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Abstract

On Cooperation, Coordination, and Virtual Economies

by

Matthew Allen Baumer

Virtual economies are growing as internet technology continues to advance. In Aggre-

gate Dynamics in a Large Virtual Economy: Prices and Real Activity in

Team Fortress 21, we analyze a large and complete set of transaction data from the

Team Fortress 2 (TF2) virtual economy, which was designed to allow for decentralized

barter as the sole exchange institution. A small subset of goods emerges endogenously

to act as media of exchange. Taking one of these money goods as numeraire, we gen-

erate daily prices for thousands of goods. We then generate macroeconomic indicators,

including nominal growth and in�ation. We �nd evidence of a particular sort of nominal

rigidity related to the circulation of multiple types of currency goods, and also �nd some

localized asset price bubbles associated with announcements by the game designers.

Continuing work with this complete set of transactions in Emergence of Net-

works and Market Institutions in a Large Virtual Economy2, we construct trader

and goods networks, and track them over time using metrics such as node strength, assor-

tativity, betweenness and closeness. The trading platform was designed to make barter

exchange as attractive as possible; money was not part of the design and all players were

1Coauthored with Curtis Kephart
2Coauthored with Curtis Kephard and Daniel Friedman
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created equal. Yet, within weeks, several speci�c goods emerged as media of exchange,

and various specialized traders appeared that facilitated exchange. Eventually trade

was predominantly money-mediated and market-makers played a major role. Our re-

sults illustrate how network analysis can capture the spontaneous emergence of economic

institutions by applying common conceptions of centrality to goods and traders.

The closing work is Minimum e�ort coordination in continuous time

- An experimental analysis with changing payo� structures3. The minimum

e�ort game is among the most studied coordination games because there exists no social

dilemma yet coordination failure has been commonly observed. We extend the mini-

mum e�ort game to continuous to test whether that is su�cient to induce high levels

of coordination. We �nd that continuous time is not always enough to induce e�cient

coordination in spite of decreased signaling costs and extensive information about the

decisions of other players. We �nally extend our model to examine the e�ects of �gradu-

alism" on coordination and �nd that they are still less e�cient compared to treatments

with a mild penalty parameter.

3Coauthored with Thomas Campbell and Maren Tonn
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Chapter 1

Aggregate Dynamics in a Large Virtual

Economy: Prices and Real Activity in

Team Fortress 2

Written with coauthor Curtis Kephart.

1.1 Introduction

The object of our study is the virtual economy of Team Fortress 2 (TF2)

developed and overseen by Valve Software. This economy and others like it hold great

potential for researchers: millions of users engaging in billions of economic transactions

involving thousands of di�erent types of goods; the game designers are near-omnipotent

social planners able to create and destroy goods and implement policy at will; and

they gather essentially complete micro data that enables precise construction of macro

2



variables. Our goal in this work is to develop a methodology of taking data in the form

of a bilateral barter exchange history that is tractable and can be used to de�ne familiar

notions from macroeconomics. We develop price time series for individual goods, and

using those we de�ned a price index, a measure of aggregate wealth, and measures of

in�ation. In this way, we hope to describe an environment that is perhaps alien to many

economists in such a way that the unfamiliar is familiar and that will inspire the study

of virtual economies by future researchers.

The TF2 economy has some features that are unusual, even for a virtual econ-

omy. There is no explicit currency good, and trading occurs exclusively through de-

centralized barter. Goods are homogeneous and of known quality (i.e. there are no

�lemons" as in Akerlof (1970)). Items are also durable and do not depreciate due to

�wear and tear" in the way that a physical item would. Another issue likely important

is that items are indivisible and can only be exchanged in discrete quantities (e.g. it is

impossible to trade half of a common currency item, the treasure key, as keys are not

capable of being split). There is also a signi�cant amount of activity that is due to a

very small number of very active individuals, which we will refer to as �high net worth

individuals" (HNWIs). These quirks will be leveraged in future papers to discuss the

issue of the spontaneous emergence of money, the emergence of trade intermediaries,

and information brokerage services by applying concepts from network theory to map

the interactions between di�erent types of user.

Our approach advances ideas presented in Castronova et al. (2009) and Cas-

tronova (2008) by implementing more rigorous economic indicators of aggregate eco-

3



nomic behavior in a large virtual economy. But there are also some crucial di�erences

in our work: Castronova studies Everquest II, a economy with explicit currency (gold

pieces) and in-game posted-price markets available to the users, thus trade in that en-

vironment would not be considered barter or decentralized in any sense. Our work also

more directly adheres to methodology commonly used in modern empirical economic

techniques.

Everquest II and TF2 are far from the only such examples of large virtual

worlds with economic activity: �Second Life" is an entire virtual world, complete with

in-game real estate, stores, jobs, and of course other people. �World of Warcraft" has

players �ght monsters and each other with the hope of saving the realm from the great

evil that threatens it and has players engaging in money-mediated trade with each other

to facilitate this end.

Even the NYSE has made its operations completely digital. Traders physically

standing on the trading �oor on Wall Street are in fact conducting all of their business

through computer servers located in Mahwah, New Jersey. Stock traders are now sim-

ilarly employed in the business of exchanging zeroes and ones in a computer database,

albeit with higher stakes and a much greater degree of sophistication. The NYSE and its

a�liated traders have had almost 200 years to develop their institutions; what commerce

in virtual economies will look like once it matures is an open question.

4



1.2 Research Questions

Q1: What is the trend in real growth per-capita and how can we explain

this trend?

Our primary goal is a basic macroeconomic characterization of this large vir-

tual economy. We will examine the dynamics of real growth and explain what are the

economic causes of dynamics by performing a decomposition of nominal growth into its

constituent components: growth of the price level, real growth, and population growth.

Q2: How does aggregate price level respond to macro-level shocks to a com-

ponent of the money supply?

An appealing consequence of the complete nature of our dataset is the ability

for us to pinpoint precisely what might be causing, for example, bouts of in�ation or

de�ation. An example of an exogenous shocks that we examine is a holiday promotional

events that led to an increase in the rate of creation of �scrap metals", which e�ectively is

a shock to the rate of growth of one component of money supply. But there are multiple

monetary goods, so we seek to answer what happens when only one of the moneys is

exposed to a shock.

Q3: How do markets for individual items respond to micro-level shocks?

A quirk of this environment is that there are numerous unexpected events that

can be taken as exogenous by market participants. For example, a number of cosmetic

items were suddenly �retired", meaning they were removed from the store and new

items of these types could no longer be acquired, �xing their number in the economy.

5



We might expect this intervention to increase prices � essentially a negative shock to

supply � but it is also possible that market participants' speculation �overshoots" the

new (post-announcement) fundamental value.

1.3 Environment and Data

Team Fortress 2 is a competitive multiplayer �rst-person-shooter game which

has two teams of typically 6 to 10 combatants vying for supremacy. Winning could result

from (depending on the game mode) killing enough of your opponents (but don't worry,

death is only temporary!), capturing a briefcase full of valuable intelligence from the

heart of your opponent's base and sneaking it back to your home base, or successfully

pushing a cart full of explosives to your opponents base to blow them up. One round

of the game typically takes ten to twenty minutes. Each player in a game chooses their

character class from nine di�erent options such as quick and agile Scout, the pro-social

Medic, or the deceptive Spy and try to do their best to help their team achieve glorious

victory.

1.3.1 Economic Environment

TF2 debuted in 2007 and initially followed the standard video game business

model: players pay for a copy and can play to their hearts' content. Then, in 2008, a new

dimension was added to the game: an item system which allowed users to collect virtual

goods which would customize the look and play style of their characters. As people

played, they would randomly receive item drops (and some special items could result

6
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Figure 1.1: Daily TF2 Players

Note: Count of unique players logged into TF2 over day. Seven day moving average applied.

from completing a list of in-game achievements), but there was no way to exchange items

with each other. A September 2010 update introduced two institutions which continue

on until today: a barter platform to exchange items with other players, and a virtual

store where items could be directly purchased from Valve using a credit card. Figure

1.1 displays the number of active players on a daily basis. In November 2013 alone,

there were more than 2.1 million di�erent users that spent some amount of time playing

TF2. At the end of July 2011, TF2 went �free-to-play" (F2P), removing the requirement

to purchase a game license before people are allowed to play, at which point the game

generated revenue only by selling in-game items on the o�cial store.

An item in the context of the Valve marketplace is any virtual good that can

be stored in a player's inventory (henceforth referred to as a �backpack") and be traded.

These may include TF2 items, installation licenses for other games on Valve's digital

7



distribution platform called Steam, and items from games other than TF2 on the Steam

platform. Backpacks have �nite space, but the capacity is large enough (300 item slots)

that most users are unlikely feel this constraint. As well, there are �backpack expanders"

that can be purchased from Valve for $.99 which loosen this constraint by granting an

additional 100 item slots.

The process of successfully completing a trade is as follows: Find a trading

partner through communication channels that can be internal or external to TF2, add

them to your contact list, request a trade session, arrange an exchange in that session

which makes both parties happy, and then execute the trade after multiple layers of

con�rmation. This is a quite inconvenient system for the market participants, but it

represents an opportunity for inquiring economists to study actual human behavior in

an environment in which we are theoretically well versed. It is important to point out

that the economy by construction was designed to support only barter.

Our sample consists of a full log of all transactions occurring between 9 August

2011 and 31 May 2013, a 661 day interval. There were more than 70 million barter

transactions, which averages out to more than 100,000 trades per day or over one trade

per second. This is the primary source of the data set which we will use to do the

following analysis. Across these 70 million individual transactions, over 300 million

virtual items changed hands. There were 4,267,832 unique traders participating in the

barter market, with the median trader conducting 4 exchanges, and with approximately

one third of traders exchanging ten or more items over the sample period. Some traders

participated in a large number of trades; the top ten accounts by trade count each

8
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Note: Due to length of tail, top 10% of traders are not visible. Includes trading of non-TF2 game items
and �Steam� game licenses. Does not include players who did not trade at least once.

conducted over 150,000 barter transactions.1

The Team Fortress 2 trading environment represents the largest dataset of a

barter exchange market that we are aware of. This is all the more remarkable since

barter markets today tend to emerge in environments which feature weak institutions

and consequently have meager record-keeping.

Items in TF2 have various types. There are consumables that are used in

conjunction with other items (e.g. a can of paint that can be used on a cosmetic that

changes the item's color palette, or a name tag that lets the player choose a custom

name for their item) and durables which can be used for as long as the owner wishes and

do not undergo any sort of depreciation as a result of use. All durables have associated
1User Privacy: In order to protect the privacy of individuals involved in the TF2 Economy, user

identities were were anonymized, timestamps masked, and any data containing unique user identi�ers
was held on Valve Corporation machines. Though the researchers were given access to the full log
of market transactions, all other company supplied metrics removed users who marked their Steam
backpacks to private.
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class restrictions; some durables can be equipped by any class and others can only be

equipped by one or a few classes.

In addition, each individual item is designated one of a number of di�erent

�qualities", which serve primarily to signal scarcity and characteristics of the item. These

include:

• Unique: counterintuitively, the most common item quality

• Unusual: adds a custom e�ect to the item such as �ames erupting from the item's

surface and are overall the rarest and most sought after quality

• Strange: track various statistics for the player when worn

There are a few other qualities of items, but they are generally simple variations of

unique.

Players can gain items from a number of di�erent sources: random drops from

playing (although there is a cap of how many items can be received per time period from

this source), direct purchase from the �Valve store" using real cash, special promotions

(e.g. holidays, as a reward for completing some achievement, or as an incentive for

buying another game), trading with other players, by opening crates which require a key

which is then consumed along with the crate, and through a crafting system introduced

in December of 2009.

From observation of the set of items most commonly used as a unit of account on

independent community-created trading posts, there is evidence that the widely accepted

commodity currencies include three denominations of �metals", as well as �keys", �Bill's
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Hats", and �Earbuds". The three di�erent types of metals in order of increasing value

are scrap, reclaimed, and re�ned metal. There exists an in-game system that allows

conversion of one denomination into another in either direction at the rate of 3 lower

valued to 1 of the next higher valued. For example, anyone can convert 3 scrap metals

into 1 reclaimed, then combine that reclaimed with 2 more reclaimed to create a re�ned,

then break that re�ned back into 3 reclaimed. There is no cost associated with these

conversions beyond the time it takes to perform the necessary mouse clicks.

Metals result from scrapping (deleting) weapons from your backpack and are

used in combination with other metals and items to create new items via prede�ned

recipes. Keys only originate from store purchases and may be used to open crates that

contain new items with various probabilities. Crates are analogous to ra�e tickets; if you

pay the cost of one key to open a crate, you will most likely get an item worth somewhat

less than the key but there is a small chance to get a very valuable item worth much

more.

Metals and keys are created and consumed regularly. Bill's Hats and Earbuds,

in contrast, entered the market as promotional items given away in the past and can

no longer be found or purchased directly from Valve. Their supply is bounded by the

current number in existence and slowly shrinks due to people quitting the game or

deleting them.

Once a player is in possession of an item, they will not lose it unless they either

trade, delete, or consume the item in the case of consumables. At the end of 2012,

the ability for players to sell items directly to other players for Valve store credit in an
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o�cial centralized posted-price marketplace was added. This store credit is denominated

in the player's local currency and is redeemable for TF2 items purchased from the Valve

store as well as the purchase of licenses for other games from Valve's digital distribution

platform called �Steam".

This demonstrates an important distinction between this economy and the

physical world; in order to produce a good there are raw materials that necessarily must

be consumed due to conservation of mass. But the production of an additional good

in this virtual economy requires no more than a additional line saved to a database.

There is still technically an upper bound on how many items can exist, but for practical

purposes this horizon is in�nite and the marginal cost of production of these goods is

zero for Valve.

Another distinction between this environment and physical economies comes

from the nature of consumption. Most real goods are actually consumed at some rate

and once they are used up, are no longer usable again. This does not happen in TF2.

Most consumption is of goods which are perfectly durable (with the exception of tools,

but tools either result in or modify durables). We can then think of the size of this

economy as being the aggregate value of the stock of durables and tools.

1.3.2 Data

Much of our data takes the form of logs documenting barter transactions of

virtual items between two users. These are lists of transactions linked to users and

the individual items associated with the trade. These data were supplied to us via
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a half terabyte sized relational database from which we generated observations in the

form of Table 1.1. Each row in the transactions log represents the movement of a

single item and is associated with a unique trade identi�er, two unique player identi�ers

(one for the sender of the item and one for the recipient), a unique item-level identi�er

which no two items share (AssetID), and an identi�er for the speci�c item type which

identical items would share with each other (EconAssetClass). For example, if a player

possesses two unique quality �Bill's Hats" that are otherwise identical, they would share

an EconAssetClass but also each will be associated with unique AssetID that represents

the speci�c individual item. When an item is traded its old AssetID is removed from the

originating user's inventory and a new one is created for the user receiving it. Thus, we

can track both individual items as well as individual classes of items, de�ned as items

which share a type and quality which makes them functionally identical.

Table 1.1: Example data snippet

TradeID PartyA PartyB Time AppID AssetID NewAssetID Origin EconAssetClass
1 1203 1876 1351926000 440 38818 41361 1 100
2 4256 172 1351927010 440 39425 41362 0 194921
2 4256 172 1351927010 440 41359 41363 1 158535
3 993 8384 1351928320 440 41339 41364 0 207

We present as an example Table 1.1. By looking at trade IDs, we can classify

each individual trade into categories such as simple monetary trades or simple barter

trades, as will be discussed in detail later. Party A and B allow us to track the trading

behavior of individual traders and the AssetID and NewAssetID let us track the move-

ments of individual items as they pass from user to user. Origin indicates which user
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is the recipient of the item transfer and EconAssetClass is the identi�er which lets us

determine the speci�c item type that was traded. In this fabricated example, the �rst

trade was a one-way exchange where a player with ID number 1876 gave an item to

another player with ID number 1203 and received nothing in return. The item that was

given away was of type 100. The next trade involved the player 4256 giving an item of

type 194921 to player 172 and receiving an item of type 158535 in exchange.

1.4 Estimating Prices from Barter Data

Our approach to generating prices for individual items is to de�ne one good

among the emergent currencies to be our numeraire, calculate spot exchange rates be-

tween the other currencies and our numeraire, and convert goods exchanged for those

alternative currencies into the corresponding value in terms of the numeraire. This ap-

proach gives us price estimates which allow for direct value comparisons between all

items. We also generate statistics for each item including daily turnover, number of

trades, and stocks.

The question of how to de�ne which goods are used as �currencies" and which

are not is not a trivial one, but this discussion is not something we shall delve into in this

paper.2 Since the di�erent metals can be converted costlessly into each other in either

direction at the rates mentioned previously, we convert all price observations involving

2In the following chapter, we will rigorously identify goods that appear to be the most �money-like"
based on their characteristics in the data, but for now we will simply take money goods for granted and
assign currency status to those items which are used as a unit of account in the major community-run
pricing resources.
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FX - Money for Money

SM - Simple Monetary 

SM.Keys - Simple 
Monetary with Keys

SM.Mix - Simple 
Monetary with Mix

Basket on Side 1 Basket on Side 2

SB - Simple Barter

OW - One-Way

EE - Everything Else

EE.SM - Simple 
Monetary in EE

EE - All other trades

All Money Goods
of any type or mix

All Money Goods
of any type or mix

All Key(s) Non Money Good(s)
of one type

All Money Goods
of any type or mix

Non Money Good(s)
of one type

All Money Goods
of any type or mix

Non Money Good(s)
of one type

Non Money Good(s)
of one type

Any Item(s) Empty

Money Goods
of any type or mix

Non Money 
Good(s)
of one type

Figure 1.3: List of Trade Classi�cation Types.

metal into the equivalent value in terms of re�ned metal.

From all of the goods used as commodity currencies, we choose keys to be

the numeraire. Keys were selected because they appear to have the most stable value,

likely due to the fact that their supply is allowed to expand as well as contract and the

price is anchored to the dollar since keys can only be produced in the economy through

direct purchases from the Valve store at a price of $2.49 per key. The other potential

currency goods either were introduced later on (Bill's Hats and Earbuds) or displayed

rapid expansion of supply (faster than the growth of population) causing instability in

estimated prices.
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We de�ne a simple monetary (SM) trade observation as an exchange involv-

ing a single non-currency item type and any basket of commodity currency items. In

order to use SM trades to estimate prices that are comparable to each other, prices need

to be measured in a common unit, which we refer to as �synthetic keys". A synthetic key

price is the equivalent key-value of a good perhaps exchanged for non-key money(s). We

calculate daily exchange rates between di�erent types of money items by looking at the

subset of trades that are money for money (FX), which are de�ned as trades which

have only money goods on both sides. See Figure 1.3 for a complete classi�cation of all

possible trade types.

By looking at these FX trades, we generate daily inter-money exchange rates as

follows. De�ne QKMit as the quantity of keys traded for metals on date t in transaction

i, where transaction i is among the subset of trades involving only metal on one side

and only keys on the other. QMK
it is likewise the quantity of metals (expressed in terms

of re�ned) traded for keys in the same exchange. A single metal/key exchange rate

observation is thus,

RKMi,t =
QKMi,t

QMK
i,t

The daily spot metal/key exchange rate is then the median of all i exchange rate

observations on date t (weighted by the number of keys in each observation), allowing

us to value any quantity of metal in terms of the going rate for keys at that moment.

By a similar process we derive daily synthetic key values of Bill's Hats and Earbuds.
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Over 910,000 transactions inform our FX sample (approximately 1,300 a day), of which

700,468 are metal-for-keys exchanges, 107,651 are Bill's Hat for some combination of

metals and keys, and 104,566 involve Earbuds for some metal-key combination. Spot

Bill's Hat and Earbuds exchange rates are based on trades involving keys and/or metals,

converting metals into synthetic keys at the day's metal/key exchange rate.

Using these spot exchange rates to express all SM trades in terms of keys, a

simple monetary price observation is as follows:

PSMit =
V S.Key
2,it − V S.Key

1,it

QSM1,it

Where V S.Key
2,it is the value, in terms of synthetic keys, of the all-money side of

a SM trade, V S.Key
1,it is the synthetic key value of any currency goods on the side of the

trade that involves a non-money item, and QSM1,it is the quantity of the non-money good

involved in the SM trade. V S.Key
1,it can be thought of as a cashier making change when a

larger than necessary denomination of currency is used to make a purchase.

Over 9 million trades provide SM price observations, or an average of approxi-

mately 14,000 per day. We aggregate our sample of asynchronous price observations on

time period and EconAssetClass (item type) to generate price time series for each indi-

vidual variety of item. Figure 1.4 demonstrates our price time series for an arbitrarily

chosen item, namely a stylish sombrero hat called �Old Guadalajara� which is wearable

only by the Pyro character class. Notice that there are discrete bands above and below

the price trend line; this is a consequence of the indivisibility of the currency goods.
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Figure 1.4: Price time series and meta data.

Note: A typical individual item price time series. Scatter points re�ect individual transactions and their
implied valuation. Multicolored lines re�ect various temporal aggregate methods deriving daily prices.

Prior to October 2012, the �rst of these bands are .1-.15 keys away from each other,

which would correspond to the value of one reclaimed metal at contemporary market

exchange rates.

An additional 8.5 million trades o�er Simple Barter (SB) item value observa-

tions as well � trades that involve only two non-money items. However, we only use SM

price observations and did not incorporate SB prices because they appear to have a more

complicated valuation method than SM trades. It appears that when traders meet, if

the buyer of the speci�c item does not or can not pay in currency items, they must pay

a premium with their non-money items, meaning the trade won't be balanced in terms

of value. This would simply introduce mean-zero noise to valuations if we assume that

all items are equally sought after by barter traders. But if some items were relatively

more sought after than other for barter exchange, there would be some item-speci�c
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�xed term that would need to be controlled for. We therefore choose to exclude SB

observations from our price estimations as we determined that the number of SM trades

is su�ciently large that our estimation process will be precise.

Our temporal aggregation approach assumes that each item at every moment

possesses an underlying �fundamental market valuation" based on its characteristics

and relevant market conditions. We then take each individual price observation as a

noisy signal for that item's contemporary fundamental value. That is, we assume SM

price observations are drawn from their true values, plus some error process. It is

worth mentioning that some items appear to have reasonably complex pro�les, such as

bimodality in price, which we take as further evidence of the economic signi�cance of

currency indivisibility.

To estimate the price of a given item on a given day, we start with a seven

day window centered on that day and collect all observed SM transactions involving

that item. We then clean out observations beyond the 1st and 9th price deciles as there

are outliers which, for thinly traded items, can lead to a large amount of volatility. To

estimate prices using a rolling average, we then apply a weighting function to these price

observations based on temporal distance from the day in question and widen the time

window beyond one day if necessary.3

A distinguishing characteristic of this environment is the constant addition of

new types of items that players can buy or �nd. This methodology involves taking

observed transactions around a given day and using those to estimate spot prices. This

3See Appendix 4.1.1 for more details regarding determination of appropriately wide time windows.
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approach is not ideal for pricing items soon after their introduction because there will

be relatively few observations. To mitigate this issue, we also develop a hedonic pricing

model that imputes prices of items based on observable characteristics and supplement

price estimates directly as above with estimates from this hedonic model for use in our

price index. This hedonic model will be discussed further in the next section.

1.5 Methods

1.5.1 Market Capitalization

We now turn to characterizing the size and growth rate of the TF2 virtual

economy. Due to the relative lack of production, GDP is not an appropriate measure for

this. We instead calculate the �market capitalization" which we are de�ning as the total

key-value of aggregate item stocks held by active players, where a player is designated

�active" if they have played within 90 days. To calculate this, we take the level of existing

stocks of each item in each time period and multiply them by the prevailing price in

that time period, then sum over all items. We will denote aggregate nominal wealth in

period t as Wt and is de�ned as

Wt =

Nt∑
i=1

pi,tSi,t

where at time t there are Nt total di�erent goods, pi,t is the price of good i and

Si,t is its outstanding stock. One quirk of this economy is that a large majority of existing
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goods do not undergo any sort of depreciation. This means that value is constantly being

created but relatively rarely being destroyed; compare this to, for example, the value

created by a pig farmer. He creates value by raising pigs and selling the pork, but this

value ceases to exist once the pork is eaten. Keys and metals are consumed in a similar

fashion to this pork, but it is rare for other economically signi�cant items to disappear.

But this begs the question: even though item stocks should be increasing over time, is

the real wealth of the average individual agent increasing along with it?

The nominal growth of all active players' inventory holdings can be written

Wt+1 = GtWt (1.1)

where Wt represents the nominal wealth and Gt represents the growth rate of

nominal wealth in period t. Gt is the product of three components, population growth

GPt , per-capita real growth GRt , and growth of prices (i.e. in�ation) GIt . Thus, we can

take logs of equation 1.1 to �nd (where lower cases denote log levels):

∆wt = wt+1 − wt = gPt + gRt + gIt (1.2)

To better understand the causes of shifts in nominal aggregate wealth, we will

take advantage of this decomposition but before we can do this we will need measures

for each of these components.

21



1.5.2 Törnqvist Price Index

The simplest starting point for a basic price index is a Laspeyres index which

uses a quantity basket �xed to a base year and estimates price increases by allowing

prices to adjust in each time period:

PLaspeyrest =

∑N
i pitqi0∑N
i pi0qi0

However, there is a particular problem with direct implementation of a basic

Laspeyres index: New items are constantly being introduced. If we choose a base period

early in our timeline, we will leave out all of the items which were introduced later on

which are likely to be economically important. But if we choose a base period late in

our timeline, since there are some items which did not exist early in the sample, we can

have no prices for items in early periods. And, indeed, this is a signi�cant issue for our

environment. At the beginning of our data set, there are about 630 di�erent item types

traded, and at the end there are over 1600. The common alternative to a basic Laspeyres

index is a Paasche index. Paasche indices su�er from a closely related issue; they take

the quantity index from the current year in the denominator rather than quantities from

the base year. But we can have no prices in the base time period for items which were

introduced later on since we have no observed trades of goods that did not exist. Our

strategy for solving this problem is twofold. First, we use a modi�ed Törnqvist index

rather than Laspeyres or Paasche. Second we use a hedonic model to estimate what

prices for goods would have been just before their introduction.
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Our modi�ed Törnqvist index (Törnqvist, 1936) modeled after the way the US

C-CPI-U handles its upper level price indices.4 The Törnqvist index is superlative and

built from Translog preference functions5. A Törnqvist price relative is as follows:

PT
t,t−1 =

Pt
Pt−1

=

n∏
i=1

(
pi,t
pi,t−1

) 1
2
(
pi,t−1qi,t−1

Vt−1
+

pi,tqi,t
Vt

)

where Vt is the total nominal value of all goods in the quantity basket in period

t, thus pi,tqi,tVt
is the expenditure share of good i in period t. The quantity index we use to

calculate was built by drawing a weekly sample of active players from the population and

observing what those players were holding in their backpack. For a detailed description

of our sampling methodology, please see Appendix 4.1.3.

The Törnqvist index helps to avoid the problem discussed above with the simple

Laspeyres: since the base period for each calculation is the previous period, the number

of new items introduced between base and current periods are minimized. As well, since

the weights are value shares, new items being introduced simply decreases the weights

of already existing items so the index does not increase due to increasing quantities of

items. The chain Törnqvist price index from base period t = 0 to period T is thus:

Chain PT
T =

T∏
t=1

(
PT
t,t−1

)

One issue with our approach is due to the existence of items which are un-

4For more details, see Cage et al. (2003) and Bureau of Labor Statistics (2014) and ILO-IWGPS
(2004).

5See chapter 18 of the Export and Import Price Index Manual (2009) released by the IMF for
a detailed discussion of superlative indices
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Figure 1.5: New item price time series.

Note: Each sparkline represents an item's price over its �rst �fty days.

tradable - that is we observe no prices � but which appear in our representative bundle.

These items certainly have a non-zero value and they do enter and leave people's inven-

tories, but we have no choice to exclude these from our index. This is the same way that

national statistical o�ces handle non-priced services like family household services.

1.5.3 Hedonic Pricing Model

Another potential issue is that newly introduced items generally exhibit a com-

monality in price trajectories. Most new items start at a premium relative to similar

items, and then steadily trade lower in price. Figure 1.5 displays the price dynamics of

items starting with their introduction and tracing the time path of their log prices for

the �rst �fty days thereafter. Log prices are used to shrink the visual distance between

item time series, hopefully helping to focus on general price dynamics. Note that there
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are clusters of new items around Halloween and the December holidays. Items with high

starting prices (log price greater than 2.5, about 12 keys or more) appear to hold their

value in most cases, but items with lower initial values nearly always trend downward.

The Törnqvist price relative discussed above ignores items for which price in-

formation is not present in adjacent periods, and thus the initial premium price on most

new items is not captured by the existing methodology. Though this issue is likely

mitigated by the fact that new items are infrequently traded and seen in relatively few

inventories when �rst introduced�and so their weights would be quite low�the omission

of item introductions likely biases our price index downwards.

We deal with the problem of new item introductions by implementing a hedonic

pricing model (Diewert, 2003; Rosen, 1974) which estimates the prices of items based

on that item's characteristics compared to the characteristics of other items with known

prices. A similar hedonic price imputation approach is used by national statistical bu-

reaus to estimate prices in conditions of changes in quality. We use the hedonic method

as a best estimate of the initial values of each item based on the item's observable char-

acteristics. This is accomplished by regressing dummies for each of these characteristics

interacted with time dummies on each item's prices over time. For a given time period,

this gives an estimated value for each characteristic an item can have. If we apply the

assumption that an item's value is approximated by the sum of values of its parts, we

can estimate the price of an arbitrary item given only its vector of characteristics. We

then use these imputed prices as our best estimates for the value of items the day before

they are introduced.
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We impute unobserved prices via the following hedonic price model:

ln(pit) = α+ δtDt +
K∑
k=1

(βkt · xik) + εit for t = 0, 1, ..., T (1.3)

For the price pit of item i in period t. Dt are �xed-e�ect time dummies (by

week), xik is a dummy indicating whether or not item i possesses item characteristic

k (such characteristics are time invariant), with error epsilon which has the standard

assumption of being equal to zero in expectation. Thus δt is the parameter for the �xed

e�ects of week t and βkt is the parameter on characteristic k in week t.

The di�erent characteristics xik we include in this model are item quality, class

equipability as some items can be used only by certain classes and others can be used

by any class, item equip slot such as weapon or hat, and �nally a dummy indicating

items held by a large proportion of active players which took a value of 1 if 3% or more

of users held the item and applied to less than 25% of items. We believe that these

characteristics su�ciently describe di�erent items. We are limited by the fact that a

certain degree of the di�erentiation between items is due to non-quanti�able aesthetics

(e.g., two items can be identical with respect to the observables mentioned above, but

one of them might have art design that is in some sense �more attractive" and thus

would command a premium), but we believe that the number of di�erent items is large

enough that these will be su�ciently averaged out when we conduct our regression.
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Figure 1.6: Aggregate Price Index using Chain Törnqvist with Hedonic Prices

1.6 Results

Our primary goal is the characterization of macroeconomic growth of this vir-

tual barter environment. This requires the development of an aggregate price index

and hedonic pricing models. Next, we present possible explanations for some of the ob-

served macro-level behavior. We conclude with our analysis of the impact of micro-level

shocks on individual items with evidence of an asset price bubble, the �rst bubble to be

documented in a barter market as far as we are aware.

1.6.1 Aggregate Price Level

In Figure 1.6, we present the calculated chain Törnqvist price index. Overall,

the price level based on representative backpack contents is relatively stable with slight

de�ation until approximately mid-December of 2011, when there is a surge of in�ation

that is possibly related to a Christmas event which brought an in�ux of new users into
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the game and introduced holiday-themed items from new crates. This is followed by a

dip towards the end of the �rst quarter of 2012 which proved to be temporary as prices

return to their initial level and remain there for several months before seeing steady

in�ation until October 2012, where we see the most striking feature of our price index.

Starting with the Halloween event of 2012, we see a sustained de�ationary period. Our

index returns to its initial level around March 2012 and keeps falling until the end of

our sample.

1.6.2 Hedonic Model

The hedonic hypothesis postulates that for any given period, a good is a

bundling of potentially time-varying price determining characteristics along with some

possible aggregate price level e�ects that change from period to period.6 Plotted in Fig-

ure 1.7 are the coe�cients on the weekly �xed e�ect dummies Dt along with their �rst

and second standard errors bands. These can be interpreted as an estimate for changes

in the overall price level in a given week relative to the �rst week. Compare Figure 1.6

to Figure 1.7; with the exception of a peak in the �rst quarter of 2012 which does not

appear in Figure 1.7, the dynamics are remarkably similar. These are both estimating

the same thing using entirely di�erent methodology but both tell generally the same

story.

Figure 1.8 plots how item characteristics have evolved over the sample using the
6Since item-level characteristics are fairly well de�ned in this context � item quality, character class

equipablility, and broad item type � it may be informative to run a simpli�ed hedonic regression which
eliminates time-variation in the β coe�cients. Results from such a model could be interpreted as the
average value placed on each observable characteristic for items in our sample and are presented in
Appendix 4.1.5.
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Figure 1.7: Time dummy estimate from simple hedonic price model.

Note: Dark and light gray ribbons re�ect �rst and second standard error bands respectively. Coe�cient
estimates on time dummies from model Equation 4.1.

hedonic model from equation 1.3. In Figure 1.8 we see the evolution of value premiums

based on item quality. For example, haunted items tend to have their highest premiums

around Halloween (technically, we observe haunted items' least discounts around Hal-

loween � haunted items are essentially identical to unique items, except for their text

color and quality designation), but haunted quality items otherwise tend to trade at a

discount relative to unique items. Unusuals clearly trade at a consistent and increasing

premium relative to uniques and other qualities. Interestingly, in the weeks preceding

Halloweens, unusuals exhibit an increase in their value premium. This is possibly due to

the introduction of a number of highly coveted Halloween themed visual e�ects (e.g. cir-

cling ghosts, cauldron bubbles, and `'Demon�ame�) at this time. Vintage items exhibit

a consistently increasing premium relative to uniques. Vintages are de�ned by having

been in existence prior to the introduction of item trading. These likely show steady
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Figure 1.8: Coe�cient estimates on time dummies interacted with item quality.

Note: Showing how premiums relative to unique have evolved over the trading sample. Standard error
bands shows in transparent ribbons. Halloween 2011 and 2012 are indicated by vertical grey dashed
lines.

increase due to the �xed nature of their supply.

1.6.3 Aggregate Value and Growth

Figure 1.9 shows the total nominal value of all items in active players' invento-

ries (what we call �market capitalization�) on a daily basis. This is calculated by taking

the daily price of each item multiplied by the outstanding quantity in active players'

inventories, and summed over all items. We estimate that on the last day of our sample

the total value of the economy was approximately 10 million keys � or using a very con-

servative US Dollar value exchange rate of $2 per key (keys are available on the store at

a price of $2.49, which acts as a price ceiling) � $20 million. Expanding stocks to include

30



0

5,000,000

10,000,000

15,000,000

Jan 2012 Jul 2012 Jan 2013 Jul 2013
Date

K
ey

s

Nominal Aggregate Value of Active TF2 Player Inventories

Figure 1.9: Nominal aggregate value of active TF2 player inventories.

Note: Keys are sold on the store for $2.49 each

all TF2 items from all users' inventories, not just active players, market capitalization

on the last day is over 50 million keys, or over $100 million. Note that towards the end of

our two year sample there appears to be a decline in aggregate value. This is explained

by the decline in price level causing the bulk of commonly-held items (usually traded

for metals) to drop in value with respect to our numeraire.

Table 1.2: Summary Statistics of Relevant Macro Variables

Date Traders Mean IQR Nom. Trade Value Chained Price Index

2011− 10− 01 16179 3.031 45181 109.68
2012− 06− 01 56493 .380 158427 126.9
2013− 04− 01 163122 .290 197266 106.7

Table 1.2 displays total traders, mean IQR of prices across all items, total

nominal value traded, and the value of the price index for three di�erent dates. There

appears to be a trend of increasing population, decreasing price dispersion, and increasing

total trade value. We also see that initially the economy experiences signi�cant in�ation
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Figure 1.10: Growth of nominal active player wealth

Note: Nominal growth since August 2011. Aggregate nominal value of active player wealth is the
product of prices, population, and per-capita real inventory values. The natural log of nominal wealth
is thus plotted as the stack of these logged components.

but that this is replaced by de�ation by the end of the time period.

In previous sections, we elucidated the trends of the price level and per-capita

real wealth. Applying those along with data regarding changes in active population to

the decomposition presented in Equation 1.2 results in Figure 1.10. The levels displayed

are all in percentage terms with respect to the levels in period 0. E.g. at the beginning

of July 2012, the nominal economy is approximately 120% larger than it was at the

beginning, of which approximately 10% can be attributed to growth in the price level,

35% of which can be attributed to growth in real per-capita wealth, and the remainder

attributed to growth in the number of active players.

We see that real per-capita inventories generally displayed a slowly increasing

contribution to the total growth for the duration of our sample. It also shows that
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practically all of the volatility displayed in Figure 1.9 can be explained by volatility

in the population of active players and that there is actually a steady and increasing

contribution to economic growth from the real per-capita component. This signi�es a

healthy and growing economy, even during periods which players are rapidly switching

between being active and inactive.

Prices consistently increase after January 2012 until a peak in October 2012,

thereafter steadily pulling down net growth until the end of the sample. It can be seen

that the contribution from prices disappears (and in fact becomes negative) on precisely

the date just after January 2013 at which the price index in Figure 1.6 shows that the

price level dips below its starting point of 100. The reason that Per-Capita Real Wealth

appears to be negative there is that it compensates for the negative total contribution of

the price level on nominal growth starting at that point; this can be interpreted to mean

that total contribution of the price level to nominal growth was approximately -15% at

the end of the time period.

1.6.4 Nominal Rigidities and the Decline of the Price Level

Here, we present a plausible case in which this decreasing value of metals can

translate to a decreasing aggregate price level. We observe that items tend to be pri-

marily traded for a single currency. Low value items tend to trade for metals, mid value

items tend to trade for keys, high value items tend to trade for Bill's Hats, and very

high value items tend to trade for Earbuds as a result of the indivisibility of these cur-

rencies. It is therefore di�cult to pro�t from currency arbitrage across �value-tiers" of
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Figure 1.11: Inter-money exchange rates

Note: Daily median exchange rate with three-week smoothing. Grey ribbons re�ect �rst and third
quartiles of observed daily exchanges, meaning 50% of trades occurred within gray ribbon. 31 Oct 2012
indicated by a black dotted line in the top �gure.

items. It is this combination of price rigidities across currency denominations along with

depreciation of metals that may have led to the sustained de�ation we observe.

Our best explanation for the de�ation towards the end of the sample is mone-

tary and due to the quirks of a barter system with multiple de facto commodity currency

goods. See Figure 1.11 for the daily spot exchange rates between keys and each alterna-

tive currency. Notice that decline in the price level starts at the end of 2013 � as seen in

the price index in Figure 1.6 � syncing up with a sustained appreciation of keys against

metals in Figure 1.11. This appreciation is quite signi�cant: at the beginning of our

sample it took a little more than two re�ned metals to purchase a key, but towards the

end it took nearly six metals. Thus, the metal-price of keys more than doubled over this

period. Also interesting to note is that the path of Bill's Hats/Key and Earbuds/Key
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exchange rates track each other closely (with a few exceptions near the end of the sam-

ple). This may imply that the higher-value currency goods are better substitutes for

each other than the low-value metals, and is also likely due to the �xed nature of supply

of these goods compared to the increasing supply of metals and keys. A more complete

analysis of this potential source of depreciation is presented in Appendix 4.1.6.

To illustrate this point, consider how pro�table arbitrage would occur if one

currency (metal) is becoming devalued relative to the other currencies but metal prices

remained �xed. One would trade metals for goods, then trade those goods for non-metal

currencies, then trade the non-metal currencies back for more metal than they started

with. This is only worth it if costs associated with trading the goods for non-metal

currency is lower than the surplus from completing the cycle.

If these search and transactions costs are large enough, it is not worth it to

engage in the arbitrage that would keep prices constant across all currencies. We see that

as metal-key exchange rates decline and the value of metal to decreases, this does not

appear to fully translate to the metal-price of metal-denominated items. Indeed, we see

that for most metal-denominated items, their key-prices fall as metal depreciates. Thus,

as the key-price of metals drops, the key-prices of metal-denominated items tend to drop

with it. This leads to the component of our quantity bundle which consists of items that

are primarily traded for metals to drop in lock-step with the metal depreciation. If this

component of the aggregate quantity index is �large", it alone can drive large movements

in our aggregate prices.

We argue that this is due to frictions imposed by a barter market. If buyers
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were equally willing to pay with keys as metals for the purchase any good, it is likely

that the prices of goods as denominated in the more consistently valued currency would

be constant and there would be an increase in the price in terms of the currency which

sees a declining value. But, if most traders will only o�er metals for some subset of

goods because it is impractical to trade for goods which are worth a tenth of a key or

less using keys or higher value currencies, such a scenario is plausible.

We now present evidence for the presence of nominal rigidities discussed above,

which would imply that items which happen to be priced in terms of metals � likely

due to their low value and therefore di�culty in trading with indivisible higher value

commodity currencies � have their value linked to the value of metals.

We investigate this by linking the frequency that metal is used to pay for items

to the price change from Oct 2012 to the May 2013. We estimate the following weighted

OLS model:

ρi = β0 + β1 ·mi + εi

In this regression, mi represents the value proportion of SM trades for item i in

which the item trades for metal and thus 1−mi is the value proportion of trades which

the item was exchanged for non-metal currencies. For example, an item that always

traded for metals would have an mi of 1 and an item for which half of the value of

trades was from metals and half was from keys, mi would be .5. The regression relies on

value share percentages derived from October 2012 observations and these value share

percentages hold a 0.95 correlation with observations in May 2013, implying that these
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value shares seem relatively stable over our time horizon. The dependent variable ρi

represents the percent change of the price of item i with respect to this item's price in

October 12, 2012, just before the start of the de�ationary period.

The model is weighted by the total value of each item i in the month of October

2012, thus more economically signi�cant items were given heavier weights. We only

looked at items for which prices were observed in both Oct 2012 and May 2013, there

were 1,288 such items. We remove observations for which percent price changes were

above the 99th or below the 1st percentile, leaving 1256 items with prices in both periods.

The interpretation of this regression is straight forward: the sign of the coe�-

cient on mi tells us if items which were primarily traded for metals tended to undergo

price increases (positive β1) or price decreases (negative β1) over the period of de�ation

which started in October 2012.

Table 1.3: Regression Estimates from WOLS of Price Change on the Trading Value
Share of Metal.

Dependent variable:

Percent Change in Price

Metal Value Share −0.1867∗∗∗ (0.0406)
Constant −26.0422∗∗∗ (1.4763)

Observations 1,256
R2 0.0166

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Our regression coe�cients are reported in Table 1.3. It shows that on average,

items that traded 100% with metals tended to experience an 18% decrease in price
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Figure 1.12: Price time series of the unique (normal) quality Fancy Fedora.

Notes: The date of the store retirement announcement is indicated by a dashed red line, and the actual
retirement date is indicated by the second dotted line, in blue.

compared to items which never traded for metals. This is evidence that items which

trade primarily for metals tend to have a corresponding decline in price. But the decline

in price is also less than the decline in the exchange rate of metals (approximately 50%

from October 2012 to May 2013, as can be seen in Figure 1.11) which means that this

is likely only a part of the whole story.

1.6.5 Response of Individual Items to Micro-level Shocks

We conclude our results with a discussion of the impact on individual items of

micro-level shocks. Notice in Figure 1.12, the price of the Fancy Fedora starts high and

over a few months drops down and stabilizes, as is typical for newly introduced items.7

7The price time series was generated using trailing price estimates rather than the centered prices
discussed above. This was because centered prices cause price estimates to increase before the announce-
ment which is not representative of what was happening in the market on this day.
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But at the beginning of 2013, there is a sudden spike in interest. This is driven by a 10

Jan 2013 announcement, as indicated by a red dashed line, that this hat and 8 others

would be �retired� on 25 Jan 2013 as indicated by a blue dotted line. Retirement of these

items means that they are no longer acquirable except by trading with other players and

thus the total supply would be capped at the current level on 25 Jan.

This announcement led to rampant speculation on these items which drove up

the price by approximately 120% over the two week time period between announcement

and retirement. But this price boost ultimately proved to be temporary as the price

falls almost as rapidly as it surged in the �rst place. This represents the �rst evidence

of a possible speculative bubble in a barter market that we are aware of.

Figure 1.12 also shows the stocks of Fancy Fedoras. On January 10, 2013

there were 178,400, which increased by 2.26% to 182,440 by January 25th. Our best

explanation is that there was a su�cient quantity of these hats in existence to satisfy the

demand for them for the purpose of durable consumption at the price of approximately

0.2 keys, but the retirement announcement caused a positive demand shock as market

participants anticipated a negative future supply shock, driving up current prices (red

dashed line). Soon after this negative supply shock took place (blue dotted line), it

became clear that the act of �xing supply did not actually do much to shrink quantity

available and � as well as the fact that there are likely a large number of close substitutes

and the in�ux of supply by speculators after the January 10 announcement � meant that

people interested in durable consumption of the item could simply buy a di�erent hat

that didn't see the price more than double. Thus, the announcement and subsequent
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retirement did not e�ectively change long run demand and had a small but positive

e�ect on long run supply, so the price returned to its initial level and the speculators

that went long on them �guratively lost their shirts.

Another item example demonstrating clear market responses to micro-shocks

is the strange Scattergun, a strange-quality version of the default class weapon of the

Scout. Strange quality items are notable because they record some sort of player statistic

while the player uses the item (e.g. a counter that tracks total number of other players

killed with the gun).

On 9 October 2012, as shown in Figure 1.13 with a red dotted line, these

stranges were suddenly made available from a newly introduced and particularly ubiq-

uitous series of locked crates and found inside these crates with a probability of approx-

imately 20%. The e�ect of this policy shock on supply can be seen in Figure 1.13. The

total stock on 9 Oct 2012 was approximate 71,000 and had been increasing at the rate

of approximately 50 per day for months. After this new crate was introduced the rate

of increase of the inventory stock suddenly exploded: after one month there were more

than 101,000 strange Scatterguns in existence. And after three months, the stock had

doubled.

The impact of this sudden large positive supply shock can clearly be seen in

the price of the gun, depicted in Figure 1.13. In contrast to the story of the Fancy

Fedora, in which the retirement of an item did not appear to have a long lasting impact

on the market supply or demand leading to long run prices being the same as before the

retirement, this event obviously actually impacts the long-run supply which causes an
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Figure 1.13: Price time series of the strange quality Scattergun.

Note: The red dotted line is at October 9th, the date which the item became more widely available.

unambiguous decrease in long-run market price. Thus, individual prices in the economy

do indeed appear to respond to speci�c micro-level shocks in the ways consistent with

basic microeconomic intuition given the direction of the shocks to supply and demand.

1.7 Conclusion

With this work, we present an examination of an economy which is interesting

for at least two reasons. First, it is a remarkably rich dataset which documents a

true barter market, the likes of which have been pondered by economists for centuries.

Second, it's a virtual economy consisting entirely of non-tangible goods which people

nonetheless assign value to.

Our primary goal was to calculate macroeconomic growth in this novel envi-
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ronment and concluded that an increasing component of nominal growth was due to

increases in real per-capita holdings. Per-capita real wealth displays a slow and steady

growth for the duration of our sample and most of the volatility in aggregate economic

value can be explained by volatility in the active player population.

We presented a hedonic pricing model which we used to impute prices for a

Törnqvist price index. We show that not all classes are created equal when it comes to

item values. The index indicates that the price level tended to rise until October of 2012,

at which point the price level starts declining due at least in part to the declining value

of metals. We then traced the source of this depreciation of metals to a shock to both

the stocks of metals and keys as well as the rate of increase of their respective supplies.8

We then demonstrated that items which trade for metals tended to have prices that

decreased as the value of metals declined, indicating possible nominal rigidities. But the

price decline was less than the decline of the value of metals, so this is likely not the only

thing a�ecting these items. Thus, we did �nd evidence that macro-indicators responded

to macro-level shocks.

Finally, we �nd in these virtual economies evidence of the same sorts of forces

which evidently in�uence �real world" markets in our micro-level case studies. If a

credible central authority makes some decree that could increase expectations of future

prices, prices move in that direction. If there is a sudden exogenous positive supply

shock in the market for a speci�c good, the price of that good falls. These goods are but

two of many items that have been impacted by idiosyncratic shocks, and their behavior

8See Appendix 4.1.6
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is mirrored in similar goods which were subjected to similar shocks. None of this news

should be surprising, but it supports our position that other such virtual economies

(which are certainly only going to become more common in the coming years) are fertile

ground for further research and the fact that these virtual economies will typically have

impeccable record keeping should be enough to get researchers excited.

Future work will investigate the emergence and evolution of number of fun-

damental market institutions in the tradition of Radford (1945), Burdett et al. (2001),

and Lankenau (2001) and we will search for the origin of media of exchange and the

development of trade intermediaries by mapping trade networks and behaviors of these

intermediaries. In doing so, we hope to answer questions related to how much surplus

such intermediary activity brings to the economy as a whole, and how is that surplus

is distributed amongst various types of users, deep questions that go to the heart of

classic economic inquiry9 and are issues which many modern economists have struggled

to answer empirically.

9See Smith (1776), Jevons (1885), and Menger (1892)
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Chapter 2

Emergenge of Networks and Market

Institutions in a Large Virtual Economy

Written with coauthors Curtis Kephart and Daniel Friedman.

2.1 Introduction

How and when do new institutions emerge to facilitate trade, and how can we

measure their impact? Such questions are classic but have new urgency in the early 21st

century, as markets more tightly bind together economic activity across the planet, and

mobile communications enable new ways to transact.

This paper makes a small empirical contribution pertaining to those large ques-

tions. In September 2010, Valve Corporation launched a high-performance pure barter

trading platform for the user community of one of their more popular games, Team

Fortress 2. Our data cover every transaction on that platform over a 661.4 day interval,
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involving thousands of di�erent types of goods and 1.9 million traders.

We analyze those data with several classic questions in mind. Given its best

conceivable shot, how stable is barter? Does the institution of bilateral barter un-

mediated by currency survive or does a monetary institution push barter exchange to

obscurity? Were Adam Smith (1776, Book 1 Chapter 4), William S Jevons (1885) and

Karl Menger (1892), among others, correct in predicting that commodity money will

emerge to solve logistical problems inherent in barter? Do we see a unique medium of

exchange? Do trade specialists emerge as the market grows, as would seem to follow

from the opening argument in Smith (1776)? If so, what kind � dealers (who carry

inventory)? brokers (who don't)? speculators? In general, do we see institutions emerge

that lower transactions costs?

Despite recent theoretical elaborations such as Kiyotaki and Wright (1989) or

Ostroy and Starr (1990), and agent based simulations such as Howitt and Clower (2000),

these classic questions have provoked remarkably little empirical work. Perhaps the best

known is Radford (1945), who showed that cigarettes emerged as medium of exchange

in a WW2 POW camp.

Our empirical investigation is also motivated by network-theoretic questions.

What network architectures characterize barter versus monetary exchange? Or direct

trade versus intermediated trade? Which network metrics can best demonstrate how

goods networks evolve over time? Or how trader networks evolve?

A large and heterogeneous literature on economic networks has recently begun

to emerge; see Jackson (2010) and Easley and Kleinberg (2012) for recent overviews.
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This literature begins to address some of the classical questions. For example, Choi

et al. (2014) develop a network model in which nodes o�er intermediation services at

posted prices. For given network architectures, they characterize equilibrium prices and

argue that node centrality is key to understanding e�ciency and division of surplus.

Unfortunately, network theory has not yet advanced su�ciently to provide

sharp predictions on network evolution that can be tested on our rich data set. Our

empirical study is therefore largely descriptive. By the same token, an advantage of our

study is that it may spur theoretical advances to deal with distinctive aspects of the data.

These include (a) large, non-uniform, changing networks rather than static networks that

are uniform (e.g., cellular automata) or small, (b) two di�erent but interrelated networks

� for goods and for traders � de�ned endogenously by actual transactions data. We

�nd modi�cations of recent network metics that seem to capture the classical notions of

money as a medium of exchange and of various sorts of intermediation, and document

how they evolve as the virtual economy matures.

We are aware of three related empirical lines of research, all of them mainly

descriptive. A series of articles including Kirman (1997) and Kirman and Vriend (2001)

study the market for fresh �sh in Marseilles. For this di�erentiated perishable com-

modity, the authors focus on the stability of trading relationships between a few dozen

sellers and several dozen buyers, using a sparse sample of periodic data. We need dif-

ferent techniques to study essentially continuous trade (on average, nearly a trade every

second) in our much larger networks for exchange of homogeneous durable goods.

Bech and Atalay (2010) use federal funds (overnight) loan data to construct a
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trader network among US banks. They look mainly at a directed unweighted network

averaged over time (although sometimes they consider weighted edges or time trends),

and con�rm stylized facts about node degree distributions. Our network metrics overlap

with theirs, but our focus is on undirected weighted networks (although sometimes we

consider directed or unweighted networks) and how they change over time. Some of our

�ndings, including those on node degree distributions, stand in contrast to stylized facts

established for other sorts of economic or social networks.

Castronova (2001) is among the �rst to examine the economics of on-line �vir-

tual worlds", applying standard economic metrics to players of the video game Everquest.

Chapter 1 similarly studies Team Fortress 2, generating prices from pure barter trans-

actions and generating macroeconomic aggregates. Lehdonvirta (2005) and Lehdonvirta

(2010) critique existing studies of markets for virtual items tied to on-line games. Our

study emphasizes the rather di�erent insights that can be obtained from network anal-

ysis.

Section 2.2 sketches relevant aspects of modern network theory, including met-

rics such as node degree and strength, network assortativity, and betweenness and close-

ness centrality. It also shows how a set of barter transactions can be used to de�ne a

goods network as well as a trader network. The following section describes the data

brie�y; see Chapter 1 for more details. Section 2.4 presents results, beginning with an

overview of trading volume, whose US dollar value averages well over 2 million per week

over the second half of the sample. The analysis of trader networks discloses economically

interesting violations of scale-free distributions for node strength, and the emergence of
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several di�erent sorts of trade specialists. The analysis of goods networks discloses the

emergence of commodity monies � not one, but several. Price dispersion decreases

over time but remains substantial. A concluding discussion is followed by an Appendix

with self-contained formal de�nitions of network metrics and with supplementary data

analysis.

2.2 Network Concepts

We �rst informally present some useful network metrics. Then we sketch how

to construct empirical networks from a set of transactions, and note the di�erences

we would see between classic monetary trade and classic barter, and between direct

exchange and intermediated exchange. Formal details are collected in the Appendix.

2.2.1 Network Metrics

A network consists of a �nite collection of nodes i = 1, ..., I and edges (or

links) yij ≥ 0 between ordered pairs of nodes. The most general sort of network we will

consider is called weighted and directed, meaning that we keep track of the numerical

value (or �weight�) of each edge ij, and that the weight from node i to node j may

di�er from the weight in the opposite direction, from node j to node i. We work mainly

with undirected networks, for which these two weights are always equal. Sometimes we

consider the familiar subcase of unweighted (or binary) networks, where yij = yji is

either 0 (no edge connects the two nodes) or 1 (that edge does exist).

Node strength and degree. The strength of node i in an undirected weighted
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network is the sum of its edge weights. Its degree ki is the number of edges of positive

weight that include that node, a nonnegative integer.

Assortativity. Do strong nodes tend to connect directly to other strong nodes,

rather than to weaker nodes? A positive answer suggests that the network may be like

our galaxy, with a weighty core and gossamer periphery. A su�ciently negative answer,

on the other hand, may hint at some sort of specialization, e.g., internet service providers

and customers.

An assortativity metric is, in essence, the correlation of the strengths of each

edge's two nodes. In familiar binary networks, node strength is simply node degree,

and it is customary to de�ne assortativity there as the correlation across all existing

edges of excess node degree, that is, netting out the edge in question. This removes a

positive bias that otherwise would give random networks a positive assortativity. As

explained in the Appendix, the same logic requires using excess strength for computing

the assortativity A of a weighted network, and we do so below without further comment.

Centrality. A node is �central" if it is in some broad sense relatively important,

e.g., if it is on lots of shortest paths. Shortest paths in a binary network are found

simply by counting edges, but in weighted networks one should take into account the

edge weights. We follow standard practice in adding the reciprocals of edge weights to

obtain path lengths. The betweenness centrality B(n) of node n is the fraction of all

node pairs ij that have a shortest path that goes through n. For example, consider a

star-shaped network, for which all other nodes have edges with, and only with, a special

node n∗. Then B(n∗) = 1 and B(n) = 0 for all other nodes n.
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An alternative intuition is that a node is central if on average it has a short

distance to other nodes. We de�ne the closeness centrality C(n) of node n as the sum

of inverse distances to all other nodes in the network, normalized by the size of the

network, which is not constant in our data. Thus C(n) will increase as distances shorten

between typical pairs of nodes.

2.2.2 Transactions, Trader Networks and Goods Networks

Suppose that trader i initiates net trade x = (x1, ..., xN ) ∈ RN with counter-

party j. That is, there are N di�erent goods, and i transfers a bundle x− to j and

receives bundle x+ in exchange, where (by convention) those two bundles have non-

negative components and the net trade vector is x = x+ − x−. Given an N-vector p of

positive prices, the value of the bundle i acquires is v+ = p · x+ and the value of the

bundle j acquires is v− = p ·x−. The transaction is budget-balanced at p if v+ = v− or,

equivalently, if 0 = p · x ≡
∑N

i=1 pixi.

Suppose that transactions k = 1, ...,K are observed over some given time

interval. Given price vector p, the observed trader network is a weighted directed network

constructed as follows. The nodes consist of all individuals who participated at least

once in those transactions, either as initiator or counterparty. The directed edge weight

from node ` to nodem is the total value of the bundles that individual ` acquires fromm.

If all trades are budget-balanced, then the trader network is automatically undirected.

If some transactions are not budget balanced, then we can recover an undirected
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network by replacing each v+ and v− in the total value calculation by

v = max{v+, v−}. (2.1)

This convention makes good sense if the main reason for an imbalance is that the record

keeping system missed an element of the transaction such as an explicit or implicit

promise to repay. If instead the main reason were random noise in goods valuations

(perhaps due imprecise pricing or indivisible units) then a better convention would be

v = (v+ + v−)/2. Of course, we can always recover an unweighted undirected (�binary�)

network by assigning weight 1 to any edge with positive weight (or, alternatively, any

edge with weight exceeding some speci�ed positive threshold) and keeping the other edge

weights at 0.

The same set of transactions also de�nes a goods network. The nodes of this

network are the subset of n = 1, ..., N that have a non-zero component in at least one

of the K transactions. The edge weights re�ect the total value of transactions in which

one good is part of the exchange for another, and are automatically undirected when we

apply convention (2.1). The edge weight is clear when just one good appears on each

side of the trade. The Appendix shows how to allocate values across pairs of goods when

there are several di�erent goods on one or both sides of a transaction.

The Appendix also shows that two matrices, one for goods and the other for

traders, characterize the network structure we employ here. Data permitting, a more

complete characterization would be as a tensor of a higher order that speci�es, for each
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transaction, the characteristics of both traders involved and of the two bundles that they

exchange.

2.2.3 Classical Networks

Pure barter can be idealized as transactions in which each good is equally likely

to be traded for any other. Then (apart from sampling error) the goods network would

be completely connected with edge weights proportional to the strength of each node.

Assortativity for the network would be near zero, and the distributions of betweenness

B(n) and closeness C(n) would be be broad and unimodal if the goods' overall value

shares are uniformly distributed over a wide support.

At the other extreme, money mediation can be idealized as a single good, n∗ = 0

say, such that transactions take either the form (−m,x+), i.e., the initiator buys the

bundle x+ for m > 0 units of good 0, or the form (m,−x−) in which the initiator sells

the bundle x−. This de�nes a star-shaped goods network around node 0. Assortativity

would be quite negative, betweenness would be 1.0 for the money good and zero for

everything else, and closeness would be high for all goods, especially the money good.

Trader networks can reveal institutions that facilitate transactions. At one

extreme, there could be uniform bilateral trading relationships, whereby any trader is

equally likely to trade with any other. This again would give us a fully connected graph

with metrics similar to those just described for barter. At the other extreme, there could

be a universal store, designated as trader 0. If the other traders sell their bundles only

to the store and buy bundles only from the store (or even conduct barter transactions
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Figure 2.1: Item Barter Trading Platform

Here the initiating trader (You) o�ers a game license and one unit of re�ned metal and the counterparty
(Test4321) o�ers ten di�erent hats. The transaction occurs when both traders check the central blue
box.

but only with the store), then again we have a star-shaped network. Less extreme forms

of intermediation will leave traces in the network metrics, but supplementary analysis

will be necessary to distinguish among various sorts of intermediaries such as market

makers, speculators and brokers.
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2.3 The Data

As explained in more detail in Baumer and Kephart (2015), our data pertain

to the video game Team Fortress 2 (TF2), sponsored by Valve Corporation. Launched

in October 2007 using a standard computer game business model (revenues mainly from

players purchasing permanent rights to access the game), Valve made TF2 �free-to-play"

� i.e., zero price for game access rights � in July 2011, gaining revenue from a company

store (dubbed the �Mann Co. Store") where some popular items could be purchased for

US dollars or other national currencies. It should be noted that the traded items in

TF2 with appreciable value, unlike those in many other games, o�er little or no direct

advantage in playing the game; they are mainly to establish identity or to make a style

statement.

TF2 took a new turn in September 2011 with the advent of the barter (�Steam

Trade") platform shown in Figure 2.1; beta versions had been seen a few months earlier.

Our data consist of all barter transactions beginning in August 2011, when the current

accounting system was �rst introduced, through May 2013 � over 40 million bilateral

barter transactions involving nearly 2 million unique trader identities and over 1000

distinct types of items (or goods), gathered in a relational database of more than 0.5

terabytes. Table 2.1 shows a tiny truncated extract.

In most respects the data align well with the theoretical structure introduced

in Section 2.2, but there are some notable quirks. Writing x ∈ RN there suggests that

goods are perfectly divisible, while in TF2 each good has indivisible units (each with
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Table 2.1: Example data snippet.

TradeID PartyA PartyB Time AppID AssetID NewID Origin EconAssetClass
1 1203 1876 234 440 3881 4120 1 100
2 4256 172 245 440 3942 4136 0 1949
2 4256 172 245 440 4135 4137 1 1585
3 993 8384 250 440 4133 4138 0 207

Party A is the initiating trader i, Party B is the counterparty j for the trade at Time (only last three

digits shown) tk, where the TradeID k appears in the �rst column. AppID 440 refers to TF2

transactions, AssetID and NewID are tracking numbers for particular units of the item (or good)

speci�ed in EconAssetClass. Origin is the indicator variable that the good is a positive element of x−.

Note that a transaction as de�ned in Section 2.2.2 may correspond to several lines in the database,

e.g., trade k = 2 here consists of the second and third rows.

its own AssetID). Section 2.2.2 discussed pure exchange of perfectly durable units in

�xed total supply, but in TF2 new units of goods appear randomly or after achieving

certain game milestones, and certain goods can be purchased from a company store.

Some goods can be produced by consuming others. For example, a player can convert

two weapons into one unit of scrap metal, convert three scrap metals into to one unit

of reclaimed metal or the reverse, and convert three units of reclaimed metal into one

unit of re�ned metal or the reverse. These metals can be combined with other goods to

produce new units of designated goods via known production recipes. Also, a treasure

chest (or crate) can be opened via a purchasable key to produce its (heretofore hidden)

contents, with the key and crate irreversibly consumed. In a sense these crates are

like scratch-o� lottery tickets: for a modest price � one key and one crate � you can

immediately see what prize that you won; the dollar value of the prize ranges from a few

pennies to (very rarely!) over $10,000.

The barter trading platform allows trade in items other than those used in TF2,

such as the Left4Dead2 game license seen in Figure 2.1. Of the 70 million transactions
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we observe, 44 million involve at least one TF2 item, and nearly 41 million involve only

TF2 items. Transactions involving non-TF2 items were more common near the end of

the period covered by our data, and are excluded from our analysis.

2.4 Results

Before analyzing how network metrics evolve over time, we take a look at the

overall growth of the exchange economy. Figure 2.2 shows that the number of trades

K rose from below 100,000 in the �rst week to more than 500,000 per week a year

later, and remained above that level for the rest of the sample. Similarly, the number

of unique trader identi�ers active each week was approximately 25,000 in the �rst few

weeks and increased to 200,000 within a year, leveling o� thereafter. (For the Steam

Trading platform as a whole, growth trends continued unabated but, as noted earlier,

mainly for games other than TF2.)

Figure 2.3 shows roughly similar trends for the weekly value of trade. Values

are determined using the daily price vector, the construction of which is described in

Chapter 1. The unit of account is a key, which over the entire sample period could be

purchased at Valve's store for US$2.49 or the equivalent in other national currencies. A

substantial fraction of transactions are not budget balanced; indeed 41% are one way

transactions, with either v+ = 0 or v− = 0.

Weekly trade value bounces around in the 1 - 1.5M key-equivalent range during

the last year, or about US$2.5 - 3.75 million. Trade value is highly correlated with trade
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Figure 2.2: Weekly transaction counts and unique trader count

Vertical shaded bars indicate promotional events

count (ρ = 0.966) and with unique trader count (ρ = 0.938), but the trade values are

less sensitive than trade counts to special promotions. It seems that most promotional

items have low prices, and those with high prices have low trade volume. Promotions

also seem to bring an in�ow of new market participants who trade relatively low value

items.

2.4.1 Trader Network

Node Degree Distribution. Figure 2.4 shows the distribution of node de-

gree (k` = number of counterparties of trader `) in trader networks obtained from all

transactions in a single week. Each panel shows the degree histogram in log-log scale.

For all 6 weeks shown (and all other weeks as well), most of the histogram declines

roughly linearly (in logs), suggesting that the Pareto distribution (known by physicists

as power law and by network theorists as scale-free) dominates here as it does in so
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Figure 2.3: Weekly total trade values

Values are measured in key-equivalents; they can be multiplied by 2.5 to get approximate US Dollar
equivalents.

many technology and social networks (e.g., Barabási and Albert, 1999, Pastor-Satorras

and Vespignani, 2001, Liljeros et al., 2001). The slope seems perhaps less steep in later

weeks, suggesting that the Pareto exponent γ may decrease over time.

Beginning in Panel C, we see something di�erent and more economically in-

teresting. Starting in early October 2011 a group of traders emerge who trade with an

order of magnitude larger set of counterparties. This subpopulation tends to become

larger and more disconnected from the main mass over time, and represents a qualita-

tive departure from the usual Pareto distribution. We are witnessing the spontaneous

emergence of large traders, who have thousands of counterparties every week.

Assortativity. How can we assess the economic impact of large traders? Our

�rst step is to check trends in assortativity. Figure 2.5 traces the standard (excess

degree) measure of assortativity A(W b) in the unweighted undirected (�binary�) trader

networkW b computed weekly from transaction data. In the �rst few weeks, assortativity

is surprisingly positive, indicating that at �rst traders with many counterparties tended
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Figure 2.4: Degree distribution in trader network (log scales).
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Figure 2.5: Weekly assortativity

A(W b) in the unweighted trader network. Horizontal dashed lines show benchmarks from Newman
(2002), and vertical shading indicates promotional events that attract new traders.

to trade with others of high degree, and traders with few counterparties tended to trade

with each other. The level is comparable to the most positive benchmarks in Newman

(2002), including movie actors. (In the network whose edges indicate whether the actors

have appeared together in the same �lm, the big name actors tend to work with other big

names, hence the positive assortativity.) The zero assortativity benchmark is a random

graph.

Over the next six months, trader network assortativity plummets towards New-

man's lowest benchmarks, world wide web links (-0.065) and internet wiring (-0.189).

(The latter is negatively assortative since individual homes and businesses mostly con-

nect to internet backbones.) The downward trend ends with a 2011 Winter holiday

event that brought an in�ux of new traders. After February 2012, assortativity mostly
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bounces around in a negative range bounded by the internet wiring and hyperlink bench-

marks. Most upward jumps are short lived and coincide with special promotions. (A

likely mechanism for those jumps is that a raft of new promotional goods and the ac-

companying in�ux of new small players increases the average willingness of small traders

to search and match with other small traders.)

The weighted network shows similar trends. Weighted assortativity in the

�rst month of our sample was 0.1295, very signi�cantly positive relative to a random

graph with identical edge count and edge weight distribution (p < 0.0001). Weighted

assortativity then turns quite negative and is usually in the range between world wide

web links and internet connections; in the �nal month A(W s) is -0.0959, again quite

di�erent from zero (p < 0.0001). See Appendix formula (4.6) and following discussion

for details.

What drives the broad trends? Figure 2.6 takes a �ner grained look, computing

weighted assortativity in undirected weighted trader networks built from two di�erent

subsets of the transaction data. The solid red line shows assortativity A(W hi) based

on the transactions more valuable than or equal to the median for that week, and the

dashed blue line does the same for the network W lo constructed from remaining (lower

than median v) transactions.

In the �rst few weeks assortativity is between 0 and 0.15 for both subsets.

Thereafter, the red line bounces around a modestly upward trend, suggesting that big

trades tend to occur mainly between big traders. At the same time, the blue line quickly

trends down and eventually settles in modestly negative territory. Thus it appears that,
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A(W s) for weighted trader networks built from high value (s = hi, solid red line) and from low value
(s = lo, dashed blue line) transactions.

after the market matures, traders who want to exchange goods of relatively low value

turn to large traders, perhaps specialists, who are willing to accommodate them. Both

of these subgraphs are statistically di�erent to a random graph with identical edge count

and edge weight distribution (p < 0.0001).

Market Makers. To better understand the large traders, we sorted them by

characteristics such as weekly transaction count and value, frequency of one-way trades,

and pro�tability. The group that emerged in October 2011 consisted of 88 unique trader

id's, each of whom trade �inhuman" quantities, working 24 hours a day 7 days a week.

We call them the Clump because they all move closely together in exploratory animations

of trader activity. All evidence (see the Appendix for more details) indicates that the

Clump consists of 88 automatons controlled by a single economic entity. The clump
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initiated over 17.5% of all TF2 transactions in our sample and had an overall gross

pro�t margin (value received minus value delivered divided by the sum of value received

and delivered) of roughly 2.1%, with a slight declining trend. Players' �rst trades with

the Clump almost always (in 96.9% of cases) were one-way inward, delivering value to

the Clump. Subsequent trades were commonly one-way and about half were outward,

and only about 18% of these were for a good previously delivered to the Clump. We

infer that the Clump provides some warehousing services but is primarily an inventory-

carrying market maker for a broad range of goods, and that it grants trade credit secured

by customers' deposits.

A second sort of large trader emerged in October 2012 that specialized in

2-way trades. On closer examination, these traders predominantly accepted piles of

junked weapons in exchange for metal at or near the conversion rate (2 weapons ⇔ 1

scrap metal) available to ordinary traders. Apparently these specialists are not really

exchange intermediaries, but rather o�er a convenience on the production side, analogous

to CoinStar machines at grocery stores that give dollar bills in exchange for piles of coins.

(In Chapter 1, it was noted that a sustained depreciation of metals relative to keys began

in October 2012. Was that a coincidence? Available evidence is inconclusive.)

Closely associated with this CoinStar entity is a single account that specializes

in trading metals for keys and the reverse, beginning in December 2012. Essentially

all of its 1,500 counterparties are among the 10,000 accounts that utilized the CoinStar

service. We refer to this account as the MoneyChanger for reasons that will be apparent

in the next section. We note here that the weightiest edge in the goods network is
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keys-metals, and that ever since it �rst appeared MoneyChanger has accounted for 10%

of this edge weight. MoneyChanger's weekly average spread between buying and selling

prices is about 2%, and it initiated all but one of its 37,000+ trades in our sample. We

surmise that MoneyChanger is the primary market maker in the TF2 economy's thickest

market.

Another sort of large trader emerged in late December 2012, eventually con-

trolling 6 trader IDs. Of the nearly 400,000 trades involving these IDs, only a few

hundred were one way and the vast majority were budget balanced or very nearly so;

gross pro�t margin was less than half of one percent on average gross trade value of 1.42

keys. These traders had over 30,000 unique counterparties, who averaged more than a

dozen transactions, though the distribution was quite skewed and the median was only

three transactions. Inspection of individual trades suggests a familiar business model:

buy and sell goods at a narrow price spread for a range of standard goods, avoiding

large inventories. That is, the six IDs were employed by a market maker who used spot

transactions, and did not o�er trade credit or take deposits. This spot market maker's

share of transactions trended up relative to the Clump, but remained less than half as

large, and covered a somewhat narrower range of goods, almost none of them of high

value.

Speculators. A (long) speculator builds up inventory of a particular item

whose price he expects to rise, and later sells it o�, making a pro�t if his expectation

is correct. (Short speculation seems infeasible in TF2.) To detect speculative behavior,

we applied the Wald-Wolfowitz runs test (Bradley, 1968) to a given trader's sequence
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of transactions in a given good. A run ends and a new run begins each time the trader

breaks a sequence of consecutive buys with a sell, or breaks a sequence of consecutive sells

with a buy. We classify the trader as a suspected speculator if the Wald-Wolfowitz runs

test Z-score falls in the p = 0.001 lower tail under the null hypothesis of exchangeability

(essentially, serial independence). That is, suspected speculators tend to have relatively

few (hence relatively long) runs, suggestive of inventory accumulation and liquidation.

Table 2.2: Proportion of All Trades of Selected Items Involving Speculators By Item
Quality

Item All Qualities Normal Vintage Strange Unusual
Alien Swarm Parasite 2.0% 3.8% 0.8%
Batter's Helmet 0.3% 0.3% 16.7% 0.0%
Demoman's Fro 0.2% 0.4% 0.0% 0.0%
Fancy Fedora 0.1% 0.1% 0.2% 0.4%
Fast Learner 0.0% 0.0%
Football Helmet 0.4% 0.6% 12.8% 1.0%
Ghastlierest Gibus 1.9% 3.4% 0.0%
Killer's Kabuto 0.2% 0.1% 1.1% 0.0%
Merc's Pride Scarf 0.1% 0.1%
Mining Light 0.1% 0.2% 0.0% 0.0%
Professional's Panama 0.2% 0.2% 9.3% 0.1%
Prussian Pickelhaube 0.2% 0.1% 11.3% 0.0%
Pyro's Beanie 0.2% 0.0% 8.0% 0.0%
Soldier's Stash 0.2% 0.4% 0.1% 0.0%
Solemn Vow 2.2% 2.5%
Triboniophorus Tyrannus 0.7% 1.3% 1.1% 0.2%
Trophy Belt 0.1% 0.1% 0.0% 0.1%
Your Eternal Reward 1.1% 1.3% 0.1%

Suspected speculator trade volume as a percentage of total trade volume for selected items. The four

columns furthest right report, respectively, normal (unique), vintage, strange and unusual quality

items; �rst column shows percentage over all four qualities. Bold values are greater than 5%.

We examined the 72 items (18 goods each with 4 qualities) shown in Table

2.2, chosen because price trends seemed conducive to speculation. The share of trades

by suspected speculators is mostly well under 5% of overall trading volume. The only
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exceptions are �ve of the vintage quality goods where that share reached 5 to 16.7%;

all �ve exceptions are attributable to a single account that traded over 1000 of each

of those hats but never had a maximum position of greater than 100. So this suspect

was not really a speculator, it seems, but perhaps instead was a hobbyist or an erratic

middleman.

So far we haven't found any traders making large pro�ts via speculation; all

our evidence suggests that speculation is not a major TF2 economic activity. This may

help explain the puzzle of how it was possible to sustain for so many months a steady

depreciation of metals against keys.

Brokers. Another sort of trade specialist facilitates trade of valuable items

between two parties who trust the specialist but not each other. For example, trader A

may agree to send US$100 to trader C in exchange for a very special hat. Trader B (a

broker or escrow agent) might agree, for a modest fee, to hold the money transfer until C

sends him the hat, and then to send C the money and send A the hat. We have no data

on outside money transfers, but can observe B engaging in two one-way trades in rapid

succession for the same good; the signature is a short holding time and specialization in

particularly high value goods.

We screen for brokers by analyzing the complete transaction history of goods

available in unusual quality with a particular e�ect that tends to command prices of at

least 20 keys. We then search for individual accounts which displayed at least twenty

episodes of receiving a high-value good in a one-way trade which is then delivered in a

second one-way trade within 48 hours. In the �rst three such accounts we detected, we
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Figure 2.7: Weekly normalized item strength si in weighted goods networks

very conservatively estimate the value of brokered exchange at 5000 keys or US$12,500;

the median holding time was 7 minutes.

Our sampling of unusual grade goods so far has detected tightly-de�ned bro-

kerage in 9 to 15% of all of the trades involving these high value goods trades. We

conclude that brokerage plays a substantial but not dominant role in TF2's markets for

high-end goods.

2.4.2 Goods Network

For goods networks, the main questions are whether traders eventually abandon

barter in favor of monetary exchange, and whether transactions costs decline substan-

tially as the market matures.

Strength. As a �rst clue on barter versus money mediated exchange, we

consider item strengths. Figure 2.7 graphs the strengths of every item in the TF2 goods
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network, normalized so that the strengths of all items always sum to 1.0. Putting aside

for the moment the top line, we see that Keys account over 20% of the trade value by

the end of the sample. Both Earbuds and Re�ned Metal are about as important as Keys

in early 2012, but by the end of the sample each is around 10%. (Earbuds traded for

about 40 units of re�ned metal at the start of the sample and over 140 units by the

end, so re�ned metal's high strength also indicates very large trade quantities.) These

three items are strongest, but another three also show consistent strength: Bill's Hat

and Reclaimed and Scrap Metal. The other items that show up on the graph are Max's

Severed Head (actually a hat), the Hat of Undeniable Wealth and Respect (HOUWAR),

as well as blips for special event keys and crates.

Since metals are convertible in both directions at a �xed rate (three units of

lesser-quality metal to one of next higher value type), it makes sense to combine the three

grades of metal into a single composite. We tentatively de�ne money as the combination

of metals, keys, earbuds and Bill's hats. Although relative prices can vary among these

four components, we will see later that they all serve as media of exchange.

Simply summing the four components' strengths, we approach the 50% bench-

mark for idealized monetary exchange. Does this mean that barter has disappeared?

Not necessarily; some of the sum comes from �currency market� trade, i.e., from edges

within the set of four (originally 6) nodes. A better indication of the extent of mone-

tization comes from collapsing these four nodes into a single node and calculating its

strength in the resulting goods network, as shown in the top red line of Figure 2.7. We

see that the four money items jointly account for about 30 to 34% of value �ows in the
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Figure 2.8: Weekly assortativity A(Z) in goods networks

Connected orange dots and green triangles indicate respectively the unweighted (binary) full network
and reduced (single money node) network values, while dashed blue squares and dashed purple indicate
the corresponding weighted network values.

reduced network � quite a lot but substantially below the benchmark.

For an alternative perspective, see Figure 4.4 in Appendix A1, which shows a

combination of node degree and node strength. As one might expect, the lower denom-

ination currencies look more important with this metric, and there is an overall upward

trend due to increasing number of distinct traded items over time.

Assortativity. Figure 2.8 shows that unweighted goods networks have as-

sortativity A(Zb) that remains very close to zero, but that assortativity A(Z) in the

weighted networks, computed using equation (4.6), is surprisingly negative, even com-

pared to the internet wiring benchmark. We just saw that the tentative money items

have weighty edges with each other, so we again collapse them into a single composite

good and obtain extremely negative assortativity, around -0.5. This is a very strong hint

that other goods tend to trade with this composite good, so it may indeed be the main
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Figure 2.9: Weekly betweenness centrality B(n) in weighted goods networks

The top line pertains to the network with six nodes collapsed to one (�Money�) node; other lines pertain
to the full goods network.

medium of exchange.

Betweenness. The most de�nitive evidence on money comes from the be-

tweenness metric B(n). Figure 2.9 shows that B(n) is essentially zero for the vast

majority of goods. All long-lived exceptions are among the tentative money goods, es-

pecially keys and re�ned metal, each with betweenness usually in the 60-80% range.

(Short-lived exceptions are mostly event keys and crates, which seem to be substitutes

for ordinary keys as media of exchange � their up spikes in Figure 2.9 coincide with

down spikes for keys, especially around the 2012 holidays and the end of the sample.)

Once again, we reconstructed the goods network with the same composite

money good as before. The top red line of the Figure shows that even in the �rst week

over 85% of trade by value went through composite money, and within a few weeks,
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Figure 2.10: Weekly betweenness centrality B(n) for low value transactions

Involving only items valued below 0.95 keys

virtually all trade did so for the rest of the data sample. We interpret this as conclusive

evidence that the TF trading platform completed its transition to monetary exchange

by October 2011.

The question now remains, why are there four money goods (or six, including

separate grades of metal) rather than just one? Some relevant evidence appears in

Figures 2.10 - 2.12, which break down the goods networks by the maximum price of the

(non-money) goods involved in the transaction.

Metal, especially re�ned metal, is the main sort of money used in the low value

transactions. Figure 2.10 shows that keys also play a role here, and that special event

keys are close substitutes when they appear. For mid-tier items, Figure 2.11 shows

that keys have dominated since late 2011; re�ned metal plays a supporting role that

diminishes over time. For top-tier items, Figure 2.12 shows that earbuds and Bill's hats
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Figure 2.11: Weekly betweenness centrality B(n) for medium value transactions

Involving only items valued valued between 0.95 and 5 keys.
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Figure 2.12: Weekly betweenness centrality B(n) for high value transactions

Involving only items valued valued above 5 keys.
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Figure 2.13: Weekly normalized closeness distribution for the weighted goods network

Computed via equation (4.8) divided by the weekly number of goods, and scaled so that median is 1.0
in the �nal week. Line is median and shaded ribbons emanating from median span 25th - 75th, 10th -
90th, and 5th - 95th percentiles.

come into their own, though keys are almost as important early on and eventually attain

the highest betweenness centrality even in this segment.

Closeness. Figure 2.13 shows the distribution of normalized closeness C(n)

on a weekly basis. The distributions are usually unimodal and don't have especially

long or fat tails. (By contrast, the betweenness centrality distributions are very skewed

as B(n) is quite large for a handful of goods and very close to zero for everything else.)

Between the �rst few weeks and the last, median closeness increases seven fold while

the shape seems to change little. The big jump in mid February 2012 seems to be due

to mainly to allowing trade in previously untradeable items and improvements in the

user interface; the number of trades and traders nearly doubled at this time. Overall,

the Figure shows that shortest paths between goods became weightier and shorter over
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time, i.e., it became easier and easier to trade one arbitrary good for another.

2.4.3 Price Dispersion

Did the emergence of money and specialist traders improve e�ciency? More

speci�cally, did transactions costs decline and prices become more uni�ed? In a monetary

economy, the most direct measure of transactions cost is the spread between bid and

ask prices, the current cost of a round-trip transaction. That is, the direct measure is

the net loss (as a percentage of the mean price) when you sell an item at the highest bid

price and immediately repurchase it at the lowest ask price. Since bid and ask prices

are not part of our data set (nor did they exist in TF2 during this time), we need an

observable proxy for transactions costs.

As explained in the Appendix, we believe that SIQR, the interquartile price

range scaled by the median price, is a good proxy for transaction cost, as well as a

robust direct measure of price dispersion. It also aggregates well across goods (see

equation (4.17) and surrounding discussion), so we take its value-weighted average as in

Figure 2.14.

The Figure shows that overall SIQR is quite high in the Summer of 2011, but

by Winter 2011 it declines to under 50 percent, and is mostly in the 25-35 range in 2012.

We infer that a typical (in terms of value) round trip trade would return only about

100-75 = 25 percent of its original value in early months, but would return 65-75% in

2012. The overall SIQR spikes brie�y during promotion events, probably due to the

in�ux of new traders and new goods of unclear value. In 2013 SIQR declines modestly
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Figure 2.14: Overall price dispersion as a percentage of mean price

Gray dots show daily value-weighted averages of normalized interquartile range, and black lines show
trailing value-weighted 7-day averages, over all items with at least 100 price observations in previous 30
days. Vertical shading indicates promotion events.

and mostly remains below 25, and in the last few days of our sample it falls to about

16, suggesting that round-trip costs are about one sixth of original value.

The emergence of the Clump in October 2011, and its sudden disappearance

for ten days at the end of July 2012, had no discernible e�ect on SIQR. As noted earlier,

the thickest bilateral market is keys-for-metal, and there SIQR drops below 10 percent

in October 2011. From January 2012 until the end of our sample, the SIQR for that

money conversion rate mostly bounces around in the 3-8 percent range, while that for

earbuds is mostly around 5% and that for Bill's hat is mostly around 12%.
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2.5 Discussion

What conclusions can we draw from our results? Although Valve engineers

created a trading platform that was entirely egalitarian, we found that several sorts of

specialists soon emerged to facilitate trade. The node strength distribution in the trader

network grew a longer and fatter upper tail, and then calved o� sets of very large traders

with di�erent specialities and di�erent business plans.

One set of nodes evidently was controlled by a single entity (we call it the

Clump) that traded actively in a wide range of commodities and maintained modest

inventories. We see the Clump as a classic intermediary. It earned a modestly pro�table

spread between buy and sell prices and o�ered trade credit secured by deposits. An

apparent competitor emerged later, a market maker in low- to mid-value goods via spot

transactions. Another specialist (MoneyChanger, as we call it) made the market for

key-metal exchanges, the weightiest edge in the entire TF2 economy. Evidence so far

suggests a substantial role for brokers (or escrow agents) in the market for high-end

goods, but little role for speculators. The dramatic drop in trader network assortativity

in the �rst year suggests that, taken together, the specialist traders indeed facilitate

trade, reducing small traders' search costs and frictions.

The results on goods networks are equally enlightening. Although Valve de-

signers created perhaps the most e�cient barter platform that the world has ever seen,

the evidence indicates that nevertheless indirect, monetary exchange soon evolved. Be-

tweenness metrics show that the composite money good was already quite prevalent by
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the time our data sample begins, and became essentially universal in exchange within a

few more months, consistent with classical economists' writings on money.

We found that the money composite in TF2 consisted of 6 distinct goods (or

4, if one lumps together the three di�erent grades of metal). In our interpretation, the

multiplicity of commodity monies is due to the indivisibility of TF2 goods. Indivisibil-

ity limits the competition between low- and high-denomination commodity moneys; it

is awkward to trade dozens or hundreds of units of a low denomination money for a

valuable good, or to make change when paying for a cheap good using a unit of a high

denomination money. Thus a high denomination money good may be a complement

rather than a substitute for low denomination money.

Indeed, although only one good, the dollar, is money in the US, it is also true

that coins and bills are indivisible. Four popular denominations (quarters, 1-dollar bills,

5's, 20's) span two orders of magnitude in value. Likewise, in TF2 trading, proto-money

goods may compete within each denomination range �Max's Severed Head, HOUWAR,

earbuds and Bill's hats seem to have competed with each other in the high range with

only the latter two surviving as media of exchange, but none of these items seemed to

compete with metals in the low range.

The sustained increase in the closeness metric suggests easier trading as TF2's

market institutions matured. More direct evidence comes from our measure of price

dispersion, SIQR, which also serves as a proxy for transactions costs. The overall value

of SIQR dropped sharply during the �rst year from around 75% to well under 50%,

and by the end of our sample was below 25%. Even in the thickest markets, SIQR
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remained substantially above the 0% level implied by a strict Law of One Price. Our

interpretation is that indivisibilities remained important for low to medium value goods,

and that markets remained thin for high-end goods.

Each economy, including the modern global economy that we all inhabit, has

its own peculiarities, and one must be cautious in generalizing. Our paper contributes

some new evidence on how economies can self-organize, a new data point to combine with

those already available. This new data point may be especially useful because it comes

with unprecedented detail on transactions, and is relatively independent of those already

known by historians. We cannot conclude too much from the TF2 economy alone, but it

does add new support (and new caveats) to classical perspectives on money, and to the

view that institutions emerge spontaneously to reduce transactions costs and facilitate

trade.

Much work remains. Towards the end of our sample, the Steam Trading plat-

form supported considerable trade for virtual goods for games other than TF2, and some

trades crossed the boundary between di�erent games. We conjecture that these data

may provide a new perspective on international �nance questions, especially those con-

cerning what happens when previously separate economies begin to interact with each

other. Valve and its user community both continue to innovate, so the story continues.

Our main technical contributions are to propose new ways to construct two

di�erent networks from barter transactions data, and new ways to adapt existing network

metrics in order to describe how these networks evolve. We hope that our readers are

inspired to further re�ne and extend these metrics, and to build testable models of how
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architectures change endogenously in large networks.
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Part II

Part 2: Coordination in Lab

Experiments
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Chapter 3

Minimum e�ort coordination in continuous

time - An Experimental Analysis with

changing payo� structures

Written with coauthors Thomas Campbell and Maren Tonn

3.1 Introduction

The minimum e�ort game has been the subject of experimental inquiry follow-

ing the archetypal example of Anarchia from Hirshleifer (1983). Anarchia is a circular

island which is split into a set of equally sized wedge pieces with corresponding identical

coastlines. Each wedge is owned by a di�erent denizen. It is periodically threatened by

�oods, which require residents to build walls on their coastlines. If your wall is shorter

than your neighbors, then the entire island is put at risk of �ooding. If you build it
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taller than your neighbors, then you have wasted e�ort. But not all examples of the

minimum e�ort game are so contrived: Target stores famously had their payment net-

work breached in 2013, leading to the loss of hundreds of millions of customers' personal

information including credit card numbers. The hacker that was responsible broke in

through a third party HVAC system which Target had given network access. As it turns

out, network security is only as strong as the most vulnerable access point. Obviously,

the HVAC vendor whom Target had granted network credentials did not put forth the

same amount of e�ort in their network security that Target had.

Literature on minimum e�ort coordination games is extensive, starting with

Van Huyck et al. (1990). The fact that it only takes one player to cause a collapse of

Pareto optimal coordination makes this game especially interesting. This means that the

risk dominant equilibrium is the opposite of the payo� dominant equilibrium, so there

is no possibility for players to increase their own payo� at the cost of their neighbors.

Since everybody's payo�s necessarily either rise together or fall together, one might think

that it should be an environment conducive to coordination. But experimental work has

demonstrated that coordination in a repeated version of the game is in fact generally

quite poor. It is this puzzle which has motivated a wide body of examination, including

allowing communication between participants and increasing the number of discrete

periods. We hope to illuminate another situation which may solve the coordination

problem which has motivated previous research. Our approach is to have participants

interact with each other in a novel way.

One of our primary contributions is the application of a continuous time struc-
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ture rather than repeated discrete periods used in most prior exploration of the minimum

e�ort game. Continuous time interaction may be su�cient to solve the coordination dif-

�culties experienced in much of the existing literature because it e�ectively turns every

period into an in�nite number of repetitions, and increasing repetitions has been shown

to increase coordination rates. It also, when combined with high information about

other players' decisions, e�ectively o�ers participants a non-explicit way to communi-

cate through signaling. Continuous time is also a natural approach for experimentation

in general as it is closer to the speed of adjustment in real world dynamic systems. To

our knowledge, there are only two studies focusing on coordination games in continuous

time (Deck and Nikiforakis, 2012; Leng et al., 2016). Both studies implement a minimum

e�ort game, but vary substantially from our study. They vary available information and

compare results to discrete time.

Continuous time in experimental research is still relatively unexplored. Previ-

ous experimental studies that implement decision making in continuous time included

the Prisoner's Dilemma (Bigoni et al., 2015; Friedman and Oprea, 2012). Both studies

show high cooperation rates.

The �nal inspiration for our work comes from the growing experimental re-

search of Gradualism as in Ye et al. (2014) and Kamijo et al. (2016) as a tool to improve

coordination. They examine the e�ect of slowly adjusting the environment in which ex-

perimental participants act and �nd that it tends to produce better group coordination.

Due to this evidence, we believe that a combination of continuous time along with Grad-

ualism approaches can provide a solution to the fundamental problem of coordination
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failure in this environment.

We test whether the extension of the game into continuous time without Grad-

ualism is su�cient to induce socially optimal coordination. We alter payo� function

structures of the minimum e�ort game in continuous time in two ways. First, we com-

pare two levels of a penalty parameter that determines the extent to which deviation

from minimum play is punished. Second, we focus on gradual changes of the payo�

function structure by changing the penalty parameter within period. Our motivation

for using this sequence of payout structure transformations is to manifest a norm for

coordination �rst in an easier version of the game before we change it to a di�erent

game.

Our results show signi�cant di�erences with respect to di�erent payo� struc-

tures in the �rst part. Continuous time alone is not su�cient to reach coordination

when the punishment for deviating from minimum play is high. When implementing

two di�erent forms of payo� changes, we do not �nd high rates of group coordination on

socially optimal equilibria as expected, but we do observe more successful coordination

when compared to constant severe punishments lasting the full period.

The rest of the paper is organized as follows. First, we introduce relevant

literature; next we present our design and hypothesis; �nally we present our results for

both parts, and discuss our �ndings
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3.2 Literature

Van Huyck et al. (1990) are credited with one of the �rst studies of mini-

mum e�ort games, where the minimum play in a group determines individual payo�s.

They used large groups of 14 and 16 subjects. The only information made available

to players over the 10 repetitions of the game was the previous group minimum. They

experimented with adding a `penalty parameter' to punish deviation from the mini-

mum. They found convergence to the lowest Pareto-ranked equilibrium when deviation

from the group minimum is punished. They also experimented with group size with a

penalty for deviation. With pairs of subjects they found that nearly all of these pairs

converged to the Pareto-dominant equilibrium, whereas larger groups exhibited more

trouble coordinating on higher Pareto-ranked equilibria.

A variety of studies introduce mechanisms to improve e�ciency in coordination

games. Cachon and Camerer (1996) improve coordination in minimum and median e�ort

games by charging a participation fee to enter into the game. In Weber et al. (2001), an

appointed leader giving a speech before the decision does not lead to higher e�ciency .

Van Huyck et al. (1997) reports evidence that a good start is a good predictor of better

group coordination as in for median e�ort games, indicating that there may be path

dependency in outcomes.

Further minimum e�ort games show that repetition improves coordination and

information about the decisions of other players increase minimum play (Berninghaus

and Ehrhart, 1998, 2001). Both studies underline the potential of continuous time games
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with high information availability as continuous time can be conceived as an in�nite

number of di�erential time periods.

The only studies on the minimum e�ort game in continuous time are Deck

and Nikiforakis (2012) and Leng et al. (2016). Deck and Nikiforakis vary information

about the other players in a real-time game that is repeated 10 times. Participants can

change their play at any time during the period and everyone the lowest e�ort level.

But only the decisions at the last moment count towards the payo�, so signalling was

e�ectively costless. This experiment uses the payo� structure of Van Huyck et al. (1990)

and generally �nd a high level of coordination. Leng et al. (2016) compares continuous

and discrete time formulations of the minimum e�ort game and �nd coordination on

higher equilibria in continuous time, but only when subjects receive information on all

other subjects' decisions.

The �nal body of literature from which we draw inspiration is the work on

�Gradualism", including Kamijo et al. (2016) and Ye et al. (2014). Kamijo et al. (2016)

introduce a minimum e�ort coordination game that gradually changes and gets more

di�cult from period to period. They compare an exogenous form of Gradualism to forms

with di�erent mechanisms that are endogenously determined. They limit the game to

a 2x2 matrix game in the �rst period and adjust the number of strategies available to

participants. In the exogenous version one additional choice is added every period while

in the endogenous treatments additional choices are added or removed depending on the

level of coordination in the preceding round. They found that gradual treatments were

associated with a higher degree of coordination when compared to controls.
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In Ye et al. (2014), the di�culty and pro�tability in a coordination game with

binary choices and groups of four players are varied using sharp and gradual changes.

They use a discrete environment and a constant game structure. The found higher

e�ciency in the Gradualism treatments than when changes happened suddenly.

3.3 Experimental Design and Procedure

This experimental study analyzes decision making in a minimum e�ort coordi-

nation game that is implemented in continuous time. First, we introduce the basic game

followed by the exact payo� structures that depends on our treatments.

The Game Subjects are placed within a group of 4 players. Their payo�s are deter-

mined by their individual decision along with minimum e�ort of their group. The �ow

payo� πi at a speci�c point of time of player i is determined as follows:

πi(ei, e−i;β) = ê− β(ei − ê) (3.1)

where ei ∈ {1, 2, ..., 10} is the �e�ort" chosen by player i, ê = minj ej for

j ∈ {1, 2, 3, 4} is the minimum e�ort out of all four players in player i's group, and

β ≥ 0.

Because this is a continuous time environment, the payo� earned in each period

is calculated by taking the time integral of the �ow payo�s with the period duration

87



normalized to one. For example if a player has a �ow payo� of 2 for half of a period and

a �ow payo� of 4 for the other half, the total payo� from �ows for that period will be 3.

Players start each period with an initial endowment of three points which is added on

to their total payout resulting from the �ows in each period.

We refer to β as a �penalty parameter". It represents how punishing it is for a

player to select a position higher than the group minimum. A large β means that it is

relatively more costly to deviate from the group minimum.

At a penalty parameter of zero (as examined in Van Huyck et al. (1990)), all

players have a weakly dominant strategy to chose the maximum e�ort level. But for

any positive penalty parameter, there is no longer a weakly dominant strategy and any

set of strategies such that ei = ej for all i 6= j is a Nash Equilibrium. For all of our

treatments we implement β, so that 0.1 ≤ β ≤ 2.5. We select the lower bound of β

to conform with previous experiments and choose a larger upper bound than is used in

any literature to implement a particularly strenuous test of coordination. Next, we will

introduce our treatments that vary β between and within treatments. Table 3.3 shows

an overview of the treatments.

Constant Treatments. In a �rst step, we vary the penalty level β between periods

in a within-subject design. In treatment MILD the penalty parameter is always equal

to 0.1. In treatment SEVERE it is always equal to 2.5. These penalty parameters lead

to possible payo�s displayed in Table 3.1 and 3.2. The MILD penalty parameter is in

a similar range as standard coordination games have implemented Van Huyck et al.
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Table 3.2: Payout with penalty parameter of .1 (top) and 2.5 (bottom)

Group Minimum

10 9 8 7 6 5 4 3 2 1

10 10 8.9 7.8 6.7 5.6 4.5 3.4 2.3 1.2 0.1

9 9 7.9 6.8 5.7 4.6 3.5 2.4 1.3 0.2

8 8 6.9 5.8 4.7 3.6 2.5 1.4 0.3

7 7 5.9 4.8 3.7 2.6 1.5 0.4

6 6 4.9 3.8 2.7 1.6 0.5

Player's decision 5 5 3.9 2.8 1.7 0.6

4 4 2.9 1.8 0.7

3 3 1.9 0.8

2 2 0.9

1 1

Group Minimum

10 9 8 7 6 5 4 3 2 1

10 10 6.5 3 -0.5 -4 -7.5 -11 -14.5 -18 -21.5

9 9 5.5 2 -1.5 -5 -8.5 -12 -15.5 -19

8 8 4.5 1 -2.5 -6 -9.5 -13 -16.5

7 7 3.5 0 -3.5 -7 -10.5 -14

6 6 2.5 -1 -4.5 -8 -11.5

Player's decision 5 5 1.5 -2 -5.5 -9

4 4 0.5 -3 -6.5

3 3 -0.5 -4

2 2 -1.5

1 1

(1990). The SEVERE penalty parameter shows a di�erent payo� structure with losses

being possible.

Changing Treatments. In a second step, we implement two additional treatments.

We vary how the penalty parameter is changing from MILD to SEVERE within each

period. We introduce the treatments JUMP and GRADUAL. In JUMP, the penalty

parameter discretely changes from 0.1 to 2.5 at the 15 second mark. In GRADUAL,

the penalty parameter adjusts from 0.1 to 2.5 continuously over a 30 second interval,

starting at the 15 second mark. Table 3.3 presents a summary of all treatments.

Each session consists of 12 periods, 6 periods of each of the two treatments. In
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Table 3.3: Treatment Overview

Treatment Name Description

1 MILD Penalty Parameter is equal to 0.1 for the duration of the period
2 SEVERE Penalty Parameter is equal to 2.5 for the duration of the period
3 JUMP For the �rst 15 seconds of the period, the penalty parameter is

equal to 0.1, then is set to 2.5 for the rest of the period
4 GRADUAL Penalty parameter is 0.1 in �rst 15 seconds, then over the next

30 seconds increases linearly to 2.5 where it remains for last 15 seconds.

one set of sessions MILD and SEVERE are implemented. In the other set of sessions

GRADUAL and JUMP are varied (compare Table 3.4). Prior to the �rst period, par-

ticipants are randomly assigned to one of two matching groups of size 8. In each period

participants are rematched into subgroups of 4. Each period subjects are playing with a

di�erent group of players and we receive two independent observations per session. This

results in eight independent observations per treatments.

Table 3.4: Sessions

Session Treatment No. of Subjects

1-4 MILD & SEVERE 16 per session (8 independent observations)
5-8 JUMP & GRADUAL 16 per session (8 independent observations)

At the beginning of each period, each player is randomly assigned a starting

position from (2,4,6,8) and no position is repeated in a single group. This di�ers from

many other studies such as Leng et al. (2016) which allowed participants to select their

starting position and Deck and Nikiforakis (2012) which started participants at the

minimum. From Van Huyck et al. (1997), we know that there is evidence of path-

dependency (the higher the initialization position of subjects, the more likely the Pareto-

dominant outcome is chosen) in the outcome of the group, so the starting value is an

important design consideration.
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Movement from one position to another is not instantaneous and occurs at a

�xed rate of two units per seconds. This process has been termed a �speed limit" in

Kephart and Rose (2016). Subjects select their position target asynchronously and the

software updates every 0.17 seconds. This speed limit is analogous to a time cost of

adjustment; using the network security example, it takes time and resources to adjust

the amount of security protecting one's network, whether they want to change it to a

higher level or a lower level. Both of these design decisions are also intended to emphasize

the continuous time action space and distinguish it from a discrete choice game.

Procedure. We conduct 8 sessions with 16 participants each for a total of 128 partic-

ipants. The experiment is conducted at the LEEPS Lab at UC Santa Cruz in February

2016. Subjects are students of UC Santa Cruz and recruited via ORSEE (Greiner,

2015). The experiment is implemented with Redwood 2 (a successor of ConG, Pettit

et al. (2014)). Subjects receive a show-up fee of seven USD. A second experiment was

conducted immediately following this coordination game and the show-up fee is paid for

participating in both. On top of that, participants receive $0.70 times their mean points

earned per period over the session. Therefore, all periods contribute to the �nal earnings

of each participant. Average payments excluding the show-up fee were $4.32 in constant

treatments and $4.47 in sessions with changing penalty parameter. Paper instructions

were distributed and all subjects had the opportunity to read the instructions at their

own pace. Afterwards, subjects were given a series of questions on the screen designed to

ensure that everybody understood how payo�s were determined. There were no practice
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periods. On average the experiment took 30 minutes (including instructions and control

questions).

3.4 Theoretical Predictions and Hypotheses

This experiment examines a minimum e�ort game that is implemented in con-

tinuous time. Within a group of four participants, payo�s are determined by the indi-

vidual decision and minimum play of the group. During a period players can change

their decision at any time and have full information about the current e�ort of the other

three players that they are matched with for that period. Chosen e�ort e can be any

integer between 1 and 10.

Therefore, there are ten static Nash equilibria in this game which occur at any

combination of ei∈N for which ei = ej for all i and all j. The Nash equilibria in this

game are Pareto ranked and higher equilibrium group minima generate higher social

welfare.

To evaluate the results we use the minimum group play M and mean absolute

deviation (2). Mean absolute deviation is the average deviation from the minimum

across a particular group and thus equals 0 when a group is playing at any equilibrium.

Mean Absolute Deviation =

∑4
n=1(deviation from minimum)n

4
(3.2)
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We study averages over the whole period, the last 15 seconds and the endpoints of a

period. In addition, we examine the development over the time within periods.

In the �rst set of sessions, we only vary the penalty parameter between periods

so that it is constant within each period. In the second set of sessions, the penalty

parameter changes within the period. The �rst question this study seeks to answer is

whether continuous time and high information availability is su�cient to induce coor-

dination to near Pareto optimal levels. Previous studies (Van Huyck et al., 1990) have

shown that coordination on Pareto-superior equilibria is more di�cult to achieve when

a penalty is imposed for deviations away from the group minimum. Our treatments

include information about the other players position, this can facilitate coordination

(Berninghaus and Ehrhart, 2001; Knez and Camerer, 1994).

Berninghaus and Ehrhart (1998) show that the degree of coordination to su-

perior outcomes is sensitive to the number of iterations of a discrete time coordination

game, even if overall session duration is �xed. When subjects play 90 rather than 10

periods, they tend to coordinate on better outcomes. Continuous time action e�ectively

has our subjects act in an in�nite number of di�erential time periods, since at each mo-

ment they have the opportunity to choose an action. In this light, our subjects e�ectively

have much more than 90 periods in which to act.

Hypothesis 1: Our �rst hypothesis is that players coordinate on equilibria with higher

outcomes when the penalty parameter is MILD than in when it is SEVERE.
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When the penalty parameter is relatively smaller, the penalty for o�-equilibrium

play is relatively lower as well. Attempts to persuade other participants in one's group to

increase their e�ort by playing above the group minimum are less costly. We hypothesize

that participants will be more willing undertake these sorts of forward looking strategies

when it is relatively less costly to do so, in which case we anticipate coordination to

higher average group minima in MILD compared to SEVERE treatments.

Knez and Camerer (1994); Van Huyck et al. (1997) report evidence of path-

dependency in equilibrium selection. If people initialize with a high group minimum, that

high degree of coordination tends to carry through the full session. We hypothesize that

starting a period with a mild penalty level will induce coordination to �good" equilibria

and that this coordination will carry through to the end of the period even if the penalty

parameter is increased later in the period. In this case, we would expect the average

group minimum to be higher for the �nal 15 seconds of periods in the GRADUAL and

JUMP treatments than it would be in the case that the penalty was high from the

beginning.

Hypothesis 2: Our second hypothesis states that when shifting the penalty parame-

ter from MILD to SEVERE (in treatments JUMP and GRADUAL), during the last 15

seconds, where the penalty parameter is severe in all three treatments, coordination will

be higher in JUMP and GRADUAL than in the constant SEVERE treatment.
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Kamijo et al. (2016); Ye et al. (2014) both found that slow and gradual adjust-

ment led to higher levels of coordination in their discrete time games when compared

to no adjustment or fast adjustment. This supports our Hypothesis 2. In a next step

we focus on the di�erence between GRADUAL and JUMP. Our GRADUAL treatment

involves the cost of deviation gradually increasing over time and our JUMP treatment

involves it instantaneously increasing to its maximum value. In line with the results of

Ye et al. (2014), we hypothesize that the gradual increase will allow participants to more

comfortably coordinate to higher minimum levels of e�ort and thus we expect that the

minimum group play at the end of the period in GRADUAL periods will be higher on

average than in JUMP periods.

Hypothesis 3: Our third hypothesis states that observed group minima are higher

in GRADUAL compared to JUMP during the �nal 15 seconds of the period, when the

penalty parameter is the same in both treatments.

3.5 Results

3.5.1 Constant Penalty Parameter

In the �rst part of the analysis, we focus on the minimum e�ort in treatments

MILD and SEVERE. Subjects need time for orientation and there were no practice

periods. This leads to learning over time. Figure 4.5 (in the Appendix) underlines

the di�erences between earlier and later periods. Therefore, the analysis of our results
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focuses on periods 5 to 12. This way we do not take into account the results from two

periods per treatment in the analysis. For completeness, results for periods 1 to 4 are

displayed in the Appendix.

Table 3.5: Average minimum e�ort in constant treatments

Treatment Full period Last 15 seconds Endpoint
minimum minimum minimum

SEVERE 2.90 2.89 2.79
MILD 6.23 7.40 7.51

Table 3.5 shows the results of the constant treatments. Over the whole period

the average minimum play is 2.90 in SEVERE and 6.23 in MILD. When only looking

at the period end points this di�erence is even bigger with 2.79 in SEVERE and 7.51

in MILD. During the last 15 seconds of the period, average minimum play is equal to

2.89 and 7.40, respectively. This di�erence is statistically signi�cant (Wilcoxon signed-

rank, p: 0.008, we use matching groups, as independent observations, 8 per treatment).

While we do �nd coordination on high group minima in MILD, continuous time and full

information was not su�cient to lead to high levels of coordination when introducing a

high penalty parameter in SEVERE.

We can look at the development of minimum play during a period. Figure 3.1

shows the development of the average group minimum during the 60 seconds. At the

beginning of the period the minimum is always equal to 2 because one of the players

in each group randomly starts at the point. In MILD the minimum sharply increases

during the �rst 20 seconds. After this, we observe only a small increase. In SEVERE

the minimum only increases for a few seconds and does not increase any further.
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Figure 3.1: Average Group Minimum Play by Treatment

These results are also underlined by Figure 3.2, which shows the distribution of

group minima at the �nal moment of each period. While a majority of groups coordinate

on a minimum of 10 (the Pareto optimal) in MILD, an even larger share of groups

coordinate on 1 (the Pareto pessimal) in SEVERE.

Figure 3.2: Distribution of group minimum play at period end

Result 1: Subjects coordinate on higher minimum play in MILD (in compari-

son to SEVERE). This holds for the average plays across whole period, the average plays
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during the �nal 15 seconds of each period and the average end points of each period.

The di�erence between the treatments increases towards the end of the period.

Figure 3.3: Total deviation, constant treatments

In a next step, we focus on equilibrium play. As long as all players in a group

decide on the same number they are playing a Nash Equlibrium. Figure 3.3 shows

mean absolute deviation. This deviation decreases over time within each period in both

treatments. At the beginning the average deviation is always 3 by construction, since

the four starting positions are �xed across all periods. At the end of a period groups

coordinate well with an average deviation below 1 and mainly agree on one number.

The mean absolute deviation curve is higher in the MILD penalty treatment than in

SEVERE. This is consistent with people being induced to play over the minimum at a

higher rate when the costs of doing so are relatively low. But average deviation in both

cases is around 0.5 by the time 30 seconds have elapsed, indicating that equilibriation is

mostly complete by this time. We did not �nd any signi�cant correlation between the

starting position and the future plays on an individual level (comparing starting position
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with ending position), so we believe that our randomization was e�ective.

Overall, we can show that coordination can arise in a minimum e�ort game in

continuous time, but a SEVERE penalty parameter leads to coordination on an ine�-

cient outcome. Therefore, we observe similar results as literature focusing on discrete

time suggest. In the following part, we will analyze whether this coordination failure

can be overcome with changing the penalty parameter during the period, starting with

MILD.

3.5.2 Changing Penalty Parameter

In our second set of sessions, we vary how the penalty parameter β changes

during the period to see how coordination is a�ected and whether we can reach coor-

dination on a higher equilibrium than when participants were subjected to a SEVERE

penalty parameter for the full period. We vary whether the parameter jumps from MILD

to SEVERE discretely (JUMP) or slowly over time (GRADUAL). This change occurs

after 15 seconds of play every period and treatment order is varied randomly within-

subjects. The summary statistics are presented in Table 3.6. During the last 15 seconds

the average minimum play is equal to 3.75 in JUMP and 4.32 in GRADUAL. At this

time the change of the penalty parameter is over in both treatments. At the endpoint

minimum play values are slightly lower with 3.56 (JUMP) and 3.96 (GRADUAL).

Table 3.6: Summary Statistics: Gradually Changing Treatments

Treatment Full Last 15sec Endpoint
minimum minimum minimum

JUMP 4.27 3.75 3.56
GRADUAL 4.78 4.32 3.96
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Figure 3.4: Average Group Minimum Play by Treatment

Figure 3.4 shows the development of minimum play during the 60 seconds

period. Prior to second 15 (until �rst vertical line), minimum play is increasing similar

to the MILD constant treatment (this similarity is displayed explicitly in the appendix).

At second 15, the penalty parameter changes to 2.5 in JUMP treatment periods and

slowly adjusts over a period of 30 seconds in GRADUAL. The path of observed group

minima correspondingly changes direction when the penalty parameter shifts and starts

decreasing, albeit more slowly in GRADUAL compared to JUMP.

In general, we did not �nd high coordination as expected. In the previous MILD

constant treatment an end of period average of 7.40 was observed. This is signi�cantly

higher than both treatments with changing penalty parameter (Mann-Whitney U test,

p: 0.02 for both comparisons, MILD vs. JUMP and MILD vs. GRADUAL, we aggregate

over matching groups, 8 per treatment).

Figure 3.5 shows the distribution of group minima at the end point of each

period for all treatments. We �nd that the cumulative distribution function (CDF)
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Figure 3.5: Cumulative distribution function of Group Minima at the end of each period

representing JUMP and GRADUAL treatments both are signi�cantly below that of

SEVERE (Kolmogorov-Smirnov (K-S), p: 0.047 (GRADUAL) and p: 0.030 (JUMP))

and above that of MILD (K-S, p<.001 for both). In line with Figure 3.5, we use the

less conservative version and use individual group minima. The results indicate that

the observed distribution of group minima tends to have higher density at higher num-

bers in both of the changing payo� treatments. Therefore, there is an overall bene�cial

e�ect of both, GRADUAL and JUMP, when compared to the constant SEVERE treat-

ment. Still subjects were not able to generate positive outcomes as found in the constant

MILD treatment. A Mann-Whitney test with matching groups as independent obser-

vations only supports the signi�cant improvement of GRADUAL when comparing to

SEVERE (p: 0.065), but fails to �nd signi�cant improvements when comparing JUMP

and SEVERE (p: 0.235).

Result 2: Subjects coordinate on signi�cantly lower minimum play in JUMP
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and GRADUAL than in MILD. But subjects do coordinate on higher minimum play in

GRADUAL and JUMP than in SEVERE.

Mean absolute deviation is decreasing in both treatments similar to the con-

stant penalty parameter treatments SEVERE and MILD. Figure 3.6 shows this devel-

opment over time. About halfway through the average period, participants have an

average deviation of less than 0.5 in both treatments and it stays at approximately that

level until the end of the period, compared to 0.7 absolute deviation in the SEVERE

treatment, and 0.9 in the MILD treatment with constant penalty parameters.

Figure 3.6: Total deviation

When focusing on the di�erences between GRADUAL and JUMP, we can see

that with respect to deviation the graphs are nearly identical. Overall, we cannot �nd

meaningful di�erences between the two treatments GRADUAL and JUMP. Only when

testing using play through the full 60 seconds, do we �nd a signi�cant di�erence between

GRADUAL and JUMP (Wilcoxon signed-rank p: 0.023). But, the penalty parameter is

lower in JUMP than in GRADUAL for the middle 30 seconds of the period, so this result
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is not much stronger than what we found from comparing SEVERE and MILD. When

we test the group minima from the last 15 seconds and the penalty levels are identical

in both treatments, the di�erence is not statistically signi�cant (Wilcoxon signed-rank,

p: 0.195).

Result 3: Over the whole period minimum play is signi�cantly higher in

GRADUAL than in JUMP, but this di�erence diminishes at the end of the period.

Contrary to Hypothesis 3 and the previous experimental �ndings on Gradual-

ism, we �nd that there was no discernable di�erence in outcomes when there was a slow

gradual adjustment upward of the penalty level compared to a sudden shift.

Figure 3.7: Distribution of group minimum play at period end - GRADUAL and JUMP

Figure 3.7 shows the distribution of group minima at the �nal moment of the

period in the changing parameter sessions. This points in the direction that GRADUAL

leades to higher group minima than JUMP but the di�erence is not signi�cant at the

p = .05 level in the conservative K-S test or paired Wilcoxon Rank Sum test.
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3.6 Discussion and Conclusion

In this study, we have implemented continuous time in a minimum e�ort game.

Our results show that when there is a relatively mild penalty for deviation from the

group minimum, groups tend to coordinate to a highly e�cient outcome. In fact, they

coordinate to a group minimum of at least 8 in over half of the periods. But when

deviation is punished severely, continuous time along with full information is not enough

to induce high levels of coordination and a large majority of the time group minima are

3 or lower.

We introduced two mechanisms to overcome these problems. In GRADUAL

and JUMP, we change the payo� structure from MILD to SEVERE within the period.

This form of Gradualism has not been implemented in continuous time games before.

We �nd that the GRADUAL treatment results in signi�cantly higher group minima than

JUMP when looking at full periods, but that there is no signi�cant di�erence with respect

to outcomes during the last 15 seconds, when GRADUAL and JUMP have the same value

of the penalty parameter. We conclude that slow adjustment of the penalty parameter

did not induce a higher level of cooperation in our continuous time environment relative

to a sudden jump, in contrast to previous work which have documented bene�cial e�ects

of slow adjustment in discrete time coordination experiments.

We did, however, �nd a bene�cial e�ect of both of the Gradualism treatments

GRADUAL and JUMP relative to a constant SEVERE penalty when comparing the

distributions of end-of-period group minima for each treatment. We also �nd further
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support that path dependency is an important component of minimum e�ort experiments

when played in continuous time as players being given a period of relatively low penalty

that induces high levels of coordination are more likely to carry their higher coordination

through for the full period even when the penalty level becomes relatively high.

Future research might include the impact of di�erent starting values and speed

of movement. In addition from our results it can be assumed that it is necessary to es-

tablish more stable coordination before changing the payo� structure. Therefore longer

periods or a longer time before introducing a change might be interesting. Nevertheless,

this paper has shown new possible solutions to coordination failure that arises when

implementing continuous time. Further possibilities would be the implementation of

explicit communication, as it is usually only one player that inhibits coordination. The

other players might be able to convince this player of changing their decisions if explicit

communication was allowed.
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Chapter 4

Appendices

4.1 Appendix A

Chapter 1: Pricing in a Barter Economy

4.1.1 Price Weighting Methodology

We use a number of di�erent approaches in generating weights to assign to

individual observations in estimating daily prices. Broadly, these approaches �t into two

categories: �Centered" and �Trailing" (or Leading).

107



4.1.2 Centered Prices Weighted Mean

To calculate an item's mean price for a speci�c day, we start with an interval of

seven days. We collect all SM price observations from three days previous to three days

into the future and remove any price observations above the 9th decile and below the 1st

decile. We drop these extremes because almost all items have many price observations

which are clear outliers and means are sensitive to such outliers. We then apply a

triangular (or, more precisely a trapezoidal) weighting function as illustrated in Figure

4.1

There are initially three days on either side of the day which we are estimating

prices for. Many items are very high volume and thus we have lots of price observations

but for some items, there is relatively low enough volume such that even including a full

week does not give us a large enough number of observations that we are con�dent in

their prices.

Start of Day

24 Hour 
Interval

Total Time Interval
(starts at 7 days)

Total weight 
sums to one

Time

Figure 4.1: Weighting function
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To account for this issue, we de�ne a control system which utilizes the coe�cient

of variation: cv = σ
µ , where µ and σ are the mean and standard deviation of our sample.

Our control system sets a cuto� value for coe�cient of variation c∗v and we calculate

the coe�cient for each item in a given time period citv and if i is true that citv > c∗v, we

increase the window for that item on that day by one day and recalculate. This process

is repeated until the window includes su�cient observations such that citv ≤ c∗v. The

cuto� we use for this process is c∗v = .5 a this number appears to consistently select an

appropriate window width.

4.1.3 Representative Basket Derivation Methodology

In consumer in�ation indexes like CPI these quantities strive to re�ect typical

consumption baskets. In contrast, quantities re�ect producer purchases in input pro-

ducer price indexes and in the Gross Domestic Product de�ater they re�ect production

quantities. Our quantity index re�ects the bundle of goods held by a �representative

player."

4.1.4 Methodology

These representative player inventories were generated by drawing random sam-

ples of users from the active player population, where an active player is de�ned as one

who logged into Team Fortress 2 within ninety days of the sample date. We identify the

average quantity of each TF2 item held in the sampled inventories. But there are some

unique issues with our sampling in this environment due to the presence of an upper
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tail of inventory value distributions composed of people with very large inventory values.

These HNWIs are rare enough that we almost certainly will not have a good balance of

them represented in each time period's active player sample. Increasing our sample size

su�ciently beyond 1% of the population is also technically infeasible given the number

of active players (typically more than 250,000 each week) many of whom possess scores

of items. Without adjustment, the price index could exhibit big movements from one

period to the next due more to sudden shifts in the quantity index than shifts in price.

Our approach to dealing with these HNWIs is �rst to tag the top proportion of

wealth-holding individual users as HNWIs, where we de�ne the inventory value cuto� as

a nominal inventory value above 800 keys, or approximately $1600. If an active player

is classi�ed as a HNWI in one of these censuses, their inventories are logged each week

for the entire year and they are excluded from the non-HNWI sample for that year.

These HNWI players account for approximately 0.3 to 0.4 percent of the active player

population.

We then track inventories of all HNWIs each period along with the random

1% sample of non-HNWIs, and derive average item inventories for each group. The

composition of the basket derived from these 1% samples does not �uctuate greatly from

time period to time period. Finally, the HNWI and non-HNWI representative inventories

are combined weighting item quantities based on each groups' relative proportion of the

overall active player population at each period.

All inventory data excludes individuals who have marked their �Steam Pro�le�

as private. Of the approximately 1,500 unique active players classi�ed as HNWIs, 255
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have been excluded due to this privacy restriction on their their backpacks. Our method-

ology thus assumes the omission of these privacy preferring players does not signi�cantly

bias the representativeness of our HNWI and non-HNWI sample.

Once representative baskets are found for each tier, they are average together

weighted by the relative proportion of each group to the overall population.

4.1.5 Hedonic Estimates of Values of Item Characteristics

Equation 4.1 presents the hedonic model we estimate. We use this simpli�ed

version because the model with time dummies has thousands of regression coe�cients,

far too many to report in a single table. The full model from Equation 1.3, however,

was used to produce Figures 1.7 and 1.8:

ln (pit) = αt +

K∑
k=1

(βk · xit) + εit for t = 0, ..., T (4.1)

For item i in period t, price pit is a function of weekly time dummies, K

time-invariant item characteristics, and an error process. Table 4.1 shows the coe�cient

estimates of the hedonic regression.

All TF2 items are associated with a single �quality". We used the unique

quality for our regression as it is by far the most common as the baseline, and estimates

for each item are premiums or discounts relative to that item's unique version. These

results suggest that vintage items have tended to trade a full 180% above more normal

unique quality ones. All unique quality items that existed on or before September 20th
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Table 4.1: Hedonic Price Model with Time Unvarying Characteristic Dummies

Dependent variable:

log price

Quality (mutually exclusive), Relative to Unique Quality

Genuine 0.9035∗∗∗ (0.0054)

Haunted −0.9255∗∗∗ (0.0077)

Other 5.5827∗∗∗ (0.0621)

Strange 1.9038∗∗∗ (0.0051)

Unusual 3.7819∗∗∗ (0.0042)

Vintage 1.0300∗∗∗ (0.0045)

Item Type (mutually exclusive) Relative to Action Items

Cosmetic 0.4629∗∗∗ (0.0098)

Tool −0.0655∗∗∗ (0.0111)

Weapon −0.5792∗∗∗ (0.0105)

Character Class Equippablility (non-exclusive)

Spy Equippable 0.2507∗∗∗ (0.0041)

Engineer Equippable −0.0392∗∗∗ (0.0042)

Soldier Equippable 0.1775∗∗∗ (0.0037)

Sniper Equippable 0.0674∗∗∗ (0.0043)

Demoman Equippable −0.0869∗∗∗ (0.0039)

Medic Equippable 0.0983∗∗∗ (0.0043)

Pyro Equippable 0.0663∗∗∗ (0.0038)

Heavy Equippable −0.0318∗∗∗ (0.0039)

Scout Equippable 0.2527∗∗∗ (0.0039)

Widely Held Item −1.5229∗∗∗ (0.0033)

(>3% of Active Players)

With Week Time Dummies X

Observations 734,066

R2 0.7449

Adjusted R2 0.7449

Residual Std. Error 1.093(df = 733853)

F Statistic 1.88e+04∗∗∗ (df = 114; 733853 )

Note: Standard errors in parentheses, and ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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2010, when TF2 trading was introduced, were redesignated as vintage. Unusual quality

items tend to attract the highest premium, a full 43000% premium above uniques. All

unusual quality items possess some kind of visual e�ect, like �ames, orbiting planets,

or stinky-smelly lines. Unusual items are particularly rare, as they only appear with

a very small probability from opening a crate and cannot come from any other source,

and it is this rarity which is likely the reason which they command prices much higher

than those of non-unusual items. Strange items, which will track in-game statistics,

tend to exhibit a 571% premium above uniques. Quality �other� appears to attract the

highest premium, however, items of this quality only appeared due to extremely unusual

circumstances, akin to very rare coins minted with imperfections which make them very

valuable to dedicated coin collectors but unavailable and inconsequential to everyone

else, and accounting for only a negligible fraction of all coins. And, like coins, it is likely

that some owners of the oddities are not even aware of the item's value. Thus we tend

to see an extremely small number of transactions involving items of quality �other", but

those transactions indicate that they are worth a small fortune. These, however, are not

very representative of the broader economy.

All tools, weapons, and cosmetic items may be used by only one, some, or

all character classes. Unlike quality or item type, this is non-exclusive designation.

Character classes vary in speed, strength, and other abilities. For example medics are

able heal teammates, and heavies are slow but may in�ict and withstand a lot of damage.

The highest equipability premiums come from items that can be carried by scouts and

spies. Should an item be equipable by a scout, for example, it will tend to garner a 29%
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Figure 4.2: Regression discontinuity on Re�ned Metal stocks

premium relative to a similar item that is not equipable by the scout.

Items that are held by a relatively large percentage of active players, de�ned as

items that appear in more than 3% of active player inventories, tend to exhibit a large

discount, trading for 78% lower than items that are not so widely held. To ensure this

characteristic is time unvarying, the percentage holding statistic is taken on average over

the whole sample. This is included in the regression to account for the potential price

implication of an item's relative scarcity.

4.1.6 Decline of the Aggregate Price Level

Figure 4.2 shows the outstanding item stocks of the primary currency metal,

re�ned metals. Notice that right at the end of October, 2012, there is a sudden increase

in the rate at which re�ned metals are entering into the economy. We argue that this

is due to a major content update released on 26 October 2012. This date marks the
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Figure 4.3: Regression discontinuity on Key stocks

point in time at which metals started their precipitous drop in value. This apparent

positive supply shock appears to have been temporary, as the rate that metal stocks

increase swiftly returns to a rate of increase only marginally higher than its rate prior

to the event. But the fact that the rate of change of the stock of metals slowed did not

correspond to a slowing rate of depreciation.

Figure 4.3 sheds some light on this question. Simultaneous with the sudden

burst of metals that entered the economy, there was a sudden negative supply shock to

our numeraire, keys. This corresponds to the major content update including new types

of crates, leading to many more keys being consumed than purchased for a short period.

The supply of metals suddenly increased and the supply of keys suddenly decreased;

naturally, we would expect this to lead to an increase in the number of metals required

to receive a key in exchange. The rate of increase of keys also appears to slow some-

what. This trend is con�rmed by a regression discontinuity analysis using the following

115



regression equation:

Stocki = β0 + β1DaysToPatchi + β2PostPatchi + β3Interactioni + εi

WhereDaysToPatch is the number of days until the update went live, PostPatch

is a dummy variable that takes a value of zero on days which were prior to October 26

and a value of one after, and Interaction is the product of these two variables. Our

regression estimates are presented in Table 4.2. β1 can be interpreted as the pre-update

rate of expansion of the money supply for each currency and β1 + β3 is the post-update

rate of expansion of that currency, thus β3 is the di�erence in the trends before and after

the cuto�.

Table 4.2: Before and After Halloween Time Trends for Keys (1) and Metals (2)

Dependent variable:

Item Stocks

(1) (2)

DaysToPatch 1,810∗∗∗ 2,560∗∗∗

(59) (47)

PostPatch −90,924∗∗∗ 78,012∗∗∗

(4,552) (3,649)

Interaction −745∗∗∗ 129∗∗∗

(60) (48)

Constant 572,952∗∗∗ 1,457,520∗∗∗

(3,976) (3,187)

Observations 500 500
R2 0.977 0.998

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.2 shows that the daily rate of increase in the stock of keys dropped
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from 1,810 to approximately 1,065, a 41% reduction. Simultaneously, the rate of change

of metals increases slightly from 2,560 to 2,689, an 5% increase. This could explain the

sudden and continuous depreciation; before October 26, keys were entering the economy

at a rate that was not too far o� of the rate that re�ned metals were entering, but after

this event the rates at which the goods entered the economy di�ered drastically, leading

to relative supplies drifting further and further away from each other.

The depreciation of metals can clearly be seen when comparing the nominal

and real values of our representative basket. These are presented in Figures ?? and ??,

respectively. The real value increases at an approximately constant rate as the average

holdings of a representative agent increases over time, but the nominal value levels o�

and starts to decline right as the metal depreciation starts. This is due to the fact that

the most commonly held items are generally metal-denominated and these items see

shrinking key-values starting in October of 2012.
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4.2 Appendix B

Chapter 2: Network Details and Supplementary Anal-

yses

A directed weighted network is described by an I × I adjacency matrix Y =

((yij)). The entry yij ≥ 0 is called the weight of the directed edge (or link) from node

i to node j. By convention, all diagonal elements yii = 0, i.e., nodes do not connect to

themselves.

Simplifying networks. Given network Y = ((yij)), replace yij by ysij =

max{yij , yji} for all i, j = 1, ..., I. The resulting adjacency matrix Y s is symmetric, and

so the network it de�nes is undirected. Likewise, replace every yij > 0 (or alternatively,

every entry exceeding some positive threshold value) by ybij = 1 to obtain the directed

unweighted network Y b = ((ybij)).

Happily, the operation Y 7→ Y s commutes with the operation Y 7→ Y b. That

is, we arrive at the same undirected unweighted network Y sb whether we �rst symmetrize

using ysij = max{yij , yji} and then binarize, or �rst binarize then symmetrize. This is not

true if we symmetrize using ymij = [yij + yji]/2. Hence, besides the empirical advantages

mentioned in the text, the max convention also has a theoretical advantage, which can be

helpful when using metrics (such as node degree) based on simple undirected unweighted

networks.

Node strength and degree. The strength of node i in an undirected net-
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work1 is the sum of its edge weights,

si =
I∑
j=1

yij . (4.2)

The degree ki of any node i is the number of edges of positive weight that include that

node, a nonnegative integer given by

ki =
I∑
j=1

1[yij>0], (4.3)

where the indicator function 1e = 1 if event e occurs and is 0 otherwise. In an unweighted

network, of course, node strength coincides with node degree.

Occasionally it is helpful to distinguish nodes with lots of moderately weighty

connections from nodes with just a few very weighty connections. For this purpose,

following Barrat et al. (2004) and Opsahl et al. (2010), consider Cobb-Douglas combi-

nations

sα,i = s1−αi kαi . (4.4)

Figure 4.4 below reports the middling case α = 0.5, which can be compared to the polar

cases α = 0 (so sα,i = si) and α = 1 (so sα,i = ki) reported in the text.

Assortativity. An assortativity metric is, in essence, the correlation (across

edges) of the strengths of each edge's two nodes. Conceptually, the expression is straight-

1 In a directed network, the expression in equation (4.2) is called the out-strength of node i , and
the expression in the same equation with yij replaced by yji is called the in-strength.
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forward:

A(Y ) = ρ[ij] =
Cov[ij]

V ar[i]
≡ E(si − Es)(sj − Es)

E(si − Es)2
=
E(sisj)− (Es)2

E(s2i )− (Es)2
, (4.5)

where the expectation operator E is understood to average over all edges ij.

The concept is easiest to implement in unweighted undirected networks, once

it is understood that non-existent edges (ij such that yij = 0) are ignored. Newman

(2002) noted that the mere fact that two nodes share an edge means that their edge

counts will be positively correlated, biasing upward the Assortativity calculation. He

therefore proposed replacing node degree by excess degree in such networks, netting out

the edge in question. That upward bias also seems important for weighted networks, so

we de�ne si\j = si− yij as the excess strength of node i for edge ij, with expected value

s̄ = 1
H

∑I
i,j=1 yijsi\j , where H =

∑I
i,j=1 yij . Then the assortativity of an undirected

weighted network Y is

A(Y ) =
1
H

∑I
i,j=1 yijsi\jsj\i − s̄2

1
H

∑I
i,j=1 yijs

2
i\j − s̄2

(4.6)

We have not seen equivalent expressions in the literature (see Noldus and Van Mieghem,

2015 for a recent review). Leung and Chau (2007) uses edge-weighted averages and

covariances but not excess strength in de�ning assortativity for weighted networks. Many

authors follow Newman in using excess degree, but only in unweighted networks. A

caveat: directed weighted networks, not used in the present paper, would require a

separate de�nition of sj\i.

To verify the unbiased nature of de�nition (4.6), we computed A(Y ) for one
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hundred random graphs with the same edge count and edge weight distribution as for

the �rst week of our data. The mean A(Y ) is very close to zero with very small standard

deviation (−0.0002± 0.0024).

Centrality. A node can be considered central if it is on lots of shortest paths.

To formalize this intuition, de�ne a path p = (n1, n2, ..., nk) as a sequence of adjacent

nodes, i.e., nodes satisfying ynini+1 > 0 for i = 1, ..., k− 1. Let Pij be the set of all paths

from node i to node j, i.e., paths satisfying n1 = i and nk = j. De�ne the distance

from i to j along path p ∈ Pij to be the sum of the reciprocals of the edge weights,

L(p) =
∑k−1

1 1/ynini+1 , and de�ne a shortest path from i to j to be any p∗(ij) ∈

argmin{L(p) : p ∈ Pij}. A shortest path is generically unique, and the distance from i

to j is always uniquely de�ned by d(i, j) = L(p∗(ij)). The distance is always positive for

i 6= j, and is smaller when the shortest path has fewer and weightier links (edges). By

convention, the distance is +∞ if Pij = ∅, i.e., if i and j belong to di�erent connected

components of the network.

Following the Brandes (2001) generalization of Freeman (1979), de�ne the be-

tweenness centrality of node n as

B(n) =
∑
i,j 6=n

1[n∈p∗(ij)] /
∑
i,j 6=n

1 ∈ [0, 1], (4.7)

i.e., the fraction of all relevant node pairs ij that have a shortest path that goes through

n.

An alternative intuition is that a node is central if on average it has a short dis-

121



tance to other nodes. Freeman (1979) and Newman (2001) de�ne the closeness centrality

of node n as

C̃(n) = 1/
∑
n′ 6=n

d(n, n′). (4.8)

A problem for our purposes is that if even one node n′ is very weakly connected to other

nodes (or is disconnected) then C̃(n) will be pushed towards (or will equal) zero for all

n. This creates problems in our empirical work, so we prefer to use the less standard

Opsahl et al. (2010) de�nition

C(n) =
∑
n′ 6=n

1

d(n, n′)
. (4.9)

As the sum of reciprocal distances instead of the reciprocal of summed distances, (4.9)

is much less sensitive to the weight of the lightest edge. One can see that C(n) is the

sum of harmonic mean weights (divided by number of edges) along shortest paths from

n to all other nodes. Thus C(n) will increase as distances shorten, as is desirable, but

also as the number I − 1 of other nodes increase. So we will normalize it by dividing by

I − 1.

Transactions. We take as given a �nite set of active traders A = {1, 2, ...,M}

and a �nite set of tradable goods indexed n = 1, ..., N , and consider bilateral barter

transactions observed over some �nite time interval [0, 1]. Such a transaction is speci�ed

by naming the initiating trader i ∈ A, the counterparty j ∈ A, and the net trade vector

x ∈ RN .

Suppose that trader i initiates net trade x with counterparty j at time t. The
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convention is that i's post-transaction holdings ω(i, t) ∈ RN+ are related to her pre-

transaction holdings ω(i, t−) = limε↓0 ω(t− ε) ∈ RN+ via

ω(i, t) = ω(i, t−) + x. (4.10)

Of course, j's holdings satisfy

ω(j, t) = ω(j, t−)− x. (4.11)

Using the notation x+n = max{0, xn} ≥ 0 and x−n = −min{0, xn} ≥ 0, the convention

can be restated by saying that i trades bundle x− to j and acquires bundle x+ in

exchange, so x = x+ − x− is the net trade vector.

Without loss of generality (just drop exceptions from the lists), we can assume

that all M traders transact and that all N goods are traded at least once. Since self-

trades and null trades are meaningless, we can assume without loss of generality that i 6=

j and x 6= 0. Netting out transactions in which a trader both acquires and relinquishes

positive amounts of the same good n, we can say without loss of economic content that

x+ ·x− = 0. For convenience and with only slight loss of generality, we assume that each

price pn > 0, so the price vector is a point in the strictly positive orthant, p ∈ RN++.

Given a price vector p ∈ RN++, the value of the bundle i acquires is v
+ = p · x+

and the value of the bundle j acquires is v− = p ·x−. The transaction is budget-balanced

at p if v+ = v− or, equivalently, if 0 = p · x ≡
∑N

k=1 pkxk.
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Trader Network and Goods Network. Suppose that transactions 〈i(t), j(t), x(t)〉 ∈

A×A×RN are observed at times t = t1, t2, ..., tK , where 0 ≤ t1 ≤ t2 ≤ ... ≤ tK ≤ 1, so

the transactions are indexed by k. Given price vector p, the observed trader network is

a weighted directed network with node set A. The directed edge weight from node ` to

node m is the value of the bundles that ` acquires from m. Thus the trader network is

de�ned by the M ×M adjacency matrix W = ((w`m)) with entries

w`m =
K∑
k=1

v+(tk)1[i(tk)=`]&[j(tk)=m] + v−(tk)1[j(tk)=`]&[i(tk)=m], (4.12)

where 1e = 1 if event e occurs and is 0 otherwise. Thus equation (4.12) ignores all

transactions except those in which `, as initiator or counterparty, acquires goods from

m. Of course, adjacency matrix entries are nonnegative and, by convention, diagonal

entries are zero. If all trades are budget-balanced, then (4.12) tells us that the adjacency

matrix is symmetric so the trader network is undirected.

The same set of transactions also de�nes a goods network. The nodes of this

network are n = 1, ..., N , and the edge weights re�ect the value of transactions in which

one good is part of the exchange for another. We want the N × N adjacency matrix

Z = ((znn′)) to be symmetric because edges represent mutual exchange values of goods

� if the value �ows from good n to n′ for the initiator then it �ows the opposite direction

for her counterparty, and there is no reason here to privilege one party over the other.

Specifying the edge weights znn′ takes some thought when trades involving n

and n′ also include other goods. For example, suppose that the value v−n′ = p−n′x
−
n′ of
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good n′ constitutes half the value v− = p · x− of the vector x− of goods sent by the

initiating trader. Then it seems reasonable to assign half the value v+n of good n acquired

by the initiating trader to the edge nn′, and the other half of v+n to other edges nn′′

connecting n to the other goods n′′ sent by the initiating trader. More generally, given

the v's associated with a trade vector x, we could assign the weight v+n (
v−
n′
v− ) to the edge

nn′ when good n is a positive component of x+ and good n′ is a positive component

of x−. Treating the initiator and counterparty symmetrically, we would add the term

v−n (
v+
n′
v+

) to account for the case where n′ is a positive component of x+ and good n is a

positive component of x−. Of course, both expressions are 0 when the two goods do not

appear on opposite sides of the transaction.

If a transaction is not budget balanced, then the denominators di�er in the two

expressions and symmetry is lost. To recover symmetry, we adopt the convention that

both denominators are

v = max{v+, v−}, (4.13)

and de�ne the contribution vnn′ to that edge weight of a trade x at time t by the equation

vnn′(t) = v+n

(
v−n′

v

)
+ v−n

(
v+n′

v

)
(4.14)

Using that expression the goods network matrix entries are

znn′ =

K∑
k=1

vnn′(tk). (4.15)
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Money strength is computed for the reduced network (collapsing Money's six constituent nodes); all
other strengths are for the full goods network.

Since a good can't appear with opposite sign from itself, the diagonal entries are zero.

Supplementary data analysis. The remainder of this Appendix reports

supplementary empirical results. Figure 4.4 shows Opsahl et al. (2010) strength for all

items in the economy. Composite Money (in the reduced goods network) is strongest,

but all six of its constituents also exhibit considerable strength. (The weakest of them,

scrap metal, tracks the strongest other item, Max's Severed Head, fairly closely.) Keys

emerge as the strongest constituent, with re�ned metals and earbuds vying for second

place.
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The clump. Of the 88 members of the Clump, less than 0.00003 of their

transactions are initiated by non-clump traders or are between two clump traders, and

these exceptions are con�ned to a couple of days and have low value. Over our sample

the clump transacted 7 million times with over 135 thousand unique counterparties,

accounting for over 17.5% of all TF2 trading. Overall gross pro�t margin (value received

minus value delivered divided by the sum of value received and delivered) was roughly

2.1%, with a slight declining trend. Most of its transactions, 94.7%, are one-way, and

91.7% of counterparties trade more than once. Of their �rst trades with the Clump,

96.9% were one-way inward, delivering value to the Clump. Subsequent one-way trades

are increasingly likely to be outward; by the second trade 55% withdraw value. As the

number of trades with the Clump increase the percent of trades that withdraw value

approaches two-thirds, but only about 18% of these were for a good previously delivered

to the Clump by that trader.

As an inventory-carrying market maker for a broad range of goods, what value

does the Clump provide to customers? In a post on TF2 forum, an apparent customer

explained that it �is fast and straightforward. -Prices set up upfront. -Don't have to delve

into a forum/server looking for someone having what i want. -Don't have to chase a user

i want to trade with. -No unnecesary [sic] haggling/price changing/o�er changing/trade

requests during the trade. If buying [at relatively] high [price] is what i have to pay for

the convenience of automated trading, so be it. I'm not on it for the bene�t, but for the

hats. I consider it a price for the service o�ered.� (Steam User Forum, October 31 2012)

Brokers. Our value estimate is conservative because unusual quality items are
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not uniform � there are several di�erent forms of unusual. Our single estimated price

for unusual items understates the price of the most desirable sorts, which are more likely

to be brokered. For example, burning �ames is one sort of unusual e�ect, and recently

a burning �ames hottie's hoodie was valued at over 250 keys, but we priced it at 40

keys, the median across all unusual hottie's hoodies. Since lower value items tend to

be traded more frequently, we believe that our median price estimates are in fact lower

bounds for the valuations of the thinly traded unusuals. Because the services of a third

party broker are more likely to be requested for relatively valuable items, we believe

that the true total value �ow that has been mediated by brokers may actually be much

larger than the 5000 key estimate which we present.

Denomination ratios. Exchange rates di�er from day to day, but over the

second half of our sample, Bill's hats traded for about 8 keys, and earbuds usually for

21- 27 keys. This roughly 3:1 ratio is less than the 4:1 or 5:1 ratio for popular coins and

bills, but there is a possible historical precedent for a compressed ratio. According to

Wikipedia, �In the Great Recoinage of 1816, the guinea was replaced as the major unit

of currency by the pound and in coinage with a sovereign. Even after the coin ceased to

circulate, the name guinea was long used to indicate the amount of 21 shillings (¿1.05

in decimalised currency). The guinea had an aristocratic overtone; professional fees and

payment for land, horses, art, bespoke tailoring, furniture and other luxury items were

often quoted in guineas until a couple of years after decimalisation in 1971.�

Price dispersion as a proxy for transaction costs. Once most transac-

tions go through a money good, it becomes much easier to detect and arbitrage price
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discrepancies. Indeed, if anyone posts (or even hints) that they are willing to buy at a

price higher than the price at which someone is willing to sell, then anyone aware of the

two prices could accept both o�ers and pocket the di�erence.

This standard argument implies that every accepted ask price observed over a

short period of time is above all accepted bid prices. Assuming equal numbers of the two

sorts of transactions, we conclude that all prices above the median are accepted asks,

whose median thus is at the 75th percentile, while the median of accepted bids is at the

25th percentile. Hence their di�erence, the interquartile range, is a proxy for round-trip

transaction cost. To maintain comparability across goods, it makes sense to express the

interquartile range as a percentage of median price, so for item n at time t, we de�ne

SIQRnt =
100 ∗ [p75,nt − p25,nt]

p50,nt
, (4.16)

where pz,nt is the zth percentile of the imputed prices associated with good n and time

interval t. We concede that SIQRnt may somewhat overstate the round trip cost, but

there is no reason to think that the degree of overstatement changes systematically over

time or across goods. Of course, by de�nition, SIQRnt is a robust and direct measure

of price dispersion.

To aggregate SIQR across goods, we take the value-weighted mean adjusted

for sample size,

SIQRt =

∑
n ηntSIQRnt∑

n ηnt
, (4.17)

where the weight ηnt = p50,ntk
1.5
nt is the square root of the number of transactions knt
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(to capture the sample precision) times a robust estimate of the relevant transaction

value p50,ntknt. The sum is taken over all goods n for which the time interval [t− 30, t]

includes at least kmin = 100 transactions involving good n. To aggregate SIQRt across

time, we simply take a simple trailing average.

Our results are robust to a variety of other choices of kmin; of course, lower

choices of kmin generally result in choppier time series. Also, we �nd similar trends in

SIQR when we replace k1.5nt in the de�nition of the weight by k0.5nt , as would be appropriate

if, instead asking how much should you expect to lose on a round trip for an item of

typical value, you asked the question for a typical trade of whatever size.

Recent developments in the TF2 economy. A future avenue we hope to

explore involves the collapse of earbuds which started around the beginning of 2015,

dropping from a value of approximately 30 keys down to their current estimated value of

5 keys. We propose that Valve's introduction of a centralized dollar denominated posted-

price marketplace replaced the use of earbuds as the preferred medium of exchange for

high-value items and thus the value-in-exchange of earbuds became equal to their value-

in-use as a cosmetic item which was much less than their exchange value when they were

used as a primary currency.
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4.3 Appendix C

Chapter 3: Minimum E�ort Experiment

4.3.1 Order of Treatments

Table 4.3: Treatment Order for Constant β Sessions

Version Period 1-4 Period 5-8 Period 9-12

I S M S M S M M S M S S M
II S M S M M S S M S M M S
III M S M S M S S M S M M S
IV M S M S S M M S M S S M

Between session position of SEVERE (=S) and MILD (=M) is exchanged. The same randomization for
JUMP and GRADUAL was implemented

The order in which participants were assigned each treatment level is listed in

Table 4.3. These four patterns ensured that participants saw balanced treatment level

orderings across sessions.

4.3.2 Additional Results

Figure 4.5: Average Group Minimum Play by Treatment, comparison between �rst four
and last four periods
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Figure 4.6: Comparison between Early and Late Periods for JUMP and GRADUAL
Sessions

Figures 4.5 and 4.6 demonstrate that group minima were generally lower in

early periods than in late periods. Because of this learning process, we restricted our

analysis to the �nal 8 periods and excluded the �rst 4 to ensure that participants had

the opportunity to understand the structure of the game.

Table 4.4: Proportion of Time Groups Spent at MILD and SEVERE Group Min, Con-
stant Sessions

Treatment Full Full End End
Xmin ≤ 3 Xmin ≥ 8 Xmin ≤ 3 Xmin ≥ 8

SEVERE 0.74 0.09 0.75 0.13
MILD 0.24 0.41 0.17 0.62

Table 4.5: Proportion of Time Groups Spent at MILD and SEVERE Group Min, Chang-
ing Sessions

Treatment Full Full End End
Xmin ≤ 3 Xmin ≥ 8 Xmin ≤ 3 Xmin ≥ 8

JUMP 0.41 0.13 0.55 0.15
GRADUAL 0.36 0.20 0.51 0.21

Tables 4.4 and 4.5 show the proportion of the time that group minima were
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�low" (3 or less) and �high" (8 or higher) in each treatment level for both full periods

and the �nal 15 seconds of each period. This again shows that SEVERE tended to end

up at poor equilibria more often than MILD and that there is little di�erence between

JUMP and GRADUAL.

Table 4.6: Wilcoxon and Mann-Whitney, last 15 seconds

Comparison p statistic

Paired Constant SEVERE vs Constant MILD 0.008 0
Paired JUMP vs GRADUAL 0.195 8
Constant SEVERE vs JUMP 0.235 20

Constant SEVERE vs GRADUAL 0.065 14
Constant MILD vs JUMP 0.002 60

Constant MILD vs GRADUAL 0.001 61

Table 4.7: Kolmogorov-Smirnov Tests Comparing Treatments at the end of the period

Test Alternative Hypothesis p

GRADUAL versus SEVERE CDF lies below .047
JUMP versus SEVERE CDF lies below .030
GRADUAL versus MILD CDF lies above <.001

JUMP versus MILD CDF lies above <.001
GRADUAL versus JUMP CDFs not equal .996

Tables 4.8 and 4.7 show test statistics and associated p-values with the varios

Wilcoxon Rank Sum, Mann-Whitney, and Kolmogorov-Smirnov tests we ran on our

data.
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4.3.3 Early Periods

This section displays all relevant �gures when focusing on the �rst 4 periods,

which were excluded from analysis in the main body. The results we �nd point in the

same direction as the conclusions drawn above but are generally not as strong.

Figure 4.7: CDF of Ending Group Minima, Early Periods Constant Sessions

Table 4.8: Wilcoxon and Mann-Whitney, last 15 seconds, only early periods

Comparison p statistic

Paired JUMP vs GRADUAL 0.383 11
Paired SEVERE vs MILD 0.008 0

SEVERE vs JUMP 0.798 29
SEVERE vs GRADUAL 0.083 15

MILD vs JUMP 0.065 50
MILD vs GRADUAL 0.028 53
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Figure 4.8: Total Deviation by Treatment, Early Periods Constant Sessions

Figure 4.9: Mean Group Minimum by Treatment, Early Periods Constant Sessions
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Figure 4.10: CDF of Ending Group Minima, Early Periods Gradual Sessions

Figure 4.11: Total Deviation by Treatment, Early Periods Gradual Sessions
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Figure 4.12: Mean Group Minimum by Treatment, Early Periods Gradual Sessions

Comparing these �gures to those from the �rst 8 periods, the same trends are

all present.
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