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My dissertation focuses on three research problems to investigate how the robot’s behavior

leads to a qualitative and quantitative explanation of neural activities, and vice versa, that

is, how neural activities lead to behavior. In the first problem, we simulated a rat in a robot

simulator to replicate the behavior and neural activity observed in rats during a spatial and

working memory task. A recurrent neural network (RNN) with sensory and vision inputs

was evolved to control the robot motor wheels and navigate a virtual T-maze. Our current

findings suggest that neurons in the RNN are performing mixed selectivity and conjunctive

coding. Moreover, the RNN activity resembles spatial information and trajectory-dependent

coding observed in the hippocampus (Zou et al., 2021). In the second problem, we devel-

oped a goal-driven perception algorithm inspired by effects of the cholinergic (ACh) and

noradrenergic (NE) neuromodulatory systems on attention and tracking uncertainties. We

tested the network architecture, which extended the contrastive excitation backprop (c-EB),

in a noisy MNIST-pair task and an action-based human support robot task. The network

architecture could quickly learn the context without supervision, flexibly apply attention to

the appropriate goal, and rapidly detect and re-adapt to context changes (Zou et al., 2020b).

In the third problem, we developed a reservoir-based spiking neural network (r-SNN) to clas-

sify three terrain types in a botanical garden. The input spike trains were generated from

the linear accelerometer, gyroscope, and image data collected by a six-wheel Android-based
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robot (ABR). Our r-SNN terrain prediction can be used to evaluate the cost of traversal

for path planning. It is a promising approach to develop a complete neuromorphic robot

navigation system capable of operating over long durations with minimal power consump-

tion (Zou et al., 2020a). We suggest that neurorobotic investigation of biologically plausible

neural networks can be a powerful methodology for understanding neuroscience, as well as

for artificial intelligence and machine learning.
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Chapter 1

Introduction

Biological intelligence incorporates both conscious and subconscious knowledge of a human

being or an animal. It is sophisticated with a huge space left for people to further explore.

However, existing biological data and theories can already inspire people to build artificially

intelligent systems. For a higher chance of survival, different aspects of biological intelligence

powerfully work together to absorb and filter all kinds of information at the same time.

Meanwhile, it is also energy efficient. For instance, the power consumption of a human adult

is only 20 Watts (Sokoloff, 1960).

While there are many interesting and important studies on artificial motor control systems

which mimic animals’ locomotion (Lock et al., 2013; Ijspeert, 2014), my doctoral research

instead focuses on adapting the brain signals and operating mechanisms on real-world ap-

plications via neurorobotic implementations. My studies may also benefit in the opposite

direction, that is, to provide possible explanations of some aspects of biological intelligence.

Compared with naturally evolved animals and human beings, most existing bio-inspired

systems have much reduced complexity to utilize certain biological concepts for targeted

functionalities and thus become easier to experiment with. Figure 1.1 illustrates the sum-
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Hodgkin–Huxley†
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self-driving in CARLA* 
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human & rodent in NRP

DYNAP-SE* TrueNorth*
Loihi 
DAVIS camera

spatial & working memory* 
attention*
goal-driven perception*
navigation*
path planning*
terrain classification*

Figure 1.1: Xinyun Zou’s research summary chart. The research projects all investigate how
neural activities lead to the robot’s behavior, and vice versa, that is, how behavior leads to
a qualitative and quantitative explanation of neural activities.

mary chart for connections among my research topics.

For the rest of this chapter, I will introduce the background for neurorobotics and biologically

plausible neural networks, as well as mechanisms which are utilized in my doctoral research

projects. Then my dissertation will focus on three research problems to investigate how the

robot’s behavior leads to a qualitative and quantitative explanation of neural activities, and

vice versa, that is, how neural activities lead to behavior. In the end of my dissertation, I will

talk about potential future directions based on my existing studies and research interests.
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1.1 Background

1.1.1 Neurorobotics

Neurorobots are robots whose control has been modeled after some aspect of the brain. Since

the brain is so closely coupled to the body and situated in the environment, neurorobots

can be a powerful tool for studying neural function in a holistic fashion (Krichmar, 2018).

In a neurorobot experiment, the robot operates in the real world. It takes noisy sensory

information from its environment and integrates this into actions. While this behavior is

occurring, the neurorobotic researcher has the ability to examine the complete brain, that is,

every neuron and synaptic change. Similar to a neuroethologist, but with far more control,

the neuroroboticist can explain how these artificial brains give rise to behavior (Chen et al.,

2020). Figure 1.2 shows the physical and simulated robot implementations covered in my

doctoral research.

Physical Robots

The Android-Based Robotics (ABR) Platform designed in our UCI CARL lab (Oros and

Krichmar, 2013) (shown in Figure 1.2a) can accomplish various outdoor navigational tasks

including path planning, terrain classification and road following (Hwu et al., 2017b; Zou

et al., 2020a; Hwu et al., 2017a). This robot runs on a Dagu Wild Thumper 6-wheel-drive

all-terrain chassis, with an SPT 200 pan and tilt to hold the Samsung Galaxy S5 smartphone

and control the view of the phone camera. Front-facing MaxBotix LV-MaxSonars can detect

obstacles. An ION Motion motor controller and IOIO-OTG microcontroller are housed in

the back of the robot. Computing is handled by the Android phone, which accesses the

sensors and actuators through a Bluetooth connection with the IOIO-OTG (Hwu et al.,

2017a).
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(a) Outdoor Android Based Robot (ABR) (b) Indoor Toyota Human Support Robot (HSR)

(c) E-puck in the Webots simulator (d) Self-driving in the CARLA simulator

Figure 1.2: Physical and simulated robot implementations covered in Xinyun Zou’s doc-
toral research. (a–c) Images of an Android-Based Robot (ABR), the Toyota Human Sup-
port Robot (HSR), and a simulated e-puck in their corresponding testing environments
are adapted from our original papers (Zou et al., 2020a,b, 2021) with permission. (d) A
self-driving testing scenario within the CARLA simulator (Dosovitskiy et al., 2017) and its
semantic segmentation output are for one of our ongoing projects.
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The Human Support Robot (HSR) developed by Toyota (Yamamoto et al., 2018) (shown in

Figure 1.2b) is mainly used indoor to support human daily life (Zou et al., 2020b; Hwu et al.,

2020). It has 8 DoF to support flexible movement of the mobile base, arm, and torso lift.

Various sensors (e.g., laser range sensor, bumper sensor, head/hand stereo and wide cameras,

etc.) help with accurate visual processing, obstacle avoidance, and simultaneous localization

and mapping (SLAM) (Yamamoto et al., 2018; Bailey and Durrant-Whyte, 2006). In a

schema recognition experment, by learning schemas in the form of objects belonging to

different rooms, the Toyota HSR robot can disambiguate task commands, such as using its

current context to pick up a book (Hwu et al., 2020). In a neuromodulated goal-driven

perception experiment, the HSR’s attention is allocated to the desired action/object pair

(the cholinergic system) and adjust to the change of goals in an uncertain domain (the

noradrenergic system) (Zou et al., 2020b).

Robotic Simulators

Some of our projects are computationally expensive or relatively more difficult to directly

apply on a physical robots. In such cases, some robotic simulators can provide efficient system

control and signal processing without loss of much accuracy or realism in the simulated robot

design.

The Webots simulator (Michel, 2004) currently includes more than 20 types of robot models,

ranging from multi-wheeled robots (e.g., E-puck, Pioneer 3-AT, Sojourner, etc.) to multi-ped

ones (e.g., Atlas, Spot, Mantis, etc.). Users can also program the properties of a large set of

sensors and actuators (e.g. proximity sensors, accelerometers, cameras, lidars, GPS, emitters

and receivers, LEDs, grippers, IMU, etc.) as well as self define the 3D testing “world” with

different objects (Dosovitskiy et al., 2017). Aside from a few class projects, I mainly used

Webots in our cognitive map project. Figure 1.2c shows our simulated e-puck running in

a triple T-maze built from scratch. We also programmed two controllers, one to supervise
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the task of maze navigation and evaluate each genotype’s performance in each generation

whereas the other to actuate the robot motor via the recurrent network with sensor inputs.

The CARLA simulator (Dosovitskiy et al., 2017) targets self-driving research with the car

in various urban layouts. In this platform, users can specify sensor suites, control all static

and dynamic actuators, generate maps, define different traffic situations, and add other

digital assets (e.g., other vehicles, pedestrians, and buildings) into the testing environment

(Dosovitskiy et al., 2017). We are currently using CARLA to work on an architecture

for neuromodulated attention and task-driven perception with CARLA within the Scorpius

software framework for a reinforcement learning scenario. As illustrated in Figure 1.2d,

the self-driving car would pay attention to different regions of its front view based on a

perturbation-based saliency map for different tasks (e.g., aggressive driving v.s. passive

driving).

1.1.2 Neuromorphic Computing

Neuromorphic computing is a concept developed by Carver Mead in the late 1980s (Mead,

1990). The original design utilizes very-large-scale integration (VLSI) systems with elec-

tronic analog circuits to represent biological networks in the real nervous system. Nowadays,

the term “neuromorphic” covers a much broader range of designs including analog, digital,

mixed-mode analog/digital VLSI, as well as algorithms that implement biologically plausible

spiking neural networks (Greengard, 2020).

An analog neuromorphic hardware, such as the DYNAP-SE (Moradi et al., 2017), usually

achieves better accuracy in signal processing but is also more difficult to tune, leading to

more experimental errors sometimes (see Figure 1.3a). To further scale up the computing

and reduce noises, digital neuromorphic chips have become more and more popular (see

Figure 1.3b–1.3c), such as Intel Loihi (Davies et al., 2018), IBM TrueNorth (Akopyan et al.,
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(a) Analog DYNAP-SE Chip (SNN) (b) Digital Intel Loihi Chip (SNN)

(c) Digital IBM TrueNorth Chip (SNN) (d) Digital Tianjic Chip (hybrid SNN and ANN)

Figure 1.3: Neuromorphic chip layouts for (a) DYNAP-SE, (b) Intel Loihi, (c) IBM
TrueNorth, and (d) Tianjic. Images are adapted from (Moradi et al., 2017; Davies et al.,
2018; Akopyan et al., 2015; Pei et al., 2019).

2015), and the DAVIS camera (Yang et al., 2015). There is also the hybrid Tianjic chip

architecture (Pei et al., 2019) which takes the advantages of both the neuroscience-oriented

spiking neural network (SNN) and the artificial neural network (ANN) (see Figure 1.3d).

Although it is not an necessary component, adding neuromorphic control to a compatible

neurorobotic system can significantly reduce energy cost with event-driven, parallel comput-

ing (Hwu et al., 2017b,a).

1.1.3 Spiking Neural Networks (SNNs)

Spiking neural networks (SNNs) are artificial neural networks that more closely mimic natural

neural networks. Each neuron in the SNN fires and propagates information to a postsynaptic
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neuron only when its membrane potential reaches a pre-defined threshold (Gerstner and

Kistler, 2002; Dayan and Abbott, 2001). SNNs can take advantage of the neuromorphic

hardware, because each neuron computes its state independently, making the SNN parallel,

and spikes are asynchronous events (Zou et al., 2020a; Hwu et al., 2017b).

Leaky Integrate-and-Fire Model

One commonly used spiking neuron model is the leaky integrate-and-fire (LIF) model. The

major advantage is its computational efficiency, because it retains the minimal ingredients

of membrane dynamics (Gerstner and Kistler, 2002). In this model, for each postsynaptic

neuron i at each time step t, if it is not within the refractory period, the postsynaptic

membrane potential (Ui) will be updated via the differential equation

dUi

dt
=
U rest − Ui

τmem
+ Isyni (t), (1.1)

where U rest is the resting membrane potential, τmem is the membrane time constant, and

Isyni (t) is the synaptic input current. Isyni (t) jumps by summation of the weight wij upon

spike arrival from each presynaptic neuron j (i.e., when Sj(t) = 1), with the equation shown

below

d

dt
Isyni (t) = −I

syn
i (t)

τ syn
+
∑
j∈pre

wijSj(t). (1.2)

When Ui reaches the threshold θmem and the neuron i is not in the refractory period, a spike

is triggered (i.e., Si(t) = 1). The neuron then remains refractory for nref time steps (Zou

et al., 2020a).
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Hodgkin–Huxley Model

A much more biologically plausible spiking neuron model is the Hodgkin–Huxley (H&H)

model (Hodgkin and Huxley, 1952c). It links the flow of ionic currents across the neuronal cell

membrane with its membrane potential. Hodgkin and Huxley computed a set of nonlinear

differential equations to describe the behavior of ion channels (i.e., sodium, potassium, and a

leak one with mainly chloride ions) that permeate the cell membrane of the squid giant axon.

Each ion channel is characterized with a different conductance, whereas the semipermeable

cell membrane acts as a capacitor (Hodgkin and Huxley, 1952c; Hodgkin et al., 1952; Hodgkin

and Huxley, 1952a,b). This model is computationally prohibitive and can only simulate a

few neurons in real-time.

Izhikevich Model

There is another model, called the Izhikevich model (Izhikevich, 2003), which finds a bal-

ance between biological plausibility and computational efficiency. Unlike the Hodgkin-Huxley

model, the Izhikevich model does not account for the biophysics of neurons. It uses mathe-

matical equations to compute a wide range of spiking patterns for cortical neurons. There-

fore, this model is both biologically realistic and capable of simulating large-scale spiking

neurons in real-time (Izhikevich, 2004).

1.1.4 Recurrent Neural Networks (RNNs)

A recurrent neural network (RNN) uses connections between internal neurons to form a

directed cycle. Its internal state serves as the memory to process arbitrary sequences of

inputs. RNNs have been used for a variety of applications, such as spatial navigation,

terrain classification, motion prediction, health monitoring, speech recognition, and time
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series forecasting (Zou et al., 2021, 2020a; Kashyap et al., 2018; Das et al., 2018; Graves

et al., 2013; Hewamalage et al., 2019). In our cognitive map project, we designed an RNN

system to replicate the behavior and neural activity observed in rats for a triple T-maze

experiment. The rat was simulated in the Webots robot simulator and used vision, distance

and accelerometer sensors to navigate a virtual maze with rewards. The RNN activity

resembles spatial information and trajectory-dependent coding observed in the hippocampus

(Zou et al., 2021).

Reservoir Computing

The recurrence can be tractably harnessed using a reservoir-based approach, such as the

liquid state machine (LSM) (Maass et al., 2002) and the echo state network (ESN) (Jaeger,

2007). Reservoir computing is an RNN framework that maps input signals into higher

dimensional computational spaces through the dynamics of a fixed, non-linear system called

a reservoir (Schrauwen et al., 2007). The reservoir dynamics is fixed after the recurrent

weights are initialized randomly. After the input signal is fed into the reservoir, only the

readout is trained to read the state of the reservoir and map it to the desired output (Tanaka

et al., 2019). This technique is utilized in our terrain classification project, with input from

the spike trains of the robot’s sensor signals and output to guide prediction of three terrain

types via supervised learning (Zou et al., 2020a).

Long Short-Term Memory Units

Long short-term memory units (LSTMs) (Hochreiter and Schmidhuber, 1997) extend the

memory in recurrent neural networks so that the system can learn from important experiences

over a long period of time. The LSTM can read, write, and delete information from its

memory. This memory can be considered as a gated cell which decides whether to store
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or delete information based on its assigned importance learned over time. That is, the

cells decide when to open or close gates through the iterative process of guessing, error

backpropagation, and weight adjustment via gradient descent (Hochreiter and Schmidhuber,

1997).

1.1.5 Neuromodulation

Neuromodulatory systems in the brain can have a strong contextual effect on large swaths

of downstream brain areas. As illustrated in Figure 1.4, these neurons release neurotrans-

mitters that have both a local effect and a global effect on activity and plasticity. The

neuromodulators adapted in our projects include acetylcholine (ACh), norepinephrine (NE),

serotonin (5-HT), and dopamine (DA) (Krichmar, 2008). ACh regulates the trade-off be-

tween stimulus-driven and goal-driven attention (Zou et al., 2020b). NE drives responses

to novelty and surprises (Dayan and Yu, 2006). 5-HT can shift patience and assertiveness

depending on the context (Miyazaki et al., 2018). DA shifts neurons allows for associating

cues with predicting outcomes, which can be rewards, punishment, and novelty (Wise, 2004).

All these neuromodulators have a selective effect on learning.

Neuromodulation has been studied and modeled in the context of its role in behavioral

adaptation in the presence of expected and unexpected uncertainties (Dayan and Yu, 2006).

Successful autonomous lifelong learning agents, no matter if they are biological or artificial,

must possess internal mechanisms that allow them to monitor and gauge performance against

expectations.

The influence of the ACh system and NE systems on goal-directed perception was studied in

an action-based attention task using the Toyota HSR (Zou et al., 2020b). In our experiment,

a robot was required to attend to goal-related objects (the ACh system) and adjust to the

change of goals in an uncertain domain (the NE system). Four different actions (i.e., “eat”,
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Figure 1.4: Neuromodulatory systems in the brain. Left. The source of neuromodulators
are subcortical. Acetylcholine originates in the Substantia Innominata (S) and in the Medial
Septum (M). Dopamine originates in the Ventral Tegmental area and the Substantia Ni-
gra Compacta (SNc), Norepinephrine originates in the locus coeruleus (LC), and Serotonin
originates in the dorsal raphe (DR) and medial raphe (MR) nuclei. These sources project
to large areas of the nervous system. Figure adapted from (Doya, 2002). Right. Phasic
neuromodulation drives the agent toward more exploitive and decisive behavior, and tonic
neuromodulation drives the agent toward more exploratory or curious behavior. The activity
of each neuromodulator is related to environmental stimuli. For example, acetylcholine levels
appear to be related to attentional effort, dopamine levels appear to be related to reward
anticipation, norepinephrine levels appear to be related to surprise or novelty, and serotonin
levels appear to be related to risk assessment and impulsiveness. Adapted from (Krichmar,
2008).
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“work-on-computer”, “read”, and “say-hi”) were available in the experiment and each of

them was associated with different images of objects. For example, the goal action “eat”

might result in attention to objects such as “apple” or “banana” while the action “say-hi”

should lead attention to a “person”. During the experiment, the goal action changed period-

ically and the robot needed to select the action and object it thought the user wanted based

on prior experience. Our model demonstrated how neuromodulatory systems can facilitate

rapid adaptation to change in uncertain environments. The goal-directed perception was re-

alized through the allocation of the robot’s attention to the desired action/object pair (Zou

et al., 2020b; Dayan and Yu, 2006; Chen et al., 2020).

5-HT activity is thought to be important for regulating anxious behavior and harm aversion.

But recently, 5-HT has been shown to have an influence on patience control (Miyazaki

et al., 2018). To test this idea in a real-world application, (Xing et al., 2020) designed a

robotic navigation experiment to show how changing the simulated 5-HT level could affect

the amount of time the robot spent searching for a desired location. In our experiment,

the robot searched for GPS waypoints in different outdoor environments. If the 5-HT level

was low or a waypoint was difficult to find, the robot became impatient and searched for

another waypoint. From this, flexible navigation strategies emerged in the observed robot

behavior, such as calling off the search of a difficult to find landmark due to impatience or

taking advantage of a smoother but longer route by being extra patient (Xing et al., 2020;

Chen et al., 2020).

1.1.6 Neuroevolution

To survive and develop well in this world, each organism has undergone a long process of evo-

lution over many generations and even split to form different species. Evolutionary robotics

is a method for building control system components or the morphology of a robot (Bongard,
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2013; Nolfi et al., 2016). The biological inspiration behind this field is Darwin’s theory of

evolution, which was constructed with three principles. (1) Natural Selection: genotypes

that can be well adapted to their environments are more likely to survive and reproduce.

(2) Heredity : the fittest genotypes from the previous generation can be directly kept in the

next generation; moreover, the new offspring in each generation is generated based on the

selected genes from two parents. (3) Variation: the new offspring goes through mutations

and crossover with a certain probability and thus differs from both parents (Winther, 2000;

Gayon, 1998).

Main Classes of Evolutionary Algorithms (EA)

Evolutionary computation supports the belief that complex structure and behavior can be

generated from the combination of selection, inheritance, and random variations. The four

main EA types are evolutionary strategies (ES), evolutionary programming (EP), genetic

algorithms (GA), and genetic programming (GP). They are different in their selection strate-

gies, primary representations, and balance between mutation and crossover (Downing, 2015).

ES was invented by Rechenberg and Schwefel in the 1970s (Rechenberg, 1973; Schwefel, 1977;

Schwefel and Rudolph, 1995). Individuals are represented as vectors of real numbers. It tra-

ditionally uses the overproduction of children followed by either full generational replacement

or more commonly generational mixing (i.e., by competing with their parents) (Fogel, 1997;

Hansen, 2006). Since its mutation operators are encoded in the individual genome under

evolutionary control, good strategy parameters pass down to the next generation by selecting

the fittest individuals (Downing, 2015).

Different from the other EAs, EP represents an entire species with each phenotype. There

is no mating between different species in the EP, so it has no genotype recombination (i.e.,

no crossover), which indicates that each species needs to generate offspring. Individual
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genomes are coded as integer vectors that include states, transitions, and output conditions

for a finite-state automaton (FSA) (Fogel et al., 1966; Fogel and Corne, 2002).

GA has a bit-string representation. It usually applies generational replacement to have

identical offspring and parent population sizes, but sometimes applies generational gap as

an alternative to have a smaller offspring population size (Holland, 1992). Therefore, mating

selection instead of mutation is the main emphasis in the GA, whereas the “EP forbids

crossover and ES uses it sparingly” (Downing, 2015). Deep GAs such as NEAT and its

extensions will be introduced below.

GP was developed in 1990’s by John Koza (Koza and Koza, 1992; Koza, 1994; Koza et al.,

2006). The major characteristics of the GP is that it evolves programs instead of parameter

lists. It applies evolutionary search to the space of tree structures (i.e., non-linear chromo-

somes). The average tree sizes tend to increase over time, despite that it has limitation

on the maximum tree size and penalty for being oversized. Mutation represented by ran-

dom changes in the trees is possible but not necessary. Recombination in the GP means to

exchange subtrees (Downing, 2015).

In recent times, concepts from different EA types may be integrated, so some people may

simply call their method as an “evolutionary algorithm” (Scott and Luke, 2019; Zou et al.,

2021; Charvet et al., 2011). Figure 1.5 shows a general procedure for neuroevolution.

NEAT v.s. HyperNEAT

Another popular evolutionary mechanism is NEAT, which has its unique feature of evolving

the network topology together with the weights (Stanley and Miikkulainen, 2002). Hyper-

NEAT extends NEAT by evolving connective CPPNs that generate patterns with regulari-

ties (e.g., symmetry, repetition, repetition with variation, etc.) (Stanley et al., 2009). In the

case of quadruped locomotion investigated by Clune et al. (2009), HyperNEAT could evolve

15



Figure 1.5: General procedure for neuroevolution. The upper subplot is adapted from (Pauls,
2020).

common gaits by exploiting the geometry to generate front-back, left-right, or diagonal sym-

metries. Our current model was tuned to have a fixed number of recurrent neurons since the

first generation and have all-to-all connections between two layers or within the recurrent

layer. It may be of interest to combine NEAT/HyperNEAT with topologies of RNNs to

solve more complex problems and scenarios. For example, NEAT might be utilized in the

beginning of the evolutionary process to efficiently derive a morphology for a more standard

evolutionary algorithm to use in later generations. This hybrid approach has similarities to

Akinci and Philippides (2019).

Utilization of Evolutionary Algorithms

We have used evolutionary algorithms in our cognitive map projects. In one of them, we

evolved weights in a biologically plausible recurrent neural network (RNN) to replicate the

behavior and neural activity observed in rats for a triple T-maze experiment. Our evolved
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RNN encoded not only spatial information but also working memory to remember which

paths had been traversed recently and which paths remained to be explored (Zou et al.,

2021). In a related project led by my colleague Kexin Chen (accepted in IJCNN 2021), the

modeling of CA1 and SUB with spiking neural networks (SNNs) was optimized by evolving

STDP-H parameters. The resulting networks show highly place-specific responses in CA1

neurons and the emergence of pattern recurrence in the spatially specific firing of SUB

neurons.

1.1.7 Neurons for Hippocampal Formation

The hippocampal formation is crucial for spatial memory and navigation (Andersen et al.,

2007; Ferbinteanu and Shapiro, 2003; Olson et al., 2017). There are several kinds of neurons

within the hippocampus or as inputs to the hippocampus that may be associated with

cognitive maps (Tolman, 1948), including place cells, head-direction cells, and grid cells

(Zou et al., 2021; Banino et al., 2018).

Hippocampal “place cells” are activated selectively when an animal enters their “place fields”,

which can signal the allocentric position of the animal during a navigational task (O’keefe

and Nadel, 1978; Wilson and McNaughton, 1993b; Moser et al., 2008). The place cells are

observed in both CA1 and subiculum (SUB) regions. Compared to those in CA1, SUB

place cells showed larger and less specific place fields (Potvin et al., 2007), and exhibit more

directional modulation for field activities (Sharp and Green, 1994; Olson et al., 2017). The

neural compass is implemented by “head-direction cells” (Taube et al., 1990; Wiener and

Taube, 2005), which encode the directionality of the animal’s head regardless of the actual

location. They are found in multiple brain regions, such as SUB, retrosplenial cortex, and

entorhinal cortex (Taube, 2007; Chen et al., 1994; Giocomo et al., 2014). A more abstract

representation of combined knowledge for location, direction, distance, and speed is seen
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by “grid cells”. They are mainly in the entorhinal cortex, which fire in a repeating pattern

when the animal reaches fields that form a hexagonal lattice across the environment (Hafting

et al., 2005; Barry et al., 2007).

The neural activities appeared in hippocampal formation have been adapted or replicated

in some artificial networks. For example, we evolved a RNN to control a simulated robot

in a spatial and working memory task (Zou et al., 2021). At the population level, the

evolved RNN activity has similar characteristics as the hippocampus. Similar to CA1, the

RNN received speed, direction, and visual information as input, and combined these types

of sensory information to construct a journey-dependent place code (Taube et al., 1990;

Sargolini et al., 2006; Kropff et al., 2015; O’Keefe, 1976; Hafting et al., 2005; Sun et al.,

2019; Potvin et al., 2007; Frost et al., 2020). In a related project led by my colleague

Kexin Chen (accepted in IJCNN 2021), optimized by evolving STDP-H parameters and

compared with biological experimental data collected from rats, our simulated networks of

CA1 and SUB with spiking neural networks (SNNs) show highly place-specific responses

in CA1 neurons and the emergence of pattern recurrence in the spatially specific firing of

SUB neurons. In a well-known project done by Banino et al. (2018), an LSTM was used to

emerge grid-cell representations for path integration with simulated trajectories for foraging

rodents. The output of this LSTM projected to place and head direction units via a linear

layer for regularization. Their findings supported that grid cells are critical for vector-based

navigation and can be combined with other path planning strategies for complex spatial

tasks.

1.2 Overview of Main Projects

For my doctoral research, I conducted three main projects that cover most of the concepts

described in Section 1.1. The first project is related to the cognitive map concept (see Figure

18



(a) Cognitive Map (b) Goal-Driven Perception (c) Terrain Classification

Figure 1.6: Three main projects in Xinyun Zou’s doctoral research. Images are adapted from
(Zou et al., 2021, 2020b,a).

1.6a). The second is based on neuromodulated goal-driven perception (see Figure 1.6b).

The third links to terrain classification (see Figure 1.6c). Their abstracts are introduced

below in this section. Chapters 2–4 include their detailed experimental setups, results, and

discussions.

1.2.1 Neuroevolution for Spatial and Working Memory in a Maze

(This subsection is reprinted, with permission, from the abstract of a previous preprint (Zou

et al., 2021).)

Animals ranging from rats to humans can demonstrate cognitive map capabilities. We

evolved weights in a biologically plausible recurrent neural network (RNN) using an evo-

lutionary algorithm to replicate the behavior and neural activity observed in rats during a

spatial and working memory task in a triple T-maze. The rat was simulated in the Webots

robot simulator and used vision, distance and accelerometer sensors to navigate a virtual

maze. After evolving weights from sensory inputs to the RNN, within the RNN, and from

the RNN to the robot’s motors, the Webots agent successfully navigated the space to reach

all four reward arms with minimal repeats before time-out. Our current findings suggest

that it is the RNN dynamics that are key to performance, and that performance is not de-

pendent on any one sensory type, which suggests that neurons in the RNN are performing

mixed selectivity and conjunctive coding. Moreover, the RNN activity resembles spatial in-
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formation and trajectory-dependent coding observed in the hippocampus. Collectively, the

evolved RNN exhibits navigation skills, spatial memory, and working memory. Our method

demonstrates how the dynamic activity in evolved RNNs can capture interesting and com-

plex cognitive behavior and may be used to create RNN controllers for robotic applications.

See Chapter 2 for details.

1.2.2 Neuromodulated Attention and Goal-Driven Perception

(This subsection is reprinted, with permission, from the abstract of a previously published

work (Zou et al., 2020b). ©2020 Elsevier Ltd.)

In uncertain domains, the goals are often unknown and need to be predicted by the organ-

ism or system. In this project, contrastive Excitation Backprop (c-EB) was used in two

goal-driven perception tasks – one with pairs of noisy MNIST digits and the other with

a robot in an action-based attention scenario. The first task included attending to even,

odd, low, and high digits, whereas the second task included action goals, such as “eat”,

“work-on-computer”, “read”, and “say-hi” that led to attention to objects associated with

those actions. The system had to increase attention to target items and decrease attention

to distractor items and background noise. Because the valid goal was unknown, an online

learning model based on the cholinergic and noradrenergic neuromodulatory systems was

used to predict a noisy goal (expected uncertainty) and re-adapt when the goal changed

(unexpected uncertainty). This neurobiologically plausible model demonstrates how neuro-

modulatory systems can predict goals in uncertain domains and how attentional mechanisms

can enhance the perception for that goal. See Chapter 3 for details.
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1.2.3 Terrain Classification with a Reservoir-Based SNN

(This subsection is reprinted, with permission, from the abstract of a previously published

work (Zou et al., 2020a). ©2020 IEEE.)

Terrain classification is important for outdoor path planning, mapping, and navigation. We

developed a reservoir-based spiking neural network (r-SNN) to classify three terrain types (i.e.

grass, dirt, and road) in a botanical garden. It included a recurrent layer and a supervised

layer. The input spike trains to the recurrent layer were generated from linear accelerometer

and gyroscope sensor signals as well as camera frames from an Android smartphone that

controlled a ground robot. Compared to a Support Vector Machine (SVM) model and a 3-

layer (3L) logistic regression model, our r-SNN method generated better prediction accuracy

without reliance on a time window of data. Using both images and sensors as input, the test

accuracy of the r-SNN was over 95%, which was significantly better than the SVM and the

3L logistic regression. Because the r-SNN is compatible with neuromorphic hardware, our

proposed method could be part of a biologically-inspired power-efficient autonomous robot

navigation system. See Chapter 4 for details.

1.3 Additional Projects

Aside from the three major projects, I also explored a few other research projects with

my supervisor Jeffrey Krichmar and my labmates in the past five years. Most of them are

related to autonomous navigational strategies using an Android Based Robot (ABR) (Oros

and Krichmar, 2013). However, all these systems are applicable to more advanced robots

and test setups.

The six-wheeled ABRs are generally used outdoor because of more intensive power and

less friction. In the first side project, we designed a light-weight yet reliable road following

21



strategy using OpenCV to keep our six-wheeled ABR on the smooth road when planned

regardless of distractions from shadows or obstacles (see Figure 1.7a). We also combined this

reactive strategy with our spike-based path planning towards implementation of an energy-

efficient, event-driven, massively parallel neuromorphic system for outdoor navigation (Hwu

et al., 2017a). In the second side project, we added the rodent model of patience to waypoint

navigation on an autonomous six-wheeled ABR (see Figure 1.7b). A higher seronin (5-HT)

level led to more patient behavior of visiting more waypoints and taking fewer shortcuts

(Xing et al., 2020).

The four-wheeled or tank ABRs are used indoor. In the third side project, we set up a prey-

predator experiment with two four-wheeled ABRs. Our Q-learning-based foraging agent (see

Figure 1.7c) significantly outperformed the random and actor-critic agents by obtaining more

food, avoiding the predator, and not starving (Krichmar et al., 2019). In the fourth side

project, we conducted schema consolidation for room recognition (see Figure 1.7d). Each

time when a room flavor was detected from ground QR codes by the four-wheeled ABR, we

would apply a self-organizing map (SOM) to update place-flavor paired associations. Our

network connected a HPC layer of short-term pairing information to an mPFC layer which

gradually learned schemas. Then it went through replay to detect if there was a schema/room

switch or an flavor change in the existing schema/room. This project was later expanded to

Hwu et al. (2020).

There was an additional simulation-based project which can be considered as an exercise

before our cognitive map project (Zou et al., 2021). We implemented a DQN that could

quickly adapt to the random relocation of a large reward in a double T-maze. We also

tried to utilize the adaptive HyperNEAT to evolve connectivity patterns and plasticity rules

encoded by CPPNs so that the network could learn the maze topology and plan the most

efficient path towards a large reward.
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(a) Road Following (b) Neuromodulated Patience

(c) Q-Learning-Based Foraging (d) Schema Consolidation for Room Recognition

Figure 1.7: Additional projects in Xinyun Zou’s doctoral research. (a–c) Images are adapted
from (Hwu et al., 2017a; Xing et al., 2020; Krichmar et al., 2019). (d) The schema project
was later expanded to (Hwu et al., 2020).
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Chapter 2

Neuroevolution of a Recurrent Neural

Network for Spatial and Working

Memory in a Simulated Robotic

Environment

(Except from the newly added section “Further Study on Latent Learning”, this chapter is

reprinted, with permission, from Zou, Xinyun, Eric O. Scott, Alexander B. Johnson, Kexin

Chen, Douglas A. Nitz, Kenneth A. De Jong, and Jeffrey L. Krichmar. (2021). Neuroevolu-

tion of a Recurrent Neural Network for Spatial and Working Memory in a Simulated Robotic

Environment. arXiv preprint arXiv:1903.06070.)

(A 2-page peer-reviewed poster version has been accepted in Proceedings of 2021 Genetic

and Evolutionary Computation Conference Companion (GECCO ’21 Companion).)
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2.1 Introduction

The cognitive map, a concept raised by Edward C. Tolman in 1930s (Tolman, 1948), describes

that the mental representation of a physical space could be built by integrating knowledge

gained from the environmental features (e.g., goals, landmarks, and intentions). We used the

Webots robot simulation environment (Michel, 2004) to investigate cognitive map behavior

observed in rats during a spatial and working memory task, known as the triple T-maze

(Olson et al., 2017, 2020). We suggest that similar behavior could be observed in a robot

that had a biologically plausible neural network evolved to solve such a task. In this task,

the rat or the robot must take one of four paths to receive a reward. If it repeated a path,

there would be no additional reward. It would eventually learn to quickly reach each of the

four rewards with minimal repeats. This requires knowledge of where it is now, where it has

been, and where it should go next.

In our Webots setting, we designed a 3-D environment that resembled the rat experiment.

The proximity sensors, the linear accelerometer and the grayscale camera pixels of a sim-

ulated e-puck robot (Mondada et al., 2009) provided sensory input for a recurrent neural

network (RNN). The RNN output directly manipulated the motor speed of the e-puck. Using

neuroevolution, the input weights into the RNN, the recurrent weights within the RNN, and

the output weights from the RNN were evolved based on an objective designed to replicate

the rat behavior.

Our results show that the evolved RNN was capable of guiding the robot through the triple-

T maze with similar behavior to that observed in the rat. Our analysis of the RNN activity

indicated that the behavior was not dependent on any one sensory projection type but rather

relied on the evolved RNN dynamics. Furthermore, the population of neurons in the RNN

were not only sufficient to predict the robot’s current location but also carried a predictive

code of future intended reward paths. Furthermore, the present method for evolving neural
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Figure 2.1: The maze visualization in Webots. As shown in the figure, there were corridors
that the robot could traverse and landmarks on the wall. The e-puck robot is denoted by
the small green circle. The red circles denote the reward locations. Note that these rewards
were not visible to the robot’s sensors.

networks for robot controllers may be applicable to other memory tasks.

2.2 Methods

We picked Webots (Michel, 2004) as our virtual robotic environment. Inside this 3D simu-

lator, a triple T-maze was constructed that closely followed the dimensions and landmarks

Figure 2.2: The 3D simulated e-puck robot. The picture is adapted from Webots (2020).
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used in the rat experiment (Olson et al., 2017). Figure 2.1 shows the maze simulation en-

vironment. The red circles, which denote the location of the rewards, were not observable

by the robot and are only included in the figure for illustrative purposes. The agent was an

e-puck robot (Mondada et al., 2009) which has an accelerometer, a front camera, 8-direction

proximity sensors, several LEDs, and 2 wheel motors (see Figure 2.2). The e-puck needed

to learn by neuroevolution to find four rewards (and return home after each reward visit)

with minimal repeats before timeout. Its actuation was updated every 64 milliseconds. The

timeout threshold was tuned to 5000 steps (i.e., 320 seconds in real-time) per trial to guar-

antee enough time to visit all four rewards with minimal repeats and some tolerance for

slight movement variations. For each trial, the robot would always start from the home

position in the bottom middle part of the maze and move upward (see the e-puck’s loca-

tion in Figure 2.3). After reaching a T-intersection, a door behind the robot would close to

prevent backtracking. Since the robot could only move forward in a reward path, it could

neither revisit places on the same path nor switch to a different one before completion of

the previous path. After the robot moved within 6 cm from the center position of a novel

reward in a trial, the reward was added to the objective function given by Equation 2.3.

After the robot passed through the third T-intersection right above any reward position, an

additional door on the right/left would close to enforce its usage of the closer return path

to home before exploring the next reward path. It should be noted that although the doors

prevented backtracking, the robot still needed to evolve its ability to move smoothly and

efficiently through the corridors to receive all four rewards with minimal repeats prior to the

timeout.

The rotation speed of an e-puck was ranged between -3.14 rad/s and 6.28 rad/s. The evolved

output weights in the RNN adjusted the speed and the turning rate of the robot to navigate

the task with optimal and stable performance. To prevent from being stuck at corners

or T-intersections, the robot had a default obstacle avoidance algorithm that used the 8

proximity sensors, which only influenced movement when the robot was very close to an
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Figure 2.3: A closer look of the maze, with 4 rewards labeled in red circles and 7 T-
intersections labeled in blue font. Home was located at the e-puck’s current position (bottom-
middle) in this figure.

obstacle, to move away from the closest point of contact (Fajen and Warren, 2003). The

obstacle avoidance motor signal was added to the rotational speed of the motors dictated by

the RNN output.

We conducted 5 evolutionary runs and selected the best performing agent from each run for

further analysis. An evolutionary run was composed of 200 generations to achieve optimal

performance. During each generation, there were 50 genotypes generated according to the

evolutionary algorithm described in Section 2.2.1. For each genotype during the evolutionary

process, the fitness value was recorded as an average over 5 trials to improve robustness in the

selection. In each test scenario afterwards, each of the 5 best performing agents from these

runs was utilized to run 20 demo trials with the same task setting and timeout threshold. For

each demo trial, the activities of 50 recurrent neurons and the robot positions were recorded

at each time step for further analysis.
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Figure 2.4: The neural network architecture for controlling the e-puck robot in Webots.
Sensors were converted into input neural activities. The input weights (Wxr), recurrent
weights (Wrr), and output weights (Wry) were evolved concurrently. The output weights
dictated the left and right rotational wheel speed of the e-puck.

2.2.1 Network Architecture

The neural network architecture received inputs from the e-puck’s 8-direction proximity

sensors, 3D linear accelerometer values, and normalized pixel values from its 10×8 grayscale

camera frame (Figure 2.4). These 91 input neurons were fully connected to 50 recurrent

neurons, which were fully connected with one another. This recurrent layer was then fully

connected with the two neurons in the output layer that controlled the rotational speed of

the two wheel motors separately.
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Recurrent neural network

For each recurrent neuron i, its recurrent activity Ri was updated at every time step t

according to Equation 2.1:

R
(t=0)
i = 0.0,

synInt
i =

∑
k∈in

Wki · xtk +

j 6=i∑
j∈rec

Wji ·R(t−1)
j ,

Rt
i = (1− p) · tanh

(
synInt

i

)
+ p ·R(t−1)

i


(2.1)

Here x denoted the input sensor value and Wki was the weight from Neuron k to Neuron

i. In other words, the synaptic input for each recurrent neuron (synIni) contained (1) the

summation of the product of each sensor value and the corresponding input weight plus (2)

the summation of the product of every other recurrent neuron’s previous activity and the

corresponding recurrent weight. The tanh wrap ensured the recurrent activity between -1.0

and 1.0. A small p value of 0.01 helped to avoid any abnormal performance of the computed

recurrent activity. The recurrent activity was then used to compute the rotational speed of

each wheel motor by multiplying with the output weight.

Evolutionary algorithm

An evolutionary algorithm was used to evolve the input, recurrent, and output weights

(Wxr, Wrr, and Wry in Figure 2.4). Because of all-to-all connections, there were a total

of 7150 genes for each genotype. The fitness value of each genotype was the average over

5 trials. The evolutionary algorithm used a population of 50 genotypes selected by linear

ranking. Two-point crossover and mutation (with a decaying mutation standard deviation)

were applied to reproduce the non-elite 90% of the population. The mutation rate was 0.06
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and the mutation standard deviation decreased throughout a run via the function:

mutation std = 0.3× 50.0

50.0 +m
(2.2)

Here m denotes the generation index.

The fitness function is shown in Equation 2.3:

fitness = num obtainedRwds + portion routes completed−0.2× num repeats (2.3)

During each trial, we would reward (1) each non-repetitive visit of any reward arm (i.e.,

0 ∼ 4) and (2) the portion of reward path visits for which home was returned afterwards

(i.e., 0 ∼ 1); meanwhile, we would penalize every repeated visit.

2.2.2 Bin-based Recurrent Activities

To analyze the performance of the robot after evolution, we divided the 1.6m-by-1.25m maze

into 0.08m-by-0.10m sized bins, which was close to the e-puck’s diameter (0.074m) (Figure

2.9). We computed the average activity of each recurrent neuron for each bin in the maze.

For each of the 5 best performing agents (from 5 evolutionary runs), we used 15 demo trials

to generate the expected bin-based activity matrix and 5 demo trials for bin occupancy

prediction. The results are shown in Sections 2.3.4 and 2.3.5.

Spatial memory analysis

We used the RNN activity to predict the robot’s location in the maze. Since there were 50

recurrent neurons, for each demo trial, we generated a bin-based recurrent activity matrix of

size 110× 50. The activity at each bin for each neuron was averaged over all steps spent on
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Figure 2.5: The maze layout with 110 bins of size 0.08m-by-0.10m. Segments used for the
trajectory-dependent coding analysis are labeled as seg1, seg3-1, seg3-2, seg8-1 and seg8-2
in yellow.

that bin in a trial. Then we obtained an expected bin-based activity matrix of size 110× 50

by taking the average over all the matrices for the first 15 demo trials. The remaining 5 trials

were used to analyze the RNN’s ability to encode location. For each of these 5 test trials, we

compared each bin’s RNN activity vector, which had a length of 50, with all 110 expected

bin-based activity vectors using a Euclidean distance metric. The predicted bin was the

smallest Euclidean distance to that actual bin. Thus, the Euclidean distance denotes the

prediction error in bins. For example, if the Euclidean distance was 6, there was a perfect

prediction error of 6 bins or approximately 0.5m (see Figure 2.10).

Trajectory-dependent analysis

After traversing some of the maze’s vertical (South-to-North) segments, the robot would

decide to turn left or right at a T-intersection. We analyzed if the RNN activity during

traversal of a vertical segment could predict the robot’s future path or the robot’s prior

path. As shown in Figure 2.5, Segment 1 is the vertical segment right before the first T-

intersection on the path for any of the four rewards. Segment 3-1 (or Segment 3-2) denotes
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Figure 2.6: The evolutionary performance (left: fitness, right: number of elapsed time steps)
for the best-so-far agent evolved in each generation. Each subplot was averaged over 5 runs
with 200 generations per run. The shaded area denotes the 70% confidence level.

the vertical segment right before the second T-intersection on the path for Reward 1 or 2

(or for Reward 3 or 4). Segment 8-1 (or Segment 8-2) represents the vertical segment for

returning from Reward 1 or 2 (or from Reward 3 or 4). Similar to the method described

above, we computed an expected bin-based activity matrix for each of these segments from

the first 15 demo trials for each reward path. We then used the remaining 5 demo trials to test

whether the RNN activity could predict which path the robot was taking (i.e., Prospective;

seg1, seg3-1, seg3-2) or which path the robot was returning from (i.e., Retrospective; seg8-1

and seg8-2).
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Figure 2.7: The trajectory of a perfect trial, which covered reward paths 1, 4, 3, 2 in order
with no repeated visits of any path.

2.3 Results

2.3.1 Evolutionary Runs

Successful behavior, similar to that observed in rats, emerged from the evolutionary process.

We ran all simulations using Webots (version R2020a) on a desktop with one GPU (Nvidia

GeForce GTX 1080 Ti). Figure 2.6 shows the best-so-far evolutionary performance and the

number of elapsed steps for five runs. Each run lasted 200 generations, with 50 genotypes

per generation. In each generation, the fitness value of a genotype was averaged over 5 trials.

By the end of each run, the best-so-far fitness curve reached a plateau close to the maximal

fitness value of 5, whereas the number of steps taken to complete the task dropped below

3500 steps per trial on average. An example perfect trial trajectory (with no repeated visits

of any reward path and a fitness of 5) can be observed in Figure 2.7.
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Table 2.1: Ablation performance (mean ± the 95% confidence level) over 20 trials per ab-
lation test for the best performing agent in each of the 5 evolutionary runs. The values
highlighted with bold fonts and asterisks denote ablations that had a significant impact on
the performance. Significance threshold was a p-value ¡ 0.01/6 = 0.0017 using the Wilcoxon
Rank Sum test.

Fitness Elapsed Steps

No Ablation 3.65±0.14 4644±169
Proximity Sensors 3.29±0.16 4774±128
Linear accelerometer 3.49±0.16 4640±131
Grayscale Vision 3.21±0.17 4785±67
Input Weights 2.93±0.085 4981±16∗
Recurrent Weights 2.95±0.11∗ 4946±43∗
Output Weights 2.84±0.10∗ 4978±22∗

2.3.2 Ablation Performance

We carried out a set of ablation simulations to test whether performance was dependent on

any sensory projection type or just evolved weights in the neural network (Figure 2.4). To

test this, we either shuffled different sensor input values or shuffled the RNN input (Wxr,)

recurrent (Wrr), or output (Wry) weights. For each of the 6 ablations, we ran the best

performing agent from each of 5 evolutionary runs in demo trials. The results were averaged

over 20 demo trials for each shuffle test. Random shuffle sequences occurred at each time

step for each demo trial.

The ablation studies show that the dynamics of the RNN was critical for performance (Table

2.1). We compared the control (no ablation) with the 6 ablation groups. Since there were

6 comparisons, the significance threshold for the p-value is 0.01/6 = 0.0017 based on a

Bonferroni correction. Interestingly, none of the sensory projection ablations had a significant

impact on performance. However, ablating the evolved weights (input, recurrent, and output)

all had a significant impact. That suggests that it was the recurrent neural network dynamics

that were key to performance. Moreover, that performance was not dependent on any one

sensory projection type.

35



2.3.3 Order Effects

We wanted to test if the robot evolved strategies to solve the triple-T maze task. Rats tend

to show idiosyncratic behavior in the same maze setting (Olson et al., 2020, 2021). For

instance, a rat alternated by going to the left side of the maze towards Rewards 1 and 2, and

then the right side of the maze towards Rewards 3 and 4. Idiosyncratic behavior did emerge

in our evolved robots. Although we did not observe the robots alternating between sides of

the maze, each best performing agent for an evolutionary run exhibited a unique strategy

for traversing the maze. Figure 2.8 shows the probability of transitioning from one reward

path to the next. Only transitions probabilities that are greater than 0.33 are shown. We

did find some generalities between genotypes. For example, the agents evolved in Genotypes

2, 3, and 5 tended to transition from the path for Reward 4 to the path for Reward 1. The

agents evolved in Genotypes 2, 3, and 4 tended to transition from the Reward 3 path to the

Reward 1 path. In both cases, the robot was navigating the right side of the maze before

transitioning to the left side of the maze. These strategies that emerged in our robot and

in the rat may simplify the task by breaking down the problem into chunks (e.g., first go to

the right, and then go to the left).

2.3.4 Spatial Coding in the RNN

We investigated if the RNN activity was sufficient to predict the robot’s position. If the

activities of the 50 recurrent neurons could accurately encode the position, then the robot

might be using this piece of information to solve the maze task. Borrowing techniques from

neuroscience (Olson et al., 2017; Wilson and McNaughton, 1993a; Ferbinteanu and Shapiro,

2003), we tested whether the RNN contained spatial information with a population code.

Individual neurons in the recurrent layer did not seem to have place information. For ex-

ample, Figure 2.9 shows the average bin-based recurrent activities across the entire maze
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Figure 2.8: The trend of transitioning from one reward path to the next was different for
each best performing agent (with a different genotype evolved) after 200 generations for each
of the five evolutionary runs. The numbered circles denote the reward path, and the labeled
arrows denote the probability of transitioning from one reward path to another.

from 15 demo trials of a top performing agent. Each bin’s activity per trial divided by the

number of time steps spent on that bin. The activity of each neuron is noisy with some

neurons being highly active, quiescent, or oscillating.

However, the population of 50 RNN neurons was able to predict the robot’s location through-

out the maze. With the method described in Section 2.2.2, Figure 2.10 shows the location

prediction for each bin in all 25 test trials (with 5 best performing agents from 5 evolution-

ary runs and 5 trials per agent). It is apparent from the figure that the RNN activity was

sufficient to predict the robot’s position in the maze. The robot’s position was predicted

with perfect accuracy on 58% of the bins, and the predicted error had an average distance

of 3.1 bins (i.e., 0.25 meters).
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Figure 2.9: The average bin-based activities for all 50 recurrent neurons on 110 bins across
the entire maze for a top performing agent.

Figure 2.10: The average predicted bin occupancy over all 25 test trials of the best performing
agent from each of the five evolutionary runs. A dark blue bin (if existing) would have perfect
prediction right at itself (distance = 0), whereas a dark red bin (if existing) would have a
farthest prediction (across the diagonal of the entire maze).
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2.3.5 Trajectory-Dependent Coding in the RNN

Solving the triple-T maze task requires the agent, whether it is a robot or an animal, to

remember which path it has already taken, as well as to decide which path to take next.

We hypothesized that the dynamic activity of the RNN carried such information, which is

known as retrospective coding (i.e., where it has been) and prospective coding (i.e., where

it intends to go).

To test whether there was retrospective coding and/or prospective coding in the RNNs,

we analyzed the RNN’s ability to encode trajectory-dependent information at a population

level. Table 2.2 shows how well the RNN could predict the robot’s future path based on

the activity of Segments 1, 3-1 and 3-2, and how well the RNN could predict the robot’s

past path based on the activity of Segments 8-1 and 8-2. The probability of correct path

prediction on Segment 1, where the robot could take one of 4 paths, was well above chance

level (t-test; p ¡ 0.0001). The correctness on Segment 3-1 or 3-2, where the robot could take

one of two paths, was also well above chance level (t-test; p ¡ 0.0001 for Segment 3-1 and p ¡

0.005 for Segment 3-2). This suggests that the RNN carried a prospective code of where the

robot intent to go next. The probabilities of correct path prediction on Segments 8-1 and

8-2 were not above chance (t-test ¿ 0.05), which indicates they did not predict if the robot

came from one of the 2 prior paths.

Taken together, these results suggest that the evolved RNN had prospective information

in that it could be discerned which direction the robot would take before turning left and

right. It is interesting that we were not able to observe retrospective information in the RNN

population since some knowledge of where the robot had already visited was necessary for

the observed performance.
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Table 2.2: Average prospective path prediction for different segments.

Seg1 Seg3-1 Seg3-2 Seg8-1 Seg8-2

correctness 41% 77% 69% 47% 55%
bins off 0.9 0.2 0.2 2 2

2.4 Discussion

The present work demonstrated that a robot controlled by an evolved RNN could solve a

spatial and working memory task where the robot needed to navigate a maze and remember

not to repeat paths it had taken previously. The RNN population activity carried spatial

information sufficient to localize robot, and the RNN population activity carried predictive

information of which path robot intended on taking. Behavior was dependent on RNN

dynamics and not any particular sensory channel. The present method shows that complex

robot behavior, using a detailed robot simulation, could be realized by evolving all weights

of a RNN.

2.4.1 Evolved RNN with Spatial and Working Memory

We evolved a RNN to control a robot in a spatial and working memory task that replicated

behavior and neural activities observed in rats (Olson et al., 2017). The robot was able

to navigate the triple T-maze efficiently by reaching all four rewards with minimal repeats.

Successful performance required the robot to have spatial knowledge and working memory

of which rewards it had already visited. Prospective information, in which RNN activity

predicted the robot’s intention, emerged in the simulations. Although not observed in the

analysis, the neural network must have had retrospective information to minimize repeating

previously traversed paths.

At the population level, the evolved RNN activity has similar characteristics as the hip-
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pocampus. It has been observed that the population activity of the CA1 region in the

hippocampus can accurately predict the rat’s location in a maze (Wilson and McNaughton,

1993a; Olson et al., 2021). Furthermore, journey-dependent CA1 neurons have been observed

in the rat that can predict the upcoming navigational decision (Ferbinteanu and Shapiro,

2003). Similar to CA1, the RNN received speed, direction, and visual information as input,

and combined these types of sensory information to construct a journey-dependent place

code (Taube et al., 1990; Sargolini et al., 2006; Kropff et al., 2015; O’Keefe, 1976; Hafting

et al., 2005; Sun et al., 2019; Potvin et al., 2007; Frost et al., 2020).

In Olson et al. (2021) and in other rodent studies, it has been observed that rats acquire

individual strategies to solve navigational tasks. For example, in the triple-T task, many rats

alternated between the left and right arms of the maze. Similarly, our robot demonstrated

this idiosyncratic behavior. Each best performing agent for an evolutionary run had an

order-dependent pattern for taking different paths in the maze. It suggests that the RNN

evolved a strategy breaking down the complex maze task into simpler pieces, which may also

be how animals solve tough problems.

2.4.2 Behavioral Dependence on RNN Dynamics

To investigate the dependence of the robot behavior on different components of the RNN

neural architecture, we conducted an ablation study (see Figure 2.4). Results in Section

2.3.2 show that ablating a given sensory channel had no significant impact on performance.

However, ablating the evolved weights (input, recurrent, and output) all had a significant

impact. This suggests that it was the recurrent neural network dynamics that were key to

performance, and that performance was not dependent on any one sensory projection type.

The results justify evolving all weights in the RNN structure, rather than evolving only the

readout weights as is often done in Liquid State Machines (LSM) or Echo State Networks
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(Maass et al., 2002). Furthermore, the present results demonstrate the potential of extending

our RNN controller to other types of robots that use different sensory inputs.

2.4.3 Capability of Evolving Complex Robotics Behavior

One advantage of our method is the simple design of our fitness function. It only includes

rewards for each visit of a novel reward and the completeness of each reward path plus a

small penalty for repeated visits. We also tried with an additional reward term for the

portion of time steps left before timeout, but finally excluded it from the fitness function.

Instead, the time cost would be automatically influenced by rewarding non-repetitive reward

path visits as demonstrated in Figure 2.6. It is not a fitness function only for a certain type

of robot, because it is independent of robot properties (e.g., sensors, speed, motor structure,

etc.). Therefore, it could be easily generalize to fit other task settings or robots.

The key to performance in our experiments was the evolved weights into, within, and from

the RNN. Generally a RNN has connections between internal neurons form a directed cycle.

Arbitrary sequences of inputs could be processed by using the internal state of the RNN

as the memory. RNNs have been applied to a broad range of domains such as terrain

classification, motion prediction, and speech recognition (Zou et al., 2020a; Kashyap et al.,

2018; Graves et al., 2013). A reservoir-based approach, such as an LSM (Maass et al., 2002),

can tractably harness such recurrence.

Similar to an LSM, we also tried a reservoir-based approach to evolve only the output

weights while keeping randomly initialized input and recurrent weights fixed throughout

generations. In addition, we attempted to evolve both output weights along with input or

recurrent weights (but not with both). However, their evolutionary performance could not

generate fitness values as well as evolving all three types of weights. Evolving all three types

of weights allow maximal utilization of neural activities to create the dynamics needed to
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solve a sequential memory task, such as the triple-T maze one. This process of evolving

input, recurrent, and output weights could be readily transferred to other complex robotic

settings.

Because of the accurate representation of many popular robot designs in the Webots sim-

ulator, we could always run much faster than real-time (e.g., ×30 faster on average on our

desktop with one GPU) to evolve for enough generations before applying a well-performed

genotype to the RNN controller for real-world robotic navigation tasks. The power of using

a detailed simulator, such as Webots, is that the evolved controller should transfer to the

real e-puck with minimal adjustments.

2.4.4 Comparison with Prior Work

Evolutionary robotics

Evolutionary robotics is a method for building control system components or the morphology

of a robot (Bongard, 2013; Nolfi et al., 2016). The biological inspiration behind this field

is Darwin’s theory of evolution, which was constructed with three principles. (1) Natural

Selection: genotypes that can be well adapted to their environments are more likely to

survive and reproduce. (2) Heredity : the fittest genotypes from the previous generation can

be directly kept in the next generation; moreover, the new offspring in each generation is

generated based on the selected genes from two parents. (3) Variation: the new offspring

goes through mutations and crossover with a certain probability and thus differs from both

parents.

Our method follows these three principles and falls into the common category of evolving the

control system. However, what we evolved is novel compared to other work on evolutionary

robotics. There has been work to evolve robots in cognitive tasks. For example, one group
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evolved virtual iCub humanoid robots to investigate the spontaneous emergence of emotions.

Their populations were evolved to decide whether to “keep” or “discard” different visual

stimuli (Pacella et al., 2017). There has also been work on evolving robot controllers capable

of navigating mazes. For example, Floreano’s group evolved neural network controllers to

navigate a maze without colliding into wall. Their neural networks were directly tested on

a Khepera robot that had proximity sensors and two wheel motor system that was similar

to the e-puck used in our present studies. Their evolved neural networks developed a direct

mapping from the proximity sensors to the motors (Floreano and Keller, 2010). Our present

work extends this prior work by evolving an RNN capable of navigating mazes, as well as

demonstrating cognitive behavior.

Rather than evolving a direct mapping from sensors to motors, we instead evolved the weights

from sensory inputs to the RNN, within the RNN, and from the RNN to the robot’s motors

as the genes for each genotype evolved in our network. As is discussed below, RNNs such

as the ones we discuss here are neurobologically plausible and allow for comparisons with

neuroscience and cognitive science data (Wang et al., 2018; Yang et al., 2019). Moreover,

the RNN architecture is more generalizable to different types of robots working in complex

scenarios (e.g., the triple T-maze with multiple rewards and landmarks), which results in

optimal performance independent of any projection type.

Evolved RNNs

Although there are only a few studies that have RNNs evolved directly in robotic experi-

ments, evolving RNNs has been more frequently applied to virtual task settings. For exam-

ple, Akinci and Philippides (2019) used either a steady-state genetic algorithm (SSGA) or

an evolutionary strategy (ES) to evolve weights of the Long Short-Term-Memory (LSTM)

network or RNN for the Lunar Lander game provided by the OpenAI gym (Brockman et al.,

2016). In their case, the ES developed more dynamic behavior than the SSGA, whereas the
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SSGA kept good genotypes and re-evaluated them with different configurations.

Li and Miikkulainen (2018) evolved poker agents called ASHE with various types of evolu-

tionary focus, such as learning diversified strategies from strong opponents, learning weak-

ness from less competitive ones, learning opposite strategies at the same time, or a mix

in-between. The genes in their GA covered all parameters in the estimators, including the

LSTM weights, per-block initial states, and the estimator weights.

A more biologically inspired example is related to the recent work by Wieser and Cheng

(2020). Inspired by the neuroplasticity and functional hierarchies in the human neocor-

tex, they proposed to use a network called EO-MTRNN to optimize neural timescales and

restructure itself when training data underwent significant changes over time.

All these related works have their unique perspectives that could inspire us to build a more

robust and potentially faster evolutionary process for RNN systems in the future. For in-

stance, we may consider to experiment with features in different evolutionary algorithms or

co-evolve different neural regions which have different strategies or focus on a cognitive task.

Comparison with NEAT/HyperNEAT robot controllers

The evolutionary algorithms were utilized to evolve only weights in our RNN system and

many other groups’ work as mentioned earlier. Another popular evolutionary mechanism

is NEAT, which has its unique feature of evolving the network topology together with the

weights (Stanley and Miikkulainen, 2002). HyperNEAT extends NEAT by evolving connec-

tive CPPNs that generate patterns with regularities (e.g., symmetry, repetition, repetition

with variation, etc.) (Stanley et al., 2009). In the case of quadruped locomotion investigated

by Clune et al. (2009), HyperNEAT could evolve common gaits by exploiting the geometry

to generate front-back, left-right, or diagonal symmetries. Our current model was tuned to

have a fixed number of recurrent neurons since the first generation and have all-to-all con-
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nections between two layers or within the recurrent layer. It may be of interest to combine

NEAT/HyperNEAT with topologies of RNNs to solve more complex problems and scenar-

ios. For example, NEAT might be utilized in the beginning of the evolutionary process to

efficiently derive a morphology for a more standard evolutionary algorithm to use in later

generations. This hybrid approach has similarities to Akinci and Philippides (2019).

Working memory

Our evolved RNN encoded not only spatial information but also working memory to re-

member which paths had been traversed recently and which paths remained to be explored.

Working memory helps to connect what happened earlier with what occurs later. It can be

thought of as a general purpose memory system that can generalize, integrate and reason

over information related to decision making or executive control (Diamond, 2013; Vyas et al.,

2020). For example, Yang et al. (2019) trained single RNNs to perform 20 tasks simulta-

neously. Clustering of recurrent units emerged in their compositional task representation.

Similar to biological neural circuits, their system could adapt to one task based on com-

bined instructions for other tasks. Furthermore, individual units in their network exhibited

different selectivity in various tasks.

Working memory usually relies on the prefrontal cortex (PFC) for information maintenance

and manipulation (Baddeley and Hitch, 1994; Eldreth et al., 2006; Smith and Jonides, 1999).

Wang et al. (2018) investigated such brain functioning with a meta-reinforcement learning

(meta-RL) system. Their model trained the weights of an RNN centered on PFC through

a reward prediction error signal driven by dopamine (DA). This RNN “learned to learn”,

which means it had the ability to learn new tasks via its trained activation dynamics with

no further tuning of its connection weights.

With further investigation and utilization of working memory, we also would like to have our
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evolved RNN generalize over multiple cognitive tasks and demonstrate cognitive functions

observed in different brain regions.

2.5 Further Study on Latent Learning

(This section is not yet included in any preprint or published material.)

One of Tolman’s cognitive map ideas is “latent learning”, which states that learning can

occur in the absence of rewards, but does not manifest itself until a reward was introduced

into the environment. In their original experiment (see Figure 2.11), one group of rats,

which were fed with food at the maze end since the first day, did not learn to reach the

goal-box as fast as the latent learning group did when food was introduced after several days

of exploring (Tolman, 1948). It shows that rats could actively learn by building a mental

representation of the space during exploration, even if no reward was presented. In other

words, an animal can keep learning but do not show the learning result in their behavior until

there is a motivation to demonstrate. Once the reward appears in the explored environment,

its knowledge about the information accumulated in the cognitive map will be immediately

expressed.

We investigated this idea in our simulated triple T-maze. We still evolved 50 genotypes per

generation, but reduced the total number of generations per run from 200 to 100. Each run

was composed of half generations without food rewards followed by half generations with food

rewards. In the first 50 generations, each trial was initialized with no food rewards, and maze

exploration was encouraged. The agent was still required to follow the rule of home→top

arm→home when visiting each unrewarded route with minimal repeats. Therefore, only the

term “num obtainedRwds” in the original fitness function (see Equation 2.3) was removed

for this period, and the timeout threshold for each trial was 5000 steps. In the second 50

47



(a) Tolman’s original maze (b) Tolman’s original results

Figure 2.11: Tolman and his colleagues’ original latent learning experimental setup and
results. (a) The maze included 14 turning points (with doors) and 14 dead ends. (b) They
used two control groups – one that never found food in the maze (HNR) and one that found
it throughout (HR). The experimental group (HNR-R) found food at the end of the maze
from the 11th trial on and showed the same sort of a sudden drop. The figure is adapted
from Tolman and Honzik (1930).

generations, each trial was initialized with one to four food rewards. The agent could still

visit unrewarded top arms; however, only non-repeated visits increased fitness. The original

fitness function in Equation 2.3 could be re-applied here, and the timeout threshold for each

trial was reduced to be the product between the number of introduced food rewards and

5000/4 steps.

To evaluate the benefits of latent learning on the evolved performance, we compared each of

the four latent learning cases with a corresponding control case. The control case had one

to four food rewards introduced to each trial throughout all the generations. Figure 2.12

illustrates the best-so-far curves of control vs. latent learning experiments for all four reward

cases. Results were compared between the first 50 generations of the control experiment and

the second 50 generations of the latent learning experiment since the beginning of each

run and averaged over 10 runs. For the best-so-far fitness, better performance would be

associated with a steeper slope magnitude, a higher Y-axis value, and a larger area-under-
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(a) with all four rewards (10 runs/case) (b) with three rewards (10 runs/case)

(c) with two rewards (10 runs/case) (d) with one reward (10 runs/case)

Figure 2.12: Best-so-far evolved performance of control v.s. latent learning experiments. The
x-axis labels the generation indices since the food reward(s) was/were introduced in each run.
For each run, the best-so-far performance at Generation i was linked with the best evolved
genotype among all the past generations. A better performance is generally associated with
a higher fitness or a lower number of elapsed steps. Each case is plotted as an average over
10 runs (with 1 standard deviation labeled in shaded regions). The dashed lines represent
the maximum thresholds.

curve (AUC). For the best-so-far elapsed steps, better performance would be associated with

a steeper slope magnitude, a lower Y-axis value, and a smaller AUC.

For the cases with two or three food rewards, the best-so-far curves for the latent learning

experiment approached the optimal much faster than the control and contained better Y

values. Such advantage for latent learning was not obvious to the case with all four rewards,

because the encouragement of visiting all four food rewards was similar to that of exploring

the entire maze. It was also not obvious to the case with only one reward, because the agent
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(a) with all four rewards (10 runs/case) (b) with three rewards (10 runs/case)

(c) with two rewards (10 runs/case) (d) with one reward (10 runs/case)

Figure 2.13: Populational average evolved performance of control v.s. latent learning experi-
ments. The x-axis labels the generation indices since the food reward(s) was/were introduced
in each run. For each run, the populational average performance at Generation i was av-
eraged over all 50 genotypes in the same generation. A better performance is generally
associated with a higher fitness or a lower number of elapsed steps. Each case is plotted as
an average over 10 runs (with 1 standard deviation labeled in shaded regions).

already achieved nearly perfect performance at 10 generations after the food reward was

introduced in both control and latent learning experiments.

Aside from the best-so-far curves, we also plotted the populational average curves over 50

generations since the food reward(s) was/were introduced (see Figure 2.13). For all four

reward cases, the latent learning demonstrated better populational average performance as

indicated by its AUCs for both fitness and elapsed steps.

The initial results from the latent learning study are promising. We are close to the conclusion
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that the agent which does not display its learning effect during maze exploration until there

is some motivation can eventually perform better than the other agent which directly receives

some stimulus since the beginning. We also need to analyze the recurrent neural activities

for the latent learning experiment, especially at three stages: (1) at the end of the latent

learning phase (i.e., Generation 50) to understand how working and spatial memory was

better encoded when the agent was encouraged to explore the entire maze with no food

rewards, (2) a few generations after introduction of food rewards (i.e., Generation 60) and

(3) at the end of each run (i.e., Generation 100) to understand how the activities changed

with respect to the new food stimuli. By doing so, we may be able to generalize the benefits

of evolved latent learning to other spatial navigation scenarios. It might also be helpful

to conduct benchmark comparisons between our neuroevolutionary method and state-of-art

reinforcement learning models (e.g., DQN, A3C).

2.6 Conclusions

In this chapter, we demonstrated that an evolved RNN that controlled a robot could demon-

strate aspects of cognitive map behavior. We introduced a recurrent neural network (RNN)

model that linked the robot sensor values to its motor speed output. By evolving weights

from sensory inputs to the RNN, within the RNN, and from the RNN to the robot’s motors,

the evolved network architecture achieved the goal of successfully performing a cognitive task

that required spatial and working memory. The RNN population carried spatial informa-

tion sufficient to localize robot in the triple T-maze. It also carried predictive information of

which path robot intended on taking. Moreover, the robotic behavior was dependent on RNN

dynamics rather than a sensor-to-motor mapping. Our method shows that complex robot

behavior, similar to which being observed in animal models, can be evolved and realized in

RNNs.
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Chapter 3

Neuromodulated attention and

goal-driven perception in uncertain

domains

(This chapter is reprinted, with permission, from Zou, Xinyun, Soheil Kolouri, Praveen

K. Pilly, and Jeffrey L. Krichmar. (2020b). Neuromodulated attention and goal-driven

perception in uncertain domains. Neural Networks, 125, 56-69. ©2020 Elsevier Ltd.)

3.1 Introduction

Artificial attentional mechanisms in neural networks tend to respond to sensory inputs sim-

ilarly regardless of context and goals (Zhang et al., 2018; Itti and Koch, 2000; Tsotsos et al.,

2015). However, biological systems select relevant information to guide behavior in the face

of noisy and unreliable signals, as well as rapidly adapt to unforeseen situations. Goal-driven

perception treats the same situation differently based on context and effectively directs at-
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tention to goal-relevant inputs. Often, these goals are unknown and must be learned through

experience. Moreover, these goals or contexts can shift without warning. Goal-driven per-

ception helps prevent overemphasis on less relevant stimuli and instead focus on critical

stimuli that require an immediate response.

In the brain, neuromodulators are important contributors to attention and goal-driven per-

ception. In particular, the cholinergic (ACh) system drives bottom-up, stimulus-driven at-

tention, as well as top-down, goal-driven attention (Avery et al., 2014). Furthermore, the

ACh system increases attention to task-relevant stimuli, while decreasing attention to dis-

tractions (Baxter and Chiba, 1999; Oros et al., 2014). This procedure is similar to the core

idea behind contrastive Excitation Backprop (c-EB). In c-EB, a top-down excitation mask

increments attention to the target features, and an inhibitory mask decrements attention to

distractors (Zhang et al., 2018). The noradrenergic (NE) system responds to surprises or

large deviations from priors (Yu and Dayan, 2005). When the NE system responds phasi-

cally, where the neural activity rapidly and transiently increases, it causes a network to reset

(e.g., re-initializing activities) that allows rapid adaptation under unseen/new conditions

(Bouret and Sara, 2005; Grella et al., 2019).

We modified a c-EB network for use in a goal-driven perception task, where the system had

to increase attention to the intended goal object and decrease attention to the distractor. In

the first experiment, we presented pairs of noisy MNIST digits to the neural network. One

goal class was to attend to the digit based on its parity (i.e., even or odd goal), and another

goal class was to attend based on the magnitude of the digit (i.e., low- or high-value goal).

In addition, we added a neuromodulatory model to the head of the network architecture

that regulated goal selection. Similar to the model of the ACh and NE neuromodulatory

systems proposed by Yu and Dayan (2005), we framed the task as an attentional task where

the goal (even, odd, low or high value) had to be learned from experience (goal identity) and

the goal might be noisy and rewarded with some probability (goal validity). In the second
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experiment, we generalized our model to an action-based attention scenario, where “eat”,

“work-on-computer”, “read”, and “say-hi” were goal actions and the robot needed to attend

to and retrieve objects that corresponded to the action.

3.2 Methods

We modified the c-EB neural network model to attend to different goals. Section 3.2.1

describes how we tested the ability of the network to increase attention to different goals and

digits for the noisy MNIST-pair experiment. Section 3.2.2 introduces our neuromodulatory

learning system to predict unknown and uncertain goals based on experiences, still using the

noisy MNIST-pair experiment as an example. Section 3.2.3 describes how our method was

generalized to demonstrate goal-driven perception in a human support robot.

3.2.1 Network Architecture

Figure 3.1 shows our bottom-up classification process and our top-down attentional search

process. In the forward pass, the input layer received a pair of 28×28-pixel noisy MNIST

digits and thus had 28× 28× 2 = 1568 neurons (LeCun et al., 1998). To test the network’s

ability to filter out distractions, noise that was randomly set between 0 and 0.7 was added

to normalized pixel values (between 0 and 1) of the original MNIST digits. The final pixel

values were then normalized again between 0 and 1.

Following the input layer were two sequential fully connected hidden layers with 800 and

600 neurons, respectively. Next, there were two parallel fully connected hidden layers, each

with 400 neurons. All neurons in these layers implemented a Rectified Linear Unit (ReLU)

as the activation function (Nair and Hinton, 2010). Each of the two parallel hidden layers

led to the output in one goal class (parity/magnitude) along with the digit output. For each
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Input Layer 
in the fwd pass

or Bottom Layer for c-EB 
in the bwd pass

(28*28*2 Neurons)

Hidden Layer 1
(800 Neurons)

Hidden Layer 2
(600 Neurons)

Digit Output
(10*2

Neurons)
[Train: mean
of Output_0
and Output_1] 
[Test: Either
Output_0 or
Output_1]

Even/Odd Output
(2*2 Neurons)

c-EB

Forward Training

ReLU(fully
connected)

ReLU(fully
connected)

Low/High Output
(2*2 Neurons)

Even/Odd-goal-directed c-EB

Parallel Hidden
Layers 3 and 4

(both 400 Neurons)

ReLU(fully
connected)

ReLU(fully
connected)

fully
connected

fully
connected

fully
connected

fully
connected

Digit Output_0
(10*2 Neurons)

Digit Output_1
(10*2 Neurons)

Forward Test
Forward Test on Even/Odd Goal

Low/High-goal-directed c-EB

Forward Test on Low/High Goal

Output Layer in the fwd pass
or Top Layer for c-EB in the bwd pass

Figure 3.1: Network setup for our bottom-up classification process and our top-down atten-
tional search process, with a pair of noisy MNIST digits as the input data in the forward
pass.

55



(left/right) side of the input image, after the third hidden layer, there were two parity (an

even and an odd) output neurons and ten digit output neurons, which contributed to the

parity/digit prediction using winner-take-all (WTA) on the activation probability of each

parity/digit output neuron. Similarly the magnitude/digit prediction was obtained after the

fourth hidden layer for each side of the input image. During training, the final digit output

took the average of the digit output generated from the two parallel hidden layers. During

testing, the final digit prediction was the digit output generated from one of the two parallel

hidden layers, depending on the cued goal class.

In our top-down attentional search process (see backward arrows in Figure 3.1), one of the

four goals (even, odd, low, and high) was selected, which excited the corresponding goal

neuron for each of the two digits in the image and inhibited all the other goal neurons at

the top layer of the backward pass (i.e., the output layer of the forward pass). The weights

were backpropagated from the top layer to one of the parallel hidden layers below to excite

the neurons corresponding to the goal (see dashed arrows from the top layer to parallel

hidden layers 3 and 4 in Figure 3.1). Then the weights at the top layer were converted from

excitatory to inhibitory in order to create a mask (note that the weights were originally

non-negative). This inhibitory mask was used in an additional backpropagation from the

top layer to the parallel hidden layer below corresponding to the goal. The result of a

subtraction between the two backpropagations was a contrastive signal (Zhang et al., 2018).

This contrastive signal was then used to perform regular EB over the remaining layers, which

finally generated the probability of each given pixel in the input layer for exciting the cued

goal neurons. In addition to exciting the goal neurons and inhibiting non-goal neurons,

the contrastive signal canceled out common winner neurons. Such a contrastive extension

of the backpropagation could effectively ignore noisy distractors and lead to more accurate

attention focus on the goal (Zhang et al., 2018).
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Modification of c-EB

Excitation Backprop (EB) was developed as a goal-driven attentional framework for a CNN

classifier based on a probabilistic winner-take-all (WTA) process (Zhang et al., 2018). It

could visualize the features at each layer in the hierarchy that were relevant to a given output

neuron. An important extension of EB was to have contrastive Excitation Backprop (c-

EB), which discriminated the goal pixels from distractors by cancelling out common winner

neurons for different goals and amplifying discriminative neurons for the target goal (Zhang

et al., 2018).

The EB mechanism kept non-negative weights between activation neurons and used these

excitatory connections to transmit top-down signals. The top-down relevance of a neuron an

in the layer Ll was defined by its probability of being chosen as a layer-wise winner, which

was called the Marginal Winning Probability (MWP) P (an) (Zhang et al., 2018):

P (an) =
∑

am∈(L0,L1,...,Ll−1)

(P (an|am) · P (am)) , (3.1)

where am denoted each parent neuron in the preceding layer(s). The winner neurons were re-

cursively sampled in the top-down direction according to the conditional winning probability

P (an|am) (Zhang et al., 2018):

P (an|am) =


ân · wnm∑

n:wnm≥0 (ân · wnm)
if wnm ≥ 0,

0 otherwise,

(3.2)

where wnm was the weight between a parent neuron am and one child neuron an, and ân

denoted a non-negative activation response.

For c-EB, the contrastive signals were transmitted in the top-down fashion to obtain highly

distriminative attention maps (i.e., contrastive MWP maps) in the target layer (i.e., the
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bottom layer in Figure 3.1). Extending from Equation 3.1, Zhang et al. (2018) defined the

contrastive MWP (c-MWP) of the target layer Ll as

A− A = P0 · (P1 − P1) · P1 · ... · Pl−1, (3.3)

where A represented the MWP, A was the dual MWP for the contrastive units, P0 was the

signal from the guessed goal, P1 was the conditional probability of the inhibition mask from

the top layer. The weights for the inhibition mask were the negation of the original weights

from the top layer. Therefore, the threshold condition for P1 was the reverse of that for P1

in Equation 3.2.

We extended the PyTorch (Paszke et al., 2017) implementation of c-EB (Greydanus, 2018),

whereas the original code for c-EB (Zhang et al., 2018) was written in Caffe (Jia et al., 2014).

Different from their implementation, our network included different goal classes labeled for

each of the two noisy MNIST digits. In addition, the c-EB was processed through one of

the two parallel hidden layers immediately below the top layer in the backward pass of our

network.

The system increased attention to the digit corresponding to the selected goal and decreased

attention to the distractor digit. One goal class attended to the digit based on its parity

(i.e., either odd or even), whereas the other goal class attended to the digit based on its

magnitude (i.e., low values between 0 and 4 inclusively or high values between 5 and 9

inclusively). This resulted in two goals within each goal class. After supervised training on

noisy pairs generated from the MNIST training dataset, c-EB was applied to the top-down

attentional process on the test pairs and driven by one of the four goals to excite only the

pixels relevant to the goal digit.

Figure 3.2 shows the two noisy test pairs and their c-EB generated attention maps according

to each goal. c-EB driven by a goal went through the backward pass and excited the pixel
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Figure 3.2: Two example test pairs of noisy MNIST digits and their c-EB highlighted results.
The two digits in each test pair had the opposite goals both in the parity (even/odd) goal
class and in the magnitude (low/high) goal class. These restrictions were not applied to the
training pairs during the experiments.

neurons only related to the goal digit. On the irrelevant digit side, most pixel neurons were

inhibited instead. Furthermore, background noise on both sides were ignored. Therefore, the

goal digits and goal identity neurons could all be predicted correctly with high certainty in

the end of the forward pass in these examples. However, even if two goal identities targeted

the same goal digit, their highlighted pixels in c-EB visualization were not all the same. It

is reasonable because our model had different output heads for the different goal classes.

With the first noisy test pair of “5” and “4” in Figure 3.2 as an example, if an even goal

was selected, then both even goal neurons in the left and right digit sides were activated and

all other goal neurons were inhibited in the top layer of the backward pass. After the c-EB

process that sent contrastive signals through the third hidden layer and added them up for

normal EB via the second and first hidden layers to reach the bottom layer (see Figure 3.1),

pixels related to the digit “4” were highlighted, whereas pixels related to the distractor digit

“5” and the background noise were inhibited.
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Training and Testing Process

The training process consisted of incremental learning on noisy MNIST pairs. The original

MNIST dataset was split into 60000 digit images for training and 10000 digit images for

testing (LeCun et al., 1998). At each training step, 256 pairs of noisy MNIST digits were

randomly selected and modified from the original MNIST training set. Every 200 training

steps, 2000 noisy MNIST pairs, randomly selected and modified from the original MNIST

test set, were used for validation to evaluate the current training progress. The training

process stopped after 4400 steps, when the validation accuracy was the highest. Therefore,

a total of 1,126,400 noisy MNIST pairs were used for training. The following test process

consisted of 10000 pairs randomly selected and modified from the original MNIST test set.

Given the sizes of the original MNIST training and test sets, there must be digit overlap

within some training pairs or within some test pairs. However, there was no digit overlap

between training and test. The two digits in each training pair could have the same or

opposite parity (even/odd) and the same or opposite magnitude (low/high), whereas those

in each test pair all had the opposite parity and the opposite high and low values.

During training, a log-softmax function, followed by a negative log likelihood function, was

applied after the forward pass to the neurons in the output layers that represented a digit,

even parity, odd parity, low value, or high value. Then the sum of loss was used to calculate

the gradient for each parameter in the model. At the end of each training step, a parameter

update was performed based on the current gradient calculated using the Adam optimizer

(Kingma and Ba, 2014) with a learning rate of 0.001.

During testing, c-EB drove goal-driven perception by increasing the activity of input neurons

corresponding to the goal digit and masking out the neurons corresponding to the distractor

digit. In the top layer of our network (Figures 3.1 and 3.4), either two out of the four parity

neurons or two out of the four magnitude neurons were activated, depending on the selected
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Figure 3.3: Two more example test pairs of noisy MNIST digits and their c-EB highlighted
results. The two digits in each test pair had the same goals both in the parity (even/odd)
goal class and in the magnitude (low/high) goal class. The tested condition with same parity
and/or high/low was not included in later experiments.

goal. For example, if an “odd” goal was selected, the odd neuron for the left digit and the

odd neuron for the right digit were both excited, whereas all other goal neurons for both

digits were inhibited. This resulted in c-EB in the backward pass to increase attention to

this goal and its corresponding digit, and to ignore all other goals (see blue arrows for a

parity goal and red arrows for a magnitude goal in Figure 3.1). Such c-EB generated input,

with pixels highlighted for the goal digit (Figure 3.2), then went through the forward pass

again in a way similar to the training process. However, according to the goal identity, only

the parallel hidden layer related to the target goal class was used to predict the goal digit.

If a test pair had same parity or same high or low values (see Figure 3.3), an existing goal

would drive c-EB to highlight pixels from both digits. As expected, it shows that this

ambiguous situation would cause confusion in the attention system. We assume it would

cause confusion and random selection by a human faced with the same stimuli. Thus, we

did not present same parity or same high or low values as test pairs.

After this training and testing procedure, the parameters of the fully trained model were

fixed for the neuromodulated goal-driven perception experiments.
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Figure 3.4: The neuromodulated procedure of making digit prediction from a guessed goal
for the noisy MNIST-pair experiment.

3.2.2 Neuromodulated Goal-driven Perception

The overall neuromodulated procedure of goal-driven perception is shown in Figure 3.4. As

described in Section 3.2.1, the network was trained with pairs of noisy MNIST digits to learn

the digits and their parity (even/odd-value) and magnitude (low/high-value) goal classes.

Then it was tested by selecting one of the even, odd, low-value, and high-value goals to trigger

c-EB in the backward pass and generate an attention map, which further led to prediction

of the digit and goal in the succeeding forward pass. After the robustness of c-EB prediction

was verified, we applied ACh and NE neuromodulatory neurons to track the expected and

unexpected uncertainties respectively and guess the goal for each trial. The guessed goal was

applied to the top layer for c-EB as the intended goal for the current test pair. The guessed

goal and predicted digit were compared with the true goal and true goal-related digit. The

prediction was used to modify the neuromodulatory activities for the next trial, as will be

described in Section 3.2.2.
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ACh and NE Neuromodulation

For goal-driven perception, the network must select a goal when they are uncertain and

unknown a priori. Similar to a model of the ACh and NE neuromodulatory systems proposed

by Yu and Dayan (2005), the goal target (even, odd, low, or high value) was rewarded with

a probability (goal validity), but that goal would change periodically (goal identity). ACh

neurons tracked expected uncertainties of the potential goals. NE neurons tracked unexpected

uncertainties, and responded phasicially when a goal identity change is detected. When the

NE system responded phasically, it caused a network reset by re-initializing the ACh and

NE neural activities, which allowed rapid adaptation under novel conditions.

Algorithm 1 shows the logic of our ACh and NE neuromodulatory model. There were K = 4

ACh neurons, each neuron corresponding to a goal (i.e., even, odd, low, or high value), and

one NE neuron. One of the four attentional goal tasks was selected as the major goal for

each goal switch. The true goal identity in each trial was set to either the major goal or the

minor goal according to the goal validity (see Section 3.2.2 for details). The true goal digit

was obtained from the labels of the test pair by using the true goal identity. The activities

of ACh neurons were input to a softmax function for goal selection:

p(goal)i =
exp(β · AChi)∑K
j=1 exp(β · AChj)

for i = 1, 2, ..., K, (3.4)

where β is the temperature governing exploration versus exploitation and p(goal)i is the

probability of selecting goal i. This guessed goal activated two neurons related to the goal

in the top layer of our network architecture (Figures 3.1, 3.4), which directed c-EB in the

backward pass to activate the goal-relevant pixels in the test pair and then predicted the

digit in the forward pass. If the prediction was correct (which means that the guessed goal

identity matched the true goal identity and the predicted digit matched the true goal digit),

the ACh level corresponding to the guessed goal (i.e., AChg) increased and the NE level

63



decreased; the opposite would happen otherwise:

(AChg)t =


min(chcorrect(AChg)t−1, ch

max) if correct,

max(chwrong(AChg)t−1, ch
min) otherwise,

(3.5)

NEt =


max(necorrect ·NEt−1, ne

min) if correct,

min(newrong ·NEt−1, ne
max) otherwise,

(3.6)

where [chmin, chmax] and [nemin, nemax] were ranges for ACh and NE levels. chcorrect and

newrong must be set within [1.0, 2.0), and chwrong and necorrect must be within (0, 1.0]. If the

NE level was above a threshold θreset, ACh and NE activities were reset to baseline levels

(Yu and Dayan, 2005):

θreset =

(∑K
i=1AChi

)
/K

0.5 +
(∑K

i=1AChi

)
/K

. (3.7)

Our settings for constant parameters of the neuromodulation process are listed in Algorithm

1. However, there was a wide range of parameter values that could be used to produce stable

results. The randomness in Algorithm 1 followed a uniform distribution within the ranges

specified, except that selecting guessGoal required the softmax distribution.

Goal Selection

We added an online neuromodulatory model (Figure 3.4 and Algorithm 1) to the head of

the network architecture in the backward pass to regulate goal selection automatically. In

these experiments, the goal (with goal identities of even, odd, low, or high value) had to be

learned from experience. It might be noisy and rewarded with some probability (i.e., goal
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Table 3.1: Relationship Between Goal Actions and Object Labels.

Action Role Objects in Role

eat obj banana, apple, sandwich, orange, donut,
carrot, broccoli, hot dog, pizza, cake

instr fork, knife, spoon, bowl, cup
work instr laptop, tv, mouse, keyboard
read obj book

instr laptop, cell phone
say-hi obj person

validity).

Automatic goal selection was tested in 10 runs to measure the average performance. In each

run, one of the four attentional goal tasks was randomly selected as the major goal, which

stayed the same every 400±30 trials for 10 switches. The minor goal identity came from the

same goal class as the major goal identity. For example, if the major goal was “high”, then

the minor goal became “low” in the same magnitude goal class; or if the major goal was

“even”, then the minor goal became “odd” in the same parity magnitude class. The true

goal identity was set to either the major goal or the minor goal randomly according to the

validity distribution per trial. The true goal digit was obtained from the labels of the test

pair of noisy MNIST digits using the true goal identity.

The goal validity values (i.e., 0.99, 0.85, and 0.70) were chosen to correspond with Yu and

Dayan (2005). The major goal validity was randomly chosen among the three values each

time the major goal identity got switched in a run. The minor goal validity was (1− major

goal validity).

3.2.3 Action-Based Attention in a Robot Experiment

To test whether the goal-driven perception model could generalize to a more real-world

application, we tested the model in an action-based attention task on the Toyota Human
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Figure 3.5: The neuromodulated procedure of making object prediction from a guessed goal
action for the indoor robot experiment.

Figure 3.6: The top-down attentional search process for a guessed action “eat” based on
three different real indoor views to select the highest attention region for bottom-up object
prediction.
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Figure 3.7: The test scenario for the indoor robot experiment.

Support Robot (HSR). For the second experiment, we had four goal actions (i.e., “eat”,

“work-on-computer”, “read”, “say-hi”) that were associated with images of objects seen by

the HSR. Given a desired action, the task for the HSR was to guess the action and direct

attention to the object in the scene that could achieve that action. For example, the action

“eat” might result in attention to an “apple”.

For object classification, we used the Microsoft COCO dataset (Lin et al., 2014) to train a

GoogLeNet (Szegedy et al., 2015) via the Caffe framework (Jia et al., 2014) instead of the

MNIST-pair network shown in Figure 3.1. An advantage of the COCO dataset was it used

segmentation to localize individual object instances in the image, which was more accurate

and more helpful for top-down attention than using bounding boxes.

For each run of this experiment, desired actions were randomly switched every 50 trials for

10 switches. In each trial, each image from three capture angles within an indoor scene was

loaded as the input to the pretrained bottom-up model and went through a forward pass with

the output layer specified as “loss3/classifier” in Caffe. The number of output prediction

classes was set to 80, same as the number of object labels available for the COCO dataset

(Lin et al., 2014). Then the c-EB method was applied for the top-down attention process.

As in the MNIST-pair experiment, the NE-ACh neuromodulation process with softmax on

the ACh activities was applied for goal (action) selection (see Figure 3.5).
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Table 3.1 linked the guessed action with all related objects – from 80 COCO labels regardless

of their semantic roles – which might or might not exist in the test scenario. Those activated

object neurons in the top layer drove the c-EB through the second top layer “pool5/7x7 s1”

and then normal EB to the bottom layer “pool3/3x3 s2” to generate attention maps related

to this guessed goal action. The notation “pool5/7x7 s1” referred to a pooling layer with a

kernel size of 7x7 and stride of 1. Only the highest attention region (with normalized atten-

tional strength above the threshold of 0.1) corresponding to one of the three real captures

maintained its original pixel values, whereas all other parts of the image became black (see

Figure 3.6). This attention-modulated image became the input to the forward pass of the

network and generated object prediction via the top layer. Three conditions needed to be

satisfied to generate a overall correct match for that trial: (1) the guessed action matched the

true action; (2) the predicted object matched the real object in the scene; (3) the predicted

object was associated with the guessed action.

The test environment for this experiment was a classroom scenario as shown in Figure 3.7.

The test agent was a Toyota HSR (Yamamoto et al., 2018). During each trial, the HSR

first guessed an action using the activity of the neuromodulatory neurons and linked it with

objects using the semantic network. The HSR then moved from a starting point to the center

of the testing scenario, where it captured three images from different view angles using the

RGB-D camera. After the attention network predicted an object as described above, the HSR

moved towards the object and either picked up the object if it was grabbable (e.g., apple) or

pointed at the object with its arm (e.g., laptop). At the trial end, the HSR would present the

object to a user who would respond with a “YES” if it the object matched his/her desired

action or otherwise with a “NO”. This feedback would be used by the neuromodulatory

model to adjust the activity levels of both the NE neuron and the ACh neuron related to

the current guessed action before guessing the action for the next trial.
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Table 3.2: Prediction for 10,000 test pairs of noisy MNIST digits.

Goal % Correct % Correct
Task Digit Goal

Prediction Prediction

Even 92.03 99.50
Odd 91.15 99.75
Low 95.39 99.54
High 87.46 98.22

3.3 Results

Section 3.3.1 shows how the network attends to correct goals and predicts the digits that

correspond to those goals. Section 3.3.2 demonstrates the ability of the neuromodulatory

head to learn goals based on its experience in uncertain domains. Section 3.3.3 shows the

necessity of having both NE and ACh neurons to correctly predict goals. Section 3.3.4

compares the performance of our method with two benchmarks. The experiments in these

sections are carried out with noisy MNIST pairs. Section 3.3.5 shows how our goal-driven

perception method generalizes to an action-based attention task with a physical robot.

3.3.1 Digit Prediction with c-EB and Noisy MNIST Pairs

The training process was carried out for 4,400 steps, including 256 noisy MNIST pairs

modified from the original MNIST training set per step. The prediction performance of the

fully trained model was tested on 10,000 pairs of noisy MNIST digits modified from the

original MNIST test set (LeCun et al., 1998). Table 3.2 shows the digit and goal prediction

results with c-EB driven by one of the four goal tasks (i.e., even, odd, low, or high value).

The goal was predicted along with the digit in the output layers for each forward pass. As

shown in Table 3.2, the model predicted the goal correctly over 99% of the time, mean-

ing that after the backward and forward pass the most active neuron predicting the goal
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matched the true goal. The model predicted the goal digit correctly over 90% of the time,

meaning that the most active digit neuron after the backward and forward pass matched

the expected digit based on the goal (see Table 3.2). This indicates that the goal tasks

were successfully understood by the c-EB process to highlight related pixels. Although the

statistics of the high-value goal task was slightly weaker than that of the other three goal

tasks, the performance was still robust overall.

In the next section, we show how this network can autonomously predict goals in uncertain

domains.

3.3.2 Goal-Driven Perception with Uncertainties

The robust digit and goal prediction results using c-EB (see Section 3.3.1) assured that the

network architecture could be applied to situations where goals uncertain and contexts are

unknown. Therefore, the next step was to test the reliability and flexibility of our proposed

neuromodulation model for predicting goals in a noisy, dynamic environment.

Figure 3.8 shows typical runs of our neuromodulated system for three major validity settings.

For each major validity of 0.99 (Figure 3.8a), 0.85 (Figure 3.8b), or 0.70 (Figure 3.8c). Within

each sub-figure (a), (b), or (c), the first subplot includes the true goals (labeled as “major

goal” and “minor goal”) and ACh-guessed goals (labeled as “guess”); the second and third

subplots show NE and ACh levels. Note that the ACh neuron corresponding to a major goal

quickly increased driving attention to the most likely goal, as well as suppressing attention to

distractors. In cases where the major goal validity was low, the ACh neuron corresponding

to the minor goal was also activated, resulting in more exploration and a higher chance of

guessing the minor goal. Interestingly, the prediction during exploration tended to remain

in the same goal class. When there was a change in the goal identity, the NE neuron quickly

recognized the change and responded with spike of activity. This caused the activities in the

70



Table 3.3: Average goal-driven perception performance on noisy MNIST pairs over 10 runs
for each of the four goal validity settings. The first three rows of data correspond with the
first experiment of one major goal validity. The last row relates to the second experiment
of randomly switched goal validity. p valid means the major goal validity, and (1− p valid)
means the minor goal validity. In each run, the major goal was randomly picked every
400±30 trials for 10 switches. The minor goal was selected from the same goal class. The β
value for the softmax function (see Equation 3.4) was set to 0.7.

Major Minor % Correct % Correct % Incorrect % Incorrect Lag
Goal Goal Major Minor ACh Softmax c-EB Digit Length

Validity Validity Goal Goal Goal Guessing Prediction (trials)

0.99 0.01 86.1 0.0 7.8 6.1 21
0.85 0.15 73.0 0.3 20.4 6.3 29
0.70 0.30 57.9 1.5 34.3 6.3 48

p valid 1-p valid 75.1 0.7 18.0 6.2 30

goal prediction network to reset, and a short period of exploration before the system found

the new goal identity. Lower major goal validity led to longer exploration, especially after a

goal identity switch, as well as more frequent NE bursts.

We also ran experiments where the goal validity could change during the run. Figure 3.9

shows the performance of a typical run with random switching among three major goal

validity options, 0.99, 0.85, and 0.70. Similar to Figure 3.8, the system in this setting still

focused more on the major goal. With lower major goal validity (i.e., when the major

goal appeared less frequently, see 0.70 in Figure 3.9), the NE neuron fired phasically more

frequently; meanwhile, the activity level of the major goal’s ACh neuron oscillated more

frequently with larger amplitude, giving higher potential for the minor goal’s ACh neuron to

fire at a low level. Because both the goal validity and goal identity changed during a run, the

exploration period lasted longer with a lower major goal validity of 0.85 or 0.70. However,

this also led to higher prediction accuracy of the minor goal.

Table 3.3 shows the performance of goal and digit prediction on the noisy MNIST pairs over

10 runs for each validity setting. The third and fourth columns refer to the percent of trials

at which the goal digit prediction was correct. The fifth column refers to the percentage
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Figure 3.8: Visualization of goal-driven perception performance on noisy MNIST pairs with
the major goal validity chosen from (a) 0.99, (b) 0.85, or (c) 0.70. The major goal identity
was randomly picked every 400±30 trials for 10 switches in a run. The minor goal was the
other goal in the same class of the major goal. For example, if the major goal “odd” had
validity of 0.70, the minor goal “even” had validity of 0.30 until the next major goal switch.
For each sub-figure, the top subplot shows guessed goal identities (in yellow) and true goal
identities (either major goals in red or minor goals in blue); the middle and bottom subplots
show NE and ACh levels. A softmax function (see Equation 3.4, with β = 0.7) was applied
to ACh levels for goal guessing. See text for details.
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Figure 3.9: Visualization of goal-driven perception performance on noisy MNIST pairs with
the major goal validity randomly switching among 0.99, 0.85, and 0.70. All other settings
were the same as shown in Figure 3.8.

of incorrect goal guessing based on the ACh softmax distribution (see Equation 3.4, with

β = 0.7). The sixth column refers to the percent of incorrect digit predictions with c-EB

driven by the guessed goal, when the ACh-guessed goal already matched the true goal. The

seventh column refers to lag length of choosing the correct goals, which was computed as the

number of trials between the first trial of a major goal switch and when the network started

consistently making correct goal prediction 80% of the time over the last 10 trials.) The first

three rows provide average statistics for runs at which a single goal validity was tested (see

also Figure 3.8), and the last row corresponds with runs at which the goal validity could

change randomly among three options during a run (see also Figure 3.9).

3.3.3 Ablation Studies

We wanted to understand the effect of each neuromodulator on the network’s ability to select

goals. Therefore, we simulated ablation studies on ACh and/or NE neurons in a randomly

changing goal validity experiment. These ablations had drastic effects on performance (see
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Table 3.4: Average goal-driven perception performance on noisy MNIST pairs over 10 runs
for each of the four ablation conditions on the NE and/or ACh neuron(s). In each run, the
major goal was randomly picked among the four goal options every 400±30 trials for 10
switches. For each major goal switch, the major goal validity was selected randomly among
0.99, 0.85, and 0.70. The minor goal was selected from the same goal class. The β value for
the softmax function (see Equation 3.4) was set to 0.7.

Ablated % Correct % Correct % Incorrect % Incorrect Lag
Neuron(s) Major Minor ACh Softmax c-EB Digit Length

Goal Goal Goal Guessing Prediction (trials)

None 75.1 0.7 18.0 6.2 30
NE 70.8 1.1 21.6 6.5 54

ACh 19.8 2.9 70.9 6.4 400
NE & ACh 19.9 2.9 70.9 6.3 400

Table 3.4 and Figure 3.10) compared to the complete network. With ablation of the NE

neuron (see Figure 3.10a), there was no scheme for network reset. The ACh neurons were

still able to track the major goal switches. However as time elapsed, it took longer for

the ACh activity level corresponding to the major goal to rise significantly and properly

after goal switches, as measured by the lag length. With ablation of the ACh neurons (see

Figure 3.10b), the goal guessing became random. The firing rate of the NE neuron increased

rapidly in the beginning and stayed at extremely high values afterwards. With ablation of

both ACh and NE neurons (see Figure 3.10c), there was no firing activity of either the NE or

ACh neuron(s), and thus the goal guessing was random. These ablation studies demonstrate

the necessity of having one system track the expected uncertainties (ACh) of goals and

another respond appropriately when the goal distribution changes (NE).

3.3.4 Goal Selection Method Comparison

In the neuromodulated procedure of our model (see Figure 3.4), the goal was selected by

calculating the softmax distribution based on the activities of the four ACh neurons (see

Equation 3.4, with β = 0.7). The softmax function was important for raising the chance of
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Figure 3.10: Visualization of goal-driven perception performance on noisy MNIST pairs with
the major goal validity randomly switching among 0.99, 0.85, and 0.70, after (a) NE ablation,
(b) ACh ablation, and (c) NE and ACh ablation. All other settings were the same as shown
in Figures 3.8 and 3.9.
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choosing the minor goal when the major goal validity was low (e.g., 70%). We compared

softmax to a winner-take-all (WTA) selection method, which still used the neuromodulatory

head.

In addition, we compared the neuromodulatory head to another benchmark, which we call

“random-or-fixed”. In the “random-or-fixed” benchmark, a predicted goal was randomly

selected until it matched the true goal. Then the goal selection was fixed until a mismatch

appeared. In other words, whether the guessed goal was random or stayed the same depended

on whether there was a mismatch or match in the goal guessing process of the previous trial.

Table 3.5 shows the performance comparison among neuromodulated softmax (shown in

Figure 3.9), neuromodulated WTA (shown in Figure 3.11), and “random-or-fixed” (shown in

Figure 3.12) on the noisy MNIST pairs. All three methods had similar lag lengths. Although

the “random-or-fixed” method generated the highest percentage of minor goal matches, it

was mostly caused by random guesses among all four goals, which also lowered the percentage

of major goal matches. Therefore, the neuromodulation process was important for quickly

following the desired goal class without hesitating over all four goals after each major goal

switch. For neuromodulated softmax and neuromodulated WTA, their overall accuracy of

major and minor goal guessing was quite similar. However, comparing Figure 3.9 for softmax

with Figure 3.11 for WTA, we observed that the softmax function allowed higher chances

of selecting the minor goal during the intervals at which the major goal validity was low,

whereas the WTA function would like to select the major goal regardless of its true validity

and could cause a much longer lag when the major goal validity dropped.

3.3.5 Goal-Driven Perception on Robot

To demonstrate that our model could generalize to a more practical application than MNIST

digits, we tested our model on a human support robot that had to guess an action with the
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Table 3.5: Average goal-driven perception performance on noisy MNIST pairs over 10 runs
among neuromodulated softmax (with β = 0.7), neuromodulated WTA, and “random-or-
fixed”. In each run, the major goal was randomly picked among the four goal options every
400±30 trials for 10 switches. For each major goal switch, the major goal validity was
selected randomly among 0.99, 0.85, and 0.70. The minor goal was selected from the same
goal class.

% Correct % Correct % Incorrect % Incorrect Lag
Goal-Guessing Method Major Minor Goal c-EB Digit Length

Goal Goal Guessing Prediction (trials)

Neuromodulated Softmax 75.1 0.7 18.0 6.2 30
Neuromodulated WTA 76.4 0.8 16.5 6.3 24
“Random-Or-Fixed” 63.1 1.7 29.0 6.2 23

Figure 3.11: Visualization of goal-driven perception performance on noisy MNIST pairs with
the major goal validity randomly switching among 0.99, 0.85, and 0.70. In this neuromodu-
lated benchmark, WTA replaced the softmax distribution in our model for cholinergic goal
guessing.
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Figure 3.12: Visualization of goal-driven perception performance on noisy MNIST pairs with
the major goal validity randomly switching among 0.99, 0.85, and 0.70. In this “random-or-
fixed” benchmark, whether the guessed goal was random or stayed the same depended on
whether there was a mismatch or match in the goal guessing process of the previous trial.

Figure 3.13: Visualization of action-based goal-driven perception performance on different
angles of robot views in an indoor scenario. The true goal action was randomly picked every
50 trials for 10 switches in a run. A softmax function (see Equation 3.4, with β = 10) was
applied to ACh levels for action guessing. See text for details.
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neuromodulatory head, selectively attend to an object that corresponds to that action, and

retrieve the object. The methods for this scenario were described in Section 3.2.3.

Figure 3.13 shows the performance of a typical run of the action-based goal-driven percep-

tion. Its neuromodulation process was similar to Algorithm 1 for the noisy MNIST-pair

experiment. Changes included using input images from three view angles of the HSR’s cam-

era, a fixed goal (action) validity of 1, and several parameter value adjustments (i.e., β = 10,

trial interval = 50, trial range = 0, necorrect = 0.75, newrong = 1.15, chcorrect = 1.35,

chwrong = 0.95). The average goal selection error for 5 runs was 23.8%, which was higher

than the noisy MNIST-pair experiment (see Table 3.3) because of shortened trial interval

for each goal (action) switch. The average c-EB object prediction incorrectness was 30.6%.

The average lag length was 13 trials. Uncertainties in each trial were addressed by possible

object location switch, possible object removal and/or introduction, possible multi-instances

of the same object(s), and slight view angle adjustment, in addition to possible true action

switch (i.e., every 50 trials, not given to the agent). A complete trial with HSR in the testing

room can be seen in the YouTube video (https://youtu.be/DUy-0fDZEvY).

3.4 Discussion

3.4.1 Main Findings

In this chapter, we showed that a neuromodulated goal-driven perception model, which com-

bines ideas from neuroscience with goal-driven perception in machine learning and artificial

neural networks, could track context and flexibly shift attention to intended goals. Among

many top-down attentional systems, we adapted c-EB (Zhang et al., 2018) as part of our

model because of its similarities to how the ACh neuromodulatory system both increments

attention to a goal and decrements attention to a distractor (Oros et al., 2014; Baxter and
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Chiba, 1999). Goals are often unknown and need to be discovered. The c-EB algorithm was

modified to support multiple goals. After training, the biologically inspired algorithm could

rapidly learn the context without supervision, flexibly apply attention to the appropriate

goal, and rapidly detect and re-adapt to context changes.

Neural Implementation of Uncertainty Tracking

Yu and Dayan (2005) proposed a Bayesian model of neuromodulation in which the ACh

system tracked expected uncertainty and the NE system tracked unexpected uncertainty.

The present chapter advances this work in two ways to support goal-driven perception: 1)

The Bayesian model was recast as a neural model to make it compatible with neural networks.

The neuromodulators were implemented as a neural network layer to drive attention toward

a goal digit and divert attention away from distractors. 2) A neural network reset was

implemented to rapidly re-adapt when a goal changes.

Neuroanatomical studies show the basal forebrain, which contains ACh neurons, has topo-

graphical connections specific to stimulus modalities and values (Zaborszky, 2002). There-

fore, different ACh neurons tracked the expected uncertainties of different potential goals. In

a dynamic situation, the goal identity can change unexpectedly. Empirical evidence suggests

that the NE system detects such changes and generates a “reset” signal to discard prior ex-

pectations when these expectations are violated (Bouret and Sara, 2005; Grella et al., 2019).

In our experiments, the NE system rapidly recognized a change in the goal contingency, and

drove a reset of ACh and NE activities. This caused the neural network to quickly explore

new goals. It should be noted that the “reset” does not erase the learned object categories

(e.g., digit parity and magnitude). Instead, it clears the prior likelihood of potential goals,

and results in a rapid re-adaptation to the new goal distribution.

In the real world, goals are often uncertain and unknown. In our noisy MNIST-pair experi-
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ment, the goal validity (i.e., probability of a goal being rewarded) ranged from 0.99 to 0.85

to 0.70, and the system had to respond by either choosing the most likely goal or explor-

ing alternative goals. Furthermore, the experimental design had a hierarchy of goals. For

example, the goal would be to attend to the parity goal class and the sub-goal might be to

reward odd digits 70% of the time and even digits 30% of the time. Interestingly, the neural

network would often stay within a goal class (i.e., to choose parity and not magnitude).

In the robot action-based attention experiment, the objects linked with a predicted goal

action might or might not exist in the views and may probably be at different locations.

The adapted c-EB attention mechanism could pay significantly higher attention to existing

objects. Selecting the highest attention region helped further with object localization and

prediction. In both the MNIST-pair and real-scenario experiments, the unexpected major

goal (action) switch after some trials could be quickly caught by the network within an

acceptable lag.

Exploration and Uncertainty Seeking

Exploring options, rather than always choosing the most likely goal, is known as probability

matching behavior (Wozny et al., 2010). Similar to the results presented here, humans tend

to underselect the most rewarding goal (Craig et al., 2016). Such behavior may be due to

feature exploration, as subjects test hypotheses by switching between the features before

deciding upon their most rewarding goal. In rodent studies, it has been shown that rats will

seek uncertainty, and that this uncertainty seeking is governed by the ACh system (Naude

et al., 2016). These uncertainty seeking strategies that appear in natural systems may be

advantageous for artificial systems that are deployed in dynamic environments.
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3.4.2 Related Work

Top-down task-driven attention is an important mechanism for efficient visual search in hu-

mans and artificial systems (Baluch and Itti, 2011). Many computational models of attention

have been proposed and implemented to either explain top-down attention or develop an ap-

plication inspired by these mechanisms (Tsotsos et al., 2015; Tanner and Itti, 2017, 2019).

Of particular interest are attentional systems that can leverage the power of CNNs. In these

cases attentional information can propagate backwards, highlighting the features of a given

goal (Zhang et al., 2018; Zhou et al., 2016). Similar to the effect of the ACh system to incre-

ment attention to a goal and decrement attention to distractors (Baxter and Chiba, 1999),

Zhang et al. (2018) proposed an Excitation Backprop (EB) mechanism with a contrastive

top-down signal to enhance the perception of goal features. Similarly, Zhou et al. (2016)

proposed a technique called Class Activation Mapping (CAM) for identifying regions in an

attention map. Selvaraju et al. (2017) proposed Gradient-weighted Class Activation Map-

ping (Grad-CAM) to highlight regions of interest and generate visual explanations. Their

model could be applied to any CNN with no re-training. Similarly, our proposed model

can work with any CNN. Moreover, our model replaces the Winner-Take-All mechanism

or rigid probabilistic methods, with a flexible and adaptable layer based on neurobiological

neuromodulation.

Intrinsic rewards and curiosity seeking have similarities to the exploration due to uncertainty

demonstrated by our model. These intrinsic reward systems typically are rewarded for ex-

ploring infrequently observed states (Burda et al., 2018; Achiam and Sastry, 2017; Pathak

et al., 2017). Whereas the model introduced here selects goals based on the expected un-

certainty of stimuli. In future work, it may be of interest to combine intrinsic rewards with

uncertainty seeking.
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Uniqueness of Our Model

Our model is unique compared to existing attention models, which only focus on highlighting

predefined (and pre-trained) goal objects in test images (Cao et al., 2015; Cho et al., 2015),

without any ability to deal with unpredictable switching and validity of goals. c-EB, which

we adapted in our work, has been shown to achieve top-down attention competitively and

robustly (Zhang et al., 2018). Moreover, it is similar to how the ACh neuromodulatory

system both increments attention to a goal and decrements attention to a distractor (Oros

et al., 2014; Baxter and Chiba, 1999). The neuromodulatory layer on top of a top-down

attentional network demonstrates a means toward goal-driven perception where the system

can autonomously learn which objects to attend to and which objects to filter out in the

noisy, dynamic setting.

In addition to the unique aspects of our neuromodulatory model, its robustness was ascer-

tained via comparisons with neuromodulated WTA and “random-or-fixed” benchmarks. We

also used ablation studies to show the necessity of having both ACh and NE neuromodula-

tors to track the expected and unexpected uncertainties of goals and respond appropriately

when the goal distribution changes. Further, generalization was ascertained via the HSR

implementation in a real indoor scenario.

3.4.3 Future Directions

Handling New Goals

In the present work, the goal classes were known, and the system guessed the appropriate

goal given a goal identity and goal validity. However, the system might need to adapt to new

goals or new goal classes. Adding multiple heads to the output layer of the network is one

way this could be handled. This would not require retraining the stimuli (e.g., digits or real
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objects), but some additional training for the new goal classes. However, the architecture

might be more scalable with a single head that learns the goals online without any a priori

assumptions. Similar to the present model, these unknown goals would initially be guessed.

After sufficient reward feedback, the model would associate different goals with different

reward likelihoods. The introduction of the ACh/NE neuromodulation should make the

goal search fast and flexible. This will be explored in future iterations of our work.

Different Attentional Mechanisms

The choice of c-EB for a top-down attentional mechanism was motivated by its similarity to

ACh system and its affect on top-down attention. However, as mentioned above, we believe

that the proposed system could also work with other state-of-the-art attentional mecha-

nisms, including the CAM (Zhou et al., 2016) and its more general variation Grad-CAM

(Selvaraju et al., 2017). As long as the neural network structure can support an additional

neuromodulation layer, and there is some means to flow goal information from the top to

lower layers, our neuromodulatory goal-driven perception system should be compatible.

Application for Artificial Intelligence (AI)

We had shown the compatibility of the adapted c-EB attention mechanism with the Microsoft

COCO dataset and an indoor scenario. Our model is applicable in broader AI scenarios.

If a system (e.g., a self-driving car, a human support robot, etc.) faces many known and

unknown task structures, our neuromodulatory goal-driven architecture should help it to

choose tasks wisely regarding seen/unseen goals in a complex scenario.
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Inspiration for Cognitive Neuroscience

Our experimental design could be replicated in biological studies with non-human primates

or rodents to investigate relevant neuromodulatory signals in the brain. We predict that

NE neurons would increase phasic activity after a goal switch. Corbetta et al. (2008) have

shown that the locus coeruleus/norepinephrine system redirects attention from one object

to another, and switches attention between networks. Attention is strongly modulated by

acetylcholine through its projections to sensory cortex (Sarter et al., 2005). Cholinergic

activation has been shown to increase goal-driven attention in V1 by increasing the firing

rate of neurons coding the attended objects (Goard and Dan, 2009; Herrero et al., 2008). It

would be of interest to test whether ACh activity to V1 becomes somewhat random after

phasic NE responses and if ACh modulation varies depending on goal validity.

The robot experiments highlight a somewhat unexplored aspect of attention. In addition

to feature or spatial attention, attention is deployed to intended actions (for a review, see

Atkinson et al. (2018)). Recent results suggest that attention is required for both action

planning and movement outcome monitoring (Mahon et al., 2018). In our robot experiments,

an intended action led to attention to an object associated with the desired action. Such

an attentional network could have benefits for human-robot interaction, especially when the

intended actions can change due to context.

3.5 Conclusions

In this chapter, we introduced a model of ACh and NE neuromodulation to perform goal-

driven perception. The proposed network architecture discovers goals using online learning,

and highlights the stimulus features corresponding to the goal. Moreover, the proposed

system rapidly adapts when goal contingencies change. This neurobiologically inspired model
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can be applied to other problem domains and other top-down attentional networks.
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Algorithm 1 ACh and NE Neuromodulation Process

Constant Input: β = 0.7, num switches = 10,
K = 4, trial interval = 400, trial range = 30,
nereset = 0.25, nemin = 0.25, nemax = 1.0,
chreset = 1.0, chmin = 0, chmax = 10.0,
necorrect = 0.70, newrong = 1.10,
chcorrect = 1.40, chwrong = 0.90
Other Input: all test pairs, validity options
Initialize AChi to chreset for i = 1, 2, ..., K.
Initialize NE to nereset.
Set minLen to (trial interval − trial range).
Set maxLen to (trial interval + trial range).
for q = 1 to num switches do

Randomly set majorGoal from 0, 1, ..., K-1.
Set minorGoal from the same goal class.
Randomly set validity from validity options.
Randomly set trialLen within [minLen,maxLen].
for t = 1 to trialLen do

Pick a new test pair from all pairs.
Randomly set r between [0, 1.0).
if r < validity then

Set trueGoal to majorGoal.
else

Set trueGoal to minorGoal.
end if
Select guessGoal from Softmax (see Eqn. 3.4).
Get trueDigit from test pair with trueGoal.
Apply guessGoal to the top layer.
Obtain map via c-EB (see Eqn. 3.3).
Get predDigit via fwd pass with map.
Compare predDigit with trueDigit.
Compare trueGoal with guessGoal.
Update ACh and NE (see Eqn. 3.5 and Eqn. 3.6).
Compute the reset threshold θreset (see Eqn. 3.7.)
if NE > θreset then

Reset AChi to chreset for i = 1, 2, ..., K.
Reset NE to nereset.

end if
end for

end for
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Chapter 4

Terrain Classification with a

Reservoir-Based Network of Spiking

Neurons

(This chapter is reprinted, with permission, from Zou, Xinyun, Tiffany Hwu, Jeffrey Krich-

mar, and Emre Neftci. (2020a). Terrain Classification with a Reservoir-Based Network

of Spiking Neurons. Proceedings of 2020 IEEE International Symposium on Circuits and

Systems (ISCAS 2020) (pp. 1-5). ©2020 IEEE.)

4.1 Introduction

Outdoor robots face many dynamic challenges that are uncommon in indoor scenarios. In

particular, uneven terrain and a wide variety of surfaces found outdoors can lead to unpre-

dictability. Different terrain types have an effect on robot movement and power usage. For

any outdoor autonomous navigation system, the robot should have long-term path planning
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strategies that consider trade-offs for traversing smooth surfaces, which may result in longer

routes, versus direct routes that traverse over rough terrain, which may take more energy

(Hwu et al., 2017a). Moreover, field robots need to operate over long periods of time far from

power sources. In these cases, accurate terrain classification may be beneficial for navigation.

Neuromorphic architectures have potential for controlling outdoor robotics under tight power

constraints. Unlike the traditional Von Neumann architecture, a neuromorphic architecture

consumes less power due to massive parallelism and event-driven processing (Mead, 1990;

Indiveri et al., 2011). Spiking neural networks (SNN) can take advantage of neuromorphic

hardware, because each neuron computes its state independently, making the SNN parallel,

and spikes are asynchronous events.

Navigation requires the effective use of a map. SLAM algorithms (Durrant-Whyte and

Bailey, 2006) and GPS can provide solutions for navigation (Hwu et al., 2017b). However,

these maps do not include terrain information, which is critical for planning trajectories.

Therefore, accurate terrain classification can be an important addition to generate cost maps

and help with real-time localization (Weszka et al., 1976; Manduchi et al., 2005; Lalonde

et al., 2006; Mahadhir et al., 2014; Walas, 2015).

To address these challenges, this chapter introduces a reservoir-based spiking neural net-

work (r-SNN) for terrain classification, which could be further integrated with other spiking

navigation strategies to create a neuromorphic system for outdoor autonomous navigation.
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4.2 Methods

4.2.1 Android Smartphone Solution

Android-Based Robotics Platform

Experiments were conducted using an Android-Based Robotics (ABR) Platform (see Figure

4.1). The GPS, accelerometer, gyroscope and visual information were directly obtained from

an Android smartphone. A motor controller and IOIO-OTG microcontroller were mounted

on the back of the platform. Communication between the phone and the robot platform

was achieved through a Bluetooth connection with the IOIO-OTG. For robot specifications,

see (Oros and Krichmar, 2013). The testing environment was a 19-acre botanical garden

which contained different terrain types (i.e., grass, dirt, and road), different inclinations,

and different obstacles (e.g., trees, benches, pedestrians, etc.).

Terrain Data Collection

The ABR robot was programmed to run at a constant speed over grass, dirt, and road

terrains, labeled as 0, 1, 2 respectively, in the botanical garden. The data collection process

Figure 4.1: A six-wheel Android-based ground robot (ABR) used for terrain classification
experiments.
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Figure 4.2: a) A sample trial with the original 3D linear accelerometer and gyroscope signals.
b) Sample camera frames from the smartphone during data collection, with a resolution of
176×144 pixels. Each frame was cropped to keep only the bottom-center 5×5 pixels as
terrain visual information.

Figure 4.3: The terrain classification process with the r-SNN method.

91



was conducted under different lighting conditions during the daytime for 42 trials. Each

trial lasted between 1 and 5 minutes. The 3-dimensional gyroscope and linear accelerometer

data were collected at 100 Hz via the smartphone (see Figure 4.2a), and camera frames were

captured at 20 Hz with a resolution of 176×144 pixels (see Figure 4.2b).

4.2.2 Reservoir-based Spiking Neural Network

Since our terrain classification algorithm might include both image and sensor input data,

sequence memory and feature selection for both data types could be challenging for a feed-

forward network. However, a recurrent neural network (RNN), where connections between

internal neurons form a directed cycle, could use its internal state as the memory to process

arbitrary sequences of inputs. RNNs have been used for a variety of applications, such

as motion prediction, health monitoring, speech recognition, and time series forecasting

(Kashyap et al., 2018; Das et al., 2018; Graves et al., 2013; Hewamalage et al., 2019). This

recurrence can be tractably harnessed using a reservoir-based approach, such as Liquid State

Machines (LSM) (Maass et al., 2002). In the LSM, the recurrent weights in the RNN are

randomly generated and only the RNN readout is trained.

We developed a reservoir-based SNN (abbreviated to “r-SNN”) method for terrain classifica-

tion (see Figure 4.3 for the flow diagram). The readout from the recurrent layer (referred to

here as RNN) was trained using a surrogate gradient approach that can learn using precise

spike times in the LSM (Neftci et al., 2019). The ability of the r-SNN to classify terrains is

compared with two conventional approaches, the Support Vector Machine (SVM) and the

3-layer (3L) logistic regression.
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Spiking Neuron Model

The spiking neuron model for the recurrent and supervised layers consisted of leaky integrate-

and-fire (LIF) neurons with current-based synaptic input. For each postsynaptic neuron i

at each time step t, if it was not within the refractory period, the postsynaptic membrane

potential (Ui) was updated via the differential equation

dUi

dt
=
U rest − Ui

τmem
+ Isyni (t), (4.1)

where U rest was the resting membrane potential, τmem was the membrane time constant,

and Isyni (t) was the synaptic input current. Isyni (t) jumped by summation of the weight wij

upon spike arrival from each presynaptic neuron j (i.e., when Sj(t) = 1), with the equation

shown below

d

dt
Isyni (t) = −I

syn
i (t)

τ syn
+
∑
j∈pre

wijSj(t). (4.2)

When Ui reached the threshold θmem and the neuron i was not in the refractory period, a

spike was triggered (i.e., Si(t) = 1). The neuron then remained refractory for nref time

steps.

Supervised Learning Rule

Inspired by SuperSpike (Zenke and Ganguli, 2018), during the supervised training process

in which weight adaptation was requested (see Section 4.2.5), the synaptic weight wij was

updated at each time step according to a nonlinear Hebbian rule with individual presynaptic

traces εj,

∆wij = η · [εj ⊗ (Ŝi − σ(Ui))] · σ(Ui) · (1− σ(Ui)), (4.3)
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where η was the learning rate, Ŝi was the target postsynaptic spiking behavior, and ε was

a linear filter on the presynaptic spike activities. The portion (Ŝi − σ(Ui)) represented the

error signal. The presynaptic traces ε evolved according to

dεj
dt

= − εj
τ syn

+ Sj(t). (4.4)

With a small synaptic time constant τ syn, this first-order filter was sufficient to evaluate the

temporal convolution with the error signal in the expression of the presynaptic traces.

4.2.3 Spike Generation of Input Data for the Reservoir

To convert gyroscope and linear accelerometer sensor signals from the smartphone into spike

trains, we used the same spike train encoding as in the the Dynamic Vision Sensor (DVS)

(Yang et al., 2015). Six pairs of “plus” and “minus” spike trains for 3D signals of both

sensors were converted into ON and OFF events, resulting in a total of 12 neurons for the

sensor input data. For each axis of each sensor every time step, if the increase or decrease

amount in the signal was above a threshold (i.e., 2 for the linear accelerometer and 0.5 for

the gyroscope), an ON or OFF spike was generated, respectively.

Image data were converted from RGB (red, green, blue) to HSV (hue, saturation, value)

and normalized between 0 and 1 for each channel. Each frame was cropped to keep only the

bottom-center 5×5 pixels, which was enough to show the current terrain visual information

without interference from distractors in the scene (e.g., other terrain types, trees, benches,

pedestrians, or buildings). Each HSV channel was averaged across all 25 pixels in the image.

There were 11 neurons for each HSV channel (i.e., a total of 33 neurons). Each neuron’s

activity was based on a Gaussian tuning curve. The means of the Gaussians were spread

evenly 0 to 1 with σ = 0.5. The maximum activity for each tuning curve was α = 1/(σ
√

2π).

If activity was above 0.4α, the neuron spiked.
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The frequencies of the sensor signals and camera frames were different (i.e., 100 Hz and 20

Hz respectively). Therefore when both sensor signals and image frame were fed into the

recurrent layer, the same image frame would be repeated for each time step until the next

frame was collected.

4.2.4 Recurrent Layer for Terrain Feature Extraction

The gyroscope signals, the linear accelerometer signals, and the cropped screenshots were

encoded directly into spikes, as described above. These input spikes were fed into the recur-

rent layer. The sensor and image neurons were fully connected with the recurrent neurons.

The recurrent neurons were also fully connected with one another. For this recurrent layer,

the synaptic input current was a summation of both input weights and recurrent weights

when spikes were received. The readout spikes from the recurrent layer were further fed into

the supervised layer for terrain classification (see Section 4.2.5).

There were Nin = 70 recurrent neurons, which received Next input spike trains from the

sensors and/or images (i.e., Next = 12, 33, 45 respectively). Both input and recurrent

weights were randomly drawn from a Gaussian distribution with zero mean. The standard

deviation was 0.5/Next for input weights or 0.05/Nin for the recurrent weights, which was

small enough to prevent bias on certain connections while assuring randomness. Therefore

recurrent neurons were both excitatory and inhibitory. In Equation 4.1, U rest and the initial

Ui were both 0, whereas τmem was tuned to 66.7. In Equation 4.2, the initial Isyni (t) was

0, whereas τ syn was tuned to 1. Furthermore, θmem was (1 − γ), with γ as the threshold

Gaussian noise with mean at 0 and a standard deviation of 0.1. nref was zero, meaning there

was no refractory period.

95



4.2.5 Supervised Layer for Terrain Classification

The supervised layer took as input the 70 readout spike trains from the recurrent neurons and

generated spike activities for the three terrain prediction output neurons that represented

grass, dirt, and road. The output weights were updated every time step (see Equation 4.3)

for 100 training epochs and remained constant for testing. During the training process, the

target postsynaptic spiking behavior was obtained from three spikes trains that represented

actual terrain information at each time step. For the supervised layer, the synaptic input

current evolved with summation of output weights upon spike arrival. The postsynaptic

neurons were the three terrain prediction neurons. A terrain class was predicted by the

output neuron with the highest activity at that time step.

Before the first training epoch, the output weights were all initialized as 0.001/Nin = 1e−5

so that all the readout spikes could excite the three terrain output neurons. In Equation

4.1, U rest was 0 and τmem was tuned to 100, but Ui was initialized as -0.5 for each epoch.

In Equations 4.2 and 4.4, τ syn was tuned to 10, whereas Isyni (t = 0) was initialized as zero

at the beginning of each training epoch and of testing. θmem and nref were the same as in

Section 4.2.4. In Equation 4.3, η was tuned to 9e−9. The sigmoid function was tuned to

σ(x) = 1/(1 + exp [−3.44 · (x− 0.975)]).

4.3 Results

4.3.1 Terrain Prediction Results for the r-SNN

The r-SNN method achieved over 90% of testing accuracy in predicting different terrain

types, with either linear accelerometer and gyroscope sensors, or image inputs, or both

sensor and image inputs (see Table 4.1). Figures 4.4 and 4.5 show results using both images
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and sensors for an 8-minute testing period. From the 70 recurrent neurons (see Figure 4.4),

the supervised layer generated output spikes for terrain classification. After 100 training

epochs, the test prediction consistently matched the true terrain with little delay or noise

(see Figure 4.5).

Figure 4.4: Readout spikes from all the recurrent neurons using both image and sensor (the
linear accelerometer and gyroscope) inputs. The horizontal axis labels partial testing period
of 8 min, with sensor signals collected at 100 Hz and camera frames collected at 20 Hz.
These 70 readout spike trains were further fed into the supervised testing part for terrain
classification.

4.3.2 Optimal Settings for Two Conventional Approaches

For the SVM model and the 3L logistic regression model, we split the original sensor and

image signals into data chunks with a time window of 500 milliseconds. The optimal per-

formance on the SVM model was achieved by using the SVC package in the Scikit-learn

library with the RBF kernel (Pedregosa et al., 2011). The SVM applied the nine features:

(1) number of sign changes, (2) number of traverses over mean, (3) standard deviation, (4)

autocorrelation at lag k=1, (5) maximum, (6) minimum, (7) Euclidean norm, (8) mean, and

(9) median. Its best test accuracy was achieved after 430 training epochs.

The optimal performance on the 3L logistic regression model required the following five
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Figure 4.5: Supervised layer output for both images and sensors (the linear accelerometer
and gyroscope) for an 8-minute testing period. The upper subplot shows true terrain types
and final test predictions using adapted output weights after 100 training epochs. The lower
subplot shows the test prediction spikes using adapted output weights after each training
epoch.

features: (1) 20-percentile, (2) 50-percentile, (3) 80-percentile, (4) mean, (5) standard de-

viation. Its best test accuracy was achieved after 520 training epochs by using the mean

squared error as the loss function, or after 820 training epochs with the cross-entropy loss

function.

4.3.3 Model Performance Comparison

For comparison among three approaches on terrain classification, we applied the standard

80/20 rule for training and testing. The input data were generated from linear accelerometer

and gyroscope sensor signals and/or cropped screenshots.

Table 4.1 shows the test error rates among three approaches under three input conditions.

Using both image and sensor data instead of using one of them improved the accuracy and

robustness of each model. The r-SNN method was more accurate than SVM and 3L logistic

regression. The r-SNN may be the most efficient considering its usage of only 70 recurrent
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neurons, adaptation of only the output weights, and no need of splitting data into time

chunks.

The r-SNN is compatible with low-power neuromorphic architectures, whose energy cost is

often dominated by synaptic operations (SynOps), akin to multiply accumulate operations

(MACs) in digital computers for artificial networks (Merolla et al., 2014; Neftci et al., 2016).

For our entire training and test process with terrain classified every 500 milliseconds, the

r-SNN would require roughly 109 SynOps on a neuromorphic hardware, which is equal to or

smaller than the operations taken by the 3L logistic regression and the SVM (i.e., roughly

109 ∼ 1010 MACs for each) on a standard computer. Based on the fact that a SynOp

consumes many fold less energy than a MAC (Merolla et al., 2014; Davies et al., 2018; Neftci

et al., 2017), the r-SNN is a promising approach to reduce power consumption.

Table 4.1: Test error rates on three models for terrain classification.

r-SNN SVM 3L Logistic Regression
mse xent

Images only 5.2% 13.9% 11.5% 16.2%
Sensors only 8.1% 14.5% 13.7% 59.6%
Images + Sensors 3.5% 8.8% 10.2% 34.3%

4.4 Conclusion

Unlike feed-forward networks, the recurrent layer processes both the sensor and image input

data to extract abstract terrain features at each time step, with no need of remembering

data chunks within a time window or carefully selecting feature components. The reservoir

computing paradigm lowers the computational cost during supervised training, because only

the output weights are plastic (Maass et al., 2002). Moreover, having spiking neurons in

the reservoir allows the model to be event-driven and highly parallel. Further performance
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gains can be achieved by implementing the present algorithm on neuromorphic hardware

that utilizes spike-based strategies.

The r-SNN has several advantages for classification tasks such as discriminating terrains.

First, it had the highest test prediction accuracy compared to the SVM and 3L logistic

regression, regardless of whether images or sensors were the input (see Table 4.1). Secondly, it

had the lowest computational cost due to a small reservoir of spiking neurons and adaptation

of only the output weights. Third, compared to the difficulty in selecting the terrain features

and time window length for the two conventional approaches, the r-SNN reservoir can easily

integrate the image and/or sensor data and generate an abstract representation of terrain

features.

The trained r-SNN model is compatible with a ground robot for real-time terrain classifica-

tion. The r-SNN can be used to augment a SLAM or GPS map with metadata pertaining

to the cost of traversal. For example, the r-SNN can supplement a road following algorithm

to signal when the robot veers off the road. The different terrains can be used as a cost

function, based on terrain smoothness for path planning (Hwu et al., 2017b). Finally, the

r-SNN presented here can be used in to develop a complete neuromorphic robot navigation

system capable of operating over long durations with minimal power consumption (Hwu

et al., 2017a; Kreiser et al., 2018).
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Chapter 5

Future Directions

5.1 Better Understanding of Animal Behavior and Brain

Activities

The evolved RNN in our cognitive map project (Zou et al., 2021) has similar characteristics

to the hippocampus. We have demonstrated that a robot controlled by an evolved RNN

could solve a spatial and working memory task where the robot needed to navigate a maze

and remember not to repeat paths it had taken previously. The RNN populational activity

carried spatial information sufficient to localize the robot (i.e., spatial memory) as well as a

prospective code of where the robot intent to go next (i.e., working memory and planning).

Similar to CA1, the RNN received speed, direction, and visual information as input, and

combined these types of sensory information to construct a journey-dependent place code

(Taube et al., 1990; Sargolini et al., 2006; Kropff et al., 2015; O’Keefe, 1976; Hafting et al.,

2005; Sun et al., 2019; Potvin et al., 2007; Frost et al., 2020). Moreover, the robotic behavior

was dependent on RNN dynamics rather than a sensor-to-motor mapping (Zou et al., 2021).

We are also exploring “latent learning”, one of Tolman’s cognitive map ideas (Tolman,
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1948), to understand more about the spatial and working memory encoding in this biological

plausible network. Current results suggest that the agent, which did not display its learning

effect during maze exploration until there were reward stimuli, actually performs better than

the other agent which received reward stimuli since the beginning.

For the next step, we would like to utilize the major benefits of our existing network but

modify the paradigm to co-evolve multiple brain regions (e.g., CA1, SUB, and PFC or RSC)

so that we can solve a more comprehensive navigational task. Although this plan would

operate in a much larger scale than our existing system, it is decomposable. We can start

with only co-evolving the connections between CA1 and SUB while freezing the PFC or

RSC component, and then freeze another and co-evolve the rest. We might use the regular

RNN as we did before or try with the LSTM to better link experiences over a long duration

by memorizing the most important information. By doing so, we expect to evolve not only

place coding and head direction but also more abstract representation of location, direction,

distance, and speed in grid cell activities. These cell types may occur in one or multiple

evolved regions. By comparing their activities with biological data and theories, we might

be able to replicate or even further explain the neural activities in multiple regions of an

animal’s brain.

Furthermore, regarding the neuromodulatory systems in the brain, we have explored a few

typical ones but still can find a large space to improve. We utilized the cholinergic (ACh)

and noradrenergic (NE) systems for expected and unexpected uncertainties in our goal-

driven perception project (Zou et al., 2020b). We also used the serotonin (5-HT) system

for patience control in an outdoor waypoint navigation task (Xing et al., 2020). However,

our existing neuromodulatory settings are not flexible enough to face dynamic situations.

In the first problem, the number of ACh neurons was preset for a fixed number of goals.

We should modify the system to judge if a goal is familiar or completely novel and assign

a new ACh neuron every time an unknown goal appears. In the second problem, the 5-HT
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activity level could be only chosen between the two fixed modes for a more assertive or

more patient behavior. We should regulate the 5-HT activity level in a continuous manner

to build a more intelligent navigational control scheme. The models of neuromodulation

could be further refined in the future by either collaborating closely with a neurobiological

research group that looks into detection and analysis of neuromodulatory signals in the rat’s

or primate’s brain.

5.2 Utilization of Detailed Simulators

Many experiments are computationally expensive or relatively more difficult to directly apply

on physical robots. In such cases, some robotic simulators can provide efficient system

control and signal processing without loss of much accuracy or realism in the simulated

robot design. Because of the accurate representation of many popular robot models in

the Webots simulator, we could always run much faster than real-time (e.g., ×30 faster

on average on our Alienware desktop with one Nvidia GeForce GTX 1080 Ti) to evolve

for enough generations before applying a well-performed genotype to the RNN controller for

real-world robotic navigation tasks. The power of using a detailed simulator, such as Webots,

is that the trained controller should transfer to the real robot with minimal adjustments. By

having experience with an intensive cognitive map project in Webots, it is also easier for us

to experiment with unfamiliar robot models in the same or altered virtual environment. For

example, before using the Toyota Human Support Robot (HSR) for path planning in our

actual building, we can first try different navigational strategies with the PR2 robot model

in a virtual indoor setting.

Regarding self-driving in the CARLA simulator, we are working in an RL paradigm to test

our neuromodulated attention and task-driven perception with perturbation-based saliency

maps. There are currently two tasks, aggressive driving and careful driving, but we can
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experiment on others (e.g., point-to-point navigation, reactive strategies for construction

zones or different weather conditions, etc.) that utilize more digital assets in this simulator.

5.3 Robotic Assistance for Human Daily Life

In the real world, robotic assistance is very important for human daily life. Some people such

as the elderly, bed-bound patients, and those with visual impairments can often experience

inconvenience or even incapabilities of moving to a desired location, grabbing certain stuff, or

achieving some other daily tasks. Some children with heart conditions or immune deficiency

have the potential to learn, but cannot be near other children, and thus are homebound from

school. Even for normal individuals, we may be busy with the current working or study

items, but also want to complete some side tasks at the same time to improve efficiency. In

all these cases, a human support robot that is fully autonomous or with minimal requirement

of manual control can represent the customer to resolve those daily requests.

Our neuromodulated goal-driven perception model can be viewed as a possible approach

when designing such robotic system. As shown in our action-based attention setting, the

Toyota HSR was able to guess the action (i.e., “eat”, “work-on-computer”, “read”, “say-

hi”) from the neuromodulatory neural network and direct attention to the object in the

scene that could achieve that action (Zou et al., 2020b). In the future, we can further

integrate this model with our navigational strategies (Zou et al., 2020a, 2021; Hwu et al.,

2017a, 2020) to achieve more complicated robotic tasks. For example, the robot can not only

pay attention to neuromodulated goal-related objects but also efficiently navigate through a

complex structure to categorize different room schema. Its working memory can help it to

remember what has done and what to do next.
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5.4 Autonomous Navigation and Path Planning

Autonomous robot navigation requires integration between long-term path planning strate-

gies and reactive strategies (e.g., road following, terrain classification, and obstacle avoid-

ance). We have implemented a few of them via our Android Based Robot (ABR) (Zou et al.,

2020a; Hwu et al., 2017b,a; Xing et al., 2020). Improvements can be done in the following

aspects: (1) Our reservoir-based SNN for terrain classification (Zou et al., 2020a) can serve

for real-time update of the cost map for path planning in a dynamic or unfamiliar outdoor

environment. (2) Our neuromodulated attention model (Zou et al., 2020b) can be adapted

to focus on only important aspects in the front camera view regarding the current goal. (3)

We can evolve an RNN in a similar way to what we did in the cognitive map project (Zou

et al., 2021) to encode spatial memory (i.e., location, direction, and distance information)

and working memory (i.e., where has been visited and where to go next). (4) We may

also want to further explore the continuous regulation of multiple neuromodulators (e.g.,

acetylcholine, norepinephrine, dopamine, serotonin, etc.) for assessment of danger, reward,

novelty and regulation of patience, assertiveness, surprise. (5) Because the IOIO board used

to control our ABR is no longer supportive, we should plan future physical robot experiments

with ROS-based platforms (e.g., Jackal UGV, Toyota HSR, etc.). (6) For energy reduction,

we can apply our spike-based algorithms on a digital neuromorphic chip such as Intel Loihi

(Davies et al., 2018) and integrate it with a robot platform.

Furthermore, studies have shown that different people have varied navigational preferences to

reach the target destination from the same origin (Weisberg and Newcombe, 2016, 2018). We

can develop a multi-agent system that utilizes the benefits of such populational variability.

In the exploration (early) stage of a task (e.g., search-and-rescue), this strategy can improve

information gathering. In the exploitation (late) stage, these agents can efficiently solve

the task in a self-assembly manner with complex cooperation and functional specialization

(Dorigo et al., 2013; Ducatelle et al., 2011).
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Chapter 6

Conclusions

All my doctoral research projects involve neurorobotic investigation of various artificial net-

works inspired from neurobiology. In the opposite direction, they also lead to a qualitative

and quantitative explanation of real brain activities. For the cognitive map project, we

demonstrated that an evolved RNN, which linked the sensor values of a simulated robot

to its motor wheel output, could replicate the rat’s neural activities in a maze-navigation

task. The RNN population carried spatial information sufficient to localize robot in the

triple T-maze (i.e., spatial memory) and prospective predictive information of which path

robot intended on taking (i.e., working memory). Current results also suggest that latent

learning (i.e., learning without display until there is a motivation) does occur in our evolved

RNN. For the neuromodulated goal-driven perception project, our model was inspired by the

effects of cholinergic and noradrenergic neuromodulatory systems on attention and tracking

uncertainties. The Toyota Human Support Robot was able to guess the action from the neu-

romodulatory heads and direct attention to the object in the scene that could achieve that

action. For the terrain classification project, our reservoir-based SNN received spike inputs

from linear accelerometer, gyroscope, and camera signals collected by the Android Based

Robot. Only its output weights were adapted to generate accurate prediction from three
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terrain types in a botanical garden. It is also compatible with neuromorphic hardware which

can significantly reduce energy cost with event-driven, parallel computing. What have been

discussed in my dissertation are all adaptable to the UCI CARL lab’s future projects and

my future career. Furthermore, they can all be improved and contribute to the autonomous

lifelong learning AI, in a way more similar to biological intelligence, to help with daily-life

assistance, navigation, planning, and other practical applications.
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