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Abstract of the Dissertation

The Aerodynamics of Deforming Wings at Low

Reynolds Number

by

Albert Medina

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2013

Professor Jeff D. Eldredge, Chair

Flapping flight has gained much attention in the past decade driven by the desire to un-

derstand capabilities observed in nature and the desire to develop agile small-scale aerial

vehicles. Advancing our current understanding of unsteady aerodynamics is an essential

component in the development of micro-air vehicles (MAV) intended to utilize flight mechan-

ics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities

of insect wing motion are dissected and simplified to more tractable problems to elucidate

the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV’s

fruition would satisfy long established needs in both the military and civilian sectors. Al-

though recent studies have provided great insight into the lift generating mechanisms of

flapping wings the deflection response of such wings remains poorly understood. This disser-

tation numerically and experimentally investigates the aerodynamic performance of passively

and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete

lines of flexion which acknowledging major flexion lines in insect wings to be the primary

avenue for deformation. Of primary concern is the development of the leading-edge vortex

(LEV), a high circulation region of low pressure above the wing to which much of the wing’s

lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibil-

ity in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins

in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated
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from rest revealed the formation time of the initial LEV was very weakly dependent on the

flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel

before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vor-

tices that develops after the initial vortex shedding was shown to be responsive to flexibility

satisfying an inverse proportionality to stiffness. In hover, an effective pitch angle can be

defined in a flexible wing that accounts for deflection which shifts results toward trend lines

of rigid wings. Three-dimensional simulations examining the effects of two distinct defor-

mation modes undergoing prescribed deformation associated with root and tip deflection

demonstrated a greater aerodynamic response to tip deflection in hover. Efficiency gains in

flexion wings over rigid wing counterpart were shown to be dependent on Reynolds number

with efficiency in both modes increasing with increased Reynolds number. Additionally,

while the leading-edge vortex axis proved insensitive to deformation, the shape and orienta-

tion of the LEV core is modified. Experiments on three-dimensional dynamically-scaled fruit

fly wings with passive deformation operating in the bursting limit Reynolds number regime

revealed enhanced leading-edge vortex bursting with tip deflection promoting greater LEV

core flow deceleration in stroke. Experimental studies on rotary wings highlights a universal

formation time of the leading-edge vortex independent of Reynolds number, acceleration

profile and aspect ratio. Efforts to replicate LEV bursting phenomena of higher aspect ratio

wings in a unity aspect ratio wing such that LEV growth is no limited by span but by the

LEV traversing the chord revealed a flow regime of oscillatory lift generation reminiscent of

behavior exhibited in translating wings that also maintains magnitude peak to peak.
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CHAPTER 1

Introduction

Flapping flight has gained much attention in the past decade. Nature has demonstrated

the breadth of maneuverability achieved by flapping wing configurations. The necessity

to better understand the force generating mechanisms has been been accelerated by the

desire to construct micro air vehicles. Such vehicles could see applications in both military

and civilian sectors. Military agencies see the potential for surveillance and reconnaissance,

allowing soldiers to fly over enemy-occupied territory without putting personnel in harms

way, survey a landscape such as a ridge to ensure safe passage from potential threats, and

real time intel on the battlefield. All this would be accomplished discretely as the size of the

micro air vehicle is rather small in comparison to conventional aircraft. In fact, estimates

place the MAV comparable in size to a large insect, making the MAV extremely portable.

Currently performing this role is the Small UAV (SUAV) which is a hand-launch unmanned

aerial vehicle carried by infantrymen. However, despite its portability, the SUAV still posses

a considerable task to transport with wing spans often in the rang of 0.8-1.6m. In the civilian

sector, MAVs are a good candidate for air quality sampling, search and rescue missions and

disaster management among others. Additionally, micro air vehicles are significantly cheaper

to produce given the size and material needed to produce.

Currently in the works are rotary and flapping wing MAVs. The former utilize multiple

rotors thrusting downward to maintain flight. Of interest in this dissertation is flapping flight

at low Reynolds number ranging from 102 to 104, a regime in which insects have proven the

best candidate. What makes this field particularly engaging is the departure from classical

aerodynamics. According to classical theory ”bumblebees cannot fly” [105]. Of course we
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Figure 1.1: Harvard microrobotic fly [92].

know this to be false, but such a statement serves to demonstrate conventional aerodynamics

are not suited for our particular application. Instead, flapping wings rely heavily on unsteady

mechanisms and operate at considerably higher angles of attack, typically α > 30◦. In the

classical sense, one would equate this to a loss of lift and increased drag, treating lift and

drag as independent entities. However, as unsteady phenomena would have it, operating at

higher angle of attack results in a lift inseparable from drag. The two are one in the same,

manifestations of the same fluid mechanic phenomena: the pressure force acting normal

to the wing [23]. This load distribution makes insects very adaptable to perturbations of

the surroundings and highly maneuverable. We will designate lift as the component of the

resultant pressure force that acts opposite to gravity.

It is not our desire to completely mimic an insect but to draw inspiration and a deeper

understanding of the force generating mechanisms from. It is not clear if insect wings as

we encounter them in nature are optimized for forward flight or hovering. That is to say

a given set of wings may serve multiple purposes related to other aspects of survival. So

although their primary purpose is flight their evolutionary path may have included broader

criteria. This is not specific to the aerial creatures, even in aquatic settings we see pectoral

fins used for the burial of fertilized eggs. Focus in our study will be primarily on hovering

kinematics, wherein the body of the insect remains fixed in space, subjected to its own wake
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in an otherwise stationary fluid. In a given stroke, the wing will have translated or heaved

in one direction creating a wake, only to reverse direction and translate once again, resulting

in the wing-wake interactions.

The wings we are interested in exhibit a degree of flexibility, portraying elastic deforma-

tion when loaded. Universal amongst the insect kingdom is a vein-membrane wing struc-

ture. The veins run from base to the tip, dispersing or fanning-out along the span. Along

the leading-edge there exists a coalescence of veins resulting in a ”spar” member to which

the wing derives much of its stiffness. Additionally we see major flexion lines along which

much of the wing deflection is designated to. Aside from muscles internal to the body at the

base, there are no active muscular structures in the wing themselves. This results in passive

deformations in flight, fluid-solid interactions in which the behavior of the fluid and that of

the solid depend on one another. Naturally the question arises as to which degree does the

fluid force determine the wing shape and vice versa.

1.1 Classical Lift

Before embarking on flapping wings, it may best serve the reader to begin with a short

review of classical aerodynamics pertaining to lift and see how such theories are inapplicable

for our purposes. Aircrafts operate in Reynolds number O (106 − 107) and angle of attack

α < 15◦. The flow often remains laminar with a thin boundary layer, lending the airfoils to

potential flow theory. The lift is given by the Kutta-Joukowski theorem under steady state

conditions as:

L′ = ρUΓ (1.1)

where the prime denotes lift per unit span and Γ the circulation. This circulation arises

from satisfying the Kutta condition: at the onset of motion the airfoil has two stagnation

points, one point on the bottom face closer to the leading edge and one above closer to

the trailing. Viscosity in the boundary layer effectively shifts the upper surface stagnation

point to the trailing edge of the airfoil, ensuring the oncoming flow separated above and
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(a) Start-up vortex formation (b) 3D vortex ring

Figure 1.2: Steady-state theory lift [23].

below the airfoil meets back together with equal velocity in both direction and strength

at the sharp trailing edge of the airfoil [23]. This action creates bound circulation on the

airfoil and, accordingly to Kelvin’s circulation theorem, also creates circulation of equal and

opposite sign in the wake deemed the start-up vortex. In a three dimensional configuration

this is best visualized as a circulation ring with the bound and start-up vortex attached via

circulation produced by the tip of the wings. From equation (1.1) alone, it becomes clear lift

is dependent only on bound circulation, independent of the wake. For an aircraft, a runway

provides enough distance between the wing and the start-up shed vorticity which, according

to potential theory, has an effect inversely proportional to distance, rendering the starting

vortex inconsequential to the aircraft.

This is in stark contrast to flapping wing mechanics.

1.2 Flow Separation

Fluid flow separation is a phenomena in which flow detaches from a solid surface and does

not reattach itself. The flow-dividing stream line, which separates flow above and below an

airfoil, is met perpendicularly under the airfoil at a stagnation point near the leading-edge.

Under the right circumstances, this streamline will detach from the above the wing from the

solid surface, meaning the solid surface no longer acts as an isolated streamline. Rather, the

dividing-streamline is now a mixture of the body surface and the newly formed wake. The
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fluid in the wake takes on the form of eddies and vortices in a region significantly thickened

adjacent to the wing. Prior to separation the flow traversed parallel to the surface from

leading-edge to trailing-edge, now the flow is marked by pockets of flow reversal where the

fluid has reversed direction. Such a phenomena is associated with loss of lift and increased

drag particularly from pressure drag due to the pressure differential developed between the

lower and upper surface of the wing. The onset of separation can be brought about by many

factors such as an adverse pressure gradient and geometric aberrations.

1.3 Unsteady Mechanisms

Steady-state theory is insufficient in capturing the mechanisms employed by flapping wings.

Under this theory it is not uncommon to find an insect is theoretically incapable of sustaining

its own weight in flight. We know this to be false but it leaves open the question as to how

insects are able to do so. The answer is in the use of unsteady fluid mechanics such as

delayed stall, wake capture and added mass.

Figure 1.3: Sample symmetric hovering kinematics of a rigid wing. A single stroke involves

a downstroke and an upstroke with the wing undergoing pitch reversal in preparation for

the subsequent half-stroke.

Given a two-dimensional wing translating from rest at high angle of attack, we have es-

tablished the formation of a trailing edge vortex with circulation strength satisfying Kelvin’s

circulation theorem. To reiterate, this starting vortex is ignored under steady state as it does
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not influence the airfoil. However in flapping each half-stroke is on the order of a couple of

chord lengths. Under these conditions the starting vortex’s proximity renders it influential

on the circulatory growth on the wing by means of the velocity it induces. This is known

as the Wagner effect and solutions only approach steady state approximations after roughly

seven chords lengths of travel [23].

1.3.1 Delayed Stall

Operating at elevated angle of attack also introduce another important phenomena to the

leading-edge of the wing. Most fixed-wing aircraft operate at α < 15◦, beyond which there

exists a critical angle of attack where flow separation occurs. It is here we must be mindful

of the flight pattern: fixed-wing craft wish to continue to translate whereas flapping wing

creatures wish to reverse direction after heaving. Should a wing continue to translate at high

angles of attack the separated flow will develop drag and loss of lift, termed stall. However

the process of stalling is not an instantaneous one. A flapping wing, or biofoil, translates

a finite distance in a given half-stroke, the time duration in translation coincides with the

time necessary for a stall to develop. Consequently, biofoils can develop transient circulatory

forces much greater than those attainable in steady-state. This has been terms delayed or

dynamic stall.

The separated flow at the leading-edge of the airfoil develops into an attached vortex

commonly referred to as the leading-edge vortex. This vortex grows in strength, fed by the

free-shear layer developed at the point of separation and remains located at the leading-edge

upper surface of the wing. The flow is separated from the leading-edge and temporarily

reattaches to the upper surface further down the chord. Just as in stall, dynamic stall is the

development of a ”bubble” of enclosed vorticity created by flow separating and reattaching,

the likes of which is attenuated at greater angles of attack [23]. The difference between stall

and dynamic stall is in stall the ”bubble” is given ample amount of time to pinch off, the

leading-edge vortex is shed after which the flow behind the wing is that of stalled conditions.

During the attachment period the leading-edge vortex produces a suction, generating greater
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Figure 1.4: Impulsive start of an airfoil at high angle of attack [23].

lift from the pressure differential across upper and lower surfaces.

1.3.2 Wing-Wake Interaction

Wing-wake interaction is a common occurrence in both nature and engineering applications

wherein we observe a foil encountering its own wake or a wake induced by another foil. Some

of which are avoided, for instance, the mandated waiting time given commercial aircraft to

be cleared for takeoff, ensuring the wake of the previous craft to takeoff has significantly

dissipated. This is not to imply all interactions prove detrimental. One such example is

migrating birds flying in a ”‘v”’-formation. Each wing experiences an up-wash induced by

other wings’ wakes in the group by means of tip vortices, reducing induced drag and power

demands [46]. Such a flight formation has also been implemented in cargo and military

aircraft, reducing fuel consumption.

In a tandem wing configuration, such as that of the dragonfly, two wings operate in the

same plane (in the two-dimensional limit). Under going hovering the wings are separated

by a vertical distance approximately 1.25 chord lengths. The down-wash and wake of the

fore wing is certainly encountered by the hind wing. However, the fore wing does not flap

in isolation, unperturbed. The fore wing experiences changes in flow conditions due to the
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Figure 1.5: Tandem wing configuration and resultant force pending fore-hind wing phase

[65].

Figure 1.6: Wake capture mechanism at stroke reversal [65].

in-wash of fluid caused by the presence of the hind wing. In estimating the power necessary

to produce identical values of mean lift, hovering with four wings with the hind wings leading

fore wing motion by 25% of the stroke cycle requires 22% less power than hovering with two

fore wings [66].

It has become clear wing-wake interactions can prove beneficial if properly implemented.

We are interested in single winged flight configurations so the question remains as to how

such wings may benefit from an established wake. One such mechanism proposed is the

wake-capture mechanism wherein the wing ’recylces’ kinetic energy imparted to the wake.

At the end of a half-stroke the biofoil has created a leading and trailing edge vortex system.

This counter rotating vortex dipole is believed to accelerate the fluid, increasing the apparent

velocity of the fluid with respect to the wing as it begins the subsequent half-stroke after

stroke reversal [65]. However, force peaks at the start of the half-stroke once believed to

be the results of wake-capture appear closely related to the rapid acceleration of the wing,

indicating wake-capture may be negligibly small [94].

More recently experiments have compared the forces generated at the beginning of the
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first stroke with those of the fourth stroke and determined although the force peaks were due

to the rapid accelerations, they were augmented by wake effect [12] [115]. The wake effect

roles depends on the kinematics of the wing, how the wing encounters the wake. In some

cases it has been reported the mean lift coefficient is decreased by nearly 18% and the mean

drag coefficient increased by 10% for half-strokes with developed wakes compared to start-up

half-strokes [115]. The wake is creating a downwash which makes sense intuitively, in order

to maintain a vertical force the biofoil must impart momentum into the fluid downward.

Although the mean lift coefficient may have decreased, the instantaneous lift coefficient at

the start of a half-stroke may contain a peak greater than that produced in a start-up stroke.

1.3.3 Added Mass

As noted in previous section, researchers observe a force signature closely related to the

accelerations of the biofoil. Just as unsteady as the wake discussed thus far so too is the

velocity of the wing. When examining a submerged body accelerating or decelerating in a

fluid the body encounters an added mass effect. Because a body, or in this case a biofoil,

cannot occupy the same physical space as the fluid simultaneously, the body must move a

volume of the surrounding fluid when the body is in motion. In doing so, the surrounding

fluid is accelerated or decelerated resulting in an addition to the inertia, the fluid traveling

now with the body acts as added mass. This is to say a body must be accelerated with

enough power to accelerate the body-fluid system, experiencing a reaction force from the

fluid in the process.

In an inviscid problem, an accelerating body experiences a fluid reaction force in the form

of virtual added mass of fluid. This virtual mass adds to the inertial force acting on the

body. In the two-dimensional limit the reaction forces are represented by the following:Fx,A
Fy,A

 =

Mxx Mxy

Myx Myy

 ·
U̇
V̇

 (1.2)

where Fx,A and Fy,A are the fluid reaction forces acting on the body, Mij is the virtual

fluid mass, and U̇ and V̇ the acceleration in x and y direction respectively (’·’ indicating
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differentiation with respect to time). Virtual mass is dependent on the geometry of the

solid body, for example, an elliptical body of semimajor axis a and semiminor axis b will

experience virtual masses Mxx = ρπa2, Myy = ρπb2, and Mxy = Myx = 0.

In the viscous problem, shear stresses are reintroduced. As such, when a body is ac-

celerated from rest in a stagnant fluid, the combination of the impulse associated with the

instantaneous appearance of a surface vortex sheet and the displaced fluid inertia collectively

account for the reaction force of the fluid [29].

1.4 Kinematics

Hovering poses perhaps the most energy costly maneuver as there is no ambient wind or

forward flight speed to aid in lift generation. Nondimensional numbers often cited in flapping

flight are Reynolds number and Strouhal number:

Re =
fflapcA

ν
(1.3)

St =
fflapc

Uo
(1.4)

where fflap is the stroke frequency, c the chord length, A the stroke amplitude, and Uo

the free stream velocity. The way we have defined Re here is specific to hovering. One should

also note Uo is zero in hovering, there is no free stream or insect body velocity and therefore

St is irrelevant.

A flapping wing is characterized by three degrees of freedom: instantaneous stroke po-

sition, φ (t), instantaneous angle of attack, α (t), and instantaneous stroke deviation, θ (t).

Our task is complicated considerably by the amount of variables present and their various

combinations, such as: stroke amplitude, pitch amplitude, deviation amplitude, frequency,

chord length, aspect ratio and phase in pitch and deviation. The inclusion of another wing

in tandem would only add further. In order to develop a fundamental understanding of

the underlying physics, we will first draw attention to two-dimensional single flapping wing.
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Figure 1.7: Degrees of freedom in a flapping wing [90].

Two-dimensional studies have proven instrumental in identifying force mechanisms, and

phenomena uncovered in these studies has proven applicable in three-dimensional studies.

Faced with so much variety it seems natural to question to what capacity might a given

parameter and kinematic bear influence in force production and performance.

1.5 Amplitude

Two-dimensional simulation conducted by Eldredge et al. on an elliptical wing showed a

clear preference in hovering stroke amplitude [49]. With stroke amplitudes Ao/L varied from

0.67 to 5.33, the lift increased monotonically with amplitude, where Ao is stroke amplitude

and L is the reference chord length. Near Ao/L ≈ 3 mean lift per stroke appears to reach

a maximum value which appears to plate for the larger amplitudes. When the mean lift is

normalized by power consumption, it appears a stroke amplitude of 3 to 4 chords is desired

for peak efficiency. Although the mean lift generated for larger stroke amplitudes is constant

(for rigid wings), the temporal signature of the lift as well as the efficiency may differ.

In determining parametric effects on performance, Berman et al. tested the hypothe-

sis that insects move their wings in a manner which minimizes the metabolic cost during
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Figure 1.8: Mean lift (• - rigid wing, × - flexible wings) [49].

hovering flight [9]. All parameters are determined based on power specifications, including

stroke amplitude. Insects of varying weight are tested including a fruity fly (Drosophila

melanogaster), bumblebee (Bombus terrestis) and hawkmoth (Manduca sexta). A three-

dimensional wing is modeled by an elliptical cross section along the chord with a chord

length that was assumed to vary like a half-ellipse. The total force on the wing is deter-

mined with blade-element assumption wherein the total force is the summation of the forces

on each infinitesimal blade segment. Aerodynamic forces of each segment were calculated

using a model previously formulated by Pesavento & Wang [79].

The criteria for optimization was to determine the value of kinematic parameters which

would account for the least amount of power consumption under the condition that the lift

produced was sufficient to support the insects’ weight. Negative power is consider negligible

and elastic storage in the wing is also considered negligible although it has been measured

to be on the order of 10% (Dickinson & Lighton 1995). The optimal solutions are found via

a hybrid optimization algorithm combining aspects of a genetic algorithm and a gradient-

based optimizer [9].
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Figure 1.9: Elliptical wing model. All species considered share the same planform [9].

The resulting kinematics predicted optimal hovering with stroke amplitude of 180◦, the

maximum allowable by any given wing. Intuitively this would makes as a greater stroke

amplitude would benefit from a greater translational period where the LEV is produced.

However, taking the insects’ physiology into consideration and the discrepancy becomes

apparent. Measured stroke amplitudes are known to be 150◦, 116◦ and 121◦ for the fruit fly,

bumblebee and hawkmoth respectively. This may highlight our desire to draw inspiration

from rather than mimic an insect in hover. With physiological constraints removed we could

potentially engineer a wing and kinematic system requiring less power per unit mass of the

insect.

A study by Wang et al. sought to determine the unsteady forces of flapping wings and

their relative importance [107]. Implementing a three-dimensional flapper undergoing si-

nusoidal flapping and a two-dimensional numerical model, the sinusoidally varying strokes

studied allowed for the relative contributions of some of the dynamic effects to be theoret-

ically estimated. Such estimates include relative contributions to quasi-steady forces from

wing rotation and acceleration and estimates of wing inertia relative to fluid force.

The robotic apparatus consisted of a Plexiglas wing with planform cut to that of a Drosophila

wing. Flapping kinematics were restricted to the horizontal plan as to reduce the number

of parameters and DPIV imaging was conducted at 0.65R where R is the total wing span,

corresponding to the spanwise location in which previous studies have shown the greatest
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Figure 1.10: Force coefficients for amplitudes Ao/c = 2.8(red), 3.6(blue) and 4.2(green) for

(A) 3D experimental and (B) 2D computational results [107].

circulation. The two-dimensional numerical model represented the wing as an elliptical body

in which the Navier-Stokes equation governing the vorticity was solved.

Reynolds numbers Re varied from 75 to 115 and frequency f constant at 0.25Hz. With a

phase between pitch reversal and stroke reversal of φ = π/4 the experimental lift coefficients

were 0.93, 0.99, 0.95 and 0.93 at Ao/L = 2.8, 3.6, 4.2 and 4.8 respectively and the corre-

sponding computational lift coefficients were 1.07, 1.0, 0.9 and 0.9. So the two approaches

showed good agreement. For the range of amplitude studied here, Ao/L = 3 − 5, the lift

coefficients have a weak dependence on stroke amplitude. According to Eldredge et al. [49]

all cases studied here are well within the regime of relatively constant lift coefficient. Wang

et al. hypothesizes that perhaps additional mechanisms are unnecessary to maintain an

attached LEV for wings traversing less than 4 chord lengths. This is in part in response

to a study of a two-dimensional wing at α = 45◦ and Re = 103 which does not show a

temporal drop in its force signature until 4 chords of travel, after which the wake develops

a von Karman street [106].

In a study by Chen et al. we see a nearly constant leading-edge vortex shedding time

[16]. The two-dimensional computational study focused on leading-edge vortex growth and

shedding time [16]. The infinitely thin two-dimensional flat plate was fixed at angles of
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attack from 10 to 60◦ for Re = 100. The plate is then displaced with a power law velocity

profile expressed non-dimensionally as:

Û
(
t̂
)

= t̂β (1.5)

where β ranges from 0 to 5. The incompressible Navier-Stokes equations were solved using

an immersed boundary projection method in a reference frame fixed to the plate. It should

be noted the authors prefer presenting results in a nondimensional form that is generally

insensitive to instantaneous velocity, for example, time t̃ is now defined as:

t̃ ≡ 1

c

∫ t

0

U (τ) dτ (1.6)

This will non-dimensionalize based on chord lengths traveled by the plate. Special attention

is given to the case of α = 30◦. Once the added mass contribution to force is removed,

the peaks in lift associated with leading-edge vortex production are isolated. Their exact

nature appears to depend on β. Chen et al. concluded that although the peaks in lift

varied in magnitude and timing, the temporal bounds from the start of the peak to the end

appeared to be universal, completing around t̃ ≈ 4.5 [16]. This completion is interpreted as

the leading-edge vortex separation from the plate. For the various velocity and acceleration

profiles it appears the formation and the subsequent shedding of the leading-edge start-up

vortex time is constant (Figure [1.11]).

Additionally, Chen et al. found for values of β ≤ 1 the lift coefficient curves nearly

collapse and the nature of the peaks appear to be insensitive to β. Once the first few start-up

vortices formed and shed, a regular pattern of shedding vortices developed in the wake. The

non-dimensional frequency of shedding f̃ appeared to be dependent on β but when plotted

against instantaneous Reynolds number a linear relationship arises that holds for both steady

and accelerating plates (Figure [1.12]). This provides convincing evidence that Re, and not

acceleration, is responsible for the long-time dynamics of the flow. Additionally, Chen et

al. determined that the same independence of acceleration is present in the lift coefficient

oscillation minimum and maximum. The quasi-steady state of long-time lift coefficient is
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Figure 1.11: Lift augmentation analysis for β = 0.0, 0.5, 1.0, 2.0, 3.5 and 5 utilizing chord

length scaled time t̃ [16].

determined by Re.
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Figure 1.12: Frequency of force oscillation for all powers of β [16].
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1.6 Phase

A translating wing at α will generate lift. However in flapping flight a typical wing stroke

is composed of two translating regions, upstroke and downstroke, as well as two rotational

regions, pronation and supination. Referring back to Wang et al.’s study [107], we wish to

examine the effect of phase between pitch reversal and stroke reversal as well as the role

of wing rotation. As a half-stroke comes to an end, the wing must rotate about an axis

spanning from the base to the tip of the wing, reversing its pitch. It must adjust its angle of

attack α (t) in preparation for the reverse half-stroke. Of interest is the phase φ dependency

on force generation with φ values π/4, 0 and −π/4 corresponding to advanced, symmetrical,

and delayed rotation with respect to translation. In the case of delayed rotation the wing

begins to translate with an angle of attack greater than π/2 which results in downward lift.

Although this seems contrary to our current goals it should not be dismissed entirely as

Wang et al. reasons such a maneuver may still be useful in flapping flight as it may provide

a means for wings to reduce the force on the wing. Unlike the advanced and symmetrical

cases, delayed exhibits flow separation from the leading-edge quickly in stroke.

Once again in comparing the three-dimensional experimental results to two-dimensional

numerical results modeled as a projection of a wing at 70% span, the lift agrees quite well

for advanced and symmetrical cases, however the lift of the delayed case shows a clear phase

delay of the computational results with respect to the experimental. This phase delay only

occurs after the first stroke. The results indicate average lift depends sensitively on the

rotation phase φ as opposed to the weak dependence on stroke amplitude.

In the rotational regions, pronation and supination, the wing undergoes rapid rotation to

reverse pitch in preparation for the subsequent halfstroke heave. As Dickinson et al. states,

these brief regions of rotation are capable of producing significant lift at stroke reversal

[22]. To demonstrate this, Dickinson et al. constructed a wing apparatus comprising of a

mechanical wing capable of flapping and a tank for the ambient fluid. The wing was modeled

after that of a fruit fly, Drosophilia melanogaster. Moving this wing in a heave of 180◦ at
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Figure 1.13: Phase delay φ = −π/4 (A) Force coefficients for experimental (red) and com-

putational (blue) (B) Force vectors superimposed on wing kinematics [107].

Figure 1.14: Transient response to heaving at constant α [22].

constant velocity and angle of attack provided a means to calculate lift and drag coefficient,

CL and CD, corresponding to translation. After initial transients the three-dimensional wing

produces relatively stable constant coefficients.

In estimating the contribution of wing rotation to force generation, the wing is placed in

hovering kinematics and the recorded translational coefficients subtracted from its force his-

tory. The time course of rotational lift shows significant spikes at pronation and supination.

At work here is rotational circulation.

Rotational circulation is akin to the Magnus effect wherein a rotating object such as a

cylinder pulls the air within the boundary layer as it spins. The cylinder in this case would

serve as a source of circulation. Now if such a cylinder were to be translating, by Kutta-

Joukowski theorem, a force would be generated. The direction of force however depends on
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Figure 1.15: Rotational lift contribution. Advanced case displayed here with rotation pre-

ceding stroke reversal by 8% of wingbeat cycle. ◦ - transients attributed to wake-capture, •

- transients attributed to rotational circulation [22].

the direction of rotation and translation. This direction of rotation and translation emphasis

the importance of phase between heave and pitch reversal. Dickinson et al. verified the effects

of phase by systematically changing the phase between heave and pitch reversal for simplified

kinematics [22]. It was shown when when pitch reversal lead heave reversal, wing rotation

produced a positive lift peak. When pitch reversal lagged heave reversal the opposite held

true, a negative peak in lift was generated, due to the leading-edge of the wing rotating

into the oncoming fluid. This explains the positive force transients produced by rotational

circulation for advance and symmetrical phases. The net aerodynamic forces are found to

largely act perpendicular to the wing surface indicating the shear forces are much smaller

than pressure forces. Given the flat nature of the wings studied, we see a component of the

resultant rotational circulation provide for lift and drag.

1.7 Frequency

The frequency at which wings flap can attenuate performance as well. For instance, the

greater the frequency for a given wing, the greater the Reynolds number in hovering. The
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translational acceleration too may increase due to the decrease in time allocated to take a

wing from rest to translation. This also pertains to deceleration at the end of a half-stroke.

With this apparent increase in acceleration profile, increased frequency may increase the role

of inertial and added mass effects influential on the biofoil. We must also be mindful of the

wake characterized by counter rotating vortex dipoles which act to convect themselves in the

fluid. Frequency of flapping may determine the nature of force produced by wake interaction

depending on the convection speed of the wake.

In minimizing energy consumption in fruit fly, bumblebee and hawkmoth using a hybrid

of clustering genetic algorithm and a Powell simplex algorithm, Berman et al. found optimal

frequencies to be 234Hz, 122Hz and 19Hz respectively [9]. These values are within or only

slightly above frequencies exhibited by the insects. So it appears frequency decreases with

increasing mass.

Frequency selection is not restricted to hovering. Although our focus is in hovering ma-

neuvers, to better understand the parametric effects of flapping it is best we broaden our

scope to forward flight of flapping wings. Evident among flying and swimming creatures

is the frequency variation in flapping and undulation. Wang numerically modeled a two-

dimensional elliptical wing, the motion of which consists of the superposition of a mean

forward motion and a sinusoidal flapping motion, using a Navier-Stokes solver [106]. Pre-

liminary tests maintaining a Reynolds number Re = 1000 and Strouhal number St = 0.16

indicate a clear distinction among performance with some f or Stc more favorable than oth-

ers, where Stc is the reduced frequency. In lift production, all cases are symmetric about

zero, making the mean lift zero as expected in symmetric flapping. Of concern in this par-

ticular case is the thrust coefficient which appear to be asymmetric about the zero axis.

Thrust efficiency and coefficient reach a maximum at reduced frequency Stc ≈ 1, where

thrust efficiency is the time-averaged thrust efficiency from von Karman & Bergers (1963)

[106].

Examining the vortex dynamics of a wing translating at a constant angle of attack α = 40◦

at Re = 1000 reveals a time scale τ associated with LEV production, after which the lift
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Figure 1.16: Forward flight flapping model, β = π/2 [106].

coefficient obtains a steady value before von Karmon street is developed. This gives a time

scale, τ , to which the flapping frequency can be compared. The wing should flap slowly

enough to promote the growth of the vortex. It seems in forward flight the frequency also

determines the angle of attack, in a given half-stroke the angle of attack increases from 0◦ to

a maximum angle in a span of one-fourth the period. To produce thrust, Wang determines

the maximum angle of attack should be within 45− 60◦ with Strouhal number Sta between

0.16 − 0.27. Wang notes an increase in thrust coefficient with increasing St. Furthermore,

at higher values of St the maximum thrust coefficient is achieved for Stc ≈ 0.7 independent

of St with thrust efficiency following a similar trend.
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Figure 1.17: Lift coefficient and contour plot of impulsively started ellipse, α = 40◦ and

Re = 1000 [106].

Figure 1.18: Thrust coefficient (a) and efficiency (b) as a function of Stc for a given St [106].

23



1.8 Quasi-Steady Modeling

Common methods for calculating two-dimensional lift and drag for a foil make use of dimen-

sionless force coefficients:

L′ =
1

2
CLU

2ρc (1.7)

D′ =
1

2
CDU

2ρc (1.8)

where CL and CD are the lift and drag coefficient respectively, U is the velocity of the airfoil

with respect to the fluid, ρ is the density of the fluid, and c is the chord length of the airfoil.

The primed terms, L′ and D′, indicate force per unit span. The coefficients are time-invariant

parameters determined by the airfoil’s geometry, Reynolds number at which it operates and

angle of attack [23]. Derivation of such equations required constant velocity flight with no

deviations in flightpath, a stark contrast to hovering kinematics. However, this does not

restrict their use to steady kinematics. The forces generated by an airfoil for a given set of

kinematics, marked with unsteady velocity and angle of attack, may be estimated by utiliz-

ing the equations at discretized time increments with CL and CD data measured prior [23].

Such an approach is termed ”‘quasi-steady state”’. This method is not without problems.

Quasi-steady state analysis results may bear little resemblance to wind tunnel results

for a flapping airfoil. The force coefficients are not constant but rather display complex

time histories [23]. Additionally, quasi-steady state analysis does not take into account wake

interaction between the airfoil and shed vorticity. It only considers the bound circulation,

the circulation resulting from the fluid acceleration above the airfoil. The magnitude of the

bound circulation depends on the geometry and angle of attack of the airfoil. The greater

the angle of attack, the greater circulation needed to shift the upper surface stagnation point

to the trailing edge. In fact, this approach assumes a starting vortex in the far field of the

wake having no effect on the airfoil. Quasi-steady estimates of drag are found to undershoot

the measured drag near stroke reversal owing in part to added mass [90].
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Figure 1.19: Drag (blue) and lift (red) for measured values (solid lines) and quasi-steady

model (broken lines) (A) advance rotation and (B) symmetric rotation [90].

Despite its shortcomings, the model proves useful as a means of estimating unsteady force

trends. The overlay of the quasi-steady model provides a means of decomposing the aerody-

namic forces into its constituent components. All deviations from the quasi-steady estimate

represent unsteady effects. Measured force trajectories display peaks at the beginning and

end of each half stroke that are either absent or smaller in the quasi-steady predictions. It

is at the beginning and end of a stroke where most of the translational acceleration and

rotational dynamics are most prominent. In determining the governing quasi-steady lift and

drag coefficients, a wing at constant α and velocity is impulsively translated or swept in a

180◦ arc for two and three-dimensional wings respectively. After initial transients the result-

ing force attains a nearly constant value before the onset of von Karman shedding. This is

conducted for a desired Reynolds number and repeated for various angles of attack. From

this data quasi-steady lift and drag coefficients can be determined as a function of angle of

attack.

In general, force coefficients are greater in the measured unsteady case than predicted

by the quasi-steady estimates employed by Sane et al. [90]. The maximum in lift coefficient

reported is also shifted by approximated 10◦ in the force signature and lift-to-drag ratios

for the quasi-steady model appear to overestimate aerodynamic efficiency and fail to be

attenuated by stroke amplitude. On rotational timing, for symmetric rotation (in phase)
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the force signature is better estimated by the quasi-steady approximations than advanced

and delayed phase. Perhaps owing to the kinematics closely resembling those implemented

in determining the quasi-steady relations.

1.9 Stroke Deviation

Stroke deviation refers to the degree in which a given airfoil deviates from a plane of interest,

in the case of hovering we concern ourselves with the horizontal plane. In optimization studies

in which power consumption necessary to actuate flapping wings in hovering per unit mass,

it was found stroke deviation in the form of figure-8 motion played a less crucial roll in

the largest (hawkmoth) and smallest (fruit fly) insects studied [9]. In fact, the resultant

kinematics appear largely sinusoidal in the horizontal plane, or rather lean more toward a

triangular waveform. In the intermediately massed insect (bumblebee), the figure-8 deviation

was much more pronounced. In conducting this study, Berman assumes a universal wing

planform geometry for all species [9]. In reality, the insects selected exemplify the breadth of

variety of geometries found in insect wings. Perhaps allowing specific wing geometries would

help bridge the variance in stroke deviation observed for intermediate massed insects.

Flapping deviations from the horizontal plane are highly sensitive to the direction of

deviation at the start of the stroke. For both oval and figure-8 motions, a wing that deviates

upward will experience a reduced angle of attack whereas a wing moving downward will ex-

perience the opposite [90]. Additionally, a wing moving downward at the start of translation

will experience greater wake influence as the wing is moving toward the descending vorticity

field of the previous stroke. Although the impact of stroke plane deviation is clear in the

time course of lift and drag, the impact on mean force coefficients remains quite small. The

effects of deviation tend to average themselves out over the course of a full stroke [90].
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1.10 Scaling

Biological studies often cite Reynolds and Strouhal numbers, conveying fluid behavior and

influence of morphology of the wing on the fluid. In an effort to couple both the morphology

and kinematics of the locomotory system to the Navier-Stokes equation, Lentick et al. iden-

tified dimensionless numbers representing rotational accelerations in the flow due to the wing

kinematics and morphology by means of non-dimensionalizing the Navier-Stokes equation

with respect to the surface of a wing undergoing flapping, spinning or translation kinematics

as illustrated in Figure [1.20] [67].

Such a coordinate change to the wing surface requires the proper velocity transformation:

uinert = uloc + [ubody + Ωwing × r] (1.9)

ainert = aloc + [aang + acen + aCor] (1.10)

where

aang = Ω̇× r (1.11)

acen = Ω× (Ω× r) (1.12)

aCor = 2Ω× uloc (1.13)

Here u is velocity, a is acceleration and Ω is angular velocity. Subscript inert indicates refer-

ence to inertial frame, loc to local wing reference frame, ang denotes angular, cen centripetal

and Cor Coriolis. The resulting non-dimensional transformed Navier-Stokes is as follows:

Du

Dt
+

Ω̇Rc

U2
Ω̇× r +

Ω2Rc

U2
Ω× (Ω× r) +

Ω2Rc

U2
2Ω× u = − Po

ρU2
∇P +

µ

ρUc
∇2u (1.14)

where the acceleration of the body is neglected assuming steady flight. The current state

of equations are generalized to include forward flight by the insect [67]. Additionally, it

is assumed the wing is flapping in a sinusoidal motion with amplitude Φo and frequency
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Figure 1.20: Forward flight wing kinematics [67].

f . Under these conditions, Lentick et al. decided to simplify the governing Navier-Stokes

equation to better interpret the dimensionless groups’ scale factors by time averaging the

values of Ω, Ω̇ and wingtip speed U resulting in a NS equation for forward flapping flight:

Du

Dt
+

1

J2 + 1

(
1

A∗
Ω̇× r +

1

AR
Ω× (Ω× r) +

1

AR
2Ω× u

)
= −Eu∇P +

1

Re
∇2u (1.15)

in which J is the advance ratio, A∗ the dimensionless stroke amplitude of the wing, AR is

the aspect ratio of the single wing, Re is Reynolds number, and Eu the Euler number which

Lentick et al. has deemed irrelevant in incompressible flows:

J =
Ubody

4ΦoRf
(1.16)

A∗ =
ΦoR

c
(1.17)

AR =
R

c
(1.18)

Under such a representation, it is much easier to see how accelerations scale, such as Coriolis

scaling inversely to aspect ratio. This analysis also lends itself to hovering kinematics wherein

the advance ratio, J , is zero:

Du

Dt
+

1

A∗
Ω̇× r +

1

AR
Ω× (Ω× r) +

1

AR
2Ω× u = −Eu∇P +

1

Re
∇2u (1.19)

Lentick et al. concluded flapping wings induce three rotational accelerations that diffuse into

the wing’s boundary layer: angular, centripetal and Coriolis. Such accelerations could prove
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significant in the development of leading edge vorticity and lift. Additional non-dimensional

groups have been identified as angular acceleration number Cang, centripetal acceleration

number Ccen and Rossby number Ro:

Cang =
U2

Ω̇2Rc
(1.20)

Ccen =
U2

Ω2Rc
(1.21)

Ro =
U2

Ω2Rc
(1.22)

The angular acceleration number is a measure of the unsteadiness of the flow induced by the

rotational acceleration of the wing, the centripetal acceleration number measures the cen-

tripetal acceleration due to the wing’s rotation, and Rossby number measures the Coriolis

acceleration induced by the relative motion of fluid with respect to the rotating wing [67].

Forward flight works to reduce rotational accelerations, J > 1. Hovering, characterized by

J ≈ 0, provides the extreme case exhibiting maximal rotational accelerations. Such accel-

erations are though to contribute to the stability of the LEV observed in three-dimensional

flapping.

1.11 LEV Stability

The aerodynamic performance of a biofoil in hover is largely explained by the presence of a

stable leading-edge vortex. Although the LEV has been visualized both experimentally and

numerically, the phenomena governing its stability remains poorly understood. Toomey et

al. has shown rotation rate to be the primary control of lift generation in two-dimensional

wings, perhaps indicating the rotation rate plays a role in LEV stability [100]. Expressing

the Navier-Stokes equations in a rotating frame attached to a wing’s surface, Lentick et al.

has determined the angular acceleration may in fact help to stabilize the leading-edge vortex.

In two dimensional studies the only component available is the angular acceleration in

pitch. However in three dimensions we recover angular velocities and accelerations pertaining

to stroke, pitch and deviation. Therefore three dimensional configurations may offer greater
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stability. Dickinson et al. observed force coefficients measured by the 3D wing apparatus to

be slightly smaller than the transient force coefficients corresponding to a 2D wing undergoing

the same translating motion [22]. However, Dickinson et al. found the 3D coefficients were

greater than the steady-state 2D coefficients. Beyond the initial transients, the 3D wing

produces relatively stable constant coefficients. It is widely believed the axial flow down the

span of a wing in a 3D configuration works to convect momentum out of the core of the

leading edge thereby stabilizing the LEV in a process termed vortex stretching. In doing

so the axial flow would effective reduce the strength of the LEV and perhaps prolong the

separation process.
Dω

Dt
= (ω · ∇) V︸ ︷︷ ︸

vortex stretching

+ν∇2ω (1.23)

This may explain why the 2D transient produced greater coefficients: the lack of axial flow.

In fact, Dickinson et al. proposes the loss of energy from the core of the leading edge vortex

probably works to limit the force generation of the 3D case to below that of the 2D case.

In effect, making the two-dimensional lift coefficients per unit span the benchmark to which

three-dimensional cases may not surpass as demonstrated in Figure [1.21].

In visualizing the three-dimensional LEV process, van den Berg et al. constructed a

flapper apparatus with a dynamically scaled hawkmoth wing [101]. The hawkmoth is on

the larger end of the aerial insect spectrum in size but despite its relatively large size it still

maintains the ability to hover and may present a threshold of flapping wing hovering ability

in nature. The focus here was the leading-edge vortex formation and evolution during a

single downstroke. For analytical purposes the spiral vortex was represented as an ellipse

with width w and height h recorded. Laser sheet techniques were used on the wing to

examined the leading edge vortex at four positional angles and up to five spanwise positions

per position angle.

At the onset of downstroke with stroke position φ = 50◦, just after pronation, there was

no leading edge vortex present. For positional angle φ = 30◦ a leading edge vortex is clearly

observed. Its size smaller at the base of the wing and tended to increase with radial distance
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Figure 1.21: Three-dimensional wing heaving at constant α, quickly accelerated from rest to

constant velocity. (A) Lift and (B) drag coefficient. (C) Average force coefficients as angle

of attack, averaging excludes transients. (D) Polar representation, influence of induced drag

on 3D wing manifests itself as small right shift in the curve relative to 2D data. [22].

down the span. For instance the height with respect to the wing surface increases by a factor

of 3.5 between radial positions 0.25R and 0.63R where R is the total spanwise length of a

wing. Additionally noted is the cross sectional shape of the vortex, seemingly changing from

oval at 0.25R to circular at 0.63R and beyond. The circular shape may indicate the portion

of the LEV no longer being subjected to shearing, effectively detached from the surface of the

wing. The center of the vortex also experiences attenuation, moving away from the surface

of the wing down the span from 1.3% to 5.8% of R, increasing 4.5 times greater. From wing

base to wing tip it also becomes apparent that the vortex center shifts further back from the

leading edge of the wing from 3.2% to 6.4% of R. The leading edge vortex does not traverse

the entire length of the wing, often around 0.63R to 0.75R the LEV separates from the wing

surface and is incorporated into the tip vortex. We see here early on in the downstroke the

LEV showing signs of instability: increased size and location from the wing surface down
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the span.

Further along the downstroke at φ = 0 the LEV has amassed greater strength and size.

The distance of the vortex center to surface of wing has grown from 3.2% to 15% of R at

0.25R and 0.75R respectively. The vortex center has also moved further back along the chord

at each radial location examined, 4.3% to 8.6% of R from 0.25R to 0.75R. Furthermore,

the gradient of this distance with respect to the radial direction has also increased. Finally

φ = −36 the wing is decelerating at this point with the wing oriented in the vertical direction

with α ≈ 90◦. It was observed that the vortex center distance from the wing surface has

decreased by 10 − 20% between 0.25R and 0.63 from values reported for φ = 0◦. In the

downstroke from φ = 0◦ and φ = −36◦ the LEV separates from the wing surface between

0.63R and 0.75R only to be replaced by a smaller LEV. This new LEV is developed by the

same mechanics of the first. The new LEV is much weaker as the wing is already decelerated

prior to supination. It seems hawkmoth wings, for the duration of a stroke, develop a leading

edge vortex that is initially characterized by an elliptical cross-section with center located

close to the leading edge. As the stroke continues the cross-section gradually turns circular

down the span of the wing and the LEV is swept along the chord depending on radial position.

Eventually the center of the vortex becomes far removed from the wing surface and leading

edge and as the wing decelerates the LEV separates. Ultimately, it was estimated that the

circulation in the LEV alone accounted for approximately 2/3 of the total lift required to

support a hawkmoth.

It is clear aerodynamic forces in flapping wings are largely attributed to the presence of

a leading edge vortex formed above the wing. To gain fundamental insight to the stability of

such vortices Lentink et al. expresses the Navier-Stokes equations in a reference frame fixed

to the wing’s surface [68]. This explicitly shows the accelerations that may govern the LEV
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Figure 1.22: In the wing-bound frame, the fluid experiences three accelerations due to wing

kinematics: angular, centripetal, and Coriolis acceleration [68].

dynamics: angular, centripetal and Coriolis accelerations.

aang = 1/A∗ · Ω̇× r (1.24)

acen = 1/Ro ·Ω× (Ω× r) (1.25)

aCor = 1/Ro · 2Ω× uloc (1.26)

where Ω is the angular velocity, A∗ the dimensionless stroke amplitude and Ro the

Rossby number. Lentick et al. has previously postulated that perhaps rotation may be key

to LEV stability [67]. Of the Navier-Stokes accelerations, both the centripetal and Coriolis

accelerations are deemed ’quasi-steady’ in that they do not depend on angular acceleration

but on angular velocity Ω of the wing. This is in contrast to the angular acceleration which

is dependent on on changes in angular velocity Ω̇ [68].

The implications of the acceleration terms during flapping are immediate: at the mid-

stroke when LEV stability is at issue both acen and aCor are maximal as Ω is at a maximum.

A given stroke can be approximated as a sinusoidal function, reaching a maximum angular

velocity at midstroke and a minimum in Ω̇. This analysis would suggest LEV stability is

mediated by rotational accelerations rather than unsteady acceleration aang [68]. With the

dimensionless groups identified as A∗ and Ro, Lentink et al. perform a series of flow visualiza-

tions and force measurements on a dynamically scaled fly wings (Drosophila melanogaster)

revolving with Ro = 2.9 and translating wings with Ro = ∞. A stable leading edge vortex

33



Figure 1.23: (A) Influence of Rossby number for wing undergoing rotational or translational

reciprocal motion at α = 36◦. (B) LEV exhibiting bursting at Re = 1400 at midstroke for

α = 45◦ (top panel) and α = 18◦ (bottom panel). (C) Onset of LEV bursting for reciprocally

revolving wing (Ro = 2.9) at Re = 1400 [68].

was observed in unidirectional revolving wing with A∗ = infty and Ro = 2.9 as well in a re-

ciprocally revolving wing with A∗ = 3.5 and Ro = 2.9 but not in the case of unidirectionally

translating wing with A∗ = ∞ and Ro = ∞ or reciprocally translating wing with A∗ = 3.5

and Ro =∞. Reciprocating motion is not sufficient to provide stability. It appears low Ro

is required from revolving propeller-like motion, with Ro O (1) desirable in hovering flight,

as demonstrated in Figure [1.23] [68].

For the case of unidirectional revolving wings, at Re ≈ 1000 for α ≥ 18◦ the LEV

would experience bursting. Force measurements indicate such bursting does not result in

a loss of performance. In fact it seems to elevate the force coefficients at higher Re. This

bursting feature may work to reduce the separation distance, the distance normal to the

wing from the surface to the LEV center, thus ensuring stability. The means by which the

LEV bursts remain unclear. Experiments on unconfined vortical flows reported experienc-
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Figure 1.24: Lift and drag augmentation varies little with Re. (A) Unidirectionally trans-

lating wing, (B) Unidirectionally translating wing, (C) Reciprocally rotating wing (α = 45◦)

[68].

ing vortex breakdowns wherein the vortex core would abruptly enlarge following a sudden

deceleration of axial flow within the vortex core [54]. However, flapping wing configurations

reportedly experience axial flow external to the LEV core.

Current hypotheses attribute LEV stability in a flapping wing to that of delta wings

of high speed aircraft, wherein a strong axial flow stabilizes the symmetric vortices along

the top of the craft. In such a configuration, the leading-edge vortex and tip vortices are

one in the same. However, Lentick et al.’s preliminary tests using a dynamically scaled fly

wing (Drosophila melanogaster) at Re = 110 and 1400 were conducted to determine whether

tip effects or wing sweep alone could stabilize a leading edge vortex [68]. For sweep angles

of 0 to 60◦ and angles of attack from 0 to 90◦, results show a purely translating wing very

quickly shed the LEV indicating the presence of a tip vortex alone is insufficient to stabilize an

LEV. Additionally, swept wing configurations are also incapable of stabilizing LEV. However
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Lentink et al. did experience elevated lift coefficients and stable LEV production when the

wing was rotated about its base as in the case of flapping. This would indicate LEV stability

in insect flight is not attributed to the same mechanisms found in delta wing aircraft [68].

This does not necessarily exclude tip vortices from the stability process. This may in-

dicate the effect of tip vortex influence depends on the aspect ratio and span of the wing.

Birch et al. put forth two possible explanations as to the prolonged leading-edge vortex

attachment in three-dimensional flows [11]. The first of which is the existence of base-to-tip

spanwise flow formed in the spiral vortex limits the growth of the leading-edge vortex by

removing momentum from the vortex core. This can also be described as vortex stretching

in which the vortex is elongated by spanwise flow. Alternatively, Birch et al. hypothesizes

a downward velocity induced by the tip vortex. Such a flow may reduce the effective angle

of attack of the wing and thereby attenuate the growth of the LEV [11]. Both hypotheses

are tested with a robotic flapper dynamically scaled to mimic the Drosophila wing. Just as

expected, observed is a spanwise flow drive by the pressure gradient from the variation of

local stroke velocity along the length of the wing. From DPIV the peak spanwise velocities

approached nearly 40% of the wing-tip velocity in the rear two-thirds of the wing as illus-

trated in Figure 1.25. The spanwise flow remained relatively low within the leading-edge

vortex itself. It appears then that spanwise flow is not strictly confined to the LEV core but

rather appeared as a sheet along the chord.

To test if the detected core flow was sufficient to provide the necessary stability, two

”teardrop” fences were placed on the wing as to disrupt any possible axial flow. One test

placed these fences at the front of the wing to coincide with the LEV core and another test

placed these fences at the trailing edge to disrupt the broad posterior sheet of spanwise flow

(Figure 1.26). The former placement had almost no effect on the structure or attachment

of the LEV whereas the latter placement showcased a 25% drop in net force. It would seem

the posterior flow external to the LEV promoted growth rather than retard it for the sake

of stability. Finally, Birch et al. construct a circular wall coinciding with the tip of the wing

during stroke (Figure 1.27). Such a wall was thought to remove the effects of tip vortex on
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Figure 1.25: (a) Wing apparatus (b) Spanwise velocity contour plot at 0.48R superimposed

on vorticity plot [11].

Figure 1.26: LEV remains attached despite forward and rearward fencing. Vorticity fields

correspond to 0.48R. [11].

the LEV attachment. This showed no effect on the dynamics of the LEV attachment but

did increase the strength of the LEV by 14% corresponding to an 8% increase in force.

Birch et al. suggests the net aerodynamic performance is limited by the strength of

the LEV rather than the structure or stable attachment to the wing during the stroke.

Nevertheless, this study provides convincing evidence of the tip vortex effect on the leading-

leading edge vortex. In an experiment conducted by Ringuette et al. examining tip vortices

on a free-end translating flat plate it was observed the tip vortex contributes substantially

to the overall plate force. Although results varied depending on aspect ratio, they show that

the interaction of the tip vortex and the LEV generated a high transient drag peak, whereas
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Figure 1.27: Wall designed to remove tip vortex effects. LEV dynamics remain unchanged

but strength is increased. Vorticity field corresponds to 0.48R. [11].

suppressing the flow around the tip results in lower drag. Suppressing the flow around the

tip worked to significantly lower the drag. The influence of tip vortex on the force coefficient

increases with decreasing aspect ratio. Perhaps this gives reason as to why tip vortices were

negligible in previous studies.

1.12 Wing Structure

As nature would have it we find that wings undergo deformations controlled largely by

the architecture of the wing, making the study of the structure and stiffness of a biofoil

an important one. Birds for example will experience deformations dominated by muscular

activation all along the leading edge of the wing which can alter both the span of the

wing as well as the effective lifting area. In decreasing a lifting the lifting area, the local

stiffness of the wing is increased due to the overlapping of feathers. Insects on the other

hand physiologically do not have muscular structures extending into the wings, flapping is

achieved by muscular actuation located at the base. This means deformations experienced

by the wing are passive responses to the aeroelastic effects. The passive response is thought

to be a result of the venation of the wing which may determine the wings flexural stiffness

and modes of deformation. Thus, the architecture of a given wing determines its effective

flight regime.

Insect wings are extremely diverse, however there are commonly shared traits. Generally
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Figure 1.28: Selection of forewings showcasing representative venation patterns and median

flexion lines [112].

speaking, most wings consist of a membrane supported by venation. This venation pattern

consists of longitudinal veins running from base to tip. Additionally, these veins increasingly

spread or fan along the span of the wing. The wing owes much of its rigidity to the coa-

lescence of veins running along the leading edge of the wing. This clustering or thickening

of longitudinal veins in the vicinity of the leading-edge results in a ’spar’ member capable

of withstanding greater loads. The veins themselves are not uniform but rather take on a

tubular structure with variable diameter size [113]. Depending on species, we also see cross-

veins running along the chordwise direction. With much of the wing support located at the

leading-edge much of the wing is susceptible to bending and twisting. Some relief can be

had by means of flexion lines along which the wing experiences major deflections, isolating

major bending to radially running lines [111].

Because of the mixed media composition of the wing (membrane and veins) and the vari-

ability in veins geometry it is difficult to measure a flexural stiffness. However static load
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tests conducted on 16 species wings by Combes et al. revealed overall wing flexural stiffness

did not significantly differ from dorsal to ventral side of the wing in spanwise or chordwise di-

rection in any species tested [17]. Of all the size variables tested the overall spanwise stiffness

was most strongly correlated to the wing span. Similarly, the overall chordwise stiffness was

most strongly correlated to the chordlength than any other size variable. The measurements

also reveal a large anisotropy with spanwise stiffness approximately 1-2 orders of magnitude

larger than chordwise flexural stiffness with the spanwise stiffness scaling strongly with the

cube of the wing span and the chordwise stiffness scaling with the square of the chord length

[17].

A finite element model of a male Manduca sexta wing allowed the control of individual

member stiffnesses which were subjected to static point forces, static pressure loads and

dynamic loading tests [18]. Displacement in the spanwise and chordwise direction of the live

wings tested were reproduced fairly well by the exponential fit of the flexural stiffness. Such

a stiffness distribution saw most of the deflection confined to the outer third of the wing for

static point forces and much of its displacement at the tip of the wing with bending in both

the spanwise and chordwise directions for pressure loads [18]. Confinement of deflection to

the outer portion of the wing is in good agreement with point force tests on the forewing of

Panorpa germanica by Ennos et al. [33]. The exponential stiffness distribution may be the

result of vein tapering in diameter from wing base to tip [111].

1.13 Flexibility and Passivity

Nature has demonstrated the breadth of maneuverability achieved with flapping wing con-

figurations. Such wings are largely characterized by a degree of flexibility, allowing them to

twist and bend when loaded. We see greater degree of deformation in the tip region where

aerodynamic loads are greatest. It seems camber can do little to attenuate bending in flap-

ping or produce any dorsal/ventral bending asymmetry [18]. We see much of the bending
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reserved for the chordwise direction while twisting occurs about the radial axis. Such elastic

behavior could provide a means for a wing to reduce its aerodynamic load. Additionally, it

may prevent fracture should the insect encounter a collision. In examining a flexible rod in

a two-dimensional flow, Alben et al. found with increasing flow speeds the drag on the rod

transitioned from the classical U2 scaling to a reduced U4/3 drag law by means of streamlin-

ing [2]. It becomes apparent the effects of flexibility can potentially be profound. Returning

to flapping wings, this bending behavior could determine the nature in which flexible wings

interact with the wake in hover.

Highly characteristic of flapping wings is the largely passive manner in which the wings

deflect by means of inertial and fluid forces. The wing contains no means to actively prescribe

instantaneous shape beyond muscular actuation at the base of the wing, leaving much of the

mechanics passive. This presents a unique situation which asks to what degree does the fluid

force determine the wing shape and vice versa. Daniel et al. addresses the question as to

whether or not bending in a wing is largely determined by inertial or fluid forces [20]. It has

long been held the instantaneous bending in a wing during flapping was a direct result of

a combination of the two forces. Of interest was the hawkmoth, which Daniel et al. found

the inertial-elastic moments at times during the stroke to be 10 times great than those of

fluid dynamic moments. The importance of fluid dynamic moment, however, appeared to

increase with increasing wing beat frequency. The hawkmoth represents the larger end of the

aerial insect spectrum and operates at the lower limit of wing beat frequency, thus bending

by both inertial-elastic and fluid dynamic forces still plays an increasingly important role in

smaller insects operating at larger frequencies [9].

Thus far we have seen the force generating mechanisms employed by flapping wings.

Furthermore, we begin to see a degree of passivity which places more emphasis on wing

design. For example, in the extreme case of a free falling elliptical body, Anderson et al.

showed the passive behavior resulted in fluttering or tumbling depending on the geometry of

the body, the thickness ratio. Although this is a falling body, the local velocity experienced

is comparable that experience by flapping wings. However, in flapping wings, the leading
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Figure 1.29: Moment contributions by inertial-elastic and fluid forces (a) Wing beat fre-

quency 30hz (b) Increased chord length to 3cm reduces relative importance of inertial-elastic

forces (c) Increased frequency 60hz also slightly reduces relative importance of inertial-elastic

forces. Inertial-elastic forces still dominate. [20].

edge often remains rigid, leaving much of the deflection and thus the passive components

anterior to the wing. The rigid leading-edge usually defines the general angle of attack of

the wing with bending occurring further down the chord.

Toomey et al. addressed the effects of low order chordwise flexibility on the force signature

and shape of a two-dimensional wing in hover [100]. It is found decreasing the time allocated

to translational and rotational transitions has an immediate impact on the deflection angle of

the wing and the mean lift production whereby both of are increased. This would give reason

to believe the wing rotation rate during pitch reversal and timing and the corresponding

deflection are the primarily controls the generation of lift. In fact lift force signature closely

resembled that of the deflection in the wing. This would indicate force is closely related

to the deflection and therefore the instantaneous shape of the wing. Vanella et al. also

conducted a numerical study similar in configuration, a two-dimensional sinusoidal hovering

wing with passive low order chordwise deflection. It was found that a flapping frequency
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one-third the natural frequency of the wing produced the greatest lift to drag ratios, ranging

from 28 to 21% greater than that of a rigid wing undergoing the same kinematics for the

Reynolds numbers tested. Vanella et al. attributes the performance increase of flexible wings

to an enhanced wake capture mechanism in which a stronger flow around the wing at stroke

reversal is present resulting in a stronger trailing edge vortex shed at the end of the stroke.

Passivity is not reserved to chordwise flexibility. As noted earlier a given wing may expe-

rience twisting along the radial axis, indicating passivity may be extended to pitch and pitch

reversal. Bergou et al. explored this idea with a rigid two-dimensional biofoil in flapping

where the pitch of the wing was left passive, unprescribed. Operating under such condi-

tions would leave the stroking kinematics active but pitch passive, perhaps reducing energy

consumption, ultimately extending flight time. The resulting power consumption indicates

passive pitch reversal produced negative power during both pronation and supination with

inertial and, to a larger extent, aerodynamic forces contributing to passive pitch.

Although our focus is hovering, passivity proves important in forward flight as well. In

forward flight, where the wake is effectively washed down stream, passive deflection of a wing

can prove critical to performance. Heathcote et al. showed that an airfoil, consisting of 66%

flexible material (Carbon Maganese), flapping in a freestream (or rather plunging in this

case) generated vortices greatly dependent on plate thickness and thus on plate stiffness and

flexibility [42]. The vortex strength, mode of shedding and spatial distribution of vortices

depended on stiffness of the airfoil. Ultimately, the stiffness in this case dictated the degree

of passivity exhibited by the airfoil.

Thus far we have reviewed the force generating mechanisms in flapping wings and have

demonstrated the implications of flexibility and passivity employed by such wings. We now

proceed to observe the effects of wing deformation on aerodynamic performance in a series

of simplified kinematics pertinent to flapping flight.
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CHAPTER 2

Problem Statement

This work numerically and experimentally investigates the development and robustness of

vortical structures about low aspect ratio wings in response to deformation at low Reynolds

number in biologically-inspired kinematics. Among the vortical structures present consider-

able attention is given to the leading-edge vortex and the effects wing deformation may entail

on LEV formation and lifting performance. This study begins with two-dimensional simula-

tions using the viscous vortex particle method. Of interest is the hover maneuver which offers

a unique opportunity to observe strong wing-wake interactions and the aeroelastic response

of a flexible wing. Proposed MAVs are intended to operate with wings comparable to those

of insects with comparable scale and lift requirements. Inherent in insect wing structure is a

degree of flexibility which makes the wing susceptible to passive deformation. In examining

the effects of flexibility a lift mechanism unavailable to rigid wings is identified. Flexibility

is introduced in a low-order sense and initially reserved for chordwise deflections. Passivity

is then extended to pitch of a rigid wing about a predetermined pitch axis.

The leading-edge vortex is largely responsible for the force generated on a wing operat-

ing at elevated angles of attack so it is imperative that this vortex remain attached and not

separate or shed prematurely. However if the kinematics are restricted to purely transla-

tional, relaxing the stroke reversal requirement of hovering, at large convective times there

develops a Karman vortex street stemming from the asymmetry in vortical strength and size

at the leading and trailing-edge. Two-dimensional high-fidelity simulations of translating

wing at fixed angle of attack examine the attenuation of force transients and the adjust-

ment to shedding characteristics in response to passive deflection. Translating wings are
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also explored with the flow physics modeled implementing the lower-order techniques of the

Brown-Michael equation. This inviscid model idealizes both the leading and trailing-edge

vortex as point vortices in the wake while the wing is represented as an array or panel of

point vortices representing bound circulation. Though inviscid the Brown-Michael approach

still maintains much of the physics exhibited in high-fidelity simulations.

The scope of this study is now expanded for the inclusion of three-dimensional wings

and focus is shifted to both passive and active deformation in flapping. The discussion

at hand so too expands to take in account key flow phenomena absent in two-dimensional

studies, namely axial flow and the presence of a tip vortex. Axial flow, driven from wing

root to tip, has long been postulated to induce vortex stretching whereby the flow acts to

remove or convect momentum from the LEV core, prolonging the separation process. Of

course stretching requires that the axial flow experience a velocity gradient. Thus numerical

simulations on flapping wings in hover examine wings undergoing distinct modes of active

deformation as a novel approach to axial flow control.

The wings considered are now of finite span and see the development of a tip vortex.

The influence of the tip vortex on the LEV remains elusive. Given its proximity it has been

hypothesized as being responsible for ’pinning down’ the leading-edge vortex to the wing

surface through the flow field the tip vortex induces. Efforts to remove the tip vortex effects

reportedly resulted in an increase in lift [12] while others have determined the tip vortex

insignificant [68]. The degree of influence may be the result of the wing planform geometry

and aspect ratio. As such this work examines the formation of the tip vortex and determine

conditions under which it proves beneficial to lift production numerically and experimentally.

Additionally, we wish examine the response of tip vortex strength and shape to deflections

at the wing tip.

Flexibility in three-dimensional wings is presented in the lower-order limit in a manner

similar to two-dimensional wings presented. Experimental efforts include hover kinematics

on a dynamically-scaled fruit fly (Drosophila melanogaster) wing. In testing the operation

limits of low aspect ratio wings, the fruit fly wing is examined at Reynolds number associated
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with the bursting limit of the leading-edge vortex. The effects of passive deformation in

flapping present themselves in this Reynolds number regime as LEV enlargements for select

deflection modes. The discussion of passive deflection effects is further advanced in extending

passivity to pitching in hover. Finally, biological constraints are neglected as rectangular

wings are considered in rotary kinematics. Force measurements on wings over a the course

of a complete sweep revolution at elevated Reynolds numbers provide further insight into

the nature of LEV bursting and LEV saturation. The inclusion of trailing-edge deflection

demonstrates how passivity may promote saturation by virtue of dynamic augmentation of

the effective chord length.
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CHAPTER 3

Methodology

3.1 Computational

3.1.1 Viscous Vortex Particle Method

Two-dimensional viscous flow simulations are performed using the viscous vortex particle

method developed by Eldredge et al. [30, 28]. The viscous vortex particle method (VVPM)

solves the Lagrangian form of the Navier-Stokes equations for vorticity. Vorticity-carrying

particles are utilized as computational elements rather than Eulerian grid-based methods.

Particles convect at the local flow velocity carrying with them vorticity. For two-dimensional

flow, the vorticity exists only orthogonal to the flow plane, reducing the problem to one of

convection and diffusion.

The viscous vortex particle method’s treatment of vorticity as a primary quantity makes it

well suited for study of vortical structures created by flapping and afford a distinct advantage

in efficient computation of the rotational regions of the flow over grid-based methods which

use interpolation between grid points to determine the desired field quantities. The velocity

of the flow includes particle induced velocity, velocity due to vortex sheet on the body surface,

velocity induced by surface deformation, and the free stream velocity [118].

Of great significance of the method is the robust handling of the couple dynamics in the

fluid-body interactions. The wings considered are modeled as rigid elliptical bodies con-

strained to one another via torsional springs, as depicted in Figure 3.1, and will studied

will experience large-scale deformation in response to external, inertial-elastic and fluid dy-

namic forces. The dynamics of the fluid and of the body call for simultaneously solving the
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Figure 3.1: Two-dimensional hinged wing model: rigid elliptical constrained to one another

via torsional springs and dampers. X, Y denote pivot point of reference body, α′ angle of

attack of reference body [49].

full Navier-Stokes and elasticity equations of the body which are joined by kinematic and

dynamic constraints at their interface [29].

3.1.2 Immersed-Boundary Finite-Volume Method

Three-dimensional flapping wing simulations are conducted using the immersed-boundary

finite-volume method developed by Kim et al. [59]. The method is based on a finite-volume

approach on a staggered grid using a fractional-step method and is well suited for simulating

internal and external flows of complex geometries in its introduction of mass sources and sinks

as well as momentum forcing to a body surface. Momentum forcing and mass sources/sinks

applied ensure the no-slip condition is enforced on the immersed surface and continuity is

satisfied.

Unlike an unstructured grid method, the immersed-boundary method considers a body

in the flow field a kind of momentum forcing in the Navier-Stokes equations rather than a

real body. In this manner a wide range of complex geometries may be easily handled with

simple orthogonal grids which typically do not coincide with the solid body surface. Given

the freedom from grid constraints an immersed-boundary may also be set in motion without

the need to regenerate grids in time thus reducing computational expense over unstructured
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grid methods.

To accommodate for the momentum forcing by an immered-boundary surface the Navier-

Stokes equation are adjusted to include a discrete-time momentum forcing term. Convection

terms are treated by a third-order Runge-Kutta method and diffusion terms with a second-

order Crank Nicolson method. Forcing terms are enforced in a staggered fashion and applied

only to the immersed body surface or inside the body. For a stationary body, forcing points

which coincide with the immersed boundary are set to zero. However, as often is the case,

forcing points exist inside the body and require second-order linear and bilinear interpolations

dependent on whether neighboring forcing points also exist inside the body.

In applying momentum forcing the velocity at forcing points inside the body obtain a

velocity equal and opposite to that of external grid points in the fluid. However, this results

in cells with a net influx or outflux of mass into the cell, violating continuity. Therefore, it

is necessary to introduce a source/sink term in teh continuity equation for the cell to satisfy

mass conservation.

3.2 Experimental

3.2.1 Flapper Apparatus

Experiments on flapping wings were performed at the University of California, Los Angeles

in a 1m×1m×0.6m acrylic tank as shown in Figure 3.2. Reynolds numbers considered range

Re = O (102) − O (104). The working fluid of choice was water held at room temperature,

20◦C, Table 3.1. Insect wings normally operate in air and the fluid choice acts to increase

fluid viscosity over that of air thereby allowing experiments to be conducted at reduced

speeds, simplifying data acquisition. Force measurements conducted on the insect scale

would prove rather noisy and imaging techniques would require strobe or illumination sheets

operating at frequencies slightly reduced from the stroke frequency. In order to maintain the

same fluid behavior across multiple scales Reynolds number matching dictates the reduction
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Drive Stage

Tank

Wing

Figure 3.2: Tank and flapping wing apparatus.

in speed must also be met with an enlargement in size. Therefore wings considered are

dynamically-scaled to larger sizes over those of typical insect wings. The tank is more than

sufficient to accommodate a wing and its corresponding support structure in additional to

several chord lengths ensuring wall interference is not an issue.

Affixed above the tank is the motion-control drive stage mounted on a rail spanning the

length of the tank as shown in Figure 3.4. The rail system allows easy adjustment and

reconfiguration of the wing, though for the experiments of interest the stage was situated

mid-tank. The stage houses the stepper motors and supports the submerged test body. More

specifically the control stage connects to the test body via coaxial aluminum rod and tube

running vertically and terminating at a 90◦ bevel gear box which then supports the wing at

the base. The rod and tube are allowed to rotate independently with each communicating to

their respective dedicated stepper motors via drive belts. Rotation of the tube corresponds

to rotation of the entire test body about the tube central axis, providing for a heaving or

sweep motion about a stationary axis. Actuation of the inner rod directly utilizes the bevel

gear resulting in a pitching motion of the wing. The combination of the two motors can

replicate the hovering and rotary maneuvers with motion only restricted to the horizontal
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Figure 3.3: Tank and flapping wing apparatus design.

plane.

Stepper motor control is achieved via a BiStep2A 2-Amp Stepper Motor Controller board

capable of driving single or dual stepper motor configurations, each of which being either

unipolar or bipolar. The board is interfaced with LabView via National Instruments BNC-

2110, operating in the step/direction mode. This mode requires a digital signal to specify

the direction of actuation of a motor (clockwise or counter-clockwise) and a square digital

waveform providing an actuation frequency. Each low to high transition of the square wave-

form corresponds to a microstep of the motor. The frequency of microsteps fms to be taken

over the time step size ∆t was determined by:

fms =
(θt+∆t − θt) · (Ψ) · (200steps/rev) · (rev/360◦)

∆t
(3.1)

where θt and θt+∆t are angular positions determined by discretized kinematics, Ψ is the

microstep size by which a full step is discretized, and ∆t is the time step size of kinematic

discretization. In this manner the desired kinematics are discretized into a series of mi-
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Stepper Motors

Coaxial Pitch Rod

Coaxial Heave Tube

Belt Drive

Figure 3.4: Flapping apparatus drive stage. Hover maneuver is achieved by a combination

of heaving and pitching via independent actuation of dedicated stepper motors driving a

coaxial rod and tube.

crosteps with the speed of kinematics determined by the frequency of microsteps taken.

Input kinematics for the test body are read from output files of Matlab script.

The test bodies considered are dynamically-scaled fruit fly (Drosophila melanogaster)

wings, Table 3.1. Under examination are three distinct wing configuration with variable

stiffness: rigid wing, root-flexion wing, and tip-flexion wing as shown in Figure 3.6. The

rigid wing may be thought of as the limiting case of infinite stiffness and should serve to

produce baseline data for comparative purposes. As previously noted flexibility is viewed in

the lower-order limit, hence the emphasis of major flexion lines. Flexion lines are represented

experimentally by the inclusion of a hinge allowing for passive deflection. Additionally,

torsional springs are positioned about the hinge offering torsional resistance or elasticity.

The root-flexion wing allows for a segment of the root constituting 32% of the wing area

to passively deflect under inertial-elastic and fluid forces applied. Similarly, the tip-flexion

wing allows for nearly 37% of the wing area to deflection about a hinge near the wing tip.

Flexion lines permit the relative hingewise movement of whole areas of a wing, allowing, for
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Figure 3.5: (a) Locusta migratoria hindwing (b) Logarithmic spiral fit [114].

(a) (b)

Figure 3.6: Dynamically-scaled fruit fly (Drosophila melanogaster) wings with passive (a)

root and (b) tip deflection about a hinge that transects the wing. Torsional springs provide

resistance. The rigid wing counterpart shares the same planform with the exclusion of a

hinge.

example, alteration of camber at different stages of the stroke [112].

Previous studies have concerned themselves with the construction of a venation pattern

within a wing to achieve flexibility [97] [92]. However, ultimately this pattern gives rise to

major lines of flexion achievable with rigid members constrained to one another via hinge.

The approach undertaken here forgoes the vein-membrane construction altogether while

maintaining similar passive behavior. Flexioin modes were selected to represent and isolate

different flexible phenomena observed in insect wings. Root deflection is characteristic of low

aspect ratio wings AR ≤ 3, while tip deflection is most predominant at larger aspect ratios.
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Deflection history:

Resultant deformation in flapping in both flexion configurations is reconstructed via image

analysis. A single CCD camera operating at 30Hz was used to capture the deflection about

the hinge of the 5th stroke cycle. Aiding in determining the deflection angle were 2cm×2cm

square markers situated on each side of the hinge. The experiment was then physically

modeled in SolidWorks cading software and matched to image captures of the experiment.

Frame by frame the model was configured to align with overlays of experimental flapping

images, including the deflected portion of the wing. In this manner the angle of deflection

is easily calculated over the course of a representative stroke.

Dye Visualization:

Dye visualization was conducted to provide qualitative insight into vortical structure for-

mation and phenomena about the flapping wings. Running along the leading-edge of the

wing a (material) tube was affixed of outer diameter 1/8in and inner diameter 1/16in. Ex-

ternal to the tank the free end of the dye tube connected to an injection syringe operating

manually. The fixed end was sealed off and two additional holes ≈ 1/32in in diameter were

added running parallel to the length of the tube spaced 1cm apart. Opting to inject dye in

this manner, which may seem a minor detail, was intended to proceed with injection while

minimizing artificially inducing an axial flow velocity component beyond the merits of the

flapping wing on its own accord. Images capturing was conducted using both a CCD camera

and high speed Phantom (model) camera alternatively operating at 30Hz and 100Hz respec-

tively. The dye used for flow visualization was a mixture combining four parts blue dye,

one part rubbing alcohol (get scientific name), and one part dairy creamer (check mixture

ratios).

Particle Image Velocimetry:

Single-sheet particle image velocimetry was conducted about flapping wings. The working

fluid was seeded with nearly neutrally-buoyant silver-coated glass spheres of 10µm diame-
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ter and specific gravity of SG = 1.1. A vertical laser sheet produced by a New Wave Solo

III Nd:YAG laser illuminating seeding particles via reflection. A high speed 2 megapixel

Phantom v9.1 camera positioned perpendicular to the tank and the laser sheet captures the

seeding particle movement flowing about the flapping wing. The image plane is coincident

with the laser sheet with laser sheets oriented to capture chordwise planes along the span. To

reduce laser reflection and illumination of the wing and apparatus all immersed bodies were

treated with a black adhesive coating and subsequently sanded to produce a matte black

finish. PIV techniques include both single and double exposed images. Flow fields were

determined from images processed processed using the MatPIV toolbox package in Matlab

and in LaVision DaVis software.

3.2.2 Rotary Wing Apparatus

Rotary wing experiments were performed at the University of Maryland in an 18in× 18in×

18in glass tank as shown in Figure 3.7. Tests include two separate working fluids offering a

range of Reynolds numbers Re3/4b = O (103)−O (104). The first fluid was water at 20◦C, just

as before. The second fluid was a 50/50 mixture by volume of water and glycerin maintained

at 20◦C, Table 3.2. The mixture proved miscible with no indication of dissociation between

the two constituent fluids. Of interest here is the Reynolds number regime associated with

LEV bursting. Use of pure glycerin as working fluid would have made for Reynolds numbers

well below the intended mark, thus the addition of water was necessary to reduce the vis-

cosity. The kinematics considered are strictly rotational, completing one full revolution of

360◦. Wall effects were negligible on the wing considering the tank size accommodated the

wing and sever additional chord lengths. Further, the kinematics no longer required several

stroke cycles for the flow to become fully developed as is the case in hover kinematic studies.

As before, affixed above the tank is motion-control drive stage housing the stepper motor,

driver and stainless steel drive shaft as shown in Figure 3.8. The shaft extends from the

control stage where it is fixed by a bearing, traversing the entire depth of the tank where it
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Figure 3.7: Rotary wing apparatus.

is held in place by a fixed bearing and is belt-driven with a 6:1 gear ratio from the motor.

The kinematics in this system are restricted to one degree of freedom: rotation about the

shaft. Therefore tests are conducted at fixed angle of attack. The wing is mounted from the

leading-edge to an aluminum rod which runs clear through a bore in the drive shaft with

attention given to ensure the rod does not come into contact with the shaft. Riding a collar

about the shaft is a force balance which does not reside coaxially with the support rod of the

wing. Rather the balance is offset further down the shaft to a depth below that of the wing

in order to minimize its influence on the flow field. The force balance then communicates

with the wing via stiff vertical column attached to the balance and extending to the support

rod of the wing. Forces experienced on the wing are now transferred directly to the balance.

The stepper motor is actuated by a driver operating in step/direction mode. The driver

communicates with LabView script via a National Instruments DAQ card. The desired

kinematics are discretized in Matlab to produce a series of high/low signals with a low-to-

high transition interpreted as a microstep in the designated direction. In this manner, the

kinematics may easily be changed pending the input file from Matlab into LabView. The

DAQ card also records force, moment and angular position data at a sample rate of 1000Hz.
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Drive Shaft
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Driver

Figure 3.8: Rotary wing apparatus drive stage. A single stepper motor drives the rotary

shaft producing a sweeping motion of the plate at fixed angle of attack.

The stepper motor was equipped with an optical encoder reading angular position output.

The wings tested are defined by a rectangular planform, neglecting biological geometric

considerations as variability among creatures is vast as shown in Figure 3.9. This includes

aspect ratios of AR = [1, 2] with rigid and flexible wing counterparts represented, Table

3.2. Flexibility is confined to a single hinge introduced at the mid-chord position of the

wing, running the span of the wing parallel to the wing leading-edge. At any given point

during the revolution 50% of the wing are is susceptible to deflection, uniformly altering the

wing’s effective chord length defined as the distance between the leading and trailing-edge.

It should be noted the hinge does not contain any torsional resistance such as springs or

dampers leaving deflection to be determined by inertial and fluid forces.

Force Measurement:

The National Instruments DAQ card also records force and moment at a sample rate of

1000Hz. Force and moment data is provided by the ATI Nano 17 IP-68 six degree-of-

freedom load cell supporting the wing. Force measurements are first taken with each wing
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Figure 3.9: Representative rectangular hinged plate of AR = 2. Deflection is isolated to the

midchord position via the inclusion of a hinge running the entire span connecting two planar

bodies. Rigid plate counterparts consist of a single planar body with the exclusion of the

hinge.
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Tap Test: AR=2, 50/50 Mixture

Figure 3.10: Tapping tests on a rigid plate of AR = 2 submerged in a 50/50 mixture of water

and glycerin by volume. The vibrational frequency response of the wing is to be removed

using band-stop filters.

operating in air for a total of 10 runs. The data is then averaged and represents the inertial

forces of the plate kinematics to be subtracted later. Once the working fluid is added a series

of tapping tests are conducted on the stationary plates to examine the harmonic frequency

response as reflected in the recorded data as shown in Figure 3.10. A low-pass Butterworth

filter of 30Hz is used to remove electrical noise and other high frequency noise sources from

each experimental run. After the low-pass filter is applied, the data is averaged over 5− 10

consecutive runs. The inertial forces are then subtracted from the data and a band-stop

filter is applied to remove the natural frequency response of the plate in the fluid.

Motion Tracking:

Given the passive nature of the hinged plates there stands a need to quantify the deflection

history in response to fluid and inertial forces. The scale of the plates considered do not lend

themselves to optical encoder mounted at the hinge that are also capable of operating com-

pletely submerged. The necessity of a non-invasive solution to quantify deflection throughout

59



Markers

Masking

Figure 3.11: Motion tracking markers about the tip of an AR = 1 plate. Masking of sup-

porting structure with white adhesive removed background noise during imagine processing

with the use of appropriate flood lighting during experimentation.

the stroke cycle that would not induce secondary flow phenomena or interrupt flow fields

characteristic of the plate left only high-speed motion capturing and three-dimensional re-

construction methods available. Three-dimensional reconstruction follows high-speed motion

captures of the revolving plates. Of interest in the captured images are four markers placed

along the tip of the wing running from leading-edge to trailing-edge with each constituent

body of the plate carrying two markers spaced 0.75in or 0.50in for AR = 1 or AR = 2

respectively as shown Figure 3.11.

The experimental setup now includes the use of two high-speed Phantom v311 1 megapixel

cameras oriented perpendicular to two adjacent tank walls as shown in Figure 3.12. Images

are captured simultaneously at 250hz. To avoid obstruction of imaging by the rotary shaft

the tank was divided into quadrants with the two cameras focused only on a single common

quadrant. To capture a complete revolution by the wing each experiment was run a total of

four times with each consecutive run’s initial plate position offset by 90◦ from the last. The
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Flood Lights

Cameras

Figure 3.12: Motion tracking experimental setup. High-speed cameras oriented 90◦ to one

another, facing perpendicular to adjacent faces of the tank capture the plate’s motion. Flood

lighting ensures images are over-exposed thus masking or removing background image noise.

The plate is currently revolving out of plane with the rotary axis located to the left of the

image.

deflection angle calculation requires that only the markers be captured in any given image.

As such, supporting structures are masked with white adhesive as shown in Figure 3.11. Fur-

ther, a series of floods lights deployed about the tank work to over-expose the images and

wash out undesirable masked objects including the background and supporting sturctures,

leaving the markers largely accounting for the objects captured as shown in Figure 3.13.

Images are then converted to binary by intensity threshold σT . Each image pixel is

indexed and its intensity is compared to the threshold with pixels of intensity satisfying

I > σT being converted a value of 1 (white) and pixels of intensity I < σT converted to 0

(black). With the binary image constructed, adjacent black components are connected to

determine the silhouette of bodies within the image. Body or silhouette sizes external to

predetermined threshold sizes are discarded. Of the image bodies identified the four markers
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Figure 3.13: Image of AR = 1 plate revolving at Re = 104 captured by a camera positioned

in front of the tank. Flood lighting over-exposes the image and washes out undesirable

elements pertaining to the background and supporting structures. The four markers along

the wing tip remain predominant and easily identifiable in the resulting image.

are manually selected as the bodies to be tracked from image frame to frame. The marker

positions within an image are quantified as the centroid of a marker’s silhouette.

Subsequent positions of the specified markers are determined based on proximity thresh-

old of their centroid position at tn−1 to body centroids determined in the next frame at

tn. In this manner the four markers’ evolution within the image plane are determined for

both cameras with uij and vij image space coordinates where subscripts i and j specifying

body and camera, respectively. Through the collinearity of the camera sensor (image plane),

the lens and the markers’ position in the laboratory reference frame it is possible to relate

a marker’s position in the image plane with an array in the laboratory reference frame as

proposed by Koehler et al. [61]. The map between the laboratory reference frame and the

image space follows:
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uij =
−dj (rj11 (xi − x0j) + rj12 (yi − y0j) + rj13 (zi − z0j))

(rj31 (xi − x0j) + rj32 (yi − y0j) + rj33 (zi − z0j))
(3.2)

vij =
−dj (rj21 (xi − x0j) + rj22 (yi − y0j) + rj23 (zi − z0j))

(rj31 (xi − x0j) + rj32 (yi − y0j) + rj33 (zi − z0j))
(3.3)

where rjxx are components of the rotation matrix Rj between the laboratory reference frame

and the image space reference frame. Finally, the four markers are reconstructed in lab-

oratory space with their global position determined by the intersection of the two arrays

provided by the two cameras from their stemming from their respective points of view. The

two arrays pinpoint the global positions of the markers in the laboratory. With the markers

positions determined throughout the stroke there remains the small matter of determining

the deflection angle defined as the angle between two vectors, the first of which is determined

in three-dimensional space as the vector passing through the two markers on the plate’s lead-

ing body and the second of which runs through the two markers on the plate’s trailing body.
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Table 3.1: Flapper Apparatus

Aspect Ratio AR
(
b2

S

)
2.36

Planform Area S 0.0134 m2

Span b 0.1778 m

Chord c̄
(
S
b

)
0.0757 m

Thickness w 0.4445 cm

Root Standoff rs/c 0.86

Root Deflection Area Sr/S 0.319

Tip Deflection Area St/S 0.368

Wing Density ρacrylic 1173.8 kg/m3

Fluid Density ρwater 998 kg/m3

Kinematic Viscosity νwater 1.0× 10−6 m2/s

Heave Tube Diameter DH 0.50 in

Pitch Rod Diamter DP 0.25 in

Torsional Spring Stiffness K 0.035 Nm

Seeding Sphere Diameter DS 10µm

Seeding Sphere Specific Gravity SG 1.1
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Table 3.2: Rotary Wing Apparatus

Aspect Ratio AR
(
b
c

)
[1, 2]

Planform Area S [9, 8] in2

Span b [3, 4] in

Chord c [3, 2] in

Thickness w 0.125 in

Root Standoff rs/c 0.50

Deflection Area Sdef/S 0.50

Wing Density ρacrylic 1173.8 kg/m3

Fluid Density ρwater 998 kg/m3

ρmixture 1085.6, kg/m3

Kinematic Viscosity νwater 1.0× 10−6 m2/s

νmixture 5.49× 10−6 m2/s

Shaft Diameter Dshaft 0.50 in

Rod Diameter Drod 0.25 in
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CHAPTER 4

Two-Dimensional Flexible Wings

4.1 Introduction

Th effects of flexibility in two-dimensional wings are studied numerically in a series of kine-

matics intended to distill the role of passive deflection in flapping wing flight. Biological

wings are inherently flexible given the asymmetric architecture and variable material den-

sity. The wings are void of internal muscular actuation and are driven at the base and

resulting deformation is the passive response of the wing to inertial-elastic and fluid forces.

The wing is modeled as an articulated body with constituent elliptical rigid bodies con-

strained to one another via torsional springs and dampers allowing for chordwise bending of

the wing. The leading body of the wing is prescribed kinematics with the remaining bodies

free to passively respond. The aerodynamic impact and vortical formation times are assessed

in a series of configurations and maneuvers including freestream tests, acceleration from rest

studies and hover kinematics. These studies help characterize the effects of flexibility force

generation and power consumption and in the process identify mechanisms unavailable to

rigid wing counterparts. Simulations are conducted using the viscous vortex particle method

with dynamic coupling of the fluid-body interactions developed by Eldredge [29, 118].
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Figure 4.1: Rigid and flexible normal wing response to freestream flow at Re = 100. Wings:

rigid (——), single hinge (——), double hinge (——).

4.2 Flexible Wing in a Freestream

4.2.1 Shedding Frequency

As exhibited in nature, insect wings are characterized by a degree of flexibility. Addition-

ally, we see these wings operating at large angles of attack (α > 30◦), experiencing both

leading and trailing-edge vortices. Before embarking on placing these wings in various flight

kinematics it is only natural that we ask the question as to how the inherent flexibility may

attenuate the shedding frequency of leading and trailing-edge vortices. In a bid to isolate

flexibility effects and observe the wing at a high angle of attack, we simulate multiple wings

using the viscous vortex particle method situated normal (α = 90◦) to a freestream flow at

Re = 100. Under such conditions the wing is perpendicular to the oncoming flow.

The wings tested include a rigid wing and two flexible wing configurations, composed

of two and three elliptical bodies constrained to one another via torsional springs as shown

in Figure 3.1. In accordance with insect wings, the leading portion of the wing, or rather

the leading body of the multi-body flexible wings is designated as the active body with a

vertical orientation, leaving subsequent bodies in the wing to passively deflect. Results for

wings of density ratio ρb/ρ = 5.0 described by Table 4.1 are shown in Figure 4.1, where
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ρb is the body density, ρ is the reference fluid density, V is the freestream velocity and

c is the chord. The resulting lift of the rigid single body wing remains zero, producing

purely drag as anticipated for a symmetric unperturbed wake. Drag smoothly approaches

an asymptotic value characteristic of the development of two counter-rotating vortices of the

same strength in the wing wake. However, both flexible wings exhibit oscillatory lift and

drag signatures, akin to vortex induced vibration studies. The flexible components deflect

under the influence of the flow and effectively break the vortical symmetry experienced by the

rigid single component wing. This break in wing geometric symmetry prompts asymmetry

between leading-edge and trailing-edge vortical strengths, with the former having the greater

strength resulting in a net upward lift in both flexible wing configurations. In both flexible

cases it takes approximately 28 chords for the oscillatory behavior to fully develop. The

drag of the rigid wing, apart from the initial transient spike at the start of the simulation,

smoothly approaches a limit.

Table 4.1: Freestream Normal Wings

Major Axis (a/c) Minor Axis (b/c)

Single Body 0.5 0.05

Double Body 0.245 0.049

Triple Body 0.16 0.03

Torsional Stiffness (K/ρV 2c2) Torsional Damping (R/ρV c4)

Double Body

hinge #1 0.375 0.0275

Triple Body

hinge #1 0.375 0.0275

hinge #2 0.2669 0.019574

It is here we identify a lift mechanism unavailable to rigid wings: deflection induced

vortical-symmetry breaking. As will be demonstrated in the Section 4.3.2, a flexible wing
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Figure 4.2: Vortex induced vibration modes of a single degree of freedom cylinder with an

extensional spring and a passive wing trailing edge with a torsional spring.

will better benefit from such a mechanism operating at elevated angles of attack.

4.2.2 Vortex Induced Vibration

The freestreams studies have shown oscillatory forces and correspondingly oscillatory orien-

tations of the wings tested where peaks and troughs experienced in force were concurrent

with maximum and minimum deflections of the hinges. In this light such deflection behavior

could be interpreted as vortex induced vibration. We seek now to draw analogies between our

wing configurations, more specifically a double-body flexible wing, and the classical problem

of an undamped cylinder mounted on an extensional spring in a nominally two-dimensional

flow oscillating in response to vortex shedding [10]. The one degree of freedom allotted the

cylinder is motion perpendicular to the flow. Similarly the flexible maintains a fixed angle of

attack in the leading body of α = 90◦ while the trailing body is allowed one degree of freedom

to passively deflect about the hinge at midchord of the double-body wing as illustrated in

Figure 4.2.

Figure 4.3 compares the frequency response of the flexible wing of varying hinge stiffness
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to that of the cylinder as a function of reduced velocity U∗ [1]. Reduced velocity is defined

as U∗ = U/fnD where fn is natural frequency as defined by

f̂n =
1

2π

√
K̂

m̂body + m̂added

, (4.1)

nondimensional body mass m̂body is defined as

m̂body = π
ρbody
ρfluid

a

c

b

c
, (4.2)

nondimensional added mass of the fluid m̂added is defined by

m̂added = π
ρfluid
ρfluid

b2

L2
ref

, (4.3)

nondimensional spring stiffness K̂ is defined as

K̂ =
K

ρV 2c2
, (4.4)

f ∗ is the ratio of the oscillatory frequency of the immersed body to the natural frequency,

and m∗ is the density ratio of the immersed body to the fluid. The cylinder is characterized

by synchronization of oscillatory frequency and natural frequency near unity for higher mass

ratios and elevated values of f ∗ with greater lock-in U∗ range of the oscillation response

for low mass ratio bodies. The double-body wing was tested for a single density ratio of

m∗ = 5 and variability of U∗ was achieved via varying torsional spring stiffness. As opposed

to the cylinder which exhibited lock-in over a range of reduced velocities for a given m∗, the

wing shows no signs of lock-in or plateau regions despite the constant mass ratio between

tests. The behaviors it seems are not strictly analogous. The difference arises fundamental

difference in shedding mechanics. A cylinder in a freestream naturally develops von Karman

street at appropriate Reynolds number. On the other hand, a given wing at appreciable

attack angle will naturally encounter asymmetry between the LEV and TEV. Flexibility

further promotes this asymmetry in deflecting the trailing-edge thereby further reducing the

TEV feeding sheet.
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Figure 4.3: Frequency response comparison between a flexible wing of varying torsional

stiffness and a cylinder of varying mass ratios in variable freestream reduced velocity U∗ [1].

4.2.3 Effects of Torsional Stiffness

The previous section examined a two-component wing undergoing midchord deflection in

response to freestream flow. The leading body was fixed at a prescribed angle of attack and

the trailing body was free to revolve about the hinge. Here the effects of torsional spring

stiffness on aerodynamic load, more specifically on lift, are examined. However, as opposed

to prior simulations maintaining fixed α of the leading or reference body, passivity is now

extended to pitch. The reference body is allowed passive rotation about its centroid, coinci-

dent with a torsional spring of stiffness K̂P . The equilibrium position of the reference body

is normal to the flow (α = 90◦) when unloaded. The loaded configuration is the result of

aerodynamic loads and restoring moments of torsional springs K̂P and K̂H where the pitch

angle is now acquired rather than prescribed.

To facilitate selection of torsional strength combinations an effective stiffness value K̂eff
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Figure 4.4: (a) Lift and (b) deflection behavior of a two-body wing with passive pitch and

hinge deflection for K̂eff = 0.5. Deflection: pitch angle with respect to vertical θP (——),

hinge angle θH (– – –).

is defined as a corollary to extensional springs in series. The torsional springs may be viewed

as a series of torsional spring elements determining the orientation of the trailing body.

Under this argument simulations are limited to two effective stiffnesses K̂eff = [0.5, 1.0]

defined by
1

K̂eff

=
1

K̂P

+
1

K̂H

. (4.5)

Figure 4.4(a) show lift behavior of a wing in an impulsively started flow at Re = 100 for

K̂eff = 0.5. All pitch stiffnesses KP tested are in qualitative agreement. Lifting trends

experience a include a substantial peak approximately t̂ ≈ 3.5. The transient peak subsides

near t̂ = 6.5 as lift now maintains a largely steady value before the onset of a secondary

peak in lift near t̂ = 16 and terminating near t̂ = 21.4. In general it appears there appears

an inverse relationship between K̂P and CL.

Lifting trends are reflected in the pitch and deflection angles as shown in Figure 4.4(b).

Both the pitch and deflection angle experience spikes coincident with those found in lift. With

the exception of K̂P = 2.0, pitch angle exceeds the trailing-body deflection angle. The first

peak in lift and deflection angles is largely driven by impulsive nature of the flow. However

the second peak in lift is much more representative of a leading-edge vortex formation time
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Figure 4.5: (a) Lift and (b) deflection behavior of a two-body wing with passive pitch and

hinge deflection for K̂eff = 1.0. Deflection: pitch angle with respect to vertical (——),

hinge angle (– – –).

one could expect to encounter in wings operating elevated angle of attack. For the duration

of the second peak there is in general an increase in pitch angle. It is difficult to distinguish

cause and effect between the two however the rise in lift is characteristic of the enlargement of

the leading-edge vortex and with this growing vortex its suction influence on pitch orientation

potentially grows aft of the pitch axis of he leading-body, contributing further to clock-wise

rotation. Similar trends are continued in Figure 4.5 for K̂ = 1.0 though with what appears

to be spurious behavior in the transient peak for K̂P = 2.0.

4.2.4 Leading-edge Vortex Shedding Frequency

It has long been established biological fliers take advantage of unsteady flow phenomena,

most notably dynamic stall, to generate sufficient lift. The process of dynamic or delayed

stall is not an instantaneous one and the reciprocating motion of a flapping wing occurs on

smaller time scales than that associated with fully stalled conditions. Stall is separation of

flow about an airfoil resulting in loss of lift. To better characterize the process of stall or

rather the LEV formation and shedding a wing of fixed angle of attack is accelerated from
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Figure 4.6: Vortex shedding pattern of a rigid single-component wing translating at α = 60◦

with β = 0.

rest following the power-law velocity approach of Chen et al. [16]:

Û = t̂β (4.6)

where β values less than unity are reminiscent of acceleration profiles of flapping wings in

nature.

The work of Chen et al. is expanded upon with the inclusion of chordwise flexibility at

the midchord position for two-component wings. Flapping flight permits the formation of a

single LEV so consideration here is given to the time scale of LEV development. Time is

nondimensionalized by

t̃ =
1

c

∫ t

0

U (τ) dτ (4.7)

where focus is now shifted to the number of chords traversed and adding insensitivity to

instantaneous velocity [16]. Vortex shedding is demonstrated in Figure 4.6 for a rigid single-

component wing.

Figures 4.7, 4.8 and 4.9 demonstrate the effects of flexibility on quasi-steady vortex

shedding about an accelerating airfoil with velocity power law constant β = 0.0, β = 0.25

and β = 0.5 respectively. Vortex shedding is interpreted as the frequency at which lift

oscillates. The rigid wing behavior is consistent with that reported by Chen et al. in that

the initial transient peak concludes within a well defined range of t̃ = 3.6 − 4.1 chords
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traversed. For an impulsive start (Figure 4.7) the formation time of the initial vortex is

consistently t̃ = 4 ± 0.04 for all attack angles considered, α = [30◦, 45◦, 60◦]. The greatest

variability in rigid wing initial shedding comes from β = 0.25 in Figure 4.8 where signs of

attack angle dependency surface: shedding time shows proportionality to angle of attack.

The range of initial LEV shedding is minor for β = 0.5 (Figure 4.9).

The effects of flexibility on initial LEV shedding are negligible for β = 0.0 and α = 30◦

with all wing torsional stiffnesses in agreement with the rigid counterpart shown in Figure

4.7(a) despite the degree of deflection experienced for the lower spring stiffnesses. Given

the relatively low attack angle the deflection does little to influence initial LEV saturation.

Increasing angle of attack prompts greater deflection and influence on shedding time for

K = 0.015 which now experiences a reduction of approximately 13% while the remaining

flexible configurations remain in continued agreement with the rigid wing. Lift magnitudes

generated are directly proportional to the torsional spring stiffnesses with the greatest stiff-

ness performing similarly to the rigid wing. A disparity between the stiffest wing and rigid

wing lift becomes evident with β > 0. Similarly, it is for power law value β = 0.5 that initial

LEV shedding time demonstrate proportionality to their stiffnesses as shown in Figure 4.9.

The oscillatory nature of lift production reflects long-time quasi-steady vortex shedding.

After initial transient peaks a regular pattern of vortex shedding is established. The fre-

quency of shedding is not constant with the exception of β = 0.0. The response of shedding

frequency for long-time wake formation as function of instantaneous Reynolds number are

shown in Figure 4.10 for α = [45◦, 60◦]. The frequency and Reynolds number normalization

proposed by Chen et al. are

f̃ =
Rerefsin

2α

t̂2 − t̂1
(4.8)

and

Re = Reref
t̃2 − t̃1
t̂2 − t̂1

, (4.9)

respectively, where subscripts denote time stamps between two consecutive peaks in lift

and t̂ is time normalized by a reference velocity. The dependency of f̃ on Re maintains a

linear profile provided by least-squares fit. The affect of chordwise deflection is to increase
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Figure 4.7: Effects of passive trailing deflection on lift peaks behavior of an accelerating

wing of velocity power law constant β = 0.0. Angle of attack: (a) α = 30◦, (b) α = 45◦,

(c) α = 60◦. Lift response of the airfoil is shown in the left column and deflection history is

shown on the right. Time normalization is based on chords traversed, t̃.
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Figure 4.8: Effects of passive trailing deflection on lift peaks behavior of an accelerating

wing of velocity power law constant β = 0.25. Angle of attack: (a) α = 45◦, (b) α = 60◦.

Lift response of the airfoil is shown in the left column and deflection history is shown on the

right. Time normalization is based on chords traversed, t̃.
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Figure 4.9: Effects of passive trailing deflection on lift peaks behavior of an accelerating

wing of velocity power law constant β = 0.5. Angle of attack: (a) α = 45◦, (b) α = 60◦.

Lift response of the airfoil is shown in the left column and deflection history is shown on the

right. Time normalization is based on chords traversed, t̃.
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Figure 4.10: Frequency of lift oscillation for rigid and flexible wings at Reref = 100 for

all velocity power law constants considered. Angle of attack: (a) α = 45◦, (b) α = 60◦.

Torsional spring stiffness of the double component wing are K̂ = [0.015, 0.15, 1.5].

vortex shedding time f̃ for a given instantaneous Reynolds number without loss of shedding

frequency independence of acceleration profile or β value.

4.3 Flexibility in Hover

4.3.1 Pitch Phase

The effects of flexibility are now examined in a representative case of a three-component

flexible wing (Table 4.3) undergoing passive deflection in hover kinematics. The inclusion

of a third body into the flexible wing provides an additional degree of freedom through

which the deflection response of the wing may approach that of a fully elastic membrane.

Performance is compared to a single-body rigid wing. Hover is accomplished by sinusoidal

heaving following:

X = −Acos (2πft) (4.10)

where A is the heave amplitude and f the frequency. Pitch about an axis 0.16c aft the
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leading-edge maintains a constant angle of attack of α = 45◦ for the majority of the stroke

following a hyperbolic tangent waveform:

α′ = −π
2

+
π

4
tanh [nsin (2πft− Φ)] (4.11)

where α′ is the pitch angle, n is a smoothing constant, and Φ is the pitch phase. When

Φ = 0 pitch is coincident with stroke reversal and is said to be inphase or symmetric.

Nondimensionalization is based on the wing chord as reference length Lref = c, maximum

rotational velcoity as reference velocity V = α̇′c and time normalized by Tref = c/V . The

pitch axis is confined to a horizontal axis and a given pitch maneuver constitutes 20% of the

stroke cycle period.

Table 4.2: Kinematic Parameters

Heave Amplitude A/c 2

Angle of Attack α 45◦

Smoothing Constant n 5

Pitch Phase Φ 0

frequency f 0.0405

Figure 4.12(a) demonstrates the effects of flexibility on lift generation in hover at Re =

100 with pitch phase Φ = 0 over a representative halfstroke. The lift profiles appear com-

parable with differences most pronounced during pitch. In fact the greatest similarity stems

from the midstroke where, as indicated in Figure 4.12(b), the flexible wing hinges return

to a nearly undeflected state where the flexible wing no longer exhibits significant camber.

At that point the flexible wing resembles the rigid wing and this physical resemblance is

reflected in lift. The deflection history of both hinges remain in sync for the duration of

the stroke in that the leading hinge deflection profile is mirrored in the trailing hinge. It is

important to note the hinge deflection angle is measure between two consecutive bodies in

a wing and the angle between the trailing body and the actively prescribed leading body

would be the summation of both hinge angles.
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Table 4.3: Flexible Wing

Number of Bodies Nb 3

Number of Springs Ns 2

Body Major Axis a/c 0.16

Body Minor Axis b/c 0.03

Leading Hinge Stiffness K1/ρV
2c2 0.42

Trailing Hinge Stiffness K2/ρV
2c2 0.08

Leading Hinge Damping R1/ρV c
4 0.0275

Trailing Hinge Damping R2/ρV c
4 0.0195

Hinge Distance d/c 0.01

As noted above the rigid and flexible wing differ in lift production primarily during pitch.

Though the leading reference body undergoes symmetric pitch with Φ = 0 the wing camber

often lags stroke reversal with inertial-driven deflection. As a result the wing trailing edge

motion can be likened to a whipping motion where the rotational velocity of the trailing

edge is that of the leading body in addition to this trailing fling rotational velocity. Vanella

et al. argued this whip-motion bore little influence on the leading-edge vortex but proved

instrumental in strengthening shear layers strength of the end-of-stroke trailing-edge vortex

[102]. This may offer explanation to early lift behavior where the flexible wing is able to

recover some lift during pitch over that produced by the rigid wing at the start of the

halfstroke. Further, the lift peak reduction of the flexible is more gradual than that of the

rigid wing at pitch completion at the start of the stroke. This is the result of the prolonged

attachment of the end-of-stroke trailing-edge vortex experienced by the flexible wing as shown

in Figure 4.11 which enhances wake-capture mechanisms in generating a greater flow toward

the wing from the strengthened trailing-edge vortex and the deflected camber also reorients

the zero-lift direction. At halfstroke’s end the dynamic camber of the flexible wing may work

to reduce rotational circulation about the wing. Additionally, the wing compliance may also

sacrifices downward momentum at stroke reversal. These devises coupled offer insight into
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Figure 4.11: Vorticity field about (a) rigid and (b) flexible wings in hover shortly after stroke

reversal, t/T = 3.55, at α = 45◦. Reynolds number Re = 100.

the reduction in lift by the flexible wing during pitch at halfstroke’s completion. Ultimately

the flexible would producer slightly greaterCL and experience gains in lift production per

unit driving power, FLV/P , as shown in Table 4.4.

The inclusion of passive hinges has demonstrated potential benefits of flexible wings over

rigid counterparts in hover. Hover is the most energy costly of maneuvers in flapping flight

and gains in lift to power ratio achievable by flexibility are encouraging. To asses the effects

of dynamic camber at different points in the stroke, pitch is shifted from its stroke-symmetric

phase of Φ = 0 to Φ = ±π/5. This phase shift of the pitch profile isolates the entirety of a

single pitch reversal maneuver to a given halfstroke. Phase of Φ = π/5 shifts pitch to initiate

coincident with the start of a given halfstroke and phase Φ = −π/5 shifts pitch to complete

at the end of a given halfstroke. Figure 4.13(a) shows lift during a representative halfstroke

of hover for flexible wings of all phases Φ. Figure 4.13(b) depicts the deflection history of the

wings’ hinges. Phase-shifted deflection profiles do not differ greatly from general features

identified in the symmetric profile. All profiles are largely defined by the deflection spike near

α′ = 0 followed by a secondary fling spike in the opposite direction, albeit shifted according

to Φ. The phase does not incite radically new modes of deflection.

The resulting effects on lift are much more drastic in that lift does not follow the same
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Figure 4.12: (a) Lift comparison between rigid and flexible wings and (b) deflection history

of flexible wing hinges over a representative halfstroke. Leading hinge is Hinge 1 and trailing

hinge is Hinge 2. Reynolds number Re = 100 and pitch phase is coincident with stroke

reversal with Φ = 0. T is the stroke period. Shaded regions indicate pitch maneuver.
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Figure 4.13: (a) Lift comparison between flexible wings of varying pitch phase Φ and (b) cor-

responding deflection history of flexible wing hinges over a representative halfstroke. Leading

hinge is Hinge 1 and trailing hinge is Hinge 2. Reynolds number Re = 100. Phase: symmet-

ric Φ = 0, lag Φ = π/5, and lead Φ = −π/5. T is the stroke period. Shaded regions indicate

pitch maneuver and dotted lines indicate the point lag and lead pitch angles are α′ = 0 as

well as indicate the pitch regions for symmetric phase.
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simplified profile-shift behavior as deflection. Pitch phase lag experiences a reduction in early

lift over that of symmetric pitch which is characterized by a maximum near pitch completion.

Peak lift is achieved approximately 60% of the halfstroke duration and smoothly dissipates

with wing deceleration. Pitch phase lead is the most capable of operational configurations

with modification to lift over phase symmetry resulting in a much more uniform performance

for much of the stroke duration. Given its phase lead the flexible wing begins heave oriented

with the desired angle of attack.

Table 4.4: Hover Performance: Rigid and Flexible Wings

Φ CL P FLV/P

Rigid 0 0.1219 0.1041 0.5854

Flexible 0 0.1237 (+1.45%) 0.0954 (−8.45%) 0.6487 (+10.81%)

π/5 0.1315 (+7.79%) 0.0885 (−15.09%) 0.7432 (+26.94%)

−π/5 0.1860 (+52.53%) 0.1454 (+39.59%) 0.6397 (+9.26%)

Figure 4.14 demonstrates the effects of pitch phase on the vorticity field generated by

the flexible wing. For lead phase the wing completes pitch prior to stroke reversal. This

primes the wing orientation for ease of accommodation of the leading-edge vortex of the

previous halfstroke which is re-encountered on reversal. The deflection in chord provides

one avenue for encountered vortices to be swept under the wing. Additionally, the trailing-

edge undergoes a whip motion during pitch which significantly enhances shear layers feeding

the trailing-edge vortex. The strength of this trailing-edge vortex aids in the transfer and

integration of the previous leadinge-edge vortex into the wake, where it feeds into the newly

formed trailing-edge vortex at the start of the next halfstroke and in conjunction with the

trailing-edge vortex formed during pitch creates a vortex dipole with a trajectory directed

slightly downward thereby imparting downward momentum into the fluid. In a symmetric

phase the wing still benefits from ease of integration of the previous halfstroke LEV being

swept under the wing however given the timing of pitch there is a tendency for the global

velocity of the wing trailing-edge to reduce given the velocity of the leading reference body
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now heaving in the opposite direction. What amounts is a dipole in the wake stemming from

the trailing-edge with a greater imbalance between the two dipole elements, the counter-

clockwise component being the stronger of the two. As such, the trajectory is directed

upwards. For the lag phase the orientation of the wing at the start of the next halfstroke

encounters the previous halfstroke LEV in a manner that deflects the LEV upward toward

the wing leading edge. Pitch then splits the vortex into two with one portion being swept

to the bottom of the wing and lingering for a period of time and the other portion is sent

over the leading edge in proximity to the newly formed counter-rotating leading-edge vortex

of the current halfstroke.

4.3.2 Elevated Angles of Attack

Having identified a lift mechanism characteristic of flexible wings, we now subject the sin-

gle component rigid wing and the triple component flexible wing to hovering kinematics.

High fidelity simulations using viscous vortex particle method of a three component two-

dimensional wing in hover revealed the passive response to pitch amplitude [118] [49]. A

number of pitch amplitudes α
′

were tested (90◦ − α). Heave and pitch were actively pre-

scribed for the leading elliptical body component of a modeled wing, leaving the torsional

hinge between bodies free to passively deflect. In the case of a rigid wing, the active body is

the sole body in the system. Flapping wings characteristically operate at elevated angles of

attack, inducing flow separation and LEV formation. The oscillatory nature of a stroke in

hover requires that the wing reverse pitch at the end of translating the stroke amplitude in

preparation for the translation of the subsequent half-stroke. The pitch amplitude α
′
o con-

trols the degree to which the flapping wing adopts an aerodynamic angle of attack in each

direction of heaving. As such, it is expected to control the development of the leading-edge

vortex, and the degree to which this vortex contributes positively to lift, with the pressure

force generated acting normal to the surface of the wing. A heaving rigid wing with lit-

tle pitching remains nearly vertical, and in its most extreme case (α
′
o = 0) will generate

negligible lift apart from the small net contribution from the edges if vertical symmetry is
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Figure 4.14: Comparison of vorticity field generated by a flexible wing during pitch at

stroke reversal for varying pitch phases. Columns: lead phase (Φ = −36◦), symmetric phase

(Φ = 0), lag phase (Φ = 36◦). Rows: t/T = [3.39, 3.47, 3.51, 3.59, 3.67].
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broken.

Figure 4.15 depicts the mean lift and flapping efficiency of a three-component (flexible)

versus a single-component (rigid) wing undergoing flapping kinematics about a pitch axis at

XD/L = 0.16 with phase lead φ = 36◦ and heaving amplitude Ao/L = 4. The wing rotation

occupies 40% of half the stroke period Ts, with the velocity profile employed this amounts

to wing rotation spatially accounting for 35% of a half-stroke, ensuring that the pitch angle

is nearly constant for most of each half-stroke in heave.
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Figure 4.15: Stroke-averaged lift and efficiency for pitch amplitudes defined by the leading

edge of the wing [49]. Wings: rigid (◦), flexible (•).

Though the rigid wing produces slightly more lift at larger pitch amplitudes, the flexible

wing generates larger lift at smaller pitch amplitudes, and in particular, non-zero lift at

zero pitching. Furthermore, the efficiency of the flexible wing is larger than that of the

rigid wing at all pitch amplitudes. Figure [4.15] shows that wing flexibility can potentially

provide an opportunity for lift generation that is unavailable for a rigid wing flapping at

small α
′
. During each heaving phase of the stroke, the flexible portion of the wing deflects

opposite the direction of motion in an apparent streamlining mechanism, providing the wing

with a somewhat smaller effective angle of attack. This passive mechanism for changing the

effective angle of attack is very similar to passive pitching of a rigid wing, explored recently

by Bergou, Xu & Wang [7].
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In describing the current flexible wing, one would have to note the three elliptical body

lengths and thickness ratios as well as the deflection angles of each hinge. This can be quite

troublesome, particularly in the limit of a wing composed of many constituent bodies. In

an effort to easily account for the wing and its deflection, an effective pitch angle, α̃, can

be quantified by measuring the angle of a line intersecting the centroids of the first and

last constituent bodies of the flexible wing. The lift and efficiency are plotted versus the

r.m.s. amplitude of this angle (and of the original pitch angle of the single-component wing)

in figure [4.16]. The lift and efficiency trends exhibited by the two wings agree well over

the entire range, except for a slightly lower lift and higher efficiency in the flexible wing

at the largest angles. There is essentially a collapse of the two wing performances. This

would indicate in constructing an MAV the power pertaining to rotating a rigid wing may

be reduced by employing flexibility at a reduced pitch amplitude. One application of these

wings would then be in descending maneuvers from hovering. Flapping the flexible wing

at lower pitch amplitude would require less power since removing the active rotation of the

wing yet still produce the lift required from an equivalent rigid wing, allowing for the insect

or MAV to descend gracefully.
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Figure 4.16: Stroke-averaged lift and efficiency for pitch amplitudes defined by the effective

body deflection [49]. Wings: rigid (◦), flexible (•). Dashed circles indicate flexible wing

values prior to shifting.

It is interesting to note with the rotation interval fixed, as pitch amplitude is decreased
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so too is the role of rotational circulation on the wing. Thus at lower pitch amplitudes

performance variances are increasingly due to passive deflection. The effects of flexibibility

are therefore better isolated operating under these conditions.

The ability to deflect was also found to determine the wing-wake interactions. Upon pitch

reversal, the wing experiences the greatest hinge deflection. As the passive components of

the wing are now rotating in accordance with the leading-edge member, they attain a greater

angular velocity at the trailing-edge than observed by a rigid wing. This whip of the tail

creates a greater shear layer which is rolled-up into the trailing edge area. Additionally,

the deflected wing provides for a means for the shed leading-edge vortex to pass, or rather

be swept, beneath the wing. Coupled with the increased velocity induced by the rolled-up

trailing shear layer the deflected wing sees a shed vortex more easily passed at stroke reversal.

Such a feat proves favorable as this ensures the production of the LEV in the subsequent

stroke remains largely separated from the oppositely strengthened shed LEV. The rigid wing

however can encounter a shed LEV which distributes vorticity above and below the heaving

wing. The portion distributed below the wing experiences a greater residence time, lingering

on this surface until eventually being washed downward.

4.3.3 Passivity in Pitch

We have seen how a flexible and rigid wing’s performance may collapse due to the estab-

lishment of an effective pitch amplitude. This pitch was developed by passive means so to

explore this concept further we examined an entirely rigid wing undergoing passive pitch

in hover. Maintaining the same pitch axis XD/L = 0.16 and stroke amplitude Ao/L = 4

as before, the rigid wing is prescribed hover motion in the horizontal plane at Re = 100,

leaving the pitch and pitch reversal passive. The wing is outfitted with a torsional spring

about its pitch axis to facilitate restoration of the wing to an aerodynamically neutral state

(from half-stroke to half-stroke), a vertical orientation with α
′

= 0. Deflection of the body

will be determined by the balance of aerodynamic, elastic and inertial forces. To determine

the sensitivity of the aerodynamics to the wing configuration and vice versa the spring stiff-
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ness was varied over two orders of magnitude, effectively controlling the ’stiffness’ of a wing

undergoing twisting about the radial axis.
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Figure 4.17: Stroke-average lift and pitch phase for various wing stiffnesses, K (0.015↔ 1.5)

It becomes apparent too little stiffness does not make for effective lift generation. The

wing orients itself parallel to the flow with α
′ ≈ 90◦, and with the wings symmetric geometry

this makes for an ineffective lifting surface. With increasing stiffness we see a lift increase.

Additionally, increase in spring stiffness is met with a decrease in pitch amplitude. For

intermediate to higher end stiffnesses, the lift develops a plateau region in which the average

lift generated is insensitive to r.m.s. pitch amplitude. Additionally, passivity lends itself

to phase as well, stroke reversal is not guaranteed to coincide with pitch reversal despite

the restoring force exerted by the spring. When nearing the end of a half-stroke, the wing

decelerates to a stop before reversing direction. Although the velocity returns to zero the

aerodynamic forces do not diminish. The wake still presents an influence on the orientation

due to its proximity and strength. Increasing stiffness was found to make for a transition

from phase lag to lead. It is interesting to note that the lift plateau’s constituent points span

both the lag and lead regions, with a difference in phase of ∆φ ≈ 40◦. This would indicate

passivity in pitch also greatly reduces sensitivity to phase.

So far the low performance of the smaller spring stiffnesses has been attributed to large

pitch amplitude, however, the lack of strong wing-wake interactions may also prove detrimen-
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tal. The low angle of attack makes for a weak trailing edge vortex. The wing still develops

a counter rotating dipole in the wake, upon pitch reversal (which lags heave reversal) the

wing gradually rotates approximately 140◦ producing a weak leading-edge vortex. Due to

the high pitch amplitude during translation, the leading-edge vortex growth is mitigated and

is convected downstream along the wing’s upper surface. This roughly places the leading

and trailing-edge vortices in a vertical alignment with comparable strengths. Ultimately less

momentum is imparted on the fluid in the downward vertical direction.

4.4 Conclusion

Passive wing deformation has proven influential on both leading-edge vortex shedding fre-

quency at large convective times and on force production. Freestream studies have demon-

strated a vortex-symmetry breaking mechanism unavailable to rigid wings oriented normal

to the flow wherein the counter-rotating vortices are no longer of the same strength due to a

difference in shear-feeding layers at the leading and trailing edges. Two-dimensional wings

eventually experience shedding of vortical structures when saturation is achieved. For suf-

ficient convective times this shedding is periodic and the formation of a von Karman street

is typically observed. A flexible wing accelerating from rest following a power law velocity

profile demonstrated the effects of wing deflection on shedding frequency which includes

increased shedding frequency with decreasing torsional spring stiffness. Additionally, the

flexible still maintained a linear dependent of shedding frequency on Reynolds number and

with the exception of the least stiff torsional spring all other flexible wings considered did not

greatly alter the formation of the initial leading-edge vortex formed at the onset of motion.

Passive chordwise deformation in hover has been shown to prolong attachment of the end-

of-stroke vortex and strengthen its circulation thereby enhancing the flow induced by the

vortex and the wake capture mechanism at stroke reversal. These effects were only strength-

ened further with pitch phase leading stroke reversal which increases the global ”whipping”

velocity of the passive trailing edge of the wing. External to the pitch portions of the kine-
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matics the flexible wing produced forces similar to that of the rigid wing given its largely

undeflected state. In attempting to bridge the performance and efficiency behavior of rigid

and flexible wings an effective pitch angle was quantified by a line segment spanning from

the centroids of the flexible wing’s leading and trailing bodies. Plotting the flexible wing’s

lift and efficiency under the newly defined effective pitch resulted in a shift of the flexible

wings data to lie on a trend line associated with the rigid wing. It appears the effects of

flexibility in hover are predominant during pitch when deflection is greatest driven by both

inertial and aerodynamics loads, though the inclusion of passive deformation also has long

term effects in the development and shedding of vortical structures and hover kinematics

typically do not include stroke amplitudes sufficiently large for such behavior to take effect.
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CHAPTER 5

Three-Dimensional Wings In Hover: Prescribed

Deformation

5.1 Introduction

Passive chordwise deflection in two-dimensional wings has been shown to promote greater

frequency of leading-edge vortex shedding in accelerating wings. Freestream studies show

the flexible wing’s ability to disrupt symmetry in vorticity between the leading and trailing-

edge vortices with the leading edge held normal to the flow field, a feat unavailable to rigid

counterparts. In the reciprocating motion of hover, flexibility resulted in a fling motion of

the trailing edge at stroke reversal producing greater shear layers with prolonged separation

from the trailing edge which promotes greater wake-capture mechanisms. Despite proving

influential on shedding, it has been shown trailing edge deflection does not effect the leading-

edge vortex strength. However, in three-dimensional flight the wings are subject to axial

flow and a tip vortex and vortical structures formulated are tantamount to a vortex ring

system with a strong interdependence among all constituent components. In this light, the

effects of deformation on aerodynamic performance and leading-edge vortex development are

studied about a three-dimensional wing undergoing the hover maneuver. This study does not

concern itself with the nature of flexibility but rather the resulting effects deformation may

have on aerodynamic performance and vortical structure development. In a bid to distill the

complicated nature of wing deformation into a simple context, deformation is confined to one

of two lines of flexion with origins in deformation observed in biological counterparts. Flexion

lines allow for a segmental portion of the tip or root of the wing to deflect following prescribed
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sinusoidal motion. This work is not intended to draw specific conclusions on specific species

of insect and planform area is idealized as rectangular. Simulations numerically solving

the three-dimensional incompressible Navier-Stokes equations use the immersed-boundary

finite-volume method developed by Kim et al. [58]. Previous studies have examined the

effects of wing deformation on flight performance in the context of prescribed camber and

twist measured from wing motion and deformation of in vivo insects [26, 117, 103]. Given

the degree of insensitivity of LEV circulatory strength to chordwise deflection demonstrated

in two-dimensional wings this study seeks to examine which facet of the leading-edge vortex

is altered in response to generalized deformation modes and to what extent.

5.2 Wing Geometry and Deformation Modes

Wings of rectangular planform with aspect ratio AR = b2/S = 2 and thickness w/c = 0.1

where b is the wing span measured from root to tip, c is the chord length, and S the planform

area. The wing is situated at a standoff distance of rs = 0.4c from the rotation axis and

the pitch axis is located y′ = 0.16c aft of the wing leading edge. The deflection modes

selected are derived from general deformation exhibited in biological fliers. Deflection is

prescribed a priori and is confined to one of two isolated lines of flexion about which a

segmental portion of the wing will rotate as shown in Figure 5.1. Of interest are two distinct

flexion configurations about the root and tip in comparison to the a rigid wing which remains

planar. The first deflection mode configuration consists of a flexion line funning largely in

the spanwise direction allowing for deflection of the wing root. Mode two consists of a flexion

line oriented largely in the chordwise direction stemming from the leading edge at the wing

tip. Both modes allow for a deflection area which accounts for 24% of the total planform

area.

Wings undergo hover kinematics with no deviation from the horizontal plane with heave

following
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Figure 5.1: Flexion line configurations (left) superimposed onto the rectangular wing: root

(– – –) and tip (−·−). Deflection modes (right) in heaving. Each deflective area constitutes

0.24S of planform area.

φ (t) = φmcos (2πft) . (5.1)

Pitch is determined by a hyperbolic tangent waveform,

α (t) =
αm

tanhCε
tanh [Cεsin (2πft)] , (5.2)

with pitch reversal duration and profile determined by Cε [9]. Lastly, deflection about the

root or tip follows a sinusoidal waveform given by

θ (t) = θmsin (2πft− Φ) . (5.3)

Kinematic profiles over the course of a representative stroke are depicted in Figure 5.2 and

Reynolds number is defined as Re = Vtipc/ν.

95



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−50

0

50

100

t/T
A

ng
le

 [
de

g]

Figure 5.2: Sweep (——), pitch (− ·−), and deflection (– – –) kinematics over a period for

Φ = 0.

Table 5.1: Kinematic Parameters

Heave Amplitude φm 80◦

Pitch Amplitude αm 45◦

Deflection Amplitude θm 40◦

Pitch Duration Cε 3.3

Deflection Phase Φ [0, π/4, π/2, π, −π/4]

5.3 Force Modification via In-Phase Deformation

Investigation of wings flapping at Re = 100 with in-phase deflection Φ = 0 of amplitude

θm = 40◦ demonstrated the effects of deflection on force generation. Figure 5.4 shows the

temporal evolution of lift and drag during a representative halfstroke after the fluid has

become fully developed for rigid, root flexion and tip flexion wing configurations. All wings

experience the same profile trends differing only in magnitude with the greatest differences

experienced by the deflection wings approaching the midstroke. In-phase deflection of Φ = 0

places the maximum deflection coincident with the midstroke. Additionally, the plates return

to an undeflected state at stroke reversal. Correspondingly, the greatest similarity between

the plates’ forces is observed near stroke reversal. Resulting lift profiles are characterized by

a major jump extending much of the halfstroke surrounded by two smaller peaks. The peak

at the beginning of stroke can be attributed in part to wake-capture and the latter peak to

rotational circulation brought about by the pitch maneuver at midstroke’s end [22]. The tip
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Figure 5.3: Temporal variation in (a) Lift and (b) Drag coefficient of three wing deflection

configurations at Re = 100: Rigid (——), Root (– – –), Tip (− · −). Deflection amplitude

θm = 40◦, deflection phase Φdef = 0.

deflection wing augments the aerodynamic forces to a greater extent than root deflection.

The greater modifications of force in response to tip deflection may suggest the effects of

deflection are more pronounced when deflection is introduced in areas of higher local velocity,

namely the tip.

Forces at Re = 103 preserve major features identified for Re = 100 with some key

modifications as shown in Figure 5.4. Lift retains a profile dominated by a parabolic signature

for the majority of the halfstroke. The latter peak corresponding to rotational circulation of

pitch remains largely unchained with CL values comparable to those experienced at Re = 100.

The initial peak associated with wake-capture now appears less distinct from the greater lift

profile with reductions in peak coefficients for the rigid and root flexion wings, peaks are now

incorporated to a greater extent into the greater lift parabolic. Conversely, tip deflection

maintains a distinctive initial peak with an increased CL maximum that also experiences a

temporal shift. Between the rigid wing and two deflection wing configurations now exists

a greater disparity in lift coefficient. Further, the lift of the deflection plates is in greater

agreement than drag with the root deflection wing producing greater drag. This would

indicate tip flexion as a favorable flexion mode among the two presented at Re = 103 given
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Figure 5.4: Temporal variation in (a) Lift and (b) Drag coefficient of three wing deflection

configurations at Re = 1000: Rigid (——), Root (– – –), Tip (−·−). Deflection amplitude

θm = 40◦, deflection phase Φdef = 0.

the comparable lift and significant drag reduction. Overall, the increase in Reynolds number

by an order of magnitude was met by an increase in CL and a reduction in CD for all

configurations, indicating a reorientation of the resultant aerodynamic load on the wings

from that of Re = 100.

Examination of the vortical structures induced in flapping offers a sense of the deflection

influences on vortical strength and development. Figure 5.5 shows the vortical structures

identified by the λ2 criterion for flapping at Re = 100. The most notable difference in regards

to the tip vortex among the deflection wings compared to the rigid wing vortical development

resides in the tip flexion case shown in Figure 5.5(c). The tip vortex here appears thicker.

The tip deflection reduces the flux of vorticity into the tip vortex as evidenced by the

dissipative time scale of the shed tip vortex of the previous halfstroke in the wake. Despite

the circulatory strength reduction the tip deflection also works to shift the tip vortex inboard

toward the wing root, thereby increasing the leading-edge vortex and tip vortex proximity

and promoting an earlier merger of the two vortical structures along the span than that

experienced by a rigid counterpart.
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Figure 5.5: Three-dimensional vortical structures at t/T = 3.37, following the midstroke at

Re = 100: (a) Rigid (b) Root deflected (c) Tip deflected. Angle of attack α = 45◦, deflection

amplitude θm = 40◦, deflection phase Φ = 0. Vortical structures isosurface of λ2 = −0.03

[51].

In a given halfstroke the leading-edge, tip, root and starting vortex are often viewed as

a single closed loop vortex system. Stereoscopic DPIV experiments by Poelma textitet al.

also showed the flow structure around a rotating wing is a vortex loop made up of a leading-

edge vortex, tip vortex, starting vortex and a root vortex [81]. Simulations on translating

low aspect ratio wings by Taira and Colonius found the leading-edge vortex and tip vortex

remain separate vortical entities, lacking the closed loop system of rotating wings [95]. Of

these loop components there exists a thinning of the starting-vortex segment, with the root

flexion wing accounting for the greatest variability. Additionally, root deflection provides an

avenue for wing-woot vortex separation as shown in Figure 5.5(b).

Vortical fields at Re = 103 shortly after midstroke are as shown in Figure 5.6. In addition

to the primary components of the vortex loop system, the leading-edge, root, starting, and

tip vortex, the wings at this Reynolds number host a number of secondary vortices existing

on scales a fraction of those loop constituent vortices. The wing tip appears to be a significant

source of instabilities taking the form of of sporadically formulated sub-structures stemming

from the wing tip and encircling and overlapping the tip vortex. In the case of tip deflection

at midstroke in Figure 5.6(c) much of the chaotic nature of the sub-structures is suppressed

by the reduced shear at wing tip and replaced with a sleeve-like structure that remains in
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the vicinity of the shear feeding wing tip.

100



(a) (b)

(c)

Figure 5.6: Three-dimensional vortical structures at t/T = 3.37, following the midstroke

at Re = 1000: (a) Rigid (b) Root deflected (c) Tip deflected. Angle of attack α = 45◦,

deflection amplitude θm = 40◦, deflection phase Φ = 0. Vortical structures isosurface of

λ2 = −0.03 [51].
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5.4 LEV Axis and Core Response to Deformation

Use of λ2 isosurfaces and other vortical identification algorithms have proven vital in ex-

panding our knowledge on various flow phenomena, however, other flow features may be-

come obscured. To aid in highlighting flow features associated with the LEV response to

deflection-induced perturbations, identification of the LEV axis line and core is conducted

following the approach of Graftieaux et al. where a vortex axis is identified by the Γ1 criterion

[38],

Γ1 (P ) =
1

S

∫
M∈S

(PM ∧ UM) · z
‖PM‖ · ‖UM‖

dS. (5.4)

|Γ1| reaches a maximum near the vortex center which is interpreted as the vortex axis

with values in the range of 0.9 and 1.0 due to normalization. Similarly, the LEV core is

identified as a region of flow dominated by rotation attached to the upper surface of the

wing corresponding to |Γ2| > 2/π,

Γ2 (P ) =
1

S

∫
M∈S

[
PM ∧ (UM − ŨP )

]
· z

‖PM‖ · ‖UM − ŨP‖
dS. (5.5)

Figure 5.7 demonstrates the agreement between the velocity and vorticity field with the LEV

axis and core about midspan of a rigid wing. The axis is encircled by the local velocity field

and the axis is compliant with the vortical region of the LEV.

Other methods of axis detection include points in the flow where velocity is parallel to

the real eigenvector of the velocity gradient tensor as outlined by Rutten and Pagendarm

[89]. The guiding assumption in this approach is the real eigenvector is sufficiently indicative

of the rotation axis of the local fluid element. The axis line is then constructed by streamline

integration origination from the previously discovered axis element.

Figure 5.8(a) examines the spatial evolution of the LEV axis about the flapping wings

along the span for Re = 100, θm = 40◦ and Φ = 0 to reveal the axes behave nearly identically

throughout the stroke among the rigid, root deflection and tip deflection plate configurations.
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Figure 5.7: Flow and vorticity fields and corresponding LEV axis and core about a rigid

plate at midspan at midstroke, t/T = 3.25: (a) Re = 100 and (b) Re = 1000. Contours of

spanwise vorticity, velocity field (→), LEV axis as defined by maximum |Γ1| (•), LEV core

boundary as defined by Γ2 = 2/π (——).

The evolutionary path of all axes largely follow the adhere to the plate leading edge with

slight deviation with increasing spanwise location. Computational studies on revolving wings

at fixed angle of attack by Harbig et al. report dual LEV structures. However, the stroke

amplitude and Reynolds number considered support only a single axis. With negligible vari-

ation among the three plate configurations, the leading-edge vortex axis is best characterized

as insensitive to deflection.

Upon increasing Reynolds number to Re = 103, the wings still support a single LEV axis,

a consequence of stroke amplitude or formation time afforded to the vortical structures by

the kinematics selected as shown in Figure 5.8(b). The spatial evolution of axes about the

rigid, root deflection and tip deflection wings continue to exhibit negligible differences. As

is the case with Re = 100, the axes at Re = 103 remain in the vicinity of the wing leading

edge, though the axes now recedes further from the leading edge in approaching the wing tip

resulting in greater variability over that of Re = 100. Although the axes depicted in Figure

5.8(b) correspond to Φ = 0, the behavior extends to other deflection phases tested and the

figure remains representative of all deflection phases considered in Table 5.1.
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Figure 5.8: Leading-edge vortex axis spatial evolution about a plate at midstroke, t/T = 3.25.

(a) Deflection amplitude θm = 40◦, Reynolds number Re = 100, (b) θm = 40◦, Re = 1000.

Rigid (4), root deflection (�), tip deflection (©). Flexion lines highlighted on the rigid

plate planform: Tip (− · −), Root (– – –).

In contrast to the axis, the LEV core proves sensitive to deflection as shown in Figure

5.9. For Re = 100 and in-phase deflection phase Φ = 0 root deflection near the wing base is

responsible for a reduction in LEV core size as demonstrated in Figure 5.9(a). Tip deflection,

however, experiences a core similar to that of the rigid plate which would indicate the effects

of tip deflection are minimal in regards to core size near the wing root. All wing configu-

rations share the general trend of experiencing core size growth with span, culminating in

a maximum near r∗/b = 0.7 as shown in Figure 5.9(b). Beyond this spanwise position ap-

proaching the wing tip both the rigid and root flexion wings experience significant reductions

in core size as shown in Figure 5.9(c). Conversely, the tip flexion wing supports prolonged

enlargement of the LEV core. Further, the deflection state of the wing is directly reflected

in the orientation of the resulting core which appears to rotate in a direction congruent with

the wing’s deflection. At Re = 103 the aforementioned trends are continued as shown in

Figure 5.10 with a greater discrepancy now between the rigid and root deflection wings.

Cores presented also appear elongated in response to greater shearing of the fluid.

Although core formation among the plates may appear may be equal or very similar in

size for a given spanwise position, the resulting circulatory strength of the cores can vary and
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Figure 5.9: Leading-edge vortex core (|Γ2| > 2/π) spanwise evolution during midstroke.

Radial position: (a) r∗/b = 0.1, (b) r∗/b = 0.7, (c) r∗/b = 0.9. Core contour and plate

geometry: Rigid (——), Root (– – –), Tip (− · −). θm = 40◦, Φ = 0,Re = 100. Note:

r∗ = (r− rs) with 0.0 ≤ r∗/b ≤ 1.0.
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Figure 5.10: Leading-edge vortex core (|Γ2| > 2/π) spanwise evolution during midstroke.

Radial position: (a) r∗/b = 0.1, (b) r∗/b = 0.7, (c) r∗/b = 0.9. Core contour and plate

geometry: Rigid (——), Root (– – –), Tip (− · −). θm = 40◦, Φ = 0,Re = 1000.
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Figure 5.11: Leading-edge vortex circulation ΓLEV about a plate at midstroke, t/T = 3.25.

(a) Re = 100 and (b) Re = 1000: Rigid (4), Root deflection (�), Tip deflection (©).

Deflection amplitude θm = 40◦ and phase Φ = 0. Note: r∗ = (r− rs) with 0.0 ≤ r∗/b ≤ 1.0.

differ in behavior in response to the deflection modes as shown in Figure 5.11. The leading-

edge vortex circulation, ΓLEV, is normalized by local velocity of the wing to remove effects

from velocity variability along the span from the profiles presented. For Re = 100 in Figure

5.11(a) the rigid wing experiences parabolic growth in circulation until reaching a maximum

near 0.75b, beyond which the circulation reduces to values below that of the circulation at

the wing root. Root deflection leads to circulation growth that appears much more linear to

achieve a maximum near 0.75b before a near linear reduction approaching the wing tip. Tip

deflection produces a largely symmetric parabolic circulation profile with a maximum at the

midspan position 0.5b. Figure 5.11(b) shows the resultant circulation behavior for Re = 103.

Similar behavior between the rigid and tip deflection wing performance is observed near the

root until 0.2b, beyond which the tip deflection plate now performs as the root deflection

plate does until span of 0.47b. Further along the span all plates diverge in behavior to

develop distinctive profiles.

At Re = 103 in the vicinity of 0.7b span all plates experience a variation of a distinct spike

in circulation. Spike maximums from 0.675b, 0.725b, and 0.65b for rigid, root deflection and

106



(a)

0 0.5 1 1.5

-1

-0.5

0

y/
c

x/c

r*/b=0.675

(b)

0 0.5 1 1.5

-1

-0.5

0

y/
c

x/c

r*/b=0.725

(c)

0 0.5 1 1.5

-1

-0.5

0

y/
c

x/c

r*/b=0.65

-8 -6 -4 -2 0 2 4 6 8

ω /V  ctipz

Figure 5.12: Vorticity contours at spanwise positions corresponding to maximum lead-

ing-edge vortex circulation at Re = 1000: (a) rigid, (b) root, and (c) tip. Lines indicate

|Γ2| contours of 2/π.

tip deflection plate respectively. These spike maxima are accompanied by vortical structure

size increases and LEV core growth as shown in Figure 5.12. Additionally, as noted by Jardin

et al., there is also the development of a strong trailing-edge vortex in the vicinity of the

wing tip thought to promote instabilities in the LEV [50]. The newly formed TEV remains

in close proximity to the wing trailing edge for approximately 30% of the span originating

at the tip and is the result of the tip vortex being redirected inboard after clearing the wing

chord producing a spanwise component that merges with shear layers present along the wing

trailing edge. The tip vortex formation differs from that at Re = 100 which occupies a

region of the fluid outlined by the wing tip trajectory. The resulting TEV formation near

the wing tip also accommodates a region of fluid with an influx of counter-rotating vorticity,

secondary to the eruption layer near the leading edge.

5.5 Axial Flow

The selected deflection modes were initially proposed as a means to favorably modify ax-

ial flow behavior in flapping via deflection-induced channeling and incorporation into the

leading-edge vortex for low Reynolds numbers. With the inclusion of flow into the LEV the
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potential for bursting is present at lower Reynolds number which has been shown to enhance

force production at higher Reynolds numbers, where the term lower Reynolds number is

reserved for Re = O (102) [68]. It was initially believed to, at the very minimal, enhance

LEV stability at lower Reynolds numbers by the axial flow working to remove or convect

momentum from the LEV core. However, studies have shown stability Rossby number and

quasi-steady acceleration terms to play principal roles in LEV development and attachment

to the wing surface.

Vorticity fields and axial flow contours at Re = 100 are presented in Figure 5.13. On

inspection of the rigid wing, an axial flow maximum develops near the trailing edge for

the entirety of the span. As indicated in Table 5.2 axial flow at Re = 100 monotonically

increases with span. Flexion wings also experience maximum axial flow seemingly attached

to the trailing edge. Root deflection entertains two maxima near the wing root over the

length of span hosting a deflection segment of wing, though this bifurcation appears to be

heavily reliant on the thickness of the wing as shown in Figure 5.13(b). Near the wing tip the

root flexion wing experiences flow field reminiscent of the rigid wing. Although the proximity

of the axial flow maximum to the leading edge of the plate is increased via root deflection,

the maximum still remains localized at the trailing edge and offers no more integration into

the leading-edge vortex than the rigid wing. The same behavior holds true for tip flexion,

with the radial position dependency now reversed by the root flexion wing as shown in Figure

5.13(c). It appears despite the low aspect ratio of the wing much of the deflection effects

remain localized in their respectively radial positions.

At Re = 103 there exists a shift of axial flow maxima from the trailing edge to the

leading edge. Figure 5.14(a) shows the axial flow maximum shift naturally, unabetted by

an means of deflection for the rigid wing. The deflection wings follow suit with an axial

flow well integrated into the LEV core. It is worth noting flexion wings off more variability

from their rigid counterpart in the flow visualized at sections of the flexion wing that are

undeflected than observed at Re = 100. Referring to Table 5.2 the axial flow maxima do not

monotonically increase with span but rather achieve a maximum prior to 0.75b and begins to
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decrease. Of the three wings it is the root flexion wing that experiences the greater core flow

at midspan and three-quarter span positions adding validity to the idea of root deflection

channeling axial flow.

Table 5.2: Axial Flow Maxima (wz/Vtip) |max, Φ = 0, θm = 40◦

r∗/b = 0.25 r∗/b = 0.50 r∗/b = 0.75

Re = 100

Rigid 0.399 0.486 0.551

Root 0.380 0.473 0.534

Tip 0.383 0.438 0.460

Re = 1000

Rigid 0.596 0.908 0.812

Root 0.568 0.940 0.929

Tip 0.565 0.823 0.828
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Figure 5.13: Vorticity (flood) and axial flow field (contours) about (a) rigid, (b) root flexion

and (c) tip flexion wings at midstroke at Re = 100. Axial flow: outboard flow (——),

inboard flow (– – –). Columns correspond to cross sectional plans at spanwise position

r∗/b = 0.25, r∗/b = 0.50, and r∗/b = 0.75, respectively.

110



(a)

-0.20

0.
20

-0
.1
1

-0.11

-0.11

-0.11

-0.11

-0.
11

-0
.1
1

-0
.1
1

-0.01

-0.01

-0.01

-0
.0
1

-0.01

-0
.0
1

0.0
8

0.08

0.08

0.08

0.08

0.08

0
.0
8

0
.0
8

0.
080.18

0.
18

0.1
8

0.18

0.18

0.18

0.
27

0.27

0.27

0.27

0.27 0.37

0.3
7

x/c

y/
c

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

-0.22

-0.22

-0.10

-0.10

-0.10

-0.10

-0.10

-0.10

0.
02

0.02

0.02

0.
02

0.02

0.02

0.02

0.15

0.15

0.15

0.15

0.15

0.
15

0.27

0.27

0.27

0.27

0.
390.39

0.39

0.39

0
.5
1

0.
51 0.64

0.76

x/c

y/
c

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

-0
.2
3

-0
.2
3

-0.23

-0
.1
0

-0.10 -0
.1
0

-0.10

-0.10

-0.10

-0.10

0.03

0.03

0.03

0.03

0.0
3

0.03

0.16

0.16

0.
16

0.16

0.28

0.28 0.2
8

0.28

0.41

0.41

0.41

0.4
1

0.54

0.54

0.54

0.67

x/c

y/
c

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

(b)

-0.30

-0.20

-0.20

-0.2
0-0.11

-0.11

-0.11

-0.11

-0.11

-0
.1
1

-0.11

-0.11

-0
.0
1

-0.01

-0.01

-0.01

-0.01

0.08

0.08

0.08

0.08

0.08

0.08

0.
08

0.
18

0.18

0.
18

0.18

0.18

0.18

0.27

0.27

0.27

0.27 0.270.37

0.37

0.46

x/c

y/
c

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

-0.22

-0.22

-0.22

-0.10

-0.10

-0.10

-0.10

-0.10

-0.1

-0
.1
0

0.02

0
.0
2

0.02

0.02

0
.0
2

0.02

0.1
5

0.15

0.15

0.15

0.15

0.15

0.27

0.27

0.27

0.27

0.27

0.39

0.39

0.39

0.39

0.39

0.51

0.51
0.51

0.64

0.76

x/c

y/
c

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

-0.36

-0.23

-0.23

-0.23 -0.2
3

-0.10

-0.10

-0
.1
0

-0.10

-0.10

-0.10

-0.10

-0.10

0.03

0.03 0.03

0.03

0.03

0.0
3

0.16

0.16

0.16

0.16

0.28

0.28

0.28

0.28

0.41
0.41

0.41

0.54

0.54

0.54

0.67

0.67

0.80

x/c

y/
c

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

(c)

-0.
11

-0.11 -0.11

-0.11

-0.11

-0.01

-0.01

-0.01

-0.01

-0
.0
1

-0.01

-0.01

0.0
8

0.08

0.
08

0.08
0.08

0
.0
8

0.08

0.
18

0.18

0.18

0.18

0.27

0.27

0.27

0.27

0.37

x/c

y/
c

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

-0.22

-0.10

-0.10

-0
.1
0

-0.10

-0.10

-0.10

0.02

0.0
2

0.02 0.02

0.02

0.02

0.
02

0.15

0.15

0.
15

0.
15

0.27

0.27

0.27

0.39

0.390.51

0.51

0.64

x/c

y/
c

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

-0
.2
3

-0.23

-0
.1
0

-0.10

-0.
10

-0.10

-0.10

-0.1
0 -0.10

-0.10

0.03

0
.0
3

0.
03

0.03

0.03

0
.0
30.16

0.16

0.1
6

0.
16

0
.2
8

0.28

0
.2
8

0.41

0.41

0.54

0.54

0.67

0.67

x/c

y/
c

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7-7

ω /V  ctipz

Figure 5.14: Vorticity (flood) and axial flow field (contours) about (a) rigid, (b) root flexion

and (c) tip flexion wings at midstroke at Re = 103. Axial flow: outboard flow (——),

inboard flow (– – –). Columns correspond to cross sectional plans at spanwise position

r∗/b = 0.25, r∗/b = 0.50, and r∗/b = 0.75, respectively.
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5.6 Effects of Deflection Phase on Performance

Deflection maximum is now shifted to different parts of the stroke via Φ of Equation (5.3)

at Re = 100. In both the root and tip flexion wings in-phase deflection of Φ = 0 the least

time-averaged lift, CL, as shown in Figure 5.15 and summed up in Table 5.4. Minimum

CD also corresponds to in-phase deflection for tip flexion in Figure 5.15(b), whereas root

flexion is characterized by a minimum at Φ = 45◦ with deflection maximum occurring after

midstroke. In the instance of Φ = 180◦ the root flexion wing is capable of producing greater

lift than the rigid plate which has been unachievable thus far for a flexion wing. The root’s

deflection imparts positive camber on the wing and increases its ability to impart downward

momentum into the fluid. The CL for both flexion wings increases with increasing Φ but the

performance gap between the two flexion configurations widens with Φ as well. Conversely,

CD of the two flexion wings converges with increasing Φ, ultimately producing the same

drag at Φ = 180◦.

The stroke average aerodynamic power, P , and efficiency ratio, ηD/ηR are plotted in

Figure 5.15 where where efficiency is defined as the mean lift per unit power, FLVtip/P and

subscript D and R indicate deflection wing and rigid wing respectively. Plate deflection

prompts reduction in power in both root and tip configurations. Power consumption is

lessened by as much as 18.6% for root deflection with Φ = 45◦ from that of the rigid wing

and by as much as 31.7% for tip deflection with Φ = 0. These power reductions equate to

gains in efficiency as great as 14.9% for the root flexion wing with Φ = 90◦ over the rigid

wing and 19% for tip flexion with Φ = 45◦. With the exception of in-phase deflection of the

root flexion wing, the deflection modes prove more efficient than the rigid counterpart for

the phases considered.

Flight at Re = 103 sees considerable reduction in power consumption and gains in ef-

ficiency at midstroke phases. The root flexion wing previously required less power than a

rigid wing at Re = 100 with Φ = 0 but was also marked with a reduction in efficiency.

Operations at Re = 103 now report 8.2% gain in flight efficiency accompanied with an even
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Figure 5.15: Time-averaged (a) Lift and (b) Drag coefficient with deflection phase

Φ = [−45◦, 0◦, 45◦, 90◦, 180◦]: Rigid (——), Root (�), Tip (©) plate configurations.

Reynolds number Re = 100, deflection amplitude θm = 40◦, heave amplitude φm = 80◦.
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Figure 5.16: (a) Stroke-averaged power, P, and (b) efficiency ratio in hover. Rigid (——),

Root (�), Tip (©). ηD indicates deflection plate efficiency and ηR rigid plate efficiency.
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Table 5.3: Flapping Performance, θm = 20◦

Case Φdef CL 2P/ρV 3
tipS η

Rigid – 0.1899 0.2641 0.7192

Root 0 0.1722 (−9.3%) 0.2606 (−1.3%) 0.6608 (−8.1%)

π/4 0.1758 (−7.4%) 0.2582 (−2.2%) 0.6810 (−5.3%)

π/2 0.1856 (−2.3%) 0.2605 (−1.4%) 0.7124 (−0.93%)

π – – –

−π/4 0.1795 (−5.5%) 0.2639 (−0.08%) 0.6804 (−5.3%)

Tip 0 0.1710 (−9.9%) 0.2395 (−9.3%) 0.7142 (−0.69%)

π/4 0.1750 (−7.8%) 0.2397 (−9.2%) 0.7302 (+1.5%)

π/2 0.1817 (−4.3%) 0.2536 (−3.9%) 0.7166 (−0.35%)

π 0.1902 (+0.16%) 0.2336 (−11.5%) 0.8142 (+13.2%)

−π/4 0.1789 (−5.8%) 0.2527 (−4.3%) 0.7078 (−1.6%)

greater reduction in power consumption of 24.6% as tabulated in Table 5.5. Trends for root

flexion with phase Φ = 180◦ mirror those of Re = 100 but are boosted to greater percent-

ages. The same holds true for tip flexion at Φ = 0 where power and efficiency percentages

are boosted with efficiency quadrupled. Tip deflection into the direction of motion with

Φ = 180◦ was met with a drop in efficiency from that of the rigid plate at Re = 100, though

now at Re = 103 experiences an increase in operational efficiency while maintaining power

reduction. The trade-off of course is lift production with reductions as great as 18.4% for

root deflection with Φ = 0, however, at Φ = 180◦ the root flexion wing is still demonstrates

its ability to impart greater downward momentum than the rigid wing and produce elevated

lift.
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Table 5.4: Flapping Performance, θm = 40◦, Re = 100

Case Φ CL CD 2P/ρV 3
tipS η

Rigid – 0.1899 0.4327 0.2641 0.7192

Root 0 0.1547 (−18.5%) 0.3908 (−9.7%) 0.2227 (−15.6%) 0.6948 (−3.4%)

π/4 0.1628 (−14.2%) 0.3860 (−10.8%) 0.2149 (−18.6%) 0.7576 (+5.3%)

π/2 0.1803 (−5.1%) 0.4081 (−5.7%) 0.2183 (−17.3%) 0.8262 (+14.9%)

π 0.1987 (+4.6%) 0.4602 (+6.4%) 0.2312 (−12.5%) 0.8594 (+19.5%)

−π/4 0.1701 (−10.4%) 0.4074 (−5.8%) 0.2196 (−16.8%) 0.7746 (+7.7%)

Tip 0 0.1425 (−24.6%) 0.3601 (−16.8%) 0.1804 (−31.7%) 0.7901 (+9.8%)

π/4 0.1560 (−17.8%) 0.3712 (−14.2%) 0.1822 (−31.0%) 0.8562 (+19.0%)

π/2 0.1680 (−11.5%) 0.4026 (−6.9%) 0.1999 (−24.3%) 0.8406 (+16.9%)

π 0.1707 (−10.1%) 0.4603 (+6.4%) 0.2412 (−8.7%) 0.7080 (−1.6%)

−π/4 0.1610 (−15.2%) 0.3825 (−11.6%) 0.2003 (−24.2%) 0.8038 (+11.8%)

Table 5.5: Flapping Performance, θm = 40◦, Re = 1000

Case Φ CL 2P/ρV 3
tipS η

Rigid – 0.2707 0.2375 1.1398

Root 0 0.2209 (−18.4%) 0.1791 (−24.6%) 1.2334 (+8.2%)

π 0.2972 (+9.8%) 0.2015 (−15.1%) 1.4749 (+29.4%)

Tip 0 0.2218 (−18.1%) 0.1365 (−42.5%) 1.6249 (+42.6%)

π 0.2528 (−6.5%) 0.2084 (−12.3%) 1.2131 (+6.5%)
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5.7 Heave Amplitude in Hover

The heave amplitude plays a significant role in determining the degree of interaction between

a flapping plate and the wake. Low heave amplitudes leave the plate operating in the vicinity

of the wake for the duration of the halfstroke. Additionally, smaller heave amplitudes may

also have implications on the size and strength of the leading-edge and tip vortices and

their corresponding dynamics and subsequent interaction with a reversing plate. The flexion

modes have already demonstrated their ability to modify the surrounding flow field. Though

how these modifications scale with heave amplitude are unknown. To offer some insight

stroke-averaged lift and drag responses to heave amplitude are sought here with the objective

of determining any departures in force coefficient trends from the rigid wing which would

indicate the development of phenomena not represented at θm = 80◦ in the flexion wings.

Heaving amplitude is reduced from φm = 80◦ in increments of 20◦ to φm = 40◦, Figure 5.17.

With reduction the wake becomes increasingly influential, proving beneficial to lift pro-

duction. The same holds true for the time-averaged drag coefficient, satisfying an inverse

proportionality with heaving amplitude. Of the range of heave amplitudes presented there

appears to be no immediate departure from trends displayed by the rigid wing lift and drag

coefficients for the flexion wings. This would suggest the flexion modes do not take advan-

tage of the reduced heave amplitude in a manner unavailable to the rigid wing and do not

incite additional flow phenomena differing drastically.
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Figure 5.17: Time-averaged (a) Lift and (b) Drag coefficient: Rigid (4), Root (�), Tip (©).

Heave amplitudes include θm = [40◦, 60◦, 80◦], deflection phase Φdef = 0.

5.8 Reynolds Number

The Reynolds number associated with smaller aspect ratio wings, (AR ≤ 3), is typically

on the order of Re = O (102). In a bid to investigate operational limitations low aspect

ratio wings the rigid, root and tip flexion plates are subjected to Reynolds numbers range

Re = O (102) − O (103) for reduced deflection amplitude θm = 20◦. All three plates mono-

tonically increase in time-average CL with increasing Re, Figure5.18(a), the slope of which

decreases with Re. The averaged lift coefficient appears to plateau or approach perfor-

mance saturation as it nears Re = 103 in all cases. The asymptotic nature of the stroke-

averaged force coefficients with Reynolds number verifies Re = 103 as an appropriate max-

imum Reynolds number to consider for the aspect ratio AR = 2 wings. The root and tip

flexion plates also perform very similarly in terms of average lift production for Reynolds

numbers range, offering a maximum difference between the two of just 3% at Re = 562.3.

Deflection amplitudes of θm = 40◦ presented above have demonstrated greater variability

between tip and root flexion wings.

On the other hand, the time-averaged drag coefficient scales inversely to Reynolds num-

ber. It may be worth noted the convergent nature of the drag coefficient between the two
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Figure 5.18: Time-averaged (a) Lift and (b) Drag coefficient with Reynolds number

Re = [100, 177.8, 316.2, 562.3, 1000]: Rigid (4), Root (�), Tip (©). Deflection ampli-

tude θm = 20◦, deflection phase Φdef = 0, heave amplitude φm = 80◦.

flexion plates. Though the two flexion configurations behave very similarly, the difference

in CD between tip and root flexion maintains a visibly steady value until reaching Reynolds

numbers Re > 500, beyond which the two drag values approach one another, Figure 5.18(b).

High-fidelity simulation on low aspect ratio revolving wings by Garmann et al. also showed

lift increases with Reynolds number up until a saturation point [35].

5.9 Trailing-Edge Deflection: Effective Attack Angle

Trailing-edge defleciton is now prescribed about the mid-chord position via flexion oriented

along the span extending from base to tip. In this manner the plate experiences a uniform

cross section for all radial positions. In examining chord-wise deflection Eldredge et al.

found passive deflection to effectively shift lift and efficiency of a flexiible wing to trends

similar to that of a rigid wing operating at a lower angle of attack, with the flexible wing

requiring less actuation than the rigid counterpart [49]. This shift is achieved by quantifying

an effective pitch angle. Similarly, in introducing chord flexion to a three-dimensional wing,
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an effective angle of attack, α̃, may be quantified by measuring the angle of a line intersecting

the centroids of the newly separated portions of the plate, Figure 5.19. Chord flexion here is

defined by a deflection about a line situated at the midchord position running the full span

of the wing parallel to the leading-edge.

Desired α̃ are achieved employing leading-edge attack angles αLE = 50◦ and 60◦ in con-

junction with suitable chord-wise deflection amplitudes. Deflection profiles mirror that of

the pitching profile of Equation (5.2). Beginning with lift coefficient C̄L of the rigid wing,

beyond an attack angle α = 50◦ (≡ α̃) lift generation declines. Thus, α̃ = 50◦ is interpreted

as the operational limit to be mimicked by a trailing-edge flexion plate. It becomes evident

trailling-edge deflection does not produce lift in agreement with the rigid plate lift coefficient

trend line. There is little convergence in the deflection lift data with that of the rigid plate

trend line. Differences in trailing-edge and rigid plate trend lines decrease with decreasing

αLE. The leading-edge orientation largely dictates LEV strength and formation, thus forma-

tion about αLE will differ from that of α̃ in a rigid wing, contributing to the differences in

lift performance.

It would seem the effective attack angle approach is not sufficient in quantifying a flexion

plate analogous to a rigid counterpart based on lift arguments alone. Conversely, inspection

of drag profiles reveals the trailing-edge flexion plate agrees rather well with the rigid plate C̄D

trend line, nearly collapsing onto the rigid member. In reconciling the differences observed

in lift behavior in response to α̃ between two-dimensional wings [49] and three-dimensional

plates it should be noted the two-dimensional wing is tantamount to an infinite aspect ratio

three-dimensional plate undergoing translation, rather than revolving kinematics. It remains

to be seen if the lift profile of a translating finite aspect ratio rigid plate could be reproduced

with a trailing-edge deflection plate with an effective attack angle α̃ = α.

119



(a)

20 30 40 50 60 70
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

α~
αLE

α~

C
L

(b)

20 30 40 50 60 70

0.3

0.35

0.4

0.45

0.5

0.55

0.6

α~

C
D

α~

Figure 5.19: Time-averaged (a) Lift and (b) Drag coefficient versus effective angle of attack

α̃: Rigid (4), αLE = 50◦ (�), αLE = 60◦ (©). Plates: Rigid (——), Trailing-edge deflection

(– – –).

5.10 Conclusion

Two-dimensional studies of hovering wings have found wing deformation had little effect on

leading-edge vortex strength or formation time. For the two generalized deflection modes

explored here in three-dimensional rectangular wings it has been shown deformation had

a greater role on LEV formation and circulation strength in three-dimensional flow aided

by three-dimensional flow phenomena such as axial flow convecting information and distur-

bances of the root flexion along the span and the tip flexion wing’s alteration of the tip

vortex and its interaction with the leading-edge vortex. With deformation following a sinu-

soidal waveform of maximum deflection coincident with the midstroke in hover it was shown

the effect of deflection were more pronounced in areas of higher local velocity which corre-

spondingly meant tip deflection resulted in greater modification of lift, drag and efficiency.

At Re = 100 the tip deflection produced an enlarged tip vortex over that produced for a

rigid wing and also experienced a shift inboard the wing resulting in greater overlap between

the tip vortex and the leading-edge vortex. At Re = 1000 the tip vortex suppressed the
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formation of secondary vortical structures emanating from the wing tip in rigid and root

flexion wings resulting in a simplified wake to encounter in hover. Efficiency gains in flexion

wings over that of the rigid counterpart were shown to increase with Reynolds number. The

root flexion wing transitions from less efficient than the rigid wing to greater with increasing

Reynolds number from Re = 102 to Re = 103. The leading-edge vortex circulation of the

flexion wings exhibited profiles distinct from the rigid wing. At Re = 100 the root flexion

profile maintained a near-linear dependence on spanwise position until a maximum and tip

flexion assumed a symmetric profile with a maximum at midspan. Flapping at Re = 103

hosts a broader range of circulation values within all three wing configurations. All wings

experienced a spike in LEV circulation near 70% span in response to the tip vortex redirect-

ing inboard, producing a spanwise component merging with the trailing-edge shear layer in

contrast to the tip vortex produced at Re = 100 which develops along a path outlined by

the wing tip trajectory. Mapping of the LEV axis highlighted its inherent robustness as the

axes of the rigid, root flexion, and tip flexion wings exhibited negligible differences in spatial

evolution along the span at Re = 100. At Re = 103 axis invariance to deflection continued

with all wing configurations experiencing the same axis profile, though the spatial evolution

of the LEV now receded from the leading edge approaching the wing tip. The LEV core

demonstrated notable responses to wing deflection while satisfying a general trend of core

enlargement with span until reaching a maximum near 75% span for both Reynolds numbers

considered. Further along the span the rigid and root flexion wings experiences core size re-

ductions while tip deflection supports further enlargement and reorientation congruent with

wing tip deflection.
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CHAPTER 6

Three-Dimensional Wing in Hover: Passive

Deformation

6.1 Introduction

There has been a growing interest in flapping wings operating at elevated Reynolds number.

This includes Reynolds on the order of Re = O (104). The term elevated is used here to

distinguish the flow regime from Reynolds numbers characteristic of biological fliers observed

in nature whose Reynolds numbers typically peak at O((103). It has been reported flapping

at elevated Reynolds numbers activates a host of flow phenomena absent at lower regimes

including bursting. However these phenomena are yet to be fully understood. Therefore,

attention is increasingly given to the trans-bursting regime for MAV applications. Here

flow visualization is performed to provide qualitative insight into the effects of elevated

Reynolds number on LEV formation. Naturally a given wing is expected to experience

greater aerodynamic loads and correspondingly the potential for greater deformation. As

such, the effect of flexibility on LEV formation in maneuvers associated with flapping flight

are of primary importance as much of the wing lift can be attributed to the LEV. Flexibility

here is represented by a single hinge allowing for a segmental tip or root portion of the

wing to passively deflect. The wings considered are dynamically-scaled fruit fly (Drosophila

melanogaster) wings. The objective is to asses the response of vortical structure development

about wings which typically operate at the lower Reynolds number flapping limit Re =

O (102) to greater flight speeds and acceleration fields.
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(a) (b)

Figure 6.1: Flow visualization of a flapping wing at (a) Re = 100 and (b) Re = 14226 with

fixed α = 45◦.

6.2 Reynolds Number Effects on LEV Growth

With sufficiently increased Reynolds number the leading-edge vortex undergoes a fundamen-

tal change in behavior thought to be driven by the interaction between axial flow and the

LEV core. In Section 5.5 it was observed a rotating wing experiences axial flow from wing

root to tip driven by pressure gradients inherent in the wing’s radial velocity gradient. With

increasing Reynolds number an order of magnitude it was shown the axial velocity maximum

shifted from the trailing edge toward the leading edge, ultimately localizing in the LEV core.

Further increasing Reynolds number then results in LEV bursting which is defined here as

the sudden expansion of the LEV in size accompanied by significant levels of mixing within

the vortex. The deceleration of the newly integrated axial flow into the core is thought to

be responsible [41, 54]. The deceleration also implies possible flow reversal within the core.

Figure 6.1 demonstrates the transformation of the leading-edge vortex in response to

Reynolds number beyond the trans-bursting limit about a dynamically scaled fruit fly wing

of aspect ratio AR = 2.36. At Re = 100 the LEV is visualized as a clean spiral in the

vicinity of the leading edge across the span. At Re = 14226 there exists significant growth

and expansion extending to the trailing edge. Despite the turbulent appearance the LEV

remains stable owing to quasi-steady accelerations of centripetal and Coriolis acceleration
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Figure 6.2: Dual vortical wake stemming from a rigid wing tip shortly after midstroke in

constant velocity revolution of 360◦ at fixed α = 45◦.

which are inversely proportional to Rossby number. Experiments by Lentick and Dickinson

on rotating and translating wings found translating wings with Ro = inf could not maintain

a stable LEV [68]. Figure 6.2 shows signs of a dual vortex wake stemming from the wing tip

undergoing pure rotation impulsively started at Re = 14226. The wake stands as another

departure from behavior characteristic of sub-bursting Reynolds numbers. It is worth noting

that bursting initiates almost immediately upon startup.

6.3 Passive Deflection in Hover

Increasing quasi-steady acceleration associated with revolving wings has been shown to in-

duce significant growth of the leading-edge vortex. As noted earlier, increased flight speed

and acceleration fields is bound to increase aerodynamic loads on the wing as well as inertial

effects, resulting in greater deformation for a wing structurally suited for lower Reynolds

number flight. With the potential for greater deflection in a flow regime that remains largely

unknown, here dye visualization is employed to qualitatively examine the effects of deforma-

tion at elevated Reynolds number Reb/2 = 14226 ini hover kinematics. Heave is determined

by a nearly triangular waveform
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Figure 6.3: Flapping kinematics: heave (——), pitch (——). Shaded regions indicate pitch.

φ (t) =
φm

sin−1 (M)
sin−1 [Mcos (2πft)] , (6.1)

where in the limit as K → 1 the waveform increasingly becomes triangular rather than

sinusoidal as proposed by Berman and Wang [9]. Pitch maintains a constant value of π/4

for the majority of a stroke, determined by a the hyperbolic tangent function

αp (t) = −π
2

+
π

4
tanh [Nsin (2πft)] , (6.2)

where N is a smoothing parameter. Variables are as listed in Table 6.1 and kinematics are

plotted in Figure 6.3.

Table 6.1: Hover Kinematic Parameters

Sweep Amplitude φm 70◦

Triangular Fit M 0.99

Smoothing Parameter N 5

Angle of Attack α 45◦

Reynolds Number Reb/2 14226

Each wing contains a single torsional spring of stiffness K = 0.035Nm about the hinge

as a restoring force with the undeflected state as the equilibrium state. Through a process

of matching CAD reconstructions of the experimental apparatus with high speed imaging

of the wings in hover the deflection angles are quantified over the course of a halfstroke as
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Figure 6.4: Deflection angles in hover over a representative halfstroke: root (——), tip (–

– –). Shaded regions indicate pitch.

shown in Figure 6.4. The root deflection wing is most responsive to pitch and after some

oscillatory behavior the wing returns to the undeflected state once the desired angle of attack

is achieved. Conversely, the tip deflection wing remains in the deflected state well after pitch,

holding a steady angle of 38◦. The implications here are a given biological wing would be

prone to deflection in the distill portion of the wing during heave and most susceptible to

root deflection in pitch or stroke reversal. Of course the deflection behavior of a given wing

would be dependent on a number of factors including architectural, material and planform.

The effects of these deflections in stroke are explored in Figure 6.5. It has been estab-

lished the leading-edge vortex experiences significant growth at the Reynolds number under

investigation. The dye about the rigid wing appears well mixed and near the 70% span

position the LEV growth extends to the wing trailing edge. The LEV growth for the root

deflection wing appears very similar to that of the rigid wing in stroke. The root deflec-

tion wing returns to an undeflected state after pitch making it geometrically-similar to the

rigid counterpart. The greatest variability in LEV formation is observed for tip deflection in

stroke. Tip deflection maintains a steady deflection angle and as a result the LEV grows con-

siderably. The very nature of LEV growth at Re = O (104) has been thought to be indicative
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(a)

(b) (c)

Figure 6.5: Dye visualization of leading-edge vortex about (a) rigid, (b) root, and (c) tip

deflection wings prior to pitch. Dotted lines highlight the leading-edge vortex.

of LEV bursting. Khoo et al. examined bursting vorticity in an unconfined vortex flow and

observed a correlation between abrupt enlargement of the vortex with sudden deceleration

of axial flow in the vortex core [54]. Additionally, as Reynolds number is increases there is

a shift of axial flow about a flapping wing from the trailing edge toward the leading edge

and at sufficiently high Reynolds number this flow is integrated into the LEV core. The

great departure of the tip deflection wing may be a greater deceleration of LEV core flow.

The deflected tip may provide an obstruction of sorts for core flow and promote greater

deceleration which translate to greater enlargement.
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6.4 Passive Pitch in Hover

Passivity is extended to pitch in addition to flexion. Various stiffnesses are tested with the

addition or removal of torsional springs about the flexion line. In the absence of direct force

measurements the degree of pitch in stroke may provide some insight into the nature of

resultant force and moment about the wing and LEV formation in response to the variable

hinge spring stiffness. Figure 6.6 shows optical encoder readouts installed on the pitch rod

of the flapper apparatus. The rigid wing reaches a largely steady pitch angle at approxi-

mately one-fourth halfstroke cycle. The pitch phase lags stroke reversal by 16% halfstroke

cycle. The measured pitch bears resemblance to high-speed video measurements of wing

kinematics in free-flying fruit flies by Fry et al. which determined a nearly synchronous

relationship between wing reversal and supination during slow ascension [34]. The similarity

comes despite differing flow patterns associated with the respective Reynolds numbers which

may lead some to believe the driving mechanism behind passive pitch is primarily inertial.

However, a study by Bergou et al. calculated the rotational power owing to aerodynamic and

wing inertias for motions derived from measurements of tethered insect to reveal a negative

rotational power suggesting fluid forces assist pitching rather than resist [7].

The pitch behavior exhibited in the rigid, root flexion and tip flexion wing configurations

is complicated not just by the aerodynamic resistance presented in their deformation in stroke

but also in the distinct wakes created by such deformation which is encountered during the

subsequent halfstroke. The exclusion of springs in Figure 6.6 provides the greatest variability

among the flexion wings compared to the rigid wing. Root flexion produces greater pitch

than the rigid wing initially then reduces pitch below the rigid wing approaching stroke

reversal. It is believed this is in part due to the weakening of the trailing-edge vortex at the

end of the halfstroke which retards its ability to induce a significant flow field to aid in the

downwash of the previous halfstroke’s leading-edge vortex under the wing. The rise in pitch

angle is the indicative of the wing pitch navigating the passage of the previous leading-edge

vortex in a flow field reduced in strength of counter-rotating vortical structures, namely
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Figure 6.6: Pitch angle in hover over a representative period at Re = 14226 with φm = 70◦.

Wings: rigid (——), root flexion (– – –), and tip flexion (− · −). Torsional springs at the

hinge: (a) 0 springs, (b) 1 spring, and (c) 2 springs.
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the trailing-edge vortex. The inclusion of springs places the deflection wings profiles in

agreement with that of the rigid wing. In tip deflection without torsional springs the wing

approaches a maximum pitch angle early on in stroke and begins a process of reduction

until stroke reversal. The deflection portion of the wing could potentially shift the resultant

pressure forces closer to the leading edge and potentially reduce its contribution to pitch

however it has been shown the leading-edge vortex growth is expanded under tip deflection.

A significant contributor to the lower pitch angle is the reduction of forces acting on the

distal region of the now deflected wing. As the wing is made stiffer with the addition of

torsional springs the behavior increasingly approaches that of the rigid wing.

In reducing the heave amplitude in Figure 6.7(a) the pitch profile of the rigid wing transi-

tions to one of smooth gradual increase until reaching a maximum near stroke reversal. Pitch

also now experiences a greater lag with respect to stroke reversal. Experiments on free-to-

pivot flat plates in hover kinematics by Granlund et al. found the stroke amplitude to chord

ratio in rectilinear translation determined the vortex production history and aerodynamic

load production history with large strokes producing simpler vortex wakes [40]. Additionally,

Granlund et al. found Reynolds numbers effects in the range considered were insignificant.

It is important to note their experiments were focused on two-dimensional kinematics and

pitch was confined to a predetermined range via limiters. However, despite these key dif-

ferences the effects of reduced stroke amplitude are mirrored in the rigid wing passive pitch

profiles in Figure 6.7(a), with the increased phase lag and ”smoothing” of the pitch profile

due to the greater interactions with the wake. In the exclusion of torsional springs in Figure

6.7(b) the root flexion wing now showcases a plateauing behavior reminiscent of the rigid

wing at φm = 70◦. Of the wings configurations presented the root flexion wing’s pitch phase

is the least affected by the reduction in stroke amplitude. Tip flexion wing does not offer

that great a departure from the rigid wing. Once again with the application of torsional

springs the pitch profiles approach that of of the rigid wing.
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Figure 6.7: Pitch angle in hover over a representative period at Re = 14226 with φm = 35◦.

Wings: rigid (——), root flexion (– – –), and tip flexion (− · −). (a) Pitch behavior

comparison between φm = 70◦ and φm = 35◦. Torsional springs at the hinge: (b) 0 springs,

(c) 1 spring, and (d) 2 springs.
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6.5 Conclusion

As demonstrated in Chapter 5 there exists a shift in axial flow maximum about a flapping

wing from external to the leading-edge vortex in the vicinity of the wing trailing edge to the

wing leading edge with increasing Reynolds number from Re = 102 to Re = 103. This shift

places maximum axial flow coincident with the leading-edge vortex, introducing significant

core flow into the LEV. When Reynolds number is increased further there exists a decelera-

tion of core flow which incites enlargement of the leading-edge vortex termed bursting. Dye

visualization on flapping wings demonstrated this growth from a compact LEV adhering to

the wing leading edge at Re = 102 to a well mixed LEV with expansion extending to the

wing trailing edge at Re = O (104). Two distinct wing deformation modes were introduced

to the wing as root and tip flexion spring-loaded flexion lines allowing for passive deflec-

tion. Measurements of in-stroke deflection revealed root deflection was largely isolated to

the pitch phases of hover with the wing returning to an undeflected state during much of the

stroke. Tip flexion, however, exhibited significant deflection during stroke which was found

to further enhance LEV bursting by means of the deflection tip acting as a physical barrier

decelerating the LEV core flow and redirecting vorticity.
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CHAPTER 7

Three-Dimensional Wings in Rotary Motion

7.1 Introduction

Much of the flapping wing’s performance and lift capabilities are largely attributed to the

development of a low-pressure suction region above the wing via the formation of a leading-

edge vortex. In biological fliers and MAV applications the finite wing stroke ensures the

attachment of the leading-edge vortex for the duration of the stroke. In an effort to distill the

nature of leading-edge vortex formation and fundamental long-term behavior of the leading-

edge vortex, wings undergoing unidirectional rotation kinematics are examined. Wings are

maintained at a fixed angle of attack and allotted a single degree to maneuver about the

rotary shaft completing one revolution of 360◦. The rotation angle is well beyond stroke

angles typically observed in flapping flight. In this manner the effects of prolonged sweep on

LEV attachment are explored and the sustainability of the LEV influence on lift generation

can be quantified via direct force measurements. With the exception of the initial angular

acceleration and deceleration, which constitute a mere fraction of the total rotary angle,

the simplified kinematics relieve the LEV of influences from secondary acceleration fields

associated with pronation and supination. The wings considered include low aspect ratio

AR = [1, 2] with rectangular planforms. At such aspect ratios there is expected to be

greater interaction between the tip and leading-edge vortex. Reynolds numbers tested are

elevated to coincide with the bursting-limit associated with significant enlargement of the

LEV. Further, in addition to rigid wings, the effects of chordwise flexibility on aerodynamic

performance and the implications on LEV formation are also explored. At the Reynolds

numbers considered the LEV growth is known to extend to the wing trailing edge before
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reaching saturation. Trailing edge deflection results in a dynamic chord thereby modifying

the spatial evolution, and possibly the strength, of the leading-edge vortex.

7.2 Rigid Rotary Wings

Rotary wing experiments were conducted in water and a 50−50 mixture of water and glycerin

by volume. Rectangular planform wings of aspect ratio AR = [1, 2] were accelerated from

rest with a constant acceleration to reach a maximum constant velocity for the duration of

rotation following a smoothed ramp-up and ramp-down velocity profile which allows for a

continuous motion that is differentiable, avoiding discontinuities in the angular acceleration:

Ω (t) =
Ω̇max

2a
ln

(
cosh (a (t− t1)) cosh (a (t− t4))

cosh (a (t− t2)) cosh (a (t− t3))

)
(7.1)

where a is the smoothing parameter, t1 and t2 determine initiation and completion of acceler-

ation from rest of an un-smoothed profile, and t3 and t4 determine initiation and completion

of deceleration to rest for an un-smoothed profile. The deceleration is equal and opposite to

that of the angular acceleration. Sample kinematics are shown in Figure 7.1.

Eq. (7.1) is a modified form of a function implemented by Eldredge et al. in pitching

plate studies [31]. Wings engaged in unidirectional rotation are held at a fixed angle of

attack with a root standoff distance off 0.5c from the rotary axis to the wing root, Table 7.1.

Two Reynolds numbers are tested with differing reference velocities, the first of which is with

respect to the room velocity and the second Reynolds number based on three-quarter span

position from the wing root as depicted in Figure 7.2. The root Reynolds number aids in

isolating effects of span on LEV on aerodynamic performance and three-quarters Reynolds

number ensures all wings experience the same conditions at the point along the span where

sudden enlargement of the LEV is expected to occur. High-fidelity simulation by Garmann

and Visbal on revolving wings showed the enlargement of the vortex loop generated by the

wing according to travel distance of the wing tip with the leading-edge vortex lifting slightly

off the surface near the outboard section of the wing to form an artch-type structure at
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Figure 7.1: Sample rotary kinematics. (a) Unidirectional rotation angular position, (b)

angular velocity and acceleration. Shaded regions indicated acceleration phases.

75%-span position that reattaches to the wing tip early on in stroke [36]. Later in stroke as

inboard pressure establishes the leading-edge vortex experiences expansion near the midspan

position onward as the LEV experiences burst and breakdown.

Table 7.1: Rotary Wings

Aspect Ratio AR [1, 2]

Root Standoff rs/c 0.50

Angle of Attack α 30◦, 45◦, 60◦

Reynolds Number Reroot 103

Re3/4b 104

Initial experiments at Reroot = 103 utilized the water-glycerin mixture as the working

fluid, Table 7.2. The plates are accelerated from rest over 15◦ of rotation as with deceleration.

Figure 7.3 showcases the aerodynamic performance of an aspect ratio AR = 1 wing. The

angular acceleration phases of rotation are reflected in initial transients of lift and drag

owing in part to inertial-driven forces of added mass. Negligible difference is observed in

lift behavior of α = 45◦ and α = 60◦ with both profile and magnitude in agreement. Lift

approaches a maximum near rotation angle φ = 115◦. Lift then experiences a gradual, yet
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Figure 7.2: Diagram of rigid wing mounted on the rotary shaft. The two Reynolds numbers

shown use differing spanwise locations for reference velocity.

slight, decrease until deceleration. Lift generated at α = 30◦ lies below that of the remaining

attack angle though it hosts a delayed maximum near φ = 238◦. Additionally, there appears

a secondary minor peak in lift near φ = 90◦. Drag monotonically increases with angle of

attack with maximums near φ = 120◦.

On the nature of the initial transient spikes present in all force histories throughout this

study, given the wing accelerates from rest and decelerates to a stop it is expected that

added mass contributes to the spike. However the acceleration profile is symmetric about

the acceleration about the acceleration phases as demonstrated in Figure 7.1(b) which would

indicate effects of added mass alone should produce a symmetric spike as added mass force

is directly proportional to acceleration. Added mass approximations by Sane and Dickinson

in Eq. (7.2) and by Korotkin in Eq. (7.3) are plotted in Figure 7.4. Rather than symmetry,

the spike achieves a peak value coincident with the end of the acceleration phase indicating

added mass along does not account for initial transients. Dickinson and Gotz observed

similar spike behavior in experiments on model wings accelerating from rest [24] where they

postulated the peak is also the result of transient vortex formation about the wing and note

the ability of the wing to initiate the formation of leading-edge vortex is enhanced with

increasing Reynolds number.
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On inspection of the spike

FN,S = ρ
π

4
R2c̄2

(
φ̈sinα

)
∫ 1.5

0.5
r̂2dr̂∫ 1.25

0.25
r̂2dr̂

= ρ
π

4
R2c̄2

(
φ̈sinα

) 1.0833 AR = 1

0.64583 AR = 2
(7.2)

FN,K = −λ22 [−0.5 (b+ c)] sin (α) Ω̇ = [0.5 (b+ c)] sin (α) Ω̇ρSb

 0.46142 AR = 1

0.56605 AR = 2

(7.3)

Upon extending the wing span to obtain aspect ratio AR = 2 wing, while maintaining

a root Reynolds number of Reroot = 103, lift peak trends are intensified with peaks much

more distinct than previously observed. Lift of α = 45◦ now exhibits a peak near φ = 117◦

which develops and diminishes at greater rates than the remaining force history for duration

of the stroke, as shown in Figure 7.5. The end of the peak is marked by a dramatic rate of

change of lift similar to that reporter for AR = 1 with lift experiencing a gradual, yet slight,

decrease until deceleration. Lift of α = 60◦ maintains a profile mirroring that of α = 45◦

yet the extensional effects of span now provide for a slight reduction in performance with

α = 60◦ producing less lift. At this greater aspect ratio α = 30◦ lift and drag are both

characterized by indifference to rotation angle with both forces maintaining near constant

values for the duration of the stroke.

Table 7.2: Reroot = 103

Aspect Ratio AR [1, 2]

Reynolds Number Re3/4b [2500, 4000]

ReRg [2000, 3000]

Acceleration Angle θacc 15◦

Now the Reynods number is defined by the three-quarter spanwise position with ex-

periments now conducted in water. Sudden enlargement of the LEV has been reported to

initiate near 70 − 75% span at sufficient Reynolds numbers. A Reynolds number value of
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Figure 7.3: (a) Lift and (b) drag over the coarse of one revolution for rigid wing of AR = 1

at Reroot = 103. Angle of attack: 30◦ (——), 45◦ (——), 60◦ (——). Gray shaded regions

indicate acceleration phases and colored shaded regions indicate standard deviation.

Re3/4b = 104 is capable of prompting LEV expansion and bursting in addition to a host of

enlargement instabilities and secondary vortical structures about the leading edge. Selection

of the three-quarter span position is to induce these phenomena on both aspect ratio wings

and examine the aerodynamic effects of LEV formation and breakdown. Both wings are

now accelerated over one chord length as measured from the reference spanwise position,

resulting in varying angles among the two aspect ratios as indicted in Table 7.3. However,

xperimental studies on rotating wings by Schlueter and Jones found outside of the accelera-

tion phases force history of the constant-velocity portion of the wing stroke was independent

of acceleration distance [91].

In Figure 7.6 the lift and drag of AR = 1 at Re3/4b = 104 wing are shown. Once again,

as was the case for Reroot = 103, the lift of α = 45◦ and α = 60◦ are comparable to one

another in magnitude and share key characteristics, namely the development of twin peaks

largely centered about midstroke rotation angle φ = 180◦. The peaks are much more defined

for α = 60◦ with one peak near φ = 115◦ and the second occurrence near φ = 255◦. The lift

profile is best characterized as periodic or repeatable, more so for α = 60◦ than other angle

of attack tested. When you entertain the idea of period lift generation it conjures up an
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Figure 7.4: Added mass comparisons between the approach of Sane utilizing blade element

theory [90] and vortex surface method found in Korotkin [62]. Rows: aspect ratio (a) AR = 1,

(b) AR = 2. Rerg = 2k, attack angle α = 60◦.
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Figure 7.5: (a) Lift and (b) drag over the coarse of one revolution for rigid wing of AR = 2

at Reroot = 103. Angle of attack: 30◦ (——), 45◦ (——), 60◦ (——). Gray shaded regions

indicate acceleration phases and colored shaded regions indicate standard deviation.

image of a two-dimensional wing translating several chord lengths where the periodic nature

of life is the result of repeated LEV formation and shedding. Additionally, the subsequent

bumps in lift typically attain lower maximum peak values. Even three-dimensional free-to-

pivot translating plates of finite aspect ratio, as experimentally studied by Granlund et al.,

experienced force decay from an initial maximum achieved shortly after attaining a steady

attack angle [39]. This is not to suggest the phenomena responsible for the two-dimensional

flapping wing’s force behavior is responsible for that observed in the three-dimensional rotary

wings. The rotary wing does not experience shedding as the LEV remains attached to

the wing surface through it will host a number of instabilities. It is remarkable that the

mechanism at play produce periodicity in force that also maintains magnitude. The first

bump in lift is attributed to the formation of the LEV and the second bump seems driven

by the strengthening of the tip vortex at the higher angles of attack which has greater

interaction with the flow field about the wing given the aspect ratio AR = 1. It could

be argued that the true test of periodic lift generation would be in the repeatability of a

constantly rotating wing beyond a single revolution, however, such a maneuver would result

in the wing encountering its wake.
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Figure 7.6: (a) Lift and (b) drag over the coarse of one revolution for rigid wing of AR = 1

at Re3/4b = 104. Angle of attack: 30◦ (——), 45◦ (——), 60◦ (——). Gray shaded regions

indicate acceleration phases and colored shaded regions indicate standard deviation.

Low angles of attack are met with relatively constant lift as demonstrated by α = 30◦,

or at least the defining features are on the order of the noise remaining in the signal. Drag

profiles for α = [45◦, 60◦] appears as reciprocals of the lift with the most defining feature

of a single peak at midstroke φ = 180◦. It should be noted at at lower aspect ratios there

is greater interaction between the leading-edge vortex and tip vortex as reported by Ozen

and Rockwell [77]. Ringuette et al. demonstrated the ability of the tip vortex to stabilize

a leading-edge vortex in wings of aspect ratio AR ≤ 1 highlighting a greater degree of

interaction of the LEV with the tip vortex for the lower aspect ratio wing [85].

Table 7.3: Re3/4b = 104

Aspect Ratio AR [1, 2]

Reynolds Number Reroot [4000, 2500]

ReRg [8000, 7500]

Acceleration Angle θacc [45.83◦, 28.64◦]

Aspect ratio AR = 2 lift and drag are shown in Figure 7.7. In the lift of α = 60◦ there is
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Figure 7.7: (a) Lift and (b) drag over the coarse of one revolution for rigid wing of AR = 2

at Re3/4b = 104. Angle of attack: 30◦ (——), 45◦ (——), 60◦ (——). Gray shaded regions

indicate acceleration phases and colored shaded regions indicate standard deviation.

now a complete decay of the twin peak nature as the profile now bearing semblance to trends

observed at Reroot = 103 with a single maximum in the vicinity of φ = 97◦. For α = 45◦

there still exist two distinct humps, the first of which appears to be the result of mechanisms

responsible for the first peak reported for AR = 1 wing though the duration of the peak is

shortened in comparison to AR = 1 with a trough now present at φ = 153◦ rather than 180◦.

Peak lift is achieved at φ = 103◦. The second hump resembles an elevated plateau region of

lift. The wing oriented at α = 30◦ begins to show minor signs of the development of twin

lift peaks with a trough coincident with that of α = 45◦. Drag profiles experience a shift in

peak to earlier rotation angles over that of AR = 1 wings to φ = 130◦ from φ = 180◦.

7.3 Trailing-Edge Deflection

Now experiments are extended to include passive wings where passivity is isolated to the

wing trailing edge via a single midchord hinge as depicted in Figure 7.8. The leading body is

held at the prescribed angle of attack and the trailing body is free to passively pivot about

the hinge. The hinge contains no torsional spring or damper and in the unloaded state the
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Figure 7.8: Diagram of flexible wing with addition of midchord hinge. The hinge allows for

passive deflection of the trailing edge.

trailing body will orient itself vertically under gravitational effects. At the Reynolds numbers

considered, both the root and bursting point have been shown to experience LEV growth

extending to the wing trailing edge. The LEV growth is said to be limited by the chord

length which after the vortex size reaches will then reach a saturation point as demonstrated

in freestream plunging studies of rigid plates by Rival et al. [87]. By the inclusion of

trailling-edge deflection one can asses the modifications dynamic camber may have on LEV

formation.

The effect of a passive trailing edge in AR = 1 wings at Reroot = 103 is simply the a

uniform reduction or magnitude shift of all forces as shown in Figure 7.9. Lift and drag trends

observed for rigid wings are preserved in their flexible counterparts without excitation of

additional modes. Because the trailing body is tugged by the leading body and rotates about

the hinge in response to initial accelerations its orientation is much more streamlined than

the trailing edge of a rigid wing. The quiescent fluid is imparted with less momentum, facing

less resistance to passive deflection. As such the inertial loads of the wing are significantly

reduced to magnitudes on par or less than forces generated during revolution at constant

angular velocity. The effects of midchord passivity for the AR = 2 wing were largely lost

given the extreme angles of deflection obtained, as shown in Figure 7.10. The deflection

angles effectively reduce the intended lifting surface by half with the trailing body oriented
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nearly horizontal in stroke. More so than with the AR = 1 wing, the inertial spike in AR = 2

is diminished to an even greater extent due to the great deflection angles producing added

mass force component opposite those of the leading body.

At Re3/4b = 104 Figure 7.11 shows preservation of general rigid wing force trends by flex-

ible counterparts with reduced magnitude and continued reduction of inertial spikes during

angular acceleration for AR = 1 wings. Passive deflection wing at angle of attack α = 45◦

seems to incite a disruption of the mechanisms responsible for the second peak in lift of the

rigid wing. There still exists a second abrupt rise in lift at φ = 225◦ but begins immediate

decay for the remainder of stroke. The most notable modification to aerodynamic force is in

the lift of α = 60◦ wings. The passive response of the trailing edge prolongs the development

of the leading-edge vortex as indicated in the shift in initial lift peak from φ = 115◦ for the

rigid wing to φ = 147◦. The trough in lift correspondingly is also shift. Consequentially the

trailing edge deflection may also retard the mechanisms responsible for the second rise in lift

associated with the remainder of stroke.

Aspect ratio AR = 2 passive response to trailing edge deflection is similar to that of

AR = 1 with much of the rigid wing force characteristics preserved. Key differences arise in

lift of α = 45◦ and α = 60◦. For α = 45◦ the duration of the first hump for the passive wing

remains similar to that of a rigid wing, however, the lift peak associated with that hump is

occurs sooner in stroke for the flexible wing at φ = 76◦ suggesting trailing edge deflection may

hasten the formation of the LEV. As was noted for AR = 1, the passive aspect ratio AR = 2

wing also experiences a shift or delay in lift peak to beyond the midstroke at φ = 200◦. It

appears at higher angles of attack trailing-edge deflection dynamics are capable of regulating

LEV development and breakdown.
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Figure 7.9: Columns: (left) Lift and (right) drag over the coarse of one revolution for rigid

wing of AR = 1 at Reroot = 103. Wings: rigid (——), flexible (– – –). Angle of attack

increases with row following α = [30◦, 45◦, 60◦]. Gray shaded regions indicate acceleration

phases and colored shaded regions indicate standard deviation.
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Figure 7.10: Columns: (left) Lift and (right) drag over the coarse of one revolution for rigid

wing of AR = 2 at Reroot = 103. Wings: rigid (——), flexible (– – –). Angle of attack

increases with row following α = [30◦, 45◦, 60◦]. Gray shaded regions indicate acceleration

phases and colored shaded regions indicate standard deviation.
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Figure 7.11: Columns: (left) Lift and (right) drag over the coarse of one revolution for rigid

wing of AR = 1 at Re3/4b = 104. Wings: rigid (——), flexible (– – –). Angle of attack

increases with row following α = [30◦, 45◦, 60◦]. Gray shaded regions indicate acceleration

phases and colored shaded regions indicate standard deviation.
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Figure 7.12: Columns: (left) Lift and (right) drag over the coarse of one revolution for rigid

wing of AR = 2 at Re3/4b = 104. Wings: rigid (——), flexible (– – –). Angle of attack

increases with row following α = [30◦, 45◦, 60◦]. Gray shaded regions indicate acceleration

phases and colored shaded regions indicate standard deviation.

148



7.4 Deflection Reconstruction

To better comprehend aerodynamic trends observed in lift and drag the motions of the hinged

wings were captured in a dual high speed camera setup at 90◦ from one another and through

a process of direct linear transformation the wings were reconstructed in three-dimensional

space. Motion tracking of points along the wing tip on both the leading and trailing body

revealed the deflection angle at the hinge. This allows for the examination of coupling

behavior between hinge deflection and aerodynamic forces encountered at Re3/4b = 104.

Figure 7.13 revisits AR = 1 wing at Re3/4b = 104 where the second column of the figure is

now dedicated to hinge deflection history. Generally speaking the deflection angles measured

at all angles of attack remain relatively stable with minor low frequency undulations within

the range of ±5◦ external to angular acceleration phases of rotation. The slight increases in

lift in the passive wing at α = 30◦ are in-part due to the negative deflection encountered for

the duration of the stroke which pits the trailing body deflected into the direction of motion

resulting in a positive camber effect for the low attack angle. The larger angles of attack have

hinges deflection opposite the direction of motion, increasing with α. Undulation patterns

of α = 60◦ show maximum deflections near φ = 225◦ or t/T = 0.6 coincident with minimum

lift.

Aspect ratio AR = 2 also resembles stable deflection angles for the later half of the stroke

as shown in Figure 7.14. The greatest oscillation in hinge angle occurs near φ = 135◦ or

t/T = 0.35 for both α = [45◦, 60◦], preceded by the initial trailing edge flick associated with

the acceleration phase. As noted for AR = 1 wings, the peak in deflection is coincident with

momentary reduction in lift. They Reynolds number regime ensures significant enlargement

of the LEV, traversing the entire chord for the outboard region of the wing. Further, the LEV

is to experience a number of instabilities and in trajectory, strength and the development of

secondary vortical structures associated with interruptions of the leading-edge vortex shear-

feeding layer. Despite these time-fluctuating behaviors the LEV suction on the trailing body

dynamics does not elicit behavior as random as the vortical breakdowns above it.
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Figure 7.13: Columns: (left) Lift and (right) hinge deflection angle over the coarse of one

revolution for rigid wing of AR = 1 at Re3/4b = 104. Wings: rigid (——), flexible (– – –).

Angle of attack increases with row following α = [30◦, 45◦, 60◦]. Shaded regions indicate

acceleration phases. Dotted lines indicate revolution angles [90◦, 180◦, 270◦] respectively.
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Figure 7.14: Columns: (left) Lift and (right) hinge deflection angle over the coarse of one

revolution for rigid wing of AR = 2 at Re3/4b = 104. Wings: rigid (——), flexible (– – –).

Angle of attack increases with row following α = [30◦, 45◦, 60◦]. Shaded regions indicate

acceleration phases. Dotted lines indicate revolution angles [90◦, 180◦, 270◦] respectively.
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Figure 7.15: Lift and drag of (a) AR = 1 and (b) AR = 2 wings at Reroot = 103. Wings:

rigid (——), flexible (– – –). Angle of attack are as indicated in the figure.

Given the relatively steady nature of deflection, a series of force measurements were

conducted with a rigid wing oriented at an equivalent angle of attack, α′, determined by a

vector from trailing to leading edge of the passive wings deflected at midstroke. Figure 7.15

demonstrates the equivalent rigid wing is not strictly interchangeable with that of a deflected

wing. The substitution of the rigid wing does not sufficiently encapsulate the disparity in

leading-edge shear and trailing-edge shear inherent in the deflected wing’s configuration.
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7.5 Conclusion

Rotary wing experiments were conducted to examine leading-edge vortex formation at large

convective times. Rotation is limited to a single revolution in a simple ramp up and ramp

down velocity profile to avoid effects of wake interaction on the on the LEV. Leading-edge

vortex behavior is inferred from force measurements in revolution. At Reroot = 103, apart

from an initial spike during the acceleration phase owing to inertial force and initial LEV

development, lift of AR = 1 achieves a maximum near rotation angle φ = 115◦ that steadily

declines in stroke. Force between attack angles α = 45◦ and α = 60◦ is only differentiable in

the drag produced by the wing. Extending the wing span to AR = 2 maintained a maximum

near φ = 115◦ though the wing now supports a distinct bump or mount accompanying the

maximum. The mount in lift is thought is thought to be the result of the additional wing span

associated with AR = 2 allowing for the leading-edge vortex to fully mature over the a greater

arc length in rotation in the distal portion of the wing and incite LEV bursting. Aspect ratio

had little effect on sweep angle φ of maximum lift, revealing a universal formation time of the

leading-edge vortex independent of aspect ratio. Redefining Reynolds number at the three-

quarters spanwise position where bursting is often initiated and increasing to Re3/4b = 104

prompted the aspect ratio AR = 1 wing to also experience bursting such that the leading-

edge vortex growth was limited by traversing the chord rather than wing span. The resulting

lift profile for AR = 1 at attack angles α = 45◦ and α = 60◦ showcased oscillatory behavior

with two major peaks nearly symmetric about the midstroke with the second peak retaining

the magnitude of the initial peak. Such behavior is typically reserved for translating wings

periodically shedding the leading-edge vortex. Aspect ratio AR = 2 wings experienced a

reduction of the second peak noted in AR = 1 wings for α = 45◦ and complete loss of the

secondary peak at α = 60circ though peak lift is still achieved near φ = 115◦ indicating a LEV

formation time independent of Reynolds number and acceleration profile. With Re3/4b = 104

it is assumed the leading-edge vortex growth extends to the trailing edge and the inclusion

of a mid-chord spanwise hinge demonstrated a passive means of flow control in delaying the

development of the leading-edge vortex at α = 60◦ with a temporal shift in peak lift greater

153



in the AR = 2 wing accompanied by greater hinge deflection over that of the AR = 1 wing.
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CHAPTER 8

Conclusion

The works presented in this dissertation have examined the influence of wing deformation

on force production and vortical structure formation in flapping wing flight with application

to next generation micro air vehicles. Our desire to construct agile fliers on the insect

scale is complicated by the degradation and eventual breakdown of classical flight mechanics

with decreasing scales. This leaves unsteady mechanisms as the only viable solution for lift

production at the scales desired and necessitates the study of unsteady separate flows about

low aspect ratio wings and the interactions of the resulting vortical structures. The resulting

unsteady flow phenomena stands as a great departure from classical lift mechanics and is

further complicated by the degree of compliance experienced by an insect wing in stroke

owing to its architecture. An insect wing derives much of its stiffness from coalescence of

vein members along the leading edge, leaving the posterior region of the wing susceptibility to

deformation greater owing to non-uniform venation distribution. The resulting nonuniform

stiffness incites various deflection modes of bending and twisting in response to inertial-

elastic and fluid forces. The challenge then is studying the various phenomena in isolation

given the high level of interdependency. To this end numerical and experimental studies

were conducted in two and three-dimensional wings to characterize the vortical structures’

response to deformation, with emphasis given to the leading-edge vortex, in a series of

simplified biologically-inspired kinematics.

Numerical studies on wings normal to the freestream reveal a vortex-symmetry breaking

mechanism in flexible wings unavailable to rigid counterparts. As anticipated the rigid wing

produces zero lift, where lift is identified as force normal to the freestream, and a nonzero

155



drag that quickly settles into to an asymptotic value characteristic of the development of two

counter-rotating vortices of the same strength in the wing wake. The flexible wings passively

deflect in response to forces applied and as a result of the trailing edge configuration the

trailing-edge vortex shear-feeding layer strength is reduced thereby producing a vortex of

weaker strength. The leading-edge vortex strength remains largely unchanged resulting in

a break in symmetry producing resultant force in the direction of the stronger vortex. The

resultant force does not approach a steady value but instead oscillates as the process of vortex

formation and subsequent shedding is repeated at a steady frequency. Thus, trailing edge

deflection also provides for a vortex shedding mechanism unavailable to rigid counterparts.

To characterize the leading-edge vortex formation time and attachment-cycle prior to

shedding rigid and flexible wings at fixed angle of attack were accelerated from rest following

a power-law velocity profile. The frequency of LEV formation and shedding was interpreted

as the frequency of oscillation in the lift signature. It was shown, in accordance with the

findings of Chenet al. [16], that the shedding frequency was largely dependent on Reynolds

number and not the acceleration profile of the wing. The inclusion of passive deflection of

the wing trailing edge was met with continued linear-dependence of shedding frequency on

Reynolds number as with the rigid wing however linear profiles are now at a greater slope

with flexible wings. Flexibility increased the leading-edge vortex shedding frequency with

the most compliant wings experiences the greatest shedding frequency. Increased stiffness

resulted in shedding profiles approaching that of the rigid wing.

Flexibility in hover kinematics demonstrated a mechanism by which flexibility may be

implemented to recover losses in lift experienced by a rigid wing. Deflection of the wing is

most predominant during pitch and approaches an undeflected state during heave. Deflection

from pitch in phase with stroke reversal results in a whipping motion of the trailing edge,

increasing the trailing edge wing velocity. This mechanism produced greater shear in the

end-of-stroke vortex, strengthening its influence on the induction of the previous stroke

leading-edge vortex under the wing. Deflection also served to reduce the obstruction or

resistance of the wing to sweep the previous shed LEV under the wing in preparation for the
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subsequent halfstroke. Stroke-averaged lift over a range of pitch angles demonstrated the

flexible wing’s ability to utilize symmetry-breaking mechanisms in hover with the flexible

wing producing greater lift for small pitch angles until producing comparable averaged lift

to the rigid wing at pitch angle 30◦. Operational efficiency was shown to be consistently

greater for flexible wings at all pitch angles considered. By extending a line extending from

the centroid of the trailing and leading bodies of the flexible wing an effective pitch angle

can be quantified which shifts the flexible wing data to agree with trend lines associated

with the rigid wing.

Numerical simulations on three-dimensional wings in hover reveal a stable leading-edge

vortex for the duration of the stroke owing to centripetal and Coriolis accelerations. The

modification to lift performance to wing deformation is explored in two candidate deflection

modes with each acknowledging a single flexion about which deflection is prescribed by

sinusoidal waveform. In-phase deflection, with maximum deflection coincident with the

midstroke, was shown to have a greater effect on lift and drag for tip flexion at Re =

100. Force profile trends are maintained though magnitudes vary. Examining the vortical

structures about the wing reveal tip flexion is responsible for a thicker tip vortex which

occupies a greater region of the flow. The tip vortex now extends inboard toward the wing

root, promoting an earlier merger between the tip vortex and the leading-edge vortex. Force

profiles of flexion wings at Re = 103 maintain much of the characteristics of the rigid wing

with the greatest variability presented at the start of the halfstroke with the initial peak. Lift

of the flexion plates for the majority of the stroke behave similarly with greater disparity

between the two modes exhibited in drag. Visualization of vortical structures about the

wings reveal tip deflection suppressing the formation of secondary vortical instabilities in

the wake stemming from the tip vortex, as experienced by the rigid and root flexion wings.

Force and vortices visualized by λ2 criterion appear responsive to the deflection modes

considered. On examination of the leading-edge vortex axes to deformation the opposite

holds true. The axes were determined following the Γ1 criterion and for all wing considered

the spatial evolution of the axes remained along the leading edge with negligible variation
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between the plate configurations at Re = 100. At Re = 103 the vortex axes’ insensitivity

to deflection is continued with the axes of all wing configurations sharing a common spatial

evolution along the span. The axes show a response to Reynolds number as they now recede

from the leading edge in approaching the tip beginning near the midspan position. The

leading-edge vortex cores are also identified using the Γ2 criterion. Root flexion at Re = 100

bears influence on the core size near the wing root, reducing core size in comparison to rigid

and tip flexion wings. General trends support enlargement of the leading-edge vortex core

with spanwise position until 0.75b where the core now decreases approaching the tip with the

exception of tip flexion which supports further enlargement approaching the wing tip. At

Re = 103 the circulation of the leading-edge vortex cores show a distinct spike nearing the tip

due to the tip vortex bending inboard merging with the trailing-edge shear layer producing a

spanwise component of tip vortex near the wing tip. In transition from Re = 100 to Re = 103

there exists a shift of the axial flow maximum from the trailing edge region of the wing to

the leading edge near the leading-edge vortex axis producing greater core flow which is a

precursor the leading-edge vortex bursting.

Experiments on dynamically-scaled fruit fly wings at Re = O (104) demonstrated bursting

behavior in flapping. Dye visualization at Re = 100 outlines a leading-edge vortex largely

confined to the leading edge of a rigid wing with laminar mixing. Flapping at Re = 14226

exhibits significant enlargement of the leading-edge vortex which now extends to the trailing

edge. This behavior is believed to be the result of decelerated leading-edge vortex core

flow. Numerical simulations have demonstrated a shift in axial flow maximum from external

to the LEV core to internal with increasing Reynolds number an order of magnitude. At

the Reynolds number considered it is believed the axial flow is decelerated to a near stop,

possible supporting reversed flow under the influence of the tip vortex, which incites sudden

enlargement of the vortex. The inclusion of flexion lines in a root and tip configuration reveal

greater enlargement by the tip flexion as this mode offers a deflected wing in heave whereas

the root flexion wing’s deflection is almost exclusive to the pitching phase of the kinematics

at stroke reversal. The deflected nature of the tip acts an a barrier further decelerating core
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flow.

Experiments on low aspect ratio rotary wings explored the sustainability of lift and

leading-edge vortex evolution at long convective times unimpeded by secondary accelera-

tion fields characteristic of flapping flight. Two Reynolds numbers are tested with varying

magnitude and reference velocity. The root Reynolds number is intended to isolate effects of

span while the three-quarter span Reynolds number is intended to ensure bursting conditions

in both aspect ratio wings considered to examine the effects of tip vortex influence in the

bursting limit. In root Reynolds number revolution of AR = 1 there exists a maximum in

lift for α = [45◦, 60◦] near φ = 112◦ though the overall lift profile variation is rather slight.

At AR = 2, in extending the wing span the maximum lift still occurs at φ ≈ 112◦ though

now maximums appear as distinct peaks. The leading-edge vortex is in a sense given more

time to develop in AR = 2 by virtue of the greater span sweeping through a greater arc

length. Despite the differences in sweep arc length the maxima occur at the same revolution

angle suggesting LEV formation is independent of aspect ratio. In raising Reynolds number

an order of magnitude and using the three-quarter span velocity reference the lift maxima

maintain a φ = 112◦ dependence. For AR = 1 there exists a departure from other lift profiles

of α = 60◦ in that the initial bump or maximum is repeated nearly symmetric about the

midstroke position φ = 180◦. Periodicity in lift is highly characteristic of two dimensional

flows by way of shedding, however revolving wings do not shed the vortex which remains

attached to the wing surface for the duration of stroke. At lower aspect ratios it is expected

that the tip vortex plays a more dominant role on the force behavior. The role of the tip

vortex is only strengthen by the angle of attack α = 60◦ producing stronger vorticity at the

tip. The intensified interaction and proximity of the tip vortex to the bursting plane results

in repeatable force generation rather than a signature that decays over time.

The introduction of chordwise passive deflection at root Reynolds number Reroot = 103

in AR = 1 produced force signatures maintaining the profile trends of the rigid wing lift

and drag now shifted in magnitude. At three-quarter span Reynolds number Re3/4b = 104

a three-dimensional reconstruction of the revolving wings allowed for the quantification of

159



the deflection angle history during the stroke. Peaks in deflection wing lift are likely to

be shift now away from the φ = 112◦. Additionally, there appears to exist a correlation

between oscillations in deflection history and reductions in lift signature, namely near the

first 40% of the stroke. The belief is as the leading-edge vortex growth extends to the trailing

edge the deflection experienced redefines the effective chord thereby passively regulating the

leading-edge vortex. The hinge on the wings used here are completely undamped and provide

no resistance. The addition of torsional springs of specific stiffness could provide a passive

means of tuning the lift behavior to reflect desired attributes.

Future work entails further dye visualization on rotary wing configurations as well as

stereoscopic particle image velocimetry to draw conclusions on lift and drag profiles observed

thus far and evaluation of the relative contributions of leading-edge, tip, root and starting

vortices in force generation. Degrees of flexibility are to be expanded upon in the form of

several articulated bodies constituting a single wing and the inclusion of fully elastic wings

deriving stiffness from venation. Three-dimensional reconstruction of experimental wings

via motion capture will then provide a means to study passive deformation in the scope

of prescribing measured deformation to a computational wing. Kinematics in future work

will also examine perching maneuvers as a possible means of bolstering aerial dexterity of

next generation micro air vehicles. Nature has demonstrated the breadth of maneuverability

achievable with flapping wing configuration which also poses an inherent ability to hover,

strengthening their aerial repertoire. However despite the many advances in recent years the

aerodynamics of flapping flight remain poorly understood. Flapping wings take advantage

of short-time unsteady processes such as dynamic stall which do not lend themselves to

classical aerodynamics, where the term short-time is reserved for timescales on the order of

a halfstroke. The unsteady nature of force generation afford highly responsive maneuvers

with even the most subtle of wing motions inciting complex, rapid flight patterns. Current

micro air vehicles rely on stroke-averaged force where simplified locomotion is achieved only

after several wing beat cycles and remain a far cry from biological counterparts which utilize

instantaneous flow phenomena to achieve a greater level of agility in fewer strokes. In order
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to distill how MAVs may modulate their wings to increase force production in a given

stroke and induce sharp maneuvers the vortical structure formation about low aspect ration

wings undergoing pitching and perching kinematics will be examined. Both pitching and

perching motions provide potential short-time solution to achieving greater maneuverability

by modifying the leading-edge vortex strength and reorienting the resultant force acting on

the wing.
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APPENDIX A

Lower-Order Modeling: Inviscid Brown-Michael

Equation

A.1 Introduction

High fidelity simulations can prove quite demanding on computational resources. By ex-

ploring inviscid models we wish to reduce the computational expenses such as runtime and

memory. We make use of an inviscid model assuming incompressible fluid initially at rest.

Of interest is a two-dimensional flat plate translating at an angle of attack α with a specified

acceleration profile. Our aim is to capture much of the physics observed in high fidelity

simulations which see the formation of point vortices at both ends of the plate. In fact, this

lower order model may be extended to a general body with Nc number of corners or sharp

edges. Each edge releases a point unsteady point vortex into the flow with monotonically

increasing strength. A plate contains two edges Nc = 2 corresponding to the trailing and

leading edges and thus introduce a a total of two point vortices representing the trailing and

leading-edge vortices experienced in higher order models.

The point vortices represent a lower order model to the rolling-up of the vortex sheet,

however, vorticity strictly remains at the point vortices and the sheets themselves are ne-

glected. The vortex strength is updated each timestep in accordance with the cancellation of

the singularities produced at the edges of the body. The point vortex represents the roll-up

of the vortex sheet which physically cannot unroll itself, such behavior would amount to a

negative diffusion within the vortex core [71]. This requires that the strength magnitude to

monotonically increase with time. As a given wake vortex matures and reaches a maximum,
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its strength is frozen for the remainder of time. It is still free to update its position and

velocity in the flow in response to the velocity field produced by the vortices in the wake

and bound on the body. When a given vortex is frozen, a new vortex is introduced into the

flow from the edge of the body corresponding to that of the newly frozen vortex.

A.2 Governing Equations

Initial trials will examine a translating plate the long-term goal of extend the kinematics

to flapping. We take a thin airfoil theory approach and begin by discretizing the plate into

panels satisfying a cosine distribution. This allows for greater resolution near the tips of the

plate where we expect the most variability in the bound circulation strength. The bound

circulation γ is determined by point vortices of strength Γ located at the ends of each panel,

satisfying:

γ =
dΓ

ds
(A.1)

where s is the direction along the plate surface. The wake is viewed as shed vortices

with branch cuts spanning from the vortices to their respective edge of introduction (Fig.

[A.1]). However, the branch cut does not bear any influence on the plate or wake vortices,

with all vorticity in the wake is localized in the point vortices. In analyzing Newton’s second

law about a contour enclosing a wake point vortex and its branch cut, we arrive at the

Brown-Michael equation [71]:

żn + (zn − zn,o)
Γ̇n
Γn

= ω̃n (A.2)

where subscript n denotes point vortex n in the wake, z is the complex position, zn,o is

the time varying position of the edge from which a wake point vortex was introduced, Γ the

point vortex strength, ω̃n the desingularized complex velocity of vortex n, and (̇) indicating

derivative in time. Using equation (A.2) we can update the position of a given point vortex

each time step of the simulation.
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Figure A.1: Convservation of momentum applied to an unsteady point vortex and its branch

cut [71].

The Brown-Michael model reduces the problem to one of Np + 3 initial point vortices,

where Np is the number of panels on the plate. The number of vortices is subject to change,

increase with the freezing of a current wake vortex and the subsequent introduction of a newly

shed vortex from the same edge. The no-flow through condition is satisfied at collocation

points located at the midpoint of each panel:

u · n = ub

Np+3∑
j=1

Γj/
(
2πrij

)
= uib

where superscript i denotes a collocation point on the plate. This allows for bound vortex

strengths to be solved. The wake vortex strengths are governed by the unsteady Kutta

condition:

dΓwake/dt = γŪ (A.3)

which states wake vortex strength rate of change is equal to bound vortex sheet strength γ

times the velocity average U taken above and below the plate at the vortex’s respective edge

of introduction. Conventionally the Kutta condition is applicable only to the trailing-edge

164



of an airfoil. However, in lieu of a complementary theory for flow separation at the leading-

edge the Kutta condition is applied at both edges of the wing. The trajectory of the wake is

determined Brown-Michael equation. In addition to this, Kelvin’s circulation theorem must

also be satisfied:

dΓtotal/dt = 0 (A.4)

When the leading-edge vortex reaches a maximum in magnitude the vortex is frozen in

strength and a new vortex is shed from the corresponding edge of the plate. The frozen

vortex now follows a trajectory determined by the flow field induced by remaining point

vortices and the newly formed vortex satisfies Brown-Michael equation once again. One

advantage to panel method over complex potentials is the panel method allows us to examine

multiple bodies. Additionally, we are more easily able to examine deflected bodies.

Resultant force can be expressed as:

F = − d

dt

∫
Af

x× ωdA− d

dt

∮
Sb

x× (γ + n× ub) ds (A.5)

It is worth noting this particular model only sought to conserve force using Newton’s

second law. The method does not take into account moment balance and therefore may

not be suitable for passively deflecting plates. It may still be utilized for deflecting bodies,

however, it would be restricted to active deflection prescribed a priori.

A.3 Results

Thus far in this body of work the process of dynamic stall and the formation of a leading-edge

vortex has been studied via high-fidelity simulations in the context of flapping flight where

the underlying wing motions occur at shorter time scales than that associated with the fully

developed stall condition. In fact, the dynamic stall of been studied in a host of aerodynamic

contexts beyond MAVs where the process has been exploited to enhance maneuverability and

lift. Though high-fidelity simulations have proven invaluable to the advancement of unsteady

165



aerodynamics their implementation proves computationally expensive. Lower order modeling

is motivated by the desire to develop computationally inexpensive methods while retaining

much of the relevant physics of the problem.

Here the feasibility of an inviscid lower-order Brown-Michael model is tested as a po-

tential tool for reliably predicting LEV dynamics about wings at elevated angels of attack.

Additionally, the lower-order model is employed to examine qualitative trends in performance

associated with wing deflection. Previous lower-order methods have modeled the wake as a

sheet [93] [3] or a continuous release of point vortices [6]. In the current method circulatory

forces on the plate are accounted for by potential point vortices in the wake. At startup

the wake is to consist of two point vortices emanating from the leading and trailling-edge

representing the LEV and TEV respectively. This approach would reduce unsteady viscous

vortical phenomena to point vortices with evolving strengths of three degrees of freedom.

Lower-order models have proven quite accurate at low angles of attack flow regimes where

there is no leading-edge vortex present.

A.3.1 Normal Flat Plate

Here the Brown-Michael equations are solved for a normal flat plate accelerating from rest.

Experiments conducted on viscous flow around nominally two-dimensional flat plates re-

veal the formation of counter-rotating circulatory regions in the plate’s wake which remain

symmetrical and stable as they approach a steady state [21] [47] [48]. For a normal plate

(α = 90◦) translating in an inviscid fluid following a nearly impulsive start given by:

X = t+
1

Cς
exp (−Cςt) (A.6)

Ẋ = 1− exp (−Cςt) (A.7)

Ẍ = Cςexp (−Cςt) (A.8)
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where Cς (= 100) is the ramping parameter and the term ”nearly impulsive” stems from the

resulting kinematic profile quickly accelerating to a constant velocity from rest.

Figure A.2 shows the streamlines of the resulting flow at a representative point in trans-

lation. It is quite clear the Brown-Michael equation adequately captures major components

of the flow physics in maintaining symmetry in the wake with counter rotating regions well

accounted for situated behind the plate. Figure A.3(a) shows the circulatory strength evolu-

tion of both point vortices. As anticipated, the strengths are equal and opposite one another,

maintaining symmetry throughout the simulation. And although the circulatory strengths

never quite reach a steady-state value for the duration of translation distance considered

here, it is worth noting the asymptotic nature the strengths approach after approximately

five chord lengths of travel by the plate. In Figure A.3(b) the normal and tangential distance

of a given point vortex from its respectively plate-feeding edge also exhibits an asymptotic

behavior. Over the course of translating thirty chords the vortices can be found slightly

beyond of one chord length aft of the plate.

Lastly, the forces generated on the plate are strictly drag as shown in Figure A.4, as

anticipated for a normal plate. The lift coefficient defined as forces perpendicular to the

direction of motion is consistently zero at all times for the duration of translation and drag

maintains a non-zero value with an initial spike at the onset of motion in response to the

acceleration profile.

A.3.2 Angle of Attack and Deflection Effects

Now the planar airfoil is oriented at an angle of attack α representative of that characteristic

of biological fliers. If the Brown-Michael equation is to potentially be a design tool it must

be able to produce lift and drag trends similar to high-fidelity simulations. The wing still

translates following Eq. (A.6) and α is increased from 40◦ to 90◦ in increments of 5◦. Figure
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Figure A.2: Brown-Michael equation solution for a normal plate translating (left to right) in

an inviscid fluid: streamlines (contours), plate (——), wake point vortices (◦). Convective

time is Tc = 10, matching chords traversed X/c = 10.
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Figure A.3: Wake vortices’ (a) circulation: Γ1 (——), Γ2 (– – –). (b) A representative

point vortex distance from its respective feeding-edge, DE: normal distance from plate to

point vortex (——), tangential distance from plate edge to point vortex(− · −).
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Figure A.4: Force coefficient for normal translating plate: CL (——), CD (– – –).

A.5(a) depicts effect of attack angle on lift coefficient for the translating wing.

With increased angle of attack there is a monotonic decrease in lift which stands at

odds with viscous simulations which experience maximum lift near α = 50◦. For α range

[45◦ − 65◦] lift abruptly drops near 3.5 chords of travel. This drop in lift can be interpreted

as the point in which shedding of the leading-edge vortex would occur at the onset of a

von Karman street. However, the current method is not well suited for vortex shedding for

reasons to be discussed in Section A.3.4. For greater attack angles we see the drop in lift is

postponed to greater chords traversed. Drag as shown in Figure A.5(b) does not experience

a monotonic increase in drag with increasing attack angle as would be expected from the

increased projected area in the cross flow. The maximum drag coefficient corresponds to

α = 55◦ and minimum corresponds to 90◦.

The decision to represent the wing by a series of panels hosting point vortices rather

than mapping the wing to a circle that houses image vortices via Joukowski mapping was

purely for the ease of introducing deflection in the wing or introducing multiple bodies within

a given simulation. Figure A.6 demonstrates the effect of midchord deflection on lift and

drag for wing translating at α = 45◦. Deflection angle is increased in increments of 5◦ to a
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Figure A.5: Angle of attack effects on (a) lift and (b) drag of a planar translating wing

accelerated from rest.

maximum of 40◦. Force production monotonically decreases with the increased deflection of

the trailing-edge. The loss in force on the plate is reflected in the wake vortices’ circulation

as shown in Figure A.7 where both the leading and trailing-edge vortex circulation decreases

with increased deflection angle. The trailing-edge deflection works to modify the distribution

of the wake vortices and correspondingly their strengths about the newly configured wing.

A.3.3 Comparison to Viscous Methods

Comparison between lower order inviscid streamfunctions and high fidelity viscous vorticity

contour plots gives an idea of the method’s capability in qualitatively capturing the wake

as demonstrated in Fig. A.8. Both results show a clearly defined leading-edge vortex above

the wing and a trailing-edge vortex residing in the wake. However, the figures also reveal

the fundamental difference in the vortices’ representations: the viscous case exhibits vortices

dispersed over a region of the flow field and the inviscid method idealizes the vortices as

singular points in the flow.
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Figure A.6: Deflection angle effects on (a) lift and (b) drag of a wing translating at α = 45◦.

Deflection is introduced midchord and is maintained at a constant value throughout trans-

lation.
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Figure A.7: Deflection angle effects on (a) leading-edge vortex circulation and (b) trail-

ing-edge vortex circulation. Deflection is introduced midchord and is maintained at a con-

stant value throughout translation.
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(a) VVPM vorticity field (b) Brown-Michael streamfunctions
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Figure A.8: Vortex representation in high fidelity (VVPM) and lower order modeling

(Brown-Michael) at α = 45◦.

Figure A.9: Overlay of viscous wake with inviscid point vortices (•).

Results for lift and drag of the Brown-Michael model show a tendency to diverge from high

fidelity results at Re = 100. Presented here is a flat plate undergoing sinusoidal translation

for a fourth of a stroke at angle of attack α = 45◦. It seems the model has difficulty in

preserving the physics to the extent desired for Reynolds number Re = 100. Higher Reynolds

number may see better agreement, indicating Brown-Michael’s model may be better suited

for high Re flows. Additionally, because the model calls on shedding a point vortex from

all edges of a given body in the flow, it is meant for applications at high angles of attack,

α. In our experience, α ≤ 35◦ was met with error. Despite the differences in resultant force
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magnitudes, the lift-to-drag ratio of the model was also examined and found this ratio too

experienced values exceeding those of the viscous case. The differences is most pronounced

when acceleration is largest. As the plate approaches its maximum velocity, acceleration and

the lift-to-drag difference is minimal.
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Figure A.10: Nondimensional force on a sinusoidally translating plate from rest in VVPM

(blue) and Brown-Michael model (red) at α = 45◦.

In attempts to enduce von Karman street shedding from the plate it became apparent

the method is problematic for long-time solutions. Despite angle of attack, trajectory, and

speed of the plate, the leading-edge vortex often becomes artificially trapped above the plate

such that it enduces shedding of the trailing-edge vortex. The problem then arrises with the

releases of the new vortex from the trailing edge: under the influence of the leading-edge

vortex, the TEV encounters the plate, resulting in a singularity. This does not render the

method obsolete, but perhaps more suitable for short-time kinematics. It may prove more

applicable to high speed perching maneuvers where shedding does not occur.

A.3.4 Vortex Shedding

As mentioned in Section A.3.2 and reflected in the chords traversed for various α Figure

A.5 there seems to be a a direct link between the finite run time of simulation and the

wing’s orientation and thus the resulting wake vortices’ strength and dynamics. Just as

in a viscous sense, the wake vortices strength and dynamics are highly dependent on the
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Figure A.11: Body streamline (——) at point of TEV shedding from trailing-edge of pla-

nar wing translating at α = 45◦. Initial wake vortices (◦), newly shed vortex (◦). The

body streamline now encapsulates the leading-edge point vortex, extending from the wing

leading-edge to the trailing-edge.

wing’s orientation as they are fed by the wing edges via the Kutta condition. The sudden

drop lift experienced by translating wings can be interpreted as vortex saturation, signifying

the necessity to initiate shedding. It is here that the current method encounters the most

difficulty.

Figure A.11 captures a translating wing at α = 45◦ at the point of shedding as stipulated

by the initial trailing-edge vortex obtaining an extremum ΓTEV value. The value of the

initial TEV is now frozen, no longer fed by the trailing-edge and from the same edge a new

vortex emanates. Isolating the body streamline contour reveals a streamline encapsulating

the initial leading-edge vortex and extends from the wing leading-edge to the trailing-edge.

And therein lies the problem. The body streamline re-encountering the trailing-edge and

dictates the trajectory of the newly shed TEV to encounter the body and its representative

point vortices, resulting in a singularity. Efforts to assign the new TEV an initial circulation

value or an initial standoff distance from the trailing-edge upon release have done little
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to offset the influence of the streamline in question and ultimately lack definitive selection

criteria and remain arbitrary.

Wang and Eldredge (2012) would go on to develop a lower-order point vortex model where

the motion and evolution of the variable-strength vortices is determined by equating the rate

of change of its impulse with that of a surrogate vortex of identical properties but constant

strength [104]. Their approach has afforded a more generalized shedding criteria since the

variable-strength vortex can be exchanged with the constant-value surrogate vortex at any

instant, no longer prompted by vortex extremum values. Ultimately, Wang and Eldredge

demonstrated improved qualitative agreement in lift and drag trends between viscous and

lower-order model results for perching and translating wings over that produced by the

Brown-Michael equation.
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