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Abstract: Hyperspectral imaging is capable of capturing information beyond conventional RGB
cameras; therefore, several applications of this have been found, such as material identification and
spectral analysis. However, similar to many camera systems, most of the existing hyperspectral
cameras are still passive imaging systems. Such systems require an external light source to illuminate
the objects, to capture the spectral intensity. As a result, the collected images highly depend on the
environment lighting and the imaging system cannot function in a dark or low-light environment.
This work develops a prototype system for active hyperspectral imaging, which actively emits diverse
single-wavelength light rays at a specific frequency when imaging. This concept has several advan-
tages: first, using the controlled lighting, the magnitude of the individual bands is more standardized
to extract reflectance information; second, the system is capable of focusing on the desired spectral
range by adjusting the number and type of LEDs; third, an active system could be mechanically easier
to manufacture, since it does not require complex band filters as used in passive systems. Three lab
experiments show that such a design is feasible and could yield informative hyperspectral images in
low light or dark environments: (1) spectral analysis: this system’s hyperspectral images improve
food ripening and stone type discernibility over RGB images; (2) interpretability: this system’s
hyperspectral images improve machine learning accuracy. Therefore, it can potentially benefit the
academic and industry segments, such as geochemistry, earth science, subsurface energy, and mining.

Keywords: active hyperspectral imaging; spectrum-based recognition; sensing

1. Introduction
1.1. Background

Hyperspectral remote sensing is uniquely positioned to acquire abundant spectral
information beyond normal optical image sensors and has been recognized as an im-
portant avenue to address challenges for many applications [1], such as environmental
monitoring [2], mine exploration [3], precision agriculture [4], seed viability study [5],
biotechnology [6], psychophysical studies [7], pharmaceuticals [8], and exploration of oil
and gas [9]. In comparison to other techniques, for example, acoustic emission tomogra-
phy [10–12] is an important monitoring method in the minefield utilizing a combination
of active and passive sources. The hyperspectral camera does not require direct contact
with the object’s surface; therefore, it can be applied to the broader field. For example,
hyperspectral imaging has been used in agriculture to monitor the health of crops through
remote sensing. In Australia, researchers use periodically scanned hyperspectral images to
build early warning systems for disease epidemics by utilizing imaging spectrometers [13].
Compared to other broadband images (i.e., multispectral or normal RGB (red, green, blue)
images), hyperspectral images can provide more detailed information about objects to
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facilitate more advanced applications. For example, they can be used to detect plants and
their species [14,15], as well as extract detailed surface mining information [16–18].

As with many other optical cameras, the majority of such hyperspectral imaging
systems use a passive sensing scheme, which requires external lighting and operates
primarily in daylight. It collects the reflected energies of natural light sources, such as solar
radiation or ambient room lighting from the object. The sensor then splits the spectrums
into individual bands; either through band filters [19] or optical splitters [20,21]. Due to the
fact that hyperspectral cameras contain tens or hundreds of these bands, the mechanics
of these filters/splitters are often difficult to implement, making these cameras more
expensive and bigger than conventional cameras. To accommodate, many hyperspectral
cameras adopt linear-array sensors through a linear-variable filter (concept figure shown in
Figure 1) [22], in which different band filters are implemented at different lines of cells in
the sensor chips to achieve hundreds of bands, whereas it requires the camera to collect
images with a motion (i.e., linear scanning), limiting its usage to stationary capture in
a more confined space. In addition, since the collected images are highly dependent on
the naturally occurring light, it will likely collect inconsistent images of the same objects
when the lighting conditions are significantly altered. For instance, the spectral responses
displayed in a hyperspectral image captured on a sunny day may appear distinct from
those captured on a cloudy day.

Figure 1. Linear variable filter motion scanning. An example of a linear variable filter on a sensor
chip to achieve hyperspectral imaging. Imaging is achieved through motion-based scanning [23].

1.2. Related Works

To address the aforementioned limitations, scientists have made several attempts to
use active hyperspectral imaging [24,25], comprising two general approaches: (1) using a
different imaging mechanism through laser beams, and (2) using external and controlled
light sources to illuminate the object of interest. In the first approach, laser beams with
various wavelengths can be emitted from the sensors, which would be modulated, and
then received by the detector to form a 3D hyperspectral image. These can be designated to
operate in a dark environment [26]. However, it has several disadvantages. Firstly, lasers
only operate at a limited bandwidth (mainly within the infrared range) and may not cover
the full spectrum of the desired bandwidth. Secondly, given the minuscule footprints of
these laser beams, it requires very accurate calibration among laser beams having different
wavelengths. This incurs a much higher hardware cost for integration and calibration. The
second approach adopts coupled light sources that emit full-spectrum light (white light)
or time-multiplexed illumination with narrowband lights [27,28]. For example, Park et al.,
Li et al., and Wang et al. [29–31] used mixed RGB light sources to illuminate the scene and
a typical RGB camera to capture photos to identify the ideal multiplexing sequence of the
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spectrum sources. Using a light-diffusing reflector, HyperCam [32] reduces the number of
LEDs with extended size. A fixed measure of distance with an enclosed lighting approach
aids in avoiding camera-setting biases from one measurement to another. Therefore, for
measuring soil and low vegetation, Orlando et al. [33] presented a direct lighting approach
with VIS and NIR prototypes. For a variety of applications, an alternative indirect method
employing multi-LED structures of various shapes has also been developed. Song et al. [28],
for instance, suggested a light pipe with a flip-n-fold method for analyzing the proposed
structure of the layout. Several studies considered the use of low-cost LED (light-emitting
diode) sources to emit lights at a frequency [34–40], and the illuminated objects are im-
aged stationarily at the same frequency to construct bands of data. Some applications
that consume hyperspectral data include semantic segmentation with transformers [41],
image classifications with graph convolutional networks [42], and hyperspectral-guided
stereo matching [43]. Many existing applications often achieve the chromaticity of these
lights through a mixture of RGB broadband lights (comprising a wavelength range of
400–700 nm); thus, recovering narrowband responses is an ill-posed problem. However,
many of the existing studies directly use such composed lights for downstream applica-
tions [35,44–46], and in some works, researchers use learning-based methods (convolutional
neural networks (CNNs)) [47,48] or Bayesian regularization methods [49] to recover the
narrowband spectrums. Moreover, many of these existing works use commercial off-the-
shelf RGB cameras [50] as the detector, which is suboptimal, since the RGB filters essentially
limit the incoming light and its resulting bands within the visible range.

While these novel approaches and prototype sensors are deemed promising, some
are mechanically more difficult to implement, by increasing the cost of the already pricey
hyperspectral camera family. This paper presents a potential solution that uses LED coupled
with an optical camera, generating economical and compact sensors that can operate in a
low-light and confined environment. We offer a prototypically active hyperspectral imaging
system that uses synchronized LED lights as active illumination source and demonstrates
its viability in typical hyperspectral imaging applications for spectral analysis and material
classification.

1.3. Contributions

Specifically, this prototype system improves on previous efforts by (1) directly using
single-wavelength LEDs on a circular host programmable for illumination, rather than
using a mixed RGB to achieve a pseudo-narrowband; (2) utilizing a full spectrum off-the-
shelf camera to collect images beyond visible bands; and (3) extensively validating the
system through spectral analysis and machine learning-based classification.

In this study, we propose a prototype of an active hyperspectral imaging system that
utilizes synchronized LED lights in a low-light/dark environment. The system consists of
three modules: (1) an LED-based illumination module; (2) a control module that synchro-
nizes with the shutter of a full-spectrum camera; (3) an image stacking and post-processing
module. The system has several advantages in contrast to existing challenges. Firstly, this
active sensing system is intended to operate in low-light and dark environments, contradic-
tory to other (passive) systems operating under daylight conditions. Secondly, by changing
the illumination settings to only contained sources within the desired wavelengths, the
system can easily adjust the spectral range and resolution for data collection and further
analysis, reducing the resources required for this process. Thirdly, all of the components
used in this system are low-cost, off-the-shelf, and can be potentially manufactured in a
compact form to operate in constrained environments, such as in an underground borehole.
We evaluate the viability of such a system by collecting hyperspectral images in applications
such as rock classification and spectral analysis to distinguish visually similar objects (e.g.,
printed and natural leaves and spoiled food).

The remaining sections are organized as follows: Section 2 presents our prototype
system, which includes subsections of the LED illumination component, camera, and illu-
minator control, and image gathering; Section 3 explains the experiments, giving the results
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and validation; Section 4 discusses the anticipated difficulties in its full implementation
and the possibility for improvement; Last Section 5 concludes the paper and provides the
outlook of the future work.

2. Methods and Materials
2.1. An Overview of the Proposed System

Figure 2 shows an overview of the proposed active hyperspectral system collecting
data in a dark environment. It consists of a circular board hosting an array (a total of 76)
of single-wavelength (monochromatic) LED light rays and a full-spectrum camera, which
are connected through a remote-control module that synchronizes the emitted lights and
the camera shutter. The object of interest for imaging is placed under a holding tray in
this experimental setup, in which we place different specimens for spectral analysis and
machine learning-based material classification (to be introduced in Section 3). The object of
interest is kept static throughout the image collection process, conditioned under different
LED illumination. In the following few sections, we introduce the design of the LED
illuminator, the camera, and the data collection and post-processing components leading to
the hyperspectral images.

Figure 2. Active hyperspectral imaging system prototype. An overview of the proposed active
hyperspectral imaging system (prototype version) collecting images in a low-light/dark environment.

2.2. The LED Illuminator

An LED light is considered a reliable mechanism for illumination [51]. For example,
other lighting mechanisms use a combination of tungsten and fluorescent-based illumi-
nators, which inevitably introduce a continuous spectrum or uneven distribution in the
spectrum. LED illuminators, in contrast, can provide light spectra of precise and distinctly
narrower bandwidths based on the lighting (by exciting specific electrons to photons). Two
advantages can be observed due to this phenomenon. Firstly, the luminance of the LED
light can be precisely controlled using the amount of current. Secondly, since LED can
provide very consistent spectral light, deploying them can be standardized to quantify the
spectrum analysis, which would otherwise require calibration. The LED light bulbs are tiny
enough to be arranged compactly. Once the prototype (shown in Figure 2) is tested and
validated, it can be further compacted for practical usage.
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As shown in Figure 2, the illuminator consists of four concentrically circular rings.
Each ring consists of 19 LED lights having the same LED configuration to form a cluster
that emits light at a uniform light coverage. The four LED lights in each cluster are placed
at 90-degree intervals to create sufficiently strong illumination, at the same time they are
distributively positioned to reduce shadow formation by direct lighting. The illuminator
can illuminate light rays at 19 unique wavelengths, and its actual implementation was
achieved through planting these LED lights onto a circular PCB (printed circuit board),
which was powered by a 3W DC supplier and controlled through electrical switches (actual
prototype shown in Figure 3). Each LED bulb has a dimension of 3.45 by 3.45 mm, driven
by a direct current power supply. The selection of these 19 distinct LEDs aims to cover
the widest possible spectrum ranges. To this end, these 19 monochromatic LEDs cover
a spectral range of 365 nm–1050 nm, which are expendable depending on the spectral
resolution and wavelength of the lights (that can be extended from ultraviolet to 1400 nm
in the infrared). Based on the product description and spectrogram [52,53]. The current
layout of this prototypical illuminator has a 5nm spectral bandwidth per LED light. These
narrowbanded LED lights may potentially generate spectral gaps, and a more desired
configuration is to have these LED lights fully cover the spectral range to avoid information
loss. In this prototyping stage, we considered current spatial covers broad enough to capture
adequate information. As a result, the selected LED lights have their wavelengths as evenly
distributed as possible over the spectral range. This is also subject to inventory available
at the time of material purchase. As a result, 19 LED lights with unique wavelengths
are selected, dividing up the spectral range of 365 nm–1050 nm into approximately equal
intervals (as shown in Table 1).

Figure 3. The LED illuminator. Light controller (left) and circular LED light panel (right).
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Table 1. Spectral band number with its corresponding wavelength of the LED lights.

Band(#) 1 2 3 4 5 6 7

Wavelength(nm) 365–370 395–400 425–430 460–465 480–485 495–500 520–525

Band(#) 8 9 10 11 12 13 14

Wavelength(nm) 560–565 590–595 620–625 660–665 680–685 715–720 740–745

Band(#) 15 16 17 18 19

Wavelength(nm) 785–790 825–830 880–885 980–985 1045–1050

It should be noted that most previous works use RGB LED mixers, which essentially
mix the lighting spectrums of three individually fixed dye diodes that do not cover a
spectrum beyond the visible range. In contrast, we directly use a single dye diode that
responds to a single electrical current source [54], which can directly emit light at a narrow
wavelength bandwidth and a higher spectral purity, operating beyond visible bands (an
example of the single diode LED and RGB mixer LED is shown in Figure 4). The Hyper-
Cam [32], a single-diode LED source prototype, is similar to the design of our illuminator,
but they used a light-diffusive reflector to create uniform illumination from single LED
sources. While this reduces the number of LEDs required, there may arise two challenges.
Firstly, the strength of illumination may not be sufficient. Secondly, the reflector may distort
the spectral purity of the LED lights, adding another anomalous source to the final result.
Our design (i.e., utilizing LEDs with uniformly distributed wavelengths) is advantageous
in these two aspects.

Figure 4. Single diode LED and RGB mixer LED. Illustration of the difference between the single-
diode LED and RGB-mixer LED [55].

In a dark or low-light environment, the digitized image of objects is determined by
the intensity of the LED lighting, the camera settings, and the surface material of the
objects. We aim to have consistent absolute light intensity across different wavelengths
with the same camera settings. To adjust this, we carried out a test with the Pantone
Color Match Card (PCNCT) [56]. For each wavelength of light, we measured the intensity
of the reflection from the same color patch (middle gray). If the brightness of various
LED lights is similar, the intensity of reflected light should be constant. Figure 5 depicts
the measurement of reflective intensity, signifying that the intensity of the reflectance is
constant (mainly in the visible bands). Additionally, the reactions in the infrared and
ultraviolet ranges are noticeably weaker (a third to a half of the visible intensity). These
non-visible portions are difficult to characterize with Pantone cardboard, which results in a
diminished reflective intensity.
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Figure 5. The light intensity of reflection on the PCNCT. The intensity of reflections across different
wavelengths on the Pantone Color Match Card (PCNCT). The X-axis refers to the number of bands
and wavelengths, the Y-axis represents the reflection intensity of the light from PCNCT (normalized
to [0, 255]).

2.3. Camera and Illuminator Control

A normal RGB camera using an infrared mirror filter may significantly downgrade
the received spectral quality while truncating the spectral information beyond the visible
range. Therefore, to fully capture the reflected light via our active illuminator, we deploy a
full-spectrum camera capable of receiving spectrums at a wider range than the normal RGB
camera. In the meantime, as verified in Figure 5 (Section 2.2), considering the intensity of
the emitted lights is mostly consistent, we would be able to collect hyperspectral images
without any need for calibration. Specifically, for our proposed prototypical system, we
used the Fujifilm X-T1 IR model, equipped with a CMOS sensor but excluding an infrared
cut-off filter. As a result, this camera can capture light from the ultraviolet (UV), visible, and
infrared (IR) portions of the spectrum (approximately 380 nm–1000 nm), and can provide
approximately twice the amount of spectral information by an RGB color camera. We
avoided using any lens filter attached to the camera to allow the reception of any or all
incoming light, which is meticulously controlled by our illuminator. A remote control
is linked to the power switch and shutter as shown in Figure 6 (Section 3). The camera
parameters are preset to accommodate low-lit and dark environments. The exposure time
was set to 1/8th second, and the aperture was set to f/14.0 to achieve a trade-off between
the amount of light received and the depth of the field. A moderate ISO sensitivity of 800
was chosen to reduce noise and increase brightness. A fixed focal length of 90 mm was
used to capture close-range objects. These parameters can be adjusted to accommodate
different lighting conditions.

2.4. Image Collection

While capturing a hyperspectral image of an object, the system will loop over all
19 LED light channels and capture a panchromatic image of each. Thus, the capturing
process of a hyperspectral image of the object will go through the following steps. The
PCB controls an LED, which is connected to the direct current (DC) power supply. It has
programmed an automatic logic to run the subsequent LED circuit whenever the power
is turned on and off. We use the DC power supply’s software to create an automated test
sequence to switch LEDs after a certain amount of time. The sequence also controls the
camera by using the FUJIFILM Camera Remote app, which is an application provided by
FUJIFILM. This application can operate wireless digital cameras to shoot images with syn-
chronized LED lights. Theoretically, the capturing interval can be decreased to milliseconds,
which shall require high-speed synchronization between the illuminator and camera.
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Figure 6. The active hyperspectral experiment setup. The active hyperspectral imaging experiment
is carried out in a dark environment. Different components of this experiment setup are marked in
the figure.

3. Experiment

Two sets of experiments were performed to validate the prototype of the proposed
camera. The first set of experiments aimed to determine if our proposed prototype could
provide spectral information beyond the capturing properties of typical RGB images. This
was done by qualitative analysis of the objects’ spectral responses that were easily distin-
guished by hyperspectral cameras. This included analyzing the visual augmentation of
hyperspectral imaging for identifying fresh and wilted strawberries (Experiment-I) and
real and printed (picture) leaves (Experiment-II). The second set of experiments exam-
ined the sufficiency of the resulting hyperspectral image characterizations of objects and
facilitation of machine-learning applications recognizing objects that were complex to
differentiate by merely using their RGB images. In this experiment, we collected several
visually similar rock specimens, imaged them through our system, and performed a ma-
chine learning-based classification to identify different types of rocks (Experiment-III). All
of these experiments were performed using the proposed prototype setup as shown in
Figure 6.

3.1. Experiment I—Identifying Fresh and Wilted Strawberry

The hyperspectral camera has been used as an effective tool in the food industry
to detect the level of freshness and identify potential contamination of food products as
a measure to prevent complaints and recalls [57]. In this experiment, we examined the
freshness of a strawberry through our proposed camera. We kept a fresh strawberry in a
room environment and regularly captured images using our camera system. Specifically,
we sampled the image at 0 h (fresh), 24 h, and 48 h, using an RGB camera and the proposed
hyperspectral camera. All three RGB images had the same camera settings, specifically an
ISO of 320, an aperture of 2.2f, and an exposure time of 1/8 s. Our active hyperspectral
imaging collected 3 images with a total of 19 bands. The comparative results are shown in
Figure 7. It can be seen that the RGB images did not show much difference in chromaticity,
although part of the strawberry shows somewhat textural differences. In contrast, the
hyperspectral images (visualized using selected bands) show distinctive spectral differences.
It clearly shows the benefits of hyperspectral imaging to facilitate easy detecting algorithms
for identifying wilted regions of the fruits. Furthermore, it verifies that our proposed active
hyperspectral imaging collects expected images. The selection criteria of the bands for
visualization in Figure 7 were based on the principle that (while representing RGB) different
bands from our active hyperspectral system would highlight the overripe parts. We selected
wavelengths lower than 450 nm, which corresponded to the changes in pigmentation,
chlorophyll, and moisture content of fresh and 24 h strawberries [58,59], to demonstrate
the overripe parts. Bands 4, 7, and 11—the most representative bands—were selected to
recreate the strawberry in RGB [60].
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Figure 7. The same strawberry was taken by an RGB camera and active hyperspectral camera. The
first row shows pictorial comparisons of the conditions in terms of fresh (left), post-24 h (middle),
and 48 h (right) of the same strawberry specimen from a supermarket captured by an RGB camera.
The second row shows a pseudo-colored image on the left, generated from the most distinctive bands
(1, 3, and 4) of the same strawberry captured by our active low-cost hyperspectral camera. The same
strawberry has generated a pseudo-colored image (on the right) from the most representative RGB
bands (4, 7, and 11), captured by our active low-cost hyperspectral camera.

We further evaluate the differences in the spectrum by comparing fresh and post-24 h
conditions of the strawberry. We extract the mean spectral responses of the object for these
19 bands, as shown in Figure 8. These responses are comparable since the luminance of
the light is consistent in each captured image. As seen in Figure 8, the absolute differences
between the spectral responses suggest that bands 1, 3, and 4, are the most distinctive and
consistent with our earlier analysis, highlighting the overripe part of the strawberry.

Figure 8. The light intensities in different bands of fresh and overripe strawberries. The light inten-
sities in different bands of fresh (blue bar) and overripe (green bar) strawberries are demonstrated.
The red line represents the absolute difference between the two light-intensity values. The Y-axis
represents the light reflective intensity of the strawberry. The X-axis displays the number of bands,
with each band’s corresponding spectrum represented in RGB color for ease of reference.
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3.2. Experiment II—Leaf Experiment

Experiment II aims to verify the spectrum competence of hyperspectral imaging
over typical broadband RGB images. Images of printed and real leaves are used in this
experiment using a typical RGB camera and the proposed hyperspectral camera. We
selected six diverse leaves in terms of shape, texture, and appearance. The same leaves
were scanned and printed on A4 papers. Since these leaves underwent scanning and
printing processes, their spectral properties are expected to be notably different from their
printed counterparts. Images were taken following the same camera settings (i.e., ISO,
aperture, and exposure time) as used in Experiment-I. Figure 9 shows the RGB images of
these leaves and their printed counterparts, which show no apparent visual differences
between the real and printed leaves.

Figure 9. Comparison of printed and real leaf by RGB camera. Part of the comparison between
printed and real leaf pairs was taken from an RGB camera.

We further analyze the spectral differences between these printed and real leaves
using the images captured by our proposed hyperspectral camera. As depicted in Figure 10,
the spectral response of one of the leaf pairs is analyzed, which shows that a few bands
are distinctively different between the printed and the real leaf. For example, the paper
constituents in the printed leaf generate a notable spectral reflectance peak of around
500 nm, deviating from the spectral response of a real leaf [61].

Figure 10. The spectral analysis between the printed and real leaf from the same patch area. The
combined image shows the spectral analysis between the printed and the real leaf (image collage on
the right) from the same patch area (leftmost image). The chart highlighting spectral analysis (image
at the center) is the same as Figure 8. The comparisons between the printed (second to the extreme
right image) and real (rightmost image) leaves are made with RGB images, and the most distinct
bands (5, 6, and 7) of the pseudo-colored image.

We visualize the image using bands 5, 6, and 7 (the corresponding wavelengths are
shown in Table 1) for the pairs of leaves, as shown in Figure 11. It is clearly shown that
these bands can be used to sufficiently differentiate printed and real leaves. The synthetic
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RGB image for printed leaves has a diverse gradient of chromatic light reflection (refer
to Figure 11) due to the injection of fluorescent ink on the paper [61]. On the other hand,
different leaves have reflections of diverse light intensity due to the varying proportions of
chlorophyll [62].

Figure 11. Comparison of printed and real leaf by the hyperspectral camera. Synthetic RGB images
of leaf pairs generated from the bands have the most significant absolute differences between the real
and printed leaf images as collected by our active and low-cost hyperspectral camera.

3.3. Experiment III—Stone Specimen Experiment

The hyperspectral images can provide more spectral information about machine learn-
ing and image analysis. In this experiment, hyperspectral imaging has been used to address
the challenges in stone identification using machine learning approaches. Specifically,
20 stones of different categories were collected as samples. Some stones were visually
highly similar (as shown in Figure 12). These stones include basalt, obsidian, perlite, pla-
giogranite, shale, aleuritic-textured shale, arenite, limestone, siliceous rock, carbonaceous
limestone, slate, quartzite, anhydrite, serpentine, graphite, alunite, hematite, chalcopyrite,
and agate. Images were recorded following consistent camera settings (i.e., ISO, aperture,
and exposure time) as used in Experiment-I.

Figure 12. Stone samples. Samples of stones showing inter-class similarity in terms of their visual
appearance.

The images of these twenty stones were captured using an RGB and our proposed
hyperspectral camera, on three sides, each face recorded to create the dataset. It results in a
total of 20 (number of classes) × 3 (different sides) × 19 (bands) hyperspectral images, as
well as the corresponding RGB images. By cropping stone patches from these images at
100 × 100 pixels, 114,000 samples have been generated, of which 80% are used for training
and 20% for testing.

To resolve this experiment of the twenty-sample classification, we train a random forest
with n estimators/trees (n = 10). The 19-band input imagery patch was summarized to the
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average/median/Gaussian weighted mean value, and the stone’s category is the resulting
output. The result shown in Table 2 indicates, the model trained with hyperspectral images
has about 90% accuracy rate, which is significantly higher than the model trained with only
RGB images, having approximately 70% accuracy rate.

Table 2. The performance comparison of RF (random forest classifier) results.

Data Mean Value Median Value Gaussian Weighted
Mean Value

RGB image 74.4% 75.1% 68.8%
Hyperspectral image 90.2% 91.6% 91.0%

Difference +15.8% +16.5% +22.2%

4. Discussion

During the design and experiment phase, we verified that this prototype could func-
tion as a typical hyperspectral camera in acquiring further spectral information, leading
to better classification results on objects that typically pose complexities when using only
RGB imageries. Specifically, these experiments were performed in a dark and constrained
environment. This prototype only demonstrates the feasibility of such a system. Although
some challenges exist, there are huge scopes for improvement to develop this system for
practical usage, i.e., to be more efficient and portable (compact) for data collection in a
confined space.

A practical system will require faster image acquisition to avoid motion blurring
and more collections could be yielded at a specific period. Data collection time differs
significantly between our designed prototype and major passive hyperspectral systems.
Minimizing the capture time among bands requires significant hardware design for perfect
synchronization between the shutter and the programmable lighting. The current prototype
system did not optimize this component, due to which it required about 20 s to collect
the entire image collection. For example, if moderately optimized, imaging one spectrum
may take only 1/8th of a second (i.e., a single shot). Thus, the time required to collect
all 19 bands can be reduced to 2.375 s. Additionally, our prototype requires an image-
stacking process, which could be easily removed once the prototype is further developed by
using a more automated synchronization and data-storing module. Moreover, the quality
of the data can be improved by adopting various means. The significant measure is to
increase the number of spectrum bands. This can, however, become challenging since our
data acquisition system linearly captures bands using LEDs. More LEDs lead to higher
logistical and space costs and amplified collection time. We believe this can be moderately
addressed by splitting the spectrum range into two or more sets of an active lighting
system, which would not further increase the lighting density, or by using LEDs with
variable wavelengths to facilitate more compact illumination systems. Furthermore, if both
efficiency and compactness are addressed, the system would facilitate a better scenario,
for example, enabling the camera to probe dark and confined spaces and stream live data
for machine learning applications in real time and onsite decision-making. In our future
efforts, we expect to address these aspects through more advanced manufacturing, system
integration, and data analytics.

5. Conclusions

Hyperspectral cameras are great tools for object identification, yet most are passive
imaging systems that are unable to work in darker environments. This paper demonstrates
our proposed prototype of the active hyperspectral system, which can be used in a dark
environment. In contrast to pre-existing solutions, our proposed low-cost system uses
accurate narrow band illuminators across a dense spectrum range (that offers 19 bands with
maximum coverage extension) mounted on a specifically designed ring pattern, coupled
with a synchronizer and a full-spectrum camera. We assessed the system potentiality of
this proposed active hyperspectral camera comprehensively through three experiments
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(1) freshness detection of food, (2) comparison between real and printed leaves, and
(3) identification and categorization of rock specimens (refer to Section 3).

The results of the experiments suggested the following conclusions: First, accurate
spectral analysis is achievable with low-cost LED lights. It gives the chance to develop
low-cost, lightweight systems to be able to collect objects with better mobility. Second,
our prototype hyperspectral system has the ability to discern different objects that are not
succeeded by standard RGB cameras. Specifically, we observed that the change in the
freshness of strawberries is readily detectable at a time resolution of 24 h or less.

Real and printed leaves show distinctive spectral signatures under our camera systems
while denoting visual similarity under a standard RGB camera. Coupled with simple
machine learning approaches, the images obtained from our camera system achieves higher
classification accuracy (+22% max) as compared to images obtained via a typical RGB
camera. It has been demonstrated that such a system is feasible for low-light conditions.
Nevertheless, during our experiments, we also observed several challenges, including the
shadow effects of images projected from different bands within close ranges, a time delay
of capture among bands, as well as the challenges of manufacturing such a system into a
compact form to facilitate its usage in confined spaces, for example in boreholes. Therefore,
in our future work studies, we will aim to enhance the compactness and integration of the
system, which will yield a higher readiness level.
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