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Abstract

Multisymplectic Geometry in General Relativity and other Classical Field Theories
on Manifolds with Boundaries: A Deobfuscating Role

by

Amelia F. Nissenbaum

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Nicolai Reshetikhin, Chair

In Chapter 2, the multisymplectic formalism of field theories developed over the
last fifty years is extended to deal with manifolds that have boundaries. In particular,
a multisymplectic framework for first-order covariant Hamiltonian field theories on
manifolds with boundaries is developed. This work is a geometric fulfillment of
Fock’s formulation of field theories as it appears in recent work by Cattaneo, Mnev
and Reshetikhin [Ca14]. This framework leads to a geometric understanding of
conventional choices for boundary conditions and relates them to the moment map
of the gauge group of the theory.

It is also shown that the natural interpretation of the Euler-Lagrange equations
as an evolution system near the boundary leads to a presymplectic Hamiltonian
system in an extended phase space containing the natural configuration and momenta
fields at the boundary together with extra degrees of freedom corresponding to the
transversal components at the boundary of the momenta fields of the theory. The
consistency conditions for evolution at the boundary are analyzed and the reduced
phase space of the system is shown to be a symplectic manifold with a distinguished
isotropic submanifold corresponding to the boundary data of the solutions of Euler-
Lagrange equations. This setting makes it possible to define well-posed boundary
conditions, and provides the adequate setting for the canonical quantization of the
system.

The notions of the theory are tested against three significant examples: scalar
fields, Poisson σ-model and Yang-Mills theories.

In Chapter 3, inspired by problems encountered in the geometrical treatment
of Yang-Mills theories and Palatini’s gravity, a covariant formulation of Hamiltonian
dynamical systems as a Hamiltonian field theory of dimension 1+0 on a manifold with
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boundary is developed. After a precise statement of Hamilton’s variational principle
in this context, the geometrical properties of the space of solutions of the Euler-
Lagrange equations of the theory are analyzed. A sufficient condition is obtained
that guarantees that the set of solutions of the Euler-Lagrange equations at the
boundary of the manifold, fill a Lagrangian submanifold of the space of fields at the
boundary. Finally a theory of constraints is introduced that mimics the constraints
arising in Palatini’s gravity.

In Chapter 4, a covariant Hamiltonian description of Palatini’s gravity on man-
ifolds with boundary is presented. Palatini’s gravity appears as a gauge theory
satisfying a constraint in a certain topological limit. This approach allows the con-
sideration of non-trivial topological situations.
The multisymplectic framework for first-order covariant Hamiltonian field theories
on manifolds with boundary, developed in Chapter 2, enables analysis of the sys-
tem at the boundary. The reduced phase space of the system is determined to be a
symplectic manifold with a distinguished isotropic submanifold corresponding to the
boundary data of the solutions of the Euler-Lagrange equations.
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Chapter 1

Introduction

The GiMmsy papers of the 1990’s, as they are often referred to, [Go98],[Go04], pub-
licized the use of multisymplectic geometry to describe Lagrangian and Hamiltonian
first-order covariant classical field theories. GiMmsy is an acronym for the authors
of that project. Centered around Jerry Marsden, the authors were Gotay, Isenberg,
Montgomery and Sniatycki and Yasskin. Their work built on many contributions in
the history of constructing a geometrical picture for field theories, including Dirac’s
theory of constraints. We refer the reader to the comprehensive texts [Go98] and
[Bi11]for details on this history.

The GiMmsy papers dealt with field theories only on manifolds that have no
boundaries and that have the simple Cartesian structure T × S where T is time
and S is space. In Chapter 2 of this dissertation, which is based on joint work
with Alberto Ibort published in the Journal of Geometric Mechanics [Ib15], we
extend multisymplectic geometry to manifolds with boundaries to describe first-order
Hamiltonian field theories on such manifolds. No other restrictions are placed on the
manifolds. The spacetime need not be foliated by Cauchy surfaces, it need not be
globally hyperbolic.

Immediate fruits of our multisymplectic formulation include first a formula for
the action and for the differential of the action functional, valid for any classical
field theory. In the work of Cattaneo, Mnev and Reshetikhin [Ca11], [Ca14], and
in many other works, for each classical field theory considered, the authors have
to come up with a different action functional. To do so they need to decide what
the momenta of the theory should be. In our work, having one expression for the
action functional that describes all classical theories eliminates the need to choose
what the momenta fields should be for each physical theory under examination: our
multisymplecic formalism does it for us. This turns out to very important in helping
us clarify the meaning of the Palatini action in Chapter 4.
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Our analysis of the role of boundary terms in the computation of the critical
points of the action functional allows a natural relation to emerge between the ac-
tion functional and the canonical symplectic structure on the space of fields at the
boundary. It is precisely this relation that allows a better understanding of the role
of boundary conditions. In addition, the canonical 1-form on the space of fields at
the boundary is shown to be directly related to the charges of the gauge symmetries
of the theory. The condition that boundary values of the field lie in a Lagrangian
submanifold is shown to be equivalent to the condition that boundary values of the
field lie in the 0-level set of the moment map on T ∗F∂M , the cotangent space of the
fields at the boundary, generated by the action of the group of automorphisms of the
fiber bundle of the fields over the manifold, induced at the boundary, lifted to the
cotangent bundle.

We also show that the natural way to interpret Euler-Lagrange equations as
an evolution system near the boundary is as a presymplectic system in an extended
phase space containing the natural configuration and momenta fields at the boundary
together with extra degrees of freedom corresponding to the transversal component
at the boundary of the momenta fields of the theory. The consistency conditions at
the boundary are analyzed and the reduced phase space of the system is determined
to be a symplectic manifold with a distinguished isotropic submanifold corresponding
to the boundary data of solutions of Euler-Lagrange equations. We work out in detail
three examples: scalar fields, Poisson-sigma model and Yang-Mills theories.

After the geometrical analysis of the theory has been performed, the space of
quantum states of the theory would be obtained, in the best possible situations, by
canonical or geometrical quantization of a reduced symplectic manifold of fields at
the boundary that would describe its “true” degrees of freedom. The propagator of
the theory would be obtained by quantizing a Lagrangian submanifold of the reduced
phase space of the theory provided by the specification of admissible boundary con-
ditions. The latter should preserve the fundamental symmetries of the theory, in the
sense that the charges associated to them should be preserved. The resulting overall
picture, as described for instance in the case of Chern-Simons theory [At90], is that
the functor defining a quantum field theory is obtained by geometric quantization
of the quasi-category of Lagrangian submanifolds associated to admissible boundary
conditions at the boundaries of spacetimes and their corresponding fields.

The level of rigor throughout this dissertation is that of standard differential
geometry. When dealing with finite-dimensional objects, they will be smooth differ-
entiable manifolds, locally trivial bundles etc. However, when dealing with infinite-
dimensional spaces we will assume,as customary, that the rules of global differential
calculus apply and we will use them freely without providing constructions that will
lead to bona fide Banach manifolds of maps and sections. Also, the notation of
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variational differentials and derivatives will be used for clarity without attempting
to discuss the classes of spaces of generalized functions needed to justify their use.

In Chapter 3, which is based on published work joint with Alberto Ibort [Ib16],
we analyze the theory of Hamiltonian dynamical systems using the multisymplectic
approach developed in Chapter 2. We view these theories as first-order covariant
Hamiltonian field theories on a manifold of dimension 1+0 with boundary. The rea-
son for our interest in such simple field theories is twofold. First, it allows us to
study in a simple setting two features which are relevant to two fundamental ex-
amples of first-order covariant Hamiltonian field theories, Yang-Mills and especially
Palatini gravity. These features are the introduction of constraints and the ’topo-
logical phases’ of the theory. In Palatini gravity, a constraint in the momenta fields
of the theory must be introduced to recover the equations of motion of Palatini’s
gravity. This constraint relates the momenta to the vierbein fields eµ of the standard
treatment.

The second reason for our interest in such a simple theory as Hamiltonian dy-
namics, is that it allows us to test some common assumptions about field theories,
among them the role of boundary conditions and the geometry of the restriction to
the boundary of the space of solutions of the Euler-Lagrange equations. The fact
that the basic space of the theory is one-dimensional and that the Euler-Lagrange
equations of the theory are the standard Hamilton’s equations, removes most of the
analytic difficulties arising in higher order theories.

We formulate a mathematically precise expression for Hamilton’s variational prin-
ciple, this was previously absent in the literature. We define what we call a locally
Dirichlet condition and prove several theorems giving different sufficient conditions
under which π(EL), the space of solutions of the Euler-Lagrange equations restricted
to the boundary, is a Lagrangian submanifold. Then through examples we show that
none of these conditions is necessary. In this way we show that for even so simple
a theory as Hamiltonian dynamics, giving necessary and sufficient conditions under
which π(EL) is a Lagrangian submanifold is not a simple problem.

In Chapter 4 we turn to general relativity.Our understanding of the Hamiltonian
structure of gravity has taken half a century. The initial difficulties faced by Dirac
and Bergmann [Be58],[Be81], were slowly resolved through the work of Arnowitt,
Deser and Misner [Ar62], all the way to Ashtekar’s formulation [As87]. At least part
of the motivation has been to place the theory of gravity on grounds that will make
it suitable for a canonical quantization scheme.

In [Ro06], C. Rovelli illustrated a simple Hamiltonian formulation of general rel-
ativity which is manifestly 4d generally covariant and that drops the reference to
the underlying space-time in Palatini’s formulation of gravity. Rovelli’s proposal is
highly geometrical and constructs its space as the 4 + 16 + 24 dimensional space C̃
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with local coordinates (xµ, eIµ, A
IJ
µ ). In a further effort at extracting the geometrical

essence of such space, the variables xµ are dropped (accounting for the invariance of
the theory under global diffeomorphisms) and we are led to a 40 dimensional space
C [Ro01]. The disappearance of the spacetime manifold M and its coordinates xµ,
which survive only as arbitrary parameters on the ‘gauge orbits’ of the canonical
geometrical structure defined on it, generalizes the disappearance of the time coordi-
nate in the ADM formalism and is analogous to the disappearance of the Lagrangian
evolution parameter in the Hamiltonian theory of a free particle [Ro01]. It simply
means that the general relativistic space- time coordinates are not directly related
to observations.

Our program in Chapter 4 is similar to Rovelli’s but our inspiration is the geo-
metrical foundations of covariant first-order Hamiltonian field theories on manifolds
with boundary developed in Chapter 2. There the role of a covariant phase space
for a first order Hamiltonian theory modelled on the affine dual space of the first jet
bundle of the bundle defining the fields of the theory is assessed and the crucial role
played by boundaries as determining symplectic spaces of fields defining the classical
counterpart of the quantum states of the theory is stressed in accordance with the
point of view expressed in [Sc51].

Actually a generally covariant notion of instantaneous state, or evolution of states
and observables in time, make little physical sense. They are always referred to
an initial data space-like surface that in the picture presented here, corresponds
to the boundary of the space-times of events. Such notion does not really conflict
with diffeomorphism invariance because a diffeomorphism of a smooth manifold with
smooth boundary restricts to a diffeomorphism of the boundary. Thus, providing that
the notion of boundary of a spacetime is incorporated in the basic description of the
theory, we may still consider diffeomorphism invariance as a fundamental notion
without contradicting it.

The covariant phase space of the theory carries a natural multisymplectic struc-
ture which is the exterior differential of a canonical m-form Θ defined on it. This
geometrical structure has been considered in various guises in the various variational
formulations of field theories, however its first use in the present setting is to help
to identify the nature of the different fields of the theory. We show how the vierbein
fields eIµ correspond to an algebraic constraint imposed on the momenta fields of
the theory. Therefore we come to recognize that in Palatini gravity, a constraint
in the momenta fields of the theory must be introduced to recover the equations of
motion. We show that the corresponding action is invariant under the group of all
automorphisms of the geometrical structure and that it induces the corresponding
reduction on the space of gauge fields at the boundary. This reduction process is
interpreted as the appropriate setting for the ‘elimination’ of the space-time M , i.e.,
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the space of physical classical solutions of the theory in the bulk is the moduli space
of the space of solutions of the Euler-Lagrange equations with respect to the group
of automorphisms whereas, the phase space of physical degrees of freedom of the
theory, associated to its boundary, is the reduced symplectic manifold of fields at the
boundary.
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Chapter 2

Covariant Hamiltonian field
theories on manifolds with
boundary: Yang-Mills theories

2.1 Introduction

Multisymplectic geometry provides a convenient framework for describing first-order
classical field theories both in the Lagrangian and Hamiltonian formalism. (See for
example [Go98],[Go04]). However, the field theories so described are only over
spacetimes that do not have boundaries. In this chapter, based on joint published
work with Alberto Ibort, [Ib15], we extend the multisymplectic formalism to deal
with manifolds that have boundaries. We develop a multisymplectic framework for
first-order covariant Hamiltonian field theories on manifolds with boundaries.

We are then led to a formula for the differential of the action functional,valid for
any first-order Hamiltonian field theory, and a natural identification of the momenta
of the theory. The explicit identification of the boundary term in the differential of
the action with the pull-back of the canonical one-form on the cotangent bundle of
boundary values of the fields of the theory, shows immediately that for all classical
theories the space π(EL) of boundary values of the solutions of the Euler-Lagrange
equations is an isotropic submanifold.

The description of the theory in the bulk, while following along the lines already
established in the literature, also includes analysis of the role of boundary terms in
the computation of the critical points of the action functional. Thus a natural relation
emerges between the action functional and the canonical symplectic structure on the
space of fields at the boundary and it is precisely this relation that allows a better
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understanding of the role of boundary conditions. In addition, the canonical 1-form
on the space of fields at the boundary can be directly related to the charges of the
gauge symmetries of the theory.

We describe the natural presymplectic structure inherited by the space of all fields
of the theory at the boundary and the Hamiltonian structure of the corresponding
evolution near the boundary. The consistency conditions of such evolution are stud-
ied and the corresponding Hamiltonian dynamics in the reduced symplectic manifold
of fields at the boundary is obtained.

The chapter is organized as follows: Section 2.2 is devoted to summarizing the
basic geometric notions underlying the theory. The multisymplectic formalism is
briefly reviewed, the action principle and the fundamental formula exhibiting the
differential of the action functional of the theory is presented and proved. The role of
symmetries, moment maps at the boundary and boundary conditions are elucidated.
Section 2.3 presents the evolution formulation of the theory near the boundary. The
presymplectic picture of the system is established and the subsequent constraints
analysis is laid out. Its relation with reduction with respect to the moment map
at the boundary is pointed out. Real scalar fields and the Poisson σ-model are
analyzed to illustrate the theory. Finally, Section 2.4 focuses on the study of Yang-
Mills theories on manifolds with boundary as first-order Hamiltonian field theories
in the multisymplectic framework and the Hamiltonian reduced phase space of the
theory is described.

2.2 The multisymplectic formalism for first order

covariant Hamiltonian field theories on

manifolds with boundary

The setting: the multisymplectic formalism

The geometry of Lagrangian and Hamiltonian field theories has been examined in
the literature from varying perspectives. For our purposes here we single out for
summary the Hamiltonian multisymplectic description of field theories on manifolds
without boundary found in [Ca91]. Everything in this section will apply also to
manifolds possessing boundaries. In the next section we will consider only manifolds
having boundaries and we will extend the multisymplectic formalism to deal with
Hamiltonian field theories over such manifolds.

A manifold M will model the space or spacetime at each point of which the
classical field under discussion assumes a value. We will therefore take M to be an
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oriented m = 1 + d dimensional smooth manifold. In most situations M is either
Riemannian or Lorentzian and time-oriented. We will denote the metric on M by
η. In either case we will denote by volM the volume form defined by the metric
η on M . In an arbitrary local chart xµ, µ = 0, 1, . . . , d, this volume form takes
the form volM =

√
|η|dx0 ∧ dx1 · · · ∧ dxd. Notice however that the only structure

on M required to provide the kinematic setting of the theory will be a volume
form volM and, unless specified otherwise, local coordinates will be chosen such that
volM = dx0 ∧ dx1 · · · ∧ dxd.

The fundamental geometric structure of a given theory will be provided by a
locally trivial fiber bundle over M , π : E → M . Local coordinates adapted to the
fibration will be denoted as (xµ, ua), a = 1, . . . , r, where r is the dimension of the
standard fiber.

Let J1E denote the first jet bundle of the bundle E, i.e. at each point (x, u) ∈ E,
the fiber of J1E consists of the set of equivalence classes of germs of sections of
π : E → M . If we let π0

1 be the projection map, π0
1 : J1E → E, then (J1E, π0

1, E) is
an affine bundle over E modelled on the vector bundle V E ⊗ π∗(T ∗M) over E. (See
[Sa89], and [Gr15] for details on affine geometry and the construction of the various
affine bundles naturally associated to E → M .) Given adapted local coordinates
(xµ;ua) for the bundle π : E →M , we denote by (xµ, ua;uaµ) an adapted local chart
for J1E.

Let
∧m(E) denote the bundle of m-forms on E and let

∧m
k (E) denote the subbun-

dle of
∧m(E) consisting of all m-forms which vanish when k + 1 of their arguments

are vertical. In particular, elements of
∧m

1 (E) are called semi-basic forms and have
the form ρµa dua∧π∗volµ+ρ0π

∗volM where volµ = ∂
∂xµ

yvolM . Given the above bundle
coordinates (xµ;ua) for E, we have adapted coordinates (xµ, ua; ρ0, ρ

µ
a) on

∧m
1 (E).

Elements of the subbundle
∧m

0 (E) of the bundle
∧m

1 (E), appropriately named basic
m-forms, have the form ρ0π

∗volM .
The affine dual bundle to J1E is the space of affine maps along the fibers of J1E,

denoted by Aff(J1E,R). The choice of the volume form volM on the base manifold
M allows the identification Aff(J1E) ∼=

∧m
1 (E) by means of the assignment of the

affine map defined in the local coordinates above by uaµ 7→ ρµau
a
µ + ρ0 to the element

ρµadua ∧ π∗volµ + ρ0volM of
∧m

1 (E). This assignment is easily seen to be a vector
bundle isomorphism. Note that this isomorphism also maps each constant affine map
uaµ 7→ ρ0 to the corresponding element ρ0 π

∗volM of the subbundle
∧m

0 (E) of
∧m

1 (E).
We therefore have the further identification Aff(J1E)/R ∼=

∧m
1 (E)/

∧m
0 (E).

We will define the covariant phase space of the theory P (E) as the quotient
of the bundle of affine maps on J1E mod out the constant ones, i.e. P (E) : =
Aff(J1E,R)/R. It is easy to see that Aff(J1E,R)/R can be identified with the vector
bundle π∗(TM)⊗V (E)∗ over E. From our definition of P (E) and the identifications
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in the previous paragraph, it is clear that P (E) ∼=
∧m

1 (E)/
∧m

0 (E). We have also the
following short exact sequence:

0→
∧m

0
(E) ↪→

∧m

1
(E)

µ→ P (E)→ 0

which shows that
∧m

1 (E) is a real line bundle over P (E). The previous identifica-
tion of the covariant phase space depended on the choice of a volume form volM
and with respect to the choice of volume form the map TM → ∧m−1(T ∗M) given
by ∂

∂xi
→ ∂

∂xi
yvolM is a bundle isomorphism. By means of this isomorphism it fol-

lows easily that the bundle π∗(TM) ⊗ V (E)∗ over E is isomorphic to the bundle
π∗(
∧m−1(T ∗M)) ⊗ V (E)∗. Thus it is clear that P (E) ∼= π∗(

∧m−1(T ∗M)) ⊗ V (E)∗.
Local coordinates can be introduced in P (E) taking advantage of these identifica-
tions. Thus if we denote by ρµadua∧volµ+

∧m
0 (E) a class in the quotient space P (E),

local adapted coordinates will be given by (xµ, ua; ρµa).
The bundle

∧m
1 (E) carries a canonical m–form which may be defined by a gen-

eralization of the definition of the canonical 1-form on the cotangent bundle of a
manifold. Let ν :

∧m
1 (E) → E be the canonical projection, then the canonical m-

form Θ is defined by Θ$(U1, U2, . . . , Um) = $(ν∗U1, . . . , ν∗Um), where $ ∈ ∧m
1 (E)

and Ui ∈ T$(
∧m

1 (E)). With respect to the local coordinates (xµ, ua; ρ0, ρ
µ
a) above we

have the local expression

Θ = ρµa dua ∧ volµ + ρ0 volM .

The (m + 1)-form Ω = dΘ defines a multisymplectic structure on the manifold∧m
1 (E), i.e. (

∧m
1 (E),Ω) is a multisymplectic manifold. There is some variation in

the literature on the definition of multisymplectic manifold. For us, following [Go98]
and [Ca91], a multisymplectic manifold is a pair (X,Ω) where X is a manifold of
some dimension m and Ω is a d-form on X, d ≥ 2, and Ω is closed and nondegenerate.
By nondegenerate we mean that if ivΩ = 0 then v = 0.

We will refer to
∧m

1 (E) by M(E) to emphasize that it is a multisymplectic
manifold. We will denote the projection M(E) → E by ν, while the projection
M(E) → P (E) will be denoted by µ. Thus ν = τ 0

1 ◦ µ, with τ 0
1 : P (E) → E the

canonical projection (see figure 1).
A Hamiltonian H on P (E) is a section of µ. Thus in local coordinates

H(xµ, ua; ρµa) = ρµa dua ∧ volµ −H(xµ, ua, ρµa)volM ,

where H is here a locally defined real-valued function also called the Hamiltonian
function of the theory and the sign has been chosen for convenience.
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We can use the Hamiltonian section H to define an m-form on P (E) by pulling
back the canonical m-form Θ from M(E). We call the form so obtained the Hamil-
tonian m-form associated with H and denote it by ΘH . Thus if we write the section
defined by H in local coordinates as ρ0 = −H(xµ, ua, ρµa), then

ΘH = ρµa dua ∧ volµ −H(xµ, ua, ρµa) volM (2.2.1)

which shows that the minus sign in front of the Hamiltonian is chosen to be in keeping
with the traditional conventions in mechanics for the integrand of the action over
the manifold. When the form ΘH is pulled back to the manifold M along a section
of the canonical bundle projecction τ1 : P (E) → M as described in Section 2.2, the
integrand of the action over M will have a form reminiscent of that of mechanics
with a minus sign in front of the Hamiltonian. See equation (2.2.3). In what follows,
we will use the same notation H both for the section and the real-valued function H
defined by a Hamiltonian.

In what follows a first-order covariant Hamiltonian field theory (or a Hamiltonian
field theory for short) will be defined as a pair (P (E), H) where P (E) is the covari-
ant phase space defined by a bundle π : E → M and H is a Hamiltonian section
as defined above. Notice that P (E) always carries a canonical m-form ΘH and a
multisymplectic structure ΩH = dΘH .

The action and the variational principle

Sections and fields over manifolds with boundary

From here on we will assume that the manifold M has a smooth boundary ∂M .
The orientation chosen on ∂M is consistent with the orientation on M . Everything
in the last section applies. The presence of boundaries, apart from being a natural
ingredient in any attempt at constructing a field theory, will enable us to enlarge
the use to which the multisymplectic formalism can be applied, starting with the
statement and proof of Lemma 2.1 describing the exterior differential of the action
functional.

Let (P (E), H) be a Hamiltonian field theory. The fields χ of the theory consist
of the class of sections of the bundle τ1 : P (E)→M that can be factorized through
sections P of the bundle τ 1

0 : P (E) → E and Φ of π : E → M , that is χ = P ◦ Φ
(see Figure 2.1). The sections Φ will be called the configuration fields or just the
configurations, and the sections P , the momenta fields of the theory. Notice that
τ 1

0 ◦χ = Φ if χ is a field. In local adapted coordinates (xµ;ua; ρµa) for P (E) it is clear
that we may write ua = Φa(x) and ρµa = P µ

a (Φ(x)) for the local expression of the
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section χ = P ◦ Φ. We will often denote the section χ = P ◦ Φ as a pair (Φ, P ) to
emphasize the different roles of the configurations and momenta content of the field.

M(E)

J1E⇤

E

M@M

E@M = i⇤E

i⇤(J1E⇤)

⇡

⇡1 ⇡0
1

µ

⇡@M
�

P
�

⇥

⇥H = h⇤✓

h

'

(p, �) ⌧1 ⌧0
1

H

H⇤⇥

i

P (E) P (E) -

Figure 2.1: Bundles, sections and fields: configurations and momenta

We will denote by FM the space of sections Φ of the bundle π : E → M , that is
Φ ∈ FM , and we will denote by FP (E) the space of fields χ = P ◦ Φ ( which we will
denote by χ = (Φ, P )) . Thus FP (E) will denote the space of fields of the theory,
configurations and momenta, in the first-order covariant Hamiltonian formalism.

The equations of motion of the theory will be defined by means of a variational
principle, i.e. they will be related to the critical points of a local action functional S
on FP (E). Such action will be simply given by,

S(χ) =

∫
M

χ∗ΘH , (2.2.2)

or in a more explicit notation using the local representation of the section χ described
above,

S(Φ, P ) =

∫
M

(P µ
a (x)∂µΦa(x)−H(x,Φ(x), P (x))) volM , (2.2.3)

where P µ
a (x) is shorthand for P µ

a (Φ(x)). Of course, as is usual in the derivations of
equations of motion via variational principles, we assume that the integral in Eq.
(4.2.4) is well defined. It is also assumed that the ‘differential’ symbol in equation
(2.5) below, defined in terms of directional derivatives, is well defined and that the
same is true for any other similar integrals in this dissertation.
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Lemma 2.2.1. With the above notations we obtain,

dS(χ)(U) =

∫
M

χ∗
(
iŨdΘH

)
+

∫
∂M

(χ ◦ i)∗
(
iŨΘH

)
, (2.2.4)

where U is a vector field on P (E) along the section χ, Ũ is any extension of U to a
tubular neighborhood of the range of χ and i : ∂M →M is the canonical embedding.

Proof. If χ is a field, that is, a section of P (E) → M , then we denote by TχFP (E)

the tangent bundle to the space of fields FP (E) at χ. Tangent vectors U at χ, i.e.
U ∈ TχFP (E), are just vertical vector fields U on P (E) with respect to the projection
τ1 along the map χ. In other words, they are maps U : M → TP (E) satisfying
τP (E) ◦ U = χ, where τP (E) : TP (E) → P (E) denotes the canonical tangent bundle
projection and such that τ1∗U = 0. The reason for the latter being that a local curve
defining the tangent vector U , by definition consists of a family of sections of χλ of
the projection map τ1. Hence it defines a vertical vector field along χ.

Thus if U ∈ TχFP (E) with U(x) ∈ Tχ(x)P (E), consider a curve χλ(x) := χ(λ, x) : (−ε, ε)×
M → P (E) such that χ(0, x) = χ(x) and

U(χ(x)) =
∂

∂λ

∣∣∣∣
λ=0

χ(λ, x) .

We can extend the vector field U to a tubular neighborhood Tχ of the image χ(M)
of χ in P (E) and we will denote it by Ũ . Consider the local flow ϕλ of Ũ ,

d

dλ
ϕλ = Ũ ◦ ϕλ ,

or in other words, we denote the integral curves of Ũ by ϕλ(ξ), ξ ∈ Tχ ⊂ P (E). If
ξ = χ(x) we then have, ϕλ(ξ) = ϕλ(χ(x)) = χ(λ, x) = χλ(x), i.e. ϕλ ◦ χ = χλ. We
thus obtain,

dS(χ)(U) =
d

dλ

∣∣∣∣
λ=0

S(χλ) =
d

dλ

∣∣∣∣
λ=0

∫
M

χ∗λΘH =

=

∫
M

χ∗
∂

∂λ

∣∣∣∣
λ=0

ϕ∗λΘH =

∫
M

χ∗(LŨΘH) =

=

∫
M

χ∗d(iŨΘH) +

∫
M

χ∗iŨdΘH . (2.2.5)

Applying Stokes’ theorem to the first term in eq. (2.2.5) then yields eq. (4.2.7).
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The cotangent bundle of fields at the boundary

The boundary term contribution to dS in eq. (4.2.7),
∫
∂M

(χ ◦ i)∗ (iŨΘH), suggests
that there is a family of fields at the boundary that play a special role. Actually, we
notice that the field Ũ being vertical with respect to the projection τ1 : P (E) → M
has the local form Ũ = Aa ∂/∂ua + Bµ

a ∂/∂ρ
µ
a . Hence we obtain for the boundary

term, ∫
∂M

(χ ◦ i)∗
(
iŨΘH

)
=

∫
∂M

(χ ◦ i)∗ρµa Aa volµ =

∫
∂M

i∗(P µ
a A

a volµ) (2.2.6)

for χ = (Φ, P ).
We will assume now and in what follows, that there exists a collar Uε ⊂M around

the boundary such that Uε ∼= (−ε, 0]× ∂M . We choose local coordinates (x0, xk) on
the collar such that x0 = t ∈ (−ε, 0] and xk, k = 1, . . . , d, define local coordinates
for ∂M . In these coordinates volUε = dt ∧ vol∂M with vol∂M a volume form on ∂M .
Under these assumptions the r.h.s. of eq. (2.2.6) becomes,∫

∂M

i∗(P µ
a A

a volµ) =

∫
∂M

paA
a vol∂M , (2.2.7)

where pa = P 0
a ◦ i is the restriction to ∂M of the zeroth component of the momenta

field P µ
a in a local coordinate chart of the collar Uε with the previous form.

Consider the space of fields at the boundary obtained by restricting the zeroth
component of sections χ to ∂M , that is, fields of the form (see Figure 2.1):

ϕa = Φa ◦ i , pa = P 0
a ◦ i .

Notice that the fields ϕa are nothing but sections of the bundle i∗E, the pull-back
along i of the bundle E, while the space of fields pa can be thought of as 1-semibasic
d-forms on i∗E → ∂M . This statement is made precise in the following:

Lemma 2.2.2. Suppose we are given a collar around ∂M , Uε ∼= (−ε, 0]×∂M , and a
volume form vol∂M on ∂M such that volUε = dt∧vol∂M with t the normal coordinate
in Uε. Then the pull-back bundle i∗(P (E)) is a bundle over the pull-back bundle i∗E
and decomposes as i∗P (E) ∼= (

∧m−1(T ∗∂M)⊗V ∗(i∗E))⊕(
∧m−2(T ∗∂M)⊗V ∗(i∗E)).

If i∗ζ ∈ i∗P (E), we will denote by p and β the components of the above decomposition,
that is, i∗ζ = p+ β.

Proof. By definition of pull-back, the fiber over a point x ∈ ∂M of the bundle
i∗E, consists of all elements in Ex. The pull-back bundle i∗P (E) is a bundle over
i∗E, the fiber over (x, u) ∈ i∗E is TxM ⊗ V E∗u. Using the volume form volM , we
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identify this fiber with
∧m−1(TxM) ⊗ V E∗u by contracting elements $ = v ⊗ α ∈

TxM⊗V E∗u with volM(x). The collar neighborhood iε : Uε →M introduces a normal
coordinate t ∈ (−ε, 0] such that volUε = i∗εvolM = dt ∧ vol∂M . Notice that such
factorization depends on the choice of the collar. An element chosen in the class
of semibasic one-forms on Uε representing the element $ at (x, u) has the form
α = ρ0

adu
a ∧ vol∂M + ρkadu

a ∧ dt ∧ i∂/∂xkvol∂M + ρ0dt ∧ vol∂M . Then p = i∗ε$, and in
local coordinates pa = ρ0

a. Finally, define β = i∗ε(i∂/∂tα). Thus in local coordinates
βka = ρka, k = 1, . . . , d.

If we denote by F∂M the space of configurations of the theory, ϕa, i.e. F∂M =
Γ(i∗E), then the space of momenta of the theory pa can be identified with the space
of sections of the bundle

∧m
1 (i∗E)→ i∗E, according to Lemma 2.2.2. Therefore the

space of fields (ϕa, pa) can be identified with the cotangent bundle T ∗F∂M over F∂M
in a natural way, i.e. each field pa can be considered as the covector at ϕa that maps
the tangent vector δϕ to F∂M at ϕ into the number 〈p, δϕ〉 given by,

〈p, δϕ〉 =

∫
∂M

pa(x)δϕa(x) vol∂M . (2.2.8)

Notice that the tangent vector δϕ at ϕ is a vertical vector field on i∗E along ϕ, and
the section p is a 1-semibasic m-form on i∗E (Lemma 2.2.2). Hence the contraction
of p with δϕ is an (m − 1)-form along ϕ, and its pull-back ϕ∗〈p, δϕ〉 along ϕ is an
(m− 1)-form on ∂M whose integral defines the pairing above, Eq. (4.2.9).

Viewing the cotangent bundle T ∗F∂M as double sections (ϕ, p) of the bundle∧m
1 (i∗E) → i∗E → ∂M described by Lemma 2.2.2, the canonical 1-form α on

T ∗F∂M can be expressed as,

α(ϕ,p)(U) =

∫
∂M

pa(x)δϕa(x) vol∂M (2.2.9)

where U is a tangent vector to T ∗F∂M at (ϕ, p), that is, a vector field on the space
of 1-semibasic forms on i∗E along the section (ϕa, pa) and therefore of the form
U = δϕa ∂/∂ua + δpa ∂/∂ρa.

Finally, notice that the pull-back to the boundary map i∗, defines a natural map
from the space of fields in the bulk, FP (E), into the phase space of fields at the
boundary T ∗F∂M . Such map will be denoted by Π in what follows, that is,

Π: FP (E) → T ∗F∂M , Π(Φ, P ) = (ϕ, p), ϕ = Φ ◦ i, pa = P 0
a ◦ i .

With the notations above, by comparing the expression for the boundary term
given by eq. (2.2.7), and the expression for the canonical 1-form α, eq. (4.2.10), we
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obtain, ∫
∂M

(χ ◦ i)∗ (iŨΘH) = (Π∗α)χ(U) .

In words, the boundary term in eq. (4.2.7) is just the pull-back of the canonical
1-form α at the boundary along the projection map Π.

In what follows it will be customary to use the variational derivative notation
when dealing with spaces of fields. For instance, if F (ϕ, p) is a differentiable function
defined on T ∗F∂M we will denote by δF/δϕa and δF/δpa functions (provided that
they exist) such that

dF(ϕ,p)(δϕ
a, δpa) =

∫
∂M

(
δF

δϕa
δϕa +

δF

δpa
δpa

)
vol∂M , (2.2.10)

with U = (δϕa, δpa) a tangent vector at (ϕ, p). We also use an extended Einstein’s
summation convention such that integral signs will be omitted when dealing with
variational differentials. For instance,

δF =
δF

δϕa
δϕa +

δF

δpa
δpa , (2.2.11)

will be the notation that will replace dF in Eq. (2.2.10). Also in this vein we will
write,

α = pa δϕ
a ,

and the canonical symplectic structure ω∂M = −dα on T ∗F∂M will be written as,

ω∂M = δϕa ∧ δpa ,

by which we mean

ω∂M((δ1ϕ
a, δ1pa), (δ2ϕ

a, δ2pa)) =

∫
∂M

(δ1ϕ
a(x)δ2pa(x)− δ2ϕ

a(x)δ1pa(x)) vol∂M ,

where (δ1ϕ
a, δ1pa), (δ2ϕ

a, δ2pa) are two tangent vectors at (ϕ, p).

Euler-Lagrange’s equations and Hamilton’s equations

We now examine the contribution from the first term in dS, eq.(2.2.4). Notice that
such a term can be thought of as a 1-form on the space of fields on the bulk, FP (E).
We will call it the Euler-Lagrange 1-form and denote it by EL. Thus with the
notation of Lemma 2.2.1,

ELχ(U) =

∫
M

χ∗ (iŨdΘH) .
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A double section χ = (Φ, P ) of P (E) → E → M will be said to satisfy the Euler-
Lagrange equations determined by the first-order Hamiltonian field theory defined
by H, if ELχ = 0, that is, if χ is a zero of the Euler-Lagrange 1-form EL on FP (E).
Notice that this is equivalent to

χ∗(iŨdΘH) = 0 , (2.2.12)

for all vector fields Ũ on a tubular neighborhood of the image of χ in P (E). The set
of all such solutions of Euler-Lagrange equations will be denoted by ELM or just EL
for short.

In local coordinates xµ such that the volume element takes the form volM =
dx0 ∧ · · · ∧ dxd, and for natural local coordinates (xµ, ua, ρµa) on P (E), using eqn
(4.2.3) we have,

i∂/∂ρµadΘH = −∂H
∂ρµa

dmx+ dua ∧ dm−1xµ

i∂/∂uadΘH = −∂H
∂ua

dmx− dρµa ∧ dm−1xµ.

Applying Eq. (3.2.7) to these last two equations we obtain the Hamilton equations
for the field in the bulk:

∂ua

∂xµ
=
∂H

∂ρµa
;

∂ρµa
∂xµ

= −∂H
∂ua

, (2.2.13)

where a summation on µ is understood in the last equation. Note that had we
not changed to normal coordinates on M , the volume form would not have the
above simple form and therefore there would be related extra terms in the previous
expressions and in Eqs. (2.2.13).

These Hamilton equations are often described as being covariant. This term
must be treated with caution in this context. Clearly, by writing the equations in
the invariant form χ∗(iŨdΘH) = 0 we have shown that they are in a sense covariant.
However, it is important to remember that in general the function H is only locally
defined. In other words, there is in general no true ‘Hamiltonian function’, and the
local representative H transforms in a non-trivial way under coordinate transforma-
tions. When M(E) is a trivial bundle over P (E), so that there is a predetermined
global section, then the Hamiltonian section may be represented by a global function
and no problem arises. This occurs for instance when E is trivial over M . In general
however, there is no preferred section of M(E) over P (E) to relate the Hamiltonian
section to, and in order to write the Hamilton equations in manifestly covariant form
one must introduce a connection.
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The fundamental formula

Thus we have obtained the formula that relates the differential of the action with a
1-form on a space of fields on the bulk manifold and a 1-form on a space of fields at
the boundary:

dSχ = ELχ + Π∗αχ , χ ∈ FP (E) . (2.2.14)

In the previous equation ELχ denotes the Euler-Lagrange 1-form on the space of
fields χ = (Φ, P ) with local expression (using variational derivatives):

ELχ =

(
∂Φa

∂xµ
− ∂H

∂P µ
a

)
δP µ

a −
(
∂P µ

a

∂xµ
+
∂H

∂Φa

)
δΦa , (2.2.15)

or, more explicitly:

ELχ(δΦ, δP ) =

∫
M

[(
∂Φa

∂xµ
− ∂H

∂P µ
a

)
δP µ

a −
(
∂P µ

a

∂xµ
+
∂H

∂Φa

)
δΦa

]
volM .

In what follows we will denote by (P (E),ΘH) the covariant Hamiltonian field
theory with bundle structure π : E → M defined over the m-dimensional manifold
with boundary M , Hamiltonian function H and canonical m-form ΘH .

We will say that the action S is regular if the set of solutions of Euler-Lagrange
equations ELM is a submanifold of FP (E). Thus we will also assume when needed
that the action S is regular (even though this must be proved case by case) and
that the projection Π(EL) to the space of fields at the boundary T ∗F∂M is a smooth
manifold too.

This has the immediate implication that the projection of EL to the boundary
∂M is an isotropic submanifold:

Proposition 2.2.3. Let (P (E),ΘH) be a first order Hamiltonian field theory on the
manifold M with boundary, with regular action S and such that Π(EL) ⊂ T ∗F∂M is
a smooth submanifold. Then Π(EL) ⊂ T ∗F∂M is an isotropic submanifold.

Proof. Along the submanifold EL ⊂ T ∗F∂M we have,

dS |EL= Π∗α |EL .

Therefore d(Π∗α) = d2S = 0 along EL, and d(Π∗α) = Π∗dα along EL. But Π being
a submersion then implies that dα = 0 along Π(EL).

In many cases Π(EL) is not only isotropic but Lagrangian. We will come back to
the analysis of this in later sections.
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Symmetries and the algebra of currents

Without attempting a comprehensive description of the theory of symmetry for co-
variant Hamiltonian field theories, we will describe some basic elements needed in
what follows (see details in [Ca91]). Recall from Sect. 2.2, (M(E),Ω) is a multisym-
plectic manifold with (m+ 1)-dimensional multisymplectic form Ω = dΘ, where dim
M = m. Canonical transformations in the multisymplectic framework for Hamil-
tonian field theories are diffeomorphisms Ψ: M(E) → M(E) such that Ψ∗Ω = Ω.
Notice that if Ψ is a diffeomorphism such that Ψ∗Θ = Θ, then Ψ is a canonical
transformation.

A distinguished class of canonical transformations is provided by those trans-
formations Ψ induced by diffeomorphisms ψE : E → E, i.e. Ψ($) = (ψ−1

E )∗$,
$ ∈ M(E). If the diffeomorphism ψE is a bundle isomorphism, there will exist
another diffeomorphism ψM : M → M such that π ◦ ψE = ψM ◦ π. Under such
circumstances it is clear that the induced map (ψ−1

E )∗ :
∧m(E)→ ∧m(E) preserves

both
∧m

1 (E) and
∧1

0(E), thus the map Ψ = (ψ−1
E )∗ : M(E)→M(E) induces a natu-

ral map ψ∗ : P (E)→ P (E) such that µ◦ (ψ−1
E )∗ = ψ∗ ◦µ. Canonical transformations

induced from bundle isomorphisms will be called covariant canonical maps.
Given a one-parameter group of canonical transformations Ψt, its infinitesimal

generator U satisfies
LUΩ = 0 .

Vector fields U on M(E) satisfying the previous condition will be called (locally)
Hamiltonian vector fields. Locally Hamiltonian vector fields U for which there exists
an (m− 1)-form f on M(E) (we are assuming that Ω is a (m+ 1)-form) such that

iUΩ = df ,

will be called, in analogy with mechanical systems, (globally) Hamiltonian vector
fields. The class f = {f +β | dβ = 0, β ∈ Ωm−1(M(E))} determined by the (m−1)-
form f is called the Hamiltonian form of the vector field U and such a vector field
will be denoted as Uf .

The Lie bracket of vector fields induces a Lie algebra structure on the space of
Hamiltonian vector fields that we denote as Ham(M(E),Ω). Notice that Hamilto-
nian vector fields whose flows Ψt are defined by covariant canonical transformations
are globally Hamiltonian because LUΘ = 0, and therefore iUdΘ = −diUΘ. The
Hamiltonian form associated to U is the class containing the (m− 1)-form f = iUΘ.

The space of Hamiltonian forms, denoted in what follows by H(M(E)), carries a
canonical bracket defined by

{f , f ′} = iUf iUf ′Ω + Zm−1(M(E)) ,
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where Zm−1(M(E)) denotes the space of closed (m−1)-forms on M(E). The various
spaces introduced so far are related by the short exact sequence:

0→ Hm−1(M(E))→ H(M(E))→ Ham(M(E),Ω)→ 0 .

Let G be a Lie group acting on E by bundle isomorphisms and ψg : E → E, the
diffeomorphism defined by the group element g ∈ G. This action induces an action
on the multisymplectic manifold (M(E),Ω) by canonical transformations. Given an
element ξ ∈ g, where now and in what follows g denotes the Lie algebra of the Lie
group G, we will denote by ξM(E) and ξE the corresponding vector fields defined
by the previous actions on M(E) and E, respectively. The vector fields ξM(E) are
Hamiltonian with Hamiltonian forms Jξ, that is,

iξM(E)
Ω = dJξ , (2.2.16)

with Jξ = iξM(E)
Θ. It is easy to check that

{Jξ,Jζ} = J[ξ,ζ] + c(ξ, ζ)

where c(ξ, ζ) is a cohomology class of order m − 1. The bilinear map c(·, ·) defines
an element in H2(g, Hm−1(M(E))) (see [Ca91]). In what follows we will assume
that the group action is such that the cohomology class c vanishes. Such actions are
called strongly Hamiltonian (or just Hamiltonian, for short).

So far our discussion has not involved a particular theory, that is, a Hamiltonian
H. Let (P (E),ΘH) be a covariant Hamiltonian field theory and G a Lie group acting
on FP (E). Among all possible actions of groups on the space of double sections FP (E)

those that arise from an action on P (E) by covariant canonical transformations are
of particular significance. Let G be a group acting on E by bundle isomorphisms.
Let ψ∗(g) denote the covariant diffeomorphism on P (E) defined by the group element
g. Then the transformed section χg is given by χg(x) = ψ∗(g)(χ(ψM(g−1)x)) where
ψM(g) is the diffeomorphism on M defined by the action of the group. We will
often consider only bundle automorphisms over the identity, in which case χg(x) =
ψ∗(g)(χ(x)). Such bundle isomorphisms will be called gauge transformations and the
corresponding group of all gauge transformations will be called the gauge group of
the theory and denoted by G(E), or just G for short, in what follows.

The group G will be said to be a symmetry of the theory if S(χg) = S(χ) for
all χ ∈ FP (E), g ∈ G. Notice that, in general, an action of G on M(E) by bundle
isomorphisms will leave Θ invariant and will pass to the quotient space P (E), however
it doesn’t have to preserve ΘH . Hence, it is obvious that a group G acting on P (E) by
covariant transformations will be a symmetry group of the Hamiltonian field theory
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defined by H iff g∗ΘH = ΘH + βg, where now for ease of notation, we indicate the
diffeomorphism ψ∗(g) simply by g, and βg is a closed m-form on M . In what follows
we will assume that the group G acts on E and its induced action on P (E) preserves
the m-form ΘH , that is βg = 0 for all g.

Because the action of the group G preserves the m-form ΘH , the group acts by
canonical transformation on the manifold (P (E), dΘH) with Hamiltonian forms Jξ
given by (the equivalence class determined by the m-forms):

Jξ = iξP (E)
ΘH .

Theorem 2.2.4 (Noether’s theorem). Let G be a Lie group acting on E which
is a symmetry group of the Hamiltonian field theory (P (E),ΘH) and such that it
preserves the m-form ΘH . If χ ∈ EL is a solution of the Euler-Lagrange equations
of the theory, then the (m− 1)-form χ∗Jξ on M is closed.

Proof. Because χ is a solution of Euler-Lagrange equations, recalling eq. (3.2.7) we
have

0 = χ∗(iξP (E)
ΩH) = χ∗dJξ = d(χ∗Jξ) .

The de Rham cohomology classes determined by the closed (m − 1)-forms χ∗Jξ
on M will be called currents and denoted by Jξ[χ]. Using the Poisson bracket {·, ·}
defined on the space of Hamiltonian forms H(P (E)) we define a Lie bracket in the
space of currents Jξ[χ] ∈ Hm−1(M) by

{Jξ[χ],Jζ [χ]} = χ∗{Jξ,Jζ} = J[ξ,ζ][χ] .

By Stokes’ theorem, the (m− 1)-forms i∗(Jξ[χ]) on ∂M satisfy∫
∂M

i∗Jξ[χ] = 0 . (2.2.17)

We will refer to the quantity Q : FP (E) → g∗, where g∗ denotes the dual of the Lie
algebra g, defined by

〈Q(χ), ξ〉 =

∫
∂M

i∗Jξ[χ] , ∀ξ ∈ g , (2.2.18)

as the charge defined by the symmetry group. Notice that the pairing 〈·, ·〉 on the left
hand side of Eq. (2.2.18) is the natural pairing between g and g∗. As a consequence
of Noether’s theorem we get Q |EL= 0.
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The moment map at the boundary

Suppose that there is an action of a Lie group G on the bundle E that leaves invariant
the restriction of the bundle E to the boundary, that is, the transformations Ψg

defined by the elements of the group g ∈ G restrict to the bundles i∗(P (E)) and
E∂M := i∗E (see Figure 2.1). We will denote such restriction as Ψg |∂M= g∂M .

Two elements g, g′ ∈ G will induce the same transformation on the bundle E∂M
if there exists an element h such that g′ = gh and h∂M = idE∂M . If we consider now
the group G of all gauge transformations, then the set of group elements that restrict
to the identity at the boundary is a normal subgroup of G which we will denote by
G0. The induced action of G at the boundary is the action of the group G∂M = G/G0

which is the group of gauge transformations of the bundle E∂M = i∗E.
In particular the group G induces an action on F∂M by

g · ϕ(x) = ψE(g)(Φ(g−1x)) = g∂M(ϕ(g−1x)) , ∀x ∈ ∂M, g ∈ G ,

and similarly for the momenta field p.

Proposition 2.2.5. Let G∂M denote the gauge group at the boundary, that is, the
group whose elements are the transformations induced at the boundary by gauge trans-
formations of E. Then the action of G∂M in the space of fields at the boundary is
strongly Hamiltonian with moment map

J : T ∗F∂M → g∗∂M

given by,
〈J (ϕ, p), ξ〉 = 〈Q(χ), ξ〉 ∀ξ ∈ g∂M ,

where Π(χ) = (ϕ, p), and g∂M , g∗∂M denote respectively the Lie algebra and the dual
of the Lie algebra of the group G∂M . In other words, the projection map Π composed
with the moment map at the boundary J is the charge Q of the symmetry group.

Proof. The action of the group G∂M on T ∗F∂M is by cotangent liftings, thus its
moment map J takes the particularly simple form,

〈J (ϕ, p), ξ〉 = 〈p, ξF∂M (ϕ)〉 ,

where ξF∂M denotes the infinitesimal generator defined by the action of G∂M on
F∂M . Such generator, because the action is by gauge transformations, i.e. bundle
isomorphisms over the identity, has the explicit expression:

ξF∂M = ξ ◦ ϕ δ

δϕ
,
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where ξ is the infinitesimal generator of the action of G∂M on E∂M . Notice that the
Lie algebra g of the group of gauge transformations is precisely the algebra of vertical
vector fields on E (similarly for g∂M and E∂M). Hence ξ ∈ g∂M is just a vertical
vector field and the infinitesimal generator ξF∂M at ϕ, which is just a tangent vector
to F∂M at ϕ, is the vector field along ϕ given by the composition ξ ◦ ϕ.

However because the action of G∂M on E∂M is exactly the action of G on E |∂M ,
ξ can be considered as an element on g and (recalling the definition of the pairing
in T ∗F∂M , eq. (4.2.9), and the discussion at the end of Sect. 4.2 on the conventions
with variational derivatives) we get,

〈p, ξF∂M (ϕ)〉 =

∫
∂M

pa ξ
a(ϕ(x)) vol∂M (2.2.19)

=

∫
∂M

i∗
(
χ∗
(
iξP (E)

ΘH

))
=

∫
∂M

i∗Jξ[χ] = 〈Q(χ), ξ〉 ,(2.2.20)

with Π(χ) = (ϕ, p). In the previous computations we have used that iξP (E)
ΘH =

ρµa ξ
a(x, ρa) volµ, therefore χ∗

(
iξP (E)

ΘH

)
= Pa(Φ(x))µ ξa(Φ(x)) volµ and thus

i∗
(
χ∗
(
iξP (E)

ΘH

))
= pa(ϕ(x)) ξa(ϕ(x)) vol∂M .

Notice the particularly simple form that the currents take in this situation Jξ[χ] =
paξ

a(ϕ).

Thus Noether’s Theorem, which implies that Q|EL = 0, together with Prop. 2.2.5,
imply that for any χ = (Φ, P ) ∈ EL, (ϕ, p) ∈ J −1(0) with (ϕ, p) = Π(χ).

The main, and arguably the most significant example of symmetries is provided
by theories such that the symmetry group is the full group of automorphisms of
the bundle π : E → M . We are interested in particular in the normal subgroup
of bundle automorphisms over the identity map, i.e. diffeomorphisms ψE : E → E
preserving the structure of the bundle and such that π ◦ ψE = ψE. As indicated
above, such group will be called the gauge group of the theory (or the group of
gauge transformations of the theory) and we will denote it by G(E) (or just G if
there is no risk of confusion). In such case eqs. (2.2.19)-(2.2.20) imply the following:

Corollary 2.2.6. With the above notations, for the group of gauge transformations
we obtain,

Q = Π∗α ,

where α is the canonical 1-form on T ∗F∂M , in the sense that for any ξ ∈ g and
χ ∈ J1F∗,

〈Q(χ), ξ〉 = αΠ(χ)(ξF∂M ) = Π∗αχ(ξP (E)) .
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Boundary conditions

Because of the boundary term Π∗α arising in the computation of the critical points
of the action S, the propagator of the corresponding quantum theory will be affected
by such contributions and the theory could fail to be unitary [As15]. One way to
avoid this problem is by selecting a subspace of the space of fields FP (E) such that
Π∗α will vanish identically when restricted to it (see for instance an analysis of this
situation in Quantum Mechanics in [As05].)

Moreover, we would like to choose a maximal subspace with this property. Then
these two requirements will amount to choosing boundary conditions determined
by a maximal submanifold L ⊂ T ∗F∂M such that α |L= 0, that is, L is a special
Lagrangian submanifold of the cotangent bundle T ∗F∂M .

In general we will consider not just a single boundary condition but a family
of them defining a Lagrangian fibration of T ∗F∂M . An example of such a choice is
the Lagrangian fibration L corresponding to the vertical fibration of T ∗F∂M . For
ϕ ∈ F∂M , the subspace of fields defined by the leaf Lϕ, ϕ ∈ F∂M is just the subspace
of fields χ = (Φ, P ) such that Φ |∂M= ϕ.

Another argument justifying the use of special Lagrangian submanifolds of T ∗F∂M
as boundary conditions, relies just on the structure of the classical theory and its
symmetries and not on its eventual quantization. Recall from Cor. 2.2.6, that if a
theory (P (E),ΘH) has the group of gauge transformations G of the bundle E as a
symmetry group, then Q = Π∗α. Therefore the admissible fields of the theory - not
necessarily solutions of Euler-Lagrange equations - are those such that the charge
Q is preserved along the boundary, that is, those that lie on a special Lagrangian
submanifold L ⊂ T ∗F∂M .

We will say that a (classical field) theory is Dirichlet if, for any ϕ ∈ F∂M , there
exists a unique solution χ = (Φ, P ) of the Euler-Lagrange equations, i.e. χ ∈ EL
such that Φ|∂M = ϕ.

Theorem 2.2.7. Let S be a regular action defined by a first order Hamiltonian field
theory (P (E),ΘH). If the theory is Dirichlet then Π(EL) is a Lagrangian submanifold
of T ∗F∂M .

Proof. Recall the discussion in Sec. 2.2. If the action is regular, i.e. if the solutions
of the Euler-Lagrange equations EL define a submanifold of FP (E), then from the
fundamental relation eq. (4.2.8) we get Prop. 2.2.3, that Π(EL) is an isotropic
submanifold of T ∗F∂M .

Let the functional W denote the composition W = S ◦D where S : FP (E) → R is
the action of our theory defined by H, i.e. S(χ) =

∫
M
χ∗ΘH and D : F∂M → FP (E)

is the map that assigns to any boundary data ϕ the unique solution (Φ, P ) of the
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Euler-Lagrange equations such that Φ|∂M = ϕ. Thus

W (ϕ) =

∫
M

χ∗ΘH = S(χ) ,

for any ϕ ∈ F∂M . By Eq. (3.2.9) and since D(φ) = (Φ, P ) = χ ∈ EL it follows that
ELχ = 0. A simple computation then shows that

dW (ϕ)(δϕ) = paδϕ
a ,

where pa = P 0
a |∂M . Thus the graph of the 1-form dW = Π(EL), i.e. W is a

generating function for Π(EL) and therefore Π(EL) is a Lagrangian submanifold of
T ∗F∂M .

The Dirichlet condition can be weakened and a corresponding proof for a natural
extension of Theorem 2.2.7 can be provided. See our work on Hamiltonian dynamics
[Ib16].
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2.3 The presymplectic formalism at the

boundary

The evolution picture near the boundary

We discuss in what follows the evolution picture of the system near the boundary.
As discussed in Section 2.2, we assume that there exists a collar Uε ∼= (−ε, 0]×∂M of
the boundary ∂M with adapted coordinates (t;x1, . . . , xd), where t = x0 and where
xi, i = 1, . . . , xd define a local chart in ∂M . The normal coordinate t can be used as
an evolution parameter in the collar. We assume again that the volume form in the
collar is of the form volUε = dt ∧ vol∂M .

If M happens to be a globally hyperbolic space-time M ∼= [t0, t1]×Σ where Σ is
a Cauchy surface, [t0, t1] ⊂ R denotes a finite interval in the real line, and the metric
has the form −dt2 + g∂M where g∂M is a fixed Riemannian metric on ∂M . Then
t represents a time evolution parameter throughout the manifold and the volume
element has the form volM = dt ∧ vol∂M . Here however, all we need to assume is
that our manifold has a collar at the boundary as described above.

Restricting the action S of the theory to fields defined on Uε, i.e. sections of the
pull-back of the bundles E and P (E) to Uε, we obtain,

Sε(χ) =

∫
Uε

χ∗ΘH =

∫ 0

−ε
dt

∫
∂M

vol∂M
[
P 0
a ∂0Φa + P k

a ∂kΦ
a −H(Φa, P 0

a , P
k
a )
]
.

(2.3.1)
Defining the fields at the boundary as discussed in Lemma 2.2.2,

ϕa = Φa|∂M , pa = P 0
a |∂M , βka = P k

a |∂M ,

we can rewrite (2.3.1) as

Sε(χ) =

∫ 0

−ε
dt

∫
∂M

vol∂M [paϕ̇
a + βka∂kϕ

a −H(ϕa, pa, β
k
a)] .

Letting 〈p, ϕ̇〉 =
∫
∂M

paϕ̇
a vol∂M denote, as in (4.2.9), the natural pairing and simi-

larly,

〈β, d∂Mϕ〉 =

∫
∂M

βka∂kϕ
a vol∂M ,

we can define a density function L as,

L(ϕ, ϕ̇, p, ṗ, β, β̇) = 〈p, ϕ̇〉+ 〈β, d∂Mϕ〉 −
∫
∂M

H(ϕa, pa, β
k
a) vol∂M , (2.3.2)
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and then

Sε(χ) =

∫ 0

−ε
dt L(ϕ, ϕ̇, p, ṗ, β, β̇) .

Notice again that because of the existence of the collar Uε near the boundary
and the assumed form of volUε , the elements in the bundle i∗P (E) have the form
ρ0
adu

a∧vol∂M +ρkadu
a∧dt∧ i∂/∂xkvol∂M and as discussed in Lemma 2.2.2, the bundle

i∗P (E) over i∗E is isomorphic to the product
∧m

1 (i∗E)×B, where B =
∧m−1

1 (i∗E).
The space of double sections (ϕ, p) of the bundle

∧m
1 (i∗E)→ i∗E → ∂M correspond

to the cotangent bundle T ∗F∂M and the double sections (ϕ, β) of the bundle B →
i∗E → ∂M correspond to a new space of fields at the boundary denoted by B.

We will introduce now the total space of fields at the boundary M which is the
space of double sections of the iterated bundle i∗P (E)→ i∗E → ∂M . Following the
previous remarks it is obvious that M has the form,

M = T ∗F∂M ×F∂M B = {(ϕ, p, β)} .

Thus the density function L, Eq. (2.3.2), is defined on the tangent space TM
to the total space of fields at the boundary and could be called accordingly the
boundary Lagrangian of the theory.

Consider the action A =
∫ 0

−ε L dt defined on the space of curves σ : (−ε, 0]→M.
If we compute dA we obtain a bulk term, that is, an integral on (−ε, 0] and a term
evaluated at ∂[−ε, 0] = {−ε, 0}. Setting the bulk term equal to zero, we obtain the
Euler-Lagrange equations of this system considered as a Lagrangian system on the
space M with Lagrangian function L,

d

dt

δL
δϕ̇a

=
δL
δϕa

, (2.3.3)

which becomes,

ṗa = −∂kβka −
∂H

∂ϕa
. (2.3.4)

Similarly, we get for the fields p and β:

d

dt

δL
δṗa

=
δL
δpa

,
d

dt

δL
δβ̇ka

=
δL
δβka

that become respectively,

ϕ̇a =
∂H

∂pa
, (2.3.5)
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and the constraint equation:

d∂Mϕ−
∂H

∂βka
= 0 . (2.3.6)

Thus Euler-Lagrange equations in a collar Uε near the boundary, can be understood
as a system of evolution equations on T ∗F∂M depending on the variables βka , to-
gether with a constraint condition on the extended space M. The analysis of these
equations, Eqs. (2.3.4), (2.3.5) and (2.3.6), is best understood in a presymplectic
framework.

The presymplectic picture at the boundary and constraints
analysis

We will introduce now a presymplectic framework on M that will be helpful in
the study of Eqs. (2.3.4)-(2.3.6).

Let % : M −→ T ∗F∂M denote the canonical projection %(ϕ, p, β) = (ϕ, p). (See
Figure 2.2.) Let Ω denote the pull-back of the canonical symplectic form ω∂M on
T ∗F∂M to M, i.e. let Ω = %∗ω∂M . Note that the form Ω is closed but degenerate,
that is, it defines a presymplectic structure onM. An easy computation shows that
the characteristic distribution K of Ω, is given by

K = ker Ω = span

{
δ

δβka

}
.

Let us consider the function defined on M,

H(ϕ, p, β) = −〈β, d∂Mϕ〉+

∫
∂M

H(ϕa, pa, β
k
a) vol∂M .

We will refer to H as the boundary Hamiltonian of the theory. Thus L can be
rewritten as

L(ϕ, ϕ̇, p, ṗ, β, β̇) = 〈p, ϕ̇〉 − H(ϕ, p, β)

and

Sε(ϕ, p, β) =

∫ 0

−ε
[〈p, ϕ̇〉 − H(ϕ, p, β)]dt , (2.3.7)

and therefore the Euler-Lagrange equations (2.3.5), (2.3.4) and (2.3.6) can be written
as

ϕ̇a =
δH
δpa

, ṗa = − δH
δϕa

, (2.3.8)
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Figure 2.2: The space of fields at the boundary M and its relevant structures.

and

0 =
δH
δβka

. (2.3.9)

Now it is easy to prove the following:

Theorem 2.3.1. The solutions to the equations of motion defined by the Lagrangian
L over a collar Uε at the boundary, ε small enough, are in one-to-one correspondence
with the integral curves of the presymplectic system (M,Ω,H), i.e. with the integral
curves of the vector field Γ on M satisfying

iΓΩ = dH . (2.3.10)

Proof. Let Γ = Aa δ
δϕa

+Ba δ
δpa

+ Ca δ
δβka

be a vector field on M. (Notice that we are
using an extension of the functional derivative notation introduced in Section 2.2 on
the space of fields M.) Then because Ω = δϕa ∧ δpa, we get from iΓΩ = dH that,

Aa =
δH
δpa

, Ba = − δH
δϕa

, 0 =
δH
δβka

.

Thus Γ satisfies Eq. (2.3.10) iff

ϕ̇a =
δH
δpa

, ṗa = − δH
δϕa

, and 0 =
δH
δβka

.
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Let us denote by C the submanifold of the space of fieldsM = T ∗F∂M×B defined
by eq. (3.9). It is clear that the restriction of the solutions of the Euler-Lagrange
equations on M to the boundary ∂M , are contained in C ; i.e. Π(EL) ⊂ C.

Given initial data ϕ, p and fixing β, existence and uniqueness theorems for initial
value problems when applied to the initial value problem above, would show the
existence of solutions for small intervals of time, i.e. in a collar near the boundary.

However, the constraint condition given by eq. (2.3.9), satisfied automatically
by critical points of Sε on Uε, must be satisfied along the integral curves of the
system, that is, for all t in the neighborhood Uε of ∂M . This implies that consistency
conditions on the evolution must be imposed. Such consistency conditions are just
that the constraint condition eq. (2.3.9) is preserved under the evolution defined
by eqs. (2.3.8). This is the typical situation that we will find in the analysis of
dynamical problems with constraints and that we are going to summarily analyze in
what follows.

The Presymplectic Constraints Algorithm (PCA)

Let i denote the canonical immersion C = {(ϕ, p, β)| δH
δβ

= 0} →M and consider the
pull-back of Ω to C, i.e. Ω1 = i∗Ω. Clearly then, ker Ω1 = ker %∗∩TC. But C is defined
as the zeros of the function δH/δβ. Therefore if δ2H/δ2β is nondegenerate (notice
that the operator δ2H/δβiaδβjb becomes the matrix ∂2H/∂βia∂β

j
b ), by an appropriate

extension of the Implicit Function Theorem, we could solve β as a function of ϕ and
p. In such case, locally, C would be the graph of a function F : T ∗F∂M → B, say
β = F (ϕ, p). This is precisely the situation we will see in the simple example of
scalar fields in the next section. Collecting the above yields:

Proposition 2.3.2. The submanifold (C,Ω1) of (M,Ω,H) is symplectic iff H is
regular, i.e. ∂2H/∂βia∂β

j
b is non-degenerate. In such case the projection % restricted

to C, which we denote by %C, is a local symplectic diffeomorphism and therefore
%∗Cω∂M = Ω1.

When the situation is not as described above, and β is not a function of ϕ and p,
then (C,Ω1) is indeed a presymplectic submanifold ofM and iΓΩ = dH will not hold
necessarily at every point in C. In this case we would apply Gotay’s Presymplectic
Constraints Algorithm [Go78], to obtain the maximal submanifold of C for which
iΓΩ = dH is consistent and that can be summarized as follows.

Consider a presymplectic system (M,Ω,H) where M = T ∗F∂M ×B and, Ω and
H are as defined above. Let M0 = M, Ω0 = Ω, K0 = ker Ω0, and H0 = H. We
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define the primary constraint submanifold M1 as the submanifold defined by the
consistency condition for the equation iΓΩ0 = dH0, i.e.,

M1 = {χ ∈M0 | 〈Z0(χ), dH0(χ)〉 = 0, ∀Z0 ∈ K0} .

Thus M1 = C. Denote by i1 : M1 →M0 the canonical immersion. Let Ω1 = i∗1Ω0,
K1 = ker Ω1, and H1 = i∗1H0. We now define recursively the (k + 1)-th constraint
submanifold as the consistency condition for the equation iΓΩk = dHk, that is,

Mk+1 = {χ ∈Mk | 〈Zk(χ), dHk(χ)〉 = 0, ∀Zk ∈ Kk} k ≥ 1 ,

and ik+1 : Mk+1 →Mk is the canonical embbeding (assuming thatMl+1 is a regular
submanifold of Mk), and Ωk+1 = i∗k+1Ωk, Kk+1 = ker Ωk+1 and Hk+1 = i∗k+1Hk.

The algorithm stabilizes if there is an integer r > 0 such that Mr = Mr+1.
We refer to this Mr as the final constraints submanifold and we denote it by M∞.
Letting i∞ : M∞ →M0 denote the canonical immersion, we define,

Ω∞ = i∗∞Ω0, K∞ = ker Ω∞ , H∞ = i∗∞H0 .

Notice that the presymplectic system (M∞,Ω∞,H∞) is always consistent, that is,
the dynamical equations defined by iΓΩ∞ = dH∞ will always have solutions onM∞.
The solutions will not be unique if K∞ 6= 0, hence the integrable distribution K∞
will be called the “gauge” distribution of the system, and its sections (that will nec-
essarily close a Lie algebra), the “gauge” algebra of the system.

In the particular theories considered in this work we found that M∞ =M1 = C
and we do not needed to go beyond the first step of the algorithm to obtain the final
constraints submanifold.

The quotient space R = M∞/K∞, provided it is a smooth manifold, inherits a
canonical symplectic structure ω∞ such that π∗∞ω∞ = Ω∞, where π∞ : M∞ → R is
the canonical projection. We will refer to it as the reduced phase space of the theory.
Notice that the Hamiltonian H∞ also passes to the quotient and we will denote its
projection by h∞ i.e., π∗∞h∞ = H∞.

Thus the Hamiltonian system (R, ω∞, h∞) will provide the canonical picture of
the theory at the boundary and its quantization will describe the states and dynamics
of the theory with respect to observers sitting at the boundary ∂M .

Of course all the previous constructions depend on the boundary ∂M of the
manifold M . For instance, if we assume that M is a globally hyperbolic spacetime of
the form M ∼= [t0, t1]×Σ, then ∂M = {t0} ×Σ ∪ {t1} ×Σ. But if we use a different
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Cauchy surface Σ′, the boundary of our spacetime will vary and we will get a new
reduced phase space (R′, ω′, h′) for the theory. However in this case it is easy to show
that there is a canonical symplectic diffeomorphism S : R → R′ such that h = S∗h′.
(Recall that in such case there will exist a canonical diffeomorphism Σ → Σ′ that
will eventually induce the map S above.)

Recall that Π(EL) ⊂ C. We easily show then that after the reduction to R, the
reduced submanifold of boundary values of Euler-Lagrange solutions of the theory,
Π̃(EL) is an isotropic submanifold, now of the reduced phase space.

Theorem 2.3.3. The reduction Π̃(EL) of the submanifold of Euler-Lagrange fields
of the theory is an isotropic submanifold of the reduced phase space R of the theory.

Proof. It is clear that Π(EL) ⊂ Π(ELε) ⊂ M∞ where ELε = ELUε are the critical
points of the action Sε, i.e. solutions of the Euler-Lagrange equations of the theory
on Uε.

The reduction Π̃(EL) = Π(EL)/(K∞ ∩ T Π(EL)) of the isotropic submanifold
Π(EL) to the reduced phase space R =M∞/K∞ is isotropic because π∗∞ω∞ = Ω∞.
Hence π∗∞(ω∞ |Π̃(EL)) = (π∗∞ω∞) |Π(EL)= %∗dα |Π(EL)= 0.

Reduction at the boundary and gauge symmetries

If our theory (P (E),ΘH) has G as a covariant symmetry group, then because of
Noether’s theorem, Thm. 2.2.4, and Eq. (2.2.17), we have that Jξ[χ], with Π(χ) =
(ϕ, p) a closed (m− 1)-form. Hence

∫
∂M

i∗Jξ[χ] = 0, and so

〈J (ϕ, p), ξ〉 =

∫
∂M

i∗Jξ[χ] = 0 .

Then J (Π(χ)) = 0, and therefore,

Π(EL) ⊂ J −1(0) .

There is a natural reduction of the theory at the boundary defined by the covariant
symmetry G for the following reason: Provided that the value 0 of the moment map J
is weakly regular, the submanifold J −1(0) ⊂ T ∗F∂M is a coisotropic submanifold and
the characteristic distribution ker i∗0ω∂M of the pull-back of the canonical symplectic
form on T ∗F∂M to it, is the distribution defined by the orbits of the group G∂M .
From Prop. 2.2.5, J is the moment map of the canonical lifting of the action of the
group G∂M on F∂M .

From the above and by Thm 2.3.1, Lemma 2.3.4 follows easily.
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Lemma 2.3.4.
J −1(0) ⊂ %(M∞) .

Proof. If G is a symmetry group of the Hamiltonian H of the theory, then it is clear
that G∂M is a symmetry group of the function H, with the canonical action of G∂M
on the total space of fields at the boundary M.

Then if ζ ∈ M∞, there exists Γ at ζ such that iΓΩ∞ = dH∞ and the integral
curve γ of Γ passing through ζ lies in M∞. But %(γ) ⊂ J −1(0), because it is the
projection of an integral curve of a solution of Euler-Lagrange equations in Uε. But
because the Hamiltonian H is invariant, the trajectory must lie in a level surface of
the moment map J . Hence J −1(0) ⊂ %(M∞).

Because, R = M∞/K∞ and ker %∗ ∩ TM∞ ⊂ K∞, we get that M∞/K∞ ∼=
%(M∞)/%∗(K∞). Now if we are in the situation where %(M∞) = J −1(0), then R ∼=
%(M∞)/%∗(K∞) = J −1(0)/ kerω∂M |J−1(0). Hence because of the standard Marsden-
Weinstein reduction theorem the reduced phase space of the theory is obtained simply
as,

R ∼= J −1(0)/G∂M . (2.3.11)

A simple example: the scalar field

We will consider the simple example of a real scalar field on a globally hyperbolic
spacetime (M, η) of dimension m = 1 + d with boundary ∂M a Cauchy surface and
hence M ∼= (−∞, a] × ∂M . The configuration fields of the system are sections of
the (real) line bundle π : E →M , where π is projection onto the first factor. Bundle
coordinates will have the form (xµ, u), µ = 0, 1, ..., d.

If the bundle E → M were trivial, E ∼= M × R, the first jet bundle J1E would
be the affine bundle J1E ∼= T ∗M × R → E with bundle coordinates (xµ, u;uµ),
µ = 0, 1, ..., d. The covariant phase space P (E), in such case, would be isomorphic
to TM × R with bundle coordinates (xµ, u; ρµ).

As explained in Section 2.2, by using the volume form volM =
√
|η| dmx defined by

the metric η (in arbitrary local coordinates xµ), elements in P (E) can be identified
with semi-basic m-forms on E, w ∈ ∧m

1 (E), w = ρµdu ∧ voldµ + ρ0volM , voldµ =
i∂/∂xµvolM , after we mod out basic m-forms, ρ0volM .

The space of fields in the bulk, FP (E) = {χ = (Φ, P )}, consists of double sections
of the iterated bundle P (E)→ E → M , Φ: M → E, u = Φ(x), and P : E → P (E),
ρ = P (u). When E is a trivial bundle the configuration fields are maps Φ: M → R
and the momenta fields are (m− 1)-forms, P = P µ(x)voldµ.
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The Hamiltonian H of the theory determines a section of the projection M(E)→
P (E) by fixing the variable ρ0 above, i.e. ρ0 = −H(xµ, u, ρµ). One standard choice
for H in such case is:

H(xµ, u; ρµ) =
1

2
ηµνρ

µρν + V (u) ,

with V (u) a smooth function on R. The particular instance of V (u) = m2u2 gives
us the Klein-Gordon system.

The canonical m-form Θ in
∧m

1 (E) can be pulled back to P (E) along H and
takes the form,

ΘH = ρµdu ∧ voldµ −H(u)volM .

With the above choice for H, the action functional of the theory becomes,

S(Φ, P ) =

∫
M

[
P µ(x)∂µΦ(x)− 1

2
ηµνP

µP ν − V (Φ)

]√
|η| dmx . (2.3.12)

The space of boundary fields T ∗F∂M = {(ϕ, p)} is given by ϕ = Φ |∂M , p =
P 0 |∂M . Computing the differential of the action we get,

dS(Φ,P )(δΦ, δP ) =

∫
M

[δP µ(∂µΦ− ηµνP ν) + δΦ(− 1√
|η|
∂µ(P µ

√
|η|)

− V ′(Φ))]
√
|η| dmx+

∫
∂M

pδϕ vol∂M ,

and the Euler-Lagrange equations of the theory are given by,

1√
|η|
∂µ(P µ

√
|η|) + V ′(Φ) = 0 , ∂µΦ− ηµνP ν = 0 . (2.3.13)

From the second of the Euler equations we get, P ν = ηµν∂µΦ, and substituting
into the first we get

1√
|η|
∂µ(
√
|η|ηµν∂νΦ) = −V ′(Φ) . (2.3.14)

The first term is the Laplace-Beltrami operator of the metric η, i.e. the d’Alembertian
in the case of the Minkowski metric.

Note that had we instead chosen normal local coordinates on M , the volume
element in such charts would take the form

volM = dx0 ∧ dx1 ∧ · · · ∧ dxd

and then equations (3.13) would just be Hamilton’s equations:

∂µP
µ = −∂H

∂Φ
∂µΦ =

∂H

∂P µ
.
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The evolution picture near the boundary

We consider a collar around the boundary Uε = (−ε, 0]×∂M with coordinates t = x0

and xi, i = 1, . . . , d. We assume that η = −dt2 +η0i(x)dt⊗dxi + gij(x)dxi⊗dxj and
g = gij(x)dxi ⊗ dxj defines a Riemannian metric on ∂M . Writing again the action
functional S restricted to fields Φ, P defined on Uε, we have

Sε(Φ, P ) =

∫ 0

−ε
dt

∫
∂M

vol∂M
√
|η|(P 0∂0Φ + P i∂iΦ−

1

2
ηµνP

µP ν − V (Φ)) .

Consider the fields at the boundary ϕ and p defined above and βi = P i |∂M . Also,
let ∆ =

√
|η|/
√
|g|. Then

√
|η|dmx = ∆ dt ∧ vol∂M .

Therefore we can write,

Sε(Φ, P ) =

∫ 0

−ε
dt

∫
∂M

vol∂M ∆ [pϕ̇+ βi∂iφ+
1

2
p2 − η0ipβ

i − 1

2
gijβ

iβj − V (φ)]

=

∫ 0

−ε
dt [〈p, ϕ̇〉 − H(ϕ, p, β)]

where

〈p, ϕ̇〉 =

∫
∂M

p(x)ϕ̇(x)∆ vol∂M (2.3.15)

denotes the scalar product on functions on ∂M defined by the volume ∆ vol∂M , and
H : M → R denotes the Hamiltonian function induced from the Hamiltonian H of
the theory,

H(ϕ, p, β) = −〈β, d∂Mϕ〉 −
1

2
〈p, p〉+ 〈p, β̃〉+

1

2
〈β, β〉+

∫
∂M

V (ϕ)∆ vol∂M

with β̃ = η(d/dt, β) = ηi0β
i, 〈p, p〉 and 〈p, β̃〉 defined as in eq. (2.3.15). The product

〈β, β〉 denotes the scalar product of vector fields defined by the metric g, i.e.

〈β, β〉 =

∫
∂M

gijβ
i(x)βj(x)∆ vol∂M ,

and 〈β, d∂Mϕ〉 is the natural pairing between vector fields and 1-forms on ∂M , that
is

〈β, d∂M〉 =

∫
∂M

βi(x)∂iϕ(x)∆ vol∂M .

As in Section 2.3 we denote the space of all fields at the boundary, the dynamical
fields ϕ, p and the fields βi, as M = T ∗F∂M × B = {(ϕ, p; β)} and Hamilton’s
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equations for H are given by,

ϕ̇ =
δH
δp

= −p+ β̃ , ṗ = −δH
δϕ

= −V ′(ϕ)− div β ,

together with the constraint equation obtained from the variation of Sε with respect
to β,

0 =
δH
δβi

= −∂iφ+ η0ip+ gijβ
j .

Thus we get,

ṗ = −div β − V ′(ϕ)

ϕ̇ = −p+ β̃

and the constraints equations,

−d∂Mϕ+ p[ + β[ = 0 , (2.3.16)

where β[ = g(β, ·) is the 1-form associated to the vector β by the metric g, and p[ is
the 1-form associated to the vector p ∂/∂t.

Let C = {(ϕ, p, β) ∈ M | δH/δβ = 0}, the submanifold of M defined by the
constraints (2.3.16), and let % : M → T ∗F∂M denote the canonical projection. We
can solve for βi as a function of ϕ and p in the constraint equation (2.3.16), obtaining
βj = gij(∂iϕ− g0ip) or more intrisically,

β = d∂Mϕ
] − p ∂

∂t
,

where d∂Mϕ
] is the vector field associated to the 1-form d∂Mϕ by means of the metric

g. Thus the restriction of % to C is a diffeomorphism onto T ∗F∂M . If we denote by
Ω the pull-back %∗ω∂M to M of the canonical symplectic form on T ∗F∂M and by
ΩC its restriction to the submanifold C, the restriction of the canonical projection
% : M→ T ∗F∂M to C provides a symplectic diffeomorphism (C,ΩC) ∼= (T ∗F∂M , ω∂M).

Moreover, the projection Π(EL) of the space of solutions to the Euler-Lagrange
equations (2.3.13) to the boundary, defines, wherever it is a smooth submanifold, an
isotropic submanifold of T ∗F∂M , as shown in Thm. 2.2.7. Π(EL) is not necessar-
ily a Lagrangian submanifold because in general the Dirichlet problem defined by
boundary conditions (ϕ, p) for Eq. (2.3.14) doesn’t have a solution. The situation is
different in the Euclidean case, i.e. if (M, η) is a Riemannian manifold the Laplace-
Beltrame operator would be elliptic and the Dirichlet problem would always have
a unique solution. In such case the space Π(EL) would certainly be a Lagrangian
submanifold of T ∗F∂M .
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Another example: The Poisson σ-model

We will illustrate the previous ideas as they apply to the case of the Poisson σ-
model. We note that the Poisson σ-model (PσM for short) was analyzed in depth
by A. Cattaneo et al [Ca00] and provides a quantum field theory interpretation
of Konsevitch’s quantization of Poisson structures. We will just concentrate on its
first order covariant Hamiltonian formalism along the lines described earlier in this
chapter.

We will consider a Riemann surface Σ with smooth boundary ∂Σ 6= ∅. We may
assume that Σ also carries a Lorentzian metric. This will not play a significant role
in the discussion and we can stick to a Euclidean picture by selecting a Riemannian
metric on Σ. Local coordinates on Σ will be denoted as always by xµ, µ = 0, 1.

Let (P,Λ) be a Poisson manifold with local coordinates ua, a = 1, . . . , r. The
Poisson tensor Λ will be expressed in local coordinates as

Λ = Λab(y)
∂

∂ua
∧ ∂

∂ub
,

and it defines a Poisson bracket on functions f, g on P ,

{f, g} = Λ(df, dg) .

The bundle E of the theory, will be the trivial bundle E = Σ×P with projection π,
the canonical projection onto the first factor. The first jet bundle J1E is the affine
bundle over E modeled on V E⊗T ∗Σ. In this case, because of the triviality of E, we
have that V E ∼= TP and the affine bundle is trivial. Now the dual bundle P (E) will
be naturally identified with the vector bundle over E modeled on T ∗P ⊗ TΣ, that
is, its sections will be vector fields on Σ with values on 1-forms on P . However as
shown in the general case, we may use a volume form volΣ on Σ (for instance that
provided by a Riemannian metric) to identify elements on P (E) with 1-semibasic
forms on E, i.e.

P = P µ
a dua ∧ i∂/∂xµvolΣ ,

and the corresponding double sections χ = (Φ, P ) of P (E)→ E → Σ, with 1-forms
η on Σ with values on 1-forms on P along the map Φ: Σ→ P , that is,

P : TΣ→ T ∗P , τP ◦ P = Φ .

The covariant Hamiltonian of the theory will be given by,

H(x, u;P ) =
1

2
Λab(u)(P µ

a , P
ν
b )εµν
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with volΣ = εµνdx
µ ∧ dxν . The action of the theory is thus

SP (χ) =

∫
Σ

χ∗ΘH =

∫
Σ

[P µ
a ∂µΦa −H] volΣ. (2.3.17)

Notice that Pa = P µ
a dxµ and that dxµ = i∂/∂xµvolΣ is a 1-form on Σ. HvolΣ can be

expressed as

H(x, u;P )volΣ =
1

2
Λab(u)(Pa ∧ Pb)

and the first term in the action becomes simply Pa ∧ dΦa. Thus the action of the
theory is simply given as

SP (Φ, P ) =

∫
Σ

Pa(x)dΦa(x)− 1

2
Λab(Φ(x))(Pa(x) ∧ Pb(x)) ,

or more succinctly,

SP (Φ, P ) =

∫
Σ

〈P ∧ dΦ〉 − 1

2
(Λ ◦ Φ)(P ∧ P ) ,

where 〈·, ·〉 now denotes the natural pairing between T ∗P and TP .
To get the evolution picture of the theory near the boundary, we choose a collar

Uε ∼= (−ε, 0] × ∂Σ around the boundary ∂Σ and we expand the action SP of the
theory, eq. (2.3.17) restricted to fields defined on Uε. We obtain,

SP,Uε =

∫
−ε

dt

∫
∂Σ

du
[
paϕ̇

a + βaϕ́
a − Λabpaβb

]
,

where the boundary fields pa and βa are defined as before,

pa = P 0
a |∂Σ , βa = P 1

a |∂Σ .

The volume form and the coordinate u along the boundary ∂Σ have been chosen so
that volΣ = dt ∧ du, and ϕ́a denotes ∂ϕa/∂u.

As before, the cotangent bundle of boundary fields is T ∗F∂Σ with the canonical
form α = paδϕ

a. In order to analyze the consistency of the Hamiltonian theory at
the boundary, we introduce the extended phase space M = T ∗F∂Σ × B with its
presymplectic structure Ω = δϕa ∧ δpa and the boundary Hamiltonian

H(ϕ, p, β) = −βaϕ́a + Λab(ϕ)paβb .

Solving for the Euler-Lagrange equations we obtain two evolution equations,
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ϕ̇a =
δH
δpa

= Λabβb , ṗa = − δH
δϕa

= −β́a −
∂Λbc

∂ξa
pbβc ,

and one constraint equation equation,

0 =
δH
δβa

= −ϕ́a − Λab(ϕ)pb . (2.3.18)

Thus the first constraints submanifold M1 will be defined by eq. (2.3.18). Notice
the constraint defining M1 does not depend on the fields βa, thus M1 is a cylinder
along the projection % over its projection W = %(M1) ⊂ T ∗F∂M .

Notice that Ω = %∗ω∂M is such that ker Ω = K = {δ/δβa}. Thus, K ⊂ ker Ω1,
where Ω1 is the restriction of Ω toM1. It is easy to check that ker Ω1 = K⊕ ker ΩC,
where ΩC is the pull-back of ω∂M to C.

The submanifold W ⊂ T ∗F∂M is defined by the constraint

Ψa(ϕ, p) = −ϕ́a − Λab(ϕ)pb ,

whose Hamiltonian vector field Xa, i.e. Xa such that

iXaω∂M = dΨa ,

is given by

Xa(ϕ, p) = Λab(ϕ)
δ

δϕb
−
(
∂uδ

c
a − pb

∂Λab

∂ϕc

)
δ

δpc
.

A simple computation shows that

Xa(Ψ
b) |C= 0 .

Hence TW⊥ ⊂ TW and consequently, not only W , but also M1 are coisotropic
submanifolds.( In describing M1 as a coisotropic submanifold of the presymplectic
manifold M we mean simply that TM⊥

1 ⊂ TM1.)
The stability of the constraints shows that the PCA algorithm stops atM1. Then

the reduced (or physical) phase space of the theory is

R =M1/ ker Ω1
∼= C/span{Xa} .

The reduced phase space is a symplectic manifold, that in this case happens to be
finite-dimensional.

In some particular cases it can be computed explicitly (for instance Σ = [0, 1]×
[0, 1] with appropriate boundary conditions). In some instances it happens to inherit
a groupoid structure that becomes the symplectic groupoid integrating the Poisson
manifold P [Ca01].
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2.4 Yang-Mills theories on manifolds with

boundary as a covariant Hamiltonian field

theory

The multisymplectic setting for Yang-Mills theories

Recall from the introduction, (M, η) is an oriented smooth manifold of dimension
m = 1 + d with boundary ∂M 6= ∅. It carries either a Riemannian or a Lorentzian
metric η, in the latter case of signature (− + · · ·+) and such that the connected
components of ∂M are space-like submanifolds, that is, the restriction η∂M of the
Lorentzian metric to them is a Riemannian metric.

Yang-Mills fields are principal connections A on some principal fiber bundle
ρ : P → M with structural group G. For clarity in the exposition we are go-
ing to make the assumption that P is trivial (which is always true locally), i.e.
P ∼= M × G → M where (again, for simplicity) G is a compact semi-simple Lie
group with Lie algebra g.

Under these assumptions, principal connections on P can be identified with g-
valued 1-forms on M , i.e., with sections of the bundle E = T ∗M ⊗ g −→ M . Local
bundle coordinates in the bundle E → M will be written as (xµ, Aaµ), µ = 1, . . . ,m,
a = 1, . . . , dim g, where A = Aaµ ξa ∈ g with ξa a basis of the Lie algebra g. Thus a
section of the bundle can be written as

A(x) = Aaµ(x) dxµ⊗ξa . (2.4.1)

As discussed in Sect.2.2, in the covariant Hamiltonian formalism fields are sections
from the space-time manifold into P (E), the affine dual of the first jet bundle J1E,
J1E is an affine bundle modeled on the vector bundle π∗(T ∗M)⊗ V E and P (E) is
the vector bundle π∗(TM) ⊗ V E∗. In the case of Yang-Mills since E = T ∗M ⊗ g
it follows that J1E ∼= π∗(T ∗M) ⊗ V E ∼= T ∗M ⊗ T ∗M ⊗ g. Since E = T ∗M ⊗ g
is a vector bundle, V E∗ ∼= E ×M E∗ and therefore from the previous line P (E) ∼=
E ×M (E∗ ⊗ π∗TM) ∼= (T ∗M ⊗ g) ×M (TM ⊗ TM ⊗ g∗) with projection τ 1

0 the
canonical projection on the first factor T ∗M ⊗ g. Elements in P (E) can be written
as pairs (A,P ) where A now denotes the element A = Aaµ dxµ ⊗ ξa and P is an
element in TM ⊗ TM ⊗ g∗, that is, P = P µν

a ∂µ ⊗ ∂ν ⊗ ξa. For reasons that will
be clear later on we will restrict ourselves to the skewsymmetric part of the tensor
product TM ⊗TM along the fibers of P (E), or in other words we will consider only
elements P = P µν

a ∂µ ∧ ∂ν ⊗ ξa, and P µν
a = −P νµ

a .
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As discussed in Sect.2.2, using the volume form volM on M we may identify the
fields of the theory FP (E), that is sections χ of P (E)→ M that factorize through a
section A of π : E → M and a section P : E → P (E) of τ 1

0 , with equivalence classes
of 1-semibasic m-forms on E i.e.

P = P µν
a (x,A) dAaµ ∧ dm−1xν +

∧m
0 (E)

where dm−1xν = i∂/∂xνvolη. Thus the fields of the theory in the multisymplectic
picture are provided by sections χ = P ◦ A, often denoted simply by (A,P ), of the
double bundle P (E) → E → M . In terms of the natural fields A,P , we write the
action functional following the general principle, eq. (2.2.3):

SYM(A,P ) =

∫
M

P µν
a dAaµ ∧ dxm−1

ν −H(A,P )volM . (2.4.2)

The Hamiltonian function H of the theory is defined as1,

H(A,P ) =
1

2
εabcP

µν
a AbµA

c
ν +

1

4
P µν
a P a

µν , (2.4.3)

where the indexes µν (a) in P µν
a have been lowered (raised) with the aid of the

Lorentzian metric η (the Killing-Cartan form on g, respect.). Expanding the right
hand side of eq. (4.2.11), we get2,

SYM(A,P ) = −
∫
M

1

2

[
P µν
a (∂µA

a
ν − ∂νAaµ + εabcA

b
µA

c
ν) +

1

2
P µν
a P a

µν

]
volM . (2.4.4)

Notice that if A is given by eq. (4.2.1), then its curvature is given by,

FA = dAA = dA+
1

2
[A ∧ A] = Fµνdx

µ ∧ dxν (2.4.5)

=
1

2

(
∂µA

a
ν − ∂νAaµ + εabcA

b
µA

c
ν

)
dxµ ∧ dxν ⊗ ξa .

Thus the previous expression for the Yang-Mills action becomes,

SYM(A,P ) = −
∫
M

[
P µν
a F a

µν +
1

4
P µν
a P a

µν

]
volM .

1Physical constants, like the coupling strength constant g, have been removed from the formal-
ism as only the mathematical geometrical structure is discussed in this dissertation.

2The minus sign in front comes form the expansion of Pµνa dAaµ ∧dxm−1
ν that gives Pµνa (∂νA

a
µ−

∂µA
a
ν)volM .
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The Euler-Lagrange equations of the theory are very easy to obtain from the previous
expression, they are

1

2
P a
µν = −F a

µν , ∂µP
µν
a + εcabA

b
µP

µν
c = 0 . (2.4.6)

(From here one can already glean the reason for the choice made above to restrict to
the skew-symmetric part of the momenta fields P .)

The canonical formalism near the boundary

As discussed in Sect.2.3, in order to obtain an evolution description for Yang-
Mills and to provide the ground for its canonical quantization we need to intro-
duce a local time parameter near the boundary. In the case that M is a Lorenztian
manifold it is customary to assume that M is globally hyperbolic (even if far less
strict causality assumptions on M would suffice), therefore the time parameter can
be chosen globally. However as we did before, we will only assume that a collar
iε : Uε = (−ε, 0]× ∂M →M can be chosen around the boundary such that iε∗(∂/∂t)
is time-like everywhere and such that a choice of a time parameter t = x0 can be
made near the boundary that can be used to describe the evolution of the system.
The fields of the theory would then be considered as fields defined on a given spatial
frame that evolve in time for t ∈ (−ε, 0].

The dynamics of such fields would be determined by the restriction of the Yang-
Mills action (4.2.13) to the space of fields on Uε,

SYM,Uε(A,P ) = −
∫ 0

−ε
dt

∫
∂M

vol∂M

[
P µν
a F a

µν +
1

4
P µν
a P a

µν

]
, (2.4.7)

where now we are assuming that the collar Uε is such that volUε = dt ∧ vol∂M
where vol∂M is the canonical volume defined by the restriction of the metric η to the
boundary3.

3Notice that even if this assumption is not necessary for the developments that follow it helps
us avoid having spurious factors appear in the formulas.
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Expanding (2.4.7) we obtain,

SYM,Uε(A,P ) = −1

2

∫ 0

−ε
dt

∫
∂M

vol∂M

[
P µν
a

(
∂µA

a
ν − ∂νAaµ + εabcA

b
µA

c
ν

)
+

1

2
P µν
a P a

µν

]
= −1

2

∫ 0

−ε
dt

∫
∂M

vol∂M
[
P k0
a

(
∂kA

a
0 − ∂0A

a
k + εabcA

b
kA

c
0

)
+

+ P 0k
a

(
∂0A

a
k − ∂kAa0 + εabcA

b
0A

c
k

)
+

+ P kj
a

(
∂kA

a
j − ∂jAak + εabcA

b
kA

c
j

)
+

1

2
P k0
a P a

k0 +
1

2
P 0k
a P a

0k +
1

2
P kj
a P

a
kj

]
=

∫ 0

−ε
dt

∫
∂M

vol∂M
[
P k0
a

(
∂0A

a
k − ∂kAa0 − εabcAbkAc0

)
+

− 1

2
P kj
a

(
∂kA

a
j − ∂jAak + εabcA

b
kA

c
j

)
− 1

2
P k0
a P a

k0 −
1

4
P kj
a P

a
kj

]
.

In the previous expressions εabc denote the structure constants of the Lie algebra g
with respect to the basis ξa, that is [ξb, ξc] = εabcξa. Notice that εabcA

b
0A

c
0 = 0 because

for fixed a, εabc is skew-symmetric. Moreover the indexes µ and a have been pushed
down and up by using the metric η and the Killing-Cartan form 〈·, ·〉 respectively.

In equation (4.2.13) we introduced the assumption that P is a bivector, i.e., P µν
a

is skew symmetric in µ and ν. Therefore P 00
a = 0, and also P k0

a P a
k0 = P 0i

a P
a
0i, because

P k0 = −P 0k, etc. This assumption will be justified later on (see Sect. 2.4)
The previous expression acquires a clearer structure by introducing the appro-

priate notations for the fields restricted at the boundary and assuming that they
evolve in time t. Thus the pull-backs of the components of the fields A and P to the
boundary will be denoted respectively as,

aak := Aak |∂M ; a = (aak) , aa0 := Aa0 |∂M ; a0 = (ak0) ,

pka := P k0
a |∂M ; p = (pka) , p0

a := P 00
a |∂M= 0; p0 = (p0

a) = 0 ,

βkia := P ki
a |∂M ; β = (βkia ) .

Given two fields at the boundary, for instance p and a, we will denote as usual by
〈p, a〉 the following expression:

〈p, a〉 =

∫
∂M

pµaa
a
µ vol∂M ,

and the contraction of the inner (Lie algebra) indices by using the Killing-Cartan
form and the integration over the boundary is understood.
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Introducing the notations and observations above in the expression for SYM,Uε we
obtain,

SYM,Uε(A,P ) =

∫ 0

−ε
dt

∫
∂M

vol∂M
[
pka
(
ȧak − ∂kaa0 − εabcabkac0

)
+

− 1

2
βkia
(
∂ka

a
i − ∂iaak + εabca

b
ka

c
i

)
− 1

4
βkia β

a
ki −

1

2
pkap

a
k]

=

∫ 0

−ε
dtL(a, ȧ, a0, ȧ0, p, ṗ, β, β̇) (2.4.8)

where now L denotes the boundary Lagrangian, Eq. (2.3.2), and depends on the re-
strictions to the boundary of the fields of the theory. Collecting terms and simplifying
we can then write L as,

L(a, ȧ, a0, ȧ0, p, ṗ, β, β̇) = 〈p, ȧ− daa0〉 − 〈β, Fa〉 −
1

2
〈p, p〉 − 1

4
〈β, β〉 . (2.4.9)

Now we can find the Euler-Lagrange equations corresponding to the Lagrangian
function L as an infinite-dimensional mechanical system defined on the configuration
space P (E) = {a, a0, p, β}. Notice that the fields a, p are 1-forms on ∂M with values
in the Lie algebra g, while the field a0 is a function on ∂M with values in g, and the
field β is a 2-form on ∂M with values in g too. Thus the configuration space is the
space of sections of the bundle (T ∗M ⊕ T ∗M ⊕ Λ2(T ∗M)⊕ R)⊗ g.

Euler-Lagrange equations will have the form:

d

dt

δL
δχ̇

=
δL
δχ

,

where χ ∈ P (E) and δ/δχ denotes the variational derivative of the functional L.
Thus for χ = p we obtain,

δL
δṗ

= 0, hence 0 =
δL
δp

= −p+ ȧ− daa0 ,

and thus,
ȧ = p+ daa0 . (2.4.10)

This equation corresponds to the Legendre transformation of the velocity and agrees
with the standard minimal coupling definition of the momenta p = ȧ− daa0.

For χ = β we obtain,

δL
δβ̇

= 0, thus 0 =
δL
δβ

= −Fa −
1

2
β
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and consequently,
β = −2Fa . (2.4.11)

For χ = a we obtain,

δL
δȧ

= p, hence ṗ =
d

dt

δL
δȧ

=
δL
δa

= d∗aβ + [p, a0].

Thus we get the equation determining the evolution of the momenta field (the Yang-
Mills electric field) p:

ṗ = d∗aβ + [p, a0] . (2.4.12)

Finally for χ = a0 we obtain,

δL
δȧ0

= 0, and therefore,
δL
δa0

= d∗ap .

Thus we obtain,
d∗ap = 0 (2.4.13)

that must be interpreted as Yang-Mills Gauss law (in the absence of charges). Thus
we have two evolution equations, (2.4.10) and (4.3.6), and two constraint equations
(2.4.11) and (2.4.13).

Notice that the field a0 is undetermined. This fact, clearly a consequence of the
gauge invariance of the theory, will be interpreted in the next section.

We will study the consistency of the previous equations in the following section.

The Legendre transform

The Legendre transform in the bulk

So far we have presented a covariant Hamiltonian theory,the equation following (4.5),
whose Euler-Lagrange equations are equivalent to Yang-Mills equations. However it
is not automatically true that such theory is equivalent to the standard Yang-Mills
theory. The standard Yang-Mills theory is a Lagrangian theory determined by a
Lagrangian density which is nothing but the square norm of the curvature FA of the
connection 1-form A, and its action the L2 norm of FA, i.e.

S = −1

4

∫
M

Tr (FA ∧ ?FA) =

∫
M

LYM(A)volM . (2.4.14)

Standard quantum field theories describing gauge interactions use exactly this La-
grangian description (and provide accurate results). Thus if we will assume that



45

the correct Yang-Mills theory is provided by the action above, eq. (2.4.14), then
we would like to relate the covariant Hamiltonian picture above to this Lagrangian
picture.

For this task we have to introduce the natural extension of Legendre trans-
form to the setting of covariant first order Lagrangian field theories. The Legen-
dre transform is defined [Ca91] as the bundle map FLYM : J1E → P (E), given by
FLYM(xµ, Aaµ;Aaµν) = (xµ, Aaµ;P µν

a ) where

P µν
a =

∂LYM

∂Aaµν

and LYM = −1
4
Tr (FA ∧ ?FA). Recall that α ∧ ?β = (α, β)ηvolM , α, β, k-forms,

where (·, ·)η denotes the inner product on k-forms. Thus we will write α ∧ ?β =
αµ1···µkβ

µ1···µkvolM where we have raised the indexes by using the ηµν . Hence,

LYM =
1

2
FµνF

µν . (2.4.15)

Hence in bundle coordinates (xµ, Aaµ;Aaµν), we have,

Fµν =
1

2

(
Aaνµ − Aaµν + εabcA

b
µA

c
ν

)
. (2.4.16)

Thus
P µν
a = F µν

a .

Notice that on the graph of the Legendre map, the Yang-Mills action in the Hamil-
tonian first order formalism, eq. (4.2.13), is just, up to a coefficient, the previous
action eq. (2.4.14).

It was assumed that the momenta fields P µν
a are skew-symmetric in the indices

µ and ν. From the definition of the momenta fields as sections of the bundle P (E)
there is no restriction on them. However because Yang-Mills theories are Lagrangian
theories, the Legendre transform selects a subspace on the space of momenta that
corresponds to fields P which are skew-symmetric on the indices µ, ν.

The presymplectic formalism: Yang-Mills at the boundary
and reduction

As discussed in general in section 3.2, we define the extended Hamiltonian H, so that
L = 〈p, ȧ〉 − H. Thus

H(a, β) = 〈p, daa0〉+
1

2
〈p, p〉+ 〈β, Fa +

1

2
β〉 . (2.4.17)
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Thus the Euler-Lagrange equations can be rewritten as

ȧ =
δH
δp

; ṗ = −δH
δa

, (2.4.18)

δH
δa0

= 0 (2.4.19)

δH
δβ

= 0 . (2.4.20)

We denote again by % : M → T ∗F∂M the canonical projection %(a, a0, p, β) =
(a, a0, p). Let ω∂M denote the form on the cotangent bundle T ∗F∂M ,

ω∂M = δa ∧ δp.
We will denote again by Ω the pull-back of this form toM along %, i.e., Ω = %∗ω∂M .
Clearly, ker Ω = span{δ/δβ, δ/δa0}, and we have the particular form that Thm. 2.3.1
takes here.

Theorem 2.4.1. The solution to the equation of motion defined by the Lagrangian
LYM, i.e. the Yang-Mills equations, are in one-to-one correspondence with the in-
tegral curves of the presymplectic system (M,Ω,H), i.e. with the integral curves of
the vector field Γ on M such that iΓΩ = dH.

The primary constraint submanifold M1 is defined by the two constraint equa-
tions,

M1 = {(a, a0, p, β)|Fa + β = 0, d∗ap = 0} .
Since β is just a function of a, we have that M1

∼= {(a, a0, p)|d∗ap = 0} and
ker Ω|M1 = span{ ∂

∂a0
}. Thus M2 =M1/(ker Ω|M1) ∼= {(a, p)|d∗ap = 0}.

Gauge transformations: symmetry and reduction

The group of gauge transformations G, i.e, the group of automorphisms of the prin-
cipal bundle P over the identity, is a fundamental symmetry of the theory. Notice
that the action SYM is invariant under the action of G (however it is not true that
H is G-invariant).

The quotient of the group of gauge transformations by the normal subgroup of
identity gauge transformations at the boundary defines the group of gauge transfor-
mations at the boundary G∂M , and it constitutes a symmetry group of the theory at
the boundary, i.e. it is a symmetry group both of the boundary Lagrangian L and of
the presymplectic system (M,Ω,H). We may take advantage of this symmetry to
provide an alternative description of the constraints found in the previous section.
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Proposition 2.4.2. With the notations above, J (a, p) = d∗ap.

Proof. The moment map J : T ∗F∂M → g∗∂M is given by,

〈J (a, p), ξ〉 = 〈p, ξF∂M 〉 = 〈p, daξ〉 ,

because the gauge transformation gs = exp sξ acts in a as a 7→ gs ·a = g−1
s ags+g

−1
s dgs

and the induced tangent vector is given by,

ξA∂M (a) =
d

ds
gs · a |s=0= daξ .

Let A∂M denote the space of connections a defined on the boundary ∂M . The
constraint submanifoldM1 projected to the space T ∗A∂M , by means of the projection
map (a, a0, p) 7→ (a, p), is such that C = J −1(0). This is exactly the situation
depicted in Sect.2.3. Hence the standard Marsden-Weinstein reduction, eq. (2.3.11),
will give the reduced phase space,

RYM = J −1(0)/G∂M

and its Hamiltonian,

h([a], [p]) =
1

2
〈p, p〉 − 1

2
〈Fa, Fa〉 ,

where [a] and [p] denote equivalence classes of connections and momenta with respect
to the action of the gauge group G∂M . Notice that both terms in the Hamiltonian
function h are G∂M -invariant, and the Hamiltonian system h defined on the reduced
phase spaceRYM has the structure of an infinite-dimensional mechanical system with
potential function V ([a]) = 1

2
||Fa||2.

The reduction of the boundary values of solutions of Yang-Mills equation in the
bulk is of course, an isotropic submanifold of the reduced space. In the case where
M is Riemannian, an existence and uniqueness theorem for solutions of Yang-Mills
equations on manifolds with boundary can be proved and hence this submanifold,
following the proof of Theorem 2.7, is a Lagrangian submanifold.

2.5 Conclusions and discussion

It has been shown that the multisymplectic geometry of the covariant phase space
P (E) provides a convenient framework to study first order covariant Hamiltonian
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field theories on manifolds with boundaries. In particular it induces a natural presym-
plectic structure on the total space of fields at the boundary whose reduction provides
the symplectic phase space of the theory. The solution of the Euler-Lagrange equa-
tions on the bulk induce an isotropic submanifold in the reduced symplectic phase
space at the boundary. Provided that the boundary conditions are well-posed, this
submanifold is in fact Lagrangian.

The gauge symmetries of the theory fit nicely into the picture and the symplectic
reduction of the theory at the boundary induced by the moment map, i.e., by the
conserved charges of the theory, is in perfect agreement with the presymplectic anal-
ysis of the theory. Various instances are discussed illustrating the main features of
the theoretical framework: the real scalar field, the Poisson σ-model and Yang-Mills
theories. Each of them allows as to stress different aspects of the theory. The regular
situation for the scalar field, the coisotropic structure at the boundary in the case of
the Poisson σ-model and the reduction using the moment map at the boundary in
the case of Yang-Mills theories.

The theory presented in this work is particularly well suited for describing Pala-
tini’s gravity. C. Rovelli’s [Ro04], [Ro06], can be read in part as seeking and arguing
for precisely such a theory. We interpret Rovelli’s canonical form ΘH as alluding to
a multisymplectic structure in the bulk. We take up Palatini gravity in Chapter 4.
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Chapter 3

Covariant Hamiltonian dynamics
with constraints

3.1 Introduction

In this chapter, based on joint published work with Alberto Ibort [Ib16a], we analyze
in depth the theory of Hamiltonian dynamical systems, viewing these systems as
first-order covariant Hamiltonian field theories on a manifold of dimension 1+0 with
boundary. These field theories present a simple setting for studying features relevant
to more complex examples of first-order covariant Hamiltonian field theories like
Yang-Mills theories and Palatini gravity. Such features include the introduction of
constraints and the ’topological phases’ of the theory, that is, the limit of the gauge
theory where the kinetic term of the theory disappears. On these simple theories
we can also test some common assumptions about first-order covariant Hamiltonian
field theories, in particular the role of boundary conditions and the geometry of the
restriction to the boundary of the space of solutions of the Euler-Lagrange equations.

In this chapter, the simple theory of Hamiltonian dynamics interpreted as covari-
ant first-order Hamiltonian field theories on manifolds with boundary in dimension
1+0 is subjected to a similar analysis as that undertaken in chapter 2. The fact
that the basic space of the theory is one-dimensional and that the Euler-Lagrange
equations of the theory are the standard Hamilton’s equations, removes most of the
analytic difficulties arising in higher-order theories. It is possible to show that under
appropriate conditions, the spaces of fields have specific geometric structures. Most
notably it is shown that for theories named locally Dirichlet, the space of solutions
of the Euler-Lagrange equations restricted to the boundary, π(EL), is a Lagrangian
submanifold. Through examples however we find that this condition is not neces-
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sary. In fact we find that for even so simple a theory as Hamiltonian dynamics, it is
not easy to give necessary and sufficient conditions for which π(EL) is a Lagrangian
submanifold. A locally defined generating function is constructed.

In Section 3.2 Hamiltonian dynamics is formulated as a first-order Hamiltonian
field theory on a manifold with boundary. We review material covered in sections
2.1 - 2.3 of Chapter 2 and apply it to the case of Hamiltonian dynamics. In Sec-
tion 3.3 the problem of determining under what conditions the space of solutions of
Euler-Lagrange equations at the boundary is Lagrangian is addressed. A solution is
provided by explicitly constructing locally defined generating functions and a num-
ber of detailed examples are presented. Finally, in Section 3.4 the introduction of
constraints in the theory is analyzed, in particular constraints affecting the momenta
of the theory. A reduction theory for these is obtained.

3.2 The geometry of the covariant phase space

for Hamiltonian dynamics

We quickly review some basic notions and notations for first-order covariant Hamil-
tonian field theories. We refer the reader to Chapter 2 for full expositions.

The covariant phase space of first order Hamiltonian field
theories

The fundamental geometric structure of a first-order covariant Hamiltonian field
theory is provided by a fiber bundle π : E →M with M an m = (1 + d)-dimensional
orientable smooth manifold with smooth boundary ∂M 6= ∅ and local coordinates
adapted to the fibration (xµ, ua), a = 1, . . . , r, where r is the dimension of the
standard fiber. Because M is orientable we will assume that a given volume form
volM is selected. Notice that it is always possible to chose local coordinates xµ such
that volM = dx0 ∧ dx1 ∧ · · · ∧ dxd.

In this setting, the formalism for Hamiltonian dynamics as a covariant Hamil-
tonian field theory will be provided by the bundle π : E = Q × [0, 1] → [0, 1],
where π denotes the standard projection on the second factor, Q is an r-dimensional
smooth manifold without boundary, and the spacetime of dimension m = 1 + 0,
M = [0, 1] ⊂ R, with standard metric η = −dt2. The volume form is given by
volM = dt. A standard bundle chart will have the form (t, ua) where ua, a = 1, . . . , r,
is a local chart for Q.
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We will denote by π0
1 : J1E → E the affine 1-jet bundle of the bundle E

π→ M .
The elements of J1E are equivalence classes of germs of sections φ of π. If (xµ;ua),
µ = 0, . . . , d is a bundle chart for the bundle π : E → M , then we will denote by
(xµ, ua;uaµ) a local chart for the jet bundle J1E.

The affine dual of J1E is the vector bundle over E whose fiber at ξ = (x, u) is the
linear space of affine maps Aff(J1Eξ,R). The vector bundle Aff(J1E,R), possesses
a natural subbundle defined by constant functions along the fibers of J1E → E,
that we will denote again, with an abuse of notation, as R. The quotient bundle
Aff(J1E,R)/R will be called the covariant phase space bundle of the theory and will
be denoted by P (E).

Local coordinates on P (E) can be introduced as follows: Affine maps on the
fibers of J1E have the form uaµ 7→ ρ0 + ρµau

a
µ where uaµ are natural coordinates on the

fiber over the point ξ in E with coordinates (xµ, ua). Thus a bundle chart for the
bundle τ 0

1 : P (E)→ E is given by (xµ, ua; ρµa).
The choice of a distinguished volume form volM in M allows us to identify the

fibers of P (E) with a subspace of m-forms on E as follows: The map uaµ → ρµau
a
µ

corresponds to the m-form ρµadu
a∧volµ where volµ stands for i∂/∂xµvolM . Let

∧m(E)
denote the bundle of m-forms on E. Let

∧m
k (E) be the subbundle of

∧m(E) con-
sisting of those m-forms which vanish when k of their arguments are vertical. So in
our local coordinates, elements of

∧m
1 (E), i.e. m-form on E that vanish when two

of their arguments are vertical, commonly called semi-basic 1-forms, have the form
ρµadu

a ∧ volµ + ρ0volM , and elements of
∧m

0 (E), i.e. basic m-forms, have the form
p0volM .

∧m
1 E is a real line bundle over P (E) and, for each point ζ = (x, u, p) ∈ P (E),

the fiber is the quotient
∧m

1 (E)ζ/
∧m

0 (E)ζ
In the case of Hamiltonian dynamics it is clear that the first jet bundle J1E is

canonically isomorphic to TQ × [0, 1] and that P (E) is isomorphic to T ∗Q × [0, 1].
Bundle coordinates on T ∗Q × [0, 1] will be denoted as (t, ua, pa) and the projection
τ 0

1 : P (E)→ E above, becomes τ 0
1 (t, ua, pa) = (t, ua)

Notice that the space of 1-semi-horizontal forms on E = Q× [0, 1]→ [0, 1] is just
the space of 1-forms on Q× [0, 1], that is

∧m
1 E = T ∗(Q× [0, 1]) and the projection

map µ :
∧m

1 E → P (E) is just the projection µ : T ∗(Q× [0, 1])→ T ∗Q× [0, 1], given
as µ(t, ua; p0, pa) = (t, ua, pa) where padu

a+p0dt is a generic element in T ∗(Q× [0, 1]).
The canonical 1-form Θ on (

∧m
1 E) ∼= T ∗(Q × [0, 1]) is just the canonical Liouville

1-form on the cotangent bundle T ∗(Q× [0, 1]), and has the expression:

Θ = padu
a + p0dt .

We define a Hamiltonian H on P (E) to be a section of µ, and we can use a
Hamiltonian section ρ = −H(xµ, ua, ρµa) to define an m-form on P (E) by pulling back
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the canonical m-form Θ from
∧m

1 E. We call the form so obtained the Hamiltonian
m-form associated with H and denote it by ΘH . Thus

ΘH = ρµadu
a ∧ volµ −H(xµ, ua, ρµa) volM . (3.2.1)

and the pair (J1E∗,ΘH) will be called the Hamiltonian covariant phase space of the
theory.

In the simple example in dimension 1 + 0 we are considering, a Hamiltonian,
i.e. a section of µ, can be identified with a map H : T ∗Q × I → R, and p0 =
−H(t, ua, pa), because the bundle defined by the projection µ is trivial. The pull-
back of the canoncial 1-form Θ to J1E∗ ∼= T ∗Q× [0, 1] becomes the standard 1-form
of Hamiltonian dynamics:

ΘH = padu
a −H(t, u, p)dt .

The action and the variational principle

The fields of the theory are double sections of the bundle P (E), that is, sections
χ : M → J1E∗ of the bundle structure over M such that both Φ = τ 0

1 ◦ χ : M → E
and P = χ◦π : E → J1E∗ are sections of π : E →M and τ 0

1 : P (E)→ E respectively.
Notice that in such a case P ◦ Φ = χ. We will denote such a section χ by (Φ, P ) to
indicate the double bundle structure of P (E).

In the case of Hamiltonian dynamics viewed as a field theory over M = [0, 1] ⊂ R,
double sections of the bundle P (E) = T ∗Q × [0, 1] → E = Q × [0, 1] → [0, 1],
have the form χ = P ◦ Φ, with Φ(t) = (u(t), t) and P (u, p, t) = (u, p(t), t), i.e.
therefore χ(t) = (u(t), p(t), t). Thus the space of fields of the theory can be described
equivalently as the space of smooth curves on T ∗Q.

We will denote by FM(E), or just FM if there is no risk of confusion, the sections
Γ(E) of the bundle E, that is Φ ∈ FM , and by J1F∗M the double sections χ = (Φ, P ).
Thus J1F∗M represents the space of fields of the theory in the first-order covariant
Hamiltonian formalism. In our particular instance FM ∼= C∞([0, 1], Q) and J1F∗M ∼=
C∞([0, 1], T ∗Q).

The equations of motion of the theory will be defined by means of a variational
principle, i.e., they will be characterized as the critical points of an action functional
S on J1F∗M . Such action will be simply given by:

S(χ) =

∫
M

χ∗ΘH , (3.2.2)
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that in our case of Hamiltonian dynamics viewed as a field theory on M = [0, 1] ⊂ R
becomes,

S(χ) =

∫ 1

0

(pa(t)u̇
a(t)−H(t, u(t), p(t))) dt , (3.2.3)

which is just the standard functional in Hamilton’s variational principle.
A simple computation leads to,

dS(χ)(U) =

∫
M

χ∗
(
iŨdΘH

)
+

∫
∂M

(χ ◦ i)∗
(
iŨΘH

)
, (3.2.4)

where U is a vector field on J1E∗ along the section χ, Ũ is any extension of U to
tubular neighborhood of the graph of χ, and i : ∂M →M is the canonical embedding.

The cotangent bundle of fields at the boundary

Consider a collar around the boundary Uε ∼= (−ε, 0] × ∂M , and local coordinates
x0 = t, xk, k = 1, . . . , d, such that volM = dt ∧ vol∂M . In the theory we are
considering, we have ∂M = ∂[0, 1] = {1, 0}.

The fields at the boundary are obtained by restricting the zeroth component of
sections χ to ∂M , that is, fields of the form:

ϕa = Φa ◦ i , pa = P 0
a ◦ i .

In the case of Hamiltonian dynamics viewed as a field theory on M = [0, 1] ⊂ R the
fields at the boundary are just ϕa = ua |{1,0}= (ua(1), ua(0)) and pa = P 0

a |{1,0}=
(pa(1), pa(0)).

If we denote by F∂M the space of fields at the boundary ϕa, then the space of
fields (ϕa, pa) can be identified with the cotangent bundle T ∗F∂M over F∂M in a
natural way, i.e. each field pa can be considered as the covector at ϕa that maps the
tangent vector δϕa at ϕa into the number 〈p, δϕ〉 given by:

〈p, δϕ〉 =

∫
∂M

pa(x)δϕa(x)vol∂M . (3.2.5)

The canonical 1-form α on T ∗F∂M will have the expression:

α(ϕ,p)(U) =

∫
∂M

pa(x)δϕa(x) vol∂M (3.2.6)

with U a tangent vector to T ∗F∂M at (ϕ, p), that is, a vector field on the space of
1-semi-horizontal forms on i∗E along the section (ϕa, pa), hence U = δϕa ∂/∂ua +
δpa ∂/∂ρa.
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In the case of Hamiltonian dynamics viewed as a field theory, it is clear that F∂M
is identified with Q×Q and T ∗F∂M is just T ∗Q× T ∗Q and the canonical 1-form α
will be

α = pr∗2θ − pr∗1θ = pa(1)dua(1)− pa(0)dua(0) ,

where θ is the canonical Liouville 1-form on T ∗Q and pr1,2 : T ∗Q × T ∗Q → T ∗Q
denote the canonical projections onto the first and second factor respectively. In what
follows, we will denote by T ∗Q × T ∗Q the manifold T ∗Q × T ∗Q equipped with the
1-form α above and the corresponding symplectic structure, ω = pr∗2dθ−pr∗1dθ = dα.

Finally, notice that the ‘pull-back to the boundary’ map, defines a natural map
from the space of fields in the bulk, J1F∗M into the phase space of fields at the
boundary T ∗F∂M that will be denoted by Π, that is:

Π: J1F∗M → T ∗F∂M , Π(Φ, P ) = (ϕ, p), ϕ = Φ ◦ i, pa = P 0
a ◦ i .

that in the case of Hamiltonian dynamics viewed as a field theory on M = [0, 1] ⊂ R
becomes Π(χ) = (u(1), p(1);u(0), p(0)).

With the notations above, by comparing the expression for the boundary term
in Eq.(3.2.4) and the expression for the canonical 1-form α, Eq.(3.2.6), we get:∫

∂M

(χ ◦ i)∗ (iŨΘH) = (Π∗α)χ(U) .

or in other words, the boundary term in Eq.(3.2.4) is just the pull-back of the canon-
ical 1-form α at the boundary along the projection map Π.

Euler-Lagrange’s equations and Hamilton’s equations

Referring to eqn (3.2.4), let ELχ(U) =
∫
M
χ∗ (iŨdΘH) . Note that ELχ is a 1-form

on the space of fields on the bulk, J1F∗M. A double section χ of P (E) → E → M
will be said to satisfy the Euler-Lagrange equations determined by the first-order
Hamiltonian field theory with Hamiltonian H if ELχ = 0, that is if χ is a zero of the
Euler-Lagrange 1-form EL on J1F∗M . Notice that this is equivalent to

χ∗(iŨdΘH) = 0 , (3.2.7)

for all vector fields Ũ on (a tubular neighborhood of the range of χ in) P (E). In the
case of Hamiltonian dynamics viewed as a field theory on a manifold of dimension
1+0 ,(3.2.7) becomes the standard Hamilton’s equations for the Hamiltonian function
H:

u̇a =
∂H

∂pa
, ṗa = −∂H

∂ua
(3.2.8)
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Similarly, the previous expression for ELχ can be written explicitly as:

ELχ(δu, δp) =

∫ 1

0

[(
u̇a − ∂H

∂pa

)
δpa +

(
ṗa +

∂H

∂ua

)
δua
]
dt . (3.2.9)

We have obtained in this way the fundamental formula that relates the differential
of the action with a 1-form on the space of fields on the bulk manifold and a 1-form
on the space of fields at the boundary.

dSχ = ELχ + Π∗αχ , χ ∈ J1F∗M . (3.2.10)

We will denote by EL the set of solutions of the Euler-Lagrange equations of our
theory. The set EL is the set of zeros of the 1-form EL and the zeros of a 1-form
form a submanifold under exactly the same conditions as do the zeros of a function.
We can easily prove the following with complete generality, for any first-order covari-
ant Hamiltonian field theory. (See Proposition 1, in Chapter 2, section 2.3):

Theorem 3.2.1. Assuming that EL of our first-order covariant Hamiltonian field
theory is a submanifold of J1F∗M , the restriction Π(EL) ⊂ T ∗F∂M of EL to the
boundary ∂M is an isotropic submanifold of T ∗F∂M .

Hamilton’s variational principle

A precise statement of Hamilton’s Principle can be given as follows:

The trajectories of a classical dynamical system with configuration space Q,
Hamiltonian function H : T ∗Q× [0, 1]→ R and endpoints u0, u1 ∈ Q are the critical
points of the action functional S, Eq. (3.2.2), restricted to the space of curves in
T ∗Q with fixed endpoints u0, u1.

In other words, let u0, u1 ∈ Q be two points in the configuration space of the
system. Consider now the space of maps:

Ωu0,u1 = {χ = (u, p) : [0, 1]→ T ∗Q | u(0) = u0, u(1) = u1} = Π−1(T ∗u0Q× T ∗u1Q) ,

This is the space of all curves χ : [0, 1]→ T ∗Q,χ(t) = (u(t), p(t)) with local endpoints
u0, u1 : u(0) = u0, u(1) = u1 and free values for the momenta endpoints.Then the
trajectories of the system are the critical points of S restricted to Ωu0,u1 , i.e. the
zeros of d(S |Ωu0,u1 ).
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Notice that because Π is a submersion, Ωu0,u1 is a regular submanifold. Moreover
T ∗u0Q × T ∗u1Q is a Lagrangian submanifold of T ∗F∂M = T ∗Q × T ∗Q such that, not
only dα but also α vanishes on it. Then, by Eq.(10) we obtain,

d(S |Ωu0,u1 )χ = ELχ . (3.2.11)

Thus, trajectories of the system are solutions of Euler-Lagrange equations with the
given boundary conditions. The space of solutions of Euler-Lagrange equations EL
is the union for all u0, u1 ∈ Q of the corresponding spaces of solutions of Hamilton’s
equations.

If we consider now, instead of the Lagrangian submanifold T ∗u0Q×T ∗u1Q, an arbi-

trary Lagrangian submanifold L ⊂ T ∗Q×T ∗Q, we may modify Hamilton’s principle
and state that the trajectories of the classical dynamical system with Hamiltonian
function H : T ∗Q × [0, 1] → R are the the critical points χ of the action functional
S, Eq. (3.2.3), such that Π(χ) ∈ L. If we denote now by ΩL the space of curves such
that their endpoints lie in L, i.e.,

ΩL = Π−1(L) ,

then because L is Lagrangian, α |L is closed, thus, locally there exists a function F
on L such that α |L= dF . Hence, instead of Eq. (3.2.11), we get:

d(S |ΩL)χ = ELχ + Π∗(dF )χ ,

and now, critical points of the action restricted to ΩL are zeros of the modified
Euler-Lagrange form EL + Π∗(dF ).

3.3 Hamilton’s generating function

In the previous section we have shown that for regular theories the space Π(EL)
is an isotropic submanifold of the space of fields at the boundary or, in terms of
the particular instance of Hamiltonian dynamics, that the trace at the boundary of
actual solutions of Hamilton’s equations in the full interval determines an isotropic
submanifold in T ∗Q × T ∗Q. In many instances it is true that such submanifold is
maximal, i.e, it is a Lagrangian submanifold. In this section we will discuss two
different approaches to reach this conclussion and, along the way, we will establish
sufficient conditions that will guarantee the desired result.
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Hamilton’s generating function

Now we are ready to explore under which circumstances Π(EL) is Lagrangian.

Theorem 3.3.1. Consider Hamiltonian dynamics as a Hamiltonian field theory on
a manifold M of dimension 1+0 with boundary. If the flow of the dynamics given
by Hamilton’s equations (3.2.8) exists for all t ∈ [0, 1] then Π(EL) is a Lagrangian
submanifold of J1F∂M .

Proof. Consider the Hamiltonian vector fieldXH defined by the Hamiltonian function
H and its local flow ϕt. Now suppose that the flow is globally defined ϕt : T

∗Q→ T ∗Q
for all t ∈ [0, 1]. This implies that the integral curves χ(t) = (u(t), p(t)) of Hamilton’s
equations are defined for all t and for all initial data (u0, p0) ∈ T ∗Q. Because of
uniqueness and regular dependence on initial conditions of solutions of ode’s the map
ϕt is bijective and smooth. Moreover because XH is Hamiltonian, its flow consists of
symplectic diffeomorphisms,i.e. symplectomorphisms. Therefore ϕ1 : T ∗Q→ T ∗Q is
a symplectomorphism. We conclude by noticing that

graph(ϕ1) = Π(EL) ,

where graph(ϕ1) = {(u0, p0;u1, p1) ∈ T ∗Q × T ∗Q | (u1, p1) = ϕ1(u0, p0)}. Hence
because the graph of a diffeomorphism between symplectic manifolds is symplectic
iff its graph is a Lagrangian submanifold with respect to the difference of the pull-
backs of the corresponding symplectic forms to the product manifold, we reach the
conclusion, Π(EL) is a Lagrangian submanifold of T ∗Q× T ∗Q.

Notice that the key assumption in the previous proof is that solutions to Hamil-
ton’s equations exist for all t ∈ [0, 1]. The existence theorem for solutions of ode’s
guarantees the existence of solutions for times small enough, but not necessarily
larger than 1. If the space where the equations are defined were compact without
boundary then the flow would exist for all t, however T ∗Q is not compact.

The following is a familiar example of a Hamiltonian system which satisfies the
conditions of Theorem 3.1. It therefore follows for this theory that Π(EL) is La-
grangian: Free particle. In this case Q = R and the Hamiltonian is given by
H(u, p) = p2/2m. Hamilton’s equations of motion are u̇ = p/m, ṗ = 0, whose
solutions have the form p(t) = p0 = constant, u(t) = u0 + (p0/m)t. The flow
ϕt : T

∗R→ T ∗R of the Hamiltonian vector field XH = p/m∂/∂u is defined for all t:

(u(t), p(t)) = ϕt(u0, p0) = (u0 + p0/mt, p0) .

The Lagrangian submanifold Π() ⊂ T ∗R × T ∗R ∼= T ∗(R × R) is just the plane
p1 = p0 = m(u1 − u0). The following is an example of a Hamiltonian theory for
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which the flow under the Hamiltonian vector field is not defined for all t ∈ [0, 1].
Therefore Theorem 3.1 cannot be applied to this theory to prove that Π(EL) is a
Lagrangian submanifold:

Quartic potential. As in the previous example Q = R but the Hamiltonian
is given by H(u, p) = p2/2m − mu4/4. Hamilton’s equations of motion are now
u̇ = p/m, ṗ = mu3. Notice that then ü = u3. The general solution can be found
easily by noticing that H is a constant of the motion. Thus p2/2m−mu4/4 = E =

constant. Then u̇ = ±
√

2E
m

+ u4/2 and the general solution u(t) with initial data u0

is given by the elliptic integral:

t =

∫ u

u0

du

±
√

2E/m+ u4/2
.

Notice that for such solution p0 = mu̇(0) = ±
√

2mE +m2u4
0/2.

Choosing for instance E = 0, we get p0 = mu2
0/2, and u̇ = ±u2/

√
2, whose

solutions are given by:

u(t) =
2u0

2∓ u0t
.

Clearly, if 2/u0 < 1, then the solution u(t) explodes before reaching t = 1 and the
flow ϕt doesn’t exist for all t ∈ [0, 1].

Theorem 3.1, though powerful, cannot be extended to higher-dimensional field
theories because the notion of flow cannot be extended in a natural way beyond the
1 + 0 dimensional theory. There is however and alternative idea that can be used in
any dimension.

If the flow ϕ1 exists globally, the Lagrangian submanifold Π(EL) ⊂ T ∗Q × T ∗Q
is transverse to the projection onto the first factor of T ∗Q×T ∗Q, however it doesn’t
have to be transverse to the canonical projection onto Q×Q obtained by identifying
T ∗Q × T ∗Q with T ∗(Q × Q). If Π(EL) were transverse to the canonical cotangent
bundle projection πQ×Q : T ∗(Q × Q) → Q × Q, then it would define the graph of
a closed 1-form on Q × Q, also Π(EL) would be transverse to the fibers of πQ×Q.
Hence if Π(EL)∩ π−1

Q×Q(u0, u1) 6= ∅, any χ ∈ Π(EL)∩ π−1
Q×Q(u0, u1) will be a solution

of Hamilton’s equations and it will be defined for all t ∈ [0, 1] with endpoints u0,
u1. Moreover, in this case, because Π(EL) will define the graph of a closed 1-form
on Q × Q, there will exist a neighborhood V of (u0, u1) = πQ×Q(χ) and a function
W defined on V such that Π(EL) ∩ π−1

Q×Q(V ) = graph(dW ). Such local function is
called a generating function of the Lagrangian submanifold.

Actually, to prove that a submanifold is Lagrangian it suffices to do it locally, then
the picture described in the previous paragraph holds locally. Moreover it suffices to
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assume that there exist solutions of Hamilton’s equations on an open neighborhood
of (u0, u1) to guarantee it as shown in the following lemma.

Lemma 3.3.2. Let H : T ∗Q → R be a Hamiltonian function. Given two points
u0, u1 in Q. Suppose there exists an open neighborhood V of (u0, u1) such that for
any (u′0, u

′
1) ∈ V there exist solutions of Hamilton’s equations χ(t) = (u(t), p(t)),

t ∈ [0, 1], for which u(0) = u′0, u(1) = u′1. Then there exists an open neighborhood
U of (u0, p0) ∈ T ∗Q with p0 = p(0) such that Π(ELU) is transversal to the canonical
projection πQ×Q, where ELU denotes the space of solutions of Hamilton’s equations
with initial data lying in U .

Proof. Consider a solution of Hamilton’s equations χ(t) = (u(t), p(t)) such that
u(0) = u0 and u(1) = u1. Then if we denote by p0 = p(0) ∈ T ∗u0Q, clearly there exists
a flow box around the point (u0, p0) such that the flow ϕt of the Hamiltonian vector
field XH defined by the Hamiltonian function H is defined for all t ∈ [0, 1+ε). Notice
that because of the existence and uniqueness theorem for initial value problems
for ode’s we can extend the solution χ(t) arriving at time 1 to u1 for some time
0 < t < 2ε, then because of the regular dependence of solutions on initial conditions,
we can choose an open neighborhood U of (u0, p0) small enough such that the flow
for all points in U is defined for all t ∈ [0, 1 + ε).

Hence, because the flow ϕt consists of local symplectic diffeomorphisms the man-
ifold ϕ1(T ∗u0Q) is a regular Lagrangian submanifold. Moreover the space Π(ELU)
is transversal to the canonical projection πQ×Q. We argue by contradiction, if this
were not so, then the projection πQ×Q restricted to Π(ELU) will not be a submer-
sion. But notice that Π(ELU) is just the graph of the diffeomorphism ϕ1 : U → T ∗Q,
hence πQ×Q restricted to Π(ELU) will not be open. Then shrinking U if necessary,
this contradicts the existence of a neighborhood of (u0, u1) all of whose points lie in
πQ×Q |Π(ELU ).

Definition 3.3.3 (Dirichlet’s assumption). We will say that a theory is Dirichlet if
for any boundary data ϕ, there exists a unique solution of Euler-Lagrange equations
χ = (Φ, P ) ∈ EL such that Φ |∂M= ϕ.

Thus a covariant Hamiltonian dynamics with configuration spaceQ will be Dirich-
let, or satisfy Dirichlet’s assumption, if for each pair (u0, u1) ∈ Q × Q, there exists
a unique solution (u(t), p(t)) on the interval [0, 1] of Hamilton’s equations such that
u(0) = u0 and u(1) = u1. Clearly, Examples 3.3 and 3.3 are not Dirichlet, but Ex-
ample 3.2, the free particle, is Dirichlet. For Dirichlet theories it is easy to prove the
following theorem.
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Theorem 3.3.4. Suppose our Hamiltonian dynamical system is Dirichlet. The space
Π() of solutions of Euler-Lagrange equations at the boundary is a Lagrangian sub-
manifold with generating function given by Hamilton’s principal function W .

For Dirichlet theories the proof is based on the construction of an explicit gen-
erating function for Π(EL). In the case of Hamiltonian dynamics such generating
function is just Hamilton’s principal function defined as follows:

W (u0, u1) =

∫ 1

0

χ∗ΘH =

∫ 1

0

(pa(t)u̇
a(t)−H(t, u(t), p(t))dt ,

where χ(t) = (u(t), p(t)) is the unique solution to Hamilton’s equations with end-
points u0, u1. The notion of Hamilton’s principal function can be easily extended to
any Dirichlet theory as follows:

W (ϕ) =

∫
M

χ∗ΘH , (3.3.1)

where χ ∈ EL denotes the unique solution with boundary data ϕ.
The Dirichlet condition is too strong, it implies that the generating function W

in Eq. (3.3.1) is defined globally. The following example of the planar pendulum
does not have a unique solution but rather it has two solutions joining each pair of
endpoints. Thus it is not Dirichlet and we cannot apply Theorem 3.6 to show that
Π(EL) is a Lagrangian submanifold of T ∗Q× T ∗Q.

The planar pendulum. Consider now the system with Q = S1, T ∗Q ∼= S1 × R =
{(θ, p) | 0 ≤ θ < 2π, p ∈ R}, and Hamiltonian function H(θ, p) = p2/2m − k cos θ,
where m and k are positive constants. The phase space is the cylinder over the circle
S1. Given two angles θ0, θ1, there are always infinitely many trajectories joining them
with time 1. (In particular, for θ0 = θ1, one can realize any winding number n ∈ Z of
a trajectory.) Moreover they are separated in the space of curves C∞([0, 1], S1×R).

We can relax the Dirichlet assumption, allowing Hamilton’s Principal function to
be defined locally:

Definition 3.3.5. Let τ : T ∗F∂M → F∂M denote the canonical projection map. We
will say that a theory is locally Dirichlet if τ restricted to Π(EL)) is open and if
given any boundary data ϕ ∈ τ(Π(EL)) the solutions χ = (Φ, P ) ∈ EL of the Euler-
Lagrange equations such that τ(χ) = Φ |∂M= ϕ, are isolated.

Notice that Example 3.3, the planar pendulum, is locally Dirichlet. The following
Hamiltonian system however, is not locally Dirichlet:

Geodesic flow on the sphere. The system we consider now is the geodesic flow
on the sphere S2 for the metric induced by the Euclidean metric in R3. In this case
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Q = S2, T ∗Q = T ∗S2 and the Hamiltonian function is given by H(u,p) = 1
2
p · p,

where u ∈ S2 is a unitary vector in R3, i.e., u · u = 1, and p ∈ R3 satisfies that
u ·p = 0. (Notice that we are identifying T ∗S2 with TS2 by using the metric on S2.)

The space of solutions of Euler-Lagrange equations are just the integral curves
χ of the Hamiltonian vector field defined by H. The projection u(t) of the integral
curves χ are just maximal geodesics in S2, that is, maximal circles in S2. This
theory is not locally Dirichlet because if any two points u0, u1 in the sphere can be
joined by a maximal circle, in the case that u0, u1 are antipodal, that is u1 = −u0,
then there is family of maximal circles passing through them. Actually this family
is parametrized by any circle in the sphere transverse to them, and these solutions
are not isolated.

Note however that in this case there is an obvious symmetry of the theory that
is responsible for this phenomena and that by reducing the theory, such ambiguity
will be removed.

Now, for locally Dirichlet theories a theorem stating that Π(EL)is Lagrangian
can be easily proved.

Theorem 3.3.6. Let (J1E∗, H) be a covariant Hamiltonian first order field theory
that is locally Dirichlet, i.e., such that for any boundary data ϕ, the solutions of
Euler-Lagrange equations χ = (Φ, P ) ∈ EL such that Φ |∂M= ϕ are isolated, then
Π(EL) is a Lagrangian submanifold of T ∗F∂M .

Proof. We will write the proof in the particular instance of Hamiltonian dynamics we
have been discussing so far, however the proof in the general situation is a straight
forward extension of this case.

The proof amounts to showing that Hamilton’s principal function exists locally.
Let (u0, u1) ∈ Q × Q and let χ(t) = (u(t), p(t)) be an integral curve of Hamilton’s
equations such that u(0) = u0 and u(1) = u1. Let V be an open neighborhood of χ
in EL that doesn’t contain another solution with the same boundary data. (We use
initial data to provide a topology for EL, i.e. an open neighborhood of χ is the set of
all solutions with initial data in an open neighborhood V of (u0, u1).) Then, because
of Lemma 3.3.2, there is an open neighborhood V ′ ⊂ V such that every χ′ ∈ V ′ is
separated from any other solution of Hamilton’s equations with the same boundary
data as χ′. Now, define the function W : V ′ → R as:

W (u′0, u
′
1) =

∫
[0,1]

χ′ΘH =

∫ 1

0

(p′a(t)u̇
′a(t)−H(t, u′(t), p′(t)) dt

where χ′(t) = (u′(t), p′(t)) is the only solution in V ′ with boundary conditions
(u′0, u

′
1). Then, W is a generating function for Π(V ′), V ′ ⊂ EL is open, α |Π(V ′)= dW
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and Π(V ′) is Lagrangian. But Π(V ′) is an open subset of Π(EL), for any (u0, u1),
hence Π(EL) is Lagrangian.

The following in an example of a Hamiltonian dynamical system which is neither
Dirichlet nor locally Dirichlet but for which Π(EL) is a Lagrangian submanifold
of T ∗Q × T ∗Q. Thus neither the Dirichlet or the locally Dirichlet properties are
necessary and Theorem 3.10 can only be said to be providing sufficient conditions
for Π(EL) to be Lagrangian.

Consider the example of the Hamiltonian system H(u, p) = paX
a(u) where X =

Xa(u) ∂
∂ua

is a vector field on Q. Hamilton’s equations of motion are given by,

u̇a = Xa(u) , ṗa = −pb
∂Xb

∂ua
. (3.3.2)

and the flow ϕt of the system is the cotangent lifting of the flow ϕXt of the vector
field X i.e. ϕt = (TϕX−t)

∗. Thus if X is complete so is XH and the flow ϕ1 exists.
XH is the complete lifting to T ∗Q of the vector field X. Therefore by Theorem 3.1,
Π(EL) is Lagrangian. Notice however that only points u0, u1 such that u1 = ϕX1 (u0)
are joined by solutions of Hamilton’s equations. Thus ΠQ×Q(Π(EL)) = graph(ϕX1 )
and the theory is neither Dirichlet nor locally Dirichlet.

Regular theories and topological phases

Consider as before a Hamiltonian theory (T ∗Q× [0, 1], H), but now we assume that
the Hamiltonian function has the form:

Hλ(u, p) =
λ

2
pap

a + paX
a(u) λ ≥ 0 .

This Hamiltonian has the typical form of the Hamiltonian in many field theories. It
has a kinetic term λ

2
pap

a that makes it regular (that is, there exists a well defined
invertible Legendre transform) and a linear term paX

a(u), where X = Xa(u)∂/∂ua is
a vector field on Q. The solutions of the Euler-Lagrange equations of the theory are
the integral curves of the Hamiltonian vector field XHλ , i.e., solutions of the system
of differential equations:

u̇a = λpa +Xa(u) , ṗa = −pb
∂Xb

∂ua
. (3.3.3)

These equations can be written as a system of second order differential equations on
ua. Differentiating the first equation in (3.3.3) we get:

üa = λṗa +
∂Xa

∂ub
u̇b = Xb

∂Xb

∂ua
+
∂Xa

∂ub
u̇b − ∂Xb

∂ua
u̇b .
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These equations are the Euler-Lagrange equations defined by the Lagrangian L : TQ→
R,

L(u, u̇) =
1

2λ
(u̇a −Xa(u))(u̇a −Xa(u))

i.e., critical points of:

S =
1

2λ

∫ 1

0

||u̇−X(u)||2dt ,

which is a shifted version of the standard equation for geodesics.
Now the limit λ→ 0 gives the Hamiltonian H0 = paX

a(u) discussed in Sect. 3.3,
Ex. 3.3. The equations of motion are given by Eqs. (3.3.2). The theory is shown
there in Example 3.11 to not be Dirichlet nor locally Dirichlet. The theory for
λ 6= 0 however is Dirichlet: Notice that the geodesic flow is complete on a complete
manifold.

We must recall that the limit λ→ 0 of the action functional Sλ in the Hamiltonian
formalism given by,

Sλ =

∫ 1

0

padu
a −Hλ(u, p) dt =

∫ 1

0

(
pau̇

a − λ

2
pap

a − paXa(u)

)
dt

becomes

S0 =

∫ 1

0

pa(u̇
a −Xa(u))dt .

which represents a “topological phase” of the system in the sense that it no longer
depends on a metric and the symmetry group is larger that the group of isometries
of the metric used to construct Hλ, λ 6= 0. Actually, the group of symmetries of the
theory is the group of diffeomorphisms of Q commuting with the flow of X.

This situation corresponds to what happens in the case of the Hamiltonian for-
mulation of Yang-Mills theories [Ib15]. The action of the theory can be written
as:

SYM,λ(A,P ) = −
∫
M

(
P µν
a F a

µν +
λ

4
P a
µνP

µν
a

)
volM

and we see that if we take the limit λ→ 0 in the Yang-Mills action above, we get:

SYM,0(A,P ) =

∫
M

P µν
a F a

µνvolM

whose equations of motion are given by:

FA = 0 , d∗AP = 0 .
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Thus the moduli space of solutions of Euler-Lagrange equations is given by:

M = {FA = 0, d∗AP = 0}/GM ,

where GM denotes the group of gauge transformations of the theory.

Dynamics at the boundary

We discuss briefly the relation between the Euler-Lagrange equations of the theory
and the dynamics near the boundary. We have been making implicit use of this
relation, so it bears spelling out.

Hamiltonian dynamics on T ∗Q considered as a field theory in dimension 1 + 0 is
defined on the space of ‘fields’ C∞([0, 1];T ∗Q) and has canonical 1-form ΘH defined
on J1E∗ ∼= T ∗Q × [0, 1] (recall Sects. 3.2). From this point of view solutions of
Euler-Lagrange equations of the theory are functions χ : [0, 1]→ T ∗Q such that (see
Sect. 3.2, Eq. (3.2.7):

χ∗(iZdΘH) = 0 , ∀Z ∈ X(T ∗Q) . (3.3.4)

The tangent vector (u̇, ṗ) to the curve χ(t) then must lie in the kernel of dΘH and
after a trivial computation we get u̇a = ∂H/∂pa, ṗa = −∂H/∂ua. Hence the space
ELM of solutions of Euler-Lagrange equations of the theory are functions χ on [0, 1]
satisfying the standard Hamilton’s equations that in covariant form are given by
Eq. (3.3.4). A Hamiltonian dynamics interpretation as an initial value problem
can always be achieved near the boundary. In this situation ∂([0, 1]) = {0, 1}, and
a collar of the boundary Uε has the form, Uε = [0, ε) ∪ (1 − ε, 1], ε < 1/2. For
ε small enough, the equations of motion derived from the restriction of the action
functional S (Sect. 3.2), Eq. (4.2.4)), i.e., Hamilton’s equations, always have a unique
solution as an initial value problem for any initial data (u0, p0;u1, p1) ∈ T ∗Q× T ∗Q,
and t ∈ Uε, because of the existence and uniqueness theorem for ode’s. Thus the
Hamiltonian dynamical evolution interpretation of field theories near the boundary
corresponds exactly with the Hamiltonian mechanical picture of the theory, while
the field theoretic description corresponds to a picture in the bulk where fields, i.e.,
curves χ(t) are defined for all t ∈ [0, 1].

Hamiltonian dynamics, considered as a field theory, doesn’t lead to constraints
and there is no need to proceed to reduce the theory at the boundary. The canonical
description at the boundary, contrary to what happens in general in higher dimen-
sions, is always defined on all T ∗Q× T ∗Q ∼= T ∗F∂M .
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3.4 Constraints

The Euler-Lagrange equations of a theory with constraints

We will now introduce constraints on the covariant phase space J1E∗ ∼= T ∗Q ×
[0, 1] of Hamiltonian dynamics. As explained in the introduction, the geometry
of constrained Hamiltonian dynamics should give us insight into the geometry of
Palatini’s gravity. The latter is obtained as the limit λ → 0 of a Yang-Mills theory
together with an explicit constraint on the momenta fields of the theory.

Let K × Q × [0, 1] → [0, 1] be the trivial bundle where K, for instance, is a Lie
group. Guided by the situation we find in Palatini’s gravity, we assume that there is
a bundle map Σ : K×Q× [0, 1]→ J1E∗ ∼= T ∗Q× [0, 1] given by Σ(k, u, t) = (u, p, t)
with p = σ(k) where σ : K → pr2(T ∗Q). Thus the momenta p are restricted by the
(in general, non-linear) map σ, that is, they lie in the image of σ and we denote the
image of Σ as N which is a submanifold of T ∗Q× [0, 1].

We will introduce the constraint in the variational principle by means of a La-
grange multiplier. We have to restrict the action functional S(χ) that was defined
on J1F∗ ∼= C∞([0, 1], T ∗Q), to the submanifold N ⊂ C∞([0, 1], T ∗Q) defined as:

N = {χ : [0, 1]→ T ∗Q | χ(t) = (u(t), p(t)) , p(t) ∈ Im(Σ)} .

The space of sections S of the (trivial) bundle K×Q× [0, 1]→ [0, 1] can be identified
with the space of maps C∞([0, 1], K × Q). Then the bundle map Σ induces a map
(denoted with the same symbol) Σ: S → J1F∗, given by (e(t), u(t)) 7→ χ(t) =
(u(t), p(t) = Σ(e(t)). With these notations we also have that the submanifold N can
be identified with the image of the map Σ, that is, N = {χ : [0, 1] → T ∗Q | χ(t) =
Σ(e(t), u(t)), (e(t), u(t)) ∈ S}.

A natural extension of Lagrange’s multipliers theorem will allow us to obtain the
critical points of S |N in terms of the critical points of the extended functional:

S(χ,Λ, e) = S(χ) + 〈Λ, p− Σ(e)〉

=

∫ 1

0

(pa(t)u̇
a(t)−H(t, u(t), p(t))dt+

∫ 1

0

Λa(t)(pa(t)− Σa(e(t))) .(3.4.1)

Notice that the Lagrange multiplier Λ lies in the dual of J1E∗, i.e., in J1E (see
discussion below). A trivial computation of dS, shows:
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dS(χ,Λ,e)(δχ, δΛ, δe) =

∫ 1

0

δpa(u̇
a − ∂H

∂pa
+ Λ)adt−

∫ 1

0

δua(ṗa +
∂H

∂ua
)dt

+

∫ 1

0

δΛa(pa − Σa(e))dt−
∫ 1

0

δe
∂Σa

∂e
dt+ boundary terms .(3.4.2)

Thus, from δSu,p,Λ,e)(δu, δp, δΛ, δe) = 0 for all δu, δp, δΛ, δe, we get the new Euler-
Lagrange equations of the theory:

u̇a =
∂H

∂pa
− Λa , ṗa = −∂H

∂ua
, (3.4.3)

together with the constraints given by the restriction to the submanifold N :

pa = Σa(e) , (3.4.4)

and the new constraint:

Λa∂Σa

∂e
= 0 . (3.4.5)

So we see that we have obtained the former equations of motion, where only the equa-
tion for u̇a changes with the addition of the Lagrange multiplier −Λa, and the con-
straints imposed by the submanifold N automatically implemented. The Lagrange
multiplier must in turn satisfy the constraint imposed by Λa, i.e., Λa∂Σa/∂e = 0.

We will analyze first the meaning of the new constraint Eq. (3.4.5). Clearly the
map Σ∗ : TF → T (J1E∗) can be restricted, for any u and t (because it is time and
u-independent) to a map Σ(u,t)∗ : TeK → T(u,p)(T

∗Q), where p = Σ(e). Clearly Σ(u,t)∗
maps TeK into the tangent space to the submanifold N at the point (u,Σ(e)). That
is, tangent vectors to N have the form V = Σ(u,t)∗(e)(W ) with W ∈ TeK.

Given a manifold M and a subspace S ⊂ TxM , x ∈ M , we will denote by S0

the annihilator of S, that is, S0 = {α ∈ T ∗xM | α(V ) = 0 ,∀V ∈ TxM}. In the
previous setting S = T(u,p)N ⊂ T(u,p)(T

∗Q). Then because N = ∪u∈QΣ(u,t)(K), then
Tu,Σ(e)N = TuQ ⊕ Σ(u,t)∗TeK. But now S0 ⊂ T ∗(T ∗Q) and, at the point (u,Σ(e))
we can identify T ∗(u,Σ(e)(T

∗Q) with T ∗uQ ⊕ T ∗Σ(e)(T
∗
uQ), hence T ∗uQ ⊕ TuQ. Then the

vectors in (Tu,pN)0 will have the form (0,Λ) with Λ = Λa∂/∂ua ∈ TuQ satisfying
that 〈Λ, V 〉 = 0 for all V = Σ(u,t)∗(W ), W ∈ TeK. Or, in other words, Λa∂Σa/∂e = 0
using a local chart in T ∗Q adapted to the map Σ.

Thus we have shown that the new constraint (3.4.5) is just the condition that
the Lagrange multiplier Λ lies in the annihilator or the polar to the tangent space
to the constraint submanifold. For this reason we will call this constraint the polar
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constraint. Hence the term added to the equation for u̇ in (3.4.3) means that because
of the constraints in phase space, there is an extra freedom in the equations of motion:
any vector in the polar space to the constraint submanifold can be added to the
equations of motion.

Once we understand the modified Euler-Lagrange equations of the theory, it
remains to determine the implications near the boundary.

Constraints and the dynamics at the boundary

Near the boundary, as discussed in the last section, the dynamics is described by the
vector field on T ∗Q given by:

X =

(
∂H

∂pa
− Λa

)
∂

∂ua
− ∂H

∂ua
∂

∂pa
, (3.4.6)

together with the constraints (now understood as defining a submanifold at the
boundary) given by Eqs. (3.4.4), (3.4.5). Thus the first task is to check that they
are consistent.

If we denote byM0 = T ∗Q⊕Q TQ×K the extended phase space with elements
(u, p,Λ, e), the vector field X defines a dynamical system on the submanifold M1

defined by the constraints above, that is,

M1 = {(u, p,Λ, e) ∈M0 | p = Σ(e), Λ ∈ (TN)0} .

This system has a presymplectic picture as in the standard discussion for Hamiltonian
field theories at the boundary [Ib15]. Consider the presymplectic form Ω0 on M0

obtained as the pull-back of the canonical 2–form ω on T ∗Q along the canonical
projection from M0 onto T ∗Q, i.e., Ω0 = dua ∧ dpa. Define now the Hamiltonian
function on M0:

H0 = H(u, p) + Λa(pa − Σa(e)) .

The presymplectic system (M0,Ω0,H0) is equivalent to the constrained dynamical
field X above. We will analyze it using Gotay’s constraints algorithm for presym-
plectic systems [Go78]. If we consider the solutions to the vector fields Γ satisfying
the equation,

iΓΩ0 = dH0 , (3.4.7)

we find easily that they are integral curves of vector fields of the form given by Eq.
(3.4.6) together with the constraint defined by the map Σ and the polar constraint.
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Actually, Eq. (3.4.7), would have a solution iff iZdH0 = 0 for all Z ∈ ker Ω0. But
ker Ω0 = span{∂/∂Λa, ∂/∂e}, hence we get:

0 = i∂/∂ΛadH0 =
∂H0

∂Λa
iff pa = Σa(e) ,

0 = i∂/∂edH0 =
∂H0

∂e
iff Λa∂Σa

∂e
= 0 .

Hence the submanifoldM1 is just the primary constraints submanifold of the theory.
Consider now the restriction of the dynamics to M1, that is, we are looking for

a vector field on M1 of the form,

Γ =

(
∂H

∂pa
− Λa

)
∂

∂ua
− ∂H

∂ua
∂

∂pa
+ Ca ∂

∂Λa
+D

∂

∂e
,

such that
iΓΩ1 = dH1,

where Ω1 is the restriction of Ω0 to M1 and likewise for H1.
Computing the derivative of the constraint functions φa = pa−Σa(e) with respect

to the vector field Γ we get,

Γ(φa) = ṗa −
∂Σa

∂e
ė = −∂H

∂ua
−D∂Σa

∂e
= 0 ,

onM1. However onM1, contracting the last expression with Λa and using the polar
constraint we get that along M1,

Λa ∂H

∂ua
= 0 , ∀Λ ∈ (TN)0 . (3.4.8)

We conclude that ∂H
∂ua
∈ TN . But if ∂H

∂u
is a vector in the tangent space to the

constraint manifold, then there exists a vector D tangent to K (perhaps not unique)
such that ∂H/∂ua = −∂Σa/∂e and consequently the constraints φa are stable.

Moreover, computing the evolution of the polar constraint ψ = Λa∂Σa/∂e with
respect to the dynamics, we get that on M1

Γ(ψ) = Λ̇a∂Σa

∂e
+ Λ

∂2Σa

∂e2
ė = Ca∂Σa

∂e
+DΛa∂

2Σa

∂e2
= 0 .

Then given D, the vector Ca is determined (not uniquely) from the last condition
and there are no further constraints. The constraints algorithm ends here and M1

is the final constraints submanifold.
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The reduced space of the system R is obtained by quotienting M1 by the null
directions Ω1. Denoting by K1 = ker Ω1 the integrable characteristic distribution of
Ω1,we then have that

R =M1/K1 ,

where K1 denotes the leaves of the distribution K1.
Finally, because

Ω1 = Ω0 |M1= dua ∧ dΣa =
∂Σa

∂e
dua ∧ de ,

K1 = ker Ω1 is spanned by the vector fields ∂/∂Λa and Λa∂/∂ua. Now notice that
because [∂/∂Λa,Λb∂/∂ub] = ∂/∂ua, we can compute the quotient in stages. Quoti-
enting first by the distribution generated by ∂/∂Λa we get,

M1/span{∂/∂Λa} ∼= N ,

and, finally,
R = N/TN0 ,

where now TN0 ⊂ TN is the tautological distribution associated to the constraint
p = Σ(e). Notice that because of Eq. (3.4.8), the Hamiltonian function H descends
to the quotient and defines a Hamiltonian system on the reduced space R.
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Chapter 4

On a covariant Hamiltonian
description of Palatini’s gravity on
manifolds with boundary

4.1 Introduction

Our understanding of the Hamiltonian structure of Gravity has taken half a cen-
tury. The initial difficulties faced by Dirac and Bergmann [Be58],[Be81], were slowly
resolved through the work of Arnowitt, Deser and Misner [Ar62], all the way to
Ashtekar’s formulation [As87]. At least part of the motivation has been to place the
theory of gravity on grounds that will make it suitable for a canonical quantization
scheme.

In [Ro06], C. Rovelli illustrated a simple Hamiltonian formulation of General
Relativity which is manifestly 4D generally covariant and that drops the reference
to the underlying spacetime in Palatini’s formulation of gravity. Rovelli’s proposal
is highly geometric and constructs its space as the 4 + 16 + 24 dimensional space C̃
with local coordinates (xµ, eIµ, A

IJ
µ ). In a further effort at extracting the geometric

essence of such space, the variables xµ are dropped (accounting by the invariance of
the theory under global diffeomorphisms) and we are led to a 40 dimensional space
C [Ro01]. The disappearance of the spacetime manifold M and its coordinates xµ,
which survive only as arbitrary parameters on the ‘gauge orbits’ of the canonical
geometrical structure defined on it, generalizes the disappearance of the time coordi-
nate in the ADM formalism and is analogous to the disappearance of the Lagrangian
evolution parameter in the Hamiltonian theory of a free particle [Ro01]. It simply
means that the general relativistic spacetime coordinates are not directly related to



71

observations.
This chapter is based on joint work with Alberto Ibort, [Ib16b]. Our program

here is similar to Rovelli’s but our inspiration is the geometric foundations of co-
variant first-order Hamiltonian field theories on manifolds with boundary, laid out
in Chapter 2. There the role of a covariant phase space for a first-order Hamiltonian
theory modeled on the affine dual space of the first jet bundle of the bundle defining
the fields of the theory is assessed and the crucial role played by boundaries as deter-
mining symplectic spaces of fields defining the classical counterpart of the quantum
states of the theory is stressed in accordance with the point of view expressed in
[Sc51].

Actually a generally covariant notion of instantaneous state, or evolution of states
and observables in time, make little physical sense. They are always referred to
an initial data space-like surface that in the picture presented here, corresponds
to the boundary of the spacetimes of events. Such notion does not really conflict
with diffeomorphism invariance because a diffeomorphism of a smooth manifold with
smooth boundary restricts to a diffeomorphism of the boundary. Thus providing that
the notion of boundary of a spacetime is incorporated in the basic description of the
theory, we may still consider diffeomorphism invariance as a fundamental notion
without contradicting it.

The covariant phase space of the theory carries a natural multisymplectic struc-
ture which is the exterior differential of a canonical m-form Θ defined on it. This
geometric structure has been considered in various guises in the various variational
formulations of field theories, however its first use in the present setting is to assist in
identifying the nature of the different fields of the theory. Thus it will be show how
the vierbein fields eIµ correspond to an algebraic constraint imposed on the momenta
fields of the theory. The corresponding action will be seen to be invariant under the
group of all automorphisms of the geometric structure and it will induce the cor-
responding reduction on the space of gauge fields at the boundary. This reduction
process is interpreted as the appropriate setting for the ‘elimination’ of the space-
time M . The space of physical classical solutions of the theory in the bulk is the
moduli space of the space of solutions of the Euler-Lagrange equations with respect
to the group of automorphisms. The phase space of physical degrees of freedom of
the theory, associated to its boundary, is the reduced symplectic manifold of fields
at the boundary.
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4.2 The geometry of the covariant phase space

for Yang-Mills theories

As discussed in the introduction, our approach to Palatini’s gravity will be to consider
it as a constrained first-order covariant Hamiltonian field theory on a manifold with
boundary obtained as a topological phase of a gauge theory. We will first briefly
review the geometric setting for covariant first-order Hamiltonian Yang-Mills theories
and the topological phase that will interest us.

A brief account of the multisymplectic formalism for first
order covariant Hamiltonian Yang-Mills theories on
manifolds with boundary

We briefly review some of the basic notions and notations for first-order covariant
Hamiltonian field theories. For a fuller exposition we refer the reader to Chapter 2
of this dissertation.

The covariant phase space of Yang-Mills theories

The fundamental geometric structure of a given first order Hamiltonian theory will
be provided by a fiber bundle π : E → M with M an m = (1 + d)-dimensional
orientable smooth manifold with smooth boundary ∂M 6= ∅ and local coordinates
adapted to the fibration (xµ, ua), a = 1, . . . , r, where r is the dimension of the
standard fiber. Because M is orientable we will assume that a given volume form
volM is selected. Notice that it is always possible to chose local coordinates xµ such
that volM = dx0 ∧ dx1 ∧ · · · ∧ dxd.

Yang-Mills fields are principal connections A on some principal fiber bundle P →
M with structural group G. For clarity in the exposition we are going to make the
assumption that P is trivial (which is always true locally), i.e. P ∼= M × G → M
where (again, for simplicity) G is a Lie group with Lie algebra g. Under these
assumptions, principal connections on P can be identified with g-valued 1-forms on
M , i.e. with sections of the bundle E = T ∗M ⊗ g −→M . Local bundle coordinates
in the bundle E → M will be written as (xµ, Aaµ), µ = 1, . . . ,m, a = 1, . . . , dim g,
where A = Aaµ ξa ∈ g with ξa a basis of the Lie algebra g. Thus a section of the
bundle can be written as

A(x) = Aaµ(x)dxµ⊗ξa . (4.2.1)

We will denote by π0
1 : J1E → E the affine 1-jet bundle of the bundle E

π→ M .
The elements of J1E are equivalence classes of germs of sections φ of π, i.e. two
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sections φ, φ′ at x ∈M are equivalent or represent the same germ if φ(x) = φ′(x) and
dφ(x) = dφ′(x). If (xµ;ua), µ = 0, . . . , d is a bundle chart for the bundle π : E →M ,
then we will denote by (xµ, ua;uaµ) a local chart for the jet bundle J1E. Thus in the
case of Yang-Mills, local coordinates on J1E will be denoted by (x,Aa, Aaµ).

The affine dual of J1E is the vector bundle over E whose fiber at ξ = (x, u) is the
linear space of affine maps Aff(J1Eξ,R). The vector bundle Aff(J1E,R), possesses
a natural subbundle defined by constant functions along the fibers of J1E → E,
that we will denote again, with an abuse of notation, as R. The quotient bundle
Aff(J1E,R)/R will be called the covariant phase space bundle of the theory and will
be denoted by P (E).

Local coordinates on P (E) can be introduced as follows: Affine maps on the
fibers of J1E have the form uaµ 7→ ρ0 + ρµau

a
µ where uaµ are natural coordinates on the

fiber over the point ξ in E with coordinates (xµ, ua). Thus a bundle chart for the
bundle τ 0

1 : P (E)→ E is given by (xµ, ua; ρµa).
The choice of a distinguished volume form volM in M allows us to identify the

fibers of P (E) with a subspace of m-forms on E as follows: The map uaµ → ρµau
a
µ

corresponds to the m-form ρµadu
a∧volµ where volµ stands for i∂/∂xµvolM . Let

∧m(E)
denote the bundle of m-forms on E. Let

∧m
k (E) be the subbundle of

∧m(E) con-
sisting of those m-forms which vanish when k of their arguments are vertical. So in
our local coordinates, elements of

∧m
1 (E), i.e. m-form on E that vanish when two

of their arguments are vertical, commonly called semi-basic 1-forms, have the form
ρµadu

a ∧ volµ + ρ0volM , and elements of
∧m

0 (E), i.e. basic m-forms, have the form
p0volM .

∧m
1 E is a real line bundle over P (E) and, for each point ζ = (x, u, p) ∈ P (E),

the fiber is the quotient
∧m

1 (E)ζ/
∧m

0 (E)ζ .
In the case of Yang-Mills, elements of P (E) have the form P = P µν

a dAaµ∧dm−1xν .
The (m + 1)-form Ω = dΘ where Θ = ρµa du

a ∧ volµ + ρ volM , defines a multi-
symplectic structure on the manifold

∧m
1 (E) i.e. (

∧m
1 (E),Ω) is a multisymplectic

manifold.
A Hamiltonian H on P (E) is a section of µ. Thus in local coordinates

H(ρµa du
a ∧ volµ) = ρµadu

a ∧ volµ −H(xµ, ua, ρµa)volM ,

where H is here a real-valued function.
We can use the Hamiltonian section H to define an m-form on P (E) by pulling

back the canonical m-form Θ from ∧m1 (E). We call the form so obtained the Hamil-
tonian m-form associated with H and denote it by ΘH . Thus if we write the section
defined in local coordinates (xµ, ua; ρ, ρνa) as

ρ = −H(xµ, ua, ρµa) , (4.2.2)
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then
ΘH = ρµa du

a ∧ volµ −H(xµ, ua, ρµa) volM . (4.2.3)

In (4.2.3) the minus sign in front of the Hamiltonian is chosen to be in keeping
with the traditional conventions in mechanics for the integrand of the action over
the manifold: pdq −Hdt. When the form ΘH is pulled back to the manifold M the
integrand of the action over M will have a form reminiscent of that of mechanics,
with a minus sign in front of the Hamiltonian. See equation (4.2.5).

The action and the variational principle

The fields χ of the theory in the Hamiltonian formalism constitute a class of sections
of the bundle τ1 : P (E) → M . The sections that will be used to describe the
classical fields in the Hamiltonian formalism are those sections χ : M → P (E) ,i.e.
τ1 ◦ χ = idM , such that χ = P ◦ Φ where φ : M → E is a section of π : E → M , i.e.
π◦Φ = idM , and P : E → P (E), is a section of τ 0

1 : P (E)→ E, i.e. τ 0
1 ◦P = idP . The

sections Φ will be called the configurations and the sections P the momenta of the
theory. In other words ua = Φa(x) and ρµa = P µ

a (Φ(x)) will provide local expression
for the section χ = P ◦Φ. We will denote such a section χ by (Φ, P ) to indicate the
iterated bundle structure of P (E) and we will refer to χ as a double section1.

We will denote by FM the space of sections Φ of the bundle π : E → M , that
is Φ ∈ FM , and we will denote by FP (E) the space of double sections χ = (Φ, P ).
Thus FP (E) represents the space of fields of the theory in the first-order covariant
Hamiltonian formalism.

Thus the fields of the theory in the multisymplectic picture for Yang-Mills theories
are provided by sections (A,P ) of the double bundle P (E)→ E →M .

The equations of motion of the theory will be defined by means of a variational
principle, i.e. they will be characterized as the critical points of an action functional
S on FP (E). Such action will be given simply by

S(χ) =

∫
M

χ∗ΘH . (4.2.4)

In the case of Yang-Mills theories, the action in a first-order covariant Hamiltonian
formulation of the theory is given by,

SYM(A,P ) =

∫
M

P µν
a dAaµ ∧ dxm−1

ν −Hλ(A,P )volM (4.2.5)

1It can also be said that χ is a section of P (E) along Φ.
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with Hamiltonian function,

Hλ(A,P ) =
1

2
εabcP

µν
a AbµA

c
ν +

λ

4
P µν
a P a

µν (4.2.6)

for some λ ≥ 0, where the indexes µν (a) in P µν
a have been lowered (raised) with the

aid of the Lorentzian metric η (the Killing-Cartan form on g, respect.).
Of course, as is usual in the derivations of equations of motion via variational

principles, we assume that the integral in Eq. (2.4) is well defined. It is also assumed
that the ‘differential’ symbol in equation (2.7) below, defined in terms of directional
derivatives, is well defined and that the same is true for any other similar integrals
that will appear in this work.

A simple computation leads to,

dS(χ)(U) =

∫
M

χ∗
(
iŨdΘH

)
+

∫
∂M

(χ ◦ i)∗
(
iŨΘH

)
, (4.2.7)

where U is a vector field on P (E) along the section χ, Ũ is any extension of U
to a tubular neighborhood of the image of χ, and i : ∂M → M is the canonical
embedding.

We omit the derivation from (4.2.7) of the fundamental formula that relates the
differential of the action with a 1-form on a space of fields on the bulk manifold and
a 1-form on a space of fields at the boundary,

dSχ = ELχ + Π∗αχ , χ ∈ FP (E) . (4.2.8)

Details can be found in Chapter 2 section 2.2

The cotangent bundle of fields at the boundary

Consider the space of fields at the boundary obtained by restricting the zeroth com-
ponent of sections χ to ∂M , that is the fields of the form:

ϕa = Φa ◦ i , pa = P 0
a ◦ i .

The space of fields (ϕa, pa) can be identified with the cotangent bundle T ∗F∂M
over F∂M in a natural way, i.e. each field pa can be considered as the covector at ϕa

that maps the tangent vector δϕa at ϕa into the number 〈p, δϕ〉 given by,

〈p, δϕ〉 =

∫
∂M

pa(x)δϕa(x)vol∂M . (4.2.9)
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Notice that the tangent vector δϕ at ϕ is a vertical vector field on E along ϕ,
and the section p is a 1-semibasic m-form on E (Lemma 2.1). Hence the contraction
of p with δϕ is an (m − 1)-form along ϕ, and its pull-back ϕ∗〈p, δϕ〉 along ϕ is an
(m− 1)-form on ∂M whose integral defines the pairing above, Eq. (2.10).

Viewing the cotangent bundle T ∗F∂M as double sections (ϕ, p) of the bundle∧m
1 (i∗E), the canonical 1-form α on T ∗F∂M can be expressed as,

α(ϕ,p)(U) =

∫
∂M

pa(x)δϕa(x) vol∂M (4.2.10)

where U is a tangent vector to T ∗F∂M at (ϕ, p), that is, a vector field on the space
of 1-semibasic forms on i∗E along the section (ϕa, pa), and therefore of the form
U = δϕa ∂/∂ua + δpa ∂/∂ρa.

Finally, notice that the pull-back to the boundary map i∗, defines a natural map
from the space of fields in the bulk, FP (E), into the phase space of fields at the
boundary T ∗F∂M . Such map will be denoted by Π, that is,

Π: FP (E) → T ∗F∂M , Π(Φ, P ) = (ϕ, p), ϕ = Φ ◦ i, pa = P 0
a ◦ i .

We will write,
α = pa δϕ

a ,

and the canonical symplectic structure ω∂M = −dα on T ∗F∂M will be written as,

ω∂M = δϕa ∧ δpa ,

by which we mean

ω∂M((δ1ϕ
a, δ1pa), (δ2ϕ

a, δ2pa)) =

∫
∂M

(δ1ϕ
a(x)δ2pa(x)− δ2ϕ

a(x)δ1pa(x)) vol∂M ,

where (δ1ϕ
a, δ1pa), (δ2ϕ

a, δ2pa) are two tangent vectors at (ϕa, pa).

The limit λ→ 0 of Yang-Mills theories

Recall equations (4.2.5) and (4.2.6) for the action of Yang-Mills theories in a first-
order Hamiltonian formulation of the theory:

SYM,λ(A,P ) =

∫
M

P µν
a dAaµ ∧ dxm−1

ν −Hλ(A,P )volM (4.2.11)

with Hamiltonian function,

Hλ(A,P ) =
1

2
εabcP

µν
a AbµA

c
ν +

λ

4
P µν
a P a

µν (4.2.12)
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for some λ ≥ 0, where the indexes µν (a) in P µν
a have been lowered (raised) with the

aid of the Lorentzian metric η (the Killing-Cartan form on g, respect.).

Plugging (4.2.12) into (4.2.11) and expanding the right hand side of (4.2.11), we
obtain,

SYM,λ(A,P ) = −
∫
M

1

2

[
P µν
a (∂µA

a
ν − ∂νAaµ + εabcA

b
µA

c
ν) +

λ

2
P µν
a P a

µν

]
volM . (4.2.13)

Using that the curvature,

FA = dAA = dA+
1

2
[A ∧ A] = Fµνdx

µ ∧ dxν (4.2.14)

=
1

2

(
∂µA

a
ν − ∂νAaµ + εabcA

b
µA

c
ν

)
dxµ ∧ dxν ⊗ ξa

we can rewrite eqn (4.2.13) as,

SYM,λ(A,P ) = −
∫
M

[
P µν
a F a

µν +
λ

4
P µν
a P a

µν

]
volM .

(4.2.15)

This last expression is the action of the Yang-Mills theory for any given λ ≥ 0.
If we take its limit λ→ 0, we obtain,

SYM,0(A,P ) = −
∫
M

P µν
a F a

µνvolM , (4.2.16)

whose equations of motion are given by,

FA = 0 , d∗AP = 0 .

Thus the moduli space of solutions of the Euler-Lagrange equations is given by,

M = {FA = 0, d∗AP = 0}/GM ,

where GM denotes the group of gauge transformations of the theory.
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4.3 Palatini’s Gravity

Palatini’s Yang-Mills

The primary fields of a theory of gravity a la Palatini will be given by principal
connections A on a G-principal bundle over a smooth manifold M with G the Lorentz
group O(1, d), the group of isometries preserving the non-degenerate quadratic form
Q of signature −+ · · ·+, with m = 1 + d = dimM .

The connections A can be considered as vertical equivariant 1-forms on a principal
fiber bundle with structural group O(1, d). The choice of the principal fiber bundle
P →M determines a sector of a full theory of gravity where, in addition to the bundle
P , we should consider all equivalence classes of principal O(1, d) bundles over M . If
we fix a topology on M , the corresponding family of classes of principal fiber bundles
are in one-to-one correspondence with homotopy classes of maps f : M → BO(1.d),
where BO(1.d) is the universal classifying space of the Lorentz group and the principal
fiber bundle corresponding to the map f is given by Pf = f ∗EO(1,d), where EO(1.d) →
BO(1.d) is the universal principal O(1, d) bundle. Thus the fields corresponding to
each equivalence class will define connected components in the space of all fields and
we will focus on one of them.

Palatini’s constraint

Palatini’s constraint determines a subbundle of the covariant phase space whose
sections define a submanifold of the space of fields J1F∗ such that the restriction of
the topological sector of SO(1, 3)–Yang-Mills is equivalent to Palatini’s action.

Consider the bundle F = GL(τm, TM) ⊂ Hom(τm, TM) ∼= τ ∗m ⊗ TM over M
whose fiber at x ∈ M consists of invertible linear maps e(x) from τm(x) to TxM
and where τm = M ×Mm is the trivial bundle over M with fiber the m-dimensional
Minkowski space Mm with metric η = diag(−,+ · · · ,+). Notice that local cross
sections of the bundle F can be thought as local frames on M , i.e. if U is an
open set on M such that TM |U∼= U × Rm then a cross section e : U → τ ∗m ⊗ TM
defines a map ex := e(x) : Rm → TxM for each x ∈ U . They form a family of
linearly independent vectors eI(x), I = 0, 1, . . . , d, which are the images under ex
of the standard orthogonal basis ui on Mm, that is η(u0, u0) = −1, η(uk, uk) = 1,
k = 1, . . . , d. With a slight abuse of notation we will denote ex(uI) = eI(x). Global
cross sections e are usually called vierbeins for an arbitrary dimension m, or tetrad
fields if m = 4. In what follows we will not assume that there exist globally defined
sections of F . Notice that given a local cross section e, it defines a Lorentz metric
on U by means of gx(u, v) = ηx(e

−1(u), e−1(v)) for any u, v ∈ TxU . The metric g
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is Lorentz because clearly the vectors eI(x) determine an orhonormal basis for g at
TxM such that gx(eI(x), eJ(x)) is diagonal with diagonal (−,+ . . . ,+).

Choosing local coordinates xµ on U we will have that eI = eµI (x)∂/∂xµ will define
a local vector field on U for each I. With this notation we may also write the local
cross section e as e = eI⊗uI = eµI (x)∂/∂xµ⊗uI where uI denotes the canonical dual
basis of the standard orthogonal basis uI .

Let us recall that we have a distinguished volume form volM on M , i.e. a global
section of the determinant bundle det(M) = Λm(TM). Morevoer there is a canonical
section of the bundle det(τm) = Λm(τm) given by volη = u0 ∧ u1 ∧ · · · ∧ ud. Then a
linear map ex : τm(x) → TxM defines a pull-back e∗(volM) = εvolη, in other words,
ε(x) is the determinant of the map ex. In local coordinates,

ε(x) = det(eµI (x)) .

Consider the map P : F → P (E) defined by,

P (e) = εe ∧ e

where e ∧ e is defined as the linear map from τm ∧ τm to TxM ∧ TxM given by
e ∧ e(u ∧ v) = e(u) ∧ e(v). Using the previous notation we may write:

P (e) = εeµI e
ν
J

∂

∂xµ
∧ ∂

∂xν
⊗ uI ∧ uJ .

Notice that if we write the tensor P (e) in the local basis ∂
∂xµ
∧ ∂

∂xν
⊗ uI ∧ uJ as

P (e) = P µν
IJ

∂

∂xµ
∧ ∂

∂xν
⊗ uI ∧ uJ ,

then
P µν
IJ = det(eµI ) e

[µ
[I e

ν]
J ] ,

with P µν
IJ = −P νµ

IJ = −P µν
JI = P νµ

JI . We will sometimes use the notation P µν
IJ =

det(eµI ) eµI ∧ eνJ to indicate the skew symmetry in the pairs of indices IJ and µν.
Finally notice that P (e) actually lies in P (E) as the fiber of P (E) at x is given

by TxM ∧ TxM ⊗ so(1, d) and τm ∧ τm ⊂ so(1, d).
The image of F under the map P will be called the Palatini subbundle of P (E)

and will be denoted simply by P (F ) ⊂ P (E). Double sections of this bundle are the
fields of the theory we are interested in. Such space of sections will be denoted as
P ⊂ J1F∗M . Notice that a double section (A,P ) of P is a section of P (E) such that
locally there exists e such that P = ε e ∧ e.

Hence the space of fields of the theory we are constructing can be considered as
a submanifold of the space of fields J1F∗M defined by the range of the map P .
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The action

The action of the topological phase of Yang-Mills given by Eq. (4.2.16) can be
rewritten with the above notations as,

SYM,0 = −
∫
M

P µν
IJ F

IJ
µν volM , (4.3.1)

with (A,P ) ∈ J1F∗M . If we restrict (A,P ) to P , the action becomes,

SYM,0 |P= −
∫
M

ε eµI e
ν
JF

IJ
µν volM , (4.3.2)

which is exactly Palatini’s action for gravity.
The Euler-Lagrange equations of the theory can be obtained by standard methods

by computing the differential of SYM,0 restricted to P or alternatively, using an
appropriate version of Lagrange’s multipliers theorem to obtain the critical points of
SYM,0 restricted to P . We will develop this point of view in the following section.

Critical points and Euler-Lagrange equations

Lagrange’s multipliers theorem

We will discuss first the version of Lagrange’s multipliers theorem suited to the
problem at hand.

Theorem: Let M be an affine manifold and let F : M → R be a differentiable
function. Let D be a smooth manifold and let Φ: D → M be a smooth injective
function. Let N = {x ∈M | ∃e ∈ D , x = Φ(e)}.

x ∈ N is a critical point of F |N : N → R iff there exists e ∈ D and λ ∈M∗ such
that (x, λ, e) is a critical point of the extended function F : M×M∗×D → R given
by:

F(x, λ, e) = F (x) + 〈λ, x− Φ(e)〉 .
Proof:

Suppose x ∈ N is a critical point of F |N , i.e. d(F |N )x(δx) = 0 for all δx ∈ TxN ,
or dFx ∈ TxN 02

. Since Φ: D → N is bijective, there exists e ∈ D such that Φ(e) = x
and for given δe ∈ TeD there exists δx ∈ TΦ(e)N such that Φ∗(e)(δe) = δx, where
Φ∗(e) : TeD → TΦ(e)N denotes the tangent map to Φ at e ∈ D. It therefore follows
that since d(F |N )x(δx) = 0 for all δx ∈ TxN , (dF )(Φ∗(e)(δe)) = 0 for any δe ∈ TeD.

Computing the differential of F, we obtain,

dF(x,λ,e)(δx, δλ, δe) = dFx(δx) + 〈δλ, x− Φ(e)〉+ 〈λ, δx− Φ∗(e)(δe)〉 , (4.3.3)
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where δe ∈ TeD, δx ∈ TxM ∼=M, δλ ∈ TλM∗ ∼= T ∗λM ∼=M∗. The notation 〈λ, x〉
denotes the natural pairing between M and its dual space M∗.

For (x, λ, e) such that x ∈ N is a critical point of F |N , Φ(e) = x and λ =
−dFx ∈ TxN 0 ⊂ T ∗xM ∼= M∗, it follows from (3.1) and from the prior statements
that dF(x,λ,e)(δx, δλ, λe) = 0 for all δx, δλ and δe. Thus (x, λ, e) is a critical point of
F.

Now we prove the other direction of the theorem. Let (x, λ, e) be a critical point
of F, i.e. dF(x,λ,e)(δx, δλ, δe) = 0 for all δx, δλ, δe. In particular, fixing δx = δe = 0,
for any δλ, since (x, λ, e) is a critical point of F, dF(x,λ,e)(0, δλ, 0) = 0. This implies
by (3.1) that x = Φ(e), thus x ∈ N . For any δx ∈ TxN , since x = Φ(e) and
since Φ: D → N is bijective, there exists δe ∈ D such that Φ∗(e)(δe) = δx. So
for our critical point (x, λ, e) of F and for any δx ∈ TxN , applying (3.1), we obtain
0 = dF(x,λ,e)(δx, δλ, δe) = dFx(δx). Thus for any δx ∈ TxN , dFx(δx) = 0, i.e. x is a
critical point of F .

Critical points

We apply Lagrange’s multipliers theorem discussed in the previous section to the
following setting. The affine manifoldM is the space of fields J1F∗M in the covariant
phase space. The manifold D is the manifold of vierbein fields, i.e, sections e of the
bundle F discussed before. The submanifold N is the submanifold P defined by
Palatini’s constraints, i.e., we have the map P : D → J1F∗ given by P (e) = ε e ∧ e.
Then, finally, the function F : M→ R is the topological Yang-Mills action functional
SYM,0 : J1F∗M → R.

Then we conclude that critical points of Palatini’s action SP are in correspondence
with families of critical points of the extended action:

S(A,P,Λ, e) = SYM,0(A,P ) + 〈Λ, P − ε e ∧ e〉 ,

or more explicitly

S(A,P,Λ, e) =

∫
M

−P µν
IJ F

IJ
µν + Λµν

IJ

(
P IJ
µν − ε eIµeJν

)
volM . (4.3.4)

According to Lagrange’s multipliers theorem, the critical points of S have the
form (A,P,Λ, e) where (A,P ) is a critical point of SYM,0 |P= SP , for all Λ, i.e.,
P = ε e ∧ e for some vierbein field e and (A, e) is a critical point of

SP = −
∫
M

εeµI e
J
νF

IJ
µν volM .
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Then standard arguments show that the Palatini connection is torsionless and that
the metric with respect to the metric ge defined by the vierbein field, that is A, is
the Levi-Civita connection of the metric ge. Moreover it satisfies Ricci’s equation,

Ric(A) = 0 .

From Eq.(4.3.3) we also get that if (x, λ, e) is a critical point of F, then at x ∈ N

dFx(δx) = −〈λ, δx− Φ∗(e)δe〉 ,

and δx an arbitrary vector in TxM, that is not necessarily in TxN . This shows that
if (A,P = P (e),Λ, e) is a critical point of S, then

dSP (A,P = P (e))(δA, δP ) = −〈Λ, δP − P∗(e)δe〉.

The canonical formalism near the boundary

In this section we apply the general theory of evolution near the boundary developed
in Chapter 2, section 2.3, to the case of Palatini gravity. We refer the reader to the
exposition there.

In order to obtain an evolution description for Palatini Gravity and to prepare
the ground for canonical quantization, we need to introduce a local time parameter.
We will only assume that a collar Uε = (−ε, 0] × ∂M around the boundary can be
chosen so that a choice of a time parameter t = x0 can be made near the boundary
that would be used to describe the evolution of the system. The fields of the theory
would then be considered as fields defined on a given spatial frame that evolve in
time for t ∈ (−ε, 0].

The dynamics of such fields would be determined by the restriction of the Palatini
action above to the space of fields on Uε. Expanding we obtain,

SUε(A,P,Λ, e) =
∫
Uε

[−P µν
IJ F

IJ
µν + ΛIJ

µν(P
IJ
µν − εeIµeJν )]volM

=
∫
Uε

[P µν
IJ (−1

2
)(∂µA

IJ
ν − ∂νAIJµ

+ εIJKL,MNA
KL
µ AMN

ν ) + ΛIJ
µν(P

IJ
µν − εeIµeJν )]volM

=
∫ 0

−ε dt
∫
∂M

vol∂M [P k0
IJ (∂0A

IJ
k −∂kAIJ0 +εIJKL,MNA

KL
0 AMN

k )−1
2
P kj
IJ (∂kA

IJ
j −∂jAIJk +

εIJKL,MNA
KL
k AMN

j ) + 2ΛIJ
k0(P IJ

k0 − εeIkeJ0 ) + ΛIJ
kj (P IJ

kj − εeIkeJj )].
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In the previous expressions εabc denote the structure constants of the Lie algebra g
with respect to the basis ξa, that is [ξb, ξc] = εabcξa. Notice that εabcA

b
0A

c
0 = 0 because

for fixed a, εabc is skew-symmetric. Moreover the indexes µ and a have been pushed
down and up by using the metric η and the Killing-Cartan form 〈·, ·〉 respectively.

In the last equation we used that P is a bivector, i.e. P µν
a is skew symmetric

in µ and ν. Therefore P 00
a = 0 and also P k0

a P a
k0 = P 0i

a P
a
0i because P k0 = −P 0k,

etc. The momenta fields are defined as sections of the bundle P (E) and as such
are unrestricted. However, because Yang-Mills theories are Lagrangian theories the
Legendre transform selects a subspace of the space of momenta that corresponds to
fields P skew-symmetric in the indices µ, ν.(For more details see Chapter 2, section
2.4.)

The previous expression acquires a clearer structure by introducing the appro-
priate notations for the fields restricted at the boundary and assuming that they
evolve in time t. Thus the pull-backs of the components of the fields A and P to the
boundary will be denoted respectively as,

aak := Aak |∂M ; a = (aak) , aa0 := Aa0 |∂M ; a0 = (ak0) ,

pka := P k0
a |∂M ; p = (pka) , p0

a := P 00
a |∂M= 0; p0 = (p0

a) = 0 ,

βkia := P ki
a |∂M ; β = (βkia ) .

Given two fields at the boundary, for instance p and a, we will denote as usual by
〈p, a〉 the expression,

〈p, a〉 =

∫
∂M

pµaa
a
µ vol∂M ,

and the contraction of the inner (Lie algebra) indices by using the Killing-Cartan
form and the integration over the boundary is understood.

Introducing the notations and observations above in the expression for SUε we
obtain,

SUε(A,P,Λ, e) =

∫ 0

−ε
dt

∫
∂M

vol∂M [pkIJ(∂0a
IJ
k − ∂kaIJ0 + εIJKL,MNa

KL
0 aMN

k )

−1

2
βkjIJ(∂ka

IJ
j − ∂jaIJk + εIJKL,MNa

KL
k aMN

j ) + 2Λk0
IJ(pIJk − εeIkeJ0 ) + Λkj

IJ(βIJkj − εeIkeJj )]

=

∫ 0

−ε
dtL(a, ȧ, a0, ȧ0, p, ṗ, β, β̇,Λ, Λ̇,Λ0, Λ̇0, e, ė)

where

L(a, ȧ, a0, ȧ0, p, ṗ, β, β̇,Λ, Λ̇,Λ0, Λ̇0, e, ė) =< p, ȧ− daa0 + 2Λ0 >
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− < β, Fa − Λ > + < Λ0,−2εe ∧ e0 > + < Λ,−εe ∧ e > .

Euler-Lagrange equations will have the form:

d

dt

δL
δχ̇

=
δL
δχ

,

where χ ∈ P (E) and δ/δχ denotes the variational derivative of the functional L.

Thus for χ = p we obtain,

δL
δṗ

= 0, hence 0 =
δL
δp

= ȧ− daa0 + 2Λ0 ,

and thus,
ȧ = daa0 − 2Λ0 . (4.3.5)

For χ = a we obtain,

δL
δȧ

= p, hence ṗ =
δL
δa

= d∗β + [p, a0] ,

that is,
ṗ = d∗β + [p, a0]. (4.3.6)

For χ = a0 we obtain,

δL
δȧ0

= 0, hence 0 =
δL
δa0

=
∂

∂a0

< p, daa0 >=
∂

∂a0

− < d∗ap, a0 >= −d∗ap ,

that is,
d∗ap = 0. (4.3.7)

For χ = β we obtain,

δL
δβ̇

= 0, hence 0 =
δL
δβ

= −Fa + Λ,
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that is,
Fa = Λ. (4.3.8)

For χ = Λ we obtain,

δL
δΛ̇

= 0, hence 0 =
δL
δΛ

= β − εe ∧ e,

that is,
β = εe ∧ e. (4.3.9)

For χ = Λ0 we obtain,

δL
δΛ̇0

= 0, hence 0 =
δL
δΛ0

= 2p− 2εe ∧ e0,

that is,
p = εe ∧ e0. (4.3.10)

For χ = e we obtain,

δL
δė

= 0, hence 0 =
δL
δe

= −2εe0Λ0 − 2εeΛ,

that is,
−e0Λ0 = eΛ. (4.3.11)

For χ = e0 we obtain,

δL
δė0

= 0, hence 0 =
δL
δe0

= 2εeΛ0

i.e.
eΛ0 = 0. (4.3.12)

Thus solving for the Euler-Lagrange equations, we have obtained two evolution
equations,(4.3.5) and (4.3.6) and six constraint equations (4.3.7)− (4.3.12).
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The presymplectic formalism: Palatini at the boundary and
reduction

In Chapter 2, section 2.3, we introduced a presymplectic framework onM = T ∗F∂M×F∂M
B , the total space of fields at the boundary, for a general first-order covariant Hamil-
tonian field theory, and we carried out the constraints analysis. Here we apply that
theory to the case of Palatini gravity. We refer the reader to that earlier material
for background on what follows here.

As discussed in Chapter 2, section 2.3, we define the extended Hamiltonian, H,
so that L = 〈p, ȧ〉 − H :

H(a, a0, p, β,Λ,Λ0, e) =< p,−daa0 + 2Λ0 > − < β, Fa − Λ > +

¡Λ0,−2εe ∧ e0 >

+ 〈Λ,−εe ∧ e〉.(4.3.13)
Thus the Euler-Lagrange equations can be rewritten as

ȧ =
δH
δp

; ṗ = −δH
δa

, (4.3.14)

δH
δa0

= 0;
δH
δβ

= 0;
δH
δΛ

= 0;
δH
δΛ0

= 0;
δH
δe

= 0;
δH
δe0

= 0. (4.3.15)

We denote by % : M→ T ∗F∂M the canonical projection %(a, a0, p, β) = (a, a0, p).
Let ω∂M denote the form on the cotangent bundle T ∗F∂M ,

ω∂M = δa ∧ δp.

We will denote again by Ω the pull-back of this form toM along %, i.e., Ω = %∗ω∂M .
Clearly, ker Ω = span{δ/δβ, δ/δa0}, and we have the particular form that Thm 3.1
in Chapter 2, takes here.

Theorem 4.3.1. The solutions to the equations of motion defined by the Palatini
Lagrangian are in one-to-one correspondence with the integral curves of the presym-
plectic system (M,Ω,H), i.e. with the integral curves of the vector field Γ on M
such that iΓΩ = dH.

The primary constraint submanifold M1 is defined by the six constraint equa-
tions,

M1 = {(a, a0, p, β,Λ, e)|Fa = Λ, d∗ap = 0, β = εe∧e, p = εe∧e0, e0Λ0 = eΛ, eΛ0 = 0} .
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Since Λ = Fa, and β is a just a function of e, we have that

M1
∼= {(a, a0, p, e)|d∗ap = 0, p = εe ∧ e0, e0Fa0 = eFa, eFa0 = 0}

and ker Ω|M1 ⊃ span{ ∂
∂a0
}.

ThusM′
1 =M1/(ker Ω|M1) ∼= {(a, p, e)|d∗ap = 0, p = εe∧e0, e0Fa0 = eFa, eFa0 =

0}.

Gauge transformations: symmetry and reduction

The group of gauge transformations G, i.e the group of automorphisms of the prin-
cipal bundle P over the identity, is a fundamental symmetry of the theory. Notice
that the Palatini action is invariant under the action of G.

The quotient of the group of gauge transformations by the normal subgroup of
identity gauge transformations at the boundary defines the group of gauge transfor-
mations at the boundary G∂M , and it constitutes a symmetry group of the theory at
the boundary. It is a symmetry group both of the boundary Lagrangian L and of
the presymplectic system (M,Ω,H). We may take advantage of this symmetry to
provide an alternative description of the constraints found in the previous section.

Proposition 4.3.2. The map J : T ∗F∂M → g∗∂M given by J (a, p) = d∗ap is the
moment map of the action of the group G∂M on T ∗F∂M where the action of G∂M on
T ∗F∂M is by cotangent liftings.

Proof. The moment map J : T ∗F∂M → g∗∂M is given by,

〈J (a, p), ξ〉 = 〈p, ξF∂M 〉 = 〈p, daξ〉 = 〈−d∗ap, ξ〉 ,

because the gauge transformation gs = exp sξ acts in a as a 7→ gs ·a = g−1
s ags+g

−1
s dgs

and the induced tangent vector is given by,

ξA∂M (a) =
d

ds
gs · a |s=0= daξ .

By the standard Marsden-Weinstein reduction, J −1(0) = {(a, p) ∈ T ∗F∂M |d∗ap =
0} is a coisotropic submanifold of the symplectic manifold T ∗F∂M and J −1(0)/G∂M
is symplectic. {(a, p) ∈ T ∗F∂M |p = e ∧ e0} is easily seen to be a symplectic sub-
manifold of (T ∗F∂M),Ω),Ω = δa ∧ δp. e0Fa0 = eFa and eFa0 = 0 are coisotropic
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submanifolds of T ∗F∂M . This follows from the elementary observation that in a
symplectic manifold a subspace defined by a function φ = 0 is a coisoptropic sub-
manifold of the symplectic manifold. Now we need to check that the intersection of
the coisotropic submanifolds comprising M′

1 is a coisotropic submanifold. But this
follows easily from the fact that the kernel J −1(0) = {(a, p) ∈ T ∗F∂M |d∗ap = 0} is
spanned by the action of the gauge group G∂M and from the observation that the ac-
tion of G∂M leaves invariant the submanifolds e0Fa0 = eFa and eFa0 = 0. ker J −1(0)
is tangent to {(a, e)|eFa0 = 0} and to {(a, e)|e0Fa0 = eFa} and is therefore contained
in the tangent spaces of the two surfaces, and vice versa. Thus M′

1 is a coisotropic.
As described in section Chapter 2, section 2.3, the reduced space R = M′

1/G∂M is

symplectic and Π̃(EL), the reduction of the submanifold of Euler-Lagrange fields of
the theory, is an isotropic submanifold of the reduced phase space R of the theory.

4.4 Conclusions and discussion

Using multisymplectic geometry we have described a Hamiltonian formulation of
Palatini’s General Relativity that is simple. Unlike ADM it does not involve lapse
and shift operators and it does not require for it’s application the assumption that
spacetime is topologically R×S where S is space. All we need to assume is that our
spacetime manifold has a boundary and that the boundary has a collar.
After the presymplectic constraint analysis, the analysis in the collar provides con-
sistent solutions of the initial value problem for General Relativity. Unlike ADM, we
use a formalism that is canonical, i.e. at every step the fundamental structures are
preserved, both when discussing the constraints introduced from the bulk Palatini
constraint P = e ∧ e and when reducing the system by using gauge invariance. The
reduced phase space is determined to be a symplectic manifold with a distinguished
isotropic submanifold corresponding to the boundary data of the solutions of the
Euler-Lagrange equations.

In a following work we will apply our techniques to study Ashtekar gravity and
to the corresponding quantum aspects.
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