Title

Development and Applications of (Hetero)cycloisomerization Methodologies to Access Natural Product Scaffolds

Permalink

https://escholarship.org/uc/item/0sq7h2qd

Author

Wilkerson-Hill, SIdney Malik
Publication Date
2015
Peer reviewed|Thesis/dissertation

Development and Applications of (Hetero)cycloisomerization Methodologies

 to Access Natural Product Scaffolds
by

Sidney Malik Wilkerson-Hill

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy

In
Chemistry
in the
Graduate Division
of the
University of California, Berkeley

Committee in charge:
Professor Richmond Sarpong, Chair
Professor Matthew B. Francis
Professor Wenjun Zhang

Spring 2015

Abstract
Development and Applications of (Hetero)cycloisomerization Methodologies to Access Natural Product Scaffolds

by
Sidney Malik Wilkerson-Hill
Doctor of Philosophy in Chemistry
University of California, Berkeley
Professor Richmond Sarpong, Chair
The development of new heterocycloisomerization reactions as a tactic to access natural product scaffolds is an active area of research. Chapter 1 describes the development of a new heterocycloisomerization reaction of alkynyl-[4.1.0]bicycloheptanones using $\mathrm{W}(\mathrm{CO})_{5} \cdot \mathrm{THF}$ complex to access 4,5-dihydrobenzo[b]-furans and -indoles. Specifically, the methodology developed provides a unique entry into dihydro-benzofurans and -indoles that contain carbon substitution at the C4-position, which is a common motif in many biologically active indole alkaloid natural products (e.g. the ergot alkaloids). The unique reactivity of dihydro-benzofurans and -indoles as it pertains to accessing natural product scaffolds is also described.

Chapter 2 describes a mechanistic investigation of the trace-metal catalyzed cycloisomerization of alkynyl-[4.1.0]-bicycloheptanones to access annulated aminopyrroles by heating the ketone substrates with p-toluenesulfonylhydrazide in methanol. From our mechanistic studies, we demonstrate that the cycloisomerization reaction, which was previously thought to have been metal free, is actually catalyzed by trace copper salts at parts-per-million loading. Furthermore, we demonstrate the presence of E - and Z-hydrazone intermediates and conclusively demonstrate that, the more sterically encumbered Z-hydrazone is initially formed in the reaction and is thermodynamically lower in energy than its corresponding E - isomer. These studies were carried out in collaboration with the Hein group at the University of California, Merced and the Tantillo Group at the University of California, Davis and are a testament to the importance and power of collaborative research.

Chapter 3 describes our efforts to leverage a Pt(II)-catalyzed carbocycloisomerization reaction as a means for accessing functionalized tetrahydrofluorenes through the use of 2-substituted indene compounds. We were able to synthesize a variety of functionalized tetrahydrofluorenes using a Diels-Alder cycloaddition reaction of 2-vinylindenes and various dienophiles. We also describe our attempts to effect a double Diels-Alder cycloaddition reaction using bisketenes or bisketene equivalents with 2-vinylindenes to
access the dimeric lomaiviticin natural products. Though we were unable to realize the desired double Diels-Alder cycloaddition reactivity, we discovered a new method for generating 3-oxidopyrylium ions from bis(1-cyanovinyl acetate). Furthermore, we were able to access a variety of 2-alkynyl indenes and utilize these substrates to access the carbocyclic core of the diterpenoid euphorbactin using Rh(II)-catalyzed cycloaddition chemistry.

To
Sheila M. Wilkerson, for shaping my past, Charlotte E. Lewis, for loving and keeping me in the present and Sonya M. Wilkerson, for a future full of laughter.
Table of Contents
Acknowledgements iii
Quote iv
Chapter 1. Tungsten-catalyzed heterocycloisomerization of [4.1.0]-bicycles to access 4,5-dihydro-benzo[b]furans and -indoles
Section 1.0. Brief Historical Perspective on Indoles 01
Section 1.1. Importance of indole natural products 03
Section 1.2.Syntheses of 4-substitued indoles 06
Section 1.3. Research Hypotheses 07
Section 1.4. Substrate synthesis 09
Section 1.5. Substrate scope, Mechanism, and Product Manipulation 12
Section 1.6. Conclusions 18
Section 1.7. Supporting Information 19
Section 1.8. References 44
APPENDIX I: Selected Spectra 49
Chapter 2. Trace copper-catalyzed cycloisomerization reaction of alkylcyclopropylhydrazones to form annulated aminopyrroles - A collaborative study
Section 2.0. Criticism of metal-free transformations 148
Section 2.1. Development of a Variant of the Schmalz-Zhang Chemistry 148
Section 2.2. Substrate scope 151
Section 2.3. Mechanistic Investigations and Hypotheses 153
Section 2.4. Conclusion 163
Section 2.5. Supporting Information 164
Section 2.6. References 242
APPENDIX II. Selected spectra 248
Chapter 3. Leveraging Pt (II)-catalyzed cycloisomerization reactions of propargylic esters to access annulated indene derivatives.
Section 3.0. Indene Background 315
Section 3.1. A Novel approach to tetrahydrofluorenes 316
Section 3.2. Cycloisomerization scope 317
Section 3.3. Diels—Alder cycloaddition reactivities 320
Section 3.4. Extension to a double Diels-Alder cycloaddition reaction 323
Section 3.5. Attempted synthesis of furans such as 3.47 327
Section 3.6. Synthesis of 2-alkynyl and 2-allenyl indenes. 330
Section 3.7. A new target, euphorbactin 332
Section 3.8. Conclusion 334
Section 3.9. Supporting information 335
Section 3.10 References 375
APPENDIX III. Selected spectra 385

Acknowledgements

My journey from Kinston, NC to the chemistry program at UC Berkeley is a unique one and would not have been possible had it not been for the amazing group of people in my life. First I would like to thank my family and friends back home for being constant motivation in everything I do. I especially thank my mother, for instilling the values of hard work and dedication to what you do in life. I also thank all my aunts and uncles that raised me when I was younger. It takes a village.

Thank you to all of my elementary school teachers that pushed me to go above and beyond. Thanks Robbie Rodgers for wisdom, Cathy Wooten for making chemistry fun to learn, and Ms. Owens for forcing me to do science Olympiad for extra credit and thus changing the course of my life forever.

Thank you all the professors back at NC State, Ana and Elson Ison, Reza Ghiladi, Bruce Novak, David Hinks and Harold Freeman for mentorship and guidance. Thank you Philip Dail for recruiting me to NC State and kick-starting my career in the College of Textiles. Thank you also for wisdom, advice, and love.

A Special thanks goes out to Jacob Hooker for training me in radiochemistry at BNL and pushing me to apply to UC Berkeley; thank you also for challenging me and forcing me to redefine my limits and pushing me to step outside of my comfort zone. Thanks to everyone else at BNL (Joanna Fowler, Sunny Kim, Noel Blackburn, Joseph Heard, Mel Morris) that helped make summer 2008 and 2009 two of the best summers of my life.

Obviously the last five years could not have happened without the Sarpong group. Many of you have been there through good and bad, and for that I am grateful. Thanks especially to Jess Wood, Alison Hardin-Narayan, and Steve Heller for being great role models. Thanks Erica Shultz and Jenna Jeffery for being awesome lab mates and sharing 837 Latimer Hall with me for four years of my life. Thanks Josh Deitch, Raul Leal, and Jim Newton for all the laughs and being standup classmates and friends. Thanks Jessica Kisunzu and Zach Hallberg for encouragement when needed. I would like to thank all of the postdocs past and present for all of their help, especially Ethan Fisher for his contributions to the cycloisomerization projects. Finally, Thank you Richmond Sarpong for the countless ideas, support, teaching me everything I needed to know about synthetic organic chemistry, and most importantly, for promoting professionalism and setting high standards.

Lastly I would like to thank my fiancée Charlotte Lewis. You have stood by me and sacrificed a great deal during this journey, for that I am eternally grateful. Thank you so much for putting up with the late nights, early mornings, and busy schedules and moving to the Bay area. I am grateful to have you as a partner, and I thank you for encouraging me to live in the moment.
"We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too."

- JFK Moon Speech - Rice Stadium, 09-12-1962

CHAPTER 1: TUNGSTEN-CATALYZED HETEROCYCLOISOMERIZATION OF [4.1.0]BICYCLES TO ACCESS 4,5-DIHYDROBENZOFURANS AND -INDOLES

(with Dr. Ethan L. Fisher)
Fisher, E. L.; Wilkerson-Hill, S. M.; Sarpong, R. J. Am. Chem. Soc. 2012, 134, 9946-9949.

Section 1.0. Brief Historical Perspective on Indoles and Benzofurans and their Reactivity

The importance of heterocycles, especially indole and its derivatives, in chemistry is without question. Indeed, the discovery of the heterocyclic compound indigo, an oxindole-based alkaloid, in many ways gave rise to the pharmaceutical industry and, in some respects, to modern day natural products chemistry. ${ }^{1}$ During the latter half of the $19^{\text {th }}$ century, chemists developed an interest in natural products. Indigo was an early subject of their investigations as people realized the academic challenge and economic importance of synthesizing this compound. ${ }^{2}$ This motivation of making molecules for academic or monetary value still exists to this very day. The first synthetic method for obtaining indigo was accomplished by Adolph von Baeyer in 1882 and purchased by Badische Anilin und Soda Fabrik (BASF) for the equivalent of $\$ 100,000$. BASF would in turn invest approximately $\$ 5,000,000$ in Bayer's technology; his process is still used today with only slight modifications. ${ }^{3}$ For this contribution to chemistry, Baeyer was awarded the Nobel Prize in $1905 .{ }^{4}$ The name "indole" is derived from the word, India, from where indigo was primarily obtained in the $16^{\text {th }}$ century. ${ }^{1}$ Indole was first prepared from indigo in 1866 by zinc-dust distillation of oxindole. ${ }^{5}$

Benzo[b]furans (for the rest of this chapter referred to as simply benzofurans) are the oxygen analogues of indole and have been studied much less than their nitrogen counterparts. ${ }^{6}$ In fact, to date, no historical perspectives on the parent molecule exist. Benzofuran, however, was isolated by Fittig and Ebert in 1882 by calcining coumarilic acid (from coumarin) with lime. ${ }^{6 \mathrm{~b}}$ Eight years later, benzofuran was isolated from coal tar by Kraemer and Spilker. ${ }^{7}$ Benzofuran can be synthesized from gas phase dehydrogenation of the 2 -ethylphenol. ${ }^{7}$ The dearth of information on this parent heterocycle may be due to its infrequent occurrence in nature and/or it's nonselective chemistry with electrophiles (vide infra).

Both indole and benzofuran are benzannulated versions of the monocyclic heterocycles pyrrole and furan, respectively. Consequently, the reactivity of the benzannulated heterocycles mirrors that of the monocycles, however benzannulation plays an important role in influencing the types of reactivity modes that are available for these substrates. For example, both indole and pyrrole (and benzofuran and furan) are nucleophilic heterocycles, and react smoothly with a variety of electrophilic reagents. However, because of benzannulation, the position where the electrophilic reagents react on the heterocycle changes. Indoles, for example are well known to be most nucleophilic at the 3 -position while pyrroles are most reactive at the 2 - and 5 -positions. As a first approximation, this reactivity can be explained using valence bond theory and resonance structures (Figure 1, shown for indole). For indole, benzannulation results in
the 3-position becoming the most nucleophilic (as opposed to the 2- position) because this avoids disruption of the aromatic ring, which would lead to a "less important" resonance form. Because pyrrole lacks this benzannulation, the 2- and 5-positons become most nucleophilic. Though rudimentary, this analysis is in accord with quantum theory of atoms in molecules (QTAIM) studies on the protonation of indole. ${ }^{8}$ An alternative way of considering the above statement is that electrophilic substitution on indole at the 3-position results in an increase in aromaticity in the benzenoid portion of the heterocycle. The index of aromatic stabilization for indole has been computed to be $23.8 \mathrm{kcal} / \mathrm{mol}$ for indole by Pople versus $36 \mathrm{kcal} / \mathrm{mol}$ for benzene. ${ }^{8 \mathrm{c}}$

A. Indole mesomeric forms

Figure 1: Resonance forms for indole and pyrrole comparing and contrasting reactivity.

In contrast to indole, the electronic properties of benzofuran are much less well understood. Compared to indole, benzofuran typically reacts less selectively or sometimes even with reversal of selectivity. The formylation of benzofuran, for example, produces exclusively the 2 -formyl product. ${ }^{9}$ One can attribute this difference in reactivity to the decreased ability of oxygen to stabilize cationic intermediates relative to nitrogen because of its higher electronegativity $\left(\mathrm{N}=3.04, \mathrm{O}=3.44\right.$, Pauling scale). ${ }^{10}$ Considering the condensed Fukui function, an aromatic reactivity index for an atom in a molecule, Martínez and coworkers showed using DFT calculations that indole has a much larger Fukui parameter (f^{-}АК) at the C3- position whereas for benzofuran, the C2- and C3positions were about equal, which parallels the reactivity of these positions that is
observed in these heterocycles. ${ }^{11}$ The index of aromatic stabilization for benzofuran is computed to be $20.3 \mathrm{kcal} / \mathrm{mol}$. ${ }^{11}$

Given the electronic properties of indoles and benzofurans, achieving functionalization on the benzenoid portion of these compounds is often difficult. The direct functionalization of the benzenoid portion of indoles and benzofurans constitutes an unsolved problem in organic chemistry and was the basis for the investigations in this chapter. Because the chemistry of indoles is better studied, they will be the primary focus of this chapter.

Section 1.1. Importance of C -substituted indole natural products and benzofurans

As of 2014, the indole core was the $9^{\text {th }}$ most common heterocycle in U.S. FDA approved drugs. ${ }^{12 a}$ Artificial indole pharmaceuticals (i.e., compounds not found in nature), such as Etodolac, Sumatriptan (GSK), Naratriptan (GSK), Rizatriptan (Merck), Almotriptan (Janssen), Frovatriptan (GSK), Eletriptan (Pfizer) and Zolmitriptan (GSK, Astra Zeneca), all have alkyl substitution on the benzenoid portion of the aromatic ring (1.7-1.14, Figure 2). ${ }^{12 b}$ Noticeably however, these compounds (except for Etodolac) all contain substitution at the 5 -position of the indole, which is inherently a less challenging position to functionalize from the saturated indoline core or from inexpensive 5bromoindole. The lack of methods to functionalize the $4-, 6$ - and 7 - positions of indoles results in the inability to explore that chemical space during SAR studies of lead compounds. In general, clinically useful indole alkaloids can be divided into three classes a) Ergot alkaloids b) Rauvolfia (Rauwolfia) alkaloids, and c) dimeric alkaloids of Catharanthus. The vinca alkaloids were the first plant-derived alkaloids to advance into clinical use by Eli Lilly in the 1960s, however of the three classes, only compounds from the Ergot class contain functionalization (C4) on the indole nucleus and thus their background will be discussed further.

Etodolac, 1.7 NSAID
blocks COX enzyme

Rizatriptan, 1.9 $5-\mathrm{HT}_{1}$ agonist Merck

Frovatriptan, 1.12 $5-\mathrm{HT}_{1 B / D}$ agonist GSK

Sumatriptan, 1.8 5-HT agonist GSK

Almotriptan, 1.10 $5-\mathrm{HT}_{1 \mathrm{~B} / \mathrm{D}}$ agonist Jannsen

Eletriptan, 1.13 $5-\mathrm{HT}_{1 \mathrm{~B}}$ agonist

GSK

Figure 2: Indole containing pharmacophores with alkyl substitution on the benzenoid protion of the indole ring. Most compounds are $5-\mathrm{HT}_{1 \mathrm{~B}}$ agonists.

Ergot alkaloids are mycotoxins that historically could only be obtained from the fungus Claviceps purpurea, which grows on rye. The name ergot means 'spur' in French, is a reference to the shape of the fungal sclerotium from which the compounds are obtained. Ergot alkaloids have had unique roles in history and for a long time were dreaded as poisonous contaminants as they had led to the death of tens of thousands of people in Europe in the middle ages due to the consumption of rye contaminated with ergot. ${ }^{13}$ These epidemics, termed ergotism, where often characterized by nervous convulsive symptoms of gangrenous manifestations leading to mummification of the extremities. Upon more detailed scientific inspection of ergot, the pharmaceutical relevance of these compounds was realized. The first ergot alkaloid, ergotoxine (1.15, Figure 3), was isolated in 1906 by Barger and Carr and its adrenolytic activity (i.e., its ability to inhibit the action of adrenergic nerves) was discovered by Dale in the same year. Ergotoxine was later found to be a mixture of several peptide amides of the ergoline class (i.e., 1.15a -1.15d). In 1935, the specific oxytocic agent of ergot, ergonovine, was identified and isolated by Dudley and Moir. After this point, extensive investigations of the chemistry of ergot alkaloids were initiated with efforts mainly spurred by Jacobs and Craig in the United States, and Smith and Timmins in England, and Hofmann et al. in Switzerland. Jacobs and Craig in 1934, identified the common nucleus of these pharmacologically important alkaloids, which they named lysergic acid
(1.16). ${ }^{14}$ Thus, the ergoline ring system is defined as the partially hydrogenated indolo[4,3-fg]quinonline (1.20) system found in lysergic acid.

Figure 3: Ergot alkaloids are naturally occurring C4-subsituted indoles. Some family members (e.g., (-)aurantioclavine contain a modified ergoline skeleton.

For years, the production of ergot alkaloids as pharmaceuticals and for research studies primarily relied on collecting naturally occurring ergot from rye. Bekesy in Hungary and Brack of Switzerland pioneered the first artificial inoculation of rye on an industrial scale for the production of ergot alkaloids. ${ }^{15}$ Today, ergot alkaloids are obtained through semi-synthesis of material isolated from strains of the fungus that are grown submerged in tanks. As of 1999, approximately 60% of ergot alkaloid production was based on fermentations while the rest came from field ergot. Although considerable synthetic efforts were expended into producing ergot alkaloids more effectively compared to their isolation from biological sources, a solution to this problem has as yet not been realized. ${ }^{15}$

Ergot alkaloids display a wide variety of clinically useful biological activity. They are known to act on $5-\mathrm{HT}$ receptors (e.g., metergoline, 1.17, ${ }^{16}$ dopamine receptors, ${ }^{17}$ adrenoceptors, ${ }^{18}$ histamine receptors, ${ }^{19}$ and to interact with endogenous prostaglandin synthesis. ${ }^{20}$ Interestingly, lysergic acid (1.16) itself is biologically inactive. ${ }^{21}$ Amides of lysergic acid, though, are well known to induce a wide variety of biological responses that are largely dependent upon the stereochemical configuration of the compound. ${ }^{22}$ Because of the wide array of biological modes for these compounds, numerous investigators have developed strategies for accessing these compounds, in particular with regard to the development of methods for installing carbon substitution at the 4position of indoles.

Section 1.2. Known syntheses of 4 -substitued indoles and benzofurans

Because there are many synthesis of ergot alkaloids and the ergoline indolo[4,3fg]quinonline ring system, these works will not be covered. ${ }^{23}$ Instead, and perhaps more pertinent to the research presented within, is a background on how researchers approach the synthesis of C4-substitued indoles and benzofurans in order to access natural products such as the ergot alkaloids.

As mentioned previously, due to the electronics of the indole framework, direct Friedel-Crafts type acylation or alkylation of indoles will not occur at the C4-positon (Figure 1). Indeed, it is well known that reacting indole with acetyl chloride in the presence of imidazole, cleanly effects acylation at the indole 3-position. ${ }^{24}$ Consequently, to obtain C4-subsitution, this must typically be introduced on the aromatic portion before forming the indole. Thus, 4 -bromoindole (1.24) has historically been a common starting point for the synthesis of C4-substituted indoles because of the plethora of methods for converting an arylbromide bond into an aryl carbon bond.

Hegedus and coworkers were among of the earliest researchers to develop a scalable method for obtaining 4-bromoindole. ${ }^{25}$ In general, their method is a variant of the Leimgruber-Batcho indole synthesis (Scheme 1). ${ }^{24}$ Starting from 2-methyl-3-nitroaniline the authors effect a Sandmeyer reaction of the aniline and then induce a radical bromination of the benzylic position to give benzylic bromide 1.22. Compound 1.22 is then taken to ortho-tosylamino styrene 1.23 by converting the benzylic bromide to a vinyl group using standard Wittig olefination chemistry, followed by a reduction of the nitro-group with iron and acetic acid, and protection of the resulting aniline with tosyl chloride and pyridine. The authors then effect an intramolecular Heck reaction, to provide 4-bromoindole after removal of the sulfonyl group under basic conditions. Overall this procedure works well and gives 48% yield of the desired indole over the eight-step sequence.

Scheme 1: Hegedus synthesis of 4-bromoindole.

In 2009, the Yu group at the Scripps Research Institute reported a new strategy for synthesizing 4-bromoindole as a part of a broader study of $\mathrm{C}-\mathrm{H}$ functionalization reactions to access functionalized indoline cores. ${ }^{26}$ The Yu strategy utilizes triflamide protected ortho-bromoethylamines and effects a C-N bond forming reaction using $\mathrm{Pd}(\mathrm{OAc})_{2}$ and a pyridinium fluoride oxidant. In this reaction, ethylaminotriflamide 1.25 directs a palladation of the bromoarene, and indoline 1.26 is formed following reductive elimination from a $\mathrm{Pd}(\mathrm{IV})$ species. With the indoline in hand, this compound is then oxidized to the required indole using $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ to give the triflate-protected 4-
bromoindole. Overall this procedure gives 65% of the protected indole over the two steps.

Scheme 2: The Yu synthesis of 4-bromoindoline utilizing a C-H functionalization reaction. The protected 4bromoindoline is then carried forward to 4-bromoindole.

Alternatively, Rapoport and coworkers utilize the Leimgruber-Batcho synthesis to synthesize 4-bromoindole (and 5-7 haloindoles) in excellent yield. ${ }^{27}$ This methodology has even been implemented on gram scale in the synthesis of natural products. ${ }^{28}$ Production of 4-bromoindole indole derivatives on the industrial scale is less clear. Prices for the compound vary widely from Sigma-Aldrich \$55.2/g from Sigma-Aldrich ${ }^{29}$ to $\$ 5.25 / \mathrm{g}$ from Chem Impex. ${ }^{30}$ One patent by the Eisai Co. Ltd utilizes procedures by Rapoport to synthesize 4-bromoindole and uses this compound as a starting point for Suzuki cross coupling reactions. ${ }^{31}$

Other methods for accessing C4-substitued indoles rely on processes such as directed thallations of indole-3-carboxaldehyde, ${ }^{32}$ directed lithiations of gramine derivatives, ${ }^{33}$ and the use of η^{6}-chromium indole complexes, ${ }^{34}$ however these methods have been exploited to a lesser extent in (ergot) indole alkaloid synthesis.

Section 1.3. Research Hypotheses

With the existing precedent in mind, we desired to develop a unified methodology to access both indole and (benzo)furan compounds with carbon substitution at the 4position such as tyrolobibenzyl A and B^{35} (1.28a, 1.28b, Figure 4), hibiscone C^{36} (1.29), verticillantine ${ }^{37}$ (1.30), pibocin B^{38} (1.31), and hapalindole J^{39} (1.32).

Tyrolobibenzyl A (R = H), 1.28a Tyrolobibenzyl B ($\mathrm{R}=\mathrm{OH}$), 1.28b Stuppner, 2000

Hibiscone C, 1.29 (gmelofuran)
sesquiterpene furanosteriod Joshi, 1978

Verticillatine A, 1.30
Vierira, 2010

Pibocin B, 1.31
Makarieva, 2001 $E_{50} 25 \mu \mathrm{~g} / \mathrm{mL}$
mouse Erlich carcinoma cells

Hapalindole J 1.32
Moore, 1987
IC $5028.6 \mu \mathrm{~mol} / \mathrm{L}$
colon adenocarcinoma HT-29
human cell line

Figure 4: Other C4-subsituted (benzo)furan and indole natural products.

In light of the recent advances in heterocycloisomerization chemistry by our group ${ }^{40}$ and others ${ }^{41}$ we hypothesized that this would be an ideal approach for accessing these compounds. We were inspired by the work of Schmalz ${ }^{42}$ and coworkers who had shown previously that alkynylcyclopropylketone 1.33 undergoes a gold-catalyzed cycloisomerization reaction to afford furan 1.34 annulated with seven membered ring (Scheme 3).

Scheme 3: Schmalz cycloisomerization and proposed extension to new reaction.

We asked the question as to whether we could effect a cycloisomerization reaction on analogues of ketone 1.33 where instead of fragmenting the endocyclic cyclopropane $\mathrm{C}-\mathrm{C}$ bond using a nucleophile we would instead fragment the exocyclic cyclopropane C-C bond using an internal electrophile (see 1.35 to 1.36, Scheme 3). By achieving this, we would then obtain the desired substitution pattern for accessing C4substituted benzofuran. Furthermore, condensation of these ketones with an amine would give an imine substrate that would analogously give rise to the C4-substituted indole framework.

In light of our hypothesis, we were drawn to a recent report by Bartoli and coworkers that demonstrated the synthesis of ketone 1.40a, which they used in an approach to lancifodilactone F and micrandilactone B. ${ }^{43}$ Ketone 1.40a was desirable to us because it contained an electron-withdrawing group on the cyclopropane ring. At the same time, we were conscious of work by Ohe and coworkers that demonstrated that alkynylcyclopropanes could undergo a cycloisomerization reaction to afford functionalized phenol. ${ }^{44}$ In the Ohe transformation, a 6 -exo-trig cyclization takes place from a metal vinylidene intermediate, which would not be desirable for our purposes. As such, we began our studies by synthesis of ketone 1.40a and associated derivatives. We then investigated various catalysts known to effect heterocycloisomerization reactions.

Section 1.4. Synthesis of substrates and Screening of Reactivity

Our synthesis of ketones of the type $\mathbf{1 . 4 0}$ followed Bartoli's report and began with commercial or known cyclohexenones (Table 1). Treating these substrates with I_{2} and pyridine effects an iodination at the 2 -position. These iodoketones then undergo a Sonogashira cross coupling reaction with various alkynes at room temperature to afford enynes of the type $1.38 .{ }^{45}$ Treating these enynes with a sulfur ylide generated in situ by reacting sulfonium salt 1.39 and 1,4-diazabicycloundec-7-ene (DBU) results in the [4.1.0]-bicycle. Removing the silylgroup from the alkyne is then accomplished with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH or tetra- n-butylamonium fluoride (TBAF) in THF to give ketone 1.40 in 23% yield over the four steps. Of note, this reaction sequence could be performed routinely for 1.40a on 10 g scale resulting in 5 g of product without diminishing yields. Furthermore, this procedure worked well starting from both cyclopentenones 1.40 g , cycloheptenones $\mathbf{1 . 4 0 g}$, and ketone $\mathbf{1 . 4 0 h}$ where gem-dimethyl groups are β-to the carbonyl group.

Table 1: Substrate scope for bicyclo-[4.1.0]-heptanone synthesis.

1.40a
(5 g obtained)

1.40 b

$17 \% \mathrm{c}$

23% c

1.40h
a) Yields given are over four steps unless otherwise stated. b) Yield given for two steps from 1.40a. c) Substrate was made from the bromoenone. TBS = tert-butyldimethylsilyl.

In order to access substituted indoles using our planned cycloisomerization reaction, nitrogen-containing analogues of the above ketones were required. Initially, we explored condensing amines onto ketones 1.40a - 1.40h in order to make imines. Unfortunately, imines of ketone 1.40 hydrolyzed readily back to ketone 1.40 and so characterization of these compounds proved difficult. We thus turned to synthesizing oxime ethers of ketones 1.40 a - 1.40h because these compounds are typically less prone to hydrolysis. Gratifyingly, we found that stirring ketones $1.40 \mathrm{a}-1.40 \mathrm{~h}$ with different hydroxylamine hydrochloride salts in the presence of sodium acetate, resulted in clean formation of oxime ethers $1.41 \mathrm{a}-\mathbf{1 . 4 1 j}$. Oxime acetate 1.41 j was synthesized by acylation of the corresponding hydroxylamine.

Table 2: Substrate scope for oxime ether formation from bicyclo-[4.1.0]-heptanones.

a) All oxime ethers were obtained as mixture of E - and Z - isomers. b) Yield over two steps, see supporting information for details.

With these substrates in hand, we then explored various conditions to effect our desired cycloisomerization reaction. Various transition metal salts ${ }^{46, b}$ such as $A u(I)$, $\mathrm{Ag}(\mathrm{I}), \mathrm{Cu}(\mathrm{I}), \mathrm{Pt}(\mathrm{II})$, and recently $\mathrm{Rh}(\mathrm{I})^{47 \mathrm{c}}$ are known to effect cycloisomerization reactions (Rautenstrauch manifold). However, ketones 1.40a - 1.40h all contained terminal alkynes, so a cycloisomerization reaction that is initiated by an alkyne to metal vinylidene isomerization can also take place. ${ }^{47}$ Upon screening a variety of transition metals known to effect alkyne to metal vinylidene conversions, we identified the $\mathrm{W}(\mathrm{CO})_{5} \cdot$ THF complex as being efficient in cleanly converting ketone 1.40 a into furan 1.42a (Table 3). W(CO) $5^{\circ} \cdot \mathrm{THF}$ is generated by irradiating a solution of $\mathrm{W}(\mathrm{CO})_{6}$ in THF at 350 nm for 2 hours. $\mathrm{Pt}(\mathrm{II})$ salts with added amine bases were also competent for effecting this transformation, but the use of $\mathrm{Pt}(\mathrm{II})$ salts was often accompanied by the formation of aldehydes and other inseparable side products (Table 3, entry 7).

Table 3: Screening conditions to effect cycloisomerization reaction on ketone 1.40.

With these conditions in hand we then investigated the scope of the reaction using our synthesized ketones and oxime ethers as substrates.

Section 1.5. Substrate scope, Mechanism, and Product Manipulation

Upon subjecting ketones 1.40a-1.40h and oxime ethers 1.41a-1.41j to the optimized reaction conditions, we were pleased to find that a variety of ketone and oxime ether substrates were converted to the corresponding 4,5-dihydrobenz[b]furans (1.42) or N-alkoxyindoles (1.43) (Table 4).

Table 4: Scope of newly developed cycloisomerization reaction.

a) Reaction conducted using $20 \mathrm{~mol} \% \mathrm{~W}(\mathrm{CO})_{5} \cdot \mathrm{THF}$. b) The reported yield of N -alkoxyindole 1.43 e was obtained upon stirring the crude reaction product with oxalic acid and SiO_{2} in wet $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 h (see the Supporting information for details)

We found that the reaction was general and proceeded in the presence of a wide array of substituents on the cyclohexane ring. Acetals (1.42b), gem-dimethyl groups (1.42c),
and protected alcohols (1.42d, 1.42e) did not have an adverse effect on reactivity. Larger ring systems (1.42f) also participated in this reaction. Cyclopentanone 1.40 g , however did not undergo cycloisomerization. At first glance, this effect may appear to be due to the inherent strain present within a 5 -membered ring ($5.1 \mathrm{kcal} / \mathrm{mol}$). ${ }^{38}$ However, the strain energy of a 7 -membered ring is exactly the same ($5.1 \mathrm{kcal} / \mathrm{mol}$). Considering that combined strain energies are additive, the strain energy of a [3.1.0]-bicycle should be approximately the same as a [5.1.0]-bicycle. Thus, one would not expect substrate $1.40 f$ containing a 7 -membered ring to undergo the reaction either. Thus, the lack of reactivity of the 5-membered ring substrates may actually be due to the reduced conformational flexibility in these systems. Ketone 1.40 h also did not participate in the reaction, presumably due to the required proton transfer (vide infra) needed for the reaction to proceed.

The oxime ether substrates $1.41 \mathrm{a}-1.41 \mathrm{~h}$ also reacted fairly smoothly under the reaction conditions. Of note, the yields for these reactions are typically lower than that of the furan substrates (compare furans 1.42a, 1.42c, 1.42e to pyrroles 1.43a, 1.43f and 1.43 g). This is presumably due to the π-excessive nature of the vinyl- N -alkoxypyrrole products, which makes them susceptible to oxidative degradation and polymerization pathways. We found that it was critically important to minimize the time these substrates were exposed to air, acid, and especially light as these are known to facilitate the decomposition N-hydroxyindole products. ${ }^{49}$ Oxime ethers 1.43a - 1.43b bearing different alkyl groups on the oxime oxygen proceeded smoothly and without event. We found that in contrast to furan 1.42b, N -alkoxypyrrole product 1.43 e was very sensitive to acid and ring opening would take place upon purification by SiO_{2}-gel chromatography. Thus, the crude cycloisomerization product was stirred in wet $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with oxalic acid and SiO_{2}-gel to promote acetal opening and aromatization to the N alkoxyindole 1.43e.

Interestingly, oxime substrates 1.41 i and 1.41 j did not undergo cycloisomerization suggesting that alkylsubstitution on the oxime ether was critical. In the case of 1.41 i , even heating the solution to $75{ }^{\circ} \mathrm{C}$ did not facilitate the cycloisomerization reaction. To verify that the catalyst was indeed competent in these reactions, we subjected an equimolar mixture of ketone 1.40 a and oxime 1.41 i to the optimized reaction conditions. We observed that furan 1.42a is indeed formed while oxime ether 1.41 i remains untouched (Figure 5). Thus, the phenyl group on the oxime ether imparts a deleterious electronic effect that is reflected in the lack of nucleophilicity of the oxime ether nitrogen.

Figure 5: Competition experiment between oxime ether 1.41 i and ketone 1.40 a.

Ideally, we anticipated performing a cascade cycloisomerization-Claisen rearrangement from the N-phenoxypyrrole to arrive at products such as 1.44 a . ${ }^{49}$ These arylated pyrroles could then lead to 3-arylindoles, which have gained considerable attention in recent years by the MacMillan, Reisman and Davies groups. ${ }^{50}$

Scheme 4: Proposed cycloisomerization-Claisen rearrangement domino reaction.

1.5.1. Mechanism

Based on the above data and precedent by Ohe and others we propose a mechanism for the transformation depicted in Scheme 5. We hypothesize that the reaction proceeds by an isomerization of alkyne 1.40a to metal vinylidene 1.45. The electrophilic metal vinylidene is then engaged by the pendant keto-group. Of note, we observed no products from the participation of the ester moiety. This may be due to a kinetic preference for the 5-exo-dig cyclization mode over the 6-exo-dig mode. Upon cyclization to zwitterionic intermediate 1.46, protodemetallation then occurs to give isofuran 1.47, which is also a donor-acceptor cyclopropane. Thus, the polarized nature of 1.47 and inherent strain promotes another fragmentation to zwitterion 1.48. This zwitterion then undergoes another proton transfer to afford the product. In accord with our proposed mechanism, ketone 1.40 h bearing a gem-dimethyl group β - to the carbonyl group does not undergo our cycloisomerization reaction because the required proton transfer (i.e., 1.48 to 1.42a) cannot take place. After our work was published, the Liang group at Guangxi University studied the mechanism our reaction using Density Functional Theory (DFT) calculations. ${ }^{51}$ The results of this report are in accord with our
proposed mechanism, however the authors propose that the isomerization of 1.47 to 1.42a takes place through a 1,5-hydride shift and is not mediated by triethylamine.

Alternative 1,5-hydride shift proposal by Jiang and coworkers

Scheme 5: Proposed mechanism for conversion of ketone 1.40a to furan 1.42a

Interestingly though, the proposed "1,5-hydride shift" utilizes one π-bond and one σ bond of the bond of the cyclopropane ring (i.e., the Walsh orbitals) as the other 2π electron component instead of two π-bonds.

1.5.2. Product Manipulations: Connection to Natural Products

With dihydro-benzofuran 1.42a-1.42f and -indole 1.43a-1.43h in hand, we next investigated transformations of these compounds. Specifically, we were interested in making the connection of these substrates to the ergot alkaloids and (benzo)furan containing natural products. To this end, we investigated four main reactivity modes of these dihydroindole and dihydrobenzofuran substrates: oxidative reactivity, dihydroxylation reactivity, acylation reactivity, and olefin functionalizations (Scheme 6).

Scheme 6: Different reactivity modes of dihydrobenzofuran and -indole subtrates.

Because these compounds are one oxidation level below the fully aromatic benzofurans or indoles, they undergo various complementary modes of reactivity. Dihydroxylation of furan 1.42a proceeded readily resulting in the syn-diol 1.49 where the hydroxyls are disposed anti- relative to the methylenecarboxyethyl group. Performing this reaction on the analogous pyrrole compound 1.43a was met with extreme difficulty (Scheme 7). In this case, the dihydroxylation at room temperature was often accompanied by over oxidation of the diol to the a-hydroxy ketopyrrole 1.56 (3:1 diol to ketoalcohol) after purification by column chromatography.

Scheme 7: Oxidation of dihydropyrrole substrate.

Furan 1.42a also undergoes a clean normal-electron demand Diels-Alder cycloaddition reaction with dimethylacetylene dicarboxylate to give functionalized decaline 1.50 as a mixture of diastereomers (Scheme 6). Furthermore, we found that the double bond in furan 1.42a was also acts as a dienophile in inverse electron demand Diels-Alder cycloaddtion reactions. Thus, furan 1.42a (obtained directly from the cycloisomerization reaction without isolation) reacts with dienophile 1.57 to afford the Diels-Alder adduct 1.58 in 99% yield as a 5.7:1 mixture of diastereomers.

Scheme 8: Inverse electron-demand Diels - Alder cycloaddition reaction

When these cycloaddition reactions were applied to the more electron rich vinylpyrroles, we observed complex mixtures of products that we could not characterize.

We next investigated the acylative reactivity of these compounds. This reaction manifold proved interesting because we anticipated acylation of these partially hydrogenated indole and benzofuran compounds would occur at the 2-position (indole/benzofuran numbering) of these substrates. Thus, this reactivity manifold would be orthoganol to that of indoles and benzofurans and would allow us to access substitution patterns that would be otherwise difficult to obtain starting from the fully
aromatic benzofurans or indoles. As such, taking either furan 1.42a or pyrrole 1.43a and subjecting them to trichloroacetyl chloride in the presence of triethylamine, resulted in clean acylation of both the furan and pyrrole substrates. Reacting the resulting trichloroacetyl-heterocycles with sodium methoxide gave the methyl esters 1.51 and 1.52 in 82% and 73% yields respectively over the two steps. Upon acylation of the N alkoxylprryole substrate, we observed that this compound was much less susceptible to oxidative decomposition and was much easier to handle.

Finally, in order to make the connection between these compounds and ergot alkaloid natural products, we demonstrated that these compounds could be oxidized to the fully aromatic benzofurans and indoles. Thus exposing 1.51 or 1.52 to 2,3 -dichloro5,6 -dicyano-1,4-benzoquinone (DDQ) at $-78{ }^{\circ} \mathrm{C}$ resulted in the oxidation of both acylated compounds 1.53 and 1.54 (Scheme 6) and their nonacylated analogues (e.g., 1.59) (Scheme 9). For the N-alkoxypyrrole substrates, we found that it was critical to perform this reaction at low temperatures in order to isolate significant quantities of the product. Other oxidizing agents such as chloranil were ineffective for this transformation even at room temperature. We then attempted to acylate the resulting N -alkoxyindoles at the 3-positon to arrive at 3,4-disubstituted indoles.

Scheme 9: Oxidation of nonacylated N-alkoxypyrrole substrate 1.43a and attempted acylation.

Though N-akoxyindoles are known to acylate at the 3-positon, we found that under a wide variety of conditions, acylating reagents (e.g., $\mathrm{ClCH}_{2} \mathrm{COCl}$) or brominating reagents (NBS, PyHBr_{3}) were ineffective at functionalizing the 3-position of these compounds. This was a major impediment for accessing ergot alkaloid natural products. We attributed this lack of reactivity to the incipient peri-strain present between the 3- and 4positions in the indole ring reflected in the transition state of these transformations. ${ }^{52}$ Thus, the 4 -functionalization which served as a platform for these investigations, seemed to become a detriment to accessing natural products.

In addition to the above reactivity, we uncovered very interesting reactivity of N alkoxyindoles while trying to access the ergot alkaloids. In addition to the acylation studies, we aimed to functionalize the 3-postion of the N-alkoxyindoles substrates with nitroethylene unit using dimethylaminonitroethylene 1.61. Then, depending on the oxidation level of the substrate, we envisioned carrying out either an oxidative $\mathrm{C}-\mathrm{N}$ (1.63) or $\mathrm{C}-\mathrm{C}$ (1.64) forming reaction to access the aurantioclavine (1.65) or secoergolene skeletons (1.66).

Scheme 10: Proposed route to aurantioclavine and secoergolene type natural products.

In this vein, we attempted to react indole 1.59 with dimethylaminonitroethylene in the presence of trifluoroacetic acid (TFA) to arrive at 1.62. Instead, we observed the clean formation of indole dimer 1.67 within 15 minutes. This structure was confirmed by COSY, NOESY, and LCMS analysis. Removing reagent 1.61 from the reaction, we isolated the same product in 68% yield (Scheme 11). This reactivity was remarkable to us it demonstrates an electrophilic attack of the indole 3-postion on nitrogen! Thus, the nitrogen atom of the N -alkoxyindole becomes electrophilic upon protonation of the methoxy group with a strong Brønsted acid. Substitution reactions on the sp^{2} nitrogen atom of indoles are extremely rare, however this reaction manifold has been well studied by Somei and coworkers and they have demonstrated by (X-ray crystallographic analysis) that these substitution reactions on N-hydroxyl and alkoxy indoles can take place because the N -OR bond actually lies 14° out of plane for these substrates. ${ }^{44}$ Therefore, nucleophiles can indeed interact with the σ^{*} of the N -OR bond whereas in substrates where aromaticity is more pronounced, this would be impossible because the σ^{*} lies in the plan of the molecule. These dimers are furthermore interesting because of their relationship with polymeric indole alkaloids such as psychotrimine 1.68. ${ }^{53}$

Scheme 11: Indole dimerization reactivity. Relationship of dimer to psychotrimine.

Section 1.6. Conclusions

In this chapter, our efforts to develop a concise method to access 4-substituted benzofurans and indoles is described. These studies were pursued because of the prevalence of this motif in natural products such as the ergot alkaloids. We discovered a new cycloisomerization reaction utilizing metal vinylidines to access the 4,5-dihydroindoles or -benzofuran and used these compounds to access the fully aromatic benzofurans and indoles as well as functionalized pyrroles and furan substrates. We also show that the alkoxyindole indole substrates undergo a dimerization reaction to give 1,3-linked indole dimers. In summary, the developed method can be readily applied to the synthesis of natural product scaffolds.

Section 1.7.1. Supporting Information - General Procedures

All reactions were run in flame-dried round-bottom flasks or vials under a nitrogen atmosphere. Reactions were monitored by thin layer chromatography (TLC) on Silicycle Siliaplate ${ }^{\text {TM }}$ glass backed TLC plates (250μ m thickness, 60 Å porosity, F-254 indicator) and visualized using UV irradiation and para-anisaldehyde or KMnO_{4} stain. Dry tetrahydrofuran, triethylamine, and methanol were obtained by passing these previously degassed solvents through activated alumina columns. Dichloromethane was distilled over calcium hydride before use. Irradiation of $\mathrm{W}(\mathrm{CO})_{6}$ was performed in a Luzchem photoreactor at 350 nm . Volatile solvents were removed under reduced pressure on a rotary evaporator. All flash chromatography was done using Sorbent Technologies 60 Å, 230×400 mesh silica gel $(40-63 \mu \mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were taken with Bruker AV3--00, AVB-400, AVQ-400, AV-500, and AV-600 MHz (75, 100, 125, and 150 MHz for ${ }^{13} \mathrm{C}$ NMR) spectrometers in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ as noted. Chemical shifts were measured relative to the shift of the residual solvent (${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3} \delta=7.26, \mathrm{C}_{6} \mathrm{D}_{6} \delta=$ $7.16 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left.\mathrm{CDCl}_{3} \delta=77.00 \mathrm{ppm}\right)$. NMR data are reported as follows: chemical shift (multiplicity, coupling constant, integration). Splitting is reported with the following symbols: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet, $\mathrm{a}=$ apparent, $b=$ broad. IR spectra were taken on a Nicolet 380 spectrometer as thin films on NaCl plates unless otherwise specified. Spectra are reported in frequency of absorption in cm^{-1}. Only selected resonances are reported. High-resolution mass spectra (HRMS) were performed by the mass spectral facility at the University of California, Berkeley.

Section 1.7.2 Supporting information - Experimental Procedures

The synthesis of the [4.1.0]-bicycles has been adapted from Chouraqui and Parrain ${ }^{43}$ and references within.

The reported trimethylsilyl alkyne ($2.0 \mathrm{~g}, 7.2 \mathrm{mmol}$) was dissolved in absolute ethanol $(36 \mathrm{~mL})$ under an atmosphere of nitrogen. Pulverized $\mathrm{K}_{2} \mathrm{CO}_{3}(4.9 \mathrm{~g}, 36 \mathrm{mmol})$ was then added and the suspension was vigorously stirred for 6 hours. The suspension was filtered through Celite and the filtrate concentrated in vacuo. The crude residue was purified via silica gel chromatography (10% to 20% EtOAc: hexanes) to afford terminal alkyne 7a ($1.1 \mathrm{~g}, 5.33 \mathrm{mmol}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.20(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$, 2H), $2.59(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dt, $J=18.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H})$, $2.22(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 200.3,267.5,78.2,71.5,61.6,36.4,32.5,31.3,30.9,20.1$, 18.7, 14.2. IR (thin film) $v_{\text {max }} 3269,2938,2124,1736,1699,1262,1197 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 207.1016, found 207.1019.

S2
1,4-Dioxaspiro[4.5]dec-6-en-8-one ${ }^{54}$ ($3 \mathrm{~g}, 19.5 \mathrm{mmol}$) was dissolved in a mixture of carbon tetrachloride (15 mL) and pyridine (15 mL) under a nitrogen atmosphere and cooled to $0^{\circ} \mathrm{C}$. A solution of iodine ($9.87 \mathrm{~g}, 38.9 \mathrm{mmol}$) in carbon tetrachloride (15 mL) and pyridine (15 mL) was added over 10 minutes. The solution was stirred at room temperature for 2 hours and then diluted with diethyl ether. The organic solution was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 75 \mathrm{~mL})$ and saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \times 75 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, concentrated, filtered, and used without any further purification.

The crude vinyl iodide (19.5 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(684 \mathrm{mg}, 0.98 \mathrm{mmol})$, and Cul (371 $\mathrm{mg}, 1.95 \mathrm{mmol}$) were placed in a dry flask under nitrogen and dissolved in THF (150 mL). The yellow suspension was cooled to $0{ }^{\circ} \mathrm{C}$. Trimethylsilylacetylene ($5.5 \mathrm{~mL}, 39$ mmol) was added followed by slow addition of diisopropylamine ($8.2 \mathrm{~mL}, 58.5 \mathrm{mmol}$) over 1 minute. The solution was allowed to stir for 1.5 hours, then diluted with diethyl ether (200 mL) and washed consecutively with $1 \mathrm{~N} \mathrm{HCl}(200 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$. The organic layer was then dried over MgSO_{4}, filtered, and concentrated in vacuo. Silica gel chromatography of the resulting crude mixture (15% to 25% EtOAc; hexanes) yielded alkyne S1 ($3.4 \mathrm{~g}, 13.6 \mathrm{mmol}, 70 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$6.85(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 194.4,149.1,125.7,103.9,100.5,97.8,65.1,35.2,32.8$, -0.3. IR (thin film) $\mathrm{v}_{\max }$ 2962, 2893, 2157, 1708, 1601, 1340, 1254, 1135, $1082 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 250.1025, found 250.1029.

DBU ($6.1 \mathrm{~mL}, 40.8 \mathrm{mmol}$) was added to a stirring suspension of (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($7.79 \mathrm{~g}, 34 \mathrm{mmol}$) in DCM (100 mL). After 45 minutes, enyne S1 ($3.4 \mathrm{~g}, 13.6 \mathrm{mmol}$) was added and the solution was allowed to stir for 12 hours. The organic solvents were evaporated and then partitioned between ethyl acetate (100 mL) and water (100 mL). The organic layer was washed with 1 N HCl $(100 \mathrm{~mL})$, water (100 mL), dried over MgSO_{4}, filtered, and concentrated. The residue was purified via silica gel chromatography (30% to 50% EtOAc: hexanes) to yield bicycle S2 as a single diastereomer ($3.4 \mathrm{~g}, 10.1 \mathrm{mmol}, 74 \%$). ${ }^{1} \mathrm{H} \mathbf{N M R ~ (4 0 0 ~ M H z , ~}$ $\left.\mathrm{CDCl}_{3}\right) \delta 4.23-3.97(\mathrm{~m}, 6 \mathrm{H}), 2.62(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H})$, 1.85 (dd, $J=8.4,5.2, \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.6,166.3,104.9,98.3,88.6,98.3,88.6,65.1,65.0,61.6,37.1,34.3,34.0$, 32.3, 29.3, 14.2, -0.2. IR (thin film) $v_{\max }$ 2958, 2889, 2178, 1744, 1712, 1454, 1368, 1348, 1254, 1201, 1168, $1091 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 336.1393$, found 336.1400.

Silyl alkyne S2 (1.0 g, 2.97 mmol) was dissolved in absolute ethanol (14 mL) under an atmosphere of nitrogen. Pulverized $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g}, 8.91 \mathrm{mmol})$ was then added and the suspension was vigorously stirred for 5 hours at $23^{\circ} \mathrm{C}$. The suspension was filtered through Celite and the filtrate concentrated in vacuo. The crude residue was purified via silica gel chromatography (25% to 40% EtOAc: hexanes) to afford terminal alkyne S3 ($650 \mathrm{mg}, 2.46 \mathrm{mmol}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.22$ (q, J=6.8 Hz, 2H), 4.15-
$4.00(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{ad}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{ad}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}$, 1 H), 1.89 (add, $J=9.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.6,166.6,104.8,76.9,72.2,65.2,65.0,61.9,37.0,34.2,33.3,31.6,29.2,14.2$. IR (thin film) $v_{\max } 3260,2978,2893,2120,1744,1716,1373,1344,1275,1238,1201 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 264.0998, found 264.1005.

S5

DBU ($4.9 \mathrm{~mL}, 32.7 \mathrm{mmol}$) was added to a stirring suspension of (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($6.24 \mathrm{~g}, 27.3 \mathrm{mmol}$) in DCM (100 $\mathrm{mL})$. After 45 minutes, the reported enyne ${ }^{55}(2.4 \mathrm{~g}, 10.9 \mathrm{mmol})$ was added and the solution was allowed to stir for 12 hours. The organic solvents were evaporated and then partitioned between ethyl acetate (100 mL) and water (100 mL). The organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$, water (100 mL), dried over MgSO_{4}, filtered, and concentrated. The residue was purified via silica gel chromatography (15% to 20% EtOAc: hexanes) to yield bicycle S4 as a single diastereomer ($1.83 \mathrm{~g}, 5.97 \mathrm{mmol}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.15(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 3 \mathrm{H}), 1.44$ $(\mathrm{m}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 200.2, 167.1, 99.5, 88.1, 61.4, 42.8, 34.1, 33.0, 31.7, 31.4, 29.2, 28.4, 26.5, 14.2, -0.1. IR (thin film) $v_{\max }$ 2954, 2897, 2165, 1736, 1704, 1462, 1368, 1340, 1242, 1205, $1176 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 306.1651$, found 306.1659.

Silyl alkyne S4 ($1.83 \mathrm{~g}, 5.97 \mathrm{mmol}$) was dissolved in absolute ethanol (30 mL) under an atmosphere of nitrogen. Pulverized $\mathrm{K}_{2} \mathrm{CO}_{3}(2.48 \mathrm{~g}, 17.9 \mathrm{mmol})$ was then added and the suspension was vigorously stirred for 4 hours. The suspension was filtered through Celite and the filtrate concentrated in vacuo. The crude residue was purified via silica
gel chromatography (25% EtOAc: hexanes) to afford terminal alkyne S5 (1.16 g, 4.95 $\mathrm{mmol}, 83 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.20(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (m, 3H), 2.27 (s, 1H), $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 200.2,167.2,77.9,71.6,61.4,42.7,33.2,32.7,31.2$, 30.7, 29.1, 28.3, 26.4, 14.1. IR (thin film) $\mathrm{n}_{\max } 3265,2962,2901,2872,2120,1728$, 1699, 1471, 1373, 1340, 1291, 1209, $1185 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 234.1256, found 234.1261 .

TBSOTf ($778 \mu \mathrm{~L}, 3.39 \mathrm{mmol}$) was added dropwise to a stirring solution of ketone 7 a $(500 \mathrm{mg}, 2.42 \mathrm{mmol})$ and triethylamine ($540 \mu \mathrm{~L}, 3.87 \mathrm{mmol}$) in dichloromethane (11.5 mL) at $0^{\circ} \mathrm{C}$. After 15 minutes, the solution was washed with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was then extracted with dichloromethane, dried over MgSO_{4}, filtered, and concentrated.
m-CPBA (recrystallized, $543 \mathrm{mg}, 3.15 \mathrm{mmol}$) was added in a single portion to a solution of crude silyl enol ether in dichloromethane (11.5 mL) at $0^{\circ} \mathrm{C}$. After 1 hour, excess peracid was quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$. The mixture was washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated. Silica gel column chromatography of the residue (5% to 10% EtOAc: hexanes) afforded TBS ether S6 ($550 \mathrm{mg}, 1.63 \mathrm{mmol}, 68 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.20$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.98 (dd, $J=8.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H})$, $2.26(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~d} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.88 (s, 9H), 0.12 (s, 3H), 0.06 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 198.9, 167.4, 77.8, 71.6, 71.3, 61.6, 34.7, 32.2, 31.8, 31.4, 25.6, 18.8, 18.3, 14.2, -4.7, -5.5. IR (thin film) $v_{\max } 3314,3273,2954,2925,2889,2851,2128,1720,1479,1258,1185 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NaSi}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 359.1160$, found 359.1169.

S8
4-Methoxycyclohex-2-en-1-one ${ }^{56}$ ($800 \mathrm{mg}, 6.34 \mathrm{mmol}$) was dissolved in a mixture of dichloromethane (6.5 mL) and pyridine (6.5 mL) under a nitrogen atmosphere and cooled to $0{ }^{\circ} \mathrm{C}$ while stirring. lodine ($3.22 \mathrm{~g}, 12.7 \mathrm{mmol}$) was added in portions over 10
minutes. The solution was stirred at room temperature for 1 hour, then diluted with diethyl ether. The organic solution was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 75 \mathrm{~mL})$ and saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \times 75 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered, concentrated, and used without any further purification.

The crude vinyl iodide (6.34 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($222 \mathrm{mg}, 0.32 \mathrm{mmol}$), and Cul (120 $\mathrm{mg}, 1.95 \mathrm{mmol}$) were placed in a dry flask under nitrogen and dissolved in THF (48 mL). The yellow suspension was cooled to $0^{\circ} \mathrm{C}$. Trimethylsilylacetylene ($1.8 \mathrm{~mL}, 12.7 \mathrm{mmol}$) was added followed by diisopropylamine ($2.7 \mathrm{~mL}, 19 \mathrm{mmol}$) over 1 minute. The solution was allowed to stir for 2 hours, then diluted with diethyl ether (100 mL) and washed consecutively with $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ and brine (100 mL), then dried over MgSO_{4}, filtered, and concentrated in vacuo. Silica gel chromatography of the resulting crude mixture (15% to 25% EtOAc: hexanes) yielded alkyne $\mathbf{S 7}$ ($580 \mathrm{mg}, 2.61 \mathrm{mmol}, 70 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~m}, 1 \mathrm{H}), 4.08$ (ddd, $J=9.6,4.8,3.2$ Hz, 1H), 3.42 (s, 3H), 2.64 (ddd, $J=18.4,4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H})$, 0.20 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.3,153.6,125.1,99.1,98.2,74.5,56.6$, 35.1, 28.3, -0.3. IR (thin film) $\mathrm{v}_{\max }$ 2954, 2901, 2815, 2153, 1691, 1458, 1344, 1242, $1103 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{NaSi}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 245.0968$, found 245.0966 .

S8

DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

S9

S10

DBU ($1.2 \mathrm{~mL}, 7.83 \mathrm{mmol}$) was added to a suspension of (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($1.5 \mathrm{~g}, 6.53 \mathrm{mmol}$) in DCM (23 mL). After 45 minutes, enyne S7 ($580 \mathrm{mg}, 2.61 \mathrm{mmol}$) was added and the solution was allowed to stir for 12 hours. The organic solvents were evaporated and then partitioned between ethyl acetate (50 mL) and water (50 mL). The organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$, water (50 mL), dried over MgSO_{4}, filtered, and concentrated. The residue was purified via silica gel chromatography (30% diethyl ether: hexanes) to yield syn-bicycle S8 ($318 \mathrm{mg}, 1.03$ mmol, 39\%) and anti-bicycle S9 ($425 \mathrm{mg}, 1.38 \mathrm{mmol}, 53 \%$)

S8: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.19(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H})$, 2.48 (m, 1H), 2.45 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (ddd, $J=18.4,6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (m, 1 H), 1.63 (dddd, $J=14.8,11.6,6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.2,166.6,98.9,88.2,71.0,61.5,56.3,34.5,33.1$, 32.6, 31.5, 22.9 14.2, -0.2. IR (thin film) $v_{\max }$ 2958, 2901, 2815, 2173, 1736, 1699, 1467, 1377, 1246, $1181 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{NaSi}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z}$ 331.1336 found 331.1335 .

S9: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=12,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}$, 3 H), $2.86(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43(\mathrm{ddd}, J=17.2,8.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22(\mathrm{ddd}, J=16.8,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.13$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.7,166.8,98.9,88.5,70.6,61.6$, 56.3, 34.6, 33.4, 33.3, 31.3, 27.1 14.3, -0.2. IR (thin film) $\mathrm{v}_{\max }$ 2958, 2892, 2819, 2169, 1740, 1704, 1434, 1250, 1193, $1082 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{NaSi}(\mathrm{M}+\mathrm{Na})^{+}$ $\mathrm{m} / \mathrm{z} 331.1336$ found 331.1336 .

Anti diastereomer S9 ($425 \mathrm{mg}, 1.38 \mathrm{mmol}$) was dissolved in absolute ethanol (6.5 mL) under an atmosphere of nitrogen. Pulverized $\mathrm{K}_{2} \mathrm{CO}_{3}(953 \mathrm{mg}, 6.9 \mathrm{mmol}$) was then added and the suspension was vigorously stirred for 7 hours. The suspension was filtered through Celite and the filtrate concentrated in vacuo. The crude residue was purified via silica gel chromatography (25% to 33% EtOAc: hexanes) to afford terminal alkyne S10 ($180 \mathrm{mg}, 0.76 \mathrm{mmol}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.11$ ($\mathrm{m}, 2 \mathrm{H}$), 3.91 (aq, 1H), $3.30(\mathrm{~s}, 3 \mathrm{H}$), $2.76(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (ddd, $J=$ $17.2,8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 2.16$ (ddd, $J=17.2,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.7,166.9,77.2$, 71.8, 70.2, 61.5, 56.1, 34.3, 32.9, 32.4, 30.3, 26.8 14.0. IR (thin film) $n_{\text {max }} 3265,2987$, 2934, 2905, 2827, 2247, 2124, 1736, 1712, 1442, 1373, 1266, $1209 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 259.0941$ found 259.0939.

2-Bromocyclohept-2-en-1-one ${ }^{57}$ ($3 \mathrm{~g}, 15.9 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($558 \mathrm{mg}, 0.8 \mathrm{mmol}$), and $\mathrm{Cul}(302 \mathrm{mg}, 1.29 \mathrm{mmol})$ were placed in a dry flask under nitrogen and dissolved in THF (110 mL). The yellow suspension was cooled to $0^{\circ} \mathrm{C}$. Trimethylsilylacetylene (4.5 $\mathrm{mL}, 31.8 \mathrm{mmol}$) was added followed by diisopropylamine ($6.7 \mathrm{~mL}, 47.7 \mathrm{mmol}$) over 1 minute. The solution was allowed to warm to room temperature and stir for 12 hours. The organic solution was diluted with diethyl ether (200 mL) and washed consecutively with $1 \mathrm{~N} \mathrm{HCl}(200 \mathrm{~mL})$ and brine (200 mL), then dried over MgSO_{4}, filtered, and
concentrated in vacuo. Silica gel chromatography of the resulting crude mixture (10% to 20\% EtOAc: hexanes) yielded alkyne S11 ($1.4 \mathrm{~g}, 6.8 \mathrm{mmol}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 4 \mathrm{H})$, 0.19 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 200.7,151.9,128.6,101.6,95.1,42.3,28.5$, 24.8, 21.4, -0.13. IR (thin film) $\mathrm{v}_{\text {max }}$ 2950, 2860, 2149, 1691, 1462, 1364, $1250 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{OSi}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 206.1127, found 206.1127.

DBU ($1.1 \mathrm{~mL}, 7.26 \mathrm{mmol}$) was added to a suspension of (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($1.38 \mathrm{~g}, 6.05 \mathrm{mmol}$) in DCM (23 mL). After 45 minutes, enyne S11 ($500 \mathrm{mg}, 2.42 \mathrm{mmol}$) was added and the solution was allowed to stir for 24 hours. The organic solvents were evaporated and then partitioned between ethyl acetate $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(50$ mL), dried over MgSO_{4}, filtered, and concentrated. The residue was purified via silica gel chromatography (10% EtOAc: hexanes) to yield bicycle S12 as a single diastereomer ($480 \mathrm{mg}, 1.64 \mathrm{mmol}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.11$ (m, 2H), 3.00 (td, $J=11.2,4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (ddd, $J=15.6,6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 1H), 2.28 (m, 1H), 1.96 (ddd, $J=11.2,5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (m, 1H), 1.70 (m, 1H), 1.46 ($\mathrm{m}, 1 \mathrm{H}$), $1.32(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.3, 168.2, 100.1, 88.3, 60.8, 41.2, 37.6, 33.8, 30.1, 28.6, 25.7, 25.4, 14.2, -0.3. IR (thin film) $v_{\max }$ 2962, 2934, 2851, 2161, 1740, 1720, 1454, 1246, $1181 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 293.1567, found 293.1571.

Silyl alkyne S12 (480 mg, 1.64 mmol) was dissolved in absolute ethanol (8 mL) under an atmosphere of nitrogen. Pulverized $\mathrm{K}_{2} \mathrm{CO}_{3}(682 \mathrm{mg}, 4.92 \mathrm{mmol})$ was then added and the suspension was vigorously stirred for 12 hours. The suspension was filtered through Celite and the filtrate concentrated in vacuo. The crude residue was purified via silica gel chromatography (15\% to 20\% EtOAc: hexanes) to afford terminal alkyne S13 (210
$\mathrm{mg}, 0.95 \mathrm{mmol}, 58 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$ (td, J $=12,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=10.8,7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ $(\mathrm{m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{aq}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}$, $1 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) δ 201.4, 168.6, 78.8, 71.8, 41.2, 36.7, 33.2, 30.3, 28.5, 25.6, 25.5, 14.2. IR (thin film) $\mathrm{v}_{\max }$ 3269, 2983, 2934, 2860, 2116, 1736, 1720, 1446, 1421, 1323, 1270, $1193 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 220.1099$, found 220.1103.

Representative Procedure for the Synthesis of Oxime Ethers:

To a flame-dried round bottom flask was added ketone $7 \mathrm{a}(2.00 \mathrm{~g}, 9.70 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}$ ($24.2 \mathrm{~mL}, 1: 2$). Sodium acetate trihydrate ($3.74 \mathrm{~g}, 45.6 \mathrm{mmol}$) was then added to the mixture followed by methoxylamine hydrochloride ($0.696 \mathrm{~g}, 8.28 \mathrm{mmol}$). The solution was stirred for 3.5 hours at room temperature, after which the organic solvent was removed under reduced pressure. The remaining aqueous solvent was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL} \times 3)$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by silica gel chromatography (33% EtOAc: hexanes) to yield oxime S 14 as a crystalline white solid ($1.46 \mathrm{~g}, 8.2 \mathrm{mmol}, 85 \%$, mixture of E and Z diastereomers). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.25-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{ad}, \mathrm{J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.29$ $(\mathrm{m}, 1 \mathrm{H}), 2.23-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.62(\mathrm{~m}$, $1 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer reported) $\delta 168.6,154.2,80.8,69.7,61.9,61.2,30.6,29.2,24.3,21.8,20.14,16.5,14.2$ IR (thin film) $\mathrm{v}_{\max } 3276,2939,2121,2819,1732,1369,936 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}$ 236.1281, found 236.1283.

S1

The general procedure for the synthesis of oximes was followed using ketone 7a (50 $\mathrm{mg}, 0.24 \mathrm{mmol}$), O-benzylhydroxylamine hydrochloride ($33 \mathrm{mg}, 0.21 \mathrm{mmol}$), and sodium acetate trihydrate ($93 \mathrm{mg}, 1.14 \mathrm{mmol}$) yielding benzyl oxime $\mathrm{S} 15(61 \mathrm{mg}, 0.20 \mathrm{mmol}$, 95%, mixture of E and Z diastereomers). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.28$ (m, $5 \mathrm{H}), 5.18(\mathrm{dt}, J=16.2,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{ad}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39 (ad, J = 3.0 Hz, 1H), $2.32-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.78(\mathrm{~m}, 3 \mathrm{H})$,
$1.62-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of diastereomers reported) δ 169.0, 168.6, 154.4, 153.5, 138.3, 137.5, 128.3, 128.3, 128.1, 127.8, 127.3, 127.3, 80.7, 80.3, 76.3, 75.7, 69.7, 67.9, 61.2, 61.0, 30.5, 30.3, 29.3, 28.4, 27.1, 24.4, 22.1, 21.0, 20.6, 20.1, 19.4, 16.5, 14.3.14.2. IR (thin film) $\mathrm{v}_{\max }=$ 3284, 3063, 2039, 2935, 2873, 2120, 1732, 1369, $959 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: m / z 312.1594$, found 312.1597.

The representative procedure for the synthesis of oximes was followed using ketone 7a ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$), O-tert-butylhydroxylamine hydrochloride ($26 \mathrm{mg}, 0.21 \mathrm{mmol}$), and sodium acetate trihydrate ($93.5 \mathrm{mg}, 1.14 \mathrm{mmol}$), yielding tert-butyl oxime S16 (49 mg , $0.15 \mathrm{mmol}, 73 \%$, mixture of E and Z diastereomers). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.31$ - $4.15(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{ad}, \mathrm{J}=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.16(\mathrm{~m}, 1 \mathrm{H})$, 2.10 (ddd, $J=18.6,12.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.62-$ $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer reported) δ 169.0, 151.4, 81.2, 78.8, 69.1, 61.1, 30.3, 29.3, 27.6, 25.1, 21.8, 20.3, 16.7, 14.3. IR (thin film) $\mathrm{v}_{\max }=3287,2977,2934,2123,1733,1364,962 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 278.1751$, found 278.1752.

The general procedure for the synthesis of oximes was followed using ketone S3 (200 $\mathrm{mg}, 0.78 \mathrm{mmol}$), methoxylamine hydrochloride ($70 \mathrm{mg}, 0.84 \mathrm{mmol}$), and sodium acetate trihydrate ($137 \mathrm{mg}, 1.66 \mathrm{mmol}$) affording methyl oxime $\mathbf{S 1 7}(201 \mathrm{mg}, 0.71 \mathrm{mmol}, 91 \%$, mixture of E and Z diastereomers). 'H NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 4.24-4.12$ (m, 3H), $4.06-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.96(\mathrm{~m} 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{dt}, J=18.6,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.57-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 1.72$ $-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major diastereomer reported) $\delta 167.6,152.3,105.6,79.4,70.3,65.0,64.9,62.0,61.5$, 35.1, 31.9, 27.5, 26.5, 20.5, 14.2. IR (thin film) $\mathrm{v}_{\text {max }}=3280,2960,2895,2123,1731$,

1369, $962 \mathrm{~cm}^{-1}$ HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}$ 294.1336, found 294.1331.

To a solution of ketone $\mathbf{S 5}(200 \mathrm{mg}, 0.85 \mathrm{mmol})$ in a mixture of methanol ($870 \mu \mathrm{~L}$) and water ($600 \mu \mathrm{~L}$) was added sodium acetate trihydrate ($277 \mathrm{mg}, 2.04 \mathrm{mmol}$) and methoxylamine hydrochloride ($85 \mathrm{mg}, 1.02 \mathrm{mmol}$). After stirring for 12 hours, the solution was diluted with water (2 mL), extracted into dichloromethane ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4}, filtered, and concentrated. The crude oxime was purified by silica gel chromatography (15% EtOAc: hexanes) to yield the pure oxime $\mathbf{S 1 8}(112 \mathrm{mg}, 0.42$ $\mathrm{mmol}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.14(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2.4 \mathrm{H}), 3.85(\mathrm{~s}, 0.6 \mathrm{H})$, $2.51(\mathrm{~m}, 0.8 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1.8 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1.8 \mathrm{H}), 1.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.2 \mathrm{H})$, 1.67 (d, J = $6.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 1.42(\mathrm{~m}, 0.2 \mathrm{H}), 1.26(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~m}, 0.2 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H})$, 1.01 (s, 2.4 H), 0.97 (s, 0.6 H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *denotes oxime isomer δ 168.8*, 168.3, 153.3, 152.7*, 80.6, 80.2*, 69.9, 67.6*, 61.8, 61.6*, 61.1, 60.9*, 40.5, $38.8^{*}, 33.3^{*}, 30.5,30.4^{*}, 29.5,29.4,29.38^{*}$, 28.4** 28.1, 27.7*, 26.1, 25.4, 25.1*, 21.3*, 19.1, 14.2*, 14.1. IR (thin film) $v_{\text {max }} 3276,2961,2900,2810,2116,1732,1462,1433$, 1302, 1204, $1045 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 264.1594$, found 264.1593.

To a solution of ketone $\mathbf{S 1 0}(75 \mathrm{mg}, 0.32 \mathrm{mmol})$ in a mixture of methanol $(700 \mu \mathrm{~L})$ and water ($220 \mu \mathrm{~L}$) was added sodium acetate trihydrate ($105 \mathrm{mg}, 0.72 \mathrm{mmol}$) and methoxylamine hydrochloride ($32 \mathrm{mg}, 0.38 \mathrm{mmol}$). After stirring for 12 hours, the solution was diluted with water (1 mL), extracted into dichloromethane ($3 \times 5 \mathrm{~mL}$), washed with saturated NaHCO_{3} dried over MgSO_{4}, filtered, and concentrated. The resulting oxime ($\mathbf{S 1 9}$) was used without any further purification ($80 \mathrm{mg}, 0.30 \mathrm{mmol}$,

94\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dt}, J=9.2,4.8 \mathrm{~Hz}$, 1 H), 3.37 (s, 3H), $2.64(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.53(\mathrm{dt}, J=18,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,153.1,79.9,71.5,70.1,61.9,61.4,56.4,31.8$, 29.6, 25.8, 23.8, 19.7, 14.2. IR (thin film) $v_{\max } 3269,2929,2892,2819,2120,1732$, 1438, 1295, $1205 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 266.1387$, found 266.1383.

To a solution of ketone $\mathbf{S 1 3}$ ($80 \mathrm{mg}, 0.36 \mathrm{mmol}$) in a mixture of methanol ($800 \mu \mathrm{~L}$) and water ($250 \mu \mathrm{~L}$) was added sodium acetate trihydrate ($117 \mathrm{mg}, 0.86 \mathrm{mmol}$) and methoxylamine hydrochloride ($36 \mathrm{mg}, 0.43 \mathrm{mmol}$). After stirring for 12 hours, the solution was diluted with water (1 mL), extracted into dichloromethane ($3 \times 5 \mathrm{~mL}$), washed with saturated NaHCO_{3}, dried over MgSO_{4}, filtered, and concentrated. The crude oxime was purified by silica gel chromatography (10% EtOAc: hexanes) to yield the pure oxime S20 ($90 \mathrm{mg}, 0.36 \mathrm{mmol}$, quantitative). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.20$ (m, 2H), 3.85 (s, 3H), 2.95 (ddd, $J=14,7.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.38(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.3,156.1,81.4,69.3,61.7$, 60.9, 34.6, 30.3, 28.3, 28.2, 27.5, 25.9, 24.7, 14.2. IR (thin film) $\mathrm{v}_{\max } 3285,2933,2851$, 2810, 2116, 1736, 1450, 1290, 1184, $1053 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}$ $(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 250.1438$ found 250.1436 .

S1

S22

To a solution of ketone $\mathbf{S 1}$ ($200 \mathrm{mg}, 0.970 \mathrm{mmol}$) in a mixture of methanol (1 mL) and water ($700 \mu \mathrm{~L}$) was added sodium acetate trihydrate ($175 \mathrm{mg}, 2.13 \mathrm{mmoL}$) and hydroxylamine hydrochloride $(74.0 \mathrm{mg}, 1.02 \mathrm{mmol})$. The heterogenous mixture was allowed to stir overnight upon which it was diluted with deionized $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$ and dried over MgSO_{4} and concentrated. The crude hydroxylamine was used in the next step without further purification.

To a solution of the crude hydroxylamine ($50 \mathrm{mg}, 0.23 \mathrm{mmol}$) in THF (1 mL) was added 4-dimethylaminopyridine (2 mg) followed by acetic anhydride ($45 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$) and
then triethylamine ($64 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$). The solution was stired for 12 hours upon which it was diluted with ethylacetate $(3 \mathrm{~mL})$ then washed with saturated $\mathrm{NaHCO}_{3}(3 \mathrm{~mL}, \mathrm{x} 3)$. The organic layer was then dried over MgSO_{4} and then purified by silica gel chromatography (50\% EtOAc:Hex) to afford hydrazone S22 (40 mg, 66\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ $4.33-3.95(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{dt}, J=18.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (dt, $J=6.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.38-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) 1.93(\mathrm{dt}, J=8.1,4.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.76-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.5,168.0$, 162.7, 79.2, 70.8, 61.4, 30.4, 29.4, 24.3, 23.1, 19.8, 19.7, 16.2, 14.2 ppm IR (thin film) $\mathrm{V}_{\max } \mathrm{cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 263.1158$, found 206.0941.

S1

S23

To a round bottom flask containing ketone $\mathbf{S 1}(500 \mathrm{mg}, 2.42 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ and water (4 mL) was added sodium acetate ($1.09 \mathrm{~g}, 13.3 \mathrm{mmol}$) and then phenylhydroxylamine hydrochloride ($388 \mathrm{mg}, 2.66 \mathrm{mmol}$). The mixture was then concentrated to remove methanol and then diluted with deionized water (6 mL). The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL}, \mathrm{x} 3)$ dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and then purified by silica gel chromatography (25% EtOAc in Hexanes) to afford oxime ether S23 ($704 \mathrm{mg}, 97 \%$) as an amorphous white solid. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13-6.98(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.88$ (ddd $J=18.6,5.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.64-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (ddd $J=18.5,11.9,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.38-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (150 MHz, CDCl_{3}) 168.8, 168.5, 159.4, 159.2, 157.7, 157.0, 129.3, 129.2, 122.2, 122.1, 114.7, 114.6, 80.2, 79.9, 70.2, 68.2, 21.4, 61.2, 30.6, 30.4, 29.4, 28.4, 26.9, 24.7, 22.5, 20.9, 20.8, 20.1, 19.2, 16.5, 14.6, 14.3; IR (ATIR) 3289, 3062, 3038, 2979, 2939, 2872, 1727, 1589, 1486, $1197 \mathrm{~cm}^{-1}$; HRMS (ESI) cacld for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{1}$ $(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 298.1438, found 298.1436.

Representative Procedure for Synthesis of 4,5-Dihydrobenzo[b]furans:

A dry sealed vial was charged with $\mathrm{W}(\mathrm{CO})_{6}(10 \mathrm{~mol} \%)$ and a stir bar, then evacuated and placed under a nitrogen atmosphere. Dry THF ($4.6 \mathrm{~mL} / \mathrm{mmol}$ substrate) was added and the solution was irradiated at 350 nm for 2 hours. The vial was removed and a solution of cycloisomerization substrate and $\mathrm{Et}_{3} \mathrm{~N}$ (3 eq) in THF ($4.6 \mathrm{~mL} / \mathrm{mmol}$ substrate) was added. The yellow solution turned dark orange/red and was allowed to stir for 12 hours. Upon completion, the solvents were removed in vacuo and purified via silica gel chromatography as noted.

Following the general procedure, ketone S1 ($500 \mathrm{mg}, 2.42 \mathrm{mmol}$) was cyclized to dihydrobenzofuran $\mathbf{S 2 4}$ ($490 \mathrm{mg}, 2.36 \mathrm{mmol}, 98 \%$). Purification was accomplished with 5% EtOAc: hexanes. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.27(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{ddd}, J=9.3,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{ap}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (m, 1H), 2.54 (dd, $J=15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=15.3,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right) \delta 172.4,150.2$, 140.6, 123.9, 119.4, 117.8, 109.6, 60.4, 39.0, 30.1, 29.2, 14.2. IR (thin film) $\mathrm{v}_{\max }$ 2991, 2933, 3872, 1732, 1364, 1266, $1172 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 206.0943, found 206.0941.

Following the general procedure, ketone $\mathbf{S 4}$ ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$) was cyclized to dihydrobenzofuran S25 ($92 \mathrm{mg}, 0.35 \mathrm{mmol}, 92 \%$). Purification was accomplished with 15% to 25% EtOAc: hexanes. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.52 (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.9$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (q, $J=7.2$ Hz, 2H), 4.08-3.84 (m, 4H), 3.54 (at, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (dd, $J=16,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (dd, $J=16,8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5$, 147.9, 141.9, 125.2, 120.5, 120.2, 110.5, 108.8, 65.3, 64.2, 60.4, 39.0, 34.2, 14.1. IR (thin film) $v_{\max } 3146,2987,2889,1936,1732,1487,1372,1275,1156,1103 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 264.0998, found 264.1000.

Following the general procedure, ketone $\mathbf{S 6}(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ was cyclized to dihydrobenzofuran $\mathbf{S 2 7}$ ($97 \mathrm{mg}, 0.41 \mathrm{mmol}, 97 \%$). Purification was accomplished with 5% EtOAc: hexanes. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01$ (dd, J $=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=15,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=14.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.23$ ($\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $1.11(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3$, 149.1, 140.6, 136.5, 119.5, 115.4, 110.9, 60.4, 40.2, 36.6, 35.2, 27.5, 23.7, 14.1. IR (thin film) $\mathrm{v}_{\max }$ 2966, 2929, 2872, 1740, 1373, 1287, 1246, $1168 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 234.1256, found 234.1255.

S7
S27

Following the general procedure, ketone $\mathbf{S 7}(200 \mathrm{mg}, 0.59 \mathrm{mmol})$ and $\mathrm{W}(\mathrm{CO})_{6}(42 \mathrm{mg}$, $0.12 \mathrm{mmol}, 20 \mathrm{~mol} \%$) used to afford dihydrobenzofuran $\mathbf{S 2 7}$ ($190 \mathrm{mg}, 0.56 \mathrm{mmol}$, 95%). Purification was accomplished with 10% EtOAc: hexanes. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.24 (p, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (ddd, $J=16.4,7.6,4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54 (dd, $J=15.2,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{dd}, \mathrm{J}=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=16.4,7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 0.97 ($\mathrm{s}, 9 \mathrm{H}$), 0.17 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.4, 147.3, $142.6,140.8,122.5,109.8,100.5,60.3,38.6,29.7,29.5,25.6,18.3,14.2,-4.69,-4.73$. IR (thin film) $\mathrm{v}_{\max }$ 2958, 2929, 2852, 1945, 1736, 1622, 1475, 1446, 1377, 1246, 1201 cm^{-1}. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 336.1757$, found 336.1757.

Following the general procedure, ketone $\mathbf{S 1 1}$ ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$) was cyclized to dihydrobenzofuran S28 ($40 \mathrm{mg}, 0.17 \mathrm{mmol}, 81 \%$). Purification was accomplished with 25\% EtOAc: hexanes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.22$ (s, 1H), 6.40 (dd, J = 10, 1.2 $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=10,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (ddd, $J=7.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.12(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{dd}, J=16,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$
(dd, $J=16,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9$, 149.3, 141.3, 125.8, 120.0, 118.4, 110.4, 77.6, 60.3, 56.8, 33.1, 31.9, 14.2. IR (thin film) $v_{\max }$ 2983, 2929, 2815, 1924, 1732, 1364, 1254, 1168, $1099 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 236.1049, found 236.1053.

Following the general procedure, ketone $\mathbf{S 1 4}$ ($100 \mathrm{mg}, 0.45 \mathrm{mmol}$) was cyclized to dihydrobenzofuran $\mathbf{S 2 9}$ ($90 \mathrm{mg}, 0.41 \mathrm{mmol}, 90 \%$). Purification was accomplished with 5% EtOAc: hexanes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.0$ Hz, 2H), 3.36 (m, 1H), 2.57 (dd, J = 15.6, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.26$ (t, J = 7.0 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.4,149.2,140.2,128.6,125.1$, 119.4, 112.4, 60.4, 40.7, 32.6, 28.6, 26.9, 14.2. IR (thin film) $\mathrm{v}_{\max } 2987,2925,1928$, 1736, 1503, 1373, 1283 1193, $1156 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 221.1172, found 221.1181 .

Note: The cycloisomerization reaction of oximes were performed and worked up in the dark, and the product N-alkoxydihydroindole was stored in an amber vial at $-25^{\circ} \mathrm{C}$.

Following the general procedure, oxime $\mathbf{S 1 5}$ ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$) was cyclized to dihydroindole S30 ($36 \mathrm{mg}, 0.15 \mathrm{mmol}, 72 \%$). Purification was accomplished with 5% EtOAc: hexanes. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dt}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.96 (s, 3H), 3.269 (apparent p, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59 (dd, $J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (dddd, $J=17.4,7.8,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (dd, $J=15.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15 (dddd, $J=$ $16.8,8.4,4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7$, 123.3, 122.2, 116.06, 115.2, 113.3, 101.4, 67.3, 60.2, 39.4, 30.4, 30.0, 14.2. IR (thin film) $\mathrm{v}_{\text {max }}=3446.1,3131.8,2979.5$, 2937.4, 2868.6, 2822.1, 1923.2, $1732.2 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}$ 236.1281, found 236.1282.

Following the general procedure, oxime S17 ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) was cyclized to afford the desired dihydroindole S31 ($35 \mathrm{mg}, 0.11 \mathrm{mmol}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, 1 H), 5.77 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dt}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.24(\mathrm{ap}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dddd, $J=16.8,7.2,4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (dd, $J=15.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.12 (dddd, $J=$ $16.8,8.4,4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8$, 134.4, 129.5, 129.1, 128.5, 128.1, 127.3, 124.0, 121.8, 115.9, 115.5, 114.3, 101.3, 81.8, 60.2, 39.4, 30.4, 30.1, 14.2. IR (thin film) $\mathrm{n}_{\max }=3420,2033,2928,1732 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 312.1594$, found 312.1591.

Following the general procedure, oxime $\mathbf{S 1 7}$ ($40 \mathrm{mg}, 0.14 \mathrm{mmol}$) was cyclized to dihydroindole S32 ($32 \mathrm{mg}, 0.11 \mathrm{mmol}, 80 \%$). Purification was accomplished with 5% EtOAc: hexanes. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.53(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dt}, J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (qd, $J=7.2,1.2$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.26(\mathrm{ap}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dddd}, J=16.8$, $7.8,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (dd, $J=15.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (dddd, $J=16.8,8.4,4.2,1.8$, $1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.9,126.2$, 121.2, 117.7, 117.0, 115.6, 100.7, 84.7, 60.1, 39.4, 30.3, 30.2, 27.2, 14.2. IR (thin film) $\mathrm{v}_{\max }=3289$, 2980, 2934, 1924, $1733 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: m / z 278.1751, found 278.1749.

A solution of N-methoxydihydroindole in DCM ($250 \mu \mathrm{~L}$) (synthesized using oxime S18 ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$, following the representative procedure) was added to a suspension of saturated aqueous oxalic acid ($50 \mu \mathrm{~L}$) and silica gel (100 mg) in dichloromethane $(250 \mu \mathrm{~L})$ that was allowed to premix for 15 minutes. After 1 hour, the reaction was then quenched with saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, filtered through silica with EtOAc, and purified by silica gel chromatography (33% to 50% EtOAc: hexanes) to afford the desired indole S33 (29 mg, $0.1 \mathrm{mmol}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (t, $J=$ $4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~m}, 4 \mathrm{H}), 3.18(\mathrm{bs}, 1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.5,150.5,127.7,125.1,124.1,114.5$, $110.4,107.7,95.8,71.8,65.9,61.5,61.0,32.8,14.1$. IR (thin film) $v_{\max }=3447,3128$, 2979, 2938, 1918, $1727 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: \mathrm{m} / \mathrm{z}$ 316.1155, found 316.1158.

Following the general procedure, oxime S19 ($60 \mathrm{mg}, 0.23 \mathrm{mmol}$) was cyclized to the desired dihydroindole S34 ($45 \mathrm{mg}, 0.17 \mathrm{mmol}, 75 \%$) after purification by silica gel chromatography (10\% EtOAc: hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.57$ (d, $J=3.2$ Hz, 1H), $6.28(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.93 (s, 3H), 2.99 (dd, $J=10,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 (dd, $J=14.8,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=14.4,10 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}$, 3 H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7$, 134.6, 122.1, 116.2, 113.3, 112.9, 102.8, 67.2, 60.2, 41.0, 36.6, 35.7, 27.8, 23.5, 14.2. IR (thin film) $v_{\max }$ 2962, 2934, 1928, 1732, 1446, 1364, 1283, $1168 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 264.1594, found 264.1591 .

Following the general procedure, oxime $\mathbf{S 2 0}$ ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) was cyclized to the desired dihydroindole $\mathbf{S 3 5}$ ($38 \mathrm{mg}, 0.14 \mathrm{mmol}, 76 \%$) after purification by silica gel chromatography (25% EtOAc: hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59$ (d, $J=3.2$

Hz, 1H), 6.42 (dd, $J=10,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=10,3.2 \mathrm{~Hz}$, 1 H), $4.22(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.70$ (dd, $J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 173.3,123.9,122.4,115.9,114.2,102.6,78.2,67.4,60.1$, 56.7, 34.1, 32.6, 14.2. IR (thin film) $\mathrm{v}_{\text {max }}$ 2978, 2934, 2819, 1924, 1724, 1442, 1368, 1156, $1107 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 266.1387$, found 266.1384.

Following the general procedure, oxime $\mathbf{S 2 1}(50 \mathrm{mg}, 0.2 \mathrm{mmol})$ was cyclized to the desired dihydroindole S36 (39 mg, $0.16 \mathrm{mmol}, 78 \%$) after purification by silica gel chromatography (10% EtOAc: hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.70$ (d, $\mathrm{J}=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.19 (q, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.98 (s, 3H), 3.44 (m, 1H), 2.65 (dd, J = 14.8, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (m, 3H), $1.94(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8$, 126.9, 122.9, 121.8, 115.6, 113.4, 103.3, 67.0, 61.2, 40.8, 34.8, 29.1, 28.1, 27.8, 14.2. IR (thin film) $\mathrm{v}_{\max }$ 2983, 2934, 1924, 1732, 1454, 1373, 1275, $1160 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 250.1438$, found 250.1436.

S24
S37

Trichloroacetyl chloride ($974 \mu \mathrm{~L}, 8.7 \mathrm{mmol}$) was added dropwise to a solution of dihydrobenzofuran $S 24$ ($1.0 \mathrm{~g}, 4.85 \mathrm{mmol}$) and imidazole ($660 \mathrm{mg}, 9.7 \mathrm{mmol}$) in dichloromethane (10 mL) at $0^{\circ} \mathrm{C}$. The reaction was allowed to stir at $23^{\circ} \mathrm{C}$ for 3 hours. $200 \mu \mathrm{~L}$ more acid chloride was added and the solution was stirred an additional hour. At this time, the solution was washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated. The crude ketone was then dissolved in dry $\mathrm{MeOH}(40 \mathrm{~mL}$) and $\mathrm{NaOMe}(0.5 \mathrm{M}$ in $\mathrm{MeOH}, 5 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added over 1 minute. After 5 hours, 5 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the organics were removed. The residue was diluted with water (10 mL), extracted into EtOAc ($3 \times 20 \mathrm{~mL}$), then dried over MgSO_{4}, filtered, and concentrated. The residue was purified by silica gel chromatography (15 to 33% EtOAc: hexanes) to yield diester $\mathbf{S 3 7}$ ($1.0 \mathrm{~g}, 4.0 \mathrm{mmol}, 82 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR
(400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dt}, J=10,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.87 (s, 3H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{p}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.6,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=16,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25 (dddd, $J=14,7.6,4.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.2,159.3,154.0,142.1,129.6,121.4,117.9,117.5,51.7$, 51.6, 38.5, 29.4, 28.4. IR (thin film) $v_{\max } 3003,2949,2847,1736,1711,1503,1433$, 1327, 1298, $1192 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 251.0914$, found 251.0924.

DDQ ($54 \mathrm{mg}, 0.24 \mathrm{mmol}$) was added to a solution of dihydrobenzofuran $\mathbf{S 3 7}$ ($50 \mathrm{mg}, 0.2$ mmol) in dichloromethane (2 mL). Over 3 hours, the solution turned from dark green to orange with a precipitate. The suspension was loaded onto a basic alumina column and purified with 15% EtOAc in hexanes to 100% EtOAc. Benzofuran S38 was isolated as an off-white solid ($34 \mathrm{mg}, 0.14 \mathrm{mmol}, 70 \%$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~s}, 1 \mathrm{H})$, 7.52 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, 3.87 (s, 2H), 3.70 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,159.9,155.7,145.3$, 128.8, 127.8, 127.0, 124.7, 112.7, 111.5, 52.4, 52.3, 38.8. IR (thin film) $\mathrm{v}_{\max }$ 2999, 2950, 2831, 1736, 1556, 1434, 1291, 1197, $1176 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z}$ 271.0577, found 271.0579.

N-Methylmorpholine- N -oxide ($50 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 199 \mu \mathrm{~L}, 0.96 \mathrm{mmol}$), was added to a solution of dihydrobenzofuran $\mathrm{S} 24(100 \mathrm{mg}, 0.48 \mathrm{mmol})$ in THF (1.1 mL). Then OsO_{4} ($2.5 \mathrm{wt} \%$ in $\mathrm{t}-\mathrm{BuOH}, 48 \mu \mathrm{~L}, 0.0048 \mathrm{mmol}$) was added and the solution was left to stir for 2.5 hours. $\mathrm{NaHSO}_{3}(55 \mathrm{mg})$ was added and stirred to 10 minutes, then diluted with water $(2 \mathrm{~mL})$, and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The organics were dried over MgSO_{4}, filtered, concentrated, and purified via silica gel plug (50\% EtOAc: hexanes) to yield the diols (S39 and S40) as a 9:1 mixture of diastereomers (88 mg , $0.37 \mathrm{~mol}, 77 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major resonance only $\delta 7.33(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.70 (bs, 1H), 3.31 (m, 1H), 3.06 (bm, 1H), 2.90 (bs, 1H), 2.52 (dd, $J=$
$15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *denotes minor diastereomer $\delta 172.3^{*}$, 172.2, 149.3*, 148.8, 143.7*, 143.4, 123.4*, 122.6*, 109.2, 108.5*, 69.6*, 67.3, 64.4, 63.7*, 60.6, 40.0, 39.7*, 32.9*, 32.8, 28.5*, 27.2, 14.2. IR (thin film) $\mathrm{v}_{\max } 3408,2987$, 2929, 1724, 1704, 1377, 1291, 1254, 1176, $1046 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z}$ 263.0890, found 263.0895.

p-Toluenesulfonic acid monohydrate (1 mg) was added to a solution of diol S39 and $\mathbf{S} 40(50 \mathrm{mg}, 0.21 \mathrm{mmol})$ in 2,2-dimethoxypropane $(440 \mu \mathrm{~L})$. After 2 hours, the solution was concentrated and purified through a silica plug with 15% EtOAc: hexanes to yield a mixture of diastereomeric acetonides S41 and S42 ($40 \mathrm{mg}, 0.14 \mathrm{mmol}, 68 \%$). Major diastereomer elucidated from 1D selective nOe experiments. (See accompanying spectra.) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.25 \mathrm{H}$), $7.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, 0.75 H), 6.24 (d, $J=2.0 \mathrm{~Hz}, 0.25 \mathrm{H}$), 6.23 (d, $J=2.0 \mathrm{~Hz}, 0.75 \mathrm{H}$), 5.07 (d, $J=5.6 \mathrm{~Hz}$, 0.75 H), $5.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.60(\mathrm{~m}, 0.75 \mathrm{H}), 4.51$ (ddd, $J=7.6,6.0,4.0 \mathrm{~Hz}$, $0.25 \mathrm{H}), 4.17(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 0.75 \mathrm{H}), 3.14(\mathrm{~m}, 0.25 \mathrm{H}), 2.63(\mathrm{~m}, 1.4 \mathrm{H}), 2.36$ ($\mathrm{m}, 1.6 \mathrm{H}$), 2.08 (ddd, $J=13.7,5.1,4.1 \mathrm{~Hz}, 0.25 \mathrm{H}$), 1.85 (m, 0.25H), 1.61 (ddd, J = 14.1, $10,2.5 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.41(\mathrm{~s}, 0.75 \mathrm{H}), 1.40(\mathrm{~s}, 2.3 \mathrm{H}), 1.39(\mathrm{~s}, 0.75 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.19(\mathrm{~s}, 2.3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) * denotes minor diastereomer $\delta 172.5^{*}$, 172.0, 147.8, 143.6*, 143.1, 123.8*, 122.7, 110.2*, 109.5, 108.9*, 108.3, 75.2*, 74.0, 69.4, 68.8*, 60.5, 60.4*, 40.0*, 39.3, 33.1, 32.9*, 28.2*, 27.9*, 27.6, 26.4, 26.2*, 26.1, 14.2. IR (thin film) $\mathrm{n}_{\max }$ 2974, 2934, 1736, 1377, 1238, 1213, 1074, $1025 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 280.1311, found 280.1310.

S27

S43

Crude dihydrobenzofuran $\mathbf{S 2 7}$ (1.34 mmol) from the heterocycloisomerization was dissolved in THF (7 mL) and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{AcOH}(383 \mu \mathrm{~L}, 6.7 \mathrm{mmol})$ was added followed by TBAF (1 M in THF, $2 \mathrm{~mL}, 2.0 \mathrm{mmol}$). After 2.5 hours, the reaction was quenched by the addition of saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and then extracted with EtOAc.

The organics were washed with brine, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by silica gel chromatography (10 to 25% EtOAc: hexanes) to yield ketone S43 (170 mg, $0.76 \mathrm{mmol}, 57 \%$ from bicycle S7). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41$ (m, 1 H), 2.71 (dd, $J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.27$ (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 185.5,171.5,147.5,147.0,141.8,110.5$, 60.8, 38.7, 36.7, 30.7, 30.4, 14.2. IR (thin film) $\mathrm{v}_{\max } 3105,2978,2934,1924,1724$, 1663, 1422, 1299, $1187 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z}$ 245.0784, found 245.0786 .

Adapted from the literature ${ }^{58}$: LiHMDS (1 M in hexanes, $260 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) was added dropwise to a solution of ketone $\mathbf{S} 43(30 \mathrm{mg}, 0.13 \mathrm{mmol})$ in THF ($780 \mu \mathrm{~L}$) at $-78{ }^{\circ} \mathrm{C}$. After 10 minutes, neat $\mathrm{ZnEt}_{2}(27 \mu \mathrm{~L}, 0.26 \mathrm{mmol})$ was added and the solution was stirred an additional 5 minutes. Then DMPU ($157 \mu \mathrm{~L}, 1.3 \mathrm{mmol}$) and iodomethane ($32 \mu \mathrm{~L}, 0.52$ mmol) was added. The solution was allowed to warm to $23^{\circ} \mathrm{C}$ over 5 hours and kept at that temperature for 7 hours. Saturated NaHCO_{3} was then added and the biphasic mixture was extracted into diethyl ether. The organics were dried over MgSO_{4}, filtered, and concentrated to yield a residue that was purified by silica gel chromatography (15\% EtOAc: hexanes) to afford adduct $\mathbf{S 4 4}(24 \mathrm{mg}, 0.10 \mathrm{mmol}, 78 \%$) as a $7: 3$ mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~s}, 0.7 \mathrm{H}), 7.54(\mathrm{~s}, 0.3 \mathrm{H}), 6.40(\mathrm{~s}$, 0.7 H), 6.38 (s, 0.3 H), 4.17 (m, 2H), 3.47 (m, 1H), 2.68 (m, 2H), 2.57 (dd, J = 16.2, 7.8 $\mathrm{Hz}, 0.7 \mathrm{H}$), 2.45 (dd, $J=16.2,7.8 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.1-1.8(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *denotes minor diastereomer $\delta 191.1^{*}$, 188.6, 171.7, 147.9*, 147.7, 146.5, 146.0*, 140.9, 139.9*, 110.8, 109.9*, 60.8*, 60.7, 45.2*, 43.1*, 39.1, 39.0*, 38.6, 37.5, 28.3, 28.0*, 24.6*, 24.0*, 15.2, 14.2. IR (thin film) $\mathrm{v}_{\max } 3113$, 2974, 2934, 1732, 1679, 1418, 1373, 1287, $1185 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 259.0941$, found 259.0943 .

To a flame dried vial under an atmosphere of nitrogen was added 2,3-dichloro-4,5-dicyano-1,6-benzoquinone (DDQ) ($19.5 \mathrm{mg}, 0.07 \mathrm{mmol}$) in $200 \mu \mathrm{~L}$ of tetrahydrofuran and cooled to $-78{ }^{\circ} \mathrm{C}$. N -methoxydihydroindole $\mathbf{S 3 0 (1 5 \mathrm { mg } , 0 . 0 6 4 \mathrm { mmol }) \text { in THF (} 4 0 0}$ $\mu \mathrm{L}$) was then added dropwise to the solution over one minute. After five minutes the solution was concentrated and then purified by column chromatography using basic alumina (33% EtOAc: hexanes to 100% EtOAc) to afford N-methoxyindole $\mathbf{S 4 5}$ as an orange oil ($11 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{q}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,131.7,126.6,123.7,122.8,122.4,120.8,107.4,96.4,65.9$, 60.8, 39.0, 14.2. IR (thin film) $\mathrm{v}_{\max }=3129,3055,2981,2938,1732 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 234.1125$, found 234.1130 .

The general procedure for the heterocycloisomerization was followed using oxime S15 ($200 \mathrm{mg}, 0.85 \mathrm{mmol}$). After completion of the heterocycloisomerization, trichloroacetyl chloride ($145 \mu \mathrm{~L}, 1.27 \mathrm{mmol}$) was added directly to the solution. After stirring for 2.5 h , the solution was quenched with 12 mL saturated NaHCO_{3}, and the aqueous layer was separated and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to afford the crude acylated product as a brown oil. This product was then dissolved in a solution of NaOMe in $\mathrm{MeOH}(1.7 \mathrm{~mL}, 0.5 \mathrm{M})$ and allowed to stir for 12 hours. Excess NaOMe was then quenched 4 mL saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with ethyl acetate ($3 \times 4 \mathrm{~mL}$). The combined organic layers were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by silica gel chromatography (33% EtOAc: hexanes) to afford the desired pyrrole S46 as an orange oil ($165 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.56(\mathrm{~s}, 1 \mathrm{H})$, 6.47 (d, J = $10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.97 (dt, 9.6, 4.4 Hz, 1H), 4.06 (s, 3H), 3.82 (s, 3H), 3.69 (s, $3 \mathrm{H}), 3.28(\mathrm{ap}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.42$ (dd, $J=15.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (dddd, $J=17.2,8.4,4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,159.5,129.8,128.2,116.5,115.9,114.9,110.6,67.1,51.6,51.1$, 38.9, 30.4, 29.0. IR (thin film) $\mathrm{v}_{\max }=3446,2950,1736,1708 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}: m / z 280.1179$, found 280.1177.

To a flame dried vial under an atmosphere of nitrogen was added DDQ ($22 \mathrm{mg}, 0.08$ mmol) in $200 \mu \mathrm{~L}$ of tetrahydrofuran and cooled to $-78^{\circ} \mathrm{C}$. N-methoxydihydroindole S46 ($20 \mathrm{mg}, 0.07 \mathrm{mmol}$) in THF ($400 \mu \mathrm{~L}$) was then added dropwise to the solution over one minute. After five minutes the solution was concentrated and then purified by column chromatography using basic alumina (33% EtOAc: hexanes to 100% EtOAc) to afford N -methoxyindole S 47 as an orange oil ($14 \mathrm{mg}, 0.05 \mathrm{mmol}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{at}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 171.5,160.3,135.2,128.1,126.0,124.9,122.2,121.4,108.6,105.4,66.1$, 52.1, 51.8, 38.4. IR (thin film) $\mathrm{v}_{\max }=2993,2951,1724 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 278.1023$, found 278.1024.

S1

$50^{\circ} \mathrm{C}$

The $\mathrm{W}(\mathrm{CO})_{5} \cdot \mathrm{THF}$ catalyzed heterocycloisomerization general procedure was followed using cyclization substrate S1 ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$). Upon completion of the cyclization, dimethyl acetylenedicarboxylate ($59 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) was added and the solution was heated to $50{ }^{\circ} \mathrm{C}$ for 12 hours. The solution was then concentrated and the residue purified by silica gel chromatography (33% EtOAc: hexanes) to yield cycloadduct S48 ($63 \mathrm{mg}, 0.18 \mathrm{mmol}, 75 \%$) as a $1.2: 1$ mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) *denotes minor diastereomer $\delta 6.73^{*}(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1.2 \mathrm{H}), 6.29$ (ddd, $\mathrm{J}=10$, $6.0,1.6 \mathrm{~Hz}, 1.2 \mathrm{H}$), 6.22^{*} (ddd, $\left.J=10.4,5.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.05^{*}(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$, d, $J=10.4 \mathrm{~Hz}, 1.2 \mathrm{H}$), 5.59 (d, $J=2 \mathrm{~Hz}, 1.2 \mathrm{H}), 5.51^{*}(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2.4 \mathrm{H})$, 4.05* (m, 2H), 3.80 (s, 6.6H, mix of diast.), 3.76* (s, 3H), 3.75 (s, 3.6H), 3.39* (m, 1H), 3.04 (m, 1.2H), 2.64 (dd, $J=15.6,5.2 \mathrm{~Hz}, 1.2 \mathrm{H}), 2.55^{*}(\mathrm{~m}, 1 \mathrm{H}), 2.50^{*}(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.37 (dd, $J=15.6,8.8 \mathrm{~Hz}, 1.2 \mathrm{H}), 2.24^{*}(\mathrm{~m}, 1 \mathrm{H}), 1.99$ (dddd, $J=16,11.2$, $2.4,2.4,1.2 \mathrm{H}$), $1.22(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3.6 \mathrm{H}), 1.17^{*}(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) mixture of diastereomers $\delta 171.7,171.5,164.6,164.0,162.9,162.7,158.5$, $156.6,154.5,154.0,152.0,150.7,137.2,135.2,133.9,131.2,121.2,120.5,91.8,89.9$, 83.0, 82.7, 60.5, 60.3, 52.22, 52.19, 52.16, 52.12, 37.6, 37.2, 33.0, 31.2, 31.1, 28.8,
14.1, 14.0. IR (thin film) $v_{\text {max }} 2987,2950,2840,1728,1646,1430,1324,1266,1197 \mathrm{~cm}^{-}$
${ }^{1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 349.1293$, found 349.1306.

The $\mathrm{W}(\mathrm{CO})_{5} \cdot \mathrm{THF}$ catalyzed heterocycloisomerization general procedure was followed using cyclization substrate $\mathbf{S 1}$ ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$). Upon completion of the cyclization, o-quinonedibenzimide (58) ($91 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added and the solution was stirred for 4 hours. The solution was then concentrated and the residue purified by silica gel chromatography (33% EtOAc: hexanes) to yield cycloadduct $\mathbf{S 4 9}$ ($124 \mathrm{mg}, 0.24 \mathrm{mmol}$, 99%) as a $85: 15$ mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.75(\mathrm{~m}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.90(\mathrm{~m}, 7 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{~m}, 3 \mathrm{H}), 6.21(\mathrm{~m}, 1 \mathrm{H})$, 5.63 (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dt}, J=9.2,4 \mathrm{~Hz}, 0.15 \mathrm{H}), 5.29(\mathrm{dt}, J=8.8,4.0 \mathrm{~Hz}, 0.85 \mathrm{H})$, $4.05(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 0.15 \mathrm{H}), 3.00(\mathrm{~m}, 1.7 \mathrm{H}), 2.78(\mathrm{dd}, J=14.8,3.2 \mathrm{~Hz}, 0.15 \mathrm{H}), 2.49$ (dd, $J=15.6,10.4 \mathrm{~Hz}, 0.85 \mathrm{H}$), $2.31(\mathrm{~m}, 0.3 \mathrm{H}), 2.15(\mathrm{~m}, 1.85 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major resonances only $\delta 172.3,170.0,153.8,134.3,133.8$, $131.4,130.8,130.7,128.8,128.3,128.1,126.7,126.5,126.0,116.8,105.0,89.9,62.8$, $60.3,36.7,29.1,27.4,14.1$. IR (thin film) $\mathrm{n}_{\max } 3056,2974,2934,2275,1728,1675$, 1650, 1499, 1389, 1336, $1156 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 521.2071, found 521.2075.

Dimerization of N-alkoxyindole S45.

To a flame dried $4-\mathrm{mL}$ vial was added ethyl 2-(1-methoxy-1H-indol-4-yl)acetate (S45) ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL}$). Trifluoroacetic acid ($33 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$) was then added all at once. The solution was stirred for 15 minutes at room temperature until TLC analysis indicated the reaction was complete. The solution was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and washed with deionized water (1 mL). The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
concentrated and purified by silica gel chromatography (2:1 hexanes:ethyl acetate) to afford indole dimer (27 mg) S50 as an oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.49(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.43(\mathrm{~s}, 1 \mathrm{H}), 7.29$ (apparent t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.10 (apparent t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.13$ (m, 5 H), 3.97 (d, $J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92$, (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=$ $16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 171.6, 171.2, 139.5, 131.6, 131.0, 127.8, 126.2, 126.1, 123.4, 123.0, 122.3, 121.1, 120.9, 120.3, 111.7, 110.0, 107.8, 100.9, 66.3, 60.7, $60.3,39.3,36.8,14.2,13.9 \mathrm{ppm}$. IR (ATIR) 3127, 3051, 2979, 2936, 2904, 1730, 1173, $751 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{23} \mathrm{Na}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 457.1734$, found 457.1733.

Section 1.8 REFERENCES

1. History of indigo see Fernelius, W. C.; Renfrew, E. E. "Indigo" J. Chem. Ed. 1983, 60, 633 - 634.
2. For a history of natural products synthesis see: Hudlicky, T.; Reed, J. W. The way of synthesis: evolution of design and methods for natural products, $1^{\text {st }}$ ed.; Wiley-VCH, Weinheim, 2007.
3. Venkataraman, K.; "The Chemistry of synthetic Dyes." Vol. 2 Academic Press, Inc., New York, 1952, 1004.
4. Baeyer, A. "The Nobel prize in Chemistry 1905, Adolf von Baeyer, Award Ceremony Speech" accessed May 3, 2015, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1905/press.html
5. Baeyer, A.; Drewsen, V.; "Darstellung von indigblau aus orthonitrobenzaldehyd" Ber. Deutsch. Chem. Gesell. 1882, 15, 2856 - 2864.
6. a) "Heterocyclic Chemistry" $5^{\text {th }}$ Ed., Joule, J. A.; Mills, K. John Wiley \& Sons, 2010, Chapter 2 p $433-445$. b) Recent advances in the chemistry of benzofurans see "Recent advances in the chemistry of benzo[b]furan and its derivatives. Part I: Occurrence and synthesis", Cagniant, P. and Cagniant, D.; Adv. Heterocycl. Chem., 1975, 18, 337.
7. Collin, G.; Köke, H. "Benzofurans" Ullamnn's Encyclopedia of Industrial Chemistry. 2002, Wiley-VCH, Published online 15, April 2007. Accessed 15, March 2015. doi: 10.1002/14356007.I03_I01.; Franck, H.-G., Collin: "Steinkohlenteer", Springer Verlag, Berilin-Heidelberg-New York, 1968, 11, 41, 93. Mustafa, A. "Benzofurans. Chemistry of Heterocyclic Compounds" Weissberger vol. 29, Wiley Interscience, New York, 1974.
8. a) Otero, N.; Moa González, M. J.; Mandado, M.; Mosquera, R. A. "QTAIM study of the protonation of indole". Chem. Phys. Lett. 2006, 428, 249 - 254.; b) Sun, M.; Nelson, A.; Adjaye, J. "Correlating the electronic properties and HDN reactivities of organonitrogen compounds: an ab initio DFT study" J. Mol. Cat. A. Chem. 2004, 222, 243 - 251.; c) Pople, J. A. "Electron interaction in unsaturated hydrocarbons" Trans. Faraday Soc. 1953, 49 1375-1385. d) Pyrroles resonance stabilization energy is estimated at $27 \mathrm{kcal} / \mathrm{mol}$ see Franklin, J. L. "Calculation of resonance energies" J. Am. Chem. Soc. 1950, 72, 4278 - 4280.
9. Krutosíková, A.; Kovác, J.; Dandárová, M.; Bobálová, M. Coll. Czech. Chem. Commun. 1982, 47, 3288.
10. Pauling electronegativities "The nature of the chemical bond. IV." Pauling, L. J. Am. Chem. Soc. 1932, 54, 3570 - 5482.
11. Martínez, A.; Vázquez, M.-V.; Carréon-Macedo, J.-L.; Sansores, L. E.; Salcedo, R. "Benzene fused five-membered heterocycles. A theoretical approach". Tetrahedron, 2003, 59, 6415-6422.
12. a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. "Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles amon U.S. FDA approved pharmaceuticals" J. Med. Chem. 2014, 57, 10257 - 10274. b) "Biomedical importance of indoles" Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H. Molecules 2013, 18, 6620 - 6662,
13. Hoffman, A. "Historical View on Ergot Alkaloids" Pharmacology, 1978, 16 (suppl. 1), 1 - 11.; "Topics and Heterocyclic Chemistry" Chapter 26. 'Heterocyclic Scaffolds II: Reactions and Applications of Indoles' Maes, B. U. W.; Gribble, G. W. 2010, Springer, New York.; "Ergot alkaloids and related compounds" Berde, B.; Schild, H. O. Springer, New York, 1978.
14. Jacobs, W. A.; Craig, L. C. "The ergot alkaloids: XI. Isomeric dihydrolysergic acids and the structure of lysergic acid" J. Biol. Chem. 1936, 115, $227-238$.
15. Chapter 13 "Industrial production of ergot alkaloids' Cvak, L. 1999, Gordon and Breach. Page 373.
16. Millker, K. J.; King, A.; Demchyshyn, L.; Niznik, H.; Teitler, M. "Agonist activity of sumatriptan and metergoline at the human $5-\mathrm{HT}_{1 \mathrm{D}}$ beta receptor: Further evidence for a role of the $5-\mathrm{HT}_{1 \mathrm{D}}$ receptor in the action of sumatriptan" Eur. J. Pharmacol. 1992, 227, 99 - 102.
17. a) Zapata, P.; Carolina, L. "Antagonism of dopamine-induced chemosensory inhibition by ergo alkaloids" Neurosci. Lett. 1978, 8, 131 - 136. b) Larson, B. T.; Samford, M. D.; Camden, J. M.; Piper, E. L.; Kerley, M. S.; Paterson, J. A.; Turner, J. T. "Ergavaline binding and activation of D2 dopamine receptors in GH4ZR7 cells" J. Animal Sci. 1995, 73, 1396 - 1400.
18. a) Lew, Y.; Hata, F.; Ohashi, T.; Goldstein, M. "The interactions of bromocriptine and lergotrile with dopamine and alpha-adrenergic receptors" J. Neural Transmiss. 1977, 41109 - 121. b) Goldstein, M. "Ergot alkaloids and central monoaminergic receptors" J. Pharmacol. 1985, 16, 19 - 24.
19. Bircher, R.; Schalch, W. R. "Action of ergot alkaloids on histaminergic reactions" Helv. Phys. Pharm. Acta 1948, 6, 813 - 820.
20. Müller-Schweinitzer, E. "investigations on the mod of action of dihydroergotamine in human saphenous and dog saphenous and femoral veins. Naunyn-Schmiedebergs Arch. Pharmacol. 1973, 279 (Suppl.) R44.
21. Merck Index. 14th ed. Merck: Whitehouse Station, NJ, 2007; 5633.
22. Stadler, P. A.; Strümer, E. "Synthese und biologische aktivitäten einiger steroisomeren von ergotamine und dihydro-ergotamin." Chimia, 1972, 26, 321.
23. Moldavai, I.; Temesvari-Major, E.; Incze, M.; Doernyei, G.; Szentirmay, E.; Szantay, C. "Synthetic route to ergot alkaloids" Helv. Chim. Acta 2005, 88, 1344 - 1356.
24. Basics on indoles see a) "The Chemistry of Indoles", Sunberg, R. J.; Academic Press, New York, 1970,; b) "Transition metals in the synthesis and functionalization of indoles". Hegedus, L. S. Angew. Chem. Int. Ed. Engl. 1988, 27, 1113; 'Indoles', Sundberg, R. J. Academic Press, London, 1996. c) "Heterocyclic Chemistry" $5{ }^{\text {th }}$ Ed., Joule, J. A.; Mills, K. John Wiley \& Sons, 2010, Chapter 19 and 20 p 369 - 432.
25. Harrington, P. J.; Hegedus, L. S. "Palladium-catalyzed reactions in the synthesis of 3- and 4-substituted indoles. Approaches to the ergot alkaloids" J. Org. Chem. 1984, 49, 2657 - 2662.
26. Mei, T.-S.; Wang, X.; Yu, J.-Q. "Pd(II)-catalyzed amination of C-H bonds using single-electron or two-electron oxidants" J. Am. Chem. Soc. 2009, 131, 10806 10807.
27. Moyer, M. P.; Shiurba, J. F.; Rapoport, H. "Metal-halogen exchange of bromoindoles. A route to substituted indoles" J. Org. Chem. 1986, 51, 5106-5110.
28. Nicolaou, K. C.; Snyder, S. A.; Huang, X.; Simonsen, K. B.; Koumbis, A. E.; Bigot, A. "Studies toward diazonamide A: Initial synthetic forays directed toward the originally proposed structure" J. Am. Chem. Soc. 2004, 126, 10162 - 101073.
29. Chem-Impex International, Inc., 4-bromoindole. http://www.chemimpex.com/4bromoindole (accessed March 26, 2015).
30. Sigma-Aldrich, 4-bromoindole. http://www.sigmaaldrich.com/catalog/product /aldrich/524336?lang=en\®ion=US (accessed March 26, 2015).
31. Eisai Co.; LTd. Patent US2002/19531 A1.
32. a) Somei, M.; Kawasaki, T.; Ohta, T. "A simple synthesis of 7-substituted 1-acetyl-2,3-dihydroindoles" Heterocycles 1988, 27, 2363 - 2365. b) Somei, M.; Yamada, F.; Hamada, H.; Kawasaki, T. Heterocycles "New reactions of thallium compounds. A simple synthesis of 4 - and 7 -substituted indoles bearing a nitro or an azido group" 1989, 29, 643-648. c) Somei, M.; Saida, Y. "Syntheses of 7-substituted indoles" Heterocycles 1985, 23, 3113 - 3114. d) Masanori, S.; Yoshihiro, S.; Naoko, K. "Tinthall reaction, a versitle method for cross coupling tin compounds with thallium compounds" Chem. Pharm. Bull. 1986, 34, 4116-4125. e) Somei, M.; Saida, Y.; Funamoto, T.; Ohta, T. "The chemistry of indoles. XXXIX. A facile synthetic method for 7-subsituted indoles" Chemical \& Pharmaceutical Bulletin 1987, 35, 3146-3154. f) Somei, M.; Yamada, F.; Naka, K. "Tin-Thall reaction, a versatile method for cross coupling tin compounds with thallium compounds" Chem. Pharm. Bull. 1987, 35, 1322-1325.; For Natural products synthesized using tin-thall method see g) Somei, M.; Funamoto, T.; Ohta, T. "Total syntheses of indole alkaloids, annonidine A, and 7-(3-methyl-2-buten-1-yl) indole" Heterocycles 1987, 26, 1783 - 1784. h) Somei, M.; Nakagawa, K. Heterocycles "Ergot Alkaloids: The first and five step total synthesis of $(-)-$ and (+)-6,7-secoagroclavines, and the synthesis of (-)-and (+)-6-Nor-6-propyl-6,7-secoagroclavines ((-)-and (+)-KSU 1415)" 1991, 32, 873 - 878. i) Somei, M.; Ohnishi, H.; Shoken, Y. "The chemistry of Indoles XXVII. A practical synthesis of the 1-methoxy analog of an Ergot alkaloid (+/-)-1-Methoxy-6,7-secoagroclavine" Chem. Pharm. Bull. 1986, 34, 677 - 681. j) Somei, M.; Yamad, F.; Kunimoto, M.; Kaneko, C. "A practical one pot synthesis of 4-alkoxy-3-formylindoles" Heterocycles 1984, 22, 797 - 801. k) Somei, M.; Hasegawa, T.; Kaneko, C. "A facile synthesis of 4-
substituted 3- formylindoles" Heterocycles 1983, 20, 1983 - 1985. I) Hollins, R. A.; Colnago, L. A.; Salim, V. M.; Seidi, M. C. "Thallation-iodination studies of heterocyclic systems" J. Heterocycl. Chem. 1979, 16, 993 - $996 . ;$
33. Iwao, M. "Directed lithiation of 1-triisopropylsilylgramine. A short access to 3,4disubstituted indoles" Heterocycles 1993, 36, 29 - 32.; Iwao, M.; Motoi, O. "Methodology for the efficient synthesis of 3,4-differentially substituted indoles. Fluoride ion-induced elimination-addition reaction of 1-triisopropylsilylgramine methiodides" Tetrahedron Lett. 1995, 36, 5929 - 5932.
34. Semmelhack, M.; Wulff, W.; Garcia, J. "New substitution reactions on indole promoted by the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit" J. Organomet. Chem. 1982, 240, C5-C10. Semmelhack, M. F.; Rhee, H. "Formal synthesis of teleocidin A via indole- $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes." Tetrahedron Lett. 1993, 34, 1399 - 1402.; Semmelhack, M. F.; Knochel, P.; Singleton, T. "A new approach to indole alkaloids via indole chromium complexes" Tetrahedron Lett. 1993, 34, 5051 - 5054.
35. a) Zidorn, C.; Ellmerer-Müller, E.-P.; Stuppner, H. Helv. Chim. Acta 2000, 83, 2920 2925. b) Zidorn, C.; Spitaler, R.; Ellmerer-Müller, E.-P.; Perry, N. B. Gerhäuser, C.; Stuppner, H. Z.; Naturforsch. 2002, 57c, 614-619.
36. a) Review see Hanson, J. R. Nat. Prod. Rep. 1995, 12, 381 - 384. b) Koft, E. R.; Smith, A. B. J. Am. Chem. Soc. 1984, 106, 2125 - 2121. c) Kraus, G. A.; Wan, Z. W. Synlett 2000, 363 - 364. d) Ungureanu, S.; Meadows, M.; Smith, J.; Duff, D. B.; Burgess, J. M.; Goess, B. C. Tetrahedron Lett. 2011, 52, 1509 - 1511.
37. Moreira, V. F.; Oliveira, R. R.; Mathias, L.; Braz-Filho, R.; Vieira, I. J. C. Helv. Chem. Acta 2010, 93, 1751-1757.
38. Makarieva, T. N.; Dmitrenok, A. S.; Dmitrenok, P. S.; Grebnev, B. B.; Stonik, V. A. J. Nat. Prod. 2001, 64, 1559 - 1561.
39. Gademann, K.; Portmann, C. Curr. Org. Chem. 2008, 12, 326 - 341.
40. Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. "Pt-catalyzed cyclization/1,2-migration for the synthesis of indolizines pyrrolones, and indolizinones" Org. Lett. 2007, 9, 1169-1171.; For a recent review on heterocycloisomerization reactions see Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. "Transition metal-mediated synthesis of monocyclic aromatic heterocycles" Chem. Rev. 2013, 113, 3084 - 3213.
41. Trost, B.; Krische, M. J. "Transition metal catalyzed cycloisomerizations" Synlett 1998, 1-16 and references therein.
42. Zhang, J.; Schmalz, H.-G. "Gold(I)-catalyzed reaction of 1-(1-alkynyl)-cyclopropyl ketones with nucleophiles: A modular entry to highly substituted furans" Angew. Chem. Int. Ed. 2006, 45, 6704-6707.
43. Bartoli, A.; Chouraui, G.; Parrain, J.-L. "Collective domino approach toward the core of molecules isolated from the genus Schisandra" Org. Lett. 2012, 14, 122 - 125.
44. Ohe, K.; Yokoi, T.; Miki, K.; Nishino, F.; Uemura, S. "Chromium- and tungstentriggered valence isomerism of cis-1-acyl-2-ethynylcyclopropanes via [3,3]sigmatropy of (2-acylcyclopropyl)vinylidene-metal intermediates" J. Am. Chem. Soc. 2002, 124, 526 - 527.
45. Negishi, E. "Novel and selective a-substitution of ketones and other carbonyl compounds based on Pd-catalyzed cross coupling of α, β-unsaturated carbonyl derivatives containing a-halogen or a-metal groups" of J. Organomet. Chem. 1999, 576, 179 - 194.
46. a) Marco-contelles, J.; Soriano, E. "Recent developments in the metal-catalyzed reactions of metallocarbenoids from propargylic esters" Chem. Eur. J. 2007, 13, 1350 - 1357. b) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. "Mechanistically diverse copper-, silver-, and gold-catalyzed acyloxy and phosphatyloxy migrations: efficient synthesis of heterocycles via cascade migration/cycloisomerization approach" J. Am. Chem. Soc. 2007, 129, 9868-9878 and references therein. c) For rhodium-catalyzed acyloxy migrations see Shu, X.-Z.; Huang, S.; Shu, D.; Guzei, I. A.; Tang, W. "Interception of a Rautenstrauch intermediate by alkynes for [5+2] cycloaddition: Rhodium-catalyzed cycloisomerization of 3-acyloxy-4-ene-1,9-diynes to bicycle[5.3.0]decatrienes" Angew. Chem. Int. Ed. 2011, 50, 8153 - 8156.
47. "Metal vinylidenes and allenylidenes in catalysis from reactivity to applications in synthesis" Bruneau, C.; Dixneuf, P., Wiley, Weinheim, 2008.
48. "Modern physical organic chemistry" Ansyln, E. V.; Dougherty, D. A. University Science Books, 2006.
49. Somei, M. "1-Hydroxyindoles" Heterocycles 1999, 50, 1157 - 1211. Somei, M.; Yamada, F.; Goto, A.; Peng, W.; Hayashi, T.; Saga, Y. "Nucleophilic substitution reaction at the 1-position of 1-hydroxytyrptamine and tryptophan derivatives" Heterocycles 2003, 61, 163 - 172.; Somei, M.; Nakajou, M.; Teramoto, T.; Tanimoto, A.; Yamada, F. "Nucleophilic substitution reaction of a 3-acetyl-1-methoxyindole and its application for the synthesis of novel 2-substituted methyl 2,3-dihydro-1methyl-3oxo-5H-pyrido[4,3-b]indole-4-carboxylates" Heterocycles 1999, 51, 1949 - 1956.; Somei, M.; Hasegawa, M.; Yamada, K.; Nagahama, Y. "A novel methodology for preparing 5-chloro- and 5-bromotryptamines and tryptophanes, and its application to the synthesis of (+/-) - bromochelonin B" Heterocycles 1999, 51, 2815-2821.; Somei, M. In Advances in Heterocyclic Chemistry; Academic Press, 2002; Vol. Volume 82, 101-155.
50. a) Zhu, S.; MacMillan, D. W. C. "Enantioselective copper-catalyzed construction of aryl pyrroloindolines via an arylation-cyclization cascade" J. Am. Chem. Soc. 2012, 134, 10815 - 10818. b) Kieffer, M. E.; Chuang, K. V.; Reisman, S. E. "A coppercatalyzed arylation of tryptamines for the direct synthesis of aryl pyrroloindolines" Chem. Sci. 2012, 3, 3170 - 3174. c) Spangler, J. E.; Davies, H. M. "Catalytic asymmetric synthesis of pyrroloindolines via a rhodium(II)-catalyzed annulation of indoles" J. Am. Chem. Soc. 2013, 135, 6802 - 6805.
51. Wu, J.; Wang, M.; Wang, L.; Wang, J.; Jiang, L. "How the bicycle[4.1.0] Substrate isomerizes into 4,5-dihydrobenzo[b]furan: The contribution from $\mathrm{W}(\mathrm{CO})_{5}$ and $\mathrm{NEt}_{3}{ }^{\prime \prime}$ J. Org. Chem. 2013, 78, 10812 - 10820.
52. Balasubramaniyan, V. "peri-Interaction in naphthalene derivatives" Chem. Rev. 1996, 66, 567 - 641.
53. Newhouse, T.; Baran, P. S. "Total synthesis of (+/-)-psychotrimine" J. Am. Chem. Soc. 2008, 130, 10886 - 10887.
54. Crawford, J. J.; Kerr, W. J.; McLaughlin, M.; Morrison, A. J.; Pauson, P. L.; Thurston, G. J. "Use of a highly effective intramolecular Pauson-Khand cyclisation for the formal total synthesis of $(+/-)-\alpha-$ and β-cedrene by preparation of cedrone"Tetrahedron 2006, 62, 11360-11370.
55. Sander, B.; Andresen, S.; Reichow, S.; Dubois, K.; Agosta, W. C.; Margaretha, P. "2-alkynylcyclopent-2-enols from 2-alkynylcyclohex-2-enones via 1-alkynyl-7-oxabicyclo[4.1.0]heptan-2-ones" Helv. Chim. Acta. 1996, 79, 1428 - 1434.
56. Morlender-Vais, N.; Mandelbaum, A. "Stereospecific retro-Diels - Alder fragmentation of stereoisomeric 3-methoxy- and 3,6dialkoxytricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-9-enes upon electron ionization" J. Mass. Spectrom. 1998, 33, 229-241.
57. Blanco, L.; Amice, P.; Conia, J. M. "Halogenation of enol silyl ethers. Syntehsis of various types of a-bromocarbonyl compounds" Synthesis 1976, 194-196.
58. Gu, Z.; Zakarian, A. "Studies toward the synthesis of maoecrystal V" Org. Lett. 2011, 13, 1080 - 1082.

APPENDIX I. SELECTED SPECTRA

$87^{\circ} \angle 91-$

$\dot{\pi}$

عと'991

n

89.991-
$89^{\circ} 86$ L' $^{-}$

H. $291-$

90.88-
$\downarrow \mathrm{G}^{\prime} 66$ -
عг"002-

~

0 O「く91-
trooz-

ع. 291
6.861

n

[^0]

$92^{\circ} 0^{-}$

$$
\mp \varepsilon \cdot 8 z
$$

$$
\varepsilon \tau \cdot \varsigma \varepsilon
$$

$$
09 \cdot 95
$$

$$
v_{s \cdot}^{v_{L}}
$$

$$
\begin{aligned}
& 52.86= \\
& 80.66=
\end{aligned}
$$

$$
50 \cdot \mathrm{~s} \text { I }
$$

88.991
82661-

S10

$00 \angle 121-$
6L66 ${ }^{-}$

ยાつดว દน．9
としつロつ GO：
EL＇G6－
$\angle 9^{\circ}$ LOL－
L9．8て1

દэดว 89．9く ยリコつ $00^{\circ} \angle L$ ยうつつ ટع＇LL
$1 \varepsilon 88$
LOOOL
61．891
०८＇${ }^{\text {LOZ－}}$

99.891-
$8 \varepsilon^{\prime}$ เOZ-

[^1]

[^2]
10691-

H•891-

S23

$+9 \cdot ゅ \vdash$
89＇ャレ
11・てZ1
61・で 6
9て＇62
としつロコ 8L．9く

28．64
$96.9 S 1$
$Z L .6 S 1$
$\angle L 6 S 1$
$6 \varepsilon .691$
67.891
$8 L .891$

$\stackrel{\sim}{\sim}$

S24

ت

sて＇عくレ－

 としつのつ เモ゙LL

S27

9701 LI
68.811
+0.021
$70^{\circ} \mathrm{OLL}$
$98^{\circ} \mathrm{GZL}$
9どレヤレ－
عど6ャレ
$\angle 6^{\circ}$ ZL1

9ε 'ZくL-

$18^{\circ} \mathrm{CL} \angle-$

$\underset{\sim}{\sim}$

98'ZくL-

$\stackrel{N}{n}$

ャ8＂ ZOL

ャ9ャャとレ－
9L＇とくL－

S34

ع9'ZOL

$\varepsilon \varepsilon \angle L$

S35

6ε عOL－
でモルト
09 G1F
18.121
$16 . \mathrm{CL}$ 00 くてよ

$67 \circ$
98
98
815
88° んて
89．6とL－
しO「てカー
00 เG
七で6s•
モぐてくレ

ñ

$\stackrel{\infty}{\sim}$

21621020419819218618017416816215615014413813212612011410810296

(

とiフaว $\angle 0 . \angle L$
$\varepsilon \varepsilon^{\circ} \mathrm{OLL}$
$78 \cdot \downarrow \downarrow レ$
$20 \angle \downarrow 1$
$69^{\circ} \angle \downarrow 1$
$69^{\circ} \cdot \angle 1$
$09 \cdot 981$

S43

$26.66-$

$\angle 6.601$
$\angle L^{\circ} \mathrm{OL}$

$+9^{\circ}+\angle L$
$89^{\circ} \mathrm{L} \angle \mathrm{L}$

S44

OG.LLL-

545

S46

เع09ト
くガレくー

S47

$\stackrel{\infty}{\sim}$

550

CHAPTER 2: TRACE COPPER-CATALYZED CYCLOISOMERIZATION REACTION OF ALKYNYLCYCLOPROPYLHYDRAZONES TO FORM ANNULATED AMINOPYRROLES- A COLLABORATIVE STUDY

(with Dr. Ethan Fisher, Prof. Jason Hein, Prof. Dean Tantillo, Diana Yu, and Phil Painter)

Section 2.0. Criticism of metal-free transformations

High turnover catalysis (HTC), defined as catalysis using transition metal complexes at $0.1 \mathrm{~mol} \%$ or lower loading leading to quantitative conversion of starting materials, has surfaced in recent years as a extremely powerful and environmentally benign type of transition metal catalysis. ${ }^{1}$ As one would anticipate, the set of ligands on the metal often dictates whether the metal complex can reach high turnover numbers (TON). Classic studies by the Buchwald group, for example showed that Suzuki couplings of arylhalides could be achieved with palladium catalyst loadings as low as $0.02-0.05 \mathrm{~mol} \%$ when used in conjunction with the now famous (biaryl)dialkyl phosphine ligands that bear his name. ${ }^{1}$ Other contributions to ligand design using similar concepts in this field include work by Fu, ${ }^{2}$ Hartwig ${ }^{3}$ and others ${ }^{4}$ who used the sterically demanding phosphine ligands tri-tert-butylphosphine and Q-Phos, respectively, for HTC based transformations.

Even with these beneficial contributions, HTC has also beset researchers when trying to develop mechanistic understanding of "transition metal-free" reactions, as these systems may contain very low catalyst loadings and proceed with very high TON. "Transition metal-free" Suzuki cross couplings in water performed by Leadbeater and Marco for example were shown to be catalyzed by trace palladium impurities found in the sodium carbonate used for the reaction. ${ }^{5 a}$ Though not claimed to be metal-free, classic amination reactions by Carsten Bolm that were thought to be mediated by iron salts, were shown to be in fact catalyzed by trace copper impurities at the parts-permillion level. ${ }^{5 b}$ Recently potassium tert-butoxide catalyzed reactions ${ }^{5 c}$ have also been question ${ }^{5 d}$ through the lenses of HTC (i.e., are these reactions really catalyzed by potassium tert-butoxide or by trace iron salts?). These studies attest to the significant challenge of identifying the true active catalyst in cross-coupling reactions and serve as a starting point for developing a mechanistic understanding metal-free processes.

Detailed mechanistic studies of metal-free cycloisomerization reactions have not been performed in the context of HTC catalysis, and so the possibility of trace levels of transition metals facilitating this class of reactions cannot be excluded.

Section 2.1. Development of a Variant of the Schmalz-Zhang Chemistry

Over the last decade, transition metal-catalyzed cycloisomerization reactions involving alkyne substrates that rely on the use of 'soft' π-Lewis acid catalysts have emerged. ${ }^{6-9}$ These reactions constitute some of the most powerful complexity building transformations in organic synthesis because, in the ideal scenario, all of the starting material is converted to the product without the formation of byproducts. ${ }^{10}$ The underlying tenet for the success of π-Lewis acid metal salts as catalysts in these
reactions is that highly favorable interactions between the alkyne group and metal center serve to initiate the cycloisomerization process. For many of these reactions, substantial rate accelerations are observed compared to the uncatalyzed process, and the course of the reaction is heavily influenced by the choice of metal or ligands on the active catalyst complex.

The Sarpong ${ }^{11}$ laboratory and others ${ }^{12}$ have reported heterocycloisomerization reactions that had been previously conducted using π-phillic transition metal catalysts or electrophilic nonmetal reagents, ${ }^{13}$ which can now be effected using hydrogen-bonding networks. ${ }^{14}$ For example, in the heterocycloisomerization reaction to form indolizine 2.2 (Scheme 1, A) from 2.1, several transition metal salts and complexes based on Pt, Cu or Ag had been reported to facilitate this heterocyclization. We have found that the transformation proceeds simply by heating in water (or MeOH) and, importantly, proceeds in an appreciably higher yield (compared to the PtCl_{2}-catalyzed example) (Scheme 1, A). In Chapter 1, the development of a novel cycloisomerization reaction of [4.1.0]-bicyclo-heptanones and their oxime ethers to access dihydro-benzofurans and indoles respectively was discussed. The transformation utilized $\mathrm{W}(\mathrm{CO})_{5} \cdot \mathrm{THF}$ as a catalyst to electrophilically activate the alkynes present in our starting material through the intermediacy of a metal-vinylidene. However the possibility occurred to us that we could render this reaction metal-free based on the above precedent (Scheme 1, B).
A. Previously Reported

B. Proposed transformation

Scheme 1: Metal-free cycloisomerization of 2-pyridylproparglyic alcohol 2.1 and proposed extension of methodology to access alkynylcyclopropylketone 2.4

Our initial mechanistic hypothesis for the formation of furan 2.4 under metal free conditions is outlined below (Scheme 2). We theorized that upon heating ketone 2.3 in a polar protic solvent, such as methanol, we would effect a 5 -endo-dig cyclization facilitated by the hydrogen bonding network of the solvent resulting in oxocarbenium ion 2.5 which would immediately be deprotonated by the solvent to give tricycle 2.6 (Scheme 2, A). Tricycle 2.6 contains a donor acceptor cyclopropane ${ }^{15}$ and thus could undergo fragmentation under elevated temperatures to give zwitterionic intermediate 2.7. A final proton transfer would restore aromaticity to the furan ring and gives dihydrobenzofuran 2.4. Alternatively, we were cognizant of the possibility that
intermediate 2.5 could be trapped by methanol resulting in the ring expanded product 2.8 as originally reported by Schmalz and coworkers (Scheme 2, B). ${ }^{16}$
A.

Scheme 2: a) Hypothesized mechanism for meta-free conversion of ketone 2.3 to furan 2.4. b) Potential side reactivity to afford ring expanded product.

To test this theory, we heated ketone 2.3 in methanol up to $60^{\circ} \mathrm{C}$ but did not observe any of the cycloisomerization products. Instead quantitative conversion of ketone 2.3 to the to the methyl ester was observed. Repeating this reaction in ethanol up to $100^{\circ} \mathrm{C}$ we observed no conversion of ketone 2.3 to furan 2.4. Interestingly, when ketone 2.3 was heated in the presence of p-toluenesulfonyl hydrazide (PTSH) in methanol at $90^{\circ} \mathrm{C}$ for three hours, we detected the formation of annulated aminopyrrole 2.9 and were able to isolate this product in 88% yield. This remarkable transformation appeared to be a metal-free variant of the Schmalz-Zhang reaction. ${ }^{16}$ However, further investigations to try and optimize the reaction (Table 1), demonstrated that the newly discovered transformation was very specific to the initial conditions. For example, a screen of other polar protic solvents such as ethanol, isopropanol, and allyl alcohol all returned starting material. Other hydrazines such as $\mathrm{Me}_{2} \mathrm{NHNH}_{2}, \mathrm{BnNHNH}_{2}, \mathrm{AcNHNH}_{2}$ and PhthNHNH 2 were also ineffective for the cycloisomerization reaction and resulted in the recovery of ketone 2.3. These data were the first pieces of evidence that the mechanism for the conversion of ketone 2.3 to aminopyrrole 2.9 was not as direct as originally thought, specifically because these observations suggest that tosylhydrazide is important for the reaction, and that the rate of formation of a hydrazone intermediate is much faster than the rate of cyclization of ketone 2.3.

Table 1: Attempted solvent optimization and extension to other hydrazine reactants.

Section 2.2. Substrate scope

Undeterred by the above results, we then explored the scope of the newly discovered cycloisomerization reaction. Specifically, using the synthetic strategy outlined in Chapter 1, we were able to rapidly construct a myriad of ketone substrates with substitution on the alkyne. In contrast to the cycloisomerization reaction reported for Chapter 1, the transformation of compound 2.3 to 2.9 does not involve the intermediacy of a metal vinylidene. Consequently, internal alkynes are viable substrates for this reaction and provided a platform for studying electronic effects on reactions yield, diasteroselectivity, and reaction rate (Table 2).

Table 2: Ketones synthesized for metal free cycloisomerization study. Note: Yields given from the cyclopropanation reaction.

With ketones 2.13a-2.13s in hand we then subjected these substrates to the optimized reaction conditions ($90^{\circ} \mathrm{C}$ in MeOH for 3 hours) and found that some of these ketones
were converted into their requisite aminopyrrole products (Table 3). Of note, when several of these ketones were exposed to the optimal reaction conditions for ketone 2.3, complex mixtures resulted. Thus, some of the ketone substrates were required lower temperatures and times to obtain clean product. From this study several trends became apparent.

Table 3: Scope for the newly discovered heterocycloisomerization reaction.

The key difference between the reactivity observed in the terminal alkyne case and the internal alkyne cases is that in the latter, mixtures of diastereomeric products are observed. A cyclopropyl substituent on the alkyne led to the formation of $\mathbf{2 . 1 4 p}$ in 73% yield. Importantly, this reaction proceeded at $75^{\circ} \mathrm{C}$ as compared to the $90{ }^{\circ} \mathrm{C}$ required for terminal alkyne substrate 2.9. Aryl substitution on the alkyne unit is readily tolerated as evidenced by the formation of products 2.14a, 2.14j, 2.14k. Of note, increasing sterics by ortho- substitution on the aryl group (see 2.14k) leads to a lower yield of the desired product. A cyclohexenyl substituent yielded the corresponding vinyl aminopyrrole product (2.14n) in 36\% yield. Vinyl pyrroles are known to readily decompose under acidic and aerobic conditions which likely accounts for the low isolated yield of $\mathbf{2 . 1 4 n}$. ${ }^{17}$ Perhaps most significantly, none of the desired product was observed for substrates possessing alkyl substitution on the alkyne group (except for compound 2.14p). In these cases (e.g., $R=n-B u, \mathbf{2 . 1 3 q}$ or cyclohexyl, 2.13r), none of the desired product was observed and only non-specific decomposition occurred upon prolonged heating. Thus, it would appear that a careful balance of stereoelectronics is important for these transformations. Furthermore the reaction only appears to work for alkynes bearing electron rich R groups (with the exception of substrate 2.9).

Mechanistically, this suggested to us that the reaction proceeded through some type of cationic intermediate, although the nature of this intermediate is still not apparent to us.

Section 2.3. Mechanistic Investigations and Hypotheses

Section 2.3.1. Computational and deuterium labeling studies (in collaboration with Prof. Dean Tantillo and Phil Painter)

To understand the mechanism for the transformation of ketone 2.3 to aminyopyrrole 2.9 we began with computational studies; however, we quickly realized that myriad intermediates are potentially relevant to the transformation in Table 1. Specifically, after condensation of ketone 2.3 with p-toluenesulfonylhydrazide, there are at least six isomeric hydrazone intermediates (Scheme 3) ${ }^{18}$ that could possibly be present in the reacting mixture (2.15-2.19). Furthermore, of these species, hydrazone 2.15, enhydrazine 2.16, and alkyldiazine 2.17 could all be viable species for the intramolecular 5-endo-dig cyclization. To help elucidate which of these intermediates were potentially viable for DFT analysis, we began with deuterium labeling studies (Figure 1).

Scheme 3: Potential isomers of hydrazone E-2.15 present in the reaction.

Upon treatment of ketone 2.3 with TsNDND_{2} in $\mathrm{CD}_{3} \mathrm{OD}$, deuteration at $\mathrm{C}(3)$ (90% D) was observed along with the addition of the $\mathrm{CD}_{3} \mathrm{OD}$ group (see Eq. 1, Figure 1) as anticipated. Deuteration at $\mathrm{C}(2)(97 \% \mathrm{D})$ and, surprisingly, at $\mathrm{C}(8)(99 \% \mathrm{D})$ was also observed. At low conversion (c.a. 20\%), ${ }^{1} \mathrm{H}$ NMR analysis of the product displayed 88% deuterium incorporation at C(3) and only 42% D at C(2), which increased to 97% over 2 h. These observations support activation of the alkyne by an electrophilic reagent. Deuteration at $\mathrm{C}(8)$ however, cannot be explained by the mechanism illustrated in Figure 1, B especially if one considers Eq. 2 (deuterium incorporation at C8 does not occur after product formation). If the mechanism in Scheme 2 were operative (using hydrazone 2.15 instead of ketone 2.3), deuterium exchange mostly likely would occur after a rate determining cyclization of 2.15 via ene-hydrazine 2.19 , which we expect to undergo an irreversible strain promoted fragmentation (analogous to 2.7 to 2.4).

(2)

Figure 1: Deuterium labeling studies using ketone 2.3.
The likely explanation for this outcome is that deuteration at $C(8)$ occurs prior to product formation. One possibility is that deuteration of the methylene position that eventually becomes $C(8)$ occurs during the condensation of ketone 2.3 with the hydrazide to form the requisite hydrazone. The ease of exchange of the protons α - to the ketone group of 2.3 under the reaction conditions is convincingly supported by the complete loss of deuterium when $\mathbf{d}_{2}-2.3$ (Eq. 3) is subjected to the standard heterocycloisomerization conditions. These observations suggest that hydrazones E 2.15 and Z-2.15 are likely viable intermediates present during the reaction and that deuterium exchange may occur through protonation of enehydrazine 2.16. ${ }^{16 \mathrm{f}, \mathrm{g}}$ Interestingly, we also noticed that the conversion of $\mathbf{d}_{2}-2.3$ proceeded very sluggishly, yielding only 17% conversion after 2 hours of heating. Logically, the transformation in Eq 3. suggested some type of primary kinetic isotope effect, however detailed kinetic studies (vide infra) measured this kinetic isotope effect to be 24, which was abnormally large and, more importantly, above the theoretical limit for KIE's that do not involve tunneling for proton transfers. ${ }^{19}$ Thus, we ascertained there were other factors at play and hypothesized that the effect could possibly be explained by invoking a rate limiting pre-equilibrium of Z-hydrazone 2.15 to E-hydrazone 2.15 (i.e., the Z-hydrazone is formed faster than the E-hydrazone and a-deprotonation of the Z-hydrazone is required to access the E-hydrazone which then undergoes the 5-exo-dig cyclization, Scheme 4).

Scheme 4: Initially proposed mechanism for conversion of ketone 2.3 to pyrrole 2.9 invoking large ratedetermining equilibrium isotope effect.

Our initial calculations were aimed at finding an energetically viable mechanism that was consistent with the observed isotope effect data. We employed a model system in which the tosyl and ethyl groups of the substrate were truncated to mesyl and methyl groups for computational efficiency, and explicit methanol and $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{H}$ molecules were included. The reaction was studied with the M06-2X/6-31+G(d,p) DFT method (20) implemented in GAUSSIAN09 (21), using the SMD continuum solvation model ${ }^{22}$ in methanol at 365 K . Frequency analysis was used to assign stationary points as transition state structures or minima, and Intrinsic Reaction Coordinate (IRC) calculations ${ }^{23}$ were utilized to connect transition state structures to their associated minima. Structural images were created using Ball \& Stick. ${ }^{24}$ Energies reported are gas phase Gibbs free energies (unless otherwise stated).

Consistent with the experimental results described above, our calculations indeed predict that the Z-hydrazone (Scheme 5, Z-A) is lower in energy than the Ehydrazone (Figure 4, E-A)) by almost $2 \mathrm{kcal} / \mathrm{mol}$. Furthermore, direct interconversion of the two hydrazones through a linear $\mathrm{C}=\mathrm{N}-\mathrm{NR}$ bond is predicted to have a barrier of 27 $\mathrm{kcal} / \mathrm{mol}$. Ring closure from the E-hydrazone via transition state structure $\mathrm{TS}_{\mathrm{Ac}}$ is associated with a barrier (versus Z-hydrazone) of $29 \mathrm{kcal} / \mathrm{mol}$. Subsequent capture by methanol (via $\mathbf{T S}_{\text {co }}$) is predicted to be facile. These calculations suggest that the ring closure step is rate-determining, yet deuteration of the a-position in such a scenario would result in a secondary inverse isotope effect (supported by DFT predictions; see Supporting Information) (25), as opposed to the observed apparent primary effect. Enamine formation was also considered (Figure 4, left), but ring-closure from an enamine intermediate is predicted to have a prohibitively high barrier ($>40 \mathrm{kcal} / \mathrm{mol}$),
due in part to the poor nucleophilicity of the enamine nitrogen associated with loss of conjugation upon attack. These results left us at a loss for understanding the apparent kinetic isotope effect described in Eq. 3 and suggested yet another unanticipated factor was likely operative.

Scheme 5: Optimized structures (M06-2X/6-31+G(d,p)) for metal-free cyclization pathways. Relative free energies are shown in kcal/mol and selected distances are shown in Å.

Section 2.3.2. In situ mechanistic studies (in collaboration with Prof. Jason Hein and Diana Yu)

With the computational model for the reaction developed, we then sought to conclusively exclude the possibility that the large effect of a-deuteration using ketone $d_{2}-2.3$ on the rate of the reaction was not due to a rate determining pre-equilibrium of hydrazone Z-2.15 to E-2.15 (Scheme 4). Furthermore, we sought to rule out the possibility that the sulfinic acid, generated from the thermal decomposition of p TsNHNH $2,{ }^{26}$ was the active catalyst for this reaction. As such we turned to monitoring the reaction by React-IR and LCMS to rule out these possibilities. Monitoring this reaction (which proceeds above the boiling point of methanol) was not trivial and required the development of a new apparatus (see Figure 2, A).
A.

B.

Figure 2: A) Flow chemistry apparatus for monitoring reaction progress. B) Kinetic profile for ketone 2.3 heterocycloisomerization reaction

Reaction progress analysis using the custom-built apparatus shown in Figure 2, A, (see Supporting Information for details) clearly confirms that the cycloisomerization reaction proceeds via first condensation to generate two isomeric hydrazones, which are consumed to give aminopyrrole 2.9 (Figure 2, B). The isomeric hydrazones are initially present in approximately a 3:1 ratio; however, the assignment of their geometry by ${ }^{1} \mathrm{H}$ NMR was complicated by lack of any characteristic nOE signal. Following an empirical relationship developed by Fuchs and coworkers, we used the difference in chemical shifts between the a-carbons of the hydrazone 2.15 and ketone 2.3 to determine the geometry about the imine C-N double bond. ${ }^{27}$ In general, Fuchs et. al. found that carbons syn- to the imine " X " group on a hydrazone (or other imine derivative) are shifted to higher field compared to the same carbon on the ketosubstrate ($12-15 \mathrm{ppm}$). The carbons anti- to the imine " X " moiety only change by $3-6$
ppm (Figure 3). Thus, for hydrazone 2.15, we assigned the carbons of the compound based on ${ }^{13} \mathrm{C}$ DEPT 135 analysis and were able to ascertain that the geometry of the major hydrazone isomer in solution was indeed syn- to the alkyne group. This observation was very counterintuitive because it suggests that the more sterically encumbered hydrazone is thermodynamically favored. Notably, this was in agreement with the obtained computational results.

$\Delta \alpha$ (ketone-hydrazone) $=12$ - 15 ppm for syn $\Delta \alpha^{\prime}($ ketone-hydrazone) $=$ 3-6 ppm for anti

2.3

Z-2.15
$\Delta \alpha$ (ketone-hydrazone) $=4.9 \mathrm{ppm} \therefore$ anti
$\Delta \alpha^{\prime}($ ketone-hydrazone $)=13.3 \mathrm{ppm} \therefore$ syn
Figure 3: Application of the Fuchs relationship to determine hydrazone geometry in compound 2.15.
As an added measure of certainty, we were able to recrystallize both Z-hydrazone 2.15 (from methanol) and E-hydrazone 2.15 (from benzene) (Figure 4) thus giving us unambiguous characterization of these intermediates during the course of the reaction. Again contrary to initial intuition, this result further demonstrates that the Z-hydrazone is the more stable conformation presumably due to intramolecular hydrogen bonding with the alkyne group as predicted by computation.

Z-2.15

Figure 4: X-ray crystal structures of E - and Z - hydrazone 2.15.
The relative rates of reaction for the a-proto and a-deutero compounds were next investigated using automated tandem reaction analysis. Preliminary experiments indicated that labeling the a-position had a profound impact on the rate of reaction as suggested in Eq. 3. However, based on our detailed computational results, this could
not be the case. Thus, after recrystallizing ketone 2.3 from EtOH and subjecting this material and d2-2.3 to the reaction conditions again, we observed nearly identical rates of product formation. Moreover, the relative change in concentration for all reaction species are parallel regardless of which ketone is used (Figure 5).

Figure 5: Reactions initiated with either recrystallized ketone 2.3 (trends marked with circle) and d_{2}-ketone 2.3 (trends marked with cross) show nearly identical kinetic profiles.

Following this observation, we found that the rate of product formation in the cycloisomerization reaction varies with how the ketone is prepared. When material that had been purified by column chromatography was utilized (orange triangles), the rate of aminopyrrole formation was significantly higher than ketone purified by crystallization (orange circles) from EtOH. Furthermore, the accelerated rate of cyclization could be partially restored if an aliquot of the supernatant was returned to the recrystallized ketone (orange squares, Figure 6). Finally, the rate of ketone consumption to form Zand E-hydrazones is identical regardless of how the reaction is performed (green line in graph). These results suggest that a trace catalyst exists in the sample that is not effectively removed by column chromatography and specifically accelerates the cyclization from the intermediate hydrazone without impacting the condensation or hydrazone equilibration steps.

Figure 6: Rate of ketone consumption varies with its preparation. Orange circles signify product formation from recrystallized ketone 2.3. Orange triangles represent product formation from ketone 2.3 directly after column chromatography without recrystallization. Orange squares signify product formation when mother liquor is added to recrystallized ketone.

To identify the nature of the trace catalyst present in the sample, ICP-MS analysis was conducted on both the column-purified and recrystallized ketone, as well as the mother liquor from the crystallization. While many trace metals were present, the key difference between the samples is a depletion of copper upon recrystallization from EtOH (Table 4). In addition, there is a concomitant increase of copper in the mother liquor.

Table 4: Comparison of Cu levels in starting material after purifications.

Entry	Sample	$\% \mathrm{Cu}(\mathrm{mg} / \mathrm{mg})$	Equiv. Cu
	Ketone after column	2.76×10^{-2}	9.01×10^{-4}
1	Ketone recrystalized from EtOH	8.40×10^{-3}	2.70×10^{-5}
2	Supernatant	1.17×10^{-1}	3.79×10^{-3}

ICP-MS analysis of the solvent and PTSH show significant elevation in the concentration of copper. Thus, the likely source of this contamination is residual copper from the Sonogashira coupling used to install the alkyne functional group in ketone 2.3. ${ }^{28}$ The remarkable feature of this realization is that a significant quantity of copper remained in the sample even after three synthetic steps, each followed by purification using standard techniques (column chromatography or extraction). Furthermore, this result also indicates the highly efficient nature of copper to facilitate the transformation, as it was quite effective at a loading of less than 3×10^{-5} mol equiv ($\mathrm{TON}=3000$). So, while previous experiments had flagged the apparent differences in rate between 2.3 and $\mathbf{d}_{2}-2.3$ as having key mechanistic implications, it is likely that the added chemical step of a-deuteration under basic conditions and purification simply removed the trace copper to a level that diminished the rate of cyclization for $\boldsymbol{d}_{2}-\mathbf{2 . 3}$, and recrystallization of ketone $\mathbf{2 . 3}$ also serves a similar purpose.

Finally, we were able to confirm that copper salts were the likely active catalyst by performing a reaction where $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ was employed as a catalyst. In this experiment, recrystallized ketone and hydrazide were incubated in MeOH at $40^{\circ} \mathrm{C}$ until all of the ketone substrate was converted to hydrazone. The copper catalyst (0.01 equiv) was then added allowing rapid cyclization to occur, confirming that this metal is operative in the cyclization step (Figure 7).

Figure 7: Copper catalyzed cycloisomerization of hydrazone 2.15.
Additional calculations with copper (modeled here as $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right)$) were performed using the M06-2X/LANL2DZ model chemistry ${ }^{29}$ to confirm that $\mathrm{Cu}(\mathrm{I})$ does lead to barrier lowering. Our results (Figure 8) indicate that ring-closure from the E hydrazone does indeed have a reduced (by $\sim 6 \mathrm{kcal} / \mathrm{mol}$) barrier when the copper salt complexes to the alkyne π-bond, as expected.

Figure 8: Optimized structures (M06-2X/LANL2DZ) for Cu-promoted cyclization. Relative free energies are shown in $\mathrm{kcal} / \mathrm{mol}$ and selected distances are shown in A.

Section 2.3.3. Mechanistic proposal

On the basis of the collection of our observations thus far and insights from the analogous gold-catalyzed transformations described by Schmalz and Zhang, ${ }^{15}$ a plausible mechanism for the heterocycloisomerization can be formulated as illustrated in Scheme 6, A. Condensation of ketone 2.3 with TsNHNH_{2} leads to the formation of hydrazone $\mathbf{Z}-2.15$. Concurrent thermal decomposition of TsNHNH_{2} results in the formation of small, but significant, quantities of $p-\mathrm{ToISO}_{2} \mathrm{H}$, which possibly facilitates the isomerization of Z-hydrazone 2.15 to E-hydrazone 2.15 through an enehydrazine intermediate (2.16) that is undetected in our kinetic studies but implied from our deuterium labeling experiments (see $d_{7}-2.9$). Activation of the alkyne group with trace copper salts and attack of the hydrazone imine in a 5-endo-dig fashion on the activated alkyne group affords iminium ion 2.20. The addition of methanol to compound 2.20 at this stage may proceed with attendant rupture of the endocyclic cyclopropane $\mathrm{C}-\mathrm{C}$ bond and aromatization to afford bicyclic aminopyrrole derivative 2.9.

Finally, changes in the electronic and steric properties of the alkyne substituent impact both the reactivity and diastereoselectivity of the resulting products. This may be explained by the influence of substituents on Step 3 (see Scheme 6, A) of our proposed mechanism. As illustrated in Scheme 6, B, groups that are electron-releasing are likely to stabilize this cumulene intermediates such as 2.21, which would in turn be reflected in a lower associated barrier for the metal coordination step. Furthermore, intramolecular cyclization by the hydrazone group would be hampered by increased steric interaction with the R group, which is reflected in our observations with, for example, orthosubstituted phenyl groups (see 2.14k and 2.140, Table 3). Following attack, iminium ion intermediate 2.20 is formed. The R group (in the cases where it is electron releasing) could enhance stabilization of cationic intermediate 2.22 by the aminopyrrole moiety. As
a result, the methanol addition step would be to a more cationic type intermediate (i.e., 2.23) as opposed to a more diastereoselective SN2'-like scenario where methanol addition occurs from the β-face of intermediate 2.20. These observations are fully consistent with the alkyne substituent effects on the stereoselectivity of these hetercycloisomerizations that was observed and rationalized by Schmalz and coworkers using an elegant enantioenriched substrate study. ${ }^{30}$

Scheme 6: Mechanistic proposal and rationalization of diastereoselectivity.

Section 2.4. Conclusion - The importance of collaborative research

In conclusion, we investigated a heterocycloisomerization reaction to form cycloheptane-annulated aminopyrroles and found that the transformation is facilitated by copper at remarkably low catalyst loadings. These reactions are a 'no-metal added' variant of a related gold(I)-catalyzed cycloisomerization developed by Schmalz and Zhang for the corresponding furans. Through computational studies, monitoring reaction kinetics and elemental analysis, we have conclusively established that the active catalyst is a copper complex present in the reaction at trace levels. Furthermore, we have demonstrated that both the E - and Z - hydrazones exist in this reaction and that, counterintuitively, the Z-hydrazone 2.15 is the more thermodynamically stable hydrazone isomer. We also believe that the thermal decomposition of tosylhydrazide generates diimide and sulfinic acid in situ, and these components are critical for the success of the reaction, though we have conclusively shown that the rate-determining step in the reaction has no concentration dependence on the amount of tosylhydrazide added. Computational and kinetic results suggest that enehydrazine 2.16 and are plausible intermediates in this reaction; however, they are not the species that undergo cyclization onto the alkyne group and primarily are responsible for isomerizing the hydrazine geometry. With these observations, we are actively investigating the nature of other "metal-free" cycloisomerization reactions such as those described in Figure 1, A to establish whether this reaction involves trace metal catalysis. Finally, these studies attest to the power of unique collaborations between three different chemistry research
groups. With our combined expertise and results, we were able to gain a more complete picture of a transformation that would have otherwise been classified as "metal-free"

Section 2.5.1. Supporting Information - General Procedures

All reactions were run in flame-dried round-bottom flasks or vials under a nitrogen atmosphere. Reactions were monitored by thin layer chromatography (TLC) on Silicycle Siliaplate ${ }^{\text {TM }}$ glass backed TLC plates ($250 \mu \mathrm{~m}$ thickness, $60 \AA \AA$ porosity, F-254 indicator) and visualized using UV irradiation and para-anisaldehyde or KMnO_{4} stain. Dry tetrahydrofuran, triethylamine, and methanol were obtained by passing these previously degassed solvents through activated alumina columns. Dichloromethane was distilled over calcium hydride before use. Volatile solvents were removed under reduced pressure on a rotary evaporator. All flash chromatography was done using Sorbent Technologies $60 \AA, 230 \times 400$ mesh silica gel ($40-63 \mu \mathrm{~m}$). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were taken with Bruker AV-300, AVB-400, AVQ-400, AV-500, and AV-600 MHz ($75,100,125$, and 150 MHz for ${ }^{13} \mathrm{C}$ NMR) spectrometers in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ as noted. Chemical shifts were measured relative to the shift of the residual solvent (${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3} \delta=7.26, \mathrm{C}_{6} \mathrm{D}_{6} \delta=7.16 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left.\mathrm{CDCl}_{3} \delta=77.00, \mathrm{C}_{6} \mathrm{D}_{6} \delta=128.06 \mathrm{ppm}\right)$. NMR data are reported as follows: chemical shift (multiplicity, coupling constant, integration). Splitting is reported with the following symbols: $s=$ singlet, $d=$ doublet, $t=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet, $\mathrm{a}=$ apparent, $\mathrm{b}=$ broad. IR spectra were taken on a Nicolet 380 spectrometer as thin films on NaCl plates unless otherwise specified. Spectra are reported in frequency of absorption in cm^{-1}. Only selected resonances are reported. High-resolution mass spectra (HRMS) were performed by the mass spectral facility at the University of California, Berkeley.

Section 2.5.2. Supporting Information - Experimental Procedures

Section 2.5.3. General procedure for the synthesis of alkynylbicyclo[4.1.0]cycloheptanones

Step 1: 2-iodocyclohex-2-en-1-one (1 equiv) was added to a dry flask under nitrogen to which THF (0.13 M) was added. The solution was cooled to $0^{\circ} \mathrm{C}$ with an ice bath and then $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{Cul}(10 \mathrm{~mol} \%)$ were added. To the yellow suspension was added the terminal alkyne (1.5 equiv) followed by N, N-diisopropylamine (3 equiv) over 10 seconds. The solution was allowed to stir for 2 hours, then diluted with diethyl ether ($100 \mathrm{~mL} / \mathrm{mmol}$ vinyl iodide) and washed consecutively with $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL} / \mathrm{mmol}$ vinyl iodide) and brine ($100 \mathrm{~mL} / \mathrm{mmol}$ vinyl iodide), then dried over MgSO_{4}, filtered, and
concentrated in vacuo. Silica gel chromatography of the resulting crude mixture yielded enyne.

Step 2: DBU (3 equiv) was added to a suspension of (Ethoxycarbonylmethyl)dimethylsulfonium bromide (2.5 equiv) in DCM (0.11 M). After 45 minutes, the enyne (1 equiv) was added and the solution was allowed to stir until finished as determined by TLC. The organic solvents were evaporated and then partitioned between ethyl acetate ($20 \mathrm{~mL} / \mathrm{mmol}$ enyne) and water ($20 \mathrm{~mL} / \mathrm{mmol}$ enyne). The organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}\left(20 \mathrm{~mL} / \mathrm{mmol}\right.$ enyne), water ($20 \mathrm{~mL} / \mathrm{mmol}$ enyne), dried over MgSO_{4}, filtered, and concentrated. The residue was purified via silica gel chromatography to yield the desired alkynyl bicyclo[4.1.0]cycloheptanone.

For the preparation of substrate S2.3a, see Fisher, E. L.; Wilkerson-Hill, S. M.; Sarpong, R. J. Am. Chem. Soc. 2012, 134, 9946-9949.

Following step 2 of the general procedure: 2-(phenylethynyl)cyclohex-2-enone ${ }^{31}$ (770 $\mathrm{mg}, 3.92 \mathrm{mmol}$), DBU ($1.77 \mathrm{~mL}, 11.8 \mathrm{mmol}$), (Ethoxycarbonylmethyl)-dimethylsulfonium bromide ($2.24 \mathrm{~g}, 9.8 \mathrm{mmol}$), and DCM (35 mL) were used to produce substrate $\mathbf{S 2 . 3 b}$ ($827 \mathrm{mg}, 2.93 \mathrm{mmol}, 75 \%$ yield) after silica gel chromatography (15 to 25 to 33% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H})$, $4.23-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=6 . \mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{dt}, J=18,5 \mathrm{~Hz}$, 1H), 2.25 (ddd, $J=17.5,11,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.06$ (m, 1H), $2.05-1.97$ (m, 1H), $1.88-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{3} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 200.5, 167.5, 131.8, 128.0, 127.9, 122.7, 84.0, 83.0, 61.4, 36.6, 33.3, 31.6, 31.5, 20.2, 18.7, 14.2. IR (thin film) $\mathrm{v}_{\text {max }}=3052,2983,2942,2227,1736,1704,1491,1446,1287$, $1185 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}$ 283.1329, found 283.1329.

Following step 2 of the general procedure: 2-((4-methoxyphenyl)ethynyl)cyclohex-2enone 31 ($900 \mathrm{mg}, 4.0 \mathrm{mmol}$), DBU ($1.8 \mathrm{~mL}, 12 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($2.29 \mathrm{~g}, 10 \mathrm{mmol}$), and DCM (35 mL) were used to produce substrate S2.3c ($1.2 \mathrm{~g}, 3.84 \mathrm{mmol}, 96 \%$) after silica gel chromatography (25 to 33% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6 . .77$ (d, $J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $4.25-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) 2.69-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~d}, \mathrm{~J}=6.5 . \mathrm{Hz}$, $1 \mathrm{H}), 2.42(\mathrm{dt}, J=18,5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=17.5,11,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}$, $1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.8,167.6,159.3,133.3,114.9,113.6,82.9,82.4$, $61.4,55.1,36.6,33.4,31.6,31.5,20.2,18.7,14.2$. IR (thin film) $\mathrm{v}_{\max }=2925,2844$, $2235,1736,1704,1605,1516,1283,1246,1189 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 313.1434$, found 313.1436.

Following step 1 of the general procedure: 2-iodocyclohex-2-en-1-one (1.12 g, 5.05 $\mathrm{mmol})$, THF $(40 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(177 \mathrm{mg}, 0.25 \mathrm{mmol})$, Cul ($\left.97 \mathrm{mg}, 0.51 \mathrm{mmol}\right) 4-$ ethynylbiphenyl ${ }^{32}(1.35 \mathrm{~g}, 7.57 \mathrm{mmol})$, and N, N-diisopropylamine ($2.1 \mathrm{~mL}, 15.2 \mathrm{mmol}$) were used to produce the desired enyne S2.2d ($1.4 \mathrm{~g}, 5.0 \mathrm{mmol}, 99 \%$ yield) after silica gel chromatography (10 to 25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59$ (m, 6H), 7.44 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (m, 2H), 2.54 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.49 (dd, $J=6$, $4.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.05 (pent, $J=6 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 195.5,154.2$, $140.9,140.1,132.1,128.7,127.5,126.9,126.8,125.5,121.7,91.9,84.4,38.0,26.4$, 22.3. IR (thin film) $\mathrm{v}_{\max }=3032,2950,2864,2210,1691,1483,1356,1156 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z$, found .

Enyne S2.2d (1.4 g, 5.0 mmol$)$, DBU ($2.3 \mathrm{~mL}, 15.3 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($2.97 \mathrm{~g}, 12.8 \mathrm{mmol}$), and DCM (46 mL) were used to produce substrate $\mathbf{S 2 . 3 d}$ ($1.0 \mathrm{~g}, 2.79 \mathrm{mmol}, 55 \%$) after silica gel chromatography (15 to 25 to 33% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ -7.47 (m, 4H), 7.43 (t, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.16$ (m, 2H), 2.75 - $2.69(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dt}, J=18,5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (ddd, $J=17.5$,

11, $6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.62$ (m, 1H), $1.28(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.6,167.6,140.7$, $140.3,132.3,128.7,127.5,126.9,126.7,121.7,84.7,82.9,61.5,36.6,33.4,31.7,31.5$, 20.2, 18.7, 14.3. IR (thin film) $\mathrm{v}_{\max }=3040,2946,2255,1732,1704,1487,1283,1189$ cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 359.1642$, found 359.1640.

Following step 2 of the general procedure: 2-((4-(dimethylamino)-phenyl)ethynyl)cyclohex-2-enone ${ }^{31}$ ($710 \mathrm{mg}, 2.97 \mathrm{mmol}$), DBU ($1.3 \mathrm{~mL}, 8.91 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($1.7 \mathrm{~g}, 7.43 \mathrm{mmol}$), and DCM (26 mL) were used to produce substrate $\mathbf{S 2 . 3 e}$ ($900 \mathrm{mg}, 2.72 \mathrm{mmol}, 93 \%$) after silica gel chromatography (25 to 33% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.55$ (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $4.26-4.12$ (m, 2H), 2.93 (s, 6H), $2.69-2.63$ (m, 1H), 2.58 (d, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dt}, J=18,5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (ddd, $J=17.5,11,6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 1 \mathrm{H})$, 1.25 ($\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.0,167.7,149.9,132.9$, 111.5, 109.6, 83.9, 81.3, 61.3, 40.1, 36.6, 31.6, 31.5, 20.2, 18.8, 14.2. IR (thin film) $\mathrm{v}_{\max }=$ 2983, 2938, 2803, 2223, 1728, 1704, 1610, 1524, 1442, 1356, $1176 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z 326.1751$ found 326.1751.

Following step 1 of the general procedure: 2-iodocyclohex-2-en-1-one ($2.0 \mathrm{~g}, 9.0$ $\mathrm{mmol})$, THF $(70 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(315 \mathrm{mg}, 0.45 \mathrm{mmol})$, Cul ($171 \mathrm{mg}, 0.9 \mathrm{mmol}$) 4ethynyltoluene ${ }^{33}$ ($1.7 \mathrm{~mL}, 13.5 \mathrm{mmol}$), and N, N-diisopropylamine ($3.78 \mathrm{~mL}, 27 \mathrm{mmol}$) were used to produce the desired enyne S2.2f ($900 \mathrm{mg}, 4.28 \mathrm{mmol}, 48 \%$ yield) after silica gel chromatography (15 to 25% EtOAc in hexanes). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.39 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (t, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 4 \mathrm{H})$, 2.34 (s, 3H), 2.06 (pent, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$).

Enyne S2.2f ($900 \mathrm{mg}, 4.28 \mathrm{mmol}$), DBU ($1.96 \mathrm{~mL}, 12.8 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($2.45 \mathrm{~g}, 10.7 \mathrm{mmol}$), and DCM (36 mL) were used to produce substrate $\mathbf{S 2 . 3 f}$ (640 mg , $2.16 \mathrm{mmol}, 50 \%$) after silica gel chromatography (15
to 25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dt, $J=18,5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{ddd}, J=17.5,11,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}$, 1H), $2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 200.6, 167.6, 138.0, 131.7, 128.7, 119.7, 83.2, 83.1, $61.4,36.6,33.3,31.6,31.5,21.4,20.7,18.7,14.2$. IR (thin film) $\mathrm{v}_{\max }=2978,2946$, 2251, 1732, 1699, 1503, 1283, 1242, 1213, $1189 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}^{+}(\mathrm{M}+\mathrm{Na})^{+}: \mathrm{m} / \mathrm{z} 319.1305$ found 319.1304.

Following step 1 of the general procedure: 2-iodocyclohex-2-en-1-one ($2.0 \mathrm{~g}, 9.0$ $\mathrm{mmol})$, THF $(70 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(315 \mathrm{mg}, 0.45 \mathrm{mmol})$, Cul ($\left.171 \mathrm{mg}, 0.9 \mathrm{mmol}\right) 4-$ ethynylfluorobenzene ${ }^{34}(1.55 \mathrm{~mL}, 13.5 \mathrm{mmol})$, and N, N-diiisopropylamine ($3.78 \mathrm{~mL}, 27$ mmol) were used to produce the desired enyne $\mathbf{S} 2.2 \mathrm{~g}(400 \mathrm{mg}, 1.87 \mathrm{mmol}, 21 \%$ yield) after silica gel chromatography (15 to 25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 4 \mathrm{H}), 2.04$ (pent, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$).

Enyne S2.2g ($400 \mathrm{mg}, \quad 1.87 \mathrm{mmol})$, DBU (0.84 mL , 5.61 mmol), (Ethoxycarbonylmethyl)-dimethylsulfonium bromide ($1.07 \mathrm{~g}, 4.68 \mathrm{mmol}$), and DCM (16 mL) were used to produce substrate $\mathbf{S 2 . 3 g}(200 \mathrm{mg}, 0.67 \mathrm{mmol}, 36 \%$) after silica gel chromatography (15 to 25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (dd, $\left.J_{H H}=8.5 \mathrm{~Hz}, J_{H F}=5.5 \mathrm{~Hz} 2 \mathrm{H}\right), 6.90(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.60$ (m, 1H), 2.57 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dt, $J=18,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (ddd, $J=17.5,11$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.54$ ($\mathrm{m}, 1 \mathrm{H}$), $1.19(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4,167.4,162.1$ (d, $\left.J_{C F}=248 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J_{C F}=9 \mathrm{~Hz}\right), 118.7\left(\mathrm{~d}, J_{C F}=4 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d}, J_{C F}=21 \mathrm{~Hz}\right), 83.7$, 81.8, 61.3, 36.4, 33.1, 31.5, 31.3, 20.0, 18.5, 14.1. IR (thin film) $\mathrm{v}_{\max }=3064,2946$, 2231, 1763, 1708, 1601, 1512, 1368, 1283, 1217, $1187 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{FNa}^{+}(\mathrm{M}+\mathrm{Na})^{+}: m / z 323.1054$ found 323.1054 .

Following step 1 of the general procedure: 2-iodocyclohex-2-en-1-one (1.36 g, 6.13 mmol), THF (50 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(215 \mathrm{mg}, 0.31 \mathrm{mmol})$, Cul ($117 \mathrm{mg}, 0.61 \mathrm{mmol}$) 2ethynylnaphthalene ${ }^{35}$ ($1.4 \mathrm{~g}, 9.2 \mathrm{mmol}$), and N, N-diisopropylamine ($2.58 \mathrm{~mL}, 18.4$ $\mathrm{mmol})$ were used to produce the desired enyne $\mathbf{S 2 . 2 h}$ ($1.12 \mathrm{~g}, 4.55 \mathrm{mmol}, 74 \%$ yield) after silica gel chromatography (15 to 25% EtOAc in hexanes). ${ }^{1} \mathbf{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~s}, 1 \mathrm{H}) 7.79(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H})$.

Enyne S2.2h ($1.12 \mathrm{~g}, 4.55 \mathrm{mmol}$), DBU ($2.0 \mathrm{~mL}, 13.7 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($2.6 \mathrm{~g}, 11.4 \mathrm{mmol}$), and DCM (40 mL) were used to produce substrate S2.3h ($830 \mathrm{mg}, 2.5 \mathrm{mmol}, 55 \%$) after silica gel chromatography (15 to 25 to 33% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H})$, $7.75-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 4.30-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.66$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dt}, J=18,5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (ddd, $J=17.5,11,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ - $2.10(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}$ $=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 200.6,167.6,132.8,132.7,131.7,128.7$, 127.67, 127.66, 127.64, 126.4, 126.3, 120.1, 84.4, 83.5, 61.6, 36.7, 33.4, 31.8, 31.6, 20.3, 18.8, 14.3. IR (thin film) $\mathrm{v}_{\max }=3060,2942,2247,1740,1699,1413,1283,1201$, $1172 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}^{+}(\mathrm{M}+\mathrm{Na})^{+}: \mathrm{m} / \mathrm{z} 355.1305$ found 355.1304 .

Following step 2 of the general procedure: 2-(cyclopropylethynyl)cyclohex-2-enone (940 $\mathrm{mg}, 5.87 \mathrm{mmol})$, DBU ($2.64 \mathrm{~mL}, 17.6 \mathrm{mmol}$), (Ethoxycarbonylmethyl)-dimethylsulfonium bromide ($3.36 \mathrm{~g}, 14.7 \mathrm{mmol}$), and DCM (51 mL) were used to produce substrate $\mathbf{S 2 . 3 i}$ ($700 \mathrm{mg}, 2.84 \mathrm{mmol}, 48 \%$) after silica gel chromatography (15 to 25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.18-4.03(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.30$ (dt, $J=18,5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (ddd, $J=17.5,11,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-$ $1.13(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.61(\mathrm{~m}, 2 \mathrm{H}), 0.61-0.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.2, 167.5, 86.6, 69.2, 61.1, 36.4, 32.9, 31.2, 31.0, 20.0, 18.6, 14.1, 8.2, 8.1, -0.5. IR (thin film) $\mathrm{v}_{\text {max }}=2983$, 2934, 2243, 1736, 1695, 1430, 1381, 1336, 1266, 1213, 1172 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 247.1329$ found 247.1328.

Following step 2 of the general procedure: 2-(cyclohexenylethynyl)cyclohex-2-enone ${ }^{31}$ $(620 \mathrm{mg}, 3.1 \mathrm{mmol})$, DBU ($1.4 \mathrm{~mL}, 9.3 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($1.78 \mathrm{~g}, 7.75 \mathrm{mmol}$), and DCM (27 mL) were used to produce substrate $\mathbf{S 2 . 3 j}$ ($534 \mathrm{mg}, 1.86 \mathrm{mmol}, 60 \%$) after silica gel chromatography (25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.09-6.03(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.08$ (m, 2H), $2.58-2.47$ (m, 2H), 2.37 (dt, $J=18,5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20 (ddd, $J=17.5,11,6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.12-1.91(\mathrm{~m}, 6 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.8,167.6,135.2,120.0,84.8,80.9,61.3,36.5$, 33.3, 31.5, 31.4, 29.0, 25.5, 22.1, 21.4, 20.2, 18.7, 14.2. IR (thin film) $\mathrm{v}_{\max }=2938$, 2856, 2214, 1736, 2704, 1434, 1279, 1217, $1185 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 287.1642$ found 287.1644 .

Following step 1 of the general procedure: 2-iodocyclohex-2-en-1-one ($871 \mathrm{mg}, 3.92$ $\mathrm{mmol})$, THF (28 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(138 \mathrm{mg}, 0.196 \mathrm{mmol})$, Cul ($74.6 \mathrm{mg}, 0.392 \mathrm{mmol}$) 2-ethynyltoluene ${ }^{36}$ ($501 \mathrm{mg}, 4.31 \mathrm{mmol}$), and N, N-diisopropylamine ($1.66 \mathrm{~mL}, 11.8$ mmol) were used to produce the desired enyne S2.2k ($452 \mathrm{mg}, 2.14 \mathrm{mmol}, 55 \%$ yield) after silica gel chromatography (12.5 \% EtOAc in hexanes). ${ }^{11} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, ~ J=7.6,1 \mathrm{H}), 7.40(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}$, $1 \mathrm{H}), 2.59(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 5 \mathrm{H}), 2.12(\mathrm{q}, J=6.19,2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 195.5,153.6,140.4,131.8,129.3,128.3,125.3,122.6,91.0,87.6,64.6$, 38.1, 26.4, 22.3, 20.6. IR (thin film) $\mathrm{v}_{\max }=3359,3021,2948,2821,21961688 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}^{+}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 210.1045$, found 210.1044.

Enyne S2.2k (354 mg, 1.68 mmol$)$, DBU (0.755 mL , 5.05 mmol), (Ethoxycarbonylmethyl)-dimethylsulfonium bromide ($964 \mathrm{mg}, 4.21 \mathrm{mmol}$), and DCM $(16.8 \mathrm{~mL})$ were used to produce substrate $\mathbf{S 2 . 3 k}$ ($493 \mathrm{mg}, 1.66 \mathrm{mmol}, 98 \%$) after silica gel chromatography (14.3% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ (d, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-$ $2.66(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.20-$
$2.00(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 200.5, 167.7, 140.6, 132.3, 129.2, 128.1, 125.3, 122.7, 87.7, 82.3, 61.5, 36.7, 33.7, 31.8, 31.6, 20.7, 20.4, 18.9, 14.2. IR (thin film) $\mathrm{v}_{\max }=3059,2980,2944,1733,1705 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}{ }^{+}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 296.1412, found 296.1410.

To a flame dried round bottom was added carbon tetrabromide ($1.73 \mathrm{~g}, 5.22 \mathrm{mmol}$). The round bottom was then fitted with a septum and evacuated and backfilled three times with nitrogen. Dichloromethane (3.2 mL) was then added to the vessel, and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Triphenylphosphine ($2.85 \mathrm{~g}, 10.9 \mathrm{mmol}$) in dichloromethane (3.2 mL) was then added drop wise to the cooled solution over two minutes and was allowed to stir for 15 minutes at that temperature. 2-Methoxy-6-methylpyridine-3-carboxaldehyde ${ }^{37}$ ($657 \mathrm{mg}, 4.35 \mathrm{mmol}$) in dichloromethane (6.4 mL) was then added to the solution at $0^{\circ} \mathrm{C}$ and allowed to stir for 1 hour. The reaction was then quenched with water (26 mL) and the aqueous layer extracted with dichloromethane ($26 \mathrm{~mL} x 3$). The combined organic layers were then dried with MgSO_{4} and concentrated. The crude solids were then purified by chromatography on SiO_{2} (10:1 hexanes/EtOAc) to afford compound S2.5. Yield $1.03 \mathrm{~g}, 76 \%$. ${ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, 3 H), 2.40 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.0,154.2,138.9,134.6,123.3$, 107.4, 91.7, 53.5, 22.6. IR (thin film) $\mathrm{v}_{\max }=3009,2978,2952,2017,1923,1600 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}^{79} \mathrm{Br}_{2}{ }^{+}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 304.9051$, found 304.9038.

To a flame dried round bottom with dibromide $\operatorname{S2.5}$ ($1.02 \mathrm{~g}, 3.35 \mathrm{mmol}$) in tetrahydrofuran (14.6 mL) at $-78^{\circ} \mathrm{C}$ was added n-butyllithium ($3.22 \mathrm{~mL}, 8.05 \mathrm{mmol} 2.5$ M solution in hexanes) dropwise over 5 minutes. After stirring for one hour at $-78{ }^{\circ} \mathrm{C}$, the brown reaction was then quenched with saturated aqueous ammonium chloride (15 mL). The aqueous layer was then extracted with diethyl ether ($15 \mathrm{~mL} \times 3$) and the combined organics dried over MgSO_{4} and concentrated to afford compound S2.6 as a pale yellow oil which was used without further purification. Yield $396 \mathrm{mg}, 81 \%{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.28$ (s, 1H), 2.58 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 162.8,159.7,142.3,110.2,107.5$, 81.3, 81.1, 53.5, 23.3. IR (thin film) $\mathrm{v}_{\max }=3265,2990,2956,2859,2103,2016,1937$ cm^{-1}. HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}^{+}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 147.0684, found 147.0683.

Following step 1 of the general procedure: 2-iodocyclohex-2-en-1-one ($545 \mathrm{mg}, 2.45$ $\mathrm{mmol})$, THF (17.5 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(86.0 \mathrm{mg}, 0.123 \mathrm{mmol})$, Cul ($46.6 \mathrm{mg}, 0.245$ $\mathrm{mmol})$ 3-ethynyl-6-methoxypicoline ($397 \mathrm{mg}, \quad 2.69 \mathrm{mmol}$), and N, N-diisopropylamine ($1.04 \mathrm{~mL}, 7.35 \mathrm{mmol}$) were used to produce the desired enyne $\mathbf{S 2 . 2 |}$ ($364 \mathrm{mg}, 1.51$ $\mathrm{mmol}, 61 \%$ yiled) after silica gel chromatography (12.5\% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (t, $\left.J=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.51$ (d, $J=8.5$ Hz, 1H), 3.91 (s, 3H), 2.61 (s, 3H), 2.53 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.49 (dt, $J=5.9,5.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.06(\mathrm{q}, J=6.35 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3) δ 195.6, 162.7, 159.3, 141.7, 125.4 111.0, 107.4, 88.6, 87.9, 53.5, 38.1, 26.4, 23.4. IR (thin film) $\mathrm{v}_{\max }=2943,2207$, $1679 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 242.1176, found 242.1174.

Enyne S2.2I (300 mg, 1.24 mmol$)$, DBU ($0.557 \mathrm{~mL}, 3.73 \mathrm{mmol}$), (Ethoxycarbonylmethyl)-dimethylsulfonium bromide ($712 \mathrm{mg}, 3.11 \mathrm{mmol}$), and DCM (12.4 mL) were used to produce substrate $\mathbf{S 2 . 3 1}$ ($354 \mathrm{mg}, 1.08 \mathrm{mmol}, 87 \%$ yield) after silica gel chromatography (16.7% EtOAc in hexanes) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88$ (s, 3H), 2.70 $-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.19$ (m, 1H), 2.15-1.99 (m, 2H), $1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.6,167.6,162.4,159.3,142.1,111.0,107.2,87.8,80.6,61.5$, $53.4,36.6,31.7,31.5,23.3,20.2,18.8,14.2$. IR (thin film) $\mathrm{v}_{\max }=3392$, 2980, 2867, 1734, $1705 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}^{+}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 328.1543$, found 328.1542.

Following step 2 of the general procedure: 2-((4-cyanophenyl)ethynyl)cyclohex-2enone ${ }^{31}$ ($480 \mathrm{mg}, 2.17 \mathrm{mmol}$), DBU ($0.98 \mathrm{~mL}, 6.51 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($1.24 \mathrm{~g}, 5.4 \mathrm{mmol}$), and DCM (19 mL) were used to produce substrate $\mathbf{S 2 . 3 m}(400 \mathrm{mg}, 1.3 \mathrm{mmol}, 60 \%$) after silica gel chromatography (25 to 33%

EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.11(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dt}, J$ $=18,5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{ddd}, \mathrm{J}=17.5,11,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.0$, $167.3,132.2,132.1,127.7,118.4,111.2,89.0,81.6,61.5,36.5,33.1,31.9,31.5,20.0$, 18.5, 14.1. IR (thin film) $v_{\max }=2983,2946,2227,1724,1699,1601,1499,1291,1246$, $1187 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 308.1281$ found 308.1279.

Following step 1 of the general procedure: 2-iodocyclohex-2-en-1-one ($932 \mathrm{mg}, 4.2$ mmol), THF (33 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(147 \mathrm{mg}, 0.21 \mathrm{mmol})$, Cul ($80 \mathrm{mg}, 0.42 \mathrm{mmol}$) 4ethynylchlorobenzene ${ }^{38}(900 \mathrm{mg}, 6.3 \mathrm{mmol})$, and N, N-diisopropylamine ($1.8 \mathrm{~mL}, 12.6$ $\mathrm{mmol})$ were used to produce the desired enyne $\mathbf{S 2 . 2 n}(510 \mathrm{mg}, 2.21 \mathrm{mmol}, 53 \%$ yield) after silica gel chromatography (15 to 25% EtOAc in hexanes). ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50$ (m, 4H), 2.05 (m, 2H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.3,154.5,134.2,132.8,128.4$, 124.9, 121.3, 90.7, 84.7, 38.0, 26.4, 22.2. IR (thin film) $\mathrm{v}_{\max }=2950,2880,2868,2218$, 1691, 1475, 1360, 1225, $1164 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{OCl}^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}$ 231.0571 found 231.0572 .

Enyne S2.2n ($510 \mathrm{mg}, 2.21 \mathrm{mmol}$), DBU ($1.0 \mathrm{~mL}, 6.63 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($1.27 \mathrm{~g}, 5.53 \mathrm{mmol}$), and DCM (20 mL) were used to produce substrate $\mathbf{S 2 . 3 n}$ ($400 \mathrm{mg}, 1.26 \mathrm{mmol}, 57 \%$) after silica gel chromatography (20 to 25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}$, $J=18,5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25 (ddd, $J=17.5,11,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.77$ $(\mathrm{m}, 1 \mathrm{H}), 1.76-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $200.4,167.5,134.0,133.1,128.4,121.3,85.1,82.0,61.5,36.6,33.2,31.7,31.5,20.2$, 18.7, 14.2. IR (thin film) $\mathrm{v}_{\max }=2983,2942,2230,1728,1699,1483,1287,1250,1189$ cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Cl}^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 317.0939$ found 317.0942.

Following step 2 of the general procedure: 2-(hex-1-ynyl)cyclohex-2-enone ${ }^{30}$ (650 mg , $3.69 \mathrm{mmol})$, DBU ($1.66 \mathrm{~mL}, 11.1 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium
bromide ($2.11 \mathrm{~g}, 9.23 \mathrm{mmol}$), and DCM (33 mL) were used to produce substrate $\mathbf{~ S 2 . 3 0}$ ($700 \mathrm{mg}, 2.67 \mathrm{mmol}, 72 \%$) after silica gel chromatography ($15 \% \mathrm{EtOAc}$ in hexanes). ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.22-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 1H), 2.36 (dt, $J=18,5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.24-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91$ (m, 1H), $1.82-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.43$ (pent, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.36$ (pent, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.26(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) 201.4, 167.7, 83.8, 74.0, 61.3, 36.5, 33.1, 31.2, 31.1, 30.7, 21.8, 20.2, 18.8, 18.5, 14.2, 13.5. IR (thin film) $\mathrm{v}_{\max }=2958,2929,2868,2251,1732,1704,1467,1426$, 1373, 1270, 1205, $1181 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z} 263.1642$ found 263.1641.

Following step 1 of the general procedure: 2-iodocyclohex-2-en-1-one ($1.51 \mathrm{~g}, 6.8$ $\mathrm{mmol})$, THF (54 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($238 \mathrm{mg}, 0.34 \mathrm{mmol}$), Cul ($130 \mathrm{mg}, 0.68 \mathrm{mmol}$) nona-1,3-diyne ${ }^{39}$ ($1.22 \mathrm{~g}, 10.2 \mathrm{mmol}$), and N, N-diisopropylamine ($2.86 \mathrm{~mL}, 20.4 \mathrm{mmol}$) were used to produce the desired enyne $\mathbf{S 2 . 2 p}(1.3 \mathrm{~g}, 6.07 \mathrm{mmol}, 89 \%$ yield) after silica gel chromatography (10 to 15% EtOAc in hexanes). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (t, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.99$ (pent, $J=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.50$ (pent, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 195.3, 156.4, 124.4, 85.0, 77.0, 69.1, 64.8, 37.9, 30.8, 27.7, 26.5, 22.1, 22.0, 19.3, 13.8.

Enyne S2.2p (1.3 g, 6.07 mmol$)$, DBU (2.73 mL , 18.2 mmol), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($3.48 \mathrm{~g}, 15.2 \mathrm{mmol}$), and DCM (55 mL) were used to produce substrate $\mathbf{S 2 . 3 p}(1.1 \mathrm{~g}, 3.67 \mathrm{mmol}, 60 \%)$ after silica gel chromatography (10 to 25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.26-$ $4.13(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dt}, J=18,5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.10-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.45$ (pent, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 7 \mathrm{H}), 0.86(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right)$ б 200.0, 167.3, 79.9, 70.0, 68.4, 64.9, 61.6, 36.5, 33.2, 31.8, 31.4, 30.8, 27.7, 22.0, 20.1, 19.1, 18.5, 14.1, 13.8. IR (thin film) $\mathrm{v}_{\max }=2925,2856,2251,2161,1724$, 1708, 1467, 1279, 1221, $1180 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}$ 301.1798 found 301.1798.

Following step 1 of the general procedure: 2-iodocyclohex-2-en-1-one ($2.19 \mathrm{~g}, 9.87$ $\mathrm{mmol})$, THF (78 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($346 \mathrm{mg}, 0.49 \mathrm{mmol}$), Cul ($188 \mathrm{mg}, 0.99 \mathrm{mmol}$) ethynylcyclohexane ${ }^{40}(1.6 \mathrm{~g}, 14.8 \mathrm{mmol})$, and N, N-diisopropylamine ($4.2 \mathrm{~mL}, 29.6$ $\mathrm{mmol})$ were used to produce the desired enyne $\mathbf{S 2 . 2 q}(1.22 \mathrm{~g}, 6.03 \mathrm{mmol}, 61 \%$ yield) after silica gel chromatography (7.5% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.16(\mathrm{t}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}$, 2 H), $1.46(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.0,152.9,125.4$, 97.2, 74.8, 38.0, 32.4, 29.5, 26.2, 25.7, 24.7, 22.4.

Enyne S2.2q (1.22 g, 6.03 mmol$)$, DBU ($2.7 \mathrm{~mL}, 18.1 \mathrm{mmol}$), (Ethoxycarbonylmethyl)dimethylsulfonium bromide ($3.46 \mathrm{~g}, 15.1 \mathrm{mmol}$), and DCM (55 mL) were used to produce substrate $\mathbf{S 2 . 3 q}$ ($930 \mathrm{mg}, 3.22 \mathrm{mmol}, 53 \%$) after silica gel chromatography (15 to 25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.26-$ $4.05(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{ddd}, J=18,11,6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.11-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.52(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.16(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 201.2,167.6,87.7,74.1,61.2,36.5,33.0,32.53,32.51,31.3$, 29.0, 25.8, 24.6, 20.2, 18.8, 14.2. IR (thin film) $v_{\max }=2934,2844,2243,1736,1712$, 1450, 1275, 1205, $1176 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}(\mathrm{M}+\mathrm{Na})^{+}: \mathrm{m} / \mathrm{z}$ 311.1618 found 311.1614 .

Section 2.5.4 - Supporting Information - General cyclization procedure:

To a flame-dried 1 dram vial was added alkynyl bicyclo[4.1.0]cycloheptanones (1 equiv), p-toluenesulfonhydrazide (1.1 equiv), and anhydrous $\mathrm{MeOH}(0.4 \mathrm{M}$). The vial was purged with nitrogen gas for 30 seconds and then sealed with a cap containing a Teflon coated insert. The outside of the vial was sealed with Teflon tape and then submerged in an oil bath at the designated temperature. Upon completion of the reaction, volatiles were evaporated and the crude mixture was purified by silica gel chromatography to yield the cyclized product.

Following the general cyclization procedure, ketone S2.3a ($50 \mathrm{mg}, 0.24 \mathrm{~mol}$) and $\mathrm{TsNHNH}_{2}(50 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{MeOH}(0.6 \mathrm{~mL})$ were stirred at $90^{\circ} \mathrm{C}$ for 3 hours to produce pyrrole S2.7a ($84 \mathrm{mg}, 0.21 \mathrm{mmol}, 88 \%$ yield) as a single diastereomer after silica gel chromatography (25 to 33% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 7.64 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.95(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.71(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (s, 3H), $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 3 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}$, 2H), $1.36(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,144.8$, 134.0, 132.4, 129.7, 128.4, 118.8, 112.3, 107.1, 80.5, 60.5, 56.5, 51.9, 33.3, 24.3, 22.5, 21.6, 14.2. IR (thin film) $\mathrm{v}_{\max }=3232$, 2925, 1728, 1712, 1597, 1450, 1373, 1344, 1168 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 407.1635$, found 407.1630.

Following the general cyclization procedure, ketone S2.3b ($50 \mathrm{mg}, 0.18 \mathrm{~mol}$) and $\mathrm{TsNHNH}_{2}(37 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(0.45 \mathrm{~mL})$ were stirred at $90^{\circ} \mathrm{C}$ for 2.5 hours to produce pyrrole S2.7b (71 mg, $0.15 \mathrm{mmol}, 83 \%$ yield, dr 1.2:1) after silica gel chromatography (25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.88$ (s, 0.55H), 7.78 (s, 0.45H), 7.25 (d, $J=7.8 \mathrm{~Hz}, 1.1 \mathrm{H}$), 7.21 (d, $J=7.8 \mathrm{~Hz}, 0.9 \mathrm{H}), 6.80(\mathrm{~m}, 5 \mathrm{H}), 6.33$ (d, $J=7.8 \mathrm{~Hz}, 1.1 \mathrm{H}), 6.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.9 \mathrm{H}), 6.18$ (s, 0.45 H$), 6.13$ (s, 0.55 H$), 4.14$ (m, 2.45H), $3.94(\mathrm{~d}, J=9 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.77(\mathrm{t}, J=9 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.69(\mathrm{t}, J=9 \mathrm{~Hz}, 0.45 \mathrm{H})$, $3.26(\mathrm{~m}, 0.55 \mathrm{H}), 3.19(\mathrm{~s}, 1.35 \mathrm{H}), 3.16(\mathrm{~s}, 1.65 \mathrm{H}), 3.08(\mathrm{~m}, 0.45 \mathrm{H}), 2.96(\mathrm{~m}, 0.45 \mathrm{H}), 2.46$ $(\mathrm{m}, 0.55 \mathrm{H}), 2.20(\mathrm{~m}, 0.55 \mathrm{H}), 2.12(\mathrm{~m}, 0.45 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 1.65 \mathrm{H}), 1.71(\mathrm{~s}$, $1.35 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 0.6 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.65 \mathrm{H}), 1.00(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1.35 \mathrm{H}), 0.93(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,172.9,144.1,144.0$, 134.8, 134.5, 133.4, 133.3, 131.2, 131.1, 131.0, 129.1, 129.0, 127.8, 127.7, 127.1, $127.0,125.9,125.8,113.2,112.8,108.5,108.3,80.8,80.1,60.5,56.9,56.8,52.5,51.6$, $33.8,33.5,25.8,25.6,23.4,22.6,21.5,14.2,14.1$. IR (thin film) $v_{\max }=3236,2983$, 2934, 2276, 1736, 1712, 1593, 1454, 1348, $1164 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 483.1948, found 483.1939.

Following the general cyclization procedure, ketone S2.3c ($50 \mathrm{mg}, 0.16 \mathrm{~mol}$) and $\mathrm{TsNHNH}_{2}(33 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{MeOH}(0.40 \mathrm{~mL})$ were stirred at $75^{\circ} \mathrm{C}$ for 3 hours to
produce pyrrole S2.7c ($71 \mathrm{mg}, 0.15 \mathrm{mmol}, 83 \%$ yield, dr 1.2:1). No further purification was needed. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 8.58(\mathrm{~s}, 0.55 \mathrm{H}), 8.50(\mathrm{~s}, 0.45 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H})$, $6.93(\mathrm{~d}, J=8 \mathrm{~Hz}, 1.1 \mathrm{H}), 6.85(\mathrm{~d}, J=8 \mathrm{~Hz}, 0.9 \mathrm{H}), 6.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~m}, 2 \mathrm{H})$, 6.16 (s, 0.45 H), $6.10(\mathrm{~s}, 0.55 \mathrm{H}), 4.13(\mathrm{~m}, 2.45 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.74$ (t, J=9 $\mathrm{Hz}, 0.55 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 0.45 \mathrm{H}), 3.31(\mathrm{~m}, 4 \mathrm{H}), 3.19(\mathrm{~s}, 1.35 \mathrm{H}), 3.16(\mathrm{~m}, 2.2 \mathrm{H}), 2.92$ $(\mathrm{m}, 0.45 \mathrm{H}), 2.48(\mathrm{~m}, 0.55 \mathrm{H}), 2.20(\mathrm{~m}, 0.55 \mathrm{H}), 2.11(\mathrm{~m}, 0.45 \mathrm{H}), 1.83(\mathrm{~m}, 3 \mathrm{H}), 1.66(\mathrm{~m}$, $1.1 \mathrm{H}), 1.46(\mathrm{~m}, 0.45 \mathrm{H}), 1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.65 \mathrm{H}), 1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.35 \mathrm{H}), 0.94(\mathrm{~m}$, 0.45 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 173.7,173.6,158.9,158.8,143.9,143.8,135.8$, 135.6, 135.1, 134.9, 132.1, 132.0, 129.6, 129.5, 129.49, 128.7, 128.5, 128.3, 125.3, $125.2,114.1,113.9,108.4,108.1,81.5,81.4,60.9,57.1,57.0,55.1,53.3,53.2,35.2$, 34.3, 26.7, 26.4, 24.3, 24.2, 21.5, 14.8, 14.7. IR (thin film) $\mathrm{v}_{\max }=3244,2929,2276$, 1736, 1712, 1601, 1540, 1491, 1442, 1348, 1296, $1164 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{NaS}^{+}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 535.1873$, found 535.1865.

Following the general cyclization procedure, ketone S2.3e ($50 \mathrm{mg}, 0.15 \mathrm{~mol}$) and $\mathrm{TsNHNH}_{2}(31 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{MeOH}(0.375 \mathrm{~mL})$ were stirred at $60^{\circ} \mathrm{C}$ for 5 hours to produce pyrrole $\mathbf{S 2 . 7 e}$ ($39 \mathrm{mg}, 0.08 \mathrm{mmol}, 50 \%$ yield, dr 1.2:1) after silica gel chromatography (25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.45$ (bs, 1H), 7.31 (d, $J=7.8 \mathrm{~Hz}, 1.1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.9 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1.1 \mathrm{H}), 6.67(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 0.9 \mathrm{H}$), $6.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1.1 \mathrm{H}), 6.35(\mathrm{~d}, J=0.9 \mathrm{H}), 6.19(\mathrm{~m}, 2.45 \mathrm{H}), 6.13$ (s, 0.55 H$), 4.15(\mathrm{~m}, 2.45 \mathrm{H}), 4.03(\mathrm{~d}, J=9 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.81(\mathrm{t}, J=9 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.73(\mathrm{t}, J$ $=9 \mathrm{~Hz}, 0.45 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 1.35 \mathrm{H}), 3.18(\mathrm{~s}, 1.65 \mathrm{H}), 3.08(\mathrm{~m}, 0.55 \mathrm{H}), 2.95(\mathrm{~m}$, $0.45 \mathrm{H}), 2.47(\mathrm{~m}, 7 \mathrm{H}), 2.28(\mathrm{~m}, 0.55 \mathrm{H}), 2.13(\mathrm{~m}, 0.55 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 4 \mathrm{H}), 1.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 0.55 \mathrm{H}), 1.04(\mathrm{~m}, 2.1 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.35 \mathrm{H}){ }^{13} \mathrm{C}$ NMR a spectrum could not be obtained due to the instability of the product. IR (thin film) $\mathrm{v}_{\max }=$ 3248, 2921, 1732, 1720, 1610, 1593, 1536, 1499, 1450, 1348, $1156 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 526.2370$, found 526.2363.

Following the general cyclization procedure, ketone S2.3d (50 mg, 0.14 mol) and $\mathrm{TsNHNH}_{2}(28 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{MeOH}(0.35 \mathrm{~mL})$ were stirred at $90^{\circ} \mathrm{C}$ for 9 hours to produce pyrrole $\mathbf{S 2 . 7 d}(60 \mathrm{mg}, 0.11 \mathrm{mmol}, 79 \%$ yield, dr 1.2:1) after silica gel chromatography (15 to 25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 8.06$ (s, 0.55 H), 7.93 (s, 0.45H), 7.42 (d, J = 7.5 Hz, 2H), 7.28 (m, 4H), 7.17 (m, 1H), 7.12 (t, J= $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 1.1 \mathrm{H}), 6.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 0.9 \mathrm{H}), 6.31(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}$,
$0.45 \mathrm{H}), 6.25(\mathrm{~s}, 0.55 \mathrm{H}), 4.18(\mathrm{~m}, 2.45 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.75(\mathrm{~m} \mathrm{1H}), 3.32$ (dt, $J=16,6 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.21(\mathrm{~s}, 1.35 \mathrm{H}), 3.18(\mathrm{~m}, 1.65 \mathrm{H}), 3.13(\mathrm{~m}, 0.55 \mathrm{H}), 3.02(\mathrm{~m}$, $0.45 \mathrm{H}), 2.51(\mathrm{~m}, 0.55 \mathrm{H}), 2.20(\mathrm{~m}, 0.55 \mathrm{H}), 2.13(\mathrm{~m}, 0.45 \mathrm{H}), 1.97(\mathrm{~m}, 0.45 \mathrm{H}), 1.91(\mathrm{~m}$, $1.1 \mathrm{H}), 1.73(\mathrm{~m}, 1.45 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 0.55 \mathrm{H}), 1.10(\mathrm{t}, J=7 \mathrm{~Hz}, 1.65 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}$ $=7 \mathrm{~Hz}, 1.35 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 173.2,143.8,143.7,141.1,138.7,138.6$, $135.9,135.7,135.1,134.9,131.4,131.3$, 131.1, 131.0, 129.2, 129.1, 128.3, 128.2, $128.0,129.97,127.94,127.5,127.4,127.0,126.9,126.6,114.3,114.2,109.2,108.8$, 80.94, 80.90, 60.6, 56.8, 56.6, 52.8, 52.7, 34.9, 33.4, 26.4, 26.2, 23.8, 23.7, 21.1, 14.5, 14.4. IR (thin film) $v_{\max }=3236,2925,1736,1708,1597,1475,1454,1340,1164 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 559.2261$, found 559.2258.

Following the general cyclization procedure, ketone $\mathbf{S 2 . 3 g}$ ($50 \mathrm{mg}, 0.17 \mathrm{~mol}$) and $\mathrm{TsNHNH}_{2}(34 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{MeOH}(0.42 \mathrm{~mL})$ were stirred at $90^{\circ} \mathrm{C}$ for 4.5 hours to produce pyrrole $\mathbf{S 2 . 7 g}(38 \mathrm{mg}, 0.08 \mathrm{mmol}, 50 \%$ yield, $\mathrm{dr} 1: 1$) after silica gel chromatography (15\% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (s, 0.5 H), 7.71 (s, 0.5H), 7.19 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.91 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (m, 2H), 6.73 (m, 2H), $5.76(\mathrm{~s}, 0.5 \mathrm{H}), 5.75(\mathrm{~s}, 0.5 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=9 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.75(\mathrm{~d}, J=9 \mathrm{~Hz}$, 0.5 H), 3.67 (t, J = $6.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.54 (t, J = $6.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.35 (s, 1.5H), 3.34 (s, 1.5H), $3.00(\mathrm{~m}, 0.5 \mathrm{H}), 2.92(\mathrm{~m}, 0.5 \mathrm{H}), 2.71(\mathrm{~m}, 0.5 \mathrm{H}), 2.58(\mathrm{~m}, 0.3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~m}$, $1 \mathrm{H}), 1.99(\mathrm{~m}, 0.5 \mathrm{H}), 1.89(\mathrm{~m}, 0.5 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 173.1,172.8,161.4\left(\mathrm{~d}, J_{C F}=244 \mathrm{~Hz}\right), 161.3\left(\mathrm{~d}, J_{C F}=\right.$ $244 \mathrm{~Hz})$, 144.5, 144.4, 134.6, 134.4, 133.7, 133.6, 130.2, 130.1, 129.2, 129.1, 129.0 (d, $\left.J_{C F}=8 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C F}=8 \mathrm{~Hz}\right), 127.9,127.4\left(\mathrm{~d}, J_{C F}=3 \mathrm{~Hz}\right), 127.3\left(\mathrm{~d}, J_{C F}=3 \mathrm{~Hz}\right)$, $114.7\left(\mathrm{~d}, J_{C F}=21 \mathrm{~Hz}\right), 114.6\left(\mathrm{~d}, J_{C F}=21 \mathrm{~Hz}\right), 113.4,113.1,108.4,108.2,80.7,80.1$, $60.6,56.9,56.8,52.4,51.5,33.7,33.4,25.8,25.7,23.3,22.5,21.5,14.3$. IR (thin film) $v_{\max }=3256,2921,1724,1708,1593,1532,1487,1446,1348,1221,1160 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{FNaS}^{+}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 523.1673$, found 523.1672.

Following the general cyclization procedure, ketone S2.3f ($50 \mathrm{mg}, 0.17 \mathrm{~mol}$) and $\mathrm{TsNHNH}_{2}(35 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{MeOH}(0.43 \mathrm{~mL})$ were stirred at $90^{\circ} \mathrm{C}$ for 8.5 hours to produce pyrrole $\mathbf{S 2 . 7 f}(48 \mathrm{mg}, 0.1 \mathrm{mmol}$, 59% yield, dr 1:1) after silica gel chromatography (15\% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (s, 1H), $7.16(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~m}, 4 \mathrm{H}), 6.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 0.5 \mathrm{H}), 5.74(\mathrm{~s}$, 0.5 H), $4.21(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=9 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.68(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 0.5 \mathrm{H}), 3.53(\mathrm{t}, J=8.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.60(\mathrm{~s}, 1.5 \mathrm{H}), 3.47(\mathrm{~s}, 1.5 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.70$
(m, 0.5H), $2.60(\mathrm{~m}, 0.5 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 2.5 \mathrm{H}), 1.55$ $(\mathrm{m}, 0.5 \mathrm{H}), 1.27(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,172.9,144.2,144.1$, $135.8,135.7,134.4,134.1,133.6,133.5,131.1,129.1,129.0,128.5,128.4,128.3$, $127.9,127.2,127.1,113.2,112.8,108.2,107.9,80.9,80.2,60.6,60.5,56.9,56.8,52.6$, $51.6,33.8,33.5,25.8,25.7,23.5,22.6,21.5,21.9,21.0,14.3$. IR (thin film) $\mathrm{v}_{\max }=3252$, 2925, 1736, 1708, 1593, 1536, 1446, 1348, $1168 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{NaS}^{+}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 519.1924$, found 519.1923.

Following the general cyclization procedure, ketone $\mathbf{S 2 . 3 k}(59.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{TsNHNH}_{2}(41.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ were stirred at $90^{\circ} \mathrm{C}$ for 24 hours to produce pyrrole $\mathbf{S 2 . 7 k}(47.8 \mathrm{mg}, 48 \%$ yield) mixture of diasteromers and rotomers after silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~s}, 1.3 \mathrm{H}), 7.83(\mathrm{~s}, 0.3 \mathrm{H})$, 7.77 (s, 1.4 H), 7.24 (apparent d, $J=5.0 \mathrm{~Hz}, 3.4 \mathrm{H}$), 7.21 (apparent d, $J=5.0 \mathrm{~Hz}, 2.9$ H), $6.84-6.75(\mathrm{~m}, 8.2 \mathrm{H}$), 6.70 (apparent d, $J=6.3 \mathrm{~Hz}, 1.5 \mathrm{H}$), 6.67 (apparent d, $J=3.2$ Hz, 3.2H), $6.40-6.32$ (m, 5.9H), 6.11 (s, 1H), 6.07 (s, 0.1 H), 6.05 (s, 1.4H), 5.99 (s, 0.3 H), $4.21-4.09(\mathrm{~m}, 5.2 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 1.4 \mathrm{H}), 3.96$ (apparent d, $J=9.0 \mathrm{~Hz}$, 0.65 H), 3.93 (apparent d, $J=9.2 \mathrm{~Hz}, 1.4 \mathrm{H}$), 3.72 (apparent t, $J=9.2 \mathrm{~Hz}, 1.6 \mathrm{H}$), 3.68 (apparent t, J = $8.8 \mathrm{~Hz}, 1.3 \mathrm{H}$), $3.50(\mathrm{~s}, 0.8 \mathrm{H}), 2.45(\mathrm{~s}, 0.8 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 2.2 \mathrm{H}), 3.23$ $-3.12(\mathrm{~m} 10.3 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 1.4 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 1.8 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1.9 \mathrm{H})$, $2.18-2.08(\mathrm{~m}, 2.1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 10.0 \mathrm{H}), 1.86-1.82(\mathrm{~m}, 5.1 \mathrm{H}), 1.80(\mathrm{~s}, 9.3 \mathrm{H}), 1.71$ $-1.60(\mathrm{~m}, 4.0 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 2.0 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 2.9 \mathrm{H}), 1.05$ (apparent t, $J=6.8$ $\mathrm{Hz}, 4.4 \mathrm{H}$), 1.00 (apparent $\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3.7 \mathrm{H}$), $0.83-0.78$ (m, 2.2H). ${ }^{13} \mathrm{C}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,172.9,143.2,143.2,136.8,136.7,135.2,135.0,134.0,133.8$, $131.3,131.2,130.6,130.4,130.18,130.15,130.0,129.9,129.33,129.30,128.5,128.3$, $126.8,26.7,125.4,113.6,113.4,110.0,109.9,81.1,80.9,60.3,56.7,56.6,52.9,52.8$, 52.7, 34.7, 33.9, 26.3, 26.1, 24.0, 23.9, 21.1, 20.92, 20.86, 14.4, 14.3. IR (thin film) $\mathrm{V}_{\max }$ $=3238,3090,3068,3034,2978,2927,1737,1598 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{SNa}^{+}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 519.1924$, found 519.1924.

S2.71
Following the general cyclization procedure, ketone $\mathbf{S 2 . 3 1}$ ($65.5 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{TsNHNH}_{2}(41.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ were stirred at $85^{\circ} \mathrm{C}$ for 24 hours to produce pyrrole S2.71 ($106 \mathrm{mg}, 56 \%$ yield) mixture of diasteromers and rotomers after silica gel chromatography. Note: Fractional integrations given due to mixture of diastereomers and rotomers. Both major and minor diasteromers and rotomers reported. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-7.78(\mathrm{~m}, 11.1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 6.3 \mathrm{H})$,
$7.08-6.94(\mathrm{~m}, 3.3 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 3.6 \mathrm{H}), 6.85-6.66(\mathrm{~m}, 6.6 \mathrm{H}), 6.51-6.44(\mathrm{~m}$, $5.9 \mathrm{H}), 6.44-6.36(\mathrm{~m}, 4.6 \mathrm{H}), 6.28$ (apparent d, $J=8.2 \mathrm{~Hz}, 2.7 \mathrm{H}), 6.07(\mathrm{~s}, 1.2 \mathrm{H}), 6.05(\mathrm{~s}$, $1.2 \mathrm{H}), 6.04(\mathrm{~s}, 1.0 \mathrm{H}), 6.02(\mathrm{~s}, 1.4 \mathrm{H}), 4.20-4.11(\mathrm{~m}, 4.3 \mathrm{H}), 4.11-4.00(\mathrm{~m}, 3.3 \mathrm{H}), 3.95$ (apparent $\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 4.0 \mathrm{H}$), $3.93-3.88(\mathrm{~m}, 4.9 \mathrm{H}), 3.88-3.65(\mathrm{~m}, 25.8 \mathrm{H}), 3.24-$ 3.16 (m, 5.7H), $3.14(\mathrm{~s}, 4.7 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1.6 \mathrm{H}), 3.92-2.82(\mathrm{~m}, 1.8 \mathrm{H}), 2.58-2.51$ $(\mathrm{m}, 1.2 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 9.0 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 6.5 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 6.9 \mathrm{H}), 1.94-$ $1.82(\mathrm{~m}, 20.8 \mathrm{H}), 1.80(\mathrm{~s}, 8.2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 14.1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 4.1 \mathrm{H}), 1.52-$ $1.41(\mathrm{~m}, 3.0 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 16.4 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 5.0 \mathrm{H}), 1.11-0.98(\mathrm{~m}, 13.1 \mathrm{H})$, $0.98-0.79(\mathrm{~m}, 31.1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 173.0,172.9,170.3,169.0$, $163.0,162.3,157.4,154.7,154.6,154.3,143.7$, 141.1, 139.4, 136.7, 135.6, 135.4, 134.0, 133.9, 129.7, 129.5, 129.3, 129.1, 128.7, 128.6, 128.5, 128.3, 126.7, 124.8, $119.65,119.59,113.8,113.6,109.8,109.6,107.4,107.4,107.2,80.9,80.8,64.1,60.6$, $60.3,60.1,56.7,56.6,53.1,53.05,52.97,52.7,35.0,34.9,34.7,33.8,31.9,20.9,30.1$, 28.9, 28.7, 26.3, 26.1, 23.81, 23.76, 23.39, 23.38, 23.00, 22.98, 21.15, 21.06, 21.0, 20.5, 19.5, 19.3, 16.5, 14.4, 14.34, 14.27, 14.2, 14.17, 14.16, 13.7. IR (thin film) $\mathrm{v}_{\max }=$ 3219, 2930, 2280, 1732, 1592, $1570 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+}$ $\mathrm{m} / \mathrm{z} 528.2163$, found 528.2161.

Following the general cyclization procedure, ketone $\mathbf{S 2 . 3 h}$ ($50 \mathrm{mg}, 0.15 \mathrm{~mol}$) and $\mathrm{TsNHNH}_{2}(31 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{MeOH}(0.38 \mathrm{~mL})$ were stirred at $90^{\circ} \mathrm{C}$ for 9 hours to produce pyrrole $\mathbf{S 2 . 7 h}(62 \mathrm{mg}, 0.12 \mathrm{mmol}, 80 \%$ yield, dr 1.2:1) after silica gel chromatography (15\% EtOAc in hexanes). ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.93$ (s, 0.55H), 7.79 (s, 0.45H), 7.48 (m, 1H), 7.39 (m, 1H), 7.26 (m, 2H), 7.17 (m, 3H), 7.09 (d, J= 8.5 $\mathrm{Hz}, 0.55 \mathrm{H}$), 6.98 (d, $J=8.5 \mathrm{~Hz}, 0.45 \mathrm{H}), 6.33(\mathrm{~s}, 0.45 \mathrm{H}), 6.30(\mathrm{~s}, 0.55 \mathrm{H}), 6.00$ (d, J=8 $\mathrm{Hz}, 1.1 \mathrm{H}$), 5.97 (d, $J=8 \mathrm{~Hz}, 0.9 \mathrm{H}), 4.19(\mathrm{~m}, 1.45 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.99$ (d, J = 9 Hz , $0.55 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dt}, J=16,6 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.22(\mathrm{~s}, 1.35 \mathrm{H}), 3.18(\mathrm{~s}, 1.65 \mathrm{H})$, $3.07(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 0.55 \mathrm{H}), 2.24(\mathrm{~m}, 0.55 \mathrm{H}), 2.15(\mathrm{~m}, 0.45 \mathrm{H}), 2.02(\mathrm{~m}, 0.45 \mathrm{H}), 1.93$ $(\mathrm{m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 0.55 \mathrm{H}), 1.70(\mathrm{~m}, 0.55 \mathrm{H}), 1.53(\mathrm{~m}, 0.55 \mathrm{H}), 1.45(\mathrm{~s}, 1.35 \mathrm{H}), 1.44(\mathrm{~s}$, $1.65 \mathrm{H}), 1.07(\mathrm{t}, J=7 \mathrm{~Hz}, 1.65 \mathrm{H}), 1.02(\mathrm{t}, J=7 \mathrm{~Hz}, 1.35 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 173.2m 173.1, 143.7, 143.6, 135.8, 135.7, 135.0, 134.8, 133.73, 133.70, 132.2, 132.1, $131.6,131.5,129.5,129.4,128.9,128.4,128.2,128.0,127.9,127.6,127.5,127.4$, $126.3,126.2,126.17,126.12,126.0,125.9,125.54,125.51,114.4,114.3,109.7,109.3$, 81.0, 80.9, 60.6, 56.9, 56.6, 52.7, 34.8, 33.7, 26.4, 23.8, 23.7, 20.92, 20.90, 14.4, 14.3. IR (thin film) $\mathrm{v}_{\max }=3240,2934,1736,1708,1597,1442,1344,1164 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{KS}^{+}(\mathrm{M}+\mathrm{K})^{+} \mathrm{m} / \mathrm{z} 571.1664$, found 571.1662.

Following the general cyclization procedure, ketone $\mathbf{S 2 . 3 i}(49.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{TsNHNH}_{2}(41.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ were stirred at $75^{\circ} \mathrm{C}$ for 2 h hours to produce pyrrole S2.7k (64.9 mg , 73\% yield) after silica gel chromatography. Yield 64.9 $\mathrm{mg}, 73 \%$ mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}$, $J=7.9,2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.04(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (dt, J 9.0, 2.5 Hz, 1H), $3.60(\mathrm{dt}, J=9.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (s, 3H), $3.13(\mathrm{~s}, 3 \mathrm{H}), 2.76$ (apparent dd, $J=15.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (apparent dd, $J=$ 15.2, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$, $1.70-1.51(\mathrm{~m}, 5 \mathrm{H}) .1 .49-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.10(\mathrm{~m}, 4 \mathrm{H}), 1.08-1.00(\mathrm{~m}, 6 \mathrm{H}), 0.49$ $-0.39(\mathrm{~m}, 5 \mathrm{H}), 0.33-0.25(\mathrm{~m}, 2 \mathrm{H}), 0.23-0.13(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.3, 173.0, 144.34, 144.25, 136.5, 136.4, 132.3, 129.9, 128.8, 128.6, 128.4, 112.6, 112.4, 104.02, 103.97, 81.1, 80.7, 60.4, 56.7, 56.6, 52.7, 52.5, 34.2, 34.0, 25.6, 25.7, 23.9, 23.4, 21.2, 14.5, 14.4, 7.5, 7.4, 6.7, 6.61, 6.67, 6.62, 6.60. IR (thin film) $\mathrm{v}_{\max }=$ 3233, 3088, 2980, 2928, 2278, 1735, $1597 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}^{+}$ $(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 447.1948$, found 447.1947.

Following the general cyclization procedure, ketone $\mathbf{S 2 . 3 j}$ ($57 \mathrm{mg}, 0.20 \mathrm{mmol}$) and TsNHNH_{2} ($41 \mathrm{mg}, 0.22 \mathrm{mmol}$) in MeOH were stirred at $75^{\circ} \mathrm{C}$ for 2 hours to produce pyrrole S2.7j ($33.4 \mathrm{mg}, 36 \%$ yield) mixture of diastereomers after silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2.3 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1.8 \mathrm{H}$), $7.40(\mathrm{~s}, 1.1 \mathrm{H}), 7.38(\mathrm{~s}, 1.0 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2.7 \mathrm{H}), 6.06(\mathrm{~d}, J=8.1$ hz, 2.0 H), 6.06 (s, 1.0H), $6.00(\mathrm{~s}, 1.2 \mathrm{H}), 5.34-5.29(\mathrm{~m}, 1.0), 5.29-5.23(\mathrm{~m}, 1.0 \mathrm{H})$, $4.24-4.08(\mathrm{~m}, 7.0 \mathrm{H}), 3.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2.0 \mathrm{H}$), 3.89 (apparent q, $J=4.5 \mathrm{~Hz}, 1.5 \mathrm{H}$), 3.75 (apparent t, $J=4.1 \mathrm{~Hz}, 1.3 \mathrm{H}$), 3.67 (apparent $\mathrm{t}, J=4.0 \mathrm{~Hz}, 1.4 \mathrm{H}$), $3.19(\mathrm{~s}, 3.4 \mathrm{H}$), $3.18-3.01(\mathrm{~m}, 8.4 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1.2 \mathrm{H}), 2.82-2.73(\mathrm{~m}, 1.0 \mathrm{H}), 2.44-2.30(\mathrm{~m}$, $1.7 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 2.1 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 5.4 \mathrm{H}), 1.83(\mathrm{~s}, 6.0 \mathrm{H}), 1.18(\mathrm{~s}, 6.5 \mathrm{H}), 1.77$ $-1.66(\mathrm{~m}, 8.8 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 3.5 \mathrm{H}), 1.60-1.43(\mathrm{~m}, 7.4 \mathrm{H}), 1.43-1.19(\mathrm{~m}, 22 \mathrm{H})$, $1.19-1.10(\mathrm{~m}, 5.4 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 13.5 \mathrm{H}), 0.98-0.80(\mathrm{~m}, 12.1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,172.9,143.7,143.6,136.4,136.2,134.8,134.7,129.5,128.6$, $128.7,128.3,124.0,123.9,113.3,113.1,107.4,107.3,81.0,80.8,60.32,60.30,56.6$, 56.65, 56.57, 52.7, 52.5, 34.6, 33.8, 32.3, 29.8, 27.96, 27.77, 26.0, 25.9 25.5, 23.8, 23.6, 22.70, 22.68, 21.9, 21.3, 21.0, 14.4, 14.34, 14.32, 14.2. IR (thin film) $v_{\max }=3229$, 2927, 2856, 1736, $1598 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 487.2261, found 487.2260.

Following the general cyclization procedure, ketone S2.3a ($50 \mathrm{mg}, 0.24 \mathrm{~mol}$) and TsNDND ${ }^{41}$ ($51 \mathrm{mg}, 0.27 \mathrm{mmol}$) in $\mathrm{CD}_{3} \mathrm{OD}(0.6 \mathrm{~mL})$ were stirred at $90{ }^{\circ} \mathrm{C}$ for 4.5 hours to produce pyrrole d_{7}-S2.7a ($70 \mathrm{mg}, 0.17 \mathrm{mmol}, 71 \%$ yield) as a single diastereomer after silica gel chromatography (25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 0.9 \mathrm{H}), 6.03(\mathrm{~s}, 0.3 \mathrm{H}), 5.69(\mathrm{~s}$, $0.07 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{td}, J=9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $2.12(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.2, 144.9, 134.0, 132.4, 129.8, 128.4, 118.7, 112.3, 107.3, 80.3, 60.6, 51.9, 33.2, 21.6, 14.2. IR (thin film) $\mathrm{v}_{\text {max }}=3224,2921,2063,1736,1712,1589,1352,1172 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{D}_{7} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 414.2075$, found 414.2076.

Ketone S2.3a ($200 \mathrm{mg}, 0.97 \mathrm{mmol}$) and p-toluenesulfonhydrazide hydrochloride (260 $\mathrm{mg}, 1.17 \mathrm{mmol}$) were dissolved in a mixture of methanol (1.8 mL) and water (0.6 mL). To this solution was added $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}(316 \mathrm{mg}, 2.32 \mathrm{mmol})$ and was allowed to stir for 24 hrs. The volatiles were then removed by rotary evaporation and the residue was dissolved in EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$ followed by sat. NaHCO_{3}. The organics were dried over MgSO_{4}, filtered, and concentrated. Silica gel chromatography (25 to 33% EtOAc in hexanes) of the crude mixture afforded hydrazone \boldsymbol{Z}-S2.8 in quantitative yield (370 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~m}$, 2H), 2.41 ($\mathrm{s}, 3 \mathrm{H}$), $2.35(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 1 \mathrm{H}), 1.90$ $(\mathrm{m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5$, 153.4, 144.0, 135.1, 129.3, 128.3, 80.5, 70.0, 61.2, 29.9, 29.3, 26.8, 23.3, 21.6, 19.5, 16.1, 14.2. IR (thin film) $\mathrm{v}_{\text {max }}=3277,3211,3060,2983,2929,2124,1732,1597,1405$, 1344, 1290, $1168 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 375.1373$, found 375.1370

Ketone S2.3a ($300 \mathrm{mg}, 1.45 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{mg}, 0.36 \mathrm{mmol}$) were stirred in EtOD ($6 \mathrm{~mL}, 99.5$ atom \% D) for 18 hrs . The suspension was diluted with EtOAc (50 mL), washed with brine (10 mL), dried over MgSO_{4}, filtered, and concentrated to afford crude trideutero-substrate $\mathbf{d}_{3}-\mathbf{S 2 . 3 a}$.

To a solution of crude $\mathbf{d}_{3}-\mathbf{S 2 . 3 a}$ in $\mathrm{MeCN}(6 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(300 \mathrm{mg}, 2.18$ $\mathrm{mmol})$. After stirring for $50 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{~mL})$ was added and the solution was stirred for an additional 1.5 hrs . DCM (20 mL) was added and the solution was dried over MgSO_{4}, filtered, and concentrated to yield the product $\mathbf{d}_{2}-\mathbf{S 2 . 3 a}(226 \mathrm{mg}, 1.45 \mathrm{mmol}$, 75% over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.16(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H})$, $2.51(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{dt}, J=14.5,5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61$ ($\mathrm{m}, 1 \mathrm{H}$), $1.24(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4,167.4,78.1,71.4$, $61.5,32.4,31.2,30.8,19.9,18.4,14.1$. IR (thin film) $\mathrm{v}_{\max }=3273,2683,2934,2124$, 1736, 1704, 1413, 1348, 1287, 1205, $1181 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{D}_{2} \mathrm{O}_{3}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$ 209.1141, found 209.1141.

Section 2.5.5. Supporting Information - Isolation of single crystal of hydrazone S2.8 for E - and Z - isomers.

A single crystal of hydrazone E-S2.8 was obtained using vapor diffusion of hexanes into benzene. Hydrazone Z-S2.8 was dissolved in benzene ($\sim 2 \mathrm{~mL}$) and set in a 4 mL vial. The vial containing the hydrazone solution was then set in a second 20 mL vial containing 10 mL of hexanes and allowed to stand at room temperature. After a period of two weeks clear crystals had formed and we analyzed by X-ray diffraction.

Isolation of single crystal of hydrazone Z-S2.8

Hydrazone Z-S2.8 was obtained from a saturated solution in MeOH using slow evaporation. Ketone S2.3a was dissolved in MeOH and treated with 1 equiv of $\mathrm{TsNHNH} \mathrm{N}_{2}$ and allowed to stand in an open 20 mL at room temperature for 12 hours. After this time the solvent had partially evaporated to give large clear crystals which were submitted for X-ray analysis.

For E-S2.8 Experimental Summary

A yellow plate $0.050 \times 0.040 \times 0.020 \mathrm{~mm}$ in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 10 seconds per frame using a scan width of 1.0°. Data collection was 100.0% complete to 67.000° in q. A total of 83552 reflections were collected covering the indices, -$17<=h<=17,-20<=k<=25,-25<=k=24.11014$ reflections were found to be symmetry independent, with an $\mathrm{R}_{\text {int }}$ of 0.0373 . Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P 21/c (No. 14). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by iterative methods (SHELXT) produced a complete heavy-atom phasing model consistent with the proposed structure. All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. SQUEEZE was used to treat the disordered solvent contribution to the electron density map and its use has been noted in the CIF file.

Table 1. Crystal data and structure refinement for sarpong81.

X-ray ID
Sample/notebook ID
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
sarpong81
SMHVII-020C
C34 H33 N O8
583.61

100(2) K
1.54178 Å

Monoclinic
P 21/c
$a=14.4287(4) \AA \quad a=90^{\circ}$.
$b=20.8084(6) \AA \quad b=106.013(2)^{\circ}$.
$\mathrm{c}=20.8192(6) \AA \quad \mathrm{g}=90^{\circ}$.
6008.2(3) \AA^{3}

8
$1.290 \mathrm{Mg} / \mathrm{m}^{3}$
$0.757 \mathrm{~mm}^{-1}$

F(000)
Crystal size
Crystal color/habit
Theta range for data collection Index ranges
Reflections collected Independent reflections
Completeness to theta $=67.000^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

2464
$0.050 \times 0.040 \times 0.020 \mathrm{~mm}^{3}$
yellow plate
3.064 to 68.733°.
$-17<=h<=17,-20<=k<=25,-25<=1<=24$
83552
$11014[\mathrm{R}$ (int) $=0.0373]$
100.0 \%

Semi-empirical from equivalents 0.929 and 0.887

Full-matrix least-squares on F^{2}
11014 / 0 / 785
1.364
$R 1=0.0961, w R 2=0.2962$
$R 1=0.1054, w R 2=0.3104$
n/a
1.242 and -0.546 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$)
for sarpong81. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U(eq)
C(1)	8110(2)	2109(1)	3743(1)	44(1)
C(2)	8844(2)	2583(2)	3586(2)	46(1)
C(3)	8970(2)	3171(2)	4052(2)	50(1)
C(4)	9949(2)	3473(2)	4227(2)	52(1)
C(5)	10676(2)	3256(2)	4006(2)	50(1)
C(6)	11712(3)	3468(2)	4205(2)	60(1)
C(7)	12218(3)	2914(2)	3976(2)	61(1)
C(8)	13209(3)	2851(2)	4063(2)	68(1)
C(9)	13521(3)	2309(2)	3796(2)	75(1)
C(10)	12877(3)	1852(2)	3438(2)	78(1)
C(11)	11880(3)	1918(2)	3340(2)	66(1)
C(12)	11568(2)	2464(2)	3622(2)	53(1)
C(13)	10542(2)	2687(2)	3534(2)	48(1)
C(14)	9796(2)	2212(1)	3648(2)	45(1)
C(15)	10072(2)	1833(1)	4294(1)	44(1)
C(16)	9210(2)	1420(1)	4379(1)	42(1)
C(17)	8750(2)	1032(1)	3743(1)	45(1)
$\mathrm{C}(18)$	7935(2)	1473(1)	3330(1)	44(1)
C(19)	7175(2)	2430(2)	3695(1)	46(1)
C(20)	14785(3)	3281(4)	4551(4)	107(2)
C(21)	11450(5)	954(3)	2703(4)	114(2)
C(22)	8967(2)	612(1)	5177(1)	41(1)
C(23)	9464(2)	212(2)	5770(1)	46(1)
C(24)	7874(2)	1536(2)	2599(1)	44(1)
C(25)	8293(2)	1113(2)	2249(1)	47(1)
C(26)	7992(2)	1304(1)	1543(1)	46(1)
C(27)	8236(3)	1036(2)	1000(2)	55(1)
C(28)	7865(3)	1323(2)	381 (2)	60(1)
C(29)	7294(3)	1874(2)	317(2)	56(1)
C(30)	7062(2)	2146(2)	860(2)	49(1)
C(31)	7405(2)	1842(2)	1480(1)	45(1)
C(32)	7271(2)	1999(2)	2145(2)	52(1)
C(33)	9064(5)	207(2)	600(3)	97(2)
C(34)	6443(3)	3116(2)	292(2)	64(1)
C(35)	5611(2)	8500(1)	3257(1)	44(1)

C(36)	6280(2)	8491(1)	2794(1)	45(1)
C(37)	6167(2)	9121(2)	2380(2)	52(1)
C(38)	7100(2)	9389(2)	2299(2)	56(1)
C(39)	7924(2)	9074(2)	2472(2)	51(1)
C(40)	8933(3)	9294(2)	2493(2)	57(1)
C(41)	9566(2)	8774(2)	2873(2)	50(1)
C(42)	10576(2)	8724(2)	3038(2)	56(1)
C(43)	11017(2)	8201(2)	3384(2)	57(1)
C(44)	10499(2)	7718(2)	3584(2)	60(1)
C(45)	9495(2)	7756(2)	3429(2)	54(1)
C(46)	9045(2)	8300(2)	3073(2)	48(1)
C(47)	7984(2)	8411(2)	2787(2)	47(1)
C(48)	7320(2)	8382(1)	3242(1)	43(1)
C(49)	7545(2)	8831(1)	3844(1)	42(1)
C(50)	6735(2)	8833(1)	4206(1)	42(1)
C(51)	6518(2)	8132(1)	4366(2)	47(1)
C(52)	5707(2)	7915(1)	3746(2)	45(1)
C(53)	4598(2)	8589(2)	2866(2)	50(1)
C(54)	12048(3)	9153(2)	2949(3)	87(1)
C(55)	9357(3)	6764(2)	3947(3)	84(1)
C(56)	6291(2)	9383(2)	5105(2)	50(1)
C(57)	6548(3)	9926(2)	5604(2)	59(1)
C(58)	5821(2)	7274(1)	3442(2)	45(1)
C(59)	6527(3)	6786(2)	3747(2)	60(1)
C(60)	6330(2)	6241(2)	3268(2)	55(1)
C(61)	6782(3)	5642(2)	3276(2)	63(1)
C(62)	6405(3)	5214(2)	2768(2)	61(1)
C(63)	5636(2)	5372(2)	2244(2)	52(1)
C(64)	5205(2)	5967(2)	2204(2)	49(1)
C(65)	5563(2)	6397(2)	2732(2)	48(1)
C(66)	5250(2)	7055(2)	2832(2)	51(1)
C(67)	8077(5)	4948(3)	3799(3)	99(2)
C(68)	4115(3)	5752(2)	1138(2)	59(1)
N(1)	6446(2)	2670(2)	3649(1)	55(1)
N(2)	3811(2)	8633(2)	2554(2)	60(1)
$\mathrm{O}(1)$	8482(1)	1891(1)	4421(1)	43(1)
$\mathrm{O}(2)$	13772(2)	3340(2)	4407(2)	86(1)
$\mathrm{O}(3)$	11176(2)	1516(1)	3003(2)	77(1)
$\mathrm{O}(4)$	10836(2)	1837(1)	4714(1)	54(1)
O(5)	9518(2)	1062(1)	4985(1)	53(1)
O(6)	8120(1)	512(1)	4872(1)	48(1)
$\mathrm{O}(7)$	8833(2)	511(1)	1141(1)	73(1)
$\mathrm{O}(8)$	6524(2)	2687(1)	848(1)	63(1)
O(9)	5870(1)	9041(1)	3697(1)	44(1)

O(10)	$11036(2)$	$9231(1)$	$2833(1)$	$64(1)$
O(11)	$8906(2)$	$7311(1)$	$3579(1)$	$60(1)$
O(12)	$8264(1)$	$9151(1)$	$4044(1)$	$47(1)$
O(13)	$6930(2)$	$9280(1)$	$4733(1)$	$58(1)$
O(14)	$5563(2)$	$9071(1)$	$5042(1)$	$56(1)$
O(15)	$7588(2)$	$5541(2)$	$3805(2)$	$89(1)$
O(16)	$4464(2)$	$6178(1)$	$1693(1)$	$60(1)$

Table 3. Bond lengths $[\AA ̊]$ and angles $\left[{ }^{\circ}\right]$ for sarpong81.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.438(3)	$\mathrm{C}(19)-\mathrm{N}(1)$	1.145(4)
$\mathrm{C}(1)-\mathrm{C}(19)$	1.483(4)	$\mathrm{C}(20)-\mathrm{O}(2)$	1.413(5)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.546(4)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(18)$	1.562(4)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(2)$ - $\mathrm{C}(3)$	1.540(4)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(14)$	1.550(4)	$\mathrm{C}(21)-\mathrm{O}(3)$	1.432(5)
$\mathrm{C}(2)-\mathrm{H}(2)$	1.0000	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	1.496(4)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900	$\mathrm{C}(22)-\mathrm{O}(6)$	1.229(3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.335(5)	$\mathrm{C}(22)-\mathrm{O}(5)$	1.358(4)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	C(22)-C(23)	1.498(4)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.503(5)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
C(5)-C(13)	1.516(5)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.510(5)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	C(24)-C(25)	1.383(4)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900	C(24)-C(32)	1.457(4)
$\mathrm{C}(7)-\mathrm{C}(12)$	1.385(6)	C(25)-C(26)	1.469(4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.396(5)	$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(8)-\mathrm{O}(2)$	1.375(6)	$\mathrm{C}(26)-\mathrm{C}(31)$	1.388(4)
C(8)-C(9)	1.386(7)	C(26)-C(27)	1.391(4)
C(9)-C(10)	1.393(8)	$\mathrm{C}(27)-\mathrm{O}(7)$	1.372(4)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500	C(27)-C(28)	1.386(5)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.402(6)	C(28)-C(29)	1.397(6)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{C}(28)-\mathrm{H}(28)$	0.9500
$\mathrm{C}(11)$ - $\mathrm{O}(3)$	1.352(6)	C(29)-C(30)	1.385(5)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.409(5)	$\mathrm{C}(29)-\mathrm{H}(29)$	0.9500
$\mathrm{C}(12)-\mathrm{C}(13)$	1.514(4)	$\mathrm{C}(30)-\mathrm{O}(8)$	1.365(4)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.527(4)	C(30)-C(31)	1.398(4)
$\mathrm{C}(13)-\mathrm{H}(13)$	1.0000	$\mathrm{C}(31)-\mathrm{C}(32)$	1.487(4)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.515(4)	$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	0.9900
$\mathrm{C}(14)-\mathrm{H}(14)$	1.0000	$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	0.9900
$\mathrm{C}(15)-\mathrm{O}(4)$	1.204(4)	$\mathrm{C}(33)-\mathrm{O}(7)$	1.410(5)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.562(4)	$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	0.9800
C(16)-O(5)	1.426(3)	C(33)-H(33B)	0.9800
$\mathrm{C}(16)-\mathrm{O}(1)$	1.457(3)	$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	0.9800
$\mathrm{C}(16)-\mathrm{C}(17)$	1.537(4)	$\mathrm{C}(34)-\mathrm{O}(8)$	1.441(4)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.551(4)	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	0.9800
$\mathrm{C}(18)-\mathrm{C}(24)$	1.504(4)	$\mathrm{C}(35)-\mathrm{O}(9)$	1.433(3)
$\mathrm{C}(18)-\mathrm{H}(18)$	1.0000	C(35)-C(53)	1.476(4)

$\mathrm{C}(35)-\mathrm{C}(36)$	1.541(4)	$\mathrm{C}(53)-\mathrm{N}(2)$	1.146(4)
$\mathrm{C}(35)-\mathrm{C}(52)$	1.569(4)	$\mathrm{C}(54)-\mathrm{O}(10)$	1.422(5)
C(36)-C(48)	1.549(4)	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	0.9800
C(36)-C(37)	1.553(4)	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	0.9800
$\mathrm{C}(36)-\mathrm{H}(36)$	1.0000	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	0.9800
$\mathrm{C}(37)-\mathrm{C}(38)$	1.509(5)	$\mathrm{C}(55)-\mathrm{O}(11)$	1.424(4)
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	0.9900	$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	0.9800
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	0.9900	$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	0.9800
$\mathrm{C}(38)-\mathrm{C}(39)$	1.317(5)	$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{C})$	0.9800
$\mathrm{C}(38)-\mathrm{H}(38)$	0.9500	$\mathrm{C}(56)-\mathrm{O}(14)$	1.212(4)
C(39)-C(40)	1.515(5)	$\mathrm{C}(56)-\mathrm{O}(13)$	1.374(4)
C(39)-C(47)	1.519(4)	C(56)-C(57)	1.510(4)
$\mathrm{C}(40)-\mathrm{C}(41)$	$1.495(5)$	$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	0.9800
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9900	$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	0.9800
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9900	$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	0.9800
$\mathrm{C}(41)-\mathrm{C}(46)$	1.374(5)	C(58)-C(66)	1.386(4)
$\mathrm{C}(41)-\mathrm{C}(42)$	$1.405(5)$	C(58)-C(59)	1.455(4)
$\mathrm{C}(42)-\mathrm{C}(43)$	1.363(5)	C(59)-C(60)	1.487(5)
$\mathrm{C}(42)-\mathrm{O}(10)$	1.376(4)	C(59)-H(59A)	0.9900
$\mathrm{C}(43)-\mathrm{C}(44)$	1.382(5)	$\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	0.9900
$\mathrm{C}(43)-\mathrm{H}(43)$	0.9500	C(60)-C(65)	1.376(5)
$\mathrm{C}(44)-\mathrm{C}(45)$	1.397(5)	C(60)-C(61)	1.405(5)
$\mathrm{C}(44)-\mathrm{H}(44)$	0.9500	$\mathrm{C}(61)-\mathrm{C}(62)$	1.376(5)
$\mathrm{C}(45)-\mathrm{O}(11)$	1.350(4)	$\mathrm{C}(61)-\mathrm{O}(15)$	1.379(4)
C(45)-C(46)	1.410(5)	C(62)-C(63)	1.364(5)
$\mathrm{C}(46)-\mathrm{C}(47)$	1.499(4)	$\mathrm{C}(62)-\mathrm{H}(62)$	0.9500
$\mathrm{C}(47)-\mathrm{C}(48)$	1.523(4)	C(63)-C(64)	1.378(5)
$\mathrm{C}(47)-\mathrm{H}(47)$	1.0000	$\mathrm{C}(63)-\mathrm{H}(63)$	0.9500
$\mathrm{C}(48)-\mathrm{C}(49)$	1.525(4)	$\mathrm{C}(64)$ - $\mathrm{O}(16)$	1.357(4)
$\mathrm{C}(48)-\mathrm{H}(48)$	1.0000	$\mathrm{C}(64)$-C(65)	1.402(4)
$\mathrm{C}(49)-\mathrm{O}(12)$	1.207(4)	C(65)-C(66)	1.474(4)
C(49)-C(50)	1.557(4)	$\mathrm{C}(66)-\mathrm{H}(66)$	0.9500
$\mathrm{C}(50)-\mathrm{O}(13)$	1.406(4)	$\mathrm{C}(67)-\mathrm{O}(15)$	1.423(6)
$\mathrm{C}(50)-\mathrm{O}(9)$	$1.462(3)$	$\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~A})$	0.9800
C(50)-C(51)	1.546(4)	$\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~B})$	0.9800
$\mathrm{C}(51)-\mathrm{C}(52)$	1.552(4)	$\mathrm{C}(67)-\mathrm{H}(67 \mathrm{C})$	0.9800
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	0.9900	$\mathrm{C}(68)-\mathrm{O}(16)$	1.434(4)
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	0.9900	$\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~A})$	0.9800
$\mathrm{C}(52)-\mathrm{C}(58)$	1.503(4)	$\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~B})$	0.9800
$\mathrm{C}(52)-\mathrm{H}(52)$	1.0000	$\mathrm{C}(68)-\mathrm{H}(68 \mathrm{C})$	0.9800
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(19)$	107.1(2)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(18)$	103.4(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	108.5(2)	$\mathrm{C}(19)-\mathrm{C}(1)-\mathrm{C}(18)$	109.8(2)
$\mathrm{C}(19)-\mathrm{C}(1)-\mathrm{C}(2)$	111.2(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(18)$	116.1(2)

$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	110.0(2)	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	112.0(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(14)$	113.3(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	107.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(14)$	108.0(2)	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{H}(13)$	107.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	108.5	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	107.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	108.5	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	116.8(3)
$\mathrm{C}(14)-\mathrm{C}(2)-\mathrm{H}(2)$	108.5	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(2)$	110.0(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	115.2(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(2)$	108.2(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.5	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	107.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.5	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	107.1
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.5	$\mathrm{C}(2)-\mathrm{C}(14)-\mathrm{H}(14)$	107.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.5	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(14)$	127.2(3)
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	107.5	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(16)$	121.3(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	123.6(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	111.4(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	118.2	$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{O}(1)$	110.7(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	118.2	$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{C}(17)$	116.4(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	128.5(3)	$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	104.9(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)$	121.0(3)	$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{C}(15)$	108.9(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(13)$	110.3(3)	$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	104.3(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	102.7(3)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	111.0(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	111.2	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	104.4(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	111.2	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.9
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	111.2	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.9
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	111.2	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.9
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.1	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.9
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	121.6(4)	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.9
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(6)$	111.6(3)	$\mathrm{C}(24)-\mathrm{C}(18)-\mathrm{C}(17)$	115.9(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	126.7(4)	$\mathrm{C}(24)-\mathrm{C}(18)-\mathrm{C}(1)$	116.0(2)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	126.9(4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(1)$	102.3(2)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	115.8(4)	$\mathrm{C}(24)-\mathrm{C}(18)-\mathrm{H}(18)$	107.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	117.3(4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	107.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.8(4)	$\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{H}(18)$	107.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.1	$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{C}(1)$	178.8(4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.1	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.1(4)	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.4	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.4	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	127.5(4)	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	115.7(3)	$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	116.8(4)	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	121.3(3)	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(13)$	110.7(3)	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	127.7(3)	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(5)$	102.5(3)	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.4(2)	$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5

$\mathrm{O}(6)-\mathrm{C}(22)-\mathrm{O}(5)$	$123.0(2)$
$\mathrm{O}(6)-\mathrm{C}(22)-\mathrm{C}(23)$	$120.9(2)$
$\mathrm{O}(5)-\mathrm{C}(22)-\mathrm{C}(23)$	$116.1(2)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(32)$	$110.4(2)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(18)$	$124.3(3)$
$\mathrm{C}(32)-\mathrm{C}(24)-\mathrm{C}(18)$	$124.9(3)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$107.7(3)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	126.1
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	126.1
$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{C}(27)$	$122.1(3)$
$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{C}(25)$	$108.5(3)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$129.4(3)$
$\mathrm{O}(7)-\mathrm{C}(27)-\mathrm{C}(28)$	$127.0(3)$
$\mathrm{O}(7)-\mathrm{C}(27)-\mathrm{C}(26)$	$115.4(3)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	$117.5(3)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$120.7(3)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	119.7
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$	119.7
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	$121.6(3)$
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	119.2
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$	119.2
$\mathrm{O}(8)-\mathrm{C}(30)-\mathrm{C}(29)$	$125.9(3)$
$\mathrm{O}(8)-\mathrm{C}(30)-\mathrm{C}(31)$	$116.4(3)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$117.8(3)$
$\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{C}(30)$	$120.2(3)$
$\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{C}(32)$	$108.7(3)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$131.1(3)$
$\mathrm{C}(24)-\mathrm{C}(32)-\mathrm{C}(31)$	$104.6(3)$
$\mathrm{C}(24)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	110.8
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	110.8
$\mathrm{C}(24)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	110.8
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	110.8
$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	108.9
$\mathrm{O}(7)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	109.5
$\mathrm{O}(7)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.5
$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.5
$\mathrm{O}(7)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5
$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5

$\mathrm{H}(33 \mathrm{~B})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5
$\mathrm{O}(8)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	109.5
$\mathrm{O}(8)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5
$\mathrm{O}(8)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{H}(34 \mathrm{~B})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{O}(9)-\mathrm{C}(35)-\mathrm{C}(53)$	$107.3(2)$
$\mathrm{O}(9)-\mathrm{C}(35)-\mathrm{C}(36)$	$108.2(2)$
$\mathrm{C}(53)-\mathrm{C}(35)-\mathrm{C}(36)$	$110.6(2)$
$\mathrm{O}(9)-\mathrm{C}(35)-\mathrm{C}(52)$	$103.6(2)$
$\mathrm{C}(53)-\mathrm{C}(35)-\mathrm{C}(52)$	$110.6(2)$
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(52)$	$116.0(2)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(48)$	$107.1(2)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$110.4(2)$
$\mathrm{C}(48)-\mathrm{C}(36)-\mathrm{C}(37)$	$113.2(2)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36)$	108.7
$\mathrm{C}(48)-\mathrm{C}(36)-\mathrm{H}(36)$	108.7
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{H}(36)$	108.7
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	$114.4(3)$
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	108.7
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	108.7
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	108.7
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	108.7
$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	107.6
$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(37)$	$123.5(3)$
$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{H}(38)$	118.3
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38)$	118.3
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	$130.1(3)$
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(47)$	$120.6(3)$
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(47)$	$108.8(3)$
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	$103.8(3)$
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	111.0
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	111.0
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	111.0
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	111.0
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.0
$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(42)$	$119.3(3)$
$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(40)$	$112.0(3)$
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(40)$	$128.7(3)$
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{O}(10)$	$125.6(3)$
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	$119.4(3)$
$\mathrm{O}(10)-\mathrm{C}(42)-\mathrm{C}(41)$	$115.1(3)$
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	$121.8(3)$

$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{H}(43)$	119.1	$\mathrm{N}(2)-\mathrm{C}(53)-\mathrm{C}(35)$	177.3(3)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{H}(43)$	119.1	$\mathrm{O}(10)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	109.5
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	120.2(3)	$\mathrm{O}(10)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	109.5
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{H}(44)$	119.9	$\mathrm{H}(54 \mathrm{~A})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	109.5
$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{H}(44)$	119.9	$\mathrm{O}(10)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5
$\mathrm{O}(11)-\mathrm{C}(45)-\mathrm{C}(44)$	125.9(3)	$\mathrm{H}(54 \mathrm{~A})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5
$\mathrm{O}(11)-\mathrm{C}(45)-\mathrm{C}(46)$	116.4(3)	$\mathrm{H}(54 \mathrm{~B})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)$	117.6(3)	$\mathrm{O}(11)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	109.5
$\mathrm{C}(41)-\mathrm{C}(46)-\mathrm{C}(45)$	121.7(3)	$\mathrm{O}(11)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	109.5
$\mathrm{C}(41)-\mathrm{C}(46)-\mathrm{C}(47)$	110.7(3)	$\mathrm{H}(55 \mathrm{~A})-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	109.5
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(47)$	127.2(3)	$\mathrm{O}(11)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{C})$	109.5
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(39)$	104.0(3)	$\mathrm{H}(55 \mathrm{~A})-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{C})$	109.5
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)$	119.7(2)	$\mathrm{H}(55 \mathrm{~B})-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{C})$	109.5
$\mathrm{C}(39)-\mathrm{C}(47)-\mathrm{C}(48)$	109.5(2)	$\mathrm{O}(14)-\mathrm{C}(56)-\mathrm{O}(13)$	123.5(3)
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{H}(47)$	107.7	$\mathrm{O}(14)-\mathrm{C}(56)-\mathrm{C}(57)$	121.1(3)
$\mathrm{C}(39)-\mathrm{C}(47)-\mathrm{H}(47)$	107.7	$\mathrm{O}(13)-\mathrm{C}(56)-\mathrm{C}(57)$	115.4(3)
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{H}(47)$	107.7	$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)$	117.3(2)	C(56)-C(57)-H(57B)	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(36)$	106.9(2)	$\mathrm{H}(57 \mathrm{~A})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	109.5
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(36)$	110.9(2)	$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48)$	107.1	$\mathrm{H}(57 \mathrm{~A})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	109.5
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{H}(48)$	107.1	$\mathrm{H}(57 \mathrm{~B})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	109.5
$\mathrm{C}(36)-\mathrm{C}(48)-\mathrm{H}(48)$	107.1	$\mathrm{C}(66)-\mathrm{C}(58)-\mathrm{C}(59)$	109.7(3)
$\mathrm{O}(12)-\mathrm{C}(49)-\mathrm{C}(48)$	126.2(3)	$\mathrm{C}(66)-\mathrm{C}(58)-\mathrm{C}(52)$	124.8(3)
$\mathrm{O}(12)-\mathrm{C}(49)-\mathrm{C}(50)$	121.4(3)	C(59)-C(58)-C(52)	125.4(3)
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$	112.4(2)	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)$	105.0(3)
$\mathrm{O}(13)-\mathrm{C}(50)-\mathrm{O}(9)$	108.5(2)	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~A})$	110.8
$\mathrm{O}(13)-\mathrm{C}(50)-\mathrm{C}(51)$	117.7(2)	$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~A})$	110.8
$\mathrm{O}(9)-\mathrm{C}(50)-\mathrm{C}(51)$	104.6(2)	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	110.8
$\mathrm{O}(13)-\mathrm{C}(50)-\mathrm{C}(49)$	111.4(2)	$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	110.8
$\mathrm{O}(9)-\mathrm{C}(50)-\mathrm{C}(49)$	104.6(2)	$\mathrm{H}(59 \mathrm{~A})-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	108.8
C(51)-C(50)-C(49)	109.0(2)	C(65)-C(60)-C(61)	119.1(3)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$	104.3(2)	$\mathrm{C}(65)-\mathrm{C}(60)-\mathrm{C}(59)$	109.0(3)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	110.9	$\mathrm{C}(61)-\mathrm{C}(60)-\mathrm{C}(59)$	131.9(3)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	110.9	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{O}(15)$	125.7(3)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	110.9	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(60)$	118.8(3)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	110.9	$\mathrm{O}(15)-\mathrm{C}(61)-\mathrm{C}(60)$	115.5(3)
$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	108.9	$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{C}(61)$	121.4(3)
C(58)-C(52)-C(51)	117.6(2)	$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{H}(62)$	119.3
$\mathrm{C}(58)-\mathrm{C}(52)-\mathrm{C}(35)$	114.6(2)	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{H}(62)$	119.3
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(35)$	102.9(2)	$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)$	121.3(3)
$\mathrm{C}(58)-\mathrm{C}(52)-\mathrm{H}(52)$	107.0	$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{H}(63)$	119.4
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{H}(52)$	107.0	$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{H}(63)$	119.4
$\mathrm{C}(35)-\mathrm{C}(52)-\mathrm{H}(52)$	107.0	$\mathrm{O}(16)-\mathrm{C}(64)-\mathrm{C}(63)$	125.7(3)

$\mathrm{O}(16)-\mathrm{C}(64)-\mathrm{C}(65)$	$116.6(3)$
$\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(65)$	$117.7(3)$
$\mathrm{C}(60)-\mathrm{C}(65)-\mathrm{C}(64)$	$121.6(3)$
$\mathrm{C}(60)-\mathrm{C}(65)-\mathrm{C}(66)$	$108.3(3)$
$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{C}(66)$	$130.0(3)$
$\mathrm{C}(58)-\mathrm{C}(66)-\mathrm{C}(65)$	$107.9(3)$
$\mathrm{C}(58)-\mathrm{C}(66)-\mathrm{H}(66)$	126.0
$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{H}(66)$	126.0
$\mathrm{O}(15)-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~A})$	109.5
$\mathrm{O}(15)-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~B})$	109.5
$\mathrm{H}(67 \mathrm{~A})-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~B})$	109.5
$\mathrm{O}(15)-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{C})$	109.5
$\mathrm{H}(67 \mathrm{~A})-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{C})$	109.5
$\mathrm{H}(67 \mathrm{~B})-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{C})$	109.5
$\mathrm{O}(16)-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~A})$	109.5
$\mathrm{O}(16)-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~B})$	109.5
$\mathrm{H}(68 \mathrm{~A})-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~B})$	109.5
$\mathrm{O}(16)-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{C})$	109.5
$\mathrm{H}(68 \mathrm{~A})-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{C})$	109.5
$\mathrm{H}(68 \mathrm{~B})-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(16)$	$103.54(19)$
$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(20)$	$118.4(4)$
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(21)$	$118.2(4)$
$\mathrm{C}(22)-\mathrm{O}(5)-\mathrm{C}(16)$	$123.7(2)$
$\mathrm{C}(27)-\mathrm{O}(7)-\mathrm{C}(33)$	$117.2(3)$
$\mathrm{C}(30)-\mathrm{O}(8)-\mathrm{C}(34)$	$116.5(3)$
$\mathrm{C}(35)-\mathrm{O}(9)-\mathrm{C}(50)$	$104.5(2)$
$\mathrm{C}(42)-\mathrm{O}(10)-\mathrm{C}(54)$	$114.8(3)$
$\mathrm{C}(45)-\mathrm{O}(11)-\mathrm{C}(55)$	$116.7(3)$
$\mathrm{C}(56)-\mathrm{O}(13)-\mathrm{C}(50)$	$121.5(2)$
$\mathrm{C}(61)-\mathrm{O}(15)-\mathrm{C}(67)$	$115.8(4)$
$\mathrm{C}(64)-\mathrm{O}(16)-\mathrm{C}(68)$	$117.2(3)$
(1)	

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for sarpong81. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U11	U22	U33	U23	U13	U12
C(1)	49(1)	46(2)	39(1)	4(1)	16(1)	5(1)
C (2)	50(2)	42(1)	49(1)	6(1)	18(1)	7(1)
C(3)	53(2)	40(2)	61(2)	3(1)	22(1)	4(1)
C(4)	59(2)	41(2)	60(2)	3(1)	24(1)	3(1)
C(5)	56(2)	43(2)	56(2)	10(1)	21(1)	2(1)
C(6)	57(2)	62(2)	64(2)	8(2)	22(1)	1(2)
C(7)	60(2)	71(2)	58(2)	20(2)	25(1)	10(2)
C(8)	57(2)	82(3)	68(2)	16(2)	24(2)	10(2)
C(9)	60(2)	91(3)	81(2)	33(2)	32(2)	22(2)
$\mathrm{C}(10)$	86(3)	74(3)	91(3)	27(2)	54(2)	32(2)
C(11)	68(2)	58(2)	85(2)	19(2)	45(2)	15(2)
C(12)	55(2)	52(2)	62(2)	17(1)	31(1)	9(1)
C(13)	52(2)	43(2)	55(2)	9(1)	25(1)	7(1)
$\mathrm{C}(14)$	52(2)	39(1)	50(1)	5(1)	24(1)	6(1)
C(15)	48(1)	39(1)	50(1)	3(1)	21(1)	7(1)
C(16)	45(1)	39(1)	45(1)	4(1)	14(1)	5(1)
C(17)	54(2)	40(1)	41(1)	5(1)	14(1)	5(1)
C(18)	49(1)	45(2)	41(1)	6(1)	16(1)	3(1)
$\mathrm{C}(19)$	50(2)	48(2)	42(1)	5(1)	14(1)	3(1)
$\mathrm{C}(20)$	54(2)	135(5)	127(5)	0(4)	15(2)	11(3)
C(21)	128(5)	78(3)	164(6)	-27(4)	85(5)	18(3)
C(22)	43(1)	38(1)	42(1)	-1(1)	14(1)	2(1)
C(23)	46(1)	48(2)	43(1)	4(1)	12(1)	1(1)
C(24)	47(1)	47(2)	41(1)	4(1)	14(1)	O(1)
C(25)	54(2)	44(2)	45(1)	4(1)	15(1)	4(1)
C(26)	53(1)	41(1)	45(1)	4(1)	15(1)	-2(1)
C(27)	72(2)	46(2)	51(2)	-2(1)	22(1)	-2(1)
C(28)	80(2)	56(2)	48(2)	-4(1)	26(2)	-7(2)
C(29)	63(2)	65(2)	40(1)	6(1)	12(1)	-9(2)
C(30)	43(1)	57(2)	47(1)	11(1)	11(1)	3(1)
C(31)	44(1)	49(2)	44(1)	3(1)	13(1)	1(1)
C(32)	64(2)	52(2)	46(1)	6(1)	23(1)	9(1)
C(33)	165(5)	62(2)	81(3)	-5(2)	61(3)	26(3)
C(34)	67(2)	66(2)	59(2)	24(2)	16(2)	8(2)
C(35)	41(1)	39(1)	51(1)	-3(1)	13(1)	1(1)
C(36)	44(1)	40(1)	49(1)	1(1)	12(1)	3(1)

C(37)	$50(2)$	$52(2)$	$51(2)$	$8(1)$	$10(1)$	$7(1)$
$\mathrm{C}(38)$	$62(2)$	$47(2)$	$61(2)$	$9(1)$	$21(1)$	$3(1)$
$\mathrm{C}(39)$	$56(2)$	$47(2)$	$54(2)$	$1(1)$	$23(1)$	$0(1)$
$\mathrm{C}(40)$	$59(2)$	$52(2)$	$66(2)$	$4(1)$	$25(1)$	$-1(1)$
$\mathrm{C}(41)$	$53(2)$	$47(2)$	$56(2)$	$-11(1)$	$23(1)$	$2(1)$
$\mathrm{C}(42)$	$55(2)$	$53(2)$	$67(2)$	$-16(1)$	$29(1)$	$-9(1)$
$\mathrm{C}(43)$	$48(2)$	$55(2)$	$69(2)$	$-15(2)$	$16(1)$	$5(1)$
$\mathrm{C}(44)$	$49(2)$	$55(2)$	$75(2)$	$-5(2)$	$16(1)$	$7(1)$
$\mathrm{C}(45)$	$53(2)$	$47(2)$	$62(2)$	$-3(1)$	$17(1)$	$8(1)$
$\mathrm{C}(46)$	$48(2)$	$50(2)$	$50(1)$	$-7(1)$	$22(1)$	$1(1)$
$\mathrm{C}(47)$	$48(1)$	$44(2)$	$52(1)$	$-3(1)$	$18(1)$	$2(1)$
$\mathrm{C}(48)$	$41(1)$	$41(1)$	$48(1)$	$2(1)$	$14(1)$	$4(1)$
$\mathrm{C}(49)$	$38(1)$	$41(1)$	$47(1)$	$7(1)$	$11(1)$	$5(1)$
$\mathrm{C}(50)$	$38(1)$	$42(1)$	$46(1)$	$1(1)$	$12(1)$	$2(1)$
$\mathrm{C}(51)$	$48(1)$	$43(2)$	$52(2)$	$0(1)$	$18(1)$	$-2(1)$
$\mathrm{C}(52)$	$42(1)$	$41(1)$	$54(1)$	$0(1)$	$17(1)$	$1(1)$
$\mathrm{C}(53)$	$46(2)$	$42(2)$	$62(2)$	$-6(1)$	$15(1)$	$2(1)$
$\mathrm{C}(54)$	$66(2)$	$72(3)$	$137(4)$	$-19(3)$	$50(3)$	$-12(2)$
$\mathrm{C}(55)$	$66(2)$	$62(2)$	$123(4)$	$37(2)$	$23(2)$	$11(2)$
$\mathrm{C}(56)$	$50(2)$	$46(2)$	$57(2)$	$-5(1)$	$22(1)$	$-2(1)$
$\mathrm{C}(57)$	$60(2)$	$65(2)$	$56(2)$	$-15(2)$	$22(1)$	$-14(2)$
$\mathrm{C}(58)$	$41(1)$	$39(1)$	$57(2)$	$-1(1)$	$15(1)$	$1(1)$
$\mathrm{C}(59)$	$55(2)$	$42(2)$	$76(2)$	$-5(2)$	$6(2)$	$1(1)$
$\mathrm{C}(60)$	$50(2)$	$43(2)$	$67(2)$	$-4(1)$	$11(1)$	$0(1)$
$\mathrm{C}(61)$	$58(2)$	$45(2)$	$77(2)$	$0(2)$	$2(2)$	$4(1)$
$\mathrm{C}(62)$	$59(2)$	$41(2)$	$84(2)$	$-5(2)$	$20(2)$	$3(1)$
$\mathrm{C}(63)$	$49(1)$	$43(2)$	$68(2)$	$-9(1)$	$25(1)$	$-6(1)$
$\mathrm{C}(64)$	$45(1)$	$45(2)$	$62(2)$	$-6(1)$	$22(1)$	$-5(1)$
$\mathrm{C}(65)$	$43(1)$	$40(1)$	$64(2)$	$-1(1)$	$20(1)$	$-1(1)$
$\mathrm{C}(66)$	$54(2)$	$39(2)$	$61(2)$	$-2(1)$	$20(1)$	$4(1)$
$\mathrm{C}(67)$	$116(4)$	$84(3)$	$82(3)$	$2(2)$	$2(3)$	$47(3)$
$\mathrm{C}(68)$	$64(2)$	$60(2)$	$52(2)$	$-9(1)$	$16(1)$	$-1(2)$
$\mathrm{N}(1)$	$55(1)$	$62(2)$	$49(1)$	$2(1)$	$13(1)$	$13(1)$
$\mathrm{N}(2)$	$45(1)$	$52(2)$	$78(2)$	$-6(1)$	$8(1)$	$5(1)$
$\mathrm{O}(1)$	$47(1)$	$44(1)$	$41(1)$	$4(1)$	$15(1)$	$6(1)$
$\mathrm{O}(2)$	$49(1)$	$110(3)$	$96(2)$	$3(2)$	$15(1)$	$6(2)$
$\mathrm{O}(3)$	$91(2)$	$54(2)$	$106(2)$	$0(1)$	$61(2)$	$13(1)$
$\mathrm{O}(4)$	$47(1)$	$56(1)$	$59(1)$	$12(1)$	$15(1)$	$0(1)$
$\mathrm{O}(5)$	$56(1)$	$53(1)$	$50(1)$	$4(1)$	$13(1)$	$1(1)$
$\mathrm{O}(6)$	$44(1)$	$50(1)$	$49(1)$	$7(1)$	$9(1)$	$-3(1)$
$\mathrm{O}(7)$	$114(2)$	$54(1)$	$64(1)$	$8(1)$	$44(2)$	$25(1)$
$\mathrm{O}(8)$	$61(1)$	$72(2)$	$60(1)$	$25(1)$	$23(1)$	$20(1)$
$\mathrm{O}(9)$	$39(1)$	$40(1)$	$52(1)$	$-3(1)$	$11(1)$	$2(1)$
$\mathrm{O}(10)$	$61(1)$	$60(1)$	$82(2)$	$-7(1)$	$38(1)$	$-8(1)$

$\mathrm{O}(11)$	$53(1)$	$49(1)$	$80(2)$	$12(1)$	$21(1)$	$7(1)$
$\mathrm{O}(12)$	$41(1)$	$48(1)$	$53(1)$	$-2(1)$	$16(1)$	$-1(1)$
$\mathrm{O}(13)$	$56(1)$	$56(1)$	$62(1)$	$-4(1)$	$18(1)$	$-3(1)$
$\mathrm{O}(14)$	$53(1)$	$53(1)$	$69(1)$	$-12(1)$	$28(1)$	$-11(1)$
$\mathrm{O}(15)$	$84(2)$	$62(2)$	$97(2)$	$-8(2)$	$-16(2)$	$22(2)$
$\mathrm{O}(16)$	$64(1)$	$51(1)$	$60(1)$	$-8(1)$	$11(1)$	$4(1)$

Table 5. Hydrogen coordinates ($x{ }^{104}$) and isotropic displacement parameters ($\AA^{2} x$ 10^{3})
for sarpong81.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(2)	8587	2733	3115	56
H(3A)	8489	3500	3836	60
H(3B)	8825	3038	4471	60
$\mathrm{H}(4)$	10059	3839	4510	62
H(6A)	11953	3530	4694	72
H(6B)	11797	3872	3976	72
H(9)	14192	2248	3858	90
H(10)	13117	1490	3257	93
H(13)	10295	2856	3069	58
H(14)	9667	1894	3273	55
H(17A)	8484	621	3853	54
H(17B)	9229	939	3494	54
H(18)	7309	1289	3361	53
H(20A)	15088	3690	4726	161
H(20B)	14959	3169	4143	161
H(20C)	15009	2944	4887	161
H(21A)	10870	737	2432	172
H(21B)	11807	662	3054	172
H(21C)	11858	1078	2418	172
H(23A)	10130	361	5949	69
H(23B)	9467	-239	5634	69
H(23C)	9122	251	6114	69
H(25)	8701	762	2433	57
H(28)	8002	1144	-2	72
H(29)	7058	2068	-111	68
H(32A)	7481	2444	2278	63
H(32B)	6587	1951	2141	63
H(33A)	9409	510	388	146
H(33B)	8469	69	273	146
H(33C)	9473	-167	762	146
H(34A)	6126	3514	367	96
H(34B)	6059	2910	-119	96
H(34C)	7087	3214	249	96
H(36)	6095	8120	2479	53
H(37A)	5726	9039	1931	62

H(37B)	5862	9450	2599	62
H(38)	7094	9807	2114	67
H(40A)	9008	9336	2036	69
H(40B)	9083	9712	2725	69
H(43)	11699	8167	3492	69
H(44)	10826	7360	3826	72
H(47)	7742	8093	2418	57
H(48)	7350	7933	3418	51
H(51A)	6298	8112	4775	56
H(51B)	7098	7859	4427	56
H(52)	5097	7895	3885	54
H(54A)	12318	9536	2794	131
H(54B)	12175	8775	2706	131
H(54C)	12349	9094	3429	131
H(55A)	9793	6903	4373	127
H(55B)	9725	6532	3688	127
H(55C)	8863	6479	4032	127
H(57A)	6650	9755	6057	88
H(57B)	6020	10240	5511	88
H(57C)	7139	10136	5567	88
H(59A)	6448	6652	4185	72
H(59B)	7191	6950	3813	72
H(62)	6685	4799	2782	74
H(63)	5393	5066	1900	62
H(66)	4747	7288	2531	61
H(67A)	8226	4898	3371	149
H(67B)	7664	4593	3861	149
H(67C)	8676	4945	4163	149
H(68A)	3594	5962	799	88
H(68B)	3869	5358	1290	88
H(68C)	4642	5644	944	88

For Z-S2.8 - Experimental Summary

The single crystal X-ray diffraction studies were carried out on a Bruker Kappa APEX-II CCD diffractometer equipped with Mo K_{a} radiation ($I=0.71073 \AA$). A 0.225 x $0.135 \times 0.117 \mathrm{~mm}$ piece of a colorless block was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using f and v scans. Crystal-to-detector distance was 35 mm and exposure time was 2 seconds per frame using a scan width of 1.0°. Data collection was 100% complete to 25.00° in q. A total of 19309 reflections were collected covering the indices, $-10<=h<=12,-30<=k<=30$, $13<=1<=9$. 4709 reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.0530. Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The
space group was found to be $P 2_{1} / \mathrm{n}$. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2013). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2013. Crystallographic data are summarized in Table 1.

Table 1. Crystal data and structure refinement for Hein03.
Identification code DY-hydrazone

Empirical formula
Molecular formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color, habit
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.000^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C19 H22 N2 O4 S
C19 H22 N2 O4 S
374.44

100 K
0.71073 Å

Monoclinic
P 1 21/n 1
$a=9.6878(6) \AA \quad a=90^{\circ}$.
$b=23.1088(14) \AA \quad b=117.3470(18)^{\circ}$.
$c=9.8408(6) \AA \quad g=90^{\circ}$.

4
$1.271 \mathrm{Mg} / \mathrm{m}^{3}$
$0.191 \mathrm{~mm}^{-1}$
792
$0.225 \times 0.135 \times 0.117 \mathrm{~mm}^{3}$
Colorless Block
1.762 to 28.315°.
$-10<=h<=12,-30<=k<=30,-13<=1<=9$
19309
$4709[R($ int $)=0.0530]$
100.0 \%

Semi-empirical from equivalents
0.7457 and 0.6864

Full-matrix least-squares on F^{2}
4709 / 1 / 241
1.032
$R 1=0.0430, w R 2=0.0998$
$R 1=0.0599, w R 2=0.1099$
n/a
0.423 and -0.433 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$)
for Hein03. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
S(1)	6140(1)	3229(1)	9375(1)	14(1)
$\mathrm{O}(1)$	7615(1)	3443(1)	10476(1)	20(1)
$\mathrm{O}(2)$	5415(1)	2759(1)	9758(1)	20(1)
$\mathrm{O}(3)$	-213(1)	4395(1)	7992(1)	23(1)
$\mathrm{O}(4)$	1728(1)	4437(1)	10399(1)	20(1)
N(1)	5260(2)	4236(1)	8289(2)	14(1)
$\mathrm{N}(2)$	4866(2)	3763(1)	8942(2)	15(1)
C(1)	1269(2)	3539(1)	5998(2)	18(1)
C(2)	1758(2)	4000(1)	6544(2)	14(1)
C(3)	2512(2)	4541(1)	7228(2)	12(1)
C(4)	4169(2)	4592(1)	7503(2)	13(1)
C(5)	4578(2)	5112(1)	6854(2)	17(1)
C(6)	3980(2)	5660(1)	7273(2)	17(1)
C(7)	2212(2)	5649(1)	6601(2)	17(1)
C(8)	1579(2)	5095(1)	6917(2)	14(1)
C(9)	2200(2)	4834(1)	8483(2)	14(1)
C(10)	1091 (2)	4536(1)	8894(2)	16(1)
C(11)	750(2)	4125(1)	10916(2)	24(1)
C(12)	1619(3)	4091(1)	12622(2)	42(1)
C(13)	6241 (2)	3064(1)	7683(2)	13(1)
C(14)	7274(2)	3367(1)	7330(2)	15(1)
C(15)	7338(2)	3234(1)	5985(2)	18(1)
$\mathrm{C}(16)$	6375(2)	2815(1)	4989(2)	19(1)
C(17)	5327(2)	2531(1)	5355(2)	22(1)
C(18)	5254(2)	2648(1)	6701(2)	19(1)
C(19)	6459(3)	2671(1)	3528(2)	31(1)

Table 3. Bond lengths [\AA] and angles [$\left.{ }^{\circ}\right]$ for Hein03.

$\mathrm{S}(1)-\mathrm{O}(1)$	1.4278(12)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.388(3)
$\mathrm{S}(1)-\mathrm{O}(2)$	1.4334(12)	$\mathrm{C}(16)-\mathrm{C}(19)$	1.514(2)
$\mathrm{S}(1)-\mathrm{N}(2)$	1.6559(14)	$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
S(1)-C(13)	1.7547(16)	$\mathrm{C}(18)-\mathrm{C}(17)$	1.385(2)
$\mathrm{O}(3)-\mathrm{C}(10)$	1.208(2)	$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{O}(4)-\mathrm{C}(10)$	1.337(2)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{O}(4)-\mathrm{C}(11)$	1.455(2)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{N}(1)-\mathrm{N}(2)$	1.4070(19)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{N}(1)-\mathrm{C}(4)$	1.281(2)		
$\mathrm{N}(2)-\mathrm{H}(2)$	0.874(15)	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	120.22(8)
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9500	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(2)$	107.78(7)
$\mathrm{C}(2)-\mathrm{C}(1)$	1.190(2)	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(13)$	108.77(8)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.448(2)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(2)$	103.59(7)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.504(2)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(13)$	109.43(8)
$\mathrm{C}(3)-\mathrm{C}(9)$	1.556(2)	$N(2)-S(1)-C(13)$	106.09(7)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.496(2)	$\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{C}(11)$	115.35(13)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{N}(2)$	116.97(14)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900	$\mathrm{S}(1)-\mathrm{N}(2)-\mathrm{H}(2)$	109.1(13)
$\mathrm{C}(6)-\mathrm{C}(5)$	1.527(2)	$N(1)-N(2)-S(1)$	111.76(11)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{H}(2)$	116.7(13)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	180.0
$\mathrm{C}(6)-\mathrm{C}(7)$	1.527(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	173.86(18)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	114.87(14)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9900	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	120.54(14)
$\mathrm{C}(8)-\mathrm{C}(3)$	1.516(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(9)$	120.28(14)
$\mathrm{C}(8)-\mathrm{C}(7)$	1.512(2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	117.27(13)
$\mathrm{C}(8)-\mathrm{H}(8)$	1.0000	C(4)-C(3)-C(9)	113.76(13)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.500(2)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(9)$	58.46(10)
$\mathrm{C}(9)-\mathrm{H}(9)$	1.0000	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	125.05(14)
$\mathrm{C}(10)-\mathrm{C}(9)$	1.481(2)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	117.80(15)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	117.11(14)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.6
$\mathrm{C}(11)-\mathrm{C}(12)$	1.495(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.6
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	110.06(13)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.2
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.6
$\mathrm{C}(13)-\mathrm{C}(18)$	1.387(2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.6
$\mathrm{C}(14)-\mathrm{C}(13)$	1.390(2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.4
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.4
$\mathrm{C}(14)-\mathrm{C}(15)$	1.388(2)	$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.0
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	110.98(14)
$\mathrm{C}(16)-\mathrm{C}(15)$	1.390(2)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.4

$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.4	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$118.74(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	108.8	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(19)$	$120.54(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	108.8	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.3
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	107.7	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$121.43(16)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$113.93(14)$	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.3
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	108.8	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18)$	120.7
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	108.8	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$118.61(16)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8)$	114.1	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.7
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$119.75(14)$	$\mathrm{C}(16)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	114.1	$\mathrm{C}(16)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(3)$	$62.11(11)$	$\mathrm{H}(19 \mathrm{H})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$122.83(14)$	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	114.1		
$\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{H}(9)$	116.9		
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(3)$	$59.44(10)$		
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	116.9		
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(3)$	$116.37(13)$		
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$117.94(14)$		
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	116.9		
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{O}(4)$	$124.27(16)$		
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	$124.74(15)$		
$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	$110.99(14)$		
$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	110.2		
$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	110.2		
$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	$107.33(15)$		
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.5		
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	110.2		
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	110.2		
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5		
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5		
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5		
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5		
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5		
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5		
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{S}(1)$	$119.21(12)$		
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{S}(1)$	$119.34(13)$		
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	$121.41(16)$		
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.7		
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$118.63(15)$		
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.7		
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4		
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$121.14(16)$		
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4		
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(19)$	$120.72(16)$		

Table 4. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for Hein03. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{*} 2 U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U11	U^{22}	U^{33}	U 23	U^{13}	U
$\mathrm{S}(1)$	$15(1)$	$13(1)$	$12(1)$	$2(1)$	$6(1)$	$2(1)$
$\mathrm{O}(1)$	$16(1)$	$24(1)$	$13(1)$	$-1(1)$	$2(1)$	$3(1)$
$\mathrm{O}(2)$	$26(1)$	$17(1)$	$21(1)$	$7(1)$	$14(1)$	$2(1)$
$\mathrm{O}(3)$	$17(1)$	$28(1)$	$22(1)$	$-1(1)$	$7(1)$	$-7(1)$
$\mathrm{O}(4)$	$21(1)$	$25(1)$	$16(1)$	$-1(1)$	$11(1)$	$-7(1)$
$\mathrm{N}(1)$	$17(1)$	$11(1)$	$15(1)$	$0(1)$	$8(1)$	$-1(1)$
$\mathrm{N}(2)$	$14(1)$	$13(1)$	$17(1)$	$2(1)$	$7(1)$	$1(1)$
$\mathrm{C}(1)$	$20(1)$	$15(1)$	$17(1)$	$-1(1)$	$7(1)$	$-1(1)$
$\mathrm{C}(2)$	$14(1)$	$15(1)$	$13(1)$	$2(1)$	$5(1)$	$1(1)$
$\mathrm{C}(3)$	$14(1)$	$10(1)$	$11(1)$	$0(1)$	$4(1)$	$0(1)$
$\mathrm{C}(4)$	$15(1)$	$13(1)$	$11(1)$	$-3(1)$	$6(1)$	$-2(1)$
$\mathrm{C}(5)$	$18(1)$	$15(1)$	$19(1)$	$2(1)$	$10(1)$	$-2(1)$
$\mathrm{C}(6)$	$19(1)$	$12(1)$	$18(1)$	$1(1)$	$8(1)$	$-3(1)$
$\mathrm{C}(7)$	$19(1)$	$12(1)$	$18(1)$	$2(1)$	$7(1)$	$0(1)$
$\mathrm{C}(8)$	$14(1)$	$11(1)$	$14(1)$	$0(1)$	$5(1)$	$0(1)$
$\mathrm{C}(9)$	$14(1)$	$13(1)$	$12(1)$	$-2(1)$	$5(1)$	$-2(1)$
$\mathrm{C}(10)$	$19(1)$	$13(1)$	$17(1)$	$-2(1)$	$9(1)$	$0(1)$
$\mathrm{C}(11)$	$28(1)$	$27(1)$	$25(1)$	$1(1)$	$17(1)$	$-7(1)$
$\mathrm{C}(12)$	$41(1)$	$62(2)$	$27(1)$	$7(1)$	$20(1)$	$-13(1)$
$\mathrm{C}(13)$	$14(1)$	$11(1)$	$12(1)$	$1(1)$	$4(1)$	$2(1)$
$\mathrm{C}(14)$	$14(1)$	$13(1)$	$15(1)$	$1(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(15)$	$18(1)$	$17(1)$	$19(1)$	$3(1)$	$10(1)$	$0(1)$
$\mathrm{C}(16)$	$23(1)$	$18(1)$	$17(1)$	$0(1)$	$10(1)$	$5(1)$
$\mathrm{C}(17)$	$25(1)$	$18(1)$	$20(1)$	$-8(1)$	$8(1)$	$-5(1)$
$\mathrm{C}(18)$	$19(1)$	$16(1)$	$22(1)$	$-2(1)$	$10(1)$	$-4(1)$
$\mathrm{C}(19)$	$43(1)$	$30(1)$	$24(1)$	$-5(1)$	$20(1)$	$1(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \mathrm{x}$ 10^{3})
for Hein03.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(2)	3928(18)	3623(8)	8420(20)	22(5)
H(1)	880	3170	5563	22
H(5A)	4109	5076	5727	20
H(5B)	5720	5135	7262	20
H(6A)	4449	5695	8400	20
H(6B)	4298	6003	6879	20
H(7A)	1880	5978	7026	20
H(7B)	1752	5705	5480	20
H(8)	435	5042	6270	17
H(9)	3097	5036	9328	16
$\mathrm{H}(11 \mathrm{~A})$	523	3732	10468	29
$\mathrm{H}(11 \mathrm{~B})$	-246	4332	10597	29
H(12A)	2574	3867	12922	62
H(12B)	969	3901	13013	62
H(12C)	1884	4482	13049	62
H(14)	7923	3660	7997	18
$\mathrm{H}(15)$	8053	3434	5740	21
H(17)	4645	2251	4668	26
H(18)	4543	2447	6947	23
H(19A)	5453	2753	2646	46
H(19B)	6710	2260	3528	46
H(19C)	7267	2907	3463	46

Section 2.5.6 - Supporting information - General Procedure for Reaction Sampling and Kinetic Analysis

All kinetic experiments were conducted with automated sampling with a custombuilt apparatus. From the reaction vial, $15 \mu \mathrm{~L}$ samples were automatically taken by a programmable syringe pump at defined time points through a PEEK capillary (1/32" outer diameter, 0.15 mm inner diameter). Samples were rerouted with a Gilson 918 Injection Valve Actuator (rheodyne) to a Gilson 215 automated liquid handler robot, which allowed for the dilution of the samples with 1 mL of methanol directly into LC
vials. The timing and synchronization of the liquid sampling technology was governed by the pump that removed the timed aliquot, triggered the actuation of the rheodyne, and activated the subsequent sample dilution and quenching. These samples were manually transferred to the HPLC-MS for analysis as they were prepared or upon completion of the sampling period.

Figure S1: Set up for Tandem reaction progress monitoring. Above: Total Set up showing automatic liquid handling robot coupled to ReacIR; Below: Reactor set-up showing the ReactIR probe for in situ IR analysis and Rheodyne/syringe pump for liquid sampling

The individual aliquots were analyzed by HPLC/MS conducted on an Agilent 1260 Infinity apparatus under the one of the following conditions:

Poroshell 120 SB-C18, $2.1 \times 100 \mathrm{~mm}$, 2.7-Micron Column; Temperature $=25^{\circ} \mathrm{C}$; Solvent A = water, 0.05% TFA; Solvent B = acetonitrile, 0.05% TFA; Flow Rate $=0.600$ $\mathrm{mL} / \mathrm{min}$; Starting Conditions $=70 \% \mathrm{~A}, 30 \% \mathrm{~B} ; 3.5 \mathrm{~min} 33 \% \mathrm{~B} ; 7.5 \mathrm{~min} 34 \% \mathrm{~B} ; 8 \mathrm{~min}$ 50%; 8.5 min 80% B; $10.5 \mathrm{~min} 80 \%$ B.

Procedure for cycloisomerization catalyzed by $\mathrm{Cu}\left(\mathrm{PF}_{6}\right) \cdot \mathrm{MeCN}_{4}$

A solution of ketone $\mathrm{X}(246 \mathrm{mg}, 1.193 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ was treated with $\mathrm{TsNHNH}_{2}(222 \mathrm{mg}, 1.193 \mathrm{mmol})$ and heated to $45^{\circ} \mathrm{C}$. The reaction kinetics were monitored continuously using the protocol detailed above. When the concentration of the intermediate hydrazones reached a plateau $\mathrm{Cu}\left(\mathrm{PF}_{6}\right) \cdot \mathrm{MeCN}_{4}(0.445 \mathrm{mg}, 1.193 \mu \mathrm{~mol}$, 0.001 equiv) was added in a single portion and reaction monitoring continued.

Section 2.5.7. Computational Methods.

Part 1: Methods

Part 2: SI Table 1. Model systems explored computationally
Part 3: KIE computations
Part 4: Coordinates of stationary points

Computationally, the tosyl and ethyl groups of the substrate were truncated to mesyl and methyl groups for efficiency, and explicit methanol and $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{H}$ molecules were included. Stationary points were located using the M06-2X/6-31+G(d,p) DFT method (Zhao, Y.; Truhlar, D. Theor Chem Account 2008, 120, 215.) implemented in GAUSSIAN09 (Gaussian 09, Revision B. 01 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Wallingford CT, 2009.), in the gas phase. These points were then reoptimized using the SMD continuum solvation model (Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. The Journal of Physical Chemistry B 2009, 113, 6378.) in methanol at 365 K . Frequency analysis was used to assign stationary points as transition state structures or minima, and Intrinsic Reaction Coordinate (IRC) calculations ((a) Gonzalez, C.; Schlegel, H. B. The Journal of Chemical Physics 1991, 95, 5853. (b) Gonzalez, C.; Schlegel, H. B. The Journal of Chemical Physics 1989, 90, 2154. (c) C. Lee, C.; Yang, W.; Parr, R. G. Physical Review B 1988, 37, 785. (d) Fukui, K. Accounts of Chemical Research 1981, 14, 363.) were utilized to connect transition state structures to their associated minima. Structures containing Copper were studied using the M062X/LanL2DZ model chemistry. (Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.) Structural images were created using Ball \& Stick (Ball and Stick 4.0a12,

	$\begin{aligned} & \text { M062X/6- } \\ & 31+G(d, p) \end{aligned}$	M062X/6-31+G(d,p) (smd,methanol)	$\begin{aligned} & \text { M062X/LanL2D } \\ & 7 \end{aligned}$
Z-A	0	0	0
E-A	1.7	1.1	2.1
TSAC	30.8	29	29
C	-11.6	-17.8	-21.6
TSCD	-1	-4.9	-15.4
D	-45.3	-44.8	-61.8
Z-B	1	3.1	
E-B	0.5	5.7	
TSB	44.6		
TSZAEA	27.2		22.2
Enamin			
e PR	-5.7		
Cu			
Reactan			
t			0
Cu TS			21.4
Cu interm	ediate		5.4

Muller, N.; Faulk, A. Johannes Kepler University Linz 2004.). Energies reported are gas phase Gibbs free energies (unless otherwise stated).
Predicted KIE values were computed using the Bigeleisen and Mayer method, as implemented in Quiver. (a) Bigeleisen, J.; Mayer, M. G. J. Chem. Phys. 1947, 15, 261267. [Ref. KIE_01] (b) Saunders, W.; Laidig, K. E.; Wolfsberg, M. J. Am. Chem. Soc. 1999, 111, 8989-8994. [Ref. KIE_02] (c) A modified version of Quiver provided by Prof. Daniel Singleton (Texas A\&M) was utilized.

Model Systems examined at M062X/6-31+G(d,p)

Systems explored with MeSO 2 H and MeOH as discrete counterions

Scheme 1. Model systems explored computationally using M062X/6-31+G(d,p) in the gas phase. Energies are presented as the uncorrected Gibbs free energy barrier compared to their respective reactants.

KIE Computations
$\mathrm{MeSO} 2 \mathrm{H}+\mathrm{MeOH}$

SI Figure 1. KIE computations on select TS structures.

Z-A

M062X/6-31+G(d,p)
HF = -1979.669295 hartrees ($-1242262.27930545 \mathrm{kcal} / \mathrm{mol}$)
Imaginary Frequencies: none found
Zero-point correction $=0.391788$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies =
-1979.341909 hartrees ($-1242056.84131659 \mathrm{kcal} / \mathrm{mol}$)
M062X/6-31+G(d,p) scrf=(smd,methanol) temp=365
$\mathrm{HF}=-1979.7116877$ hartrees ($-1242288.88114863 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies =
-1979.410701 hartrees ($-1242100.00898451 \mathrm{kcal} / \mathrm{mol}$)
M062X/LanL2DZ HF =-1203.0033033 hartrees ($-754896.602853783 \mathrm{kcal} / \mathrm{mol}$)
Comments:

Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)	
Number	Number	X Y	

1	6	1.033922	3.458486	-1.472457
2	6	2.247106	2.884956	-0.743359
3	6	0.787211	0.730684	-0.616554
4	6	-0.430321	1.625847	-0.606922
5	6	-0.241339	3.130997	-0.692775
6	1	0.964702	3.033110	-2.481285
7	1	1.150287	4.540739	-1.583456
8	1	-0.179801	3.564995	0.312950
9	1	-1.122673	3.565625	-1.170045
10	6	-0.101627	0.859885	0.635069
11	1	0.341293	1.406030	1.462538
12	6	2.136741	1.392941	-0.489548
13	7	3.204671	0.791368	-0.132040
14	7	3.148827	-0.530160	0.241394
15	6	0.748368	-0.459431	-1.439107
16	6	0.781975	-1.438752	-2.144898
17	1	0.802739	-2.305418	-2.768292
18	1	3.177547	3.066447	-1.287949
19	6	-1.018298	-0.233020	1.035217
20	8	-1.546963	-1.020536	0.270804
21	8	-1.204838	-0.270545	2.349078
22	6	-2.209487	-1.194822	2.791986
23	1	-2.292463	-1.039201	3.866111
24	1	-3.155194	-0.979098	2.285117
25	1	-1.899349	-2.218426	2.572229
26	1	2.345774	3.389161	0.228132
27	16	4.654106	-1.306806	0.131602
28	8	4.353757	-2.688434	0.476172
29	6	5.528374	-0.508536	1.457215
30	1	5.526218	0.563040	1.255908
31	1	5.022969	-0.746895	2.392000
32	1	6.543487	-0.906977	1.439267
33	8	5.330228	-0.988340	-1.114512
34	8	-4.788594	-0.500508	0.380574
35	16	-4.398468	-1.559909	-0.607490
36	8	-3.340080	-0.924334	-1.690882
37	1	2.430546	-1.126264	-0.182433
38	1	-2.456665	-0.948805	-1.260512
39	1	-1.277484	1.217247	-1.149810
40	8	-3.033278	1.598360	0.889254
41	1	-3.742392	0.975142	0.649078
42	6	-3.318685	2.161138	2.150864
43	1	-3.475205	1.391850	2.918904
44	1	-2.454995	2.763489	2.445749
1				

45	1	-4.202376	2.810556	2.119509
46	6	-5.741696	-1.567076	-1.803968
47	1	-5.498008	-2.255309	-2.614214
48	1	-6.643253	-1.882626	-1.277649
49	1	-5.845729	-0.544505	-2.171606
--1				

13-A41-01-01-dicounterionreactants.log

E-A

M062X/6-31+G(d,p)
$\mathrm{HF}=-1979.6668742$ hartrees $(-1242260.76022924 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.391907$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies = -1979.339219 hartrees (-1242055.15331469 kcal/mol)
M062X/6-31+g(d,p) scrf=(smd,solvent=methanol) temp=365
$\mathrm{HF}=-1979.7150219$ hartrees $(-1242290.97339247 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.390803$ (Hartree/Particle)
Temperature 365.000 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies = -1979.409024 hartrees (-1242098.95665024 kcal/mol)
M062X/LanL2DZ HF = -1202.999898 hartrees ($-754894.46599398 \mathrm{kcal} / \mathrm{mol}$)
Comments:

Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	6	1.217449	2.772244	-1.806670
2	6	2.198269	2.255698	-0.747621
3	6	0.678349	0.166548	-0.648230
4	6	-0.475503	1.088602	-0.986697
5	6	-0.231286	2.534875	-1.388717
6	1	1.418091	2.253142	-2.751616
7	1	1.394133	3.838058	-1.979229
8	1	-0.498579	3.190388	-0.551492
9	1	-0.905840	2.790587	-2.209446
10	6	-0.291651	0.673796	0.436455
11	1	0.116137	1.407977	1.124819
12	6	2.056475	0.762948	-0.558041
13	7	3.010378	-0.054652	-0.340033
14	7	4.298844	0.429938	-0.262657
15	6	0.612776	-1.212831	-1.076372
16	6	0.562230	-2.353378	-1.464793
17	1	0.506984	-3.365473	-1.797667
18	1	3.222897	2.480803	-1.058422
19	6	-1.310178	-0.215747	1.038438
20	8	-1.921646	-1.090014	0.449470

21	8	-1.499130	0.046498	2.326946
22	6	-2.585372	-0.662667	2.939739
23	1	-2.630481	-0.293825	3.962904
24	1	-3.513705	-0.448538	2.400730
25	1	-2.387894	-1.736312	2.924134
26	1	2.025062	2.775852	0.206184
27	16	5.350842	-0.689183	0.473654
28	8	6.634052	-0.001926	0.474768
29	6	5.319770	-1.985451	-0.742747
30	1	4.282735	-2.305074	-0.855436
31	1	5.727347	-1.591269	-1.672583
32	1	5.939429	-2.789932	-0.344633
33	8	4.797812	-1.204873	1.713674
34	8	-5.060657	-0.059336	0.429079
35	16	-4.868508	-1.354358	-0.304246
36	8	-3.743103	-1.144229	-1.480619
37	1	4.439274	1.342637	0.176973
38	1	-2.866683	-1.210004	-1.038344
39	1	-1.303102	0.585237	-1.476861
40	8	-3.033333	1.850299	0.444515
41	1	-3.816770	1.288535	0.308141
42	6	-3.232768	2.628509	1.604607
43	1	-3.540030	2.016338	2.462528
44	1	-2.279125	3.103930	1.852431
45	1	-3.983629	3.412820	1.446531
46	6	-6.218840	-1.396777	-1.491934
47	1	-6.101021	-2.265802	-2.140496
48	1	-7.148953	-1.452323	-0.925208
49	1	-6.168455	-0.467665	-2.062797

13-A14-08-01-dicounterionreactants.log
TS ${ }_{\text {AC }}$
M062X/6-31+G(d,p)
$\mathrm{HF}=-1979.6231421$ hartrees $(-1242233.31789917 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: 1 (-342.6143 1/cm)
Zero-point correction $=0.391033$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =
-1979.292761 hartrees ($-1242026.00045511 \mathrm{kcal} / \mathrm{mol}$)
M062X/6-31+g(d,p) scrf=(smd,solvent=methanol) temp=365 $\mathrm{HF}=-1979.6707906$ hartrees $(-1242263.21780941 \mathrm{kcal} / \mathrm{mol})$ Imaginary Frequencies: 1 (-364.9102 1/cm)

Zero-point correction $=0.388687$ (Hartree/Particle)
Temperature 365.000 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies =
-1979.364538 hartrees (-1242071.04124038 kcal/mol)
M062X/LanL2DZ HF =-1202.999898 hartrees ($-754894.46599398 \mathrm{kcal} / \mathrm{mol}$)
Comments:

Coordinates (from last standard orientation):

Center Number	Atomic Number	Coordinates (Angstroms)		
			Y	Z
1	6	-0.978061	-1.884237	-2.364061
2	6	-1.715665	-2.232704	-1.054675
3	6	-0.223798	-0.450976	0.074168
4	6	0.862793	-0.806560	-0.933127
5	6	0.522845	-1.670390	-2.146881
6	1	-1.424172	-0.970072	-2.774730
7	1	-1.143749	-2.679452	-3.096738
8	1	1.019774	-2.641802	-2.033874
9	1	0.949669	-1.202502	-3.038382
10	6	0.900837	-1.448105	0.408309
11	1	0.620252	-2.494513	0.472254
12	6	-1.558382	-1.056019	-0.14868

13	7	-2.498389	-0.360305	0.387492
14	7	-3.827429	-0.787844	0.235103
15	6	-0.345999	0.844001	0.761841
16	6	-1.536193	1.141483	1.107288
17	1	-2.280786	1.771398	1.560009
18	1	-2.774762	-2.431923	-1.230889
19	6	1.963439	-1.043148	1.370981
20	8	2.400608	0.076731	1.503439
21	8	2.387240	-2.097170	2.070918
22	6	3.559733	-1.862928	2.858134
23	1	3.771339	-2.808486	3.354402
24	1	4.378176	-1.576344	2.194000
25	1	3.374181	-1.073532	3.589041
26	1	-1.270816	-3.126827	-0.600414
27	16	-4.932824	0.515457	0.286087
28	8	-6.229447	-0.137336	0.316017
29	6	-4.621069	1.247634	-1.303150
30	1	-3.569950	1.542034	-1.338580
31	1	-4.869129	0.517708	-2.072731
32	1	-5.264977	2.125930	-1.365807
33	8	-4.561792	1.477431	1.311866
34	8	3.520932	1.254552	-1.018225
35	16	3.211161	2.328517	-0.004459
36	8	1.615844	2.630676	-0.040245
37	1	-4.105054	-1.438338	0.975471
38	1	1.061586	1.962266	0.484476
39	1	1.597264	-0.015510	-1.076484
40	8	4.050022	-1.378597	-0.357521
41	1	3.933572	-0.409781	-0.426164
42	6	4.277050	-1.866355	-1.659360
43	1	4.315835	-2.957825	-1.606828
44	1	3.470528	-1.577402	-2.349304
45	1	5.226308	-1.504037	-2.074602
46	6	3.607967	3.845524	-0.889518
47	1	3.317940	4.703258	-0.281303
48	1	4.682651	3.843421	-1.076533
49	1	3.051408	3.822165	-1.828077

13-A14-62-06-dicounteriontsguess.log

C

M062X/6-31+G(d,p)
$\mathrm{HF}=-1979.6957487$ hartrees $(-1242278.87926674 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found

Zero-point correction $=0.394947$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies =
-1979.360438 hartrees ($-1242068.46844938 \mathrm{kcal} / \mathrm{mol}$)
M062X/6-31+G(d,p) scrf=(smd,solvent=methanol) temp=365
$\mathrm{HF}=-1979.7523254$ hartrees $(-1242314.38171175 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.393650$ (Hartree/Particle)
Temperature 365.000 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies =
-1979.439125 hartrees ($-1242117.84532875 \mathrm{kcal} / \mathrm{mol}$)
M062X/LanL2DZ HF = -1202.9571469 hartrees $(-754867.639251219 \mathrm{kcal} / \mathrm{mol})$
Comments:

Coordinates (from last standard orientation):

Center Number	Atomic Number	Coordinates (Angstroms)		
			$X \quad Y$	Z
1	6	0.488057	-0.676457	2.814724
2	6	0.858127	-1.877178	1.911223
3	6	-0.747198	-0.993674	0.092214
4	6	-1.554570	-0.270615	1.240080
5	6	-0.977400	-0.251160	2.654166
6	1	1.123515	0.167244	2.540183
7	1	0.682902	-0.948831	3.856429
8	1	-1.616819	-0.888623	3.277912
9	1	-1.074830	0.772728	3.023263
10	6	-2.067560	-1.513912	0.672791

11	1	-1.984442	-2.422370	1.269156
12	6	0.528165	-1.483872	0.525408
13	7	1.361562	-1.347479	-0.491738
14	7	2.698695	-1.707276	-0.402713
15	6	-0.567937	-0.536455	-1.289464
16	6	0.712321	-0.769513	-1.619485
17	1	1.287905	-0.563067	-2.508387
18	1	1.915689	-2.135802	1.991399
19	6	-3.221912	-1.547617	-0.303301
20	8	-3.162063	-2.042453	-1.400315
21	8	-4.321887	-1.029809	0.239624
22	6	-5.442288	-0.960214	-0.651204
23	1	-6.223759	-0.439470	-0.100843
24	1	-5.153592	-0.405649	-1.546708
25	1	-5.764389	-1.965874	-0.929528
26	1	0.263554	-2.757635	2.189403
27	16	3.885631	-0.481759	-0.713243
28	8	5.068439	-1.298709	-0.930098
29	6	3.961655	0.355927	0.842835
30	1	2.979382	0.823298	1.003932
31	1	4.241194	-0.375941	1.600661
32	1	4.739944	1.112953	0.726040
33	8	3.405642	0.423470	-1.739687
34	8	-1.013559	2.467815	-0.007838
35	16	0.512112	2.417330	-0.216352
36	8	1.121968	1.331417	0.690770
37	1	2.913518	-2.485727	-1.028880
38	1	-1.349927	-0.129288	-1.915788
39	1	-1.962753	0.660915	0.863643
40	8	-2.998605	1.251490	-1.179946
41	1	-2.163103	1.709137	-0.893682
42	6	-4.063170	2.032839	-0.677807
43	1	-4.432191	1.632544	0.278791
44	1	-3.750681	3.070819	-0.519993
45	1	-4.888962	2.024604	-1.398012
46	6	0.993835	3.917128	0.685522
47	1	2.083386	3.992425	0.697657
48	1	0.550444	4.784861	0.193725
49	1	0.598074	3.803754	1.698016

13-A14-63-02-dicounteriontsfopt.log
$\mathrm{TS}_{\mathrm{CD}}$

M062X/6-31+G(d,p)
$\mathrm{HF}=-1979.6790346$ hartrees $(-1242268.39100185 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: 1 (-275.4944 1/cm)
Zero-point correction $=0.394516$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies = -1979.343484 hartrees ($-1242057.82964484 \mathrm{kcal} / \mathrm{mol}$)
M062X/6-31+G(d,p) scrf=(smd,solvent=methanol) temp=365
$\mathrm{HF}=-1979.7317401$ hartrees $(-1242301.46423015 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: 2 (-378.0906 1/cm) (-14.7231 1/cm)
Zero-point correction $=0.392758$ (Hartree/Particle)
Temperature 365.000 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies =
-1979.418434 hartrees ($-1242104.86151934 \mathrm{kcal} / \mathrm{mol}$)
M062X/LanL2DZ HF $=-1203.0277814$ hartrees $(-754911.963106314 \mathrm{kcal} / \mathrm{mol})$
Comments:

Coordinates (from last standard orientation):

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	$X \quad Y$	Z
1	6	0.365108	0.524713	2.262059
2	6	0.845948	-0.934156	2.300339
3	6	-0.281661	-1.781150	0.096151
4	6	-1.338502	-0.149331	0.473565
5	6	-1.074308	0.603126	1.737371
6	1	0.992111	1.118347	1.591665

7	1	0.405299	0.967817	3.262145
8	1	-1.764571	0.219273	2.500062
9	1	-1.310148	1.648134	1.505743
10	6	-1.726078	-1.560536	0.495540
11	1	-1.992225	-1.933093	1.485096
12	6	0.811817	-1.484876	0.917561
13	7	1.927137	-1.674874	0.153185
14	7	3.203071	-1.426921	0.635561
15	6	0.225660	-2.127371	-1.205832
16	6	1.581718	-2.085728	-1.130997
17	1	2.351545	-2.265100	-1.865516
18	1	1.863342	-1.001233	2.692183
19	6	-2.784561	-1.883797	-0.534653
20	8	-2.628290	-1.858858	-1.728226
21	8	-3.941660	-2.137801	0.077672
22	6	-5.080859	-2.185309	-0.791769
23	1	-5.931043	-2.403196	-0.148416
24	1	-5.194984	-1.214607	-1.279784
25	1	-4.951209	-2.964972	-1.544030
26	1	0.191530	-1.529501	2.949480
27	16	4.158926	-0.307690	-0.268875
28	8	5.439650	-0.388247	0.412090
29	6	3.333246	1.222163	0.055492
30	1	2.304635	1.201975	-0.328549
31	1	3.374843	1.406429	1.129083
32	1	3.906346	1.976046	-0.488439
33	8	4.064190	-0.608417	-1.688820
34	8	-1.958973	2.833437	-0.330579
35	16	-0.609183	2.994688	-1.075282
36	8	0.424910	2.038695	-0.462991
37	1	3.752629	-2.283721	0.728861
38	1	-0.368704	-2.385187	-2.067318
39	1	-1.175787	0.325176	-0.486115
40	8	-3.393777	0.766177	0.047753
41	1	-2.919947	1.609749	-0.250961
42	6	-4.261491	1.084790	1.113432
43	1	-4.613525	0.147922	1.557916
44	1	-3.754934	1.681090	1.884526
45	1	-5.128767	1.653061	0.756222
46	6	-0.086295	4.583898	-0.374419
47	1	0.911163	4.825429	-0.747183
48	1	-0.806576	5.352592	-0.660126
49	1	-0.075235	4.449658	0.710503
	1	1		0.0

D

M062X/6-31+G(d,p)
$\mathrm{HF}=-1979.7532585$ hartrees $(-1242314.96724133 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.398504$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies =
-1979.414025 hartrees (-1242102.09482775 kcal/mol)
M062X/6-31+G(d,p) scrf=(smd,solvent=methanol) temp=365
$\mathrm{HF}=-1979.7994357$ hartrees $(-1242343.94389611 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.397003$ (Hartree/Particle)
Temperature 365.000 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies =
-1979.482056 hartrees (-1242144.78496056 kcal/mol)
M062X/LanL2DZ HF = -1203.1017474 hartrees $(-754958.377510974 \mathrm{kcal} / \mathrm{mol})$
Comments:

Coordinates (from last standard orientation):

1	6	0.259329	0.574560	2.322134
2	6	1.068520	-0.723972	2.243654
3	6	0.010024	-1.769795	0.094214
4	6	-1.690680	-0.058679	0.746221
5	6	-1.248338	0.398998	2.136974
6	1	0.612516	1.292950	1.575099
7	1	0.423383	1.024332	3.308073
8	1	-1.639587	-0.291125	2.898170
9	1	-1.719482	1.375262	2.306693
10	6	-1.444413	-1.559014	0.439523
11	1	-1.738186	-2.170015	1.302221
12	6	1.056613	-1.353454	0.885865
13	7	2.220127	-1.659710	0.198275
14	7	3.460093	-1.214141	0.616229
15	6	0.560194	-2.339979	-1.097350
16	6	1.922808	-2.252363	-1.012288
17	1	2.708692	-2.497739	-1.709965
18	1	2.107713	-0.529963	2.524347
19	6	-2.353538	-1.919341	-0.721833
20	8	-2.192314	-1.574995	-1.865991
21	8	-3.412629	-2.640572	-0.313140
22	6	-4.372886	-2.933507	-1.331537
23	1	-5.160718	-3.501844	-0.840379
24	1	-4.765770	-2.005114	-1.752332
25	1	-3.912261	-3.519753	-2.129146
26	1	0.673789	-1.439590	2.979440
27	16	4.136864	0.048903	-0.331627
28	8	5.412286	0.307577	0.317373
29	6	2.969384	1.350684	-0.018438
30	1	1.980200	1.054472	-0.377032
31	1	2.967177	1.562814	1.050668
32	1	3.322849	2.213072	-0.585787
33	8	4.092417	-0.280745	-1.748134
34	8	-2.536040	2.943210	0.055004
35	16	-1.259087	2.984459	-0.985792
36	8	0.001529	2.691393	-0.236477
37	1	4.147137	-1.963652	0.704170
38	1	0.005571	-2.731924	-1.936303
39	1	-1.131573	0.498651	-0.011631
40	8	-3.061620	0.301384	0.505141
41	1	-2.866145	2.014859	0.138009
42	6	-4.006239	-0.107448	1.486694
43	1	-3.907584	-1.176139	1.703533
44	1	-3.900155	0.472484	2.409641

45	1	-4.992368	0.075353	1.057195
46	6	-1.314606	4.778333	-1.104688
47	1	-0.464358	5.089948	-1.712437
48	1	-2.256730	5.082009	-1.562350
49	1	-1.226120	5.165627	-0.087791

13-A14-72-02-methanolpr.log

Z-B

M062X/6-31+G(d,p)
$\mathrm{HF}=-1979.6695816$ hartrees $(-1242262.45914982 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.392632$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies = -1979.340308 hartrees (-1242055.83667308 kcal/mol)
M062X/6-31+g(d,p) scrf=(smd,solvent=methanol) temp=365
$\mathrm{HF}=-1979.7108796$ hartrees $(-1242288.3740578 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.391056$ (Hartree/Particle)
Temperature 365.000 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies = -1979.405826 hartrees ($-1242096.94987326 \mathrm{kcal} / \mathrm{mol}$)
Comments:

Coordinates (from last standard orientation):

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	6	-0.700206	-1.398280	2.906330
2	6	-1.854611	-1.619491	1.962795
3	6	-0.475059	-1.052018	-0.026596
4	6	0.749066	-1.010614	0.858133
5	6	0.654107	-1.632661	2.232724
6	1	-0.796544	-2.058402	3.774080
7	1	-0.745633	-0.374675	3.307074
8	1	1.469396	-1.259692	2.861135
9	1	0.813090	-2.710093	2.107668
10	6	0.082226	0.283451	0.513355
11	1	-0.542604	0.757585	1.262695
12	6	-1.745852	-1.499879	0.632390
13	7	-2.809492	-1.801917	-0.250022
14	7	-3.131825	-0.736523	-1.101302
15	6	-0.278590	-1.394383	-1.417726
16	6	-0.079918	-1.695878	-2.569329
17	1	0.098713	-1.967533	-3.585786

18	6	0.736582	1.237653	-0.413508
19	8	1.588026	0.958833	-1.237717
20	8	0.239733	2.465072	-0.272665
21	6	0.944822	3.489744	-0.984236
22	1	0.419362	4.416097	-0.759591
23	1	1.973868	3.523026	-0.619235
24	1	0.930653	3.284602	-2.056010
25	16	-4.291254	0.357738	-0.524939
26	8	-4.862494	0.970875	-1.714704
27	6	-3.301287	1.554798	0.344068
28	1	-2.839349	1.047779	1.192866
29	1	-2.552478	1.953866	-0.340791
30	1	-3.986506	2.332801	0.685306
31	8	-5.129518	-0.323204	0.457835
32	8	3.941413	-0.350958	0.673274
33	16	4.299875	-0.224618	-0.780822
34	8	3.254916	-1.135830	-1.659548
35	1	-3.394293	-1.043683	-2.036167
36	1	2.440653	-0.595294	-1.767770
37	1	1.685234	-1.186919	0.337462
38	8	2.521589	1.936429	1.419855
39	1	3.065473	1.134374	1.301800
40	6	2.001619	1.984861	2.727798
41	1	1.381636	1.105550	2.957730
42	1	2.792209	2.060897	3.484924
43	1	1.370101	2.874737	2.796086
44	6	5.639395	-1.402899	-1.001380
45	1	5.897165	-1.460828	-2.059553
46	1	6.484489	-1.048363	-0.410219
47	1	5.281253	-2.364180	-0.628480
48	1	-2.827614	-1.862939	2.385122
49	1	-3.630075	-2.155706	0.241537

13-A42-01-01-dicounterionenaminereactantZ.log

E-B

M062X/6-31+G(d,p)
$\mathrm{HF}=-1979.669916$ hartrees $(-1242262.66898916 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.392556$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies = -1979.341175 hartrees ($-1242056.38072425 \mathrm{kcal} / \mathrm{mol}$)

M062X/6-31+G(d,p) scrf=(smd,solvent=methanol) temp=365
$\mathrm{HF}=-1979.709128$ hartrees $(-1242287.27491128 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.391231$ (Hartree/Particle)
Temperature 365.000 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies = -1979.401566 hartrees (-1242094.27668066 kcal/mol)

Comments:

Coordinates (from last standard orientation):

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	$X \quad Y$	Z
1	6	-0.908984	-1.814907	-2.220326
2	6	-2.003136	-1.504160	-1.231868
3	6	-0.450600	-0.186151	0.196942
4	6	0.597203	-0.279979	-0.882752
5	6	0.162884	-0.724236	-2.260475
6	1	-1.338598	-1.938018	-3.219558
7	1	-0.443455	-2.782013	-1.978258
8	1	1.036740	-1.055980	-2.830562
9	1	-0.236909	0.159453	-2.772607
10	6	0.683377	-1.226863	0.278439
11	1	0.355950	-2.252285	0.146020
12	6	-1.799550	-0.761474	-0.133552

13	7	-2.761732	-0.542797	0.870109
14	7	-4.086297	-0.794501	0.524777
15	6	-0.441468	0.965733	1.071783
16	6	-0.493142	1.936591	1.788045
17	1	-0.529019	2.803022	2.410871
18	6	1.782655	-1.054146	1.259961
19	8	2.314930	0.004876	1.544832
20	8	2.110908	-2.206679	1.829910
21	6	3.286233	-2.170210	2.647914
22	1	3.400588	-3.179482	3.038715
23	1	4.136668	-1.889228	2.022944
24	1	3.159669	-1.451104	3.459101
25	16	-5.011195	0.582145	0.147464
26	8	-6.392590	0.160457	0.323453
27	6	-4.663219	0.817765	-1.580866
28	1	-3.584979	0.937889	-1.696651
29	1	-5.025997	-0.055534	-2.121699
30	1	-5.194499	1.722304	-1.881351
31	8	-4.471849	1.727085	0.871798
32	8	3.610010	0.953354	-1.386013
33	16	3.954517	1.831176	-0.214916
34	8	2.563699	2.448386	0.397973
35	1	-4.583005	-1.311526	1.249642
36	1	2.180255	1.748614	0.973478
37	1	1.337832	0.514728	-0.865275
38	8	3.734686	-1.683038	-0.491381
39	1	3.708578	-0.825452	-0.955910
40	6	3.346213	-2.725587	-1.355304
41	1	2.283766	-2.656203	-1.633338
42	1	3.947057	-2.747767	-2.273062
43	1	3.494949	-3.667892	-0.821938
44	6	4.416987	3.397285	-0.967274
45	1	4.579090	4.139106	-0.184496
46	1	5.328904	3.224295	-1.539831
47	1	3.595234	3.688298	-1.624109
48	1	-2.982987	-1.946946	-1.379770
49	1	-2.633832	0.316173	1.404089
1				

13-A14-66-07-dicounterionenaminereactant.log
TS ${ }_{B}$
M062X/6-31+G(d,p)
$\mathrm{HF}=-1979.6010091$ hartrees $(-1242219.42922034 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: 1 (-352.5198 1/cm)

Zero-point correction $=0.390932$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies = -1979.270853 hartrees (-1242012.25296603 kcal/mol)

Comments:

Coordinates (from last standard orientation):

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	6	-0.396354	-2.931456	-1.828035
2	6	-1.590465	-2.429753	-1.054053
3	6	-0.178577	-0.665437	0.040636
4	6	0.932091	-0.933054	-0.939513
5	6	0.608485	-1.807311	-2.133045
6	1	-0.734880	-3.383776	-2.764770
7	1	0.096972	-3.734902	-1.266813
8	1	1.530057	-2.245298	-2.528490
9	1	0.192647	-1.161778	-2.915625
10	6	1.030661	-1.526004	0.432833
11	1	0.837144	-2.586743	0.552943
12	6	-1.453966	-1.405623	-0.214181
13	7	-2.558842	-0.769206	0.496359

14	7	-3.706995	-0.620209	-0.331196
15	6	-0.463166	0.635910	0.676853
16	6	-1.705640	0.763465	0.998934
17	1	-2.432083	1.341869	1.544459
18	6	2.058172	-0.986134	1.362085
19	8	2.355536	0.180719	1.486229
20	8	2.626906	-1.973776	2.061112
21	6	3.769923	-1.585117	2.829289
22	1	4.102429	-2.489498	3.336423
23	1	4.540085	-1.209980	2.151706
24	1	3.496904	-0.812998	3.551614
25	16	-4.869053	0.510504	0.203386
26	8	-6.112656	-0.010276	-0.335225
27	6	-4.407103	1.975273	-0.688636
28	1	-3.367913	2.214588	-0.459666
29	1	-4.542566	1.767385	-1.749268
30	1	-5.080875	2.764115	-0.349691
31	8	-4.691782	0.731909	1.630593
32	8	3.314593	1.492566	-1.030219
33	16	2.840679	2.524465	-0.035641
34	8	1.225156	2.620064	-0.108692
35	1	-4.201040	-1.503401	-0.475421
36	1	0.733772	1.873328	0.401784
37	1	1.595530	-0.087837	-1.121638
38	8	4.183528	-1.037697	-0.370069
39	1	3.947893	-0.089589	-0.418614
40	6	4.500044	-1.456182	-1.677361
41	1	3.770334	-1.082790	-2.409378
42	1	5.496865	-1.115486	-1.988296
43	1	4.488622	-2.550089	-1.695299
44	6	3.069451	4.072704	-0.929589
45	1	2.652067	4.892504	-0.343307
46	1	4.141026	4.207501	-1.083940
47	1	2.551489	3.966951	-1.884558
48	1	-2.553787	-2.908184	-1.217148
49	1	-2.797441	-1.255260	1.365801
1	6			

13-A14-65-05-dicounterionenaminetsguess.log

$\mathrm{TS}_{\text {Z-A/E-A }}$

M062X/6-31+G(d,p)
$\mathrm{HF}=-1979.6245056$ hartrees $(-1242234.17350906 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: 1 (-364.9841 1/cm)
Zero-point correction $=0.389953$ (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies = -1979.298554 hartrees (-1242029.63562054 kcal/mol)

Comments:

Coordinates (from last standard orientation):

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	$X \quad Y$	Z
1	6	-1.017568	-0.351320	2.887752
2	6	-1.942155	0.502186	2.013137
3	6	-0.382536	-0.124934	0.055689
4	6	0.744875	-0.161130	1.066381
5	6	0.453626	-0.088362	2.560320
6	1	-1.251382	-1.409035	2.715087
7	1	-1.207583	-0.148367	3.946316
8	1	0.752085	0.900518	2.928706
9	1	1.089184	-0.817504	3.070679
10	6	0.582409	1.064134	0.227762
11	1	0.163857	1.945932	0.701491
12	6	-1.800921	0.107911	0.550987
13	7	-2.769628	-0.064538	-0.215138
14	7	-3.781678	-0.252617	-0.986811
15	6	-0.289655	-0.944567	-1.130558
16	6	-0.245836	-1.643019	-2.115092

17	1	-0.188586	-2.273084	-2.974731
18	1	-2.991378	0.362594	2.288170
19	6	1.571048	1.365528	-0.830199
20	8	2.284425	0.554136	-1.396594
21	8	1.577813	2.660203	-1.144555
22	6	2.481687	3.043349	-2.184385
23	1	2.363675	4.120155	-2.290794
24	1	3.506807	2.791743	-1.906454
25	1	2.224159	2.531427	-3.113923
26	1	-1.696547	1.565755	2.149658
27	16	-5.355972	-0.364430	-0.300407
28	8	-6.160888	-0.939301	-1.368418
29	6	-5.764766	1.355429	-0.078307
30	1	-4.970505	1.809895	0.516362
31	1	-5.845147	1.817688	-1.061270
32	1	-6.713886	1.390168	0.457841
33	8	-5.267264	-0.968256	1.018331
34	8	3.982587	-0.983003	1.058361
35	16	4.307030	-1.405906	-0.345533
36	8	2.962809	-2.052273	-1.026725
37	1	-3.685455	-0.825507	-1.829633
38	1	2.421068	-1.296861	-1.346970
39	1	1.581384	-0.789961	0.776963
40	8	3.222526	1.701900	1.348287
41	1	3.420754	0.749094	1.403248
42	6	4.384346	2.340879	0.869809
43	1	4.735274	1.891784	-0.071553
44	1	4.134623	3.389370	0.684541
45	1	5.204894	2.303309	1.597959
46	6	5.078422	-3.016753	-0.144983
47	1	5.242543	-3.462278	-1.126847
48	1	6.022093	-2.862680	0.379502
49	1	4.396367	-3.621922	0.454981

13-A41-02-02-dicounterionlinearts.log

Enamine Product

M062X/6-31+G(d,p)
HF =-1979.6851701 hartrees ($-1242272.24108945 \mathrm{kcal} / \mathrm{mol}$)
Imaginary Frequencies: none found
Zero-point correction $=0.394701$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =
-1979.350993 hartrees (-1242062.54161743 kcal/mol)
Comments:

Coordinates (from last standard orientation):

Center	Atomic Number	Coordinates (Angstroms)		
Number		X	$X \quad Y$	Z
1	6	0.063010	-0.860715	2.929139
2	6	0.985710	-1.051511	1.750338
3	6	-0.972019	-0.807074	0.198795
4	6	-1.813765	-0.232121	1.294324
5	6	-1.095957	0.097113	2.588311
6	1	0.631830	-0.451866	3.768056
7	1	-0.323669	-1.830230	3.267306
8	1	-1.811540	0.106793	3.416441
9	1	-0.696331	1.109797	2.468329
10	6	-2.054167	-1.659696	0.877717
11	1	-1.694617	-2.469803	1.503213
12	6	0.448512	-1.046954	0.538784
13	7	1.228079	-1.038743	-0.728567
14	7	2.384614	-0.183872	-0.726659
15	6	-0.964879	-0.436639	-1.237089
16	6	0.253654	-0.585594	-1.746234
17	1	0.656824	-0.404465	-2.731340
18	6	-3.282448	-2.022736	0.121260
19	8	-3.785722	-3.121389	0.123948
20	8	-3.772901	-0.982359	-0.572556
21	6	-4.936050	-1.246180	-1.358761
22	1	-5.155050	-0.311499	-1.873015
23	1	-4.735196	-2.046027	-2.074753
24	1	-5.767029	-1.542629	-0.715043
25	16	3.732745	-1.088534	-0.420168
26	8	4.308415	-0.812321	0.894017
27	6	4.883064	-0.468102	-1.627669
28	1	4.499914	-0.697065	-2.620778
29	1	4.974776	0.608028	-1.476614
30	1	5.836245	-0.963925	-1.440526
31	8	3.399493	-2.491990	-0.748989
32	8	-0.684991	2.419603	0.306215
33	16	0.685160	2.747344	-0.231798
34	8	1.790229	1.979907	0.661930

35	1	2.079945	1.125771	0.171018
36	1	-1.837456	-0.070728	-1.765381
37	1	-2.566212	0.478492	0.964780
38	8	-2.861967	1.903277	-1.346237
39	1	-2.092142	2.097961	-0.777783
40	6	-4.040259	2.296327	-0.679388
41	1	-3.920306	3.258396	-0.166590
42	1	-4.830583	2.405872	-1.427545
43	1	-4.364659	1.542948	0.054357
44	6	1.038202	4.364309	0.473881
45	1	2.056442	4.654603	0.212605
46	1	0.310999	5.069521	0.069858
47	1	0.924495	4.265424	1.555345
48	1	2.062637	-1.117633	1.891330
49	1	1.569258	-2.000788	-0.942300

13-A14-67-02-dicounterionenaminereactant.log

Copper Complexed Reactant

$\mathrm{HF}=-1398.7512058$ hartrees (-877730.369151558 kcal/mol)
Imaginary Frequencies: none found
Zero-point correction $=0.378518$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -1398.438614 hartrees ($-877534.21467114 \mathrm{kcal} / \mathrm{mol}$)

Comments:

Coordinates (from last standard orientation):

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	6	-1.137264	1.670344	2.923893
2	6	-2.199262	1.846637	1.818367
3	6	-0.635931	0.442743	0.317959
4	6	0.537863	1.060764	1.097932
5	6	0.283154	1.867366	2.370350
6	1	-1.234487	0.664208	3.348886
7	1	-1.324540	2.386817	3.730011
8	1	0.456611	2.931065	2.164633
9	1	1.013115	1.566099	3.127850
10	6	0.158047	1.654476	-0.248539
11	1	-0.359610	2.607316	-0.240267
12	6	-2.033616	0.767924	0.767406
13	7	-2.988251	0.071296	0.245001
14	7	-4.302388	0.285745	0.602655
15	6	-0.475435	-0.884227	-0.257618
16	6	-0.443061	-2.034797	-0.678064
17	1	-0.504430	-3.034916	-1.049793
18	1	-3.196895	1.783321	2.265868
19	6	1.087835	1.517784	-1.395694
20	8	1.627768	0.458517	-1.771046
21	8	1.274353	2.688778	-2.029385
22	6	2.374071	2.736810	-3.000586
23	1	2.373669	3.757318	-3.377240
24	1	3.295587	2.497106	-2.465256
25	1	2.193864	2.017533	-3.802303
26	16	-5.460377	-0.600809	-0.384646
27	8	-6.863633	-0.293858	0.356418
28	6	-4.891514	-2.325734	-0.073752
29	1	-3.843339	-2.362752	-0.368940
30	1	-5.031677	-2.512711	0.989278
31	1	-5.518831	-2.966476	-0.692505
32	8	-5.296748	-0.277411	-1.953477
33	8	3.316835	-0.500493	0.764512
34	16	4.337732	-1.817415	0.446257
35	8	3.335386	-2.691937	-0.600489
36	1	-4.670192	1.161409	0.979064
37	1	1.448390	0.462266	1.093665
38	8	3.364805	1.958736	-0.119347

39	1	3.482093	0.996861	0.146436
40	6	3.648597	2.849217	0.975830
41	1	3.325373	3.850069	0.678586
42	1	3.106322	2.558523	1.888109
43	1	4.721300	2.879468	1.207191
44	6	4.070953	-2.786395	2.010038
45	1	4.490953	-3.782529	1.868975
46	1	4.547968	-2.261911	2.838167
47	1	2.988131	-2.831300	2.137608
48	1	-2.105393	2.844573	1.368235
49	29	1.765727	-1.381213	-0.748216

13-A60-02-01-reactant.log
TS ${ }_{\text {copper }}$
$\mathrm{HF}=-1398.7194265$ hartrees $(-877710.427323015 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: 1 (-335.6406 1/cm)
Zero-point correction $=0.378377$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -1398.404583 hartrees ($-877512.85987833 \mathrm{kcal} / \mathrm{mol}$)

Comments:

Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	6	-1.268210	2.184865	2.433301
2	6	-2.061798	2.448125	1.124947
3	6	-0.499893	0.723353	0.004070
4	6	0.606622	1.165518	0.984033
5	6	0.246667	2.051755	2.180897
6	1	-1.649902	1.262549	2.888471
7	1	-1.458307	2.999440	3.139188
8	1	0.681492	3.046374	2.021933
9	1	0.721305	1.637621	3.075293
10	6	0.571404	1.778360	-0.394220
11	1	0.240117	2.807520	-0.474570
12	6	-1.871833	1.238426	0.256505
13	7	-2.801177	0.458979	-0.210142
14	7	-4.159235	0.786001	-0.016896
15	6	-0.560776	-0.611043	-0.631926
16	6	-1.702098	-1.084971	-0.965485
17	1	-2.436005	-1.754040	-1.383259
18	1	-3.123724	2.601256	1.336318
19	6	1.635450	1.438746	-1.376630
20	8	2.054944	0.299908	-1.635838
21	8	2.090578	2.551221	-1.997020
22	6	3.339207	2.400733	-2.750358
23	1	3.549400	3.389372	-3.153834
24	1	4.108676	2.072817	-2.047440
25	1	3.208725	1.666556	-3.548572
26	16	-5.218499	-0.639526	-0.220938
27	8	-6.678379	0.021115	-0.419286
28	6	-5.064697	-1.420954	1.439590
29	1	-4.010150	-1.655355	1.587155
30	1	-5.438378	-0.698273	2.162519
31	1	-5.674371	-2.323562	1.407432
32	8	-4.616430	-1.662733	-1.313816
33	8	3.102631	-0.727143	1.099547
34	16	3.853886	-2.128095	0.545293
35	8	2.709632	-2.837709	-0.474330
36	1	-4.527461	1.558120	-0.587551
37	1	1.381500	0.413556	1.138824
38	8	3.685026	1.645616	0.273406
39	1	3.539094	0.674897	0.527001
40	6	4.073635	2.427159	1.416440
41	1	4.098168	3.476917	1.111822

42	1	3.360068	2.318301	2.247759
43	1	5.069948	2.145086	1.783218
44	6	3.600120	-3.203290	2.041126
45	1	3.865346	-4.226664	1.775434
46	1	4.216135	-2.822423	2.855971
47	1	2.537650	-3.119689	2.273874
48	1	-1.676512	3.348861	0.631884
49	29	1.204382	-1.613623	-0.800149

13-A60-01-02-copperts1frozen.log

Copper Complexed Intermediate

$\mathrm{HF}=-1398.7469728$ hartrees $(-877727.712901728 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.380857$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -1398.429968 hartrees (-877528.78921968 kcal/mol)

Comments:

Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number		$X \quad Y$	Z
1	6	1.545519	-2.173592	2.103165
2	6	2.184449	-2.488965	0.716325
3	6	0.513463	-0.780863	-0.312040

4	6	-0.495437	-1.145099	0.861547
5	6	0.013288	-2.007478	2.023249
6	1	1.991002	-1.249388	2.493941
7	1	1.795080	-2.976493	2.804126
8	1	-0.455274	-2.995881	1.941265
9	1	-0.342724	-1.563267	2.957234
10	6	-0.688433	-1.788331	-0.456253
11	1	-0.407151	-2.831804	-0.554995
12	6	1.835283	-1.343269	-0.163169
13	7	2.667420	-0.471394	-0.744850
14	7	4.052747	-0.650964	-0.737555
15	6	0.602209	0.555638	-0.982736
16	6	1.939176	0.689393	-1.254057
17	1	2.517836	1.473581	-1.720140
18	1	3.268819	-2.612123	0.786115
19	6	-1.866517	-1.432423	-1.304334
20	8	-2.305839	-0.299415	-1.521248
21	8	-2.412539	-2.562632	-1.821026
22	6	-3.764356	-2.421501	-2.368464
23	1	-4.041647	-3.417801	-2.707013
24	1	-4.411409	-2.069644	-1.560933
25	1	-3.760972	-1.708031	-3.195757
26	16	5.016616	0.648795	0.039946
27	8	6.499452	0.022594	0.119824
28	6	4.203870	0.684416	1.695975
29	1	3.160014	0.966644	1.547219
30	1	4.326594	-0.306517	2.131112
31	1	4.737671	1.444538	2.266783
32	8	4.783460	2.065202	-0.693627
33	8	-2.839938	0.797565	1.275739
34	16	-3.610590	2.141772	0.617039
35	8	-2.539740	2.809080	-0.502447
36	1	4.460692	-0.939068	-1.631920
37	1	-1.163012	-0.309450	1.089220
38	8	-3.584592	-1.591786	0.695921
39	1	-3.365755	-0.613642	0.876227
40	6	-4.061646	-2.250732	1.882326
41	1	-4.230427	-3.302850	1.637783
42	1	-3.332295	-2.194240	2.704810
43	1	-5.007990	-1.818934	2.235873
44	6	-3.310971	3.339260	2.007360
45	1	-3.607041	4.332898	1.671389
46	1	-3.880956	3.016337	2.878754
47	1	-2.237483	3.291504	2.194264

48	1	1.758663	-3.421395	0.324832
49	29	-1.034873	1.671340	-0.980124

13-A60-03-01-intermediate1.log

Section 2.6. References

1. a) For an overview high-turnover catalyst (HTC) see: Farina, V.; "High-turnover palladium catalysts in cross-coupling and heck chemistry: A critical overview" Adv. Synth. Catal. 2004, 346, 1553 - 1582. b) For the twelve tenets of green chemistry see: Anastas, P. T.; Kirchhoff, M. M.; "Origins, current status and future challenges of green chemistry." Acc. Chem. Res. 2002, 35, 686 - 694. c) Hierso, J.-C.; Beaupérin, M.; Meunier, P. "Ultra-low catalyst loading as a concept in economical and sustainable modern chemistry: The contribution of ferrocenylpolyphosphane ligands" Eur. J. Inorg. Chem., 2007, 3767 - 3780. d) For seminal work on HTC initially using palladacycles see Herrmann, W. A.; Brossmer, C.; Öefele, K.; Reisinger, C.-P.; Priermeier, T.; Beller, M.; Fischer, H. "Palladacycles as structurally defined catalyst for the Heck olefination of chloro- and bromoarenes" Angew. Chem. Int. Ed. Engl. 1995, 34, 1844 - 1848. e) Using adamantlyphosphine based ligands see: Zapf, A.; Ehrentraut, A.; Beller, M. "A new highly efficient catalyst system for the coupling of nonactivated and deactivated aryl chlorides with arylboronic acids" Angew. Chem. Int. Ed. 2000, 39, 4153 - 4155. f) For seminal examples of trace palladium catalyst using dialkylbiarylphosphine ligands see: g) Wolfe, J. P.; Buchwald, S. L. "Highly active palladium catalyst for Suzuki coupling reactions" Angew. Chem. Int. Ed. 1999, 38, 2413-2416.; Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. "A highly active catalyst for the room-temperature amination and Suzuki coupling for aryl chlorides" J. Am. Chem. Soc. 1999, 121, 9550-9561.
2. Review: Littke, A. F.; Fu, G. C. "Palladium-catalyzed coupling reactions of aryl chlorides" Angew. Chem. Int. Ed. 2002, 41, 4176 - 4211.; Littke, A. F.; Dai, C.; Fu, G. C. "Versatile catalysts for the Suzuki cross-coupling of arylboronic acids with aryl and vinyl halides and triflates under mild conditions" J. Am. Chem. Soc. 2000, 122, 4020-4028.
3. Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. "Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$, and $\mathrm{C}-\mathrm{O}$ bondforming cross-couplings" J. Org. Chem. 2002, 67, 5553 - 5566. Shaughnessy, K. H.; Kim, P.; Hartwig, J. F. "A fluorescence-based assay for the high-throughput screening of coupling reactions. Application to Heck chemistry" J. Am. Chem. Soc., 1999, 121, 2123 - 2132.
4. Other work on HTC using multidentate phosphines on very electron poor areneS see: Feuerstein, M.; Doucet, H.; Santelli, M. "Palladium catalyzed cross-coupling of aryl chlorides with arylboronic acids in the presence of a new tetraphosphine" Synlett 2001, 1458 - 1460.
5. (a) Leadbeater, N. E.; Marco, M. "Transition-metal-free Suzuki-type coupling reactions" Angew. Chem. Int. Ed. 2003, 42, 1407-1409.; Leadbeater, N. E.; Marco,
M. "Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating" Org. Lett. 2002, 4, 2973-2976.; Leadbeater, N. E.; Marco, M. "Transition-metal-free Suzuki-type coupling reactions: Scope and limitations of the methodology" J. Org. Chem. 2003, 68, 5660-5667.; Arvela, R. K.; Leadbeater, N. E.; Sangi, M. S.; Williams, V. A.; Grandados, P.; Singer, R. D. "A reassessment of the transition-metal free Suzuki-type coupling methodology" J. Org. Chem. 2005, 70, 161 - 168. (b) For a review of trace metal contaminants with FeCl_{3} see Buchwald, S. L.; Bolm, C. "On the role of metal contaminants in the catalses with $\mathrm{FeCl}_{3} "$ Angew. Chem. Int. Ed. 2009, 48, 5586 - 5587.; Thomé, I; Nijs, A.; Bolm, C. "Trace metal impurities in catalysis" Chem. Soc. Rev. 2012, 41, 979-987.; Larsson, P.-F.; Correa, A.; Carril, M.; Norrby, P.-O.; Bolm, C. "Copper-catalyzed crosscouplings with part-per-million catalyst loadings" Angew. Chem. Int. Ed., 2009, 48, 5691-5693. c) Leadbeater, N. E. "Cross coupling: When is free really free?" Nature Chem. 2010, 2, 1007 - 1009. d) For examples of potassium KOBu promoted reactions see Roman, D. S.; Takahashi, Y.; Charette, A. B. Org. Lett. 2011, 13, 3242 - 3245.; Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; Chuan, H.; Wang, H.; Fuk, Y. K.; Lei, A. "Organocatalysis in cross-coupling: DMEDA-catalyzed direct C-H arylation of unactivated benzene" J. Am. Chem. Soc. 2010, 132, 16737 - 16740.; Yanagisawa, S.; Ueada, K.; Taniguchi, T.; Itami, K. "Potassium t-butoxide alone can promote the biaryl coupling of electron-deficient nitrogen heterocycle and arenes" Org. Lett. 2008, 10, 4673 - 4676.; De, S.; Mishra, S.; Kade, B. N.; Dey, D.; Bisai, A. "Expeditious approach to pyrrolophenanthridones, phenanthridines, and benzo[c]phenanthridines via organocatalytic direct biaryl-coupling promoted by potassium tert-butoxide" J. Org. Chem. 2013, 78, 7823 - 7844.
6. Kirsch, S. "Construction of heterocycles by the strategic use of alkyne π-activation in catalyzed cascade reactions" Synthesis 2008, 3183-3204.
7. Michelet, V.; Toullec, P. Y.; Genêt, J.-P. "Cycloisomerization of 1,n-enynes: Challenging metal-catalyzed rearrangements and mechanistic insights" Angew. Chem. Int. Ed. 2008, 47, 4268-4315.
8. Chianese, A. R.; Lee, S. J.; Gagné, M. R. "Electrophilic activation of alkenes by platinum(II): So much more than a slow version of palladium(II)" Angew. Chem. Int. Ed. 2007, I, 4042-4059.
9. Aubert, C.; Buisine, O.; Malacria, M. "The behavior of $1, n$-enynes in the presence of transition metals" Chem. Rev. 2002, 102, 813-834.
10. Trost, B. M. "On inventing reactions for atom economy" Acc. Chem. Res. 2002, 35, 695-705.; Li, C.-J.; Trost, B. M. "Green chemistry for chemical synthesis" Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13197-13202.
11.a) Bhanu Prasad, B. A.; Yoshimoto, F. K.; Sarpong, "Pt-catalyzed pentannulations from in situ generated metallo-carbenoids utilizing propargylic esters" R. J. Am. Chem. Soc. 2005, 127, 12468-12469.; Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. "Pt-catalyzed cyclization/1,2-migration for the synthesis of indolizines pyrrolones, and indolizinones" Org. Lett. 2007, 9, 1169-1171.; Fisher, E. L.; Wilkerson-Hill, S. M.; Sarpong, R. "Tungsten-catalyzed heterocycloisomerization
approach to 4,5-dihydro-benzo[b]furans and -indoles" J. Am. Chem. Soc. 2012, 134, 9946-9949.
11. Godoi, B.; Schumacher, R. F.; Zeni, G. "Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom" Chem. Rev. 2011, 111, 2937-2980.; Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. "Transition metalmediated synthesis of monocyclic aromatic heterocycles" Chem. Rev. 2013, 113, 3084-3213.; Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. "Base- and ligand-free room-temperature synthesis of N -fused heteroaromatic compounds via the transition metal-catalyzed cycloisomerization protocol" Org. Lett. 2007, 9, 3433-3436.; Li, Z.; Chernyak, D.; Gevorgyan, V. "Palladium-catalyzed carbonylative cyclization/arylation cascade for 2-aroylindolizine synthesis" Org. Lett. 2012, 14, 6056-6059.; Chernyak, D.; Gevorgyan, V. "Palladium-catalyzed intramolecular carbopalladation/cyclization cascade: access to polycyclic N-fused heterocycles" Org. Lett. 2010, 12, 55585560.; Seregin, I. V. "Gold-catalyzed 1,2-migration of silicon, tin, and germanium en route to $\mathrm{C}-2$ substituted fused pyrrole-containing heterocycles" Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050-12051.; Chernyak, D.; Gadamsetty, S. B.; Gevorgyan, V. "Low temperature organocopper-mediated two-component cross coupling/cycloisomerization approach toward N-fused heterocycles" Org. Lett. 2008, 10, 2307-2310.; Harrison, T. J.; Kozak, J. A.; Corbella-Pane, M.; Dake, G. R. "Pyrrole synthesis catalyzed by AgOTf or cationic Au(I) complexes" J. Org. Chem. 2006, 71, 4525 - 4529.
13.a) Cycloisomerizations mediated by electrophilic iodine sources see: "Bhunia, N.; Das, B. "One-pot synthesis of pentasubstituted pyrroles from propargylic alcohols, amines, and dialkyl acetylenedicarboxylates; tandem amination, propargylation and cycloisomerization catalyzed by molecular iodine" Synthesis 2013, 45, 1045-1050.
12. Narayan, A. R. H.; Sarpong, R. "Remarkable facilitation of heterocycloisomerizations with water and other polar protic solvents: metal-free synthesis of indolizines" Green Chem. 2010, 12, 1556 - 1559. b) Yoshida, M.; Easmin, S.; AlAmin, M.; Hirai, Y.; Shishido, K. "Synthesis of substituted 3-iodopyrroles by cycloisomerization of propargylic azridines with iodine" Tetrahedron 2011, 67, 3194 - 3200. c) Kim, l.; Choi, J.; Won, H. K.; Lee, G. H. "Expeditious synthesis of indolizine derivatives via iodine mediated 5 -endo-dig cyclization" Tetrahedron Lett. 2007, 48, 6863 - 6867.
13. Novikov, R. A.; Tomilov, Y. V. "Dimerization of donor-acceptor cyclopropanes" Mend. Commun. 2015, 25, 1 - 10.; Grover, H. K.; Emmett, M. R.; Kerr, M. A. "Carbocycles from dono-acceptor cyclopropanes" Org. Biomol. Chem. 2015, 13, 655 - 671.; Schneider, T. F.; Kaschel, J.; Werz, D. B. "A new golden age for donoracceptor cyclopropanes" Angew. Chem. Int. Ed. 2014, 53, 5504 - 5523; Cavitt, M. A.; Phun, L. H.; France, S. "Intramolecular donor-acceptor cyclopropane ringopening cyclizations" Chem. Soc. Rev. 2014, 43, 804 - 818.; Lebold, T. P., Kerr, M. A. "Intramolecular annulations of donor-acceptor cyclopropanes" Pure App. Chem. 2010, 82, 1797 - 1812. Yu, M.; Pagenkopf, B. L. "Recent advances in donoracceptor (DA) cyclopropanes" Tetrahedron 2005, 61, 321 - 347.; Masarwa, A.; Fürstner, A.; Marek, I. "Metal-catalyzed rearrangement of enantiomerically pure
alkylidenecyclopropane derivatives as a new access to cyclobutenes possessing quaternary stereocenters" Chem. Commun. 2009, 5760-5762.
16.Zhang, J.; Schmalz, H.-G. "Gold(I)-catalyzed reaction of 1-(1-alkynyl)-cyclopropyl ketones with nucleophiles: A modular entry to highly substituted furans" Angew. Chem. Int. Ed. 2006, 45, 6704-6707.
17.Jones, R. A.; Marriott, M. T. P.; Rosenthal, W. P.; Sepulveda Arques, J. "Pyrrole studies. 22. $[4 \pi+2 \pi]$ cycloaddition reactions with vinylpyroles" J. Org. Chem. 1980, 45, 4515-4519; Hosmane, R. S.; Hiremath, S. P.; Schneller, S. W. "Synthesis of indoles and carbazoles: Diels-Alder reactions of nitrovinyl-pyrroles and benzindoles" J. Chem. Soc. Perkin Trans. 1 1973, 2450 - 2453.
14. a) Hegarty, A. F.; Scott, F. L. "Kinetics of syn-anti conversions of 2,4dinitrophenylhydrazones" J. Org. Chem. 1968, 753 - 762. b) Karabatsos, G. J.; Vane, F. M.; Taller, R. A.; Hsi, N. "Structural studies by nuclear magnetic resonance. VIII. Ring-substituted phenylhydrazones, semicarbazones, and thiosemicarbazones" J. Am. Chem. Soc. 1964, 86, 3351 - 3357. c) Karabatsos, G. J.; Taller, R. A.; Vane, F. M. "Structural studies by nuclear magnetic resonance. VII. The stereospecificity of coupling between protons separated by six bonds" Tetrahedron Lett. 1964, 1081 1085. d) Karabatsos, G. J.; Taller, R. A. "Structural studies by nuclear magnetic resonance. V. Phenylhydrazones" J. Am. Chem. Soc. 1963, 85, 3624 - 3629. e) Karabatsos, G. J.; Shaprio, B. L.; Vane, F. M.; Fleming, J. S.; Ratka, J. S. "Stuctural studies by nuclear magnetic resonance. II. Aldehyde 2,4-dinitrophenylhydrazones" J. Am. Chem. Soc. 1963, 85, 2784 - 2788. f) Wilson, R. Marshall; Rekers, J. W.; Packard, A. B.; Elder, R. C. "Intra- and intermolecular cyclization of olefinic tosylhydrazones under acidic conditions. A facile synthesis of bicyclic azoalkanes" J. Am. Chem. Soc. 1980, 102, 1633 - 1641. g) Adam, W.; Sahin, C.; Schneider, M. "Mechanism of the diasteroselective, boron trifluoride-catalyzed cyclization of olefinic tosylhydrazones to stereolabeled, bridgehead-substituted azoalkanes" J. Am. Chem. Soc. 1995, 117, 1695 - 1702. h) For studies on azomethine Imines see: Gergely, J.; Morgan, J. B.; Overman, L. E.; Bélanger, G.; Hong, F.-T.; Overman, L. E.; Rogers, B. N.; Tellew, J. T.; Trenkle, W. C. "Stereocontrolled synthesis of triazacyclopenta[cd]pentalenes by intramolecular 1,3-dipolar cycloaddition reactions of azomethine imines" J. Org. Chem. 2002, 67, 7880-7883.; Overman, L. E.; Tellew, J. T. "Synthesis of 2-azatricyclo[5.2.1.0 ${ }^{4,10}$]decanes and 2,5diazatricyclo[5.2.1.0 ${ }^{4,10}$]decanes by intramolecular azomethine ylide cycloadditions" J. Org. Chem. 1996, 61, 8338 - 8340.
15. Kiefer, P. M.; Hynes, J. T. "Theoretical aspects of tunneling proton transfer reactions in a polar environment" J. Phys. Org. Chem. 2010, 23, 632 - 646.
20.Zhao, Y.; Truhlar, D. "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06class functionals and 12 other functionals" Theor. Chem. Acct. 2008, 120, 215-241.
16. Gaussian 09, Revision B. 01 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Peterson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;

Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Wallingford CT, 2009.
22. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. "Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions" J. Phys. Chem. B 2009, 113, 6378 6396.
23. (a) Gonzalez, C.; Schlegel, H. B. "Improved algorithms for reaction path following: Higher-order implicit algorithms" J. Chem. Phys. 1991, 95, 5853 - 5860. (b) Gonzalez, C.; Schlegel, H. B. "An improved algorithm for reaction path following" J. Chem. Phys. 1989, 90, 2154 - 2161. (c) C. Lee, C.; Yang, W.; Parr, R. G. "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density" Phys Rev. B 1988, 37, 785-789. (d) Fukui, K. Acc. Chem. Res. 1981, 14, 363 - 368.
24. Ball and Stick 4.0a12, Muller, N.; Faulk, A. Johannes Kepler University Linz 2004.
25. Predicted KIE values were computed using the Bigeleisen and Mayer method, as implemented in Quiver. (a) Bigeleisen, J.; Mayer, M. G. "Calculation of equilibrium constants for isotopic exchange reactions" J. Chem. Phys. 1947, 15, 261-267. (b) Saunders, W.; Laidig, K. E.; Wolfsberg, M. "Theoretical calculation of equilibrium isotope effects using ab initio force constants: application to NMR isotope perturbation studies" J. Am. Chem. Soc. 1999, 111, 8989-8994. (c) A modified version of Quiver provided by Prof. Daniel Singleton (Texas A\&M) was utilized.
26. Phinyocheep, P.; Pasiri, S.; Tavichai, O. "Diimide hydrogenation of isoprene-styrene diblock copolymers" J. Appl. Polym. Sci. 2003, 87, 76-82.; Podešva, J.; Holler, P. J. "Hydrogenation of low-molar-mass, OH-telechelic polybutadienes. I. Methods based on diimide" Appl. Polym. Sci. 1999, 74, 3203-3213.; Samran, J.; Phinyocheep, P.; Daniel, P.; Kittipoom, S. "Hydrogenation of unsaturated rubbers using diimide as a reducing agent" J. Appl. Polym. Sci. 2005, 95, 16-27.
27. Casanova, J.; Zahra, J. P. "Determination of the configuration of ptolylsulfonylhydrazones by carbon-13 NMR" Tetrahedron Lett. 1977, 18, 1773.; Bunell, C. A.; Fuchs, P. L. "Rapid and unequivocal determination of syn-anti stereochemistry for toluenesulfonylhydrazones and other imine derivatives via carbon-13 nuclear magnetic resonance spectroscopy. A synthetic adjunct" J. Org. Chem. 1977, 42, 2614 - 2617.
28. The rate of the reaction shows no dependence on the concentration of TsNHNH_{2}, thus excluding sulfinic acid as the active catalyst for alkyne activation (see supporting information for details).
29. Hay, P. J.; Wadt, W. R. "Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg" J. Chem. Phys. 1985, 82, 270283.
30.Labsch, S.; Ye, S.; Adler, A.; Neudörfl, J.-M.; Schmalz, H.-G. "Stereospecificity of the $\mathrm{Au}(\mathrm{I})$-catalyzed reaction of 1-alkynl-bicyclo[4.1.0]-heptan-2-ones with nucleophiles" Tetrahedron Asymm. 2010 Cho, C.-H.; Larock, R.C. "Highly substituted lacton/estercontaining furan library by the palladium-catalyzed carbonylation of hydroxylsubstituted 3-iodofurans" ACS. Comb. Sci. 2001, 13, 272 - 279.
31. Cho, C.-H.; Larock, R.C. "Highly substituted lacton/ester-containing furan library by the palladium-catalyzed carbonylation of hydroxyl-substituted 3-iodofurans" ACS. Comb. Sci. 2001, 13, 272 - 279.
32. Li, H.; Petersen, J. L.; Wang, K. K. "Novel synthesis of 4,5-diarylphenanthrenes via $\mathrm{C}^{2}-\mathrm{C}^{6}$ cyclization of benzannulated enyne-allenes" J. Org. Chem. 2001, 66, 7804 7810.
33. Sugimoto, K.; Hayashi, R.; Nemoto, H.; Toyooka, N.; Matsuya, Y. "Efficient approach to 1,2-diazepines via formal diazomethylene insertion into the C-C bond of cyclobutenones" Org. Lett. 2012, 14, 3510-3513. Note: Reaction run for 1 h.
34. Madu, G.; Namboothiri, I. N. N. "Stereospecific approach to a-bromonitroalkenes with boronic acids and terminal acetylenes" Tetrahedron 2007, 63, 11973-11983. Note: Reaction run in THF for 1 h .
35. Hyacinth, M.; Chruszcz, M.; Lee, K. S.; Sabat, M.; Gao, G.; Pu, L. "Supramolecular assemblies of chiral propargylic alcohols" Angew. Chem. Int. Ed. 2006, 45, 5358 5360.
36. Kallander, L. S.; Lu, Q. et. al. "4-aryl-1,2,3-triazole: A novel template for a reversible methionine aimnopeptidase 2 inhibitor, optimized to inhibit angiogenesis in vivo" J. Med. Chem. 2005, 48, 5644 - 5647.
37. Gray, M. A.; Konopski, L.; Langlois, Y. "Functionalization of 2-methoxy-6methylpyridine" Synthetic. Commun. 1994, 24, 1367-1379.
38. Krishna, M. C.; Shovan, M. "A short route to [1,2,3]-triazolyl coumarin and quinolone derivatives by $\mathrm{Cu}(\mathrm{I})$ catalyzed 1,3-dipolar cycloaddition and fluorescence studies" Lett. Org. Chem. 2009, 6, $82-87$.
39. Turlington, M.; Du, Y.; Ostrum, S. G.; Santosh, V.; Wren, K.; Lin, T.; Sabat, M.; Pu, L. "From highly enantioselective catalytic reaction of 1,3-diynes with aldehydes to facile asymmetric synthesis of polycyclic compounds" J. Am. Chem. Soc. 2011, 133, 11780-11794.
40. Harrity, J. P. A.; Kerr, W. J.; Middlemiss, D.; Scott, J. S. "Total synthesis of parvaquone and the serendipitous discovery of a novel chromium-mediated method for β-lactone formation" J. Organomet. Chem. 1997, 532, 219 - 227.
41. Wang, J.; Burdzinski, G.; Gustafon, T. L.; Platz, M. S. "Ultrafast study of pbiphenylyldiazoethane. The chemistry of the diazo excited state and the relaxed carbene" J. Am. Chem. Soc. 2007, 1292597 - 2606.

APPENDIX II - SELECTED SPECTRA

S2.3d

9でヤレー てぐロよ
$\angle G \cdot 1 \varepsilon$
$\varepsilon \angle 1.1 \varepsilon$ $\varepsilon L \cdot \downarrow \varepsilon$
$6 \varepsilon \cdot \varepsilon \varepsilon$ $6 \varepsilon \cdot \varepsilon \varepsilon$
$\varepsilon 9^{\prime} 9 \varepsilon$
G．19－

LS $291-$
ss 002－

S2．3d

 としつロつ 66．9ム とほつつ sでLL 8 4 $89^{\circ} \mathrm{E} 8^{\prime}$

$9 \varepsilon^{\circ} 00 乙$

S2．3g

$9 て ゙ ャ レ$ SL． 81
SZ
0918 $\angle L\llcorner\varepsilon$
$\varepsilon+\varepsilon \varepsilon$ $99 \cdot 9 \varepsilon$
SG•19－

29＊ 291
LS＇00Z－

S2．3h

89・てス1
$82.9 己 1$
$\rightarrow 0.8 Z 1$
セ0． 8 とて
9 ＇$^{\prime}$ に
89ㅇカー
S9＊ $291-$

S2．3k

S2.5

S2．5
89^{*} เ $^{-}$
$98<0$－
Gでとてレ
LS＇もとト－
L8．8と
GL゙もSL－
00．89 ${ }^{-}$

${ }^{0}$

で691
Lナ＇ 291
ع9＇ 291

[^3]
レع $\angle 9$－

عIOGO ャL＇9L と1つロつ 66.9
としつロつ GZ゙ GL
七9．18
20＇68－

$67 \cdot 19$

G6．66L－

OG' $291-$
$6 \varepsilon^{\circ} 00{ }^{\circ}$
 S2.3n

9 - $\angle 91-$
96.661-

S2.3p

09 ㄴ91-

OZ・トOZ

S2.3q

S2.7c

S2.7e

$$
\varepsilon L_{0}^{\prime} \mathrm{ZS}
$$
$$
94.29
$$
\[

$$
\begin{aligned}
& 19.99 \\
& 6 \angle .99
\end{aligned}
$$
\]

$$
\begin{aligned}
& 6 L .99 \\
& 19.09
\end{aligned}
$$

$$
\begin{array}{r}
\text { EIOロO } 06^{\circ} 08 \\
\downarrow 6.08
\end{array}
$$

S2.7g

S2.7f

S2.7k

S2.71

S2.7i

St＇ZS
$89^{\circ} \mathrm{CS}^{\prime}$
29.99
99.95
$6 \varepsilon^{\prime} 09$
$\angle 9.08$
LO． 18
96 عOL
10 เロ
8 ع｀てト
29：Z11

9990 9で8て 29．82L と9．8て1
$\rightarrow 8.6$ L
\rightarrow G8．62L

しでっとし
Sع＇9EL
LG $9 \varepsilon L$
ャでゅカレ
とどャヤト
00 ©
$\downarrow て \varepsilon \angle \downarrow$

S2.7j

[^4]
6で 20 －
0どてはー
69．81
8L81レ

ど・8てよ
9L．62L
$\downarrow 6$ と
と6゙カカレー
91・とくレ－

d7－S2．7a

Z-S2.8

Oヤ．8L 7G．8L 88.6 L 16.61
$79^{\circ} 0 \varepsilon$
$6 \angle^{\circ} 0 \varepsilon$
$6 \angle O E$
$\angle 8.0 \varepsilon$
$\angle 8.0 \varepsilon$

○†てを
เ9＇s ς

くナ゙ 19

घІООО 66：94

＋0．82
$8 \varepsilon^{\circ} \angle 91-$

Lع＇002－

CHAPTER 3: LEVERAGING Pt(II)-CATALYZED CYCLOISOMERIZATION REACTIONS OF PROPARGYLC ESTERS TO ACCESS ANNULATED INDENE DERIVATIVES

Section 3.0. Indene Background

This chapter describes efforts to leverage the power of $\mathrm{Pt}(\mathrm{II})$-catalyzed cycloisomerization reactions to access 2-substituted indenes in order to showcase their utility in natural product synthesis. Indenes are bicyclic aromatic compounds that are isoelectronic with indole when deprotonated (see Chapter 1). The pKa of $1-H$-indene is 20.13 and the effect of substitution around the ring on the pKa has been systematically investigated. ${ }^{1}$ The name indene (and indane for the fully saturated carbocycle) stems from the world "indole" and signifies an all carbon framework of the compound. ${ }^{2}$

Indenes may be synthesized through several common methods (Figure 1). Classically, indenes are accessed through an intramolecular Friedel-Crafts acylation followed by reduction of the resulting indanone with a reducing agent (or 1,2-addition with a Grignard reagent) and subsequent elimination of the tertiary alcohol. ${ }^{3}$ Alternatively, researchers have explored Nazarov cyclizations to obtain these compounds and have exploited this reactivity in the synthesis of complex biologically active natural products (e.g., the aglycon of tetrapetalone). ${ }^{4} \mathrm{C}-\mathrm{H}$ insertion reactions of tethered diazocarbonyl compounds have also served as a practical method for accessing indenes and indanones. ${ }^{5}$

Figure 1: Classical methods for accessing indene substrates and relationship to Rautenstrauch reaction.

Recently, carbocycloisomerization reactions have become one of the premier ways to access the indene moiety. These reactions occur through the electrophilic activation of alkyne compounds using a π-philic Lewis acid. Work in the Sarpong group ${ }^{6}$ and by others ${ }^{7}$ have shown that aromatic propargylic esters (e.g., Figure 1, 3.1) can be transformed to indenes using π-Lewis acid catalysis through the Rautenstrauch reaction manifold. ${ }^{8}$ Considering the mechanism for this transformation, it is apparent that it echoes features of the Friedel-Crafts acylation, Nazarov cyclization, and C-H insertion reactions (Figure 1). Unlike the traditional methods (see Figure 1, 3.4-3.6) however, carbocycloisomerization reactions using π-Lewis acid catalysis allow for the reaction to take place under mild conditions depending on the choice of metal and ligand and furthermore allow the opportunity for domino reactions.

Because of the novel strategies available to synthesize indenes, we sought to leverage these carbocycles in natural product synthesis, specifically to access tetrahydrofluorenes and their seven-membered analogues. We envisioned cycloisomerization reactions through the Rautenstrauch pathway as being particularly useful because of the ability to access 2 -substituted indenes.

Section 3.1. A Novel Approach to tetrahydrofluorenes

Functionalized tetrahydrofluorenes are important scaffolds found in a variety of biologically active natural products with anti-cancer activity such as the kinamycins ${ }^{9}$ (e.g., 3.10, Figure 2), and taiwaniaquinoids, ${ }^{10}$ (e.g., 3.12) as well as lead pharmaceutical compounds that serve as selective estrogen β-agonists (e.g., 3.11). ${ }^{11}$ The tetrahydrofluorene moiety has also been used as a strategic structural motif to access the C19 gibberillin phytohormones (e.g. 3.13), which contain a partially reduced 9Hfluorene core (3.14). ${ }^{12}$ Because of the wide variety of biological activities in these molecules, methods for accessing these structural frameworks containing diverse substitution patterns are of high value.

(-)-Kinamycin C

(-)-Taiwaniaquinone H
3.12

Merck tetrahydrofluorene
estrogen receptor β agonist

Gibberillic acid
3.13

Figure 2: Biologically active molecules containing substituted tetrahydrofluorenes.

Several tactics exist to construct the tetrahydrofluorene core. Commonly, Friedel-Crafts alkylations ${ }^{13}$ are employed to access these scaffolds, either by constructing the C4aC4b bond or the C9-C9a bond. Nazarov reactions have also been extensively investigated to forge the C4a-C4b bond of these compounds. ${ }^{14}$ One can also obtain these scaffolds through the stepwise Birch reduction of 9 H -fluorenes using lithium metal in ammonia, but this methodology has not been extensively explored. ${ }^{15}$ Though the above methods allow access to substituted tetrahydrofluorenes, they all require Lewis or protic acids to mediate the transformations, which are incompatible with acid sensitive functional groups. Furthermore, these methods lack modularity for functionalizing both the A - and C - rings of these compounds.

To address these limitations, we hypothesized that we could construct the tetrahydrofluorene core using a Diels-Alder cycloaddition reaction of a 2 -vinylindene ${ }^{16}$ with a functionalized dienophile (Scheme 1). This strategy is advantageous because it allows for the introduction of functional patterns on tetrahydrofluorenes that are otherwise difficult to access. ${ }^{17}$ Interestingly upon inspection of the literature, we found only a single report of 2 -vinylindene participating in Diels-Alder cycloaddition reactions (by Adam and deLucci). ${ }^{18}$ We surmise that this lack of investigation may have arisen in part due to the lack of methods for accessing 2 -substituted indenes at the time. However, using cycloisomerization technology pioneered by our group and others in the past decade for construction of indenes, ${ }^{19}$ we predicted that functionalized 2 vinylindenes ${ }^{20}$ could be readily accessed through the requisite propargylic esters.

Scheme 1: Strategy for obtaining polysubstituted tetrahydrofluorenes.

Section 3.2. Cycloisomerization scope and elaboration to vinyl-containing systems

Our studies began with the synthesis of 2 -vinylindene from indene in three steps using literature procedures. ${ }^{21}$ For indenes with substitution at the 4 - and 7 - positions, the requisite propargylic esters were readily synthesized on gram scale in excellent yields by the addition of ethynylmagnesium bromide into commercially available 2,5 dimethoxybenzaldehyde, naphthaldehyde, and known 1,4-dimethoxy-2naphthaldehyde ${ }^{22}$ and trapping the resulting alkoxide anions with pivaloyl chloride at 50 ${ }^{\circ} \mathrm{C}$ to give substrates $\mathbf{3 . 1 7 a} \mathbf{- 3 . 1 7 c}$ (Scheme 2).

Scheme 2: Propargylic ester synthesis
The resulting propargylic esters were then subjected to platinum(II)-catalyzed cycloisomerization conditions. After a short screening campaign (Table 1) we found that modified conditions by Sato and coworkers, afforded optimal yields of the desired indenes (Table 1, Entry 8). ${ }^{19 a}$ Gold(I) salts were not investigated for this cycloisomerization reaction due to the fact they are typically utilized with internal alkyne substrates and tend to result in a mixture of indene isomers. ${ }^{7 d}$ Furthermore, these gold(I)-catalyzed cycloisomerization reactions to give indenes typically require propargylic acetate esters as opposed to propargylic pivalate esters.

Table 1: Cycloisomerization reaction optimization table.

The use of Zeise's dimer and trans-4-octene were both critical to the success of this reaction. We surmise that alkene ligands are important 1) for maintaining solubility of the platinum salts in the reaction and 2) increasing the electrophilicity of the $\mathrm{Pt}(\mathrm{II})$ center due to π-backbonding. ${ }^{23}$ Interestingly, we found that propargylic ester 3.17b performed poorly in the cycloisomerization reaction to give benz[b]indene 3.19b (Scheme 3). We attribute this poor reactivity to a weakening of the $\mathrm{C}-\mathrm{H}$ bond in the
naphthalene system due to diminished aromatic stabilization of the fused electron rich arene. ${ }^{24}$ Propargylic ester 3.17c gave an inseparable mixture of linear and angular benz[b]indenes $3.19 \mathrm{c}-1$ and $3.19 \mathrm{c}-2$ in a $2.5: 1$ ratio, reflecting incipient peri-strain in the transition state for the $\mathrm{C}-\mathrm{H}$ insertion step. ${ }^{25} \mathrm{Using} \mathrm{PtCl}_{2}$ as the catalyst resulted in better selectivity between the two isomers (4.5:1). The effect of the Pt- catalyst on the reaction may suggest that cycloisomerization using PtCl_{2} occurs through a later transition state where steric peri- strain effects would be more pronounced. The inseparable mixture of 3.19c-1 and 3.19c-2 were not carried forward to the vinylation sequence.

Scheme 3: Cycloisomerization reaction substrate scope. a) For 3.19c-1 and 3.19c-2 using Table 2 conditions 5 gave 4.5:1 ratio of products.

With these propargylic esters in hand, we desired to effect a cross-coupling reaction of the vinyl pivalate groups, based on precedent for $\mathrm{C}-\mathrm{O}$ bond activation by the Shi and Garg groups. ${ }^{26}$ Unfortunately we were unable to realize the desired crosscouplings reactions, presumably because the increased electron density of the arenes inhibits oxidative addition into the $\mathrm{C}-\mathrm{O}$ bonds. To address this challenge, the 2 -indenyl pivalates 3.19a and 3.19b were hydrolyzed using $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ and then converted to the corresponding 2-indenyl triflates 3.21a and 3.21b using sodium hexamethyldisilazane (NaHMDS) and Comin's reagent. ${ }^{27}$ With triflates 3.21a and 3.21b in hand, a Stille crosscoupling reaction afforded our desired substituted 2-vinylindenes 3.22a and 3.22b in moderate yields.

Scheme 4: Conversion of indenyl-2-pivalates to 2-vinylindenes.

Finally, we also investigated Heck olefination reactions on 2-bromoindene to access electron deficient 2 -vinylindenes. To this end, reacting 2-bromoindene with ethylacrylate (Scheme 5) provided the desired indene in low yield. It appears the immediate Heck product undergoes a subsequent conjugate addition ${ }^{28}$ into a second equivalent of ethyl acrylate. This undesired pathway can be disfavored by performing the reaction in acetonitrile. Unfortunately, extending the Heck conditions to the corresponding 2 -indenyltriflate was not successful and thus this chemistry was not investigated on compounds 3.25 and $\mathbf{3 . 2 6}$.

Scheme 5: Heck reactivity of 2-bromoindene gives Heck olefination product 3.25 as well as conjugate addition product 3.26.

Section 3.3. The Diels-Alder cycloaddition of 2-vinyl indenes

With vinylindenes 3.22a and 3.22b in hand we then began to explore the DielsAlder cycloaddition reaction with various dienophiles. We were delighted to find that 2vinylindene participated in a normal electron demand Diels-Alder reaction with various dienophiles (Scheme 6). Reactive dienophiles such as maleic anhydride and tetracyanoethylene gave substituted tetrahydrofluorenes 3.27a and 3.27b at room temperature in 54\% and 58\% yields respectively after recrystallization. Tetrahydrofluorene $\mathbf{3 . 2 7 a}$ was obtained as a single diastereomer. Less activated dienophiles such as methyl acrylate, acrylonitrile, and chloroacrylonitrile participated in the cycloaddition reaction but required microwave heating at $180^{\circ} \mathrm{C}$ for 2 hours to afford tetrahydrofluorenes 3.27c, 3.27d, and 3.27e, in 77% (1.9:1 dr), 62\% (1.3:1 dr) and 89\% (1.0:1 dr) yields, respectively, although with poor diastereoselectivity. Adding 0.5 equivalents of 2,6-di-tert-butyl-4-methylphenol (BHT) was critical to obtain satisfactory yields of the Diels-Alder adducts by preventing polymerization of the dienophiles at high temperatures. ${ }^{29}$ In each of these cases, a significant portion of the mass balance was accounted for by the isolation of 2 -vinylindene dimer 3.27h. Indeed, a control experiment whereby 2 -vinylindene was heated in the absence of dienophile, afforded 3.27 h in 15% yield (21% based on recovered starting material). Alkynes were not generally tolerated in this reaction, however dimethylacetylene dicarboxylate (DMAD) did give the fully aromatic fluorene $\mathbf{3 . 2 7 g}$ in 19% after spontaneous oxidation in situ.

Scheme 6: Scope for the Diels-Alder cycloaddition reaction of 2-vinylindenes. a) Performed with 4-month old 2-vinylindene.

Dienes such as ethylvinyl ether, cyanovinyl acetate, vinyl acetate, (E)-methyl butenoate, and isopropylidene malononitrile did not react with 2 -vinylindene. In these cases, only indene dimer 3.27h was formed. We attribute this to a raising of the LUMO energy levels of the dienophiles due to the presences of the oxygen or methyl substituents on the alkene. Sterically demanding alkenes such as 2 ethylidenemalononitrile however, participated in the reaction giving adduct $\mathbf{3 . 2 7 f}$ in 63% yield. Thus, the electron-donating effect of pendent methyl groups on the dienophile is mitigated by incorporating another electron withdrawing group (in this case a cyano group) on the alkene.

We found 4,7-dimethoxy-2-vinylindenes 3.22a and 3.22b also participate in the Diels-Alder cycloaddition reaction, giving substituted tetrahydrofluorene 3.27i in 83\% yield (2.4:1 dr) and benz[b]tetrahydrofluorene 3.27 j in 55% yield (1.8:1 dr) when reacted with 2-chloroacrylonitrile under the standard conditions. The slight increase in diastereoselectivity in these cases compared to substrates 3.27c-3.27e can be readily explained on the basis of peri-strain arguments. Interestingly, benzannulation has a significant effect on both the yield and the diastereoselectivity of the reaction (compare
3.27 i and 3.27 j). This may be due to a stabilization of radical or polar intermediates during the course of the reaction because of extended delocalization into the fused aromatic system (Figure 3, A). Being more electron rich, vinylindene 3.22a also participates in the Diels-Alder cycloaddition reaction with 1-cyanovinylacetate to give adduct 3.27 k in 67% yield (2.1:1 dr). Notably, adduct 3.27j provides most of the carbon framework for kinamycin C (3.10).

With our substrate scope demonstrated, we then set to rationalize the regioselectivity of the reaction. We were initially intrigued by applying the bent bond model and antiperiplanar hypothesis, first pioneered by Linus Pauling and recently revitalized by Pierre and Ghislain Deslongchamps, to the systems to rationalize the observed regioselectivity in our cycloaddition reactions. ${ }^{30}$ Considering both the diene and dienophiles as diradicals in the transition state for the cycloadditions, ${ }^{31}$ we predict that the C2-C3 bond would be formed to a lesser extent due to radical stabilization in the transition state from the electron-withdrawing group (for the dienophiles) and aromatic substituents (for the dienes) (Figure 3, A).
A. Bent bond anti-perilanar hypothesis

B. Chemical analysis

C. Computational analysis (B3LYP+G**)

3.30

Figure 3: Methods for rationalizing the regioselectivity of the Diels-Alder cycloaddition reactions with 2vinylendnes.

We also investigated chemical means for determining the regioselectivity for these reactions. Treating adduct 3.27e with potassium hexamethyldisilazide (KHMDS), we effected an elimination of the chloride and observed the exclusive formation of 3.29 by
analysis of the crude ${ }^{1} \mathrm{H}$ NMR spectrum. We were unable to isolate this compound because it was prone to facile disproportionation reactions (Figure 3, B). We used the single vinyl signal in the ${ }^{1} \mathrm{H}$ NMR spectrum as a diagnostic signal for compound 3.29. Provided the other regioisomer was formed, elimination of the chloride with NaHMDS would result in a dihydrofluorene with two characteristic vinyl signals by ${ }^{1} \mathrm{H}$ NMR. We turned to computational methods for identifying the HOMO of the 2 -vinylindenes in these reactions. Using DFT calculations at the B3LYP+G** level of theory, ${ }^{32}$ we found that 2 -vinylindene is indeed polarized as predicted when modeled in the s-cis conformation (Figure 3, C).

Section 3.4. Extension to a double Diels-Alder cycloaddition reaction

Having explored the scope of a mono Diels-Alder cycloaddition reaction, we were intrigued at the possibility of extending this to a double Diels-Alder cycloaddition reaction to establish a novel method for accessing lomaiviticin natural products 3.31 because of their interesting anticancer bioactivity. ${ }^{9 a}$ In general we envisioned a unified approach to these compound that rested on a formal double Diels-Alder cycloaddition reaction with a bisketene (3.33) or bisketene equivalent (Scheme 7).

Proposed Retrosynthesis

3.10
(-)-Kinamycin C

3.31

N,N-dimethylpyrrolsamine

vinylbenzindene

3.36

Scheme 7: Proposed retrosynthetic analysis of (-)-Kinamycin C and (-)-Lomaiviticin A.

To date, there has only been one completed synthesis of the dimeric natural products by Herzon and coworkers ${ }^{9 a, 33}$ and several approaches that have secured the core framework. ${ }^{34}$

Interestingly, there are a number of bisketene and bisketene equivalents known in the literature. Tidwell and coworkers have conducted extensive studies on persistent bisketenes (3.39), and found that these compounds can be accessed by an electrocyclic ring opening of substituted cyclobutenediones (Scheme 8, A). ${ }^{35}$ Computational studies have shown that the ring opening of cyclobutenedione is approximately $6.9 \mathrm{kcal} / \mathrm{mol}$ uphill in energy, however the incorporation of silyl groups on the cyclobutenedione imparts both kinetic and thermodynamic stability to the bisketene allowing it to be persistent for up to 45 days in the absence of light and oxygen. ${ }^{35} \mathrm{Bis}(1-$ cyanovinylacetate) ${ }^{36}$ and bis(chloroacrylonitrile) ${ }^{37}$ are also known (Scheme 8, B and C), however they have not been used extensively in synthesis as bisketene equivalents. To our knowledge, there is only one example of a double Diels-Alder cycloaddition reaction using a bisketene equivalent (1,1,4,4-tetramethoxy-1,3-butadiene) by Boger and coworkers, ${ }^{38}$ and this reaction operates under the inverse electron demand Diels-Alder reaction regime (Shceme 8, D). The Boger cycloaddition is furthermore unique in that the productive reaction is driven by the irreversible loss of N_{2} gas.

Scheme 8: Known methods to access bisketene and bisketene equivalents and their use in synthesis.
To this end, we synthesized compounds 3.39, 3.41 and 3.44 to explore their double Diels-Alder reactivity. To access compound 3.44 we modified a previously reported literature procedure to chlorinate 2,1,3-benzothiadiazole by generating chlorine
gas in situ using the reaction of N-chlorosuccinamide with concentrated hydrochloric acid. ${ }^{39}$ Unfortunately, under a wide variety of conditions (Table 2) we were unable to isolate any Diels-Alder cycloadducts. In general, vinylindene dimer 3.27 was isolated when the reaction was conducted thermally. When Lewis or protic acids were employed, decomposition of the vinylindene was observed when reacted with either diene 3.41 or 3.44. Typically, diene 3.44 could be re-isolated quantitatively even after subjecting the reaction mixtures to high temperatures. Various transition metal-catalyzed procedures were also ineffective (e.g., Table 2, Entry 18-20).

Table 2: Some conditions explored to achieve double Diels--Alder cycloaddition reaction with bisketene equivalents.

Interestingly, when bis(1-cyanovinylacetate) 3.41 was reacted with diene 3.22 we isolated adduct 3.42 as the major product (Scheme 9), and this structure was confirmed by X-ray analysis. We hypothesize that compound 3.42 arises from an unprecedented 3-oxidopyrylium ion [5+2]-[4+2] domino cycloaddition reaction. Oxidopyrylium ion (3.46, Scheme 10) in turn arises from an intramolecular cyclization of bis(1-cyanovinylacetate) 3.41 at high temperatures. Attempts to extend this reaction to other dienes have not yet proved fruitful, however we envision that once optimized this methodology will provide a new way to rapidly access $s p^{3}$-rich polycyclic scaffolds.

Scheme 9: Newly discovered reactivity of biscyanovinyl acetate 3.41 to tive poly cycle 3.42 and CYL view of 3.42. Hydrogen atoms omitted for clairity.

We hypothesize that the oxidopyrylium ion 3.46 is generated from biscyanovinylacetate from the mechanism depicted in Scheme 10. First diene (E,E-3.41) undergoes a E - to Z - double bond isomerization to give ($E, Z-3.41$) followed by an intramolecular acyl transfer to give zwitterion 3.43. Compound 3.43 then undergoes cyclization to give intermediate 3.44 followed by another acyl transfer to give oxidopyrylium ion 3.45. We surmise that one of the acyl groups is lost during the course of the reaction.

A. Proposed generation of 3-oxidopyrylium ion

Scheme 10: Mechanistic proposal for the generation of polycycle 3.41.
B. Domino cyloaddition reaction

Considering these results, we proposed that changing the vinylindene to a more reactive diene could possibility facilitate a double Diels-Alder cycloaddition reaction. We envisioned two possibilities for increasing the reactivity of the diene (Figure 4). First, we considered a furan variant (3.47) of diene 3.22. We hypothesized furan 3.47 would be a better dienophile than vinylindene 3.22 because the diene portion is locked in the s-cis conformation, which is a requisite for the cycloaddition to proceed. Furan 3.47 would also be more electron-rich, allowing for a smaller HOMO-LUMO gap with dienophiles 3.39, 3.41, and 3.44. Furthermore, furan 3.47 is considerably more strained than diene 3.22 and Amos Smith III and coworkers have shown in their synthesis of (+)jatropholones A and B that strained furans analogous to 3.47 readily undergo
cycloadditions under high pressures. ${ }^{48}$ Finally, the furans would allow for functionalization of the 5-position which is critical for installing the alkyl group (ethyl group) present in the lomaiviticins, and would allow for rapid synthesis of analogues for structure activity relationship (SAR) studies. For these reasons, we set out to synthesize a compound such as 3.47 . Because allenes 3.51 arise from indenyne precursors, their synthesis will be discussed in Section 3.7.

3.22

locked in s-cis conformation
more electron rich
no dimerization
more strained furan
rapid functionalization of 5-position known reactivity with chloroacrylonitrile

aromatic diene

3.50

s-cis to s-trans equilibrium
electron rich
known ring closing equilibrium
more strained diene
rapid functionalization of R no known reactivity with chloroacrylonitrile

functionalized tetrahydrofluorenes
3.49
non-aromatic diene

3.51

Figure 4: Comparison of other diene partners in Diels-Alder cycloaddition reaction.

Section 3.5. Attempted Synthesis of furans such as 3.47

To access furans such as 3.47 we envisioned a tandem cycloisomerizationdehydration reaction (Figure 5, A). ${ }^{49}$ In this regard, accessing diols such as 3.52 through an acetylide addition into a 2-indanone would provide a modular way for installing alkyl and other substituents at the 5 -position of the furan and thus into the lomaiviticin skeleton. We were furthermore encouraged by a recent report by Hong and coworkers who utilized this approach in the synthesis of (+/-)-cafestol (3.58), which contains an annulated furan moiety (Figure 5, B). ${ }^{50}$ Of critical importance, in order for the cycloisomerization reaction to proceed on cyclic diols, the alcohol groups must be antidisposed so that one alcohol can engage the alkyne (Figure 5, C). Therefore, the installation of the alkyne group needed to be stereoselective.

A. Proposed cycloisomerization-dehydration approach to furan 3.53

B. Hong synthesis of cafestol

C. Stereochemical considerations

syn-diol, 3.59
cycloisomerization precluded

anti-diol, 3.60 cycloisomerization premitted

Figure 5: Theoretical considerations for accessing furan 3.53.
To this end we began our investigations into synthesizing furan 3.53 by performing a Rubottom oxidation ${ }^{51}$ of indenylpivalate 3.19a to access 2-indanone 3.61 in 61% yield. Treating this compound with excess ethynylmagnesium bromide effects a 1,2-addition into the carbonyl group with simultaneous removal of the pivaloyl group to give diol 3.62 in 53% yield with the formation of inseparable byproducts. Unfortunately, upon subjecting this diol to gold(I)-catalyzed cycloisomerization conditions, we observed no conversion to the desired furan even at elevated temperatures. We hypothesize that this is because the acetylide addition resulted in anti-addition relative to the pivaloyl group resulting in a syn-diol. Thus, we sought methods to remove the pivaloyl group so that we could perform a directed addition from the α-hydroxy-2-indanone.

Scheme 11: Acetylide addition into 2-indanone 3.61 results in syn-diol.
Revealing the hydroxyl group in indanone 3.61 proved to be rather difficult. Under standard basic hydrolysis conditions (excess LiOH in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$), we observed nonspecific decomposition. Using lithium hydrogen peroxide, ${ }^{52}$ which is considerably less basic than LiOH , we isolated carboxylic acid 3.63 in 36% yield. Presumably this compound arises from a fragmentation of intermediate 3.65, or alternatively from the hydrolysis of an intermediate lactone.

Scheme 12: C-C bond cleavage reaction of 2-indanone 3.61.
Using acidic conditions to remove the pivaloyl group were also unsuccessful. Treating 2indanone 3.61 with 3 N HCl in dioxane and heating to $100^{\circ} \mathrm{C}$ for 3 hours resulted in the removal of the pivaloyl group with concomitant isomerization of the resulting 1-hydroxy2 -indanone to the more stable 2 -hydroxy-1-indanone 3.66 (Scheme 13). Presumably this reaction takes place through the intermediate indene diol 3.67. ${ }^{53}$ Interestingly, we were able to add ethynyl magnesium bromide into indanone 3.66 , followed by treatment with cationic gold (I) to afford furan 3.69 in 5% unoptomized yield. This result suggests that compound 3.68 is an anti-diol, and the Grignard addition into ketone 3.66 is directed by the α-hydroxy group.

Scheme 13: Synthesis of isomeric furan 3.69.
Because of the lack of success in accessing the requisite diol precursors, we abandoned attempts to synthesize furan 3.53 and turned our attention to preparing indenynes using triflates $\mathbf{3 . 2 1 a}$ and $\mathbf{3 . 2 1 b}$ in order to access allenes such as 3.48 for cycloaddition studies.

Section 3.6. Synthesis of 2-alkynyl and 2-allenylindenes

In line with our hypothesis of changing the vinylindene partner to increase its reactivity for the double Diels-Alder cycloaddition reaction, we set out to construct unprecedented 2-allenylindenes compounds. We started by exploring the scope of the Sonogashira cross-coupling of indenyl-2-triflates to afford 2-alkynylindenes (indenynes), which are precursors to 2-allenylindenes. As anticipated, we could effect a crosscoupling reaction using indenyltriflates 3.21a or 3.21b, and various alkynes to afford our desired indenynes (3.70a-3.70h) in good yields. For alkynes 3.70a and 3.70e the silyl group could be removed by stirring the compounds in MeOH with $\mathrm{K}_{2} \mathrm{CO}_{3}$ overnight.

3.70d

Scheme 14: Sonogashira cross coupling to of indenyl triflates to access indenynes.
Indenynes 3.70c, 3.70d and 3.70f, could all be converted to their requisite allenes using chemistry developed by Ready and coworkers. ${ }^{54 a}$ Standard procedures for synthesizing allenes from propargylic esters developed by Myers ${ }^{54 \mathrm{~b}}$ and coworkers were ineffective and gave low isolated yields (Scheme 15). Surprisingly, allene 3.71a was isolated as a white solid and remained unchanged by ${ }^{1} \mathrm{H}$ NMR upon prolonged storage at $-20^{\circ} \mathrm{C}$ under nitrogen. The terminal allene derived from propargylic alcohol 3.70d was isolated as an inseparable mixture of products and will not be discussed, as it was not advanced.

Before investigating conditions to effect a double Diels-Alder cycloaddition, we were interested in the mono Diels-Alder cycloaddition reactivity of these substrates. Reacting allenes 3.71a and 3.71b with ynoate dienophiles initially proved promising, however the isolation of the resulting fluorene products was hampered by the presence of unidentifiable side products. Furthermore, these reactions tended to be irreproducible. Maleic anhydride, however, did serve as a competent dienophile and Diels-Alder adduct 3.72 derived from dimethoxyallenylindene 3.71 b was isolated consistently in 80% yield.

Scheme 15: Synthesis of 2-allenylindenes and their Diels-Alder reactivity with maleic anhydride.

We envisioned that this compound could provide a route to the dimeric core of the lomaiviticins through a dimerization of the anhydride intermediates. Based on precedent by Rovis, Wiex and Semmelhack, we hypothesized that we could use stoichiomertic $\mathrm{Ni}(0)$ complexes to affect an oxidative addition into the anhydride $\mathrm{C}-\mathrm{O}$ bond and in the absence of a suitable cross coupling partner, promote an unprecedented dimerization of anhydride 3.72 through nickel carbonyl intermediate 3.74. ${ }^{55}$ Unfortunately, this route was not successful.

Scheme 16: Proposed $\mathrm{Ni}(0)$-mediated dimerization of anhydride 3.72.
Attempts to react allenes 3.71a and 3.71b with bisketenes 3.39, 3.41, and 3.44 typically resulted in no reaction at lower temperatures and decomposition of the allene component at elevated temperatures. Also, several metal-catalyzed transformations of allenes that give formal [4+2] adducts with vinylidenes and ketenes were also explored but were not fruitful.

At this point, because we were unable to access furan 3.53 or effect any type of useful Diels-Alder cycloaddition with allenes 3.71a and 3.71b, we stopped pursuing the synthesis the lomaiviticin molecules.

Section 3.7. A new target, euphorbactin

Seeking other applications of the indenynes, we became interested in the synthesis of euphorbactin (3.77) because it contains an indene core with an annulated seven-membered ring instead of a six-membered ring. Euphorbactin ${ }^{56}$ is a novel diterpenoid that was isolated in 2014 by Shi and coworkers from the roots of Euphorbia micractina, and has activity against HIV-1 replication with an IC_{50} of $28.6 \mu \mathrm{M}$. Species of the genus Euphoriba (Euphorbiaceae) ${ }^{57}$ are well known for their biological activity and have been used in traditional folk medicines for some time. Ingenol mebutate (3.74) is isolated from the sap of E. peplus, and is perhaps one of the most well known compounds of this family ${ }^{58}$, and has recently been approved as a topical treatment in the United States, countries in the European Union, Australia, and Brazil for the
treatment of actinic keratosis. ${ }^{59}$ The compound prostratin (3.76) is particularly interesting because of its ability to both block HIV-1 entry and induce HIV expression in latently infected HIV cell lines. ${ }^{60}$ Thus, studying compounds isolated from this genus of plant holds high promise for developing unique HIV-1 treatments that operate by fundamentally different mechanisms than current Highly Active Antiretroviral Therapy (HAART) treatments. A synthesis of euphorbactin would set the stage for researchers to study the effects of acylation on the biological activity of this molecule, as the acylation pattern of compound 3.74 - 3.76 have been shown to beneficially modulate their biological activity.

To this end, we were able to take enynes 3.70 g and 3.70 h and react them with TsN_{3} or MsN_{3} to affect an Huisgen cycloaddition reaction to obtain triazoles 3.78a and 3.78 b in 52% and 43% yields, respectively. From these substrates, cycloadditions developed by Davies and coworkers to annulate the seven-membered ring were investigated. ${ }^{61}$ Tosyltriazole 3.78a was a poor substrate for the planned cycloaddition reaction. However using mesyl triazole 3.78b resulted in the formation of the desired product 3.80 in an unoptimized 35% yield when reacted with diene 3.79. This initial productive outcome now sets the stage for further elaboration to the natural product and synthesis of derivatives.

B. Euphorbactin core

Scheme 17: Synthesis of indenyltriazoles and the euphorbactin carbocyclic 6,5,7-framework.

Section 3.8. Conclusion

This chapter describes a novel strategy for obtaining functionalized tetrahydrofluorene scaffolds using 2 -vinylindene precursors. Specifically, we utilized a $\mathrm{Pt}(\mathrm{II})$-catalyzed cycloisomerization as a strategy to obtain functionalized indenyl-2pivalates. These indene compounds were then converted to 2 -vinylindenes in good yields over three steps. The 2 -vinylindenes participate in normal electron demand DielsAlder cycloaddition reactions with various dienophiles. DFT calculations were used to help rationalize and understand the regioselectivity for these reactions.

We also investigated a double, normal electron-demand Diels-Alder cycloaddition to access the dimeric lomaiviticin molecules. Under a wide variety of conditions, we were unable to realize the desired reactivity. However, we discovered that diene 3.41 could be used to access 3 -oxidopyrylium ions at high temperatures, which in turn undergoes a tandem [5+2], [4+2] double cycloaddition.

To overcome the aforementioned challenges, two strategies using functionalized dienes were explored. In the first strategy, we attempted to synthesize a 2 -vinylindene that was embedded within a furan. Unfortunately, the correct constitutional isomer needed to test the double Diels-Alder reaction does not form due to the tendency for 2indanone 3.67 to undergo an isomerization to the more thermodynamically stable 1indanone. In a second strategy, we investigated the reactivity of 2-alkynyl and 2-allenyl indenes, however these partners also proved ineffective as dienophiles.

Finally, we demonstrated that terminal indenynes can be converted to their corresponding triazoles and that these compounds will undergo a rhodium-catalyzed $[4+3]$ cycloaddition to give indenes annulated with seven-membered rings. When performed on dimethoxyindene compound $\mathbf{3 . 7 8 b}$, compound 3.80 is generated, which
provides a starting point for accessing the newly isolated anti-HIV compound euphorbactin 3.77.

Section 3.9. Supporting Information

Section 3.9.1. General Procedures

All reactions were run in flame-dried round-bottom flasks or vials under a nitrogen atmosphere. Reactions were monitored by thin layer chromatography (TLC) on Silicycle Siliaplate ${ }^{\text {TM }}$ glass backed TLC plates (250μ m thickness, $60 \AA$ porosity, F-254 indicator) and visualized using UV irradiation and para-anisaldehyde or KMnO_{4} stain. Dry tetrahydrofuran, triethylamine, and methanol were obtained by passing these previously degassed solvents through activated alumina columns. Dichloromethane was distilled over calcium hydride before use. Volatile solvents were removed under reduced pressure on a rotary evaporator. All flash chromatography was done using Sorbent Technologies $60 \AA$, 230×400 mesh silica gel ($40-63 \mu \mathrm{~m}$). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were taken with Bruker AV-300, AVB-400, AVQ-400, AV-500, and AV-600 MHz (75, 100, 125, and 150 MHz for ${ }^{13} \mathrm{C}$ NMR) spectrometers in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ as noted. Chemical shifts were measured relative to the shift of the residual solvent (${ }^{1} \mathrm{H}$ NMR, $\left.\mathrm{CDCl}_{3} \delta=7.26, \mathrm{C}_{6} \mathrm{D}_{6} \delta=7.16 \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{CDCl}_{3} \delta=77.00, \mathrm{C}_{6} \mathrm{D}_{6} \delta=128.06 \mathrm{ppm}\right)$. NMR data are reported as follows: chemical shift (multiplicity, coupling constant, integration). Splitting is reported with the following symbols: $s=$ singlet, $d=$ doublet, $t=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet, $\mathrm{a}=$ apparent, $\mathrm{b}=$ broad. IR spectra were taken on a Bruker ALPHA FT-IR spectrometer. Spectra are reported in frequency of absorption in cm^{-1}. Only selected resonances are reported. High-resolution mass spectra (HRMS) were performed by the mass spectral facility at the University of California, Berkeley. Microwave-assisted reactions were performed using a Biotage Initiator 2.5 reactor on low absorbance irradiation setting with the fix-hold-time feature set to off.

2-vinylindene, ${ }^{21}$ bis(1-cyanovinylacetate), ${ }^{36}$ and bis(chloroacrylonitrile), ${ }^{37}$ were synthesized according to literature procedures.

Section 3.9.2 General synthetic procedures

General Propargylic Ester Synthesis

To a flame dried round bottom flask fitted with a rubber septum was added solid aldehyde $\mathbf{S 3 . 1}$ ($5.00 \mathrm{~g}, 30.0 \mathrm{mmol}$). The flask was then evacuated and backfilled with nitrogen gas (x 3). THF (300 mL) was then added, and the homogenous solution was
then cooled to $0^{\circ} \mathrm{C}$ using an ice brine bath. Ethynylmagnesium bromide (0.5 M in THF) ($66.3 \mathrm{~mL}, 33.2$) was added dropwise over 5 minutes, and the solution was then stirred at $0^{\circ} \mathrm{C}$ for 1 h upon which pivalolyl chloride ($7.25 \mathrm{~g}, 60.1 \mathrm{mmol}, 7.4 \mathrm{~mL}$) was added. The solution was then heated to $50^{\circ} \mathrm{C}$ with stirring for 1 h . The solution was then cooled to room temperature ($\sim 23^{\circ} \mathrm{C}$) and diluted with ether (600 mL). The solution was then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$. The biphasic mixture was then shaken and the aqueous layer separated. The aqueous layer was then extracted with ether ($300 \mathrm{~mL} \times 3$). The combined organic layers were then washed with brine (300 mL x3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ concentrated and purified by column chromatography to afford the desired propargylic esters.

S3.2a
column chromatography (20% diethyl ether in hexanes) to give a yellow oil. Yield 99%. ${ }^{1} \mathrm{H}$ NMR $\mathrm{CDCl}_{3}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.86$ (apparent d, $J=8.9 \mathrm{~Hz}$, 1 H), 6.82 (apparent d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.70(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.81(\mathrm{~m}, 6 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H})$, 1.22 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1,153.7,151.0,126.2,114.8,114.4$, 112.1, 80.6, 74.5, 60.3, 56.3, 56.0, 38.9, 27.2; IR (ATIR) 3284, 2971, 2936, 2909, 2874, 2836, 1732; cm^{-1}. HRMS(ESI) cald for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z}$ 299.1254, found 299.1253.

S3.2b
Recrystalized from cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of hexanes and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ overnight. The filtrate was then concentrated and purified by column chromatography (9:1 hexanes:diethyl) ether to give a brown crystalline solid. Yield 93\%; MP = $100-102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H})$, 1.25 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 177.0$. 152.6, 147.2, 128.5, 127.2, 127.1, 126.4, 125.2, 122.7, 122.6, 102.1, 81.3, 74.8, 63.2, 60.4, 55.9, 39.0, $27.2 \mathrm{~cm}^{-1}$; IR (ATIR) 3263, 2963, 2938, 2870, 2847, 3123, 1730, 1594, $1366 \mathrm{~cm}^{-1}$; HRMS(EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z}$ 326.1518, found 326.1524.

column chromatography 10:1 hexanes:ethyl acetate to give a white amorphous solid. Yield 79\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{dd}, \mathrm{J}=$ $8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, J-6.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.23 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 177.4,134.2,133.6,133.2,128.8$, 128.5, 127.9, 127.0, 126.3, 126.6, 124.9, 80.6, 75.6, 65.4, 39.0, 27.2; IR (ATIR) 3273, 3061, 2972, 2933, 2907, 2871, 2124, 1729, $1125 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$ $(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 266.1307$ found 266.1309.

Cycloisomerization optimization table

General procedure for 2-indenyl pivalate synthesis

To a flame dried Schlenk flask was added proparglic ester S3.2 ($2.76 \mathrm{~g}, 1.00 \mathrm{mmol}$). The flask was then brought into a glove box and di- μ-chloro-dichlorobis(ethylene)diplatinum(II) (Zeise's Dimer) ($294 \mathrm{mg}, 0.500 \mathrm{mmol}$) was added. The flask was then brought outside of the glove box and toluene (100 mL) was then added followed by trans-4-octene ($448 \mathrm{mg}, 627 \mu \mathrm{~L}, 4.00 \mathrm{mmol}$) under nitrogen. The flask was then sealed and heated to $100^{\circ} \mathrm{C}$ for exactly 1 h . The flask was then immediately cooled in a room
temperature water bath. The solution was then concentrated under reduced pressure and the residue purified by column chromatography to give the desired indene. Note: toluene can be substituted with benzene in this reaction without a significant decrease in reaction yields for S3.3a.

column chromatography (7:1 hexanes:ethyl acetate) to give a yellow oil/low melting amorphous yellow solid. Yield 99\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73$ (d, $J=8.8 \mathrm{~Hz}$, 1 H), 6.67 (s, 1H), 6.63 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 1.31$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 176.0,155.4,149.8,148.1,133.1,125.9,111.4$, 110.4, 107.6, 56.5, 55.9, 39.5, 36.0, 27.3; IR (ATIR) 2976, 2941, 2908, 2973, 2835, 1741, $1495 \mathrm{~cm}^{-1}$ HRMS(EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 276.1362$ found 276.1366

column chromatography (9:1 hexanes:diethyl ether) to give amorphous orange solid. Yield 93\%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.04$ (m, 2H), 7.47 (dddd, $J=22.8,8.1$, $6.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 1 H), 1.36 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,155.5,147.2,144.7,128.9$, 127.2, 125.7, 124.9, 124.1, 122.3, 122.0, 111.7, 62.4, 60.6, 39.6, 35.7, 27.3; IR (ATIR) 3069, 2973, 2934, 1751, 1584, $1352 \mathrm{~cm}^{-1}$; HRMS (El) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z}$ 326.1518 found 326.1517 .

column chromatography $\left(20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in hexanes to $40 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes) to give colorless oil. Yield 78\%; (2.5:1 ratio of isomers using optimized conditions, 4.5:1 ratio of isomers using conditions 5 in Table 1) mixuture of isomers reported. ${ }^{1} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2.5 \mathrm{H}), 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2.5 \mathrm{H}), 7.88-7.75(\mathrm{~m}, 2.5 \mathrm{H})$, 7.69 (d, J=8.1 Hz, 3H), 7.58 - 7.34 (m, 10H), 7.24 (s, 2.5 H), 6.74 (s, 1H), 3.91 (s, 2H), 3.76 (s, 5H), 1.41(m, 32H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,156.7,156.1,140.6$, $139.4,134.0,132.8,131.5,129.8,129.1,128.6,127.9,127.5,126.4,125.6,125.1$, 124.5, 124.3, 123.9, 123.0, 122.1, 120.6, 115.1, 112.4, 39.5 (39.5 shoulder) 39.1, 37.1, 27.3; IR (ATIR) 3053, 2972, 2933, 2906, 2872, 1745, $1097 \mathrm{~cm}^{-1}$; HRMS (EI) cacld for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 366.1307$ found 366.1310 .

General indenyl-2-triflate Synthesis

INDANONE SYNTHESIS

To round bottom flask was added 2-indenylpivalate $\mathbf{S 3 . 3}$ ($600 \mathrm{mg}, 2.17 \mathrm{mmol}$) and lithium hydroxide monohydrate ($991 \mathrm{mg}, 21.7 \mathrm{mmol}$). The flask was evacuated and backfilled with nitrogen (x3). THF then water (7.5 mL and 2.5 mL respectively) were added and the solution was stirred at room temperature for 6 hours. The solution was then diluted with diethyl ether (30 mL) and washed with brine ($30 \mathrm{~mL}, \mathrm{x} 3$). The organic layer was then dried with sodium sulfate and concentrated to give the crude 2 -inandone which was used without further purification.

S3.4a

An analytical sample was obtained by purifying the solids using column chromatography ($5: 1$ hexanes:ethylaceate) to give amorphous tan solid. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 6 \mathrm{H}), 3.46(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 215.4, 150.2, 127.5, 109.3, 55.8, 41.8; IR (ATIR) 2961, 2913, 2837, 1737, 1498, 1261 cm^{-1}; HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 192.0786$ found 192.0786.

TRIFLATE SYNTHESIS ${ }^{27}$

The crude 2 -indanone ($19.2 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added to a flame dried round bottom. The flask was then evacuated and backfilled with $\mathrm{N}_{2}(\mathrm{x} 3)$. THF (1.0 mL) was then added and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. To the cooled solution was added NaHMDS ($0.10 \mathrm{~mL}, 2 \mathrm{M}$ in THF) dropwise over one minute and the solution was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for one hour. Solid Comin's reagent ($157 \mathrm{mg}, 0.40 \mathrm{mmol}$) was then added all at once at $-78{ }^{\circ} \mathrm{C}$ by quickly removing and replacing the fitted septa. The homogenous solution was then allowed to stir two hours at $-78^{\circ} \mathrm{C}$. The solution was then diluted with ether (5 mL), and deionized water (1 mL) was added at $-78{ }^{\circ} \mathrm{C}$). The solution was then warmed to room temperature added to a separatory funnel and shaken. The aqueous layer was then removed and the organic layer was washed with 1 N NaOH (2 mL x2). The organic layers were then dried over sodium sulfate, filtered concentrated and the crude oil purified by column chromatography to give the desired indenyl-2-triflate.
column chromatography (5:1 hexanes:toluene to $2: 1$ hexanes:toluene) to give a colorless oil. Yield 90\% (over two steps) ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.77$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,149.5,148.5,130.1,126.0,118.9$ (q, JC-F 321.2 Hz), 116.6, 110.4, 109.3, 56.2, 55.8, 36.1; IR (ATIR) 3004.5, 2946, 2910, 2838, 1498, 1423, $1204 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{~S}(\mathrm{M}){ }^{++} \mathrm{m} / \mathrm{z} 324.0279$ found 324.0285 .

The general procedure for the indenyl-2-triflate was followed for the benzannulated derivative using a two-hour stir time for the indanone formation step.

INDANONE

column chromatography (5:1 hexanes:ethyl acetate to 2:1 hexanes:ethyl acetate) to give an amorphous yellow solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ (apparent $\mathrm{s}, 2 \mathrm{H}$), 7.52 (apparent s, 2H), 3.94 (s, 6H), 3.74 (s, 4H).; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.9$, 148.2, 128.6, 126.1, 125.9, 122.2, 60.9, 41.6; IR (ATIR) 3072, 2936, 2901, 2838, 1745, $1356 \mathrm{~cm}^{-1}$. HRMS(EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 242.0943$ found 242.0942.

The purified 2-indanone was used for the triflation step. Using the crude 2-indanone results in poor yields. Column chromatography (2:1 hexanes:toluene); Yield 31\% (over two steps); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.33(\mathrm{~m}, 2 \mathrm{H})$,
$6.95(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 152.4, $147.4,146.2,128.7,128.6,128.0,126.3,126.0,123.1118 .8\left(q{ }^{1} J_{C F}=312 \mathrm{~Hz}\right)$ $122.6,120.6,117.5,115.0$) 122.4, 122.3, 116.6, 62.9, 60.7, 35.4; IR (ATIR) 3070,2993, 2936, 2843, 1598, 1425, 1355, 1212, $1138 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~F}_{3}{ }^{32} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+} 373.0363$ found 373.0359 .

General 2-Vinylindene Synthesis

To a flame dried round bottom flask inside a glove box was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(105 \mathrm{mg}$, 0.091 mmol), Cul ($35.0 \mathrm{mg}, 0.181 \mathrm{mmol}$), and CsF ($275 \mathrm{mg}, 1.81 \mathrm{mmol}$). The flask was then brought outside of the glove box and dimethylformamide (9.1 mL) was then added. The indenyl-2-triflate ($294 \mathrm{mg}, 0.906 \mathrm{mmol}$) and tri- n-butylvinylstanane ($0.291 \mathrm{~mL}, 0.997$ mmol) were added as a solution in dimethylformamide all at once, and the solution was headed to $45{ }^{\circ} \mathrm{C}$ for 45 minutes. The solution was then filtered over a pad of Celite ${ }^{\circledR}$ washing with ether. The heterogeneous solution was then diluted with water (90 mL) and extracted with ether ($20 \mathrm{~mL} x 3$). The organic layers were then combined, dried over sodium sulfate, concentrated and purified by column chromatography.

S3.6a
column chromatography ($3: 1$ hexanes:toluene to $2: 1$ hexanes:toluene) to give an morphous white solid. Yield: $51 \%{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85$ (s, 1H), 6.76 (dd, J $=17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=17.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,148.1,145.7,135.3,133.2,131.3,127.2,114.4,109.8$, 108.4, 56.2, 55.8, 35.2; IR (ATIR) 3085, 3047, 2997, 2939, 2903, 2831, 1796, 1618, 1491, $1251 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 202.0994$ found 202.0998 .

S3.6b
column chromatography ($2: 1$ hexanes:toluene to $1: 1$ hexanes:toluene) to give an amorphous white solid. Yield 55\%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 8.18 -8.10 (m, 2H), $7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.9,146.0,144.8,133.9,132.9,128.7,128.6,126.7,127.3,125.4$, 125.1, 122.1, 122.0, 115.9, 62.4, 60.4, 34.4; IR (ATIR) 3066, 3002, 2961, 2936, 2902, 2840, 1606, 1454, $1352 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 252.1150$ found 252.1154

General Tetrahydroflourene Synthesis

Room temperature Diels-Alder (for compounds S3.7a and S3.7b)
To a flame dried 20 mL dram was added solid vinyl indene (50 mg , 1 equiv) in benzene ($\mathrm{M}=0.10 \mathrm{M}$) under N_{2}. The solid dienophile (1.1 equiv) was then added and the reaction stirred until complete by TLC (times indicated below). The solvent was then removed under reduced pressure and the Diels-Alder cycloaddition adducts were recrystallized from the indicated solvents.

Elevated temperature Diels-Alder (for compounds S3.7c - S3.7k)
Solid vinylindene ($50 \mathrm{mg}, 1$ equiv.) and 2,6-di-tert-butyl-4-methylphenol (0.5 equiv.) were combined in a flamed dried microwave vial. The vial was then sealed and evacuated and refilled with nitrogen three times. Toluene ($M=0.1 \mathrm{M}$) and dienophile (5 equiv.) were then added to the vial. The homogenous solution was then microwaved at $180{ }^{\circ} \mathrm{C}$ for 2 hours. The solution was then concentrated at room temperature and purified by column chromatography to afford the corresponding adducts.

Triturate in diethyl ether to give white amorphous solid as single diastereomer. Yield 54%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.98$ (s, 1H), $3.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.56-3.41(\mathrm{~m}, 1 \mathrm{H})$, 2.90 (dd, $J=15.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.41-2.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.4, 170.3, 145.1, 141.9, 139.6, 128.0, 126.9, 125.5, 125.3, 118.8, 45.5, 44.2, 40.8, 36.4, 26.0; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 600 \mathrm{MHz}\right) \delta 7.51(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-6.61(\mathrm{~m}$, 2H), $6.02-5.96(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.70(\mathrm{~m}$, 1 H), $3.70-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=15.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H})$; NOESY $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} \delta(4.23,4.02),(4.23,3.74)(4.00,4.25)(3.73,4.25)$ IR (ATIR) - 30242959 ,

2902, 2853, 1846, $1775 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 240.0786$ found 240.0787

Triturate in cold methanol to give white amorphous solid. Yield $58 \%{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.73$ (d, $\left.J=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.46-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 3.80$ (d, $J=18.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (d, $J=19.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.31 (d, $18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 (d, $J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8,138.2,134.9,130.3,128.5,125.6,123.7$, 114.2, 111.7, 111.3, 111.0, 108.4, 48.5, 41.7, 39.1, 37.7, 33.6; IR (ATIR) 2967.1, 2952, 1475, 1462, 1438, 1258, $746 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{4}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 270.0905$ found 270.0901 .

S3.7c
column chromatography $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane to give a colorless oil that turns yellow over upon standing at room temperature. Yield 77\% (1.9:1 dr); Spectra of major diastereomer reported. HRMS is of diastereomeric mixture. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.64$ (apparent s, 1H), $3.90-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.54(1 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}$, 3H), $2.34-2.14(\mathrm{~m}, 3 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2$, 143.7, 141.6, 139.0, 126.7, 126.3, 124.6, 123.2, 118.7, 51.1, 46.2, 39.9, 38.0, 25.3, 22.5 cm^{-1}; IR (ATIR) 3040, 2925, 2837, 1738, 1725, 1156.; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ $(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 228.1150$ found 228.1154 .

column chromatography (9:1 hexanes:diethyl ether) to give an amorphous white solid. Yield 62\% total (1.3:1 dr). $\mathbf{R}_{\mathrm{f}}=0.34{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.73(\mathrm{~m}, 1 \mathrm{H})$, $7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.63$ (apparent s, 1H), 3.81 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (d, $J=18.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=18.5 \mathrm{~Hz}), 2.49(\mathrm{t}, \mathrm{J}=11.7 \mathrm{~Hz}), 2.37-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.12(\mathrm{~m}$, 1H), 2.14 - 1.84 (m, 1H).; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.4, 141.8, 139.7, 127.8, 127.1, 124.6, 124.0, 122.9, 119.1, 46.3, 38.0, 30.1, 27.3, 24.1; IR (ATIR) 3067, 3023, 2917, 2344, 2102, 1748, 1209.; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}(\mathrm{M})^{+1} \mathrm{~m} / \mathrm{z} 195.1048$ found
195.1051.; $\mathbf{R}_{\mathrm{f}}=0.14$ colorless oil; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.12(\mathrm{~m}, 4 \mathrm{H})$, 5.72 (apparent s, 1H), 3.82 (apparent s, 1H), 3.67 (dd, $J=19.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (dt, J $=5.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J} 18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.16(\mathrm{~m}, 2 \mathrm{H})$, $2.07-1.93(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0,141.3,138.4,127.9,127.0$, 124.9, 123.4, 119.6, 119.5, 46.1, 38.1, 28.7, 25.2, 21.9.; IR (ATIR) 3067, 3043, 2930, 2840, $2237 \mathrm{~cm}^{-1}$; HRMS (El) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 195.1048$ found 195.1051.

S3.7e
column chromatography (9:1 hexanes:diethyl ether) to give a colorless oil, decomposes to yellow oil over time at $-20^{\circ} \mathrm{C}$. Yield 89% ($1: 1 \mathrm{dr}$) Mixture of diastereomers reported. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.24$ (m, 3H), 5.79-5.64 (m, 1H), 4.30-4.16(m, 1H), 3.72-3.49(m, 2H), 2.67-2.30 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8,141.6,139.4,139.0,138.0,135.1,128.6$, 128.5, 128.4, 127.2, 127.1, 125.2, 124.8, 124.6, 120.5, 119.6, 118.9, 117.0, 59.2, 55.7, 55.5, 52.6, 38.7, 37.8, 37.5, 35.5, 24.9, 21.4.; IR (ATIR) 3634, 3068, 3043, 2956, 2914, 1478, 1460, 1430, $746 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}^{35} \mathrm{CI}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 229.0658$ found 229.0659

column chromatography (9:1 hexanes:diethyl ether) to give a yellow oil. Yield 63\% (1.4:1 dr) ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\overline{7.86-7.75(\mathrm{~m}, 1.4 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.40}$ -7.27 (m, 7.2 H), 5.78 (s, 1.4H), 5.72 (s, 1H), $4.24-4.13$ (m, 1.4H), 4.09 (s, 1H), 3.74 - 3.62 (m, 2.4H), $3.61-3.45(\mathrm{~m}, 2.4 \mathrm{H}), 2.86-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.29-$ 1.95 (m, 2.4H), $1.45(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 4.2 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) 141.6, 141.5, 138.0, 137.9, 136.2, 135.2, 128.8, 128.6, 127.4, 127.4, 124.9, 124.9, 123.7, 123.5, 120.2, 118.3, 116.3, 116.3, 113.9, 111.9, 51.6, 44.8, 41.4, 39.0, 37.5, 37.2, 37.2, 35.3, 30.8, 28.8, 17.7,16.4.; IR (ATIR) 3063, 3044, 3025, 2971, 2932, 2879, 2835, 1476, $1459 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 234.1157$ found 234.1158.

S3.7g
column chromatography (10:1 hexanes:ethyl acetate) to give a colorless oil (fluorescent blue 254 nm by TLC) Yield 19\%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 1.44$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,166.0$, 149.0, 143.6, 139.1, 138.5, 129.5, 128.7, 127.9, 127.3, 126.7, 125.6, 125.2, 122.2, 62.0, 61.6, 37.1, 14.4, 14.2; IR (ATIR) 2982, 2930, 2904, 1726, $1264 \mathrm{~cm}^{-1}$; HRMS(EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}(\mathrm{M})^{\cdot+} \mathrm{m} / \mathrm{z} 310.1205$ found 310.1207.

Obtained as the side product from all reactions above room temperature. Can be obtained pure by heating 2 -vinylindene in toluene $(0.10 \mathrm{M})$ at $180^{\circ} \mathrm{C}$ (microwave) for 2 hours, concentrating and then purification by column chromatography (100\% petroleum ether). Obtained as a colorless oil. Yield 15\% (3.6:1 dr) (21\% based on recovered starting material) ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major diastereomer $\delta 7.25$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 7.14-6.95(\mathrm{~m}, 6 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}) .6 .24(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H})$, $3.89-3.35$ (m, 5H), 3.15 (d, J=22.5 Hz, 1H), 3.05 (d, J=22.5 Hz, 1H), $2.81-2.00$ (m, 5 H).; minor 7.48 (d, $J=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.30 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $0.30 \mathrm{H}), 6.74(\mathrm{~s}, 0.30 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.52(\mathrm{~m}, 0.30 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 0.30 \mathrm{H})$, $1.91-1.77(\mathrm{~m}, 0.3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major diastereomer δ 149.7, 145.3, 144.2, 143.0, 141.3, 140.0, 128.6, 126.3, 126.3, 125.9, 124.3, 123.9, 123.3, 123.0, 119.9, 119.2, 48.0, 41.5, 37.8, 35.8, 29.0, 22.2; minor diastereomer 145.3, 145.1, 143.0, $142.1,141.4,127.0,126.5,126.4,126.2,124.4,124.1,123.8,123.7,120.3,118.8,48.2$, 41.8, 38.6, 38.1, 32.1, 30.3, 25.7.; ${ }^{13}$ C NMR DEPT 135° ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major diastereomer; phased up 128.6, 126.3, 126.3, 125.9, 124.3, 123.9, 123.3, 123.0, 119.9, 119.2, 48.0, 35.8. phased down 41.5, 37.8, 29.0, 22.2. null signal 149.7, 145.3, 144.2, 143.0, 141.3, 140.0.; IR (ATIR) 3066, 3041, 3017, 2917, 2882, 1460, $741 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20}(\mathrm{M})^{\circ+} \mathrm{m} / \mathrm{z} 284.1565$ found 284.1568 .

S3.7i
column chromatography (9:1 hexanes:diethyl ether) to give an amorphous white solid. Stable indefinitely at $-20^{\circ} \mathrm{C}$ under nitrogen. Yield 83% (2.4:1 dr); ${ }^{1} \mathrm{H}$ NMR (600 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 6.91-6.48(\mathrm{~m}, 2 \mathrm{H}), 5.87-5.54(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.58(\mathrm{~m}$, 6 H), $2.78-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.37(\mathrm{~m}, 2 \mathrm{H}) 2.33-2.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) $\delta 151.1,151.0,149.8,149.8,138.1,135.2,132.0,131.5,128.5,128.3,121.5$, $119.6,119.1,117.4,111.0,110.9,110.6,109.6,55.9,56.6,55.8,55.8,55.8,55.6,54.8$, 52.6, 39.9, 37.1, 35.1, 35.0, 24.1, 21.2 ppm; IR (ATIR) 2997, 2935, 2906, 2834, 1496, $1256 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{35} \mathrm{Cl}(\mathrm{M}){ }^{+} \mathrm{m} / \mathrm{z} 289.0870$ found 289.0869

column chromatography (9:1 hexanes:diethyl ether) to give product as a dark yellow oil. Yield 55\% (1.8:1 dr) ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31$ - $8.02(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.02$ $(\mathrm{m}, 1 \mathrm{H}), 7.68-7.40(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.76(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.02(\mathrm{~m}$, $2 \mathrm{H}), 4.01-3.63(\mathrm{~m}, 6 \mathrm{H}), 3.83-3.63(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (all peaks reported) $\delta 149.6,149.1,149.0,148.3,147.7$, 147.5, 147.43, 147.1, 146.3, 144.8, 144.6, 143.6, 143.3, 142.8, 138.7, 137.2, 134.5, 133.4, 133.0, 130.1, 129.9, 129.4, 129.4, 129.0, 128.9, 128.7, 128.6, 128.6, 128.53, $128.4,128.3,128.3,128.0,127.8$, 127.7, 127.4, 126.60, 126.4, 126.3, 126.1, 125.5, $125.5,125.5,125.2,125.2,125.2,125.1,124.9,124.3,124.2,123.3,122.9,122.2$, $122.1,122.1,122.1,122.0,121.8,121.8,121.7,121.6,121.3,120.2,120.0,119.3$, $119.0,117.9,117.0,114.6,114.1,77.2,77.0,76.8,62.5,62.3,61.8,61.4,60.9,60.8$, $60.8,60.5,60.4,60.39,60.0,58.2,58.0,57.1,56.0,55.2,55.1,52.3,51.5,48.3,47.2$, $39.9,38.7,37.4,37.2,37.1,36.2,36.1,35.7,35.4,34.9,34.8,34.7,34.6,34.5,32.1$, 31.5, 30.3, 29.7, 28.0, 26.9, 25.3, 23.9, 22.6, 22.2, 22.1, 21.3, 20.8, 20.7, 14.1; IR (ATIR) 3069, 2993, 2934, 2842, $1356 \mathrm{~cm}^{-1}$. HRMS(EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{35} \mathrm{CI}(\mathrm{M})^{+}$ m/z 339.1026 found 339.1024.

S3.7k
column chromatography: 8:2 hexanes:diethyl ether to give S3.7 as an amorphous white solid. Yield 67% (2.2:1 dr) contains unidentified copolar impurity. ${ }^{1}$ H NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of diastereomers reported) $\delta 6.83-6.36(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.58(\mathrm{~m}$, $1 \mathrm{H}) .4 .41-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, \mathrm{J}=4.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 6 \mathrm{H}), 3.60-3.3$ (m, 3H), $2.59-2.45(\mathrm{~m} 1 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 169.0, 168.7, 150.7, 150.6, 149.8, 149.7, 136.6. 136.2, (8) 132.1, 131.4, 128.4, 128.2, 128.1, 128.3, $126.3,119.6,118.7,110.5,110.4,110.0,109.5,73.6,69.1,56.1,55.6,54.8,52.5,52.0$,
34.9, 34.8, 31.5, 31.4, 23.4, 21.5, 20.7, 20.5. IR (ATIR) 2995, 2937, 2910, 2835, 1749, $1495,1257 \mathrm{~cm}^{-1}$; HRMS (ESI) cacld for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}^{23} \mathrm{Na} \mathrm{m} / \mathrm{z} 336.1206$ found 336.1204.

General procedure for 2-alkynylindene synthesis

To a flame dried round bottom under nitrogen was added the indenyl-2-triflates S3.5a $(1.00 \mathrm{~g}, 3.08 \mathrm{mmol})$ and but-3-yne-2-ol ($0.484 \mathrm{~mL}, 6.16 \mathrm{mmol}$) in tetrahydrofuran (31 $\mathrm{mL}) . \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.108 \mathrm{~g}, 0.15 \mathrm{mmol})$ and $\mathrm{Cul}(58.6 \mathrm{mg}, 0.308 \mathrm{mmol})$ were then added simultaneously as solids under N_{2}. Triethylamine ($1.28 \mathrm{~mL}, 0.935 \mathrm{mmol}$) was then added dropwise (over approximately one minute) and the solution was stirred at room temperature for 45 minutes. The solution was then diluted with ether (60 mL) and washed twice with $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$. The aqueous layers were then extracted with ether ($30 \mathrm{~mL}, \mathrm{x} 3$) and the combined organics were dried over sodium sulfate. The mixture was then filtered, concentrated and purified by column chromatography to give the desired enynes.

column chromatography (100% hexanes) to give a colorless oil. Yield 80%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{1 4 4 . 0}$, 143.0, 138.5, 127.3, 126.9, 126.1, 123.7, 121.7, 102.3, 99.6, 42.9, 0.20.; IR (ATIR) 3069, 3023, 2958, 2898, 2140, 1249, $837 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Si}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 212.1021$ found 212.1025 .

S3.8b
column chromatography (10:1 hexanes:ethyl acetate) to give orange oil. Yield 86\%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ (d, $\left.J=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.24(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.63(\mathrm{~h}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR (150 MHz CDCl 3) $\delta 144.6,142.8$, 135.9, 128.5, 128.8, 125.4, 123.6, 121.2, 95.5, 78.0, 43.1, 22.4, 22.0, 13.8. IR (ATIR) 3067, 2961, 2931, 2889, 2870, 1703, $1458750 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14}(\mathrm{M})^{+}$ $\mathrm{m} / \mathrm{z} 182.1096$ found 182.1098.

column chromatography ($9: 1$ hexanes:ethyl aceate) to give a pale yellow amorphous solid. Yield 88%; ${ }^{1} \mathrm{H}$ NMR (600 MHz CDCl 3) $\delta 7.41$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (d, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.29 (apparent $\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (apparent $\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (s, $1 \mathrm{H}), 4.78(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~d}, 6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0,143.0,137.7,126.9,126.7,125.9,123.7,121.6,95.8,81.3$, 59.2, 42.8, 24.5. IR (ATIR) 3359, 2979, 2935, 2903, 2833, 2211, 1494, $1251 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 184.0888$ found 184.0890 .

column chromatography (5:1 hexanes:ethyl acetate) to give a pale yellow amorphous solid. Yield $84 \%{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.74(\mathrm{~m}, 6 \mathrm{H}), 3.48-$ $3.45(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 149.6, 147.9, 134.2, 133.9, 131.5, 125.4, 110.0, 109.0, 95.2, 81.3, 59.0, 56.0, 55.7, 40.7, 24.4; cm^{-1}; IR (ATIR) 3359, 2979, 2935, 2903, 2833, 2211, 1494, 1250, 1077. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 245.1172$ found 245.1171 .

column chromatography (6:1 hexanes: ethyl acetate to $3: 1$ hexanes:ethyl acetate) to give a brown amorphous solid. Yield 69%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (s, 1H), 3.52 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,142.8,137.8,126.8,126.5$, 125.9, 123.6, 121.5, 91.9, 82.9, 51.9, 42.6.; IR (ATIR) 3249, 2919, 2898, 2215, 1458, $1015 \mathrm{~cm}^{1}$.; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 170.0732$ found 170.0731 .

Note: Complete within 15 minutes. column chromatography ($1: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexanes) to give an amorphous white solid. Yield 78%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~s}, 1 \mathrm{H})$, 6.72 (d, J=8.7 Hz, 1H), $6.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 6 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 0.24$ (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 149.8, 148.2, 135.0, 134.4, 131.7, 126.0, 109.9,
109.3, 102.5, 98.2, 56.3, 55.9, 41.0, 0.21; IR (ATIR) 3001, 2951, 2898, 2833, 2142, $1495 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z} 272.1233$ found 272.1240.

General Enyne Desilylation Procedure.

2-(trimethylsilylethynyl)indene S3.8a was dissolved in MeOH (0.10 M). $\mathrm{K}_{2} \mathrm{CO}_{3}$ (10 equiv) was then added and the heterogeneous mixture was allowed to stir overnight (12 h). The solution was then concentrated and the purple residue dissolved in $\mathrm{Et}_{2} \mathrm{O}$ then washed with $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL}, \mathrm{x} 3)$. The organic layer was then dried over MgSO_{4} and concentrated and the red oil obtained was then purified by column chromatography.

S3.8g
column chromatography (100\% hexanes, load from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give a yellow oil. Yield quantitative; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 143.6, 142.8, 138.9, 126.8, 126.1, 126.1, 123.6, 121.6, 81.9, 81.0, 42.6; IR (ATIR) 3284, 3067, 3021, 2821, 2897,1719, 1704, 1459, 1391, 867, $753 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for (M) ${ }^{+} \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~m} / \mathrm{z} 140.0626$ found 140.0623 .

Yield 56%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90-3.81(\mathrm{~m}, 6 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.8,148.2,135.4,134.1,131.7,124.9,109.9,109.4,81.4,81.3,56.2,55.9$, 40.9.; IR (ATIR) 3280, 3103, 3085, 3067, 2951, 2938, 2904, 2830, 1490, $1070 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{M}){ }^{+} \mathrm{m} / \mathrm{z} 200.0837$ found 200.0835 .

General 2-allenylindene synthesis ${ }^{54}$

Diethylzinc ($2.11 \mathrm{~mL}, 1 \mathrm{M}$) was added to a flame dried 2-neck (one neck connected to N_{2} and the other stoppered with a rubber septum) round bottom flask containing dry $\mathrm{ZnCl}_{2}(287 \mathrm{mg}, 2.11 \mathrm{mmol})$ obtained from a glove box. THF $(0.700 \mathrm{~mL})$ was then added and the solution was stirred at room temperature for 30 minutes upon which the reaction became homogenous. Toluene (7.03 mL) was then added, and the solution was then
cooled to $0^{\circ} \mathrm{C}$. As solution of propargylic alcohol ($776 \mathrm{mg}, 4.21 \mathrm{mmol}$) in toluene (14.0 mL) was then added drop wise to the solution by cannula (over ~ 2 minutes). After 20 minutes, $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ (Schwartz's reagent) ($1.74 \mathrm{~g}, 6.74 \mathrm{mmol}$) was then added as a solid all at once by quickly removing the septum under a high stream of nitrogen (note: Schwartz's reagent is flocculent). The mixture was then warmed to room temperature and stirred vigorously for 24 h upon which the solution turns from yellow and homogenous to black and heterogeneous. Saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was then added to the reaction, and the heterogeneous mixture was extracted 5 times with $\mathrm{Et}_{2} \mathrm{O}$ (100 mL). The combined organic fractions were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered over a short pad of Celite ${ }^{\circledR}$ (1 inch), concentrated and then purified by column chromatography to give the desired allenes.

column chromatography (100% hexanes) to give amorphous white solid that yellows upon standing at room temperature. Can be stored in glove box freezer without any apparent changes measured ${ }^{1} \mathrm{H}$ NMR. Yield 56%; ${ }^{1} \mathbf{H}$ NMR $\mathbf{C D C l}_{3}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (apparent $\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.65(\mathrm{~s}, 1 \mathrm{H}), 6.20$ (apparent s, 1H), 5.46 (p, J=6.6 Hz, 1H), $3.49-$ 3.31 (m, 2H), 1.76 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.9, 145.7, 143.5, 143.2, 128.3, 126.5, 124.5, 123.6, 120.5, 91.2, 88.5, 39.0, 14.4; IR (ATIR) 3067, 3041, 2921, 2863, 1937, 1604, $1459 \mathrm{~cm}^{-1}$; HRMS (El) calcd for $\mathrm{C}_{13} \mathrm{H}_{12}(\mathrm{M})^{++} \mathrm{m} / \mathrm{z}$ 168.0939 found 168.0939 .

column chromatography ($8: 2$ hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give a yellow oil that decomposes at $-20^{\circ} \mathrm{C}$ over the course of $1-2$ months when stored neat. Lifetime can be prolonged by storing as dilute solution in benzene below the freezing point of the solution. Yield 65%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.7,1 \mathrm{H})$, $6.17(\mathrm{~d}, J=6.3,1 \mathrm{H}), 5.18(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=22.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, 22.8$ $\mathrm{Hz}, J=1 \mathrm{H}$), $3.48(\mathrm{~s}, 6 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) 207.7, 150.1, 147.9, 142.1, 136.1, 131.7, 125.0, 109.6, 107.7, 91.3, 88.1, 55.2, 54.9, 37.2, 13.8; IR (ATIR) 3070, 2990, 2940, 2902, 2830, 1493, 1256, $1086 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 228.1150$ found 228.1150.

Allene Diels - Alder cycloaddition with maleic anhydride.

To a flame dried round bottom flask containing allene S3.9b (193 mg, 0.849 mmmol) in benzene was added maleic anhydride ($91.0 \mathrm{mg}, 0.928 \mathrm{mmol}$) at room temperature. The flask was then sealed and heated to $80^{\circ} \mathrm{C}$ for 2 hours, upon which the contents were then cooled to room temperature, concentrated and purified by column chromatography to afford adduct S3.10 as a yellow amorphous solid.

column chromatography (7:3 hexanes:diethyl ether) to give product as a yellow amorphous solid. Yield $80 \%{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.52(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J$ $=22.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz CDCl$)_{3}$) $\delta 171.4,170.1,151.0,150.4$, 144.3, 130.5, 130.0, 126.2, 125.4, 109.3, 108.9, 59.7, 54.9, 54.7, 46.4, 43.2, 42.6, 34.6, 13.4.; IR (ATIR) 2932, 2909, 2833, 1776, 1751, 1493, 1248, $1070 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5}(\mathrm{M})^{+} \mathrm{m} / \mathrm{z} 326.1154$ found 326.1156.

General Heck Olefination Procedure

A stir bar and lithium chloride ($304 \mathrm{mg}, 3.00 \mathrm{mmol}$) was added to a 20 mL reaction tube and flamed dried under high vacuum. 2-bromoindene ($195 \mathrm{mg}, 1.00 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(22.5 \mathrm{mg}, 0.100 \mathrm{mmol})$ were then quickly added to the vessel. The solids were then dissolved in acetonitrile (1.00 mL) under N_{2}, and ethyl acrylate ($160 \mu \mathrm{~L}, 1.50$ mmol) was added to the heterogeneous mixture. The mixture was then heated to reflux
($100{ }^{\circ} \mathrm{C}$ bath temperature) for 15 hours. The black mixture was then cooled to room temperature, diluted with $20 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and washed water ($10 \mathrm{~mL}, \mathrm{x} 2$). The organic layers were then dried over MgSO_{4}, filtered over a plug of Celite ${ }^{\circledR}$ rinsing with $\mathrm{Et}_{2} \mathrm{O}$, concentrated and purified by flash chromatography.
column chromatography (9:1 hexanes:diethyl ether) to give $\mathbf{S 3 . 1 2}$ product as an orange solid. Yield 61\%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69$ (d, J=15.7 Hz, 1H), 7.44 (d, J=7.1 Hz, 1H), 7.40 (d, J=7.2 Hz, 1H), $7.31-7.20 \mathrm{~m}, 2 \mathrm{H}$), 7.09 (s, 1H), 6.07 (d, J $=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,144.2,143.7,143.6,138.3,127.0,126.7,124.1,122.2$, 118.5, 60.5, 37.3, 14.5; IR (ATIR) 3054, 2979, 2932, 2903, 1703, 1619; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}(M)^{\bullet+} \mathrm{m} / \mathrm{z} 214.0994$ found 214.0996.

To obtain compound $\mathbf{S 3 . 1 3}$ perform reaction in DMF. Aqueous work up dilute with water (x10 volume of DMF) extract into ether. Dry with MgSO_{4} concentrate and purify as above to give S3.13 as an orange oil. Yield 26%; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=13.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.08$ (d, $J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.4,167.4,147.6,144.6,143.1,137.8,137.0,127.0,126.8$, 124.1, 120.2, 118.1, 60.7, 60.4, 37.3, 33.9, 21.1, 14.5, 14.3. IR (ATIR) 3063, 2978, 2933, 2904, 1730, 1701, 1613, $1148 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}{ }^{23} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$ $\mathrm{m} / \mathrm{z} 337.1410$ found 337.1408 .

Rubottom Oxidation Procedure

To flame dried round bottom flask was added solid indenylpivalate S3.3 ($27.6 \mathrm{mg}, 0.10$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}, 0.10 \mathrm{M}$). meta-Chloroperoxybenzoic acid (m -CPBA) (33.6 mg , 0.15 mmol) was then added all at once at room temperature and the solution as allowed to stir for 1 hour. Upon completion, the reaction was diluted with dichloromethane and carefully quenched (evolution of CO_{2}) with 1 M sodium bisulfite (2 mL). The biphasic mixture was then carefully shaken and the organic layer removed. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, \mathrm{x} 3)$. The combined organic layers were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the crude solids purified by chromatography to afford the desired a-acyloxy-2-indanone.

column chromatography (5:1 hexanes:EtOAc) off-white amorphous solid. Yield 61\%. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}$, 1 H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=22.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 1.22(\mathrm{~s}$, 9 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 209.6, 177.2, 151.0, 149.7, 127.6, 125.7, 111.3, 109.6, 55.6, 55.4, 38.7, 38.6, 21.0; IR (ATIR) 2990, 2960, 2934, 2872, 2838, 1759, 1721, $810 \mathrm{~cm}^{-1}$; HRMS (ESI) cald for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) \mathrm{m} / \mathrm{z} 315.1203$, found 315.1202 .

Pivaloyl deprotection using 3 N HCl

Indanone $\mathbf{S 3 . 1 4}$ was dissolved in a biphasic dioxane:3N HCI mixture and heated to 100 ${ }^{\circ} \mathrm{C}$ for 3 hours. The solution as then quenched with saturated bicarbonate, extracted with diethyl ether and then dried over magnesium sulfate. The crude residue was then purified by flash chromatography to afford indanone S3.15.

column chromatography (2:1 hexanes:ethyl acetate) to give product as an amorphous orange soild. Note: The product is fluorescent blue by TLC under 254 nm light. Yield $43 \%{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.43 (dd, $J=7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (s, 3H), 3.84 (s, 3H), 3.51 (dd, $J=17.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{dd}, \mathrm{J}=17.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 Mhz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 204.1, 151.8, 150.3, 140.9, 123.0, 118.0, 110.0, 74.2, 55.0, 55.9, 31.3, 27.1; IR (ATIR) 3450, 2998, 2944, 2913, 2838, 1708, 1596, 1497, $1266 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}(\mathrm{M}$ $+\mathrm{H})^{+} 209.0808$ found 209.0808 .

Oxidative opening of 1-pivaloxy-2-indanone using lithium hydrogen peroxide ${ }^{52}$

$\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(8.34 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added to a biphasic solution of $\mathrm{THF}: \mathrm{H}_{2} \mathrm{O}$ (3.3:1, 0.05 M) and then cooled to $0^{\circ} \mathrm{C}$ upon which hydrogen peroxide ($45 \mu \mathrm{~L}, 0.40 \mathrm{mmol} 30 \%$ w/w aqueous) was added and the solution was stirred for 30 minutes at that temperature. Indanone S3.14 was then added at $0^{\circ} \mathrm{C}$ as a solid in one portion and the solution was stirred for one hour at that temperature. Sodium sulfite (4.4 mmol) was then added and the solution was then washed with saturated NaHCO_{3} and the aqueous layers were extracted with ethyl acetate. The aqueous layers were then acidified with $1 \mathrm{~N} \mathrm{HCl}(\mathrm{pH}=3$, litmus paper) and then extracted into ethyl acetate. The organic layers were then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography (2:1 hexanes: ethyl acetate) to give acid S3.16.

S3.16
column chromatography ($2: 1$ hexanes:ethyl aceate) to give product as a white solid. Yield: $36 \%{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.55(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}$, $J=9,1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 192.9, 175.9, 157.2, 141.9, 124.5, 123.9, 117.8, 111.3, 56.7, 56.2, 31.4; IR (ATIR) 2997, 2925, 2851, 1707, 1680, $1265 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{7}{ }^{23} \mathrm{Na} \mathrm{m} / \mathrm{z} 247.0577$ found 247.0576 .

Grignard addition into 1-indanone S3.15.

To a flame dried round bottom flask was added indanone S3.15 ($30 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (1.46 mL) and cooled to $0^{\circ} \mathrm{C}$. Ethynylmagnesium bromide ($0.58 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF) was then added dropwise to the cooled homogenous solution at $0^{\circ} \mathrm{C}$. The solution was allowed to stir for 40 minutes and was then warmed to room temperature. Upon stirring
at this temperature for 45 minutes, TLC indicated the presence of the starting indanone and another 0.58 mL of ethynylmagnesium bromide was added. After 15 minutes the saturated ammonium chloride (2 mL) was then carefully added to the solution. The mixture was then extracted with diethyl ether (5 mL) and then ethyl acetate (5 mL) dried over MgSO_{4} concentrated and purified by column chromatography (1:1 hexanes:diethyl ether to 1:2 hexanes:diethyl ether) to give diol S 3.17 as a white amorphous solid.

column chromatography (1:1 hexanes:diethyl ether to $1: 2$ hexanes:diethyl ether) to give product as an amorphous white low melting solid. Yield 65%; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.79-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.77$ (s, 3H), 3.29 (dd, J=15.7, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (s, 1H), 2.71-2.54 (m, 2H); ${ }^{13}$ C NMR (150 Hz) 150.2, 149.8, 130.7, 127.7, 111.2, 110.0, 81.5, 81.1, 79.4, 55.9, 55.7 34.2, 30.3; IR (ATIR) 3435, 3276, 2946, 2917, 2836, 1499, 1460, 1440, $1259 \mathrm{~cm}^{-1}$; HMRS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}{ }^{23} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 257.0784$ found 257.0784 .

Cycloisomerization of indanone S3.17.

To a flame dried vial was added $\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(0.01 \mathrm{mmol})$ and silver triflate (0.01 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mu \mathrm{~L})$. The solution was then stirred for 30 minutes in the dark upon which it became heterogeneous. The solution was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered over Celite ${ }^{\circledR}$. Diol S 3.17 was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and $100 \mu \mathrm{~L}$ of the gold solution was then added and stirred until complete by TLC $(\sim 1 \mathrm{~h})$. The solution was then concentrated and purified by column chromatography to give furan S3.18 as a low melting pale yellow solid.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H})$.

Oxidopyrylium ion adduct

Following the general conditions for the microwave Diels-Alder reaction of 2 vinylindenes with dienophiles. Used 20.2 mg diene S3.6a, 11 mg bis-cyanovinylacetate in toluene (0.10 M). column chromatography (95:5 hexanes: hexanes:ethyl acetate to 100% ethyl acetate) Yield $60 \%{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ (s, 1H), $6.83-6.75$ (m, 2H), 6.71 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (s, 1H), $4.57-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=11.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.82$ $(\mathrm{m}, 7 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.66-3.37(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.56$ (m, 1H), $2.35-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=13.3 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,169.8,150.4,150.1,149.9,147.7,141.1,139.4,133.7$, $133.8,131.8,130.6,128.3,117.4,116.9,109.6,108.8,108.6,108.3,91.4,79.1,55.8$, 55.6, 55.5, 55.5, 49.3, 44.9, 43.5, 40.8, 39.7, 34.9, 31.9, 25.5, 24.3; IR (ATIR) 3375, 2951, 2912, 2852, 1743, 1696, 1495, 1461, $1254 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{~N}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 583.2439$ found 583.2440 .

X-ray quality crystals obtained by slow cooling from a solution of hot ethanol.

Figure 6: S3.19 CYlview of S3.19

To a flamed dried round bottom flask was added enyne S3.8h ($46 \mathrm{mg}, 0.30 \mathrm{mmol}$) in dry toluene (0.74 mL). Copper(thiophene-2-carboxylate) $(9.7 \mathrm{mg}, 0.059 \mathrm{mmol}$) was then added in one portion as a solid. Mesyl azide ($40 \mathrm{mg}, 0.33 \mathrm{mmol}$) was then added as a solution in toluene (0.74 mL) and then 2,6 -lutidine ($20.8 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$) was added dropwise to the mixture. The solution was then stirred vigorously for 4 hours upon which the solution was diluted with $20 \mathrm{mLCH} \mathrm{Cl}_{2}$ and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq (20 mL). The aqueous layer was then extracted with $40 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$ and the combined organic layers dried over MgSO_{4} concentrated and then purified by column chromatography (2:1 hexanes:ethyl acetate) to afford triazole S3.20b as a tan amorphous solid.

S3.20a
column chromatography (1:1 hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $1: 2$ hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give product as an amorphous white solid. Yield $51.3 \mathrm{mg}, 52 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17$ (s, 1H), $8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.5,144.6,144.4,142.9,134.5,133.2,130.6,130.2128 .6,127.0,125.7$, 124.0, 121.8, 119.0, 39.3, 22.0.; IR (ATIR) 3144, 3065, 1594, 1393, 1194, $983 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ m/z 337.0885 found 337.0884.

column chromatography ($2: 1$ hexanes/ethyl acetate) to give product as an amorphous tan solid. Yield $41.3 \mathrm{mg}, 43 \% ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H})$, 6.77 (d $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 149.9, 148.3, 144.6, 134.5, 132.7, 121.4, 126.8, 118.5, 110.0, 109.0, 56.1, 55.7, 42.6, 37.2; IR (ATIR) 3147, 2940, 2906, 2890, 2832, 1490, 1354, 1250, $1169 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M})^{\cdot+} \mathrm{m} / \mathrm{z} 321.0783$ found 321.0779.

Rhodium catalyzed cycloaddition to triazole S3.20b

To a flame dried 4-mL dram vial was added triazole S3.20b ($6.3 \mathrm{mg}, 0.016 \mathrm{mmol}$) and $\mathrm{Rh}_{2}(S-N T T L) 4$ ($\left.0.22 \mathrm{mg}, 0.158 \mu \mathrm{~mol}\right)$. (E)-(buta-1,3-dien-1-yloxy)trimethylsilane ${ }^{62}$ (4.5 $\mathrm{mg}, 0.032 \mathrm{mmol}$) dissolved in 1,2-dichloroethane ($158 \mu \mathrm{~L}$) was then added to the solids under nitrogen. The solution was then capped and heated to $65^{\circ} \mathrm{C}$ until complete by TLC analysis (3 hours). The solution was then concentrated and purified by column chromatography ($3: 1$ hexanes:ethyl acetate to $3: 2$ hexanes:ethyl acetate) to afford tricycle S3.21 as a yellow oil.

Yield 35\%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~s}$, 1 H), $4.08(\mathrm{~d}, \mathrm{~J}=22.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.70(\mathrm{~m}, 7 \mathrm{H}), 3.72-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H})$, $3.04-2.92(\mathrm{~m}, 1 \mathrm{H}),-0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 172.3, 168.5, 150.2, 150.1, 131.7, 131.2, 131.1, 130.0, 128.4, 110.1, 109.1, 67.3, 56.0, 55.7, 55.3, 40.6, 35.3, 24.8, -0.22; IR (ATIR) 3500, 3012, 2951, 2929, 2903, 2835, 1565, 1498, $1257 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5}{ }^{23} \mathrm{Na}^{32} \mathrm{~S}^{28} \mathrm{Si} \mathrm{m} / \mathrm{z} 458.1428$ found 458.1428 .

Section 3.9.3. Crystal structure data

A yellow plate $0.050 \times 0.040 \times 0.020 \mathrm{~mm}$ in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 10 seconds per frame using a scan width of 1.0°. Data collection was 100.0% complete to 67.000° in q. A total of 83552 reflections were collected covering the indices, -$17<=h<=17,-20<=k<=25,-25<=k=24.11014$ reflections were found to be symmetry independent, with an $\mathrm{R}_{\text {int }}$ of 0.0373 . Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P 21/c (No. 14). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by iterative methods (SHELXT) produced a complete heavy-atom phasing model consistent with the proposed structure. All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. SQUEEZE was used to treat the disordered solvent contribution to the electron density map and its use has been noted in the CIF file.

Table 1. Crystal data and structure refinement for sarpong81.

X-ray ID
Sample/notebook ID
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color/habit
Theta range for data collection Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.000^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
sarpong81
SMHVII-020C
C34 H34 N2 O7
582.63

100(2) K
1.54178 Å

Monoclinic
P 21/c
$a=14.4287(4) \AA \quad a=90^{\circ}$.
$b=20.8084(6) \AA \quad b=106.013(2)^{\circ}$.
$c=20.8192(6) \AA \quad g=90^{\circ}$.
6008.2(3) \AA^{3}

8
$1.288 \mathrm{Mg} / \mathrm{m}^{3}$
$0.739 \mathrm{~mm}^{-1}$
2464
$0.050 \times 0.040 \times 0.020 \mathrm{~mm}^{3}$
yellow plate
3.064 to 68.733°.
$-17<=\mathrm{h}<=17,-20<=\mathrm{k}<=25,-25<=\mathrm{l}<=24$
83552
$11014[R($ int $)=0.0373]$
100.0 \%

Semi-empirical from equivalents
0.929 and 0.887

Full-matrix least-squares on F^{2}
11014 / 0 / 785
1.052
$R 1=0.0896, w R 2=0.2587$
$R 1=0.0990, w R 2=0.2705$
n/a
1.093 and -0.603 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$)
for sarpong81. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uii tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C(1)	8111(2)	2109(2)	3744(1)	46(1)
C(2)	8847(2)	2583(2)	3588(2)	48(1)
C(3)	8973(2)	3172(2)	4052(2)	52(1)
C(4)	9948(3)	3471(2)	4227(2)	54(1)
C(5)	10678(2)	3255(2)	4006(2)	52(1)
C(6)	11716(3)	3467(2)	4208(2)	63(1)
C(7)	12221(3)	2912(2)	3978(2)	63(1)
C(8)	13209(3)	2848(2)	4064(2)	71(1)
C(9)	13521(3)	2310(2)	3797(2)	78(1)
$\mathrm{C}(10)$	12876(4)	1853(2)	3438(3)	82(1)
C(11)	11882(3)	1919(2)	3339(2)	68(1)
$\mathrm{C}(12)$	11570(3)	2463(2)	3622(2)	56(1)
C(13)	10546(2)	2686(2)	3536(2)	50(1)
C(14)	9797(2)	2214(2)	3648(2)	47(1)
C(15)	10070(2)	1832(1)	4295(2)	46(1)
C(16)	9212(2)	1421(1)	4379(2)	44(1)
$\mathrm{C}(17)$	8747(2)	1033(2)	3743(1)	46(1)
$\mathrm{C}(18)$	7936(2)	1474(2)	3331(1)	46(1)
C(19)	7178(2)	2430(2)	3696(2)	48(1)
C(20)	14788(4)	3272(4)	4550(4)	117(2)
C(21)	11443(5)	957(3)	2698(4)	121(2)
C(22)	8965(2)	611(1)	5177(1)	43(1)
C(23)	9461(2)	212(2)	5767(2)	48(1)
C(24)	7874(2)	1536(2)	2601(1)	46(1)
C(25)	8294(2)	1114(2)	2249(2)	49(1)
C(26)	7992(2)	1305(2)	1544(2)	48(1)
C(27)	8238(3)	1037(2)	999(2)	58(1)
C(28)	7866(3)	1325(2)	384(2)	63(1)
C(29)	7294(3)	1875(2)	318(2)	58(1)
C(30)	7063(2)	2147(2)	862(2)	51(1)
C(31)	7404(2)	1843(2)	1480(2)	47(1)
C(32)	7273(3)	2000(2)	2146(2)	54(1)
C(33)	9072(5)	210(2)	600(3)	103(2)
C(34)	6441 (3)	3117(2)	295(2)	67(1)
C(35)	5612(2)	8501(1)	3258(2)	46(1)
C(36)	6281(2)	8493(2)	2794(2)	46(1)

C(37)	6168(2)	9121(2)	2379(2)	54(1)
C(38)	7097(3)	9386(2)	2295(2)	58(1)
C(39)	7922(2)	9076(2)	2469(2)	53(1)
C(40)	8932(3)	9294(2)	2489(2)	61(1)
C(41)	9566(2)	8776(2)	2871(2)	53(1)
C(42)	10577(3)	8723(2)	3036(2)	59(1)
C(43)	11012(2)	8201(2)	3383(2)	60(1)
C(44)	10496(3)	7721(2)	3580(2)	62(1)
C(45)	9496(2)	7759(2)	3429(2)	56(1)
C(46)	9045(2)	8301(2)	3070(2)	50(1)
C(47)	7985(2)	8414(2)	2786(2)	49(1)
C(48)	7320(2)	8384(1)	3240(2)	44(1)
C(49)	7545(2)	8832(1)	3842(1)	44(1)
C(50)	6734(2)	8833(2)	4203(2)	44(1)
C(51)	6518(2)	8133(2)	4364(2)	48(1)
C(52)	5708(2)	7917(2)	3746(2)	47(1)
C(53)	4600(2)	8590(2)	2865(2)	52(1)
C(54)	12047(3)	9156(2)	2949(3)	92(2)
C(55)	9360(3)	6765(2)	3946(3)	89(2)
C(56)	6290(2)	9384(2)	5106(2)	51(1)
C(57)	6552(3)	9924(2)	5605(2)	62(1)
C(58)	5823(2)	7275(2)	3441(2)	47(1)
C(59)	6524(3)	6786(2)	3747(2)	62(1)
C(60)	6329(2)	6243(2)	3270(2)	56(1)
C(61)	6778(3)	5643(2)	3277(2)	67(1)
C(62)	6405(3)	5215(2)	2773(2)	64(1)
C(63)	5635(2)	5373(2)	2247(2)	53(1)
C(64)	5206(2)	5967(2)	2204(2)	50(1)
C(65)	5564(2)	6398(2)	2732(2)	49(1)
C(66)	5251(2)	7055(2)	2834(2)	52(1)
C(67)	8075(5)	4946(3)	3803(3)	108(2)
C(68)	4114(3)	5752(2)	1140(2)	61(1)
N(1)	6452(2)	2672(2)	3650(1)	58(1)
N(2)	9513(2)	1062(1)	4983(1)	43(1)
N(3)	3811(2)	8635(2)	2556(2)	63(1)
N(4)	6924(2)	9279(1)	4731(1)	47(1)
$\mathrm{O}(1)$	8482(2)	1890(1)	4420(1)	45(1)
$\mathrm{O}(2)$	13774(2)	3335(2)	4406(2)	93(1)
$\mathrm{O}(3)$	11173(2)	1516(1)	3002(2)	80(1)
$\mathrm{O}(4)$	10837(2)	1836(1)	4714(1)	56(1)
$\mathrm{O}(5)$	8121(2)	513(1)	4871(1)	50(1)
O(6)	8837(2)	513(1)	1141(1)	76(1)
$\mathrm{O}(7)$	6528(2)	2688(1)	851(1)	65(1)
$\mathrm{O}(8)$	5869(1)	9042(1)	3696(1)	46(1)

$\mathrm{O}(9)$	$11035(2)$	$9231(1)$	$2830(2)$	$68(1)$
$\mathrm{O}(10)$	$8905(2)$	$7313(1)$	$3578(1)$	$62(1)$
$\mathrm{O}(11)$	$8262(2)$	$9152(1)$	$4042(1)$	$49(1)$
$\mathrm{O}(12)$	$5562(2)$	$9071(1)$	$5041(1)$	$59(1)$
$\mathrm{O}(13)$	$7583(3)$	$5542(2)$	$3810(2)$	$97(1)$
$\mathrm{O}(14)$	$4464(2)$	$6178(1)$	$1693(1)$	$62(1)$

Table 3. Bond lengths $[\AA ̊]$ and angles [${ }^{\circ}$] for sarpong81.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.435(3)	$\mathrm{C}(19)$ - $\mathrm{N}(1)$	1.142(4)
$\mathrm{C}(1)-\mathrm{C}(19)$	$1.481(4)$	$\mathrm{C}(20)-\mathrm{O}(2)$	1.416(6)
$\mathrm{C}(1) \mathrm{C}(2)$	1.548(4)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(18)$	$1.560(4)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(3)$	1.540(4)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(14)$	1.547(4)	$\mathrm{C}(21)-\mathrm{O}(3)$	1.429(5)
$\mathrm{C}(2)-\mathrm{H}(2)$	1.0000	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	1.489(5)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900	$\mathrm{C}(22)-\mathrm{O}(5)$	1.227(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.338(5)	$\mathrm{C}(22)-\mathrm{N}(2)$	1.358(4)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(22)-\mathrm{C}(23)$	1.491(4)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.505(5)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(13)$	1.514(5)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.510(6)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{C}(24)$-C(25)	1.385(4)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900	$\mathrm{C}(24)$-C(32)	1.457(4)
$\mathrm{C}(7)-\mathrm{C}(12)$	1.386(6)	C(25)-C(26)	1.466(4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.394(5)	$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(8)-\mathrm{O}(2)$	1.371(6)	$\mathrm{C}(26)-\mathrm{C}(31)$	1.389(5)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.379(7)	$\mathrm{C}(26)-\mathrm{C}(27)$	1.395(5)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.395(8)	$\mathrm{C}(27)-\mathrm{O}(6)$	1.371 (5)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500	C(27)-C(28)	1.381(5)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.399(6)	$\mathrm{C}(28)-\mathrm{C}(29)$	1.395(6)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{C}(28)-\mathrm{H}(28)$	0.9500
$\mathrm{C}(11)-\mathrm{O}(3)$	1.358(6)	C(29)-C(30)	1.387(5)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.406(5)$	$\mathrm{C}(29)$ - $\mathrm{H}(29)$	0.9500
$\mathrm{C}(12)-\mathrm{C}(13)$	1.511(4)	$\mathrm{C}(30)-\mathrm{O}(7)$	1.362(4)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.525(4)	$\mathrm{C}(30)-\mathrm{C}(31)$	1.395(4)
$\mathrm{C}(13)-\mathrm{H}(13)$	1.0000	$\mathrm{C}(31)-\mathrm{C}(32)$	1.488(4)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.520(4)	$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	0.9900
$\mathrm{C}(14)-\mathrm{H}(14)$	1.0000	$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	0.9900
$\mathrm{C}(15)-\mathrm{O}(4)$	1.205(4)	$\mathrm{C}(33)-\mathrm{O}(6)$	1.411(5)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.554(4)	$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	0.9800
$\mathrm{C}(16)-\mathrm{N}(2)$	1.425(4)	$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	0.9800
$\mathrm{C}(16)-\mathrm{O}(1)$	$1.455(3)$	$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	0.9800
$\mathrm{C}(16)-\mathrm{C}(17)$	1.539(4)	$\mathrm{C}(34)-\mathrm{O}(7)$	1.439(4)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.547(4)	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	0.9800
$\mathrm{C}(18)-\mathrm{C}(24)$	1.503(4)	$\mathrm{C}(35)-\mathrm{O}(8)$	1.432(4)
$\mathrm{C}(18)-\mathrm{H}(18)$	1.0000	$\mathrm{C}(35)-\mathrm{C}(53)$	1.475(4)

$\mathrm{C}(35)-\mathrm{C}(36)$	1.542(4)	$\mathrm{C}(54)-\mathrm{O}(9)$	1.420(5)
C(35)-C(52)	1.566(4)	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	0.9800
C(36)-C(48)	1.548(4)	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	0.9800
C(36)-C(37)	1.551(4)	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	0.9800
$\mathrm{C}(36)-\mathrm{H}(36)$	1.0000	$\mathrm{C}(55)-\mathrm{O}(10)$	$1.428(5)$
C(37)-C(38)	1.503(5)	$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	0.9800
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	0.9900	$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	0.9800
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	0.9900	$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{C})$	0.9800
$\mathrm{C}(38)-\mathrm{C}(39)$	$1.314(5)$	$\mathrm{C}(56)-\mathrm{O}(12)$	1.212(4)
$\mathrm{C}(38)-\mathrm{H}(38)$	0.9500	$\mathrm{C}(56)-\mathrm{N}(4)$	1.374(4)
C(39)-C(40)	1.516(5)	$\mathrm{C}(56)-\mathrm{C}(57)$	1.507(5)
C(39)-C(47)	1.520(5)	C(57)-H(57A)	0.9800
$\mathrm{C}(40)-\mathrm{C}(41)$	1.493 (5)	$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	0.9800
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9900	$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	0.9800
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9900	C(58)-C(66)	1.382(5)
$\mathrm{C}(41)-\mathrm{C}(46)$	1.373 (5)	C(58)-C(59)	$1.452(5)$
$\mathrm{C}(41)-\mathrm{C}(42)$	$1.408(5)$	C(59)-C(60)	1.481 (5)
C(42)-C(43)	1.360(6)	C(59)-H(59A)	0.9900
$\mathrm{C}(42)-\mathrm{O}(9)$	1.375(4)	$\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	0.9900
C(43)-C(44)	1.375(6)	C(60)-C(65)	1.377(5)
$\mathrm{C}(43)-\mathrm{H}(43)$	0.9500	C(60)-C(61)	$1.405(5)$
$\mathrm{C}(44)-\mathrm{C}(45)$	$1.392(5)$	C(61)-C(62)	1.368(5)
$\mathrm{C}(44)-\mathrm{H}(44)$	0.9500	$\mathrm{C}(61)-\mathrm{O}(13)$	1.382(5)
$\mathrm{C}(45)-\mathrm{O}(10)$	1.353(4)	C(62)-C(63)	1.367(5)
C(45)-C(46)	1.410(5)	$\mathrm{C}(62)-\mathrm{H}(62)$	0.9500
C(46)-C(47)	$1.497(4)$	C(63)-C(64)	1.375(5)
$\mathrm{C}(47)-\mathrm{C}(48)$	1.523(4)	$\mathrm{C}(63)-\mathrm{H}(63)$	0.9500
$\mathrm{C}(47)-\mathrm{H}(47)$	1.0000	$\mathrm{C}(64)$ - $\mathrm{O}(14)$	1.357(4)
$\mathrm{C}(48)-\mathrm{C}(49)$	1.523(4)	C(64)-C(65)	1.402(5)
$\mathrm{C}(48)-\mathrm{H}(48)$	1.0000	C(65)-C(66)	1.472(4)
$\mathrm{C}(49)-\mathrm{O}(11)$	$1.205(4)$	$\mathrm{C}(66)-\mathrm{H}(66)$	0.9500
C(49)-C(50)	1.555(4)	$\mathrm{C}(67)-\mathrm{O}(13)$	1.431 (6)
$\mathrm{C}(50)-\mathrm{N}(4)$	1.406(4)	$\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~A})$	0.9800
$\mathrm{C}(50)-\mathrm{O}(8)$	$1.462(3)$	$\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~B})$	0.9800
C(50)-C(51)	1.545(4)	$\mathrm{C}(67)-\mathrm{H}(67 \mathrm{C})$	0.9800
C(51)-C(52)	1.548(4)	$\mathrm{C}(68)-\mathrm{O}(14)$	1.430(4)
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	0.9900	$\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~A})$	0.9800
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	0.9900	$\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~B})$	0.9800
C(52)-C(58)	1.508(4)	$\mathrm{C}(68)-\mathrm{H}(68 \mathrm{C})$	0.9800
$\mathrm{C}(52)-\mathrm{H}(52)$	1.0000	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A})$	0.8800
$\mathrm{C}(53)-\mathrm{N}(3)$	1.146(4)	$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A})$	0.8800
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(19)$	107.2(2)	$\mathrm{C}(19)-\mathrm{C}(1)-\mathrm{C}(2)$	111.3(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	108.4(2)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(18)$	103.4(2)

$\mathrm{C}(19)-\mathrm{C}(1)-\mathrm{C}(18)$	109.8(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(5)$	102.6(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(18)$	116.1(2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.7(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(14)$	113.3(3)	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	112.0(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	110.1(2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	107.3
$\mathrm{C}(14)-\mathrm{C}(2)-\mathrm{C}(1)$	108.1(2)	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{H}(13)$	107.3
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	108.4	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	107.3
$\mathrm{C}(14)-\mathrm{C}(2)-\mathrm{H}(2)$	108.4	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	116.8(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	108.4	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(2)$	109.8(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	115.3(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(2)$	108.5(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.5	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	107.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.5	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	107.1
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.5	$\mathrm{C}(2)-\mathrm{C}(14)-\mathrm{H}(14)$	107.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.5	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(14)$	126.8(3)
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	107.5	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(16)$	121.6(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	123.8(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	111.6(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	118.1	$\mathrm{N}(2)-\mathrm{C}(16)-\mathrm{O}(1)$	110.4(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	118.1	$\mathrm{N}(2)-\mathrm{C}(16)-\mathrm{C}(17)$	116.0(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	128.5(3)	$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	104.6(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)$	120.9(3)	$\mathrm{N}(2)-\mathrm{C}(16)-\mathrm{C}(15)$	109.2(2)
C(6)-C(5)-C(13)	110.3(3)	$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	104.5(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	102.6(3)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	111.4(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	111.3	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	104.4(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	111.3	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.9
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	111.3	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.9
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	111.3	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.9
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.2	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.9
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	121.4(4)	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.9
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(6)$	111.7(3)	$\mathrm{C}(24)-\mathrm{C}(18)-\mathrm{C}(17)$	115.9(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	126.8(4)	$\mathrm{C}(24)-\mathrm{C}(18)-\mathrm{C}(1)$	116.1(2)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	126.6(4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(1)$	102.4(2)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	115.8(4)	$\mathrm{C}(24)-\mathrm{C}(18)-\mathrm{H}(18)$	107.3
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	117.6(4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	107.3
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.7(4)	$\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{H}(18)$	107.3
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.2	$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{C}(1)$	178.9(4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.2	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.2(4)	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.4	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.4	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	127.6(4)	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	115.6(3)	$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	116.8(4)	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	121.3(3)	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(13)$	110.6(3)	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	127.8(4)	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5

$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{O}(5)-\mathrm{C}(22)-\mathrm{N}(2)$	$122.5(3)$
$\mathrm{O}(5)-\mathrm{C}(22)-\mathrm{C}(23)$	$121.1(3)$
$\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{C}(23)$	$116.3(2)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(32)$	$110.2(3)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(18)$	$124.5(3)$
$\mathrm{C}(32)-\mathrm{C}(24)-\mathrm{C}(18)$	$124.9(3)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$107.7(3)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	126.1
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	126.1
$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{C}(27)$	$121.9(3)$
$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{C}(25)$	$108.7(3)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$129.4(3)$
$\mathrm{O}(6)-\mathrm{C}(27)-\mathrm{C}(28)$	$127.2(3)$
$\mathrm{O}(6)-\mathrm{C}(27)-\mathrm{C}(26)$	$115.4(3)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	$117.4(3)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$121.0(3)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	119.5
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$	119.5
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	$121.5(3)$
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	119.2
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$	119.2
$\mathrm{O}(7)-\mathrm{C}(30)-\mathrm{C}(29)$	$125.9(3)$
$\mathrm{O}(7)-\mathrm{C}(30)-\mathrm{C}(31)$	$116.5(3)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$117.7(3)$
$\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{C}(30)$	$120.4(3)$
$\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{C}(32)$	$108.6(3)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$131.0(3)$
$\mathrm{C}(24)-\mathrm{C}(32)-\mathrm{C}(31)$	$104.7(3)$
$\mathrm{C}(24)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	110.8
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	110.8
$\mathrm{C}(24)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	110.8
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	110.8
$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	108.9
$\mathrm{O}(6)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	109.5
$\mathrm{O}(6)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.5
$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.5

$\mathrm{O}(6)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5
$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5
$\mathrm{H}(33 \mathrm{~B})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5
$\mathrm{O}(7)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	109.5
$\mathrm{O}(7)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5
$\mathrm{O}(7)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{H}(34 \mathrm{~B})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{O}(8)-\mathrm{C}(35)-\mathrm{C}(53)$	$107.3(2)$
$\mathrm{O}(8)-\mathrm{C}(35)-\mathrm{C}(36)$	$108.0(2)$
$\mathrm{C}(53)-\mathrm{C}(35)-\mathrm{C}(36)$	$110.4(3)$
$\mathrm{O}(8)-\mathrm{C}(35)-\mathrm{C}(52)$	$103.7(2)$
$\mathrm{C}(53)-\mathrm{C}(35)-\mathrm{C}(52)$	$110.7(3)$
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(52)$	$116.0(2)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(48)$	$107.2(2)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$110.6(2)$
$\mathrm{C}(48)-\mathrm{C}(36)-\mathrm{C}(37)$	$113.2(3)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36)$	108.6
$\mathrm{C}(48)-\mathrm{C}(36)-\mathrm{H}(36)$	108.6
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{H}(36)$	108.6
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	$114.5(3)$
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	108.6
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	108.6
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	108.6
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	108.6
$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	107.6
$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(37)$	$123.8(3)$
$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{H}(38)$	118.1
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38)$	118.1
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	$130.7(3)$
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(47)$	$120.4(3)$
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(47)$	$108.5(3)$
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	$104.0(3)$
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	111.0
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	111.0
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	111.0
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	111.0
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.0
$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(42)$	$119.2(3)$
$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(40)$	$112.0(3)$
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(40)$	$128.8(3)$
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{O}(9)$	$126.1(3)$
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	$119.2(3)$

$\mathrm{O}(9)-\mathrm{C}(42)-\mathrm{C}(41)$	114.8(3)	$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{H}(52)$	107.0
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	122.1(3)	$\mathrm{C}(35)-\mathrm{C}(52)-\mathrm{H}(52)$	107.0
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{H}(43)$	119.0	$\mathrm{N}(3)-\mathrm{C}(53)-\mathrm{C}(35)$	177.4(3)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{H}(43)$	119.0	$\mathrm{O}(9)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	109.5
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	120.3(4)	$\mathrm{O}(9)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	109.5
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{H}(44)$	119.8	$\mathrm{H}(54 \mathrm{~A})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	109.5
$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{H}(44)$	119.8	$\mathrm{O}(9)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5
$\mathrm{O}(10)-\mathrm{C}(45)-\mathrm{C}(44)$	126.1(3)	$\mathrm{H}(54 \mathrm{~A})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5
$\mathrm{O}(10)-\mathrm{C}(45)-\mathrm{C}(46)$	116.3(3)	$\mathrm{H}(54 \mathrm{~B})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)$	117.6(3)	$\mathrm{O}(10)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	109.5
$\mathrm{C}(41)-\mathrm{C}(46)-\mathrm{C}(45)$	121.6(3)	$\mathrm{O}(10)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	109.5
$\mathrm{C}(41)-\mathrm{C}(46)-\mathrm{C}(47)$	110.6(3)	$\mathrm{H}(55 \mathrm{~A})-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	109.5
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(47)$	127.3(3)	$\mathrm{O}(10)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{C})$	109.5
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(39)$	104.2(3)	$\mathrm{H}(55 \mathrm{~A})-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{C})$	109.5
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)$	119.8(3)	$\mathrm{H}(55 \mathrm{~B})-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{C})$	109.5
$\mathrm{C}(39)-\mathrm{C}(47)-\mathrm{C}(48)$	109.6(3)	$\mathrm{O}(12)-\mathrm{C}(56)-\mathrm{N}(4)$	123.0(3)
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{H}(47)$	107.5	$\mathrm{O}(12)-\mathrm{C}(56)-\mathrm{C}(57)$	121.5(3)
$\mathrm{C}(39)-\mathrm{C}(47)-\mathrm{H}(47)$	107.5	N(4)-C(56)-C(57)	115.5(3)
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{H}(47)$	107.5	$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)$	117.2(3)	C(56)-C(57)-H(57B)	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(36)$	107.1(2)	$\mathrm{H}(57 \mathrm{~A})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	109.5
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(36)$	110.8(2)	$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48)$	107.1	$\mathrm{H}(57 \mathrm{~A})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	109.5
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{H}(48)$	107.1	$\mathrm{H}(57 \mathrm{~B})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	109.5
$\mathrm{C}(36)-\mathrm{C}(48)-\mathrm{H}(48)$	107.1	C(66)-C(58)-C(59)	109.7(3)
$\mathrm{O}(11)-\mathrm{C}(49)-\mathrm{C}(48)$	126.2(3)	$\mathrm{C}(66)-\mathrm{C}(58)-\mathrm{C}(52)$	124.8(3)
$\mathrm{O}(11)-\mathrm{C}(49)-\mathrm{C}(50)$	121.4(3)	$\mathrm{C}(59)-\mathrm{C}(58)-\mathrm{C}(52)$	125.4(3)
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$	112.4(2)	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)$	105.1(3)
$\mathrm{N}(4)-\mathrm{C}(50)-\mathrm{O}(8)$	108.2(2)	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~A})$	110.7
N(4)-C(50)-C(51)	117.4(3)	C(60)-C(59)-H(59A)	110.7
$\mathrm{O}(8)-\mathrm{C}(50)-\mathrm{C}(51)$	104.7(2)	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	110.7
$\mathrm{N}(4)-\mathrm{C}(50)-\mathrm{C}(49)$	111.6(2)	C(60)-C(59)-H(59B)	110.7
$\mathrm{O}(8)-\mathrm{C}(50)-\mathrm{C}(49)$	104.9(2)	$\mathrm{H}(59 \mathrm{~A})-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	108.8
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(49)$	109.1(2)	$\mathrm{C}(65)-\mathrm{C}(60)-\mathrm{C}(61)$	118.9(3)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$	104.2(2)	$\mathrm{C}(65)-\mathrm{C}(60)-\mathrm{C}(59)$	109.1(3)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	110.9	$\mathrm{C}(61)-\mathrm{C}(60)-\mathrm{C}(59)$	132.0(3)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	110.9	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{O}(13)$	125.6(3)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	110.9	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(60)$	119.1(3)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	110.9	$\mathrm{O}(13)-\mathrm{C}(61)-\mathrm{C}(60)$	115.3(3)
$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	108.9	$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{C}(61)$	121.3(3)
$\mathrm{C}(58)-\mathrm{C}(52)-\mathrm{C}(51)$	117.5(3)	$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{H}(62)$	119.3
$\mathrm{C}(58)-\mathrm{C}(52)-\mathrm{C}(35)$	114.5(3)	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{H}(62)$	119.3
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(35)$	103.0(2)	C(62)-C(63)-C(64)	121.3(3)
$\mathrm{C}(58)-\mathrm{C}(52)-\mathrm{H}(52)$	107.0	$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{H}(63)$	119.4

$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{H}(63)$	119.4
$\mathrm{O}(14)-\mathrm{C}(64)-\mathrm{C}(63)$	$125.8(3)$
$\mathrm{O}(14)-\mathrm{C}(64)-\mathrm{C}(65)$	$116.6(3)$
$\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(65)$	$117.6(3)$
$\mathrm{C}(60)-\mathrm{C}(65)-\mathrm{C}(64)$	$121.7(3)$
$\mathrm{C}(60)-\mathrm{C}(65)-\mathrm{C}(66)$	$108.1(3)$
$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{C}(66)$	$130.2(3)$
$\mathrm{C}(58)-\mathrm{C}(66)-\mathrm{C}(65)$	$108.0(3)$
$\mathrm{C}(58)-\mathrm{C}(66)-\mathrm{H}(66)$	126.0
$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{H}(66)$	126.0
$\mathrm{O}(13)-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~A})$	109.5
$\mathrm{O}(13)-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~B})$	109.5
$\mathrm{H}(67 \mathrm{~A})-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{~B})$	109.5
$\mathrm{O}(13)-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{C})$	109.5
$\mathrm{H}(67 \mathrm{~A})-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{C})$	109.5
$\mathrm{H}(67 \mathrm{~B})-\mathrm{C}(67)-\mathrm{H}(67 \mathrm{C})$	109.5
$\mathrm{O}(14)-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~A})$	109.5
$\mathrm{O}(14)-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~B})$	109.5
$\mathrm{H}(68 \mathrm{~A})-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{~B})$	109.5
$\mathrm{O}(14)-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{C})$	109.5
$\mathrm{H}(68 \mathrm{~A})-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{C})$	109.5
$\mathrm{H}(68 \mathrm{~B})-\mathrm{C}(68)-\mathrm{H}(68 \mathrm{C})$	109.5
$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{C}(16)$	$124.4(2)$
$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A})$	117.8
$\mathrm{C}(16)-\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A})$	117.8
$\mathrm{C}(56)-\mathrm{N}(4)-\mathrm{C}(50)$	$122.1(3)$
$\mathrm{C}(56)-\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A})$	118.9
$\mathrm{C}(50)-\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A})$	118.9
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(16)$	$103.6(2)$
$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(20)$	$118.2(5)$
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(21)$	$118.2(4)$
$\mathrm{C}(27)-\mathrm{O}(6)-\mathrm{C}(33)$	$117.4(3)$
$\mathrm{C}(30)-\mathrm{O}(7)-\mathrm{C}(34)$	$116.8(3)$
$\mathrm{C}(35)-\mathrm{O}(8)-\mathrm{C}(50)$	$104.2(2)$
$\mathrm{C}(42)-\mathrm{O}(9)-\mathrm{C}(54)$	$114.8(3)$
$\mathrm{C}(45)-\mathrm{O}(10)-\mathrm{C}(55)$	$116.4(3)$
$\mathrm{C}(61)-\mathrm{O}(13)-\mathrm{C}(67)$	$115.7(4)$
$\mathrm{C}(64)-\mathrm{O}(14)-\mathrm{C}(68)$	$117.3(3)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for sarpong81. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U11	U22	U33	U23	U13	U12
C(1)	52(2)	48(2)	41(1)	5(1)	17(1)	5(1)
C(2)	53(2)	45(2)	49(2)	6(1)	17(1)	8(1)
C(3)	55(2)	43(2)	64(2)	3(1)	24(1)	5(1)
C(4)	63(2)	42(2)	61(2)	3(1)	24(2)	4(1)
C(5)	59(2)	45(2)	57(2)	11(1)	22(1)	2(1)
C(6)	61(2)	65(2)	65(2)	7(2)	$22(2)$	1(2)
C(7)	60(2)	74(2)	62(2)	21(2)	26(2)	9(2)
C(8)	61(2)	84(3)	72(2)	16(2)	24(2)	11(2)
C(9)	$61(2)$	93(3)	87(3)	36(2)	34(2)	22(2)
C(10)	90(3)	77(3)	98(3)	29(2)	57(3)	34(2)
C(11)	70(2)	61(2)	88(3)	20(2)	46(2)	15(2)
$\mathrm{C}(12)$	60(2)	53(2)	66(2)	19(2)	34(2)	10(2)
C(13)	55(2)	46(2)	56(2)	9(1)	26(1)	7(1)
C(14)	54(2)	42(2)	51(2)	4(1)	24(1)	5(1)
C(15)	51(2)	41(2)	50(2)	3(1)	20(1)	7(1)
C(16)	48(2)	40(1)	46(1)	4(1)	15(1)	5(1)
C(17)	55(2)	43(2)	41(1)	5(1)	14(1)	5(1)
$\mathrm{C}(18)$	51(2)	46(2)	43(2)	6(1)	16(1)	2(1)
$\mathrm{C}(19)$	53(2)	50(2)	42(1)	5(1)	14(1)	3(1)
C(20)	57(3)	148(6)	143(5)	-1(4)	19(3)	13(3)
C(21)	138(5)	80(3)	174(6)	-27(4)	90(5)	22(3)
C(22)	44(1)	40(1)	44(1)	-2(1)	14(1)	2(1)
C(23)	48(2)	49(2)	46(2)	4(1)	13(1)	1(1)
C(24)	47(2)	50(2)	43(1)	4(1)	14(1)	1(1)
C(25)	55(2)	44(2)	48(2)	4(1)	14(1)	4(1)
C(26)	56(2)	43(2)	46(2)	3(1)	16(1)	-3(1)
C(27)	77(2)	48(2)	52(2)	-2(1)	23(2)	-2(2)
C(28)	85(2)	59(2)	49(2)	-4(2)	26(2)	-7(2)
C(29)	65(2)	68(2)	41(2)	7(1)	12(1)	-8(2)
C(30)	44(2)	59(2)	49(2)	12(1)	12(1)	3(1)
C(31)	45(2)	51(2)	46(2)	4(1)	14(1)	1(1)
C(32)	64(2)	55(2)	48(2)	8(1)	24(1)	9(2)
C(33)	178(6)	63(3)	84(3)	-5(2)	66(4)	27(3)
C(34)	70(2)	68(2)	61(2)	26(2)	17(2)	9(2)
C(35)	43(1)	41(2)	53(2)	-4(1)	13(1)	1(1)
C(36)	46(2)	42(2)	50(2)	$0(1)$	12(1)	3(1)
C(37)	52(2)	56(2)	54(2)	8(1)	10(1)	8(1)

$\mathrm{C}(38)$	$66(2)$	$49(2)$	$62(2)$	$10(2)$	$22(2)$	$4(2)$
$\mathrm{C}(39)$	$57(2)$	$50(2)$	$56(2)$	$0(1)$	$23(1)$	$0(1)$
$\mathrm{C}(40)$	$64(2)$	$55(2)$	$68(2)$	$3(2)$	$28(2)$	$-3(2)$
$\mathrm{C}(41)$	$55(2)$	$48(2)$	$60(2)$	$-12(1)$	$24(1)$	$2(1)$
$\mathrm{C}(42)$	$61(2)$	$53(2)$	$71(2)$	$-18(2)$	$32(2)$	$-12(2)$
$\mathrm{C}(43)$	$49(2)$	$56(2)$	$72(2)$	$-16(2)$	$15(2)$	$6(2)$
$\mathrm{C}(44)$	$51(2)$	$57(2)$	$77(2)$	$-6(2)$	$16(2)$	$7(2)$
$\mathrm{C}(45)$	$55(2)$	$48(2)$	$65(2)$	$-4(1)$	$17(2)$	$8(1)$
$\mathrm{C}(46)$	$50(2)$	$53(2)$	$52(2)$	$-9(1)$	$23(1)$	$-1(1)$
$\mathrm{C}(47)$	$50(2)$	$46(2)$	$54(2)$	$-3(1)$	$18(1)$	$2(1)$
$\mathrm{C}(48)$	$42(1)$	$42(2)$	$51(2)$	$3(1)$	$16(1)$	$4(1)$
$\mathrm{C}(49)$	$39(1)$	$43(2)$	$48(2)$	$7(1)$	$11(1)$	$6(1)$
$\mathrm{C}(50)$	$39(1)$	$45(2)$	$48(2)$	$1(1)$	$12(1)$	$2(1)$
$\mathrm{C}(51)$	$49(2)$	$45(2)$	$53(2)$	$-1(1)$	$18(1)$	$-1(1)$
$\mathrm{C}(52)$	$44(2)$	$43(2)$	$55(2)$	$-1(1)$	$17(1)$	$0(1)$
$\mathrm{C}(53)$	$49(2)$	$43(2)$	$64(2)$	$-7(1)$	$16(1)$	$2(1)$
$\mathrm{C}(54)$	$71(3)$	$73(3)$	$147(5)$	$-19(3)$	$56(3)$	$-13(2)$
$\mathrm{C}(55)$	$66(2)$	$65(3)$	$134(4)$	$40(3)$	$25(3)$	$13(2)$
$\mathrm{C}(56)$	$51(2)$	$48(2)$	$58(2)$	$-4(1)$	$21(1)$	$-3(1)$
$\mathrm{C}(57)$	$63(2)$	$68(2)$	$59(2)$	$-15(2)$	$24(2)$	$-13(2)$
$\mathrm{C}(58)$	$43(1)$	$40(2)$	$61(2)$	$-1(1)$	$17(1)$	$0(1)$
$\mathrm{C}(59)$	$57(2)$	$45(2)$	$78(2)$	$-3(2)$	$8(2)$	$-1(1)$
$\mathrm{C}(60)$	$52(2)$	$44(2)$	$69(2)$	$-4(2)$	$11(2)$	$-1(1)$
$\mathrm{C}(61)$	$62(2)$	$47(2)$	$81(2)$	$1(2)$	$2(2)$	$5(2)$
$\mathrm{C}(62)$	$61(2)$	$42(2)$	$88(3)$	$-6(2)$	$19(2)$	$2(1)$
$\mathrm{C}(63)$	$50(2)$	$44(2)$	$71(2)$	$-9(1)$	$26(2)$	$-6(1)$
$\mathrm{C}(64)$	$45(2)$	$46(2)$	$63(2)$	$-6(1)$	$23(1)$	$-6(1)$
$\mathrm{C}(65)$	$44(2)$	$42(2)$	$67(2)$	$2(1)$	$22(1)$	$0(1)$
$\mathrm{C}(66)$	$54(2)$	$41(2)$	$63(2)$	$-2(1)$	$20(1)$	$4(1)$
$\mathrm{C}(67)$	$128(5)$	$92(4)$	$89(3)$	$4(3)$	$4(3)$	$55(3)$
$\mathrm{C}(68)$	$67(2)$	$63(2)$	$53(2)$	$-9(2)$	$18(2)$	$-2(2)$
$\mathrm{N}(1)$	$58(2)$	$66(2)$	$51(1)$	$3(1)$	$15(1)$	$14(1)$
$\mathrm{N}(2)$	$44(1)$	$43(1)$	$40(1)$	$3(1)$	$10(1)$	$0(1)$
$\mathrm{N}(3)$	$47(2)$	$54(2)$	$81(2)$	$-6(1)$	$8(1)$	$5(1)$
$\mathrm{N}(4)$	$43(1)$	$46(1)$	$52(1)$	$-4(1)$	$15(1)$	$-5(1)$
$\mathrm{O}(1)$	$49(1)$	$45(1)$	$42(1)$	$5(1)$	$16(1)$	$7(1)$
$\mathrm{O}(2)$	$50(2)$	$123(3)$	$102(2)$	$4(2)$	$16(2)$	$7(2)$
$\mathrm{O}(3)$	$94(2)$	$55(2)$	$112(2)$	$-1(2)$	$64(2)$	$13(1)$
$\mathrm{O}(4)$	$49(1)$	$58(1)$	$61(1)$	$12(1)$	$15(1)$	$0(1)$
$\mathrm{O}(5)$	$47(1)$	$51(1)$	$50(1)$	$6(1)$	$9(1)$	$-3(1)$
$\mathrm{O}(6)$	$117(2)$	$56(2)$	$68(2)$	$8(1)$	$46(2)$	$26(2)$
$\mathrm{O}(7)$	$63(1)$	$75(2)$	$62(1)$	$26(1)$	$24(1)$	$20(1)$
$\mathrm{O}(8)$	$42(1)$	$41(1)$	$54(1)$	$-4(1)$	$13(1)$	$2(1)$
$\mathrm{O}(9)$	$65(2)$	$64(2)$	$89(2)$	$-9(1)$	$43(1)$	$-9(1)$

$\mathrm{O}(10)$	$56(1)$	$51(1)$	$83(2)$	$12(1)$	$23(1)$	$6(1)$
$\mathrm{O}(11)$	$42(1)$	$50(1)$	$56(1)$	$-2(1)$	$16(1)$	$-2(1)$
$\mathrm{O}(12)$	$56(1)$	$56(1)$	$71(1)$	$-12(1)$	$29(1)$	$-11(1)$
$\mathrm{O}(13)$	$95(2)$	$63(2)$	$103(2)$	$-10(2)$	$-21(2)$	$25(2)$
$\mathrm{O}(14)$	$66(1)$	$53(1)$	$62(1)$	$-9(1)$	$11(1)$	$4(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10$ 3) for sarpong81.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(2)	8589	2733	3116	58
H(3A)	8493	3501	3836	63
$\mathrm{H}(3 \mathrm{~B})$	8828	3040	4471	63
$\mathrm{H}(4)$	10058	3837	4511	65
H(6A)	11955	3528	4697	75
H(6B)	11802	3871	3980	75
H(9)	14193	2249	3860	93
H(10)	13117	1491	3258	99
H(13)	10300	2856	3071	60
H(14)	9668	1897	3273	56
H(17A)	8479	623	3854	56
H(17B)	9224	937	3493	56
H(18)	7309	1291	3363	55
H(20A)	15097	3669	4755	176
H(20B)	14963	3190	4135	176
H(20C)	15004	2912	4859	176
H(21A)	10864	751	2413	182
H(21B)	11779	656	3047	182
$\mathrm{H}(21 \mathrm{C})$	11872	1080	2427	182
H(23A)	10126	363	5947	71
H(23B)	9465	-238	5631	71
H(23C)	9118	251	6112	71
H(25)	8704	764	2432	59
H(28)	8001	1145	0	75
H(29)	7058	2068	-110	70
H(32A)	7487	2445	2278	65
H(32B)	6589	1955	2143	65
H(33A)	9407	515	384	154
H(33B)	8480	62	276	154
H(33C)	9492	-159	765	154
H(34A)	6098	3507	362	100
H(34B)	6080	2904	-119	100
H(34C)	7084	3232	262	100
H(36)	6096	8122	2480	55
H(37A)	5725	9039	1931	65

H(37B)	5866	9451	2598	65
H(38)	7087	9802	2106	70
H(40A)	9008	9334	2033	73
H(40B)	9083	9713	2720	73
H(43)	11695	8166	3492	72
H(44)	10824	7362	3821	74
H(47)	7743	8096	2418	59
H(48)	7350	7935	3416	53
H(51A)	6298	8114	4774	58
H(51B)	7097	7859	4426	58
H(52)	5098	7897	3885	56
H(54A)	12317	9543	2803	138
H(54B)	12177	8784	2698	138
H(54C)	12344	9088	3427	138
H(55A)	9808	6906	4367	134
H(55B)	9715	6529	3682	134
H(55C)	8869	6484	4042	134
H(57A)	6683	9750	6059	93
H(57B)	6016	10230	5528	93
H(57C)	7128	10145	5554	93
H(59A)	6441	6652	4184	74
H(59B)	7189	6949	3815	74
H(62)	6686	4801	2789	77
H(63)	5392	5065	1905	64
H(66)	4746	7287	2535	62
H(67A)	8286	4918	3395	163
H(67B)	7638	4588	3815	163
H(67C)	8637	4923	4195	163
H(68A)	3576	5956	810	91
H(68B)	3892	5352	1297	91
H(68C)	4634	5657	935	91
H(2A)	10092	1137	5249	51
H(4A)	7467	9498	4824	56

Section 3.9.4. Computational information

The reaction was studied with the B3LYP/6-31+G(d,p) DFT method ${ }^{63}$ implemented in GAUSSIANO9 ${ }^{64}$, Frequency analysis was used to assign stationary points to confirm global minima due to the absence of imaginary frequencies. The calculation was carried out in the gas phase at standard temperature and pressure. Structural images were created using Ball \& Stick. ${ }^{65}$ Energies reported are gas phase Gibbs free energies in Hatree/particle.

Section 3.10. References

1. Bordwell, F. G.; Drucker, G. E. "Acidities of indene and phenyl-, diphenyl-, and triphenyl indenes" J. Org. Chem. 1980, 45, 3325 - 3328.
2. "Elsevier's dictionary of chemoetymology: The whys and whences of chemical nomenclature and terminology" Senning, A. 2007, Amsterdam, Elsevier, 200.
3. Ivchenko, N. B.; Ivchenko, P. V.; Nifant'ev, I. E. "Methods of synthesis of substituted cyclopentadienes and indenes" Russ. J. Org. Chem. 2000, 36, 609 637.
4. For approaches to tetrapetalones using indenes see Frontier, A. J.; Collison, C. "The Nazarov cyclization in organic synthesis. Recent advances" Tetrahedron 2005, 61, 7577 - 7606. b) Carlsen, P. N.; Mann, T. J.; Hoveyda, A. H.; Frontier,
A. J. "Synthesis of (+/-)-tetrapetalone A-Me aglycon. "Angew. Chem. Int. Ed." 2014, 53, 9334 - 9338. c) Marcus, A. P.; Sarpong, R. S. "Synthesis of the tetracyclic core of tetrapetalone A enabled by a pyrrole reductive alkylation" Org. Lett. 2010, 12, 4560 - 4563.
5. $\mathrm{C}-\mathrm{H}$ insertion route to indenes have mainly been explored in the context of fluorene synthesis see: a) Kim, J.; Ohk, Y.; Park, S.; H.; Jung, Y.; Chang, S. "Intramolecular aromatic carbenoid insertion of biaryldiazoacetates for the regioselective synthesis of fluorenes" Chem. Asian. J. 2011, 6, 2040 - 2047. b) Liu, Z.; tan, H.; Wang, L.; Fu, T.; Xia, Y.; Zhang, Y.; Wang, J. "Transition-metalfree intramolecular carbene aromatic substitution/Büchner reaction: synthesis of fluorenes and [6,5,7]benzo-fused rings" Angew. Chem. Int. Ed. 2015, 54, 3056 3060. c) Nakatani, K. "Synthesis of 2-indanones by intramolecular insertion of α diazoketones" Tetrahedron Lett. 1987, 28, 165 - 166.; d) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. "Diverse strategies toward indenol and fulvene derivatives: Rh-catalyzed C-H activation of aryl ketones followed by coupling with internal alkynes." J. Am. Chem. Soc. 2011, 133, 2154 - 2156. e) Kuniobu, Y.; matsuki, T.; Takai, K. "Rhenium-catalyzed synthesis of indenones by novel dehydrative trimeization of aryl aldehydes via $\mathrm{C}-\mathrm{H}$ bond activation" Org. Lett. 2010, 12, 2948 - 2950.
6. Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong, R. "Pt-catalyzed pentannulations from in situ generated metallo-carbenoids utilizing propargyl esters" J. Am. Chem. Soc., 2005, 127, 12468-12469.
7. a) Wang, L.-J.; Zhu, H.-T.; Wang, A.-Q.; Qui, Y.-F.; Liu, X.-Y.; Liang, Y.-M. "Goldcatalyzed tandem [3,3]-propargyl ester rearrangement leading to (E)-1H-inden-1ones" J. Org. Chem. 2014, 79, 204 - 212. b) Nakanishi, Y.; Miki, K.; Ohe, K. "Transition metal-catalyzed pentannulation of propargyl acetates via styrylcarbene intermediates" Tetrahedron 2007, 63, 12138 - 12148. c) Asikainen, M.; Woodward, S. "Allenyl ester precursors for 1H-inden-1-ol carboxylates: comparisons with their propargylic equivalents having terminal alkyne functions" Tetrahedron 2012, 68, 5492 - 5497. d) Marion, N.; Nolan, S. P.; "Au'-catalyzed tandem $[3,3]$ rearrangement-intramolecular hydroarylation: Mild and efficient formation of substituted indenes" Angew. Chem. Int. Ed. 2007, 46, 2750 - 2752.; Nun, P.; Gaillard, S.; Poater, A.; Cavallo, L.; Nolan, S. P. "A combined mechanistic and computational study of the gold(I)-catalyzed formation of substituted indenes" Org. Biomol. Chem. 2011, 9, 101 - 104. e) Wang, Y.; Liao, W.; Huang, G.; Xia, Y.; Yu, Z.-X. "Mechanisms of the PtCl ${ }_{2}$-catalyzed intramolecular cyclization of o-isopropyl-substituted aryl alkynes for the synthesis of indenes and comparison of three C-H bond activation modes" J. Org. Chem. 2014, 79, 5684 - 5696. b) Yang, S.; Li, Z.; Jian, X.; He, C. "Platinum(II)-catalyzed intramolecular cyclization of o-substituted aryl alkynes through sp3 C - H activation" Angew. Chem. Int. Ed. 2009, 48, 3999 - 4001. f) Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. "Platinum- and gold-catalyzed cycloisomerization reactions of hydroxylated enynes" J. Am. Chem. Soc. 2004, 126, 8654 - 8655. g) Zhao, J.; Clark, D. A. "Regiodivergent synthesis of functionalized indene
derivatives via Pt-catalyzed Rautenstrauch reaction of propargyl carbonates" Org. Let. 2012, 14, 1668 - 1671.
8. Rautenstrauch, V. "2-cyclopentenones from 1-ethynyl-2-propenyl acetates" J. Org. Chem. 1984, 49, 950 - 952. B) For a review on palladium-catalyzed Rautenstrauch rearrangements see "Guo, L.-N.; Duan, X.-H.; Liang, Y.-M. "Palladium-catalyzed cyclization of propargylic compounds" Acc. Chem. Res. 2011, 44, 111 - 122.
9. a) For a review on the kinamycin natural products see Woo, C. M.; Herzon, S. B. "The diazofluorene antitumor antibiotics: structural elecuidation, biosynthetic, synthetic, and chemical biological studies" Nat. Prod. Rep. 2012, 29, 87 - 118. a) Kumamoto, T.; Tabe, N.; Yamaguchi, K.; Ishikawa, T. "Synthetic studies on kanamycin antibiotics: elaboration of a highly oxygenated D-Ring" Tetrahedron Lett. 2000, 41, 5693 - 5697.
10. Alverez-Manzaneda, E.; Chaboun, R.; Cabreara, E.; Alvarez, E.; AlvarezManzaneda, R.; Meneses, R.; Es-Samti, H.; Fernandez, A. "A very efficient route toward the 4a-methyltetrahydrofluorene skeleton: shot synthesis of (+/-)dichroanone and (+/-)-taiwaniaquinone H" J. Org. Chem. 2009, 74, 3384 - 3388. Liao, X.; Stanley, L. M., Hartwig, J. F. "Enantioselective total syntheses of (-)taiwaniaquinol B by iridium-catalyzed borylation and palladium-catalyzed asymmetric a-arylation" J. Am. Chem. Soc. 2011, 133, 2088 - 2091.
11.Maddess, M. L.; Scott, J.P., Alorati, A.; Baxter, C; Bremeyer, N.; Brewer, S.; Campos, K., Cleator, E.; Diguez-Vazquez, A.; Gibb, A. et. al. "Enantioselective synthesis of a highly substituted tetrahydrofluorene derivative as a potent and selective estrogen receptor beta agonist" Org. Process Res. Dev. 2014, 18, 528 - 538. Scott, J.P.; Ashwood, M. S.; Brands, K. M. J.; Brewere, S. E.; Cowden, C. J.; Dolling, U.-H.; Emerson, K. M.; Gibb, A. D.; Goodyear, A.; Oliver, S. F.; Stewart, G. W.; Wallace D. J. "Development of a phase transfer catalyzed asymmetric synthesis for an estrogen receptor beta selective agonist" Org. Process Res. Dev. 2008, 12, 723-730.
11. a) Hook, J. M.; Mander, L. N., Urech, R. "General strategy for gibberellin synthesis: total synthesese of (+)-gibberellin A1 and gibberellic acid" J. Am. Chem. Soc. 1980, 102, 6626 - 6628. b) Beames, D. J.; Mander, L. N.; Turner, J. V. "Studies on intramolecular alkylation. VIII. The preparation of fluorene-derived tetracyclic ketones: Intermediates for gibberellin synthesis" Aust. J. Chem. 1974, 27, 1977 - 1984. c) Lombardo, L.; Mander, L. N.; Turner, J. V. "Total synthesis of gibberellic acid. The hydrofluorene route" J. Am. Chem. Soc. 1980, 102, 6626 6629. d) Hook, J. M.; Mander, L. N. "Reductive alkylation of 2,5dimethoxybenzoic acid: a direct synthesis of dihydrofluorene-2-ones" J. Org. Chem. 1980, 45, 1722 - 1724.
12. Mezhenever, V. V.; Geivandov, R. C. "A new synthetic approach towards 7subsituted 2-alkyl-2,3,4,9-tetrahydro-1H-fluorenes" Russ. Chem. Bull. 2012, 60, 2114 - 2116. Kiyooka, S.; Matsumoto, S.; Umezu, S.; Fuji-yama, R.; Kaneno, D. "Intramolecular titanium-promoted deoxygenative cyclization to 9-substituted-1,2,3,4-tetrahydrofluorene skeleton" Tetrahedron Lett. 2010, 51, 1651 - 1653.
13. Singh, R.; Panda, G. "Application of Nazarov type electrocyclization to access $[6,5,6]$ and $[6,5,5]$ core embedded new polycycles: an easy entry to tetrahydroflourene scaffolds related to taiwaniaquinoids and C-norDhomosteroids" Org. Biomol. Chem. 2011, 9, 4782 - 4790.
14. Fried, J.; Nedumparambil, A. A. "Total synthesis of (-)-desoxoprosopinine via the diastereoselective reduction of homochiral 2-acyl-N-boc-oxazolidines" Tetrahedron Lett. 1965, 39, 3505-3508.
16.3-vinylindene Diels-Alder reactions have been investigated extensively to access tetrahydrofluorenes see: Bergamasco, R.; Porter, Q. N. "Vinylindenes and some heteroanalogues in the Diels - Alder reaction II. Substituted fluorenes from 3vinylindenes" Aust. J. Chem. 1977, 30, 1061 - 1071.; For an example of a 3vinylindene Diels-Alder reaction to access fluostatin C see Yu, M.; Danishefsky, S. J. "A direct route to fluostatin C by a fascinating Diels - Alder reaction" J. Am. Chem. Soc. 2008, 130, 2783 - 2785.
15. The bromination of fluorene, for example, occurs readily at the 2 - and 7-positions and has been used extensively in polymer synthesis see: Price Jr., D. W.; Tour, J. M. "Biphenyl- and fluorenyl-based potential molecular electronic devices" Tetrahedron 2003, 59, 3131 - 3156.; Service, R. F. "Molecules get wired" Science 2001, 294, 2442 - 2443.
16. Adam, W.; De Lucchi, O. "Thermal rearrangement of 5,6-benzotricyclo[3.2.0.02,7]hept-5-ene into 2-vinylindene via an intramolecular retro-Diels-Alder reaction"J. Org. Chem. 1980, 45, 4167-4168.
17. a) For the utility of alkynes in cycloisomerization reactions see Sato, T.; Onuma, T.; Nakamura, I.; Terada, M. "Platinum-catalyzed cycloisomerization of 1,4enynes via 1,2-alkenyl rearrangement" Org. Lett., 2011, 13, 4992 - 4995.; Nakamura, I.; Bajira-charya, G. B.; Wu, H.; Oishi, K.; Mizushima, Y.; Gridnev, I. D.; Yamamoto, Y. "Catalytic cyclization of o-alkynylbenzaldehyde acetals and thioacetals. Unprecedented activation of the platinum catalyst by olefins. Scope and mechanism of the reaction" J. Am. Chem. Soc. 2004, 126, 15423-15430.
18. For recent synthesis of 2-vinylindenes using a retro-Büchner reaction see: Wang, Y.; McGonigal, P. R.; Herlé, B.; Besora, M.; Echavarren, A. M. "Gold(I) carbenes by retro-Buchner reaction: Generation and fate" J. Am. Chem. Soc. 2014, 136, 801 - 809.; using barbaralyl cations see: McGonigal, P. R.; de León, C.; Wang, Y.; Homs, A. Solorio-Alvarado, C. R.; Echavarren, A. M. "Gold for the generation and control of fluxional barbaralyl cations" Angew. Chem. Int. Ed. 2012, 51, 13093-13096.
19. See Greger, I.; Kehr, G.; Frölich, R.; Erker, G. Functional group chemistry at the group 4 bent metallocene framework: [2+2] cycloaddition of the parent bis(vinyl-Cp/vinyl-ind) ZrCl_{2} systems" Organomet. 2010, 29, 860 - 866 and references therein.
20. Binggeli, A.; Christ, A.; Maerki, H.-P.; Martin, R. E., Pyrimidine, quinazoline, pteridine and triazine derivatives. U.S. patent 225271 A1, Sep 09, 2007.
21. Dewar, M. Bull. Soc. Chim. Fr. 1951, 1, C79 b) Chatt, J.; Duncason, L. A. "Olefin co-ordination compounds. Part III. Infrared spectra and structure: attempted preparation of acetylene complexes" in J. Chem. Soc. 1953, 2939.
22. Chemical and electronic properties of polycyclic aromatic hydrocarbons: a review. In Handbook of polycyclic aromatic hydrocarbons, Bandeira, G. C.; Meneses, H. E., Ed., 2013, pp 309 - 329.
23. Balasubramaniyan, V. "peri-Interaction in naphthalene derivatives" Chem. Rev. 1996, 66, 567 - 641
24. For a review on strong bond C-O cross coupling reactions see Mesganaw, T.; Garg, N. K. "Ni- and Fe-catalyzed cross-coupling reactions of phenol derivatives" Org. Process. Res. Dev. 2013, 17, 29 - 39; Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. "Nickelcatalyzed cross-couplings involving carbon-oxygen bonds" Chem. Rev. 2011, 111, 1346 - 1416.; Guan, B.-T.; Wang, Y.; Yu, D.-G.; Shi, Z.-J. "Biaryl construction via Ni-catalyzed C-O activation of phenolic carboxylates" J. Am. Chem. Soc. 2008, 130, 14468 - 14470.; Li, B.-J.; Li, Y.-Z.; Lu, X.-Y.; Liu, J.; Guan, B.-T.; Shi, Z.-J. Angew. Chem. Int. Ed. 2008, 47, 10124 - 10127.
25. Comins, D. L.; Dehghani, A. "Pyridine-derived triflating reagents: An improved preparation of vinyl triflates from metallo enolates" Tetrahedron Lett. 1992, 33, 6299-6302.
26. The conjugate addition products could also arise from the addition of 2 bromoindene into ethyl acrylate. When 2-bromoindene was reacted with methylacrylate in the presence of triethylamine, no reaction was observed. Switching to 1,8-diazabicycloudec-7-ene resulted in polyconjugate addition products.
27. Liu, L.-Z.; Han, J.-C.; Yue, G.-Z.; Chuang-Chuang, Y. Z. "Asymmetric total synthesis of caribenol A" J. Am. Chem. Soc. 2010, 132, 13608-13609.
28. See Deslongchamps, G.; Deslongchamps, P. "Bent bonds and the antiperiplanar hypothesis as a simple model to predict Diels-Alder reactivity: retrospective or perspective?" Tetrahedron, 2013, 69, 6022-6033. and references therein.
31.Houk, K. N.; González, J.; Li, Y. "Pericyclic reaction transition states: passions and punctilios, 1935 - 1995" Acc. Chem. Res. 1995, 28, 81 - 90.
29. Full experimental details can be found in the Supporting Information.
30. Herzon, S. B.; Lu, L.; Woo, C. M.; Gholap, S. L. "11-step enantioselective synthesis of (-)-lomaiviticin aglycon J. Am. Chem. Soc. 2011, 133, 7260 - 7263.; Woo, C. M.; Gholap, S. L.; Lu, L.; Miho, K.; Zhenwu, L.; Ravikumar, P. C.; Herzon, S. B. "Development of enantioselective synthetic routes to (-)lomaiviticin aglycon" J. Am. Chem. Soc. 2012, 134, 17262 - 17273.; Woo, C. M.; Beizer, N. E.; Janso, J. E.; Herzon, S. B. "Isolation of lomaiviticins C - E, transformations of lomaiviticin C to lomaiviticin A, complete structure elucidation of lomaiviticin A, and structure - activity analyses" J. Am. Chem. Soc. 2012, 134, 15285-15288.
31. a) Nicolaou, K. C.; Denton, R. M.; Lenzen, A.; Edmons, D. J.; Li, A.; Milburn, R. R.; Harrison, S. T. "Stereocontrolled synthesis of model core systems of
lomaiviticins A and B" Angew. Chem. Int. Ed. 2006, 45, 2076 - 2081. b) Zhang, W.; Baranczak, A.; Sulikowski, G. A. "Stereocontrolled assembly of the C3/C3' dideoxy core of lomaiviticin A/B and congeners" Org. Lett. 2008, 10, 1939 1941. c) Krygowski, E. S.; Murphy-Benenato, K.; Shar, M. D. "Enantioselective synthesis of the central ring system of lomaiviticin A in the form of an unusually stable hydrate" Angew. Chem. Int. Ed. 2008, 47, 1680 - 1684.; Lee, H. G.; Ahn, J. Y.; Lee, A. S.; Shair, M. D. "Enantioselective synthesis of the lomaiviticin aglycon full carbon skeleton reveals remarkable remote substituent effects during the dimerization event" Chem. Eur. J. 2010, 16, 13058 - 13062.
32. Zhao, D. C.; Allen, A. D.; Tidwell, T. T. "Preparation and reactivity of persistent and stable silyl-substituted bisketenes" J. Am. Chem. Soc. 1993, 115, 10097 10103.
33. Oku, A.; Urano, S.; Nakaji, T.; Qing, G.; Abe, M. "Bis(2-acetoxyacrylonitrile) and its phenylene and alkylene bis homologs. Preparation, isomerization, and intramolecular [2 + 2] photocycloaddition" J. Org. Chem. 1992, 57, 2263 - 2266.
34. Burton, D. E.; U.S. Patent 3644637 (A)., Feb. 22, 1972.
35. Wasserman, H. H.; DeSimone, R. W. "Singlet oxygen oxidation of bipyrroles: Total synthesis of d,l- and meso-isochrysohermidin" J. Am. Chem. Soc. 1993, 115, 8457 - 8458.
36. Nishiguchi, A.; Maeda, K.; Miki, S. "Sulfonyl chloride formation from thiol deriviatives by N -chlorosuccinimide mediated oxidation" Synthesis 2006, 24, 4131-4134.
37. a) Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W. "Stereo-controlled synthesis of dl-prostogalandins $\mathrm{F}_{2 a}$ and $\mathrm{E}_{2} "$ J. Am. Chem. Soc. 1969, 91, 5975 5677. a) Evans, D. A.; Rovis, T.; Johnson, J. S. "Chiral copper(II) complexes as Lewis acids for catalyzed cycloaddition, carbonyl addition and conjugate addition reactions" Pure Appl. Chem. 1999, 71, 1407 - 1415. b) Chiral bis(oxazoline) copper(II) complexes: versatile catalysts for enantioselective cycloaddition, Aldol, Michael, and carbonyl Ene reactions" Acc. Chem. Res. 2000, 33, 325 - 335. c) Reymond, S.; Cossy, J. "Copper-catalyzed Diels-Alder reactions" Chem. Rev. 2008, 108, 5359 - 5406.
38. Schmittel, M.; Seggern, H. "Ketene-diene [4 + 2] cycloaddition products via cation radical initiated Diels - Alder reaction or vinylcyclobutanone rearrangement" J. Am. Chem. Soc. 1993, 115, 2165 - 2177. b) Gassman, P. G.; Singleton, D. A. "Distinction between aminium cation radical and protic acid catalyzed Diels Alder reactions" J. Am. Chem. Soc. 1984, 106, 7993 - 7994. c) Bellville, D. J.; Wirth, D. W.; Bauld, N. L. "Cation-radical catalyze Diels - Alder reaction" J. Am. Chem. Soc. 1981, 103, 718-720.
39. Heydari, A. "Organic synthesis in an unconventional solvent, 5.0 M lithium perchlorate/diethyl ether" Tetrahedron 2002, 58, 6777 - 6793. b) Grieco, P. A.; Nunes, J. J.; Gaul, M. D. "Dramatic rate accelerations of Diels - Alder reactions in 5 M lithium perchlorate-diethyl ether: the cantharidin problem reexamined" J. Am. Chem. Soc. 1990, 112, 4595 - 4596.
40. Cella, R.; Stefani, H. A. "Ultrasound in heterocycles chemistry" Tetrahedron 2009, 65, 2619 - 2641.
41. Rideout, D. C.; Breslow, R. "Hydrophobic acceleration of Diels - Alder reactions" J. Am. Chem. Soc. 1980, 102, 7816 - 7817.
42. Hugelshofer, C. L.; Mangauer, T. "High-Pressure transformations in natural product synthesis" Synthesis, 2014, 46, 1279 - 1296.; Matsumoto, K.; Toda, M.; Uchida, T. "Diels - Alder reactions of heterocyclic dienes" Org. Synth. High. Press. 1991, 287 - 326.
43. Belluco, U.; Michelin, R. A.; Ros, R.; Bertani, R.; Facchin, G.; Mozzon, M.; Zanotto, L.; Inorg. Chim. Acta 1992, 198 - 200, 883 - 897.
47.Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. "Radical cation Diels - Alder cycloadditions by visible light photocatalysis" J. Am. Chem. Soc. 2011, 133, 19350-19353.
44. Smith III, A. B.; Liverton, N. J.; Hrib, N. J.; Sivaramakrishnan, H.; Winzenberg, K. "Total synthesis of (+)-jatropholones A and B. Exploitation of the high-pressure technique" J. Am. Chem. Soc. 1986, 108, 3040 - 3048.
45. a) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. "Transition metalmediated synthesis of monocyclic aromatic heterocycles" Chem. Rev. 2013, 113, 3084 - 3213. b) Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E. F. "An extremely facile synthesis of furans, pyrroles and thiophens by the dehydrative cyclization of propargyl alcohols" Org. Lett. 2009, 11, $4624-4627$.
50.Zhu, L.; Luo, J.; Hong, R. "Total synthesis of (+/-)-cafestol: a late-stage construction of the furan ring inspired by a biosynthesis strategy" Org. Lett. 2014, 16, 2162 - 2165.
46. Zhu, Yuanming, Tu, Y., Yu, H., Shi, Y. "Highly enantioselective epoxidation of enol silyl ethers and esters." Tetrahedron Lett. 1998, 39, 7819-7822.
47. Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. "The asymmetric synthesis of a-amino acids. Electrophilic azidation of chiral imide enolates, a practical approach to the synthesis of (R)-and (S)- a-azido carboxylic acid" J. Am. Chem. Soc. 1990, 112, 4011 - 4030.
48. Maruyama, K.; Osuka, A.; Naruta, Y. "Photochemical reaction of 3,3-dimethyl-1,2-indanedione with xanthene" Bull. Chem. Soc. Jpn. 1978, 51, 3047 - 3052.
49. a) Pu, X.; Ready, J. M. "Direct and stereospecific synthesis of allenes via reduction of propargylic alcohols with $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}$ " J. Am. Chem. Soc. 2008, 130, 10874 -10875. b) Myers, A. G.; Zheng, B. "New and stereospecific synthesis of allenes in a single step from propargylic alcohols" J. Am. Chem. Soc. 1996, 118, 4492 - 4493.
50. a) O'Brien, E. M.; Bercot, E. A.; Rovis, T. "Decarbonylative cross-coupling of cyclic anhydrides: introducting stereochemistry at an sp^{3} carbon in the cross coupling event" J. Am. Chem. Soc. 2003, 125, 10498 - 10499. b) Jones, G. D.; McFarland, C.; Anderson, T. J.; Vicic, D. A. "Analysis of key steps in the catalytic cross-coupling of alkyl electrophiles under Negishi-like conditions" Chem. Commun. 2005, 4211 - 4213. c) Goldup, S. M.; Leigh, D. A.; McBurney, R. T.; McGonigal, P. R.; Plant, A. "Ligand-assisted nickel-catalysed $s p^{3}-s p^{3}$
homocoupling of unactivated alkyl bromides and its application to the active template synthesis of rotaxanes" Chem. Sci. 2010, 1, 383 - 386. d) Kajita, Y.; Kurahashi, T.; Matsubara, S. "Nickel-catalyzed decarbonylative addition of anhydrides to alkynes" J. Am. Chem. Soc. 2008, 130, 17226 - 17227. Semmelhack, M. F.; Helquist, P.; Jones, L. D.; Keller, L.; Mendelson, L.; Ryono, L. S.; Smith, J. G.; Stauffer, R. D. "Reaction of aryl and vinyl haldies with zerovalent nickel - preparative aspects and the synthesis of alnusone" J. Am. Chem. Soc. 1981, 103, 6460 - 6471.
51. a) Secoeuphoractin isolation Xu, W.-D.; Ye, T.; Guo, Q.-L.; Yang, Y.-C.; Shi, J.G. "Secoeuphorbactin, a minor diterpenoid with a new skeleton from Euphorbia micractina." Chin. Chem. Lett. 2014, 25, 1531 - 1534. b) Euphorbactin isolation Tian, Y.; Guo, Q.; Xu, W.; Zhu, C.; Yang, Y.; Shi, J. "A minor diterpenoid with a new 6/5/7/3 fused-ring skeleton from Euphorbia micractina." Org. Lett. 2014, 16 3950 - 3953.; Tian, Y.; Xu, W.; Zhu, C.; Lin, S.; Guo, Y.; Shi, J. "Diterpenoids with diverse skeletons from the roots of Euphorbia micractina." J. Nat. Prod. 2013, 76, 1039 - 1046. c) Euphoractin E see Shi, J.-G.; Jia, Z.-J. "Diterpenoids from Euphorbia micractina." Phytochemistry, 1995, 38, 1445-1447.
57.) Shi, Q.-W.; Su, X.-H.; Kiyota, H. "Chemical and pharmacological research of the plants in genus Euphorbia." Chem. Rev. 2008, 108, 4295 - 4327. b) Durán-Peña, M. J.; Res, J. M. B.; Collado, I. G.; Hernández-Galán, R. "Biologically active diterpenes containing a gem-dimethylcyclopropane subunit: an intriguing source of PKC modulators" Nat. Prod. Rep. 2014, 31, 940 - 952.
52. For recent interest in ingenol see: McKerral, S. J.; Jorgensen, L.; Kuttruff, C. A.; Ungeheuer, F.; Baran, P. S. "Development of a concise synthesis of (+)-ingenol" J. Am. Chem. Soc. 2014, 136, 5799 - 5810.; Jøgensen, L.; McKerral, S. J.; Kuttruff, C. A.; Ungeheuer, F.; Felding, J.; Baran, P. S. "14-Step synthesis of (+)ingenol from (+)-3-carene." Science, 2013, 341, 878 - 882.
53. Ingenol approval Keating, G. M. "Ingenol mebutate gel 0.015\% and 0.05\%." Drugs, 2012, 72, 2397 - 2405.
54. a) For the isolation of prostratin see: Gustafson, K. R.; Munro, M. H. G.; Blunt, J. W.; Cardellina, J. H., II; McMahon, J. B.; Gulakowski, R. J.; Cragg, G. M.; Cox, P. A.; Brinen, L. S.; Clardy, J.; Boyd, M. R. "HIV inhibitor natural products. 3. Diterpenes from hoalantus acuminatus and chrysobalanus icaco." Tetrahedron 1991, 47, 4547 - 4554.; Gustafson, K. R.; Cardellina, J. H., II; McMahon, J. B.; Gulakowski, R. J.; Ishitoya, J.; Szallasi, Z.; Lewin, N. E.; Blumberg, P. M.; Weislow, O. S.; Beutler, J. A.; Buckheit, R. W., Jr.; Cragg, G. M.; Cox, P. A.; Bader, J. P.; Boyd, M. R. "A nonpromoting phorbol from the Samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1." J. Med. Chem. 1992, 35, 1978 - 1986. b) Determination of prostratin biological activity see Gulakowski, R. J.; McMahon, J. B.; Buckheit, R. J., Jr.; Gustafson, K. R.; Boyd, M. R. "Antireplicative and anticytopathic activities of prostratin, a non-tumor-promoting phorbol ester, against human immunodeficiency virus (HIV) ${ }^{1}$." Antiviral Res. 1997, 33, 87 - 97.; Wivrouw, M.; Pannecouque, C.; Fikkert, V.; Hantson, A.; Van Remoortel, B.; Hezarah, M.; De Clerq, E.; Brown, S. J. "Potent and selective
inhibition of HIV and SIV by prostratin interacting with viral entry." Antiviral Chem. Chemo. 2003, 14, 321 - 328.; Rullas, J.; Bermejo, M.; Garcia-Perez, J.; Beltan, M.; Gonzalez, N.; Hezareh, M.; Brown, S. J.; Alcami, J. "Prostratin induces HIV activation and downregulates HIV receptors in peripheral blood lymphocytes." Antivirial Ther. 2004, 9, 545 - 554.
55. a) Davies, H. M. L.; Alford, J. S.; "Reactions of metallocarbenes derived from N -sulfonyl-1,2,3-triazoles." Chem. Soc. Rev. 2014, 43, 5151 - 5162. b) Parr, B. T.; Davies, H. M. "Rhodium-catalyzed tandem cyclopropanation/Cope rearrangement of 4-alkenyl-1-sulfonyl-1,2,3-triazoles with dienes." Angew. Chem. Int. Ed. 2013, 52, 10044 - 10047.; b) For intramolecular variant with rhodium to make azapines see Shultz, E. E.; Lindsay, V. N. G.; Sarpong, R. "Expedient synthesis of fused azepine derivatives using a sequential rhodium(II)-catalyzed cyclopropanation/1-aza-cope rearrangement of dienyltriazoles." Angew. Chem. Int. Ed. 2014, 53, 9904 - 9908.; Tian, Y.; Wang, Y.; Shang, H.; Xu, X.; Tang, Y. "Rhodium(II)-catalyzed intramolecular formal [4+3] cycloadditions of dienyltriazoles: rapid access to fused 2,5-dihydroazepines." Org. Biomol. Chem. 2015, 13, 612 - 619.
56. Cui, Y.; Jiang, H.; Li, Z.; Wu, N.; Yang, Z.; Quan, J. "Unexpected regioselectivity in the synthesis of pyranonapthoquinone via the Diels-Alder reaction" Org. Lett. 2009, 11, 4628 - 4631.
63.A. D. Becke, "Density-functional thermochemistry. III. The role of exact exchange," J. Chem. Phys. 1993, 985648 - 5652..; C. Lee, W. Yang, and R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Phys. Rev. B, 1988, 37, 785 - 789.; B. Miehlich, A. Savin, H. Stoll, and H. Preuss, "Results obtained with the correlationenergy density functionals of Becke and Lee, Yang and Parr," Chem. Phys. Lett., 1989, 157, 200 - 206.
57. Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; lyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
58. Ball and Stick 4.0a12, Muller, N.; Faulk, A. Johannes Kepler University Linz 2004.

APPENDIX III - Selected Spectra

00\% 00 -

$0 て ゙ \angle L$ -

S3.2c

86° G Ll $^{-}$

S3.3c-1 and S3.3c-2

$6 く ゙ \downarrow \downarrow$
9LGS
9て 60 －
くロ゙くてじ
OZOGL－
$8 \varepsilon^{\circ}$ GLZ

88° と $て$

qs＇દS

$\begin{array}{r} \text { ع1つのכ } 16.94 \\ \text { عO. } \\ \hline \hline \end{array}$
ह1つつつ 91：LL としつのつ トナ゙LL
OG＇LIL
90．021
くでで1
0ャ゙で1
19＇Zて।
ャレ・とて1
L6．921
Gで9て－
0088
29．8て1
七L゙8て1
6ト＇9カレ
$88 .\llcorner$－
SE＇ZS1－

S3.6a

S3.6b

OFOLR－
とで七んレー

S3．7a

S3.7b

$91^{\circ} \varepsilon<1-$

S3.7c

S3.7d

S3.7d

(

どつロ○ $\angle 1 \cdot \angle L$

S3.7h

S3.7h

[^5]
S3.7i

S3.7i

S3.7k

S3.8a

で・モも
80．8L－
LS＇G6－

S3．8b

S3.8c

S3.8d

S3.8e

S3.8h

S3.9a

$8 L^{\circ} \varepsilon$ L
$\rightarrow 88^{\circ} \mathrm{tG}$
$\downarrow Z^{\circ} G$
90＇88－ 8でレ6
69닌
89．601
$96^{\circ} \stackrel{\downarrow}{ }$
$69^{\circ} \angle 21$
$9090 \angle 9^{\circ} \angle 2$ L
$96 . \angle Z L$
0で8て1
1く1と
SO 9と
90 そヤし
$06{ }^{\circ}$ くヤし
ャレ・OG1

S3．9b

$\begin{aligned} & 9 \varepsilon \cdot \varepsilon 1 \\ & \mathrm{c} \cdot \varepsilon \mathrm{E} \end{aligned}$
81．02
$89^{\circ} \downarrow$ ¢
$\begin{aligned} & 19^{\circ} \mathrm{Z} \downarrow \\ & 2 Z^{\prime} \varepsilon t \\ & \varepsilon t^{\prime} 9 t^{\prime} \end{aligned}$

	$\begin{aligned} & 68.801 \\ & 9 Z^{\circ} 601 \end{aligned}$
	Gs＊ 2 LL
	ご「ご
	ャて＇9て1
9090	てG＇Lて
	09 LCL
9090	$89^{\circ} \mathrm{LZ}$
9090	
	L6＇$\angle 21$
	LO\％ 0 －
	$6 \nabla^{\circ} 0 \varepsilon 1$
	เどカャレ
	Ot＇OS
	96.0 L
	G0＇0LL
	どっしくよ

S3．10

S3.13
S3．13

S0．81L
$\angle 1021$
SO． t て
18.9 L
66．9て
10．$\angle E L$
$6 \angle \angle E L$

19くも
0ヵ゙ 291
カージてんし－

S3.15
96．601－
1081～
ャ0 \＆とし－
カ60カー
LE＇OSト
LL＇レSト
O1・カロて－

S3．15

53.17

S3.20b

$\angle 0.601$
LIOL

ट1．OS1
๖て＇os

七G 89 － 6でてくし

عーコ モЮロソ $\angle \varepsilon \angle L$

$88^{\circ} 821$
 ع0 0 に

 LんLEL

S3．21

[^0]:

[^1]:

[^2]:

[^3]: $\left.\begin{array}{llllllllllllllllllllllll}200 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 1000 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}\right)-2$

[^4]:

[^5]:

