
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Stride: A Language for Sound Synthesis, Processing, and Interaction Design

Permalink
https://escholarship.org/uc/item/0sc948c2

Author
Tilbian, Joseph

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sc948c2
https://escholarship.org
http://www.cdlib.org/

University of CaliforniaSanta Barbara

Stride: A Language for Sound Synthesis, Processing,and Interaction Design

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Media Arts and Technology
by

Joseph Tilbian

Committee in charge:
Prof. Curtis Roads, Committee ChairProf. Theodore KimDr. Matthew WrightDr. Andrés Cabrera

December 2018

The Dissertation of Joseph Tilbian is approved.

Theodore Kim

Matthew Wright

Andrés Cabrera

Curtis Roads, Committee Chair

June 2018

Stride: A Language for Sound Synthesis, Processing, and Interaction Design

Copyright c© 2018
by

Joseph Tilbian

iii

For my parents:

Haig Tilbian

Mary Movsesian

iv

Acknowledgments

This dissertation is one of the outcomes of a close collaboration that started in
late 2013 between Dr. Andrés Cabrera and me. The drive behind this collabora-
tion was a mutual interest to design microcontroller-based electronic platforms for
sound synthesis, processing, and interaction design to supplement some of the ex-
isting popular electronic platforms which were designed for physical computing and
general-purpose computation. The novelties and contributions of this dissertation
are the result of hundreds of hours of conversations and discussions to design some-
thing powerful yet simple and elegant. I would like to express my sincere gratitude to
Andrés Cabrera for being an indispensable partner throughout the ongoing collabo-
ration.

I would like to thank my advisor and the chair of my dissertation committee Pro-
fessor Curtis Roads and the members of the committee Professor Theodore Kim, Dr.
MatthewWright, and Dr. Andrés Cabrera for the encouragement and invaluable feed-
back they provided throughout the process.

I would like to thank Professor JoAnn Kuchera-Morin for having me as part of the
AlloSphere Research Group as a Graduate Student Researcher and supporting this
research work.

I would like to thank the Robert W. Deutsch Foundation for the generous graduate
fellowship grant made possible through the AlloSphere Research Group at UCSB.

v

I would like to thank the UCSB Center for Research in Electronic Art Technology
(CREATE) for a generous grant to support the development of Stride and the Systemics
Lab for letting us borrow their electronic test equipment.

Iwould like to thank the Media Arts and Technology Program and Dr. Andrés Cabr-
era for the teaching assistant positions for the Digital Audio Programming course se-
ries.

I would like to thank Steffen Martin and Łukasz Olczyk for their help with the de-
sign, development, and testing of the Saturn M7 Audio Development Board, which
became a target platform for Stride.

I would like to thank my colleagues at the Media Arts and Technology Program in
particular Sahar Sajadieh, Gustavo Rincon, Şölen Kıratlı, Owen Campbell, and Hanna
Wolfe for their friendship and the great memories.

I finally want to thank my family for their unconditional love and support.

vi

Curriculum VitæJoseph Tilbian

Education
2018 Ph.D. in Media Arts and TechnologyUniversity of California, Santa Barbara
2006 M.Sc. in MechatronicsUniversity of Applied Sciences, Aachen - Germany
2002 B.E. in Mechanical EngineeringAmerican University of Beirut, Beirut - Lebanon

Publications
J. Tilbian and A. Cabrera, “Stride: A Declarative and Reactive Language for SoundSynthesis and Beyond,” in Proceedings of the 2016 International Computer MusicConference, Utrecht, 2016, pp. 472-478.
J. Tilbian and A. Cabrera, “Stride for Interactive Musical Instrument Design,” inProceedings of the 2017 International Conference on New Interfaces for Musical Ex-pression, Copenhagen, 2017, pp. 446-449.
J. Tilbian, A. Cabrera, S. Martin, and Ł. Olczyk, “Stride on Saturn M7 for InteractiveMusical Instrument Design,” in Proceedings of the 2017 International Conference onNew Interfaces for Musical Expression, Copenhagen, 2017, pp. 503-504.

vii

Abstract

Stride: A Language for Sound Synthesis, Processing, and Interaction Design
by

Joseph Tilbian

This dissertation presents Stride, a language for sound synthesis, processing, and
interaction design. With a novel and unique approach for handling sampling rates as
well as clocking and computation domains, Stride prompts the generation of highly
optimized target code. Optimization is achieved by giving the user of Stride control
over the Stride code generator through its syntax. The optimizations render Stride an
ideal language to target resource-constrained devices such as microcontrollers. Stride
is a declarative language and adopts features from dataflow languages. With only two
syntactic constructs, Stride is easy to learn. Through resource abstraction and sepa-
ration of semantics from implementation, a wide range of computation devices could
be targeted such as microcontrollers, system-on-chips, general-purpose computers,
and heterogeneous systems. Users of Stride can write code once and deploy on any
supported hardware.

After presenting the challenges of targeting resource-constrainedmicrocontrollers
with popular music programming languages in use today for sound synthesis and pro-
cessing, a new programming language and its syntax are introduced to address these
challenges. This is followed by demonstrating how the language enables its user to
control the code generation process to yield efficient and optimized target code. Next,
the semantics of the language and some of its core building blocks are presented in

viii

detail followed by the user-controlled concurrency model built into the language. De-
signing interaction using some of the core blocks is then presented through a set of
examples followed by some of the advanced building blocks of the language. Finally,
the language is presented as part of an encompassing development environment and
all of its components including the integrated development environment and the com-
piler.

ix

Contents
Curriculum Vitæ vii
Abstract viii
1 Introduction 1

1.1 Scope . 2
1.2 Problem Statements . 4
1.3 Research Questions . 5
1.4 Contributions . 8

1.4.1 A New Syntax . 8
1.4.2 Signals with Rates and Domains 9
1.4.3 Code Generation . 9
1.4.4 Concurrency . 10

1.5 Dissertation Structure . 10
1.6 Permissions and Attributions . 12
1.7 Additional Notes . 12

2 Survey of Music Programming Languages 13
2.1 Music Programming Languages . 14

2.1.1 Csound (1985) . 14
2.1.2 Pd - Pure Data (1996) . 15
2.1.3 SuperCollider (1996) . 17
2.1.4 Faust (2002) . 18
2.1.5 ChucK (2003) . 19
2.1.6 Discussion . 20

2.2 Concurrent Research . 20
2.2.1 Kronos . 20
2.2.2 WaveCore . 21

x

3 Faust and Targeting Microcontrollers 223.1 A Simple Faust Example . 223.2 Computing Constants . 273.3 Processing Loads and Relative Rates . 283.4 Concurrency . 333.5 Vector Processing . 363.6 Libraries and APIs . 373.7 Summary . 38
4 Improvements with Stride 394.1 An Oscillator with Frequency Control . 394.2 A New Language . 414.2.1 Block Declarations . 414.2.2 Stream Expressions . 434.3 Code Generation for an Embedded Platform 444.3.1 Oscillator with Frequency Control 454.3.2 Oscillator’s Frequency Control at Reduced Rate 494.3.3 Reactive Control of the Oscillator’s Frequency 514.3.4 Audio Callback Optimization . 544.4 Discussion . 564.5 Summary . 58
5 Signals, Rates, Domains, and Modules 595.1 Behavior of a Signal . 605.1.1 Rates . 605.1.2 Domains . 635.2 A Sine Oscillator Module in Stride . 665.2.1 Sine Oscillator Stream Expressions 665.2.2 Sine Oscillator Module . 725.2.3 Code Generation for the Sine Oscillator Module 785.3 Using Modules in Stride . 805.3.1 Level Module . 805.3.2 Synchronous Frequency Modulation 835.3.3 Asynchronous Frequency Modulation 865.4 Summary . 89
6 Domains and Concurrency 906.0.1 Domain Execution Order . 916.0.2 Concurrency Declaration . 926.1 Concurrency and Stateless C++ Template Classes 936.1.1 Asynchronous Frequency Modulation with Concurrency 956.2 Discussion . 97

xi

6.3 Summary . 98
7 Interaction Design with Triggers and Reactions 997.1 The Switch Block . 1007.2 The Trigger Block . 1017.2.1 Single Domain Trigger Example 1027.2.2 Multiple Domain Trigger Example 1047.3 Reactions . 1177.4 Attack/Decay Envelope in Stride . 1207.5 Summary . 128
8 Advanced Blocks in Stride 1298.1 The Buffer Block . 1298.1.1 Buffer Block as Delay Line . 1308.1.2 Buffers and Hardware IO Abstraction 1338.1.3 Buffers and Vector Operations . 1368.2 The Loop Block . 1428.3 The Group Block . 1488.4 Summary . 154
9 Stride 1559.1 Language Features . 1569.2 Stride Environment . 1599.2.1 Stride Systems . 1599.2.2 Stride Compiler . 1609.3 Stride IDE . 1639.4 Stride Syntax . 1649.4.1 Basic Blocks . 1659.4.2 Block Bundles . 1729.4.3 Advanced Blocks . 1739.4.4 Stream Expressions . 1789.5 Summary . 191
10 Conclusion 19210.1 Summary . 19210.2 Discussion . 19510.3 Future Work . 197
A Faust DSP and Generated Code 199A.1 Resonant Low Pass with Constant Arguments 199A.1.1 Faust DSP Code . 200A.1.2 C++ Generated Code . 200

xii

A.2 Resonant Low Pass with Variable Arguments 203A.2.1 Faust DSP Code . 203A.2.2 C++ Generated Code . 204A.3 Bela Template Code for Faust . 207
B Relative Computation Cost of Floating-Point Operations 217B.1 Relative Computation Cost Measurement 217B.1.1 Results . 218B.1.2 Source Code . 218
C Frequency Modulation in Stride 223C.1 Synchronous and Asynchronous Modulation 224C.1.1 Synchronous Frequency Modulation 224C.1.2 Asynchronous Frequency Modulation 231C.1.3 Asynchronous Frequency Modulation with Concurrency 239
D Stride Helper Classes 248D.1 Synchronization . 248D.2 Signals . 249D.3 Trigger Observers . 252D.4 Triggers . 252
E Stride Lexeme and Grammar 256E.1 Stride Lexeme . 256E.2 Stride Grammar . 260
Bibliography 275
Terms and Abbreviations 279
Glossary 280
List of Figures 281
List of Tables 284
List of Codes 288

xiii

Chapter 1

Introduction
Over the past two decades single-board computers with microcontrollers and system-
on-chips as their main processor have become popular among artists, hobbyists, and
"do-it-yourself" enthusiasts. Their popularity can be attributed to making the pro-
gramming of these small computers easier, thus making them more accessible to
people who lack the technical expertise required otherwise.
Most single-board computers have been designed with physical computing, general-
purpose computing, or graphical applications in mind. Supplemental boards and
hardware are usually required with these boards to generate good quality sound and
enable the control of synthesis and processing parameters in real time.
Single-board computers designed for low latency, high fidelity, and high-resolution au-
dio applications such as sound capture, reproduction, synthesis, and processing with
real-time response capabilities are rare. One of the reasons appears to be the lack of

1

Introduction Chapter 1
a modern language for sound synthesis and processing to target the computers that
power such boards.

1.1 Scope
This dissertation covers the design of a new programming language for sound syn-
thesis, processing, and interaction design to target resource-constrained single-board
computers specifically and any computer or computer system generally.
Popular music programming languages for sound synthesis and processing, running
on modern general-purpose computers characterized by their computational power
and the abundance of memory, achieve desired qualities such as real-time perfor-
mance, high sound resolution (bit depth and sampling rate), and precision (double
precision floating-point). However, microcontrollers generally only possess a small
fraction of the computation power those machines offer. Many synthesis techniques
also require ample memory which is also a scarce resource on microcontrollers.
Historically, dedicated Digital Signal Processor (DSP) Integrated Circuits (IC) with ded-
icated external memory have been used to achieve those qualities, enabled through
on-board circuits to perform general-purpose and specific signal processing tasks,
such as single instruction multiply-add operations or Fast Fourier Transforms.
In recent years, with the introduction of microcontrollers designed to target multime-
dia applications, such as those designed around an Arm R© Cortex R©-M core, the line
between DSPs and microcontrollers has become blurred.

2

Section 1.1 Scope
These modern microcontrollers have Central Processing Units (CPU) clocked at three-
digit MHz speeds, come with dedicated single precision or double precision Floating-
Point Units (FPU), and are capable of performing multiply add operations as well as
operate onmultiple data with a single CPU instruction in a single clock cycle. These are
features common to DSPs. These microcontrollers also feature peripherals support-
ing electrical serial bus interface standards for digital audio communication among
ICs like I2S (Inter-IC Sound) or S/PDIF (Sony/Philips Digital Interface) among others.
Another stark difference between general-purpose computers and microcontrollers
appears in the need for an operating system. Almost all general-purpose comput-
ers today run an operating system that hosts applications designed for it. Microcon-
trollers on the other hand either run a real-time operating system or run bare metal1.
Running code on a bare metal microcontroller reduces overhead introduced by an
operating system. This latter case is an important consideration when designing a
language to target microcontrollers.
Therefore, designing a language and a code generator that could target baremetal mi-
crocontrollers and produce code with the smallest possible footprint and least over-
head is one, if not the most important, criterion to consider.
Because microcontrollers have limited resources, it is important to give the user the
ability to control how often computations happen and in which context these compu-
tations happen. Another consideration is giving the user control over the code gen-
erator through the language syntax, rather than through passing compilation flags to
the compiler, to generate efficient and optimized code that meets the computational

1A computer system that does not contain an operating system.
3

Introduction Chapter 1
or aesthetic needs of the user.
Prior to embarking on the design of a new language it is only reasonable to assess
whether current music programming languages would be up to the task of support-
ing resource-constrained systems by introducing modifications to their syntax and/or
internal processes.
From this point on we will refer to single-board computers as microcontroller-based
embedded systems2.

1.2 Problem Statements
Popular computer music languages in use today (Csound, Pd, SuperCollider, Faust,
and ChucK) for sound synthesis and processing are designed for general-purpose
computers or embedded systems running an operating system. Although some pro-
duce highly efficient code, they are not designed to run on or generate code for
resource-constrained microcontroller-based embedded systems.
To reduce the overhead introduced by running an operating system on a resource-
constrained system it is paramount to run bare metal. Programming bare metal sys-
tems is not trivial and requires expert knowledge of the target device making them
inaccessible to artists, hobbyists, and "do-it-yourself" enthusiasts.
Microcontroller cores designed to perform digital signal processing tasks come with

2An embedded system is a dedicated computer system designed and embedded in a device thatincludes various electrical and mechanical components.
4

Section 1.3 Research Questions
dedicated digital signal processing libraries that are optimized for the core. Abstract-
ing these libraries and giving the user the ability to utilize themduring code generation
is of utmost importance to take full advantage of the device’s capabilities and optimize
for it.
Microcontrollers communicate with the outside world through peripherals. Software
running on a microcontroller, usually referred to as firmware, controls and communi-
cates with these peripherals through drivers3. Different microcontroller manufactur-
ers have different hardware implementations and usually provide drivers for them.
This renders code generated for one target useless for another target. Separating se-
mantics from implementation and abstracting hardware and drivers in a uniform way
across manufacturers is one way to enable moving code from one device to another.
Modern microcontrollers can have more than one core or be part of a heterogenous
system. Concurrency and data integrity become immediate concerns that need to
be addressed especially when memory is shared between cores or computations are
distributed across components of a heterogenous system.

1.3 Research Questions
The following are the research questions that arise from the problem statements de-
scribed above as well as ones related to designing a programming language for sound
synthesis, processing, and interaction design.

3A piece of software that abstracts hardware and enables an operating system or other software tocommunicate with the hardware.
5

Introduction Chapter 1
Q1 Can a language for sound synthesis, processing, and interaction be designed with
only a few syntactic constructs that meet the following specifications?

– Simplify or unify the interfacing between entities
– Enable parallel expansion of entities and interfaces
– Abstract the static and dynamic allocation of entities
– Perform computations on a per sample basis, on real and complex numbers, in
both time and frequency domains

– Handle synchronous and asynchronous data and events
– Abstract threading and thread synchronization
– Enable seamless interfacing of entities running at different rates and in different
threads

If one were to design a modern language for sound synthesis, processing, and
interaction design, the language should meet most of, if not all, the specifica-
tions put forward by this question. It is also important to incorporate most of
the features from existing music programming languages that have made them
popular and successful among their users. Given the processing capabilities of
host computers today, it is possible to design complex interpreters that not only
parse, process, and interpret user code in fractions of a second but also analyze
the code and recommend potential optimizations to the user.

Q2 How can the unit generator / processor approach be adapted to resource-constrained
systems to enable optimized code generation with the smallest memory footprint?

6

Section 1.3 Research Questions
How and to what extent can a user control the optimization? How would the units

behave in a multi-threaded or heterogenous environment?

The unit generator / processor design approach has been incorporated into al-
most all music programming languages since its inception as part of MUSIC III
in the sixties by Max Mathews. In modern computer music languages, designed
around the object-oriented programming paradigm, unit generators and proces-
sors are abstracted as classes from which instances of these units are created.
Depending on the type of the unit, the class that represents it might incorporate
states. In a multi-core or heterogenous system, where control and signal com-
putations can be distributed across various threads, this abstraction of unit gen-
erators might not meet the optimization goals required by resource-constrained
targets because it would result in the need for a class to accommodate various
concurrency scenarios.

Q3 Could various hardware components (inputs, outputs, clocks, cores, etc.) and soft-
ware architectures (application programming interfaces, real-time operating systems,

etc.) be abstracted in a unified way?

To make the user code portable from one target to another the underlying hard-
ware and software architectures need to be abstracted. This can be achieved by
separating semantics from implementation.

Q4 Can various types of interactions with the system be abstracted in a unified way?
Interactions with a microcontroller-based embedded system can come in vari-
ous forms and from multiple sources. These interactions could be used to con-

7

Introduction Chapter 1
trol the sound synthesis and processing parameters on the system. Interactions
could come from a knob or switch, a sensor, a periodic or aperiodic impulse
train, a message over a serial bus peripheral or over a network (following mes-
sage protocols like MIDI[1] or Open Sound Control (OSC)[2]). Abstracting these
interactions in a unified way and incorporating it into the language would al-
low the user to seamlessly switch from one interaction type to another without
having to modify the core synthesis and processing blocks.

1.4 Contributions
This dissertation makes the following contributions to the field of computer music in
general and to sound synthesis and processing in particular.

1.4.1 A New Syntax
Stride presents a new syntax to design signal processing algorithms as well as to im-
plement and develop sound synthesis techniques with real-time control. The syntax
is made up of only two constructs. The syntax is mostly declarative which allows for
expanding the capabilities of the language by adding new "blocks". Entities in the lan-
guage are connected to each other with a single operator. Unlike regular dataflow
languages where only data is exchanged between connected entities, in Stride infor-
mation provided by the user in the code is also exchanged between entities, such as
rates and domains4.

4A context in Stride where code is executed. The concept is discussed in detail in this dissertation.
8

Section 1.4 Contributions
1.4.2 Signals with Rates and Domains

In Stride, data exchange between entities is abstracted through signals. Stride takes
a novel approach by allowing the user to specify the rate and the domain of every
signal, giving the user control over how often an expression where the signal appears
is evaluated and in which thread and computation device this evaluation takes place.
The rate and domain of signals specified by the user propagate throughout the code
to replace placeholder aliases of other signals that are embedded within modules.
This approach puts the user in full control of generating code optimized for a given
target.

1.4.3 Code Generation

Modules in Stride, which abstract unit generators and processors, translate to state-
less C++ template classes through its code generator and helper classes. The gener-
ated code significantly differs from ones that usually appear in music synthesis and
processing libraries or ones generated by other music programming languages. This
approach results in classes with independent processes mapped to domains which in
turn can be distributed across threads and devices, thus breaking down and distribut-
ing computations defined inside a unit generator or processor.

9

Introduction Chapter 1
1.4.4 Concurrency

Stride incorporates a flexible concurrency model that is controlled by the user by
defining policies controlling shared memory between domains. This model allows
for the segmentation and distribution of processes across threads and devices while
maintaining data integrity and avoiding race conditions and priority inversions.

1.5 Dissertation Structure
This dissertation is presented through the following chapters:
In chapter 2, "Survey of Music Programming Languages", we present a set of popular
music programming languages in use today and discuss their limitations or incom-
patibility with targeting resource-constrained systems. We also present concurrent
research related to the problem statements and research questions posed and ad-
dressed by this dissertation.
In chapter 3, "Faust and Targeting Microcontrollers", we discuss the limitations of
Faust when it comes to generating optimized code for a microcontroller-based em-
bedded system. We also identify a few optimization schemes that could result in effi-
cient code for such systems.
In chapter 4, "Improvements with Stride", we introduce a new programming language
and its syntax through a simple sine oscillator example, we demonstrate how the user
of this language could generate efficient and optimized code.

10

Section 1.5 Dissertation Structure
In chapter 5, "Signals, Rates, Domains, and Modules", we present the core building
blocks of Stride and discuss their semantics and behaviors. We demonstrate the use
of these blocks through examples of synchronous and asynchronous frequency mod-
ulation.
In chapter 6, "Domains and Concurrency", we present the user-controlled concur-
rency scheme built into the language and discuss how it affects the code generation
process.
In chapter 7, "Interaction Design with Triggers and Reactions", we demonstrate how
interaction is modeled and designed in Stride by presenting additional core building
blocks of the language. We also demonstrate how a state machine is created in Stride.
In chapter 8, "Advanced Blocks in Stride", we present additional building blocks of the
language, which bring advanced features to the language and simplify the user code.
In chapter 9, "Stride", we present the features of Stride as a programming language.
We also present the language as a component of the Stride Environment which also
comprises a compiler and an integrated development environment. We also present
the formal definitions of the core and advanced building blocks of the language and
expand on the semantics that control expressions in the language.
In chapter 10, "Conclusion", we summarize the research carried out to produce this
dissertation and address its research questions. We also discuss related future work.

11

Introduction Chapter 1
1.6 Permissions and Attributions
The syntax diagrams for the grammar were generated using Railroad Diagram Gen-
erator by Gunther Rademacher, URL: http://www.bottlecaps.de/rr/ui [accessed
November 7, 2018].
All other figures, charts, and diagrams appearing in this dissertation have been cre-
ated by the author for the purpose of this document.

1.7 Additional Notes
All Stride code examples included in this dissertation are shown in their expanded
form. All block properties and their default values are explicitly stated, which is not
generally required.

12

http://www.bottlecaps.de/rr/ui

Chapter 2

Survey of Music Programming
Languages
Targeting microprocessors and DSP boards with music programming languages to
achieve real-time control in sound synthesis and processing has a long history dating
back to the late seventies and early eighties. In this chapter we will briefly touch on a
few of these languages and focus on ones that are still in use today or were introduced
later for general-purpose computers. We will also mention some concurrent research
and projects.

13

Survey of Music Programming Languages Chapter 2
2.1 Music Programming Languages
One of the early examples of a music programming language targeting a DSP board
is the 4CED language[3] designed to target the 4C machine[4] at Institut de recherche
et coordination acoustique/musique (IRCAM), hosted on a PDP-11 computer, for real-
time sound synthesis.
Max[5][6] (currently sold as a commercial product, Max/MSP, by Cycling ’74 and Able-
ton) was developed to run on a NeXTmachine as part of the IRCAMMusic Workstation
to target signal processing boards based on the intel i860microprocessor[7].
A comprehensive list of music programming languages to target DSP boards along
with their host machines can be found in The Computer Music Tutorial[8, chapter 17].

2.1.1 Csound (1985)

Csound[9] designed and developed by Barry Vercoe and introduced in 1985 followed
the MUSIC-N model and was a translation of MUSIC11 into the C programming lan-
guage (C), making it host independent.
In 1989 Csound was used to target Inmos transputers[10] to considerably enhance its
speed of execution.
In 1990 a new version of Csound[11] was introduced with real-time capabilities which
could run on a MacII host to target a real-time DSP system based on a Motorola
DSP56000.

14

Section 2.1 Music Programming Languages
The real-time capabilities of Csound with greatly expanded with the introduction of
Csound Extended[12] where support for the SHARC 21060 DSP by Analog Devices was
introduced.

Comments on Csound

Although still popular and in use today, the syntax of Csound is a markup language
for defining instruments and a score, which seems outdated when compared to most
modern programming languages since its roots are in the MUSIC-N family of lan-
guages.
To introduce new unit generators or algorithms that run efficiently the user has to
write them in C and introduce corresponding opcodes into Csound using an Applica-
tion Programming Interface (API). This presents a particular challenge when it comes
to microcontrollers, specifically when it comes to using their optimized DSP libraries.
A new opcode that performs the same task is required to target a different core.
Csound is not designed for single sample processing1 and it only supports two rates:
control rate and audio rate.

2.1.2 Pd - Pure Data (1996)

Pd[13] was introduced in 1996 by Miller Puckette based on his earlier work on Max and
FTS[14] at IRCAM. Like Max, Pd is a graphical programming language. Unlike Max, Pd

1The control rate could be temporarily set to one (setksmps 1). However, this is not efficient.
15

Survey of Music Programming Languages Chapter 2
was designed to perform all control and audio processing on the host’s CPU rather
than target a DSP system.
Like Csound, Pd can be extended through an API to enable users to add their own
control and audio processing code written in C.

Comments on Pd

Targeting microcontrollers with Pd is not ideal since Pd is designed to dynamically
invoke objects’methods at runtime. For non-audio signals thesemethods are invoked
based on events. Invoking methods dynamically adds an overhead which sometimes
taxes the system more than the actual process the method accomplishes. One way
to overcome this would be to take the signal graph from Pd and generate static target
code from it. This approach has been successfully implemented by Enzien Audio with
their Heavy compiler[15]. The compiler supports a limited list of Pd objects.
Since Pd follows the dataflow programming paradigm, it suffers from limitations when
it comes to object-oriented programming concepts. Creating parallel processes or
managing a large list of objects is not possible due to the lack of constructors and
destructors.
Single sample processing in Pd is not possible (Max/MSP introduced Gen to achieve
single sample processing). Pd runs at two rates. The first is the audio sampling rate
and the second is the control rate where data is processed once per 64 samples of
audio.

16

Section 2.1 Music Programming Languages
2.1.3 SuperCollider (1996)

In 1996, James McCartney introduced SuperCollider[16], an environment for real time
synthesis. It featured a programming language designed on the object-oriented pro-
gramming paradigm. It supported closures and had a garbage collector.
Later versions of SuperCollider featured two applications, a client and a server, which
communicated over a modified version of OSC[17]. The server ran the synthesis en-
gine and the client ran on top of the language engine. Multiple clients could connect
to a single server and perform in real-time.
SuperCollider has a synthesis class library which generates C++ code that can be
loaded on its synthesis engine running on the server. The synthesis engine also has
a C linkage API which allows users to write instruments in C and load them on the
server.
Instead of supporting a single control rate, unit generators can be written to run at
any power of two division of the audio clock rate. Values are linearly interpolated
when connecting to unit generators running at different rates.

Comments on SuperCollider

SuperCollider’s language syntax and architecture was a departure from the markup
and graphical languages for music programming. Due to its architecture, SuperCol-
lider is not suited for microcontroller-based embedded systems. However, it offers
many valuable solutions that one needs to consider when designing a new language.

17

Survey of Music Programming Languages Chapter 2
SuperCollider can achieve single sample processing if the audio buffer size on the
synthesis engine running on the server is set to one. However, this requires amachine
capable of handling the load introduced by this change.

2.1.4 Faust (2002)

Designed at Grame (Centre National de Création Musicale) by by Yann Orlarey et al.,
Faust[18] was first introduced in 2002. It is a purely functional programming language
with an algebraic block diagram syntax.
Faust compiles its block diagram syntax to highly efficient C++ code which operates at
the sample level. Operating at the sample level makes it possible to create recursions
(sample feedback) and create low-level signal processing functions. These functions
can then be brought together using high-level composition operators to create more
complex signal processing functions.
Faust does not rely on any external modules or libraries to generate code and is self-
contained. The generated static C++ code could be compiled and used on any target
as long as the target has a C++ compiler.

Comments on Faust

Faust would be the ideal candidate among the languages presented in this section to
target microcontrollers. The following chapter is dedicated to discussing the capabili-
ties and limitations of Faust when it comes to targeting embedded systems.

18

Section 2.1 Music Programming Languages
2.1.5 ChucK (2003)

ChucK, designed and developed by Ge Wang et al., was introduced in 2003. ChucK is a
concurrent and strongly timed language for real-time sound synthesis, composition,
and performance.
The syntax of Chuck is C-like and designed with the object-oriented paradigm. The
ChucK operator (=>) is used to connect entities together. Because of its strong unified
timing mechanism, it is capable of multi-rate events and control processing. ChucK
code is dynamically compiled to ChucK virtual machine bytecode that runs on the
Chuck Virtual Machine. This architecture allows for on-the-fly programming in ChucK.
A "Shred" in ChucK abstracts threads and fits into the concurrency model built into
ChucK. Single sample processing is supported in ChucK since the user is responsible
for "advancing time" and can do so by the duration of a single sample.

Comments on ChucK

Because of its architecture and reliance on a virtual machine, ChucK is not suited for
microcontroller-based embedded systems for sound synthesis and processing. How-
ever, many features of ChucK are worth considering when designing a new language,
specifically the ChucK Operator which seamlessly enables the connection of entities
running at different rates.

19

Survey of Music Programming Languages Chapter 2
2.1.6 Discussion

Having reviewed some of the popular music programming languages in use today,
Faust seems to be the best candidate to consider for targeting microcontrollers. Faust
meets many of the desired specifications to target a resource constrained system,
specifically its ability to generate efficient C++ code and define low-level signal pro-
cessing functions.
Many features from the other languages are worth considering if one were to design
a modern language, particularly ones that result in the new language meeting the
specifications set forward in the introduction of this dissertation.

2.2 Concurrent Research
The following research works are closely related to that presented in this dissertation.

2.2.1 Kronos

Kronos[19] is a functional high-level language and a just-in-time compiler[20]. It is well
suited to build digital signal processing solutions due to its capability to generate high
performance code. The language implements the functional reactive paradigm and
can handle multi-rate processing.

20

Section 2.2 Concurrent Research
2.2.2 WaveCore
WaveCore[21] is a coarse-grained reconfigurable processor (CGRP) architecture, based
on the dataflow paradigm. It is designed to target any Field-Programmable Gate Array
(FPGA) because it is designed in VHDL2, which is a target independent language. The
WaveCore programming model is based on explicitly describing a dataflow graph in a
declarative manner.
Prior to WaveCore, finite difference physical models of musical instruments were im-
plemented on FPGAs that can be configured, modified, and played in real time[22].
However, WaveCore abstracts the implementation with a scalable and interconnected
cluster of Processing Units, where each unit embodies a small floating-point RISC pro-
cessor.
An experimental compiler has been designed to target the WaveCore Processor with
Faust code. Kronos was also used to target the WaveCore Processor to design a low-
latency parallel graphic equalizer[23].

2VHSIC (Very High Speed Integrated Circuit) Hardware Description Language
21

Chapter 3

Faust and Targeting Microcontrollers
Faust has its limitations when it comes to generating optimized code for a resource-
constrainedmicrocontroller-based embedded system. This chapter will present some
of the optimizations Faust performs and discuss the shortcoming of these optimiza-
tions when targeting microcontrollers. Some improvements will also be proposed to
make the generated code better suited for a microcontroller.

3.1 A Simple Faust Example
Faust generates code in various languages including C, C++, Java, Web Assembly, LLVM
IR, etc. In the following discussion, we will focus on the C++ version of the gener-
ated code. Almost all modern compilers targeting embedded systems compile tar-
get code from C and/or C++. Among the many programming languages, C and C++

22

Section 3.1 A Simple Faust Example
are considered the de facto programming languages for modern embedded systems
development[24, section 2.3.2].
By analyzing the code generated by Faust, the following optimizations are identified:

– Computing expressions that result in constant values throughout the execution
of the program only once.

– Computing slow changing control variables once per audio rendering callback.
– Performing all remaining computations on a per sample basis in the audio ren-
dering callback.

In the following sections we will look at a simple Faust example, a resonant low pass
filter, to highlight Faust optimizations and analyze their impact on microcontroller-
based embedded systems. We will also propose some improvements in order to
achieve further optimization.
The Faust code in Code 3.1 represents processing a signal through a resonant low pass
filter with constant arguments.
1 import("stdfaust.lib");
2
3 // Cutoff Frequency
4 ctFreq = 500;
5 // Q Factor
6 q = 5;
7 // Gain
8 gain = 1;
9

10 // Resonant Low Pass
11 process = fi.resonlp(ctFreq ,q,gain);

Code 3.1: Faust resonant low pass filter with constant arguments.

23

Faust and Targeting Microcontrollers Chapter 3
With C++ set as the target language, the Faust compiler generates a single class called
mydsp (default compiler option) with multiple methods1. Out of these methods, two
are relevant to this discussion.
The first method, called instanceConstant, is where values that remain constant
throughout the execution of the program are computed. For the case of the reso-
nant low pass filter with constant arguments, the method is shown in Code 3.2.
1 virtual void instanceConstants(int samplingFreq) {
2 fSamplingFreq = samplingFreq;
3 fConst0 = tanf ((1570.79639f / min (192000.0f, max (1000.0f, float(

fSamplingFreq)))));
4 fConst1 = (1.0f / fConst0);
5 fConst2 = (1.0f / (((fConst1 + 0.200000003f) / fConst0) + 1.0f));
6 fConst3 = (((fConst1 + -0.200000003f) / fConst0) + 1.0f);
7 fConst4 = (2.0f * (1.0f - (1.0f / mydsp_faustpower2_f(fConst0))))

;
8 }

Code 3.2: Faust generated instanceConstant method for a resonant low pass filterwith constant arguments.

The second method is compute. This method is responsible for computing the audio
samples to fill the audio buffer. The constant values computed in the first method are
used in this one to compute the audio samples. For the case of the resonant low pass
filter with constant arguments the computemethod is shown in Code 3.3.
In the case where the arguments of the resonant low pass filter are constant, the
compute method is efficient and optimized for a microcontroller. Only computations
necessary to compute the audio samples are included in it. When the arguments
of the resonant low pass filter are replaced with variables, the generated compute

function is no longer efficient or optimized.
1The generated code in its entirety is available in Appendix A

24

Section 3.1 A Simple Faust Example
1 virtual void compute(int count , FAUSTFLOAT ** inputs , FAUSTFLOAT **
outputs) {

2 FAUSTFLOAT* input0 = inputs [0];
3 FAUSTFLOAT* output0 = outputs [0];
4 for (int i = 0; (i < count); i = (i + 1)) {
5 fRec0 [0] = (float(input0[i]) - (fConst2 * ((fConst3 * fRec0

[2]) + (fConst4 * fRec0 [1]))));
6 output0[i] = FAUSTFLOAT ((fConst2 * (fRec0 [2] + (fRec0 [0] +

(2.0f * fRec0 [1])))));
7 fRec0 [2] = fRec0 [1];
8 fRec0 [1] = fRec0 [0];
9 }

10 }

Code 3.3: Faust generated compute method for a resonant low pass filter withconstant arguments.

Code 3.4 replaces the constant arguments in Code 3.1with variable arguments. These
variable arguments are controlled by horizontal sliders appearing on a Graphical User
Interface (GUI).
1 import("stdfaust.lib");
2
3 // Cutoff Frequency Horizontal Slider
4 ctfreq = hslider("cutoffFrequency" ,500 ,50 ,10000 ,0.01);
5 // Q Factor Horizontal Slider
6 q = hslider("q" ,5,1,30,0.1);
7 // Gain Horizontal Slider
8 gain = hslider("gain" ,1,0,1,0.01);
9

10 // Resonant Low Pass
11 process = fi.resonlp(ctFreq ,q,gain);

Code 3.4: Faust resonant low pass filter with variable arguments.

The instanceConstant and compute methods generated after replacing the constant
arguments with variable ones are shown in Code 3.5.
As a result of these changes, variables that are evaluated in the compute method can
be divided into two sets. The first set of variables are those designated by fSlow. Ev-
ery time compute is called, these variables get evaluated only once before the code

25

Faust and Targeting Microcontrollers Chapter 3
appearing in the for-loop is evaluated. The second set of variables are those evalu-
ated inside the for-loop. For the rest of this discussion we will refer to the first set of
variables as control variables and the second set as audio variables.
Audio variables are associated with computing the audio samples, while control vari-
ables are associated with the arguments passed to the resonant low pass filter in the
Faust code. Generally, control signals in Faust relate to GUI elements, MIDImessages,
OSC messages, or physical sensors.
1 virtual void instanceConstants(int samplingFreq) {
2 fSamplingFreq = samplingFreq;
3 fConst0 = (3.14159274f / min (192000.0f, max (1000.0f, float(

fSamplingFreq))));
4 }
5 virtual void compute(int count , FAUSTFLOAT ** inputs , FAUSTFLOAT **
outputs) {

6 FAUSTFLOAT* input0 = inputs [0];
7 FAUSTFLOAT* output0 = outputs [0];
8 float fSlow0 = (1.0f / float(fHslider1));
9 float fSlow1 = tanf((fConst0 * float(fHslider2)));

10 float fSlow2 = (1.0f / fSlow1);
11 float fSlow3 = (((fSlow0 + fSlow2) / fSlow1) + 1.0f);
12 float fSlow4 = (float(fHslider0) / fSlow3);
13 float fSlow5 = (1.0f / fSlow3);
14 float fSlow6 = (((fSlow2 - fSlow0) / fSlow1) + 1.0f);
15 float fSlow7 = (2.0f * (1.0f - (1.0f / mydsp_faustpower2_f(fSlow1

))));
16 for (int i = 0; (i < count); i = (i + 1)) {
17 fRec0 [0] = (float(input0[i]) - (fSlow5 * ((fSlow6 * fRec0 [2])

+ (fSlow7 * fRec0 [1]))));
18 output0[i] = FAUSTFLOAT ((fSlow4 * (fRec0 [2] + (fRec0 [0] +

(2.0f * fRec0 [1])))));
19 fRec0 [2] = fRec0 [1];
20 fRec0 [1] = fRec0 [0];
21 }
22 }

Code 3.5: Faust generated instanceConstant and compute methods for a resonantlow pass filter with variable arguments.

26

Section 3.2 Computing Constants
3.2 Computing Constants

When targeting microcontrollers, one of the optimization goals is keeping the size of
the compiled executable binary file small. The executable file is usually loaded and
stored in flash memory2. Microcontrollers have limited onboard flash memory and
this limitation should be taken into consideration.
In Code 3.5, the only argument passed to the instanceConstant method is the sam-
pling rate. Some of the constants are computed based on this sampling rate. This
approach is generally ideal, since the class generated by Faust gets incorporated into
a platform specific target application where the sampling rate is usually passed at
runtime. An audio plugin used in a Digital Audio Workstation (DAW) is one example,
where the sampling rate needs to match that of the DAW when the plugin is instanti-
ated.
However, if the sampling rate is predetermined at compile time, computing the con-
stant values during code generation would result in a smaller binary file and faster
startup time.
The code generation in Faust could be tailored to such use cases by adding a com-
piler option and passing the sampling rate at compile time, thus making the compiler
generate more suitable code for a microcontroller-based embedded system.

2A solid-state non-volatile computer storage medium that can be electrically erased and repro-grammed.
27

Faust and Targeting Microcontrollers Chapter 3
3.3 Processing Loads and Relative Rates
Minimizing the amount of computations on a microcontroller is another optimization
goal. Unnecessary computations result in additional power consumption and have
a direct effect on the responsiveness of a microcontroller-based embedded system.
Setting the size of the audio buffer to a single sample to achieve glitch-free real-time
performance (single sample latency) is possible when running on a bare metal mi-
crocontroller. However, to realize this the audio rendering callback needs to run as
efficiently as possible.
In Faust the relative computation time spent on computing control variables and au-
dio variables in the compute method is dependent on the buffer size of the audio
rendering callback.
As the buffer size of the audio rendering callback increases, the ratio of CPU cycles
required to compute control variables to those required to computing audio variables
decreases. Regardless of the audio buffer size, the amount of computation required
to compute the control variables stays constant, while the amount required to com-
pute the audio variables proportionally increases with the size of the audio buffer.
For the resonant low pass filter with variable arguments this relationship is shown
in Figure 3.1. If we only consider the arithmetic and trigonometric operations in the
compute method, 44.5 CPU cycles are needed to compute the control variables per
audio rendering callback and 9 CPU cycles to compute each audio sample3.
For large buffer sizes this is not an issue. However, as the buffer size decreases, the

3The CPU cycles are based on an analysis in Appendix B.
28

Section 3.3 Processing Loads and Relative Rates

0

100

200

300

400

500

600

700

64 32 16 8 4 2 1

CP
U
	C
yc
le
s

Buffer	Size

Audio

Control

Figure 3.1: CPU cycles required per audio rendering callback for various buffer sizes.

effort spent on computing control variables per audio rendering callback becomes
significant. With the audio buffer size set to 64 samples, 7.17% of the CPU cycles re-
quired to render the audio samples in the audio buffer are for computing the control
variables. If the buffer size is reduced to a single sample, 83.18% of the CPU cycles are
for computing the control variables. Reducing the buffer size results in a significant re-
duction in the computation efficiency, given the control signals will not change at the
audio sampling rate. The reduction in computation efficiency is shown in Figure 3.2.
Spending 83.18% of computation time per audio rendering callback to compute con-
trol variables that might never change or change at a very slow rate relative to the
audio sampling rate is far from efficient.
There are multiple improvements that can be made to achieve an efficient audio ren-

29

Faust and Targeting Microcontrollers Chapter 3

0

500

1000

1500

2000

2500

3000

3500

4000

64 32 16 8 4 2 1

CP
U
	C
cy
le
s

Buffer	Size

Audio

Control

Figure 3.2: CPU cycles required to process 64 audio samples per audio renderingcallback for various buffer sizes.

dering callback for the case of the resonant low pass filter with variable arguments.
The first would be by adding a simple comparison to check if any control variable
changed from the previous callback.
Figure 3.3 shows the CPU cycles required for the resonant low pass filter with variable
arguments when the audio buffer size is set to 16 samples and Figure 3.4 shows the
impact of adding a comparison check on the control variables in the audio rendering
callback to the CPU cycles.
A further improvement could bemade by computing the control variables on a thread
different from the one where the audio rendering callback executes. This would result
in a very efficient audio rendering callback where only audio variables are computed.
The thread responsible for computing the control variables would have a lower prior-

30

Section 3.3 Processing Loads and Relative Rates
ity and could be set to run at a lower rate than the thread responsible for the audio
rendering callback.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

CP
U
	C
yc
le
s

Compute	Method	Call

Audio

Control

Figure 3.3: CPU cycles required per audio rendering callback for a 16-sample buffer size.

A potential thread profile is shown in Figure 3.5 with 175 CPU cycles available to the
processor relative to the rate of the audio rendering callback4. The control thread
rate is set to half of the audio thread. The chart shows how a control variable change
would affect the system and when it would affect the audio samples.
The two-thread approach will not only affect the CPU cycles and performance but
also the relative update rate between control and audio variables. The relative rate
between processing control variables and audio variables in Faust is fixed and de-
pendent on the audio buffer size. Moreover, both types of variables in Faust are
computed within the same method making them synchronous. The relative rate and

4CPU cycles required for context switching are ignored.
31

Faust and Targeting Microcontrollers Chapter 3

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

CP
U
	C
yc
le
s

Compute	Method	Call

Audio

Control

Control
Change
Control
Change

Figure 3.4: CPU cycles required per audio rendering callback for a 16 sample buffersize with a control variable change check.

0

50

100

150

200

250

1 2 3 4 5 6 7 8

CP
U
	C
yc
le
s

Audio	Rendering	Call

Idle	
Thread
Audio	
Thread
Control	
Thread

Control
Change

Change
Effect

Cycle	Limit

Figure 3.5: CPU thread profile showing the impact of a control change and its effect.

32

Section 3.4 Concurrency
synchronicity affect the output generated by Faust and tie it directly to the size of
the audio buffer. With a two-thread implementation, the control and audio variables
become asynchronous and the relative rate between them becomes independent of
buffer size.
To realize this two-thread approach, significant changes need to be made to the Faust
code generation engine. Even if the code generation engine is modified to accommo-
date this approach, the relationship between various signals will still be target specific
and dictated by the specificities of the implementation of the target. Hence, the user
will be constrained by the implementation. Giving the user the ability to decide how
often and in which thread variables are computed enables them to optimize and tune
a system to their need.

3.4 Concurrency
Modern microcontrollers can run complex tasks simultaneously in real-time. Manag-
ing concurrency plays an important part in achieving the required real-time perfor-
mance. Thus, giving the user control over the concurrency scheme is crucial.
The Faust framework does not have a concurrency model built into it. Updating con-
trol values and computing audio samples based on control value changes happen se-
quentially, thus eliminating the need for a concurrency model in the Faust framework
itself.
All controls (GUI, MIDI, hardware, etc.) of a target platform are mapped to Faust wid-

33

Faust and Targeting Microcontrollers Chapter 3
gets that are updated on every audio callback. This update happens prior to com-
puting the audio samples and involves the sampling and updating of every control
value. This approach moves the necessity of having a concurrency model in the Faust
framework to having one in the target platform’s software. Instead of defining a con-
currency model, target platforms often rely on the atomic data types supported by
their processor. When sampled, all control values are stored as FAUSTFLOAT, a type
definition (typedef) for a floating-point data type in the Faust framework.
To demonstrate this interaction between the Faust framework and a target platform
we will consider the Bela platform5. Excerpts of the bela.cpp target platform defini-
tion file6 are shown in Code 3.6.
The Faust framework expects a target platform definition file to include and imple-
ment two methods: setup() and render(), among other classes and methods.
In the setup()method (lines 31 to 48), after allocating memory for the audio buffers,
an instance of the DSP object is created. The DSP object is then linked to the user
interface of the target platform, where Faust widgets are mapped to controls. By
establishing this link, the DSP instance gains access to the sampled control values
through widgets.
In the render()method (lines 50 to 58), prior to calling the compute()method where
the audio samples are calculated (as discussed in section 3.1), the update() method
is called on the user interface instance to read and/or write all the controls and syn-
chronize them. The update occurs through Faust widgets.

5https://bela.io/ [accessed November 7, 2018]
6The platform definition file in its entirety is available in Appendix A

34

https://bela.io/

Section 3.4 Concurrency
The update() method of the user interface in turn calls the BelaWidget.update()

method defined as part of a widget class of the target platform (lines 2 to 17) for every
single control that is being utilized. For example, if the 8th analog input on the Bela
board is used as a control input, the kANALOG_7 (line 10) case is invoked where the
analogReadNI() method (line 11) is called to fetch the value from the corresponding
Analog to Digital Converter (ADC) input. The analogReadNI()method is implemented
as part of the Bela platform and not Faust. If the Bela platform implements a concur-
rency model it would appear in the analogReadNI()method.
1 // The widget class where the update method is impelmeneted
2 class BelaWidget
3 {
4 ...
5 public:
6 ...
7 void update(BelaContext *context) {
8 switch (fBelaPin) {
9 ...

10 case kANALOG_7:
11 *fZone = fMin + fRange * analogReadNI(context , 0, (int)

fBelaPin);
12 break;
13 ...
14 }
15 }
16 ...
17 };
18
19 ...
20 // Array of pointers to context ->audioIn data
21 FAUSTFLOAT ** gFaustIns;
22 // Array of pointers to context ->audioOut data
23 FAUSTFLOAT ** gFaustOuts;
24 ...
25 // Bela User Interface (Hardware)
26 BelaUI gControlUI;
27 // Pointer to a Faust DSP instance
28 dsp *gDSP = NULL;
29 ...
30
31 bool setup(BelaContext *context , void *userData) {
32 ...
33 // Allocate deinterleaved inputs

35

Faust and Targeting Microcontrollers Chapter 3
34 gFaustIns = new FAUSTFLOAT *[context ->audioInChannels];
35 ...
36 // Allocate deinterleaded output
37 gFaustOuts = new FAUSTFLOAT *[context ->audioOutChannels];
38 ...
39 // Faust DSP instance declaration
40 gDSP = new mydsp ();
41 ...
42 // Initializing the DSP instance
43 gDSP ->init(context ->audioSampleRate);
44 // Mapping Bela Analog/Digital IO and Faust widgets
45 gDSP ->buildUserInterface (& gControlUI);
46 ...
47 return true;
48 }
49
50 void render(BelaContext *context , void *userData) {
51 ...
52 // reads Bela pins and updates corresponding Faust Widgets zones
53 gControlUI.update(context);
54 // synchronize all GUI controllers
55 GUI:: updateAllGuis ();
56 // process Faust DSP
57 gDSP ->compute(context ->audioFrames , gFaustIns , gFaustOuts);
58 }

Code 3.6: Excerpts from the platform definition file for the Bela platform.

3.5 Vector Processing
Some microcontrollers support advanced instruction sets that are capable of operat-
ing on multiple data with a single instruction. They are known as Single Instruction
Multiple Data (SIMD) instructions. Most compilers are capable of translating C++ code
into machine code by utilizing these advanced instructions. However, special data
types and code organization are required to trigger the compiler to use these instruc-
tions.

36

Section 3.6 Libraries and APIs
The original version of Faust (currently known as Faust0) has a compiler option that
directs the code generator to generate C++ code suitable for vector operations. When
the option is enabled, the code generator restructures the C++ code in a way to direct
the C++ compiler to use SIMD instructions. An example of using this option is shown
in [25], where the generated code performs better when compiled with an Intel ICC
11.0 compiler. However, the same code might not trigger the use of SIMD instructions
when compiled with a different compiler.
A better approach is needed for the users to express their intent for vector processing
and the use of SIMD instructions. The approach should not be tied to a particular
compiler or compilers.

3.6 Libraries and APIs

Many microcontrollers come with dedicated libraries optimized to perform specific
tasks. These libraries are optimized for performance and size. An example of such a li-
brary is the CMSIS DSP Software Library developed by ARM for the Cortex-M series[26].
The library contains a list of optimized signal processing functions. Having the ability
to access these libraries is an advantage when it comes to generating efficient code.
One way to access them would be through a Foreign Function Interface (FFI) designed
into a language.
Faust does not have a FFI mechanism to access such libraries and does not offer a
way to utilize these libraries during code generation.

37

Faust and Targeting Microcontrollers Chapter 3
Microcontroller manufacturers also provide APIs to access resources on a device and
configure them. If a high-level code generation language like Faust lacks a FFI, modify-
ing configurations or changing the state of resources would not be possible through
Faust user code. Configurations and resource allocations will have to be hard coded
in external files specific to each platform.

3.7 Summary
In this chapter we identified a few optimization schemes that could result in the gen-
eration of efficient code for resource-constrained microcontroller-based embedded
systems. We demonstrated how CPU processing loads and relative rates between
variables have a big impact on efficiency. Allowing users to control rates and the
distribution of computations across multiple threads could result in drastic improve-
ments on the real-time performance of a system by making it more efficient. Allowing
users to control the concurrency model could yield similar improvements. Further
optimizations could be achieved through building a FFI into the language to access
optimized libraries as well as configure and manage device resources.

38

Chapter 4

Improvements with Stride
In the previous chapter we proposed some code optimization strategies to target
resource-constrained microcontroller-based embedded system. One of the strate-
gies was to control the relative rates at which computations are performed and to
distribute computations across multiple threads. In this chapter we present a new
language and its syntax. This new language enables the user to control the code
generation process to realize this strategy. We will demonstrate this with a simple
example.

4.1 An Oscillator with Frequency Control
A sine oscillator with frequency control is a basic unit generator. In this section we will
examine a simple implementation of this unit generator.

39

Improvements with Stride Chapter 4
A simple sine oscillator with frequency control can be implemented by tracking its
phase over time. The output of the oscillator is the trigonometric sine of the phase.
The phase is incremented by a phase increment after computing each output. The
phase increment is calculated based on the desired frequency and sampling rate. The
phase is wrapped when its values is equal to or greater than two pi. This simple sine
oscillator implementation is shown in Code 4.1 as a function in the C language.
Four expressions (lines 7, 10, 13, and 16) are evaluated every time the SinOsc function
is called. If the frequency of the oscillator does not change from one function call to
the next, calculating the PhaseIncrement is not necessary. That is, out of the four ex-
pressions only the ones directly related to the Phase need to be evaluated to compute
the next oscillator output.

1 #define M_PI 3.14159265359
2
3 void SinOsc(float &output , float frequency) {
4 static float Phase , PhaseIncrement = 0.;
5
6 // Compute the phase increment relative to the frequency and

sampling rate
7 PhaseIncrement = 2 * M_PI * frequency / SamplingRate;
8
9 // Compute the sin of the phase as the output

10 output = sin(Phase);
11
12 // Increment the phase
13 Phase += PhaseIncrement;
14
15 // Wrap the phase if it is greater than two Pi
16 if (Phase >= 2 * M_PI) Phase -= 2 * M_PI;
17 }

Code 4.1: A simple sine oscillator with frequency control in C.

40

Section 4.2 A New Language
4.2 A New Language
Before attempting to generate code, we will introduce a new language and its syntax.
This language is called Stride. Stride will enable the user to declare signals, invoke
modules, and connect them to create a dataflow graph. Stride will also enable the
user to control its code generator to optimize the generated code.
The new language has two constructs: Block Declarations and Stream Expressions.
We will introduce the syntax of these constructs in the following subsections.

4.2.1 Block Declarations

The first construct of the new language is the block declaration. The syntax diagrams
to construct declarations are shown in Figure 4.1 and Figure 4.2.
Every block declaration starts with a type and a name. A declaration encloses a set
of assignable properties. Block declarations with different types have different prop-
erties. The syntax diagram in Figure 4.1 is for a block declaration. Its corresponding
grammar is:

Block ::= type Name ‘{’(property ‘:’ Expression ‘;’?)*‘}’

Figure 4.1: Block declaration syntax diagram.
41

Improvements with Stride Chapter 4
Code 4.2 is an example block declaration. The block is of type signal and is called
Block. The signal block has four properties called default, rate, domain, and meta.
They are assigned the values 0.0, AudioRate, AudioDomain, and "A signal block"

respectively.

1 signal Block {
2 default: 0.0 # Default value
3 rate: AudioRate # The signal ’s rate
4 domain: AudioDomain # The signal ’s domain
5 meta: "A signal block" # Meta information
6 }

Code 4.2: A block declaration of type signal called Block.

The syntax in Figure 4.2 is a block bundle declaration. Blocks in a bundle share the
same type and property assignments. The grammar for a block bundle declaration is:

Bundle ::= type Name ‘[’Size‘]’ ‘{’(property ‘:’ Expression ‘;’?)*‘}’

Figure 4.2: Bundle declaration syntax diagram.

Code 4.3 is an example block bundle declaration. The bundle is of type signal and it
is called Bundle. The bundle is composed of two signal blocks.
A block in a bundle can be accessed through indexing. The first block in the bundle is
accessed by Bundle[1] and the second by Bundle[2].

42

Section 4.2 A New Language
1 signal Bundle [2] {
2 default: 1.0 # Default value
3 rate: AudioRate # The signal ’s rate
4 domain: AudioDomain # The signal ’s domain
5 meta: "A signal bundle" # Meta information
6 }

Code 4.3: A bundle declaration of type signal and size 2 called Bundle.

4.2.2 Stream Expressions
The second construct of the new language is the stream expression. The syntax dia-
gram to construct a stream expression is shown in Figure 4.3.

Figure 4.3: Stream expression syntax diagram.
A stream expression is constructed by connecting blocks, bundles and/or modules1
using the stream operator >>. The grammar for a stream expression is:
StreamExpression ::= (Block | Bundle | Bundle ‘[’Index‘]’ | Module)

(‘>>’ (Block | Bundle | Bundle ‘[’Index‘]’ | Module))+ ‘;’

A module encapsulates blocks, bundles, and stream expressions to perform specific
operations. The syntax diagram to invoke a module in a stream expression is shown
in Figure 4.4 and its corresponding grammar is:

1Modules will be covered in detail in the following chapter.
43

Improvements with Stride Chapter 4
Module ::= Name ‘(’ (port ‘:’ Expression ‘;’?)* ‘)’

Figure 4.4: Module invocation syntax diagram.

Code 4.4 is an example stream expression. The Input signal is connected to the main
input port2 of the Process module. The main output port of the Process module is
connected to the Output signal. The Processmodule has a single property port called
property. The property port is connected to a signal called Control.
1 signal Input {}
2 signal Output {}
3 signal Control {}
4
5 Input >> Process (property: Control) >> Output;

Code 4.4: A stream expression.

4.3 Code Generation for an Embedded Platform
Now that we have defined a new language and its syntax, we will use it to target a
microcontroller-based embedded system. We will deploy a sine oscillator with fre-
quency control on the target platform and generate efficient and optimized code for
it.

2Ports will be covered in detail in the following chapter.
44

Section 4.3 Code Generation for an Embedded Platform
Let us imagine an audio development board with a microcontroller as its main pro-
cessor. The microcontroller is coupled with an audio codec3 with a mono output. A
rotary potentiometer is connected to one of the microcontroller’s ADC pins. We will
refer to this audio development board as the platform.
The goal is to generate code for the platform to play a sine wave though the mono
audio output while controlling the wave’s frequency through the potentiometer.
Let us assume we have a code generator that could add code to a pre-existing tem-
plate. The template contains configuration code for the platform and presents the
code generator with two functions assigned to hardware triggered callbacks. The
code generator can insert code into these two functions. The first function is called
audioTick. The audio output will be computed in the audioTick function. The second
function is called controlCallback. In this function the potentiometer’s value will be
captured. To simplify the analysis, let us assume audioTick and controlCallback will
be called at the same rate and audioTick in running on a thread that has a higher
preemption priority over the thread where controlCallback is running.

4.3.1 Oscillator with Frequency Control

Using the new language and its syntax, we declare and define the setup we are trying
to realize on the platform. The code is shown in Code 4.5.
The code consists of a block declaration (lines 1-5) and two stream expressions (lines
7-12 and 14-18).

3A device or computer program for encoding or decoding a digital data stream or signal.
45

Improvements with Stride Chapter 4
The declaration is of type signal and is called Frequency. Three of the signal’s prop-
erties are shown in the code. The first property, default, sets the initial value of the
signal. The second property, rate, sets the rate of the signal and is set to AudioRate.
The third property, domain, sets the domain of the signal and is set to AudioDomain.
A domain abstracts a function. On this platform, AudioDomain abstracts the audioTick
function. The audioTick function has a fixed callback rate, equal to the audio sam-
pling rate. AudioRate abstracts this rate.
1 signal Frequency {
2 default: 440.0
3 rate: AudioRate
4 domain: AudioDomain
5 }
6
7 ControlIn [1]
8 >> Map (
9 minimum: 55.0

10 maximum: 880.0
11)
12 >> Frequency;
13
14 Oscillator (
15 type: "Sine"
16 frequency: Frequency
17)
18 >> AudioOut;

Code 4.5: Stride code to control the frequency of a sine oscillator.

In the first stream expression, ControlIn[1] is connected to the main input port of a
mapping module called Map. The main output port of the module is connected to the
Frequency signal.
On this platform, ControlIn[1] is a signal block. It abstracts the first ADC channel of
the microcontroller. The rate and the domain of ControlIn[1] are ControlRate and
ControlDomain respectively. ControlDomain abstracts the controlCallback function.

46

Section 4.3 Code Generation for an Embedded Platform
The rate of the callback is abstracted by ControlRate. In this case, ControlIn[1]
represents the value of the potentiometer normalized to [0.0, 1.0]. The Map module
maps ControlIn[1] to values between the minimum and maximum values assigned
to the module’s properties.
In the second stream expression, the main output of a module called Oscillator is
connected to AudioOut. The type property of the Oscillator is set to “Sine” and
the frequency property is connected to the Frequency signal. AudioOut is a signal
which abstracts the mono audio output on the platform. The rate and the domain of
AudioOut are AudioRate and AudioDomain respectively.
The ControlIn signal block bundle and the AudioOut signal block are defined by
the platform. Their corresponding rates (ControlRate and AudioRate) and domains
(ControlDomain and AudioDomain) are also declared by the platform.
Based on the declaration and the two stream expressions in Code 4.5 we expect the
code generator to generate code like the one shown in Code 4.6.
When we run the code on the platform, we expect the CPU cycles required by the
audioTick and controlCallback function calls to look like Figure 4.5. Over four func-
tion calls the audioTick function requires 106 CPU cycles and the controlCallback

requires 4 CPU cycles.4

These results will serve as a baseline. Improvements in efficiency will be measured
and compared to this baseline as different optimization schemes are presented and
evaluated.

4CPU cycles are computed based on the analysis presented in Appendix B.
47

Improvements with Stride Chapter 4
1 AtomicFloat ControlValue = 0.;
2
3 void controlCallback (float *input , int size){
4 ControlValue = input [0];
5 }
6
7 void audioTick (float &output){
8 static float Phase , Frequency , PhaseIncrement = 0.;
9

10 Frequency = map(ControlValue , 55., 880.);
11 PhaseIncrement = 2 * M_PI * Frequency / AudioRate;
12
13 output = sin(Phase);
14 Phase += PhaseIncrement;
15
16 if (Phase >= 2 * M_PI) Phase -= 2 * M_PI;
17 }

Code 4.6: Generated code for controlling the frequency of an oscillator.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

CP
U
	C
yc
le
s

Function	Call	Count

controlCallback audioTick

Figure 4.5: CPU cycles required per function call. (Baseline)

48

Section 4.3 Code Generation for an Embedded Platform
4.3.2 Oscillator’s Frequency Control at Reduced Rate

The first attempt to reduce the CPU cycles required to compute the audioTick and
controlCallback functions overmultiple cycles would be to reduce the update rate of
the Frequency signal. We can realize this by changing the rate property of Frequency
from AudioRate to AudioRate / 4.0. This change is shown on line 3 of Code 4.7. This
change will reduce the update rate of the Frequency signal by 4 times.
With the reduced update rate of the Frequency signal, we would expect the code
generator to produce code that looks like Code 4.8. Due to the change in rate, an
accumulator is added to the generated code. The accumulator increments on every
audioTick function call. The PhaseIncrement is calculated only when the accumulator
saturates.

1 signal Frequency {
2 default: 440.0
3 rate: AudioRate / 4.0 # Rate Change
4 domain: AudioDomain
5 }
6
7 ControlIn [1]
8 >> Map (
9 minimum: 55.0

10 maximum: 880.0
11)
12 >> Frequency;
13
14 Oscillator (
15 type: "Sine"
16 frequency: Frequency
17)
18 >> AudioOut;

Code 4.7: Controlling the frequency of an oscillator at reduced rate.

When we run the code on the platform, we expect the CPU cycles required by the
49

Improvements with Stride Chapter 4
audioTick and controlCallback function calls to look like Figure 4.6. Over four func-
tion calls the audioTick function requires 90 CPU cycles and the controlCallback

requires 4 CPU cycles. With this change in rate, we have achieved a 15% reduction in
CPU cycles.
1 AtomicFloat ControlValue = 0.;
2 Accumulator compute (4./ AudioRate);
3
4 void controlCallback (float *input , int size){
5 ControlValue = input [0];
6 }
7
8 void audioTick (float &output){
9 static float Phase , Frequency , PhaseIncrement = 0.;

10
11 if (compute ()){
12 Frequency = map(ControlValue , 55., 880.);
13 PhaseIncrement = 2 * M_PI * Frequency / AudioRate;
14 }
15
16 output = sin(Phase);
17 Phase += PhaseIncrement;
18
19 if (Phase >= 2 * M_PI) Phase -= 2 * M_PI;
20 }

Code 4.8: Generated code for controlling the frequency of an oscillator at reduced rate.

In spite of the reduction in rate, the phase increment of the oscillator is still being
computed synchronously with the audio samples. Even when the frequency of the
oscillator remains constant (that is, the potentiometer has not been rotated), we are
still computing a phase increment but only at a reduced rate. An asynchronous and
reactive computation of the phase increment can further improve the performance.
Although the rate reduction improved the performance of the process, we note the
increase in the size of the memory footprint need by the program because of the
additional accumulator.

50

Section 4.3 Code Generation for an Embedded Platform

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

CP
U
	C
yc
le
s

Function	Call	Count

controlCallback audioTick

Figure 4.6: CPU cycles required per function call at reduced update rate.
4.3.3 Reactive Control of the Oscillator’s Frequency

To achieve reactive control, we need to introduce the following changes to the original
code (Code 4.5). First, the rate property of Frequency should be set to 0 to make the
signal operate in reactive mode. Second, an OnChangemodule should be introduced
in the first stream expression to force the data to flow asynchronously. The changes
are shown on lines 3 and 8 in Code 4.9.
With these changes, we expect the code generator to introduce a comparison check
between the pervious and current values read from the potentiometer. Only when the
values are different the PhaseIncrement gets evaluated. The generated code would
to look like Code 4.10 based on the changes.

51

Improvements with Stride Chapter 4
1 signal Frequency {
2 default: 440.0
3 rate: 0 # Sets Frequency to Asynchronous mode
4 domain: AudioDomain
5 }
6
7 ControlIn [1]
8 >> OnChange () # Updates Frequency when input changes
9 >> Map (

10 minimum: 55.0
11 maximum: 880.0
12)
13 >> Frequency;
14
15 Oscillator (
16 type: "Sine"
17 frequency: Frequency
18)
19 >> AudioOut;

Code 4.9: Controlling the frequency of an oscillator reactively.
1 AtomicFloat ControlValue = 0.;
2
3 void controlCallback (float *input , int size){
4 ControlValue = input [0];
5 }
6
7 void audioTick (float &output){
8 static float Phase , Frequency , PhaseIncrement = 0.;
9 static float PreviousValue = 0.0;

10
11 if (ControlValue != PreviousValue){
12 Frequency = map(ControlValue , 55., 880.);
13 PhaseIncrement = 2 * M_PI * Frequency / AudioRate;
14 PreviousValue = ControlValue;
15 }
16
17 output = sin(Phase);
18 Phase += PhaseIncrement;
19
20 if (Phase >= 2 * M_PI) Phase -= 2 * M_PI;
21 }

Code 4.10: Code generated for controlling the frequency of an oscillator reactively.

When we run the code on the platform, we expect the CPU cycles required by the
audioTick and controlCallback function calls to look like Figure 4.7, where the po-

52

Section 4.3 Code Generation for an Embedded Platform
tentiometer was rotated during the first, fifth, and seventh function calls.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

CP
U
	C
yc
le
s

Function	Call	Count

controlCallback audioTick

Figure 4.7: CPU cycles required per function call in asynchronous and reactive mode.

If the potentiometer is rotated once over four function calls, the audioTick function
would require 82 CPU cycles and the controlCallback 4 CPU cycles. That is equivalent
to a 22% reduction in CPU cycles from the baseline count.
If the potentiometer is not rotated over four function calls, the audioTick function
would require 72 CPU cycles and the controlCallback 4 CPU cycles. That is equivalent
to a 31% reduction in CPU cycles from the baseline count.
When it comes to the memory footprint of the program, this approach only adds a
single variable to the original code. Unlike the previous case, the gain in performance
outweighs the increase in the memory footprint.

53

Improvements with Stride Chapter 4
4.3.4 Audio Callback Optimization

So far, all computations have happened in the audioTick function. This function can
be further optimized by moving computations directly related to the frequency to the
controlCallback. Computing the phase increment due to a change in frequency is
one such computation.
To move the computation of the phase increment to the controlCallback, we change
the domain of Frequency from AudioDomain to ControlDomain. This is shown on line 4

of Code 4.11.
1 signal Frequency {
2 default: 440.0
3 rate: 0
4 domain: ControlDomain # Domain change
5 }
6
7 ControlIn [1]
8 >> OnChange ()
9 >> Map (

10 minimum: 55.0
11 maximum: 880.0
12)
13 >> Frequency;
14
15 Oscillator (
16 type: "Sine"
17 frequency: Frequency
18)
19 >> AudioOut;

Code 4.11: Controlling the frequency of an oscillator with optimized audio callback.

The code generator will produce Code 4.12. The only expressions left in the audioTick
function are ones responsible for computing the next audio sample.
When we run the code on the platform, we expect the CPU cycles required by the

54

Section 4.3 Code Generation for an Embedded Platform
audioTick and controlCallback function calls to look like Figure 4.8, where the po-
tentiometer was rotated during the first, fifth, and seventh function call counts.
1 AtomicFloat PhaseIncrement = 0.;
2
3 void controlCallback (float *input , int size){
4 static float Frequency , PreviousValue = 0.;
5
6 if (input [0] != PreviousValue){
7 Frequency = map(input [0], 55., 880.);
8 PhaseIncrement = 2 * M_PI * Frequency / AudioRate;
9 PreviousValue = input [0];

10 }
11 }
12
13 void audioTick (float &output){
14 static float Phase = 0.;
15
16 output = sin(Phase);
17 Phase += PhaseIncrement;
18
19 if (Phase >= 2 * M_PI) Phase -= 2 * M_PI;
20 }

Code 4.12: Generated code for controlling the frequency of an oscillator withoptimized audio callback.

If the potentiometer is rotated once over four function calls, the audioTick function
would require 68 CPU cycles and the controlCallback 15 CPU cycles. That is equiva-
lent to a 25% reduction in CPU cycles from the baseline count.
If the potentiometer is not rotated over four function calls, the audioTick function
would require 68 CPU cycles and the controlCallback 4 CPU cycles. That is equivalent
to a 35% reduction in CPU cycles from the baseline count.
Although this change did not result in tangible performance improvement over the
reactive case (subsection 4.3.1), this approach offers other benefits that are discussed
in the following section.

55

Improvements with Stride Chapter 4

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

CP
U
	C
yc
le
s

Function	Call	Count

controlCallback audioTick

Figure 4.8: CPU cycles required per function call with an optimized audioTick function.
4.4 Discussion
In the previous section we presented a few user controlled optimization schemes to
generate efficient code. With each scheme we improved the CPU cycles required to
compute two callback functions. The improvements are summarized in Table 4.1.

Scheme Subsection PotentiometerChange No ChangeOriginal 4.3.1 0% 0%Rate Change 4.3.2 15% 15%Reactive 4.3.3 22% 31%Optimized 4.3.4 25% 35%
Table 4.1: Improvement in performance with code change.

In the last scheme, the audio callback was fully optimized. This was achieved by mov-
56

Section 4.4 Discussion
ing all expressions that are not directly associated with computing an audio sample
out of the function. The excluded expressions were moved to another function where
expressions directly related to external controls are captured and evaluated.
In the optimized audio callback scheme, the audio callback function requires the least
CPU cycles. The cycle count remains relatively constant from one call to the next
(except when the phase is to be wrapped). On a platform where the audio callback
thread is assigned the highest preemption priority (ability to interrupt other threads),
quick execution of the audio callback is extremely important in order to allow the
interrupted threads to resume execution as soon as possible. This becomes even
more critical when the buffer size of the audio callback is reduced down to a few
samples or even to a single sample, where interruptions become more frequent.
Although we have demonstrated this optimization on the audio callback function, it
could be applied to every other synchronous or asynchronous callback function run-
ning on the platform. Distributing computations to various threads executing at dif-
ferent rates based on the user’s code is the primary objective of the language.
In these examples we worked with a multi-threaded system. However, we did not
discuss a concurrency model between the threads. We assumed the variable shared
between the control and audio threads was assigned an atomic type supported by the
processor of the platform. The concurrency model built into Stride will be presented
and discussed in detail in chapter 6.

57

Improvements with Stride Chapter 4
4.5 Summary
In this chapter we introduced a new high-level language and its syntax. We used this
language to realize a simple sine oscillator with frequency control on an audio devel-
opment platform. Using some of the features of the language we controlled its code
generator. We presented various schemes to generate efficient code and tracked the
resulting improvements in efficiency.

58

Chapter 5

Signals, Rates, Domains, and Modules
In the previous chapter, we controlled a code generator through the rate and domain
properties of a signal block to generate efficient code.
In this chapter, we will present how rate and domain information propagate in Stride
code. We will demonstrate this by creating an oscillator module with frequency con-
trol in Stride.
However, before we can define and declare a module block, we first need to fully
define the behavior of a signal block based on its rate and domain assignments.

59

Signals, Rates, Domains, and Modules Chapter 5
5.1 Behavior of a Signal
The signal block (Code 4.2 is a core building block of Stride and is characterized by its
versatile behavior. Simply put, a signal block represents an allocatedmemory address
on a target platform. The allocated memory is initialized with the value assigned to
the default property of the signal block.
In the following two subsections we will cover the rate and domain properties of the
signal block and how they affect the allocated memory.

5.1.1 Rates
The behavior of a signal block changes depending on the value assigned to its rate
property.
When the rate of a signal block is assigned a positive integer or real value, the signal
block operates in sample-and-hold mode. That is, the signal block samples any block
connected to its input at the specified rate, holds the sampled value in the allocated
memory it represents, and issues a token with the sampled value to any block con-
nected to its output. In this mode, the input of the signal block can accept a single
connection. That is, a signal can sample-and-hold a single source.
When the rate of a signal block is set to zero, the signal block operates in reactive
mode. That is, when a token arrives at its input port, the signal block updates the
allocated memory it represents and forwards the token to any block connected to its
output port. In this mode, the input of the signal block can accept multiple connec-

60

Section 5.1 Behavior of a Signal
tions and will hold the value carried by the most recent token to arrive at its input
port.
The two modes of operation of a signal block allow the user to either push data (reac-
tive mode) or pull data (sample-and-hold mode).
In Code 5.1, three signal blocks with various rates are connected in a stream expres-
sion. Signal A is connected to Random, a random number generator module. Signal
A samples the generator module at 2Hz. Signal B samples signal A at 1Hz and sig-
nal C samples signal B at 3Hz. A snapshot of possible values of signals A, B, and C

are plotted in Figure 5.1. Since signals A, B, and C are assigned to the same domain
(ClockedDomain), they are synchronous signals and are synchronized to the domain’s
clock. Domains and clocks are covered in the following subsection.
1 signal A { rate: 2 domain: ClockedDomain }
2 signal B { rate: 1 domain: ClockedDomain }
3 signal C { rate: 3 domain: ClockedDomain }
4
5 Random () >> A >> B >> C;

Code 5.1: Three signal blocks with various rates operating in sample-and-hold mode.

By changing the rate of C to 0, as shown in Code 5.2, its mode of operation changes
from sample-and-hold to reactive. Since C is operating in reactive mode, its value will
be updated when the value of B changes, as shown in Figure 5.2. That is, C will be
updated at the rate of B.
1 signal A { rate: 2 domain: ClockedDomain }
2 signal B { rate: 1 domain: ClockedDomain }
3 signal C { rate: 0 domain: ClockedDomain }
4
5 Random () >> A >> B >> C;

Code 5.2: Signal block C operating in reactive mode.

61

Signals, Rates, Domains, and Modules Chapter 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0Va
lu
e

Time	(sec)

A B C

Figure 5.1: The values of three signal blocks with various rates operating in sam-ple-and-hold mode.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0Va
lu
e

Time	(sec)

A B C

Figure 5.2: The values of three signal blocks, where signal block C is operating inreactive mode.
62

Section 5.1 Behavior of a Signal
5.1.2 Domains

Domains abstract functions, methods, sub-routines, procedures, etc. on a target plat-
form.
There are no restrictions imposed on the types of functions a domain can abstract.
Domains can abstract functions that are called only once during execution, ones as-
signed to a thread, or ones attached to a system callback or an interrupt routine.
The domain assigned to the domain property of a signal block specifies the function
where the signal gets evaluated.
Just like signal blocks, domains have a rate assigned to them. A domain whose rate
is set to a positive integer1 is called a clocked domain. A clocked domain derives its
clock from a process clock or a hardware clock available on a platform. An example of
a clocked domain is a domain abstracting an audio callback function, where the do-
main’s clock is the audio sampling rate. A domain whose rate is set to zero is called an
immediate domain. An immediate domain is not tied to any clock. An example of an
immediate domain is a domain abstracting an initialization function. An initialization
function usually executes once at the beginning of a program to reserve and configure
system resources.
A signal block assigned to a clocked domain synchronizes itself to the domain’s clock.
The rate of a signal block assigned to an immediate domain serves only as a reference.
An example would be a signal block assigned to a domain abstracting an initialization
function, where the signal block is sampling a sine oscillator module to fill a lookup

1Unlike signal block, the rate of a domain cannot be set to a positive real number.
63

Signals, Rates, Domains, and Modules Chapter 5
table.
In Code 5.3, signal A is assigned to a domain called SetupDomain. The rate of signal A
is set to SetupRate. SetupRate is the rate of SetupDomain. Since signal A has the same
rate as the domain it is assigned to, it gets evaluated once every time the function the
domain abstracts is called.

1 signal A {
2 default: 0
3 rate: SetupRate
4 domain: SetupDomain
5 }
6
7 3 + 4 >> A;

Code 5.3: Signal block A assigned to SetupDomain.

If we were to deploy the Stride code on a target platform by first translating it into C
code, Code 5.3 would translate to Code 5.4.
If a target platform ran a python interpreter, Code 5.3 would translate to Code 5.5.
The mapping of domains to functions is relatively straight forward. However, com-
plexities arise when domains are mapped to functions assigned to threads running
concurrently and signals assigned to these domains are connected in stream expres-
sions. The need for synchronization between these domains becomes a necessity and
has to be accounted for when generating code to preserve the integrity of the signals.
Stride has a flexible concurrencymodel built into it. The concurrencymodel is covered
in detail in chapter 6.
For the remainder of this chapter, for the sake of simplicity, we will assume the pro-
cessor of the target platform supports atomic operations on certain data types and

64

Section 5.1 Behavior of a Signal
all variables shared between threads have these data types.

1 // Initialization
2 int A = 0;
3
4 // Definitions
5 void setup (void) {
6 A = 3 + 4;
7 }
8
9 // Execution

10 int main (void) {
11 setup();
12 return 0;
13 }

Code 5.4: Generated C code from Code 5.3.

1 # Initialization
2 A = 0
3
4 # Definitions
5 def setup ():
6 global A
7 A = 3 + 4
8
9 # Execution

10 setup ()

Code 5.5: Generated Python code from Code 5.3.

65

Signals, Rates, Domains, and Modules Chapter 5
5.2 A Sine Oscillator Module in Stride
Now that we have defined the behavior of a signal block based on its rate and domain
assignments, we will demonstrate its behavior by designing a sine oscillator module
with frequency control in Stride.

5.2.1 Sine Oscillator Stream Expressions

In section 4.1 we presented a basic sine oscillator in the C programming language.
To compute an output sample of the oscillator four expressions required evaluation.
Code 5.6 shows these four expressions in Stride.
1 # Compute the phase increment relative to the frequency and sampling
rate

2 Frequency * 6.28318530718 / SamplingRate >> PhaseInc;
3
4 # Compute the sin of the phase as the output
5 Phase >> Sin () >> Output;
6
7 # Increment the phase
8 Phase + PhaseInc >> Phase;
9

10 # Wrap the phase if it is greater than two Pi
11 [Phase , 6.28318530718] >> GreaterOrEqual () >> WrapPhase ();

Code 5.6: Sine oscillator stream expressions in Stride.

If the frequency of the oscillator remains constant after the first expression has been
evaluated, only the last three expressions need to be repeatedly evaluated to compute
output samples. While the last three expressions need to be evaluated synchronously
at the rate of the output, the first expression can be evaluated either synchronously
or asynchronously and at any rate with respect to the last three expressions. The

66

Section 5.2 A Sine Oscillator Module in Stride
choice depends on the requirements set by the user. If the requirement is to change
the frequency synchronously with the output, then all four expressions need to be
synchronously evaluated regardless of the relative rate between the frequency change
and the output. If the requirement is to change the frequency asynchronously with
the output, then the first expression can be evaluated asynchronously at any desired
rate.
If code were to be generated for these four expressions to meet either of these two
requirements, a single callback function or to two callback functions are required on
a target platform. A single function is required for the synchronous case, while two
functions are required for the asynchronous case.
Through the domain assignments of the signal blocks in these four expressions, the
user could control the mapping of these expressions to one or two callback functions.
Through the rate assignments of the signal blocks, the user could control the relative
rate of evaluation of these expressions.
The four expressions in Code 5.6 are composed of the following block types:

Constant blocks: SamplingRate

Signal blocks: Frequency, PhaseInc, Phase, Output
Module blocks: Sin, GreaterOrEqual
Reaction blocks2: WrapPhase

The domain assignments of the four signal blocks Frequency, PhaseInc, Phase, and
Output control themapping of these four expressions to callback functions on a target
system.

2Reaction blocks will be covered in chapter 7.
67

Signals, Rates, Domains, and Modules Chapter 5
Synchronous Frequency Update

Let us consider the case where the frequency of the oscillator is synchronously mod-
ulated at the same rate as its output. Code 5.7 is the Stride code to realize this case.
All signal blocks in this example are assigned to the same domain (OscillatorOutput).
All signal blocks operating in sample-and-hold mode (non-zero rates) are assigned the
same rate value (OscillatorOutputRate). Based on these assignments, the Output

and Frequency signals are synchronized and evaluate at the same rate.
The Frequency signal represents a sine wave centered at 220Hz and spans +/- 40Hz
at a rate of 1Hz (lines 32-24). The Frequency signal is driving the modulation of the
oscillator expressed by the four stream expressions (lines 36-39).
Code 5.8 is sample code generated for Code 5.7 in the C language to run on some tar-
get platform3. On this target platform, the domain OscillatorOutput is declared and
mapped to the OscillatorOutput() function. This function is treated as a callback
and is called at 48,000Hz. This rate is represented by OscillatorOutputRate.
Based on these domain and rate assignments, the code generator placed the C ex-
pressions corresponding to the five stream expressions (lines 32-39 of Code 5.7) in
the OscillatorOutput() function (lines 12-16 of Code 5.8).

3The C code is for demonstration only and is not generated by the Stride code generator.
68

Section 5.2 A Sine Oscillator Module in Stride
1 # The sampling rate of the oscillator output
2 constant SamplingRate {
3 value: 48000
4 }
5
6 # All signals are set to OscillatorOutput
7 signal Frequency {
8 default: 440.0
9 rate: OscillatorOutputRate

10 domain: OscillatorOutput
11 }
12 signal PhaseInc {
13 default: 0.0
14 rate: OscillatorOutputRate
15 domain: OscillatorOutput
16 }
17 signal Phase {
18 default: 0.0
19 rate: 0
20 domain: OscillatorOutput
21 }
22 signal Output {
23 default: 0.0
24 rate: OscillatorOutputRate
25 domain: OscillatorOutput
26 }
27 reaction WrapPhase {
28 streams: Phase - 6.28318530718 >> Phase;
29 }
30
31 # All expressions are evaluated in the OscillatorOutput domain
32 SineOsc (frequency: 1.0)
33 >> Level (gain: 40.0 offset: 220.0)
34 >> Frequency;
35
36 Frequency * 6.28318530718 / SamplingRate >> PhaseInc;
37 Phase >> Sin () >> Output;
38 Phase + PhaseInc >> Phase;
39 [Phase , 6.28318530718] >> GreaterOrEqual () >> WrapPhase ();

Code 5.7: The oscillator output and its frequency update synchronously. (Stride)

1 INTEGER_TYPE SamplingRate = 48000;
2 REAL_TYPE Frequency = 440.0;
3 ATOMIC_REAL_TYPE PhaseInc = 0.0;
4 REAL_TYPE Phase = 0.0;
5 REAL_TYPE Output = 0.0;
6

69

Signals, Rates, Domains, and Modules Chapter 5
7 void WrapPhase (void) {
8 Phase = Phase - 6.28318530718;
9 }

10
11 void OscillatorOutputDomain (REAL_TYPE &Output) {
12 Frequency = Level(SineOsc(1.0, SamplingRate), 40.0, 220.0);
13 PhaseInc = Frequency * 6.28318530718 / SamplingRate;
14 Output = Sin(Phase);
15 Phase = Phase + PhaseInc;
16 if (Phase >= 6.28318530718) WrapPhase ();
17 }

Code 5.8: The oscillator output and its frequency update synchronously. (C)

Asynchronous Frequency Update

Let us consider the case where the frequency of the oscillator is asynchronously mod-
ulated at a rate different than its output. Code 5.9 is the Stride code to realize this
case.
The Frequency and PhaseInc signal blocks are assigned to the FrequencyUpdate do-
main and their rate is set to FrequencyUpdateRate. The Phase and Output signal
blocks are assigned to the OscillatorOutput domain. Phase is set to run in reactive
mode (zero rate) while Output’s rate is set to OscillatorOutputRate.
Code 5.10 is sample code generated for Code 5.9 in the C language to run on some
target platform4. On this target platform, the domain FrequencyUpdate is declared
and mapped to the FrequencyUpdate() function. This function is treated as a call-
back and is called at 1,000Hz. This rate is represented by FrequencyUpdateRate. On
this target platform, the domain OscillatorOutput is declared and mapped to the
OscillatorOutput() function. This function is treated as a callback and is called at

4The C code is for demonstration only and is not generated by the Stride code generator.
70

Section 5.2 A Sine Oscillator Module in Stride
48,000Hz. This rate is represented by OscillatorOutputRate.
1 # The sampling rate of the oscillator output
2 constant SamplingRate {
3 value: 48000
4 }
5
6 # Frequency and PhaseInc are set to FrequencyUpdate
7 signal Frequency {
8 default: 440.0
9 rate: FrequencyUpdateRate

10 domain: FrequencyUpdate
11 }
12 signal PhaseInc {
13 default: 0.0
14 rate: FrequencyUpdateRate
15 domain: FrequencyUpdate
16 }
17
18 # Phase and Output are set to OscillatorOutput
19 signal Phase {
20 default: 0.0
21 rate: 0
22 domain: OscillatorOutput
23 }
24 signal Output {
25 default: 0.0
26 rate: OscillatorOutputRate
27 domain: OscillatorOutput
28 }
29 reaction WrapPhase {
30 streams: Phase - 6.28318530718 >> Phase;
31 }
32
33 # The following expressions are evaluated in the FrequencyUpdate

domain
34 SineOsc (frequency: 1.0)
35 >> Level (gain: 40.0 offset: 220.0)
36 >> Frequency;
37 Frequency * 6.28318530718 / SamplingRate >> PhaseInc;
38
39 # The following expressions are evaluated in the OscillatorOutput

domain
40 Phase >> Sin () >> Output;
41 Phase + PhaseInc >> Phase;
42 [Phase , 6.28318530718] >> GreaterOrEqual () >> WrapPhase ();

Code 5.9: The oscillator output and fits requency update asynchronously. (Stride)

71

Signals, Rates, Domains, and Modules Chapter 5
Based on the domain and rate assignments, the code generator placed the C expres-
sions corresponding to the first two stream expressions (lines 34-37 of Code 5.9) in
the FrequencyUpdate() function (lines 12-13 of Code 5.10) and placed the C expres-
sions corresponding to the last three stream expressions (lines 40-42 of Code 5.9) in
the OscillatorOutput() function (lines 17-19 of Code 5.10).
1 INTEGER_TYPE SamplingRate = 48000;
2 REAL_TYPE Frequency = 440.0;
3 ATOMIC_REAL_TYPE PhaseInc = 0.0;
4 REAL_TYPE Phase = 0.0;
5 REAL_TYPE Output = 0.0;
6
7 void WrapPhase (void) {
8 Phase = Phase - 6.28318530718;
9 }

10
11 void FrequencyUpdate (void) {
12 Frequency = Level(SineOsc(1.0, SamplingRate), 40.0, 220.0);
13 PhaseInc = Frequency * 6.28318530718 / SamplingRate;
14 }
15
16 void OscillatorOutput (REAL_TYPE &Output) {
17 Output = Sin(Phase);
18 Phase = Phase + PhaseInc;
19 if (Phase >= 6.28318530718) WrapPhase ();
20 }

Code 5.10: The oscillator output and fits requency update asynchronously. (C)

5.2.2 Sine Oscillator Module

In Stride, a module block encapsulates block declarations and stream expressions to
perform a particular function. The internal blocks of a module connect with external
blocks through ports. A module can have one or many ports.
Stride defines two port types: main port and property port. Both types have a di-

72

Section 5.2 A Sine Oscillator Module in Stride
rection. They can either be an input port or an output port. A module must have
at least one main port. A module can only have a single main input port and a single
main output port. A module can have a single property port, multiple property ports,
or none. Connections with the main ports are established using the stream opera-
tor (>>) in stream expressions. Connections with property ports are established by
assignment when a module is added to a stream expression.
Ports in Stride provide an interface for blocks declared inside amodule to access prop-
erty assignment information of blocks connected to the module’s ports. This interface
enables the configuration of the properties of internal blocks with respect to external
ones. This interface also enables querying the size of block bundles connected to the
module’s ports.
To create a sine oscillator module with frequency control, the stream expressions and
corresponding block declarations in Code 5.8 will have to be encapsulated inside a
module block. The properties of the encapsulated signal blocks will have to be config-
ured based on the properties of the blocks that get connected to the module’s ports
when the module is added to a stream expression.
Code 5.11 is the Stride module block declaration for the sine oscillator with frequency
control. The module block has five properties: ports, blocks, constraints, streams,
and meta.
The ports property of a module block lists the ports of a module. Four port types
are defined in Stride that can be added to the list: mainInputPort, mainOutputPort,
propertyInputPort, and propertyOutputPort. The names of these ports represent
their type and direction. Each port type has a set of assignable properties.

73

Signals, Rates, Domains, and Modules Chapter 5
1 module SineOsc {
2 ports: [
3 mainOutputPort OutputPort {
4 block: Output
5 }
6 propertyInputPort FrequencyPort {
7 name: "frequency"
8 block: Frequency
9 default: 440.0

10 meta: "The frequency of the oscillator in Hz."
11 }
12 propertyInputPort ResetPort {
13 name: "reset"
14 block: Reset
15 default: none
16 meta: "Resets the Phase of the oscillator. Accepts

a switch or a trigger."
17 }
18]
19 blocks: [
20 signal Output {
21 default: 0.0
22 type: OutputPort.type
23 rate: OutputPort.rate
24 domain: OutputPort.domain
25 }
26 signal Frequency {
27 default: FrequencyPort.default
28 type: FrequencyPort.type
29 rate: FrequencyPort.rate
30 domain: FrequencyPort.domain
31 }
32 trigger Reset {
33 mode: "Rising"
34 domain: ResetPort.domain
35 }
36 signal Phase {
37 default: 0.0
38 type: OutputPort.type
39 rate: 0
40 domain: OutputPort.domain
41 reset: Reset
42 }
43 signal PhaseInc {
44 default: FrequencyPort.default * 6.28318530718 /

OutputPort.rate
45 type: OutputPort.type
46 rate: FrequencyPort.rate
47 domain: FrequencyPort.domain
48 }

74

Section 5.2 A Sine Oscillator Module in Stride
49 reaction WrapPhase {
50 streams: Phase - 6.28318530718 >> Phase;
51 }
52]
53 constraints: [
54 [OutputPort.rate , 0] >> LessOrEqual () >> Error (message:

"The rate of the signal block connected to the main output
port of the SineOsc module cannot be less than or equal to
zero.");

55]
56 streams: [
57 Frequency * 6.28318530718 / OutputPort.rate >> PhaseInc;
58 Phase >> Sin () >> Output;
59 Phase + PhaseInc >> Phase;
60 [Phase , 6.28318530718] >> GreaterOrEqual () >> WrapPhase ()

;
61]
62 meta: "Sine oscillator with frequency control. Bipolar output

with range [-1. , 1.]."
63 }

Code 5.11: Sine oscillator module with frequency control in Stride. (SineOsc)

For the sine oscillator with frequency control, we need at least two ports5. We need
one to access the output of the oscillator and another to control its frequency. Func-
tionally, the port type of the port to access the output of the oscillator should be
mainOutputPort, in order to connect the module to other blocks using the stream
operator in a stream expression. Setting the frequency of the oscillator through a
property port rather than a main port is an appropriate choice, since the frequency
is a property of the oscillator. So, the port type of the frequency port should be
propertyInputPort.
During the module’s declaration, the two port type blocks are each assigned a unique
name. The mainOutputPort port is called OutputPort and the propertyInputPort

port is called FrequencyPort. The name assigned to a port is used to access the prop-
5To simplify the presentation, the ResetPort port and the Reset trigger in Code 5.11 will not becovered in this section but in a later chapter.

75

Signals, Rates, Domains, and Modules Chapter 5
erties of a block that gets connected to the port of the module in a stream expression.
A property is accessed by using the name of the port with a "dot" operator followed
by the name of the property. The syntax is PortName.propertyName.
At declaration, each port is also assigned an internal block. The internal blocks of a
module are declared under the blocks property. The main port OutputPort, is as-
signed the Output signal block and the property port FrequencyPort, is assigned the
Frequency signal block. Two external blocks connected to the ports of the module
in a stream expression will be directly connected to these two signal blocks inside
the module. The property port FrequencyPort is also assigned a default value. If a
block is not connected to the property port of the module when the module is added
in a stream expression, this constant default value is connected to the internal sig-
nal block assigned to the port. The property port FrequencyPort also has a property
called name. The constant string assigned to this property is the name of the property
port as it appears when the module is added in a stream expression and an assign-
ment is made to the port. In this case the property port is named frequency.
Along with the Output and Frequency signal blocks, three other blocks are declared in
the blocks property of the module. Phase and PhaseInc are declared as signal blocks,
while WrapPhase is declared as a reaction block. The scope of all the block declarations
is local to the module.
So far, in previous code examples, signal blocks were assigned domains and rates that
were pre-defined on a target platform. For a module to be reusable and compatible
with any target platform, the domains and rates of blocks declared inside a module
need to be abstracted and derived from its ports.

76

Section 5.2 A Sine Oscillator Module in Stride
Based on the two examples of synchronous and asynchronous evaluation of signal
blocks in the previous subsections, the domain and rate assignments of the internal
signal blocks Output and Phase of the module have to be derived from its main output
port (OutputPort), and assigned the values OutputPort.domain and OutputPort.rate
respectively. These assignments place the evaluation of the stream expressions re-
lated to the Output and Phase signal blocks in the same domain as the signal block
the module’s output port gets connected to.
Based on the same examples, the domain and rate assignments of the signal blocks
Frequency and PhaseInc are derived from the property input port (FrequencyPort).
The domains are assigned the value FrequencyPort.domain and the rates are set to
FrequencyPort.rate. If the signal block connected to the frequency property port of
the module happens to be in the same domain as the signal block connected to its
output port, all four expressions are evaluated synchronously in the domain of the
signal block connected to the output. If the signal block connected to the frequency
property port of the module happens to be in a domain different from the domain of
the signal block connected to its output port, then the stream expression related to
the signal blocks Frequency and PhaseInc is evaluated in this other domain.
At declaration, constraints can be added to a module block through its constraints
property. The constraints are a set of conditions imposed on blocks and their property
assignments. When the conditions of a constraint are not satisfied, a compile-time
error is generated. For the sine oscillator module, the external block connected to the
output of themodule cannot have a rate equal to zero, since OutputPort.rate is used
as a divisor in the stream expression evaluating PhaseInc.

77

Signals, Rates, Domains, and Modules Chapter 5
The streams property of themodule accepts a list of stream expressions. This is where
stream expressions get encapsulated in a module.
The meta property accepts a sting constant. The string should describe the specific
function a module performs. The description is incorporated into the auto-generated
documentation of a module.

5.2.3 Code Generation for the Sine Oscillator Module

Code 5.12 is a C++ template class generated based on the sine oscillator module with
frequency control (Code 5.11).
The domains defined by themain and property ports in themodule are translated into
methods of the class. The domains OutputPort.domain and FrequencyPort.domain

are mapped to the process_OutputDomain and process_FrequencyPortDomainmeth-
ods respectively. The default values of signal blocks are computed in initialization
functions designated with the init_ prefix, while OutputPort_rate constant is set
through a class constructor.
Information between domains is exchanged over bridge signals that are instantiated
outside the class definition. The concurrency requirement between these two do-
mains will dictate how these bridge signals are instantiated and managed. Bridge
signals and the concurrency are discussed in detail in chapter 6.

78

Section 5.2 A Sine Oscillator Module in Stride
1 template <class OutputDataType , class FrequencyDataType >
2 class SineOsc {
3 public:
4 SineOsc(float outputRate) : OutputPort_Rate(outputRate){
5 }
6
7 void process_OutputDomain(OutputDataType *Output , OutputDataType

*Phase , OutputDataType PhaseInc) {
8 Sin_00.process_OutputDomain (*Phase , &Sin_00_Output);
9 *Output = Sin_00_Output;

10 *Phase = *Phase + PhaseInc;
11 OutputDataType BundleConnector_00 [2];
12 BundleConnector_00 [0] = *Phase;
13 BundleConnector_00 [1] = 6.28318530718;
14 GreaterOrEqual_00.process_OutputDomain(BundleConnector_00 , &

GreaterOrEqual_00_Output);
15 if (GreaterOrEqual_00_Output){
16 reaction_WrapPhase(Phase);
17 }
18 }
19
20 void process_FrequencyPortDomain(FrequencyDataType Frequency ,

OutputDataType *PhaseInc) {
21 *PhaseInc = Frequency * 6.28318530718 / OutputPort_Rate;
22 }
23
24 void init_Frequency(FrequencyDataType *Frequency) {
25 *Frequency = FrequencyDataType (440.0);
26 }
27
28 void init_Phase(OutputDataType *Phase) {
29 *Phase = OutputDataType (0.0);
30 }
31
32 void init_PhaseInc(OutputDataType *PhaseInc) {
33 FrequencyDataType Frequency;
34 init_Frequency (& Frequency);
35 *PhaseInc = OutputDataType(Frequency) * 6.28318530718 /

OutputPort_Rate;
36 }
37
38 void reaction_WrapPhase (OutputDataType *Phase) {
39 *Phase = *Phase - 6.28318530718;
40 }
41
42 private:
43 using GreaterOrEqual_00_Type = GreaterOrEqual <OutputDataType ,bool

>;
44 GreaterOrEqual_00_Type GreaterOrEqual_00;
45 bool GreaterOrEqual_00_Output;

79

Signals, Rates, Domains, and Modules Chapter 5
46 using Sin_00_Type = Sin <OutputDataType >;
47 Sin_00_Type Sin_00;
48 OutputDataType Sin_00_Output;
49
50 float OutputPort_Rate;
51 };

Code 5.12: C++ class generated for the SineOsc module in Code 5.11.

5.3 Using Modules in Stride
In the following subsections we will use the sine oscillator module (SineOsc) declared
in the previous section to perform frequency modulation. We will consider two cases,
where we will update the frequency of the sine oscillator synchronously and asyn-
chronously with its output.
We will use a second module called Level along with the SineOsc module. Level

is designed to apply a gain followed by an offset to a signal connected to its input.
The Stride code for Level and the C++ template generated for it and shown in the
following subsection.

5.3.1 Level Module

Code 5.13 is the code for the Level module in Stride. The module samples its main
input port at the rate of the output port. It applies a gain to the incoming signal
followed by an offset. The processed signal is presented at the output port. The
processing happens in the domain of the output port.

80

Section 5.3 Using Modules in Stride
Code 5.14 is the C++ template class generated for the Levelmodule.

1 module Level {
2 ports: [
3 mainInputPort InputPort {
4 block: Input
5 }
6 mainOutputPort OutputPort {
7 block: Output
8 }
9 propertyInputPort GainProperty {

10 name: "gain"
11 block: Gain
12 default: 1.0
13 meta: "Amplifies or attenuates the signal."
14 }
15 propertyInputPort OffsetProperty {
16 name: "offset"
17 block: Offset
18 default: 0.0
19 meta: "Offsets the signal after applying the gain."
20 }
21]
22 blocks: [
23 signal Input {
24 default: 0.0
25 type: OutputPort.type
26 rate: OutputPort.rate
27 domain: OutputPort.domain
28 }
29 signal Output {
30 default: 0.0
31 type: OutputPort.type
32 rate: OutputPort.rate
33 domain: OutputPort.domain
34 }
35 signal Gain {
36 default: GainPort.default
37 type: GainPort.type
38 rate: GainPort.rate
39 domain: GainPort.domain
40 }
41 signal Offset {
42 default: OffsetPort.default
43 type: OffsetPort.type
44 rate: OffsetPort.rate
45 domain: OffsetPort.domain
46 }
47]

81

Signals, Rates, Domains, and Modules Chapter 5
48 streams: Input * Gain + Offset >> Output;
49 meta: "Scales the input signal and applies an offset.
50 Formula: output = input * gain + offset"
51 }

Code 5.13: Level module in Stride.

1 template <class OutputDataType , class GainDataType , class
OffsetDataType >

2 class Level {
3 public:
4 Level() {
5 }
6
7 void process_OutputDomain(OutputDataType Input , OutputDataType *

Output , GainDataType Gain , OffsetDataType Offset) {
8 *Output = ((Input * Gain) + Offset);
9 }

10
11 void process_GainPropertyDomain(GainDataType Gain , GainDataType *

Gain_) {
12 *Gain_ = Gain;
13 }
14
15 void process_OffsetPropertyDomain(OffsetDataType Offset ,

OffsetDataType *Offset_) {
16 *Offset_ = Offset;
17 }
18
19 void init_Gain(GainDataType *Gain) {
20 *Gain = OutputDataType (1.0);
21 }
22
23 void init_Offset(OffsetDataType *Offset) {
24 *Offset = OutputDataType (0.0);
25 }
26
27 private:
28 };

Code 5.14: C++ class generated for the Level module in Code 5.13.

82

Section 5.3 Using Modules in Stride
5.3.2 Synchronous Frequency Modulation

Frequency modulation is achieved with two SineOsc modules and a Level module
connected in two stream expressions. The Stride code for frequency modulation is
shown in Code 5.15.
In the first stream expression, the frequency of the first SineOsc module instance is
set to 1.0Hz. The module generates a bipolar signal in the range [-1.0, 1.0]. The output
of the SineOsc module instance is connected to the input of the Level module. The
gain and offset properties of the module are set to 40.0 and 220.0 respectively. The
output of the Levelmodule is connected to a signal called Modulation. The values of
Modulation represent a sine wave oscillating at 1Hz, centered around 220.0Hz with a
span of 80.0Hz.

1 signal Modulation {
2 default: 0.0
3 rate: AudioRate
4 domain: AudioDomain
5 }
6
7 signal Output {
8 default: 0.0
9 rate: AudioRate

10 domain: AudioDomain
11 }
12
13 SineOsc (frequency: 1.0)
14 >> Level (gain: 40.0 offset: 220.0)
15 >> Modulation;
16
17 SineOsc (frequency: Modulation)
18 >> Output;

Code 5.15: Synchronous frequency modulation using SineOsc and Level modules.

83

Signals, Rates, Domains, and Modules Chapter 5
The Modulation signal’s rate and domain will first propagate into the Level module
and consequently into the SineOscmodule instance. Themain processes inside these
modules will be evaluated in the same domain as the Modulation signal’s domain.
Since the property ports of both modules are set to constant values, computations
related to these ports will happen in a domain designated for evaluating constant
expressions on the target platform.
In the second expression, the frequency of the second SineOsc module instance is
connected to the Modulation signal. The output of the module is connected to a
signal called Output. Based on these connections, the SineOsc module instance will
be evaluated in the domains the Modulation and the Output signals are assigned to.
In Code 5.15, both the Modulation and Output signals are assigned to AudioDomain

and run at the domain’s rate, AudioRate. This makes the two signals synchronous to
each other. Thus, the result is synchronous frequency modulation.
Based on the two signal declarations and constant value assignments, all expressions
in the SineOsc and Level modules will be evaluated either in the AudioDomain or in
the ConstantDomain.
The domain AudioDomainmaps to a function called AudioTick(). This function repre-
sents the audio callback function on the target platform. The domain ConstantDomain
is mapped to a function called Constants(). This function is called once at the begin-
ning of the main() function of the target platform at the start of the program.
During code generationmultiple bridge signals are created to connect the input(s) and
output(s) of the methods related to the instantiated SineOsc and Level classes.

84

Section 5.3 Using Modules in Stride
The mapping of domains, the instantiation of modules, and the connections estab-
lished through bridge signals are shown in Code 5.16.
The SineOsc modules are instantiated with a sampling rate of 48,000Hz, since this is
the value of AudioRate on the target platform.
The generated code in its entirety can be found in Appendix C.
1 float Modulation_AudioTick = 0.0;
2 float Output_AudioTick = 0.0;
3
4 using SineOsc_00_Type = SineOsc <float ,float >;
5 SineOsc_00_Type SineOsc_00 {48000};
6 float SineOsc_00_Output_AudioTick;
7 float SineOsc_00_Phase_AudioTick;
8 float SineOsc_00_PhaseInc_Constant;
9

10 using Level_00_Type = Level <float >;
11 Level_00_Type Level_00;
12 float Level_00_Gain_Constant;
13 float Level_00_Offset_Constant;
14
15 using SineOsc_01_Type = SineOsc <float ,float >;
16 SineOsc_01_Type SineOsc_01 {48000};
17 float SineOsc_01_Phase_AudioTick;
18 float SineOsc_01_PhaseInc_AudioTick;
19
20 void AudioTick (float &ProcessOutput) {
21 SineOsc_00.process_OutputDomain (& SineOsc_00_Output_AudioTick , &

SineOsc_00_Phase_AudioTick , SineOsc_00_PhaseInc_Constant);
22 Level_00.process_OutputDomain(SineOsc_00_Output_AudioTick , &

Modulation_AudioTick , Level_00_Gain_Constant ,
Level_00_Offset_Constant);

23 SineOsc_01.process_FrequencyPortDomain(Modulation_AudioTick , &
SineOsc_01_PhaseInc_AudioTick);

24 SineOsc_01.process_OutputDomain (& Output_AudioTick , &
SineOsc_01_Phase_AudioTick , SineOsc_01_PhaseInc_AudioTick);

25 ProcessOutput = Output_AudioTick;
26 }
27
28 void Constants () {
29 SineOsc_00.process_FrequencyPortDomain (1.0, &

SineOsc_00_PhaseInc_Constant);
30 Level_00.process_GainPropertyDomain (40.0 , &Level_00_Gain_Constant

);

85

Signals, Rates, Domains, and Modules Chapter 5
31 Level_00.process_OffsetPropertyDomain (220.0 , &

Level_00_Offset_Constant);
32 }
33
34 void Initialize () {
35 SineOsc_00.init_Phase (& SineOsc_00_Phase_AudioTick);
36 SineOsc_01.init_Phase (& SineOsc_01_Phase_AudioTick);
37 SineOsc_01.init_PhaseInc (& SineOsc_01_PhaseInc_AudioTick);
38 }

Code 5.16: C++ code generated for synchronous frequency modulation.

5.3.3 Asynchronous Frequency Modulation

By changing the domain assignment of the Modulation signal and setting it to a do-
main different than AudioDomain, Modulation can be evaluated asynchronously to the
Output signal.
In Code 5.17, the domain of Modulation is assigned to ControlDomain and its rate
is set to ControlRate. The ControlDomain domain is mapped to a function called
ControlTick() on the target platform. ControlTick() is periodically called at 1,000Hz
(This value is represented by ControlRate).
The mapping of domains, the instantiation of modules, and the connections estab-
lished through bridge signals are shown in Code 5.18.
With this domain assignment and rate change, the first SineOsc module instance is
now instantiated with a sampling rate of 1,000Hz, the rate of ControlDomain.
The generated code in its entirety can be found in Appendix C.

86

Section 5.3 Using Modules in Stride
1 signal Modulation {
2 default: 0.0
3 rate: ControlRate
4 domain: ControlDomain
5 }
6
7 signal Output {
8 default: 0.0
9 rate: AudioRate

10 domain: AudioDomain
11 }
12
13 SineOsc (frequency: 1.0)
14 >> Level (gain: 40.0 offset: 220.0)
15 >> Modulation;
16
17 SineOsc (frequency: Modulation)
18 >> Output;

Code 5.17: Asynchronous frequency modulation using SineOsc and Level modules.

1 float Modulation_AudioTick = 0.0;
2 float Output_AudioTick = 0.0;
3
4 using SineOsc_00_Type = SineOsc <float , float >;
5 SineOsc_00_Type SineOsc_00 {1000};
6 float SineOsc_00_Output_ControlTick;
7 float SineOsc_00_Phase_ControlTick;
8 float SineOsc_00_PhaseInc_Constant;
9

10 using Level_00_Type = Level <float , float , float >;
11 Level_00_Type Level_00;
12 float Level_00_Gain_Constant;
13 float Level_00_Offset_Constant;
14
15 using SineOsc_01_Type = SineOsc <float , float >;
16 SineOsc_01_Type SineOsc_01 {48000};
17 float SineOsc_01_Phase_AudioTick;
18 float SineOsc_01_PhaseInc_AudioTick_ControlTick;
19
20 void AudioTick (float &ProcessOutput) {
21 SineOsc_01.process_OutputDomain (& Output_AudioTick , &

SineOsc_01_Phase_AudioTick ,
SineOsc_01_PhaseInc_AudioTick_ControlTick);

22 ProcessOutput = Output_AudioTick;
23 }
24

87

Signals, Rates, Domains, and Modules Chapter 5
25 void ControlTick () {
26 SineOsc_00.process_OutputDomain (& SineOsc_00_Output_ControlTick , &

SineOsc_00_Phase_ControlTick , SineOsc_00_PhaseInc_Constant);
27 Level_00.process_OutputDomain(SineOsc_00_Output_ControlTick , &

Modulation_AudioTick , Level_00_Gain_Constant ,
Level_00_Offset_Constant);

28 SineOsc_01.process_FrequencyPortDomain(Modulation_AudioTick , &
SineOsc_01_PhaseInc_AudioTick_ControlTick);

29 }
30
31 void Constants () {
32 SineOsc_00.process_FrequencyPortDomain (1.0, &

SineOsc_00_PhaseInc_Constant);
33 Level_00.process_GainPropertyDomain (40.0 , &Level_00_Gain_Constant

);
34 Level_00.process_OffsetPropertyDomain (220.0 , &

Level_00_Offset_Constant);
35 }
36
37 void Initialize () {
38 SineOsc_00.init_Phase (& SineOsc_00_Phase_ControlTick);
39 SineOsc_01.init_Phase (& SineOsc_01_Phase_AudioTick);
40 SineOsc_01.init_PhaseInc (&

SineOsc_01_PhaseInc_AudioTick_ControlTick);
41 }

Code 5.18: C++ code generated for asynchronous frequency modulation.

The only bridge signal shared between the AudioDomain and ControlDomain domains
is SineOsc_01_PhaseInc_AudioTick_ControlTick, the phase increment of the sec-
ond SineOsc module instance. These two domains are running concurrently. The
bridge signal is declared with a float data type. If an atomic operation on this data
type is supported on the target platform, a mutual exclusion on this bridge signal
is not required. However, if an atomic operation is not supported, there is a need
for a synchronization model between the two concurrent domains to avoid memory
corruption. Mutual exclusion schemes and synchronization policies are discussed in
detain in chapter 6.

88

Section 5.4 Summary
5.4 Summary
In this chapter, we presented and discussed the behavior of signal blocks in Stride
based on their domain and rate assignments. Through the design of a sine oscilla-
tor with frequency control in Stride, we demonstrated how domain and rate prop-
erty assignments of signals can be used to control the code generation process. We
also introduced module blocks and presented how information propagates from the
outside to the inside of these modules through ports. Next, we demonstrated how
synchronous and asynchronous frequency modulation can be performed in Stride by
using signals and modules.

89

Chapter 6

Domains and Concurrency
In the previous chapter we presented module blocks in Stride. We also showed the
C++ code generated by the Stride code generator for a sine oscillator module. The
generated C++ template class was characterized by its lack of internal state. The class
encapsulated initialization and processing methods only. All state carrying variables
were declared alongside the instantiation of their corresponding C++ template class.
This approach simplified the distribution of code to different functions based on the
domain assignments by the user.
In this chapter, we will discuss how generating stateless C++ template classes from
modules simplifies code generation. It also accounts for the concurrency require-
ments set forth by the user to go beyond relying on atomic types as was the case in
the previous chapter.
Next, we will present how the user defines and controls concurrency in Stride.

90

6.0.1 Domain Execution Order

As we mentioned in previous chapters, domains in Stride abstract functions. These
functions form the main building blocks of programs generated, compiled, and ex-
ecuted by Stride. Some of these functions execute once, while others are passed
as callback function executing on concurrent threads, either periodically or intermit-
tently. An example of a function that executes once is a setup function where re-
sources are allocated and configured at the beginning of a program. An example of a
function that is passed as a callback function to a process (thread) is the audio callback
function where audio samples get calculated periodically.
Functions in any program execute either sequentially or concurrently and so do do-
mains in Stride. The user defines and declares the order of domain execution in Stride.
A stream expression shown in Code 6.1 demonstrates the execution order of seven do-
mains as declared and defined by the user. The domains are InitializationDomain,
ConstantsDomain, AudioDomain, ControlDomain, GuiDomain, TerminationDomain, and
CleanupDomain. Some of these domains are set to execute sequentially while others
execute in parallel (concurrently). Domains are designed such that upon completing
execution they trigger other domains to which they are connected.
1 InitializationDomain
2 >> ConstantsDomain
3 >> [AudioDomain , ControlDomain , GuiDomain , TerminationDomain]
4 >> And ()
5 >> CleanupDomain;

Code 6.1: Domain triggering for sequential and parallel execution.

The first domain to execute is InitializationDomain, where resources are initialized.
Upon completing execution, InitializationDomain trigger ConstantsDomain, where

91

Domains and Concurrency Chapter 6
expressions that result in constant values are computed. This is an example of se-
quential execution of domains.
When ConstantsDomain completes execution, it triggers four domains: AudioDomain,
ControlDomain, GuiDomain, and TerminationDomain. These four domains run concur-
rently. The order in which they start executing is dictated by the order in which they
appear in the bundle. When TerminationDomain completes execution, all its con-
current domains stop executing and CleanupDomain starts executing. The program
terminates when CleanupDomain completes execution.
The four domains running concurrently might have to share memory to exchange
information between them. In this example, ControlDomainmight share control vari-
ables with AudioDomain and AudioDomain might share variables with the GuiDomain.
If the variables being shared between these domains represent data types that are
not atomic on the target platform, a synchronization policy and a mutual exclusion
scheme are required to protect the integrity of these shared variables.

6.0.2 Concurrency Declaration

To handle shared memory between domains running concurrently in Stride, mutual
exclusion rules can be created by the user to dictate how domains access shared
memory. In Stride, these rules are known as policies. Code 6.2, is an example of a
synchronization policy declared by the user.
The mutualExclusion declaration block called TryLockOnReadLockOnWrite defines a
mutual exclusion scheme. In this scheme, the domain reading from a shared mem-

92

Section 6.1 Concurrency and Stateless C++ Template Classes
ory is directed to try to lock the mutual exclusion flag if the flag is available, or else
continue with execution if the flag is not immediately available. The domain writing
to the shared memory is directed to lock the mutual exclusion flag if it is available or
wait until it becomes available and lock it.
1 mutualExclusion TryLockOnReadLockOnWrite {
2 read: TryLock
3 write: Lock
4 }
5
6 synchronization AudioReadControlWrite {
7 readDomain: AudioDomain
8 writeDomain: ControlDomain
9 scheme: TryLockOnReadLockOnWrite

10 }

Code 6.2: Mutual exclusion scheme and synchronization policy.

AudioReadControlWrite is a policy declared and defined between AudioDomain and
ControlDomain. The policy calls for a mutual exclusion scheme to be used between
AudioDomain and ControlDomain when they share a variable. The assigned scheme
is TryLockOnReadLockOnWrite. The policy applies when AudioDomain is reading from
the shared variable and ControlDomain is writing to the share variable.

6.1 Concurrency and Stateless C++ Template Classes
Giving the user the ability to control the concurrency model is important, especially
when the user is trying to achieve real-time performance on amicrocontroller through
optimization. However, having a concurrency model becomes crucial when the user
is targeting a platform designed around a 8-bit or 16-bit architecture and there is a
need for single precision (32-bit) or double precision (64-bit) floating-point data types

93

Domains and Concurrency Chapter 6
and computations. Defining and handling mutual exclusion in these cases becomes a
necessity and is no longer considered an additional feature.
Because of the various data types and synchronization policies that can occur within
Stride, a new approach is required when it comes to generating code to account for all
possibilities. The conventional method of generating a class that holds internal state
will no longer work because it will require generating a new class for each data types
and concurrency policy.Let’s consider a sine oscillator to demonstrate the problem
and present a new approach to generating code that solves it.
A sine oscillator needs to track the state of two variables. The variables are its phase
and phase increment. Variables representing state are referred to as bridge signals
in Stride. If we inspect the C++ code generated for the sine oscillator module in
Code 5.12, we notice the phase and phase increment variables are not part of the
generated C++ template class. They appear as arguments to the methods of the gen-
erated class.
The methods of the generated class can be divided into two sets. The first set are
initialization methods and start with the init_ prefix. The second set are processing
methods and start with the process_ prefix. The initialization methods, as the prefix
indicates, initialize and reset variables. The processing methods perform computa-
tions on these variables to update them. All these methods can be called from any
domain in Stride as long as the variables passed to them adhere to the concurrency
policies defined between the domains.
Given the generated class is a stateless template class, it is the only implementation
needed, since it accepts any data type and satisfies any concurrency scheme applied

94

Section 6.1 Concurrency and Stateless C++ Template Classes
to its variables.

6.1.1 Asynchronous Frequency Modulation with Concurrency

In Code 5.17 we presented asynchronous frequency modulation in Stride. In the gen-
erated code, the bridge signal SineOsc_01_PhaseInc_AudioTick_ControlTick (the
phase increment of the second oscillator), is a variable shared between two domains
running concurrently. While the bridge signal is being read from in AudioDomain, it is
being written to in ControlDomain. During code generation, the assumption was that
the data type assigned to this bridge signal is an atomic type on the target platform.
If that was not the case, a mutual exclusion would have been required to guarantee
the data integrity of the bridge signal. To accommodate this requirement a mutual
exclusion scheme and a concurrency policy could be specified to instruct the Stride
code generator to generate the necessary mutual exclusion code.
The generated code for the asynchronous frequencymodulation with the concurrency
policy specified in Code 6.2 is shown in Code 6.3. The Stride code and the generated
code in their entirety can be found in Appendix C.
1 std::mutex R_AudioTick_W_ControlTick_Mutex;
2
3 float Modulation_AudioTick = 0.0;
4 float Output_AudioTick = 0.0;
5
6 using SineOsc_00_Type = SineOsc <float , float >;
7 SineOsc_00_Type SineOsc_00 {1000};
8 float SineOsc_00_Output_ControlTick;
9 float SineOsc_00_Phase_ControlTick;

10 float SineOsc_00_PhaseInc_Constant;
11
12 using Level_00_Type = Level <float , float , float >;
13 Level_00_Type Level_00;

95

Domains and Concurrency Chapter 6
14 float Level_00_Gain_Constant;
15 float Level_00_Offset_Constant;
16
17 using SineOsc_01_Type = SineOsc <float , float >;
18 SineOsc_01_Type SineOsc_01 {48000};
19 float SineOsc_01_Phase_AudioTick;
20 float SineOsc_01_PhaseInc_AudioTick;
21 float SineOsc_01_PhaseInc_AudioTick_ControlTick;
22
23 void AudioTick (float &ProcessOutput) {
24 if (R_AudioTick_W_ControlTick_Mutex.try_lock ()) {
25 SineOsc_01_PhaseInc_AudioTick =

SineOsc_01_PhaseInc_AudioTick_ControlTick;
26 R_AudioTick_W_ControlTick_Mutex.unlock ();
27 }
28 SineOsc_01.process_OutputDomain (& Output_AudioTick , &

SineOsc_01_Phase_AudioTick , SineOsc_01_PhaseInc_AudioTick);
29 ProcessOutput = Output_AudioTick;
30 }
31
32 void ControlTick () {
33 SineOsc_00.process_OutputDomain (& SineOsc_00_Output_ControlTick , &

SineOsc_00_Phase_ControlTick , SineOsc_00_PhaseInc_Constant);
34 Level_00.process_OutputDomain(SineOsc_00_Output_ControlTick , &

Modulation_AudioTick , Level_00_Gain_Constant ,
Level_00_Offset_Constant);

35 R_AudioTick_W_ControlTick_Mutex.lock();
36 SineOsc_01.process_FrequencyPortDomain(Modulation_AudioTick , &

SineOsc_01_PhaseInc_AudioTick_ControlTick);
37 R_AudioTick_W_ControlTick_Mutex.unlock ();
38 }
39
40 void Constants () {
41 SineOsc_00.process_FrequencyPortDomain (1.0, &

SineOsc_00_PhaseInc_Constant);
42 Level_00.process_GainPropertyDomain (40.0 , &Level_00_Gain_Constant

);
43 Level_00.process_OffsetPropertyDomain (220.0 , &

Level_00_Offset_Constant);
44 }
45
46 void Initialize () {
47 SineOsc_00.init_Phase (& SineOsc_00_Phase_ControlTick);
48 SineOsc_01.init_Phase (& SineOsc_01_Phase_AudioTick);
49 SineOsc_01.init_PhaseInc (& SineOsc_01_PhaseInc_AudioTick);
50 SineOsc_01.init_PhaseInc (&

SineOsc_01_PhaseInc_AudioTick_ControlTick);
51 }

Code 6.3: C++ code generated for asynchronous frequency modulation with concurrency.

96

Section 6.2 Discussion
If we compare the two versions of the generated code for the asynchronous fre-
quency control (Code 5.18 and Code 6.3), we notice the addition of a mutex (line 1
of Code 6.3) and the locking and unlocking sequences inserted into the AudioTick()
and ControlTick() functions (lines 24, 35, and 37 of Code 6.3) where the bridge signal
is being read from or written to. The rest of the code is identical in the two versions,
including the implantation of the SineOsc and Level C++ template classes.

6.2 Discussion
Had the generated C++ template class for the SineOsc held the states of its variables
internally, we would have had to generate two different versions of the class in order
to satisfy the requirements of the two versions of asynchronous frequency control we
presented (atomic type vs mutual exclusion). The number of classes to be generated
would have proportionally increased with the increase in requirements and would
have resulted in the need for a far more complex code generator design.
This approach to generating stateless C++ template classes allows for the design of
helper classes that could be utilized to further simplify the task of the code generator,
which in turn simplifies its design.
This approach to creating stateless C++ template classes for unit generators, like the
SineOsc, is a departure from the conventional way most unit generators are imple-
mented in music programming languages. These languages were not designed to
handle concurrency the way Stride does. Stride gives the user full control over where
(domain) and how often (rate) signals are evaluated, without corrupting their integrity,

97

Domains and Concurrency Chapter 6
while achieving high levels of performance optimization and efficiency.

6.3 Summary
In this chapter we presented how Stride handles concurrency. We presented how
the user defines and declares mutual exclusion schemes and concurrency policies to
generate and distribute code on multiple concurrently running domains while main-
taining the integrity of bridge signals. We presented an approach to handle the re-
quirements posed by complex concurrency models through the generation of state-
less C++ template classes. This flexible approach accommodates the synchronization
requirements set forth by the user without having to generate custom C++ classes for
different scenarios.

98

Chapter 7

Interaction Design with Triggers and
Reactions
In Stride, interaction design is abstracted through trigger and reaction blocks.
Triggers allow synchronous or asynchronous events to propagate within a domain or
across multiple domains. Reaction blocks, like module blocks, enclose stream expres-
sions. Expressions enclosed in a reaction block are evaluated when the reaction block
is activated. Reactions are activated using trigger blocks or switch blocks.
In this chapter, we will first cover the behavior of the switch block followed by the
trigger block. Next, we will design interaction using reaction blocks and activating
them with switch and trigger blocks.

99

Interaction Design with Triggers and Reactions Chapter 7
7.1 The Switch Block
The behavior of a switch block is identical to that of a signal block. The only difference
between the two is that switch blocks have Boolean states. A switch block is either in
a true state or a false state. The keywords on and off in Stride represent the true and
false states of a switch respectively. Code 7.1 shows the default declaration of a switch
block.
1 switch BlockName {
2 default: on # Default value
3 rate: PlatformRate # The switch ’s rate
4 domain: PlatformDomain # The switch ’s domain
5 reset: none # Resets switch to default value
6 meta: "A switch block" # Meta information
7 }

Code 7.1: Switch block declaration.

Code 7.2 shows the declaration of a switch block called BypassSwitch. BypassSwitch
samples the Greater module at ControlRate. BypassSwitch is on when the SineOsc
module’s output is positive. Since SineOsc’s frequency is set to 0.5Hz, its output will
alternate between positive and negative values every 1 second. Thus, BypassSwitch
represents a unipolar square signal at 0.5Hz with a 50% duty cycle.
1 switch BypassSwitch {
2 default: off
3 rate: ControlRate
4 domain: ControlDomain
5 meta: "A unipolar square signal"
6 }
7
8 [SineOsc (frequency: 0.5) , 0.0] >> Greater () >> BypassSwitch;
9

10 Input >> Process (property: Value bypass: BypassSwitch) >> Output;

Code 7.2: An example of a switch controlling the state of a module.

100

Section 7.2 The Trigger Block
The BypassSwitch switch block is connected to the bypass port of the Process mod-
ule. When BypassSwitch is off, the Output signal represents the processed values of
the Input signal through the Process module. When BypassSwitch is on, the Output
signal has the same value as the Input signal because Process is in pass-through
mode.
Signal blocks and switch blocks are interchangeable in Stride. A signal block holding a
non-zero value is equivalent to a switch block with an on state. A signal block holding
a zero value is equivalent to a switch block with an off state. A switch block with an
on state is equivalent to a signal block with value 1 if the type port of the signal block
is set to "Integer" or 1.0 if the type port of the signal block is set to "Real". A switch
block with an off state is equivalent to a signal block with value 0 if the type port of
the signal block is set to "Integer" or 0.0 if the type port of the signal block is set to
"Real".

7.2 The Trigger Block
In Stride, triggers communicate synchronous and asynchronous events and are de-
signed to automatically re-arm after they have been triggered. Code 7.3 shows the
default declaration of a trigger block.
1 trigger TriggerName {
2 edge: "Rising" # The edge that triggers the trigger
3 domain: PlatformDomain # The trigger ’s domain
4 meta: "A trigger block." # Meta information
5 }

Code 7.3: Trigger block declaration.

101

Interaction Design with Triggers and Reactions Chapter 7
Assigning a domain to the domain port of a trigger block is required at declaration. A
trigger’s state is evaluated and re-armed (if triggered) in the domain it is assigned to.
Since a trigger is not assigned a rate, it is evaluated and re-armed at the rate of its
assigned domain.
Like the switch block, the trigger block has Boolean states. A trigger is in the on state
when it is triggered and off state when it is armed. When triggered, a trigger tran-
sitions from the off state to the on state. A trigger stays in the on state for a single
clock cycle of the domain it is assigned to, until it is re-armed. The domain a trigger
is assigned to is responsible for re-arming the trigger by switching its state from on to
off. The user cannot re-arm a trigger.
The edge property of a trigger block can be assigned to one of the following edge
transition types: "Rising", "Falling", or "Both". This property is relevant only if a switch
block or a signal block is connected to its main input port. Otherwise, this property is
ignored by the Stride interpreter. The edge transition type indicates the edge transi-
tion(s) of a signal block or a switch block that would result in triggering a trigger.

7.2.1 Single Domain Trigger Example

Code 7.4 is an example of a trigger synchronously resetting a signal every second. The
example starts with two block declarations. The first is a signal block called Count and
the second is a trigger block called ResetCount. ResetCount is connected to the reset
port of Count. Every time ResetCount is triggered, Count is reset to its default value 0.
Both blocks are assigned to a domain called ControlDomain. The signal and the trigger

102

Section 7.2 The Trigger Block
are synchronous, since they are assigned to the same domain. ControlDomain runs at
ControlRate. Let us assume ControlRate is 100Hz. Count is assigned a rate of 10Hz.
That is, the value of Count is updated every 0.1 seconds. ResetCount is evaluated at
the rate of ControlDomain. Thus, ResetCount is evaluated every 0.01 seconds.
In the first stream expression, the SineOsc module and the Greater module are also
evaluated at ControlRate. They both derive the rate of their internal blocks from the
rate of ResetCount.
The frequency property port of SineOsc is set to 1.0Hz and its output is compared
to 0.0 by the Greater module. The output of Greater will transition from off to on

at 1.0Hz (once every second) when SineOsc transitions from its negative to its posi-
tive swing. Greater’s output’s transition represents a rising edge. ResetCount is set
to be triggered on a rising edge, since its edge port is set to "Rising". Therefore,
ResetCount is triggered and automatically re-armed once every second.
1 signal Count {
2 default: 0
3 rate: 10.0
4 domain: ControlDomain
5 reset: ResetCount
6 }
7
8 trigger ResetCount {
9 edge: "Rising"

10 domain: ControlDomain
11 meta: "A trigger to reset the Count signal."
12 }
13
14 SineOsc (frequency: 1.0) , 0.0] >> Greater () >> ResetCount;
15
16 Count + 1 >> Count;

Code 7.4: An example of a trigger resetting a signal.

In the second stream expression, Count is incremented by 1 every 0.1 seconds. Since
103

Interaction Design with Triggers and Reactions Chapter 7

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

Co
un

t
Va

lu
e

Time (Seconds)

Gearter () ResetCount Count

Figure 7.1: A trigger resetting a signal.

ResetCount and Count are synchronized and ResetCount is triggered every second,
Count gets reset every second.
The states of Greater’s output and ResetCount and the value of Count are shown in
Figure 7.1 over a 3 seconds interval.

7.2.2 Multiple Domain Trigger Example

Triggers in Stride can be utilized to communicate asynchronous events across do-
mains. Triggers shared across domains adhere to concurrency policies declared by
the user. In Stride, signal and switch blocks can be directly connected to the input
of trigger blocks, while triggers can be directly connected to the reset property of

104

Section 7.2 The Trigger Block
signal and switch blocks. To cover all connection possibilities between different block
types across multiple domains, triggers in Stride are implemented using the observer
pattern[27]. Triggers capture and pass events to their observers when they are trig-
gered. That is, any port or block connected to a trigger registers with it as an observer.
When the trigger is triggered, ports and blocks registered with it get notified.
The example shown in Code 7.5 demonstrates how asynchronous event communica-
tion is achieved between two domains while adhering to a mutual exclusion scheme
set by the user. All connections between the domains and their related modules, sig-
nals, switches, and triggers are shown in Figure 7.2. Blocks and modules highlighted
in blue belong to the AudioDomain domain, while ones highlighted in orange belong
to the ControlDomain domain. Excerpts from the generated C++ code are shown in
Code 7.8.
1 use RtAudioWithBoost on Current
2
3 mutualExclusion LockOnReadLockOnWrite {
4 read: Lock
5 write: Lock
6 }
7
8 synchronization AudioReadControlWrite {
9 readDomain: AudioDomain

10 writeDomain: ControlDomain
11 mode: LockOnReadLockOnWrite
12 }
13
14 switch Positive {
15 default: off
16 rate: ControlRate
17 domain: ControlDomain
18 }
19
20 signal Ramp {
21 default: 0
22 rate: ControlRate
23 domain: ControlDomain
24 }

105

Interaction Design with Triggers and Reactions Chapter 7
25
26 trigger RampRolled {
27 edge: "Rising"
28 domain: AudioDomain
29 }
30
31 signal SawTooth {
32 default: 0.0
33 rate: AudioRate
34 domain: AudioDomain
35 }
36
37 signal Output {
38 default: 0.0
39 rate: AudioRate
40 domain: AudioDomain
41 }
42
43 [SineOsc (frequency: 1.0), 0.0] >> Greater () >> Positive;
44
45 Counter (start: 0 increment: 1 roll: 4 reset: Positive rolled:

RampRolled) >> Ramp;
46
47 Counter (start: 0.0 increment: 0.025 roll: 10000.0 reset: RampRolled

) >> SawTooth;
48
49 SineOsc (frequency: 220.0 reset: Positive)
50 >> ResonantLowPass (frequency: SawTooth + 100.0 qFactor: 4.0 reset:

Positive)
51 >> Level (gain: 0.2)
52 >> Output;
53
54 Output >> AudioOut [1:2];

Code 7.5: An example with triggers in two domains.

The example starts with a mutual exclusion scheme declaration, followed by a syn-
chronization policy declaration between two domains running concurrently. The two
concurrently running domains are AudioDomain and ControlDomain. AudioDomain

runs at AudioRate (48KHz) and ControlDomain runs at ControlRate (10Hz).
The Positive switch block and the Ramp signal block are assigned to ControlDomain.
The rampRolled trigger block and the SawTooth and Output signal blocks are assigned

106

Section 7.2 The Trigger Block

AudioDomain

ControlDomain

SineOsc (frequency: 1.0)

Greater ()

Positive

0.0

Ramp

Counter (start: 0 increment: 1 roll: 4 reset: rolled:)Positive RampRolled

Module () SwitchSignal TriggerConstant

Counter (start: 0.0 increment: 0.025 roll: 10000.0 reset:)RampRolled

SawTooth

Output

SineOsc (frequency: 220.0 reset:)Positive

ResonantLowPass (frequency: + 100.0 qFactor: 4.0 reset:)PositiveSawTooth

Level (gain: 0.2)

Legend:

Figure 7.2: The domain assignments of blocks and their relationships in Code 7.5.

107

Interaction Design with Triggers and Reactions Chapter 7
to AudioDomain.
The first stream expression produces a 1Hz unipolar square wave available through
the Positive switch block. Every module in this stream expression is evaluated in
ControlDomain. Based on the connections established in the following stream ex-
pressions, Positive triggers other triggers in AudioDomain and ControlDomain.
In the second stream expression, a five-step ramp signal is generated by the Counter
module at ControlRate. The Counter derives its rate from the Ramp signal1.
The Stride code and the generated C++ class for the Counter module are shown in
Code 7.6 and Code 7.7 respectively.
1 module Counter {
2 ports: [
3 mainOutputPort OutputPort {
4 block: Output
5 }
6 propertyInputPort StartValuePort {}
7 name: "start"
8 block: StartValue
9 default: 0.0

10 }
11 propertyInputPort IncrementValuePort {
12 name: "increment"
13 block: IncrementValue
14 default: 0.001
15 }
16 propertyInputPort RollValuePort {
17 name: "roll"
18 block: RollValue
19 default: 1.0
20 }
21 propertyInputPort ResetPort {
22 name: "reset"
23 block: ResetCounter
24 default: none
25 }
26 propertyOutputPort RolledPort {

1Ramp takes the following values every 0.1 seconds: 0, 1, 2, 3, 4, 5, 0, 1, 2, ...
108

Section 7.2 The Trigger Block
27 name: "rolled"
28 block: CounterRolled
29 }
30]
31 blocks: [
32 signal Output {
33 type: OutputPort.type
34 rate: OutputPort.rate
35 domain: Output.domain
36 }
37 constant StartValue {
38 type: OutputPort.type
39 value: none
40 domain: auto
41 }
42 constant IncrementValue {
43 type: OutputPort.type
44 value: none
45 domain: auto
46 }
47 constant RollValue {
48 type: OutputPort.type
49 value: none
50 domain: auto
51 }
52 trigger ResetCounter {
53 edge: "Rising"
54 domain: ResetPort.domain
55 }
56 trigger CounterRolled {
57 edge: "Rising"
58 domain: OutputPort.domain
59 }
60 signal Accumulator {
61 default: StartValue
62 type: OutputPort.type
63 rate: OutputPort.rate
64 domain: OutputPort.domain
65 reset: [CounterRolled , ResetCounter]
66 }
67]
68 streams: [
69 Accumulator >> Output;
70 Accumulator + IncrementValue >> Accumulator;
71 [Accumulator , RollValue] >> Greater () >> CounterRolled;
72]
73 }

Code 7.6: Counter module in Stride.

109

Interaction Design with Triggers and Reactions Chapter 7
1 template <class OutputDataType >
2 class Counter {
3 public:
4 Counter(float outputRate , OutputDataType startValue ,

OutputDataType incrementValue , OutputDataType rollValue) :
OutputPort_Rate(outputRate), StartValue(startValue),
IncrementValue(incrementValue), RollValue(rollValue) {

5 }
6
7 void process_OutputDomain(OutputDataType *Output , stride :: Trigger

*CounterRolled , OutputDataType *Accumulator) {
8 *Output = *Accumulator;
9 *Accumulator = *Accumulator + IncrementValue;

10 OutputDataType BundleConnector_00 [2];
11 BundleConnector_00 [0] = *Accumulator;
12 BundleConnector_00 [1] = RollValue;
13 Greater_00.process_OutputDomain(BundleConnector_00 , &

Greater_00_Output);
14 CounterRolled ->Update(Greater_00_Output);
15 }
16
17 void process_ResetPortDomain () {
18 }
19
20 void init_Accumulator(OutputDataType *Accumulator) {
21 *Accumulator = StartValue;
22 }
23
24 private:
25 float OutputPort_Rate;
26 const OutputDataType StartValue;
27 const OutputDataType IncrementValue;
28 const OutputDataType RollValue;
29
30 using Greater_00_Type = Greater <OutputDataType ,bool >;
31 Greater_00_Type Greater_00;
32 bool Greater_00_Output;
33 };

Code 7.7: C++ class generated from the Counter module.

Just like the SineOsc module, covered in the previous chapters, the generated C++
template class does not have any variables as members of the class. This exclusion
also applies to triggers and in this case to the ResetCounter and CounterRolled trig-
gers. Just like signals, triggers can be shared between domains. Concurrency policies

110

Section 7.2 The Trigger Block
applied to signals are also applied to triggers.
The Counter module has two trigger ports. The ports are called reset and rolled.
reset is an input port while rolled is an output port. When a trigger connected to
the reset port is triggered the counter’s accumulator is reset to its default value. The
counter’s accumulator is also reset if a switch connected to the reset port transitions
from off to on. This computation (resetting the accumulator) is performed in the
domain of the trigger block or the switch block connected to the reset port. In this
stream expression the Positive switch block is connected the reset port. When the
Positive switch block transitions from off to on, the accumulator is reset to 0. This
computation happens every second in ControlDomain.
A trigger connected to the rolled port will be triggered when the accumulator is
greater than the constant value assigned to the roll port. Any module, signal, or
switch block connected to this trigger will be notified and evaluated in the domain the
trigger is assigned at declaration. In this stream expression, the trigger RampRolled is
connected to the rolled port. This makes the RampRolled trigger an observer of the
CounterRolled. CounterRolled is declared inside the Counter module. These two
triggers are in different domains. RampRolled is declared in the AudioDomain while
CounterRolled is assigned to ControlDomain by since it derives its domain from the
signal connected to the output port of the Counter module. Through the connection
established between these two triggers, an event in one domain is propagated to an-
other domain.
In the third stream expression, a second ramp is generated. The value of the ramp is
represented by the SawTooth signal. Unlike the Countermodule in the second stream

111

Interaction Design with Triggers and Reactions Chapter 7
expression, this one is evaluated in AudioDomain. The reset port of this Counter
module is connected the RampRolled trigger. RampRolled is triggered every time this
Countermodule rolls. However, this Countermodule never rolls since its accumulator
is reset every second. The accumulator reaches a maximum value of 1,2002 before it
is reset to its default value 0.
In the fourth stream expression, a SineOscmodule is connected to a ResonantLowPass
module, a resonant low pass filter module. The ResonantLowPass module is con-
nected to a Level module. Level’s main output is connected to the Output signal.
SineOsc’s and ResonantLowPass’s reset property ports are connected to the Positive
switch. The cutoff frequency of the resonant low pass filter is controlled by SawTooth.
Most computations in this stream expression happen in AudioDomain, since Output

and Sawtooth are assigned to AudioDomain. Only computations related to resetting
the state of signals happen in ControlDomain. One such signal is the Phase signal of
the SineOscmodule. The trigger responsible for resetting the Phase signal derives its
rate from the Positive signal connected to SineOsc’s main output and Positive is in
the ControlDomain.
The C++ code generated from Code 7.5 is shown in Code 7.8. The generated code
relies on the Stride helper classes3. These classes have been designed to account for
the different conditions and requirements signals, switches, and triggers have tomeet
in generated code. The helper classes simplify the code generation process.
1 std::mutex RW_AudioTick_Rst_ControlTick_Mutex;
2 std::mutex R_AudioTick_W_ControlTick_Mutex;
3
4 bool Positive_ControlTick = false;

20.025 x 48,000 samples/second x 1 second = 1,200
3The full code of the Stride helper classes used in this example are shown in Appendix D

112

Section 7.2 The Trigger Block
5 int Ramp_ControlTick = 0;
6 float Output_AudioTick = 0.0;
7 float SawTooth_AudioTick = 0.0;
8
9 using RampRolled_Type = stride :: Trigger_MD_TriggerControlled <stride ::
sync::lock , stride ::sync::lock >;

10 RampRolled_Type RampRolled_AudioTick (& R_AudioTick_W_ControlTick_Mutex
);

11 stride :: TriggerObserverBlock <RampRolled_Type >
RampRolled_AudioTick_Observer (& RampRolled_Type ::Fire , &
RampRolled_AudioTick);

12
13 using SineOsc_00_Type = SineOsc <float , float >;
14 SineOsc_00_Type SineOsc_00 {1.0/(CONTROL_TIME_MS /1000.0) };
15 float SineOsc_00_Output_ControlTick;
16 float SineOsc_00_Phase_ControlTick;
17 float SineOsc_00_PhaseInc_Constant;
18
19 using Greater_00_Type = Greater <float , bool >;
20 Greater_00_Type Greater_00;
21
22 using Counter_00_Type = Counter <int >;
23 Counter_00_Type Counter_00 {10};
24 stride :: Trigger_SwitchControlled Counter_00_ResetCounter_ControlTick(

stride :: Trigger_SwitchControlled :: TriggerMode :: RISING);
25 stride :: Trigger_SwitchControlled Counter_00_CounterRolled_ControlTick

(stride :: Trigger_SwitchControlled :: TriggerMode :: RISING);
26 using Counter_00_Accumulator_Type = stride :: Signal_SDRWRst <

Counter_00_Type , int >;
27 Counter_00_Accumulator_Type Counter_00_Accumulator_ControlTick (&

Counter_00_Type :: init_Accumulator , &Counter_00);
28 stride :: TriggerObserverBlock <Counter_00_Accumulator_Type >

Counter_00_Accumulator_ControlTick_Observer (&
Counter_00_Accumulator_Type ::Reset , &
Counter_00_Accumulator_ControlTick);

29
30 using Counter_01_Type = Counter <float >;
31 Counter_01_Type Counter_01 {48000 , 0.0, 0.025 , 10000.0};
32 stride :: Trigger_SD_TriggerControlled

Counter_01_ResetCounter_AudioTick;
33 stride :: TriggerObserverBlock <stride :: Trigger_SD_TriggerControlled >

Counter_01_ResetCounter_AudioTick_Observer (& stride ::
Trigger_SD_TriggerControlled ::Fire , &
Counter_01_ResetCounter_AudioTick);

34 stride :: Trigger_SwitchControlled Counter_01_CounterRolled_AudioTick(
stride :: Trigger_SwitchControlled :: TriggerMode :: RISING);

35 using Counter_01_Accumulator_Type = stride :: Signal_SDRWRst <
Counter_01_Type , float >;

36 Counter_01_Accumulator_Type Counter_01_Accumulator_AudioTick (&
Counter_01_Type :: init_Accumulator , &Counter_01);

113

Interaction Design with Triggers and Reactions Chapter 7
37 stride :: TriggerObserverBlock <Counter_01_Accumulator_Type >

Counter_01_Accumulator_AudioTick_Observer (&
Counter_01_Accumulator_Type ::Reset , &Counter_01_Accumulator_AudioTick
);

38
39 using SineOsc_01_Type = SineOsc <float , float >;
40 SineOsc_01_Type SineOsc_01 {48000};
41 float SineOsc_01_Output_AudioTick;
42 stride :: Trigger_SwitchControlled SineOsc_01_Reset_ControlTick(stride

:: Trigger_SwitchControlled :: TriggerMode :: RISING);
43 using SineOsc_01_Phase_Type = stride :: Signal_SDRW_MDRst <

SineOsc_01_Type , float , stride ::sync::lock , stride ::sync::lock >;
44 SineOsc_01_Phase_Type SineOsc_01_Phase_AudioTick (& SineOsc_01_Type ::

init_Phase , &SineOsc_01 , &RW_AudioTick_Rst_ControlTick_Mutex);
45 stride :: TriggerObserverBlock <SineOsc_01_Phase_Type >

SineOsc_01_Phase_AudioTick_Observer (& SineOsc_01_Phase_Type ::Reset , &
SineOsc_01_Phase_AudioTick);

46 float SineOsc_01_PhaseInc_Constant;
47
48 using ResonantLowPass_00_Type = ResonantLowPass <float , float , float >;
49 ResonantLowPass_00_Type ResonantLowPass_00 {48000};
50
51 // Resonant Low Pass declaration code has been removed
52
53 using Level_00_Type = Level <float , float , float >;
54 Level_00_Type Level_00;
55 float Level_00_Gain_Constant;
56 float Level_00_Offset_Constant;
57
58 void AudioTick (float &ProcessOutput) {
59 RampRolled_AudioTick.Update ();
60
61 Counter_01_ResetCounter_AudioTick.Update ();
62 Counter_01_Accumulator_AudioTick.Swap();
63 Counter_01.process_OutputDomain (& SawTooth_AudioTick , &

Counter_01_CounterRolled_AudioTick ,
Counter_01_Accumulator_AudioTick.Write());

64
65 SineOsc_01_Phase_AudioTick.Swap();
66 SineOsc_01.process_OutputDomain (& SineOsc_01_Output_AudioTick ,

SineOsc_01_Phase_AudioTick.Write(), SineOsc_01_PhaseInc_Constant);
67
68 // Resonant Low Pass processing method calls have been removed
69
70 Level_00.process_OutputDomain(ResonantLowPass_00_Output_AudioTick ,

&Output_AudioTick , Level_00_Gain_Constant , Level_00_Offset_Constant
);

71
72 ProcessOutput = Output_AudioTick;
73 }

114

Section 7.2 The Trigger Block
74
75 void ControlTick () {
76 SineOsc_00.process_OutputDomain (& SineOsc_00_Output_ControlTick , &

SineOsc_00_Phase_ControlTick , SineOsc_00_PhaseInc_Constant);
77
78 float BundleConnector_00 [2];
79 BundleConnector_00 [0] = SineOsc_00_Output_ControlTick;
80 BundleConnector_00 [1] = 0.0;
81 Greater_00.process_OutputDomain(BundleConnector_00 , &

Positive_ControlTick);
82
83 Counter_00_ResetCounter_ControlTick.Update(Positive_ControlTick);
84 Counter_00_Accumulator_ControlTick.Swap();
85 Counter_00.process_OutputDomain (& Ramp_ControlTick , &

Counter_00_CounterRolled_ControlTick ,
Counter_00_Accumulator_ControlTick.Write());

86
87 SineOsc_01_Reset_ControlTick.Update(Positive_ControlTick);
88
89 // Resonant Low Pass reset call has been removed
90 }
91
92 void Constants () {
93 SineOsc_00.process_FrequencyPortDomain (1.0, &

SineOsc_00_PhaseInc_Constant);
94 SineOsc_01.process_FrequencyPortDomain (220.0 , &

SineOsc_01_PhaseInc_Constant);
95
96 // Resonant Low Pass constant computations have been removed
97
98 Level_00.process_GainPropertyDomain (0.2, &Level_00_Gain_Constant);
99 }

100
101 void Initialize () {
102 SineOsc_00.init_Phase (& SineOsc_00_Phase_ControlTick);
103
104 Counter_00_CounterRolled_ControlTick.Register (&

RampRolled_AudioTick_Observer);
105 Counter_00_CounterRolled_ControlTick.Register (&

Counter_00_Accumulator_ControlTick_Observer);
106 Counter_00_ResetCounter_ControlTick.Register (&

Counter_00_Accumulator_ControlTick_Observer);
107
108 RampRolled_AudioTick.Register (&

Counter_01_ResetCounter_AudioTick_Observer);
109
110 Counter_01_CounterRolled_AudioTick.Register (&

Counter_01_Accumulator_AudioTick_Observer);
111 Counter_01_ResetCounter_AudioTick.Register (&

Counter_01_Accumulator_AudioTick_Observer);

115

Interaction Design with Triggers and Reactions Chapter 7
112
113 SineOsc_01_Reset_ControlTick.Register (&

SineOsc_01_Phase_AudioTick_Observer);
114
115 // Resonant Low Pass trigger registrations have been removed
116
117 Level_00.init_Offset (& Level_00_Offset_Constant);
118 }

Code 7.8: Excerpts of the C++ code generated for triggers across two domains example.

On line 9 of Code 7.8, the type of the RampRolled trigger block is declared. The type
is a Trigger_MD_TriggerControlled, where "MD" stands for multi-domain and "Trig-
gerControlled" means a trigger is connected to RampRolled’s input rather than a signal
or a switch. During the type declaration, the mutual exclusion conditions are passed
to the constructor. The conditions are based on the synchronization policy between
ControlDomain and AudioDomain, because RampRolled is triggered in ControlDomain
and gets evaluate in AudioDomain.
On line 10, the trigger object is instantiated based on the type declared on line 9. The
mutex associated with ControlDomain and AudioDomain is passed to the constructor.
Next, is the declaration of a trigger observer for this variable (line 11). The observer
object is instantiated with a callback method passed to its constructor. This method is
called when the trigger gets triggered. This observer object is registered with any sig-
nal, switch, or trigger class this trigger observes. In this case, on line 104, the observer
object of RampRolled is registered with the first counter’s CounterRolled trigger. On
line 108, the observer of the second counter’s ResetCounter is registered with the
RampRolled trigger.
On line 59, the state of the RampRolled trigger is evaluated in the AudioTick() func-
tion, since RampRolled is assigned to AudioDomain. If CounterRolled was triggered

116

Section 7.3 Reactions
at some point prior to the evaluation of RampRolled’s state, the method RampRolled

registered with CounterRolled would have been called and RampRolled’s state would
have changed to a triggered state. If RampRolled’s state is evaluated as a triggered
state, the method or methods registered with it are called. In this case, the method
ResetCounter registered with RampRolled is called. RampRolled is re-armed once the
method ormethods registered with it complete executing. While executing these calls,
all synchronization policies are respected, and the mutual exclusion schemes are ex-
ecuted by locking and unlocking the associated mutex.
All remaining triggers in the code follow the same code generation scheme. Each
trigger gets instantiated using the appropriate helper class type and a corresponding
observer is instantiated for it with a callback method. Next, the observer object is
registered with associated triggers. These triggers call this callback method when
their state is checked, and they happen to be in a triggered state.

7.3 Reactions
Just like module blocks, reaction blocks enclose stream expressions. However, there
are fundamental differences in the way these two block types behave in Stride.
The main input port of a reaction block is always a switch block. This switch block
has to be in an on state for the stream expressions enclosed in the reaction block to
get evaluated. A reaction block can also access signals and switches declared directly
outside of its scope without the need to connect these signals to dedicated property
ports. A reaction block can be declared inside a module block, while a module block

117

Interaction Design with Triggers and Reactions Chapter 7
cannot be declared inside a reaction block. Code 7.9 shows the declaration structure
of a reaction block in Stride.
1 reaction BlockName {
2 ports: [# Reaction ’s ports
3 mainInputPort InputPort { # Default input port
4 block: Switch
5 meta: "Built -in main input port."
6 }
7]
8 blocks: [# Reaction ’s internal blocks
9 switch Switch { # Default switch block

10 default: off
11 rate: InputPort.rate
12 domain: InputPort.domain
13 meta: "Built -in default switch."
14 }
15]
16 streams: [
17 # Stream expressions
18]
19 meta: "A reaction block."
20 }

Code 7.9: Default reaction block declaration.

The reaction block has a built-in switch block called Switch. By default, Switch gets
its rate and domain from the block connected to the reaction block’s main input port.
The user can override the default behavior of Switch by replacing it with their own
switch block declaration.
A reaction called WrapPhase was previously declared and used in the sine oscillator
module, SineOsc, in Code 5.11. The stream expression enclosed in WrapPhase was
evaluated only when the phase of the oscillator became greater than or equal to two
pi.
Code 7.10 is an example where a reaction is used to double the frequency of a sine
oscillator on every impulse generated by an impulse train generator.

118

Section 7.3 Reactions
The second instance of the impulse train generator (ImpulseTrain) generates im-
pulses a 1Hz (line 26). This translates to an impulse every second. These impulses
activate the DoubleFrequency reaction, causing the the frequency of the sine oscilla-
tor to double every second through the Frequency signal. The frequency of the sine
oscillator is reset to its default value every 10 seconds, since the first instance of the
impulse train generator is triggering the Reset trigger at 0.1Hz (line 24) and Reset is
connected to the reset port of the Frequency signal (line 5).

1 signal Frequency {
2 default: 55.0
3 rate: AudioRate
4 domain: AudioDomain
5 reset: Reset
6 }
7
8 trigger Reset {
9 edge: "Rising"

10 domain: AudioDomain
11 }
12
13 switch Impulse {
14 default: off
15 rate: AudioRate
16 domain: AudioDomain
17 }
18
19 reaction DoubleFrequency {
20 streams: Frequency * 2.0 >> Frequency;
21 meta: "Doubles the frequency."
22 }
23
24 ImpulseTrain (frequency: 0.1) >> Reset;
25
26 ImpulseTrain (frequency: 1) >> Impulse >> DoubleFrequency ();
27
28 SineOsc (frequency: Frequency) >> Output;

Code 7.10: A reaction to double the frequency of an oscillator every second.

119

Interaction Design with Triggers and Reactions Chapter 7
7.4 Attack/Decay Envelope in Stride
An attack/decay (AD) envelope is a great example to demonstrate how reactions,
switches, and triggers are used in Stride to design interaction. This example also
demonstrates how a state machine can be created in Stride using these three blocks.
The AD envelope module has an attack phase and a decay phase. It is triggered
through its trigger port. The envelope module first goes through an attack phase.
The attack phase lasts for the duration of the attack time. The attack phase is followed
by a decay phase. The decay phase lasts for the duration of the decay time. The du-
ration of each phase is controlled through signals connected to the attackTime and
decayTime property ports of the envelope module. When the envelope completes
its decay phase, it issues a trigger on its completed property port. The envelope is
designed to switch to the attack phase when re-triggered while in the decay phase.
The Stride code for the AD envelope is shown in Code 7.11. The C++ template class
generated from the Stride code is shown in Code 7.12.
1 module AD {
2 ports: [
3 mainInputPort InputPort {
4 block: Input
5 }
6 mainOutputPort OutputPort {
7 block: Output
8 }
9 propertyInputPort AttackPort {

10 name: "attackTime"
11 block: AttackTime
12 default: 0.125
13 meta: "Attack time in seconds."
14 }
15 propertyInputPort DecayPort {
16 name: "decayTime"
17 block: DecayTime

120

Section 7.4 Attack/Decay Envelope in Stride
18 default: 0.125
19 meta: "Decay time in seconds."
20 }
21 propertyInputPort TriggerPort {
22 name: "trigger"
23 block: Trigger
24 default: none
25 meta: "Triggers the AD envelope. Accepts a trigger

or a switch."
26 }
27 propertyOutputPort CompletedPort {
28 name: "completed"
29 block: Completed
30 meta: "A trigger is generated on this port when the

envelope has completed its decay phase."
31 }
32]
33 blocks: [
34 signal Input {
35 default: 0.0
36 type: OutputPort.type
37 rate: OutputPort.rate
38 domain: OutputPort.domain
39 }
40 signal Output {
41 default: 0.0
42 type: OutputPort.type
43 rate: OutputPort.rate
44 domain: OutputPort.domain
45 }
46 signal AttackTime {
47 default: AttackPort.default
48 rate: AttackPort.rate
49 domain: AttackPort.domain
50 }
51 signal DecayTime {
52 default: DecayPort.default
53 rate: DecayPort.rate
54 domain: DecayPort.domain
55 }
56 trigger Trigger {
57 edge: "Rising"
58 domain: OutputPort.domain
59 }
60 trigger Completed {
61 edge: "Rising"
62 domain: OutputPort.domain
63 }
64 signal AttackSlope {
65 default: 1.0 / (AttackTime * OutputPort.rate)

121

Interaction Design with Triggers and Reactions Chapter 7
66 type: OutputPort.type
67 rate: AttackPort.rate
68 domain: AttackPort.domain
69 }
70 signal DecaySlope {
71 default: - 1.0 / (DecayTime * OutputPort.rate)
72 type: OutputPort.type
73 rate: DecayPort.rate
74 domain: DecayPort.domain
75 }
76 switch AttackPhase {
77 default: off
78 rate: 0
79 domain: OutputPort.domain
80 }
81 switch DecayPhase {
82 default: off
83 rate: 0
84 domain: OutputPort.domain
85 }
86 signal EnvelopeValue {
87 default: 0.0
88 type: OutputPort.type
89 rate: 0
90 domain: OutputPort.domain
91 }
92 reaction StartAttackPhase {
93 streams: on >> AttackPhase;
94 }
95 reaction SwitchToAttackPhase {
96 streams: [
97 on >> AttackPhase;
98 off >> DecayPhase;
99]

100 }
101 reaction EnvelopeValueUpperLimit {
102 stream: [
103 1.0 >> EnvelopeValue;
104 off >> AttackPhase;
105 on >> DecayPhase;
106]
107 }
108 reaction EnvelopeValueLowerLimit {
109 stream: [
110 0.0 >> EnvelopeValue;
111 off >> DecayPhase;
112]
113 }
114 reaction NextAttackValue {
115 streams: [

122

Section 7.4 Attack/Decay Envelope in Stride
116 EnvelopeValue + AttackSlope >> EnvelopeValue;
117 [EnvelopeValue , 1.0] >> GreaterOrEqual () >>

EnvelopeValueUpperLimit ();
118 }
119 reaction NextDecayValue {
120 streams: [
121 EnvelopeValue + DecaySlope >> EnvelopeValue;
122 [EnvelopeValue , 0.0] >> LessOrEqual () >> [

EnvelopeValueLowerLimit (), Completed] ;
123 }
124]
125 streams: [
126 1.0 / (AttackTime * OutputPort.rate) >> AttackSlope;
127
128 - 1.0 / (DecayTime * OutputPort.rate) >> DecaySlope;
129
130 Trigger and not (AttackPhase or DecayPhase) >>

StartAttackPhase ();
131 Trigger and DecayPhase >> SwitchToAttackPhase ();
132 AttackPhase >> NextAttackValue ();
133 DecayPhase >> NextDecayValue ();
134 Input * EnvelopeValue >> Output;
135]
136 meta: "Attack/Decay envelope , triggered through the trigger

port. If triggered while in the decay phase , the envelope will
switch back to the attack phase."

137 }

Code 7.11: Attack/Decay envelope module in Stride.

1 template <class OutputDataType , class AttackTimeDataType , class
DecayTimeDataType >

2 class AD {
3 public:
4 AD(float outputRate) : OutputPort_Rate(outputRate) {
5 }
6
7 void process_OutputDomain(OutputDataType Input , OutputDataType *

Output , stride :: Trigger_State *Trigger , stride :: Trigger *
Completed , OutputDataType AttackSlope , OutputDataType DecaySlope ,
bool *AttackPhase , bool *DecayPhase , OutputDataType *

EnvelopeValue) {
8 if(Trigger ->State() and not (* AttackPhase or *DecayPhase)) {
9 reaction_StartAttackPhase(AttackPhase);

10 }
11 if(Trigger ->State() and *DecayPhase) {
12 reaction_SwitchToAttackPhase(AttackPhase , DecayPhase);
13 }
14 if (* AttackPhase) {

123

Interaction Design with Triggers and Reactions Chapter 7
15 reaction_NextAttackValue(AttackSlope , AttackPhase ,

DecayPhase , EnvelopeValue);
16 }
17 if (* DecayPhase) {
18 reaction_NextDecayValue(Completed , DecaySlope , DecayPhase

, EnvelopeValue);
19 }
20 *Output = Input * *EnvelopeValue;
21 }
22
23 void process_AttackPortDomain(AttackTimeDataType AttackTime ,

OutputDataType *AttackSlope){
24 *AttackSlope = OutputDataType (1.0) / (OutputDataType(

AttackTime) * OutputPort_Rate);
25 }
26
27 void process_DecayPortDomain(DecayTimeDataType DecayTime ,

OutputDataType *DecaySlope){
28 *DecaySlope = OutputDataType (-1.0) / (OutputDataType(

DecayTime) * OutputPort_Rate);
29 }
30
31 void init_AttackTime(AttackTimeDataType *AttackTime) {
32 *AttackTime = AttackTimeDataType (0.125);
33 }
34
35 void init_DecayTime(DecayTimeDataType *DecayTime) {
36 *DecayTime = DecayTimeDataType (0.125);
37 }
38
39 void init_AttackSlope(OutputDataType *AttackSlope) {
40 AttackTimeDataType AttackTime;
41 init_AttackTime (& AttackTime);
42 *AttackSlope = OutputDataType (1.0) / (OutputDataType(

AttackTime) * OutputPort_Rate);
43 }
44
45 void init_DecaySlope(OutputDataType *DecaySlope) {
46 DecayTimeDataType DecayTime;
47 init_DecayTime (& DecayTime);
48 *DecaySlope = OutputDataType (-1.0) / (OutputDataType(

DecayTime) * OutputPort_Rate);
49 }
50
51 void init_AttackPhase(bool *AttackPhase) {
52 *AttackPhase = false;
53 }
54
55 void init_DecayPhase(bool *DecayPhase) {
56 *DecayPhase = false;

124

Section 7.4 Attack/Decay Envelope in Stride
57 }
58
59 void reaction_StartAttackPhase(bool *AttackPhase) {
60 *AttackPhase = true;
61 }
62
63 void reaction_SwitchToAttackPhase(bool *AttackPhase , bool *

DecayPhase) {
64 *AttackPhase = true;
65 *DecayPhase = false;
66 }
67
68 void reaction_EnvelopeValueUpperLimit(OutputDataType *

EnvelopeValue , bool *AttackPhase ,bool *DecayPhase) {
69 *EnvelopeValue = OutputDataType (1.0);
70 *DecayPhase = true;
71 *AttackPhase = false;
72 }
73
74 void reaction_EnvelopeValueLowerLimit(OutputDataType *

EnvelopeValue , bool *DecayPhase) {
75 *EnvelopeValue = OutputDataType (0.0);
76 *DecayPhase = false;
77 }
78
79 void reaction_NextAttackValue (OutputDataType AttackSlope , bool *

AttackPhase , bool *DecayPhase , OutputDataType *EnvelopeValue) {
80 *EnvelopeValue = *EnvelopeValue + AttackSlope;
81 OutputDataType BundleConnector_00 [2];
82 BundleConnector_00 [0] = *EnvelopeValue;
83 BundleConnector_00 [1] = 1.0;
84 GreaterOrEqual_00.process_OutputDomain(BundleConnector_00 , &

GreaterOrEqual_00_Output);
85 if (GreaterOrEqual_00_Output) {
86 reaction_EnvelopeValueUpperLimit(EnvelopeValue ,

AttackPhase , DecayPhase);
87 }
88 }
89
90 void reaction_NextDecayValue (stride :: Trigger *Completed ,

OutputDataType DecaySlope , bool *DecayPhase , OutputDataType *
EnvelopeValue) {

91 *EnvelopeValue = *EnvelopeValue + DecaySlope;
92 OutputDataType BundleConnector_00 [2];
93 BundleConnector_00 [0] = *EnvelopeValue;
94 BundleConnector_00 [1] = 0.0;
95 LessOrEqual_00.process_OutputDomain(BundleConnector_00 , &

LessOrEqual_00_Output);
96 if (LessOrEqual_00_Output) {
97 reaction_EnvelopeValueLowerLimit(EnvelopeValue ,

125

Interaction Design with Triggers and Reactions Chapter 7
DecayPhase);

98 Completed ->Update(LessOrEqual_00_Output);
99 }

100 }
101
102 private:
103 float OutputPort_Rate;
104
105 using GreaterOrEqual_00_Type = GreaterOrEqual <OutputDataType ,

bool >;
106 GreaterOrEqual_00_Type GreaterOrEqual_00;
107 bool GreaterOrEqual_00_Output;
108 using LessOrEqual_00_Type = LessOrEqual <OutputDataType , bool >;
109 LessOrEqual_00_Type LessOrEqual_00;
110 bool LessOrEqual_00_Output;
111 };

Code 7.12: C++ class generated from the Attack/Decay envelope module.

Multiple reactions, switches, and triggered are declared inside the AD envelope mod-
ule. They are all interconnected in the stream expressions of the module.
The two triggers, Trigger and Completed are connected to the trigger and completed
ports of the module respectively. The Trigger trigger is connected to two reactions,
StartAttackPhase and SwitchToAttackPhase. The stream expressions enclosed in
these two reactions are evaluated when Trigger is active and the AttackPhase switch
and the DecayPhase switch have the correct state. These two switches represent the
phase the AD envelope is in. The two phases are mutually exclusive. When the
AD envelope is in one of these phases the stream expressions in the correspond-
ing NextAttackValue or NextDecayValue reactions are evaluated. In these two reac-
tions the EnvelopeValue signal is calculated. This signal is the multiplier by which
the Input signal is multiplied to produce the Output signal. Two other reactions,
EnvelopeValueUpperLimit and EnvelopeValueLowerLimit, which are also evaluated
in the NextAttackValue or NextDecayValue reactions, check whether EnvelopeValue
has reached its upper or lower limits. The latter reactions are also responsible for

126

Section 7.4 Attack/Decay Envelope in Stride

Idle

Attack
Phase

Start Attack
Phase

Upper
Limit

Reached

Decay
Phase

Trigger

Next Attack
Value

Switch to Attack
Phase

Start Decay
Phase

Next Decay
Value

Lower
Limit

Reached

Trigger

YES

NO

Figure 7.3: Attack/Decay envelope state machine.

updating the state of the envelope.
The connections between these reactions, switches, and triggers create a state ma-
chine. The envelope transitions from an "Idle" mode, where the AD envelope is nei-
ther in the attack phase nor in the decay phase, to an "Attack Phase" mode. From
there it transitions to a "Decay Phase" mode and finally returning to the "Idle" mode
awaiting a trigger. This state machine is shown in Figure 7.3.
The reaction blocks in the AD envelope module were translated to methods of the
C++ template class shown in Code 7.12. These methods where then placed in the
statements section of an "if" statement with the expression constructed using the

127

Interaction Design with Triggers and Reactions Chapter 7
triggers and switched connected to the input port of the reaction.

7.5 Summary
In this chapter we presented the switch, trigger, and reaction blocks in Stride. Through
multiple examples we demonstrated how these blocks behave and how they could
be used together to design interactions in Stride. We also demonstrated how these
blocks could be used to create a state machine.

128

Chapter 8

Advanced Blocks in Stride
In this chapter we will present the advanced blocks in Stride and demonstrate their
use.

8.1 The Buffer Block
A buffer block in Stride represent a First In First Out (FIFO) data buffer. A buffer block
samples its input port at the rate assigned to it. It performs the sampling in the do-
main it is assigned to. The size of a buffer block is fixed and assigned at declaration.
Signal and switch blocks can be connected to the input and output ports of a buffer
block. The buffer block can be used to create delay lines, perform vector operations
on data, and serve as an abstraction for data structures exchanged been hardware
and software.

129

Advanced Blocks in Stride Chapter 8
A buffer’s data can be accessed using the indexing operator in Stride. The syntax is
identical to accessing a block in a block bundle (subsection 4.2.1).
Code 7.1 shows the default declaration of a buffer block.
1 buffer BlockName {
2 default: 0.0 # Default value
3 type: auto # Buffer ’s data type
4 size: 1 # Buffer ’s size
5 rate: PlatformRate # Buffer ’s rate
6 domain: PlatformDomain # Buffer ’s domain
7 reset: none # Resets buffer to default value
8 meta: "A buffer block" # Meta information
9 }

Code 8.1: Buffer block declaration.

8.1.1 Buffer Block as Delay Line

A buffer holds the previous values of a signal connected to its input, given the rates of
the signal and the buffer match. The size of the buffer determines the length of the
data retained by the buffer. In this scenario the buffer block represents a delay line
whose memory can be tapped into by indexing the buffer block.
Code 8.2 is an example of buffer block used as a 3-sample delay line. The Counter

module cyclically generates an integer valued ramp from 1 to 5. The Count signal
holds the most recent value generated by the Counter module. Count is connected
to the input of the Buffer buffer block. Buffer’s size is set to 3 at declaration. Since
Count and Buffer have the same rate and belong to the same domain, the values
stored in Buffer are the past values of Count. The signal DelayedCount is connected
to the output of the Buffer buffer block. Since DelayedCount has the same rate and

130

Section 8.1 The Buffer Block
is in the same domain as Buffer, the value of DelayedCount holds the previous values
of Count delayed by three clock ticks of the domain they both belong to. The values
of Count and DelayedCount are shown in Figure 8.1.
1 signal Count {
2 rate: ComputationRate
3 domain: ComputationDomain
4 }
5
6 buffer Buffer {
7 default: 0
8 size: 3
9 rate: ComputationRate

10 domain: ComputationDomain
11 }
12
13 signal DelayedCount {
14 rate: ComputationRate
15 domain: ComputationDomain
16 }
17
18 Counter (
19 start: 1
20 increment: 1
21 roll: 5
22)
23 >> Count
24 >> Buffer
25 >> DelayedCount;

Code 8.2: A buffer block used as a delay line.

The internal values of the Buffer buffer block and their relation to the signal blocks
Count and DelayedCount are shown in Table 8.1. The index of the buffer block has
the same value as the amount by which the input signal is delayed. While Buffer[3]
represents the output of the buffer block and three samples delay, Buffer[2] is a tap
into the buffer whose value represents the value of Count delayed by two samples.

On a given clock tick, the buffer block samples the signal connected to its input port
131

Advanced Blocks in Stride Chapter 8

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Va
lu
e

Sample

Count

DelayedCount

Figure 8.1: Values of Count and DelayedCount.

Clock Tick 1 2 3 4 5 6 7 8 9Count 1 2 3 4 5 1 2 3 4_BufferInput 1 2 3 4 5 1 2 3 4Buffer[1] 0 1 2 3 4 5 1 2 3Buffer[2] 0 0 1 2 3 4 5 1 2Buffer[3] 0 0 0 1 2 3 4 5 1DelayedCount 0 0 0 1 2 3 4 5 1
Table 8.1: Values held by the buffer on every clock tick.

and stores its value in its internal memory. This memory is not accessible by the user
and is represented by _BufferInput in Table 8.1. On the following clock tick, before
the buffer block samples its input to replace the value of _BufferInput with the new
sampled value, it pushes the value held in _BufferInput into Buffer[1] and the value
of Buffer[1] into Buffer[2] and so forth.

132

Section 8.1 The Buffer Block
8.1.2 Buffers and Hardware IO Abstraction

Data is most often exchanged between hardware and software through data struc-
tures known as buffers. The buffer block in Stride can be used to represent such data
structures.
Operations on the data contained in a buffer can be performed either on the entire
buffer or on each data point individually. To operate on the entire buffer, the name
of the buffer is used when performing operations. Using the buffer name directs the
code generator to use vector operations. To operate on each data point individually,
a signal block is connected to the output of the buffer block and operations are per-
formed on the signal. The signal and the buffer must have the same rate. The latter
case is equivalent to performing per sample processing.
By working with buffers, the user gains the ability to direct the Stride code generator
to use vector operations rather than operate on individual samples.

Sample Processing on Hardware IO

AudioInBuffer and AudioOutBuffer in Code 8.3 are two buffer block bundles. They
abstract the left and right audio input and output data buffers. Software shares these
buffers with hardware through a hardware abstraction software interface generally
known as a driver.

133

Advanced Blocks in Stride Chapter 8
1 buffer AudioInBuffer [2] {
2 default: 0.0
3 type: "Real"
4 size: 256
5 rate: AudioRate
6 domain: AudioDomain
7 meta: "Left and right audio input buffers from audio

hardware."
8 }
9

10 buffer AudioOutBuffer [2] {
11 default: 0.0
12 type: "Real"
13 size: 256
14 rate: AudioRate
15 domain: AudioDomain
16 meta: "Left and right audio output buffers to audio

hardware."
17 }
18
19 signal AudioIn [2] {
20 default: 0.0
21 type: "Real"
22 rate: AudioRate
23 domain: AudioDomain
24 meta: "Left and right audio signals."
25 }
26
27 signal Mono {
28 default: 0.0
29 type: "Real"
30 rate: AudioRate
31 domain: AudioDomain
32 meta: "Mono signal created from left and right audio

signals."
33 }
34
35 AudioInBuffer >> AudioIn;
36
37 (AudioIn [1] + AudioIn [2]) / 2.0 >> Mono;
38
39 Mono >> AudioOutBuffer;

Code 8.3: Per sample operation performed on data contained in buffer blocks.

In this example, the AudioInBuffer buffer bundle is connected to the AudioIn signal
bundle. Arithmetic operations are performed on the two AudioIn signals to produce

134

Section 8.1 The Buffer Block
a signal represented by Mono. Since the arithmetic operations are performed directly
on the signals and not the buffers, Stride performs the operations on a per sample
basis and does not apply any vector operations. In this case the Stride code generator
generates a for-loop and iterates over every data point of the two buffers to com-
pute the Mono signal. Next, the resulting signal is sampled by the two buffers of the
AudioOutBuffer buffer block bundle.

Vector Processing on Hardware IO

The same operation performed in Code 8.3 could be performed using vector process-
ing as shown in Code 8.4. Although the outputs will be identical, the difference is in
the generated code, where in the latter case the code is optimized for performance.
In Code 8.4, Mono is declared as a buffer block rather than a signal block. Mono has the
same size and rate as the buffers in the AudioInBuffer buffer bundle. The arithmetic
operations are performed on the buffers of the AudioInBuffer buffer bundle and
stored into the Mono buffer. The Stride code generator would then attempt to generate
code using methods capable of operating on vectors rather than samples to perform
the arithmetic operations. This is only possible if such methods are available on the
platform Stride is targeting.
The use of vector operations in code generation to generate performance optimized
code is further discussed in the following subsection.

135

Advanced Blocks in Stride Chapter 8
1 buffer AudioInBuffer [2] {
2 default: 0.0
3 type: "Real"
4 size: 256
5 rate: AudioRate
6 domain: AudioDomain
7 meta: "Left and right audio input buffers from audio

hardware."
8 }
9

10 buffer AudioOutBuffer [2] {
11 default: 0.0
12 type: "Real"
13 size: 256
14 rate: AudioRate
15 domain: AudioDomain
16 meta: "Left and right audio output buffers to audio

hardware."
17 }
18
19 buffer Mono {
20 default: 0.0
21 type: "Real"
22 size: 256
23 rate: AudioRate
24 domain: AudioDomain
25 meta: "Mono buffer calculated from the input buffers."
26 }
27
28 AudioInBuffer [1] + AudioInBuffer [2] / 2.0 >> Mono >> AudioOutBuffer;

Code 8.4: Vector operations on audio input and output buffers.

8.1.3 Buffers and Vector Operations

Buffers in Stride are yet another means available to the user to direct the Stride code
generator to optimize for performance. Buffers can be used to perform vector op-
erations on data. If the processor of the targeted platform can operate on multiple
data simultaneously with a single instruction, buffers can be used to invoke this type
of operations.

136

Section 8.1 The Buffer Block
Multiple variants of the samemodule can exist in Stride. Each variant can be designed
to operate on different block types connected to its ports or different data types being
passed on those ports. This is equivalent to compile time polymorphism in object
oriented languages through function overloading. To illustrate this, we will consider a
module called Offset. The module is designed to offset a signal by some value. Two
variants of the Offsetmodule are shown in Code 8.5 and Code 8.6.
Both Offset modules have identical ports. The first difference appears in the type
of the blocks connected to these ports. The first variant accepts connections from
signal blocks at its main input andmain output ports, while the second variant accepts
connections from buffer blocks. The Stride code generator considers the type of the
block connected to a port of amodule and accordingly decides on the implementation
it generates.

1 module Offset {
2 ports: [
3 mainInputPort InputPort {
4 block: Input
5 }
6 mainOutputPort OutputPort {
7 block: Output
8 }
9 propertyInputPort OffsetPort {

10 name: "value"
11 block: OffsetValue
12 default: 1.0
13 meta: "Offset value."
14 }
15]
16 blocks: [
17 signal Input {
18 default: 0.0
19 type: OutputPort.type
20 rate: OutputPort.rate
21 domain: OutputPort.domain
22 }

137

Advanced Blocks in Stride Chapter 8
23 signal Output {
24 default: 0.0
25 type: OutputPort.type
26 rate: OutputPort.rate
27 domain: OutputPort.domain
28 }
29 signal OffsetValue {
30 default: OffsetPort.default
31 type: OutputPort.type
32 rate: OffsetPort.rate
33 domain: OffsetPort.domain
34 }
35]
36 streams: [
37 Input + OffsetValue >> Output;
38]
39 meta: "Add an offset to a signal."
40 }

Code 8.5: A signal offsetting module.

1 module Offset {
2 ports: [
3 mainInputPort InputPort {
4 block: Input
5 }
6 mainOutputPort OutputPort {
7 block: Output
8 }
9 propertyInputPort OffsetPort {

10 name: "value"
11 block: OffsetValue
12 default: 1.0
13 meta: "Offset value."
14 }
15]
16 blocks: [
17 buffer Input {
18 default: 0.0
19 type: OutputPort.type
20 size: OutputPort.size
21 rate: OutputPort.rate
22 domain: OutputPort.domain
23 }

138

Section 8.1 The Buffer Block
24 buffer Output {
25 default: 0.0
26 type: OutputPort.type
27 size: OutputPort.size
28 rate: OutputPort.rate
29 domain: OutputPort.domain
30 }
31 signal OffsetValue {
32 default: OffsetPort.default
33 type: OutputPort.type
34 rate: OutputPort.rate / OutputPort.size
35 domain: OutputPort.domain
36 }
37]
38 streams: [
39 Input >> _VectorOffset (value: OffsetValue) >> Output;
40]
41 meta: "Add an offset to a buffer."
42 }

Code 8.6: A buffer offsetting module.

The second difference is in the rate and domain of the OffsetValue signal. In the
first variant, the rate and the domain of OffsetValue are assigned the same values
as the signal connected to the value port. However, in the second variant, the rate
and the domain are derived from the signal connected to the main output port. If the
Stride code generator is to perform vector processing, the offset value has to remain
constant for that vector. The only way to guarantee this is to either have a constant
block connected to the value port or have a signal whose rate is equal to the rate of
the buffer divided by the buffer size connected to the main output port. In the latter
case the value signal and the buffer have to be in the same domain.
The third difference is in the stream expressions in the streams property of the mod-
ules. In the first variant, the Input and OffsetValue are simply added together to
calculate Output. In the second variant, a module called _VecotrOffset is used to
perform this computation. _VecotrOffset is a Foreign Function Interface (FFI) mod-

139

Advanced Blocks in Stride Chapter 8
ule block. This FFI block wraps a function or multiple functions (to handle different
data types) capable of performing optimized vector processing. These functions are
available on the target platform for adding an offset to a vector.
To illustrate which of these two modules is used based on the Stride code written by
the user, let us consider Code 8.7 and Code 8.8. Let us assume we are targeting a
platform designed with a 32-bit ARM microcontroller with SIMD instruction support
and a library to perform optimized vector operations on various data types.
Let us assume we have a stream of 16-bit signed integer data coming in from an ADC
and the data needs to be biased (offset) in a computation domain available on the
target platform. The data arrives to the domain in sets of eight values at a time.
1 constant BufferSize {
2 value: 8
3 }
4
5 signal Input {
6 type: INT16
7 rate: ComputationRate
8 domain: ComputationDomain
9 }

10
11 signal Output {
12 type: INT16
13 rate: ComputationRate
14 domain: ComputationDomain
15 }
16
17 signal OffsetValue {
18 type: INT16
19 rate: ComputationRate
20 domain: ComputationDomain
21 }
22
23 # Update OffsetValue
24
25 Input >> Offset (value: OffsetValue) >> Output;

Code 8.7: Adding an offset to a signal in Stride.

140

Section 8.1 The Buffer Block
1 constant BufferSize {
2 value: 8
3 }
4
5 buffer Input {
6 size: BufferSize
7 type: INT16
8 rate: ComputationRate
9 domain: ComputationDomain

10 }
11
12 buffer Output {
13 size: BufferSize
14 type: INT16
15 rate: ComputationRate
16 domain: ComputationDomain
17 }
18
19 signal OffsetValue {
20 type: INT16
21 rate: ComputationRate / BufferSize
22 domain: ComputationDomain
23 }
24
25 # Update OffsetValue
26
27 Input >> Offset (value: OffsetValue) >> Output;

Code 8.8: Adding an offset to a buffer in Stride.

If the user chooses to perform this operation using signal blocks as shown in Code 8.7,
the Stride code generator generates code similar to the one shown in Code 8.9, where
a for-loop is generated to perform per sample processing.
If the user chooses to perform this operation using buffer blocks instead, as shown
in Code 8.8, the Stride code generator generates code similar to the one shown in
Code 8.10. A function called arm_offset_q15 is used to perform a vector offset opera-
tion. This function utilized a SIMD addition instruction, that is able to add the offset to
four 16-bit integer values simultaneously. By performing this operation using buffers,
performance would improve by four times.

141

Advanced Blocks in Stride Chapter 8
1 #define BUFFER_SIZE 8
2
3 static q15_t input = 0;
4 static q15_t output = 0;
5 static q15_t offsetValue;
6
7 void computationCallback (...) {
8
9 for (unsigned int i = 0; i < BUFFER_SIZE; i++) {

10 // Get input
11 // Update offsetValue
12 output = input + offsetValue;
13 // Use output
14 }
15
16 }

Code 8.9: C++ code generated for offsetting a signal.

1 #define BUFFER_SIZE 8
2
3 static q15_t input [BUFFER_SIZE];
4 static q15_t output [BUFFER_SIZE];
5 static q15_t offsetValue;
6
7 void computationCallback (...) {
8
9 // Get input array

10 // Update offsetValue
11 arm_offset_q15 (input , offsetValue , output , BUFFER_SIZE);
12 // Use output array
13
14 }

Code 8.10: C++ code generated for offsetting a buffer.

8.2 The Loop Block
Loop blocks in Stride enable iterating over signals in a bundle block or data in a buffer
block. Iterating over bundle and buffer blocks is possible without using the loop block.
However, by using a loop block the process can be significantly simplified.

142

Section 8.2 The Loop Block
The default declaration of a loop block is shown in Code 8.11.
The block looks similar to a module block but has two additional properties called
onExecution and terminateWhen. Tomake a valid loop declaration, all blocks declared
within a loop have to belong to the same domain. The loop executes at the rate as-
signed to the Input signal bundle connected to the main input port of the block. By
default, the rate of the Input signal bundle is assigned the rate of the signal con-
nected to the main output port. When the loop executes, a trigger is generated on the
onExecution property. Any trigger connected to this property port is triggered prior
to the evaluation of the stream expressions in the streams property. A trigger called
Reset is connected to this port by default and can be used to reset any internal block
in the loop. When the loop starts executing, it suspends the rates of all blocks de-
clared within it. That is, the loop treats all blocks as if their rates were set to 0 and run
in reactive mode. The stream expressions keep executing until a trigger connected to
the terminateWhen property port is trigger. By default, a trigger called Done is con-
nected to the terminateWhen port. The loop can be terminated by attaching a logical
expression to the input port of the Done trigger. The loop block has an additional inter-
nal signal block called Index. This signal can be used to iterate over the Input signal
bundle. The Index signal’s reset port is connected to the Reset trigger and gets reset
when the loop starts executing.
1 loop BlockName {
2 ports: [# Default ports of the loop
3 mainInputPort InputPort {
4 block: Input
5 meta: ""
6 }
7 mainOutputPort OutputPort {
8 block: Output
9 meta: ""

10 }

143

Advanced Blocks in Stride Chapter 8
11]
12 blocks: [# Buffer ’s data type
13 signal Input [InputPort.size] {
14 rate: OutputPort.rate
15 domain: OutputPort.domain
16 }
17 signal Output {
18 default: 0.0
19 rate: 0
20 domain: OutputPort.domain
21 reset: Reset
22 }
23 signal Index {
24 default: 1
25 rate: 0
26 domain: Output.domain
27 reset: Reset
28 }
29 trigger Done {
30 edge: "Rising"
31 domain: Output.domain
32 }
33 trigger Reset {
34 domain: Output.domain
35 }
36]
37 onExecution: Reset # Trigger Output
38 # Triggered when the loop executes
39 terminateWhen: Done # Trigger Input
40 # Stops the loop when triggered
41 streams: [# Streams executed by the loop
42
43 # ###
44 # Stream expressions added here by the user
45 # ###
46
47 Index + 1 >> Index;
48 [Index , Input.size] >> Greater () >> Done;
49 meta: "Default loop block" # Meta information
50 }

Code 8.11: Loop block declaration.

Code 8.12 is a loop block called Sum designed to calculate the sum of: multiple signals
bundled together, signals in a signal bundle, or the data contained in a buffer.

144

Section 8.2 The Loop Block
1 loop Sum {
2 ports: [
3 mainInputPort InputPort {
4 block: Input
5 meta: ""
6 }
7 mainOutputPort OutputPort {
8 block: Output
9 meta: ""

10 }
11]
12 blocks: [
13 signal Input [InputPort.size] {
14 rate: OutputPort.rate
15 domain: OutputPort.domain
16 }
17 signal Output {
18 default: 0.0
19 rate: 0
20 domain: OutputPort.domain
21 reset: Reset
22 }
23 signal Index {
24 default: 1
25 rate: 0
26 domain: Output.domain
27 reset: Reset
28 }
29 trigger Done {
30 edge: "Rising"
31 domain: Output.domain
32 }
33 trigger Reset {
34 domain: Output.domain
35 }
36]
37 onExecution: Reset
38 terminateWhen: Done
39 streams: [
40 Input[Index] + Output >> Output;
41 Index + 1 >> Index;
42 [Index , Input.size] >> Greater () >> Done;
43]
44 }

Code 8.12: Sum loop in Stride.

In Code 8.13, the Sum loop is used to calculate the sum of all the signals in the Inputs
145

Advanced Blocks in Stride Chapter 8
signal bundle.
1 signal Inputs [4] {
2 rate: AudioRate
3 domain: AudioDomain
4 }
5
6 signal InputsTotal {
7 rate: AudioRate
8 domain: AudioDomain
9 }

10
11 Inputs >> Sum () >> InputsTotal;

Code 8.13: Summing signals in a bundle.

In Code 8.14, the Sum loop is used to calculate the sum of the data in the Buffer buffer
block. The Sum loop is executed once every four clock ticks since the rate of the Total
signal is assigned a clock rate 4 times slower than the default clock rate of the domain
it is assigned.
By varying the rate of the signal connected to the main output port of a loop, it is
possible to perform operations on the buffer with overlapping data from the Count
signal. This can be used to perform overlap-add operations. This type of operation is
common in digital signal processing[28].
The values held by the signals and buffer in Code 8.14 are shown in Table 8.2. The
values of Total in boldface indicate when the Sum loop was executed, and its value
was updated.

1 signal Count {
2 default: 0
3 rate: ComputationRate
4 domain: ComputationDomain
5 }
6

146

Section 8.2 The Loop Block
7 buffer Buffer {
8 default: 0
9 size: 4

10 rate: ComputationRate
11 domain: ComputationDomain
12 }
13
14 signal Total {
15 default: 0
16 rate: ComputationRate / 4
17 domain: ComputationDomain
18 }
19
20 Counter (
21 start: 1
22 increment: 1
23 roll: 4
24)
25 >> Count
26 >> Buffer
27 >> Sum ()
28 >> Total;

Code 8.14: Summing data in a buffer.

Clock Tick 1 2 3 4 5 6 7 8 9 10Count 1 2 3 4 1 2 3 4 1 2Buffer[1] 0 1 2 3 4 1 2 3 4 1Buffer[2] 0 0 1 2 3 4 1 2 3 4Buffer[3] 0 0 0 1 2 3 4 1 2 3Buffer[4] 0 0 0 0 1 2 3 4 1 2Total 0 0 0 0 10 10 10 10 10 10
Table 8.2: Values of signals and the buffer at every clock tick.

Code 8.15 is a declaration of a module block called Average. The module can be used
to calculate the average value of the signals in a signal bundle or the data contained
in a buffer. The module uses the Sum loop internally.
1 module Average {
2 ports: [
3 mainInputPort InputPort {
4 block: Input
5 meta: ""
6 }

147

Advanced Blocks in Stride Chapter 8
7 mainOutputPort OutputPort {
8 block: Output
9 meta: ""

10 }
11]
12 blocks: [
13 signal Input [InputPort.size] {
14 rate: OutputPort.rate
15 domain: OutputPort.domain
16 }
17 signal Output {
18 rate: Output.rate
19 domain: OutputPort.domain
20 }
21 signal Total {
22 rate: Output.rate
23 domain: OutputPort.domain
24 }
25]
26 streams: [
27 Input >> Sum() >> Total;
28 Total / InputPort.size >> Output;
29]
30 }

Code 8.15: Average module block in Stride.

8.3 The Group Block
Signals and signal bundles can be grouped together. Grouping of signals and signal
bundles is possible if they belong to the same domain, run at the same rate, and share
the same reset trigger.
By grouping signals and signal bundles, the user directs the Stride code generator
to treat signals in a group as a single entity in order to protect the integrity of the
data carried by each signal in the group across domains. A group block declaration is
shown in Code 8.16.

148

Section 8.3 The Group Block
1 group BlockName {
2 signals: [] # Signals and signal bundles
3 meta: "Default group block" # Meta information
4 }

Code 8.16: Group block declaration.

Code 8.17 is a resonant low pass filter module. The filter is implemented as a digital
biquad1 filter direct form I[29, chapter 6]. The coefficients of the filter are represented
by the signal bundles A and B in the blocks property of the module. Signal bundles
A and B are then grouped together in a group block called FilterCoefficients. Al-
though the group block is not used in the stream expressions of the module, it plays
a significant role in the generated code shown in Code 8.18.
The reason behind grouping the coefficient signal bundles is to make sure the two
coefficient sets of the filter are updated together and not independently, especially
if the coefficient update occurs in a domain different from the one where they are
read and used by the filter. If one of the sets is updated and the update process
of the second set is interrupted by another thread prior to completion, and the filter
coefficients are used in this state to filter data, the output of the filter will be corrupted
because the sets used by the filter do not correspond to the same cutoff frequency or
quality factor.
In the generated code shown in Code 8.18, there is no reference made to the signal
bundles A and B. The only reference to them is through the FilterCoefficients ar-
ray. Since the array is not declared as a member of the class, reading and writing to
it can be controlled using a synchronization policy to guarantee the integrity of the
coefficients.

1Second order infinite impulse response
149

Advanced Blocks in Stride Chapter 8
1 module ResonantLowPass {
2 ports: [
3 mainInputPort InputPort {
4 block: Input
5 }
6 mainOutputPort OutputPort {
7 block: Output
8 }
9 propertyInputPort FrequencyPort {

10 name: "frequency"
11 block: Fc
12 default: 1000.0
13 meta: "The frequency of the ResonantLowPass in Hz."
14 }
15 propertyInputPort QFactorPort {
16 name: "qFactor"
17 block: Q
18 default: 0.7071
19 meta: "The quality factor of the ResonantLowPass."
20 }
21 propertyInputPort ResetPort {
22 name: "reset"
23 block: Reset
24 default: none
25 meta: "Resets the state of the resonant low pass

filter. Accepts a switch or a trigger."
26 }
27]
28 blocks: [
29 signal Input {
30 default: 0.0
31 type: OutputPort.type
32 rate: OutputPort.rate
33 domain: OutputPort.domain
34 }
35 signal Output {
36 default: 0.0
37 type: OutputPort.type
38 rate: OutputPort.rate
39 domain: OutputPort.domain
40 }
41 signal Fc {
42 default: FrequencyPort.default
43 type: FrequencyPort.type
44 rate: FrequencyPort.rate
45 domain: FrequencyPort.domain
46 }
47 signal Q {
48 default: QFactorPort.default
49 type: QFactorPort.type

150

Section 8.3 The Group Block
50 rate: QFactorPort.rate
51 domain: QFactorPort.domain
52 }
53 trigger Reset {
54 mode: "Rising"
55 domain: ResetPort.domain
56 }
57 signal InputBuffer {
58 default: 0.0
59 size: 2
60 type: OutputPort.type
61 rate: OutputPort.rate
62 domain: OutputPort.domain
63 reset: Reset
64 }
65 signal OutputBuffer {
66 default: 0.0
67 size: 2
68 type: OutputPort.type
69 rate: OutputPort.rate
70 domain: OutputPort.domain
71 reset: Reset
72 }
73 signal Xn [2] {
74 default: 0.0
75 type: OutputPort.type
76 rate: OutputPort.rate
77 domain: OutputPort.domain
78 reset: Reset
79 }
80 signal Yn [2] {
81 default: 0.0
82 type: OutputPort.type
83 rate: OutputPort.rate
84 domain: OutputPort.domain
85 reset: Reset
86 }
87 signal K {
88 default: 0.0
89 type: FrequencyPort.type
90 rate: FrequencyPort.rate
91 domain: FrequencyPort.domain
92 }
93 signal Norm {
94 default: 0.0
95 type: OutputPort.type
96 rate: 0
97 domain: [FrequencyPort.domain , QFactorPort.domain]
98 }
99 signal A[2] {

151

Advanced Blocks in Stride Chapter 8
100 default: 0.0
101 type: OutputPort.type
102 rate: 0
103 domain: [FrequencyPort.domain , QFactorPort.domain]
104 }
105 signal B[3] {
106 default: 0.0
107 type: OutputPort.type
108 rate: 0
109 domain: [FrequencyPort.domain , QFactorPort.domain]
110 }
111 group FilterCoefficients {
112 signals: [A , B]
113 }
114]
115 streams: [
116 3.14159265359 * Fc / OutputPort.rate >> Tan () >> K;
117
118 1.0 / (1.0 + K / Q + K * K) >> Norm;
119 K * K * Norm >> B[1];
120 2.0 * B[1] >> B[2];
121 B[1] >> B[3];
122 2.0 * (K * K - 1) * Norm >> A[1];
123 (1.0 - K / Q + K * K) * Norm >> A[2];
124
125 InputBuffer >> Xn;
126 OutputBuffer >> Yn;
127
128 Input * B[1] + Xn[1] * B[2] + Xn[2] * B[3] - Yn[1] * A[1] -

Yn[2] * A[2] >> Output;
129
130 Input >> InputBuffer;
131 Output >> OutputBuffer;
132]
133 meta: "Resonant low pass filter"
134 }

Code 8.17: Resonant low pass module in Stride.
1 template <class OutputDataType , class FrequencyDataType , class
QFactorDataType >

2 class ResonantLowPass {
3 public:
4 ResonantLowPass(float outputRate) : OutputPort_Rate(outputRate) {
5 Norm = OutputDataType (0.0);
6 }
7
8 void process_OutputDomain(OutputDataType Input , OutputDataType *

Output , stride ::Buffer <OutputDataType > *InputBuffer , stride ::Buffer
<OutputDataType > *OutputBuffer , OutputDataType Xn[], OutputDataType

152

Section 8.3 The Group Block
Yn[], OutputDataType FilterCoefficients []) {

9 InputBuffer ->Read(Xn);
10 OutputBuffer ->Read(Yn);
11
12 *Output = Input * FilterCoefficients [2] + Xn[0] *

FilterCoefficients [3] + Xn[1] * FilterCoefficients [4] - Yn[0] *
FilterCoefficients [0] - Yn[1] * FilterCoefficients [1];

13
14 InputBuffer ->Write(Input);
15 OutputBuffer ->Write (* Output);
16 }
17
18 void process_FrequencyPortDomain(FrequencyDataType Fc ,

FrequencyDataType *K) {
19 *K = std::tan (3.14159265359 * Fc / OutputPort_Rate);
20 }
21
22 void process_QFactorDomain(QFactorDataType Q, QFactorDataType *Q_)

{
23 *Q_ = Q;
24 }
25
26 void process_FrequencyPortDomain_QFactorPortDomain(QFactorDataType

Q, FrequencyDataType K, OutputDataType FilterCoefficients []) {
27 Norm = 1.0 / (1.0 + K / Q + K * K);
28 FilterCoefficients [2] = K * K * Norm;
29 FilterCoefficients [3] = 2.0 * FilterCoefficients [2];
30 FilterCoefficients [4] = FilterCoefficients [2];
31 FilterCoefficients [0] = 2.0 * (K * K - 1) * Norm ;
32 FilterCoefficients [1] = (1.0 - K / Q + K * K) * Norm;
33 }
34
35 void init_Fc(FrequencyDataType *Fc) {
36 *Fc = FrequencyDataType (1000.0);
37 }
38
39 void init_Q(QFactorDataType *Q) {
40 *Q = QFactorDataType (0.7071);
41 }
42
43 void init_Xn(OutputDataType Xn[]) {
44 for (int i = 0; i < 2; i++) {
45 Xn[i] = 0.0;
46 }
47 }
48
49 void init_Yn(OutputDataType Yn[]) {
50 for (int i = 0; i < 2; i++) {
51 Yn[i] = 0.0;
52 }

153

Advanced Blocks in Stride Chapter 8
53 }
54
55 void init_K(FrequencyDataType *K) {
56 FrequencyDataType Fc;
57 init_Fc (&Fc);
58 *K = std::tan (3.14159265359 * Fc / OutputPort_Rate);
59 }
60
61 void init_FilterCoefficients (OutputDataType FilterCoefficients [])

{
62 QFactorDataType Q;
63 init_Q (&Q);
64 FrequencyDataType K;
65 init_K (&K);
66 Norm = 1.0 / (1.0 + K / Q + K * K);
67 FilterCoefficients [2] = K * K * Norm;
68 FilterCoefficients [3] = 2.0 * FilterCoefficients [2];
69 FilterCoefficients [4] = FilterCoefficients [2];
70 FilterCoefficients [0] = 2.0 * (K * K - 1) * Norm ;
71 FilterCoefficients [1] = (1.0 - K / Q + K * K) * Norm;
72 }
73
74 private:
75 float OutputPort_Rate;
76
77 OutputDataType Norm;
78 };

Code 8.18: C++ class generated from the resonant low pass module.

8.4 Summary
In this chapter we have presented a few advanced blocks in Stride that make it easier
and more efficient to write code. These blocks also give the user more control over
the generated code. buffer blocks can be used: as delay lines, to perform vector
operations, or to abstract hardware buffers. loop blocks can be used to iterate over
signals in signal bundles or data contained in buffers. Finally, group blocks allow for
grouping signals together to preserve their integrity across domains.

154

Chapter 9

Stride
Stride is a programming language for real-time sound synthesis, processing, and in-
teraction design. Stride is designed to abstract hardware and software architectures,
thus simplifying the process of software and hardware integration, while giving the
user control over the code generation process. These abstractions are defined in
Stride systems which represent the inner workings of the target hardware and soft-
ware, while exposing them in a simple and consistent manner across platforms.
The Stride language is part of the Stride environment which also encompasses the
Stride integrated development environment (Stride IDE), the Stride interpreter, a tar-
get code generator, along with a set of Stride systems.
The Stride language presented in this dissertation is Stride version 1.0 and is licensed
under the terms of the 3-clause BSD license. Copyright c©2017. The Regents of the
University of California. All rights reserved.

155

Stride Chapter 9
Stride is available online at http://StrideLang.org.

9.1 Language Features
Stride is designed around the declarative and dataflow paradigms. The language has
two constructs: block declarations and stream expressions. Stride allows both push
(reactive) and pull programming, achieved by controlling the rate of signals. Signals
are the fundamental building block of the language. The choice of making Stride
declarative was to separate semantics from any particular implementation.
Stride borrows some of the best features of other programming languages like multi-
channel expansion, single operator interfacing, multiple control rates, and per sample
processing. Stride is also a self-documenting language.
The novel and unique aspect of Stride is making rates and hardware computation
cores an intrinsic part of the language by introducing computation domains and syn-
chronizing rates to them. This concept enables the distribution of synchronous and
asynchronous computations, encapsulated within a single code block, to execute in
different interrupt routines or threads on the hardware. The domains can potentially
be part of a heterogeneous architecture. Rather than just being a unit generator and
audio graph management tool, Stride enables the user to segment computations en-
capsulated in a unit generator during target code generation while handling it as a
single unit in their code.
Stride enables its user to declare the frequency at which Stride expressions are eval-

156

http://StrideLang.org

Section 9.1 Language Features
uated and provides the user with the ability to control and fine tune the quality of
the sounds they seek to generate or process. Stride also enables its user to control
where expressions get evaluated and computed. This type of control is essential to
optimizing code running on a resource-constrained device such as a microcontroller.
A user of Stride can also design interaction using reactions, an abstraction to handle
asynchronous events. A reaction in Stride is similar to an "if" statements in proce-
dural languages. However, in Stride, a reaction can enclose expressions executing in
different domains, a feature that is not achievable by an "if" statement in a procedural
language.
Stride is designed with embedded hardware in mind. Stride is platform agnostic and
can target platforms like Bela[30], Axoloti[31], and OWL[32]. Stride is not restricted to a
fixed number of building blocks or objects compared to the languages and tools used
to target these platforms. Stride is designed to perform low-level signal processing
functions and generate code that can run at native speed.
Although Stride is a textual language inheriting concepts from unit generator lan-
guages like Csound[33], SuperCollider[16][17] and ChucK[34], its basic construct is the
streaming operator� which makes it conceptually similar to dataflow languages like
Pure Data[13] and Max[35]. Stride is not a dynamic unit generator graph manager,
but rather a code generator like Faust[36]. Additionally, Stride is designed to facilitate
both low-level signal processing algorithms and high-level constructs, like granular
synthesis and frequency domain processing, using the same syntax.
A central consideration during the design of Stride was to treat the language as an
interface and try to make it as "ergonomic" as possible. Two other criteria were read-

157

Stride Chapter 9
ability and flow. That is, users should not need to read documentation to understand
code and should be able to write code with as little friction as possible as the lan-
guage works in a "physically intuitive" way similar to interfacing instruments, effects
processors, amplifiers, and speakers in the physical world. To achieve this, features
from popular and widely used general-purpose and domain specific languages were
incorporated into Stride, like:

– Multichannel expansion from Nyquist[37]
– Single operator interface and multiple control rates from ChucK
– Per sample processing and discarding control flow statements from Faust
– Polychronous data-flow from synchronous and reactive programming languages
like SIGNAL[38]

– Declarations and properties from Qt Meta Language[39]
– Slicing notation for indexing from Python
– Stream operator from C++

158

Section 9.2 Stride Environment
9.2 Stride Environment

The Stride environment comprises the Stride language, Stride systems, the Stride
compiler, and the Stride IDE.

9.2.1 Stride Systems

A system in Stride is an abstraction of software and hardware target platforms. Stride
system exposes the inner workings of a target computer and its peripherals to the
user in an abstracted form. Stride does not only abstract the hardware but also the
software architecture used to organize various processes. These abstractions grant
the user full control of the underlying system without them having to know the imple-
mentation details.
Because of Stride’s ability to abstract hardware, heterogeneous systems can be de-
fined and consolidated under a single Stride system. This is achieved by abstracting
the communication between the hardware and software platforms encompassing the
heterogeneous system. In other words, different pieces of hardware (e.g. Arduino1,
Raspberry Pi2, Desktop, etc.) can be grouped together to appear within Stride as a sin-
gle system, as the communication between the devices is handled internally by Stride
according to the system definition.

1https://www.arduino.cc/ [accessed November 7, 2018]
2https://www.raspberrypi.org/ [accessed November 7, 2018]

159

https://www.arduino.cc/
https://www.raspberrypi.org/

Stride Chapter 9
9.2.2 Stride Compiler

The Stride compiler is built out of a few independent modules. Any of these modules
can be replaced in future versions of Stride. The compiler modules are the interpreter
(lexical analyzer, parser, and intermediate code generator) and the target code gener-
ator. The compiler modules of Stride version 1.0 are shown in Figure 9.1.

Stride
Interpreter

Intermediate
Code

User
Code

System
Selection

Hardware
Code

Code
Generator

System
Template
Files

Target
Binary

Compiler

Stride C/C++ PythonJSON

System
Libraries /
Files

GNU Flex / GNU Bison

Platform
Code

Figure 9.1: The Stride compiler.

The interpreter in written in C/C++ and outputs data in the JSON file format. The JSON
file serves as an input to the target code generator which is responsible for generating
and compiling code for target systems. This approach decouples the interpreter from
the code generator.

160

Section 9.2 Stride Environment
Interpreter

Lexical Analysis
The first stage of the interpreter is the lexical analyzer. The lexical analyzer breaks
down Stride code into tokens and passes them to the parser. The lexical analyzer is
created and generated using GNU Flex[40], a fast lexical analyzer generator. The C
files generated by Flex can be integrated into a parser.
The lexeme of Stride is shown in full in Appendix E.
Parsing
The second stage of the interpreter is the parser. The parser is generated using GNU
Bison[41], a general-purpose parser generator. Bison interfaces well with Flex[42].
Using the Stride grammar, the parser generates an Abstract Syntax Tree (AST) based
on the tokens passed to it by the lexical analyzer. When ready, the AST is passed to
the intermediate code generator.
The grammar of Stride is shown in full in Appendix E
Intermediate Code Generation
The intermediate code generator takes in the AST generated by the parser and ana-
lyzes it by preformingmultiple passes on the AST. The generator attempts to complete
all the missing information in the user code (such as unassigned block properties dur-
ing declaration) by following the rules of the language. Next, the generator expands all
the stream expressions that need to undergo parallel expansion. The generator also

161

Stride Chapter 9
replaces all expressions that evaluate to constant values with the evaluated constant
values.
The output of the intermediate code generator is a JSON file. The JSON output file can
then be used by any code generator to generate target code for any platform. The
intermediate code generator of Stride version 1.0 is written in C++.

Code Generator

Target Code Generator
The Stride code generator takes in the JSON file generated by the interpreter and
generates target code based on the Stride system specified by the user. The generator
uses template files, libraries, and helper classes to generate the final source code. The
code generator in Stride V1.0 is written in Python.
Deployment
Once the generated source code has been successfully compiled (or cross-compiled),
Stride deploys the generated binary file on the target system.

162

Section 9.3 Stride IDE
9.3 Stride IDE
The Stride IDE is designed using the Qt framework[43] to support all threemajor oper-
ating systems including Windows, macOS, and Linux. A snapshot of the IDE is shown
in Figure 9.2

Figure 9.2: The Stride integrated development environment.

The IDE has a multi-tab code editor with a built-in autocomplete feature and syntax
highlighter. The editor also marks and highlights errors related to syntax and gram-
mar.
The IDE has a console window where build information, errors, and warnings gener-

163

Stride Chapter 9
ated during code generation are displayed.
The IDE also has a built-in web engine to display HTML3 documentation pertaining to
some advanced blocks in Stride. The HTML documentation is directly rendered from
the Stride code and includes the information provided in the meta property of blocks.

9.4 Stride Syntax
Stride has two syntactic constructs: Block Declarations and Stream Expressions.
A block is declared through a block declaration statement. A block is assigned a type
and a unique name. Block names must start with a capital letter and can include digits
and the underscore character. A block’s properties are part of the declaration and
define its behavior. Properties of a block can only be assigned at declaration. Some
properties are required, some are optional, while others are assumed if they are not
explicitly assigned. In the latter case, the assumptions are made based on the rules
of the language and the assignments to the other properties of the block.
Blocks in Stride are divided into two groups: Basic and Advanced. Basic blocks con-
stitute the core types of the language. Advanced blocks encapsulate basic blocks and
stream expressions to perform specific functions. Basic blocks can be declared as a
bundle while advanced ones cannot.
Blocks in Stride are connected in stream expressions with the stream operator>>. All
stream expressions are evaluated at least once from left to right and in the top-down

3Hypertext Markup Language
164

Section 9.4 Stride Syntax
order in which they appear in the user code.
Stream expressions undergo parallel expansion. The expansion depends on the con-
stituent blocks of the stream expression and the values assigned to the properties of
the blocks. The expansion is resolved from left to right starting with leftmost element
in a stream expression.
The syntax to declare blocks, bundles, and stream expressions is shown in section 4.2
and Appendix E.
The following subsection will cover all block declarations in Stride and the definitions
of their properties. The subsequent subsection will provide examples of stream ex-
pressions constructed using blocks and block bundles to demonstrate parallel expan-
sion.

9.4.1 Basic Blocks

The following block types make up the core building blocks of the language.
Constant

Declaration
1 constant BlockName {
2 value: none
3 type: auto
4 domain: ConstantDomain
5 meta: ""
6 }

Code 9.1: Constant block declaration.
165

Stride Chapter 9
Definitions

value The value of the constant block.

Port accepts a value of the AlphaNumericTypeClass class.
Default value is none but an assignment is required.

type The type of the constant block.

Port accepts an item of the DataTypeList list.
Default value is auto. If not set, the value is derived from the type of the
default port value.

domain The domain of the constant block.

Port accepts an item of the DomainTypeList list.
Default value is ConstantDomain.

meta A description tag.

Port is StringType.
Default value is an empty string.

Shorthand Declaration
1 # Declaration of an integer constant called IntegerConstant
2 1 >> IntegerConstant
3
4 # Declaration of a real constant called RealConstant
5 1.0 >> RealConstant;
6
7 # Declaration of a string constant called StringConstant
8 "This is a constant String." >> StringConstant;

Code 9.2: Shorthand constant block declarations.

166

Section 9.4 Stride Syntax
Signal

Declaration
1 signal BlockName {
2 default: 0.0
3 type: auto
4 rate: auto
5 domain: PlatformDomain
6 reset: none
7 meta: ""
8 }

Code 9.3: Signal block declaration.

Definitions

default The default value of the signal block.

Port accepts a value of the AlphaNumericTypeClass class.
Default value is 0.0.

type The type of the signal block.

Port accepts an item of DataTypeList list.
Default value is auto. If not set, the value is derived from the type of the
default port value.

rate The rate of the signal block.

Port accepts a value of the NumericTypeClass class.
Default value is auto. If a rate is not specified, the rate is set to the rate of
the domain the signal is assigned to.
If the rate is set to a non-zero real or integer value, the signal operates in
sample-and-hold mode. If the rate is set to zero, the signal operates in
reactive mode.

167

Stride Chapter 9
domain The domain of the signal block.

Port accepts an item of the DomainTypeList list.
Default value is PlatformDomain.

reset Resets the signal block to its default value.

Port is an input TriggerBlockType type.
Default value is none.

meta A description tag.

Port is StringType.
Default value is an empty string.

Switch

Declaration
1 switch BlockName {
2 default: off
3 rate: auto
4 domain: PlatformDomain
5 reset: none
6 meta: ""
7 }

Code 9.4: Switch block declaration.

Definitions

default The default value of the switch block.

Port is BooleanType.
168

Section 9.4 Stride Syntax
rate The rate of the switch block.

Port accepts a value of the NumericTypeClass class.
Default value is auto. If a rate is not specified, the rate is set to the rate of
the domain the signal is assigned to.
If the rate is set to a non-zero real or integer value, the signal operates in
sample-and-hold mode. If the rate is set to zero, the signal operates in
reactive mode.

domain The domain of the switch block.

Port accepts an item of the DomainTypeList list.
Default value is PlatformDomain.

reset Resets the switch block to its default value.

Port is an input TriggerBlockType type.
Default value is none.

meta A description tag.

Port is StringType.
Default value is an empty string.

169

Stride Chapter 9
Buffer

Declaration
1 buffer BlockName {
2 default: 0.0
3 type: auto
4 size: none
5 rate: auto
6 domain: PlatformDomain
7 reset: none
8 meta: ""
9 }

Code 9.5: Buffer block declaration.

Definitions

default The default values of the buffer block.

Port accepts a value of the AlphaNumericTypeClass class.
Default value is 0.0.

type The type of the buffer block.

Port accepts an item of the DataTypeList list.
Default value is auto. If not set, the value is derived from the type of the
default port value.

size The size of the buffer block.

Port is UnsignedIntegerType.
Default value is none but an assignment is required.

rate The rate of the buffer block.

Port is a value of NumericTypeClass class.
170

Section 9.4 Stride Syntax
Default value is auto. If a rate is not specified, the rate is set to the rate of
the domain the buffer is assigned to.
If the rate is set to a non-zero real or integer value, the buffer operates in
sample-and-hold mode. If the rate is set to zero, the buffer operates in
reactive mode.

domain The domain of the buffer block.

Port accepts an item of the DomainTypeList list.
Default value is PlatformDomain.

reset Resets the buffer block to its default value.

Port is an input TriggerBlockType type.
Default value is none.

meta A description tag.

Port is StringType.
Default value is an empty string.

Trigger

Declaration
1 trigger BlockName {
2 edge: "Rising"
3 domain: PlatformDomain
4 meta: ""
5 }

Code 9.6: Trigger block declaration.

171

Stride Chapter 9
Definitions

edge The edge type that triggers the trigger when controlled by a switch block.

Port is an item of EdgeTypeList list.
Default value is "Rising".
Default items of EdgeTypeList are "Rising", Falling, or "Both".

domain The domain of the trigger block.

Port accepts an item of the DomainTypeList list.
Default value is PlatformDomain.
When triggered, the trigger is on for one clock cycle of this domain before
it is rearmed.

meta A description tag.

Port is StringType.
Default value is an empty string.

9.4.2 Block Bundles

All basic blocks in Stride can be declared as bundles. Blocks of a bundle share the
same property assignments.
Declaration
1 blockType BundleName [SIZE] {
2 ...
3 }

Code 9.7: Bundle declaration.

172

Section 9.4 Stride Syntax
Definitions

SIZE The size of the bundle.

port is UnsignedIntegerType.

9.4.3 Advanced Blocks

The following block types make up the advanced blocks of the language.

Module

Declaration
1 module BlockName {
2 ports: []
3 blocks: []
4 constraints: []
5 streams: []
6 meta: ""
7 }

Code 9.8: Module block declaration.

Definitions

ports List of port declarations.

Port accepts an item of the ModulePortsList list.
Items of ModulePortsList are mainInputPort, mainOutputPort,
propertyInputPort, and propertyOutputPort.

173

Stride Chapter 9
blocks List of internal block declarations.

Port accepts an item of the ModuleBlocksList list.
Items of ModuleBlocksList are signal, switch, constant, trigger,
and reaction.

constraints The constraints of the module block.

Port is StreamListType type.
Default value is [] (an empty stream list).

streams The streams of the module block.

Port is StreamListType type.
Default value is [] (an empty stream list).

meta A description tag.

Port is StringType.
Default value is an empty string.

Reaction

Declaration
1 reaction BlockName {
2 ports: []
3 blocks: []
4 streams: []
5 meta: ""
6 }

Code 9.9: Reaction block declaration.

174

Section 9.4 Stride Syntax
Definitions

ports List of port declarations.

Port accepts an item of the ReactionPortsList list.
Items of ReactionPortsList are mainInputPort, mainOutputPort,
propertyInputPort, and propertyOutputPort.

blocks List of internal block declarations.

Port accepts an item of the ReactionBlocksList list.
Items of ReactionBlocksList are signal, switch, constant, trigger,
module, loop, and reaction.

streams The streams of the reaction block.

Port is StreamListType type.
Default value is [] (an empty stream list).

meta A description tag.

Port is StringType.
Default value is an empty string.

175

Stride Chapter 9
Loop

Declaration
1 loop BlockName {
2 ports: []
3 blocks: []
4 constraints: []
5 onExecution: none
6 terminateWhen: none
7 streams: []
8 meta: ""
9 }

Code 9.10: Loop block declaration.

Definitions

ports List of port declarations.

Port accepts an item of the LoopPortsList list.
Items of LoopPortsList are mainInputPort, mainOutputPort,
propertyInputPort, and propertyOutputPort.

blocks List of internal block declarations.

Port accepts an item of the LoopBlocksList list.
Items of LoopBlocksList are signal, switch, constant, trigger,
and module.

constraints The constraints of the loop block.

Port is StreamListType type.
Default value is [] (an empty stream list).

onExecution Trigger output. Triggers when the loop executes.

176

Section 9.4 Stride Syntax
Port is an output TriggerBlockType type.
Default value is none.

terminateWhen Trigger input. Terminates the loop when triggered.

Port is an input TriggerBlockType type.
Default value is none.

streams The streams of the loop block.

Port is StreamListType type.
Default value is [] (an empty stream list).

meta A description tag.

Port is StringType.
Default value is an empty string.

Group

Declaration
1 group BlockName {
2 signals: []
3 meta: ""
4 }

Code 9.11: Group block declaration.

Definitions

signals List of block declarations.

Port accepts an item of GroupBlocksList list.
Items of GroupBlocksList are signal and switch.

177

Stride Chapter 9
meta A description tag.

Port is StringType.
Default value is an empty string.

9.4.4 Stream Expressions

The following examples demonstrate how stream expressions are resolved and un-
dergo parallel expansion.

Signals and Bundles

The following stream expression examples cover connections between signals and
bundles.
Signal to Signal
Code 9.12 is an example of a direct signal to signal connection. The main output port
of the Input signal is connected to the main input port of the Output signal. The
resulting graph is shown in Figure 9.3.
1 signal Input {}
2 signal Output {}
3
4 Input >> Output;

Code 9.12: Signal to signal connection.

178

Section 9.4 Stride Syntax

Input Output

Figure 9.3: Signal to signal connection.

Signal to Bundle
Code 9.13 is an example of a direct signal to bundle connection. The main output port
of the Input signal is connected the main input ports of the two signals that make up
the Output bundle. The resulting graph is shown in Figure 9.4.
1 signal Input {}
2 signal Output [2] {}
3
4 Input >> Output;

Code 9.13: Signal to bundle connection.

The long form of the same code is shown in Code 9.14 where the Input signal is in-
dividually connected to the signals of the Output bundle, Output[1] and Output[2]

respectively.
1 signal Input {}
2 signal Output [2] {}
3
4 Input >> Output [1];
5 Input >> Output [2];

Code 9.14: Expanded signal to bundle connection.

Bundle to Bundle
Code 9.15 is an example of a direct bundle to bundle connection. Both bundles have
the same size. The main output ports of the two signals that make up the Input

179

Stride Chapter 9

Input

Output [1]

Output [2]

Figure 9.4: Signal to bundle connection.
bundle are connected to the main input ports of the two signals that make up the
Output bundle respectively. The resulting graph is shown in Figure 9.5.
1 signal Input [2] {}
2 signal Output [2] {}
3
4 Input >> Output;

Code 9.15: Bundle to bundle connection of same size.

The long form of the same code is shown in Code 9.16, where the signals of the
Input bundle, Input[1] and Input[2], are individually connected to the signals of
the Output bundle, Output[1] and Output[2] respectively.
1 signal Input [2] {}
2 signal Output [2] {}
3
4 Input [1] >> Output [1];
5 Input [2] >> Output [2];

Code 9.16: Expanded bundle to bundle connection of same size.

Input[2] Output[2]

Input[1] Output[1]

Figure 9.5: Bundle to bundle connection of same size.
180

Section 9.4 Stride Syntax
Code 9.17 is an example of a direct bundle to bundle connection. The bundles have
different sizes. The size of the bundle to the right of the stream operator is a multiple
of the size of the one to the left. In this case, the connection between the signals of
the Input bundle alternate with the signals of the Output bundle. The resulting graph
is shown in Figure 9.6.
1 signal Input [2] {}
2 signal Output [4] {}
3
4 Input >> Output;

Code 9.17: Bundle to bundle connection where the size of one is a multiple of the other.

The expanded form of the same code is shown in Code 9.18.
1 signal Input [2] {}
2 signal Output [4] {}
3
4 Input [1] >> Output [1];
5 Input [2] >> Output [2];
6 Input [1] >> Output [3];
7 Input [2] >> Output [4];

Code 9.18: Expanded bundle to bundle connection where the size of one is a multipleof the other.

Input [2]

Output [2]

Output [4]

Input [1]

Output [1]

Output [3]

Figure 9.6: Bundle to bundle connection where the size of one is a multiple of the other.

181

Stride Chapter 9
Signals, Bundles, and Modules

The following stream expressions cover connections between signals and bundles
with modules placed between them.
Signal to Module to Signal
Code 9.19 is an example of a signal connected to a module that is in turn connected
to another signal. The main output port of the Input signal is connected to the main
input port of the Level module and the main output port of the Level module is
connected to the main input port of the Output signal. The resulting graph is shown
in Figure 9.7.
1 signal Input {}
2 signal Output {}
3
4 Input >> Level (gain: 0.1) >> Output;

Code 9.19: Signal to module to signal connection.

Input Level (gain: 0.1) Output

Figure 9.7: Signal to module to signal connection.

Bundle to Modules to Bundle
Code 9.20 is an example of a bundle connected to a module that is in turn connected
to another bundle. The main output ports of the signals in the Input bundle are
connected to the main input ports of two Levelmodules.

182

Section 9.4 Stride Syntax
1 signal Input [2] {}
2 signal Output [2] {}
3
4 Input >> Level (gain: 0.1) >> Output;

Code 9.20: Implicit expansion of a second module driven by the size of the Input bundle.

Although a single Level module appears in the stream expression, two instance of
Level are generated by the Stride code generator, since there are two signals on the
left side of the stream operator at the input of the module and Level accepts a single
signal at its main input port.
The main output ports of the two Levelmodules instances are connected to the main
input ports of the two signals of the Output bundle. The resulting graph is shown in
Figure 9.8.
The expanded version of Code 9.20 is shown in Code 9.21.
1 signal Input [2] {}
2 signal Output [2] {}
3
4 Input [1] >> Level (gain: 0.1) >> Output [1];
5 Input [2] >> Level (gain: 0.1) >> Output [2];

Code 9.21: Expanded bundle to module to bundle connection.

Input [2] Level (gain: 0.1) Output [2]

Input [1] Level (gain: 0.1) Output [1]

Figure 9.8: Bundle to modules to bundle connection with implicit expansion of asecond module driven by the size of the Input bundle.

In Code 9.22 two Level modules are explicitly declared, through port expansion, by
183

Stride Chapter 9
connecting a bundle of constants to the gain property port of the module. The result-
ing graph is shown in Figure 9.9.
1 signal Input [2] {}
2 signal Output [2] {}
3
4 Input >> Level (gain: [0.1, 0.3]) >> Output;

Code 9.22: Explicit declaration of two modules.

The expanded version of Code 9.22 is shown in Code 9.23.
1 signal Input [2] {}
2 signal Output [2] {}
3
4 Input [1] >> Level (gain: 0.1) >> Output [1];
5 Input [2] >> Level (gain: 0.3) >> Output [2];

Code 9.23: Expansion of bundle to modules to bundle connection.

Input [2] Level (gain: 0.3) Output [2]

Input [1] Level (gain: 0.1) Output [1]

Figure 9.9: Bundle to modules to bundle connection with explicit declaration of two modules.

In Code 9.24 the size of the Output bundle is a multiple of both the size of the Input
bundle and the number of Levelmodule instances.
Since the expansion of the stream expressions is driven from the left side, the main
output of the first Levelmodule is connected to the inputs of the first and third signals
in the Output bundle and the main output of the second Level module is connected
to the second and fourth signals of the Output bundle. The resulting graph is shown
in Figure 9.10.

184

Section 9.4 Stride Syntax
1 signal Input [2] {}
2 signal Output [4] {}
3
4 Input >> Level (gain: [0.1, 0.3]) >> Output;

Code 9.24: Bundle to modules to bundle connection with different sizes.

Input [2] Level (gain: 0.3)

Output [2]

Output [4]

Input [1] Level (gain: 0.1)

Output [1]

Output [3]

Figure 9.10: Bundle to modules to bundle connection with different sizes.

If the size of the Input bundle is doubled in Code 9.24, as shown in Code 9.25, the
result would be the generation of four Level module instances. The resulting graph
is shown in Figure 9.11.
1 signal Input [4] {}
2 signal Output [4] {}
3
4 Input >> Level (gain: [0.1, 0.3]) >> Output;

Code 9.25: Implicit and explicit expansion of modules.

Code 9.26 is an example of a bundle connected to an Add module. Add accepts a
signal bundle of size two at its main input port. The module’s main output is a signal
and is connected to the input of the Output signal. The resulting graph is shown in
Figure 9.12.

185

Stride Chapter 9

Input [4] Level (gain: 0.3) Output [4]

Input [3] Level (gain: 0.1) Output [3]

Input [2] Level (gain: 0.3) Output [2]

Input [1] Level (gain: 0.1) Output [1]

Figure 9.11: Implicit and explicit expansion of modules.
1 signal Input [2] {}
2 signal Output {}
3
4 Input >> Add () >> Output;

Code 9.26: Bundle to multi-input module to signal connection.

Input[1]

Add ()

Input[2]

Output

Figure 9.12: Bundle to multi-input module to signal connection.

If the Output signal in Code 9.26 is replaced by a bundle of size two, the main output
of the Add module gets connected to the main input of the two signals of the Output
bundle as shown in Code 9.27. The resulting graph is shown in Figure 9.13.
1 signal Input [2] {}
2 signal Output [2] {}
3
4 Input >> Add () >> Output;

Code 9.27: Bundle to multi-input module to bundle connection.
186

Section 9.4 Stride Syntax

Input[1]

Add ()

Input[2]

Output [1]

Output [2]

Figure 9.13: Bundle to multi-input module to bundle connection.

Code 9.28 and Code 9.29 are examples of two different modules, Level and Add, ap-
pearing between two bundles with different and similar sizes respectively. The mod-
ules are implicitly and explicitly expanded driven by the size of the Input bundle. The
expression results in four Levelmodules and two Addmodules. The resulting graphs
are shown in Figure 9.14 and Figure 9.15 respectively.
1 signal Input [4] {}
2 signal Output [2] {}
3
4 Input >> Level (gain: [0.1, 0.3]) >> Add () >> Output;

Code 9.28: Implicit and explicit expansion of multiple modules between bundles ofdifferent sizes.

1 signal Input [4] {}
2 signal Output [4] {}
3
4 Input >> Level (gain: [0.1, 0.3]) >> Add () >> Output;

Code 9.29: Implicit and explicit expansion of multiple modules between bundles ofthe same size.

Module to Bundle
Code 9.30 is an example of a module connected to a bundle of size two. The main
output of the Oscillator module is connected to the main input ports of the two
signals in the Output bundle. The resulting graph is shown in Figure 9.16.

187

Stride Chapter 9

Input [4] Level (gain: 0.3)

Input [3] Level (gain: 0.1)

Output [2]Add ()

Input [2] Level (gain: 0.3)

Input [1] Level (gain: 0.1)

Output [1]Add ()

Figure 9.14: Implicit and explicit expansion of multiple modules between bundles ofdifferent sizes.

Input [4] Level (gain: 0.3)

Input [3] Level (gain: 0.1)
Output [2]

Output [4]

Input [2] Level (gain: 0.3)

Input [1] Level (gain: 0.1)
Output [1]

Output [3]

Add ()

Add ()

Figure 9.15: Implicit and explicit expansion of multiple modules between bundles ofthe same size.

188

Section 9.4 Stride Syntax
1 signal Output [2] {}
2
3 Oscillator (frequency: 220.0) >> Output;

Code 9.30: Single module connected to a bundle.

Output [1]

Output [2]

Oscillator (frequency: 220.0)

Figure 9.16: Single module connected to a bundle.

Modules to Bundle
Code 9.31 is an example of two module that are explicitly declared through port ex-
pansion and connected to a bundle of size two. The main output of each Oscillator
module is connected to the main input of each signal of the Output bundle respec-
tively. The resulting graph is shown in Figure 9.17.
1 signal Output [2] {}
2
3 Oscillator (frequency: [220.0 , 440.0]) >> Output;

Code 9.31: Two modules connected to a bundle of size two.

The expanded version of Code 9.31 is shown in Code 9.32.

1 signal Output [2] {}
2
3 Oscillator (frequency: 220.0) >> Output [1];
4 Oscillator (frequency: 440.0) >> Output [2];

Code 9.32: Expanded form of two modules connected to a bundle of size two.

189

Stride Chapter 9

Output [2]Oscillator (frequency: 440.0)

Output [1]Oscillator (frequency: 220.0)

Figure 9.17: Two generators connected to two outputs.

Modules to Module to Bundle
Code 9.33 is an example where the main outputs of two Oscillator modules are
connected to the main input ports of an Addmodule, whose main output is connected
to the main input of the two signals of the Output bundle. The resulting graph is
shown in Figure 9.18.

1 signal Output [2] {}
2
3 Oscillator (frequency: [220.0 , 440.0]) >> Add () >> Output;

Code 9.33: Two modules connected to another module and then to a bundle of size two.

Oscillator (frequency: 220.0)

Add ()

Oscillator (frequency: 440.0)

Output [1]

Output [2]

Figure 9.18: Two modules connected to another module and then to a bundle of size two.

190

Section 9.5 Summary
9.5 Summary
In this chapter, we presented the Stride environment comprising the Stride language,
code generator, and the IDE. We also presented the formal declaration of blocks and
defined their properties. We also covered the parallel expansion of stream expres-
sions through multiple examples.

191

Chapter 10

Conclusion
This dissertation presented Stride, a language for sound synthesis, processing, and in-
teraction design. The language is part of the Stride environment which also comprises
a compiler and an integrated development environment.
This dissertation makes multiple contributions to the field of computer music espe-
cially when it comes to targeting resource-constrained microcontroller-based embed-
ded systems for real-time sound synthesis and processing applications.

10.1 Summary
Prior to designing a new language for sound synthesis, processing, and interaction
design to target resource-constrained microcontroller-based embedded system, we
considered some of the most popular music programming languages as potential

192

Section 10.1 Summary
candidates for the task. We evaluated them against the specifications set forth by
the research questions posed by this dissertation. Faust emerged as a potential can-
didate because of its capability to generate efficient C++ code that could be used to
target a microcontroller. Although many of the programming languages did not meet
the specifications, we noted some of their features, in order to adopt them into a new
language, if we were to design one.
We took a closer look at Faust and identified some of its limitations and shortcomings
when it came to its fixed approach to computation rates and its ability to distribute
computations across various processes. We observed Faust followed a fixed concur-
rencymodel that is not ideal for microcontrollers, especially when running baremetal.
Although Faust is able to generate code optimized for vector processing, it cannot use
optimized libraries designed for specific target devices. This is due to the lack of facil-
ities to add foreign functions to access external libraries through an API.
While researching Faust, we established that giving the user more control over the
code generator would result in extremely efficient and optimized target code. By
allowing the user to specify the rate at which computations occur and specify the
thread where computations are made would result in significant performance im-
provements. We also established that having a flexible concurrency model built into
the language would allow the user to achieve real-time performance on resource-
constrained systems running concurrent threads, while preserving data integrity.
With these observations in mind, we designed a new language (Stride) with a declar-
ative syntax to allow the user to control its code generator. The language was de-
signed with only two constructs: block declarations and stream expressions. Through

193

Conclusion Chapter 10
a set of basic examples, we demonstrated the improvements in efficiency that could
be achieved on a microcontroller-based audio development platform. We presented
various schemes to produce efficient code and we measured and compared the im-
provements to a baseline.
Next, we introduced the core building block of Stride: The signal block. We discussed
its behavior based on its rate and domain assignments by the user. Through the de-
sign of a sine oscillator with frequency control, we demonstrated how the rate and do-
main assignments can influence the code generator. We also introduced the module
block in Stride, which encapsulates block declarations and stream expressions to per-
form a specific function. We discussed how rate and domain assignments propagate
from blocks declared outside the module to blocks declared inside of it. By using sig-
nal andmodule blocks, we demonstrated the information propagation mechanism by
performing synchronous and asynchronous frequency modulation in Stride.
Next, we shifted our focus to present the user-controlled concurrency model built into
Stride. We demonstrated how the user could define mutual exclusion schemes and
concurrency policies to achieve the performance and optimization they desire. We
then focused on presenting how this flexible user-controlled concurrency model was
made possible through the generation of stateless C++ template classes that would
accommodate any requirement set forth by the user without having to generate cus-
tom C++ classes for each concurrency scenario.
Next, we presented the switch block, the trigger block, and the reaction block in
Stride. Through multiple examples we demonstrated the behavior of these blocks
and how they could be used to design interaction in Stride. We also demonstrated

194

Section 10.2 Discussion
how these blocks could be used to design a state machine.
Next, we presented some of the advanced blocks in Stride that make writing code
easier. The advanced blocks are the buffer block, the loop block, and the group

block. We also presented how these blocks give the user more control over the code
generator.
Finally, we presented the Stride environment, which comprises the Stride language,
the compiler, and the integrated development environment. We discussed the ar-
chitecture of Stride and presented some of the tools used to design it. Next, we
presented the formal declarations of blocks and defined their properties. We also
covered the parallel expansion of stream expressions through multiple example.

10.2 Discussion
Although Stride is designed with resource-constrained devices in mind, the language
can target general-purpose computers and heterogenous systems alike. This is possi-
ble due to multiple novel approaches Stride takes which were covered in detail in this
dissertation.
With only two syntactic constructs, Stride meets all of the specifications that were
set forth prior to its creation. Making the language declarative facilitated many of
its goals. Declarative entities in the language can be connected using a single op-
erator, thus simplifying the interface. Parallel expansion of entities and interfaces is
achieved through bundles and is handled automatically by the code interpreter. Static

195

Conclusion Chapter 10
allocation of entities is the default allocation method carried out by the interpreter.
Dynamic allocation happens through block types that allow the construction and de-
struction of entities. By default, Stride performs computation on a per sample basis
unless otherwise stated by the user. Through rates and the use of buffers the user
controls the code generator, allowing the use of vector operations rather than oper-
ating on individual samples, thus making computations more efficient. By assigning
rates and domains to signals, the user can control the synchronization of data and
computations. Asynchronous events are handled through a special entity in the lan-
guage, known as a reaction, capable of triggering the computation of expressions
distributed in various threads. Signals at different rates can be seamlessly connected
to each other in Stride, making Stride a multi-rate signal processing language. Since
Stride is declarative, hardware drivers, software libraries, and real-time operating sys-
tems can be abstracted and presented to the user through a common interface.
Users of Stride can design unit generators and processors. The computations en-
closed in such units can be designed to be evaluated at various rates and distributed
across multiple threads which might be running on different devices. This is pos-
sible thanks to a robust concurrency model designed into the language, which the
user controls by declaring and defining policies between threads sharing memory.
The implemented concurrency model works because of a novel approach of generat-
ing stateless C++ template classes that represent the unit generators and processors.
Variables which hold state are declared when instances of the stateless templates are
instantiated. The methods of these classes are then invoked to operate on these vari-
ables in the threads specified by the user once the proper concurrency directives are
met in order to protect the integrity of the data carried by these variables.

196

Section 10.3 Future Work
Stride separates semantics from implementation. Stride code is simply a collection of
declarations coupled together using a single operator. Users’ code simply represents
their intent rather than a specific implementation. This makes it possible to use the
same Stride code to target any device, as long as the device hardware is abstracted
in Stride. Individual device abstractions can be combined to create heterogenous sys-
tems by declaring and defining Stride systems. These systems can also abstract the
communication between devices and allow for seamless connection between signals
declared on device specific domains.
Interaction design in Stride is abstracted through triggers and reactions. This abstrac-
tion allows for swapping any interaction with the target to trigger any event declared in
Stride. Events are contained within a reaction. A single reaction may result in the eval-
uation of expressions distributed across multiple domains. This is possible because
the Stride interpreter generates the necessary triggers and notifications necessary to
propagate information between the domains.

10.3 Future Work
Currently, Stride is at a proof-of-concept development stage where many of its con-
cepts can be successfully demonstrated. Considerable effort is required to fully imple-
ment all the concepts presented in this dissertation and to make the Stride compiler
stable and "production ready". A library of modules must also be written to support
basic synthesis and signal processing tasks.
One of the abstractions that should be fully defined and built into Stride is a type

197

Conclusion Chapter 10
class system that is common in purely functional programming languages like Haskell.
Although Stride is a strongly typed languages and types are strictly checked when
connections between entities are made, formally adding type classes can simplify the
declaration of modules and enhance the polymorphic capabilities of Stride.
Dynamic allocation of entities has been thoroughly examined but not yet fully imple-
mented. Dynamically creating and destroying entities in Stride could happen by defin-
ing new block types that are capable of constructing and destructing other blocks.
Further abstractions can be added to Stride and its interpreter, which could be further
improved by building code analysis functionality into it that could assist the user with
optimizations.
A graph analysis tool that could analyze all interconnected signals and clusters them
into groups that could be distributed across various domains available on a system
would be of great value.
A graph visualization tool would also be beneficial to users. We envision the tool for
graphically rendering related stream expressions to visually display the data flow as
well as assign colors to signals based on their domain assignment to indicate where
they are evaluated.
Finally, adding debugging and data monitoring blocks into Stride could be extremely
useful.

198

Appendix A

Faust DSP and Generated Code
This appendix contains a set of Faust DSP code and the generated C++ code using
the Faust online compiler. The compiler was at version 2.3.4 at the time compilation.
The code has been compiled with the language set to C++ and the architecture set
to Linux. The compiler options were “-scal -ftz 0”. The compiler is available online at
http://faust.grame.fr/onlinecompiler/.
This appendix also contains a Faust template file for the Bela platform.

A.1 Resonant Low Pass with Constant Arguments

The following code represents a resonant low pass filter with constant arguments.
The code

199

http://faust.grame.fr/onlinecompiler/

Faust DSP and Generated Code Appendix A
A.1.1 Faust DSP Code
1 import("stdfaust.lib");
2
3 // Cutoff Frequency
4 ctFreq = 500;
5 // Q Factor
6 q = 5;
7 // Gain
8 gain = 1;
9

10 // Resonant Low Pass
11 process = fi.resonlp(ctFreq ,q,gain);

Code A.1: Faust resonant low pass filter with constant arguments.

A.1.2 C++ Generated Code
1 /* --
2 name: "RLP_Const"
3 Code generated with Faust 2.3.4 (http :// faust.grame.fr)
4 Compilation options: -scal -ftz 0
5 -- */
6
7 #ifndef __mydsp_H__
8 #define __mydsp_H__
9

10 #ifndef FAUSTFLOAT
11 #define FAUSTFLOAT float
12 #endif
13
14 #include <math.h>
15
16 float mydsp_faustpower2_f(float value) {
17 return (value * value);
18 }
19
20 #ifndef FAUSTCLASS
21 #define FAUSTCLASS mydsp
22 #endif
23
24 class mydsp : public dsp {
25
26 private:
27
28 int fSamplingFreq;

200

Section A.1 Resonant Low Pass with Constant Arguments
29 float fConst0;
30 float fConst1;
31 float fConst2;
32 float fConst3;
33 float fConst4;
34 float fRec0 [3];
35
36 public:
37
38 void metadata(Meta* m) {
39 m->declare("filters.lib/name", "Faust Filters Library");
40 m->declare("filters.lib/version", "0.0");
41 m->declare("maths.lib/author", "GRAME");
42 m->declare("maths.lib/copyright", "GRAME");
43 m->declare("maths.lib/license", "LGPL with exception");
44 m->declare("maths.lib/name", "Faust Math Library");
45 m->declare("maths.lib/version", "2.0");
46 m->declare("name", "myFaustProgram");
47 }
48
49 virtual int getNumInputs () {
50 return 1;
51 }
52 virtual int getNumOutputs () {
53 return 1;
54 }
55 virtual int getInputRate(int channel) {
56 int rate;
57 switch (channel) {
58 case 0: {
59 rate = 1;
60 break;
61 }
62 default: {
63 rate = -1;
64 break;
65 }
66 }
67 return rate;
68 }
69 virtual int getOutputRate(int channel) {
70 int rate;
71 switch (channel) {
72 case 0: {
73 rate = 1;
74 break;
75 }
76 default: {
77 rate = -1;
78 break;

201

Faust DSP and Generated Code Appendix A
79 }
80 }
81 return rate;
82 }
83
84 static void classInit(int samplingFreq) {
85 }
86
87 virtual void instanceConstants(int samplingFreq) {
88 fSamplingFreq = samplingFreq;
89 fConst0 = tanf ((1570.79639f / min (192000.0f, max (1000.0f, float(

fSamplingFreq)))));
90 fConst1 = (1.0f / fConst0);
91 fConst2 = (1.0f / (((fConst1 + 0.200000003f) / fConst0) + 1.0f));
92 fConst3 = (((fConst1 + -0.200000003f) / fConst0) + 1.0f);
93 fConst4 = (2.0f * (1.0f - (1.0f / mydsp_faustpower2_f(fConst0))))

;
94 }
95
96 virtual void instanceResetUserInterface () {
97 }
98
99 virtual void instanceClear () {

100 for (int l0 = 0; (l0 < 3); l0 = (l0 + 1)) {
101 fRec0[l0] = 0.0f;
102 }
103 }
104
105 virtual void init(int samplingFreq) {
106 classInit(samplingFreq);
107 instanceInit(samplingFreq);
108 }
109 virtual void instanceInit(int samplingFreq) {
110 instanceConstants(samplingFreq);
111 instanceResetUserInterface ();
112 instanceClear ();
113 }
114
115 virtual mydsp* clone () {
116 return new mydsp();
117 }
118 virtual int getSampleRate () {
119 return fSamplingFreq;
120 }
121
122 virtual void buildUserInterface(UI* ui_interface) {
123 ui_interface ->openVerticalBox("myFaustProgram");
124 ui_interface ->closeBox ();
125 }
126

202

Section A.2 Resonant Low Pass with Variable Arguments
127 virtual void compute(int count , FAUSTFLOAT ** inputs , FAUSTFLOAT **

outputs) {
128 FAUSTFLOAT* input0 = inputs [0];
129 FAUSTFLOAT* output0 = outputs [0];
130 for (int i = 0; (i < count); i = (i + 1)) {
131 fRec0 [0] = (float(input0[i]) - (fConst2 * ((fConst3 * fRec0

[2]) + (fConst4 * fRec0 [1]))));
132 output0[i] = FAUSTFLOAT ((fConst2 * (fRec0 [2] + (fRec0 [0] +

(2.0f * fRec0 [1])))));
133 fRec0 [2] = fRec0 [1];
134 fRec0 [1] = fRec0 [0];
135 }
136 }
137
138 };
139
140 #endif

Code A.2: Generated C++ code for resonant low pass filter with constant arguments.

A.2 Resonant Low Pass with Variable Arguments
The following code represents a resonant low pass filter with variable arguments. The
arguments are controlled with horizontal sliders.

A.2.1 Faust DSP Code
1 import("stdfaust.lib");
2
3 // Cutoff Frequency Horizontal Slider
4 ctfreq = hslider("cutoffFrequency" ,500 ,50 ,10000 ,0.01);
5 // Q Factor Horizontal Slider
6 q = hslider("q" ,5,1,30,0.1);
7 // Gain Horizontal Slider
8 gain = hslider("gain" ,1,0,1,0.01);
9

10 // Resonant Low Pass
11 process = fi.resonlp(ctFreq ,q,gain);

Code A.3: Faust resonant low pass filter with variable arguments.

203

Faust DSP and Generated Code Appendix A
A.2.2 C++ Generated Code
1 /* --
2 name: "RLP_Var"
3 Code generated with Faust 2.3.4 (http :// faust.grame.fr)
4 Compilation options: -scal -ftz 0
5 -- */
6
7 #ifndef __mydsp_H__
8 #define __mydsp_H__
9

10 #ifndef FAUSTFLOAT
11 #define FAUSTFLOAT float
12 #endif
13
14 #include <math.h>
15
16 float mydsp_faustpower2_f(float value) {
17 return (value * value);
18 }
19
20 #ifndef FAUSTCLASS
21 #define FAUSTCLASS mydsp
22 #endif
23
24 class mydsp : public dsp {
25
26 private:
27
28 FAUSTFLOAT fHslider0;
29 FAUSTFLOAT fHslider1;
30 int fSamplingFreq;
31 float fConst0;
32 FAUSTFLOAT fHslider2;
33 float fRec0 [3];
34
35 public:
36
37 void metadata(Meta* m) {
38 m->declare("filters.lib/name", "Faust Filters Library");
39 m->declare("filters.lib/version", "0.0");
40 m->declare("maths.lib/author", "GRAME");
41 m->declare("maths.lib/copyright", "GRAME");
42 m->declare("maths.lib/license", "LGPL with exception");
43 m->declare("maths.lib/name", "Faust Math Library");
44 m->declare("maths.lib/version", "2.0");
45 m->declare("name", "myFaustProgram");
46 }
47

204

Section A.2 Resonant Low Pass with Variable Arguments
48 virtual int getNumInputs () {
49 return 1;
50 }
51 virtual int getNumOutputs () {
52 return 1;
53
54 }
55 virtual int getInputRate(int channel) {
56 int rate;
57 switch (channel) {
58 case 0: {
59 rate = 1;
60 break;
61 }
62 default: {
63 rate = -1;
64 break;
65 }
66 }
67 return rate;
68 }
69 virtual int getOutputRate(int channel) {
70 int rate;
71 switch (channel) {
72 case 0: {
73 rate = 1;
74 break;
75 }
76 default: {
77 rate = -1;
78 break;
79 }
80 }
81 return rate;
82 }
83
84 static void classInit(int samplingFreq) {
85 }
86
87 virtual void instanceConstants(int samplingFreq) {
88 fSamplingFreq = samplingFreq;
89 fConst0 = (3.14159274f / min (192000.0f, max (1000.0f, float(

fSamplingFreq))));
90 }
91
92 virtual void instanceResetUserInterface () {
93 fHslider0 = FAUSTFLOAT (1.0f);
94 fHslider1 = FAUSTFLOAT (5.0f);
95 fHslider2 = FAUSTFLOAT (500.0f);
96 }

205

Faust DSP and Generated Code Appendix A
97
98 virtual void instanceClear () {
99 for (int l0 = 0; (l0 < 3); l0 = (l0 + 1)) {

100 fRec0[l0] = 0.0f;
101
102 }
103 }
104
105 virtual void init(int samplingFreq) {
106 classInit(samplingFreq);
107 instanceInit(samplingFreq);
108 }
109 virtual void instanceInit(int samplingFreq) {
110 instanceConstants(samplingFreq);
111 instanceResetUserInterface ();
112 instanceClear ();
113 }
114
115 virtual mydsp* clone () {
116 return new mydsp();
117 }
118 virtual int getSampleRate () {
119 return fSamplingFreq;
120 }
121
122 virtual void buildUserInterface(UI* ui_interface) {
123 ui_interface ->openVerticalBox("myFaustProgram");
124 ui_interface ->addHorizontalSlider("cutoffFrequency", &fHslider2 ,

500.0f, 50.0f, 10000.0f, 0.00999999978f);
125 ui_interface ->addHorizontalSlider("gain", &fHslider0 , 1.0f, 0.0f,

1.0f, 0.00999999978f);
126 ui_interface ->addHorizontalSlider("q", &fHslider1 , 5.0f, 1.0f,

30.0f, 0.100000001f);
127 ui_interface ->closeBox ();
128 }
129
130 virtual void compute(int count , FAUSTFLOAT ** inputs , FAUSTFLOAT **

outputs) {
131 FAUSTFLOAT* input0 = inputs [0];
132 FAUSTFLOAT* output0 = outputs [0];
133 float fSlow0 = (1.0f / float(fHslider1));
134 float fSlow1 = tanf((fConst0 * float(fHslider2)));
135 float fSlow2 = (1.0f / fSlow1);
136 float fSlow3 = (((fSlow0 + fSlow2) / fSlow1) + 1.0f);
137 float fSlow4 = (float(fHslider0) / fSlow3);
138 float fSlow5 = (1.0f / fSlow3);
139 float fSlow6 = (((fSlow2 - fSlow0) / fSlow1) + 1.0f);
140 float fSlow7 = (2.0f * (1.0f - (1.0f / mydsp_faustpower2_f(fSlow1

))));
141 for (int i = 0; (i < count); i = (i + 1)) {

206

Section A.3 Bela Template Code for Faust
142 fRec0 [0] = (float(input0[i]) - (fSlow5 * ((fSlow6 * fRec0 [2])

+ (fSlow7 * fRec0 [1]))));
143 output0[i] = FAUSTFLOAT ((fSlow4 * (fRec0 [2] + (fRec0 [0] +

(2.0f * fRec0 [1])))));
144 fRec0 [2] = fRec0 [1];
145 fRec0 [1] = fRec0 [0];
146 }
147 }
148
149 };
150
151 #endif

Code A.4: Generated C++ code for resonant low pass filter with variable arguments.

A.3 Bela Template Code for Faust
The following code is the platform definition file for the Bela platform. The source file
could be found on Faust’s GitHub page at https://github.com/grame-cncm/faust
[accessed November 7, 2018].
The snapshot shown here is commit 386ec90c5776c8324239bcdeadc95c5eabbd7fdc
of bela.cpp file.
The comments in the file, including the copyright information, have been removed or
modified to fit the page margins. The code is copyright of Centre National de Creation
Musicale and Augmented Instruments Laboratory.
1 #ifndef __FaustBela_H__
2 #define __FaustBela_H__
3
4 #include <cstddef >
5 #include <string >
6 #include <math.h>
7 #include <strings.h>
8 #include <cstdlib >
9 #include <Bela.h>

10 #include <Utilities.h>

207

https://github.com/grame-cncm/faust

Faust DSP and Generated Code Appendix A
11 #include "faust/gui/JSONUIDecoder.h"
12
13 using namespace std;
14
15 #include "faust/dsp/dsp.h"
16 #include "faust/gui/UI.h"
17
18 // For MIDI
19 #ifdef MIDICTRL
20 #include "faust/gui/MidiUI.h"
21 #include "faust/midi/bela -midi.h"
22 #endif
23
24 // For OSC
25 #ifdef OSCCTRL
26 #include "faust/gui/OSCUI.h"
27 #include "faust/gui/BelaOSCUI.h"
28 #endif
29
30 // For POLY
31 #include "faust/dsp/poly -dsp.h"
32
33 // POLY2 = POLY with effect
34 #ifdef POLY2
35 #include "faust/dsp/dsp -combiner.h"
36 #include "effect.cpp"
37 #endif
38
39 const char *const pinNamesStrings [] =
40 {
41 "ANALOG_0",
42 "ANALOG_1",
43 "ANALOG_2",
44 "ANALOG_3",
45 "ANALOG_4",
46 "ANALOG_5",
47 "ANALOG_6",
48 "ANALOG_7",
49 "ANALOG_8",
50 "DIGITAL_0",
51 "DIGITAL_1",
52 "DIGITAL_2",
53 "DIGITAL_3",
54 "DIGITAL_4",
55 "DIGITAL_5",
56 "DIGITAL_6",
57 "DIGITAL_7",
58 "DIGITAL_8",
59 "DIGITAL_9",
60 "DIGITAL_10",

208

Section A.3 Bela Template Code for Faust
61 "DIGITAL_11",
62 "DIGITAL_12",
63 "DIGITAL_13",
64 "DIGITAL_14",
65 "DIGITAL_15",
66 "ANALOG_OUT_0", // outputs
67 "ANALOG_OUT_1",
68 "ANALOG_OUT_2",
69 "ANALOG_OUT_3",
70 "ANALOG_OUT_4",
71 "ANALOG_OUT_5",
72 "ANALOG_OUT_6",
73 "ANALOG_OUT_7",
74 "ANALOG_OUT_8"};
75
76 enum EInOutPin
77 {
78 kNoPin = -1,
79 kANALOG_0 = 0,
80 kANALOG_1 ,
81 kANALOG_2 ,
82 kANALOG_3 ,
83 kANALOG_4 ,
84 kANALOG_5 ,
85 kANALOG_6 ,
86 kANALOG_7 ,
87 kANALOG_8 ,
88 kDIGITAL_0 ,
89 kDIGITAL_1 ,
90 kDIGITAL_2 ,
91 kDIGITAL_3 ,
92 kDIGITAL_4 ,
93 kDIGITAL_5 ,
94 kDIGITAL_6 ,
95 kDIGITAL_7 ,
96 kDIGITAL_8 ,
97 kDIGITAL_9 ,
98 kDIGITAL_10 ,
99 kDIGITAL_11 ,

100 kDIGITAL_12 ,
101 kDIGITAL_13 ,
102 kDIGITAL_14 ,
103 kDIGITAL_15 ,
104 kANALOG_OUT_0 ,
105 kANALOG_OUT_1 ,
106 kANALOG_OUT_2 ,
107 kANALOG_OUT_3 ,
108 kANALOG_OUT_4 ,
109 kANALOG_OUT_5 ,
110 kANALOG_OUT_6 ,

209

Faust DSP and Generated Code Appendix A
111 kANALOG_OUT_7 ,
112 kANALOG_OUT_8 ,
113 kNumInputPins
114 };
115
116 class BelaWidget
117 {
118 protected:
119 EInOutPin fBelaPin;
120 FAUSTFLOAT *fZone; // Faust widget zone
121 const char *fLabel; // Faust widget label
122 FAUSTFLOAT fMin; // Faust widget minimal value
123 FAUSTFLOAT fRange; // Faust widget value range (max -min)
124
125 public:
126 BelaWidget ()
127 : fBelaPin(kNoPin), fZone (0), fLabel(""), fMin (0), fRange (1)
128 {
129 }
130
131 BelaWidget(const BelaWidget &w)
132 : fBelaPin(w.fBelaPin), fZone(w.fZone), fLabel(w.fLabel), fMin(w.

fMin), fRange(w.fRange)
133 {
134 }
135
136 BelaWidget(EInOutPin pin , FAUSTFLOAT *z, const char *l, FAUSTFLOAT

lo , FAUSTFLOAT hi)
137 : fBelaPin(pin), fZone(z), fLabel(l), fMin(lo), fRange(hi - lo)
138 {
139 }
140
141 void update(BelaContext *context)
142 {
143 switch (fBelaPin)
144 {
145 case kANALOG_0:
146 case kANALOG_1:
147 case kANALOG_2:
148 case kANALOG_3:
149 case kANALOG_4:
150 case kANALOG_5:
151 case kANALOG_6:
152 case kANALOG_7:
153 *fZone = fMin + fRange * analogReadNI(context , 0, (int)fBelaPin

);
154 break;
155 case kDIGITAL_0:
156 case kDIGITAL_1:
157 case kDIGITAL_2:

210

Section A.3 Bela Template Code for Faust
158 case kDIGITAL_3:
159 case kDIGITAL_4:
160 case kDIGITAL_5:
161 case kDIGITAL_6:
162 case kDIGITAL_7:
163 case kDIGITAL_8:
164 case kDIGITAL_9:
165 case kDIGITAL_10:
166 case kDIGITAL_11:
167 case kDIGITAL_12:
168 case kDIGITAL_13:
169 case kDIGITAL_14:
170 case kDIGITAL_15:
171 *fZone = digitalRead(context , 0, ((int)fBelaPin - kDIGITAL_0))

> 0 ? fMin : fMin + fRange;
172 break;
173 case kANALOG_OUT_0:
174 case kANALOG_OUT_1:
175 case kANALOG_OUT_2:
176 case kANALOG_OUT_3:
177 case kANALOG_OUT_4:
178 case kANALOG_OUT_5:
179 case kANALOG_OUT_6:
180 case kANALOG_OUT_7:
181 analogWriteNI(context , 0, ((int)fBelaPin) - kANALOG_OUT_0 , (*

fZone - fMin) / (fRange + fMin));
182 break;
183
184 default:
185 break;
186 };
187 }
188 };
189
190 #define MAXBELAWIDGETS 16
191
192 class BelaUI : public UI
193 {
194 private:
195 // number of BelaWidgets collected so far
196 int fIndex;
197 // current pin id
198 EInOutPin fBelaPin;
199 // kind of static list of BelaWidgets
200 BelaWidget fTable[MAXBELAWIDGETS];
201
202 // check if the widget is linked to a Bela parameter and , if so,
203 // add the corresponding BelaWidget
204 void addBelaWidget(const char *label , FAUSTFLOAT *zone , FAUSTFLOAT

lo , FAUSTFLOAT hi)

211

Faust DSP and Generated Code Appendix A
205 {
206 if (fBelaPin != kNoPin && (fIndex < MAXBELAWIDGETS))
207 {
208 fTable[fIndex] = BelaWidget(fBelaPin , zone , label , lo , hi);
209 fIndex ++;
210 }
211 fBelaPin = kNoPin;
212 }
213
214 // we dont want to create a widget but we clear fBelaPin just in

case
215 void skip()
216 {
217 fBelaPin = kNoPin;
218 }
219
220 public:
221 BelaUI ()
222 : fIndex (0), fBelaPin(kNoPin)
223 {
224 }
225
226 virtual ~BelaUI () {}
227
228 // should be called before compute () to update widget ’s zones
229 // registered as Bela parameters
230 void update(BelaContext *context)
231 {
232 for (int i = 0; i < fIndex; i++)
233 {
234 fTable[i]. update(context);
235 }
236 }
237
238 // -- widget ’s layouts
239 virtual void openTabBox(const char *label) {}
240 virtual void openHorizontalBox(const char *label) {}
241 virtual void openVerticalBox(const char *label) {}
242 virtual void closeBox () {}
243
244 // -- active widgets
245 virtual void addButton(const char *label , FAUSTFLOAT *zone) { skip

(); }
246 virtual void addCheckButton(const char *label , FAUSTFLOAT *zone) {

skip(); }
247 virtual void addVerticalSlider(const char *label , FAUSTFLOAT *zone ,

FAUSTFLOAT init , FAUSTFLOAT lo, FAUSTFLOAT hi , FAUSTFLOAT step) {
addBelaWidget(label , zone , lo, hi); }

248 virtual void addHorizontalSlider(const char *label , FAUSTFLOAT *
zone , FAUSTFLOAT init , FAUSTFLOAT lo, FAUSTFLOAT hi , FAUSTFLOAT

212

Section A.3 Bela Template Code for Faust
step) { addBelaWidget(label , zone , lo, hi); }

249 virtual void addNumEntry(const char *label , FAUSTFLOAT *zone ,
FAUSTFLOAT init , FAUSTFLOAT lo, FAUSTFLOAT hi , FAUSTFLOAT step) {
addBelaWidget(label , zone , lo, hi); }

250
251 // -- passive widgets
252 virtual void addHorizontalBargraph(const char *label , FAUSTFLOAT *

zone , FAUSTFLOAT lo, FAUSTFLOAT hi) { addBelaWidget(label , zone , lo
, hi); }

253 virtual void addVerticalBargraph(const char *label , FAUSTFLOAT *
zone , FAUSTFLOAT lo, FAUSTFLOAT hi) { addBelaWidget(label , zone , lo
, hi); }

254
255 // -- soundfiles
256 virtual void addSoundfile(const char *label , const char *filename ,

Soundfile ** sf_zone) {}
257
258 // -- metadata declarations
259 virtual void declare(FAUSTFLOAT *z, const char *k, const char *id)
260 {
261 if (strcasecmp(k, "BELA") == 0)
262 {
263 for (int i = 0; i < kNumInputPins; i++)
264 {
265 if (strcasecmp(id, pinNamesStrings[i]) == 0)
266 {
267 fBelaPin = (EInOutPin)i;
268 }
269 }
270 }
271 }
272 };
273
274 #endif // __FaustCommonInfrastructure__
275
276 << includeIntrinsic >>
277 << includeclass >>
278
279 std::list <GUI *> GUI:: fGuiList;
280 ztimedmap GUI:: gTimedZoneMap;
281
282 #ifdef MIDICTRL
283 bela_midi gMIDI;
284 MidiUI *gMidiInterface = NULL;
285 #endif
286
287 #ifdef OSCCTRL
288 #define OSC_IP_ADDRESS "192.168.7.1"
289 #define OSC_IN_PORT 5510
290 #define OSC_OUT_PORT 5511

213

Faust DSP and Generated Code Appendix A
291 BelaOSCUI gOSCUI(OSC_IP_ADDRESS , OSC_IN_PORT , OSC_OUT_PORT);
292 #endif
293
294 // array of pointers to context ->audioIn data
295 FAUSTFLOAT ** gFaustIns;
296 // array of pointers to context ->audioOut data
297 FAUSTFLOAT ** gFaustOuts;
298
299 int nvoices = 0;
300 BelaUI gControlUI;
301 dsp *gDSP = NULL;
302
303 void Bela_userSettings(BelaInitSettings *settings)
304 {
305 // Faust code uses non -interleaved buffers
306 settings ->uniformSampleRate = 1;
307 settings ->interleave = 0;
308 settings ->analogOutputsPersist = 0;
309 }
310
311 bool setup(BelaContext *context , void *userData)
312 {
313
314 #ifdef NVOICES
315 nvoices = NVOICES;
316 #endif
317
318 // Allocate deinterleaded inputs
319 gFaustIns = new FAUSTFLOAT *[context ->audioInChannels];
320 for (unsigned int ch = 0; ch < context ->audioInChannels; ch++)
321 {
322 gFaustIns[ch] = (float *)&context ->audioIn[ch * context ->

audioFrames];
323 }
324
325 // Allocate deinterleaded output
326 gFaustOuts = new FAUSTFLOAT *[context ->audioOutChannels];
327 for (unsigned int ch = 0; ch < context ->audioOutChannels; ch++)
328 {
329 gFaustOuts[ch] = (float *)&context ->audioOut[ch * context ->

audioFrames];
330 }
331
332 // Polyphonique with effect
333 #ifdef POLY2
334 mydsp_poly *dsp_poly = new mydsp_poly(new mydsp(), nvoices , true ,

true);
335 gDSP = new dsp_sequencer(dsp_poly , new effect ());
336 // Polyphonique without effect
337 #elif NVOICES

214

Section A.3 Bela Template Code for Faust
338 // is several voices , then its a simple Poly
339 if (nvoices > 0)
340 {
341 mydsp_poly *dsp_poly = new mydsp_poly(new mydsp (), nvoices , true ,

true);
342 gDSP = dsp_poly;
343 // If no voices , this is not an instrument (like an FX for

example)
344 }
345 else
346 {
347 gDSP = new mydsp();
348 }
349 #else
350 gDSP = new mydsp ();
351 #endif
352
353 gDSP ->init(context ->audioSampleRate);
354 // Maps Bela Analog/Digital IO and Faust widgets
355 gDSP ->buildUserInterface (& gControlUI);
356
357 // If MIDI , different behaviour in Poly and non Poly
358 #ifdef MIDICTRL
359 #ifdef NVOICES
360 gMIDI.addMidiIn(gDSPPoly);
361 #endif
362 gMidiInterface = new MidiUI (& gMIDI);
363 gDSP ->buildUserInterface(gMidiInterface);
364 gMidiInterface ->run();
365 #endif
366
367 // OSC
368 #ifdef OSCCTRL
369 DSP ->buildUserInterface (& gOSCUI);
370 gOSCUI.run();
371 #endif
372
373 return true;
374 }
375
376 void render(BelaContext *context , void *userData)
377 {
378 // OSC
379 #ifdef OSCCTRL
380 gOSCUI.scheduleOSC ();
381 #endif
382 // reads Bela pins and updates corresponding Faust Widgets zones
383 gControlUI.update(context);
384 // synchronize all GUI controllers
385 GUI:: updateAllGuis ();

215

Faust DSP and Generated Code Appendix A
386 // process Faust DSP
387 gDSP ->compute(context ->audioFrames , gFaustIns , gFaustOuts);
388 }
389
390 void cleanup(BelaContext *context , void *userData)
391 {
392 delete [] gFaustIns;
393 delete [] gFaustOuts;
394 delete gDSP;
395
396 #ifdef MIDICTRL
397 delete gMidiInterface;
398 #endif
399 }

Code A.5: Faust platform definition file for the Bela platform. Source file: (bela.cpp).

216

Appendix B

Relative Computation Cost of
Floating-Point Operations
This appendix contains the code and the results used to measure the relative com-
putation cost of floating-point arithmetic and trigonometric operations, to evaluate
the cost of computing control signals relative to audio signals in an audio rendering
method generated by Faust.

B.1 Relative Computation Cost Measurement
The results presented in the following subsection were calculated on PC running Win-
dows 7 Professional with an Intel Core i3-2120 CPU @ 3.30GHz with 8 GB of RAM.
The compiler used was MinGW version 5.3.2 by running the following command:

217

Relative Computation Cost of Floating-Point Operations Appendix B
$ g++ -std=c++11 source.cpp -o results

B.1.1 Results

The relative cycles presented here are calculated relative to the addition operation.
The results are rounded to the nearest half.

Operation Relative Cycles+ 1- 1* 1/ 2.5sqrt 2.5sin 13cos 14tan 24atan 26exp 19.5
Table B.1: Relative computation cost by floating-point operations. (Normalized to addition)

B.1.2 Source Code
1 #include <math.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <chrono >
5
6 using namespace std;
7 using namespace std:: chrono;
8
9 #define SIZE 20000000

10
11 double base = 0.0;
12 double current = 0.0;
13
14 // https :// gist.github.com/gongzhitaao /7062087
15 // accessed November 7, 2018
16 class Timer

218

Section B.1 Relative Computation Cost Measurement
17 {
18 public:
19 Timer() : beg_(clock_ ::now()) {}
20 void reset () { beg_ = clock_ ::now(); }
21 double elapsed () const {
22 return duration_cast <second_ >
23 (clock_ ::now() - beg_).count ();
24 }
25
26 private:
27 typedef high_resolution_clock clock_;
28 typedef duration <double , ratio <1>> second_;
29 time_point <clock_ > beg_;
30 };
31
32 int main() {
33
34 Timer tmr;
35 srand(time(NULL));
36
37 double * S1 = new double [SIZE];
38 double * S2 = new double[SIZE];
39 double * D = new double[SIZE];
40 double * pS1;
41 double * pS2;
42 double * pD;
43
44 pS1 = S1;
45 pS2 = S2;
46
47 for (int i = 0; i < SIZE; i++) {
48 *pS1++ = ((double)rand()) / ((double)(RAND_MAX));
49 *pS2++ = ((double)rand()) / ((double)(RAND_MAX));
50 }
51
52 // First Run
53 pS1 = S1;
54 pS2 = S2;
55 pD = D;
56
57 for (int i = 0; i < SIZE; i++) {
58 *pD++ = (*pS1++) + (*pS2++);
59 }
60
61 // ADD
62 pS1 = S1;
63 pS2 = S2;
64 pD = D;
65
66 tmr.reset();

219

Relative Computation Cost of Floating-Point Operations Appendix B
67
68 for (int i = 0; i < SIZE; i++) {
69 *pD++ = (*pS1++) + (*pS2++);
70 }
71
72 base = tmr.elapsed ();
73 printf("ADD %.7f\n", base);
74
75 // SUB
76 pS1 = S1;
77 pS2 = S2;
78 pD = D;
79
80 tmr.reset();
81
82 for (int i = 0; i < SIZE; i++) {
83 *pD++ = (*pS1++) - (*pS2++);
84 }
85
86 current = tmr.elapsed ();
87 printf("SUB %.7f\n", current/base);
88
89 // MUL
90 pS1 = S1;
91 pS2 = S2;
92 pD = D;
93
94 tmr.reset();
95
96 for (int i = 0; i < SIZE; i++) {
97 *pD++ = (*pS1++) * (*pS2++);
98 }
99

100 current = tmr.elapsed ();
101 printf("MUL %.7f\n", current/base);
102
103 // DIV
104 pS1 = S1;
105 pS2 = S2;
106 pD = D;
107
108 tmr.reset();
109
110 for (int i = 0; i < SIZE; i++) {
111 *pD++ = (*pS1++) / (*pS2++);
112 }
113
114 current = tmr.elapsed ();
115 printf("DIV %.7f\n", current/base);
116

220

Section B.1 Relative Computation Cost Measurement
117 // SQRT
118 pS1 = S1;
119 pS2 = S2;
120 pD = D;
121
122 tmr.reset();
123
124 for (int i = 0; i < SIZE; i++) {
125 *pD++ = sqrt(*pS1++);
126 }
127
128 current = tmr.elapsed ();
129 printf("SQRT %.7f\n", current/base);
130
131 // SIN
132 pS1 = S1;
133 pS2 = S2;
134 pD = D;
135
136 tmr.reset();
137
138 for (int i = 0; i < SIZE; i++) {
139 *pD++ = sin(*pS1++);
140 }
141
142 current = tmr.elapsed ();
143 printf("SIN %.7f\n", current/base);
144
145 // COS
146 pS1 = S1;
147 pS2 = S2;
148 pD = D;
149
150 tmr.reset();
151
152 for (int i = 0; i < SIZE; i++) {
153 *pD++ = cos(*pS1++);
154 }
155
156 current = tmr.elapsed ();
157 printf("COS %.7f\n", current/base);
158
159
160 // TAN
161 pS1 = S1;
162 pS2 = S2;
163 pD = D;
164
165 tmr.reset();
166

221

Relative Computation Cost of Floating-Point Operations Appendix B
167 for (int i = 0; i < SIZE; i++) {
168 *pD++ = tan(*pS1++);
169 }
170
171 current = tmr.elapsed ();
172 printf("TAN %.7f\n", current/base);
173
174 // ATAN
175 pS1 = S1;
176 pS2 = S2;
177 pD = D;
178
179 tmr.reset();
180
181 for (int i = 0; i < SIZE; i++) {
182 *pD++ = atan(*pS1++);
183 }
184
185 current = tmr.elapsed ();
186 printf("ATAN %.7f\n", current/base);
187
188 // EXP
189 pS1 = S1;
190 pS2 = S2;
191 pD = D;
192
193 tmr.reset();
194
195 for (int i = 0; i < SIZE; i++) {
196 *pD++ = exp(*pS1++);
197 }
198
199 current = tmr.elapsed ();
200 printf("EXP %.7f\n", current/base);
201
202
203 delete [] S1;
204 delete [] S2;
205 delete [] D;
206
207 printf("Press Enter to Quit ... ");
208 char input = getchar ();
209 getchar ();
210
211 }

Code B.1: C++ code to measure relative computation cost.

222

Appendix C

Frequency Modulation in Stride
This appendix contains Stride code to perform synchronous and asynchronous fre-
quency modulation in Stride. The generated C++ code relies on RtAudio and Boost
libraries.
The code was compiled and tested using RtAudio version 5.0.0 and Boost version
1.66.0with C++11 support. The following linker flag are required to successfully compile
the code on Boost compatible operating systems: “rtaudio boost_system boost_chrono
boost_thread-mt”

RtAudio is available online at https://github.com/thestk/rtaudio. Boost is avail-
able online at http://www.boost.org/. [accessed November 7, 2018]

223

https://github.com/thestk/rtaudio
http://www.boost.org/

Frequency Modulation in Stride Appendix C
C.1 Synchronous and Asynchronous Modulation
The following sections present synchronous frequency modulation in Stride on sys-
tem called RtAudioWithBoost targeting the Current device.
The system RtAudioWithBoost defines three domains and their corresponding rates.
The first domain is called AudioDomain with rate called AudioRate set to 48,000Hz.
The domain AudioDomain abstracts the callback function assigned to the RtAudio IO
stream. The system also defines the signal bundle AudioOutwhich abstracts the hard-
ware audio output channels access by RtAudio.
The second domain is called ControlDomain with a rate called ControlRate set to
1,000Hz. The domain ControlDomain abstracts a callback function assigned to an
asynchronous Boost timer.
The third domain is called ConstantDomain. The rate of the domain ConstantDomain

is set to zero. the domain abstracts a function called Constants that is called at the
start of program execution to evaluate all expressions assigned constant values or set
the values of all constant blocks in the code.

C.1.1 Synchronous Frequency Modulation

Stride Code

1 use RtAudioWithBoost on Current
2

224

Section C.1 Synchronous and Asynchronous Modulation
3 signal Modulation {
4 default: 0.0
5 rate: AudioRate
6 domain: AudioDomain
7 }
8
9 signal Output {

10 default: 0.0
11 rate: AudioRate
12 domain: AudioDomain
13 }
14
15 SineOsc (frequency: 1.0)
16 >> Level (gain: 40.0 offset: 220.0)
17 >> Modulation;
18
19 SineOsc (frequency: Modulation)
20 >> Output;
21
22 Output >> AudioOut [1:2];

Code C.1: Synchronous frequency modulation in Stride using RtAudio and Boost libraries.

C++ Generated Code
1 //[[Includes]]
2
3 #include <iostream >
4 #include <cmath >
5
6 #include <RtAudio.h>
7
8 #include <boost/asio.hpp >
9 #include <boost/bind.hpp >

10 #include <boost/thread.hpp >
11 #include <boost/date_time/posix_time/posix_time.hpp >
12
13 #define NUM_IN_CHANNELS 2
14 #define NUM_OUT_CHANNELS 2
15
16 typedef float MY_TYPE;
17 #define FORMAT RTAUDIO_FLOAT32
18
19 //[[/ Includes]]
20
21 //[[Declarations]]
22
23 template <class InputDataType , class OutputDataType >

225

Frequency Modulation in Stride Appendix C
24 class GreaterOrEqual {
25 public:
26 GreaterOrEqual () {
27 }
28
29 void process_OutputDomain(InputDataType Input[], OutputDataType *

Output) {
30 *Output = Input [0] >= Input [1];
31 }
32
33 private:
34 };
35
36 template <class OutputDataType >
37 class Sin {
38 public:
39 Sin(){
40 }
41
42 void process_OutputDomain(OutputDataType Input , OutputDataType *

Output) {
43 *Output = std::sin(Input);
44 }
45 };
46
47 template <class OutputDataType , class FrequencyDataType >
48 class SineOsc {
49 public:
50 SineOsc(float outputRate) : OutputPort_Rate(outputRate){
51 }
52
53 void process_OutputDomain(OutputDataType *Output , OutputDataType

*Phase , OutputDataType PhaseInc) {
54 Sin_00.process_OutputDomain (*Phase , &Sin_00_Output);
55 *Output = Sin_00_Output;
56 *Phase = *Phase + PhaseInc;
57 OutputDataType BundleConnector_00 [2];
58 BundleConnector_00 [0] = *Phase;
59 BundleConnector_00 [1] = 6.28318530718;
60 GreaterOrEqual_00.process_OutputDomain(BundleConnector_00 , &

GreaterOrEqual_00_Output);
61 if (GreaterOrEqual_00_Output){
62 reaction_WrapPhase(Phase);
63 }
64 }
65
66 void process_FrequencyPortDomain(FrequencyDataType Frequency ,

OutputDataType *PhaseInc) {
67 *PhaseInc = Frequency * 6.28318530718 / OutputPort_Rate;
68 }

226

Section C.1 Synchronous and Asynchronous Modulation
69
70 void init_Frequency(FrequencyDataType *Frequency) {
71 *Frequency = FrequencyDataType (440.0);
72 }
73
74 void init_Phase(OutputDataType *Phase) {
75 *Phase = OutputDataType (0.0);
76 }
77
78 void init_PhaseInc(OutputDataType *PhaseInc) {
79 FrequencyDataType Frequency;
80 init_Frequency (& Frequency);
81 *PhaseInc = OutputDataType(Frequency) * 6.28318530718 /

OutputPort_Rate;
82 }
83
84 void reaction_WrapPhase (OutputDataType *Phase) {
85 *Phase = *Phase - 6.28318530718;
86 }
87
88 private:
89 using GreaterOrEqual_00_Type = GreaterOrEqual <OutputDataType ,bool

>;
90 GreaterOrEqual_00_Type GreaterOrEqual_00;
91 bool GreaterOrEqual_00_Output;
92 using Sin_00_Type = Sin <OutputDataType >;
93 Sin_00_Type Sin_00;
94 OutputDataType Sin_00_Output;
95
96 float OutputPort_Rate;
97 };
98
99 template <class OutputDataType , class GainDataType , class

OffsetDataType >
100 class Level {
101 public:
102 Level() {
103 }
104
105 void process_OutputDomain(OutputDataType Input , OutputDataType *

Output , GainDataType Gain , OffsetDataType Offset) {
106 *Output = ((Input * Gain) + Offset);
107 }
108
109 void process_GainPropertyDomain(GainDataType Gain , GainDataType *

Gain_) {
110 *Gain_ = Gain;
111 }
112
113 void process_OffsetPropertyDomain(OffsetDataType Offset ,

227

Frequency Modulation in Stride Appendix C
OffsetDataType *Offset_) {

114 *Offset_ = Offset;
115 }
116
117 void init_Gain(GainDataType *Gain) {
118 *Gain = OutputDataType (1.0);
119 }
120
121 void init_Offset(OffsetDataType *Offset) {
122 *Offset = OutputDataType (0.0);
123 }
124
125 private:
126 };
127
128 float Modulation_AudioTick = 0.0;
129 float Output_AudioTick = 0.0;
130
131 using SineOsc_00_Type = SineOsc <float , float >;
132 SineOsc_00_Type SineOsc_00 {48000};
133 float SineOsc_00_Output_AudioTick;
134 float SineOsc_00_Phase_AudioTick;
135 float SineOsc_00_PhaseInc_Constant;
136
137 using Level_00_Type = Level <float , float , float >;
138 Level_00_Type Level_00;
139 float Level_00_Gain_Constant;
140 float Level_00_Offset_Constant;
141
142 using SineOsc_01_Type = SineOsc <float , float >;
143 SineOsc_01_Type SineOsc_01 {48000};
144 float SineOsc_01_Phase_AudioTick;
145 float SineOsc_01_PhaseInc_AudioTick;
146
147 void AudioTick (float &ProcessOutput) {
148 SineOsc_00.process_OutputDomain (& SineOsc_00_Output_AudioTick , &

SineOsc_00_Phase_AudioTick , SineOsc_00_PhaseInc_Constant);
149 Level_00.process_OutputDomain(SineOsc_00_Output_AudioTick , &

Modulation_AudioTick , Level_00_Gain_Constant ,
Level_00_Offset_Constant);

150 SineOsc_01.process_FrequencyPortDomain(Modulation_AudioTick , &
SineOsc_01_PhaseInc_AudioTick);

151 SineOsc_01.process_OutputDomain (& Output_AudioTick , &
SineOsc_01_Phase_AudioTick , SineOsc_01_PhaseInc_AudioTick);

152 ProcessOutput = Output_AudioTick;
153 }
154
155 void Constants () {
156 SineOsc_00.process_FrequencyPortDomain (1.0, &

SineOsc_00_PhaseInc_Constant);

228

Section C.1 Synchronous and Asynchronous Modulation
157 Level_00.process_GainPropertyDomain (40.0 , &Level_00_Gain_Constant

);
158 Level_00.process_OffsetPropertyDomain (220.0 , &

Level_00_Offset_Constant);
159 }
160
161 void Initialize () {
162 SineOsc_00.init_Phase (& SineOsc_00_Phase_AudioTick);
163 SineOsc_01.init_Phase (& SineOsc_01_Phase_AudioTick);
164 SineOsc_01.init_PhaseInc (& SineOsc_01_PhaseInc_AudioTick);
165 }
166
167 //[[/ Declarations]]
168
169 //[[Processing]]
170
171 int audio_buffer_process(void *outputBuffer , void *inputBuffer ,

unsigned int nBufferFrames , double streamTime , RtAudioStreamStatus
status , void *data)

172 {
173 if (status) std::cout << "Stream over/underflow detected." << std

::endl;
174
175 MY_TYPE *in = (MY_TYPE *) inputBuffer;
176 MY_TYPE *out = (MY_TYPE *) outputBuffer;
177 MY_TYPE output = 0.0;
178 while(nBufferFrames -- > 0) {
179 AudioTick (output);
180 out[0] = output;
181 out[1] = output;
182 in += NUM_IN_CHANNELS;
183 out += NUM_OUT_CHANNELS;
184 }
185
186 return 0;
187 }
188
189 class EndOnInput {
190 public:
191 EndOnInput(RtAudio &rtAudio) : p_rtAudio(rtAudio) { }
192
193 void operator ()() {
194 char enter;
195 std::cout << std::endl << "Press <enter > to quit!" << std::

endl;
196 std::cin.get(enter);
197
198 try {
199 if (p_rtAudio.isStreamRunning ()) p_rtAudio.stopStream ();
200 if (p_rtAudio.isStreamOpen ()) p_rtAudio.closeStream ();

229

Frequency Modulation in Stride Appendix C
201 }
202 catch (RtAudioError& e) {
203 e.printMessage ();
204 }
205
206 return;
207 }
208
209 private:
210 RtAudio &p_rtAudio;
211 };
212
213 //[[/ Processing]]
214
215 int main() {
216
217 // Initialize
218 Initialize ();
219
220 // Process Constants
221 Constants ();
222
223 // Check for audio devices
224 RtAudio rtAudio;
225 if (rtAudio.getDeviceCount () < 1) {
226 std::cout << std::endl << "No audio devices found!" << std::

endl;
227 exit(-1);
228 }
229
230 // Setup up termination on user input
231 EndOnInput endOnInput(rtAudio);
232
233 // Run user termination on a separate thread
234 boost:: thread endOnInputThread(endOnInput);
235
236 // Set the same number of channels for both input and output.
237 unsigned int bufferBytes;
238 unsigned int bufferFrames = 512;
239 unsigned int fs = 48000;
240
241 bufferBytes = bufferFrames * NUM_OUT_CHANNELS * sizeof(MY_TYPE)

;
242
243 RtAudio :: StreamParameters iParams;
244 iParams.deviceId = rtAudio.getDefaultInputDevice ();
245 iParams.nChannels = NUM_IN_CHANNELS;
246
247 RtAudio :: StreamParameters oParams;
248 oParams.deviceId = rtAudio.getDefaultOutputDevice ();

230

Section C.1 Synchronous and Asynchronous Modulation
249 oParams.nChannels = NUM_OUT_CHANNELS;
250
251 RtAudio :: StreamOptions options;
252
253 try {
254 rtAudio.openStream(&oParams , &iParams , FORMAT , fs , &

bufferFrames , &audio_buffer_process , (void *)&bufferBytes , &
options);

255 }
256 catch (RtAudioError& e) {
257 e.printMessage ();
258 exit(-1);
259 }
260
261 // Start Audio Streams
262 try {
263 rtAudio.startStream ();
264 }
265 catch (RtAudioError& e) {
266 e.printMessage ();
267 if (rtAudio.isStreamOpen ()) rtAudio.closeStream ();
268 exit (-1);
269 }
270
271 // Join user termination
272 endOnInputThread.join();
273
274 return 0;
275 }

Code C.2: Generated C++ code for synchronous frequency modulation.

C.1.2 Asynchronous Frequency Modulation

Stride Code
1 use RtAudioWithBoost on Current
2
3 signal Modulation {
4 default: 0.0
5 rate: ControlRate
6 domain: ControlDomain
7 }
8
9 signal Output {

231

Frequency Modulation in Stride Appendix C
10 default: 0.0
11 rate: AudioRate
12 domain: AudioDomain
13 }
14
15 SineOsc (frequency: 1.0)
16 >> Level (gain: 40.0 offset: 220.0)
17 >> Modulation;
18
19 SineOsc (frequency: Modulation)
20 >> Output;
21
22 Output >> AudioOut [1:2];

Code C.3: Asynchronous frequency modulation in Stride using RtAudio and Boost libraries.

C++ Generated Code

1 //[[Includes]]
2
3 #include <iostream >
4 #include <cmath >
5
6 #include <RtAudio.h>
7
8 #include <boost/asio.hpp >
9 #include <boost/bind.hpp >

10 #include <boost/thread.hpp >
11 #include <boost/date_time/posix_time/posix_time.hpp >
12
13 #define NUM_IN_CHANNELS 2
14 #define NUM_OUT_CHANNELS 2
15 #define CONTROL_TIME_MS 1
16
17 typedef float MY_TYPE;
18 #define FORMAT RTAUDIO_FLOAT32
19
20 //[[/ Includes]]
21
22 //[[Declarations]]
23
24 template <class InputDataType , class OutputDataType >
25 class GreaterOrEqual {
26 public:
27 GreaterOrEqual () {
28 }
29

232

Section C.1 Synchronous and Asynchronous Modulation
30 void process_OutputDomain(InputDataType Input[], OutputDataType *

Output) {
31 *Output = Input [0] >= Input [1];
32 }
33
34 private:
35 };
36
37 template <class OutputDataType >
38 class Sin {
39 public:
40 Sin(){
41 }
42
43 void process_OutputDomain(OutputDataType Input , OutputDataType *

Output) {
44 *Output = std::sin(Input);
45 }
46 };
47
48 template <class OutputDataType , class FrequencyDataType >
49 class SineOsc {
50 public:
51 SineOsc(float outputRate) : OutputPort_Rate(outputRate){
52 }
53
54 void process_OutputDomain(OutputDataType *Output , OutputDataType

*Phase , OutputDataType PhaseInc) {
55 Sin_00.process_OutputDomain (*Phase , &Sin_00_Output);
56 *Output = Sin_00_Output;
57 *Phase = *Phase + PhaseInc;
58 OutputDataType BundleConnector_00 [2];
59 BundleConnector_00 [0] = *Phase;
60 BundleConnector_00 [1] = 6.28318530718;
61 GreaterOrEqual_00.process_OutputDomain(BundleConnector_00 , &

GreaterOrEqual_00_Output);
62 if (GreaterOrEqual_00_Output){
63 reaction_WrapPhase(Phase);
64 }
65 }
66
67 void process_FrequencyPortDomain(FrequencyDataType Frequency ,

OutputDataType *PhaseInc) {
68 *PhaseInc = Frequency * 6.28318530718 / OutputPort_Rate;
69 }
70
71 void init_Frequency(FrequencyDataType *Frequency) {
72 *Frequency = FrequencyDataType (440.0);
73 }
74

233

Frequency Modulation in Stride Appendix C
75 void init_Phase(OutputDataType *Phase) {
76 *Phase = OutputDataType (0.0);
77 }
78
79 void init_PhaseInc(OutputDataType *PhaseInc) {
80 FrequencyDataType Frequency;
81 init_Frequency (& Frequency);
82 *PhaseInc = OutputDataType(Frequency) * 6.28318530718 /

OutputPort_Rate;
83 }
84
85 void reaction_WrapPhase (OutputDataType *Phase) {
86 *Phase = *Phase - 6.28318530718;
87 }
88
89 private:
90 using GreaterOrEqual_00_Type = GreaterOrEqual <OutputDataType ,bool

>;
91 GreaterOrEqual_00_Type GreaterOrEqual_00;
92 bool GreaterOrEqual_00_Output;
93 using Sin_00_Type = Sin <OutputDataType >;
94 Sin_00_Type Sin_00;
95 OutputDataType Sin_00_Output;
96
97 float OutputPort_Rate;
98 };
99

100 template <class OutputDataType , class GainDataType , class
OffsetDataType >

101 class Level {
102 public:
103 Level() {
104 }
105
106 void process_OutputDomain(OutputDataType Input , OutputDataType *

Output , GainDataType Gain , OffsetDataType Offset) {
107 *Output = ((Input * Gain) + Offset);
108 }
109
110 void process_GainPropertyDomain(GainDataType Gain , GainDataType *

Gain_) {
111 *Gain_ = Gain;
112 }
113
114 void process_OffsetPropertyDomain(OffsetDataType Offset ,

OffsetDataType *Offset_) {
115 *Offset_ = Offset;
116 }
117
118 void init_Gain(GainDataType *Gain) {

234

Section C.1 Synchronous and Asynchronous Modulation
119 *Gain = OutputDataType (1.0);
120 }
121
122 void init_Offset(OffsetDataType *Offset) {
123 *Offset = OutputDataType (0.0);
124 }
125
126 private:
127 };
128
129 float Modulation_AudioTick = 0.0;
130 float Output_AudioTick = 0.0;
131
132 using SineOsc_00_Type = SineOsc <float , float >;
133 SineOsc_00_Type SineOsc_00 {1.0/(CONTROL_TIME_MS /1000.0) };
134 float SineOsc_00_Output_ControlTick;
135 float SineOsc_00_Phase_ControlTick;
136 float SineOsc_00_PhaseInc_Constant;
137
138 using Level_00_Type = Level <float , float , float >;
139 Level_00_Type Level_00;
140 float Level_00_Gain_Constant;
141 float Level_00_Offset_Constant;
142
143 using SineOsc_01_Type = SineOsc <float , float >;
144 SineOsc_01_Type SineOsc_01 {48000};
145 float SineOsc_01_Phase_AudioTick;
146 float SineOsc_01_PhaseInc_AudioTick_ControlTick;
147
148 void AudioTick (float &ProcessOutput) {
149 SineOsc_01.process_OutputDomain (& Output_AudioTick , &

SineOsc_01_Phase_AudioTick ,
SineOsc_01_PhaseInc_AudioTick_ControlTick);

150 ProcessOutput = Output_AudioTick;
151 }
152
153 void ControlTick () {
154 SineOsc_00.process_OutputDomain (& SineOsc_00_Output_ControlTick , &

SineOsc_00_Phase_ControlTick , SineOsc_00_PhaseInc_Constant);
155 Level_00.process_OutputDomain(SineOsc_00_Output_ControlTick , &

Modulation_AudioTick , Level_00_Gain_Constant ,
Level_00_Offset_Constant);

156 SineOsc_01.process_FrequencyPortDomain(Modulation_AudioTick , &
SineOsc_01_PhaseInc_AudioTick_ControlTick);

157 }
158
159 void Constants () {
160 SineOsc_00.process_FrequencyPortDomain (1.0, &

SineOsc_00_PhaseInc_Constant);
161 Level_00.process_GainPropertyDomain (40.0 , &Level_00_Gain_Constant

235

Frequency Modulation in Stride Appendix C
);

162 Level_00.process_OffsetPropertyDomain (220.0 , &
Level_00_Offset_Constant);

163 }
164
165 void Initialize () {
166 SineOsc_00.init_Phase (& SineOsc_00_Phase_ControlTick);
167 SineOsc_01.init_Phase (& SineOsc_01_Phase_AudioTick);
168 SineOsc_01.init_PhaseInc (&

SineOsc_01_PhaseInc_AudioTick_ControlTick);
169 }
170
171 //[[/ Declarations]]
172
173 //[[Processing]]
174
175 int audio_buffer_process(void *outputBuffer , void *inputBuffer ,

unsigned int nBufferFrames , double streamTime , RtAudioStreamStatus
status , void *data)

176 {
177 if (status) std::cout << "Stream over/underflow detected." << std

::endl;
178
179 MY_TYPE *in = (MY_TYPE *) inputBuffer;
180 MY_TYPE *out = (MY_TYPE *) outputBuffer;
181 MY_TYPE output = 0.0;
182 while(nBufferFrames -- > 0) {
183 AudioTick (output);
184 out[0] = output;
185 out[1] = output;
186 in += NUM_IN_CHANNELS;
187 out += NUM_OUT_CHANNELS;
188 }
189
190 return 0;
191 }
192
193 class Control {
194 public:
195 Control(boost ::asio:: deadline_timer &timer , long time , void (*

callBack) ()) : p_timer(timer), p_time(time), p_callBack(callBack
) {

196 p_setupWait ();
197 }
198
199 void tick(const boost:: system :: error_code &e) {
200 if (e) return;
201 p_callBack ();
202 //std::cout << p_time << " : " << p_timer.expires_at () << std

::endl;

236

Section C.1 Synchronous and Asynchronous Modulation
203 p_timer.expires_at(p_timer.expires_at () + boost:: posix_time ::

millisec(p_time));
204 p_setupWait ();
205 }
206
207 void cancel () {
208 p_timer.cancel ();
209 }
210
211 private:
212 boost::asio:: deadline_timer &p_timer;
213 long p_time;
214 void (* p_callBack) ();
215 void p_setupWait () {
216 p_timer.async_wait(boost ::bind(& Control ::tick , this , boost::

asio:: placeholders :: error));
217 }
218 };
219
220 class EndOnInput {
221 public:
222 EndOnInput(Control &control , RtAudio &rtAudio) : p_control(

control), p_rtAudio(rtAudio) { }
223
224 void operator ()() {
225 char enter;
226 std::cout << std::endl << "Press <enter > to quit!" << std::

endl;
227 std::cin.get(enter);
228
229 p_control.cancel ();
230
231 try {
232 if (p_rtAudio.isStreamRunning ()) p_rtAudio.stopStream ();
233 if (p_rtAudio.isStreamOpen ()) p_rtAudio.closeStream ();
234 }
235 catch (RtAudioError& e) {
236 e.printMessage ();
237 }
238
239 return;
240 }
241
242 private:
243 Control &p_control;
244 RtAudio &p_rtAudio;
245 };
246
247 //[[/ Processing]]
248

237

Frequency Modulation in Stride Appendix C
249 int main() {
250
251 // Initialize
252 Initialize ();
253
254 // Process Constants
255 Constants ();
256
257 // Setup IO service
258 boost::asio:: io_service io;
259 // Setup Control Timer
260 boost::asio:: deadline_timer controlTimer(io , boost :: posix_time ::

millisec(CONTROL_TIME_MS));
261 // Start Control Timer Callback
262 Control control(controlTimer , CONTROL_TIME_MS , &ControlTick);
263
264 // Check for audio devices
265 RtAudio rtAudio;
266 if (rtAudio.getDeviceCount () < 1) {
267 std::cout << std::endl << "No audio devices found!" << std::

endl;
268 exit(-1);
269 }
270
271 // Setup up termination on user input
272 EndOnInput endOnInput(control , rtAudio);
273
274 // Run user termination on a separate thread
275 boost:: thread endOnInputThread(endOnInput);
276
277 // Set the same number of channels for both input and output.
278 unsigned int bufferBytes;
279 unsigned int bufferFrames = 512;
280 unsigned int fs = 48000;
281
282 bufferBytes = bufferFrames * NUM_OUT_CHANNELS * sizeof(MY_TYPE)

;
283
284 RtAudio :: StreamParameters iParams;
285 iParams.deviceId = rtAudio.getDefaultInputDevice ();
286 iParams.nChannels = NUM_IN_CHANNELS;
287
288 RtAudio :: StreamParameters oParams;
289 oParams.deviceId = rtAudio.getDefaultOutputDevice ();
290 oParams.nChannels = NUM_OUT_CHANNELS;
291
292 RtAudio :: StreamOptions options;
293
294 try {
295 rtAudio.openStream(&oParams , &iParams , FORMAT , fs , &

238

Section C.1 Synchronous and Asynchronous Modulation
bufferFrames , &audio_buffer_process , (void *)&bufferBytes , &
options);

296 }
297 catch (RtAudioError& e) {
298 e.printMessage ();
299 exit(-1);
300 }
301
302 // Start Audio Streams
303 try {
304 rtAudio.startStream ();
305 }
306 catch (RtAudioError& e) {
307 e.printMessage ();
308 if (rtAudio.isStreamOpen ()) rtAudio.closeStream ();
309 exit (-1);
310 }
311
312 // Start IO service
313 io.run();
314
315 // Join user termination
316 endOnInputThread.join();
317
318 return 0;
319 }

Code C.4: Generated C++ code for asynchronous frequency modulation.

C.1.3 Asynchronous Frequency Modulation with Concurrency

Stride Code
1 use RtAudioWithBoost on Current
2
3 mutualExclusion TryLockOnReadLockOnWrite {
4 read: TryLock
5 write: Lock
6 }
7
8 synchronization AudioReadControlWrite {
9 readDomain: AudioDomain

10 writeDomain: ControlDomain
11 mode: TryLockOnReadLockOnWrite
12 }

239

Frequency Modulation in Stride Appendix C
13
14 signal Modulation {
15 default: 0.0
16 rate: ControlRate
17 domain: ControlDomain
18 }
19
20 signal Output {
21 default: 0.0
22 rate: AudioRate
23 domain: AudioDomain
24 }
25
26 SineOsc (frequency: 1.0)
27 >> Level (gain: 40.0 offset: 220.0)
28 >> Modulation;
29
30 SineOsc (frequency: Modulation)
31 >> Output;
32
33 Output >> AudioOut [1:2];

Code C.5: Asynchronous frequency modulation in Stride using RtAudio and Boostlibraries with concurrency control.

C++ Generated Code

1 //[[Includes]]
2
3 #include <iostream >
4 #include <cmath >
5 #include <mutex >
6
7 #include <RtAudio.h>
8
9 #include <boost/asio.hpp >

10 #include <boost/bind.hpp >
11 #include <boost/thread.hpp >
12 #include <boost/date_time/posix_time/posix_time.hpp >
13
14 #define NUM_IN_CHANNELS 2
15 #define NUM_OUT_CHANNELS 2
16 #define CONTROL_TIME_MS 1
17
18 typedef float MY_TYPE;
19 #define FORMAT RTAUDIO_FLOAT32
20
21 //[[/ Includes]]

240

Section C.1 Synchronous and Asynchronous Modulation
22
23 //[[Declarations]]
24
25 template <class InputDataType , class OutputDataType >
26 class GreaterOrEqual {
27 public:
28 GreaterOrEqual () {
29 }
30
31 void process_OutputDomain(InputDataType Input[], OutputDataType *

Output) {
32 *Output = Input [0] >= Input [1];
33 }
34
35 private:
36 };
37
38 template <class OutputDataType >
39 class Sin {
40 public:
41 Sin(){
42 }
43
44 void process_OutputDomain(OutputDataType Input , OutputDataType *

Output) {
45 *Output = std::sin(Input);
46 }
47 };
48
49 template <class OutputDataType , class FrequencyDataType >
50 class SineOsc {
51 public:
52 SineOsc(float outputRate) : OutputPort_Rate(outputRate){
53 }
54
55 void process_OutputDomain(OutputDataType *Output , OutputDataType

*Phase , OutputDataType PhaseInc) {
56 Sin_00.process_OutputDomain (*Phase , &Sin_00_Output);
57 *Output = Sin_00_Output;
58 *Phase = *Phase + PhaseInc;
59 OutputDataType BundleConnector_00 [2];
60 BundleConnector_00 [0] = *Phase;
61 BundleConnector_00 [1] = 6.28318530718;
62 GreaterOrEqual_00.process_OutputDomain(BundleConnector_00 , &

GreaterOrEqual_00_Output);
63 if (GreaterOrEqual_00_Output){
64 reaction_WrapPhase(Phase);
65 }
66 }
67

241

Frequency Modulation in Stride Appendix C
68 void process_FrequencyPortDomain(FrequencyDataType Frequency ,

OutputDataType *PhaseInc) {
69 *PhaseInc = Frequency * 6.28318530718 / OutputPort_Rate;
70 }
71
72 void init_Frequency(FrequencyDataType *Frequency) {
73 *Frequency = FrequencyDataType (440.0);
74 }
75
76 void init_Phase(OutputDataType *Phase) {
77 *Phase = OutputDataType (0.0);
78 }
79
80 void init_PhaseInc(OutputDataType *PhaseInc) {
81 FrequencyDataType Frequency;
82 init_Frequency (& Frequency);
83 *PhaseInc = OutputDataType(Frequency) * 6.28318530718 /

OutputPort_Rate;
84 }
85
86 void reaction_WrapPhase (OutputDataType *Phase) {
87 *Phase = *Phase - 6.28318530718;
88 }
89
90 private:
91 using GreaterOrEqual_00_Type = GreaterOrEqual <OutputDataType ,bool

>;
92 GreaterOrEqual_00_Type GreaterOrEqual_00;
93 bool GreaterOrEqual_00_Output;
94 using Sin_00_Type = Sin <OutputDataType >;
95 Sin_00_Type Sin_00;
96 OutputDataType Sin_00_Output;
97
98 float OutputPort_Rate;
99 };

100
101 template <class OutputDataType , class GainDataType , class

OffsetDataType >
102 class Level {
103 public:
104 Level() {
105 }
106
107 void process_OutputDomain(OutputDataType Input , OutputDataType *

Output , GainDataType Gain , OffsetDataType Offset) {
108 *Output = ((Input * Gain) + Offset);
109 }
110
111 void process_GainPropertyDomain(GainDataType Gain , GainDataType *

Gain_) {

242

Section C.1 Synchronous and Asynchronous Modulation
112 *Gain_ = Gain;
113 }
114
115 void process_OffsetPropertyDomain(OffsetDataType Offset ,

OffsetDataType *Offset_) {
116 *Offset_ = Offset;
117 }
118
119 void init_Gain(GainDataType *Gain) {
120 *Gain = OutputDataType (1.0);
121 }
122
123 void init_Offset(OffsetDataType *Offset) {
124 *Offset = OutputDataType (0.0);
125 }
126
127 private:
128 };
129
130 std::mutex R_AudioTick_W_ControlTick_Mutex;
131
132 float Modulation_AudioTick = 0.0;
133 float Output_AudioTick = 0.0;
134
135 using SineOsc_00_Type = SineOsc <float , float >;
136 SineOsc_00_Type SineOsc_00 {1.0/(CONTROL_TIME_MS /1000.0) };
137 float SineOsc_00_Output_ControlTick;
138 float SineOsc_00_Phase_ControlTick;
139 float SineOsc_00_PhaseInc_Constant;
140
141 using Level_00_Type = Level <float , float , float >;
142 Level_00_Type Level_00;
143 float Level_00_Gain_Constant;
144 float Level_00_Offset_Constant;
145
146 using SineOsc_01_Type = SineOsc <float , float >;
147 SineOsc_01_Type SineOsc_01 {48000};
148 float SineOsc_01_Phase_AudioTick;
149 float SineOsc_01_PhaseInc_AudioTick;
150 float SineOsc_01_PhaseInc_AudioTick_ControlTick;
151
152 void AudioTick (float &ProcessOutput) {
153 if (R_AudioTick_W_ControlTick_Mutex.try_lock ()) {
154 SineOsc_01_PhaseInc_AudioTick =

SineOsc_01_PhaseInc_AudioTick_ControlTick;
155 R_AudioTick_W_ControlTick_Mutex.unlock ();
156 }
157 SineOsc_01.process_OutputDomain (& Output_AudioTick , &

SineOsc_01_Phase_AudioTick , SineOsc_01_PhaseInc_AudioTick);
158 ProcessOutput = Output_AudioTick;

243

Frequency Modulation in Stride Appendix C
159 }
160
161 void ControlTick () {
162 SineOsc_00.process_OutputDomain (& SineOsc_00_Output_ControlTick , &

SineOsc_00_Phase_ControlTick , SineOsc_00_PhaseInc_Constant);
163 Level_00.process_OutputDomain(SineOsc_00_Output_ControlTick , &

Modulation_AudioTick , Level_00_Gain_Constant ,
Level_00_Offset_Constant);

164 R_AudioTick_W_ControlTick_Mutex.lock();
165 SineOsc_01.process_FrequencyPortDomain(Modulation_AudioTick , &

SineOsc_01_PhaseInc_AudioTick_ControlTick);
166 R_AudioTick_W_ControlTick_Mutex.unlock ();
167 }
168
169 void Constants () {
170 SineOsc_00.process_FrequencyPortDomain (1.0, &

SineOsc_00_PhaseInc_Constant);
171 Level_00.process_GainPropertyDomain (40.0 , &Level_00_Gain_Constant

);
172 Level_00.process_OffsetPropertyDomain (220.0 , &

Level_00_Offset_Constant);
173 }
174
175 void Initialize () {
176 SineOsc_00.init_Phase (& SineOsc_00_Phase_ControlTick);
177 SineOsc_01.init_Phase (& SineOsc_01_Phase_AudioTick);
178 SineOsc_01.init_PhaseInc (& SineOsc_01_PhaseInc_AudioTick);
179 SineOsc_01.init_PhaseInc (&

SineOsc_01_PhaseInc_AudioTick_ControlTick);
180 }
181
182 //[[/ Declarations]]
183
184 //[[Processing]]
185
186 int audio_buffer_process(void *outputBuffer , void *inputBuffer ,

unsigned int nBufferFrames , double streamTime , RtAudioStreamStatus
status , void *data)

187 {
188 if (status) std::cout << "Stream over/underflow detected." << std

::endl;
189
190 MY_TYPE *in = (MY_TYPE *) inputBuffer;
191 MY_TYPE *out = (MY_TYPE *) outputBuffer;
192 MY_TYPE output = 0.0;
193 while(nBufferFrames -- > 0) {
194 AudioTick (output);
195 out[0] = output;
196 out[1] = output;
197 in += NUM_IN_CHANNELS;

244

Section C.1 Synchronous and Asynchronous Modulation
198 out += NUM_OUT_CHANNELS;
199 }
200
201 return 0;
202 }
203
204 class Control {
205 public:
206 Control(boost ::asio:: deadline_timer &timer , long time , void (*

callBack) ()) : p_timer(timer), p_time(time), p_callBack(callBack
) {

207 p_setupWait ();
208 }
209
210 void tick(const boost:: system :: error_code &e) {
211 if (e) return;
212 p_callBack ();
213 //std::cout << p_time << " : " << p_timer.expires_at () << std

::endl;
214 p_timer.expires_at(p_timer.expires_at () + boost:: posix_time ::

millisec(p_time));
215 p_setupWait ();
216 }
217
218 void cancel () {
219 p_timer.cancel ();
220 }
221
222 private:
223 boost::asio:: deadline_timer &p_timer;
224 long p_time;
225 void (* p_callBack) ();
226 void p_setupWait () {
227 p_timer.async_wait(boost ::bind(& Control ::tick , this , boost::

asio:: placeholders :: error));
228 }
229 };
230
231 class EndOnInput {
232 public:
233 EndOnInput(Control &control , RtAudio &rtAudio) : p_control(

control), p_rtAudio(rtAudio) { }
234
235 void operator ()() {
236 char enter;
237 std::cout << std::endl << "Press <enter > to quit!" << std::

endl;
238 std::cin.get(enter);
239
240 p_control.cancel ();

245

Frequency Modulation in Stride Appendix C
241
242 try {
243 if (p_rtAudio.isStreamRunning ()) p_rtAudio.stopStream ();
244 if (p_rtAudio.isStreamOpen ()) p_rtAudio.closeStream ();
245 }
246 catch (RtAudioError& e) {
247 e.printMessage ();
248 }
249
250 return;
251 }
252
253 private:
254 Control &p_control;
255 RtAudio &p_rtAudio;
256 };
257
258 //[[/ Processing]]
259
260 int main() {
261
262 // Initialize
263 Initialize ();
264
265 // Process Constants
266 Constants ();
267
268 // Setup IO service
269 boost::asio:: io_service io;
270 // Setup Control Timer
271 boost::asio:: deadline_timer controlTimer(io , boost :: posix_time ::

millisec(CONTROL_TIME_MS));
272 // Start Control Timer Callback
273 Control control(controlTimer , CONTROL_TIME_MS , &ControlTick);
274
275 // Check for audio devices
276 RtAudio rtAudio;
277 if (rtAudio.getDeviceCount () < 1) {
278 std::cout << std::endl << "No audio devices found!" << std::

endl;
279 exit(-1);
280 }
281
282 // Setup up termination on user input
283 EndOnInput endOnInput(control , rtAudio);
284
285 // Run user termination on a separate thread
286 boost:: thread endOnInputThread(endOnInput);
287
288 // Set the same number of channels for both input and output.

246

Section C.1 Synchronous and Asynchronous Modulation
289 unsigned int bufferBytes;
290 unsigned int bufferFrames = 512;
291 unsigned int fs = 48000;
292
293 bufferBytes = bufferFrames * NUM_OUT_CHANNELS * sizeof(MY_TYPE)

;
294
295 RtAudio :: StreamParameters iParams;
296 iParams.deviceId = rtAudio.getDefaultInputDevice ();
297 iParams.nChannels = NUM_IN_CHANNELS;
298
299 RtAudio :: StreamParameters oParams;
300 oParams.deviceId = rtAudio.getDefaultOutputDevice ();
301 oParams.nChannels = NUM_OUT_CHANNELS;
302
303 RtAudio :: StreamOptions options;
304
305 try {
306 rtAudio.openStream(&oParams , &iParams , FORMAT , fs , &

bufferFrames , &audio_buffer_process , (void *)&bufferBytes , &
options);

307 }
308 catch (RtAudioError& e) {
309 e.printMessage ();
310 exit(-1);
311 }
312
313 // Start Audio Streams
314 try {
315 rtAudio.startStream ();
316 }
317 catch (RtAudioError& e) {
318 e.printMessage ();
319 if (rtAudio.isStreamOpen ()) rtAudio.closeStream ();
320 exit (-1);
321 }
322
323 // Start IO service
324 io.run();
325
326 // Join user termination
327 endOnInputThread.join();
328
329 return 0;
330 }

Code C.6: Generated C++ code for asynchronous frequency modulation with concurrency.

247

Appendix D

Stride Helper Classes
The code in the following sections are a selection of helper classes used by the Stride
code generator that appeared in examples used in preceding chapters.

D.1 Synchronization
1 namespace sync {
2
3 class scoped {};
4 class unscoped {};
5
6 class lock {};
7 class try_lock {};
8
9 template <class LockType >

10 class Synchronization {
11 public:
12 Synchronization(std:: mutex *m, sync::lock , sync:: unscoped) {
13 m->lock();
14 }
15

248

Section D.2 Signals
16 Synchronization(std:: mutex *m, sync::try_lock , sync:: unscoped) {
17 m_LockOwned = m->try_lock ();
18 }
19
20 Synchronization(std:: mutex *m, sync::lock , sync:: scoped) :

m_ScopedResetLock (*m) {
21 }
22
23 Synchronization(std:: mutex *m, sync::try_lock , sync:: scoped) :

m_ScopedResetLock (*m, std:: try_to_lock) {
24 m_LockOwned = m_ScopedResetLock.owns_lock ();
25 }
26
27 bool operator ()(LockType) {
28 return true;
29 }
30
31 private:
32 std:: unique_lock <std::mutex > m_ScopedResetLock;
33 bool m_LockOwned;
34 };
35
36 template <> bool Synchronization <sync::try_lock >:: operator ()(sync::

try_lock) {
37 return m_LockOwned;
38 }
39
40 }

Code D.1: Synchronization class.

D.2 Signals
1 template <class DataType >
2 class SignalReadWriteResetInterface {
3 public:
4 virtual void Swap(void) = 0;
5 virtual DataType Read(void) = 0;
6 virtual bool Lock(void) = 0;
7 virtual DataType * Write(void) = 0;
8 virtual void Unlock(void) = 0;
9 };

Code D.2: Signal interface class.

249

Stride Helper Classes Appendix D
1 template <class ClassType , class DataType >
2 class Signal_SDRWRst : public SignalReadWriteResetInterface <DataType >

{
3 public:
4 Signal_SDRWRst(void (ClassType ::* Init)(DataType *), ClassType *

object) {
5 (object ->*Init)(& m_Signal_Default);
6 m_Signal = m_Signal_Default;
7 }
8
9 void Swap(void) {

10 }
11
12 DataType Read(void) {
13 return m_Signal;
14 }
15
16 bool Lock(void) {
17 return true;
18 }
19
20 DataType* Write(void) {
21 return &m_Signal;
22 }
23
24 void Unlock(void) {
25 }
26
27 void Reset(void) {
28 m_Signal = m_Signal_Default;
29 }
30
31 private:
32 DataType m_Signal_Default;
33 DataType m_Signal;
34 };

Code D.3: Single domain read, write, and reset signal class.
1 template <class ClassType , class DataType , class ResetReadLockType ,
class ResetWriteLockType >

2 class Signal_SDRW_MDRst : public SignalReadWriteResetInterface <
DataType > {

3 public:
4 Signal_SDRW_MDRst(void (ClassType ::* Init)(DataType *), ClassType

*object , std::mutex *resetMutex) : m_ResetMutex(resetMutex) {
5 (object ->*Init)(& m_Signal_Default);
6 m_Signal = m_Signal_Default;
7 }
8

250

Section D.2 Signals
9 void Swap(void) {

10 sync:: Synchronization <ResetReadLockType > ResetSync(
m_ResetMutex , ResetReadLockType (), sync:: scoped ());

11 if (ResetSync(ResetReadLockType ())) {
12 if (m_Reset_Invoked) {
13 m_Reset_Invoked = false;
14 m_Signal = m_Signal_Default;
15 }
16 }
17 }
18
19 DataType Read(void) {
20 return m_Signal;
21 }
22
23 bool Lock(void) {
24 return true;
25 }
26
27 DataType* Write(void) {
28 sync:: Synchronization <ResetReadLockType > ResetSync(

m_ResetMutex , ResetReadLockType (), sync:: scoped ());
29 if (ResetSync(ResetReadLockType ())) {
30 m_Reset_Invoked = false;
31 }
32 return &m_Signal;
33 }
34
35 void Unlock(void) {
36 }
37
38 void Reset(void) {
39 sync:: Synchronization <ResetWriteLockType > ResetSync(

m_ResetMutex , ResetWriteLockType (), sync:: scoped ());
40 if (ResetSync(ResetWriteLockType ())) {
41 m_Reset_Invoked = true;
42 }
43 }
44
45 private:
46 std:: mutex *m_ResetMutex;
47
48 DataType m_Signal;
49 DataType m_Signal_Default;
50 bool m_Reset_Invoked = false;
51 };

Code D.4: Single domain read, write, and multi domain reset signal class.

251

Stride Helper Classes Appendix D
D.3 Trigger Observers
1 class TriggerObserver {
2 public:
3 virtual void Update(void) = 0;
4 };

Code D.5: Trigger observer interface class.

1 template <class ClassType >
2 class TriggerObserverBlock : public TriggerObserver {
3 public:
4 TriggerObserverBlock(void (ClassType ::* method)(), ClassType *

object) : m_Object(object), m_Method(method) {
5 }
6
7 void Update(void) {
8 (m_Object ->*m_Method)();
9 }

10
11 private:
12 ClassType *m_Object;
13 void (ClassType ::* m_Method)();
14 };

Code D.6: Trigger observer block class.

D.4 Triggers
1 class Trigger {
2 public:
3 virtual void Register(TriggerObserver *Observer) = 0;
4 virtual void Update(void) { assert(false); }
5 virtual void Update(bool) { assert(false); }
6 };

Code D.7: Trigger interface class.

1 class Trigger_SD_TriggerControlled : public Trigger {
2 public:
3 Trigger_SD_TriggerControlled(void) {
4 }
5

252

Section D.4 Triggers
6 void Register(TriggerObserver *Observer) {
7 ObserverList.push_front(Observer);
8 }
9

10 void Update(void) {
11 if (m_Triggered) {
12 m_Triggered = false;
13 m_Process = true;
14 }
15 if (m_Process) {
16 Execute ();
17 m_Process = false;
18 }
19 }
20
21 void Fire(void) {
22 m_Triggered = true;
23 }
24
25 private:
26 bool m_Triggered = false;
27 bool m_Process = false;
28 std:: forward_list <TriggerObserver *> ObserverList;
29
30 void Execute (void) {
31 for (auto Observer : ObserverList) Observer ->Update ();
32 }
33 };

Code D.8: Single domain trigger-controlled trigger class.
1 template <class TriggerReadLockType , class TriggerWriteLockType >
2 class Trigger_MD_TriggerControlled : public Trigger {
3 public:
4 Trigger_MD_TriggerControlled(std::mutex *triggerMutex) :

m_TriggerMutex(triggerMutex) {
5 }
6
7 void Register(TriggerObserver *Observer) {
8 ObserverList.push_front(Observer);
9 }

10
11 void Update(void) {
12 sync:: Synchronization <TriggerReadLockType > TriggerSync(

m_TriggerMutex , TriggerReadLockType (), sync:: unscoped ());
13 if (TriggerSync(TriggerReadLockType ())) {
14 if (m_Triggered) {
15 m_Triggered = false;
16 m_Process = true;
17 }

253

Stride Helper Classes Appendix D
18 m_TriggerMutex ->unlock ();
19 }
20 if (m_Process) {
21 Execute ();
22 m_Process = false;
23 }
24 }
25
26 void Fire(void) {
27 sync:: Synchronization <TriggerWriteLockType > TriggerSync(

m_TriggerMutex , TriggerWriteLockType (), sync:: scoped ());
28 if (TriggerSync(TriggerWriteLockType ())) {
29 m_Triggered = true;
30 }
31 }
32
33 private:
34 std:: mutex *m_TriggerMutex;
35
36 bool m_Triggered = false;
37 bool m_Process = false;
38 std:: forward_list <TriggerObserver *> ObserverList;
39
40 void Execute (void) {
41 for (auto Observer : ObserverList) Observer ->Update ();
42 }
43 };

Code D.9: Multi domain trigger-controlled trigger class.
1 class Trigger_SwitchControlled : public Trigger {
2 public:
3 enum TriggerMode {
4 RISING = 1,
5 FALLING = 2,
6 BOTH = 3
7 };
8
9 Trigger_SwitchControlled(TriggerMode mode) : m_Trigger_Mode(mode)

{
10 }
11
12 void Register(TriggerObserver *Observer) {
13 ObserverList.push_front(Observer);
14 }
15
16 void Update(bool switchState) {
17 switch(m_Trigger_Mode) {
18 case TriggerMode :: RISING:
19 if (switchState - m_Previous_Value > 0)

254

Section D.4 Triggers
20 Execute ();
21 m_Previous_Value = switchState;
22 break;
23 case TriggerMode :: FALLING:
24 if (switchState - m_Previous_Value < 0)
25 Execute ();
26 m_Previous_Value = switchState;
27 break;
28 case TriggerMode ::BOTH:
29 if (switchState != m_Previous_Value)
30 Execute ();
31 m_Previous_Value = switchState;
32 break;
33 default:
34 break;
35 }
36 }
37
38 private:
39 int m_Previous_Value = 0;
40 TriggerMode m_Trigger_Mode;
41 std:: forward_list <TriggerObserver *> ObserverList;
42
43 void Execute (void) {
44 for (auto Observer : ObserverList) Observer ->Update ();
45 }
46 };

Code D.10: Switch controlled trigger class.

255

Appendix E

Stride Lexeme and Grammar
This appendix contains the lexeme and grammar used by Stride’s lexical analyzer and
parser respectively. The lexeme and grammar correspond to Stride V1.0.

E.1 Stride Lexeme
The lexeme of Stride is presented here as regular expressions. They are compliant
with the flex[40] lexical analyzer.
The token names (in boldface) are used in the grammar presented in the next section.
Definitions:

DIGIT [0-9]
LETTER [a-z]
CLETTER [A-Z]

256

Section E.1 Stride Lexeme
USE:

"use"

VERSION:
"version"

IMPORT:
"import"

AS:
"as"

NONE:
"none"

AND:
"and"
"&&"

OR:
"or"
"||"

NOT:
"not"

ON:
"on"

OFF:
"off"

257

Stride Lexeme and Grammar Appendix E
UVAR:

(_)*{CLETTER}({LETTER}|{CLETTER}|{DIGIT}|_)*

Figure E.1: UVAR

WORD:
(_)*{LETTER}({LETTER}|{CLETTER}|{DIGIT})*

Figure E.2: WORD

INT:
{DIGIT}+

Figure E.3: INT

258

Section E.1 Stride Lexeme
REAL:

{DIGIT}+\.{DIGIT}*
{DIGIT}*\.{DIGIT}+

Figure E.4: REAL

STRING:
‘[^’]*’
\"[^\"]*\"

White Space:
[\t\n]

Comments:
"#".*

ERROR:
.

259

Stride Lexeme and Grammar Appendix E
E.2 Stride Grammar
The Stride grammar is presented here.
entry:

Figure E.5: entry

entry ::= (entry (start | ‘;’))*
referenced by:

– entry

start:

Figure E.6: start

start ::= systemDef | importDef | blockDef | streamDef | ERROR
referenced by: 260

Section E.2 Stride Grammar
– entry

systemDef:

Figure E.7: systemDef

systemDef ::= languagePlatform
referenced by:

– start

languagePlatform:

Figure E.8: languagePlatform

languagePlatform ::= USEUVAR (VERSIONREAL)?
referenced by:

– systemDef

261

Stride Lexeme and Grammar Appendix E
importDef:

Figure E.9: importDef

importDef ::= IMPORTscopeDef? UVAR (ASUVAR)?
referenced by:

– start

blockDef:

Figure E.10: blockDef

blockDef ::= WORDUVAR (‘[’ indexExp ‘]’)? blockType
referenced by:

– listDef
– start

blockType:

Figure E.11: blockType
262

Section E.2 Stride Grammar
blockType ::= ‘’ properties? ‘’
referenced by:

– blockDef
– propertyType

streamDef:

Figure E.12: streamDef

streamDef ::= (valueExp | valueListExp | streamListDef) (‘>>’ streamComp)+ ‘;’
referenced by:

– start
– streamListDef

scopeDef:

Figure E.13: scopeDef

scopeDef ::= scope+
referenced by:

– bundleDef 263

Stride Lexeme and Grammar Appendix E
– functionDef
– importDef
– indexComp
– streamComp
– valueComp

scope:

Figure E.14: scope

scope ::= UVAR ‘::’
referenced by:

– scopeDef

bundleDef:

Figure E.15: bundleDef

bundleDef ::= scopeDef? UVAR ‘[’ (indexExp | indexRange) (‘,’ (indexExp | indexRange
))* ‘]’
referenced by:

– indexComp
– streamComp 264

Section E.2 Stride Grammar
– valueComp

functionDef:

Figure E.16: functionDef

functionDef ::= scopeDef? UVAR ‘(’ properties? ‘’)’
referenced by:

– streamComp
– valueComp

properties:

Figure E.17: properties

properties ::= (property ‘;’?)+
referenced by:

– blockType
– functionDef

265

Stride Lexeme and Grammar Appendix E
property:

Figure E.18: property

property ::= WORD ‘:’ (propertyType | STREAMRATE)
referenced by:

– properties

propertyType:

Figure E.19: propertyType

propertyType ::= NONE | valueExp | blockType | listDef | valueListExp | portProperty
referenced by:

– property

266

Section E.2 Stride Grammar
portPropertyDef:

Figure E.20: portPropertyDef

portPropertyDef ::= UVAR ‘.’ WORD
referenced by:

– valueComp

valueListDef:

Figure E.21: valueListDef

valueListDef ::= ‘[’ (valueExp (‘,’ valueExp)* | valueListDef (‘,’ valueListDef)*)? ‘’]’
referenced by:

– streamComp
– valueListDef
– valueListExp

267

Stride Lexeme and Grammar Appendix E
listDef:

Figure E.22: listDef

listDef ::= ‘[’ (blockDef (‘,’? blockDef)* | listDef (‘,’ listDef)*) ‘’]’ | streamListDef
referenced by:

– listDef
– propertyType

streamListDef:

Figure E.23: streamListDef

streamListDef ::= ‘[’ streamDef (‘,’? streamDef)* ‘’]’
referenced by:

– listDef
– streamComp 268

Section E.2 Stride Grammar
– streamDef

indexRange:

Figure E.24: indexRange

indexRange ::= indexExp ‘:’ indexExp
referenced by:

– bundleDef

indexExp:

Figure E.25: indexExp

indexExp ::= indexExp (‘+’ | ‘-’ | ‘*’ | ‘/’) indexExp | ‘(’ indexExp ‘’)’ | indexComp
referenced by:

– blockDef
– bundleDef
– indexExp 269

Stride Lexeme and Grammar Appendix E
– indexRange

valueListExp:
valueListExp ::= valueListDef ((‘+’ | ‘-’ | ‘*’ | ‘/’ | AND | OR | ‘&’ | ‘|’ | ‘ ’) (valueExp |
valueListDef))? | valueExp (‘+’ | ‘-’ | ‘*’ | ‘/’ | AND | OR | ‘&’ | ‘|’ | ‘ ’) valueListDef
referenced by:

– propertyType
– streamDef

valueExp:
valueExp ::= (valueExp (‘+’ | ‘-’ | ‘*’ | ‘/’ | AND | OR | ‘&’ | ‘|’ | ‘ ’ |) | ‘-’ | NOT) valueExp|
‘(’ valueExp ‘’)’ | valueComp
referenced by:

– propertyType
– streamDef
– valueExp
– valueListDef
– valueListExp

indexComp:
indexComp ::= INT | scopeDef? UVAR | bundleDef
referenced by:

– indexExp
270

Section E.2 Stride Grammar

Figure E.26: valueListExp

271

Stride Lexeme and Grammar Appendix E

Figure E.27: valueExp

Figure E.28: indexComp

272

streamComp:
streamComp ::= scopeDef? UVAR | bundleDef | functionDef | valueListDef | stream-
ListDef
referenced by:

– streamDef

valueComp:
valueComp ::= INT | REAL | STRING | ON | OFF | WORD | scopeDef? UVAR | bun-
dleDef | functionDef | portPropertyDef
referenced by:

– valueExp

273

Figure E.29: streamComp

Figure E.30: valueComp

274

Bibliography
[1] MIDIManufacturers Association, “The Official MIDI Specifications.”

https://www.midi.org/specifications. [Online; accessed November 7, 2018].
[2] M. Wright and A. Freed, Open sound control: A new protocol for communicating
with sound synthesizers, in Proceedings of the 1997 International Computer Music
Conference, (Thessaloniki), 1997.

[3] C. Abbott, The 4ced program, Computer Music Journal 5 (1981), no. 1 13–33.
[4] J. Moorer, A. Chauveau, C. Abbott, P. Eastty, and J. Lawson, The 4c machine,

Computer Music Journal 3 (1979), no. 3 16–24.
[5] M. Puckette, The patcher, in Proceedings of the 1988 International Computer Music

Conference, (Cologne), 1988.
[6] M. Puckette, Combining event and signal processing in the max graphical

programming environment, Computer Music Journal 15 (1991), no. 3 68–77.
[7] E. Lindemann, M. Puckette, E. Viara, and M. Starkier, The IRCAM signal processing

workstation – An environment for research in real-time musical signal processing and

performance, Microprocessing and Microprogramming 30 (1990) 167–174.
[8] C. Roads, The Computer Music Tutorial. The MIT Press, Cambridge,Massachusetts, 1996.
[9] B. Vercoe, A manual for the audio processing system and supporting programs with

tutorials, Media Lab, MIT (1986).
[10] N. Bailey, A. Purvis, I. Bowler, and P. Manning, An implementation of csound on a

transputer, in Proceedings of the First International Conference on Applications of
Transputers, (Liverpool), 1989.

[11] B. Vercoe and D. Ellis, Real-time Csound: Software Synthesis with Sensing and
Control, in Proceedings of the 1990 International Computer Music Conference,(Glasgow), pp. 209–2011, 1990.

275

https://www.midi.org/specifications

[12] B. Vercoe, Extended Csound, in Proceedings of the 1996 International Computer
Music Conference, (Hong Kong), pp. 141–142, 1996.

[13] M. Puckette, Pure data, in Proceedings of the 1997 International Computer Music
Conference, (Thessaloniki), 1997.

[14] M. Puckette, Fts: A real-time monitor for multiprocessor music synthesis, Computer
Music Journal 15 (1991), no. 3 58–67.

[15] Enzine Audio, “The Heavy hvcc Compiler for Pure Data Patches.”
https://github.com/enzienaudio/hvcc. [Online; accessed November 7, 2018].

[16] J. McCartney, Supercollider: a new real time synthesis language, in Proceedings of
the 1996 International Computer Music Conference, (Hong Kong), pp. 257–258, 1996.

[17] J. McCartney, Rethinking the computer music language: Supercollider, Computer
Music Journal 26 (2002), no. 4 61–68.

[18] Y. Orlarey, D. Fober, and S. Letz, An algebra for block diagram languages, in
Proceedings of International Computer Music Conference (ICMA, ed.), pp. 542–547,2002.

[19] V. Norilo, Introducing kronos – a novel approach to signal processing languages, in
Proceedings of the Linux Audio Conference, (Maynooth), pp. 9–16, 2011.

[20] V. Norilo and M. Laurson, Kronos - a vectorizing compiler for music dsp, in
Proceedings of the 12th International Conference on Digital Audio Effects (DAFx-09),(Como), pp. 180–183, 2009.

[21] M. Verstraelena, J. Kuper, and G. Smit, Declaratively programmable ultra
low-latency audio effects processing on fpga, in Proceedings of the 17th International
Conference on Digital Audio Effects (DAFx-14), (Erlangen), 2014.

[22] F. Pfeifle and R. Bader, Real-time finite difference physical models of musical
instruments on a field programmable gate array (fpga), in Proceedings of the 15th
International Conference on Digital Audio Effects (DAFx-12), (York), 2012.

[23] V. Norilo, M. Verstraelen, and V. Välimäki, Implementing a low-latency parallel
graphic equalizer with heterogeneous computing, in Proceedings of the 18th
International Conference on Digital Audio Effects (DAFx-15), (Trondheim), 2015.

[24] X. Fan, Real-Time Embedded Systems: Design Principles and Engineering Practices.Newnes, first ed., 2015.
[25] GRAME, FAUST Quick Reference. Centre National de Création Musicale, 0.9.65 ed.,January, 2014.

276

https://github.com/enzienaudio/hvcc

[26] ARM Ltd., “Cortex Microcontroller Software Interface Standard.”
https://arm-software.github.io/CMSIS_5/General/html/index.html.[Online; accessed November 7, 2018].

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

[28] J. O. Smith III, Spectral Audio Signal Processing. W3K, 2011.
[29] R. G. Lyons, Understanding Digital Signal Processing. Pearson, third ed., 2011.
[30] G. Moro, A. Bin, R. H. Jack, C. Heinrichs, and A. P. McPherson, Making

high-performance embedded instruments with bela and pure data, in Proceedings of
the 2016 International Conference on Live Interfaces, (Brighton), 2016.

[31] J. Taelman, “Axoloti.” http://www.axoloti.com/. [Online; accessed November 7,2018].
[32] T. Webster, G. LeNost, and M. Klang, The owl programmable stage effects pedal:

Revising the concept of the on-stage computer for live music performance, in
Proceedings of the 2014 International Conference on New Interfaces for Musical

Expression, (London), 2014.
[33] R. Boulanger, ed., The Csound Book: Tutorials in Software Synthesis and Sound

Design. MIT Press, 2000.
[34] G. Wang and P. Cook, Chuck: A concurrent, on-the-fly, audio programming

language, in Proceedings of the 2003 International Computer Music Conference,(Singapore), 2003.
[35] Cycling ’74, “Max visual programming language.”

https://cycling74.com/products/max. [Online; accessed November 7, 2018].
[36] Y. Orlarey, D. Fober, and S. Letz, Syntactical and semantical aspects of faust, Soft

Computing 8 (2004), no. 9 623–632.
[37] R. Dannenberg, Machine tongues xix: Nyquist, a language for composition and

sound synthesis, Computer Music Journal 21 (1997), no. 3 50.
[38] A. Gamatié, Designing Embedded Systems with the SIGNAL Programming Language.Springer, 2010.
[39] The Qt Company, “Qml applications | qt 5.5.”

http://doc.qt.io/qt-5/qmlapplications.html. [Online; accessed November7, 2018].
277

https://arm-software.github.io/CMSIS_5/General/html/index.html
http://www.axoloti.com/
https://cycling74.com/products/max
http://doc.qt.io/qt-5/qmlapplications.html

[40] Multiple Authors, “Flex the fast lexical analyzer.”
https://github.com/westes/flex. [Online; accessed November 7, 2018].

[41] Multiple Authors, “Bison general-purpose parser generator.”
https://savannah.gnu.org/projects/bison/. [Online; accessed November 7,2018].

[42] J. Levine, flex & bison. O’Reilly Media, first ed., 2009.
[43] The Qt Company, “Qt software development framework.” http://doc.qt.io/.[Online; accessed November 7, 2018].

278

https://github.com/westes/flex
https://savannah.gnu.org/projects/bison/
http://doc.qt.io/

Terms and Abbreviations
ADC Analog to Digital ConverterAPI Application Programming InterfaceAST Abstract Syntax Tree
CPU Central Processing Unit
DAC Digital to Analog ConverterDAW Digital Audio WorkstationDSP Digital Signal Processor
FFI Foreign Function InterfaceFIFO First In First OutFPGA Field-Programmable Gate ArrayFPU Floating-Point Unit
GUI Graphical User Interface
IC Integrated Circuit
MIDI Musical Instrument Digital Interface
OSC Open Sound Control
SIMD Single Instruction Multiple Data

279

Glossary
bare metal A computer system that does not contain an operating system.
codec Is a device or computer program for encoding or decoding a digitaldata stream or signal.
driver A piece of software that abstracts hardware and enables an operat-ing system or other software to communicate with the hardware.
flash memory A solid-state non-volatile computer storagemedium that can be elec-trically erased and reprogrammed.
state machine A model for describing computation, consisting of a set of states anda transition function describing when to move from one state to an-other.

280

List of Figures
3.1 CPU cycles required per audio rendering callback for various buffer sizes. 293.2 CPU cycles required to process 64 audio samples per audio renderingcallback for various buffer sizes. 303.3 CPU cycles required per audio rendering callback for a 16-sample buffersize. 313.4 CPU cycles required per audio rendering callback for a 16 sample buffersize with a control variable change check. 323.5 CPU thread profile showing the impact of a control change and its effect. 32
4.1 Block declaration syntax diagram. 414.2 Bundle declaration syntax diagram. 424.3 Stream expression syntax diagram. 434.4 Module invocation syntax diagram. 444.5 CPU cycles required per function call. (Baseline) 484.6 CPU cycles required per function call at reduced update rate. 514.7 CPU cycles required per function call in asynchronous and reactive mode. 534.8 CPU cycles required per function call with an optimized audioTick func-tion. 56
5.1 The values of three signal blocks with various rates operating in sample-and-hold mode. 625.2 The values of three signal blocks, where signal block C is operating inreactive mode. 62
7.1 A trigger resetting a signal. 1047.2 The domain assignments of blocks and their relationships in Code 7.5. . 1077.3 Attack/Decay envelope state machine. 127
8.1 Values of Count and DelayedCount. 132
9.1 The Stride compiler. 1609.2 The Stride integrated development environment. 1639.3 Signal to signal connection. 179

281

9.4 Signal to bundle connection. 1809.5 Bundle to bundle connection of same size. 1809.6 Bundle to bundle connection where the size of one is a multiple of theother. 1819.7 Signal to module to signal connection. 1829.8 Bundle to modules to bundle connection with implicit expansion of asecond module driven by the size of the Input bundle. 1839.9 Bundle to modules to bundle connection with explicit declaration of twomodules. 1849.10 Bundle to modules to bundle connection with different sizes. 1859.11 Implicit and explicit expansion of modules. 1869.12 Bundle to multi-input module to signal connection. 1869.13 Bundle to multi-input module to bundle connection. 1879.14 Implicit and explicit expansion of multiple modules between bundles ofdifferent sizes. 1889.15 Implicit and explicit expansion of multiple modules between bundles ofthe same size. 1889.16 Single module connected to a bundle. 1899.17 Two generators connected to two outputs. 1909.18 Twomodules connected to another module and then to a bundle of sizetwo. 190
E.1 UVAR . 258E.2 WORD . 258E.3 INT . 258E.4 REAL . 259E.5 entry . 260E.6 start . 260E.7 systemDef . 261E.8 languagePlatform . 261E.9 importDef . 262E.10 blockDef . 262E.11 blockType . 262E.12 streamDef . 263E.13 scopeDef . 263E.14 scope . 264E.15 bundleDef . 264E.16 functionDef . 265E.17 properties . 265E.18 property . 266E.19 propertyType . 266E.20 portPropertyDef . 267

282

E.21 valueListDef . 267E.22 listDef . 268E.23 streamListDef . 268E.24 indexRange . 269E.25 indexExp . 269E.26 valueListExp . 271E.27 valueExp . 272E.28 indexComp . 272E.29 streamComp . 274E.30 valueComp . 274

283

List of Tables
4.1 Improvement in performance with code change. 56
8.1 Values held by the buffer on every clock tick. 1328.2 Values of signals and the buffer at every clock tick. 147
B.1 Relative computation cost by floating-point operations. (Normalized toaddition) . 218

284

List of Codes
3.1 Faust resonant low pass filter with constant arguments. 233.2 Faust generated instanceConstantmethod for a resonant low pass fil-ter with constant arguments. 243.3 Faust generated computemethod for a resonant low pass filter with con-stant arguments. 253.4 Faust resonant low pass filter with variable arguments. 253.5 Faust generated instanceConstant and compute methods for a reso-nant low pass filter with variable arguments. 263.6 Excerpts from the platform definition file for the Bela platform. 35
4.1 A simple sine oscillator with frequency control in C. 404.2 A block declaration of type signal called Block. 424.3 A bundle declaration of type signal and size 2 called Bundle. 434.4 A stream expression. 444.5 Stride code to control the frequency of a sine oscillator. 464.6 Generated code for controlling the frequency of an oscillator. 474.7 Controlling the frequency of an oscillator at reduced rate. 494.8 Generated code for controlling the frequency of an oscillator at reducedrate. 504.9 Controlling the frequency of an oscillator reactively. 514.10 Code generated for controlling the frequency of an oscillator reactively. 524.11 Controlling the frequency of an oscillator with optimized audio callback. 544.12 Generated code for controlling the frequency of an oscillator with opti-mized audio callback. 55
5.1 Three signal blocks with various rates operating in sample-and-holdmode. 615.2 Signal block C operating in reactive mode. 615.3 Signal block A assigned to SetupDomain. 645.4 Generated C code from Code 5.3. 655.5 Generated Python code from Code 5.3. 655.6 Sine oscillator stream expressions in Stride. 665.7 The oscillator output and its frequency update synchronously. (Stride) . 685.8 The oscillator output and its frequency update synchronously. (C) 69

285

5.9 The oscillator output and fits requency update asynchronously. (Stride) 715.10 The oscillator output and fits requency update asynchronously. (C) . . . 725.11 Sine oscillator module with frequency control in Stride. (SineOsc) 745.12 C++ class generated for the SineOsc module in Code 5.11. 795.13 Level module in Stride. 815.14 C++ class generated for the Level module in Code 5.13. 825.15 Synchronous frequency modulation using SineOsc and Level modules. . 835.16 C++ code generated for synchronous frequency modulation. 855.17 Asynchronous frequency modulation using SineOsc and Level modules. 865.18 C++ code generated for asynchronous frequency modulation. 87
6.1 Domain triggering for sequential and parallel execution. 916.2 Mutual exclusion scheme and synchronization policy. 936.3 C++ code generated for asynchronous frequency modulation with con-currency. 95
7.1 Switch block declaration. 1007.2 An example of a switch controlling the state of a module. 1007.3 Trigger block declaration. 1017.4 An example of a trigger resetting a signal. 1037.5 An example with triggers in two domains. 1057.6 Counter module in Stride. 1087.7 C++ class generated from the Counter module. 1107.8 Excerpts of the C++ code generated for triggers across two domains ex-ample. 1127.9 Default reaction block declaration. 1187.10 A reaction to double the frequency of an oscillator every second. 1197.11 Attack/Decay envelope module in Stride. 1207.12 C++ class generated from the Attack/Decay envelope module. 123
8.1 Buffer block declaration. 1308.2 A buffer block used as a delay line. 1318.3 Per sample operation performed on data contained in buffer blocks. . . 1348.4 Vector operations on audio input and output buffers. 1368.5 A signal offsetting module. 1378.6 A buffer offsetting module. 1388.7 Adding an offset to a signal in Stride. 1408.8 Adding an offset to a buffer in Stride. 1418.9 C++ code generated for offsetting a signal. 1428.10 C++ code generated for offsetting a buffer. 1428.11 Loop block declaration. 1438.12 Sum loop in Stride. 145

286

8.13 Summing signals in a bundle. 1468.14 Summing data in a buffer. 1468.15 Average module block in Stride. 1478.16 Group block declaration. 1498.17 Resonant low pass module in Stride. 1508.18 C++ class generated from the resonant low pass module. 152
9.1 Constant block declaration. 1659.2 Shorthand constant block declarations. 1669.3 Signal block declaration. 1679.4 Switch block declaration. 1689.5 Buffer block declaration. 1709.6 Trigger block declaration. 1719.7 Bundle declaration. 1729.8 Module block declaration. 1739.9 Reaction block declaration. 1749.10 Loop block declaration. 1769.11 Group block declaration. 1779.12 Signal to signal connection. 1789.13 Signal to bundle connection. 1799.14 Expanded signal to bundle connection. 1799.15 Bundle to bundle connection of same size. 1809.16 Expanded bundle to bundle connection of same size. 1809.17 Bundle to bundle connection where the size of one is a multiple of theother. 1819.18 Expanded bundle to bundle connection where the size of one is a mul-tiple of the other. 1819.19 Signal to module to signal connection. 1829.20 Implicit expansion of a second module driven by the size of the Inputbundle. 1839.21 Expanded bundle to module to bundle connection. 1839.22 Explicit declaration of two modules. 1849.23 Expansion of bundle to modules to bundle connection. 1849.24 Bundle to modules to bundle connection with different sizes. 1859.25 Implicit and explicit expansion of modules. 1859.26 Bundle to multi-input module to signal connection. 1869.27 Bundle to multi-input module to bundle connection. 1869.28 Implicit and explicit expansion of multiple modules between bundles ofdifferent sizes. 1879.29 Implicit and explicit expansion of multiple modules between bundles ofthe same size. 1879.30 Single module connected to a bundle. 189

287

9.31 Two modules connected to a bundle of size two. 1899.32 Expanded form of two modules connected to a bundle of size two. . . . 1899.33 Twomodules connected to another module and then to a bundle of sizetwo. 190
A.1 Faust resonant low pass filter with constant arguments. 200A.2 Generated C++ code for resonant low pass filter with constant arguments.200A.3 Faust resonant low pass filter with variable arguments. 203A.4 Generated C++ code for resonant low pass filter with variable arguments.204A.5 Faust platform definition file for the Bela platform. Source file: (bela.cpp).207
B.1 C++ code to measure relative computation cost. 218
C.1 Synchronous frequency modulation in Stride using RtAudio and Boostlibraries. 224C.2 Generated C++ code for synchronous frequency modulation. 225C.3 Asynchronous frequency modulation in Stride using RtAudio and Boostlibraries. 231C.4 Generated C++ code for asynchronous frequency modulation. 232C.5 Asynchronous frequency modulation in Stride using RtAudio and Boostlibraries with concurrency control. 239C.6 Generated C++ code for asynchronous frequency modulation with con-currency. 240
D.1 Synchronization class. 248D.2 Signal interface class. 249D.3 Single domain read, write, and reset signal class. 250D.4 Single domain read, write, and multi domain reset signal class. 250D.5 Trigger observer interface class. 252D.6 Trigger observer block class. 252D.7 Trigger interface class. 252D.8 Single domain trigger-controlled trigger class. 252D.9 Multi domain trigger-controlled trigger class. 253D.10 Switch controlled trigger class. 254

288

	Curriculum Vitæ
	Abstract
	Introduction
	Scope
	Problem Statements
	Research Questions
	Contributions
	A New Syntax
	Signals with Rates and Domains
	Code Generation
	Concurrency

	Dissertation Structure
	Permissions and Attributions
	Additional Notes

	Survey of Music Programming Languages
	Music Programming Languages
	Csound (1985)
	Pd - Pure Data (1996)
	SuperCollider (1996)
	Faust (2002)
	ChucK (2003)
	Discussion

	Concurrent Research
	Kronos
	WaveCore

	Faust and Targeting Microcontrollers
	A Simple Faust Example
	Computing Constants
	Processing Loads and Relative Rates
	Concurrency
	Vector Processing
	Libraries and APIs
	Summary

	Improvements with Stride
	An Oscillator with Frequency Control
	A New Language
	Block Declarations
	Stream Expressions

	Code Generation for an Embedded Platform
	Oscillator with Frequency Control
	Oscillator's Frequency Control at Reduced Rate
	Reactive Control of the Oscillator's Frequency
	Audio Callback Optimization

	Discussion
	Summary

	Signals, Rates, Domains, and Modules
	Behavior of a Signal
	Rates
	Domains

	A Sine Oscillator Module in Stride
	Sine Oscillator Stream Expressions
	Sine Oscillator Module
	Code Generation for the Sine Oscillator Module

	Using Modules in Stride
	Level Module
	Synchronous Frequency Modulation
	Asynchronous Frequency Modulation

	Summary

	Domains and Concurrency
	Domain Execution Order
	Concurrency Declaration

	Concurrency and Stateless C++ Template Classes
	Asynchronous Frequency Modulation with Concurrency

	Discussion
	Summary

	Interaction Design with Triggers and Reactions
	The Switch Block
	The Trigger Block
	Single Domain Trigger Example
	Multiple Domain Trigger Example

	Reactions
	Attack/Decay Envelope in Stride
	Summary

	Advanced Blocks in Stride
	The Buffer Block
	Buffer Block as Delay Line
	Buffers and Hardware IO Abstraction
	Buffers and Vector Operations

	The Loop Block
	The Group Block
	Summary

	Stride
	Language Features
	Stride Environment
	Stride Systems
	Stride Compiler

	Stride IDE
	Stride Syntax
	Basic Blocks
	Block Bundles
	Advanced Blocks
	Stream Expressions

	Summary

	Conclusion
	Summary
	Discussion
	Future Work

	Faust DSP and Generated Code
	Resonant Low Pass with Constant Arguments
	Faust DSP Code
	C++ Generated Code

	Resonant Low Pass with Variable Arguments
	Faust DSP Code
	C++ Generated Code

	Bela Template Code for Faust

	Relative Computation Cost of Floating-Point Operations
	Relative Computation Cost Measurement
	Results
	Source Code

	Frequency Modulation in Stride
	Synchronous and Asynchronous Modulation
	Synchronous Frequency Modulation
	Asynchronous Frequency Modulation
	Asynchronous Frequency Modulation with Concurrency

	Stride Helper Classes
	Synchronization
	Signals
	Trigger Observers
	Triggers

	Stride Lexeme and Grammar
	Stride Lexeme
	Stride Grammar

	Bibliography
	Terms and Abbreviations
	Glossary
	List of Figures
	List of Tables
	List of Codes

