slightly underestimates the strength of
the shear link. The response of the proposed 3d beam element with both schemes S1 and
S2 agrees very well with the response of the shell FE model. Similar excellent agreement
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between the results of the proposed 3d beam element with either scheme S1 or scheme S2
and those of the shell FE model can be observed in the inelastic torque-twist angle relation in
figure (4.15b). In this case the SW beam model slightly overestimates the torsional strength
of the shear link.
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Figure 4.16: Twist angle distribution for half of shear link with I-section

The warping constraint at the ends of the link plays a very important role in its response.
The simulation with free warping at the end sections gives a 100-fold reduction of the tor-
sional stiffness of the shear link and a 3-fold reduction of shear strength to approximately
30 kips, as compared with the shear strength of approximately 90 kips in figure (4.15a).

The axial and shear stress profiles of the shear link at different sections are studied for
the load point corresponding to a shear force of 96 kips with the corresponding torque equal
to 192 kips-in. The transverse displacement and the angle of twist of the shear link under
this loading are reported in table (4.3) for the different models.

Beam S1 Beam S2 SW beam Shear beam Shell model

Trans. displacement (in) 0.0682 0.0657 0.0784 0.0567 0.0647
Twist angle (rad) 0.0194 0.0189 0.0140 0.0010 0.0165

Table 4.3: Transverse displacement and twist angle under eccentric shear force of 96 kips

Figure (4.16) shows the twist angle variation over half of the shear link. The proposed 3d
beam element overestimates the value of the shell FE model at midspan by approximately
15% irrespective of the number of warping degrees of freedom. The SWmodel underestimates
the twist angle value of the shell FE model at midspan also by approximately 15%. It is
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clear from the figure that the warping constraint at the fixed end leads to the derivative
of the twist angle having zero value at x = 0 for the shell model. The SW beam model
represents well this effect, because its formulation includes the derivative of the twist angle
and can impose boundary conditions for it. By contrast, the proposed 3d beam element
does not include the twist angle derivative in the formulation and this fact affects the twist
angle distribution and its value at midspan. It is important to recall, however, that the SW
model uses 4 elements along the axis of the shear link, while the proposed 3d beam model
uses only one. The twist angle distribution in the middle quarter span segment of the shear
link becomes almost linear. In this region the proposed 3d beam element agrees much better
with the twist rate of the shell FE model than the SW beam.
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Figure 4.17: Warping displacement profile at midspan section of shear link with I-section

Figure (4.17) shows the warping displacement profile at the midspan section of the shear
link. The profiles of the proposed 3d beam element and of the shell FE model agree very
well. The profile for warping degree of freedom arrangement S2 in figure (4.14b), which
accounts for warping about the centerline of the web and flanges does not affect the profile
appreciably. The warping displacements of the three models are practically linear in the
flange implying that the shear-lag effect is negligible for the I-section, because most of the
warping is caused by torsion.

The axial and shear stress profiles of the I-section at the fixed end and at the quarter
span section are shown in figures (4.18) and (4.19), respectively. Figures (4.18a) and (4.19a)
show the shear stress profile in the web of the shear link at the fixed end and at the quarter
span section, respectively. The profiles of all models with the exception of the proposed
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(a) Shear stress in web
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(b) Shear stress in lower flange
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(c) Axial stress in web
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(d) Axial stress in lower flange

Figure 4.18: Stress profiles at fixed end of shear link under eccentric shear of 96 kips

beam with the S2 arrangement of the warping degrees of freedom agree well at the fixed
end. The latter shows significantly smaller shear stress values because of the contribution
of the shear stress σxy in the flange. With two warping degrees of freedom across the flange
thickness the proposed formulation is the only model that can capture accurately the shear
stress contribution of the flange. This can have significant influence on the response of a
section with thick flanges. The shear stress profile in the lower flange of the shear link for
the proposed 3d beam element agrees very well with the profile of the shell FE model at
the quarter span section, but much less so at the fixed end. The latter observation justifies
further study for the proposed model. The shear stress σxz is zero at both sections for the
SW beam model and is constant for the shear beam model in stark contrast to the stress
profiles of the shell FE model.
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(a) Shear stress in web
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(b) Shear stress in lower flange
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(c) Axial stress in web
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(d) Axial stress in lower flange

Figure 4.19: Stress profiles at quarter span of shear link under eccentric shear of 96 kips

Figures (4.18c) and (4.19c) show the axial stress profile of the shear link at the fixed
end section and at the quarter span section. The higher stress value at the intersection of
web and lower flange is captured very well by the proposed 3d beam in excellent agreement
with the shell finite element model. The same is true for the stress profile of the web and
flange. By contrast, the linear stress profile of the web for the shear beam and the SW beam
underestimates the extreme values by 50% and 30%, respectively. Moreover, the shear beam
fails to capture the nonlinear axial stress profile in the lower flange, which is represented very
well by the proposed 3d beam element and by the SW shear beam in excellent agreement
with the profile of the shell FE model. The nonlinear distribution of the axial stress in the
lower flange is due to extensive yielding in tension and limited yielding in compression across
the width of the flange at the fixed end, as shown in figure (4.18c). By contrast, figure (4.19c)
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shows that the axial stress in the lower flange of the midspan section is linear, because of
the linear warping displacement of the shear link caused by torsion.

The preceding analyses of a shear link under shear and torsion show that the proposed 3d
beam element produces a global and local response that is in much better agreement with the
results of a refined shell FE model than either a shear beam element with uncoupled linear
elastic torsional response or a shear beam element with a single warping mode with a profile
based on the linear elastic solution. Because the flanges of the selected section are relatively
thin, the simpler arrangement S1 of warping degrees of freedom along the centerline of the
web and flanges gives results of very good accuracy, so that the additional computational
cost of the S2 arrangement is not justified for this type of section.
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Chapter 5

Corotational formulation

The corotational formulation of nonlinear kinematics for 3d beams under large displace-
ments posits that the response of the 3d beam element can be decomposed into the response
relative to a rigid reference frame that follows the element as it deforms, and the rigid body
motion of the reference frame. This approach permits the uncoupling of the element formu-
lation relative to the rigid reference frame from the description of the rigid body motion of
the reference frame under large displacements. The formulation of the proposed 3d beam
element in chapter 2 covers the first aspect of this general approach. This chapter deals
with the second. The following discussion is founded on the work of Nour-Omid and Rankin
[65] and Battini and Pacoste [8], but offers new insights into the relation of the corotational
approach with the nonlinear geometry of the continuum rod and identifies a limitation of
the corotational approach in connection with large torsional deformations.

The following presentation starts from the kinematics of the continuous rod. After stating
the assumptions for the local kinematic variables and discussing the transformation of these
variables from the global to the local frame, it relates these to the kinematic variables of
the corotational formulation with special attention to the presence of large axial, shear and
torsional deformations. This approach reveals a limitation of the corotational formulation in
correctly representing the interaction between axial force and torque. The chapter concludes
with several examples.

5.1 Kinematics of continuous rod
The starting point for the following discussion is the model of the continuous Cosserat
rod, as described by Reissner [79] and Simo and Vu-Quoc [87]. In this model the beam is
represented by its axis, as the line connecting the section centroids, and the geometric and
material properties of the cross-sections along this axis. For the following discussion the
beam is assumed to be straight in the reference configuration. Additional assumptions will
be introduced in the course of the derivations.

95



The line of centroids is described by a material arc-length parameter denoted with s.
Initially, the kinematic variables are defined relative to the global orthonormal reference
frame EEE = {EEE1,EEE2,EEE3}. A moving frame TTT = {ttt1, ttt2, ttt3} is attached to each cross section
with its origin at the section centroid. The axis ttt1 is normal to the plane of the section,
and the axes ttt2 and ttt3 are orthogonal but arbitrarily oriented. The position of a material
point of the cross-section is uniquely defined by parameters s,X2, X3, where X2, X3 are the
coordinates relative to axes ttt2 and ttt3, respectively. With the superscript 0 denoting the
initial position of the corresponding function or variable the initial position xxx0

m of a material
point m and the final position xxxm can be described by

xxx0
m = φφφ0

m(s,X2, X3) = φφφ0
c(s) +X2 ttt

0
2(s) +X3 ttt

0
3(s) (5.1a)

xxxm = φφφm(s,X2, X3) = φφφc(s) +X2 ttt2(s) +X3 ttt3(s) + ζ(s)ω(X2, X3) ttt1(s) (5.1b)

where φφφ0
c(s) and φφφc(s) are the initial and current position vectors of the section centroid,

respectively. The function ω(X2, X3) represents the warping profile of the cross-section while
ζ(s) represents the warping amplitude, which is equal to the twist rate of the beam according
to the Saint-Venant torsion theory.

EEE1

EEE2

EEE3

φφφ φφφc

s
ttt1

ttt2

ttt3

Figure 5.1: Kinematics of material point of beam element

The initial and current position of the material point m are related by the displacement
vector dddm in the global reference frame.

dddm = xxxm − xxx0
m (5.2)

Without loss of generality the following discussion assumes that a single warping mode
represents the warping profile of the section. The extension to the more general description
of warping in the proposed model is straightforward.
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Following Simo and Vu-Quoc [87] the motion of the Cosserat rod is described by the
translations of the centroid and the rotation of the cross-section. The deformation gradient
F at a point m of the cross-section is

F = TTT
{
III3 + ζEEE1 ⊗∇ω +

[
ΓΓΓ +KKK × TTT T (φφφm − φφφc) + (ζω)′EEE1

]
⊗EEE1

}
TTT

0T (5.3)

where ⊗ denotes the tensorial product, and (.)′ refers to the derivative with respect to the
arc-length s. The deformation of the cross-section consists of the material axial strain vector
ΓΓΓ and the material shear strain vector KKK, which are defined according to

ΓΓΓ = TTT T (φφφ′c − ttt1) (5.4a)
KKK = axial(TTT TTTT ′) (5.4b)

where the axial vector of the matrix TTT TTTT ′ is defined in [87].

5.2 Finite rotation parametrization
An important aspect of nonlinear rod kinematics is the treatment of finite rotations in
three dimensions. The three alternatives for the finite rotation parametrization are briefly
described below. A more complete review of the parametrization choices is given by Ibrahim-
begovic [43].

The rotation R is an orthogonal tensor belonging to the SO(3) rotation group. The
corresponding 3x3 rotation matrix RRR operates on a vector or triad according to

TTT = RRRTTT
0

(5.5)

where TTT 0 is the initial orthogonal triad that is transformed to the current orthogonal triad
TTT by the spatial rotation RRR. The orthogonal property of matrix RRR implies that it can
be represented by three independent parameters. One alternative for these parameters is
the rotation vector ϑϑϑ. With it the rotation matrix RRR can be expressed by means of the
exponential function

RRR = exp [Sp(ϑϑϑ)] = III3 +
sin(ϑ)

ϑ
Sp(ϑϑϑ) +

1− cos(ϑ)

ϑ2
Sp(ϑϑϑ)2 (5.6)

where III3 is the 3x3 identity matrix and ϑ is the magnitude of the rotation vector so that
it can be written as ϑϑϑ = ϑttt with ttt a unit vector. Sp(ϑϑϑ) represents the spin of the rotation
vector ϑϑϑ defined as

Sp(ϑϑϑ) = ϑϑϑ× =

 0 −ϑ3 ϑ2

ϑ3 0 −ϑ1

−ϑ2 ϑ1 0

 (5.7)
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The vector ϑϑϑ is called the axial vector of the spin matrix Sp(ϑϑϑ) with the definition

ϑϑϑ = axial [Sp(ϑϑϑ)]

For small rotations, the expression for the rotation matrix RRR in equation (5.6) reduces to

RRR = III3 + Sp(ϑϑϑ) (5.8)

where the components of the rotation vector ϑϑϑ are the rotations with respect to the axes
ttt1, ttt2, and ttt3. This simplification will be used later for the rotations relative to the element
frame.

The parametrization of the rotation matrix RRR according to equation (5.6) is computa-
tionally onerous, because it requires the evaluation of trigonometric functions. Moreover,
equation (5.6) cannot be easily used to determine the rotation vector ϑϑϑ that corresponds to
a rotation matrix RRR. A more suitable representation involves the use of quaternions, which
are defined according to

quatquatquat =

(
sin(ϑ/2) ttt
cos(ϑ/2)

)
=

(
ϑϑϑq
ϑq0

)
(5.9)

The rotation matrix can then be expressed in terms of quaternions with

RRR(ϑϑϑq) = (ϑ2
q0 − ϑϑϑTq ϑϑϑq)III3 + 2ϑϑϑqϑϑϑ

T
q + 2ϑq0 Sp(ϑϑϑq) = III3 + 2ϑq0 Sp(ϑϑϑq) + 2Sp(ϑϑϑq)

2 (5.10)

Operations on quaternion vectors are governed by special algebra rules with compact notation
and ease of implementation. One drawback of the quaternion representation is the need for
an additional parameter for the unique definition of the rotation. This drawback can be
overcome with the procedure by Battini [5] which restricts the quaternion parametrization
to rotations in the range [−π, π]. In this case the fourth component of the quaternion is not
independent but can be uniquely determined from

ϑq0 =
√

1− ϑϑϑTq ϑϑϑq

In conclusion, the rotation of a triad can be expressed either with a rotation matrix RRR, or
with the corresponding rotation vector ϑϑϑ, or with the corresponding quaternion vector ϑϑϑq.
The implementation challenge of large rotations in computer analysis lies in the conversion
from one parametrization alternative to another, as will be discussed later.

Next, the variation of the rotation matrix is derived, because it is required for the consis-
tent linearization of the governing nonlinear equations. To this end it is important to note
that the rotations belong to the SO(3) group. Thus, whereas the displacements are additive,
the update of the rotation matrix RRR under an infinitesimal rotation is

RRRε = RRR(εδθθθ)RRR (5.11)
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where RRRε is the updated rotation matrix, and δθθθ is known as the spatial angular variation
representing the infinitesimal rotation that is superimposed on the rotation matrix RRR for the
update. With this definition the variation of the rotation matrix becomes

δRRR =
dRRRε

dε

∣∣∣∣
ε=0

= lim
ε→0

RRR(εδθθθ)RRR−RRR
ε

= lim
ε→0

exp [εSp(δθθθ)]RRR−RRR
ε

= Sp(δθθθ)RRR (5.12)

Equation (5.12) can also be derived without resort to the definition of rotation update in
equation (5.11) by making use of the orthogonality of the rotation matrix RRR. The variation
of RRRRRRT according to

RRRRRRT = III3 ⇒ δ(RRRRRRT ) = 0 ⇒ δ(RRR)RRRT = −RRRδ(RRRT )

leads to the conclusion that the product δ(RRR)RRRT is a skew-symmetric matrix. Consequently,
there exists a unique vector δθθθ such that δ(RRR)RRRT = Sp(δθθθ), so that

δRRR = Sp(δθθθ)RRR (5.13)

after post-multiplying both sides withRRR. According to equation (5.12) or equation (5.13) the
variation of the rotation matrix δRRR is proportional to the spatial angular variation δθθθ. This
vector, therefore, plays an important role in incremental analysis for updating the rotation
matrix RRRi to the rotation matrix RRRi+1 according to

RRRi+1 = RRR(δθθθ)RRRi (5.14)

where ϑϑϑi and ϑϑϑi+1 denote the rotation vectors associated with the rotation matrices RRRi and
RRRi+1, respectively

RRRi = RRR(ϑϑϑi) RRRi+1 = RRR(ϑϑϑi+1)

Because of the multiplicative update for rotations, the addition of the vector δθθθ to ϑϑϑi does
not give ϑϑϑi+1, i.e ϑϑϑi+1 6= ϑϑϑi + δθθθ. To solve this problem for the implementation of rotation
updates in incremental analysis, Battini and Pacoste [8] proposed the conversion of the
spatial angular variation δθθθ to a vector δϑϑϑ, such that the vector ϑϑϑi + δϑϑϑ corresponds to
the updated rotation matrix RRRi+1. Unfortunately, the relation between δθθθ and δϑϑϑ is quite
complex

δθθθ = hθ(ϑϑϑ)δϑϑϑ (5.15)

where

hθ(ϑϑϑ) =
sin(ϑ)

ϑ
III3 +

(
1− sin(ϑ)

ϑ

)
ttt tttT +

1

2

(
sin(ϑ/2)

ϑ/2

)2

Sp(ϑϑϑ) (5.16)

The inverse relation
δϑϑϑ = h−1

θ (ϑϑϑ)δθθθ
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is available in the form

h−1
θ (ϑϑϑ) = III3 −

1

2
Sp(ϑϑϑ) +

sin(ϑ/2)− ϑ
2

cos(ϑ/2)

ϑ2 sin(ϑ/2)
Sp(ϑϑϑ)2 (5.17)

The rotation update RRRi+1 is then

RRRi+1 = RRR(ϑϑϑi+1) = RRR(ϑϑϑi + δϑϑϑ) with δϑϑϑ = h−1
θ (ϑϑϑi) δθθθ (5.18)

Seeking a simpler way for the rotation update Battini [5] proposed in a later study the use
of quaternions for the parametrization of finite rotations. According to equation (5.10) the
rotation matrices RRRi+1 and RRRi can be expressed in terms of the corresponding quaternions
ϑϑϑq

RRRi = RRR(ϑϑϑiq) RRRi+1 = RRR(ϑϑϑi+1
q ) (5.19)

The relation between spatial angular variation δθθθ and quaternion variation δϑϑϑq has the simple
form

δθθθ =
RRR(ϑϑϑq) + III3

ϑq0
δϑϑϑq = hq(ϑϑϑq)δϑϑϑq (5.20)

The rotation update RRRi+1 is then

RRRi+1 = RRR(ϑϑϑi+1
q ) = RRR(ϑϑϑiq + δϑϑϑq) with δϑϑϑq = h−1

q (ϑϑϑiq)δθθθ (5.21)

where
h−1
q (ϑϑϑq) = ϑq0 [RRR(ϑϑϑq) + III3]−1

In the subsequent derivation of nonlinear element kinematics the rotation variation is rep-
resented by the spatial angular variation δθθθ. Depending on the implementation choice for
incremental analysis the spatial angular variation δθθθ is converted either to the quaternion
variation δϑϑϑq, or to the rotation vector variation δϑϑϑ. The corresponding transformations of
the element end forces and stiffness matrices are discussed in section 5.3.5.

5.3 Corotational framework
The corotational formulation of the nonlinear geometry of 3d beams postulates that the
large displacement kinematics can be decomposed into the kinematics relative to a rigid
reference frame that follows the element as it deforms, and the rigid body motion of the
reference frame. The presentation starts with the definition of the element frame and of the
kinematic variables for the problem relative to it. It is typically assumed that strains are
small relative to the element frame, so as to keep the element kinematics linear. The effect
of large displacements is then accounted for only in the description of the rigid body motion
of the element frame. The following derivation of the corotational formulation highlights
the underlying assumptions of the approach, while also pointing out clearly some of its
limitations.
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5.3.1 Definition of element frame

The beam element of section 5.1 is delimited by end nodes I and J with the triads TTT I and
TTT J attached to the end sections at the centroid, as defined in section 5.1. The centroid
displacement vector u in the global reference system is composed of the translation vector ddd
and the rotation vector ϑϑϑ, so that u =

[
ddd ϑϑϑ

]
. Associated with the rotation vector ϑϑϑ is the

rotation matrixRRR. The centroid translations at end nodes I and J are denoted with dddI and dddJ ,
respectively, as shown in figure (5.2). The element frame TTT r consists of three orthonormal

E

TTT
0

I

TTT
0

J

RRRI(ϑϑϑI)

dddI

RRRJ(ϑϑϑJ)

dddJ

TTT I

TTT J

Figure 5.2: Original and deformed configuration of 3d beam element with node triads

vectors. One choice for the element frame can be the triad TTT I associated with node I.
Because it is preferable to define the element frame independently of node numbering, it is
advisable to use the element chord, i.e. the line connecting the end nodes as the first axis,
as shown in figure (5.3)

tttr1 =
xxxJ − xxxI
‖xxxJ − xxxI‖

(5.22)

where xxxI and xxxJ denote the position of end node I and J, respectively. Following the sug-
gestion of Crisfield [20], Rankin and Nour-Omid [65] and Pacoste [8], the trial choice for the
second frame axis is taken as the average of the second triad vector ttt2 at nodes I and J

ttttrr2 =
1

2
(tttI2 + tttJ2) (5.23)

The third triad axis is obtained by

tttr3 =
tttr1 × ttttryr2
‖tttr1 × ttttrr2‖

(5.24)

Finally, the second triad axis becomes

tttr2 = tttr3 × tttr1 (5.25)
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The choice of frame origin is irrelevant to the derivation of the 3d beam element. A convenient
choice is to select the origin of the element frame at node I. Denoting the initial frame with
TTT

0

r it holds that TTT
0

r = TTT
0

I = TTT
0

J for a straight beam in the undeformed configuration.

E

TTT
0

I

TTT
0

J

TTT
0

r

TTT I

TTT J

TTT r

Figure 5.3: Definition of element frame with arbitrary origin

5.3.2 Element kinematics

In the global reference frame the displacements of a beam section consist of the translations
ddd of the centroid and the rotations ϑϑϑ about the axes of a triad through the centroid. The
translations ddd are defined with

ddd = xxx− xxx0 (5.26)

where xxx0 and xxx denote the initial and current position of the section centroid, respectively.
The rotations ϑϑϑ are associated with a rotation matrix RRR that transforms the initial triad
through the section centroid TTT 0 to the current triad TTT

TTT = RRRTTT 0 (5.27)

The corotational formulation defines the element kinematics relative to the element frame.
To this end it is necessary to transform the translations ddd and the rotations ϑϑϑ from the global
reference system to the element frame. Denoting all variables relative to the element frame
with a bar and using the initial and current position of the element frame triad it is possible
to express the initial position x̄xx0 and the current position x̄xx of the centroid relative to the
element frame according to

x̄xx
0

= TTT
0T
r (xxx0 − xxx0

I ) (5.28a)
x̄xx = TTT Tr (xxx− xxxI) (5.28b)

The translations d̄dd relative to the element frame become

d̄dd = x̄xx− x̄xx0

= TTT Tr (xxx− xxxI)− TTT
0T
r (xxx0 − xxx0

I ) (5.29)
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T̄TT
0

I T̄TT
0

J
T̄TT I

T̄TT J

R̄RRJ
R̄RRI

d̄ddJ

ln

Figure 5.4: Kinematics in element frame

It is also straightforward to express the rotation matrix R̄RR relative to the element frame with

R̄RR = TTT TrRRRTTT
0

r (5.30)

The rotation vector associated with rotation matrix R̄RR is denoted with ϑ̄ϑϑ.
Incremental analysis requires the variation of the translations d̄dd and the rotations ϑ̄ϑϑ. In

the following these variations are established first relative to a fixed element frame, and this
information is subsequently used to set up the variations relative to a moving element frame.
For a fixed element frame TTT r the variation of the translations d̄dd in equation (5.29) is rather
straightforward. It gives

δd̄dd = TTT Tr δddd (5.31)

where the term δxxxI is omitted following Nour-Omid and Rankin [65], because it is assumed
that the element response is invariant under rigid body translations.

For determining the variation of the rotations ϑ̄ϑϑ relative to a fixed element frame equation
(5.30) gives the variation of the rotation matrix

δR̄RR = TTT Tr (δRRR) TTT
0

r

From this equation it is possible to determine the spatial angular variation relative to a fixed
element frame δθ̄θθ by making use of equation (5.12)

Sp(δθ̄θθ)R̄RR = TTT Tr Sp(δθθθ)RRRTTT
0

r

⇒ Sp(δθ̄θθ)TTT TrRRRTTT
0

r = TTT Tr Sp(δθθθ)RRRTTT
0

r

⇒ Sp(δθ̄θθ) = TTT Tr Sp(δθθθ)TTT r (5.32)

and then proceeding as follows

∀xxx, δθ̄θθ × xxx = Sp(δθ̄θθ)xxx = TTT Tr Sp(δθθθ)TTT r xxx

= TTT Tr [δθθθ × (TTT r xxx)]

= (TTT Tr δθθθ)× xxx
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which leads to the following relation for the transformation of the spatial angular variation
from the global to the element frame

δθ̄θθ = TTT Tr δθθθ (5.33)

With the translation variation and the spatial angular variation relative to the global and
the local reference frame collected in vectors δuuu and δūuu, respectively, equations (5.31) and
(5.33) can be written in compact form as

δūuu =

(
δd̄dd
δθ̄θθ

)
=

[
TTT Tr 0
0 TTT Tr

](
δddd
δθθθ

)
=

[
TTT Tr 0
0 TTT Tr

]
δuuu (5.34)

After establishing the translation variation and the spatial angular variation relative to a
fixed element frame, the next step involves establishing these variations relative to a moving
element frame TTT r. To this end, the notion of the corotating objective rate is introduced,
which denotes the variation of a variable for an observer moving with the element frame.
If vvv is a vector in the global frame and v̄vv = TTT Tr vvv the same vector in the element frame, its
variation relative to the element frame takes into account the change of frame orientation.
Viewing the frame triad TTT r as a rotation matrix and making use of equation (5.12) for
establishing the spatial angular variation δθθθr of the frame triad TTT r in the global frame gives
the following result for the corotating objective rate δrv̄vv of vector v̄vv

δrv̄vv = TTT Tr δvvv + δTTT Tr vvv

= TTT Tr δvvv + [Sp(δθθθr)TTT r]
T vvv

= TTT Tr δvvv +
[
TTT rSp(δθ̄θθr)

]T
vvv

= TTT Tr δvvv − Sp(δθ̄θθr) v̄vv
= δv̄vv − Sp(δθ̄θθr) v̄vv

where δθ̄θθr denotes the spatial angular variation of the frame triad TTT r in the local frame, and
equation (5.33) was used for the relation between δθθθr and δθ̄θθr. In conclusion, the corotating
objective rate δrv̄vv of a vector v̄vv in the element frame is

δrv̄vv = δv̄vv − Sp(δθ̄θθr)v̄vv = δv̄vv − δθ̄θθr × v̄vv (5.35)

with δr(.) denoting the variation relative to a moving frame and δ(.) the variation relative
to a fixed frame. Rankin and Nour-Omid [76] and Nour-Omid and Rankin [65] in their
seminal study define two variational symbols for differentiating the variation relative to a
fixed element frame from the variation relative to a moving frame. Here a single symbol δ is
used for the variation with the addition of a subscript r to denote the variation relative to
a moving element frame.

Applying equation (5.35) to the translation variation δd̄dd in equation (5.31) gives

δrd̄dd = δd̄dd+ d̄dd× δθ̄θθr = δd̄dd+ x̄xx× δθ̄θθr (5.36)
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after setting d̄dd = x̄xx by omitting δxxxI following Nour-Omid and Rankin [65]. Haugen [40] and
Felippa and Haugen [26] include δxxxI in their work, which adds another projection matrix to
the final equation (5.45).

Applying equation (5.35) to to the spatial angular variation δθ̄θθ in equation (5.33) gives

δrθ̄θθ = δθ̄θθ − Sp(δθ̄θθr)δθ̄θθ = δθ̄θθ − δθ̄θθr (5.37)

With the definition of the displacement vector variation δūuu the above two equations can be
combined into a single expression of the following form

δrūuu =

(
δrd̄dd
δrθ̄θθ

)
=

(
δd̄dd
δθ̄θθ

)
−
[
−Sp(x̄xx)
III3

]
δθ̄θθr

= δūuu −
[
−Sp(x̄xx)
III3

]
δθ̄θθr (5.38)

The element frame for the 3d beam is defined by the displacement vectors at end nodes I
and J. Consequently, the spatial angular rotation δθ̄θθr of the element frame during deformation
is associated with the displacement variations at end nodes I and J denoted with δūuuI and
δūuuJ , respectively. It is expressed as follows

δθ̄θθr =
[
∂θ̄θθr
∂ūuuI

∂θ̄θθr
∂ūuuJ

](δūuuI
δūuuJ

)
= GGG

(
δūuuI
δūuuJ

)
(5.39)

where the rotation gradient matrix GGG describes the change of the element frame in the local
reference. Substituting equation (5.39) in equation (5.38) gives the following result for the
displacement variation of a point of the 3d beam element

δrūuu =

(
δrd̄dd
δrθ̄θθ

)
=

(
δd̄dd
δθ̄θθ

)
−
[
−Sp(x̄xx)
III3

]
GGG

(
δūuuI
δūuuJ

)
(5.40)

With the choice of element frame in section 5.3.1 the rotation gradient matrix GGG is

GGG =

 0 0 η/ln η1/2 −η3/2 0 0 0 −η/ln η2/2 −η4/2 0
0 0 1/ln 0 0 0 0 0 −1/ln 0 0 0
0 −1/ln 0 0 0 0 0 1/ln 0 0 0 0

 (5.41)

where ln denotes the element length in the deformed configuration which is equal to the
distance between end nodes I and J. The coefficients η along with details of the derivation
are provided in the report by Le Corvec [49]. For practical purposes η, η3 and η4 are
approximately equal to zero, while η1 and η2 are approximately equal to 1.

The application of equation (5.40) to the end displacements of a two node 3d beam
element gives

(
δrūuuI
δrūuuJ

)
=



III3 0 0
0 III3 0 0
0 0 III3 0
0 0 0 III3

−

−Sp(x̄xxI)

III3

−Sp(x̄xxJ)
III3

GGG
(δūuuIδūuuJ

)
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Using equation (5.34) to transform the end node displacements from the local to the global
reference frame gives

(
δrūuuI
δrūuuJ

)
=



III3 0 0
0 III3 0 0
0 0 III3 0
0 0 0 III3

−

−Sp(x̄xxI)

III3

−Sp(x̄xxJ)
III3

GGG


TTT Tr 0 0
0 TTT Tr 0 0
0 0 TTT Tr 0
0 0 0 TTT Tr

(δuuuIδuuuJ

)
(5.42)

With the definition

LLL =


−Sp(x̄xxI)

III3

−Sp(x̄xxJ)
III3

 (5.43)

equation (5.42) can be written in compact form as

δrūuu = aaapaaarδuuu (5.44)

where

aaap = III12 −LLLGGG (5.45)
aaar = diag (TTT Tr ,TTT

T
r ,TTT

T
r ,TTT

T
r ) (5.46)

with III12 the identity matrix of dimension 12. In abuse of notation the vectors ūuu and uuu from
now on denote the displacements at both ends of the 3d beam element in the local and global
reference frame, respectively.

The matrix aaap is a projection matrix, because it satisfies aaapaaap = aaap, which can be proven
by considering thatGGGLLL = III3. Matrix aaap was called self-equilibrating by Haugen [40], because
the multiplication by aaaTp projects the element forces p̄pp, which are work conjugate to the end
displacements ūuu in the local reference frame, onto a subspace of self-equilibrating forces. The
matrix aaar is the standard rotation matrix for the transformation of the element vectors from
the global to the local reference system.

The principle of virtual displacements gives the relation between the forces ppp in the global
reference frame and the forces p̄pp in the local frame

δuuuTppp = δūuuT p̄pp ⇒ ppp = aaaTr aaa
T
p p̄pp (5.47)

With equation (5.47) the element response formulated in terms of the end forces p̄pp as functions
of the end displacements ūuu in the local reference frame can be transformed to the global
reference frame.
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5.3.3 Definition of strain in element frame

With the transformation relations of the preceding section it is now possible to express
the strain tensor in the element frame. To this end equation (5.35) is used to express the
deformation gradient F̄ in the element frame in terms of the deformation gradient F in the
global reference frame

F̄ =
∂rx̄xx

∂x̄xx
0 =

∂x̄xx

∂x̄xx
0 −

∂θ̄θθr

∂x̄xx
0 × x̄xx =

∂x̄xx

∂xxx

∂xxx

∂xxx0

∂xxx0

∂x̄xx
0 − 0 = TTT Tr FTTT

0

r (5.48)

With equation (5.3) the deformation gradient F̄ in the element frame becomes

F̄ = R̄RR
[
III3 + ζEEE1 ⊗∇ω +

{
Γ̄ΓΓ + K̄KK × T̄TT T (φ̄φφm − φ̄φφc) + (ζω)′EEE1

}
⊗EEE1

]
(5.49)

where the function φ̄φφm gives the position of a material point m in the element frame and
the triad T̄TT is attached to the cross section and corresponds to the rotation R̄RR of the cross
section of an initially straight beam in the element frame. The following identities hold

TTT T (φφφm − φφφc) = T̄TT
T

(φ̄φφm − φ̄φφc) (5.50)

The section strain measures ΓΓΓ andKKK in equation (5.4) do not change from the global to the
local reference frame because of the following relations

ΓΓΓ = TTT T (φφφ
′

c − ttt1) = T̄TT
T

(φ̄φφ
′

c − t̄tt1) = Γ̄ΓΓ (5.51a)

Sp(KKK) = TTT TTTT ′ = R̄RR
T
R̄RR
′

= Sp(K̄KK) (5.51b)

a fact known as strain invariance under superimposed rigid body motion.
With the deformation gradient F̄ the Green-Lagrange strain in the element frame Ē can

be expressed in terms of the Green-Lagrange strain in the global frame E according to

Ē =
1

2
(F̄T F̄− I) = TTT

0T
r ETTT 0

r (5.52)

After the definition of the consistent Green-Lagrange strain in the element frame the
following discussion deals with the conditions that permit the approximation of the actual
rod kinematics by small strains in the element frame of the corotational formulation.

To this end the measure of strain smallness ε0 is introduced due to Naghdi and Vongsarn-
pigoon [64].

ε0 = sup
xxx0∈el

∥∥E(xxx0)
∥∥ (5.53)

This definition of smallness is valid in the global as well as in the element frame, because
the Green-Lagrange tensor in the two frames in equation (5.52) differs only by a constant
rotation, which does not affect the tensor norm.

107



A necessary condition for the approximation of the actual rod kinematics by small strains
is the Euler-Bernoulli assumption of beam theory that plane sections remain plane after
deformation and normal to the axis of the rod. Consequently, the shear strains are neglected
in the following discussion and the components of the section strain measures in equation
(5.51) are

Γ̄ΓΓ =
[
ε̄ 0 0

]T (5.54a)

K̄KK =
[
κ̄1 κ̄2 κ̄3

]T (5.54b)

With the Euler-Bernoulli assumption the Green-Lagrange strain in the element frame can
be simplified, if it is further assumed that ε̄, κ̄2, κ̄3, (ζω)′ are of higher order than the
curvature κ̄1, so that only the latter appears in a quadratic term. Under these assumptions
the non-zero components of the Green-Lagrange tensor are

Ē11 = ε̄−X2κ̄3 +X3κ̄2 + (ωζ)′ +
1

2
(X2

2 +X2
3 )κ̄2

1 (5.55a)

2Ē12 = −X3κ̄1 + ζ
∂ω

∂X2

(5.55b)

2Ē13 = X2κ̄1 + ζ
∂ω

∂X3

(5.55c)

in agreement with the definition by Nukala and White [66]. The only quadratic term in
the approximation of the Green-Lagrange strains in the element frame appears in equation
(5.55a) in the form of the Wagner term due to torsion. The other contributions to the strain
Ē11 are the axial strain at the origin of the section coordinates, and the normal strain due
to bending and warping.

After the approximation of the Green-Lagrange strains in the element frame in the context
of the strain smallness measure ε0, the next task involves the linearization of the strain
measures Γ̄ΓΓ and K̄KK in equation (5.51) in terms of ε0 and the element length l.

In the corotational formulation, the element frame accounts for the rigid body rotations
and translations. Consequently, is is assumed that the translations and rotations relative
to the element frame become small as the element mesh is refined and the element length
gets smaller. As a result, linear strain kinematics suffice in the element frame, with the
expectation that the nonlinear kinematic terms will be accounted for by the geometric trans-
formations of the element variables due to the motion of the element frame. However, the
strains in the element frame depend not only on the local displacement values, but also on
the local displacement changes, such as the rate of twist, which are not affected by the re-
duction of the element length during mesh refinement. Consequently, the nonlinear Wagner
term involving κ̄1 in equation (5.55a) will not be captured by the corotational formulation in
the limit unless it is either included in the beam formulation relative to the element frame,
or else is expressed in terms of the end node variables, as will be discussed in section 5.4.
For this reason, the linear kinematic assumption of the 3d beam formulation relative to the
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element frame holds true for problems for which the nonlinear Wagner term is not significant.
An approximate solution for including the nonlinear Wagner term in the framework of the
corotational formulation will be discussed in section 5.4.

The justification of the linear geometry assumption in the element frame is based on
showing first that the rotations are small in the element frame. To this end, one starts from
the statement that under small strains the rotation in the global reference frame at any point
of the 3d beam can be related to the rotation at node I

RRR = RRRI +O(ε0) or TTT = TTT I +O(ε0) as ε0 → 0 (5.56)

Recalling the definition of the element frame TTT r from section 5.3.1 the first axis points in
the direction of the element chord according to equation (5.22)

TTT rEEE1 = tttr1 =
xxxJ − xxxI
‖xxxJ − xxxI‖

(5.57)

As the element length l gets smaller the element frame triad converges to a triad tangent to
the deformed shape at node I according to

lim
l→0

tttr1 = lim
xxxJ→xxxI

xxxJ − xxxI
‖xxxJ − xxxI‖

=
1

‖∂φφφc/∂s‖
∂φφφc
∂s

= tttI1

where the Euler-Bernoulli assumption is invoked in the last step to conclude that tttI1 coincides
with the tangent to the deformed shape. The last equation leads to the conclusion that

tttr1 = tttI1 +O(l) as l→ 0 (5.58)

For the second axis at nodes I and J equation (5.56) leads to the conclusion that

tttI2 = tttJ2 +O(ε0) as ε0 → 0 (5.59)

With equation (5.23) this leads to the conclusion that

ttttryr2 =
1

2
(tttI2 + tttJ2) = tttI2 +O(ε0) as ε0 → 0 (5.60)

so that, finally, the element frame triad satisfies the following relation

TTT r = TTT I +O(ε0l) as ε0 , l→ 0 (5.61)

When combined with equation (5.56) the last equation shows that the rotations are small in
the element frame

R̄RR = TTT Tr TTT = III3 +O(ε0l) as ε0 , l→ 0 (5.62)

justifying the first order approximation of the rotation matrices in the element frame accord-
ing to

R̄RR = III3 + Sp(ϑ̄ϑϑ) (5.63)
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Because of the use of the Euler-Bernoulli assumption of plane sections remaining plane and
normal to the element axis in the description of the first element frame axis at node I, the
use of the corotational formulation for 3d beams based on the Timoshenko theory for shear
requires further study.

Following the preceding derivations the first order terms of the section strain measures
in equation (5.51) are

Γ̄ΓΓ = R̄RR
T

(φ̄φφ
′

c − t̄tt1) = R̄RR
T

1 + d̄′1
d̄′2
d̄′3

− t̄tt1
 ≈

d̄′10
0

 (5.64a)

K̄KK = axial(Sp(K̄KK)) ≈ axial(R̄RR
′
) ≈

ϑ̄′1ϑ̄′2
ϑ̄′3

 (5.64b)

These section strain measures are used in the definition of the Green-Lagrange strain tensor
in the element frame in equation (5.55).

5.3.4 Consistent stiffness matrix

The consistent tangent element stiffness matrix kkk is obtained by differentiation of the element
end forces in equation (5.47). Noting that the transformation matrices aaap in equation (5.45)
and aaar in equation (5.46) depend on the element end displacements ūuu in the element frame
requires use of the product rule of differentiation according to

kkk =
∂ppp

∂uuu
= aaaTr aaa

T
p

∂p̄pp

∂ūuu
aaapaaar +

∂
(
aaaTr aaa

T
p p̄pp
)

∂ūuu

∣∣∣∣∣
p̄pp

(5.65)

with the derivative of the second term determined under constant p̄pp. The tangent element
stiffness matrix is thus made up of two contributions: the first contribution is the material
stiffness kkkm

kkkm = aaaTr aaa
T
p

∂p̄pp

∂ūuu
aaapaaar

and the second contribution is the geometric stiffness kkkg

kkkg =
∂
(
aaaTr aaa

T
p p̄pp
)

∂ūuu

∣∣∣∣∣
p̄pp

(5.66)

The derivation of the geometric stiffness matrix can be found in the original paper of Nour-
Omid and Rankin [65] and was later restated by Battini and Pacoste [8]. Details of the
derivation are available in the report by Le Corvec [49]. According to the latter report the
geometric stiffness matrix can be written in compact form as

kkkg = −aaaTr
(
GGGTPPP T

naaap +PPP nmGGG
)
aaar (5.67)
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with the first term in parentheses arising from the derivative of the projection matrix aaap and
the second term from the derivative of the rotation matrix aaar. Denoting the self-equilibrating
element nodal forces with p̄ppe = aaaTp p̄pp

p̄ppe =

(
n̄nne

m̄mme

)
where n̄nne denotes the end forces and m̄mme the end moments, gives the following result for the
matrices PPP n and PPP nm in equation (5.67)

PPP n =


Sp(n̄nneI)

0003

Sp(n̄nneJ)
0003

 PPP nm =


Sp(n̄nneI)
Sp(m̄mme

I)
Sp(n̄nneJ)
Sp(m̄mme

J)

 (5.68)

where the subscript I and J denotes the force variables at node I and node J, respectively.

5.3.5 Transformations due to rotation parametrization

The derivation of the corotational transformation relations for the element response in the
preceding sections is based on the spatial angular variation δθθθ, which differs from the varia-
tion of the rotation vector δϑϑϑ. As discussed in section 5.2, the lack of an additive update for
the rotation vectors requires transformations from one form of rotation parametrization to
another. These transformations are necessary in the element frame as well as in the global
reference frame and give rise to additional contributions to the geometric stiffness in equation
(5.67).

In the element frame the rotation is represented by matrix R̄RR or by rotation vector ϑ̄ϑϑ,
which is included in the displacement vector ū. The element end forces conjugate to this
displacement vector are denoted with p̄

p̄ =

(
n̄nn
m̄

)
(5.69)

The force vector p̄(ū) represents the resisting forces of the element response. Since δθ̄θθ 6= δϑ̄ϑϑ,
an additional transformation matrix is required to convert the forces p̄ to the end forces
p̄pp in the element frame, which are conjugate with ūuu. This requirement is discussed in the
original paper by Nour-Omid and Rankin [65], where the exact transformation is derived.
Under the assumption of small rotations in the element frame in section 5.3.3 an approximate
transformation may be used in this case following the idea of Battini [5] for shell elements.
Both the exact and the approximate transformation are presented in the following.

• The relation between the spatial angular variation δθ̄θθ and the variation of the rotation
vector δϑ̄ϑϑ is given by

δϑ̄ϑϑ = h−1
θ (ϑ̄ϑϑ)δθ̄θθ
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with h−1
θ (ϑ̄ϑϑ) from equation (5.17). With the principle of virtual displacements the

moments m̄mm and m̄ are related by

m̄mm = h−Tθ (ϑ̄ϑϑ)m̄ (5.70)

The transformation from spatial angular variation to variation of rotation vector gives
rise to the following transformation matrix aaaθ

aaaθ =


III3 0 0 0
0 h−1

θ (ϑ̄ϑϑI) 0 0
0 0 III3 0
0 0 0 h−1

θ (ϑ̄ϑϑJ)

 (5.71)

The force transformation in equation (5.47) can be rewritten as

ppp = aaaTr aaa
T
p aaa

T
θ p̄ (5.72)

The consistent stiffness matrix for this expression of the end forces is

kkk = aaaTr aaa
T
p aaa

T
θ

∂p̄

∂ū
aaaθaaapaaar + kkkg + kkkgθ (5.73)

An additional geometric stiffness kkkgθ arises from the derivative of transformation matrix
aaaTθ according to

kkkgθ =


0 0 0 0

0
∂[h−Tθ (ϑ̄ϑϑI)m̄I]

∂ϑ̄ϑϑ
0 0

0 0 0 0

0 0 0
∂[h−Tθ (ϑ̄ϑϑJ )m̄J ]

∂ϑ̄ϑϑ


m̄I , m̄J

(5.74)

The differential in matrix kkkgθ under constant m̄ is

∂
[
h−Tθ (ϑ̄ϑϑ)m̄

]
∂ϑ̄ϑϑ

∣∣∣∣∣
m̄

=

[
−1

2
Sp(m̄) + η

(
ϑ̄ϑϑ
T
m̄I + ϑ̄ϑϑm̄T − 2m̄ϑ̄ϑϑ

T
)

+ µSp(ϑ̄ϑϑ)2
m̄ϑ̄ϑϑ

T
]
hθ

(5.75)
where the coefficients η and µ are

η =
sin( ϑ̄

2
)− ϑ

2
cos( ϑ̄

2
)

ϑ̄2 sin( ϑ̄)
2

µ =
ϑ̄
[
ϑ̄+ sin(ϑ̄)

]
− 8 sin( ϑ̄

2
)2

4ϑ̄4 sin( ϑ̄
2
)2

(5.76)

• If the rotation in the element frame can be assumed small according to section (5.3.3),
then the preceding transformation aaaθ can either be approximated or neglected. Ac-
cording to Nour-Omid and Rankin [65] and Battini and Pacoste [8] neglecting the
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transformation aaaθ affects the convergence of the numerical solution. Consequently, it
is advisable to approximate the matrix aaaθ by retaining the first order terms in ϑ̄ϑϑ. To
this end the transformation h−1

θ in equation (5.17) is rewritten as

h−1
θ (ϑ̄ϑϑ) = III3 −

1

2
Sp(ϑ̄ϑϑ) +O(ϑ̄ϑϑ) (5.77)

The corresponding geometric tangent stiffness kkkgθ involves the following term on the
diagonal according to equation (5.74)

∂
[
h−Tθ (ϑ̄ϑϑ)m̄

]
∂ϑ̄ϑϑ

∣∣∣∣∣
m̄

= −1

2
Sp(m̄) (5.78)

The resulting expression for kkkgθ is similar to the transformation matrix used by Battini
and Pacoste [8].

A study with the full and the approximate expression of h−1
θ leads to the conclusion that

the numerical convergence and the final results are not affected by the approximation. Con-
sequently, the approximate solution is completely sufficient for practical applications. Only
problems with very large rotations, such as the example for the hockling cable in section 5.5,
justify the use of the full expression for h−1

θ .
In the global reference frame the need for avoiding the multiplicative update of the

rotation vectors at the nodes of the finite element mesh necessitates the transformation from
the spatial variation vector δθθθ to either the variation of the rotation vector δϑϑϑ, or the variation
of the quaternion vector δϑϑϑq. The transformation to the variation of the rotation vector δϑϑϑ
introduces another transformation matrix involving hθ according to equation (5.15). Because
the rotations are large in the global reference frame, the expression for hθ in equation (5.16)
cannot be simplified.

The alternative approach is to use the transformation to the variation of the quaternion
vector following equation (5.20), as proposed by Battini [5]

δθθθ = hq(ϑϑϑq)δϑϑϑq

The compact expression of hq in equation (5.20) makes this choice more attractive than the
first approach from the computational standpoint. The introduction of quaternions ϑϑϑq for
the parametrization of rotations is associated with the definition of a new force vector pppq
conjugate to uuuq

pppq =

(
nnn
mmmq

)
(5.79)

where the moments mmmq are related to the moments mmm of the end force vector ppp by the
principle of virtual displacements

mmmq = hq(ϑϑϑq)
Tmmm (5.80)
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The transformation to the variation of the quaternion vector thus involves a transformation
matrix aaaq of the form

aaaq =


III3 0 0 0
0 hq(ϑϑϑq) 0 0
0 0 III3 0
0 0 0 hq(ϑϑϑq)

 (5.81)

With it the force transformation in equation (5.72) takes the form

pppq = aaaTq aaa
T
r aaa

T
p aaa

T
θ p̄ (5.82)

and the consistent stiffness matrix in equation (5.73) becomes

kkk = aaaTq aaa
T
r aaa

T
p aaa

T
θ

∂p̄

∂ū
aaaθaaapaaaraaaq + aaaTq (kkkg + kkkgθ)aaaq + kkkgq (5.83)

where the additional geometric stiffness kkkgq comes from the derivative of the transformation
matrix aaaTq

kkkgq =


0 0 0 0

0
∂[hq(ϑϑϑqI)TmmmI]

∂ϑϑϑqI
0 0

0 0 0 0

0 0 0
∂[hq(ϑϑϑqJ )TmmmJ ]

∂ϑϑϑqJ


mmmI , mmmJ

(5.84)

where

∂
[
hq(ϑϑϑq)

Tmmm
]

∂ϑϑϑq

∣∣∣∣∣
mmm

=
2ϑϑϑTqmmm

ϑ3
q0

ϑϑϑqϑϑϑ
T
q +

2

ϑq0
(ϑϑϑqmmm

T −mmmϑϑϑTq + ϑϑϑTqmmmI) + 2Sp(mmm) (5.85)

This result matches the component expression provided by Battini and Pacoste [8]. Details
of the proof are available in the report by Le Corvec [49].

Local variables Global variables

δū = [δd̄dd δϑ̄ϑϑ] δūuu = [δd̄dd δθ̄θθ] δuuu = [δddd δθθθ] δuuuq = [δddd δϑϑϑq]
p̄ −→ p̄pp −→ ppp −→ pppq

aaaTθ aaaTr aaa
T
p aaaTq

Table 5.1: Transformation sequence for corotational formulation

The corotational formulation thus involves the following element force transformation

pppq = aaaTq aaa
T
r aaa

T
p aaa

T
θ p̄ (5.86)
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and the corresponding tangent element stiffness matrix is

kkk = aaaTq aaa
T
r aaa

T
p aaa

T
θ

∂p̄

∂ū
aaaθaaapaaaraaaq + aaaTq (kkkg + kkkgθ)aaaq + kkkgq (5.87)

The transformation sequence for the corotational formulation is summarized in table 5.1.

5.3.6 On the non-symmetry of the tangent stiffness

The geometric stiffness in equation (5.67) is non-symmetric. The antisymmetric contribution
to the stiffness matrix is

kkkasg =
1

2

(
−GGGTLLLTPPPmGGG+PPPmGGG−GGGTPPPm

)
(5.88)

According to equation (5.68) the matrix PPPm is

PPPm = PPP nm −PPP n =
[
0003 Sp(m̄mme

I) 0003 Sp(m̄mme
J)
]T (5.89)

This expression indicates that the antisymmetric contribution of the geometric stiffness ma-
trix depends on the frame geometry GGG and the element moments. For elements without
rotation degrees of freedom, such as truss and membrane elements, the geometric stiffness
is symmetric. The lack of symmetry of the geometric stiffness is attributed by Simo and
Vu-Quoc [86], Nour-Omid and Rankin [65], Crisfield [21] and Battini and Pacoste [8] to the
non-additive update of the spatial angular variation vector δθθθ.

At the equilibrium state the geometric stiffness becomes symmetric, if there are no applied
moments at the element nodes, and if the loads and boundary conditions are conservative,
as shown for the beam formulation with exact geometry by Simo and Vu-Quoc [86]. The
result is assumed to also hold for the corotational formulation according to Nour-Omid and
Rankin [65] and Felippa [26], but a proof was not provided. Nour-Omid and Rankin [65]
demonstrate that the use of the symmetric stiffness part does not affect the convergence of
the Newton-Raphson algorithm for the nonlinear governing equations of the problem.

The use of additive rotation parameters such as the rotation vector ϑϑϑ or the quaternions
ϑϑϑq is supposed to give a symmetric stiffness matrix, even though no rigorous proof was
provided. Instead, Battini and Pacoste [8] verified numerically this result for shell elements.

For the present formulation the antisymmetric contribution of the geometric stiffness
matrix becomes negligible relative to the symmetric contribution when both matrices kkkgθ
and kkkgq are included. This confirms the assumption that the lack of symmetry can be
attributed to the use of the spatial angular variation δθθθ and δθ̄θθ.

5.3.7 Conclusions

The corotational framework in the preceding sections is general, because it is independent
of element response, so that the resulting expressions for the geometric transformations un-
der large displacements can be also applied to multi-node elements, such as plate and shell
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elements. Details of the extension to multi-node elements are not presented here, but the
outcome of the implementation effort in FEDEASLab can be seen in the following examples
involving shell finite elements. The element response follows the kinematic assumptions in
section (5.3.3) with the requirement that local rotations are small, which allows simplifica-
tion of the local strain tensor and of the rotation transformations in section (5.3.5). The
assumption of small rotations in the local frame is not sufficient for linearizing the local
strain for cases with significant contribution of the nonlinear Wagner term due to torsion,
as the example of the following section 5.5.4 demonstrates.

5.4 Element with nonlinear axial-torsion interaction
The kinematic equations in the local reference system are given in equation (5.55). The
local strain measures can be simplified according to equation (5.64) in the framework of the
corotational formulation. In this case the expression of the Green-Lagrange strain Ē in terms
of the local displacements ūuu takes the form

Ē11(ūuu) = d̄′1−X2 ϑ̄
′
3 +X3 ϑ̄

′
2 + ωϑ̄′′1 +

1

2
(X2

2 +X3
2) ϑ̄′21 (5.90a)

2Ē12(ūuu) = −X3ϑ̄
′
1 + ω,2 ϑ̄

′
1 (5.90b)

2Ē13(ūuu) = X2ϑ̄
′
1 + ω,3 ϑ̄

′
1 (5.90c)

The nonlinear term of the Green-Lagrange strain 1
2
(X2

2 + X3
2) ϑ̄′21 that describes the inter-

action between axial and torsional displacement is known as the Wagner term. Most beam
elements with the corotational formulation include only the linear strain terms, and thus
cannot capture the axial-torsional interaction under nonlinear geometry, such as torsional
buckling instabilities [96], as identified by Teh and Clarke [93] and Battini and Pacoste [8].
To address the problem the authors of these studies propose a second order element in the
local frame.

Here an alternative approach is followed that is more in line with the spirit of the coro-
tational formulation of allowing the element to follow linear kinematics in the local frame.
To capture the nonlinear Wagner term in the axial Lagrange strain of equation (5.90a) a
corresponding term is added to the corotational formulation of the preceding section. There
are two limitations: first, the nonlinear term in equation (5.90a) involves the coordinates of
the material point, and secondly, it involves the square of the twist rate ϑ̄′21 . To overcome
the first problem, the nonlinear Wagner term is averaged over the cross-section, as suggested
first by Timoshenko [96]. With the definition for r2

0

r2
0 =

1

A

∫
A

(
X2

2 +X2
3

)
dA =

I2 + I3

A
(5.91)

where A is the cross section area, and I2 and I3 the moments of inertia, the nonlinear Wagner
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term simplifies to
1

2
(X2

2 +X3
2)ϑ̄′21 ≈

r2
0

2
ϑ̄′21 (5.92)

The examples in the following section assess the validity of this assumption. With the
simplification of the Wagner term, the axial strain in the local frame can be expressed as

Ē11(ūuu) = (d̄′1 +
r2

0

2
ϑ̄′21 )−X2ϑ̄

′
3 +X3ϑ̄

′
2 + ωϑ̄′′1 (5.93)

In order to use linear kinematics for the element response in the local frame the axial element
deformation v1 is defined as

v1 = d̄1,J +
r2

0

2l
(ϑ̄1,IJ)2 (5.94)

with ϑ̄1,IJ the average of the two end rotations ϑ̄1

ϑ̄1,IJ =
1

2
(ϑ̄1,I + ϑ̄1,J)

In equation (5.94) it is assumed that the rate of twist is uniform over the element. This is
approximately true as the element length is reduced by mesh refinement.

With the definition for the axial element deformation v1 in equation (5.94) the axial
strain in the reference axis of the element of length l becomes

εa =
v1

l
=
d̄1,J

l
+
r2

0

2

(
ϑ̄1,IJ

l

)2

(5.95)

which matches the corresponding axial strain in equation (5.93) as l→ 0 noting that

d̄1,J

l
→ d̄′1 and

ϑ̄1,IJ

l
→ ϑ′1

The deformations vvv of a 3d beam element with warping deformations are defined as

vvv(ū) =
(
v1 ϑ̄3,I ϑ̄3,J ϑ̄1,IJ ϑ̄2,I ϑ̄2,J ϑ̄′1,I ϑ̄′1,J

)T (5.96)

and can be expressed in terms of the node displacements in the local frame as

vvv = aaav(ū) ū (5.97)

with the following definition for the kinematic matrix aaav

aaav =



−1 0 0 − r20
l
ϑ̄1,IJ 0 0 0 1 0 0

r20
l
ϑ̄1,IJ 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1


(5.98)
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The basic forces qqq conjugate to deformations vvv satisfy the following relation by the principle
of virtual displacements

p̄ = aaaTv qqq (5.99)
These forces are the axial force N , the bending momentsM3I andM3J about axisEEE3 at node
I and J, respectively, the bending moments M2I and M2J about axis EEE2 at node I and J,
respectively, the torque T and the bi-moments MwI and MwJ at nodes I and J, respectively.
The consistent tangent stiffness matrix from the local equilibrium equation (5.86) gives rise
to the stiffness matrix (5.87).

The transformation matrix aaav can be added to the corotational formulation of equation
(5.86) for the transformation of the basic forces qqq, however this transformation is no longer
strictly geometric, because it includes section property information. The coupling between
axial force and torque gives rise to the following stiffness expression

∂p̄

∂ū
= aaaTv

∂qqq

∂vvv
aaav + kkkgv (5.100)

to be substituted in equation (5.87) with the geometric stiffness contribution kkkgv given by

kkkgv =
r2

0N

l



0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



(5.101)

With this approach the element response in the local frame determines the basic forces qqq
and the corresponding tangent stiffness ∂qqq

∂vvv
for given deformations vvv under the assumption of

small deformations. Nonlinear kinematic effects due to large displacements are included in
the transformation of the nodal variables according to the corotational formulation theory
with the addition of the transformation matrix aaav for the Wagner effect.

5.5 Examples
The following examples illustrate some aspects of the nonlinear geometry behavior of 3d
beam elements under large displacements. The mesh discretization of the structural model
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ensures that the assumption of small deformations and rotations in the element frame is
appropriate. The first two examples deal with the case of lateral buckling, which involves
coupling of flexural and torsional response. The third example addresses the simulation of
the axial-torsional buckling of a beam with the modification of the corotational formulation
to account for the nonlinear Wagner term. The last two examples present the simulation of
nonlinear material response under large displacements.

5.5.1 L-shape cantilever beam

This example studies the lateral buckling behavior of the L-shape cantilever beam with
the dimensions and properties in figure (5.5). This model was the subject of past studies
of the corotational formulation by Crisfield [20] and Battini [8] using beam elements, by
Nour-Omid and Rankin [65] using quadrilateral plane stress shell elements, and Pacoste
[67] using triangular plane stress shell elements. The present study compares the lateral
buckling behavior of the cantilever beam with the proposed 3d beam element and with the
quadrilateral 4-node shell element with mixed interpolation of tensorial components (MITC)
by Bathe and Dvorkin [4].

E1

E2

E3

240mm

240mm

P

t

b

t = 0.6 mm
b = 30 mm

E = 71240Mpa

ν = 0.31

Figure 5.5: Geometry and properties of L-shape cantilever beam

Each leg of the L-shape cantilever in figure (5.5) is modeled with five beam elements,
or with a mesh of 16x2 quadrilateral shell elements with 16 elements along the axis and 2
elements across the width. The warping constraint is not accounted for in the beam element,
but the section stiffness J includes the effect of warping. The corotational formulation in
the form of equation (5.86) is used with the beam and shell elements to include the effect of
large displacements. The nonlinear Wagner term is not included in the formulation, because
it is not significant for this problem.
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Figure 5.6: Load-displacement relation for L-shape cantilever beam

(a) Beam model (b) Shell model

Figure 5.7: Deformed shapes of L-shape cantilever beam with five-fold magnification

The structure is subjected to a horizontal force P at the tip of the cantilever, as shown
in figure (5.5). Under this force the two legs of the cantilever experience bending about the
E3 axis in figure (5.5). When the load reaches a critical value an unstable torsional mode
arises. To induce this lateral buckling mode a perturbation load of 2 · 10−4 N is applied at
the tip of the cantilever in the E3 direction.

Figure (5.6) shows the relation between applied load and translation in the E3 direction
of the L-shape cantilever beam. The response with the proposed beam element is compared
with the response of the MITC shell element and with the solution of Crisfield [20] with beam
elements. The two beam element responses are practically the same. The load-displacement
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relation of the shell element model deviates slightly from that of the beam element model
because of the effect of the panel zone at the intersection of the two legs of the cantilever,
as discussed by Battini [8].

5.5.2 Hockling of a cable

The example of the hockling of a cable, first proposed by Nour-Omid and Rankin [65], is
selected to demonstrate the ability of the corotational formulation to simulate the nonlinear
torsional response due to bending instability. The word ’cable’ is used in lieu of the more
precise expression ’flexible rod’ in the following discussion.

Figure (5.8) shows the geometry and properties of the cable, which is subjected to a
concentrated torque at the tip.

240mm

T J = 2.16 mm4

I2 = I3 = 0.0833mm4

E = 71240MPa
ν = 0.31

Figure 5.8: Geometry and properties of propped cantilever with torque at the tip
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Figure 5.9: Torque versus twist angle at the tip of the hockling cable

The cable is modeled with 20 linear elastic beam elements. The nonlinear kinematics
under large displacements are described with the corotational formulation, but large rotations
are also accounted for in the local frame according to equations (5.71) and (5.75). The section
warping and the nonlinear Wagner term are ignored in the beam model.
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Figure 5.10: Deformed shape history of twisting cable with magnification factor of 1

The simulation under large displacements uses the quaternion parametrization for the
rotations. During the incremental analysis under the applied end torquemmmq, the quaternions
ϑϑϑq are transformed to rotations ϑϑϑ, and the torque to the conjugate moment mmm according to
equations (5.9) and (5.80). With displacement control the analysis proceeds until the end
twist angle ϑϑϑ reaches the value of 2.8 rad. Figure (5.9) shows the relation between applied
torque and resulting twist angle at the tip of the cable. The cable response is in complete
agreement with the results by Nour-Omid and Rankin [65]. At first, the cable exhibits a
linear torque-twist relation in figure (5.9). Due to its low flexural stiffness the cable buckles
laterally after reaching the critical load. To induce this response bifurcation the cable model
is assigned a small eccentricity. In the post-buckling branch the twisting cable experiences
bending, as is clear from figure (5.10), which shows the deformed shape history of the twisting
cable. The final shape of the cable is a perfect circle, but the present analysis was not pursued
until this point.

5.5.3 Axial-torsional buckling

The example of the axial-torsional buckling of a beam with cruciform section is selected for
testing the approach proposed in section 5.3 to approximately include the nonlinear Wagner
effect in the corotational formulation, while allowing the element formulation in the local
frame to retain the convenience and ease of linear kinematics.

Figure (5.11) shows the geometry of the propped cantilever model with the dimensions
and material properties of the cross section. An axial force P is applied at the propped end
of the cantilever with warping deformations constrained at both ends.

Timoshenko [96] gives the following formulas for the theoretical buckling load of the
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Figure 5.11: Axial buckling

propped cantilever with and without warping

Pc =
A

I2 + I3

GJ = 258 Pcw =
A

I2 + I3

(GJ + 4
π2

L2
EIw) = 273 (5.102)

where Pc is the buckling load with free warping, and Pcw the buckling load with constrained
warping. The buckling load of the model is determined by determining the value of the
axial load P that renders the global stiffness matrix singular using the bisection strategy.
Two beam elements with the proposed corotational formulation suffice to give the theoretical
buckling load of 258 units with free warping, whereas ten elements are required to give the
theoretical buckling load of 273 units for the case with constrained warping. For reference
purposes the Euler-buckling load of a simply supported beam with the same length is 2832
units.

5.5.4 Inelastic torsion of girder

This example discusses the inelastic torsion of a girder under particular consideration of the
effect of the nonlinear Wagner term on the response. Of special interest is the effectiveness
of the proposed corotational formulation to represent this effect.

The geometry and section dimensions of the girder in figure (5.12) are based on the study
by Pi and Trahair on inelastic torsion of I-girders [71]. The girder is subjected to a torque
at midspan, with the twist constrained at both ends but with the sections free to warp.
The nonlinear steel material is modeled with a J2-plasticity model having Young modulus of
E = 200 GPa, yield strength fy = 250 MPa, and kinematic hardening modulus Hk = 0.03E.
The girder response under the torque at midspan is studied for two cases of axial restraint:
in case A the axial displacement is restrained at both beam ends, whereas case B refers to
a beam without any axial restraints at the ends.

The girder is represented with ten 3d beam elements with linear kinematics in the local
frame and the inclusion of warping displacements with a single warping mode, as described
in section 3.1.2. Three Gauss-Lobatto integration points are used in each element. The fiber
discretization of the cross section involves a grid of 10x3 for the web and flanges, with 10
fibers across the depth or width and 3 fibers across the thickness. The model accounts for
large displacements with the modified corotational formulation in section 5.4. The results
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Figure 5.12: Geometry and section dimensions of I-Beam with torque at midspan

are compared with the model by Pi and Trahair [71], which includes the exact nonlinear
Wagner term in a total Lagrangian element formulation.
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(a) Axial restraint case A
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Figure 5.13: Relation of applied torque with midspan twist angle for different models

Figures (5.13a) and (5.13b) show the relation between applied torque and resulting twist
angle at midspan for axial restraint cases A and B.

For case A with restrained axial displacements, an axial force arises under the applied
torque in the models with nonlinear geometry. This force leads to a strong interaction
between axial and torsional effects through the nonlinear Wagner term, as is evident in
figure (5.13a) from the difference in the post-yield response of the models that account for
large displacements and the nonlinear Wagner term from the response of the model that
assumes small rotations. The Wagner term leads to the increase in torsional strength under
increasing rotation in figure (5.13a). The proposed corotational formulation agrees very well
with the model of Pi and Trahair [71] and with the available experimental results [22].

If the axial displacements are not restrained at the girder ends in case B, there is no axial
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force in the girder. In this case the proposed corotational formulation is unable to represent
the nonlinear Wagner term and the response under large rotations is indistinguishable from
the response under small rotations in figure (5.13b). The figure also shows that the strength
increase due to the nonlinear Wagner term is much less significant in this case and of little
practical interest, amounting to a 20% increase under a very large twist angle.

5.5.5 Six-story steel frame

The last example deals with the lateral response of a six-story irregular steel frame under
large displacements. The geometry of the frame with the member sizes from the study by
Liew et al. [55] is shown in figure (5.14). It is assumed that the structural members consist
of A36 steel. No steel hardening was assumed in the analysis.
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Figure 5.14: Geometry and member sizes of six-story steel frame

The frame is subjected to proportional gravity and lateral wind loads. The gravity
loads correspond to a uniform load of 9.6kN/m2 on each floor slab, and are applied as
equivalent concentrated nodal forces. The wind load is assumed to be uniformly distributed
over the height of the building resulting in a horizontal nodal force of 53.376 kN. Each frame
member is represented with one 3d beam element with linear kinematics in the local frame.
The warping displacements are included with the single parameter profile, as described in
section 3.1.2. Three Gauss-Lobatto integration points are used in each element. The fiber
discretization of the cross section involves a grid of 10x3 for the web and flanges, with 10
fibers across the depth or width and 3 fibers across the thickness. The six-story frame is
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Figure 5.16: Deformed shape of six-story frame with tenfold magnification
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analyzed under the assumption of small displacements, and under consideration of large
displacements with the modified corotational formulation in sections 5.3 and 5.4.

Figure (5.15) shows the roof drift in the x and y directions of the frame. The consideration
of nonlinear geometry reduces the lateral load capacity of the frame by approximately 20%.
Moreover, the effect of nonlinear geometry on the lateral stiffness of the six-story steel frame
becomes evident as the lateral loads approach the lateral capacity.

Figure (5.16) shows the deformed shape of the frame at a load factor of λ = 0.934.
Due to its irregular geometry, the frame twists under the application of wind loading, but
the nonlinear geometry effect is predominantly due to the axial-bending interaction rather
than axial-torsion interaction. To confirm this, an additional analysis was conducted with
uncoupled torsional response for the beam elements without inclusion of the Wagner effect.
The load-displacement response of this analysis was practically identical to the response in
figure (5.15).
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Chapter 6

Summary and conclusions

6.1 Summary
The scope of this thesis is the development and validation of a 3d frame element that describes
the interaction of axial, flexural, shear and torsional effects for inelastic material response
under general loading conditions. The element is capable of describing the effect of warping
constraints on the normal stress of 3d beams as well as the shear-lag effect of wide flanges
in thin walled open and box cross sections. The element is formulated in a reference system
without rigid body modes and nonlinear geometry effects under large displacements are
included with the corotational formulation.

The 3d beam element is derived from the consistent variation of a mixed Hu-Washizu
potential with the stress, the section deformations, and the warping displacements as inde-
pendent fields of the formulation. The inclusion of the warping displacements permits the
higher order description of normal and shear strains for the coupled response under shear
and torsion. The warping displacements are described as the product of interpolation func-
tions for the warping displacement distribution along the element axis and of independent
interpolation functions for the warping profile at each monitored section.

The proposed 3d frame element is validated by studying the linear response of 3d struc-
tural models under shear and torsion and comparing its results with finite element models
utilizing shell and brick elements. The correlation studies demonstrate the ability of the 3d
beam element to capture accurately the normal and shear stress distribution of the models,
including the local response of beams with warping constraints. The studies also show the
ability of the model to describe the shear lag effect of a three span box girder bridge model.

The proposed 3d frame element is also validated for inelastic material response by com-
paring its results with experimental measurements of the local and global inelastic response
of shear links in two eccentrically braced frame specimens under monotonic and cyclic load
conditions.

The response of 3d beams under large displacements is investigated in the framework
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of the corotational formulation. After the review of the most pertinent studies the general
framework for the formulation is presented and used to study the large displacement response
of several characteristic examples from the literature. The validity and accuracy of the
method are evaluated and its range of validity is carefully assessed with particular attention
to problems involving torsional deformation.

6.2 Conclusions
The proposed 3d beam element is variationally consistent with a mixed formulation based
on a Hu-Washizu potential that includes warping displacements with independent interpo-
lation functions for the warping profile over the cross section and the warping displacement
distribution over the element axis.

The conclusions of the present study are:

• The variationally consistent formulation of the 3d beam leads to a set of governing
equations for the state determination of a numerically robust and computationally
efficient element for the inelastic analysis of structural elements under the combination
of axial force, biaxial bending moment, biaxial shear force, and torque. A salient
feature of the formulation is the coupling of the section responses by the interpolation
of the basic element forces and the warping displacements along the element axis.

• The derivation of the section response is based on consistent section kinematics and the
numerical integration of the multi-axial material response by the midpoint rule (fiber
model). The formulation supports any type of multi-axial, inelastic material model.

• The interpolation of the section warping profile with Lagrange polynomials is versatile
and gives good results for wide-flange, tubular box, and solid rectangular sections. The
parametrization of the warping profile with nw warping degrees of freedom in different
arrangements provides modeling flexibility in terms of the desired accuracy of local
response and proves advantageous over existing models with specified warping profiles
that only adjust the warping amplitude.

• The number of warping degrees of freedom nw for nonlinear material response can
remain the same as for linear elastic response. Suggestions for the selection of the
number and arrangement of the warping degrees of freedom are presented in Chapter
3.

• For the non-uniform warping distribution along the beam element axis the use of
Lagrange polynomials and quadratic splines is studied. Lagrange polynomials give
good results under elastic and inelastic material response with three or five control
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points along the element axis. They suffer, however, from errors in the higher order
derivatives when more than five interpolation points are used along the axis leading to
inaccurate determination of local strains and stresses. The interpolation of the warping
distribution with quadratic spline functions is more accurate but also more costly than
the interpolation with Lagrange polynomials. Quadratic spline functions should be
used when the accurate modeling of local inelastic material response is of interest.
In such case two integrations points per segment are necessary with one additional
integration point at each element end.

• The mixed formulation of the 3d beam element is free of shear-locking problems and is
able to represent accurately the effect of shear on the response of structural elements
with a single element per member.

• The proposed element represents accurately the shear stress profile over any type of
cross section without the need for a shear correction factor. The number of warp-
ing displacement parameters can be used to adjust the profile to any desired level of
accuracy.

• The proposed element represents accurately the effect of warping on the global response
of structural elements with the accurate determination of the torsional stiffness under
free and constrained warping.

• The proposed element can represent accurately the axial stress profile due to shear-lag
at the point of load application. Some difficulties arise with the representation of the
axial stress profile due to shear lag in the flange of thin-walled sections under inelastic
material response with low post-yield stiffness.

• The proposed element can represent accurately the shear and axial stress distribution
under combined shear force and torque with a small number of warping degrees of
freedom per section. Its general assumptions make it suitable for an extensive range
of applications, in contrast to existing special purpose elements.

• The proposed element is capable of describing the effect of warping at the boundary
sections of 3d beams with warping constraints as well as along the element. This effect
manifests itself in the axial stress profile of thin-walled sections. The correlation studies
show that the axial stress profile of the proposed element under warping constraints
matches the profile of much more expensive shell and brick finite element models. The
element is, therefore, suitable not only for the analysis of large structural models, but
also for the evaluation of the local stress fields at the boundaries.

• With the implementation strategy of the warping displacement degrees of freedom as
local variables the proposed element can be combined with standard 3d elements for
the representation of critical regions of the structural model with significant reduction
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of computational effort. Alternatively, the warping displacement degrees of freedom
can be treated as global variables so that the effect of warping constraints and the
interaction of shear forces with the torque can be studied over larger portions of the
structural model.

• The proposed compact formulation of the corotational formulation for 3d beam el-
ements permits the efficient representation of the nonlinear kinematics under large
displacements, while the element formulation in the local frame is limited to linear
kinematics. In the spirit of this approach it is possible to represent the nonlinear
Wagner effect in the interaction of axial force with torque with very few exceptions.
The compact formulation can be extended to triangular and quadrilateral shell ele-
ments. The most serious limitation of the formulation at present is its inability to
accommodate 3d beam element formulations with shear deformations.

6.3 Recommendations for further research
It is possible to extend the range of applications for the proposed 3d beam element with
the inclusion of additional constitutive models. In particular, the inclusion of a 3d concrete
material law and the modeling of transverse and longitudinal reinforcement will allow the
simulation of the response of reinforced concrete structures, such as the service core of high-
rise buildings with tubular cross-section and box girder bridges.

Furthermore, certain aspects of the proposed model require additional study. These are:

• The optimum choice of the number of warping degrees of freedom for certain type of
problems and for different combinations of 3d shear forces with torque.

• The study of warping constraints for structural elements that meet at an angle.

• The inclusion of shear deformable elements in the proposed corotational formulation.

• The inclusion of the nonlinear Wagner effect in the proposed corotational formulation
in a consistent and rational way that covers all cases of axial force-torque interaction.
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Appendix A

Warping displacements as global degrees
of freedom

When the warping displacements at the end sections of the beam element are treated
as global degrees of freedom of the structure, the interior warping degrees of freedom UUUw

are separated from the global degrees of freedom at the two end nodes uuuwIJ . In this case,
equation (2.76) is rewritten as

δPPPw = BBBwqδqqq +KKKwwδUUU
w +KKK∗wwδuuu

w
IJ (A.1a)

δpppwIJ = BBBIJ
wqδqqq + (KKK∗ww)T δUUUw +KKKIJ

wwδuuu
w
IJ (A.1b)

where KKKww, KKK∗ww and KKKIJ
ww are submatrices of the stiffness matrix KKKww which includes all

warping displacement degrees of freedom.
The solution of the second equation for the warping displacements δuuuwIJ at the end sections

of the beam element gives

δuuuwIJ = [KKKIJ
ww]−1[δpppwIJ −BBBIJ

wqδqqq − (KKK∗ww)T δUUUw] (A.2)

Substituting this result into the first equation gives the warping forces at the interior warping
degrees of freedom

δPPPw =
(
BBBwq −KKK∗ww(KKKIJ

ww)−1BBBIJ
wq

)
δqqq

+KKK∗ww(KKKIJ
ww)−1δpppwIJ +

(
KKKww −KKK∗ww(KKKIJ

ww)−1(KKK∗ww)T
)
δUUUw

(A.3)

With the following definition of the force influence matrices that account for the global
warping displacements uuuwIJ

B̃BBwq = BBBwq −KKK∗ww(KKKIJ
ww)−1BBBIJ

wq

= BBBwq − B̃BBwwBBB
IJ
wq with B̃BBww = KKK∗ww(KKKIJ

ww)−1
(A.4)
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The equation for the warping forces at the interior warping degrees of freedom becomes

δPPPw = B̃BBwqδqqq + B̃BBwwδppp
w
IJ + K̃KKwwδUUU

w (A.5)

where
K̃KKww = KKKww −KKK∗ww(KKKIJ

ww)−1(KKK∗ww)T

Under the condition δPPPw = 000, the warping displacements at the interior degrees of freedom
are

δUUUw = −[K̃KKww]−1B̃BBwqδqqq − [K̃KKww]−1B̃BBwwδppp
w
IJ (A.6a)

δuuuwIJ =
(
−[KKKIJ

ww]−1BBBIJ
wq + (B̃BBww)T [K̃KKww]−1B̃BBwq

)
δqqq

+
(

[KKKIJ
ww]−1 + (B̃BBww)T [K̃KKww]−1B̃BBww

)
δpppwIJ (A.6b)

From equation (2.73) the section deformations δel become

δeeel = [kkkss,l]
−1(bbblδqqq −KKKsw,lδUUU

w −KKKIJ
sw,lδuuu

w
IJ) (A.7)

and substituting this into equation (2.69a) gives the element deformations δvvv in the form

δvvv =

nip∑
l=1

wl bbb
T
l [kkkss,l]

−1 bbblδqqq − [BBBwq]
T δUUUw − [BBBIJ

wq]
T δuuuwIJ (A.8)

with the definitions for the force influence matrix BBBwq from equation (2.75). Substituting
the expressions for δUUUw and δuuuwIJ into the last equation gives

δvvv = fff bδqqq +
(

[BBBwq]
T [K̃KKww]−1B̃BBwq + [BBBIJ

wq]
T [KKKIJ

ww]−1BBBIJ
wq − [BBBIJ

wq]
T (B̃BBww)T [K̃KKww]−1B̃BBwq

)
δqqq

+
(

[BBBwq]
T [K̃KKww]−1B̃BBww − [BBBIJ

wq]
T [KKKIJ

ww]−1 − [BBBIJ
wq]

T (B̃BBww)T [K̃KKww]−1B̃BBww

)
δpppwIJ

=
(
fff b + B̃BB

T

wq[K̃KKww]−1B̃BBwq + [BBBIJ
wq]

T [KKKIJ
ww]−1BBBIJ

wq

)
δqqq

+
(
B̃BB
T

wq[K̃KKww]−1B̃BBww − [BBBIJ
wq]

T [KKKIJ
ww]−1

)
δpppwIJ

The last equation defines the element flexibility matrix fff in the form(
δvvv

δuuuwIJ

)
=

[ [
fff b 0
0 0

]
+ fffw

](
δqqq

δpppwIJ

)
(A.9)

where the flexibility contribution fffw due to the warping displacements is

fffw =

[
B̃BB
T

wq[K̃KKww]−1B̃BBwq + [BBBIJ
wq]

T [KKKIJ
ww]−1BBBIJ

wq B̃BB
T

wq[K̃KKww]−1B̃BBww − [BBBIJ
wq]

T [KKKIJ
ww]−1

(B̃BBww)T [K̃KKww]−1B̃BBwq − [KKKIJ
ww]−1BBBIJ

wq (B̃BBww)T [K̃KKww]−1B̃BBww + [KKKIJ
ww]−1

]

=

[
B̃BB
T

wq

B̃BB
T

ww

]
[K̃KKww]−1

[
B̃BBwq B̃BBww

]
+

[
[BBBIJ

wq]
T

−III

]
[KKKIJ

ww]−1
[
BBBIJ
wq −III

] (A.10)
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The stiffness matrix of the beam element without rigid body modes is the inverse of the
element flexibility fff , and the element stiffness matrix kkkIJ is given by an equation simi-
lar to (2.85) noting that the warping degrees of freedom do not need to be transformed.
The element stiffness matrix is assembled into the structure stiffness matrix with standard
procedures of structural analysis.
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